Loading...
HomeMy WebLinkAboutwq0002829_Email_20190617Strickland, Bev From: Eddie Goodrich<EddieGoodrich @villagerealtyobx.com> Sent: Monday, June 17, 2019 3:11 PM To: Tankard, Robert; May, David Cc: 'Bill Freed'; 'Joseph Anlauf'; 'Mike Robinson'; David Hoyle Jr; 'dixonandmeekins@earthlink.net' Subject: [External] KDHWWTP Plant Modification Attachments: DEQ Tankard Letter 6.17.19.pdf, Revised Barden Pho Model Narrative.pdf; KDH Budget Proposal.xlsx; KDH WWTP Budget Proposal.pdf External email. Do not click links or open attachments unless you verify. Send all suspicious email as an attachment to rel port.spam@nc.gov Robert/David, Please see attachments. Regards, Eddie KDHWWTP, LLC P.O. Box 3629 • Kill Devil hills, NC 27948 NCUC W-1160 June 17, 2019 Mr. Robert Tankard Assistant Regional Director NCDENR Division of Environmental Quality Washington Regional Office 943 Washington Square Mall Washington, NC 27889 Re: KDHWWTP Plant Modification Robert, Attached you will find Envirotech's estimate for the construction of the first phase of the plant modification as well as Joe Anlauf's narrative of the Barden Pho Model. We plan to begin ordering the necessary equipment within the next month. Bill Freed believes it will take 4 to 5 months to receive the necessary equipment. Therefore, we plan to start construction no later than January and to be complete before the end of the spring and ready for summer. Due to the fact that the plant compliance parameters were changed upon the issuance of the existing permit rather than upon completion of the modifications being complete and certified, is it reasonable to have a discussion regarding a Special Order of Consent regarding the Notices of Violation and Civil Penalties that have been assessed? I can be available at anytime to discuss this matter and we come to your office in Washington and meet if you so desire. By best regards, Eddie Goodrich Manager Member ANLAUF ENGINEE.KING, FLLC Joseph J. Anlauf, P.E. Firm License P-0929 June 12, 2019 Mr. Robert Tankard NCDEQ Washington Regional Office 943 Washington Square Mall Washington, NC 27889 Re: 5-stage Barden-Pho Modeling Results KDHW W TP Kill Devil Hills, Dare County, North Carolina Dear Robert; In the summer of 2017 we permitted a number of modifications to the KDHWWTP. These permitted modifications converted the existing extended aeration plant to an IFFAS (integrated fixed film activated sludge) process. The process conversion was to be achieved by adding baffle walls to segment the plant into different biological zones and adding plastic media. By name the IFFAS treatment configuration has both attached growth on the plastic media as well as suspended growth in the liquid volume. The zones that we created for the IFFAS in order included: Pre -Anoxic, Aeration, Post Anoxic and Post Anoxic Re -aeration. As you know an extended air plant by nature can only nitrify wastewater. Nitrification generates nitrates. The groundwater limit for Nitrates is 10 mg/I. No simple extended air plant can ever do any measurable amount of denitrification. By converting the treatment process to an IFFAS we can nitrify and denitrify. One of the major benefits of the IFFAS is that due to the presence of both suspended and fixed growth more biomass can be packed into a smaller vessel. Predictive process calculations on the conversion of the KDHWWTP from the extended aeration plant to the IFFAS process have determined that the actual treatment capacity of the existing plant can be greatly increased by adding the baffle walls, creating new zones and adding plastic media. In fact the calculations reveal that the plant capacity could be increased to nearly double the current capacity. Disposal is the limiting factor at this facility so in actuality there is no advantage to doubling the treatment capacity of the plant. With no real advantage to doubling the capacity, of the treatment capabilities we have investigated other means to convert the plant to a process that is able to nitrify and denitrify for less cost. The purpose of this correspondence is to share with the NCDEQ the results of modeling the proposed plant modifications without the addition of the media. The media and the equipment needed to manage the media is an expensive part of the plant upgrades. The following narrative describes the modeling of a plant in a 5-Stage Barden-Pho plant configuration and documents the investigation into making modifications to the plant with only suspended growth. Modeling Scenarios have been prepared projecting how the plant will perform without the addition of media. 4721 W. Eckner St., Kitty Hawk, North Carolina (252)489-7143 ANLAUF E.NGINE.E.KING, PLLC Joseph J. Anlauf, P.E. Firm License P-0929 Base Model Conditions The five -stage Barden-Pho process is a suspended growth process comprised of the following five (5) stages: Anaerobic, Pre -Anoxic, Aeration, Secondary (Post) Anoxic, Post Anoxic Re - aeration. This process slightly differs from the IFFAS process vessel configuration with the addition of an Anaerobic Zone. The software program SassProV2 has been used to prepare a predictive model of the wastewater process. A number of modeling scenarios were created to demonstrate the anticipated plant performance under slightly different operating conditions. The base operating conditions for each modeling scenario is identical and was based on the same plant vessel configuration and with the same influent strength. The model examined converting '/2 of the total plant treatment capacity (300,000 gpd) over to the 5-stage Barden-Pho process. Only'h of the plant was modeled because only one train can be converted at a time. The conversion process will take approximately 5 months from start to finish. The model addresses the biological configuration of the plant but does not account for the final filtration of the wastewater through the rapid sand filters. The 5-stage Barden-Pho plant configuration is as follows: Tahlp 1 — 5-Ctnup Rarden_Phn Plant Canfinuration Stage Zone Type Zone Volume Dissolved Oxygen; Concentration l Anaerobic 18,000 gallons 2 Pre -Anoxic 52,000 gallons 3 Aeration 165,000 gallons 2.0 m l 4 Post Anoxic 56,000 gallons 5 Post -Anoxic Re -aeration 17,000 gallons 1.0 m I The sum of the zone volumes above is 300,000 gpd (0.30 MGD). The influent strength used is as follows: Cttustltueut Value TBODi 363.6 mg/1 TKNi 60 mg/1 TPi 15 m l DOi 0.25 mg/1 ALM 250 CaCO3 m I SF(safety factor) 1.25 Influent strength has been taken from average values of the sampled influent. Modeling Scenarios Eight (8) different model scenarios were created to demonstrate the projected function of the plant. In eacli model scenario some aspect of the plant was changed to demonstrate the performance of the plant under slightly different conditions. The values that were manipulated 4721 W. Eckner St., Kitty Hawk, North Carolina (252)489-7143 ANLAUr ENGINEERING, PLLC Joseph J. Anlauf, P.E. Firm License P-0929 i were either ambient physical conditions or an operational modification. The factors manipulated were as follows: Temp (°F) - Temperature of the wastewater Qa - Recycle Return Rate from the Aeration Zone to the Pre -anoxic Zone Os - DO level in Post Anoxic Re -aeration Zone Qds - Carbon Dosing to Secondary Anoxic Zone The following table contains a summary of the eight (8) modeling scenarios. It contains the model scenario number, details the plant conditions modified and the resulting effluent quality. Table 3 - Summary of Modeline Results Model 'Scenario 'Temp (OF) Qa (%) Os (mg/1) Qdss... (gal/day) TSSe (mg/1)- , SODe (rno) , . TKNe (mgn) 'NH4- Nc `m ! No3- No TPe (mg/1) 1 75 150% 1.0 0 11.08 3.4 2.85 0.92 4.28 1.47 2 60 150% 1.0 0 11.86 4.0 2.68 0.74 4.22 0 3 75 200% 1.0 0 11.25 3.4 2.85 0.92 3.06 0.82 4 60 200% 1.0 0 11.98 4.0 2.68 0.74 3.48 0 5 75 150% 0.5 0 11.10 3.4 2.85 0.92 4.27 1.38 6 60 150% 0.5 0 11.89 4.0 2.68 0.74 4.21 0 7 75 150% 1.0 66 11.98 3.7 2.85 0.92 0.04 0 8 60 1500/4 1.0 1 20 12.17 4.1 2.68 0.74 2.92 0 Model Scenario 1 was run at 75°F, 1.5Q recycle rate, DO of 2.0 mg/I in the aeration zone, DO of 1.0 mg/I in the re -aeration zone and no carbon feed. Model Scenario 2 was run at 60°F, 1.5Q recycle rate, DO of 2.0 mg/I in the aeration zone, DO of 1.0 mg/I in the re -aeration zone and no carbon feed. Model Scenario 3 was run at 75°F, 2Q recycle rate, DO of 2.0 mg/1 in the aeration zone, DO of 1.0 mg/1 in the re -aeration zone and no carbon feed. Model Scenario 4 was run at 60°F, 2Q recycle rate, DO of 2.0 mg/I in the aeration zone, DO of 1.0 mg/1 in the re -aeration zone and no carbon feed. Model Scenario 5 was run at 75°F, 1.5Q recycle rate, DO of 2.0 mg/I in the aeration zone, DO of 0.5 mg/1 in the re -aeration zone and no carbon feed. Model Scenario 6 was run at 60°F, 1.5Q recycle rate, DO of 2.0 mg/1 in the aeration zone, DO of 0.5 mg/I in the re -aeration zone and no carbon feed. Model Scenario 7 was run at 75°F, 1.5Q recycle rate, DO of 2.0 mg/I in the aeration zone, DO of 1.0 mg/I in the re -aeration zone and carbon feeding of 66 gallons per day to the secondary anoxic zone. Model Scenario 8 was run at 60°F, l .SQ recycle rate, DO of 2.0 mg/I in the aeration zone, DO of 1.0 mg/I in the re -aeration zone and carbon feeding of 20 gallons per day to the secondary anoxic zone. 4721 W. Eckner St., Kitty Hawk, North Carolina (252)489-7143 ANLAur ENGINEEKING. PLLC Joseph J. Anlauf, P.E. Firm License P-0929 The temperature was modified from 75°F down to 60°F to show how the temperature of the wastewater affects the biological activity and the final effluent. Colder wastewater generally translates to less or slower biological activity. In each model scenario run at 60°F the HOD is higher indicating less or slower biological activity. The recycle return rate from the Aeration Zone to the Pre -Anoxic Zone was alternated between L5Q and 2Q to illustrate the impact of returning a higher volume of wastewater. This value is input into the model as a percentage of total flow. Having a higher recycle rate generally translated to slightly