Loading...
HomeMy WebLinkAboutSW3230501_Design Calculations_20231005 57 Union Street South DAY L I G H T�41,' Conc980.234.7 500 ENGINEERING daylighteng.com Smith Industrial Subdivision Stormwater Narrative Existing Conditions: The project site is located at 12400 Old Camden Road in Midland, NC in Cabarrus County.The site is predominately wooded with 25% of the site being open space. A web soil survey found soils on the site to be made up of Tarrus silt loam — Hydrologic Soil Group B, and Herndon silt loam—Hydrologic Soil Group C. There is no existing on-site impervious area. Proposed Improvements: The proposed project consists of the construction of a small public road that ends with a cul-de-sac.This road includes driveway stubs to the 4 lots that will be subdivided when the project is finalized along with a sidewalk along the southern side of the road. The construction of this public road is in the open space area of the site. The proposed sand filter will be used to treat the BUA that is developed due to the construction of the road including the asphalt, sidewalks, and driveway cuts. Stormwater Treatment: To provide treatment and attenuation for the site, a sand filter stormwater control measure (SCM) is proposed. Stormwater will be collected by storm drainage systems and will drain into the sand filter to be treated.All other runoff will sheet flow or naturally flow into the sand filter. Required treatment volume was calculated using the discrete NRCS Curve Number Method for Runoff Depth. August 23, 2023 I Pre Development Nodal Diagram PRE DA-A / LLFA -W Pre-Development Drainage Area A Land use Condition Hydrologic Area(SF) Area(Acres) Cn Weighted Cn Soil Group Woods good C - - 70 0.0 Open Space good C 40,460 0.929 74 25.0 Impervious N/A C - 98 0.0 Woods good B - - 77 0.0 Open Space good B 79,487 1.825 80 53.0 Impervious N/A B - 98 0.0 119,947 2.754 78.0 tc Calculation L up down slope n pipe size(in) area(sf) perimeter (ft) Sheet Flow 100 694.00 691.82 2.18% 0.15 Grass:Short Praire Shallow Concentrated 378 691.82 673.53 4.84% Un-Paved CALCULATED TC= 10.80 MIN SEE HYDRAFLOW TR-55 TC CALCULATION SHEET TC USED IN CALCULATION= 10.80 MIN MINIMUM TC OF 10 MINUTES Roughness Coefficients(Manning's N)for Sheet Flow Smooth Surfaces(Concrete,asphalt,gravel,or bare soil) 0.011 Fallow(no residue) 0.05 Cultivated Soils,Residue<=20% 0.06 Cultivated Soils,Residue>20% 0.17 Grass:Short Praire 0.15 1- Grass:Dense Grass _ 0.24 Grass:Bermuda Grass 0.41 Range:Natural 0.13 Woods:Light Underbrush 0.4 Woods:Dense Underbrush 0.8 Roughness Coefficients(Manning's N)for Channel Flow Excavated Channels:Short Grass 0.027 TR55 Tc Worksheet Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Hyd. No. 1 Pre DA-A (Outfall 98-W) Description A B C Totals Sheet Flow Manning's n-value = 0.150 0.011 0.011 Flow length (ft) = 100.0 0.0 0.0 Two-year 24-hr precip. (in) = 3.50 3.50 3.50 Land slope (%) = 2.18 0.00 0.00 Travel Time (min) = 9.05 + 0.00 + 0.00 = 9.05 Shallow Concentrated Flow Flow length (ft) = 378.00 0.00 0.00 Watercourse slope (%) = 4.84 0.00 0.00 Surface description = Unpaved Paved Paved Average velocity (ft/s) =3.55 0.00 0.00 Travel Time (min) = 1.77 + 0.00 + 0.00 = 1.77 Channel Flow X sectional flow area (sqft) = 0.00 0.00 0.00 Wetted perimeter(ft) = 0.00 0.00 0.00 Channel slope (%) = 0.00 0.00 0.00 Manning's n-value = 0.015 0.015 0.015 Velocity (ft/s) =0.00 0.00 0.00 Flow length (ft) ({0})0.0 0.0 0.0 Travel Time (min) = 0.00 + 0.00 + 0.00 = 0.00 Total Travel Time, Tc 10.80 min Post Development Nodal Diagram Post DA-1 Post DA-2 Post DA-3 411, OUTFALL 99-W Sand Filter 1 Calculations Discrete NRCS Curve Number Method for Runoff Depth S = 1000 - J. CN Where: S = Maximum retention after rainfall begins(in) CN = Curve number(unilless) q* _ (P-0.2S)2 (P+0.8S) Where: lY = Runoff depth(in) P = Rainfall depth(in) For DCIA: P 1 Inch Non-coastal county CN 98.0 DCIA-Impervious A 33,621 sf Impervious Drainage Area in SF S 0.20 Inches Maximum retention after rainfall begins Q` 0.79 Inches Runoff Depth Q" 2,216 cfs Runoff Volume For Remainder: P 1 Inch Non-coastal county CN 78.2 CN for Remainder of the Drainage Area A 55,378 sf Remainder of Drainage Area in SF S 2.79 Inches Maximum retention after rainfall begins Q* 0.06 Inches Runoff Depth Q` 280 cfs Runoff Volume Total Design Volume 2,496 cf Discounted Design Volume 1,872 cf For Sand Filters apply 0.75 design volume discount Design Ponding Depth 1 2 3 4 5 6 Surface Area Required 1,872 936 624 468 374 312 Bottom of Sand