Loading...
HomeMy WebLinkAboutSW3240303_Soils/Geotechnical Report_20240308 GEOTECHNICAL INVESTIGATION 995 / 965 LONG FERRY ROAD SALISBURY, NORTH CAROLINA PREPARED FOR, OR ON BEHALF OF: AGS SALISBURY, INC. WAKE FOREST, NORTH CAROLINA GEO-SYSTEMS DESIGN& TESTING, INC. Geotechnical, Environmental, and Construction Services 1836 Augusta Highway Post Office Box 2656 West Columbia, South Carolina 29171(2656) (T) 803/791-7528 (F) 803/791-4686 oce(a.geol_net GEO-SYSTEMS DESIGN & TESTING, INC. GEOTECHNICAL & ENVIRONMENTAL ENGINEERING August 17, 2022 AGS Salisbury, Inc. 12051 Retail Drive Wake Forest,NC 27587 Attn: Mr. Harry Singh Via e-mail: Harry.Singh@agshotels.com RE: Geotechnical Investigation 995 /965 Long Ferry Road Rowan County, Salisbury,NC Dear Mr. Singh: As authorized, Geo-Systems Design & Testing, Inc. has completed the requested subsurface exploration of the above-referenced project. The report contains a description of the project information provided to us, general site, and subsurface descriptions together with our recommendations for foundation/pavement design and construction considerations. We are available to discuss our recommendations with you and to conduct any additional testing or inspections necessary during construction. We appreciate having the opportunity to serve you on this project and look forward to serving as your geotechnical consultant. Respe tively s fitted, G O SYSTE S DESI & TESTI , C. 2. oe A. Smith, P.E. President P.O.Box 2656 • 1836 Augusta Hwy. • West Columbia,South Carolina 29171-2656 • Phone(803)791-7528 • FAX(803)791-4686 Geotechnical Investigation 995/965 Long Ferry Road, Salisbury,NC I. PURPOSE AND SCOPE The geotechnical study and report is concerned with definition of the existing site materials and analysis of the anticipated material performance during site construction and final long- term loading. Primary concerns to be addressed during the design phase of the project will be: 1) Availability and workability of site materials; 2) Foundation loading requirements; 3) Building subgrade elevations; and, 4) Pavement Design Within the scope of this report, each of the above will be addressed in detail and recommendations will be provided herein as needed. Other considerations pertinent to design and construction throughout the site will also be addressed. II. DESCRIPTION OF PROJECT The proposed Travel Center building / parking area will be located at 995 / 965 Long Ferry Road in Rowan County, Salisbury,NC. The properties are residential in the frontal 170±feet with grass pastures extending beyond for 1,600±feet across rolling terrain. We understand the proposed building will be a steel frame structure with concrete floor slab- on-grade construction. Maximum wall loads are anticipated to be 2 to 4 kips per lineal foot with anticipated column loads of 20 to 60 kips. If actual loading varies significantly, we reserve the right to re-evaluate and reissue recommendations herein as appropriate. III. SUBSURFACE CONDITIONS Soil Stratigraphy: Eleven (11) soil test borings were performed to depths of fifteen (15) feet beneath the existing grade, one (1) soil test boring was performed to depth of twenty-five (25) feet beneath the existing grade and six (6) soil test borings were performed to depths of eight (8) feet beneath the existing grade in the general location indicated on the Test Location Plan provided in the Appendix of this report. The purpose of the test borings performed was to determine the consistency and possible load carrying capacities of the various subsurface soil strata and to obtain information which might influence foundation design and behavior as well as impact site development and construction procedures. The Rowan County soil survey mapping classifies the surface soils as Cecil Sandy Clay Loam, Vance Sandy Clay Loam and Rion-Wedowee Complex (CeB2, VnB2, RnC) Soil Series. 1 Geotechnical Investigation 995/965 Long Ferry Road, Salisbury,NC Typical profile CeB2—Cecil Sandy Clay Loam,2 to 8 percent slopes • 0 to 6 inches: Sandy Clay Loam • 6 to 40 inches: Clay • 40 to 48 inches: Clay Loam • 48 to 80 inches: Loam VnB2—Vance Sandy Clay Loam,2 to 8 percent slopes • 0 to 10 inches: Sandy Clay Loam • 10 to 38 inches: Clay • 38 to 50 inches: Sandy Clay Loam • 50 to 80 inches: Loam RnC—Rion-Wedowee Complex, 8 to 15 percent slopes • 0 to 8 inches: Sandy Loam • 8 to 38 inches: Sandy Clay Loam • 38 to 80 inches: Sandy Loam • 48 to 80 inches: Loam irt : - ,,„ %/ '''' :: --; ''4;..: i ' a� •.' r'f' i fP sda t 4:V 4µ1 y • Y • lf.r ' . .' 3' J 1 r 1 . 1 Geotechn ical Investigation 995/965 Long Ferry Road, Salisbury,NC Three (3) predominant soil strata were typically profiled within the site area below an average of six (6) inches of topsoil as follows: Strata I - Tan Slightly Silty Fine to Medium Sandy CLAY /Clayey SAND (SC) - Depths of Two (2) to Three (3)Feet - Firm Strata II - Red and Tan Silty CLAY(CL) - Depths of Three(3)/Six (6) Feet to Twenty (20) Feet - Stiff to Hard Strata III - Tan Silty SAND (SM) (Residuum) -Boring Termination Depth - Hard Dense Based on the IBC 2018 code, the design earthquake is an earthquake from a fifty (50) year exposure with a 2%Probability of Exceedance (PE) (i.e. a 2475-year design earthquake). The IBC 2006 seismic design code is based on the 1997 National Earthquake Hazards Reduction Program (NEHRP) Recommended Provisions for Seismic Regulations for New Building and Other Structures (FEMA 302 and 303) and USGS National Seismic Hazard Mapping Project. Soil liquefaction is the sudden reduction in shear strength of sufficiently saturated cohesionless soils caused by external loading, which induces high excess pore water pressures in soils. Liquefaction effects can be in the form of ground surface disruption and/or volumetric compression. Soils most susceptible to liquefaction are saturated, loose, "clean" (i.e., percentage passing the No. 200 Sieve is less than 5%) fine sands. When the excess water pressures caused by the earthquake shaking dissipate, volumetric compression occurs resulting in settlement and subsequent densification of the liquefied soils. In the borings, the 25%- 45% silt and clay content within the saturated sands below depths of approximately ten (10) feet and firm clayey soils near the surface of the project site indicate little concern for ground surface disruption or liquefaction according to studies by Ishihara (1985) and Youd & Garris (1995) which indicate that the upper 20± feet thickness of non-liquefiable soils overlying zones of potential Iiquefaction soils should mitigate ground surface disruptions at this site. 3 Geotechnical Investigation 995/965 Long Ferry Road, Salisbury,NC Using ASCE 7-16 and IBC 2018 for the site the soil profile is a "C" Site Class with a "C" design classification with the following seismic design parameters: After preliminary review of the boring logs, it is anticipated that the distance between rock surface and the bottom of the footings / mat foundation will be greater than ten (10) feet. Therefore, site classes A and B shall not be assigned to site. This is in strict accordance with Chapter 20 Site Classification Procedure for Seismic Design in Minimum Design Loads for Building and Other