higher TSS but lower NO3-N and TP concentrations. The DO (Dissolved Oxygen) concentration in the re -aeration zone was modified between a concentration of 1.0 mg/I and 0.5 mg/I to show the impacts of the operating refining this concentration. Lowering the dissolved oxygen concentration in the re -aeration zone had no significant impact on the effluent quality modeled. The carbon dosing to the Secondary Anoxic Zone was modeled to illustrate the impact of a carbon feed to this zone. The expected biological removal of nitrogen is most efficient when the Carbon:Nitrogen Ratio is 5:1 or greater. The pre -anoxic zone is benefited by the carbon content in the influent. Carbon supplied to the Secondary Anoxic Zone supplies the food necessary for the biomass in this zone to denitrify the wastewater further. The correct application of carbon to this zone reveals a greatly diminished NO3-N concentration in the final effluent. The addition of carbon to this vessel must be done carefully as overdosing carbon to this vessel will result in significantly higher BOD in the final effluent. The model reveals that introducing carbon in the winter must be done at a much slower pace when compared to the introduction rate in the summer. In each modeling scenario the plant is able to deliver effluent that complies with the permit limits for Ammonia, BOD, TN & TP. As stated previously this model does not account for the final filtration of the wastewater through the rapid sand filters. Although the model reveals that the TSS concentration in the effluent is higher than the permit allows the sand filter will bring this value into compliance. These model scenario results indicate that converting '/2 of the plant to this 5-stage Barden-Pho process without the media required for the IFFAS paired with the proper operation of the plant will generate compliant effluent. Reasons for this Process Change • The addition of media adds significant cost to the project. This additional costs include the media itself, media screens, specialty equipment and increased energy costs. For Example: It takes 4-7 mg/1 of DO to the aeration zones to oxygenate the wastewater and keep the media rolling in an IFFAS. It only takes 1-3 mg/1 of DO to oxygenate the aeration zones of the Barden-Pho plant. This simple operational comparison has been included to demonstrate how energy costs will be reduced eliminating the media. • The media is un-necessary to achieve the treatment goals. • Time: it will take approximately 5 months to make the changes to modify one (1) 300,000 gpd train to the Barden-Pho process which means if we start now the performance of the plant will be enhanced by June 2019. The modification to the IFFAS 4721 W. Eckner St., Kitty Hawk, North Carolina (252)489-7143 ANLAur ENGINEEKING, PLLC Joseph J. Anlauf, P.E. Firm License P-0929 a process will take 7-8 months which means the plant will not be able to denitrify until the Fall of 2019. • The majority of the non -summer seasonal flow is well below 300,000 gpd. Concentrating flow to the Barden-Pho plant and blending flow from a plant able to denitrify with a plant generating nitrates will improve the overall effluent quality and reduce the overall concentration of nitrates sent to the disposal system. Over time this will improve the groundwater quality. Summary When we permitted the modifications to convert the plant to the IFFAS process we discussed verbally the potential to analyze an interim step to convert the plant process without the media. This narrative documents the anticipated performance of the plant if we do just that. Removing the media means that the name of the process changes because we are removing the ability of the plant to have attached growth. This narrative demonstrates that if we proceed with plant modifications without media that we can expect this plant to generate wastewater that is compliant with the effluent quality requirements outlined in the existing permit. Please review and approve this information so that we can move forward with the plant modifications and have the plant ready to have enhanced treatment capabilities by this upcoming season. Sincerely, Anlauf Engineerin , P C osep J. Anlauf, PE Encl.: Eight (8) model scenarios Cc: Bill Freed, Envirotech Mike Robinson, PLS, PE Eddie Goodrich — KDHW WTP, LLC 4721 W. Eckner St., Kitty Hawk, North Carolina (252)489-7143 —a.SASSPro V2 Report Page I of I I Report Title: Model Scenariol Report Date: 15 Jan. 'l1111. 1 1:11_ am Simulation: KDH\� n I 5 Staee..Author: An1,7Llf Engineering. PLLC Sim. File: C Users Joe Projects Pf KDH P )A FP Process Model KDHN N TP ? Stage.spr Influent Characteristics - Raw Biomass Characteristics Plant Parameters TBODi = 363.6 mgiL yn = 0 469 mgVSSimgCOD Va = 0 018 MG TKNI = 60 0 mgiL yn = 0 169 mgVSS/mgN Vpan = 0 D52 MG TPi = 15 0 mgiL Yg = 0 469 mgVSS/mgCOD Vae = 0 165 MG DOi = 0.25 mg/L e = 0 750 mgVSS/mgTSS Vsan = 0 D55 MG ALKi = 250 0 CaCO3 mgiL fcv = 1 420 mgCOD/mgVSS Vra = 0 017 MG SF = 1 25 Ratio fen = 0 200 mgVSSlmgVSS Om = 030 MG/day fup = 0.150 Ratio fn = 0 100 mgNrmgVSS aw ^ ` - --'ie"-w44Ivw fus = 0.070 Ratio kp = 0 060 Ratio Os = 1000 %Oin fbs = 0.250 Ratio fxbhp = 0 030 mgPlmgVSS Oa = 200 mg;L fna = 0.750 Ratio fp = 0 030 mgPrmgVSS 09 = 1.00 mg/L fnu = 0.030 Ratio Csp = 0 500 Ratio Anaerobic Basins = 1 basins fpa = 0 750 Ratio fip = 0.460 mgVSS/mgTSS VP = 03080 MG fxbgp = 0 380 mgPimgVASS TSS = 47957 mgiL fxegp = 0.030 mgPirngVESS Oiwl = 000 % feg 0250 mgVSS/mgVASS pH = 72 Influent Constituents Temperature Coefficients SCOD, = 623.9 mg/L Temp 680 0" I RBCODi = 156.0 mgiL pn 0 900 1 413 /day SBCODi = 48&0 mg/L Kn 1 000 1 570 mgN/L UCODi = 176.0 mg/L Kr 0 040 0.045 LmgVASS/day USCODi = 56 0 mgiL KiT 0 720 1 463 mgNO3-N/mgVASS/day UPCODI = 120 0 mgiL K2T 0 101 0 136 mgNO3-N/mgVASS/tlay NH4-Ni = 45 00 mgiL OT 0 077 0 086 mgNO3-N/mgVASS/tlay Noi = 4 75 mg/L Bin 0.240 0 268 /day Nw = 1.80 mgiL Bn 0170 0 190 day Pai = 11 25 mg/L Bg 0.040 0 045 iday Poi = 3 75 mg/L 5-Stage Modified Bardenpho/Phoredox Temp 75.0"P Vp 03080 MG Om 0 30 MG/day HRT Oout t 07 dayys 0.28 Maiday Ow 6 84 %Oin SRT 15 0 days SRTm 2.0 days pH 7 2 Gad 337 2 %Om Wasting from aerator Q 4796 mgiL Graph Key TB;. , SASSPIC P.x Palo USCODe = 56.0 T* - TKNe - 2.85 mgiL NH4-Ne = 0.92 mgiL - - NO3-Ne = 4.28 mgiL Tice = 1.47 mgiL - Pse = 6.55 mgiL - ALKe = 113 7 mgiL " F/M` =0.18 mgBODimgVSS [Data Cursor = 15 0 days] -, a: 5- E0 'a.^ FJ •.8: 20, 222 Zap 26D 280 Y:'D�' A.'vcac SRT cy* SASSPro V? Report Pale'°"' Report Title: Model Scenario I Report Date: 15 Jan. 2019. 1 1:03 am ."._� Simulation: KDHW%TP 5 Stage. Author: Anlaut Engincerine. PLLC Sim. File: C: Lasers Joe Projects P1522 KDH N N I P Process %lode[ KDHN y\I P 5 Stage.spr Carbon Oosina Primary Anoxic Reactor Rate = 0.0 gallday Secondary Anoxic Reactor Rate = 0 0 gallday 3 00 units COD / unit denitrification using Methanol (297000 CC COD 0 23 yield coefficient) Secondary Settler Csa = 11550 112 Cd = 105 n Cm = 20 Cfd =72 8 Cv0' = 820 210 f /day Cv0 = 1555 118 1Vday Crh = 0000576 L/mgSS Cd = 0002860 L/mgSS Cfns = 0002280 Old = 30000 mglL Csbc = 9000 mglL Vsc = 009 MIS Cfs = 1000 % HRT: = 3 53 Iours TWO s 11.08 mg& BOD9 + 3A tnpll• TSSr = 958040 mg/L Cbht = 1 8 n TSSm = 5635.2 mglL Cvup = 347 fVday Car = 2597 galtlt2day Csu = 208 ibiN2day Est. SVI - 259 mUgSS Est. SSVI = 128 mUgSS Est DSVI = 185 mUgSS Ratios and Loadings TKNrFCOD = 0.08 TP/TCOD = 0 02 TCOD/TKN = 13.33 TCOD/TP = 5333 TCOONSS = 1 42 MLVSS/MLSS = 0 75 TCOD/MLSS Loading = 0 167 mgCOD/mgTSS TKN/MLSS Loading = 0.013 mgN/mgTSS TP/MLSS Loading = 0 003 mgP/mgTSS F/M• Loading = 0 16 mgBODlmgVSS Volatile suspended solids = 3395 42 mg/L RBCOD/MLSS Loading = 0 03 mgCODtmgTSS uk2vaz *a•au=.. s'S5 infi3tla, 5-C 6.0 _o c . ,csc a "4't BOD•IMLSS Loading = 0.076 mgBODImgTSS TCOD/day Loading = 2002.70 Ib/day, NH4-Nldsy Loading =11286 Ito/day TKNiday Loading =15022 lbiday TP/day Loading = 3755 lb/day BOD-Iday Loading = 91032 lb/day Person Egmv - = 5351 PE An Ax Ox Mass Fractions = 5835 1 59 1 °o BOD' N P = 100 16.5 4 1 Percent TCOD Removed = 93 00 % Percent N Removed = 88 12 % Percent TKN Removed = 9525 % Percent TP Removed = 9017 % SASSPro V2 Report Page 3 of 11 Report Title: Model Scenario 1 Report Date: 15 Jan, 2019, 11:03 am ., Simulation: KDHWWTP 5 Stage, Author: Anlauf Engineering, PLLC www.wedo4mw.com Sim. File: C:\UsersUoe\Projects\P1522 KDH WWTP\Process Model\KDHWWTP 5 Stage.spr Glossary of Terma %BCODpsr Percent of Biodegradeable COD removed by primary settler from the raw influent (default=35.12 %) `YoCODpsr Percent of TCOD removed by primary settler from the raw influent (default=40.00 %) %Qat Recycle flow rate of 'a' recycle for step 1 (default=4800.00 %Qin) %Qa2 Recycle flow rate of 'a' recycle for step 2 (default=4800.00 %Qin) %Qa3 Recycle flow rate of 'a' recycle for step 3 (default=4800.00 %Qin) %Qa4 Recycle flow rate of 'a' recycle for step 4 (default--4800.00 %Qin) %Qa5 Recycle flow rate of'a' recycle for step 5 (default--4800.00 %Qin) %Qint Mean influent flow rate into step 1 (default=12.0 `Yo) %Qin2 Mean influent flow rate into step 2 (default=12.0 %) %Qin3 Mean influent flow rate into step 3 (default=12.0 %) %Qin4 Mean influent flow rate into step 4 (default=12.0 %) %Qin5 Mean influent flow rate into step 5 (defauft-12.0 %) %Qpsw Percent of influent flow removed as waste from primary settler (default=0.50 %) %Qrl Recycle flow rate of'r recycle for step 1 (default=1200.00 %Qin) %Q2 Recycle flow rate of'r recycle for step 2 (default=1200.00 %Qin) %Qr3 Recycle flow rate We recycle for step 3 (default=1200.00 %Qin) %Qr4 Recycle flow rate of'r recycle for step 4 (defauft=1200.00 %Qin) %Qr5 Recycle flow rate We recycle for step 5 (default=1200.00 %Qin) %TKNpsr Percent of TKN removed by primary settler from the raw influent (default=15.00'/6) %TPpsr Percent of Total P removed by primary settler from the raw influent (default=15.00 %) pn20 Nitrifier (autotrophic) specific growth rate (default=0.900 /day) pnK1 pn inhibition exponent for pH > 7.2 (default-1.130) pnK2 pn inhibition pH half saturation