HomeMy WebLinkAboutwq0002829_Email_20190617Strickland, Bev
From: Eddie Goodrich<EddieGoodrich @villagerealtyobx.com>
Sent: Monday, June 17, 2019 3:11 PM
To: Tankard, Robert; May, David
Cc: 'Bill Freed'; 'Joseph Anlauf'; 'Mike Robinson'; David Hoyle Jr;
'dixonandmeekins@earthlink.net'
Subject: [External] KDHWWTP Plant Modification
Attachments: DEQ Tankard Letter 6.17.19.pdf, Revised Barden Pho Model Narrative.pdf; KDH
Budget Proposal.xlsx; KDH WWTP Budget Proposal.pdf
External email. Do not click links or open attachments unless you verify. Send all suspicious email as an attachment to
rel port.spam@nc.gov
Robert/David,
Please see attachments.
Regards,
Eddie
KDHWWTP, LLC
P.O. Box 3629 • Kill Devil hills, NC 27948
NCUC W-1160
June 17, 2019
Mr. Robert Tankard
Assistant Regional Director
NCDENR Division of Environmental Quality
Washington Regional Office
943 Washington Square Mall
Washington, NC 27889
Re: KDHWWTP Plant Modification
Robert,
Attached you will find Envirotech's estimate for the construction of the first phase of the plant
modification as well as Joe Anlauf's narrative of the Barden Pho Model.
We plan to begin ordering the necessary equipment within the next month. Bill Freed believes it will
take 4 to 5 months to receive the necessary equipment. Therefore, we plan to start construction no later
than January and to be complete before the end of the spring and ready for summer.
Due to the fact that the plant compliance parameters were changed upon the issuance of the existing
permit rather than upon completion of the modifications being complete and certified, is it reasonable
to have a discussion regarding a Special Order of Consent regarding the Notices of Violation and Civil
Penalties that have been assessed?
I can be available at anytime to discuss this matter and we come to your office in Washington and meet
if you so desire.
By best regards,
Eddie Goodrich
Manager Member
ANLAUF ENGINEE.KING, FLLC
Joseph J. Anlauf, P.E.
Firm License P-0929
June 12, 2019
Mr. Robert Tankard
NCDEQ
Washington Regional Office
943 Washington Square Mall
Washington, NC 27889
Re: 5-stage Barden-Pho Modeling Results
KDHW W TP
Kill Devil Hills, Dare County, North Carolina
Dear Robert;
In the summer of 2017 we permitted a number of modifications to the KDHWWTP. These
permitted modifications converted the existing extended aeration plant to an IFFAS (integrated
fixed film activated sludge) process.
The process conversion was to be achieved by adding baffle walls to segment the plant into
different biological zones and adding plastic media. By name the IFFAS treatment configuration
has both attached growth on the plastic media as well as suspended growth in the liquid volume.
The zones that we created for the IFFAS in order included: Pre -Anoxic, Aeration, Post Anoxic
and Post Anoxic Re -aeration. As you know an extended air plant by nature can only nitrify
wastewater. Nitrification generates nitrates. The groundwater limit for Nitrates is 10 mg/I. No
simple extended air plant can ever do any measurable amount of denitrification. By converting
the treatment process to an IFFAS we can nitrify and denitrify.
One of the major benefits of the IFFAS is that due to the presence of both suspended and fixed
growth more biomass can be packed into a smaller vessel. Predictive process calculations on the
conversion of the KDHWWTP from the extended aeration plant to the IFFAS process have
determined that the actual treatment capacity of the existing plant can be greatly increased by
adding the baffle walls, creating new zones and adding plastic media. In fact the calculations
reveal that the plant capacity could be increased to nearly double the current capacity. Disposal is
the limiting factor at this facility so in actuality there is no advantage to doubling the treatment
capacity of the plant.
With no real advantage to doubling the capacity, of the treatment capabilities we have investigated
other means to convert the plant to a process that is able to nitrify and denitrify for less cost.
The purpose of this correspondence is to share with the NCDEQ the results of modeling the
proposed plant modifications without the addition of the media. The media and the equipment
needed to manage the media is an expensive part of the plant upgrades. The following narrative
describes the modeling of a plant in a 5-Stage Barden-Pho plant configuration and documents the
investigation into making modifications to the plant with only suspended growth. Modeling
Scenarios have been prepared projecting how the plant will perform without the addition of
media.
4721 W. Eckner St., Kitty Hawk, North Carolina (252)489-7143
ANLAUF E.NGINE.E.KING, PLLC
Joseph J. Anlauf, P.E.
Firm License P-0929
Base Model Conditions
The five -stage Barden-Pho process is a suspended growth process comprised of the following
five (5) stages: Anaerobic, Pre -Anoxic, Aeration, Secondary (Post) Anoxic, Post Anoxic Re -
aeration. This process slightly differs from the IFFAS process vessel configuration with the
addition of an Anaerobic Zone. The software program SassProV2 has been used to prepare a
predictive model of the wastewater process.
A number of modeling scenarios were created to demonstrate the anticipated plant performance
under slightly different operating conditions. The base operating conditions for each modeling
scenario is identical and was based on the same plant vessel configuration and with the same
influent strength. The model examined converting '/2 of the total plant treatment capacity
(300,000 gpd) over to the 5-stage Barden-Pho process. Only'h of the plant was modeled because
only one train can be converted at a time. The conversion process will take approximately 5
months from start to finish. The model addresses the biological configuration of the plant but
does not account for the final filtration of the wastewater through the rapid sand filters.
The 5-stage Barden-Pho plant configuration is as follows:
Tahlp 1 — 5-Ctnup Rarden_Phn Plant Canfinuration
Stage
Zone Type
Zone Volume
Dissolved Oxygen;
Concentration
l
Anaerobic
18,000 gallons
2
Pre -Anoxic
52,000 gallons
3
Aeration
165,000 gallons
2.0 m l
4
Post Anoxic
56,000 gallons
5
Post -Anoxic Re -aeration
17,000 gallons
1.0 m I
The sum of the zone volumes above is 300,000 gpd (0.30 MGD).
The influent strength used is as follows:
Cttustltueut
Value
TBODi
363.6 mg/1
TKNi
60 mg/1
TPi
15 m l
DOi
0.25 mg/1
ALM
250 CaCO3 m I
SF(safety factor)
1.25
Influent strength has been taken from average values of the sampled influent.
Modeling Scenarios
Eight (8) different model scenarios were created to demonstrate the projected function of the
plant. In eacli model scenario some aspect of the plant was changed to demonstrate the
performance of the plant under slightly different conditions. The values that were manipulated
4721 W. Eckner St., Kitty Hawk, North Carolina (252)489-7143
ANLAUr ENGINEERING, PLLC
Joseph J. Anlauf, P.E.
Firm License P-0929
i
were either ambient physical conditions or an operational modification. The factors manipulated
were as follows:
Temp (°F) - Temperature of the wastewater
Qa - Recycle Return Rate from the Aeration Zone to the Pre -anoxic Zone
Os - DO level in Post Anoxic Re -aeration Zone
Qds - Carbon Dosing to Secondary Anoxic Zone
The following table contains a summary of the eight (8) modeling scenarios. It contains the
model scenario number, details the plant conditions modified and the resulting effluent quality.
Table 3 - Summary of Modeline Results
Model
'Scenario
'Temp
(OF)
Qa
(%)
Os
(mg/1)
Qdss...
(gal/day)
TSSe
(mg/1)- ,
SODe
(rno) , .
TKNe
(mgn)
'NH4-
Nc
`m !
No3-
No
TPe
(mg/1)
1
75
150%
1.0
0
11.08
3.4
2.85
0.92
4.28
1.47
2
60
150%
1.0
0
11.86
4.0
2.68
0.74
4.22
0
3
75
200%
1.0
0
11.25
3.4
2.85
0.92
3.06
0.82
4
60
200%
1.0
0
11.98
4.0
2.68
0.74
3.48
0
5
75
150%
0.5
0
11.10
3.4
2.85
0.92
4.27
1.38
6
60
150%
0.5
0
11.89
4.0
2.68
0.74
4.21
0
7
75
150%
1.0
66
11.98
3.7
2.85
0.92
0.04
0
8
60
1500/4
1.0
1 20
12.17
4.1
2.68
0.74
2.92
0
Model Scenario 1 was run at 75°F, 1.5Q recycle rate, DO of 2.0 mg/I in the aeration zone, DO of
1.0 mg/I in the re -aeration zone and no carbon feed.
Model Scenario 2 was run at 60°F, 1.5Q recycle rate, DO of 2.0 mg/I in the aeration zone, DO of
1.0 mg/I in the re -aeration zone and no carbon feed.
Model Scenario 3 was run at 75°F, 2Q recycle rate, DO of 2.0 mg/1 in the aeration zone, DO of
1.0 mg/1 in the re -aeration zone and no carbon feed.
Model Scenario 4 was run at 60°F, 2Q recycle rate, DO of 2.0 mg/I in the aeration zone, DO of
1.0 mg/1 in the re -aeration zone and no carbon feed.
Model Scenario 5 was run at 75°F, 1.5Q recycle rate, DO of 2.0 mg/I in the aeration zone, DO of
0.5 mg/1 in the re -aeration zone and no carbon feed.
Model Scenario 6 was run at 60°F, 1.5Q recycle rate, DO of 2.0 mg/1 in the aeration zone, DO of
0.5 mg/I in the re -aeration zone and no carbon feed.
Model Scenario 7 was run at 75°F, 1.5Q recycle rate, DO of 2.0 mg/I in the aeration zone, DO of
1.0 mg/I in the re -aeration zone and carbon feeding of 66 gallons per day to the secondary anoxic
zone.
Model Scenario 8 was run at 60°F, l .SQ recycle rate, DO of 2.0 mg/I in the aeration zone, DO of
1.0 mg/I in the re -aeration zone and carbon feeding of 20 gallons per day to the secondary anoxic
zone.
4721 W. Eckner St., Kitty Hawk, North Carolina (252)489-7143
ANLAur ENGINEEKING. PLLC
Joseph J. Anlauf, P.E.
Firm License P-0929
The temperature was modified from 75°F down to 60°F to show how the temperature of the
wastewater affects the biological activity and the final effluent. Colder wastewater generally
translates to less or slower biological activity. In each model scenario run at 60°F the HOD is
higher indicating less or slower biological activity.
The recycle return rate from the Aeration Zone to the Pre -Anoxic Zone was alternated between
L5Q and 2Q to illustrate the impact of returning a higher volume of wastewater. This value is
input into the model as a percentage of total flow. Having a higher recycle rate generally
translated to slightly higher TSS but lower NO3-N and TP concentrations.
The DO (Dissolved Oxygen) concentration in the re -aeration zone was modified between a
concentration of 1.0 mg/I and 0.5 mg/I to show the impacts of the operating refining this
concentration. Lowering the dissolved oxygen concentration in the re -aeration zone had no
significant impact on the effluent quality modeled.
The carbon dosing to the Secondary Anoxic Zone was modeled to illustrate the impact of a
carbon feed to this zone. The expected biological removal of nitrogen is most efficient when the
Carbon:Nitrogen Ratio is 5:1 or greater. The pre -anoxic zone is benefited by the carbon content
in the influent. Carbon supplied to the Secondary Anoxic Zone supplies the food necessary for
the biomass in this zone to denitrify the wastewater further. The correct application of carbon to
this zone reveals a greatly diminished NO3-N concentration in the final effluent. The addition of
carbon to this vessel must be done carefully as overdosing carbon to this vessel will result in
significantly higher BOD in the final effluent. The model reveals that introducing carbon in the
winter must be done at a much slower pace when compared to the introduction rate in the
summer.
In each modeling scenario the plant is able to deliver effluent that complies with the permit limits
for Ammonia, BOD, TN & TP. As stated previously this model does not account for the final
filtration of the wastewater through the rapid sand filters. Although the model reveals that the
TSS concentration in the effluent is higher than the permit allows the sand filter will bring this
value into compliance.
These model scenario results indicate that converting '/2 of the plant to this 5-stage Barden-Pho
process without the media required for the IFFAS paired with the proper operation of the plant
will generate compliant effluent.
Reasons for this Process Change
• The addition of media adds significant cost to the project. This additional costs include
the media itself, media screens, specialty equipment and increased energy costs. For
Example: It takes 4-7 mg/1 of DO to the aeration zones to oxygenate the wastewater and
keep the media rolling in an IFFAS. It only takes 1-3 mg/1 of DO to oxygenate the
aeration zones of the Barden-Pho plant. This simple operational comparison has been
included to demonstrate how energy costs will be reduced eliminating the media.
• The media is un-necessary to achieve the treatment goals.
• Time: it will take approximately 5 months to make the changes to modify one (1)
300,000 gpd train to the Barden-Pho process which means if we start now the
performance of the plant will be enhanced by June 2019. The modification to the IFFAS
4721 W. Eckner St., Kitty Hawk, North Carolina (252)489-7143
ANLAur ENGINEEKING, PLLC
Joseph J. Anlauf, P.E.
Firm License P-0929
a
process will take 7-8 months which means the plant will not be able to denitrify until the
Fall of 2019.
• The majority of the non -summer seasonal flow is well below 300,000 gpd.
Concentrating flow to the Barden-Pho plant and blending flow from a plant able to
denitrify with a plant generating nitrates will improve the overall effluent quality and
reduce the overall concentration of nitrates sent to the disposal system. Over time this
will improve the groundwater quality.
Summary
When we permitted the modifications to convert the plant to the IFFAS process we discussed
verbally the potential to analyze an interim step to convert the plant process without the media.
This narrative documents the anticipated performance of the plant if we do just that. Removing
the media means that the name of the process changes because we are removing the ability of the
plant to have attached growth. This narrative demonstrates that if we proceed with plant
modifications without media that we can expect this plant to generate wastewater that is
compliant with the effluent quality requirements outlined in the existing permit. Please review
and approve this information so that we can move forward with the plant modifications and have
the plant ready to have enhanced treatment capabilities by this upcoming season.