Structures. (ASCE/ SEI 7-10) FA = 1.3 Fv = 1.5 SDs = 0.145 SDI = 0.073 PGA = 0.083 Based on our geotechnical investigation, the site soils are not susceptible to liquefaction, ground rupture, or subsidence for the design earthquake event. Groundwater: Groundwater was observed in the lower elevated soil borings (Sal-9, Sal-10) at depths below twelve (12) feet of existing ground surface levels. The permeable sand soils at shallow depth are prone to "perch" surface rainfall waters however should be considered during construction to monitor positive surface drainage at all times. The interface of surface sands and shallow sandy clays at two (2) to three (3) feet can weaken soils for an additional two (2±) feet depth due to `perched' water elevating moisture levels at this soil change interface. A perched water table occurs when water seeping downward is blocked by an impermeable layer of clay or silt and saturates the area above it. An impervious stratum can create a basin that may hold groundwater that is perched above the normal water table. A perched water table can occur concurrent with the frequency of storm events. A small amount of perched water may be drained by drilling holes through the impervious basin, allowing the water to seep downward. Perched water is fed by surface water derived from precipitation. When the area is developed, perched water is further fed by lawn watering, drain from leaking sewer lines, and other man- made sources. With the development of a perched water condition, water from the reservoir can gradually seep into the foundation soil and cause extensive damage. 4 Geotechnical Investigation 995 /965 Long Ferry Road, Salisbury,NC IV. CONSTRUCTION RECOMMENDATIONS Site Preparation: All surface soils containing organic laden material, roots, sidewalks, foundations, septic tanks and vegetation should be stripped from the site outwards a minimal five (5) feet from within the building area(s). These materials should be wasted from the site or used in areas to be landscaped. A minimum six (6) inch stripping depth should be required throughout each building area to remove any topsoils / pavements prior to additional excavation or `fill' operations. The base of stripping levels should be aerated, compacted and proofrolled with a loaded tandem-axle dump truck (20 + tons) after aeration and compaction. Base of stripping levels to a depth of twelve (12) inches below stripping grades and all structural fill soils should be compacted to ninety-five percent (95%) of the soils' Standard Proctor maximum dry density value (ASTM D-698). In-situ site soils are suitable for structural backfill with proper moisture conditioning. Soils should be compacted to within ±2 percent of optimum moisture content to achieve the minimum compaction listed herein. Very hard siltstone was encountered in borings Sal-1,9 and Sal-10 below the upper eight (8) feet. This material should be rippable. Material to be excavated is assumed to be earth and other materials that can be removed by power shovel, bulldozer, or other normal equipment for excavation work, but not requiring the use of explosives or drills. Rock is defined as stone or hard shale in original ledge, boulders over cubic yard in volume that cannot be broken and removed by normal job equipment (power shovel '/2 yard capacity, scoops, bulldozers) without the use of explosives or drills. This classification does not include materials such as loose rock, concrete or other materials that can be removed by means other than drilling and blasting or drilling and wedging, but which, for means of economy in excavating,the Contractor prefers to remove by drilling and blasting. General Excavation — Any material which cannot be excavated with a single-tooth ripper drawn by a crawler tractor having a minimum draw bar pull rated at not less than 53,000 pounds (D 8 or equivalent) and occupying an original volume of at least one (1) cubic yard or more. Trench Excavation—Any material which cannot be excavated with a backhoe having a breakout force rated at not less than 26,000 pounds (JD 93 series backhoe or equivalent) and occupying an original volume of at least one-half(1/2)cubic yard or more. Rock shall be stripped for measurement before excavating, and no rock excavated or loosened before measurement will be allowed or paid for as rock. Measurement and payment, therefore, shall be by the number of cubic yards required to bring the excavation to the required surface or grade shown on the Drawings. The Owner may adjust the grades should excessive rock be encountered. 5 Geotechnical Investigation 995/965 Long Ferry Road, Salisbury,NC Before placing concrete or masonry on rock, surfaces shall be leveled off, or shelved, to a slope not exceeding one inch per foot Explosives: When explosives are used, work shall be executed by experienced powder men or persons who are licensed or otherwise authorized to use explosives. Explosives shall be stored, handled, and used in accordance with local regulations and the "Manual of Accident Prevention in Construction" of the Associated General Contractors of America, Inc. Any damage to foundations or other work caused by use of explosives shall be corrected at Contractor's expense. It has been found that cohesive soils (silts and clays) compacted at a moisture content below the optimum moisture for compaction are relatively strong but lose a considerable amount of this strength upon saturation, particularly if there is little confinement of the fill. Clays compacted at a moisture content above optimum have a relatively lower strength but lose less strength upon saturation than those compacted dry of optimum. If the possibility exists that a fill will become saturated, the total design should be based on the properties in a saturated condition. Thus, compaction should be specified wet of optimum. Exposed building subgrade soils should be well-drained to minimize the accumulation of precipitation. If the exposed subgrade soils are not as anticipated or become excessively wet, the geotechnical engineer should be consulted for additional guidance. Utility Excavation: Utility excavations should be backfilled in uniform 4- to 6-inch lifts compacted to at least ninety-five percent (95%) of the soils' Standard Proctor maximum dry density value (ASTM D-698). Excavation sidewalls should be no steeper than 1:1 (Horizontal: Vertical) for excavations within the upper four (4) feet. All excavation trenches should be protected from rainfall if to be opened for longer than a one (1) day period. Earthen Fill: No deleterious debris, organics or highly plastic soils should be placed in fill embankments. The following site area soil classifications can be utilized as suitable fill (SM, SC, SP, CL) according to the Unified Soil Classification System(ASTM D-2487). 