coefficient (default=0.300) pnKmax Maximum pH which ceases nitrification (defauft=9.500) pnOmega pn inhibition exponent for pH < 7.2 (default=2.350) ImT Nitrifier (autotrophic) specific growth rate (at chosen temperature) (/day) pnTO% Temperature offset for unm20 value (default=68.0 °F) pnTtheta Nitrifier specific growth rate exponent for temperature (default=1.072) AerNuml Total number of type 1 aerators (default--2) AerNum2 Total number of type 2 aerators (default=2) AerNum3 Total number of type 3 aerators (default=0) ALKc Alkalinity consumed by nitrification (mg/L) ALKe Effluent alkalinity in the form CaCO3 (mg/L) ALKi Influent alkalinity in the form CaCO3 (default=250.0 CaCO3 mg/L) ALKr Alkalinity recovered by denitrificetion (mg/L) Anaerobic Basins Number of basins in anaerobic reactor (default--3 basins) BCODi Biodegradable COD in the influent (RBCOD + SBCOD) (mg/L) bg20 Specific endogenous mass loss rate constant for polyP (PAO) organisms (defautt=0.040 /day) bgT Specific endogenous mass loss rate constant for polyp (PAO) organisms (at chosen temperature) (/day) bh20 Specific endogenous mass loss rate constant for heterotrophic organisms (default=0.240 /day) bhT Specific endogenous mass loss rate constant for heterotrophic organisms (at chosen temperature) (/day) bn20 Specific endogenous mass loss rate constant for nitrifying (autotrophic) bacteria (default=0.170 /day) bnT Specific endogenous mass loss rate constant for nitrifying (autotrophic) bacteria (at chosen temperature) (I'day) bnTthets Nitrifier specific decay rate exponent for temperature (default=1.029) BODe cBOD in the secondary clarifier effluent (mg/L) SASSPro V2 Report Page 4 of I 1 Report Title: Model Scenario 1 Report Date: 15 Jan, 2019, 11:03 am Simulation: KDHW WTP 5 Stage, Author: Anlauf Engineering, PLLC Sim. File: C:\UsersVoe\Projects\P1522 KDH WWTP\Process Model\KDHWWTP 5 Stage.spr Glossary of Terms tcontl BODPerson CBODS output per person/day (typically 0.06 kg Europe, 0.17 pounds USA) (default=0.170 Ib/day) C2BConv COD to carbonaceous BOD5 conversion factor (default-2.200 Ratio) Cbht Sidewall height of sludge blanket in selected secondary clarifier (ft) Coll Sidewall water depth of selected secondary clarifier (default=13.1 ft) Cfd Depth below sidewall water level for influent feed into selected clarifier (default-7.2 ft) Chris Non -settling fraction of input TSS (passes directly to clarifier effluent stream) (default=0.002280) Cfs If multiple clarifiers, specify % split of effluent fed to selected clarifier (default--100.0 %) ClarifyCalMode (default=0) Clc Minimum threshold sludge concentration for inter -layer calculations (default=30DO.0 mg/L) Cnl Number of modeling layers in selected secondary clarifier (default=20) CO2 Mass of Carbon Dioxide (CO2) released daily (lb) COD:DenitRatio COD:Denitrification ratio of methanol (default=3.000) CODpsw Mean COD mass wasted from primary settler Qb/day) CODS Influent COD utilized by sludge production (mg/L) CODw Total COD in waste flow (mg/L) Cor Secondary clarifier effluent overflow rate (gal/ft2day) Crf Flocculent zone settling (default=0.002860 UmgSS) Crh Hindered zone settling [Vesilind k] (default=0.000576 UmgSS) Csa Surface area of selected secondary clarifier (default=16145.9 ft2) Csbc Minimum concentration of settled sludge defining the sludge blanket top (default=900.0 mg/L) Cslr Secondary clarifier solids loading rate (Ib/ft2day) Csp Stoichiomethc ratio of P release per RBCOD converted (defauR=0.500 Ratio) Cv0 Maximum Vesilind settling velocity [Vesilind VO] (default=1555.118 ft/day) Cv0' Maximum practical settling velocity (default=820.210 ft/day) Cvup Secondary clarifier effluent overflow velocity (ft/day) Dcb Selected reactor($) for carbon dosing (default=0.0000) Dcs Selected carbon dosing source (default=0.0000) DOi Dissolved oxygen concentration in the influent (default=1.00 mg/L) Dpt Denitrification potential of the primary anoxic zone (mg/L) Dplc Denitrification capacity of the primary anoxic zone (mg/L) Dp3 Denitrification potential of the secondary anoxic zone (mg/L) Dp3c Denitrification capacity of the secondary anoxic zone (mg/L) Dpp Process dentrification potential, equivalent of primary anoxic zone (mg/L) Dpt Total denitrification potential (mg/L) F/M` Food to Microorganism Ratio (mgBOD/mgVSS) fat Active fraction of the biomass with respect to the total solids (Ratio) fav Active fraction of the biomass with respect to volatile solids (Ratio) fbday DOW mass loading applied to plant per day (lb/day) fbm BODNMLSS loading (mgBOD/mgTSS) fbs Soluble (RBBOD) fraction of the Biodegradable influent BOD (default=0.250 Ratio) today TCOD mass loading applied to plant per day (Ib/day) fcm TCODIMLSS loading (mgCOD/mgTSS) fctkn Influent TCODfrKN ratio (Ratio) fctp Influent TCOD/TP ratio (Ratio) fcv COD to VSS ratio of the biomass (default=1.420 mgCOD/mgVSS) SASSPro V2 Report Page 5 of 11 Report Title: Model Scenario t Report Date: 151an, 2019, 11:03 am �...�� Simulation: KDHWWTP 5 Stage, Author: Anlauf Engineering, PLLC www.weaolaoks.com Sim. File: C:\UsersVoe\Projects\P1522 KDH WWTP\Process Model\KDHW WTP 5 Stage.spr Cllonam of Terms (cont.) feg Unbiodegradable organic (endogenous residue) fraction of the MLVSS for PAO's (default=0.250 mgVSS/mgVASS) feh Unbiodegradable organic (endogenous residue) fraction of the MLVSS for OHO's (default=0.200 mgVSSImgVSS) fi MLVSS/MLSS concentration ratio of the biomass (default=0.750 mgVSS/mgTSS) fip VSS/TSS concentration ratio for PAO organisms (defauh=0.460 mgVSS/mgTSS) fn Nitrogen fraction of the MLVSS (default=0.100 mgN/mgVSS) fna Ammonia nitrogen (NH4-N) fraction of the influent TKN (defauh=0.750 Ratio) fnhday NH4-N ammonia loading applied to plant per day (lb/day) fnm TKN/MLSS loading (mgN/mgTSS) fnp Particulate fraction of nitrogen in raw influent (everything other than fnu+fna) (default=0.150 Ratio) ins Influent TKNfTCOD ratio (Ratio) fnu Unbiodegradable soluble organic nitrogen fraction of the Influent TKN (default=0.030 Ratio) fp Phosphorus fraction of the inert and endogenous residue MLVSS (defauh=0.030 mgP/mgVSS) fpa Soluble orthophosphate fraction of the influent total phosphorus (default=0.750 Ratio) fpm TP/MLSS loading (mgP/mgTSS) fq Ratio of wet weather peak influent flow to average dry weather influent flow (default=3.00 Ratio) frcm RBCOD/MLSS loading (mgCODImgTSS) fs Step Feed stage (defauh=5) fsp Soluble fraction of phosphorus in the influent (Ratio) ftknday TKN loading applied to plant per day (lb/day) ftpc Influent TP/TCOD ratio (Ratio) ftpday Total Phosphorus loading applied to plant per day (lb/day) fup Unbiodegradable particulate fraction of the influent TBOD (default=0.150 Ratio) fus Unbiodegradable soluble fraction of the influent TBOD (defauh=0.070 Ratio) lvfa Fraction of influent RBCOD that is Volatile Fatty Acids (VFA) (default=0.500 Ratio) 611 Primary anoxic mass fraction (Ratio) fx1 min Minimum primary anoxic mass fraction to utilize influent RBCOD (Ratio) ixlopt Optimal primary anoxic mass fraction (Ratio) fx3 Secondary anoxic mass fraction (Ratio) fx3min Minimum secondary anoxic mass fraction to remove DO entering Vsan (Ratio) fx3opt Optimal secondary anoxic mass fraction (Ratio) fxa Anaerobic mass fraction (Ratio) fxaopt Optimal anaerobic mass fraction (Ratio) fxb Total aerobic mass fraction (Ratio) fxbgp Fraction of PAO organisms in heterotrophic active component of the biomass (defauk=0.380 mgP/mgVASS) fxbhp Phosphorus fraction of the active MLVSS (default=0.030 mgP/mgVSS) fxdm Maximum anoxic mass fraction available for denitrlflcation , SF (design safety factor) (Ratio) fxdt Total anoxic mass fraction (fxt + fx3) (Ratio) fxegp Fraction of PAO organisms in endogenous component of the biomass (default=0.030 mgP/mgVESS) fxm Maximum unaerated mass fraction for nitrification in aerobic zone' SF (design safety factor) (Ratio) fxt Total unaerated mass fraction (anaerobic + anoxic) (Ratio) HrsDayl Hours/day operation of type 1 aerators (default=8 hrs/day) HrsDay2 Hourstday operation of type 2 aerators (default=16 hrs/day) HrsDay3 Hours/day operation of type 3 aerators (default=0 hrs/day) SASSPro V2 Report Page 6 of 11 Report Title: Model Scenario 1 Report Date: 15 Jan, 2019, 11:03 am �..,. Simulation: KDHW WTP 5 Stage, Author: Anlauf Engineering, PLLC Sim. File: C:\Users\Joe\Projects\P1522 KDH WWTP\Process Model\KDHWWTP 5 Stage.spr Glossary of Terms (cont HRT Hydraulic Retention Time (process volume / input flow) (days) HRTc Hydraulic Residence Time of selected clarifier (reactor volume / influent flow) (days) HRTps Hydraulic Retention Time of the primary settler (settler volume / input flow) (days) k1T High -rate RBCOD denitrification rate in primary anoxic zone (at chosen temperature) (mgNO3-N/mgVASS/day) k1T20 High -rate RBCOD deniti fication rate in primary anoxic zone (default=0.720 mgNO3-N/mgVASS/day) k2T Slow -rate SBCOD denitrification rate in primary anoxic zone (at chosen temperature) (mgNO3-N/mgVASS/day) k2T20 Slow -rate SBCOD denitrification rate in primary anoxic zone (default=0.101 mgNO3-N/mgVASS/day) UT Endogenous denitrification rate in secondary anoxic zone (at chosen temperature) (mgNO3-NfmgVASS/day) k3T20 Endogenous denitrification rate in secondary anoxic zone (default=0.077 mgNO3-N/mgVASS/day) kdpt Rate of P release in anaerobic reactor basin 1 (mg/L) kdp2 Rate of P release in anaerobic reactor basin 2 (mg/L) kdp3 Rate of P release in anaerobic reactor basin 3 (mg/L) kdp4 Rate of P release in anaerobic reactor basin 4 (mg/L) Kn20 Half saturation coefficient in Monod equation for nitrification (default-1.000 mgN/L) KnT Half saturation coefficient in Monod equation for nitrification (at chosen temperature) (mgN/L) kp Rate constant for RBCOD conversion to short chain fatty acids (SCFA) by non-polyP orgasms (default=0.060 Ratio) Kr2O Biodegradable organic nitrogen conversion rate for ammonification (default=0.040 UmgVASS/day) KrT Biodegradable organic nitrogen conversion rate to ammonia (at chosen temperature) (UmgVASS/day) ktdpn Rate of P release in last anaerobic reactor basin (mg/L) kW1 kilowatt rating of type 1 aerators (default=125.0 kWh) kW2 kilowatt rating of type 2 aerators (default=100.0 kWh) kW3 kilowatt rating of type 3 aerators (default=0.0 kWh) kWhl Kilowatt rating of Type 1 aerators kWh2 Kilowatt rating of Type 2 aerators kWh3 Kilowatt rating of Type 3 aerators kWhT Total daily kilowatt-hours operation of aerators Methanol COD COD after dilution e.g. for methanol 1+3 in water, COD=297000 (default=297000.0) Molasses COD COD after dilution e.g. for cane molasses 1+3 in water, COD=37500 mg/L (default=37500.0) N%rem Percent of nitrogen removed (%) N2 Mass of Nitrogen (N2) released dairy (lb) No Nitrification capacity (mg/L) Nd Nitrate-N denitrfed (mg/L) NH4-Ne Effluent nitrogen in the forth of ammonia (mg/L) NH4-Ni Ammonia nitrogen (NH4-N) in the influent TKN (mg/L) NH4-Ni Ammonia nitrogen in the influent TKN (mg/L) Nned Effluent nitrogen change due to carbon dosing (mg/L) Nnpani Nitrogen in the forth of nitrate entering primary anoxic reactor (mg/L) Nnpano Nitrogen in the form of nitrate leaving primary anoxic reactor (mg/L) Nnpanrem Nitrate denitrified in the primary anoxic reactor (mg/L) Nnr Nitrogen as nitrate returned in Y recycle (mg/L) Nns Nitrogen as nitrate returned In 's' recycle (mg/L) Nnsani Nitrogen in the form of nitrate entering secondary anoxic reactor (mg/L) Nnsano Nitrogen in the form of nitrate leaving secondary anoxic reactor (mg/L) SASSPro V2 Report Page 7 of 11 Report Title: Model Scenario 1 Report Date: 15 Jan, 2019, 11:03 am Simulation: KDHW WTP 5 Stage, Author: Anlauf Engineering, PLLC wma s.� Sim. File: C:\Users\Joe\Projecls\P1522 KDH WWTP\Process Modei\KDHWWTP 5 Stage.spr Nnsanrem Nitrate denitrified in the secondary anoxic reactor (mg/L) NO3-Ne Effluent nitrogen in the form of nitrate (mg/L) NO3-Ni Nitrate (NO3) in the influent (default--0.0 mg/L) Noe Soluble organic nitrogen in the effluent (mg/L) Noi Siodegradeable organic nitrogen in the influent TKN (mg/L) Npi Unbiodegradable particulate organic nitrogen in the influent TKN (%) Npsw Mean nitrogen mass wasted from primary settler (Ib/day) Ns Influent Nitrogen utilized by sludge production (mg&) Nsw Total Nitrogen in waste flow (mg/L) N'ti Nitrogen available for nitrification (mg/L) Nue Unbiodegradeable organic nitrogen in the effluent (mg/L) Nui Unbiodegradable soluble organic nitrogen in the influent TKN (mg/L) O$Cost Daily cost of running all aerators ($/day) O$Est Aeration cost based on estimated oxygen demand ($/day) 0%Cap Percent aeration capacity required for the estimated oxygen demand (%) 02CostPerMU Cost per mass unit of aerated oxygen ($Ab 02) 02CostPerYear Total cast of aeration electricity per year (/year) 02CostPerYear Aeration electricity cost per Person Equivalent (PE) per year (/year) Oa Dissolved oxygen concentration leaving the Aeration reactor (default=2.00 mg/L) Oat Dissolved oxygen concentration leaving Aerobic zone in step 1 (default=2.00 mg/L) Oat Dissolved oxygen concentration leaving Aerobic zone in step 2 (default=2.00 mg/L) Oa3 Dissolved oxygen concentration leaving Aerobic zone in step 3 (default=2.00 mg/L) Oa4 Dissolved oxygen concentration leaving Aerobic zone in step 4 (defaufl=2.00 mg/L) Oa5 Dissolved oxygen concentration leaving Aerobic zone in step 5 (default=2.00 mg/L) Oavail Oxygen available from specified aeration setup (lb/day) Oc Oxygen demand for carbon removal (anoxic + aerobic) (lb/day) Oca Oxygen equivalent used during carbon removal in anoxic reactor (lb/day) Oco Oxygen equivalent used during carbon removal in aerobic reactor (Ib/day) Od Oxygen recovered by denitrification (lb/day) On Oxygen demand for nitrification (Ib/day) Or Dissolved oxygen concentration in Y recycle (default=0.00 mg/L) Orl Dissolved oxygen concentration We recycle in step 1 (default=0.00 mg/L) Or2 Dissolved oxygen concentration We recycle in step 2 (default=0.00 mg/L) Or3 Dissolved oxygen concentration in Y recycle In step 3 (default=0.00 mg/L) Or4 Dissolved oxygen concentration in Y recycle in step 4 (default--0.00 mg/L) Ors Dissolved oxygen concentration We recycle in step 5 (defautt=0.00 mg/L) Org-N Organic nitrogen in the influent TKN (mg/L) Orrcalc Calculated oxygen concentration in the'r recycle for Johannesburg process (mg/L) Ortho-P Orthophosphate in the influent (mg/L) Os Dissolved oxygen concentration in return sludge (default=1.00 mg/L) Ot Total oxygen demand (Ot = Oc + On - Do) (lb/day) Other Carbon COD COD after dilution e.g. for ethanol 1+3 in water, COD=75000 mg/L (defau@=75000.0) P%rem Percent of phosphorus removed from the influent (%) Pee Soluble orthophosphate in the effluent (mg/L) Pai Soluble orthophosphate in the influent TP (mg/L) ,. SASSPro V2 Report Page 8 of 11 Report Title: Model Scenario 1 Report Date: 15 Jan, 2019, 11:03 am *.., Simulation: KDHWWTP 5 Stage, Author: Anlauf Engineering, PLLC www..veaornbcom Sim. File: C:\UsersVoe\Projects\P1522 KDH WWTP\Process Model\KDHW WTP 5 Stage.spr Glossary of Terms tcont.) PCake Percent of solids in the final dewateredlthickened sludge cake (default=15.0 %) PE* Person equivalent capacity based on BOD' loading (PE) pH pH correction for nitrifier growth (aeration zone) (defautt=7.2) Poi Condensed and organic phosphate in the influent TP (mg/L) PowerCost Cost per kWh of electricity used by aerators (default=0.150 $/kWh) Ppew Mean phosphorus mass wasted from primary settler (lb/day) Prem Phosphorus removed from the influent (mg/L) PrimarySettling Primary settling or raw influent (default--0) process Selected activated sludge process (default=l) Ps Influent Phosphorus utilized by sludge production (mg/L) PSG Potential enhanced P storage for PAO's (beyond that due to PAO growth only) (mg/L) PSfov CODNSS concentration ratio in the Primary Settler waste line (default=1.500 mgVSS/mgTSS) PSfl VSS/TSS concentration ratio in the Primary Settler waste line (default=0.800 mgVSS/mgTSS) Psw Total Phosphorous in waste flow (mg/L) Pvai Phosphorus entering the anaerobic zone (mg/L) Pvao Phosphorus leaving the anaerobic zone (mg1Q Pxg Phosphorus removed by PAO's i.e. active + endogenous fractions (mg/L) Pxh Phosphorus removed by OHO's i.e. active + endogenous fractions (mg/L) Pxi Phosphorus removed by inert component of the biomass (mg/L) Qa Recycle flow rate of 'a' recycle (default--400.0 %Qin) Qa Recycle flow rate of'a' recycle (default=12.68 MG/day) Oaf Recycle flow rate of W recycle for step 1 (default=12.68 MG/day) Qa2 Recycle flow rate of'a' recycle for step 2 (default=12.68 MG/day) Qa3 Recycle flow rate of'a' recycle for step 3 (default=12.68 MG/day) Qao Recycle flow rate of 'a' recycle for step 4 (default=12.68 MG/day) Qa5 Recycle flow rate of 'a' recycle for step 5 (default=12.68 MG/day) Qao 'a' recycle flow for optimal [anoxic] denitrification (zero=nitrate overload) (%Qin) Qao 'a' recycle flow for optimal [anoxic) denitrification (zero=nitrate overload) (MG/day) Qdl Carbon dosing flow rate to Anoxic zone of step 1 (default=0.0 gal/day) Qd2 Carbon dosing flow rate to Anoxic zone of step 2 (default--0.0 gal/day) Qd3 Carbon dosing flow rate to Anoxic zone of step 3 (default=0.0 gal/day) Qd4 Carbon dosing flow rate to Anoxic zone of step 4 (default=0.0 gal/day) Qd5 Carbon dosing flow rate to Anoxic zone of step 5 (default=0.0 gal/day) Qdp Carbon dosing flow rate to primary anoxic reactor (default=0.0 gal/day) QdpStatus Increase dosing flow until nitrate leaving anoxic reactor approaches zero (default--0.0000) Qds Carbon dosing flow rate to secondary anoxic reactor (default=0.0 gal/day) QdSFStatus Increase dosing flow until nitrate leaving Anoxic zone approaches zero (default=0.0000) Qds5tatus Increase dosing flow until effluent nitrate (Nne) approaches zero (default=0.0000) Qlcal Calibration quality index calculated by the QuickCal Wizard (%) Qfn Mean influent flow rate (default=3.17 MG/day) Qin' Adjusted flow into plant, excluding primary settler wasting (MG/day) Qout Mean effluent flow rate (%Qin) Clout Mean effluent flow rate (MG/day) Qpsw Mean flow wasted from primary settler (default=0.00 MG/day) Or Recycle flow rate of recycle (default=3.17 MG/day) SASSPro V2 Report Page 9 of I 1 Report Title: Model Scenario 1 Report Date: 15 Jan, 2019, 11:03 am Simulation: KDHW WTP 5 Stage, Author: Anlauf Engineering, PLLC Sim. File: CAUsersVoe\Projects1P1522 KDH WWTP1Process ModeDKDHWWTP 5 Stage.spr Glossary of Terns (cont) Or Recycle flow rate of Y recycle (default=100.0 %Qin) Qrl Recycle flow rate of Y recycle for step 1 (default=3.17 MG/day) Qr2 Recycle flow rate of Y recycle for step 2 (default=3.17 MG/day) Qr3 Recycle flow rate of Y recycle for step 3 (default=3.17 MG/day) Qr4 Recycle flow rate of'Y recycle for step 4 (default=3.17 MG/day) Qr5 Recycle flow rate of'Y recycle for step 5 (default=3.17 MG/day) Qs Ratum activated sludge (RAS) flow rate (default=100.0 %Qin) Qs Return activated sludge (RAS) flow rate (default=3.17 MG/day) Qw Waste sludge flow, wasting from mixed liquor (%Qin) Qw Waste sludge flow, wasting from mixed liquor (MG/day) QwRet Waste sludge flow required to be wasted from the RAS line (%Qin) QwRet Waste sludge flow required to be wasted from the RAS line (MG/day) RBCODe Readily biodegradable soluble COD in the effluent (mg/L) RBCODi Readily biodegradable COD in the influent (mg/L) Rhn Average nominal process hydraulic retention time (days) SBCODi Slowly biodegradable COD in the influent (mg/L) sbg Soluble Biodegradable influent COD used for PAO biomass growth (mg/L) sbh Biodegradable influent COD used for OHO biomass growth (mg/L) Sbi Biodegradable fraction of the influent COD (mg/L) Sbsl Readily Biodegradable COD leaving anaerobic reactor basin 1 (mglL) Sbs2 Readily Biodegradable COD leaving anaerobic reactor basin 2 (mg/L) Sbs3 Readily Biodegradable COD leaving anaerobic reactor basin 3 (mg/L) Sbs4 Readily Biodegradable COD leaving anaerobic reactor basin 4 (mg/L) Sbsi Readily Biodegradable COD entering anaerobic reactor (mg/L) Sbsiavail Readily Biodegradable COD available for phosphorus removal (mg/L) SbsN Readily Biodegradable COD leaving last anaerobic reactor basin (mg/L) SCODe Soluble