Sincerely,
Anlauf Engineerin , P C
osep J. Anlauf, PE
Encl.: Eight (8) model scenarios
Cc: Bill Freed, Envirotech
Mike Robinson, PLS, PE
Eddie Goodrich — KDHW WTP, LLC
4721 W. Eckner St., Kitty Hawk, North Carolina (252)489-7143
—a.SASSPro V2 Report
Page I of I I
Report Title:
Model Scenariol
Report Date:
15 Jan. 'l1111. 1 1:11_ am
Simulation:
KDH\� n I 5 Staee..Author: An1,7Llf Engineering.
PLLC
Sim. File:
C Users Joe Projects Pf KDH P )A FP Process Model KDHN N TP ? Stage.spr
Influent Characteristics - Raw
Biomass Characteristics
Plant Parameters
TBODi = 363.6 mgiL
yn = 0 469 mgVSSimgCOD
Va =
0 018
MG
TKNI = 60 0 mgiL
yn = 0 169 mgVSS/mgN
Vpan =
0 D52
MG
TPi = 15 0 mgiL
Yg = 0 469 mgVSS/mgCOD
Vae =
0 165
MG
DOi = 0.25 mg/L
e = 0 750 mgVSS/mgTSS
Vsan =
0 D55
MG
ALKi = 250 0 CaCO3 mgiL
fcv = 1 420 mgCOD/mgVSS
Vra =
0 017
MG
SF = 1 25 Ratio
fen = 0 200 mgVSSlmgVSS
Om =
030
MG/day
fup = 0.150 Ratio
fn = 0 100 mgNrmgVSS
aw ^ ` - --'ie"-w44Ivw
fus = 0.070 Ratio
kp = 0 060 Ratio
Os =
1000
%Oin
fbs = 0.250 Ratio
fxbhp = 0 030 mgPlmgVSS
Oa =
200
mg;L
fna = 0.750 Ratio
fp = 0 030 mgPrmgVSS
09 =
1.00
mg/L
fnu = 0.030 Ratio
Csp = 0 500 Ratio
Anaerobic Basins =
1
basins
fpa = 0 750 Ratio
fip = 0.460 mgVSS/mgTSS
VP =
03080
MG
fxbgp = 0 380 mgPimgVASS
TSS =
47957
mgiL
fxegp = 0.030 mgPirngVESS
Oiwl =
000
%
feg 0250 mgVSS/mgVASS
pH =
72
Influent Constituents
Temperature Coefficients
SCOD, = 623.9 mg/L
Temp 680 0" I
RBCODi = 156.0 mgiL
pn 0 900 1 413 /day
SBCODi = 48&0 mg/L
Kn 1 000 1 570 mgN/L
UCODi = 176.0 mg/L
Kr 0 040 0.045 LmgVASS/day
USCODi = 56 0 mgiL
KiT 0 720 1 463 mgNO3-N/mgVASS/day
UPCODI = 120 0 mgiL
K2T 0 101 0 136 mgNO3-N/mgVASS/tlay
NH4-Ni = 45 00 mgiL
OT 0 077 0 086 mgNO3-N/mgVASS/tlay
Noi = 4 75 mg/L
Bin 0.240 0 268 /day
Nw = 1.80 mgiL
Bn 0170 0 190 day
Pai = 11 25 mg/L
Bg 0.040 0 045 iday
Poi = 3 75 mg/L
5-Stage Modified Bardenpho/Phoredox
Temp 75.0"P
Vp 03080 MG
Om 0 30 MG/day
HRT
Oout
t 07 dayys
0.28 Maiday
Ow
6 84 %Oin
SRT 15 0 days SRTm 2.0 days pH 7 2 Gad 337 2 %Om Wasting from aerator Q 4796 mgiL
Graph Key TB;. , SASSPIC P.x Palo
USCODe = 56.0 T* -
TKNe - 2.85 mgiL
NH4-Ne = 0.92 mgiL - -
NO3-Ne = 4.28 mgiL
Tice = 1.47 mgiL -
Pse = 6.55 mgiL -
ALKe = 113 7 mgiL "
F/M` =0.18 mgBODimgVSS
[Data Cursor = 15 0 days]
-, a: 5- E0 'a.^ FJ •.8: 20, 222 Zap 26D 280 Y:'D�'
A.'vcac SRT cy*
SASSPro V? Report Pale'°"'
Report Title: Model Scenario I
Report Date: 15 Jan. 2019. 1 1:03 am
."._� Simulation: KDHW%TP 5 Stage. Author: Anlaut Engincerine. PLLC
Sim. File: C: Lasers Joe Projects P1522 KDH N N I P Process %lode[ KDHN y\I P 5 Stage.spr
Carbon Oosina
Primary Anoxic Reactor Rate = 0.0 gallday
Secondary Anoxic Reactor Rate = 0 0 gallday
3 00 units COD / unit denitrification using Methanol (297000 CC COD 0 23 yield coefficient)
Secondary Settler
Csa
= 11550 112
Cd
= 105 n
Cm
= 20
Cfd
=72 8
Cv0'
= 820 210 f /day
Cv0
= 1555 118 1Vday
Crh
= 0000576 L/mgSS
Cd
= 0002860 L/mgSS
Cfns
= 0002280
Old
= 30000 mglL
Csbc = 9000 mglL
Vsc
= 009 MIS
Cfs
= 1000 %
HRT:
= 3 53
Iours
TWO
s 11.08
mg&
BOD9
+ 3A
tnpll•
TSSr
= 958040 mg/L
Cbht
= 1 8
n
TSSm
= 5635.2
mglL
Cvup
= 347
fVday
Car
= 2597
galtlt2day
Csu
= 208
ibiN2day
Est. SVI
- 259
mUgSS
Est. SSVI
= 128
mUgSS
Est DSVI
= 185
mUgSS
Ratios and Loadings
TKNrFCOD
= 0.08
TP/TCOD
= 0 02
TCOD/TKN
= 13.33
TCOD/TP
= 5333
TCOONSS
= 1 42
MLVSS/MLSS
= 0 75
TCOD/MLSS Loading
= 0 167
mgCOD/mgTSS
TKN/MLSS Loading
= 0.013
mgN/mgTSS
TP/MLSS Loading
= 0 003
mgP/mgTSS
F/M• Loading
= 0 16
mgBODlmgVSS
Volatile suspended solids = 3395 42 mg/L
RBCOD/MLSS Loading
= 0 03
mgCODtmgTSS
uk2vaz *a•au=.. s'S5 infi3tla,
5-C 6.0
_o c
. ,csc a "4't
BOD•IMLSS Loading
= 0.076
mgBODImgTSS
TCOD/day Loading
= 2002.70
Ib/day,
NH4-Nldsy Loading
=11286
Ito/day
TKNiday Loading
=15022
lbiday
TP/day Loading
= 3755
lb/day
BOD-Iday Loading
= 91032
lb/day
Person Egmv -
= 5351
PE
An Ax Ox Mass Fractions = 5835 1 59 1
°o
BOD' N P
= 100 16.5 4 1
Percent TCOD Removed = 93 00
%
Percent N Removed
= 88 12
%
Percent TKN Removed
= 9525
%
Percent TP Removed
= 9017
%
SASSPro V2 Report Page 3 of 11
Report Title: Model Scenario 1
Report Date: 15 Jan, 2019, 11:03 am
., Simulation: KDHWWTP 5 Stage, Author: Anlauf Engineering, PLLC
www.wedo4mw.com Sim. File: C:\UsersUoe\Projects\P1522 KDH WWTP\Process Model\KDHWWTP 5 Stage.spr
Glossary of Terma
%BCODpsr
Percent of Biodegradeable COD removed by primary settler from the raw influent (default=35.12 %)
`YoCODpsr
Percent of TCOD removed by primary settler from the raw influent (default=40.00 %)
%Qat
Recycle flow rate of 'a' recycle for step 1 (default=4800.00 %Qin)
%Qa2
Recycle flow rate of 'a' recycle for step 2 (default=4800.00 %Qin)
%Qa3
Recycle flow rate of 'a' recycle for step 3 (default=4800.00 %Qin)
%Qa4
Recycle flow rate of 'a' recycle for step 4 (default--4800.00 %Qin)
%Qa5
Recycle flow rate of'a' recycle for step 5 (default--4800.00 %Qin)
%Qint
Mean influent flow rate into step 1 (default=12.0 `Yo)
%Qin2
Mean influent flow rate into step 2 (default=12.0 %)
%Qin3
Mean influent flow rate into step 3 (default=12.0 %)
%Qin4
Mean influent flow rate into step 4 (default=12.0 %)
%Qin5
Mean influent flow rate into step 5 (defauft-12.0 %)
%Qpsw
Percent of influent flow removed as waste from primary settler (default=0.50 %)
%Qrl
Recycle flow rate of'r recycle for step 1 (default=1200.00 %Qin)
%Q2
Recycle flow rate of'r recycle for step 2 (default=1200.00 %Qin)
%Qr3
Recycle flow rate We recycle for step 3 (default=1200.00 %Qin)
%Qr4
Recycle flow rate of'r recycle for step 4 (defauft=1200.00 %Qin)
%Qr5
Recycle flow rate We recycle for step 5 (default=1200.00 %Qin)
%TKNpsr
Percent of TKN removed by primary settler from the raw influent (default=15.00'/6)
%TPpsr
Percent of Total P removed by primary settler from the raw influent (default=15.00 %)
pn20
Nitrifier (autotrophic) specific growth rate (default=0.900 /day)
pnK1
pn inhibition exponent for pH > 7.2 (default-1.130)
pnK2
pn inhibition pH half saturation coefficient (default=0.300)
pnKmax
Maximum pH which ceases nitrification (defauft=9.500)
pnOmega
pn inhibition exponent for pH < 7.2 (default=2.350)
ImT
Nitrifier (autotrophic) specific growth rate (at chosen temperature) (/day)
pnTO%
Temperature offset for unm20 value (default=68.0 °F)
pnTtheta
Nitrifier specific growth rate exponent for temperature (default=1.072)
AerNuml
Total number of type 1 aerators (default--2)
AerNum2
Total number of type 2 aerators (default=2)
AerNum3
Total number of type 3 aerators (default=0)
ALKc
Alkalinity consumed by nitrification (mg/L)
ALKe
Effluent alkalinity in the form CaCO3 (mg/L)
ALKi
Influent alkalinity in the form CaCO3 (default=250.0 CaCO3 mg/L)
ALKr
Alkalinity recovered by denitrificetion (mg/L)
Anaerobic Basins
Number of basins in anaerobic reactor (default--3 basins)
BCODi
Biodegradable COD in the influent (RBCOD + SBCOD) (mg/L)
bg20
Specific endogenous mass loss rate constant for polyP (PAO) organisms (defautt=0.040 /day)
bgT
Specific endogenous mass loss rate constant for polyp (PAO) organisms (at chosen temperature) (/day)
bh20
Specific endogenous mass loss rate constant for heterotrophic organisms (default=0.240 /day)
bhT
Specific endogenous mass loss rate constant for heterotrophic organisms (at chosen temperature) (/day)
bn20
Specific endogenous mass loss rate constant for nitrifying (autotrophic) bacteria (default=0.170 /day)
bnT
Specific endogenous mass loss rate constant for nitrifying (autotrophic) bacteria (at chosen temperature)
(I'day)
bnTthets
Nitrifier specific decay rate exponent for temperature (default=1.029)
BODe
cBOD in the secondary clarifier effluent (mg/L)
SASSPro V2 Report Page 4 of I 1
Report Title: Model Scenario 1
Report Date: 15 Jan, 2019, 11:03 am
Simulation: KDHW WTP 5 Stage, Author: Anlauf Engineering, PLLC
Sim. File: C:\UsersVoe\Projects\P1522 KDH WWTP\Process Model\KDHWWTP 5 Stage.spr
Glossary of Terms tcontl
BODPerson
CBODS output per person/day (typically 0.06 kg Europe, 0.17 pounds USA) (default=0.170 Ib/day)
C2BConv
COD to carbonaceous BOD5 conversion factor (default-2.200 Ratio)
Cbht
Sidewall height of sludge blanket in selected secondary clarifier (ft)
Coll
Sidewall water depth of selected secondary clarifier (default=13.1 ft)
Cfd
Depth below sidewall water level for influent feed into selected clarifier (default-7.2 ft)
Chris
Non -settling fraction of input TSS (passes directly to clarifier effluent stream) (default=0.002280)
Cfs
If multiple clarifiers, specify % split of effluent fed to selected clarifier (default--100.0 %)
ClarifyCalMode
(default=0)
Clc
Minimum threshold sludge concentration for inter -layer calculations (default=30DO.0 mg/L)
Cnl
Number of modeling layers in selected secondary clarifier (default=20)
CO2
Mass of Carbon Dioxide (CO2) released daily (lb)
COD:DenitRatio
COD:Denitrification ratio of methanol (default=3.000)
CODpsw
Mean COD mass wasted from primary settler Qb/day)
CODS
Influent COD utilized by sludge production (mg/L)
CODw
Total COD in waste flow (mg/L)
Cor
Secondary clarifier effluent overflow rate (gal/ft2day)
Crf
Flocculent zone settling (default=0.002860 UmgSS)
Crh
Hindered zone settling [Vesilind k] (default=0.000576 UmgSS)
Csa
Surface area of selected secondary clarifier (default=16145.9 ft2)
Csbc
Minimum concentration of settled sludge defining the sludge blanket top (default=900.0 mg/L)
Cslr
Secondary clarifier solids loading rate (Ib/ft2day)
Csp
Stoichiomethc ratio of P release per RBCOD converted (defauR=0.500 Ratio)
Cv0
Maximum Vesilind settling velocity [Vesilind VO] (default=1555.118 ft/day)
Cv0'
Maximum practical settling velocity (default=820.210 ft/day)
Cvup
Secondary clarifier effluent overflow velocity (ft/day)
Dcb
Selected reactor($) for carbon dosing (default=0.0000)
Dcs
Selected carbon dosing source (default=0.0000)
DOi
Dissolved oxygen concentration in the influent (default=1.00 mg/L)
Dpt
Denitrification potential of the primary anoxic zone (mg/L)
Dplc
Denitrification capacity of the primary anoxic zone (mg/L)
Dp3
Denitrification potential of the secondary anoxic zone (mg/L)
Dp3c
Denitrification capacity of the secondary anoxic zone (mg/L)
Dpp
Process dentrification potential, equivalent of primary anoxic zone (mg/L)
Dpt
Total denitrification potential (mg/L)
F/M`
Food to Microorganism Ratio (mgBOD/mgVSS)
fat
Active fraction of the biomass with respect to the total solids (Ratio)
fav
Active fraction of the biomass with respect to volatile solids (Ratio)
fbday
DOW mass loading applied to plant per day (lb/day)
fbm
BODNMLSS loading (mgBOD/mgTSS)
fbs
Soluble (RBBOD) fraction of the Biodegradable influent BOD (default=0.250 Ratio)
today
TCOD mass loading applied to plant per day (Ib/day)
fcm
TCODIMLSS loading (mgCOD/mgTSS)
fctkn
Influent TCODfrKN ratio (Ratio)
fctp
Influent TCOD/TP ratio (Ratio)
fcv
COD to VSS ratio of the biomass (default=1.420 mgCOD/mgVSS)
SASSPro V2 Report Page 5 of 11
Report Title: Model Scenario t
Report Date: 151an, 2019, 11:03 am
�...�� Simulation: KDHWWTP 5 Stage, Author: Anlauf Engineering, PLLC
www.weaolaoks.com Sim. File: C:\UsersVoe\Projects\P1522 KDH WWTP\Process Model\KDHW WTP 5 Stage.spr
Cllonam of Terms (cont.)