6 Geotechnical Investigation 995/965 Long Ferry Road, Salisbury,NC Foundation Design and Construction: The natural 'on-site' soils and any compacted site or acceptable borrow fill soils should be suitable for supporting shallow spread footings for the proposed building if constructed and inspected according to the above requirements. An allowable design soil bearing pressure of 3,000 psf may be used for foundations bearing in compacted natural or fill soils. Settlements within the virgin and/or compacted fill soils are expected to be within the tolerable limits of 0.5 inches for properly proofrolled upper surface soils. Differential settlements throughout the building structure will be principally controlled by the spacing and loading variances of individual columns but should not exceed 0.2 inch for the bearing pressures recommended throughout the structural area. Fill soils could experience greater settlements depending upon uniformity and control of fill placement during construction and stabilization of footing excavations prior to concrete placement. Anticipated differential settlements between parts of a structure can be reduced by measures such as cantilevering the building out over the distributed settlement reducing the potential differential settlement. The foundations should bear at a minimum depth of 12 inches below external grades to adequately extend below frost penetration depths and provide sufficient cover to safeguard against erosion. The foundation bearing area should be free of loose or soft soil, ponded water and debris. Foundation concrete should not be placed on soils that have been softened by precipitation or from frost heave. Grade Slab: The grade slab of structure(s) may be "floated", supported by compacted subgrade soils in accordance with the site preparation recommendations contained in this report. A vapor barrier consisting of six (6) mil polyethylene moisture sheeting between the concrete slab and site sandy soils is recommended. This drainage layer will serve to minimize any build-up of capillary moisture and breakup any long-term hydrostatic pressure due to the capillary attraction of moisture beneath the slab. Floor or other 'flat' concrete slabs should be designed based upon a recommended subgrade soil modulus of 170 psi/in for compacted grade level site soils. Where practicable, excavation for footings is made in the fill after compaction. In many instances, however, footings and walls are in place before the final lists of the fill are placed. Thus, the fill must be compacted by hand-held pneumatic tampers not to exceed four (4) inches thick at a time. Footings established several feet below floor level require compacted backfilI under the floor. As the degree of compaction above the footing is likely to differ from that of the adjacent fill, cracking of the floor is difficult to avoid. Exterior footings must be placed below frost level and placing the adjacent floor on backfill cannot be avoided. Therefore, the backfill requires careful and diligent compaction to provide adequate support for the floor slab near the exterior wall. 7 Geotechnical Investigation 995 /965 Long Ferry Road, Salisbury,NC Subgrade(Pit) Walls: Subgrade walls are designed to restrain lateral earth pressures which subject a net eccentric load to the foundation element. We recommend a normal allowable contact bearing pressure of 3,000 psf with a maximum allowable toe contact pressure of 3,500 psf. The resulting excavation walls during construction of subgrade walls should be sloped no steeper than 1:1 (H:V) offset at the base of wall at least three (3) feet to allow worker access without slope disturbance. A foundation footing drain consisting of perforated pipe encased with stone and preferably wrapped with a geotextile non-woven fabric should be provided for wall sections extending into cut sections of depths at least five (5) feet below existing grades. A clean cohesionless sand backfill can be placed full height against the wall compacted to ninety percent (90%) of the soils' Standard Proctor density value. Alternatively, a drainage fabric (Enkadrain, Mira- Drain or equivalent) can be utilized against subgrade wall sections eliminating the sand backfill in lieu of site material. For active pressure movement S=Surcharge (0.002 H to 0.004 H) S For at-rest pressure -No Movement Assumed Ho:izornal Finished !. Grade I/ t / H Horizontal Finished Grads � I 1:—p:-31E-13,—N ' ---Retaining Wall Earth Pressure Coefficients Earth Pressure Coefficient for Equivalent Fluid Surcharge Earth Pressure, Conditions Backfill Type Density(psi) Pressure,p,(psf) Pa(psf) Active(Ka) On-site sand-0.33 -0 (0.33)S I (40)H At-Rest(Ko) On-site sand-0.50 55 (0.50)S I (55)H Passive(Kp) I On-site sand-3.0 300 --- — I — Anplicable conditions to the above include: For active earth pressure,wall must rotate about base,with top lateral movements of about 0.002 I-I to 0.004 FI,where H is wall height. For passive earth pressure to develop, wall must move horizontally to mobilize resistance Uniform surcharge,where S is surcharge pressure. In-situ soil backfill weight a maximum of 115 pcf. Horizontal backfill, compacted between 95 and 98 percent of standard Proctor maximum dry density. = Loading from heavy compaction equipment not included. No hydrostatic pressures acting on wall. No dynamic loading, Safely factor of 1 included in soil parameters. Ignore passive pressure in frost zone. Backfill paced against structures should consist of granular soils. To calculate the resistance to sliding, a value of 0.35 should be used as the ultimate coefficient of friction between the footing and the underlying soil.For retaining wall foundation recommendations, 0 Geotechnical Investigation 995/965 Long Ferry Road, Salisbury,NC V. PAVEMENT DESIGN We recommend that NCDOT Bituminous Asphalt be used for flexible pavement structures. The required thickness of Base Course material should be placed over a compacted subgrade of fill or virgin soils with the following recommended pavement section. Drive Areas: Flexible 2.0 inches Asphaltic Surface Course (NCDOT, SF. 9.5A) 2.5 inches Asphaltic Binder Course(NCDOT, I-19B) 10.0 inches CABC (Crushed Aggregate Base Course) compacted to 95% Modified Proctor Maximum dry density(ASTM D-1557) 12.0 Inches Compacted Subgrade to 98% soils' standard Proctor Maximum dry density (ASTM D-698) Heavy Use Drive Areas: Rigid 9.0 inches Concrete 4,000 psi 6.0 inches CABC (Crushed Aggregate Base Course) compacted to 95% Modified Proctor Maximum dry density (ASTM D-1557) 12.0 Inches Compacted Subgrade to 98% soils' standard Proctor Maximum dry density (ASTM D-698) Store Parking: Flexible 2.5 inches Asphaltic Surface Course (NCDOT, SF. 9.5A) 8.0 inches CABC (Crushed Aggregate Base Course)compacted to 95% Modified Proctor Maximum dry density (ASTM D-1557) 12.0 Inches Compacted Subgrade to 98% soils' standard Proctor Maximum dry density (ASTM D-698) Compaction of subgrade soils should be compacted to at least 98 percent of the standard Proctor (ASTM D-698) maximum dry density. Base course materials should meet 95 percent of their modified Proctor (ASTM D-1557) maximum dry density. All materials should be within the latest version of the North Carolina State Highway Department of Transportation specifications. Any paved areas adjacent to sprinkler systems should be designed with an underdrain system to prevent wetting or saturation of the subgrade soils. Positive drainage and pavement sealers should be provided throughout pavement areas subjected to wetting cycles. Construction operations should not be performed without proper quality control inspection and testing by experienced engineering technicians working under the supervision of a geotechnical engineer. These services should include field density testing of subgrade and base course materials as well as field inspection of asphalt paving operations to check conformance with project plans and specifications. 