Filter 678 Design Treatment Volume Elevation 680 minimum Design Ponding Depth 2 (=Design Treatment Volume Elevation- Bottom of Sand Filter) Design Treatment Volume 7,163 Total Volume Provided at 679.00 Total Surface Area at Bottom 3,023 Surface Area Provided at 678.00 of Sand Filter&678.00 of Sediment Chamber Minimum Surface Area Required 936 (=Discounted Design Volume divided by Design Ponding Depth) Minimum Design Draw Down 2 in/hr Design Ponding Depth 24.00 in Draw Down Time 12 hours Minimum Flow 0.043 cfs (=Discounted Design Volume divided by Draw Down Time in seconds) Capacity of 6"underdrain at 5% 0.470 cfs Therefore meets required capacity Forebay Chamber Elevation Pond Area Depth Total Incremental Total Cumulative Volume Volume 678.00 1,108.23 N/A N/A N/A 679.00 1,564.03 1.0 1,336.13 1,336.13 680.00 2,086.00 1.0 1,825.02 3,161.15 Sand Filter Chamber _ Elevation Pond Area Depth Total Incremental Total Cumulative Volume Volume 678.00 1,458.51 N/A N/A N/A 679.00 1,983.93 1.0 1,721.22 1,721.22 680.00 2,577.22 1.0 2,280.58 2,280.58 _ Total Combined Treatment Storage Elevation Pond Area Depth Total Incremental Total Cumulative Volume _ Volume 678.00 2,566.74 N/A N/A _ N/A 679.00 3,547.96 1.0 3,057.35 3,057.35 680.00 4,663.22 1.0 4,105.59 7,162.94 681.00 5,725.75 1.0 5,194.48 12,357.43 682.00 6,681.29 1.0 6,203.52 18,560.95 Post-Development Drainage Area 2 Land use Condition Hydrologic Area(SF) Area(Acres) Cn Weighted Cn Soil Group Woods good C - - 70 0.0 Open Space good C 433 0.010 74 3.5 Impervious N/A C - 98 0.0 Woods good B - 77 0.0 Open Space good B 8,682 0.199 80 76.2 Impervious N/A B 1 - 98 0.0 9,115 0.209 79.7 TC USED IN CALCULATION= 10.00 MIN MINIMUM TC OF 10 MINUTES Post-Development Drainage Area 3 Land use Condition Hydrologic Area(SF) Area(Acres) Cn Weighted Cn Soil Group Woods good C - - 70 0.0 Open Space good C 9,441 0.217 74 32.0 Impervious N/A C - 98 0.0 Woods good B - - 77 0.0 Open Space good B 12,392 0.284 80 45.4 Impervious N/A B - 98 0.0 21,833 0.501 77.4 TC USED IN CALCULATION= 10.00 MIN MINIMUM TC OF 10 MINUTES SF DS1 Daylight Engineering JOB NO.: P0001 BY: GAK P.O.Box 1804 DATE: 8/23/2023 P.M: KWU Concord,NC 28026 REVISED: FLOATATION CALCULATIONS Calculations Given Data Standard Footing Assumptions Density of Concrete 150 Ibs/ft^3 1.Footing base to be 1 ft.wider than structure Density of Water 62.4 Ibs/ft^3 on all sides. Safety Factor(S.F.) 2 -Equations used: Outlet Structure Weight, W(s)= (w+2t)^2*h-w^2*(h-t)x D(c) where, w= outlet box inside dimension,ft. Displaced Water Weight, W(w)= (w+2t)^2 x D(w)x h t= structure wall thickness,ft. h= height of structure,ft. Required Base Weight,W(b)= (W(w)x S.F.)-W(s) D(c)= density of concrete,lbs/ft^3 D(w)= density of water,lbs/ft^3 Required Footing Volume, V(t)= W(b)/Dc-Dw S.F.= safety factor WDP i Outlet Structure Structure Dimensions Object Weights Elevation at bottom of structure= 674.53 Elevation at top of structure= 680.50 Height of structure,h= 5.97 ft. Outlet Structure Weight, W(s)= 4778 lbs Structure wall thickness,t= 6 in. Displaced Water Weight, W(w)= 3353 lbs Average outlet box inside dimension, w= 2 ft. Req'd Base Weight, W(b)= 1928 lbs Footing Size An Required Footing Volume, V(fr)= 22 cf Standard Footing Length,L= 6.00 ft. Provided Footing Volume, V(fp)= 24 cf Standard Footing Width, W= 6.00 ft. Footing Check okay Minimum Footing Depth, D= 1.00 ft. [1= Footing Size to be used: Length= 3.00 ft.MI Width= 4.00 ft. Depth= 2.00 ft. Hydraflow Results Watershed Model Schematic HydraflowHydrographsExtensionforAutodesk®Civil3D®byAutodesk, Inc.v2024 1 2 3 4 501 V .,. 6 Legend Hyd. Origin Description 1 SCS Runoff Pre DA-A(Outfall 98-W) 2 SCS Runoff Post DA-1 3 SCS Runoff Post DA-2 4 SCS Runoff Post DA-3 5 Reservoir Post DA-A>SF1 6 Combine Outfall 99-W Project: Z:\XXXXX Smith Industrial Subdivision\2-Engineering\2-Calculations\7-Water QLalityaddadteptOialaczo6sortoo Smith Indu; Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 1 Pre DA-A (Outfall 98-W) Hydrograph type = SCS Runoff Peak discharge = 4.132 cfs Storm frequency = 1 yrs Time to peak = 722 min Time interval = 2 min Hyd. volume = 10,909 cuft Drainage area = 2.754 ac Curve number = 78 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 Time of conc. (Tc) = 10.80 min Total precip. = 2.90 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Pre DA-A (Outfall 98-W) Q (cfs) Hyd. No. 1 -- 1 Year Q (cfs) 5.00 5.00 • 4.00 4.00 3.00 I 3.00 2.00 2.00 1.00 1.00 ........7........._ 0.00 