feg
Unbiodegradable organic (endogenous residue) fraction of the MLVSS for PAO's (default=0.250
mgVSS/mgVASS)
feh
Unbiodegradable organic (endogenous residue) fraction of the MLVSS for OHO's (default=0.200
mgVSSImgVSS)
fi
MLVSS/MLSS concentration ratio of the biomass (default=0.750 mgVSS/mgTSS)
fip
VSS/TSS concentration ratio for PAO organisms (defauh=0.460 mgVSS/mgTSS)
fn
Nitrogen fraction of the MLVSS (default=0.100 mgN/mgVSS)
fna
Ammonia nitrogen (NH4-N) fraction of the influent TKN (defauh=0.750 Ratio)
fnhday
NH4-N ammonia loading applied to plant per day (lb/day)
fnm
TKN/MLSS loading (mgN/mgTSS)
fnp
Particulate fraction of nitrogen in raw influent (everything other than fnu+fna) (default=0.150 Ratio)
ins
Influent TKNfTCOD ratio (Ratio)
fnu
Unbiodegradable soluble organic nitrogen fraction of the Influent TKN (default=0.030 Ratio)
fp
Phosphorus fraction of the inert and endogenous residue MLVSS (defauh=0.030 mgP/mgVSS)
fpa
Soluble orthophosphate fraction of the influent total phosphorus (default=0.750 Ratio)
fpm
TP/MLSS loading (mgP/mgTSS)
fq
Ratio of wet weather peak influent flow to average dry weather influent flow (default=3.00 Ratio)
frcm
RBCOD/MLSS loading (mgCODImgTSS)
fs
Step Feed stage (defauh=5)
fsp
Soluble fraction of phosphorus in the influent (Ratio)
ftknday
TKN loading applied to plant per day (lb/day)
ftpc
Influent TP/TCOD ratio (Ratio)
ftpday
Total Phosphorus loading applied to plant per day (lb/day)
fup
Unbiodegradable particulate fraction of the influent TBOD (default=0.150 Ratio)
fus
Unbiodegradable soluble fraction of the influent TBOD (defauh=0.070 Ratio)
lvfa
Fraction of influent RBCOD that is Volatile Fatty Acids (VFA) (default=0.500 Ratio)
611
Primary anoxic mass fraction (Ratio)
fx1 min
Minimum primary anoxic mass fraction to utilize influent RBCOD (Ratio)
ixlopt
Optimal primary anoxic mass fraction (Ratio)
fx3
Secondary anoxic mass fraction (Ratio)
fx3min
Minimum secondary anoxic mass fraction to remove DO entering Vsan (Ratio)
fx3opt
Optimal secondary anoxic mass fraction (Ratio)
fxa
Anaerobic mass fraction (Ratio)
fxaopt
Optimal anaerobic mass fraction (Ratio)
fxb
Total aerobic mass fraction (Ratio)
fxbgp
Fraction of PAO organisms in heterotrophic active component of the biomass (defauk=0.380
mgP/mgVASS)
fxbhp
Phosphorus fraction of the active MLVSS (default=0.030 mgP/mgVSS)
fxdm
Maximum anoxic mass fraction available for denitrlflcation , SF (design safety factor) (Ratio)
fxdt
Total anoxic mass fraction (fxt + fx3) (Ratio)
fxegp
Fraction of PAO organisms in endogenous component of the biomass (default=0.030 mgP/mgVESS)
fxm
Maximum unaerated mass fraction for nitrification in aerobic zone' SF (design safety factor) (Ratio)
fxt
Total unaerated mass fraction (anaerobic + anoxic) (Ratio)
HrsDayl
Hours/day operation of type 1 aerators (default=8 hrs/day)
HrsDay2
Hourstday operation of type 2 aerators (default=16 hrs/day)
HrsDay3
Hours/day operation of type 3 aerators (default=0 hrs/day)
SASSPro V2 Report Page 6 of 11
Report Title: Model Scenario 1
Report Date: 15 Jan, 2019, 11:03 am
�..,. Simulation: KDHW WTP 5 Stage, Author: Anlauf Engineering, PLLC
Sim. File: C:\Users\Joe\Projects\P1522 KDH WWTP\Process Model\KDHWWTP 5 Stage.spr
Glossary of Terms (cont
HRT
Hydraulic Retention Time (process volume / input flow) (days)
HRTc
Hydraulic Residence Time of selected clarifier (reactor volume / influent flow) (days)
HRTps
Hydraulic Retention Time of the primary settler (settler volume / input flow) (days)
k1T
High -rate RBCOD denitrification rate in primary anoxic zone (at chosen temperature)
(mgNO3-N/mgVASS/day)
k1T20
High -rate RBCOD deniti fication rate in primary anoxic zone (default=0.720 mgNO3-N/mgVASS/day)
k2T
Slow -rate SBCOD denitrification rate in primary anoxic zone (at chosen temperature)
(mgNO3-N/mgVASS/day)
k2T20
Slow -rate SBCOD denitrification rate in primary anoxic zone (default=0.101 mgNO3-N/mgVASS/day)
UT
Endogenous denitrification rate in secondary anoxic zone (at chosen temperature)
(mgNO3-NfmgVASS/day)
k3T20
Endogenous denitrification rate in secondary anoxic zone (default=0.077 mgNO3-N/mgVASS/day)
kdpt
Rate of P release in anaerobic reactor basin 1 (mg/L)
kdp2
Rate of P release in anaerobic reactor basin 2 (mg/L)
kdp3
Rate of P release in anaerobic reactor basin 3 (mg/L)
kdp4
Rate of P release in anaerobic reactor basin 4 (mg/L)
Kn20
Half saturation coefficient in Monod equation for nitrification (default-1.000 mgN/L)
KnT
Half saturation coefficient in Monod equation for nitrification (at chosen temperature) (mgN/L)
kp
Rate constant for RBCOD conversion to short chain fatty acids (SCFA) by non-polyP orgasms
(default=0.060 Ratio)
Kr2O
Biodegradable organic nitrogen conversion rate for ammonification (default=0.040 UmgVASS/day)
KrT
Biodegradable organic nitrogen conversion rate to ammonia (at chosen temperature) (UmgVASS/day)
ktdpn
Rate of P release in last anaerobic reactor basin (mg/L)
kW1
kilowatt rating of type 1 aerators (default=125.0 kWh)
kW2
kilowatt rating of type 2 aerators (default=100.0 kWh)
kW3
kilowatt rating of type 3 aerators (default=0.0 kWh)
kWhl
Kilowatt rating of Type 1 aerators
kWh2
Kilowatt rating of Type 2 aerators
kWh3
Kilowatt rating of Type 3 aerators
kWhT
Total daily kilowatt-hours operation of aerators
Methanol COD
COD after dilution e.g. for methanol 1+3 in water, COD=297000 (default=297000.0)
Molasses COD
COD after dilution e.g. for cane molasses 1+3 in water, COD=37500 mg/L (default=37500.0)
N%rem
Percent of nitrogen removed (%)
N2
Mass of Nitrogen (N2) released dairy (lb)
No
Nitrification capacity (mg/L)
Nd
Nitrate-N denitrfed (mg/L)
NH4-Ne
Effluent nitrogen in the forth of ammonia (mg/L)
NH4-Ni
Ammonia nitrogen (NH4-N) in the influent TKN (mg/L)
NH4-Ni
Ammonia nitrogen in the influent TKN (mg/L)
Nned
Effluent nitrogen change due to carbon dosing (mg/L)
Nnpani
Nitrogen in the forth of nitrate entering primary anoxic reactor (mg/L)
Nnpano
Nitrogen in the form of nitrate leaving primary anoxic reactor (mg/L)
Nnpanrem
Nitrate denitrified in the primary anoxic reactor (mg/L)
Nnr
Nitrogen as nitrate returned in Y recycle (mg/L)
Nns
Nitrogen as nitrate returned In 's' recycle (mg/L)
Nnsani
Nitrogen in the form of nitrate entering secondary anoxic reactor (mg/L)
Nnsano
Nitrogen in the form of nitrate leaving secondary anoxic reactor (mg/L)
SASSPro V2 Report Page 7 of 11
Report Title: Model Scenario 1
Report Date: 15 Jan, 2019, 11:03 am
Simulation: KDHW WTP 5 Stage, Author: Anlauf Engineering, PLLC
wma s.� Sim. File: C:\Users\Joe\Projecls\P1522 KDH WWTP\Process Modei\KDHWWTP 5 Stage.spr
Nnsanrem
Nitrate denitrified in the secondary anoxic reactor (mg/L)
NO3-Ne
Effluent nitrogen in the form of nitrate (mg/L)
NO3-Ni
Nitrate (NO3) in the influent (default--0.0 mg/L)
Noe
Soluble organic nitrogen in the effluent (mg/L)
Noi
Siodegradeable organic nitrogen in the influent TKN (mg/L)
Npi
Unbiodegradable particulate organic nitrogen in the influent TKN (%)
Npsw
Mean nitrogen mass wasted from primary settler (Ib/day)
Ns
Influent Nitrogen utilized by sludge production (mg&)
Nsw
Total Nitrogen in waste flow (mg/L)
N'ti
Nitrogen available for nitrification (mg/L)
Nue
Unbiodegradeable organic nitrogen in the effluent (mg/L)
Nui
Unbiodegradable soluble organic nitrogen in the influent TKN (mg/L)
O$Cost
Daily cost of running all aerators ($/day)
O$Est
Aeration cost based on estimated oxygen demand ($/day)
0%Cap
Percent aeration capacity required for the estimated oxygen demand (%)
02CostPerMU
Cost per mass unit of aerated oxygen ($Ab 02)
02CostPerYear
Total cast of aeration electricity per year (/year)
02CostPerYear
Aeration electricity cost per Person Equivalent (PE) per year (/year)
Oa
Dissolved oxygen concentration leaving the Aeration reactor (default=2.00 mg/L)
Oat
Dissolved oxygen concentration leaving Aerobic zone in step 1 (default=2.00 mg/L)
Oat
Dissolved oxygen concentration leaving Aerobic zone in step 2 (default=2.00 mg/L)
Oa3
Dissolved oxygen concentration leaving Aerobic zone in step 3 (default=2.00 mg/L)
Oa4
Dissolved oxygen concentration leaving Aerobic zone in step 4 (defaufl=2.00 mg/L)
Oa5
Dissolved oxygen concentration leaving Aerobic zone in step 5 (default=2.00 mg/L)
Oavail
Oxygen available from specified aeration setup (lb/day)
Oc
Oxygen demand for carbon removal (anoxic + aerobic) (lb/day)
Oca
Oxygen equivalent used during carbon removal in anoxic reactor (lb/day)
Oco
Oxygen equivalent used during carbon removal in aerobic reactor (Ib/day)
Od
Oxygen recovered by denitrification (lb/day)
On
Oxygen demand for nitrification (Ib/day)
Or
Dissolved oxygen concentration in Y recycle (default=0.00 mg/L)
Orl
Dissolved oxygen concentration We recycle in step 1 (default=0.00 mg/L)
Or2
Dissolved oxygen concentration We recycle in step 2 (default=0.00 mg/L)
Or3
Dissolved oxygen concentration in Y recycle In step 3 (default=0.00 mg/L)
Or4
Dissolved oxygen concentration in Y recycle in step 4 (default--0.00 mg/L)
Ors
Dissolved oxygen concentration We recycle in step 5 (defautt=0.00 mg/L)
Org-N
Organic nitrogen in the influent TKN (mg/L)
Orrcalc
Calculated oxygen concentration in the'r recycle for Johannesburg process (mg/L)
Ortho-P
Orthophosphate in the influent (mg/L)
Os
Dissolved oxygen concentration in return sludge (default=1.00 mg/L)
Ot
Total oxygen demand (Ot = Oc + On - Do) (lb/day)
Other Carbon COD
COD after dilution e.g. for ethanol 1+3 in water, COD=75000 mg/L (defau@=75000.0)
P%rem
Percent of phosphorus removed from the influent (%)
Pee
Soluble orthophosphate in the effluent (mg/L)
Pai
Soluble orthophosphate in the influent TP (mg/L)
,. SASSPro V2 Report Page 8 of 11
Report Title: Model Scenario 1
Report Date: 15 Jan, 2019, 11:03 am
*.., Simulation: KDHWWTP 5 Stage, Author: Anlauf Engineering, PLLC
www..veaornbcom Sim. File: C:\UsersVoe\Projects\P1522 KDH WWTP\Process Model\KDHW WTP 5 Stage.spr
Glossary of Terms tcont.)
