Loading...
HomeMy WebLinkAbout2018 CAMA Annual Report 1 of 2�� DUKE ENERGY April 30, 2019 North Carolina Department of Environmental Quality Division of Water Resources Water Quality Regional Operations Section 3800 Barrett Drive 1628 Mail Service Center Raleigh, North Carolina 27699 Attn: Mr. Eric Rice (submitted electronically via FTP) Re: 2018 Mayo CAMA Annual Report Mayo Steam Electric Plant 10660 Boston Road Roxboro, NC 27574 Dear Mr. Rice: 2500 Fairfax Road Greensboro, North Carolina 27407 336-2154576 Enclosed you will find the 2018 CAMA Annual Report prepared by SynTerra Corporation for the Duke Energy Mayo Steam Electric Plant. This Annual Report documents the information required by the North Carolina Department of Environmental Quality per letter dated May 1, 2017. If you have any questions or need any clarification regarding the information provided, feel free to contact me at Kimberlee.witt@duke-energy.com or at 336-215-45776 at your convenience. Respectfully submitted, Kimberlee Witt, PE, ME Duke Energy, Environmental Services cc : Eric Smith — DEQ Central Office Steve Lanter — DEQ Central Office Ed Sullivan - Duke Energy Scott Davies — Duke Energy Jerry Wylie — SynTerra Corporation Page 1 of 1 2018 LAMA ANNUAL INTERIM MONITORING REPORT FOR MAYO STEAM ELECTRIC PLANT 10660 BOSTON ROAD ROXBORO, NC 27574 APRIL 30, 2019 PREPARED FOR: DUKE ENERGY PROGRESS, LLC ('DUKE ENERGY., PREPARED BY: it I synTerra W W W. SYNTE RRACO RP. CO M 2018 CAMA ANNUAL INTERIM MONITORING REPORT FOR MAYO STEAM ELECTRIC PLANT 10660 BOSTON ROAD ROXBORO, NC 27574 APRIL 30, 2019 PREPARED FOR DUKE ENERGY PROGRESS,. LLC ��DUKE N RGYm PREPARED BY SYNTERRA CORPORATION 14 . l synTerra Erin Kinsey T CpQ�ect Eng' eer C LG 1425 I' f ject Manager 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra EXECUTIVE SUMMARY ES.1 Introduction This annual report evaluates the results of groundwater monitoring performed on a quarterly basis during the 2018 calendar year at the Mayo Steam Electric Plant (Mayo, Plant, or Site). The Site is a coal-fired electricity -generating facility owned and operated by Duke Energy located in Roxboro, Person County, North Carolina. Monitoring was performed in accordance with the requirements of the Coal Ash Management Act (CAMA) of 2014 (15A NCAC 13B .2001), and in correspondence with the North Carolina Department of Environmental Quality (NCDEQ), and based on the Interim Monitoring Plan (IMP) developed for the Site. A generalized conceptual site model (CSM) for the Mayo Site is presented below. The ash basin was constructed within a former perennial stream valley in the North Carolina Piedmont. The following components of the hydrogeologic setting limit constituent of interest (COI) transport in groundwater: • Topographic ridges reflect groundwater divides on either side of the stream valley that inhibit lateral flow side -gradient of the basin. • Naturally occurring upward vertical groundwater gradients to the former perennial stream limits downward migration of COIs under the basin. • Nearly neutral hydraulic gradients within impounded ash promote horizontal flow across the ash basin. • The hydraulic pressure of ponded water in the ash basin drives seepage flow of groundwater under the basin dam. • Beyond the dam, groundwater flows upward toward Crutchfield Branch, limiting migration of COIs to the area in close proximity to the dam. The 2018 distribution and concentration of COIs in groundwater within the surficial, transition zone, and bedrock flow zones are evaluated with respect to historical Site conditions. Changes to Site conditions that occurred during 2018 that may influence groundwater flow or quality are also discussed. ES.2 Key Findings Key findings of the quarterly CAMA monitoring conducted in 2018 include: • The Ash Basin is considered the primary source of coal combustion residuals (CCR)-related constituents in groundwater at the Site. Page ES-1 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra • The current distribution of COIs at the Mayo Plant are contained within the Duke Energy property boundary with the exception being select COIs in groundwater beyond the compliance boundary at wells MW-16S/D/BR. • No imminent hazards to human health and safety or evidence of ecological risks related to the ash basin have been identified. • Groundwater flow direction is consistent with the slope -aquifer system model common to the Piedmont Physiographic Province and is away from potential water supply receptors located upgradient of the Site. • The ash basin is a flow -through system with upward hydraulic gradients into the former stream valley at upgradient ends of the basins. Hydraulic gradients are predominantly horizontal across the basin. Hydraulic gradients are downward in the vicinity of the ash basin dam. Upward vertical gradients occur below the dam in the vicinity of receiving water bodies (groundwater discharge areas). This flow -through system limits downward vertical migration of COIs into groundwater to the areas in close proximity to the dam. • Boron is the key indicator of groundwater migration associated with the ash basins. • Based on review and comparison with historical Site data, the COI plume at the Mayo Plant appears to be stable. ES.3 Interim Monitoring Plan Updates Duke Energy submitted an optimized IMP to NCDEQ on March 20, 2019, which was approved on April 4, 2019. The plan recommends adjusting the well and water quality parameter lists to more efficiently monitor groundwater conditions at the Site. The optimized 