9 Geoteclm ical Investigation 995/965 Long Ferry Road, Salisbury,NC A major factor contributing to the life and success of any pavement structure is to provide good surface and subgrade drainage. In a dry, well-compacted condition, the on-site soils will exhibit high shear strength and provide good subgrade support properties. If saturated or subjected to wetting and drying cycles; however, the soils will exhibit a considerable loss in shear strength and poor subgrade support properties. Periodic inspections should be required throughout the life of the pavement to seal minor surface cracks as to be expected in any pavement structure with time. Unattended surface deterioration cracks will decrease the life of a pavement structure significantly. Straightedge requirements for the finished surface should specify a maximum of 1/8" and a maximum variation of 1/16 in any 1-foot lift. Flexible base materials should be completely compacted to specified compaction before the prime coat and asphalt surface treatment are placed. After the base course is thoroughly compacted, it should be allowed a few days to cure to reduce the moisture content to about one-half or less of optimum. If a compacted base course becomes saturated from precipitation, the original density will be lost, and recompaction will be necessary. It is recommended to place a prime contact on the compacted base course immediately after the curing period. The application of a prime coat to a newly constructed flexible base course often causes fluffing of the upper % in. of the base. If fluffing occurs, it is good construction practice to recompact the fluffed material immediately after curing by pneumatic rolling. This recompaction will provide a better seal against the infiltration of surface water. 10 Geotechnical Investigation 995/965 Long Ferry Road, Salisbury,NC VI. CONSTRUCTION CONSIDERATIONS Foundations: Exposure of the bearing soil to the environment may weaken the soils at the footing bearing level if the foundation excavation remains open for long periods of time during construction. Therefore, we recommend that each building site be concreted soon after footing excavations are completed to minimize potential damage to the bearing soils. The foundation area should be free of loose or soft soil, ponded water, and debris. Foundation concrete should not be placed on soils that have been softened by precipitation or from frost heave. If bearing soils are softened by surface water intrusion or from frost heave, the softened soils must be removed from the foundation excavation bottom prior to the placement of concrete. If the excavation must remain open and rainfall becomes imminent while the bearing soils are exposed, either a plastic membrane can be placed across the excavation or a 2 to 4 inch thick "mud mat"of`lean' (2,000 psi) concrete can be placed on the bearing soils for protection. We recommend that a qualified geotechnical engineer or technician under his/her supervision using hand auger/cone penetrometer testing equipment examine the base of footing excavations. This is necessary to document that the actual disturbed soils due to excavation have been re-compacted and are acceptable for the recommended design allowable soil bearing pressure. Any unsuitable soil detected during the examination should be `under-cut' or treated as directed by the geotechnical engineer. The resulting excavation can be backfilled with suitable structural fill or may be concreted. Backfill should be compacted to specifications provided in this report. VII. BASIS FOR RECOMMENDATIONS The recommendations provided are based on our understanding of the project information as presented in this report and our interpretation of the data collected during this subsurface exploration. We have made recommendations based on our experience with similar subsurface conditions under similar loading conditions. The soil penetration tests, and laboratory test data have been used to estimate allowable soil strengths and evaluate the anticipated behavioral performance of the soils during construction and long-term loading for this particular project. Any deviation of grades and/or loads other than those presented in this report should be provided to us so that we may review our conclusion and recommendations. Regardless of the thoroughness of geotechnical exploration, there is always a possibility that subsurface conditions between borings may be different from those at the boring locations, that conditions are not as anticipated by the designers, or that the construction process has altered soil conditions. Therefore, experienced geotechnical personnel should evaluate the earthwork and foundation construction to document that the conditions anticipated in design actually exist. The owner should retain Geo-Systems Design & Testing, Inc. for this evaluation, as we are already familiar with the project, subsurface conditions, and the intent of the recommendations. 11 APPENDIX A SITE/TEST PLAN LOCATION 995 / 965 Long Ferry Road Salisbury, North Carolina hrry ran rvar 7, } e b nun m `�`G-�'G-�' °' `lyfo• Z w �' '❑ cK o.i �� o z m 3 • _. ❑ _a. -`- r 2, . N T U a ----- a.Q+ i 0 u `i) 1 all n WIZ 1 .....,, Vo° ~. ./ WHO U) Qur Q ,,b oc m�Z ti T. W<u t . �T ou rn po CL Er 1.1---.7N \A 1/4()Ait.c, \lt, a CA w ✓ I, .. 03 i �" dl/..-�, f.., +J�� _ r �* , _ 1 ,r''j `ti '•.. �.'� O_ /mi^ll yR. 'at' ti :s♦„ • ,. g I •e. . M ZAP dC. C ' c4 •♦ �•C[3�,�}n.'. ' 4 (� y .:-«c t� rk, ai).' a, „ /i • (A* r .. Ntrl V 0 it 1ej " 4 Co �/ 1"' -• 'tom-ft y 710 6�) m Kx - - i. •'. 'M'N� 4{ t• ,oc. .' .'.'yam t �,%,.0 Z is r 4147 - �!.�' �* •� ,� \ . ♦y� r ' -� a CO e ' ry Y1 , L • -T Z U a iF a f C g �jY 1, � �,� , rr -'_ 1 i r 0 • ' y S Lit'!-� . ,,,//f ,. ® - , f - , r • • .h,�f '�;4 ` :p.A `\ f"1. ofs, j i • ' \ c r 4 d Y.t„:. . 41 ., ...t f \ 7- - '., •\ , . ..:.. % / lf ' \ . ,.,...z_:: ... .3, .., _ i a1r. , - /ti ! i / _ T.: :\le \ ,, • ,A . •� ' s ..:. 'f • ...*° ,;, * tom' '• .Jf .Y �i.-� , 4-' .'r ,,,, • • ' tz - ' - ' -- 1 �,t r ,.. 'i � h P 2y ,i .s_a • t •` • 1 \ .fie. 9 •. • �. .._ :. -may l l .,: (, j'jtt .4- e,`,, '14. z :,' a S i f. " ;, <.3 M` p. • ' A } ¢ - -l•� r S I • � �- BAN f...s • ..7 ... # �q, 3- ,.1:. - •a:_ ._,.: i ,u... ::��'y.