COD in the effluent (mg/L) SecondarySettling Secondary settling enabled (defaufl=0) SetFi MLVSS/MLSS concentration ratio of the settled biomass (default=0.830 Ratio) SF Safety factor for minimum aerobic mass fraction enabling nitrification (see fxm and fxdm) (default=1.25 Ratio) Smr Readily Biodegradable COD lost in anaerobic reactor due to nitrate in return line (mg/L) Sroi Readily Biodegradable COD lost in anaerobic reactor due to oxygen in influent (mg/L) Sror Readily Biodegradable COD lost in anaerobic reactor due to oxygen in return line (mg/L) SRT Solids Retention Time (also known as sludge age or MCRT) (default=15.0 days) SRTm Minimum SRT (sludge age) for nitrification (days) Sui Unbiodegradable soluble fraction of the influent COD (mg/L) Sup! Unbiodegradable particulate fraction of the influent COD (mg/L) TBOD! Total BOD in the influent (default-340.9 mg/L) TCOD%rem Percent of TCOD removed from the influent (%) TCOOi' Adjusted TCODi into plant, after primary settler (mg/L) Temp Mean biomass temperature - do not specify AIR temperature (default-68.0 °F) TINe Total inorganic nitrogen (NO3-N + NH4-N) in the effluent (mg/L) TKN%rem Percent of TKN removed from the Influent (%) TKNe Total Kjeldahl nitrogen (organic + ammonia nitrogen) in the effluent, comprising Nee + Noe + Nue (mg/L) TKNi Total Kjeldahl nitrogen (organic + ammonia nitrogen) in the influent (default--60.0 mg/L) SASSPro V2 Report Page 10 of I Report Title: Mode] Scenario 1 Report Date: 15 Jan, 2019, 11:03 am Simulation: KDHW WTP 5 Stage, Author: Anlauf Engineering, PLLC Sim. File: C:\UsersUoe\Projects\P1522 KDH WWTPTrocess Model\KDHWWTP 5 Stage.spr TKNi' Adjusted TKNi into plant, after primary settler (mg/L) TKNi/TCODi Ratio of Influent TKN to Influent TCOD (Ratio) TN%rem Percent of TN (all forms including nitrate-N) removed from the influent (%) TNe Total nitrogen (all forms including nitrate-N) in the effluent (mg/L) TPe Total phosphorus in the effluent (mg/L) TPi Total phosphorus in the influent (default=15.0 mg/L) TPi' Adjusted TPi into plant, after primary settler (mg/L) Transt Oxygen/kWh transfer rate of type 1 aerators (default=2.65 Ib02/kWh) Trans2 Oxygen/kWh transfer rate of type 2 aerators (default=3.09 Ib02/kWh) Trans3 Oxygen/kWh transfer rate of type 3 aerators (default=0.00 Ib02/kWh) TSS Total sludge mass entering secondary clarifer (MLSS = ISS + VSS) (mg/L) TSSe Total Suspended Solids (SS) in selected secondary clarifier effluent (overflow cone) (mg/L) TSSm Maximum clarifier influent TSS for critical operation (mg/L) TSSr Total MLSS sludge mass of clarifier recycle line (underflow cone) (mg/L) UCODi Unbiodegradable COD in the influent (USCOD + UPCOD) (mg/L) UPCODi Unbiodegradable particulate COD in the influent (mg/L) USCODe Unbiodegradable soluble COD in the effluent (mg/L) USCODi Unbiodegradable soluble COD in the influent (mg/L) Va Total volume of anaerobic zone (default=0.660 MG) Val Total volume of Anaerobic zone in step 1 (default=0.660 MG) Va2 Total volume of Anaerobic zone in step 2 (default=0.660 MG) Va2 Total volume of sludge denitrification zone (default-0.528 MG) Va3 Total volume of Anaerobic zone in step 3 (default=0.660 MG) Va4 Total volume of Anaerobic zone in step 4 (default=0.660 MG) Va5 Total volume of Anaerobic zone in step 5 (default=0.660 MG) Vae Total volume of aerobic zone (default=3.170 MG) Vael Total volume of Aerobic zone in step 1 (default=3.170 MG) Vae2 Total volume of Aerobic zone in step 2 (default=3.170 MG) Vae3 Total volume of Aerobic zone in step 3 (default=3.170 MG) Vae4 Total volume of Aerobic zone in step 4 (default=3.170 MG) Vae6 Total volume of Aerobic zone in step 5 (default=3.170 MG) Van1 Total volume of Anoxic zone in step 1 (default=1.189 MG) Vsn2 Total volume of Anoxic zone in step 2 (default=1.189 MG) Vsn3 Total volume of Anoxic zone in step 3 (defauft=1.189 MG) Van4 Total volume of Anoxic zone in step 4 (default=1.189 MG) VanS Total volume of Anoxic zone in step 5 (default=1.189 MG) VP Total process volume of the plant (excluding primary/secondary settlers) (MG) Vpan Total volume of primary anoxic zone (default=1.189 MG) Vps Volume of the primary settler tank (default=0.26 MG) Vra Total volume of re -aeration zone (default=0264 MG) Vsan Total volume of secondary anoxic zone (default-1.057 MG) Vsc Maximum volume of selected secondary clarifier (MG) VSS Volatile component of the sludge mass (mg/L) VSS %Xbg Percentage value of the PAO heterotrophic active portion of the biomass VSS (%) VSS %Xbh Percentage value of the OHO heterotrophic active portion of the biomass VSS (%) Page 11 of I 1 SASSPro V2 Report Report Title: Model Scenario 1 Report Date: 15 Jan, 2019, 11:03 am Simulation: KDHWWTP 5 Stage, Author: Anlauf Engineering, PLLC .w�xm .gym Sim. File: C:\Users\Joe\Projects\P1522 KDH WWTP\Process Model\KDHWWTP 5 Stage.spr Glossary of Terms (cont.) VSS %Xeg Percentage value of the PAO endogenous portion of the biomass VSS (%) VSS %Xeh Percentage value of the OHO endogenous portion of the biomass VSS (%) VSS %Xi Percentage value of the inert portion of the biomass VSS (%) VSS%Dig Reduction of volatile solids in digestor (default=50.0 %) VSSbar Stackbar of OHO and PAO constituents of the biomass VSS (mg/L) WASConc Estimated Waste Activated Sludge concentration (mg/L) Wastewater Type Specified as Raw or Settled influent (default=0.0) Wdry Mass of sludge (as dry solids for land distribution) produced by wasting (lb/year) Wdry$ Cost of land application of sludge ($/year) Whaul Wasted sludge to be hauled (lb/year) Whaul$ Sludge haulage cost of waste ($/year) Whaulfee Cost of disposing of wasted solids by volume (default--40.00 $/legal) Whaulfee Cost of disposing of wasted solids by weight (defauh=11.00 $lion US) Wlandfee Cost of land application (defautt=15.00 $/Ton US) Xa Heterotrophic active component of the biomass (mg/L) Xbg PAO organisms in the heterotrophic active component of the biomass (mg/L) Xbh OHO organisms in the heterotrophic active component of the biomass (mg/L) Xe Endogenous component of the biomass (mg/L) Xeg PAO organisms in the endogenous component of the biomass (mg/L) Xeh OHO organisms in the endogenous component of the biomass (mg/L) Xi Inert component of the biomass (mg/L) Xio Inorganic component (MLISS) of the sludge mass (mg/L) Xn Nitrifier component of the organic biomass (mg/L) Xt Total MLSS sludge mass (VSS + ISS) in the process volume (Vp) (mg/L) Xta Total solids in the anaerobic reactor (mg/L) Xtb Total solids in the aerobic reactor (mg/L) Xtd3 Solids concentration in the secondary anoxic reactor (mg/L) Xv Volatile sludge mass (MLVSS = active + endogenous + inert fractions) (mg/L) Ye Carbon source specific yield coefficient for Methanol (default=0.230 mgVSS/mgCOD) Yg Phosphorus polyP (PAO) organism specific yield coefficient (defauit=0.469 mgVSS/mgCOD) Yh Heterotrophic organism spedfic yield coefficient (default=0.469 mgVSS/mgCOD) Yn Nitrifying (autotrophic) organism specific yield coefficient (default=0.169 mgVSS/mgN) Unit Settings Volume Megagallons (US) (1 Megagallons (US) = 3785411.8178 Litres) Concentration mg/L Mass lb (1 lb = 463.5924 g) Time day Temperature 'F SASSPro V2 Report Page I of a, Report Title:Wo*ubqmww F l Report Date: IS Jan. '_0_:+3 pm Simulation: KDHR N TP i Stage. Author: Anlauf Engineering. PLLC „a4ucmk..om Sim. File. C: Lsers Joe Project: PI 11 KDH U 1k'TP Process Slodel KDH�k 11 f P i Stagc.spr Influent Characteristics - Raw TBODt = 363 6 mg/L TKNI = 60.0 mg/L TPt = 15 0 mg/L DOI = 0 25 mg,IL ALK, = 250.0 CaCO3 mg/L SF = 125 Ratio fup = 0 150 Ratio fus = 0 070 Ratio fbs = 0.250 Ratio fna = 0 750 Ratio fnu = 0 030 Ratio fpa = 0 750 Ratio Influent Constituents BCOD = 623 9 mg/L RSCOD, = 156 0 mg/L SBCODi = 468 0 mg/L UCODi = 176 0 mg/L USCODi = 56 0 mg/L UPCODi = 120 0 mg/L N114-Ni = 45,00 mg/L Not = 4 75 mg/L Nut = 1 80 mg/L Pat = 11.25 mg/L Pot = 3 75 mg/L Biomass Characteristics yh = 0 469 mgVSS/mgCOD vn = 0 169 mgVSS/mgN Yg = 0.469 mgVSS/mgCOD h - 0. 750 mgVSS/mgTSS fcv = 1 420 mgCOD/mgVSS fen = 0 200 mgVSS/mgVSS fn = 0 100 mgN/mgVSS kp = 0 060 Ratio fxbhp = 0 030 mgP/mgVSS to = 0 030 mgP/mgVSS Cap = 0. 500 Ratio fip = 0 460 mgVSS/mgTSS txbgp = 0 380 mgP/mgVASS fxegp = 0.030 mgPrmgVESS feg 0.250 mgVSS/mgVASS Plant Parameters Va = 0.018 MG Vpar = 0.052 MG Vae = 0.165 MG Vsan = 0.056 MG vra = 0 017 MG Gin 0 30 MG/oay Lit 1502 %On ' Os = 1000 %Gm Oa = 2.00 mglL -Sic. 1.00 mplL Anaerobic Basins = 1 basins Vp = 0.3080 MG TSS = 5155.9 mg/L 01cai = 0.00 % PH = 72 Temperature Coefficients Temp 680 60.0 'F yn 0 900 0 537 Iday Kn 1 000 0 597 mgN/L Kr 0040 0035 L/mgVASS/day KIT 0720 0320 mgNO3-NimgVASS/day K2T 0.101 0 072 mgNO3-N/mgVASS/day K3T 0077 0068 mgNO3-N/mgVASS/day Bh 0 240 0 211 /tlay Bn 0170 0150 'day Bg 0.040 0 035 /day 5-Stage Modified BardenpholPhoredox Temp OMW vp 03080 MG Gm 030 MiSmay HRT 103 days Gout 0.28 MG/day Ow 6 84 %Om va Lp an Vsan i Vra_ a s SRT 15 0 days SRTm 4 2 days pH 7 2 Dao 176 3 -60tn Wasting from aerator 5156 mg/L Graph Key SASsw, Pa. A.". USCOOe = 55 TKNe = 268 mg/L _ s: NH4-Ne = 0 74 mg/L NO3-Ne = 4.22 mg/L TPe = 0.00 rngfL Pse = 772 mg/L - ALKe = 119 2 mg/L- F/M' =016 mgBODlmgVSS [Data Cursor = 15 0 days] - - `- A_ios�e SRT as SASSPro V2 Report Pape _ of , _ Report Title: Model Scenario _' Report Date: 15 Jan. 2019. 12:33 pm Simulation: KDHN'N'TP 5 Stage. Author: Anlau(Engineering. PLLC Sint. File: C. Csers Joe Projects PI5'__ KDFI N \1TP Process Model KDII%%TP 5 Stage.spr Carton Dosing Primary Anoxic Reactor Rate = 0 0 gaili Secondary Anoxic Reactor Rate = 0 0 gauday, 3.00 units COD / unit denitnfication using Methanol 1297000 00 COD 0.23 yielo coefficient) Secondary Settler Csa =11550 ft2 HRTc =3.63 hours Ta.as FW .e T<= anlaa, Cd = 105 It TSSe = -c.