PCake
Percent of solids in the final dewateredlthickened sludge cake (default=15.0 %)
PE*
Person equivalent capacity based on BOD' loading (PE)
pH
pH correction for nitrifier growth (aeration zone) (defautt=7.2)
Poi
Condensed and organic phosphate in the influent TP (mg/L)
PowerCost
Cost per kWh of electricity used by aerators (default=0.150 $/kWh)
Ppew
Mean phosphorus mass wasted from primary settler (lb/day)
Prem
Phosphorus removed from the influent (mg/L)
PrimarySettling
Primary settling or raw influent (default--0)
process
Selected activated sludge process (default=l)
Ps
Influent Phosphorus utilized by sludge production (mg/L)
PSG
Potential enhanced P storage for PAO's (beyond that due to PAO growth only) (mg/L)
PSfov
CODNSS concentration ratio in the Primary Settler waste line (default=1.500 mgVSS/mgTSS)
PSfl
VSS/TSS concentration ratio in the Primary Settler waste line (default=0.800 mgVSS/mgTSS)
Psw
Total Phosphorous in waste flow (mg/L)
Pvai
Phosphorus entering the anaerobic zone (mg/L)
Pvao
Phosphorus leaving the anaerobic zone (mg1Q
Pxg
Phosphorus removed by PAO's i.e. active + endogenous fractions (mg/L)
Pxh
Phosphorus removed by OHO's i.e. active + endogenous fractions (mg/L)
Pxi
Phosphorus removed by inert component of the biomass (mg/L)
Qa
Recycle flow rate of 'a' recycle (default--400.0 %Qin)
Qa
Recycle flow rate of'a' recycle (default=12.68 MG/day)
Oaf
Recycle flow rate of W recycle for step 1 (default=12.68 MG/day)
Qa2
Recycle flow rate of'a' recycle for step 2 (default=12.68 MG/day)
Qa3
Recycle flow rate of'a' recycle for step 3 (default=12.68 MG/day)
Qao
Recycle flow rate of 'a' recycle for step 4 (default=12.68 MG/day)
Qa5
Recycle flow rate of 'a' recycle for step 5 (default=12.68 MG/day)
Qao
'a' recycle flow for optimal [anoxic] denitrification (zero=nitrate overload) (%Qin)
Qao
'a' recycle flow for optimal [anoxic) denitrification (zero=nitrate overload) (MG/day)
Qdl
Carbon dosing flow rate to Anoxic zone of step 1 (default=0.0 gal/day)
Qd2
Carbon dosing flow rate to Anoxic zone of step 2 (default--0.0 gal/day)
Qd3
Carbon dosing flow rate to Anoxic zone of step 3 (default=0.0 gal/day)
Qd4
Carbon dosing flow rate to Anoxic zone of step 4 (default=0.0 gal/day)
Qd5
Carbon dosing flow rate to Anoxic zone of step 5 (default=0.0 gal/day)
Qdp
Carbon dosing flow rate to primary anoxic reactor (default=0.0 gal/day)
QdpStatus
Increase dosing flow until nitrate leaving anoxic reactor approaches zero (default--0.0000)
Qds
Carbon dosing flow rate to secondary anoxic reactor (default=0.0 gal/day)
QdSFStatus
Increase dosing flow until nitrate leaving Anoxic zone approaches zero (default=0.0000)
Qds5tatus
Increase dosing flow until effluent nitrate (Nne) approaches zero (default=0.0000)
Qlcal
Calibration quality index calculated by the QuickCal Wizard (%)
Qfn
Mean influent flow rate (default=3.17 MG/day)
Qin'
Adjusted flow into plant, excluding primary settler wasting (MG/day)
Qout
Mean effluent flow rate (%Qin)
Clout
Mean effluent flow rate (MG/day)
Qpsw
Mean flow wasted from primary settler (default=0.00 MG/day)
Or
Recycle flow rate of recycle (default=3.17 MG/day)
SASSPro V2 Report Page 9 of I 1
Report Title: Model Scenario 1
Report Date: 15 Jan, 2019, 11:03 am
Simulation: KDHW WTP 5 Stage, Author: Anlauf Engineering, PLLC
Sim. File: CAUsersVoe\Projects1P1522 KDH WWTP1Process ModeDKDHWWTP 5 Stage.spr
Glossary of Terns (cont)
Or
Recycle flow rate of Y recycle (default=100.0 %Qin)
Qrl
Recycle flow rate of Y recycle for step 1 (default=3.17 MG/day)
Qr2
Recycle flow rate of Y recycle for step 2 (default=3.17 MG/day)
Qr3
Recycle flow rate of Y recycle for step 3 (default=3.17 MG/day)
Qr4
Recycle flow rate of'Y recycle for step 4 (default=3.17 MG/day)
Qr5
Recycle flow rate of'Y recycle for step 5 (default=3.17 MG/day)
Qs
Ratum activated sludge (RAS) flow rate (default=100.0 %Qin)
Qs
Return activated sludge (RAS) flow rate (default=3.17 MG/day)
Qw
Waste sludge flow, wasting from mixed liquor (%Qin)
Qw
Waste sludge flow, wasting from mixed liquor (MG/day)
QwRet
Waste sludge flow required to be wasted from the RAS line (%Qin)
QwRet
Waste sludge flow required to be wasted from the RAS line (MG/day)
RBCODe
Readily biodegradable soluble COD in the effluent (mg/L)
RBCODi
Readily biodegradable COD in the influent (mg/L)
Rhn
Average nominal process hydraulic retention time (days)
SBCODi
Slowly biodegradable COD in the influent (mg/L)
sbg
Soluble Biodegradable influent COD used for PAO biomass growth (mg/L)
sbh
Biodegradable influent COD used for OHO biomass growth (mg/L)
Sbi
Biodegradable fraction of the influent COD (mg/L)
Sbsl
Readily Biodegradable COD leaving anaerobic reactor basin 1 (mglL)
Sbs2
Readily Biodegradable COD leaving anaerobic reactor basin 2 (mg/L)
Sbs3
Readily Biodegradable COD leaving anaerobic reactor basin 3 (mg/L)
Sbs4
Readily Biodegradable COD leaving anaerobic reactor basin 4 (mg/L)
Sbsi
Readily Biodegradable COD entering anaerobic reactor (mg/L)
Sbsiavail
Readily Biodegradable COD available for phosphorus removal (mg/L)
SbsN
Readily Biodegradable COD leaving last anaerobic reactor basin (mg/L)
SCODe
Soluble COD in the effluent (mg/L)
SecondarySettling
Secondary settling enabled (defaufl=0)
SetFi
MLVSS/MLSS concentration ratio of the settled biomass (default=0.830 Ratio)
SF
Safety factor for minimum aerobic mass fraction enabling nitrification (see fxm and fxdm) (default=1.25
Ratio)
Smr
Readily Biodegradable COD lost in anaerobic reactor due to nitrate in return line (mg/L)
Sroi
Readily Biodegradable COD lost in anaerobic reactor due to oxygen in influent (mg/L)
Sror
Readily Biodegradable COD lost in anaerobic reactor due to oxygen in return line (mg/L)
SRT
Solids Retention Time (also known as sludge age or MCRT) (default=15.0 days)
SRTm
Minimum SRT (sludge age) for nitrification (days)
Sui
Unbiodegradable soluble fraction of the influent COD (mg/L)
Sup!
Unbiodegradable particulate fraction of the influent COD (mg/L)
TBOD!
Total BOD in the influent (default-340.9 mg/L)
TCOD%rem
Percent of TCOD removed from the influent (%)
TCOOi'
Adjusted TCODi into plant, after primary settler (mg/L)
Temp
Mean biomass temperature - do not specify AIR temperature (default-68.0 °F)
TINe
Total inorganic nitrogen (NO3-N + NH4-N) in the effluent (mg/L)
TKN%rem
Percent of TKN removed from the Influent (%)
TKNe
Total Kjeldahl nitrogen (organic + ammonia nitrogen) in the effluent, comprising Nee + Noe + Nue (mg/L)
TKNi
Total Kjeldahl nitrogen (organic + ammonia nitrogen) in the influent (default--60.0 mg/L)
SASSPro V2 Report Page 10 of I
Report Title: Mode] Scenario 1
Report Date: 15 Jan, 2019, 11:03 am
Simulation: KDHW WTP 5 Stage, Author: Anlauf Engineering, PLLC
Sim. File: C:\UsersUoe\Projects\P1522 KDH WWTPTrocess Model\KDHWWTP 5 Stage.spr
TKNi'
Adjusted TKNi into plant, after primary settler (mg/L)
TKNi/TCODi
Ratio of Influent TKN to Influent TCOD (Ratio)
TN%rem
Percent of TN (all forms including nitrate-N) removed from the influent (%)
TNe
Total nitrogen (all forms including nitrate-N) in the effluent (mg/L)
TPe
Total phosphorus in the effluent (mg/L)
TPi
Total phosphorus in the influent (default=15.0 mg/L)
TPi'
Adjusted TPi into plant, after primary settler (mg/L)
Transt
Oxygen/kWh transfer rate of type 1 aerators (default=2.65 Ib02/kWh)
Trans2
Oxygen/kWh transfer rate of type 2 aerators (default=3.09 Ib02/kWh)
Trans3
Oxygen/kWh transfer rate of type 3 aerators (default=0.00 Ib02/kWh)
TSS
Total sludge mass entering secondary clarifer (MLSS = ISS + VSS) (mg/L)
TSSe
Total Suspended Solids (SS) in selected secondary clarifier effluent (overflow cone) (mg/L)
TSSm
Maximum clarifier influent TSS for critical operation (mg/L)
TSSr
Total MLSS sludge mass of clarifier recycle line (underflow cone) (mg/L)
UCODi
Unbiodegradable COD in the influent (USCOD + UPCOD) (mg/L)
UPCODi
Unbiodegradable particulate COD in the influent (mg/L)
USCODe
Unbiodegradable soluble COD in the effluent (mg/L)
USCODi
Unbiodegradable soluble COD in the influent (mg/L)
Va
Total volume of anaerobic zone (default=0.660 MG)
Val
Total volume of Anaerobic zone in step 1 (default=0.660 MG)
Va2
Total volume of Anaerobic zone in step 2 (default=0.660 MG)
Va2
Total volume of sludge denitrification zone (default-0.528 MG)
Va3
Total volume of Anaerobic zone in step 3 (default=0.660 MG)
Va4
Total volume of Anaerobic zone in step 4 (default=0.660 MG)
Va5
Total volume of Anaerobic zone in step 5 (default=0.660 MG)
Vae
Total volume of aerobic zone (default=3.170 MG)
Vael
Total volume of Aerobic zone in step 1 (default=3.170 MG)
Vae2
Total volume of Aerobic zone in step 2 (default=3.170 MG)
Vae3
Total volume of Aerobic zone in step 3 (default=3.170 MG)
Vae4
Total volume of Aerobic zone in step 4 (default=3.170 MG)
Vae6
Total volume of Aerobic zone in step 5 (default=3.170 MG)
Van1
Total volume of Anoxic zone in step 1 (default=1.189 MG)
Vsn2
Total volume of Anoxic zone in step 2 (default=1.189 MG)
Vsn3
Total volume of Anoxic zone in step 3 (defauft=1.189 MG)
Van4
Total volume of Anoxic zone in step 4 (default=1.189 MG)
VanS
Total volume of Anoxic zone in step 5 (default=1.189 MG)
VP
Total process volume of the plant (excluding primary/secondary settlers) (MG)
Vpan
Total volume of primary anoxic zone (default=1.189 MG)
Vps
Volume of the primary settler tank (default=0.26 MG)
Vra
Total volume of re -aeration zone (default=0264 MG)
Vsan
Total volume of secondary anoxic zone (default-1.057 MG)
Vsc
Maximum volume of selected secondary clarifier (MG)
VSS
Volatile component of the sludge mass (mg/L)
VSS %Xbg
Percentage value of the PAO heterotrophic active portion of the biomass VSS (%)
VSS %Xbh
Percentage value of the OHO heterotrophic active portion of the biomass VSS (%)
Page 11 of I 1
SASSPro V2 Report
Report Title: Model Scenario 1
Report Date: 15 Jan, 2019, 11:03 am
Simulation: KDHWWTP 5 Stage, Author: Anlauf Engineering, PLLC
.w�xm .gym Sim. File: C:\Users\Joe\Projects\P1522 KDH WWTP\Process Model\KDHWWTP 5 Stage.spr
Glossary of Terms (cont.)