2019 IMP is designed to provide data associated with changes to the Site groundwater occurrence, flow and quality as remedial efforts (e.g., ash basin decanting, closure) are phased in. Please note that the list of Site -specific COIs for inclusion into the Corrective Action Plans (CAPs) is currently undergoing review using the COI management approach presented to the NCDEQ on March 15, 2019. COIs proposed for management under the CAP would be based on: • Comparing constituent concentrations to regulatory standards and/or background values • Evaluating each constituent's relative mobility Page ES-2 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra • Reviewing constituent distribution in groundwater based on geochemical conditions • Comparing each constituent's relative concentration observed in ash pore water to the concentration observed in groundwater • Evaluating constituent concentration trends over time The results of this review will be presented in the CAP and may result in proposed modifications to the monitoring program at that time. Page ES-3 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra TABLE OF CONTENTS SECTION PAGE EXECUTIVE SUMMARY.................................................................................................... ES-1 ES.1 Introduction............................................................................................................ ES-1 ES.2 Key Findings........................................................................................................... ES-1 ES.3 Interim Monitoring Plan Updates....................................................................... ES-2 1.0 INTRODUCTION.........................................................................................................1-1 1.1 Objectives and Purpose............................................................................................1-1 1.2 Site Overview and History......................................................................................1-2 1.3 Changing Site Conditions........................................................................................1-2 1.4 Regional Hydrogeology...........................................................................................1-3 1.5 Site Hydrogeology....................................................................................................1-3 1.6 Previous Reporting...................................................................................................1-5 1.7 Overview of Findings for 2018................................................................................1-6 2.0 2018 MONITORING ACTIVITIES........................................................................... 2-1 2.1 2018 Quarterly Sampling Schedule........................................................................ 2-1 2.2 Changes to the CAMA Groundwater Monitoring Network .............................. 2-1 2.3 Water Level Measurements.....................................................................................2-2 2.4 Groundwater Sampling Methods........................................................................... 2-2 2.5 Laboratory Analyses................................................................................................. 2-3 2.6 Quality Control Summary (Data Validation).......................................................2-3 3.0 2018 MONITORING RESULTS.................................................................................3-1 3.1 Site -Wide Groundwater Occurrence and Flow .................................................... 3-1 3.1.1 Ash Basin Groundwater Occurrence and Flow..............................................3-2 3.1.2 Horizontal Gradients..........................................................................................3-3 3.1.3 Vertical Gradients............................................................................................... 3-3 3.1.4 Groundwater Seepage Velocity........................................................................ 3-4 3.2 Data Reduction and Evaluation..............................................................................3-5 3.3 Ash Basin Water Quality........................................................................................3-10 Page i 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra TABLE OF CONTENTS (CONTINUED) SECTION PAGE 3.3.1 Site Conditions.................................................................................................. 3-10 3.3.2 Constituent Occurrence and Plume Status ................................................... 3-10 4.0 SUMMARY AND CONCLUSIONS.........................................................................4-1 4.1 Groundwater Occurrence and Flow......................................................................4-1 4.2 Groundwater Quality............................................................................................... 4-1 5.0 INTERIM MONITORING PLAN UPDATES......................................................... 5-1 5.1 Optimization of the Monitoring Program.............................................................5-1 5.2 2019 Monitoring and Reporting Schedule.............................................................5-2 6.0 REFERENCES................................................................................................................ 