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Hyd No. 1 Time (min) Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 3 Post DA-2 Hydrograph type = SCS Runoff Peak discharge = 0.345 cfs Storm frequency = 1 yrs Time to peak = 722 min Time interval = 2 min Hyd. volume = 906 cuft Drainage area = 0.209 ac Curve number = 79.7 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 10.00 min Total precip. = 2.90 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Post DA-2 Q (cfs) Hyd. No. 3 -- 1 Year Q (cfs) 0.50 0.50 0.45 0.45 0.40 0.40 0.35 0.35 0.30 0.30 0.25 0.25 0.20 0.20 0.15 - 0.15 0.10 0.10 0.05 0.05 0.00 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Hyd No. 3 Time (min) Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 4 Post DA-3 Hydrograph type = SCS Runoff Peak discharge = 0.726 cfs Storm frequency = 1 yrs Time to peak = 722 min Time interval = 2 min Hyd. volume = 1,921 cuft Drainage area = 0.501 ac Curve number = 77.4 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 10.00 min Total precip. = 2.90 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Post DA-3 Q (cfs) Hyd. No. 4 -- 1 Year Q (cfs) 1.00 - 1.00 0.90 0.90 0.80 0.80 0.70 0.70 0.60 0.60 0.50 0.50 0.40 - 0.40 0.30 - 0.30 0.20 0.20 0.10 0.10 0.00 ` - 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Hyd No. 4 Time (min) Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 1 Pre DA-A (Outfall 98-W) Hydrograph type = SCS Runoff Peak discharge = 11.12 cfs Storm frequency = 10 yrs Time to peak = 720 min Time interval = 2 min Hyd. volume = 28,833 cuft Drainage area = 2.754 ac Curve number = 78 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 Time of conc. (Tc) = 10.80 min Total precip. = 5.10 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Pre DA-A (Outfall 98-W) Q (cfs) Hyd. No. 1 -- 10 Year Q (cfs) 12.00 - 12.00 10.00 - 10.00 8.00 - 8.00 6.00 I - 6.00 4.00 4.00 2.00 2.00 0.00 "el ,- 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Hyd No. 1 Time (min) Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 3 Post DA-2 Hydrograph type = SCS Runoff Peak discharge = 0.890 cfs Storm frequency = 10 yrs Time to peak = 720 min Time interval = 2 min Hyd. volume = 2,310 cuft Drainage area = 0.209 ac Curve number = 79.7 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 10.00 min Total precip. = 5.10 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Post DA-2 Q (cfs) Hyd. No. 3 -- 10 Year Q (cfs) 1.00 - 1.00 0.90 0.90 0.80 0.80 0.70 0.70 0.60 0.60 0.50 0.50 0.40 - 0.40 0.30 - 0.30 0.20 0.20 0.10 _ 0.10 0.00 - 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Hyd No. 3 Time (min) Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 4 Post DA-3 Hydrograph type = SCS Runoff Peak discharge = 1.984 cfs Storm frequency = 10 yrs Time to peak = 720 min Time interval = 2 min Hyd. volume = 5,144 cuft Drainage area = 0.501 ac Curve number = 77.4 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 10.00 min Total precip. = 5.10 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Post DA-3 Q (cfs) Hyd. No. 4 -- 10 Year Q (cfs) 2.00 - 2.00 1.00 - 1.00 0.00 - - 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Hyd No. 4 Time (min) Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 1 Pre DA-A (Outfall 98-W) Hydrograph type = SCS Runoff Peak discharge = 14.19 cfs Storm frequency = 25 yrs Time to peak = 720 min Time interval = 2 min Hyd. volume = 36,897 cuft Drainage area = 2.754 ac Curve number = 78 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 Time of conc. (Tc) = 10.80 min Total precip. = 6.00 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Pre DA-A (Outfall 98-W) Q (cfs) Hyd. No. 1 -- 25 Year Q (cfs) 15.00 15.00 12.00 — • 12.00 9.00 9.00 6.00 6.00 3.00 — - - 3.00 0.00 - 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Hyd No. 1 Time (min) Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 2 Post DA-1 Hydrograph type = SCS Runoff Peak discharge = 12.57 cfs Storm frequency = 25 yrs Time to peak = 720 min Time interval = 2 min Hyd. volume = 33,477 cuft Drainage area = 2.043 ac Curve number = 85.7 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 10.00 min Total precip. = 6.00 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Post DA-1 Q (cfs) Hyd. No. 2 -- 25 Year Q (cfs) 14.00 14.00 12.00 12.00 10.00 10.00 8.00 8.00 6.00 6.00 4.00 - 4.00 2.00 - — 2.00 0.00 - 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Hyd No. 2 Time (min) Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 3 Post DA-2 Hydrograph type = SCS Runoff Peak discharge = 1.125 