VSS %Xeg Percentage value of the PAO endogenous portion of the biomass VSS (%)
VSS %Xeh Percentage value of the OHO endogenous portion of the biomass VSS (%)
VSS %Xi Percentage value of the inert portion of the biomass VSS (%)
VSS%Dig Reduction of volatile solids in digestor (default=50.0 %)
VSSbar Stackbar of OHO and PAO constituents of the biomass VSS (mg/L)
WASConc Estimated Waste Activated Sludge concentration (mg/L)
Wastewater Type Specified as Raw or Settled influent (default=0.0)
Wdry Mass of sludge (as dry solids for land distribution) produced by wasting (lb/year)
Wdry$ Cost of land application of sludge ($/year)
Whaul Wasted sludge to be hauled (lb/year)
Whaul$ Sludge haulage cost of waste ($/year)
Whaulfee Cost of disposing of wasted solids by volume (default--40.00 $/legal)
Whaulfee Cost of disposing of wasted solids by weight (defauh=11.00 $lion US)
Wlandfee Cost of land application (defautt=15.00 $/Ton US)
Xa Heterotrophic active component of the biomass (mg/L)
Xbg PAO organisms in the heterotrophic active component of the biomass (mg/L)
Xbh OHO organisms in the heterotrophic active component of the biomass (mg/L)
Xe Endogenous component of the biomass (mg/L)
Xeg PAO organisms in the endogenous component of the biomass (mg/L)
Xeh OHO organisms in the endogenous component of the biomass (mg/L)
Xi Inert component of the biomass (mg/L)
Xio Inorganic component (MLISS) of the sludge mass (mg/L)
Xn Nitrifier component of the organic biomass (mg/L)
Xt Total MLSS sludge mass (VSS + ISS) in the process volume (Vp) (mg/L)
Xta Total solids in the anaerobic reactor (mg/L)
Xtb Total solids in the aerobic reactor (mg/L)
Xtd3 Solids concentration in the secondary anoxic reactor (mg/L)
Xv Volatile sludge mass (MLVSS = active + endogenous + inert fractions) (mg/L)
Ye Carbon source specific yield coefficient for Methanol (default=0.230 mgVSS/mgCOD)
Yg Phosphorus polyP (PAO) organism specific yield coefficient (defauit=0.469 mgVSS/mgCOD)
Yh Heterotrophic organism spedfic yield coefficient (default=0.469 mgVSS/mgCOD)
Yn Nitrifying (autotrophic) organism specific yield coefficient (default=0.169 mgVSS/mgN)
Unit Settings
Volume
Megagallons (US) (1 Megagallons (US) = 3785411.8178 Litres)
Concentration
mg/L
Mass
lb (1 lb = 463.5924 g)
Time
day
Temperature
'F
SASSPro V2 Report Page I of
a, Report Title:Wo*ubqmww
F l Report Date: IS Jan. '_0_:+3 pm
Simulation: KDHR N TP i Stage. Author: Anlauf Engineering. PLLC
„a4ucmk..om Sim. File. C: Lsers Joe Project: PI 11 KDH U 1k'TP Process Slodel KDH�k 11 f P i Stagc.spr
Influent Characteristics - Raw
TBODt
= 363 6 mg/L
TKNI
= 60.0 mg/L
TPt
= 15 0 mg/L
DOI
= 0 25 mg,IL
ALK,
= 250.0 CaCO3 mg/L
SF
= 125 Ratio
fup
= 0 150 Ratio
fus
= 0 070 Ratio
fbs
= 0.250 Ratio
fna
= 0 750 Ratio
fnu
= 0 030 Ratio
fpa
= 0 750 Ratio
Influent Constituents
BCOD = 623 9 mg/L
RSCOD, = 156 0 mg/L
SBCODi = 468 0 mg/L
UCODi = 176 0 mg/L
USCODi = 56 0 mg/L
UPCODi = 120 0 mg/L
N114-Ni = 45,00 mg/L
Not = 4 75 mg/L
Nut = 1 80 mg/L
Pat = 11.25 mg/L
Pot = 3 75 mg/L
Biomass Characteristics
yh = 0 469 mgVSS/mgCOD
vn = 0 169 mgVSS/mgN
Yg = 0.469 mgVSS/mgCOD
h - 0. 750 mgVSS/mgTSS
fcv = 1 420 mgCOD/mgVSS
fen = 0 200 mgVSS/mgVSS
fn = 0 100 mgN/mgVSS
kp = 0 060 Ratio
fxbhp = 0 030 mgP/mgVSS
to = 0 030 mgP/mgVSS
Cap = 0. 500 Ratio
fip = 0 460 mgVSS/mgTSS
txbgp = 0 380 mgP/mgVASS
fxegp = 0.030 mgPrmgVESS
feg 0.250 mgVSS/mgVASS
Plant Parameters
Va
= 0.018
MG
Vpar
= 0.052
MG
Vae
= 0.165
MG
Vsan
= 0.056
MG
vra
= 0 017
MG
Gin
0 30
MG/oay
Lit
1502
%On '
Os
= 1000
%Gm
Oa
= 2.00
mglL
-Sic.
1.00
mplL
Anaerobic Basins
= 1
basins
Vp
= 0.3080
MG
TSS
= 5155.9
mg/L
01cai
= 0.00
%
PH
= 72
Temperature
Coefficients
Temp
680
60.0
'F
yn
0 900
0 537
Iday
Kn
1 000
0 597
mgN/L
Kr
0040
0035
L/mgVASS/day
KIT
0720
0320
mgNO3-NimgVASS/day
K2T
0.101
0 072
mgNO3-N/mgVASS/day
K3T
0077
0068
mgNO3-N/mgVASS/day
Bh
0 240
0 211
/tlay
Bn
0170
0150
'day
Bg
0.040
0 035
/day
5-Stage Modified BardenpholPhoredox
Temp OMW vp 03080 MG
Gm 030 MiSmay HRT 103 days
Gout 0.28 MG/day
Ow 6 84 %Om
va Lp
an Vsan i Vra_
a
s
SRT 15 0 days SRTm 4 2 days pH 7 2 Dao 176 3 -60tn Wasting from aerator 5156 mg/L
Graph Key SASsw, Pa. A.".
USCOOe = 55
TKNe = 268 mg/L _
s:
NH4-Ne = 0 74 mg/L
NO3-Ne = 4.22 mg/L
TPe = 0.00 rngfL
Pse = 772 mg/L -
ALKe = 119 2 mg/L-
F/M' =016 mgBODlmgVSS
[Data Cursor = 15 0 days] - - `-
A_ios�e SRT as
SASSPro V2 Report Pape _ of , _
Report Title: Model Scenario _'
Report Date: 15 Jan. 2019. 12:33 pm
Simulation: KDHN'N'TP 5 Stage. Author: Anlau(Engineering. PLLC
Sint. File: C. Csers Joe Projects PI5'__ KDFI N \1TP Process Model KDII%%TP 5 Stage.spr
Carton Dosing
Primary Anoxic Reactor Rate = 0 0 gaili
Secondary Anoxic Reactor Rate = 0 0 gauday,
3.00 units COD / unit denitnfication using Methanol 1297000 00 COD 0.23 yielo coefficient)
Secondary Settler
Csa =11550 ft2
HRTc =3.63
hours
Ta.as FW
.e T<=
anlaa,
Cd = 105 It
TSSe =
-c.^lag, "
°3 °
Cnl = 20
BODe =
Cfd = 7 2 8
TSSr = 10299.98
Cv0' = 820 210 ft/day
Cbht = 2.8
ft
Cv0 = 1555 118 f /day
TSSm = 5635 8
mglL
Crh = 0.000576 L/mi
Cvup = 347
f /day
Cd = 0 002860 UmgSS
Cor = 259.7
gam' day-
Cfns = 0002280
Cslr = 224
Ib/ t2day
zC u
Clc = 30000 mg/L
Csbc = 9000 mg/L-
Vsc = 0 09 MG
Est SVI = 259
mUgSS
Cfs = 1000 %
Est SSVI = 128
mUgSS
o41
Est DSVI = 185
mUgSS
"
A_:caue
rya
Ratios and Loadings
TKN/TCOD
= 0 08
BOD'/MLSS Loading
= 0 071
mgBOD/mgTSS
TPrrCOD
= 0 02
TCOD/day Loading
= 2002 70
Iblday
TCODrrKN
= 13 33
NH4.N/day Loading
= 11266
lb/day
TCODrrP
= 53 33
TKNiday Loading
= 15022
Iblday
TCODfVSS
= 1 42
TP/day Loading
= 37.55
Ib/day
MLVSS/MLSS
= 0 75
BOD',day Loading
= 91032
lb/day
TCOO/MLSS Loading
= 0.155
mgCOD/mgTSS
Person Egmv'
= 5351
PE
TKN/MLSS Loading
= 0 012
mgN/mgTSS
An Ax Ox Mass Fractions = 5 8 35 1 59 1
TP/MLSS Loading
= 0.003
mgP/mgTSS
SOD' .N.P
= 100 16.54 1
F/M' Loading
= 0 16
mgBOD/mUVSS
Percent TCOO Removed = 93 00
Volatile suspended solids = 3636
83 mglL
Percent N Removed
= 88 50
°h
RBCOD/MLSS Loading
= 0 03
mgCOD/mgTSS
Percent TKN Removed
= 95.53
'r<
Percent TP Removed
= 10000
°i
~=>� SASSPro V2 Report
Pave 1 o1,2
Report Title:
Model Scenario 3
Report Date:
I � Jan. 2019. 12:12 put
Simulation:
KDHW W I 5 Stage. Author: Anlauf Engineering.
PLLC
Sim file
C 1 sers Joe Projects P1522 KDH R \hTP Proces Model KDHN 41 TP 5 Stage.spr
influent Characteristics - Raw
Biomass Characteristics
Plant Parameters
TBODi = 363 6 mg.'L
Yh = 0 469 mgVSS/mgCOD
Va
0 018
MG
TKNt = 60 0 mg/L
Yn = 0 169 mgVSS/mgN
Vpan =
0 052
MG
TPi = 15 0 mg/L
Yg = 0 469 mgVSS/mgCOD
Vae =
0 165
MG
DOi = 0.25 mii
8 = 0 750 mgVSS/mgTSS
Vsan =
0 056
MG
ALKi = 250 0 CaCO3 mg/L
fcV = 1 420 mgCOD/mgVSS
Vra =
0 017
MG
SF = 1 25 Ratio
feh = 0 200 mgVSS/mgVSS
Gm =
0 30
MG/day
tup = 0.150 Ratio
fn = 0 100 mgN/mgVSS
as =
2000.
%Om
fus = 0.070 Ratio
kp = 0 060 Ratio
Gs =
1000
%Oin
fbs = 0 250 Ratio
fxohp = 0 030 mgP/mgVSS
Oa =
200
mgIL
fna = 0.750 Ratio
to = 0 030 mgP/mgVSS
Os =
100
mg/L
tnu = 0 030 Ratio
Csp = 0 500 Ratio
Anaerobic Banns =
1
banns
fpa = 0 750 Ratio
fip = 0 460 mgVSS/mgTSS
Vp =
0.3080
MG
fxbgp = 0 380 mgP/mgVASS
TSS =
48757
mg/L
fxegp = 0 030 mgP/mgVESS
Oloal =
000
%
feg 0 250 mgVSS/mgVASS
pH =
72
Influent Constituents
Temperature Coefnoisnts
BCW = 623,9 mg/L
Temp 680 750 'F
RBCODi = 156 0 mg/L
pn 0 900 1 413 /day
SBCODt = 468 0 mg/L
Kn 1 000 1 570 mgWL
UCOOi = 176 0 mgfL
Kr 0 040 0 045 L/mgVASS/day
USC00i = 56 0 mg/L
KIT 0 720 1 463 mgNO3-NJmgVASS/day
UPCOD, = 120.0 mgfL
K2T 0 101 0 136 mgNO3-N)mgVASS/tlay
NH4-Ni =45.00 mgfL
K3T 0077 0086 mgNO3-N/mgVASS/tlay,
Noi = 4.75 ni
Bit 0 240 0 268 fday
Nui = 1.80 mgfL
Bn 0 170 0 190 fday
Pai = 11 25 mgfL
Bg 0 040 0 045 /day
Poi = 3.75 mg/L
5-Stage Modified Bardenpho/Phoredox
Temp 75.0 °F
'VP 0 3080 MG
Om 0 30 MG/day
HRT
Gout
1 03 dayys
0 28 M[3/day
Ow
6 84 %Gin
SRT 15.0 days
SRTm 2 0 days
Graph Key
_. L
USCODe
= 56 0
mg/L
TKNe
= 2.85
mg/L
NH4-Ne
= 0.92
mgfL -"
NO3-Ne
= 3 06
mgfL
Toe
= 0.82
mg/L- -
Pse
= 7 12
mg/L
ALKe
= 119 1
mg/L-
PM-
= 017
mgBOD/mgVSS
[Data Cursor
= 15 0
days] 5` -
pH 7 2 Oao 355 9 '/.Om
SASSP; J P's.
Wasting from aerator @ 4876 mgfL
Patc
=' SASSPro V? Report Page n_ ofn_
Report Title: Model Scenario 3
Report Date: 15 Jan. 'U IQ. 1132 pm
�.._,..• Simulation: KDHU'N"TP 5 Stave. Author Anlauf Engineering. PLLC
Sim. File: C Lsers Joe Projects Pl5?'_ KDH 111A TP Process Model KDHP'N TP 5 Stage.spr
Carbon Dosino
Primary Anoxic Reactor Rate = 0 0 gallday
Secondary Anoxic Reactor Rate = 0 0 gallday
3 00 units COD I unit deminhcahon using Methanol 1297000 00 COD 0 23 yield coeffcienu
Secondary Settler
Csa
= 1155.0 ft2
Cd
= 105 ft
Cnl
= 20
Cfd
= 7 2 it
Cv0'
= 820 210 8/day
Cv0
= 1555 118 ivday
Crh
= 0000576 UmgSS
Crf
= 0002860 UmgSS
Cfns
= 0002280
CIc
=30000 mg/L
Csbc
= 900 0 mg/L
Vac
= 0 09 MG
Cis
= 1000 %
HRTc
=363
hours
TSSe
= 11 25
mg/L
BODe
= 34
mglL
TSSr
= 9740 16 mglL
Cbht
= 22
f
TSSm
= 56354
mg1L
CVUp
= 347
tVday
Cor
=2597
gal/ft2day
Csir
= 21 ,
Ibm2day
Est SVI
= 259
mUgSS
Est SSVI
= 128
mUgSS
Est DSVI
= 185
mUgSS
Ratios and Loadings
TKNiTCOO
= 0.08
TPITCOD
= 0 02
TCOD/TKN
= 1333
TCODlTP
= 5333
TCODNSS
= 1 42
MLVSS/MLSS
=075
TCOD/MLSS Loading
= 0 164
mgCOD/mgTSS
TKN/MLSS Loading
= 0 012
mgN/mgTSS
TP/MLSS Loading
= 0.003
mgP/mgTSS
FfM' Loading
= 0 17
mgBOD/mgVSS
Volatile suspended solids = 3438 11
mglL
RBCOD/MLSS Loading
= 0 03
mgCOO/mgTSS
ca�car
2CW
A--D as
BOD'IMLSS Loading
= 0.075
mgBOD/mgTSS
TCOO/day Loading
= 200270
Ib/day
NH4-N/day Loading
= 112.66
lb/day
TKN/day Loading
=15022
Ib/day
TP/day Loading
= 37 55
lb%day
BOD'/day Loading
= 91032
lb/day
Person Eouiv'
= 5351
PE
An.Ax Ox Mass Fractions = 5 8.35 1 591
%
BOD'NP
=1001654.1
Percent TCOD Removed = 93 00
Percent N Removed
= 90 15
%
Percent TKN Removed
= 95 25
%
Percent TP Removed
= 94 51
%
am.ca,
5:
SASSPro V2 Report
Pace 1 of
Report Tide:
MbdeFBeab"'
Repnn Date,
15 Jan. 2019. 1_29 pm
e Simulation:
KDHWWTP 5 Stage. Author: Anlauf Engineering.