•. - di[•�' .r APPENDIX B FIELD TEST DATA 995 / 965 Long Ferry Road Salisbury, North Carolina GEO-SYSTEMS DESIGN & TESTING, INC. Post Office Box 2656 West Columbia, South Carolina 29171 AUGER/PENETROMETER TESTS Project Name: 995/996 Long Ferry Road Date: August 7,2022 P-1 P-2 P-3 DEPTH SOIL DEPTH SOIL DEPTH SOIL (FT.) CLASSIFICATION N (FT.) CLASSIFICATION N (FT.) CLASSIFICATION N -0.2 Topsoil -0.3 Topsoil -0.3 Topsoil Tan/Red Sandy 15 Tan/Red Sandy 12 Tan/Red Sandy 7 CLAY CLAY CLAY 17 16 9 20+ 18 8 20+ -8.0 14 -8.0 11 -9.3 AR Boring Terminated @ 8 FEET Boring Terminated @ 8 FEET Auger Refusal @ 9.25 Feet P-4 P-5 P-6 DEPTH SOIL DEPTH SOIL DEPTH SOIL (FT.) CLASSIFICATION N (FT.) CLASSIFICATION N (FT.) CLASSIFICATION N -0.2 Topsoil -0.3 Topsoil -0.2 Topsoil Tan/Red Sandy 6 Tan/Red Sandy 9 Tan/Red Sandy 7 CLAY CLAY CLAY 8 7 15 12 15 12 -8.0 13 -8.0 12 -8.0 6 Boring Terminated @ 8 FEET Boring Terminated @ 8 FEET Boring Terminated @ 8 FEET GEO-SYSTEMS DESIGN & TESTING, INC. Post Office Box 2656 West Columbia, South Carolina 29171 AUGER/PENETROMETER TESTS Project Name: 995/996 Long Ferry Road Date: August 7, 2022 P-7 DEPTH SOIL DEPTH SOIL DEPTH SOIL (FT.) CLASSIFICATION N (FT.) CLASSIFICATION N (FT.) CLASSIFICATION N -0.2 Topsoil Tan/Red Sandy 8 CLAY 11 12 -8.0 13 Boring Terminated @ 8 FEET DEPTH SOIL DEPTH SOIL DEPTH SOIL (FT.) CLASSIFICATION N (FT.) CLASSIFICATION N (FT.) CLASSIFICATION N N ° . ° Hdh °41 cn CI) W Zg cM ag: V o c to ov >u. Cl) a) NV005 CO— fink co 1 I • t. �r u Z a ' V -i 0 0 O • J m _ rn�t Z W J 4- o,•N G 5, ° ° 'ate(' U • O 1 Jcn fn l •. U d'= OoIi" - N0 • _W y 0- o n nnu i ,,,_ C1 3 0 c N O. - O� F--a - o I III I I I 1 I 1 I I I I I I I I I I I I I I I I 1 I 1 I .. L N o. o- v�i.� - 0 tr m N f0 0 / to QQ U N °N VU no E—m N,L.Nto U it N ° ow I I co .,.,, N(0 4 0, r + o pi a� o ,n o ,u-, o �I N N VI rf Ci 0 0+-..0 IL N N+. e 4 d' , O I II 1 1 1 1 i [, ilEo I I I I I I • U I c 1 1 I 1 ! 1 1 m j co a .0 C n E cI C II I I I I I 2 LU d 7 t 'O t O N C ` j .- N W ,r, InN, V, M DO P m m N m n m V gEN N P P U J 17, = E o 11 ` 00 U C m m m m '? m co ;,:t- IL a N A A A A m LO A A „.Q. ° C1 et a:: T- O ? o e T' T N C N It) O O a � \ Nm "gCcr, gri ° N IA W COY J . U U m v COn coO N Q y Y O O •o .- N N N IX U U) N /O� W to O G O 0 0 0 0 Z gt I— • I' VJ N C a+l if LL�13ol I:* ce C N 0 ro, 44. a Uz # NN N t� N P N f0 m O O c . S U a L O aJ .a C OI N !� ^ N O1 _ 2 N N up. O.10 N 0 I. COU U 0 .- O P m ? O.V/ V •1 O F` U i r Q P 01 Of NGO 0 00 m N. yU. t� .D O n O N N. On . 'r,1 co N '.1 7 tV 44 • } I it } J J J J J J N N co co N fn (-9 ❑ ❑ ❑ ❑ ❑ Z ` — me zzzzzz �az ' CO 0 o 0 0 0 0 �_ ° 4 N � z z z z z z 0 p • r 0 0 0 Q Q Q I' • }1 0 co co co co yN ❑ O I. > T Y -I - -. y W L I r • CO CO CO CO CO CO r. 1 0 iF . F:. f •m m Ley N t rF y - a Po a LL ° N COP N ,0 N. 0 �.. � _ r: • i.. w , � - —;— ,. . ,_: R. ;__._ .__a.. � is ( - _—., a) co 0 L. 0 Vl 'O •> I-'7p a L a) O A m T N to c y� N al c a o cm a,c ?Fo cn �Z` �� gym' >, �o U o0 cc co 0 >u O <n �y U Utn W- u) cq� �O W° Elial• o- Li un • 2 - O. U - -.../1-1-"V1_,-t-r-'-s-Ir SI..A114,-1, ,,,.,00/2 °" 1 0 0- N ° 1 2.' J i0 Q o to '«- - u vi Z a0 n. e N n� • �~ cC0Qo CO zZ cn c - 01 Q m d Z c R U o r L 10 C C _ Z 'O C - O f0 O �' O w° - a. U V U .� - O ou' - �NU '"' L Q, 0i. i. i d 7 L . - ° `1 - d 0 roN F°O W - a - 0- . . . . . - I 1 1 1 1 1 IIIIIIIIIII 0 'O d o� 0 0 CCm u�- �n L. a) fl E um`y O C d•y - U u- 2 m L. O(tl U� a I co co Q U) --O II O N O (0 O to N N D: CI NQ...+.0 LLNQ . l x" U I I I I I I I I I I 1 1 1 1 11 i O F { 0. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 U . C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 m N r' 1 v ♦ ea .0 _e r, L° .d 1 1 1 1 1 1 1 1 1 I 1 I I 1 I• ° ay 7 7. Sri a, m m P C g ((pp T.•. •� UI N O P N m N N OI. P N O n M m 3 m Q Yl m ri m OI p ^ A O m m [y C co m A O. CO m A 0 (0toY) co(! 1 pi V 1'. W Ca v J m m m m Oi A w u' v) A m m N m m m N. m c' m vn c1 C Q q A I� 1- VI in v+ t� m m u' M `; IL ¢ Q n QmmC') mmm mmmmmm In ( 1.11 re i.i . O ' Ma ' ae e X ;c aE x ae Ye X ae a° X p La' OJ '�• a3 N Ym,1 Ym' N N N N O N ae YOI N .1 Q m d ae . a Aaeaea AA.aeo .7qA N om ;• - W O e Ca N m' N 11 ? v' J Oa —I Y V ` m m m N Q O' P m D Q+' y O ' m n o m m m A V1 1 L' ,gym• O N N N m m m m Q O Q U !U i O > W cn o 0 0 0 0 0 0 0 0 0 0 0 0 o Z*F � Ma). IL C Nl si CI I: a.Q U Z m m N m sr to Q N Q No O N 0 J fn , . I. Q O J Q aJ C . Fr. N Q CO A N N 0) m N IA) Vf m Q i _ a) o m A m v' in m A v m m m m N. 14 m o m m m m A A A m w m 0 A 1 R'' 0 a +4 ttS Ur. F N O' N O' ' m cn N A v A N Q +�'` �: Q m Q N cn N m O co N N m U) u i Qi V VI 1- m tO m VI O V) tD 01 • // i/ el v. m m m An m m VD in m N N m n �.ej}j Lf • 1'1 f `' a i J J J J J J J . . J J J J 1 h N N CO O) N N N N N N Ol CO IN 0 4 O } W W W W W W W W W W W W W ? ,, • 62T < 5555555555552 # to d F, N U U U U U U U U U U U U U n � m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N F I- 1- I- 1- 1- 1- I- N f F- F- I- to f R ❑ N I- I- 1- 1- f f H H f H N I- lL R Z J J J . . . . . J J J J J 4 6 0 0 to W W O) O) W W O) N 0 N 1' } ❑ ❑ 0 0 0 0 0 0 0 ❑ ❑ 0 0 Z NZZZZZZZZZZZZZW C d ¢ a ¢ a a Q ¢ ¢ 6 N N O) N N In O) N W O) 0 to N N t1 y, o 1' )C ca y v L 1 a Q1J- ,- N m Q N m n m m . ' ,N- , 0 N 0 o a. 0 -1 N C 'O c a, N .O �-._.. II—— = N LL 1.0> m d Nw O)U mm Icv �� W= ›••W wU U1O ro Urn �m Ov, O J c 1° ,,c m F C7 >• , c ra m>. —0 U 0 0 .c'Io QI _ to U >Li: CO N V) U V V) U H Cn,2 (N 0 V a W I �- L i Z a ' U :il co- AN-1f114\j",:\r/V-i\r, o- I cv Y - J 'Cr oo- 2 Z n CD CC as fA 76 1.3 `w c K a)a c W � O = c c c v v 0 JfnCg HI UU " v•---. O oLi- N 0 W o a n u n u O d _ a, In - a o� I I I I 1 I I I I I I I I II I I I . 1 II I I I I I I II o, a a, O 073 In_ Ln [r N 0 -- a`W Ca- m .O 0 I ua,Uo ova QQ m a c hcn mT U 'I L) n 110 amo f ? r� — r S 0 o r o it W0 CV CV m I ❑ GI 0....= EL a)CD v... UCO �° m �° m `A CD CO CO m m CO m m O d N N t7 N N N N N p N E G. E. 0 0 0 0 0 0 0 0 0 0 0 0 0 O U N ro n to m m m c N m m m m m w 'O w a a7 t0 m Qp'� CtDp A 07 N v, ,) n 0 P n N W. N tD N W. w c 2 L c N 21 73 w . c 7 N O O I I I I I I I 1 1 1 I 1 1 1 U LLI = w y --Io 17) w m u c , l�� ly, a i I I I I I I I I I I I I a Nr 0 - > � N 1-6c N Q 713 0 \ N I 1 I 1 1 1 1 I I 1 1 I I 1 I 1 , MW o W N ) M al--I , > y o u V ` O CO n m m ON) ' ' CO N N 00 m D, m .j a at+ ..' d r O O O O O O N N N to t7 CO 0 CO N 0 > W y O O O O O O O O O o 0 ci ci ci ci Z It I LL.0= a ptl ❑ O N c c= 3NL/ U~ Z v) mcO '- m voo J< N r .- m o m m gtgl- ❑ A 7 L OU j QC CO CO co r a 7w CO m N T CO O) P m w O. to ID WWD CO N O O, IDD O rS N O W. tN CDD IA 0 U ,- N . ' .- O O y- O co O O O O V/ ` tL U0 Cl) V r CO th D, .- r CO m Q N a N N m to .- t`i O r .- m m Doi .- o o tNp m 0 0 U 0 0 > ¢ i ¢ z 'sw 5 ri � _ � 'OLa 0 0000 jo 01 w1— 0 0000 0] } coor CO CO } CO to N co co to co CO CO co L1 z5 � 000555555555a _ F LL F 0 0 0 0 U 0 0 0 U Z y 0 0 0 ll0 W t7 to to to O t0 N N C.'t N O Q U. m P N tD r m m O N t7 V N tD . 5 W Ill to a p O J C 0>C 0 " _C 1a G N oC W~ Cu_n N. O EC l VI T ? N In UT � ' J CZal rl Nc TUFa UOl NC Eo- 5of ~ NN= z'm c,T o2' ?-' U ,go ca oio N U >ii �D yN 'O tgt LE , W ' II 1 ., i� J IL- 0 o-' ,a 0 - I -4 - ix .0 _ v - o o if.- r a Z v! Tict a.0 0 a+ ,C W J'f; DI c c • . G c= 7 Z d 0 _ �� J N f1�1 ' OEM r " ff ( . N ou J N U .. .. .. 1.fl ,, .. a 0 7 - ac I N N - 75 a� tea` o- I I I I I I I I I I I I I I I I I I I I I . I I I 1 I I I I �� v -�� oin Ir m v Q c'm G u o I A QQ U N 0 U CC.) n u Fm 13 G _ .°i'N aT ..., _ 10 c G 0 `-on U IL too t.� N y ono I I au� �o o it La0 .- ,- N N o cc inalQ...G LLa)o... l U IDno D m D ro D D I n D m I m m ITD D D D 1 0 EI q90. 00. 0. 0. 00. 1000 1 0 o 1 o o 0 o o 1 ;; O . U VI N DI CO. 0 m C) .- C) .- 6N .- c7 N CD N V- CD C 1 N .- N N N N N N 1 N N N 1 N N 1 N N N N N I d (I) CtN = 0 N ' N CO N DI ,- cn N N N tO r• O 0 N C) tT O N ANN AN O 0 O fa L V. I N C) N N N .