cfs Storm frequency = 25 yrs Time to peak = 720 min Time interval = 2 min Hyd. volume = 2,934 cuft Drainage area = 0.209 ac Curve number = 79.7 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 10.00 min Total precip. = 6.00 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Post DA-2 Q (cfs) Hyd. No. 3 -- 25 Year Q (cfs) 2.00 - 2.00 1.00 - 1.00 0.00 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Hyd No. 3 Time (min) Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 4 Post DA-3 Hydrograph type = SCS Runoff Peak discharge = 2.541 cfs Storm frequency = 25 yrs Time to peak = 720 min Time interval = 2 min Hyd. volume = 6,600 cuft Drainage area = 0.501 ac Curve number = 77.4 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 10.00 min Total precip. = 6.00 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Post DA-3 Q (cfs) Hyd. No. 4 -- 25 Year Q (cfs) 3.00 - 3.00 2.00 2.00 1.00 1.00 0.00 - 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Hyd No. 4 Time (min) Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Hyd. Hydrograph Peak Time Time to Hyd. Inflow Maximum Total Hydrograph No. type flow interval Peak volume hyd(s) elevation strge used Description (origin) (cfs) (min) (min) (cuft) (ft) (cuft) 1 SCS Runoff 19.75 2 720 51,779 Pre DA-A(Outfall 98-W) 2 SCS Runoff 16.71 2 720 45,193 Post DA-1 3 SCS Runoff 1.549 2 720 4,081 Post DA-2 4 SCS Runoff 3.549 2 720 9,291 Post DA-3 5 Reservoir 12.98 2 726 45,183 2 681.37 12,371 Post DA-A>SF1 6 Combine 17.70 2 722 58,556 3,4,5 Outfall 99-W Z:\XXXXX Smith Industrial Subdivision\2-Engiri img2eTiokdul thtf FWater QuffiitychrreatifD33,tati8dr22OCZOR13000 Smith Industrial WC Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 1 Pre DA-A (Outfall 98-W) Hydrograph type = SCS Runoff Peak discharge = 19.75 cfs Storm frequency = 100 yrs Time to peak = 720 min Time interval = 2 min Hyd. volume = 51,779 cuft Drainage area = 2.754 ac Curve number = 78 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 Time of conc. (Tc) = 10.80 min Total precip. = 7.60 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Pre DA-A (Outfall 98-W) Q (cfs) Hyd. No. 1 -- 100 Year Q (cfs) 21.00 21.00 18.00 18.00 15.00 15.00 12.00 12.00 9.00 9.00 6.00 6.00 3.00 3.00 0.00 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Hyd No. 1 Time (min) Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 3 Post DA-2 Hydrograph type = SCS Runoff Peak discharge = 1.549 cfs Storm frequency = 100 yrs Time to peak = 720 min Time interval = 2 min Hyd. volume = 4,081 cuft Drainage area = 0.209 ac Curve number = 79.7 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 10.00 min Total precip. = 7.60 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Post DA-2 Q (cfs) Hyd. No. 3-- 100 Year Q (cfs) 2.00 - 2.00 1.00 - 1.00 0.00 - 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Hyd No. 3 Time (min) Hydrograph Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Hyd. No. 4 Post DA-3 Hydrograph type = SCS Runoff Peak discharge = 3.549 cfs Storm frequency = 100 yrs Time to peak = 720 min Time interval = 2 min Hyd. volume = 9,291 cuft Drainage area = 0.501 ac Curve number = 77.4 Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = User Time of conc. (Tc) = 10.00 min Total precip. = 7.60 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 Post DA-3 Q (cfs) Hyd. No. 4 -- 100 Year Q (cfs) 4.00 - 4.00 3.00 3.00 2.00 - 2.00 1.00 1.00 0.00 — 0.00 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 Time (min) — Hyd No. 4 Hydraflow Rainfall Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2024 Wednesday,08/23/2023 Return Intensity-Duration-Frequency Equation Coefficients(FHA) Period (Yrs) B D E (N/A) 1 62.1764 12.7000 0.8901 2 69.8703 13.1000 0.8658 3 0.0000 0.0000 0.0000 5 79.2597 14.6000 0.8369 10 88.2351 15.5000 0.8279 25 102.6072 16.5000 0.8217 50 114.8193 17.2000 0.8199 100 127.1596 17.8000 0.8186 File name:Concord IDF Curve.IDF Intensity= B/(Tc + D)AE Return Intensity Values(in/hr) Period (Yrs) 5 min 10 15 20 25 30 35 40 I 45 50 55 60 1 4.82 3.86 3.23 2.79 2.46 2.20 1.99 1.82 1.68 1.56 1.46 1.37 2 5.69 4.61 3.89 3.38 2.99 2.69 2.44 2.24 2.07 1.93 1.81 1.70 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 6.57 5.43 4.65 4.08 3.65 3.30 3.02 2.79 2.59 2.42 2.27 2.15 10 7.24 6.04 5.21 4.59 4.12 3.74 3.43 3.17 2.95 2.77 2.60 2.46 25 8.25 6.95 6.03 5.34 4.80 4.38 4.02 3.73 3.48 3.26 3.07 2.91 50 9.04 7.65 6.66 5.92 5.34 4.87 4.49 4.16 3.88 3.65 3.44 3.25 100 9.83 8.36 7.30 6.50 5.87 5.36 4.94 4.59 4.29 4.03 3.80 3.60 Tc=time in minutes.Values may exceed 60. 