PLLC
Sim. File:
C: Users Joe Projects PI 5-"- KDH kk %\ TP Proces, Model KDHW WTP 5 Stage.spr
Influent Characteristics - Raw
Biomass Characteristics
Plant Parameters
TBODi
= 363 6 mg/L
vn = 0 469 mgVSSmgCOD
Va =
0.018
MG
TKNi
= 60.0 mglL
yn = 0 169 mgVSS/mgN
Vpan =
0.052
MG
TP,
= 15.0 mg/L
yg = 0469 mgVSS/mgCOD
Vae =
0.165
MG
DOI
= 0 25 mg/L
ti = 0. 750 mgVSStmgTSS
Vsan =
0.056
MG
ALKi
= 250 0 CaCO3 mg/L
fcv = 1 420 mgCOD/mgVSS
Vra =
0.017
MG
SF
= 1 25 Ratio
fah = 0 200 mgVSS/mgVSS
On =
0.30
MGlday
fup
= 0 150 Ratio
In = 0.100 mgPrmgVSS
as =
mom
V"
fus
= 0 070 Ratio
Ito = 0 060 Ratio
Os =
1000
%Qm
fibs
= 0 250 Ratio
fxbhp = 0 030 mgPlmgVSS
Oa =
200
mg4
fna
= 0 750 Ratio
to = 0 030 mgPlmgVSS
Os =
kW.4J
fnu
= 0 030 Ratio
Csp = 0.500 Ratio
Anaerobic Basins =
1
basins
fpa
= 0750 Ratio
to = 0460 mgVSSimgTSS
Vp =
0.3080
MG
fxbgp = 0.380 mgP/mgVASS
TSS =
52115
mg/L
fxagp = 0.030 mgP/mgVESS
01w1 =
0.00
%
feg 0.250 mgVSSimgVASS
pH =
7 2
Influent Constituents Temperature Coefficients
BCODi = 623 9 mg/L Temp 680 7010- - W15-Lv
RBCODi = 1560 mg/L un 0 900 0 537 /day
SBCODi = 468 0 mg/L Kn 1 000 0 597 mgN/L
UCODi = 176 0 mg/L Kr 0 040 0 035 L/mgVASS/day
USCODi=56.0 mg/L KIT 0720 0320 mgNO3-NImgVASStday
UPCODi = 120.0 mg/L K2T 0 101 0 072 mgNO3-NImgVASStday
NH4-Ni = 45.00 mg/L K3T 0 077 0 068 mgNO3-NImgVASStday
No. = 4.75 mg/L eh 0.240 0 211 /day
Nw = 1 80 mg/L Bn 0 170 0 150 /day
Pal - 11 25 mg/L Bg 0 040 0 035 /day
Poi = 3 75 mglL
5-Stage Modified BardenpholPhomdox
Temp -MM -W Vp 0 308C MG
Om 0.30 MG/day 1F
Va _ 6Vpan'.F - Vae �san —Vra I
Cs
SRT 15 0 days SRTm 4 2 nays DH 7 2 Qao 182 5 %Q in
Graph Kev SAS9a-c P,o
USCODe = 56 0 mg L
TKNe
= 2.68
mg/L
NH4-Ne
a&"
pwr
NO3-Ne
,3M
ra01L,
Pse
= B 12
mg,L
ALKe
= 122.5 mg:L
F/M'
= D 16
mgBODlmgVSS
(Data Cursor = 15 0
days]
A'..IJSCdIB
SPT ays
HRT 103 days
Qout 0 28 MGlday
Ow 6 84 %Om
Wasting from aerator @ 5211 mg/L
'nar:
3_
-� SASSPro V? Report Page 2 of
Report Title: Model Scenario 4
Report Date: 15 Jan. 2019. 12:29 pm
..,.Y� Simulation: KDHWWTP 5 Stage. Author: Anlaut Fngineering. PLLC
Sim. File: C Users Joe Projects PI5222 KDH N'N'TP Process Model KDHWN TP 5 Stage.spr
Carbon Dosing
Primary Anoxic Reactor Rate = 0 0 gaVday
Secondary Anoxic Reactor Rate = 0 0 gauday
3 00 units COD i unit demtrificauon using Methanol 1297000 00 COD 0.23 yield coeffcienu
Secondary Settler
Csa = 11550 ft2
NRTe = 363
hours
:ca•
'a.au c -•
.: *,b
.emiaa,
Cd = 105 lit
TSSe = 1t.Ya
mtjl[;T
`' -
a7 °
Cnl = 20
BODe = 40,
ow
Cfd = 72 8
TSSr = 1C411 00 mg;L
--
---
Cv0' = 820 210 f /day
Cbht = 2.9
ft
_
Cv0 = 1555 118 fuday
TSSm = 56358
mglL
'"
°`
Crh = 0 000576 UmgSS
Cvup = 347
ft/day
_
`
ac
Crf = 0.00286C UmgSS
Cor = 2597
gal/ft2day
-"
Cfns = 0.00228C
Cslr = 226
IbM2tlay
-,
z,;
Clc = 3000.0 mg/L
Csbc = 900.0 mg/L
: o
Vsc = 0.09 MG
Est S I = 259
mUgSS
Cfs =1000 '/.
Est SSVI=128
mUgSS
:o, zor...+accear,;e;.ac
•za,;a sw:-
-
z_od'eL
Est DSVI = 185
mUgSS
-
/mcecae
Ratios and Loadings
TKN?COD
= 0.08
BOD'/MLSS Loading
= 0 070
mgBOD/mgTSS
TP/rCOD
= 0.02
TCOD/day Loading
= 2002 70
Ib/day
TCOD/TKN
= 1333
NM4-1,1/day Loading
= 11266
lb/day
TCOCrrP
= 5333
TKNrday Loading
= 15022
Ib/day
TCODNSS
= 142
TP/day Loading
= 37 55
lb/day
MLVSS/MLSS
= 075
BOD'iday Loading
= 910 32
lb/day
TCOD/MLSS Loading
= 0 153
mgCOD/mgTSS
Person Equiv'
= 5351
PE
TKN/MLSS Loading
= 0 012
mgWmgTSS
An Ax Ox Mass Fractions = 5.8.35 1 59 1
TP/MLSS Loading
= 0003
mgP/mgTSS
BOD- N P
= 100 16 54 1
F/M' Loading
= 0 16
mg80D/mgVSS
Percent TCOD Removed
= 93 00
°r
Volatile suspended solids
= 3666
57 mg;L
Percent N Removed
= 89 72
%
RBCOD/MLSS Loading
= 0 03
mgCOD/mgTSS
Percent TKN Removed
= 95.53
Percent TP Removed
= 100 OC
%
SASSPro V2 Report Page I of
Report Title: Model Scenario 5
Report Date: I S Ian.'u 19. 1': ,4 pm
Simulation: KDH'A N TP 5 Stage. Author: Anlauf Engineering. PLLC
Sim. File: C: l sers Joe Projects P15„ KDH A %'TP Process Model KDH\A'\\'TP 5 Staee.spr
Influent Characteristics - Raw Biomass Characteristics Plant Parameters
TBOD, = 363.6 mgrL vh = 0.469 mgVSS/mgCOD Via = 0 OIB MG
TKNi = 60.0 mg,L vn = 0.169 mgVSS/mgN Vpar = 0 052 MG
TP, = 150 mgrL yg = 0.469 mgVSS/mgCOD Vae = 0.165 MG
DOi = 0.25 mg1L b = 0.750 mgVSS/mgTSS Vsan = 0 056 MG
ALKi = 250 0 CaCO3 mg/L fcv = 1 420 mgCOD/mgVSS Vra = 0 017 MG
SF = 1 25 Ratio fen = 0.200 mgVSS/mgVSS O,m = 030 MG'day
tub, = 0 150 Ratio fn = 0.100 mgWmgVSS Qa =" IW2 %CIIR"
fus = 0 070 Ratio xp = 0.060 Ratio 05 = 1000 %Oin
fbs = 0.250 Ratio fxbhp = 0.030 mgP/mgVSS Oa = 200 mglL
fna = 0 750 Ratio fp = 0.030 mgPrmgVSS Os = OM rap1L
(nu = 0 030 Ratio C5P = 0 500 Ratio Anaerobic Basins = 1 basins
fpa = 0 750 Ratio hp = 0 460 mgVSS/mgTSS Vp = 03080 MG
fxbgp = 0 380 mgP/mgVASS TSS = 48075 ni
fxegp - 0 030 mgP/mgVESS Olcai = 000
feg 0.250 mgVSS/mgVASS pH = 72
Influent Constituents Temperature Coefficients
BCODi = 623 9 mg/L Temp 68.0 M . -F.
RBCODi = 156 0 mg/L pn 0 900 1 413 /day
SBCOD, = 468 0 mglL Kn 1 000 1 570 mgN/L
UCODi =176.0 mg/L Kr 0040 0045 LimgVASS/day
USCOOi = 56.0 ri K1T 0 720 1 463 mgNO3-N/mgVASS/tlay
UPCODi = 120 0 mglL K2T 0 101 0 136 mgNO3.N/mgVASS/day
NH4-Ni = 45 00 mg/L K3T 0077 0086 mgNO3-N/mgVASS/day
No, = 4 75 mg/L Bh 0.240 0 268 /day
Nu, = 1 80 mg1L Bn 0.170 0 190 'day
Pa, = 11 25 ni Bg 0 040 0 045 /day
Poi = 3 75 mg/L
5-Stage Modified BardenphWPhoredox
Temp-J= "F ' Vp 0 3080 MG
Qin 030 MG/day HRT 103 da s
Qout 0.28 MGylday
Ow 6.84 %Qm
-6Va Vpan .--Vae V-an 'La
s
SRT 15 0 days SRTm 2 0 days pH 7 2 Qao 339.8 ',C,n Wasting from aerator @ 4807 mgrL
USCODe = 560 mg'L
TKNe = 2.85 ri
NH4-Ne = 0 92 mg/L
NO3-Ne = 4.27 mgA-
TPe = 1.38 ng/L-- -
Pse = 6 64 mgrL
ALKe = 113 8 mglL "-
F1M' =018 mgBODfmgvSS --
[Data Cursor = 15 0 daysl - - -
n,.'cswe SR, gar+
f �SASSPro V2 Report Page 2 of 2
Repan Title: Model Scenario 5
Report Date: 15 Jan. 2019. 12:34 pm
Simulation: KDHW W'TP 5 Stage. Author: Anlauf Engineering. PLLC
in Sim. rile: C: LsersJoe Protects PIS-''_ KDH M 'A FP Process Model KD1M Ills Stage.spr
Carbon Dosing
Primary Anoxic Reactor Rate = 0 0 gal/day
Secondary Anoxic Reactor Rate = 0 0 gallday
3 00 units COD I unit denrInfication using Methanol (297000.00 COD 0 23 yield coeRiaentl
Secondary Settler
Csa = 11550 112
Cd = 105 It
Cnl = 20
Cfd = 72 n
CVO' = 820 210 f iday
Cv0 = 1555 118 fvday
Cm = 0 000576 Uml
Cd = 0.002860 L/l
Clns = 0.002280
CIO = 30000 mg/L
Cabe = 9000 mglL
Vsc = 009 MG
CIS = 1000 %
HRTc
= 36?