^lag, " °3 ° Cnl = 20 BODe = Cfd = 7 2 8 TSSr = 10299.98 Cv0' = 820 210 ft/day Cbht = 2.8 ft Cv0 = 1555 118 f /day TSSm = 5635 8 mglL Crh = 0.000576 L/mi Cvup = 347 f /day Cd = 0 002860 UmgSS Cor = 259.7 gam' day- Cfns = 0002280 Cslr = 224 Ib/ t2day zC u Clc = 30000 mg/L Csbc = 9000 mg/L- Vsc = 0 09 MG Est SVI = 259 mUgSS Cfs = 1000 % Est SSVI = 128 mUgSS o41 Est DSVI = 185 mUgSS " A_:caue rya Ratios and Loadings TKN/TCOD = 0 08 BOD'/MLSS Loading = 0 071 mgBOD/mgTSS TPrrCOD = 0 02 TCOD/day Loading = 2002 70 Iblday TCODrrKN = 13 33 NH4.N/day Loading = 11266 lb/day TCODrrP = 53 33 TKNiday Loading = 15022 Iblday TCODfVSS = 1 42 TP/day Loading = 37.55 Ib/day MLVSS/MLSS = 0 75 BOD',day Loading = 91032 lb/day TCOO/MLSS Loading = 0.155 mgCOD/mgTSS Person Egmv' = 5351 PE TKN/MLSS Loading = 0 012 mgN/mgTSS An Ax Ox Mass Fractions = 5 8 35 1 59 1 TP/MLSS Loading = 0.003 mgP/mgTSS SOD' .N.P = 100 16.54 1 F/M' Loading = 0 16 mgBOD/mUVSS Percent TCOO Removed = 93 00 Volatile suspended solids = 3636 83 mglL Percent N Removed = 88 50 °h RBCOD/MLSS Loading = 0 03 mgCOD/mgTSS Percent TKN Removed = 95.53 'r< Percent TP Removed = 10000 °i ~=>� SASSPro V2 Report Pave 1 o1,2 Report Title: Model Scenario 3 Report Date: I � Jan. 2019. 12:12 put Simulation: KDHW W I 5 Stage. Author: Anlauf Engineering. PLLC Sim file C 1 sers Joe Projects P1522 KDH R \hTP Proces Model KDHN 41 TP 5 Stage.spr influent Characteristics - Raw Biomass Characteristics Plant Parameters TBODi = 363 6 mg.'L Yh = 0 469 mgVSS/mgCOD Va 0 018 MG TKNt = 60 0 mg/L Yn = 0 169 mgVSS/mgN Vpan = 0 052 MG TPi = 15 0 mg/L Yg = 0 469 mgVSS/mgCOD Vae = 0 165 MG DOi = 0.25 mii 8 = 0 750 mgVSS/mgTSS Vsan = 0 056 MG ALKi = 250 0 CaCO3 mg/L fcV = 1 420 mgCOD/mgVSS Vra = 0 017 MG SF = 1 25 Ratio feh = 0 200 mgVSS/mgVSS Gm = 0 30 MG/day tup = 0.150 Ratio fn = 0 100 mgN/mgVSS as = 2000. %Om fus = 0.070 Ratio kp = 0 060 Ratio Gs = 1000 %Oin fbs = 0 250 Ratio fxohp = 0 030 mgP/mgVSS Oa = 200 mgIL fna = 0.750 Ratio to = 0 030 mgP/mgVSS Os = 100 mg/L tnu = 0 030 Ratio Csp = 0 500 Ratio Anaerobic Banns = 1 banns fpa = 0 750 Ratio fip = 0 460 mgVSS/mgTSS Vp = 0.3080 MG fxbgp = 0 380 mgP/mgVASS TSS = 48757 mg/L fxegp = 0 030 mgP/mgVESS Oloal = 000 % feg 0 250 mgVSS/mgVASS pH = 72 Influent Constituents Temperature Coefnoisnts BCW = 623,9 mg/L Temp 680 750 'F RBCODi = 156 0 mg/L pn 0 900 1 413 /day SBCODt = 468 0 mg/L Kn 1 000 1 570 mgWL UCOOi = 176 0 mgfL Kr 0 040 0 045 L/mgVASS/day USC00i = 56 0 mg/L KIT 0 720 1 463 mgNO3-NJmgVASS/day UPCOD, = 120.0 mgfL K2T 0 101 0 136 mgNO3-N)mgVASS/tlay NH4-Ni =45.00 mgfL K3T 0077 0086 mgNO3-N/mgVASS/tlay, Noi = 4.75 ni Bit 0 240 0 268 fday Nui = 1.80 mgfL Bn 0 170 0 190 fday Pai = 11 25 mgfL Bg 0 040 0 045 /day Poi = 3.75 mg/L 5-Stage Modified Bardenpho/Phoredox Temp 75.0 °F 'VP 0 3080 MG Om 0 30 MG/day HRT Gout 1 03 dayys 0 28 M[3/day Ow 6 84 %Gin SRT 15.0 days SRTm 2 0 days Graph Key _. L USCODe = 56 0 mg/L TKNe = 2.85 mg/L NH4-Ne = 0.92 mgfL -" NO3-Ne = 3 06 mgfL Toe = 0.82 mg/L- - Pse = 7 12 mg/L ALKe = 119 1 mg/L- PM- = 017 mgBOD/mgVSS [Data Cursor = 15 0 days] 5` - pH 7 2 Oao 355 9 '/.Om SASSP; J P's. Wasting from aerator @ 4876 mgfL Patc =' SASSPro V? Report Page n_ ofn_ Report Title: Model Scenario 3 Report Date: 15 Jan. 'U IQ. 1132 pm �.._,..• Simulation: KDHU'N"TP 5 Stave. Author Anlauf Engineering. PLLC Sim. File: C Lsers Joe Projects Pl5?'_ KDH 111A TP Process Model KDHP'N TP 5 Stage.spr Carbon Dosino Primary Anoxic Reactor Rate = 0 0 gallday Secondary Anoxic Reactor Rate = 0 0 gallday 3 00 units COD I unit deminhcahon using Methanol 1297000 00 COD 0 23 yield coeffcienu Secondary Settler Csa = 1155.0 ft2 Cd = 105 ft Cnl = 20 Cfd = 7 2 it Cv0' = 820 210 8/day Cv0 = 1555 118 ivday Crh = 0000576 UmgSS Crf = 0002860 UmgSS Cfns = 0002280 CIc =30000 mg/L Csbc = 900 0 mg/L Vac = 0 09 MG Cis = 1000 % HRTc =363 hours TSSe = 11 25 mg/L BODe = 34 mglL TSSr = 9740 16 mglL Cbht = 22 f TSSm = 56354 mg1L CVUp = 347 tVday Cor =2597 gal/ft2day Csir = 21 , Ibm2day Est SVI = 259 mUgSS Est SSVI = 128 mUgSS Est DSVI = 185 mUgSS Ratios and Loadings TKNiTCOO = 0.08 TPITCOD = 0 02 TCOD/TKN = 1333 TCODlTP = 5333 TCODNSS = 1 42 MLVSS/MLSS =075 TCOD/MLSS Loading = 0 164 mgCOD/mgTSS TKN/MLSS Loading = 0 012 mgN/mgTSS TP/MLSS Loading = 0.003 mgP/mgTSS FfM' Loading = 0 17 mgBOD/mgVSS Volatile suspended solids = 3438 11 mglL RBCOD/MLSS Loading = 0 03 mgCOO/mgTSS ca�car 2CW A--D as BOD'IMLSS Loading = 0.075 mgBOD/mgTSS TCOO/day Loading = 200270 Ib/day NH4-N/day Loading = 112.66 lb/day TKN/day Loading =15022 Ib/day TP/day Loading = 37 55 lb%day BOD'/day Loading = 91032 lb/day Person Eouiv' = 5351 PE An.Ax Ox Mass Fractions = 5 8.35 1 591 % BOD'NP =1001654.1 Percent TCOD Removed = 93 00 Percent N Removed = 90 15 % Percent TKN Removed = 95 25 % Percent TP Removed = 94 51 % am.ca, 5: SASSPro V2 Report Pace 1 of Report Tide: MbdeFBeab"' Repnn Date, 15 Jan. 2019. 1_29 pm e Simulation: KDHWWTP 5 Stage. Author: Anlauf Engineering. PLLC Sim. File: C: Users Joe Projects PI 5-"- KDH kk %\ TP Proces, Model KDHW WTP 5 Stage.spr Influent Characteristics - Raw Biomass Characteristics Plant Parameters TBODi = 363 6 mg/L vn = 0 469 mgVSSmgCOD Va = 0.018 MG TKNi = 60.0 mglL yn = 0 169 mgVSS/mgN Vpan = 0.052 MG TP, = 15.0 mg/L yg = 0469 mgVSS/mgCOD Vae = 0.165 MG DOI = 0 25 mg/L ti = 0. 750 mgVSStmgTSS Vsan = 0.056 MG ALKi = 250 0 CaCO3 mg/L fcv = 1 420 mgCOD/mgVSS Vra = 0.017 MG SF = 1 25 Ratio fah = 0 200 mgVSS/mgVSS On = 0.30 MGlday fup = 0 150 Ratio In = 0.100 mgPrmgVSS as = mom V" fus = 0 070 Ratio Ito = 0 060 Ratio Os = 1000 %Qm fibs = 0 250 Ratio fxbhp = 0 030 mgPlmgVSS Oa = 200 mg4 fna = 0 750 Ratio to = 0 030 mgPlmgVSS Os = kW.4J fnu = 0 030 Ratio Csp = 0.500 Ratio Anaerobic Basins = 1 basins fpa = 0750 Ratio to = 0460 mgVSSimgTSS Vp = 0.3080 MG fxbgp = 0.380 mgP/mgVASS TSS = 52115 mg/L fxagp = 0.030 mgP/mgVESS 01w1 = 0.00 % feg 0.250 mgVSSimgVASS pH = 7 2 Influent Constituents Temperature Coefficients BCODi = 623 9 mg/L Temp 680 7010- - W15-Lv RBCODi = 1560 mg/L un 0 900 0 537 /day SBCODi = 468 0 mg/L Kn 1 000 0 597 mgN/L UCODi = 176 0 mg/L Kr 0 040 0 035 L/mgVASS/day USCODi=56.0 mg/L KIT 0720 0320 mgNO3-NImgVASStday UPCODi = 120.0 mg/L K2T 0 101 0 072 mgNO3-NImgVASStday NH4-Ni = 45.00 mg/L K3T 0 077 0 068 mgNO3-NImgVASStday No. = 4.75 mg/L eh 0.240 0 211 /day Nw = 1 80 mg/L Bn 0 170 0 150 /day Pal - 11 25 mg/L Bg 0 040 0 035 /day Poi = 3 75 mglL 5-Stage Modified BardenpholPhomdox Temp -MM -W Vp 0 308C MG Om 0.30 MG/day 1F Va _ 6Vpan'.F - Vae �san —Vra I Cs SRT 15 0 days SRTm 4 2 nays DH 7 2 Qao 182 5 %Q in Graph Kev SAS9a-c P,o USCODe = 56 0 mg L TKNe = 2.68 mg/L NH4-Ne a&" pwr NO3-Ne ,3M ra01L, Pse = B 12 mg,L ALKe = 122.5 mg:L F/M' = D 16 mgBODlmgVSS (Data Cursor = 15 0 days] A'..IJSCdIB SPT ays HRT 103 days Qout 0 28 MGlday Ow 6 84 %Om Wasting from aerator @ 5211 mg/L 'nar: 3_ -� SASSPro V? Report Page 2 of Report Title: Model Scenario 4 Report Date: 15 Jan. 2019. 12:29 pm ..,.Y� Simulation: KDHWWTP 5 Stage. Author: Anlaut Fngineering. PLLC Sim. File: C Users Joe Projects PI5222 KDH N'N'TP Process Model KDHWN TP 5 Stage.spr Carbon Dosing Primary Anoxic Reactor Rate = 0 0 gaVday Secondary Anoxic Reactor Rate = 0 0 gauday 3 00 units COD i unit demtrificauon using Methanol 1297000 00 COD 0.23 yield coeffcienu Secondary Settler Csa = 11550 ft2 NRTe = 363 hours :ca• 'a.au c -• .: *,b .emiaa, Cd = 105 lit TSSe = 1t.Ya mtjl[;T `' - a7 ° Cnl = 20 BODe = 40, ow Cfd = 72 8 TSSr = 1C411 00 mg;L -- --- Cv0' = 820 210 f /day Cbht = 2.9 ft _ Cv0 = 1555 118 fuday TSSm = 56358 mglL '" °` Crh = 0 000576 UmgSS Cvup = 347 ft/day _ ` ac Crf = 0.00286C UmgSS Cor = 2597 gal/ft2day -" Cfns = 0.00228C Cslr = 226 IbM2tlay -, z,; Clc = 3000.0 mg/L Csbc = 900.0 mg/L : o Vsc = 0.09 MG Est S I = 259 mUgSS Cfs =1000 '/. Est SSVI=128 mUgSS :o, zor...+accear,;e;.ac •za,;a sw:- - z_od'eL Est DSVI = 185 mUgSS - /mcecae Ratios and Loadings TKN?COD = 0.08 BOD'/MLSS Loading = 0 070 mgBOD/mgTSS TP/rCOD = 0.02 TCOD/day Loading = 2002 70 Ib/day TCOD/TKN = 1333 NM4-1,1/day Loading = 11266 lb/day TCOCrrP = 5333 TKNrday Loading = 15022 Ib/day TCODNSS = 142 TP/day Loading = 37 55 lb/day MLVSS/MLSS = 075 BOD'iday Loading = 910 32 lb/day TCOD/MLSS Loading = 0 153 mgCOD/mgTSS Person Equiv' = 5351 PE TKN/MLSS Loading = 0 012 mgWmgTSS An Ax Ox Mass Fractions = 5.8.35 1 59 1 TP/MLSS Loading = 0003 mgP/mgTSS BOD- N P = 100 16 54 1 F/M' Loading = 0 16 mg80D/mgVSS Percent TCOD Removed = 93 00 °r Volatile suspended solids = 3666 57 mg;L Percent N Removed = 89 72 % RBCOD/MLSS Loading = 0 03 mgCOD/mgTSS Percent TKN Removed = 95.53 Percent TP Removed = 100 OC % SASSPro V2 Report Page I of Report Title: Model Scenario 5 Report Date: I S Ian.'u 19. 1': ,4 pm Simulation: KDH'A N TP 5 Stage. Author: Anlauf Engineering. PLLC Sim. File: C: l sers Joe Projects P15„ KDH A %'TP Process Model KDH\A'\\'TP 5 Staee.spr Influent Characteristics - Raw Biomass Characteristics Plant Parameters TBOD, = 363.6 mgrL vh = 0.469 mgVSS/mgCOD Via = 0 OIB MG TKNi = 60.0 mg,L vn = 0.169 mgVSS/mgN Vpar = 0 052 MG TP, = 150 mgrL yg = 0.469 mgVSS/mgCOD Vae = 0.165 MG DOi = 0.25 mg1L b = 0.750 mgVSS/mgTSS Vsan = 0 056 MG ALKi = 250 0 CaCO3 mg/L fcv = 1 420 mgCOD/mgVSS Vra = 0 017 MG SF = 1 25 Ratio fen = 0.200 mgVSS/mgVSS O,m = 030 MG'day tub, = 0 150 Ratio fn = 0.100 mgWmgVSS Qa =" IW2 %CIIR" fus = 0 070 Ratio xp = 0.060 Ratio 05 = 1000 %Oin fbs = 0.250 Ratio fxbhp = 0.030 mgP/mgVSS Oa = 200 mglL fna = 0 750 Ratio fp = 0.030 mgPrmgVSS Os = OM rap1L (nu = 0 030 Ratio C5P = 0 500 Ratio Anaerobic Basins = 1 basins fpa = 0 750 Ratio hp = 0 460 mgVSS/mgTSS Vp = 03080 MG fxbgp = 0 380 mgP/mgVASS TSS = 48075 ni fxegp - 0 030 mgP/mgVESS Olcai = 000 feg 0.250 mgVSS/mgVASS pH = 72 Influent Constituents Temperature Coefficients BCODi = 623 9 mg/L Temp 68.0 M . -F. RBCODi = 156 0 mg/L pn 0 900 1 413 /day SBCOD, = 468 0 mglL Kn 1 000 1 570 mgN/L UCODi =176.0 mg/L Kr 0040 0045 LimgVASS/day USCOOi = 56.0 ri K1T 0 720 1 463 mgNO3-N/mgVASS/tlay UPCODi = 120 0 mglL K2T 0 101 0 136 mgNO3.N/mgVASS/day NH4-Ni = 45 00 mg/L K3T 0077 0086 mgNO3-N/mgVASS/day No, = 4 75 mg/L Bh 0.240 0 268 /day Nu, = 1 80 mg1L Bn 0.170 0 190 'day Pa, = 11 25 ni Bg 0 040 0 045 /day Poi = 3 75 mg/L 5-Stage Modified BardenphWPhoredox Temp-J= "F ' Vp 0 3080 MG Qin 030 MG/day HRT 103 da s Qout 0.28 MGylday Ow 6.84 %Qm -6Va Vpan .