200114.000 Pitts School Flex Park Final Engineering\2-Engineering\2-Calculations\4-Erosion Control\Concord PCP.pcp Rainfall Precipitation Table (in) Storm Distribution 1-yr 2-yr 3-yr 5-yr 10-yr 25-yr 50-yr 100-yr SCS 24-hour 2.90 3.50 0.00 4.40 5.10 6.00 6.80 7.60 SCS 6-Hr 2.06 2.48 0.00 3.09 3.57 4.21 4.72 5.23 Huff-1st 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff-2nd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff-3rd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff-4th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff-Indy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Custom 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Riprap DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: GAK Date: 8/23/2023 Checked By: KWU Company: Daylight Engineering Project Name: Smith Industrial Site Location (City/Town) Midland, NC Culvert Id. FES-1 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter,it is classified minimum tailwater condition. If it is greater than half the pipe diameter. it is classified ma.xiimun condition. Pipes that outlet onto wide Hat areas with no defined channel are assumed to have a mininnun tailwater condition unless reliable Hood stage elevations show otherwise. Outlet pipe diameter, Do (in.) 18 Tailwater depth (in.) 0 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 6.16 See 25 year Hydraulic Gradeline Calculation results Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d.0 riprap size and minimum apron length (L,). The d;c size is the median stone size in a well-graded riprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape, and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.4 Minimum apron length, La (ft.) 10 Apron width at pipe outlet (ft.) 4.5 4.5 Apron shape Trapezoidal Apron width at outlet end (ft.) 12 2 Step 4. Determine the maximum stone diameter: drrax 1.5 x d50 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.6 0 Step 5. Determine the apron thickness: Apron thickness = 1.5 x d,,_, Use class B riprap Minimum TW Maximum TW Apron Thickness(ft.) 0.9 0 RIP RAP CLASS MINIMUM MIDRANGE MAXIMUM A 2 IN (0.17 FT) 4 IN (0.33 FT) 6 IN (0.5 FT) B 5 IN (0.42 FT) 8 IN (0.67 FT) 12 IN (1 FT) 1 5 I N (0.42 FT) 10 IN (0.83 FT) 17 I N (1.42 FT) 2 9 IN (0.75 FT) 14 IN (1.17 FT) 23 IN (1.92 FT) Step 6. Fit the riprap apron to the site by iinking it level for the i iluniuin length. La. from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured. Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix 8.05). Where overfills exist at pipe outlets or flows are excessive. a plunge pool should be considered. see page 8.06.8. 3 0 Outlet kJ • Do + La 90 'i f. pipe .: ;; liiiili:; . .-.. II ! „ff ... diameter (Do) ` �1 ..:. . a 80 T i water 0.5DoP-C)‘' ..I :: ... • • • . : : : 1 1st 44/#: ,.... / , i`I. . .'... 0 ,,,,, s : „ ..... v 0 1. .. . . . ... ... . . . . .. . ,,,, • ,,,, • ,,. .: . : :::,.. 41 _ ++ .7 r.0.i1 .'ml� ,� 4a 1. . 14- I . .. 4 ' 3 . .:_�1. i.. ØiI� 30 i z\a ' . . .._..._. , „„„......_ , ' . . . • • • t il It - orrilerif .404 .• • _, fa0r.v14 0 _.... /�, .,� �. l�,144111 Iv MI ill:• ,it N_ 1 I�II'1� 1'�Ir• illy 2 Ott!Iiiirlicl ;:; ' 0�. ' ,,;//��i''i r iitt"iit"� fl a ; _ d V• ` 'i 'sun" co » At 4; • .aiI.ilA1ii1uo1mlrnn -4. .. i 1111111111.1111111110 3 5 10 20 50 100 200 500 1000 9.92 cfs 1 Discharge(ft3/sec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full,minimum tailwater condition(Tw<0.5 diameter). Rev.12'93 8.06.3 DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: GAK Date: 8/23/2023 Checked By: KWU Company: Daylight Engineering Project Name: Smith Industrial Site Location (City/Town) Midland, NC Culvert Id. FES-99 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter,it is classified minimum tailwater condition. If it is greater than half the pipe diameter. it is classified nnaximuun condition. Pipes that outlet onto wide fiat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Outlet pipe diameter, Do (in.) 15 Tailwater depth (in.) 0 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 6.27 See 10 year Water Quality results Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d;,,riprap size and minimum apron length (La). The d;c size is the median stone size in a well-graded'wrap apron. Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.3 Minimum apron length, La (ft.) 8 Apron width at pipe outlet (ft.) 3.75 3.75 Apron shape Trapezoidal Apron width at outlet end (ft.) 9 1 Step 4. Determine the maximum stone diameter: dmax 1.5 x d50 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.45 0 Step 5. Determine the apron thickness: Apron thickness = 1.5 x d Use class B riprap Minimum TW Maximum TW Apron Thickness(ft.) 0.675 0 RIP RAP CLASS MINIMUM MIDRANGE MAXIMUM A 2 IN (0.17 FT) 4 IN (0.33 FT) 6 IN (0.5 FT) B 5 IN (0.42 FT) 8 IN (0.67 FT) 12 IN (1 FT) 1 5 IN (0.42 FT) 10 IN (0.83 FT) 17 IN (1.42 FT) 2 9 IN (0.75 FT) 14 IN (1.17 FT) 23 IN (1.92 FT) Step 6. Fit the riprap apron to the site by making it level for the minimum length, La. from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured. Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix S.05). Where overfalls exist at pipe outlets or flows are excessive, a plunge pool should be considered, see page 8.06.8. 3 a Outlet W • Do + La 90 pipe diameter (DO) /i --La e1 80 �,15J' i 1►vater < 0.5Do ""r: krifr ar !! v 8�9 !-: . ! i 1 ♦♦// • r inii I S pompom g f . . ... 1ti • I11111111 ,,,:i, :::_ ,...",,,,,,,,,, :-,_. .. , ,:. ,.,. : • , la=8 L4:1415,10:1 _Led' 3C, �■ nl NO 2 dam;�i ������' ._ � �l�' 1: . N1 MIII= ■1 / r.. 0 ' r�I ... , I11I11111I'"„PloirAri, N'i •/f 11 1120± /■I i r �/• II I I fa�i�I.Ii1�Il3 t. } ___ : . goo,,. j ti.._w «. IiiIIY , Apir 10 -....L.:,IIII is --- �;01 III Y Y ._......_.. ... _ ' . �r 'Urn T' ,• 1i1r"H! t .... •i. ..;.....I'� O _" � 0I" 1 2"' . ,1 ��I■m••- .� _� /I � .. .P:aLI � 111 IIIII Inl n . �-, t,,t , Blum gm • , ,, ,,V - dll'd 1 11II 1111f111111V ..... .. .........._l i. larI Ill . .; •�, P .IIIIIII IIIi 11111111111IIIIIIIIIIMIIIium I 1 � • v= 15 : : /r I�� .I��r •. :. :: d50=0.30 .::. J 3 5 10 20 50 100 200 500 1000 6.27 cfs Discharge(ft3/sec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full,minimum tailwater condition(T,.,<0.5 diameter) Rev.12 93 8.06.3 Appendix Table 4: HSGs for North Carolina Soil Types * Urban areas runoff curve numbers fro SCS method (SCS 1986) Cover Description Curve Number by HSG A B f C D Fully developed urban areas Open Space (lawns, parks,golf courses, etc.) Poor Condition (<50%Grass Cover) 68 79 86 89 Fair Condition (50%to 75%Grass Cover) 49 69 79 84 Good Condition (>75%Grass Cover) 39 61 74 80 Impervious areas: Paved parking lots, roofs, driveways, etc.) 98 98 98 98 Streets and roads: Paved; curbs and storm sewers 98 98 98 98 Paved; open ditches 83 89 98 98 Gravel 76 85 89 91 Dirt 72 82 85 88 Developing Urban Areas Newly graded areas 77 86 91 94 _ Pasture (<50%ground cover or heavily grazed) 68 79 86 89 _ Pasture (50%to 75%ground cover or not heavily grazed) 49 69 79 84 _ Pasture (>75%ground cover or lightly) 39 61 74 80 Meadow-continuous grass, protected from grazing and generally mowed for hay 30 58 71 78 _ Brush (<50%ground cover) 48 67 77 83 Brush (50%to 75% ground cover) 35 56 70 77 Brush (>75%ground cover) 30 48 65 73 Woods (forest liter,small trees, and brush destroyed by heavy grazing or regular burning 45 66 77 83 Woods (Woods are grazed but not burned, and some forrest litter covers the soil) 36 60 73 79 Woods (Woods are protected from grazing, and litter and brush adequately cover the soil) 30 55 70 77 *Table taken from NCDEQ Sormwater Design Manual Part B: Calculations Guidance, revised 3/5/2017 DAYLIGHT ENGINEERING HGLE Calculations For Smith Industrial Subdivision 12400 Old Camden Road Midland, NC 28107 Project No: P0001 Client: Robert J. Parks Client Representitive: Billy Smith 12450 Grey Commercial Road Midland, NC 28107 P: 704.361.4253 billy@wdsmithgrading.com Preparer's Name: Kate Underwood, PhD, PE \owlI Daylight Engineering PLLC \.\ C i 0�///'' NCBELS Corporate License Number P-2772 2�%%%% /1/% 57 Union Street South = SEAL Concord, NC 28025 v 08 23/20223 o f 980.234.7500 ; y '•,HGINE, kate@daylighteng.com '�,,, WI i 1U\vv\\\`\ Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan Outfall 1 CB 3 2 3 CB 4 4 DCB 6 Project File: 200664.000 Smith Industrial HGLE v2.stm Number of lines:4 Date:7/28/2023 Storm Sewers v2021.00 Storm Sewer Tabulation Pagel Station Len Drng Area Rnoff Area x C Tc Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd/Rim Elev Line ID coeff (I) flow full Line To Incr Total Incr Total Inlet Syst Size Slope Dn Up Dn Up Dn Up Line (ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) 4 1 141.210 0.45 0.45 0.95 0.43 0.43 5.0 5.0 8.2 3.53 5.57 4.67 15 0.74 684.22 685.27 684.94 686.03 690.68 688.77 DCB 6>CB 2 3 2 37.016 0.14 0.14 0.95 0.13 0.13 5.0 5.0 8.2 1.10 6.54 3.53 15 1.03 688.56 688.94 688.91 689.35 692.24 692.23 CB 4>CB 3 2 1 122.866 0.15 0.29 