- N N N i 6 P Y I P P I N ci C) VI C 1 C V)r M in N N C • 7 ^pI N cr. 0 IA.) N -aO A .- m 0 G I I I I I I I I I `- I I I '- I I s- I I I I I 0 J U od m M M A LLQ LL a O n I l l l l l l l l m I I I I I I t I i I CWI D N I— N M I v 0 � . a ;e e e e > .tC C co N co N N co N N Qd °) a e e N _ I(r) I I I 1 I I I I I uo) I I I v0) I I o I I I I I )))) CO 0 MW W r �v i n J� J co 0 c0 Lo O m T N N m m ul co N V- A 0 O el COCAO 01 CD a Q N �' OI O r N N N to C) C) P V. Q N N N LO CD t0 A A A A CO re U a) O > w(15 oti000ticotioo 6cici itico 66 i000 Z#I— e- 6 O1 N 0 Li_ -3'UO 01 N C re F- C_ 7" Q U Z # c0 O O N A (O V. CO N C) C) tD N N N N N CO CO O tP N A Q M o y .- N N C) 7 N N N N N CI C) N N C) N CI C) M C) C) N J!A fq I— Z O J Q .J � m N N N V N Fri Cl ? c0 tO 2 N O) A N O) A C W d Y] N Q O CI O7 N Ol V- O) cO N Y. CD 177 W L_ m h Dl co r- 0) tp O1 N 0 N DI O) N OI m Q m C) N d C) C) Cr) U O N N O N .-- N DI N N N N fV N N N C) iV N �/ 1,-. IL 0 U r cc�� ccpp PP cc.�� cI�O N.- III N CI N O n 0 N N cD O O N m A N N .C'- m 0 co P {•I Q C) N C) N C) P Q N co ID CD cco A t0 ^ N CO V m CO ID A A J t. } } } >- } } } } } } } } } N 555 5 to 555N55c7555 557 ,, o 'S 'S 5} gr > g > o 'a• a Z fn C FT g o o o W v) o tD o U c co co 0 cD N V V) co o D) to 0 0 cn O } } O O O } O T 0 0 0 O O O 0 O O T O O O N ❑ 5 5 co _J J_ _J 5 J_ 5 H _J _i- J F _J J_ (- J_ J 5 J_ J_ H LL z Yo o> } y y ( U> a U 'I cD tD m =' (7 m =l m to v to cn =' O ,' } J U w tO w } w } w w w } w w } w w w w > O mn �ggn �' agaggag3t n ggaw Cl) 0 0 0 0 N 0 0 0 0 0 U N 0 U 000, 0 C) M N aI. a to O O IL O .- N C) V N CO A COO) O N CI Q r N C) ? iD t0 A tD DI N N N N N N a (R o p 0 J.D a a a a) a,a m rn U>+ NO am c a a)co mUN>, T— m� va D. 1) •o ma U m > >, UU m Urn N EJ w> Z•y > CDy, WO a U cw Ui ~ UU NU 0 °Oc en >iD in c U rn o I- co o -0ai. l u Z - Npli\k U O --9 0 0- Lo o - J m [e _ Q co- o Ti 0ol O u. d, 2 0 0 � z prc 0< . . nil 0 W O V is U O `o LL N0 W a 0 e r u u u a w 7 - o d 7 WI VI N - i- I.. _- a 0-. 1 1 I I I I I I 1 I I 1 I 1 1 I I I 1 I I I I I I I I I 1 1 O. O r CC ca Ln, -O 0yi Ln a) a'm Cr - a C m > O ' - v m ¢Q U o - N m �m u y C - O O N N YSif Q U N - O C 2 I-N U lL tea) aro o V tY . I C m - I y U N O a +-O CI-CO cl W O u) 0 N N O 11 ¢ 0 m Q a...0 L.L. 0 a).,... mmmmmm mmm )omm )om OU n n n n n n n n n n n n n n [a- O ro O O O O O O CV O O 0. 0 0 0 0 O U cn .- to to N. 10 m tO Or t� m W O CC .0 N CO CO CO IN CO CO01 r 0 CO C m N m O N Q) i . 0 01 0 CO N.� O) C 1'l V V l'! c'l f'l N N N N •- N N N a .0 M` C N d 0 C 7 0 I I I I t l l l f i l l l l U LLI J 0 a • rn `2 O M Q li4 d I I I I I I I I 1 1 1 1 4 LL 0 - � > ry N N Q C m N ^ 0 I I I I I I I I I 1 I I I I CO W (D CO N • i V ` {a. m co m ra N co m N N m N v �•/ Q fA O O O O N N N c0 t0 N P P y�V N Q) > Wt 000cc00000a000 Z*1-- CO O) N LL 7 19 Cr)N C C_ 7 y) Q a Z Co CO m r CO o1 N n rn o COO to 0 ✓ M CO m N P P P P I7 C) N 01 N J Z 0 ..1 Q .0 0 Ol N P m P N P N 10 0 m L O P N. v CO NJ OI N N to 0 O) r m CO t7 O r P m N f7 01 r co (O r V� '- //1 V C) N N OD CO N C N N N ` •I- 0 LL O U 0 0 0tm) h N O0) N COP CD m CON ,n+ Ni • co coCO Co Q Q Q P N f') N t') Q co • co Z a KZ QZ U V } K K } } Z d IT 0 . w . N y y Z Z Z m y E lC itI- O O U It LL LL } } » } } to co J LL } } } V U U U U U U U W !n Ce > > 7 Z U U W 0 N Y - 0 N 03 P CO CO IN CO 0) 0 c- N t7 P • cn O 'CI •� f--0 a al t c c coC .a m.D 0-0 ~- F-= - N 0 lL In ai d �cn Inc 1-c -off =. V)m ITo , �'c d.D >) m to J N T al @ c V)-0 T a) aI V U N N U QI d d'N o c is o c h o A fc c r N i =a cJ o 0 c'm m o a) D U >it -• V) w (0 U V) V)1- to fo U)0 X n W II I r a- LI Z - llifi CL U i o- 0 o= cfl o - I_! t - c 0 0- c U Qi 0 - Csi Z U. ' I. Z0 --,f i . . . . ';'----'; TI; , . . , . . . . . . . , • . . . 1 (9 �- zcn . ;. IA -- rn , a, z c W J0 w _ LL ,0 ■ , "- an La c Z v c - o CO 00 . Oyo �wco +' U O U - O oLL N ° " W - a. 0 in- .- _ a , al +, In - O d 1-.a _ 0- . . . , . 1 " I I I I I I I I I I I I I I I I I I I 1 1 I I I I 1 O-- -0 d to_ o d n7 0 . - m QQ o u m d U v - c �m -O c '/n c T d 10 - a j" o c cg a)H in UiL 2m 0 0c I I cp V o ry Ln� v o 1 o n fn o G ! 0 II W N N W K ❑ a)O..J c IL a)0..-. M U I m co m m m cno m IT ITT 0 ti N E I 0 0 0 0 0 0 1 0 1 0 0 0 U Y1 m (o. O1 N t� m P <O v) N P.: aai 1 �i 1 .= 1 6ni w.t CO %3. d .. i,'+ C NN m m m N g N nm N m c, N C 1 Cl ul N C' V' P N I .- 1 LJ • 9 = L C N y N C Cn • 7 mto C, CO cO I I I I I I I .- 1 N' I I 44. .4y A III m...Is m •.r m u c m n 4 t? Qti Q in n I I I I I I I cmo I I I O O M C. ci Ili N N Li. t� O > �. ,C N \ • cn m n COO Q 01 en ;e "e N d.'' O n I I 1 I I I I umi I to I I I- t W CO CO CD al t J u d cmi ttpp m m PI u� m v CO 'p Q O O 0 0 0 N N N Z7, 7) c7 Q V y fA N > WN o000000000000 ,,Z#Idi " Li ~ 01 to C O a Z # N CO m N N O P N P CO N t7 O C 1 = N QU P m m � m n P M N N .- ro fA N H ❑ m QZ d a � -I�.., a 0 P a N tpp O . 5 m N 7 m N M ONi — COtO NV m m CO P O m O. OI CO/A iii V ` O N 6 CO h P 6 ni 6 N - .- s I II- 0 0 m n m P N CO N V) N N N CO N P m P N I� tO O O N N CO ID m I+ mnmm (ppNmt7 P N m N m V N co L111111.1.11.1.11.1.157, (n 5 } Z QZQ Z QZQ ZZ O } } U Z . O W C K } } } p - ce, a g c.0coc� cOC.9 , J - z U) 0I- U Z Z Z Z Z o U U m o CO LL U LL U Lt O 0 I- } co J ❑ LL LL LL LLLL. W J J m J J 5 0 (n } !- I- I- H F U y } y fn U 5wmwcnmr 5 } O U } } } } } W 6 U 6 W „j Z Z w w w tutr C } Z Z } m W to > > > > > U N tq O 0 M M pi .0 ..-. a) N 0 O. N M P N m I� m m O N m P a) O O '7 ~� V m O co -p -0 c m 0 O_ _ C O> d C f° to 'c tO V)c I-C ~y H65 CO. >c d CO m u7 _ 0 �'- Trio_ in as Cr)a) cn U >N c o V) co>, T w U Ora T O O E E _I N T j N N_T fA•O ?T T y V IO G' .y C E!n 2 m U) �U >LL 6- �U) a) (a'c) Uy (/I (Q. c5" Wa ' -1 I; 1 Z a 4t- U - 0 0 o- r„,. o - J m a �c co o •I v Z u_ _ c•I zo , 1 "1'7 . 8. 1 ti -p J m0Q 0 Z N O _ W -1 4; -� mN 'Z 13 C - O • O +W 0+ -1CI)U) •c O `o11- - NU W a 1 G)7 L ) - 0 0 - a 7 _ N O d o- - 1 1 1 I 1 1 1 1 1 1 I 1 1 1 1 I I 1 1 I I 1 1 1 1 1 1 1 1 1 o� vm 0 n O CC N )n_ to m �m - - a) <> C 0 0 _ � QQ � U U y la A. m -0, I• ;11w a�iT ::;9 oc c2 GU) N UiL �O L m i O O it d _ I C I rn N' Y o �r-r-. e . . . . . 1r -i r-ri . . • r r t T( r 1 0 a C0 Po O o II O T rY N CO') W ge O I I I I IT I I I I 1 1 aD I I M1 r . • d;$ G Ill I I cl I I I I I I g I I 1 u 1i w I I 1 I I N I 1 1 1 I I ' I I N ti A QI Ni N v 1 0i C 1 1 I 1 I " I I I I 11 '- I I L is f. liv m N` c: raiD nmmcm i17, C 7Wn PN ' n O4 ' o A 1) I01 1- Q N N P I .- . )1V 4. i 1 W c m m Jo in _ _ ), cn cn ? CO u c rn m )o cn inm 44 '? 44 '? '''.' "' Q LL a a n n Qn n , 1 v 2 2 � 2 � I � � N f• 1.m. A. N. .4-j ;} O y N,:, :C A AN Q ai d A 7 qy g�, N 3.I K Cl o m v) m m th m vai m `u�i a al m ,, .. T . . m n n I to Lin cn vn m cn I 0 ,-* U.1 O : Y' W N n N,._ 4.• J �� w _,o .t U U ` N N) D1 m In to A N. 01 m CO Q ' in o w CO o w m m in r oQ ED m 'O fz 2.-, O N N N N r) {n d Q Q CI t� A 1;1, COj Wto do0o0o0oco0000o Z# � •v' vI N 62 a''.. Q LL.0•`O a i. n/ I- 01_N_0 :i LL o— `z r^j' d Z 4, m r m m v m O Q v) O 01 O , �� < V N cn Q in to N A. c) Q r m N )n J U)p) CI m i 1: Z u bC LL< .O C eO 01 .- N Q fD ICIIn CORI a, r a. ^O 03 VI OI m A O. 9 co In 0 A (n Q P Q 01 .- in m VJ n l fA U U O .- ICI O. Q O . .- O .- N O O e- N rt V/ L 0 At .S O v o vim 4? v m m v N N 0 V . 00 �� 4.' P ImD ..-- .Q-.- N .