--Vae V-an 'La s SRT 15 0 days SRTm 2 0 days pH 7 2 Qao 339.8 ',C,n Wasting from aerator @ 4807 mgrL USCODe = 560 mg'L TKNe = 2.85 ri NH4-Ne = 0 92 mg/L NO3-Ne = 4.27 mgA- TPe = 1.38 ng/L-- - Pse = 6 64 mgrL ALKe = 113 8 mglL "- F1M' =018 mgBODfmgvSS -- [Data Cursor = 15 0 daysl - - - n,.'cswe SR, gar+ f �SASSPro V2 Report Page 2 of 2 Repan Title: Model Scenario 5 Report Date: 15 Jan. 2019. 12:34 pm Simulation: KDHW W'TP 5 Stage. Author: Anlauf Engineering. PLLC in Sim. rile: C: LsersJoe Protects PIS-''_ KDH M 'A FP Process Model KD1M Ills Stage.spr Carbon Dosing Primary Anoxic Reactor Rate = 0 0 gal/day Secondary Anoxic Reactor Rate = 0 0 gallday 3 00 units COD I unit denrInfication using Methanol (297000.00 COD 0 23 yield coeRiaentl Secondary Settler Csa = 11550 112 Cd = 105 It Cnl = 20 Cfd = 72 n CVO' = 820 210 f iday Cv0 = 1555 118 fvday Cm = 0 000576 Uml Cd = 0.002860 L/l Clns = 0.002280 CIO = 30000 mg/L Cabe = 9000 mglL Vsc = 009 MG CIS = 1000 % HRTc = 36? hQll TSSe TSSe = 11:10 BODe = 3.4 TSSr = 960381 mg/L Cbht = 1 8 R TSSm = 5635 3 ril Cvup = 347 Ill Cor = 259 7 gaV82day Cslr = 20 8 Ib/ft2day Est. SVI = 259 mUgSS Est SSVI = 128 mUgSS Est DSVI = 185 mUgSS Ratios and Loadings TKNrTCOD =008 TP?COD = 002 TCODrrKN = 1333 TCODITP = 53 33 TCODNSS =142 MLVSS/MLSS =075 TCOD/MLSS Loading = 0 166 mgCOD/mgTSS TKN/MLSS Loading = 0.012 mgN/mgTSS TP/MLSS Loading = 0 003 mgP/mgTSS F/M' Loading = 0 18 mgBODImgVSS Volatile suspended solids = 3401 68 mg1L RBCOD/MLSS Loading = 0.03 mgC00/mgTSS Ta%aa Flit as i5f C.- .2000Ca00006W0Cal :000O M1 tca a ^�a2 62WN24ay ,0lC 2006ct BOD'iMLS3 Loading = 0 076 mgBOD/mgTSS TCOD/day Loading = 2002 70 Iblday NH4-Niday Loading = 11266 Iblday TKN,day Loading = 150.22 Ib/day TP/day Loading = 3755 Iblday BOD'Iday Loading = 910 32 Iblday Person Equiv' = 5351 PE AnAxlOx Mass Fractions = 5.8 35 1.59 1 % BOD'NP =10016541 Percent TCOD Removed = 93 00 % Percent N Removed = 88 13 % Percent TKN Removed = 95 25 % Percent TP Removed = 90 81 % r Page I of 2 SASSPro Report Report Titter Report Date: I5 Jan. ? _:., pm �i Simulation: KDHAA'AA'TP 5 Stage. .Author: Anlauf Engineering. PLLC a„ a, Sim. File: C: Lsers Joe Projects P I5_'_ KDH AA AA TP Process Model KDFIAA"AA TP 5 Stage.spr Influent Characteristics • Raw Biomass Characteristics Plant Parameters TBODi = 363 6 mg/L Yh = 0.469 mgVSS/mgCOD Va = 0.018 MG TKNi = 60 0 mg/L Yn = 0 169 mgVSS/mgN Vpan = 0.052 MG TPI = 15 0 mg/L Yg = 0.469 mgVSS/mgCOD Vae = 0 165 MG DO, = 0 25 mg/L fi = 0.750 mgVSS/mgTSS Vaan = 0.056 MG ALKi = 250 0 CaCO3 mg/L fcv = 1.420 mgCOD/mgVSS Vra = 0.017 MG SF = 125 Ratio feh = 0.200 mgVSS/mgVSS an = 0.30 MG/day fup = 0 150 Ratio fn = 0 100 mgN/mgVSS Qa fus = 0 070 Ratio kp = 0.060 Ratio Os = /o in fbs - 0 250 Ratio fxbhp = 0.030 mgP/mgVSS Oa = 200 mg/L fna = 0 750 Ratio to = 0.030 mgP/mgVSS Os fnu = 0 030 Ratio Csp = 0.500 Ratio AnaerobiC Banns = asms fpa = 0 750 Ratio fip = 0.460 mgVSS/mgTSS Vp = 0.3080 MG fxbgp = 0.380 mgP/mgVASS TSS = 5169.5 mg/L fxegp = 0.030 mgP/mgVESS 01wi = 0.00 % feg 0.250 mgVSS/mgVASS pH = 7.2 Influent Constituents Temperature Coefficients BCOOi = 623 9 mg/L Temp 680 RBC00i = 156 0 mg/L pn 0 900 1111 ay SBCODi = 468 0 mg/L Kr 1 000 0 597 mgNlL UCOD, = 176 0 mg/L Kr 0 040 0 035 UmgVASS/day USCODi=560 irl K1T 0720 0320 mgNO3-N/mgVASS/day UPCODi = 120 0 mg/L K2T 0 101 0 072 mgNO3-MmgVASS/day NH4-N, =45.00 mg/L K3T 0077 0068 mgNO3-1N)mgVASS;day No, = 4 75 mg/L Bh 0.240 0 211 /tlay Null = 1 80 mg/L Bn 0 170 0 150 /tlay Pal = 11.25 mg/L Bg 0 040 0 035 /day Poi = 3.75 m94 "tags Modified BardenpholPhoredox Tern- vp 0 3080 MG ays Din HRT 103 d 030 MG/day Qout 028 MG/tlay Ow 6.84 %Qin "VjaLvpma� nVae _ I—Smawn � Lj 1 a s SRT 15.0 days SRTnn 4 2 days pH 7 2 Qao 177 8 %Qin Wasting from aerator @ 5169 mg/L Graph Key ^:'� _ SASSPro wm Rai¢ USCODe = 56 0 mg/L TKNe NH4-Ne e NO3-Na TPe Pse = 7 82 mg/L ALKe = 119 4 mgfL F/M' = 0 16 mgB00/mgVSS (Data Cursor = 15 0 days] .� +c ej e0 r00 aE ;+o +e6 1e0 200 >;0 2-0 2eC ze0 00`t' A..r^srac SRT lays SASSPro V2 Report Page'_ of'_ Report Title: Model Scenario 6 Repon Date: 15 Jan. 2019. 12:334 pm Simulation: KDHN N TP 5 Stage. Author: Anlauf Engineering. PLLC Sim. File: C Users Joe Projects P 1522 KDFI lk N TP Process Model KDHN R TP 5 Stage.spr Carbon Doaind Primary Anoxic Reactor Rate = 0 0 gal/day Secondary Anoxic Reactor Rate = 0.0 gallday 3.00 units COD / unit demtnficahon using Methanol (297000 00 COD. 0 23 yield coefficient) Secondary Settler Csa = 11550 fl2 HRTc = 63 •c ^:.e T.�KF•^ ^ TSS t2", Cd = 105 ft TSSe = Is sa Cnl = 20 BOOeCfd = 72 ft TSSr = 10 27 = - - 50 CVO' = 820 210 ft/day Cbht = 28 ft Cv0 = 1555 118 Wday TSSm = 56358 mg/L 40 Crh = 0 000576 UmgSS Cvup = 347 fvday 3c c Crf = 0002860 UmgSS Cor = 2597 gal/ t2day Cfns = 0002280 Cslr = 224 IbAt2day 217 Clc - 30000 mg/L Csbc = 9000 mg/L Vsc = 0 09 MG Est SVI = 259 mmgSS Cfs = 1000 % Est SSVI = 128 mUgSS _xc coax =s,,v:ec. •2:ncc •sax; c Est. DSVI=185 mUgSS •• Autacaia 'y� Rados and Loadinpa TKN/TCOD = 0 08 BOD'IMLSS Loadmg = 0 070 mgBOD/mgTSS TP?COD = 0 02 TCOD/day Loading = 2002.70 lb/day TCOD/TKN = 13.33 NH4•N/day Loading = 11266 lb/day TCODITP - 5333 TKN/day Loading = 15022 Ib/day TCODNSS = 142 TP/day Loading = 37 55 Ib/day MLVSS/MLSS = 075 BOD'Iday Loading = 91032 lb/day TCOD/MLSS Loading = 0 155 mgCODrmgTSS Person Eqwv' = 5351 PE TKN/MLSS Loading = 0 012 mgN/mgTSS An Ax Ox Mass Fractions = 5 8 35 1 591 % TP/MLSS Loading = 0 003 mga/mgTSS BOD'.N:P = 1001654 1 F/M' Loading = 0 16 mgBOD/mggSS Percent TCOD Removed = 93.00 i Volatile suspended solids = 3644 09 mg.'L Percent N Removed = 8851 io RBCOD/MLSS Loading = 0 03 mgCOD/mgTSS Percent TKN Removed = 95 53 % Percent TP Removed = 10000 % �= -��•� SASSPro V2 Report Pave I of _ Report Title: Report Dace: 15 Jan. 2019. 12:35 pm Simulation: KDH\b \4l P 5 Stave. Author: Anlaut Enizineerinv. PLLC Sim. File: C Users Joe Proiects PI91_] KDH \\ N'TP Process Model KDH\b'M'TP 5 Stagespr Influent ChareCterietite - Raw Biomass Characteristics Plant Parameters TBODi = 363.6 mg/L Yh = 0.469 mgVSS/mgCOD Va = 0.018 MG TKNi = 60.0 mglL Yn = 0 169 mgVSS/mgN Vpan = 0.052 MG TPi = 15.0 mg/L Yg = 0.469 mgVSS/mgCOD Vae = 0.165 MG DOi = 0.25 mgiL h = 0. 750 mgVSS/mgTSS Vsan = 0.058 MG ALKi = 250 0 CaCO3 mg/L fcv = 1.420 mgCOD'mgVSS Vra = 0.017 MG SF = 1.25 Ratio feh = 0.200 mgVSSimgVSS Qm = 0 30 MGiday fup = 0150 Ratio in = 0 100 mgN/mgVSS Oa fus = D 070 Ratio kp = 0 060 Ratio Qs = ""Fin fbs = 0.250 Ratio fxbnp = 0 030 mgP/mgVSS Oa fna = 0 750 Ratio to = 0.030 mgPrmgVSS Os = fnu = D 030 Ratio Csp = 0 500 Ratio Anaerobic Basins = 1 basins fpa = 0 750 Ratio Bp = 0.460 mgV5SimgTSS Vp = 0.3080 MG fxbgp = 0 380 mgP/mgVASS TSS = 52129 mg/L fxegp = 0 030 mgP'mgVESS 01ai = 0.00 feg 0 250 mgVSS/mgVASS pH = 72 Influent Constituents Temperature Coefficients BCODi = 623 9 mg'L Temp 680 RBCOD, = 1560 mg/L pn 0 900 413 /day SBCODi = 468.0 mg/L Kn 1 000 1 570 mgN/L UCOOi = 176 0 mg/L Kr 0 040 0 045 LImgVASS/day USCOD = 56 0 mg/L K1T 0 720 1 463 mgNO3-N/mgVASS/day UPCODi = 120.0 mg/L K2T 0 101 0 136 mgNO3-N/mgVASS/day NH4-Ni = 45.00 mg/L K3T 0 077 0 086 mgNO3-N/mgVASS/day Noi = 4 75 mg/L Bh 0 240 0 268 'day Nw = 1 80 ri Bn 0 170 0 190 /day Pal = 11 25 mg/L Bg 0.040 0 045 /day Poi = 3.75 mg/L 5-Stage Modified BarCenpho/Phoredox Temp _ Vp C 3080 MG 03 Oin 030 MG/day HRT 1Qoul 0.28 MG/days day Ow 6.84 % Qin I-101ja0l Voan - Vae LVIjin Vra SRT 15 0 days Gmph Kev USCODe TKNe NH4-Ne NO3-Ne TPe Pse SRTm 2 0 days pH 7 2 8L. 56 0 mg/L = 8 69 mg/L ALKe = 134 8 mg/L F/M' = 0 16 mgBOD/mgVSS [Data Cursor = 15 0 daysl cc Qao 460.8 %Q n SASSP- Pr. Wasting from aerator @ 5213 mg.4 Raec 9 G 2,, a- 3c .. .. 110 rSC ''E9 206 220 24C 260 280 36%- A.ms:aie SRT cars SASSPro V2 Report Page 2 of? Report Title: Model Scenario Report Date: 15 Jan. 2019, 12:35 pm �.._..� Simulation: KDHWNTP 5 Staee. Author: AnlaufEneineerin-I. PLLC Sint. File: Cl sers Joe Projects PI5'_? KDH W14'TP Process Model KDHNN'TP 5 Stage.spr Carbon Dosina Primary Anoxic Reactor Rate = 0 0 gal,day Secondary Anoxic Reactor Rate = 66 0 galiday 3.00 units COD I unit demtrdicati0n using Metnanol (297000 00 COD 0.23 yield coe@icieno Secondary Settler Csa = 1155.0 ft2 HRTe =3eo-z ra.au r,, n Tss Cd = 105 It TSSe = ' 6`onzoar Cnl = 20 BODe Cfd = 7 2 fl TSSr = mgfL zc C s,: r Cv0' = 820 210 fVday Cbht = 2.9 ft Cv0 = 1555.118 fVday TSSm = 5635 8 mg/L Cm = 0000576 Unri Cvup = 347 fuday, Crf = 0 002860 UmgSS Cor = 259 7 gallfl2day Cfns = 0002280 Cslr = 226 Ibf t2day CIc = 30000 mglL Csbc = 900 0 mg�L Vsc = 009 MG Est SVI = 259 mug55 cis = 1000 % Est SSVI = 128 mug55 IA ca^o•0e000 �eocee ._„C .�x Est DSVI = 185 mUgSS ' Ai.lOKdiB 19L Ratios and Loadinas TKN/TCOD = 0 08 BOD'IMLSS Loading = 0 070 mgBOD/mgTSS TPlfCOD = 0.02 TCODIday Loading = 200270 lb/day TCODrrKN = 13.33 NH4-N/day Loading = 11266 Ibiday TCOD7rP = 53.33 TKN/day Loading = 150.22 Ibrday TCODNSS = 142 TP/day Loading = 37 55 Jo/day MLVSS/MLSS = 0 75 BOO'iday Loading = 91032 to/day TCOO/MLSS Loading = 0 153 mgCODtmgTSS Person Equiv • = 5351 PE TKN/MLSS Loading = 0 012 mgN/mgTSS An.Ax.OK Mass Fractions = 58351 59.1 % TP/MLSS Loading = 0 003 mgP/mgTSS BOD'.N P = 10016541 F/M' Loading = 0 16 mgBOD/mgTSS Percent TCOO Removed = 93 00 % Volatile suspended solids = 3642. 74 mgrL Percent N Removed = 9518 % RBCOD/MLSS Loading = 0 03 mgCOD/mgTSS Percent TKN Removed = 9526 % Percent TP Removed = 100.00 % SASSPro V2 Report Page I or_ Report Title: Model Scenario 8 1 Report Date: 15 Jan. 1_n 19. 1':37 pm Simulation: KDII%k P TP 5 Stage. .Author: Anlauf En_ineerin_. PLLC .,..w „A•anankseum Sim. File: C,Users Joe Projects P15_1_ KDH N lik FP Process Model KDHN \X FP 5 Stage.spr Influent Characteristics - Raw Biomass Characteristics Plant Parameters TBODi = 363 6 mg/L Yh = 0.469 mgVSS/mgCOD Va = 0.018 MG TKNi = 60.0 mglL Yn = 0 169 mgVSS/mgN Vpan = 0 052 MG TP, = 15 0 mg/L Yg = 0.469 mgVSS/mgCOD Vae 0.165 MG DOi = 0 25 mg/L h = 0.750 mgVSS/mgTSS Vsan = 0.056 MG ALKi = 250.0 CaCO3 mg/L fp = 1.420 mgCODImgVSS Via = 0 017 MG SF = 1.25 Ratio feh = 0.200 mgVSS/mgVSS Oin = 030 MG+day fup = 0 150 Ratio fn = 0 100 mgN/mgVSS as 150.2 %Oin fus = 0.070 Ratio kp = 0.060 Ratio 05 = 100.0 %Oin fbs = 0.250 Ratio fxbhp = 0.030 mgP/mgVSS Oa = 2 00 mg/L fna = 0 750 Ratio to = 0.030 mgP/mgVSS as = 1.00 trtglL fnu = 0.030 Ratio Cap = 0 500 Ratio Anaerobic Basins = 1 basins fpa = 0 750 Ratio fip = 0.460 mgVSS/mgTSS Vp = 03080 MG fxbgp = 0. 