0.95 0.14 0.28 5.0 5.7 8.0 2.21 11.70 5.59 15 3.28 684.22 688.25 684.59 688.84 690.68 692.24 CB 3>CB 2 1 End 131.904 0.10 0.84 0.95 0.10 0.80 5.0 6.8 7.7 6.16 15.60 5.16 18 2.21 680.44 683.35 681.40 684.31 682.23 690.68 CB 2>FES 1 Project File: 200664.000 Smith Industrial HGLE v2.stm Number of lines:4 Run Date: 7/28/2023 NOTES:Intensity=102.61 /(Inlet time+ 16.50)A 0.82; Return period=Yrs.25 ; c=cir e=ellip b=box Storm Sewers v2021.00 Inlet Report Page 1 Line Inlet ID Q= Q Q Q Junc Curb Inlet Grate Inlet Gutter Inlet Byp No CIA carry capt Byp Type Line Ht L Area L W So W Sw Sx n Depth Spread Depth Spread Depr No (cfs) (cfs) (cfs) (cfs) (in) (ft) (sqft) (ft) (ft) (ft/ft) (ft) (ft/ft) (ft/ft) (ft) (ft) (ft) (ft) (in) 4 DCB 6 3.53 0.00 3.53 0.00 Comb 4.0 2.00 12.00 2.00 6.00 Sag 2.00 0.050 0.020 0.000 0.24 9.09 0.24 9.09 0.0 Off 3 CB 4 1.10 0.00 1.10 0.00 Comb 4.0 3.00 6.00 3.00 2.00 Sag 2.00 0.050 0.020 0.000 0.19 6.49 0.19 6.49 0.0 Off 2 CB 3 1.18 0.00 1.18 0.00 Comb 4.0 3.00 6.00 3.00 2.00 Sag 2.00 0.050 0.020 0.000 0.20 6.82 0.20 6.82 0.0 Off 1 CB 2 0.78 0.00 0.78 0.00 Comb 4.0 3.00 6.00 3.00 2.00 Sag 2.00 0.050 0.020 0.000 0.16 5.09 0.16 5.09 0.0 Off Project File: 200664.000 Smith Industrial HGLE v2.stm Number of lines:4 Run Date: 7/28/2023 NOTES: Inlet N-Values=0.016; Intensity= 102.61 /(Inlet time+16.50)A 0.82; Return period=25 Yrs. ; *Indicates Known Q added.All curb inlets are throat. Storm Sewers v2021.00 Storm Sewer Profile Proj. file: 200664.000 Smith Industrial HGLE v2.stm as 4- 5 5 M -J OE -J O O — . co Lo CV O O OC'7N M �N O co O O) co V LC) co Elev. (ft) g w 2 M CO g co 2 +O -p W ,— iI N L.T. W (6 ,E j c6 E j j co E j co 0 E co ESE co ES 702.00 702.00 697.00 • • • • 697.00 692.00 692.00 687.00 [-687.00 ID. 682.00 682.00 13 .904Lf-18' 677.00 I I 677.00 0 25 50 75 100 125 150 175 200 225 250 275 HGL EGL Reach (ft) Storm Sewers Storm Sewer Profile Proj. file: 200664.000 Smith Industrial HGLE v2.stm f6 — N CO w- C 5 5 C C 5 M J p C J OE J O ' co up CV 0) O O . . . co N N co N . O <0 0 0) H M V N- N W W I� o W Elev. (ft) g w . M (0.g coo N.; (O +O -6 W wWW N wWW N L.T. (6 E j co j j co j j 6 E j co 0 C co E C C co E C C co ES 706.00 706.00 700.00 700.00 694.00 —694.00 s 688.00 ___ - —688.00 . @328% 6Lf 37.016Lf-15"@ 1.03% 682.00 18" @ ° 682.00 • 676.00 I 676.00 0 25 50 75 100 125 150 175 200 225 250 275 300 HGL EGL Reach (ft) Storm Sewers Inlet Section (Line 1 - Combination Inlet) - CB 2 Page 1of1 All dimensions in feet Line 1 - Combination Inlet in Sag - CE 2 .0..0...,___,...,,.,....,---0-1d'-'s- --. 17-.1_ .- Q Inlet Gutter Depth Spread Byp Line# Catch Carry Capt Byp Length Depr Throat Width Slope Sw Sx Gutter Inlet Gutter Inlet Line (cfs) (cfs) (cfs) (cfs) (ft) (in) (in) (ft) (ft/ft) (ft/ft) (ft/ft) (ft) (ft) (ft) (ft) (ft) 1 0.78 0.00 0.78 0.00 3.00 0.0 4.0 2.00 Sag 0.050 0.020 0.16 5.09 n/a n/a Sag Project File: No. Lines. 4 Run Date: 7/28/2023 Storm Sewers Inlet Section (Line 2 - Combination Inlet) - CB 3 Page 1of1 All dimensions in feet Line 2 - Combination Inlet in Sag - CB /00_ _p,-0- ------ -- 00#:,:::117 0.2 4.82 ik Q Inlet Gutter Depth Spread Byp Line# Catch Carry Capt Byp Length Depr Throat Width Slope Sw Sx Gutter Inlet Gutter Inlet Line (cfs) (cfs) (cfs) (cfs) (ft) (in) (in) (ft) (ft/ft) (ft/ft) (ft/ft) (ft) (ft) (ft) (ft) (ft) 2 1.18 0.00 1.18 0.00 3.00 0.0 4.0 2.00 Sag 0.050 0.020 0.20 6.82 n/a n/a Sag Project File: No. Lines: 4 Run Date: 7/28/2023 Storm Sewers Inlet Section (Line 3 - Combination Inlet) - CB 4 Page 1of1 All dimensions in feet Line - Combination Inlet in Sag - CB lr 0.19 2 r 4.49 ,iii44\\ Q Inlet Gutter Depth Spread Byp Line# Catch Carry Capt Byp Length Depr Throat Width Slope Sw Sx Gutter Inlet Gutter Inlet Line (cfs) (cfs) (cfs) (cfs) (ft) (in) (in) (ft) (ft/ft) (ft/ft) (ft/ft) (ft) (ft) (ft) (ft) (ft) 3 1.10 0.00 1.10 0.00 3.00 0.0 4.0 2.00 Sag 0.050 0.020 0.19 6.49 n/a n/a Sag Project File: No. Lines. 