hQll
TSSe
TSSe
= 11:10
BODe
= 3.4
TSSr
= 960381
mg/L
Cbht
= 1 8
R
TSSm
= 5635 3
ril
Cvup
= 347
Ill
Cor
= 259 7
gaV82day
Cslr
= 20 8
Ib/ft2day
Est. SVI
= 259
mUgSS
Est SSVI
= 128
mUgSS
Est DSVI
= 185
mUgSS
Ratios and Loadings
TKNrTCOD
=008
TP?COD
= 002
TCODrrKN
= 1333
TCODITP
= 53 33
TCODNSS
=142
MLVSS/MLSS
=075
TCOD/MLSS Loading
= 0 166
mgCOD/mgTSS
TKN/MLSS Loading
= 0.012
mgN/mgTSS
TP/MLSS Loading
= 0 003
mgP/mgTSS
F/M' Loading
= 0 18
mgBODImgVSS
Volatile suspended solids = 3401 68 mg1L
RBCOD/MLSS Loading
= 0.03
mgC00/mgTSS
Ta%aa Flit as i5f
C.-
.2000Ca00006W0Cal :000O
M1 tca a ^�a2
62WN24ay
,0lC 2006ct
BOD'iMLS3 Loading
= 0 076
mgBOD/mgTSS
TCOD/day Loading
= 2002 70
Iblday
NH4-Niday Loading
= 11266
Iblday
TKN,day Loading
= 150.22
Ib/day
TP/day Loading
= 3755
Iblday
BOD'Iday Loading
= 910 32
Iblday
Person Equiv'
= 5351
PE
AnAxlOx Mass Fractions = 5.8 35 1.59 1
%
BOD'NP
=10016541
Percent TCOD Removed = 93 00
%
Percent N Removed
= 88 13
%
Percent TKN Removed
= 95 25
%
Percent TP Removed
= 90 81
%
r Page I of 2
SASSPro Report
Report Titter
Report Date: I5 Jan. ? _:., pm
�i Simulation: KDHAA'AA'TP 5 Stage. .Author: Anlauf Engineering. PLLC
a„ a, Sim. File: C: Lsers Joe Projects P I5_'_ KDH AA AA TP Process Model KDFIAA"AA TP 5 Stage.spr
Influent Characteristics • Raw Biomass Characteristics Plant Parameters
TBODi = 363 6 mg/L Yh = 0.469 mgVSS/mgCOD Va = 0.018 MG
TKNi = 60 0 mg/L Yn = 0 169 mgVSS/mgN Vpan = 0.052 MG
TPI = 15 0 mg/L Yg = 0.469 mgVSS/mgCOD Vae = 0 165 MG
DO, = 0 25 mg/L fi = 0.750 mgVSS/mgTSS Vaan = 0.056 MG
ALKi = 250 0 CaCO3 mg/L fcv = 1.420 mgCOD/mgVSS Vra = 0.017 MG
SF = 125 Ratio feh = 0.200 mgVSS/mgVSS an = 0.30 MG/day
fup = 0 150 Ratio fn = 0 100 mgN/mgVSS Qa
fus = 0 070 Ratio kp = 0.060 Ratio Os = /o in
fbs - 0 250 Ratio fxbhp = 0.030 mgP/mgVSS Oa = 200 mg/L
fna = 0 750 Ratio to = 0.030 mgP/mgVSS Os
fnu = 0 030 Ratio Csp = 0.500 Ratio AnaerobiC Banns = asms
fpa = 0 750 Ratio fip = 0.460 mgVSS/mgTSS Vp = 0.3080 MG
fxbgp = 0.380 mgP/mgVASS TSS = 5169.5 mg/L
fxegp = 0.030 mgP/mgVESS 01wi = 0.00 %
feg 0.250 mgVSS/mgVASS pH = 7.2
Influent Constituents Temperature Coefficients
BCOOi = 623 9 mg/L Temp 680
RBC00i = 156 0 mg/L pn 0 900 1111 ay
SBCODi = 468 0 mg/L Kr 1 000 0 597 mgNlL
UCOD, = 176 0 mg/L Kr 0 040 0 035 UmgVASS/day
USCODi=560 irl K1T 0720 0320 mgNO3-N/mgVASS/day
UPCODi = 120 0 mg/L K2T 0 101 0 072 mgNO3-MmgVASS/day
NH4-N, =45.00 mg/L K3T 0077 0068 mgNO3-1N)mgVASS;day
No, = 4 75 mg/L Bh 0.240 0 211 /tlay
Null = 1 80 mg/L Bn 0 170 0 150 /tlay
Pal = 11.25 mg/L Bg 0 040 0 035 /day
Poi = 3.75 m94
"tags Modified BardenpholPhoredox
Tern- vp 0 3080 MG
ays
Din HRT 103 d
030 MG/day Qout 028 MG/tlay
Ow 6.84 %Qin
"VjaLvpma�
nVae _ I—Smawn
� Lj
1
a
s
SRT 15.0 days SRTnn 4 2 days pH 7 2 Qao 177 8 %Qin Wasting from aerator @ 5169 mg/L
Graph Key ^:'� _ SASSPro wm Rai¢
USCODe = 56 0 mg/L
TKNe
NH4-Ne e
NO3-Na
TPe
Pse = 7 82 mg/L
ALKe = 119 4 mgfL
F/M' = 0 16 mgB00/mgVSS
(Data Cursor = 15 0 days]
.� +c ej e0 r00 aE ;+o +e6 1e0 200 >;0 2-0 2eC ze0 00`t'
A..r^srac SRT lays
SASSPro V2 Report Page'_ of'_
Report Title: Model Scenario 6
Repon Date: 15 Jan. 2019. 12:334 pm
Simulation: KDHN N TP 5 Stage. Author: Anlauf Engineering. PLLC
Sim. File: C Users Joe Projects P 1522 KDFI lk N TP Process Model KDHN R TP 5 Stage.spr
Carbon Doaind
Primary Anoxic Reactor Rate = 0 0 gal/day
Secondary Anoxic Reactor Rate = 0.0 gallday
3.00 units COD / unit demtnficahon using Methanol (297000 00 COD. 0 23 yield coefficient)
Secondary Settler
Csa = 11550 fl2
HRTc = 63
•c ^:.e
T.�KF•^
^ TSS
t2",
Cd = 105 ft
TSSe =
Is
sa
Cnl = 20
BOOeCfd
= 72 ft
TSSr = 10 27
= - -
50
CVO' = 820 210 ft/day
Cbht = 28
ft
Cv0 = 1555 118 Wday
TSSm = 56358
mg/L
40
Crh = 0 000576 UmgSS
Cvup = 347
fvday
3c c
Crf = 0002860 UmgSS
Cor = 2597
gal/ t2day
Cfns = 0002280
Cslr = 224
IbAt2day
217
Clc - 30000 mg/L
Csbc = 9000 mg/L
Vsc = 0 09 MG
Est SVI = 259
mmgSS
Cfs = 1000 %
Est SSVI = 128
mUgSS
_xc coax =s,,v:ec.
•2:ncc •sax;
c
Est. DSVI=185
mUgSS
••
Autacaia
'y�
Rados and Loadinpa
TKN/TCOD
= 0 08
BOD'IMLSS Loadmg
= 0 070
mgBOD/mgTSS
TP?COD
= 0 02
TCOD/day Loading
= 2002.70
lb/day
TCOD/TKN
= 13.33
NH4•N/day Loading
= 11266
lb/day
TCODITP
- 5333
TKN/day Loading
= 15022
Ib/day
TCODNSS
= 142
TP/day Loading
= 37 55
Ib/day
MLVSS/MLSS
= 075
BOD'Iday Loading
= 91032
lb/day
TCOD/MLSS Loading
= 0 155
mgCODrmgTSS
Person Eqwv'
= 5351
PE
TKN/MLSS Loading
= 0 012
mgN/mgTSS
An Ax Ox Mass Fractions
= 5 8 35 1 591
%
TP/MLSS Loading
= 0 003
mga/mgTSS
BOD'.N:P
= 1001654 1
F/M' Loading
= 0 16
mgBOD/mggSS
Percent TCOD Removed
= 93.00
i
Volatile suspended solids
= 3644
09 mg.'L
Percent N Removed
= 8851
io
RBCOD/MLSS Loading
= 0 03
mgCOD/mgTSS
Percent TKN Removed
= 95 53
%
Percent TP Removed
= 10000
%
�= -��•� SASSPro V2 Report
Pave I of _
Report Title:
Report Dace:
15 Jan. 2019. 12:35 pm
Simulation:
KDH\b \4l P 5 Stave. Author: Anlaut Enizineerinv.
PLLC
Sim. File:
C Users Joe Proiects PI91_] KDH \\ N'TP Process Model KDH\b'M'TP 5 Stagespr
Influent ChareCterietite - Raw
Biomass Characteristics
Plant Parameters
TBODi = 363.6 mg/L
Yh = 0.469 mgVSS/mgCOD
Va =
0.018
MG
TKNi = 60.0 mglL
Yn = 0 169 mgVSS/mgN
Vpan =
0.052
MG
TPi = 15.0 mg/L
Yg = 0.469 mgVSS/mgCOD
Vae =
0.165
MG
DOi = 0.25 mgiL
h = 0. 750 mgVSS/mgTSS
Vsan =
0.058
MG
ALKi = 250 0 CaCO3 mg/L
fcv = 1.420 mgCOD'mgVSS
Vra =
0.017
MG
SF = 1.25 Ratio
feh = 0.200 mgVSSimgVSS
Qm =
0 30
MGiday
fup = 0150 Ratio
in = 0 100 mgN/mgVSS
Oa
fus = D 070 Ratio
kp = 0 060 Ratio
Qs =
""Fin
fbs = 0.250 Ratio
fxbnp = 0 030 mgP/mgVSS
Oa
fna = 0 750 Ratio
to = 0.030 mgPrmgVSS
Os =
fnu = D 030 Ratio
Csp = 0 500 Ratio
Anaerobic Basins =
1
basins
fpa = 0 750 Ratio
Bp = 0.460 mgV5SimgTSS
Vp =
0.3080
MG
fxbgp = 0 380 mgP/mgVASS
TSS =
52129
mg/L
fxegp = 0 030 mgP'mgVESS
01ai =
0.00
feg 0 250 mgVSS/mgVASS
pH =
72
Influent Constituents
Temperature Coefficients
BCODi = 623 9 mg'L
Temp 680
RBCOD, = 1560 mg/L
pn 0 900 413 /day
SBCODi = 468.0 mg/L
Kn 1 000 1 570 mgN/L
UCOOi = 176 0 mg/L
Kr 0 040 0 045 LImgVASS/day
USCOD = 56 0 mg/L
K1T 0 720 1 463 mgNO3-N/mgVASS/day
UPCODi = 120.0 mg/L
K2T 0 101 0 136 mgNO3-N/mgVASS/day
NH4-Ni = 45.00 mg/L
K3T 0 077 0 086 mgNO3-N/mgVASS/day
Noi = 4 75 mg/L
Bh 0 240 0 268 'day
Nw = 1 80 ri
Bn 0 170 0 190 /day
Pal = 11 25 mg/L
Bg 0.040 0 045 /day
Poi = 3.75 mg/L
5-Stage Modified BarCenpho/Phoredox
Temp _ Vp C 3080 MG
03
Oin 030 MG/day HRT 1Qoul 0.28 MG/days
day
Ow 6.84 % Qin
I-101ja0l Voan - Vae LVIjin Vra
SRT 15 0 days
Gmph Kev
USCODe
TKNe
NH4-Ne
NO3-Ne
TPe
Pse
SRTm 2 0 days pH 7 2
8L.
56 0 mg/L
= 8 69 mg/L
ALKe = 134 8 mg/L
F/M' = 0 16 mgBOD/mgVSS
[Data Cursor = 15 0 daysl
cc
Qao 460.8 %Q n
SASSP- Pr.
Wasting from aerator @ 5213 mg.4
Raec
9 G
2,, a- 3c .. .. 110 rSC ''E9 206 220 24C 260 280 36%-
A.ms:aie SRT cars
SASSPro V2 Report Page 2 of?
Report Title: Model Scenario
Report Date: 15 Jan. 2019, 12:35 pm
�.._..� Simulation: KDHWNTP 5 Staee. Author: AnlaufEneineerin-I. PLLC
Sint. File: Cl sers Joe Projects PI5'_? KDH W14'TP Process Model KDHNN'TP 5 Stage.spr
Carbon Dosina
Primary Anoxic Reactor Rate = 0 0 gal,day
Secondary Anoxic Reactor Rate = 66 0 galiday
3.00 units COD I unit demtrdicati0n using Metnanol (297000 00 COD 0.23 yield coe@icieno
Secondary Settler
Csa = 1155.0 ft2
HRTe =3eo-z
ra.au r,,
n Tss
Cd = 105 It
TSSe =
'
6`onzoar
Cnl = 20
BODe
Cfd = 7 2 fl
TSSr =
mgfL
zc C
s,: r
Cv0' = 820 210 fVday
Cbht = 2.9
ft
Cv0 = 1555.118 fVday
TSSm = 5635 8
mg/L
Cm = 0000576 Unri
Cvup = 347
fuday,
Crf = 0 002860 UmgSS
Cor = 259 7
gallfl2day
Cfns = 0002280
Cslr = 226
Ibf t2day
CIc = 30000 mglL
Csbc = 900 0 mg�L
Vsc = 009 MG
Est SVI = 259
mug55
cis = 1000 %
Est SSVI = 128
mug55
IA ca^o•0e000
�eocee
._„C .�x
Est DSVI = 185
mUgSS
'
Ai.lOKdiB
19L
Ratios and Loadinas
TKN/TCOD
= 0 08
BOD'IMLSS Loading
= 0 070
mgBOD/mgTSS
TPlfCOD
= 0.02
TCODIday Loading
= 200270
lb/day
TCODrrKN
= 13.33
NH4-N/day Loading
= 11266
Ibiday
TCOD7rP
= 53.33
TKN/day Loading
= 150.22
Ibrday
TCODNSS
= 142
TP/day Loading
= 37 55
Jo/day
MLVSS/MLSS
= 0 75
BOO'iday Loading
= 91032
to/day
TCOO/MLSS Loading
= 0 153
mgCODtmgTSS
Person Equiv •
= 5351
PE
TKN/MLSS Loading
= 0 012
mgN/mgTSS
An.Ax.OK Mass Fractions = 58351 59.1
%
TP/MLSS Loading
= 0 003
mgP/mgTSS
BOD'.N P
= 10016541
F/M' Loading
= 0 16
mgBOD/mgTSS
Percent TCOO Removed = 93 00
%
Volatile suspended solids
= 3642.
74 mgrL
Percent N Removed
= 9518
%
RBCOD/MLSS Loading
= 0 03
mgCOD/mgTSS
Percent TKN Removed
= 9526
%
Percent TP Removed
= 100.00
%
SASSPro V2 Report
Page I or_
Report Title:
Model Scenario 8 1
Report Date:
15 Jan. 1_n 19. 1':37 pm
Simulation:
KDII%k P TP 5 Stage. .Author: Anlauf En_ineerin_.