380 mgP/mgVASS TSS = 52989 mg/L fxegp = 0.030 mgP/mgVESS Qlcal = 000 % feg 0.250 mgVSS/mgVASS pH = 72 Influent Constituents Temperature Coefficients BCODi = 623 9 mg'L Temp 680 60.0 OF RBCODi = 156 0 mg/L pn 0.900 0 537 +day SBCODI = 468.0 ni Kn 1 000 0 597 mgNIL UCOD, = 176 0 mg/L Kr 0040 0035 LfmgVASStday USCODi = 56.0 mg/L K1T 0 720 0 320 mgNO3-N/mgVASS'dey UPCODi = 120 0 mg/L K2T 0 101 0 072 mgNO3-N/mgVASSId8y NH4-Ni = 45.00 mg/L K3T 0 077 0 D68 mgNO3-N1mgVASS1day Noi = 4 75 mg/L Bill 0 240 0 211 'day Nut - 1 80 mg/L Bn 0 170 0 15C 'day Pal = 11.25 mg/L Bg 0.040 0 035 'day Poi = 3.75 mg/L 5-Stage Modified Barden pholPhoredox Temp 600 -F' %: 0 3080 MG MRT 103 dais Din 030 MGrday Oda 20.0 gaVday Clout 0.28 MG/day Q. 6 84 %Qm vItia Vpan Vae . i V's VrJ F a 1 SRT 15 0 days SRTm 4.2 days pH 7 2 Graph Ke USCODe = 56 0 Ing TKNe - 2.68 mg/L NH4-Ne =0. 74 mg/LN03-Ne = 2.92 mgrL TPe - 0.00 mgrL Pse = 8 48 mg,L ALKe = 1259 mg1L F/M• = 0 16 mgBOD/mgVSS [Data Cursor = 15 0 days] -` - Qao 192.3 %Qin SASSPIc Pie Wasting from aerator Qp 5299 mg/L Ra±v cp 32 en 4c 3C I J 40 5l _C IQ: 12 +40 +6D rBO 200 n0 240 -5C 211 aoY° AJcscae SRT aaysi SASSPro V2 Report Page 2of'_ Report Title: Model Scenario 8 Report Date: 15 Jan. 2014. 12:37 pm Simulation, KDHW WTP 5 Staue..Author: Anlauf Engineering. PLLC Sim. File: C: Users Joe Projects PI5?2 KDH N A TP process Model KDHWR'TP 5 Stage.spr Carbon Doslnn Primary Anoxic Reactor Rate = 0.0 gal/day Secondary Anoxic Reactor Rate = 20 0 gallday 3 00 units COD r unit denitnfication using Methanol t297000 00 COD, 0.23 yield coeHioenp Secondary Settler Csa = 1155.0 ft2 HR7c = 363 hours �en�oni ra.ao F— vs rS9 Cd = 10.5 ft TSSe = 1217 mglL , - Cnl = 20 BODe = 4.1 mgA- Cfd = 72 fl TSSr = 10585 65 mg)L Cv0' = 820.210 fVday Cbhl = 3 4 8 Cv0 = 1555 118 Nday TSSm = 56360 mg/L '- 'c Crh = 0 000576 umgSS Cvup = 34 7 Nday Crf = 0 002860 L!mgSS Cor = 259 7 gaVfl2day Cfns = 0002280 Csir = 230 Ib/tt2day CIc = 30000 mg/L Csbc = 900.0 mg/L - ; 1: r Vsc = 0 09 MG Est SVI = 259 mUgSS Chi = 1000 % Est SSVI = 128 mUgSS ;cu _-oxo ocaccGe .,aec �.�.. r�Fct Est DSVI = 185 mUgSS A�:rnceie '"4'L Ratios and Loadinas TKNrrCOD = 0 08 SOD'IMLSS Loading = 0 069 mgBOOImgTSS TPITCOD = 0 02 TCOD/day Loading = 2002 70 Ib1day TCODrrKN = 1333 NH4-N/day Loading = 112.56 ibfday TCOD/TP = 5333 TKN/day Loading = 15022 lb/day TCODNSS = 1 42 TWday Loading = 3755 lb/day MLVSS/MLSS = 0 75 BOD'/day Loading = 910 32 lb/day TCODMILSS Loading = 0 151 mgCOD/mgTSS Person EOuiv - = 5351 PE TKN/MLSS Loading = 0 011 mgNrmgTSS An Aix Ox Mass Fractions = 5.8.35.1.59 1 % TP/MLSS Loading = 0 003 mgPfmgTSS SOD' N.P = 1001654 1 F/M' Loading = 0 16 mgBOD/mgVSS Percent TCOD Removed = 93 00 % Volatile suspended solids = 3721.51 mg,L Percent N Removed = 9066 'o RSCOD/MLSS Loading = 003 mgCODrmgTSS Percent TKN Removed = 95.53 % Percent TP Removed = 10000 % Enviro—Tech License # 63868 Enviro-Tech Unlimited Construction Services, LLC. Telephone (252) 491-5277 PO Box 69, Harbinger, NC 27941 FAX (252) 491-5777 Ite m KDH WWTP Wastewater Plant Modification Budget Proposal Description Flow Splitter Box 1 Akalinity Feed 2 Carbon feed for Anoxic 1 3 Ferric Chloride Feed 4 Chemical Feed Containment Anaerobic Zone 1 Install curtain between Anaerobic 1 and Anoxic 1 2 Install New Mixer 3 Install Mixer Support 4 Install Mixer Control Panel 5 Run conduit and wiring for Mixer 6 Remove Existing Aeration 7 Crane Support for Installation Anoxic Zone 1 1 Add curtain between Anoxic 1 and Aeration 1 2 Install New Mixer 3 Install Mixer Support 4 Install Mixer Control Panel 5 Run conduit and wiring for Mixer 6 Remove Existing Aeration 7 Crane Support for Installation 8 Anoxic Zone Bypass with Air Piping 1 Reconfigure diffuser layout 2 Replace diffuser sleeves 3 Add (2) VFD's on Blowers Aerboic Zone 1 Materials Labor Total $ 6,938.75 $1, 850.00 $ 8,788.75 $ 4,536.88 $1, 500.00 $ 6,036.88 $ 4,536.88 $1, 500.00 $ 6,036.88 $ 1,334.38 $ 650.00 $ 1,984.38 Total $ 22,846.88 $ 19,161.63 $ 3, 000.00 $ 22,161.63 $ 15, 985.81 $ 2, 000.00 $ 17, 985.81 $ 5,337.50 $1, 500.00 $ 6,837.50 $ 5,337.50 $1, 000.00 $ 6,337.50 $ 2,135.00 $1, 000.00 $ 3,135.00 $ 80.06 $ 500.00 $ 580.06 $ 3, 500.00 $ 3,500.00 Total $ 60,537.50 $ 19,161.63 $ 3, 000.00 $ 22,161.63 $ 15, 985.81 $ 2, 000.00 $ 17, 985.81 $ 8,187.73 $ 3, 000.00 $ 11,187.73 $ 5,337.50 $1, 000.00 $ 6,337.50 $ 2,135.00 $1, 000.00 $ 3,135.00 $ 80.06 $ 500.00 $ 580.06 $ 3, 500.00 $ 3,500.00 $ 800.63 $ 500.00 $ 1,300.63 Total $ 66,188.35 $2,882.25 $1,500.00 $4,382.25 $5,303.34 $2,000.00 $7,303.34 $10,675.00 $5,000.00 $15,675.00 Total $27,360.59 Enviro—Tech License # 63868 Enviro-Tech Unlimited Construction Services, LLC. Telephone (252) 491-5277 PO Box 69, Harbinger, NC 27941 FAX (252) 491-5777 Recycle Pump Chamber 1 Set Concrete Recycle Chamber 2,668.75 1,500.00 4,168.75 2 Install Recycle Pumps 16,012.50 2,500.00 18,512.50 3 Install Recycle Pump Control panel 7,472.50 1,000.00 8,472.50 4 Run conduit and wiring for Pumps 3,202.50 1,000.00 4,202.50 5 Install 3" Piping and Check Valves 2,668.75 1,000.00 3,668.75 6 Install Mag Meter 4,803.75 1,000.00 5,803.75 7 Crane Support for Installation 3,500.00 3,500.00 8 Total 48, 328.75 Anoxic Zone 2 Add Curtain between Aeration 1 and Anoxic 2 19,215.00 3,000.00 22,215.00 Install New Mixer $ 15,985.81 $2,000.00 17,985.81 Install Mixer Support $ 8,187.73 $3,000.00 11,187.73 Install Mixer Control Panel $ 5,337.50 $1,000.00 6,337.50 Run conduit and wiringfor Mixer $ 2,135.00 $1,000.00 3,135.00 Remove Existing Aeration $ 80.06 $ 500.00 580.06 Crane Support for Installation $3,500.00 3,500.00 Anoxic Zone Bypass with Air Piping $ 800.63 $ 500.00 1,300.63 Total 66, 241.73 Aerboic Zone 2 Reconfigure diffuser layout $ 533.75 $ 500.00 $ 1,033.75 Replace diffuser sleeves $ 1,921.50 $ 500.00 $ 2,421.50 Total $ 3,455.25 Instrumentation ORP for Anarobic $ 3,251.25 $ 500.00 $ 3,751.25 ORP for Anox 1 $ 3,251.25 $ 500.00 $ 3,751.25 ORP for Anox 2 $ 3,251.25 $ 500.00 $ 3,751.25 DO for areation front end $ 5,657.75 $1,500.00 $ 7,157.75 DO for areation recycle chanber $ 5,657.75 $1,500.00 $ 7,157.75 PH for areation recycle chamber $ 1,334.38 $ 500.00 $ 1,834.38 Total $ 27,403.63 EQ Tank Install Mixers 68,320.00 18,000.00 86,320.00 Aeration Modifications 5,337.50 3,000.00 8,337.50 Install Electrical 10,675.00 4,000.00 14,675.00 Control Panels and Installation 12,810.00 6,000.00 18,810.00 Mixer supports 8,540.00 6,000.00 14,540.00 Crane Support 3,500.00 3,500.00 Total 146,182.5C Subtotal $ 445, 698.29 Markup @ 15% $ 66,854.74 Total $512,553.03 Item Description Flow Splitter Box Materials Labor Total 1 Aka I i n ity Feed $ 61938.75 $ 11850.00 $ 81788.75 2 Carbon feed for Anoxic 1 $ 41536.88 $ 11500.00 $ 61036.88 3 Ferric Chloride Feed $ 41536.88 $ 11500.00 $ 61036.88 4 Chemical Feed Containment $ 11334.38 $ 650.00 $ 11984.38 Total $ 22,846.88 Anaerobic Zone 1 Install curtain between Anaerobic 1 and Anoxic 1 $ 19,161.63 $ 31000.00 $ 22,161.63 2 Install New Mixer $ 151985.81 $ 21000.00 $ 17, 985.81 3 Install Mixer Support $ 51337.50 $ 11500.00 $ 61837.50 4 Install Mixer Control Panel $ 51337.50 $ 11000.00 $ 61337.50 5 Run conduit and wiring for Mixer $ 21135.00 $ 11000.00 $ 31135.00 6 Remove Existing Aeration $ 80.06 $ 500.00 $ 580.06 7 Crane Support for Installation $ 31500.00 $ 31500.00 Total $ 60,537.50 Anoxic Zone 1 1 Add curtain between Anoxic 1 and Aeration 1 $ 19,161.63 $ 31000.00 $ 22,161.63 2 Install New Mixer $ 151985.81 $ 21000.00 $ 17, 985.81 3 Install Mixer Support $ 81187.73 $ 31000.00 $ 11,187.73 4 Install Mixer Control Panel $ 51337.50 $ 11000.00 $ 61337.50 5 Run conduit and wiring for Mixer $ 21135.00 $ 11000.00 $ 31135.00 6 Remove Existing Aeration $ 80.06 $ 500.00 $ 580.06 7 Crane Support for Installation $ 31500.00 $ 31500.00 8 Anoxic Zone Bypass with Air Piping $ 800.63 $ 500.00 $ 11300.63 Total $ 66,188.35 Aerboic Zone 1 1 Reconfigure diffuser layout $2,882.25 $1,500.00 $4,382.25 2 Replace diffuser sleeves $5,303.34 $2,000.00 $7,303.34 3 Add (2) VFD's on Blowers $10,675.00 $5,000.00 $15,675.00 Total $27,360.59 Recycle Pump Chamber 1 Set Concrete Recycle Chamber 21668.75 11500.00 41168.75 2 Install Recycle Pumps 16,012.50 21500.00 18,512.50 3 Install Recycle Pump Control panel 71472.50 11000.00 81472.50 4 Run conduit and wiring for Pumps 31202.50 11000.00 41202.50 5 Install 3" Piping and Check Valves 21668.75 11000.00 31668.75 6 Install Mag Meter 41803.75 11000.00 51803.75 7 Crane Support for Installation 31500.00 31500.00 8 Total 48,328.75 Anoxic Zone 2 Add Curtain between Aeration 1 and Anoxic 2 19,215.00 31000.00 221215.00 Install New Mixer $ 151985.81 $ 21000.00 17, 985.81 Install Mixer Support $ 81187.73 $ 31000.00 111187.73 Install Mixer Control Panel $ 51337.50 $ 11000.00 61337.50 Run conduit and wiring for Mixer $ 21135.00 $ 11000.00 31135.00 Remove Existing Aeration Crane Support for Installation Anoxic Zone Bypass with Air Piping Reconfigure diffuser layout Replace diffuser sleeves ORP for Anarobic ORP for Anox 1 ORP for Anox 2 DO for areation front end DO for areation recycle chanber PH for areation recycle chamber Install Mixers Aeration Modifications Install Electrical Control Panels and Installation Mixer supports Crane Support $ 80.06 $ 500.00 580.06 $ 31500.00 31500.00 $ 800.63 $ 500.00 11300.63 Total 66,241.73 Aerboic Zone 2 $ 533.75 $ 500.00 $ 11033.75 $ 11921.50 $ 500.00 $ 21421.50 Total $ 31455.25 Instrumentation $ 31251.25 $ 500.00 $ 31751.25 $ 31251.25 $ 500.00 $ 31751.25 $ 31251.25 $ 500.00 $ 31751.25 $ 51657.75 $ 11500.00 $ 71157.75 $ 51657.75 $ 11500.00 $ 71157.75 $ 11334.38 $ 500.00 $ 11834.38 Total $ 27,403.63 EQTank 68,320.00 18,000.00 86,320.00 51337.50 31000.00 81337.50 10,675.00 41000.00 14,675.00 12, 810.00 61000.00 18, 810.00 81540.00 61000.00 14, 540.00 31500.00 31500.00 Total 146,182.50 Subtotal $ 445, 698.29 Markup @ 15% $ 66,854.74 Total $ 512,553.03