4 Run Date: 7/28/2023 Storm Sewers Inlet Section (Line 4 - Combination Inlet) - DCB 6 Page 1of1 All dimensions in feet Line 4 - Combination Inlet in Sag - DCB 6 —,------------l_---------'s--} ,. , Q Inlet Gutter Depth Spread Byp Line# Catch Carry Capt Byp Length Depr Throat Width Slope Sw Sx Gutter Inlet Gutter Inlet Line (cfs) (cfs) (cfs) (cfs) (ft) (in) (in) (ft) (ft/ft) (ft/ft) (ft/ft) (ft) (ft) (ft) (ft) (ft) 4 3.53 0.00 3.53 0.00 2.00 0.0 4.0 2.00 Sag 0.050 0.020 0.24 9.09 n/a n/a Sag Project File: No. Lines: 4 Run Date: 7/28/2023 Storm Sewers 31 Hydraflow Rainfall Report Hydraflow Hydrographs Extension for Autodesk®Civil 3D®by Autodesk, Inc.v2021 Friday,07/28/2023 Return Intensity-Duration-Frequency Equation Coefficients(FHA) Period (Yrs) B D E (N/A) 1 62.1764 12.7000 0.8901 2 69.8703 13.1000 0.8658 3 0.0000 0.0000 0.0000 5 79.2597 14.6000 0.8369 10 88.2351 15.5000 0.8279 25 102.6072 16.5000 0.8217 50 114.8193 17.2000 0.8199 100 127.1596 17.8000 0.8186 File name:Concord IDF Curve.IDF Intensity= B/(Tc+ D)^E Return Intensity Values(in/hr) Period (Yrs) 5 min 10 15 20 25 30 35 40 45 50 55 60 1 4.82 3.86 3.23 2.79 2.46 2.20 1.99 1.82 1.68 1.56 1.46 1.37 2 5.69 4.61 3.89 3.38 2.99 2.69 2.44 2.24 2.07 1.93 1.81 1.70 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 6.57 5.43 4.65 4.08 3.65 3.30 3.02 2.79 2.59 2.42 2.27 2.15 10 7.24 6.04 5.21 4.59 4.12 3.74 3.43 3.17 2.95 2.77 2.60 2.46 25 8.25 6.95 6.03 5.34 4.80 4.38 4.02 3.73 3.48 3.26 3.07 2.91 50 9.04 7.65 6.66 5.92 5.34 4.87 4.49 4.16 3.88 3.65 3.44 3.25 100 9.83 8.36 7.30 6.50 5.87 5.36 4.94 4.59 4.29 4.03 3.80 3.60 Tc=time in minutes.Values may exceed 60. 200114.000 Pitts School Flex Park Final Engineering\2-Engineering\2-Calculations\4-Erosion Control\Concord PCP.pcp Rainfall Precipitation Table (in) Storm Distribution 1-yr 2-yr 3-yr 5-yr 10-yr 25-yr 50-yr 100-yr SCS 24-hour 2.90 3.50 0.00 4.40 5.10 6.00 6.80 7.60 SCS 6-Hr 2.06 2.48 0.00 3.09 3.57 4.21 4.72 5.23 Huff-1st 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff-2nd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff-3rd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff-4th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff-Indy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Custom 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 RIPRAP DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: GAK Date: 8/23/2023 Checked By: KWU Company: Daylight Engineering Project Name: Smith Industrial Site Location (City/Town) Midland, NC Culvert Id. FES-1 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter,it is classified minimum tailwater condition. If it is greater than half the pipe diameter. it is classified ma.xiimun condition. Pipes that outlet onto wide Hat areas with no defined channel are assumed to have a mininnun tailwater condition unless reliable Hood stage elevations show otherwise. Outlet pipe diameter, Do (in.) 18 Tailwater depth (in.) 0 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 6.16 See 25 year Hydraulic Gradeline Calculation results Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d.0 riprap size and minimum apron length (L,). The d;c size is the median stone size in a well-graded riprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape, and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.4 Minimum apron length, La (ft.) 10 Apron width at pipe outlet (ft.) 4.5 4.5 Apron shape Trapezoidal Apron width at outlet end (ft.) 12 2 Step 4. Determine the maximum stone diameter: drrax 1.5 x d50 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.6 0 Step 5. Determine the apron thickness: Apron thickness = 1.5 x d,,_, Use class B riprap Minimum TW Maximum TW Apron Thickness(ft.) 0.9 0 RIP RAP CLASS MINIMUM MIDRANGE MAXIMUM A 2 IN (0.17 FT) 4 IN (0.33 FT) 6 IN (0.5 FT) B 5 IN (0.42 FT) 8 IN (0.67 FT) 12 IN (1 FT) 1 5 I N (0.42 FT) 10 IN (0.83 FT) 17 I N (1.42 FT) 2 9 IN (0.75 FT) 14 IN (1.17 FT) 23 IN (1.92 FT) Step 6. Fit the riprap apron to the site by iinking it level for the i iluniuin length. La. from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured. Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix 8.05). Where overfills exist at pipe outlets or flows are excessive. a plunge pool should be considered. see page 8.06.8. 3 0 Outlet kJ • Do + La 90 'i f. pipe .: ;; liiiili:; . .-.. II ! „ff ... diameter (Do) ` �1 ..:. . a 80 T i water 0.5DoP-C)‘' ..I :: ... • • • . : : : 1 1st 44/#: ,.... / , i`I. . .'... 0 ,,,,, s : „ ..... v 0 1. .. . . . ... ... . . . . .. . ,,,, • ,,,, • ,,. .: . : :::,.. 41 _ ++ .7 r.0.i1 .'ml� ,� 4a 1. . 14- I . .. 4 ' 3 . .:_�1. i.. ØiI� 30 i z\a ' . . .._..._. , „„„......_ , ' . . . • • • t il It - orrilerif .404 .• • _, fa0r.v14 0 _.... /�, .,� �. l�,144111 Iv MI ill:• ,it N_ 1 I�II'1� 1'�Ir• illy 2 Ott!Iiiirlicl ;:; ' 0�. ' ,,;//��i''i r iitt"iit"� fl a ; _ d V• ` 'i 'sun" co » At 4; • .aiI.ilA1ii1uo1mlrnn -4. .. i 1111111111.1111111110 3 5 10 20 50 100 200 500 1000 9.92 cfs 1 Discharge(ft3/sec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full,minimum tailwater condition(Tw<0.5 diameter). Rev.12'93 8.06.3