-- 03 m OI 0-cg m n- CO m • . CO 3A L J J -1 J J J J J J =4 aa 1.J J ni 'n >-v1 y W V) 01 N N V) J CO DT) t9 t O W W 0 >- 0 } 0 O W } } W U W W Z 7 = . Q. ggaaao ag ¢ ag 55z 't 0 c.,I- U U CO tN Ql D } N U u, N U O D U F )i- [0 0 I-0 0 0 D 0 0 0 0 0 0 I- I-h h 1- h } F- F- h h h h h h !n �f� J --' Z Z ZZ O 0 1-000 2 Z Z -. J --.-'i Li- 0 rj W v) Q Q Q h Q N Q Q fD N W 5 l J } }u) N N A 0 O) } N N } ET, T} O ,I.4.t O)N 5 5 N 5 V) 5 fD m U U) N ; . i�• p YIl, Y'A o m Cmj' L i••. ti,f it 4 n .. 4) ` (] - N In Q N m n m m O .- N to Q m 'O (tl 1'•>;aq ,�r�i_ }fir �[g�t y1,411W p �z��, ua�^ �y;r st N N 0 n_ O N o F--o a a 0 ao w v cm _c m I-,.. I-- c o> u oi 0 F- ciq -i3 m mPHI! rN c c fA 2> N a y V °- >+o u) for �c vT m= 0 °Cn U >lu �~ m in u)iii U 0 v)F a). CU 1 l ! . IIII 'r �. • II u Z -P.,--,/"/a. r- f v- gy iiiii �a O- 0 .. s__ .„.., 0 - u. -O J f/3 fQ `m .- c g, W -1w mN = O oLL N W_ a1 0 o2 Cl-7 Tao N 0 2 I'a _ . I I I I 1 I I I I I I I I I 1 I I I I 1 I I I I I I I , 1 1 0.., a ill 0 0� u7_ 0 1r f9 ul di a 0 V m O m Ua) `n 3 I-m m co - m w m "+� c c ng `w - - rzm .- a, - v m 0 0Q. go v � ^ t� N — V z__. q 0 a to 0 0 0 In o •n o 11 5 0 N N co W x o a, Q.,...s u. a. a..._, re O1 I 1 1 e° m T In° I 1 W m Io a OE 11 1 1 0 0 0 o 0 o I 1 0 0 0 U Yl ID V CO N V N n CO C I I 1 I NI N N N N N I I N N co Ili o t co 7 Vm1 V P O v .n- !mn CO CO C DL m M I I I 0 n V V V 1 1 N I•i N C N N 'O C = ES N n N n CO CD N O M CO m ,-G N N C 0 m m rn I I I I I I I I I O U ._i 0 °/7. N CO01 O I? N rn LQ LLQ Q n rO1i � � I I I I I min+l l I I �r. CO NrN 0 01 0 i Z. �e ze e o e ;e N m0 m C •'" U N N h N N N Qd fU ill e * : ;e N v0 v0 v0 vo I I I I I I S /9 I I 1 ao o MW W ? w nli i J u V ` m O US 0 .- nQ m .- V n o N ID m en Y7 Q a+ 0 C « O N N N N N CO V V V P Y! IX V CO fli j W to d d d d 0 d d 0 d d d d d d 0 2.,Z*I- m a u- OHO rnln C Q () Z QI 1- N N N CO N M M N N m N N J U,N I- CI Z O J Q _C o N CD N NN 0 mD! o a7 i 0 m m n E m n v o Nv m V Cl) u d d ni N N ni ni N N �/ 0 LL O U m In CO 7. 0 co CO CO 0 .n- OVI V n CO v m m CO m I m d V d •C (O N I. C7 Co m a0 d N N Cl V U VI 1n u') co m CO U) to co Y1 V N V a JJ J J } } } } } } J J } } } „, cnlnEn555555 > F, 555 5 i } 0 _ ' a i > rrr > r maZ5 a � in H ijnnmO � rnfn mP uOO ciOOOOOOO000) O O O O OO Q Z J J J J J J J J J J IJ J_ J J lL N (n m CO y y — — — O Cn } } } W. W W W W W }›' W W W. a Z Z Z } } } } } } Z 0 } } } W < < < 555555 < < 555 FA co CO N 0 0 0 0 0 0 co co O O o i 0 0) N S n. m 0 .- N M 7 U1 CDn CO 0 O .- N M I" In CO v - co 0 0 0 -II--O '0 a) - O 41) m2,2 � F"N 0 �Ec alwo • I- 6 m m a)it >f T _ �I ww rncmCD m CD > UV f m U ' E CO • DU >I.L (�~ U) -V7 mu U<n (DI— V U)iE coo LL rrW In U Z - a A 0 r r r r i r r r r r- O O a) .2 1 +m' J r� o o •U ; n ZLL i m: Z o ' ,---,� - —1--r--r—•r—i Cr) 9: "o J '1'_ LYVQW�- CO - N a'C QI' W �'� mUC .4 C c a- O v v0 O o LL_ NU ^ o� W LL II II II II T_r_`I—r—r—T1-1 , r r LO_ 2 7 O It - ro2 O m tLi 0 - 1 1 1 1 I 1 1 1 1 L 1 1 1 1 L I 1 1 1 L I 1 1 1 L 1 I 1 I L o •o m m " �m C v 'D> O m QQ Um in F-°' U y V m O C w�, Om my m U N o.6 n2 v._ Uu 2m � co 0 vm m U I I 1 L U m N m q o o a U) 0 0 O ro O II N N m0 Cr ❑ 004 r LLNN.,-, " to " (0 0 0 I n n n n I I I I I I I i ft a osss G 1 1 1 1 1 1 1 1 V II: V m N Cl C I N N I I I 1 I I 1 d CD d C v. O n Ip O m C h_ 7 •O CI " _C 0 7 V. m O m N O is " 0 N N n m O O N CO CN 1 1 1 1 N m N CD U LIU—IC " d ` CO 0/ CD 0) al CO LQ U. < 0 n I I I I m m r1 r7 n v7i n03 r Le O > ' oC a eeeee N co NN> . " N co 9 CO N a d '� ;e< ._. ;e ;e a e ;e N 08 to I I I I � n, N en to in mn CO MW 0 m W _J 10 ' " o m U •�"� ` h 0 ttD CO N CO m COm P N 0 r/ Q d�,. O N N N M M rl P P CC 0 co m O I W y 0 0 0 0 0 0 0 0 0 0 0 o Z#H CILL.013o N F a C Q U z p1 N N N t9 P I, ID CO N P 1� O TO O y • J CI)fnI— ca Z u O j LQ J r N M ' f� P Cl) d � m N t0 CO m � m N M n 0 • !A 0 t.3 O 7 7 7 O O - O N tl G V# ` '[ 0 i, O U Q n m N CO N O m co 0 N 0 • P c> CO UD VI N co N v v v m o c N J }} } �' } J J J J J J ❑ N 7,7) N _l o UCDa O } U O U } } } } } co Z WWWW } WW 7 oz - CUa dF5J � JJ5555z UNN 5Zr,N 0 2OU UUUCOO m O 1_ }} - , 00000000 <0 0 0 0)JJ J 'IL JJJ ❑ JLi.NUV vJ JZ J ro a J N 5 J a a a a J a 0 W COO U O co V) co co V) co O P) O fV .-. v acu N COCO Ps 0 - N ') W �/ .0. m m a co O O 1-O a 3v • a a a �•- co a it co C 12 c a= —N Ln T >. W J vi A, 0 C7 a� 2 au' (A.o >•cu w U c)—• T Urn m LET, V) c m y c `Ip- co cn.T al c b mom` —O U o0 ='to v p . 0 >'u- 0 u) O) �U 0 65f- �F 0)0 Wa La • Z - 0 . o O o . m fn ` o 0 k • O L O '1 J co E• l o,ai. CFI,n c L c= 7 V Oz vo ��(0L- U 464,71 a.` O oLL N0 • _W Cl. a II II „ 11 • T ' N= L. • - O L .'5 Y n O N N y.• O N F-a _ 0 , 1 1 1 i ' • c,yy11 a a sJ r p p� ID y (n1 O• , _ U. VV QQ u a p _ N ro Hm 'D C hCq as U TA c ?2 ` `•N OLi ...m O W l Q'm o U� ` I I cp .. r �Jti// —U A N a • N 7 0 • v 04 aW 0 O p n o ii W N 0 N ❑ N 1.2 y.•.0 LL N cu.... I. x X: K i U n I ' tna T m 1^ W W m m 1 1 1 • O • E o 1 0 0 0 0 0 0 0 0 0 0 1 1 1 y ! 0 U Y1 : i ::::: " 0 `t.! • m m m c v m m m m m E d C 6 1 iri N N N N N N N N N I 1 1 -0 ` ' C u) ``S�X 7 ; S k q O m •- . p tp o I I l l l l l l l l l sr U w E,# I2. H o = a QI N m n n is c rn ?. ,. CO a: — Om I n I I I I I I I I I I mints o`i ,... i N at o' _O irP I Jr ; N. • `` _ X 0 0 X N �' °' tL iN N 2b N r &. I r2 c1 1 ,T 1 I 1 1 1 1 1 I I I v v '0i ,, it 00 C l-• W I 0u r P '�`, J LI U W c. ,- s- o m N. O. m m in N umi m to fO -6 Q O '• • r �„ O r N N N N t.) t7 PI P Q Q YI U(n N 'i 16. 0 > Wto 000000000000000 ce Z#I �I d 0) iL.t, En. a y la ��y/ C1 01 C�y '.lW Ce F. C= 0 N O. Z # tT td m N m t` w N N to 0 O co to ,i- Q U N N n V V PI in P R Q N N N J 1/I N F 1y 76 u �i .-1 -� L 9 0 n CO m N r0 111 N VI O1 m m m m 10 m n u0i r ("� m N m tT N n OI m N N N N O IA ` U NN 6 V ti 6 6 N 06 N .- ,- ry Si y t�l pI m t�) m v N N N P. "t N m O1 Q 2 m P. Q m VI m Q P. I. I. O N G. P O m N m N si tU n 0 N N P V ai YI tT to �l irl to in1. Tr Tr N C) ‘1. V .1. R Tx m .0. m t, 0 o > r r W 111 a J Z v>7Z SNNrnZ L. ¢ Ilja } U,- 0 N• N d P Z U Z a U U ' n m LL O LL › ,.0 0 0 0 - J - }T} } } } 7 0 J J J O ci T7H5555555t , WQ' < ° K ?O U U U U U U U j ,.. 00 y Z Z re• N W N yj j V N J. Io 1i.fV ,-. Jx I. v ELcu 0 O Q — N m P . m n m OI O N r' ? N t0 Sjl t,q1 U l t#1yt .g,ir,y5;_ 1t}V r a) N O o • O -J O 'p 'O N O � .C5 >c m F'CF-= = N U LLO .c CCym N Inc I-c vCn — /) Nm m >amW yn_ � ' ryCO T— m D _N'U) ) U co T D) . al Ei ' 0a,4 �' CO CGT >`T U NC N O C f ° c mO cor — Z`m cm m_ —a U o0 c m W56:U >u v) �v U UV coF vI— C(2 '� N 7. III 0- u in a. a 4t- �I U - 0 1 0 0 P O J t0 N c 0 V 61 _Z 1 0 0 9 Z -c O_ - zZ(0 0! (I) � � y 73 c_ c uO m tF�<� O `oLi.. - N c-) l W - ac 0- - W 7 L. - TD O L. a 7 - ICI N O ` to ' I 1 1 I I I I I I 1 1 1 I I 1 I I I I I I I I I I I I I 1 1 aa./ o' 1 LLc). d o O 0 W D� - to 1:1°m O ' - u m QQ HE a U ti 2 m L.d m 10 n Oa. I cp U a to N" N o a CO S . . O o u) C II Lao 0 N CVc•I K Cl Cl.)❑-)...0 LL N U).F., U n n n n n n T T T n n n m O 4 v E 0 0 0 0 0 0 0 0 0 $ P,' U° T A 0 V. i? N M. 0 P t` n N N C PI m Pi ri CI tV d N C E 0 0 0 m N O N mg m m g h E. ty C N lV CI pi pi pi CI r toN 1 H 1�, C E 1 1 1 1 1 1 1 1 1 1 1 1 1 U J o a m LYl - rn E .. u rn LQL LL ac I I 1 I I 1 I 1 I I I 1 1 M �' 1 0) pa,L6 O ; 3. N m C < N Q CVO 1 1 1 1 1 1 1 1 1 1 1 1 1 2 „ W O W1 „ > N { _i Q Hl 0 lT ^ 0 OI N VI 0 0 N N t U « 000 N N N N 0 el P 6, 0 ju WtA ti00000dcide ci ci eZ#H t 2.01 il Ill ��/ LL�� IL ~ mIA C0 a U Z # O N tm'I Q A t'09 t^'1 riN N .P' .P- N O l) O -. J to 0A1- L C J J L .O C VI 0 N N OI t•1 Cl m N.to 0 0 0 r Q CO 0 N N r) 0 n N` 0 0 .