PLLC
.,..w „A•anankseum Sim. File:
C,Users Joe Projects P15_1_ KDH N lik FP Process Model KDHN \X FP 5 Stage.spr
Influent Characteristics - Raw
Biomass Characteristics
Plant Parameters
TBODi = 363 6 mg/L
Yh = 0.469 mgVSS/mgCOD
Va
= 0.018
MG
TKNi = 60.0 mglL
Yn = 0 169 mgVSS/mgN
Vpan
= 0 052
MG
TP, = 15 0 mg/L
Yg = 0.469 mgVSS/mgCOD
Vae
0.165
MG
DOi = 0 25 mg/L
h = 0.750 mgVSS/mgTSS
Vsan
= 0.056
MG
ALKi = 250.0 CaCO3 mg/L
fp = 1.420 mgCODImgVSS
Via
= 0 017
MG
SF = 1.25 Ratio
feh = 0.200 mgVSS/mgVSS
Oin
= 030
MG+day
fup = 0 150 Ratio
fn = 0 100 mgN/mgVSS
as
150.2
%Oin
fus = 0.070 Ratio
kp = 0.060 Ratio
05
= 100.0
%Oin
fbs = 0.250 Ratio
fxbhp = 0.030 mgP/mgVSS
Oa
= 2 00
mg/L
fna = 0 750 Ratio
to = 0.030 mgP/mgVSS
as
= 1.00
trtglL
fnu = 0.030 Ratio
Cap = 0 500 Ratio
Anaerobic Basins
= 1
basins
fpa = 0 750 Ratio
fip = 0.460 mgVSS/mgTSS
Vp
= 03080
MG
fxbgp = 0. 380 mgP/mgVASS
TSS
= 52989
mg/L
fxegp = 0.030 mgP/mgVESS
Qlcal
= 000
%
feg 0.250 mgVSS/mgVASS
pH
= 72
Influent Constituents
Temperature Coefficients
BCODi = 623 9 mg'L
Temp 680 60.0 OF
RBCODi = 156 0 mg/L
pn 0.900 0 537 +day
SBCODI = 468.0 ni
Kn 1 000 0 597 mgNIL
UCOD, = 176 0 mg/L
Kr 0040 0035 LfmgVASStday
USCODi = 56.0 mg/L
K1T 0 720 0 320 mgNO3-N/mgVASS'dey
UPCODi = 120 0 mg/L
K2T 0 101 0 072 mgNO3-N/mgVASSId8y
NH4-Ni = 45.00 mg/L
K3T 0 077 0 D68 mgNO3-N1mgVASS1day
Noi = 4 75 mg/L
Bill 0 240 0 211 'day
Nut - 1 80 mg/L
Bn 0 170 0 15C 'day
Pal = 11.25 mg/L
Bg 0.040 0 035 'day
Poi = 3.75 mg/L
5-Stage Modified Barden pholPhoredox
Temp 600 -F' %: 0 3080 MG
MRT 103 dais
Din 030 MGrday Oda 20.0 gaVday Clout 0.28 MG/day
Q. 6 84 %Qm
vItia Vpan Vae . i V's VrJ F
a 1
SRT 15 0 days SRTm 4.2 days pH 7 2
Graph Ke
USCODe = 56 0 Ing
TKNe
- 2.68
mg/L
NH4-Ne
=0. 74
mg/LN03-Ne
= 2.92
mgrL
TPe
- 0.00
mgrL
Pse
= 8 48
mg,L
ALKe
= 1259 mg1L
F/M•
= 0 16
mgBOD/mgVSS
[Data Cursor = 15 0
days] -` -
Qao 192.3 %Qin
SASSPIc Pie
Wasting from aerator Qp 5299 mg/L
Ra±v
cp
32
en
4c
3C
I
J 40 5l _C IQ: 12 +40 +6D rBO 200 n0 240 -5C 211 aoY°
AJcscae SRT aaysi
SASSPro V2 Report Page 2of'_
Report Title: Model Scenario 8
Report Date: 15 Jan. 2014. 12:37 pm
Simulation, KDHW WTP 5 Staue..Author: Anlauf Engineering. PLLC
Sim. File: C: Users Joe Projects PI5?2 KDH N A TP process Model KDHWR'TP 5 Stage.spr
Carbon Doslnn
Primary Anoxic Reactor Rate = 0.0 gal/day
Secondary Anoxic Reactor Rate = 20 0 gallday
3 00 units COD r unit denitnfication using Methanol t297000 00 COD, 0.23 yield coeHioenp
Secondary Settler
Csa = 1155.0 ft2
HR7c = 363
hours
�en�oni
ra.ao F—
vs rS9
Cd = 10.5 ft
TSSe = 1217
mglL
,
-
Cnl = 20
BODe = 4.1
mgA-
Cfd = 72 fl
TSSr = 10585 65 mg)L
Cv0' = 820.210 fVday
Cbhl = 3 4
8
Cv0 = 1555 118 Nday
TSSm = 56360
mg/L
'-
'c
Crh = 0 000576 umgSS
Cvup = 34 7
Nday
Crf = 0 002860 L!mgSS
Cor = 259 7
gaVfl2day
Cfns = 0002280
Csir = 230
Ib/tt2day
CIc = 30000 mg/L
Csbc = 900.0 mg/L
- ;
1: r
Vsc = 0 09 MG
Est SVI = 259
mUgSS
Chi = 1000 %
Est SSVI = 128
mUgSS
;cu _-oxo
ocaccGe
.,aec �.�..
r�Fct
Est DSVI = 185
mUgSS
A�:rnceie
'"4'L
Ratios and Loadinas
TKNrrCOD
= 0 08
SOD'IMLSS Loading
= 0 069
mgBOOImgTSS
TPITCOD
= 0 02
TCOD/day Loading
= 2002 70
Ib1day
TCODrrKN
= 1333
NH4-N/day Loading
= 112.56
ibfday
TCOD/TP
= 5333
TKN/day Loading
= 15022
lb/day
TCODNSS
= 1 42
TWday Loading
= 3755
lb/day
MLVSS/MLSS
= 0 75
BOD'/day Loading
= 910 32
lb/day
TCODMILSS Loading
= 0 151
mgCOD/mgTSS
Person EOuiv -
= 5351
PE
TKN/MLSS Loading
= 0 011
mgNrmgTSS
An Aix Ox Mass Fractions = 5.8.35.1.59 1
%
TP/MLSS Loading
= 0 003
mgPfmgTSS
SOD' N.P
= 1001654 1
F/M' Loading
= 0 16
mgBOD/mgVSS
Percent TCOD Removed
= 93 00
%
Volatile suspended solids
= 3721.51
mg,L
Percent N Removed
= 9066
'o
RSCOD/MLSS Loading
= 003
mgCODrmgTSS
Percent TKN Removed
= 95.53
%
Percent TP Removed
= 10000
%
Enviro—Tech License # 63868
Enviro-Tech Unlimited Construction Services, LLC. Telephone (252) 491-5277
PO Box 69, Harbinger, NC 27941 FAX (252) 491-5777
Ite m
KDH WWTP
Wastewater Plant Modification Budget Proposal
Description
Flow Splitter Box
1 Akalinity Feed
2 Carbon feed for Anoxic 1
3 Ferric Chloride Feed
4 Chemical Feed Containment
Anaerobic Zone
1 Install curtain between Anaerobic 1 and Anoxic 1
2 Install New Mixer
3 Install Mixer Support
4 Install Mixer Control Panel
5 Run conduit and wiring for Mixer
6 Remove Existing Aeration
7 Crane Support for Installation
Anoxic Zone 1
1 Add curtain between Anoxic 1 and Aeration 1
2 Install New Mixer
3 Install Mixer Support
4 Install Mixer Control Panel
5 Run conduit and wiring for Mixer
6 Remove Existing Aeration
7 Crane Support for Installation
8 Anoxic Zone Bypass with Air Piping
1 Reconfigure diffuser layout
2 Replace diffuser sleeves
3 Add (2) VFD's on Blowers
Aerboic Zone 1
Materials Labor Total
$ 6,938.75
$1, 850.00
$
8,788.75
$ 4,536.88
$1, 500.00
$
6,036.88
$ 4,536.88
$1, 500.00
$
6,036.88
$ 1,334.38
$ 650.00
$
1,984.38
Total
$
22,846.88
$ 19,161.63
$ 3, 000.00
$
22,161.63
$ 15, 985.81
$ 2, 000.00
$
17, 985.81
$ 5,337.50
$1, 500.00
$
6,837.50
$ 5,337.50
$1, 000.00
$
6,337.50
$ 2,135.00
$1, 000.00
$
3,135.00
$ 80.06
$ 500.00
$
580.06
$ 3, 500.00
$
3,500.00
Total
$
60,537.50
$ 19,161.63
$ 3, 000.00
$
22,161.63
$ 15, 985.81
$ 2, 000.00
$
17, 985.81
$ 8,187.73
$ 3, 000.00
$
11,187.73
$ 5,337.50
$1, 000.00
$
6,337.50
$ 2,135.00
$1, 000.00
$
3,135.00
$ 80.06
$ 500.00
$
580.06
$ 3, 500.00
$
3,500.00
$ 800.63
$ 500.00
$
1,300.63
Total
$
66,188.35
$2,882.25 $1,500.00 $4,382.25
$5,303.34 $2,000.00 $7,303.34
$10,675.00 $5,000.00 $15,675.00
Total $27,360.59
Enviro—Tech License # 63868
Enviro-Tech Unlimited Construction Services, LLC. Telephone (252) 491-5277
PO Box 69, Harbinger, NC 27941 FAX (252) 491-5777
Recycle Pump Chamber
1 Set Concrete Recycle Chamber
2,668.75
1,500.00
4,168.75
2 Install Recycle Pumps
16,012.50
2,500.00
18,512.50
3 Install Recycle Pump Control panel
7,472.50
1,000.00
8,472.50
4 Run conduit and wiring for Pumps
3,202.50
1,000.00
4,202.50
5 Install 3" Piping and Check Valves
2,668.75
1,000.00
3,668.75
6 Install Mag Meter
4,803.75
1,000.00
5,803.75
7 Crane Support for Installation
3,500.00
3,500.00
8
Total
48, 328.75
Anoxic Zone 2
Add Curtain between Aeration 1 and Anoxic 2
19,215.00
3,000.00
22,215.00
Install New Mixer
$
15,985.81
$2,000.00
17,985.81
Install Mixer Support
$
8,187.73
$3,000.00
11,187.73
Install Mixer Control Panel
$
5,337.50
$1,000.00
6,337.50
Run conduit and wiringfor Mixer
$
2,135.00
$1,000.00
3,135.00
Remove Existing Aeration
$
80.06
$ 500.00
580.06
Crane Support for Installation
$3,500.00
3,500.00
Anoxic Zone Bypass with Air Piping
$
800.63
$ 500.00
1,300.63
Total
66, 241.73
Aerboic Zone 2
Reconfigure diffuser layout
$
533.75
$ 500.00
$
1,033.75
Replace diffuser sleeves
$
1,921.50
$ 500.00
$
2,421.50
Total
$
3,455.25
Instrumentation
ORP for Anarobic
$
3,251.25
$ 500.00
$
3,751.25
ORP for Anox 1
$
3,251.25
$ 500.00
$
3,751.25
ORP for Anox 2
$
3,251.25
$ 500.00
$
3,751.25
DO for areation front end
$
5,657.75
$1,500.00
$
7,157.75
DO for areation recycle chanber
$
5,657.75
$1,500.00
$
7,157.75
PH for areation recycle chamber
$
1,334.38
$ 500.00
$
1,834.38
Total
$
27,403.63
EQ Tank
Install Mixers
68,320.00
18,000.00
86,320.00
Aeration Modifications
5,337.50
3,000.00
8,337.50
Install Electrical
10,675.00
4,000.00
14,675.00
Control Panels and Installation
12,810.00
6,000.00
18,810.00
Mixer supports
8,540.00
6,000.00
14,540.00
Crane Support
3,500.00
3,500.00
Total 146,182.5C
Subtotal $ 445, 698.29
Markup @ 15% $ 66,854.74
Total $512,553.03
Item Description
Flow Splitter Box
Materials Labor Total
1 Aka I i n ity Feed
$ 61938.75
$ 11850.00
$
81788.75
2 Carbon feed for Anoxic 1
$ 41536.88
$ 11500.00
$
61036.88
3 Ferric Chloride Feed
$ 41536.88
$ 11500.00
$
61036.88
4 Chemical Feed Containment
$ 11334.38
$ 650.00
$
11984.38
Total
$
22,846.88
Anaerobic Zone
1 Install curtain between Anaerobic 1 and Anoxic 1
$ 19,161.63
$ 31000.00
$
22,161.63
2 Install New Mixer
$ 151985.81
$ 21000.00
$
17, 985.81
3 Install Mixer Support
$ 51337.50
$ 11500.00
$
61837.50
4 Install Mixer Control Panel
$ 51337.50
$ 11000.00
$
61337.50
5 Run conduit and wiring for Mixer
$ 21135.00
$ 11000.00
$
31135.00
6 Remove Existing Aeration
$ 80.06
$ 500.00
$
580.06
7 Crane Support for Installation
$ 31500.00
$
31500.00
Total
$
60,537.50
Anoxic Zone 1
1 Add curtain between Anoxic 1 and Aeration 1
$ 19,161.63
$ 31000.00
$
22,161.63
2 Install New Mixer
$ 151985.81
$ 21000.00
$
17, 985.81
3 Install Mixer Support
$ 81187.73
$ 31000.00
$
11,187.73
4 Install Mixer Control Panel
$ 51337.50
$ 11000.00
$
61337.50
5 Run conduit and wiring for Mixer
$ 21135.00
$ 11000.00
$
31135.00
6 Remove Existing Aeration
$ 80.06
$ 500.00
$
580.06
7 Crane Support for Installation
$ 31500.00
$
31500.00
8 Anoxic Zone Bypass with Air Piping
$ 800.63
$ 500.00
$
11300.63
Total
$
66,188.35
Aerboic Zone 1
1 Reconfigure diffuser layout
$2,882.25
$1,500.00
$4,382.25
2 Replace diffuser sleeves
$5,303.34
$2,000.00
$7,303.34
3 Add (2) VFD's on Blowers
$10,675.00
$5,000.00
$15,675.00
Total
$27,360.59
Recycle Pump Chamber
1 Set Concrete Recycle Chamber
21668.75
11500.00
41168.75
2 Install Recycle Pumps
16,012.50
21500.00
18,512.50
3 Install Recycle Pump Control panel
71472.50
11000.00
81472.50
4 Run conduit and wiring for Pumps
31202.50
11000.00
41202.50
5 Install 3" Piping and Check Valves
21668.75
11000.00
31668.75
6 Install Mag Meter
41803.75
11000.00
51803.75
7 Crane Support for Installation
31500.00
31500.00
8
Total
48,328.75
Anoxic Zone 2
Add Curtain between Aeration 1 and Anoxic 2
19,215.00
31000.00
221215.00
Install New Mixer
$ 151985.81
$ 21000.00
17, 985.81
Install Mixer Support
$ 81187.73
$ 31000.00
111187.73
Install Mixer Control Panel
$ 51337.50
$ 11000.00
61337.50
Run conduit and wiring for Mixer
$ 21135.00
$ 11000.00
31135.00
Remove Existing Aeration
Crane Support for Installation
Anoxic Zone Bypass with Air Piping
Reconfigure diffuser layout
Replace diffuser sleeves
ORP for Anarobic
ORP for Anox 1
ORP for Anox 2
DO for areation front end
DO for areation recycle chanber
PH for areation recycle chamber
Install Mixers
Aeration Modifications
Install Electrical
Control Panels and Installation
Mixer supports
Crane Support
$
80.06 $ 500.00
580.06
$ 31500.00
31500.00
$
800.63 $ 500.00
11300.63
Total
66,241.73
Aerboic Zone 2
$
533.75 $ 500.00
$
11033.75
$
11921.50 $ 500.00
$
21421.50
Total
$
31455.25
Instrumentation
$
31251.25 $ 500.00
$
31751.25
$
31251.25 $ 500.00
$
31751.25
$
31251.25 $ 500.00
$
31751.25
$
51657.75 $ 11500.00
$
71157.75
$
51657.75 $ 11500.00
$
71157.75
$
11334.38 $ 500.00
$
11834.38
Total
$
27,403.63
EQTank
68,320.00 18,000.00 86,320.00
51337.50
31000.00
81337.50
10,675.00
41000.00
14,675.00
12, 810.00
61000.00
18, 810.00
81540.00
61000.00
14, 540.00
31500.00
31500.00
Total
146,182.50
Subtotal $ 445, 698.29
Markup @ 15% $ 66,854.74
Total $ 512,553.03