- . V, 0 tr. O U 1. silQ O P. Q 0 ' 8 0 0 N" t^V OI t0 la i+� b Oi ri ri ri t7 N i'I Q tq O n rim 0 0 CO P QV N tV N 5 55555 1 c� m oo. J-I z I yW F>. in CO U)ton N N D alO O O O O O 0 0 y CO in CO i7 co J J J J -I CO U. ?T, T } )-T } }0 to N N w >- 0 a U U U U U w }a 0 T U Z J 5 J 5 W 0 U U U U 0 ; O i a7 fV t v 'av O 0 .LL-. .- N II IT 0 0 I,- CO al O N m ? �' J W a --- --- ------ - - — _r,_._ �,� yam' A. :t APPENDIX C LABORATORY DATA 995 / 965 Long Ferry Road Salisbury, North Carolina STANDARD PROCTOR (ASTM D-698) 125 120 115 110 105 100 95 100%Saturation @2.70 100%Saturation @2.60 90 5 10 15 20 25 30 TEST RESULTS SOIL DESCRIPTION Optimum Moisture: 14.5 Red/Brown CLAY Maximum Dry Density 104.5 Project: 995/965 Long Ferry Rd Sample No.: Bulk#1 Location: Salisbury, NC Client: AGS Salisbury, Inc. Date: 8/17/2022 GEO-SYSTEMS DESIGN & TESTING, INC. Geotechnical Services and Material Testing STANDARD PROCTOR (ASTM D-698) 130 125 120 7.—\\ 115 110 105 100 100%Saturation @2.70 100%Saturation @2.60 95 0 5 10 15 20 25 TEST RESULTS SOIL DESCRIPTION Optimum Moisture: 11.2 Tan/Brown Clayey SAND Maximum Dry Density 118.2 Project: 995/965 Long Ferry Rd Sample No.: Bulk#2 Location: Salisbury, NC Client: AGS Salisbury, Inc. Date: 8/17/2022 GEO-SYSTEMS DESIGN & TESTING, INC. Geotechnical Services and Material Testing STANDARD PROCTOR (ASTM D-698) 130 125 120 115 110 105 100 100%Saturation @2.70 100%Saturation @2.60 95 0 5 10 15 20 25 TEST RESULTS SOIL DESCRIPTION Optimum Moisture: 13.3 Red/Tan Sandy Maximum Dry Density 107.4 CLAY(CL) Project: 995/965 Long Ferry Rd Sample No.: Bulk#3 Location: Salisbury, NC Client: AGS Salisbury, Inc. Date: GEO-SYSTEMS DESIGN & TESTING, INC. Geotechnical Services and Material Testing GEO-SYSTEMS DESIGN& TESTING, INC. P.O. Box 2656 West Columbia, South Carolina 29171 CALIFORNIA BEARING RATIO (CBR) Date: Project Name: 995 /965 Long Ferry Road Sample No.: Bulk#3 Soil Description: Red and Tan Sandy CLAY(CL) Molded Dry Density (pcf) 105.6 Molded Moisture Content 15.2 Maximum Proctor Density (pcf) 107.4 Optimum Moisture Content 13.3 CBR@0.1" 5.2 Surcharge Weight(lbs.) 20.0 % Swell 0.02 UNIFIED SOIL CLASSIFICATION SYSTEM Criteria for Assigning Group Symbols and Group Nampa Using Laboratory-rods(' Soil Classification Group Symbol Group Namo° Coarse Grained Soils Gravels Clean Gravels Cu 2 4 and 1 S Cos 3E GW Well-graded gravel' Mora Ilran 50%relalnpd More than 60'%of coarse Less than 5%fines° fraction retalned on Cu<4 andlor 1>Cc>3° GP Poorly graded gravel' on No.200 slave No.4 slave Gravels with Fines More Fines classify as ML or MH GM Slily gravel"•4•" then 12%fines° rou Finns classify as CL or CH GC Clayey gravel Sands Clean Sands Cu 2 B and 1 s Cc 5 3E SW Well-graded cand' 60% or more of coarse Leas than 6%fines° fraction posses Cu<B andlor 1>Cc>3° SP Poorly graded sand' No.4 slave • Sands with Fines Fines classify as ML or MH SM Silly sand°li More than 12%fines° sane" Fines Classify as CL or CH SC Clayey sand Fine-Grahhed Solis Silts and Clays Inorganic PI>7 and plots on or above'A'line) CL Lean ciayK4U 50% or more passes the LigUld limit loss than 60 K4u No.200 slave PI<4 or plots below"A'lino' Mt. Silt organic Liquid limit-oven dried <0,75 OL Organic clayK4'W Liquid limit-not dried Organic slli1CLµ° • Sills and Clays Liquid limit inorganic PI plots on or above'A'Ilne CH Fat clayK4ut 50 or more PI lois below'A'line MH Elastic SIItxLM organic Liquid limit-oven dried <0.75 Oil Organic clayr•r'tP Liquid limit-not dried Organic sa11(.1-"•° Highly organic solis Primarily organic matter,dark in color,and organic odor PT Peal ABased on titc material passing the 3-In.(76-mm)sieve "If fines are organic,add'With organic lines"to group name, °If field sample contained cobbles or bouidors,or both,add'With cobbles 'If soil contains 2 15%gravel,add"wlih gravel"to group name. or boulders,or both"to group name. ''IrAtterberg limits plot In shadod area,soil Is a CL-ML,silty clay. °Gravels with 5 to 12%fines require dual symbols:GW-GM well-graded '<If soil contains 16 to 29%plus No.200,add"with sand"or"wtih • gravel with sill,GW-GC well-graded gravel with Gay,GP-GM poorly gravel,"whichever is predominant. graded gravel wilh silt,GP-GC poorly graded gravel with clay. u If soil contains 2 30%plus No,200 predominantly sand,add °Sands with 5 to 12%fines require dual symbols:SW-SM wall-graded "sandy"to group name. sand with slit,SW-SC wall graded sand with Gay,SP-SM poorly graded "'lisp',contains 2 30%plus No.200,predominantly gravel,add sand with silt,SP-SC poorly graded sand with clay "gravelly"to group name. x ECU=DcdDro CC= .12 "PI 2 4 and plots on or above"A'line. Die x Do °PI<4 or plots below"A"line. • r If soil contains 2 15%sand,add"with sand"to group name. "PI plots on or above"A'line. °If fines classify as CL-ML,use dual symbol GC-GM,or SC-SM. °PI plots below"A"fine. • Go I I I h Far clessilicatfon of fine-grained / Dolls and fine-grained fraction 50 _.of coarse-grolned soils - .Joe ',.. — . re Equation of'A"-lino e3, •P a. Horizontal al Pla4 to LL=255. > 40 — then P1.0.73(LL-20) �= LLG `o ❑1 Equation or"U'-lino 0.° Z Vertical at LL.16 to PI=7. ' CJ 30— then PI=0.8(LL-8) / 0 1� MHorOH 10 1 d' r= 5 G I 7--/-'"„10Li i.r�'i+666''":r' ML Ir OL 4/ I 0 I I 0 to 16 23 30 40 50 60 70 80 50 100 110 LIQUID LIMIT(LO APPENDIX D STEPS FOR CLASSIFYING A SITE 995 / 965 Long Ferry Road Salisbury, North Carolina JGEO-SYSTEMS DESIGN & TESTING, INC. Post Office Box 2656 GEOTECHNICAL & ENVIRONMENTAL ENGINEERING West Columbia,S.C. 29171 CONSTRUCTION TESTING (803)791-7528 STEPS FOR CLASSIFYING A SITE Step 1: Check for the four categories of Site Class `F' requiring site-specific evaluation. If the site corresponds to any of these categories, classify the site as Site Class `F' and conduct a site-specific evaluation. 1. Quick and highly sensitive clays or collapsible weakly cemented soils. 2. Peats and highly organic clays in excess of ten(10) feet thickness. 3. Very high plasticity clays in excess of ten (10) feet thickness. 4. Very thick, soft medium stiff clays in excess of ten (10) feet thickness. Step 2: Check for the existence of a total thickness of soft clay > 10 feet where a soft clay layer is defined by: 1. s„ <500 psf(undrained shear strength). 2. w>40 percent(moisture). 3. PI>20 (Plastic Index). If these criteria are satisfied, classify the site as Site Class `E' These are soft soils vulnerable to large strains under seismic motion. Step 3: Categorize the site using one of the following three methods with vs ,N,s„, computed: 1. vs for the top 100 feet(vs method). 2. N for the top 100 feet(N method). 3. Nc,, for cohesionless soil layers (PI < 20) in the top 100 feet and average s„ for cohesive soil layers (PI> 20) in the top 100 feet. (s„ method). Site Class vs Nor Nei, s„ E <600 fps < 15 < 1,000 psf D 600 to 1,200 fps 15 to 20 1,000 to 2,000 psf >1,200 to 2,500 C fps >50 >2,000 If the s„method is used and the Nch and s„criteria differ, select the category with the softer soils.