6-1 Page ii 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra LIST OF FIGURES Figure 1-1 Site Location Map Figure 1-2 Site Map with Monitoring Well Locations Figure 3-1 Water Level Map - Surficial Flow Zone (November 5-6 2018) Figure 3-2 Water Level Map - Transition Zone (November 5-6 2018) Figure 3-3 Water Level Map - Bedrock Flow Zone (November 5-6 2018) Figure 3-4 Hydrographs Figure 3-5 Flow Velocity Vectors and Magnitudes - Surficial Flow Zone Figure 3-6 Flow Velocity Vectors and Magnitudes - Transition Zone Flow Zone Figure 3-7 Flow Velocity Vectors and Magnitudes - Bedrock Flow Zone Figure 3-8 Flow Velocity Vectors and Magnitudes through Dam Figure 3-9 General Cross -Section A -A' Figure 3-10 General Cross -Section B-B' Figure 3-11 Isoconcentration Map - Geomean of Boron in Surficial Flow Zone Figure 3-12 Isoconcentration Map - Geomean of Boron in Transition Zone Flow Zone Figure 3-13 Isoconcentration Map - Geomean of Boron in Bedrock Flow Zone Figure 3-14 Time Series Plots - Ash Basin (1 of 2) Figure 3-15 Time Series Plots - Ash Basin (2 of 2) LIST OF TABLES Table 1-1 Monitoring Well Construction Information Table 2-1 2018 CAMA Water Elevations Table 3-1 Horizontal Hydraulic Gradients and Flow Velocities Table 3-2 Vertical Hydraulic Gradients Table 3-3 2018 Comprehensive Groundwater Quality Data Table 3-4 Data Qualifiers and Acronyms Table 3-5 Geometric Mean of COIs - 2018 Quarterly Data Table 3-6 Constituents of Interest Evaluation Table 3-7 Groundwater Background Threshold Values and Regional Background Concentration Ranges Page iii 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra LIST OF APPENDICES Appendix A Correspondence with NCDEQ Appendix B Field Data and Forms • Groundwater Sampling Forms • Water Level Measurements • Well Abandonment Records • Well/Boring Logs Appendix C Approved Low Flow Sampling Plan Appendix D Laboratory Analytical Data (Laboratory Reports) and Data Validation Checklists • Q1-2018 • Q2-2018 • Q3-2018 • Q4-2018 Appendix E Optimized Interim Monitoring Plans for 2019 Page iv 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra LIST OF ACRONYMS 02L NCAC Title 15A, Subchapter 02L. Groundwater Classification and Standards BTV Background Threshold Value °C degrees Celsius CAMA Coal Ash Management Act CAP Corrective Action Plan CCR Coal Combustion Residuals COC Chain of Custody COI Constituent of Interest CSA Comprehensive Site Assessment CSM Conceptual Site Model dh/dl hydraulic gradient DO Dissolved Oxygen DQO Data Quality Objective DWM Division of Waste Management EMP Effectiveness Monitoring Program FGD Flue Gas Desulfurization ft foot IMAC Interim Maximum Allowable Concentration IMP Interim Monitoring Plan k horizontal hydraulic conductivity LRB Lined Retention Basin MARLAP Multi -Agency Radiological Laboratory Analytical Protocols mg/L Milligrams per liter NC North Carolina NCAC North Carolina Administrative Code NCDEQ North Carolina Department of Environmental Quality ne effective porosity NTUs Nephelometric Turbidity Units ORP Oxidation -Reduction Potential Pace Pace Analytical PBTV Provisional Background Threshold Value Plant/Site Mayo Steam Electric Plant Shealy Shealy Environmental Services SOC Special Order by Consent SOP Standard Operating Procedures S.U. Standard Units Page v 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra LIST OF ACRONYMS (CONTINUED) TDS Total Dissolved Solids µg/L microgram per liter USEPA United States Environmental Protection Agency UTL Upper Tolerance Limit Vs seepage flow velocity WWTB Wastewater Treatment Basin Page vi 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra 1.0 INTRODUCTION 1.1 Objectives and Purpose The purpose of this report is to evaluate the data from the Interim Monitoring Plan (IMP) groundwater monitoring performed at Mayo Steam Electric Plant (Mayo, Plant, or Site) for the 2018 calendar year. IMP sampling is conducted at the Site to meet requirements of the Coal Ash Management Act (CAMA) of 2014 (15A NCAC 13B .2001). Sampling was conducted on monitoring wells designated as part of the IMP in correspondence from the North Carolina Department of Environmental Quality (NCDEQ), dated May 1, 2017 (Appendix A). An Effectiveness Monitoring Program (EMP) is required by CAMA §130A-309.209 (b)(1)e. The EMP for Mayo is anticipated to begin once the basin closure and groundwater CAP have been implemented. In the interim, an IMP has been developed at the direction of NCDEQ. The CAP, and a proposed EMP, will be submitted at a future date. This report is prepared in accordance with NCDEQ's Division of Water Resources 2017 guidance document for the investigation of soil and groundwater contamination (NCDEQ, 2017). Data were evaluated for groundwater quality, occurrence, and flow at the Site. Constituents of interest (COIs) are those parameters with concentrations in groundwater greater than one or more of the groundwater screening criteria; (North Carolina Administrative Code [NCAC], Title 15A Subchapter 02L [02L], Interim Maximum Allowable Concentration [IMAC], or approved background threshold value [BTV]). The distribution and concentration of COIs in groundwater within the surficial, transition zone, and bedrock flow zones are discussed and evaluated with respect to historical Site conditions. Changes to ash and wastewater handling systems at the Site that occurred during 2018 that may affect groundwater conditions at the Site are also documented and discussed. Geometric means (geomeans) of the COI data is used to support the analysis of groundwater conditions and to provide a basis for defining the extent of the COI plume. The geomean method was selected in order to capture the central tendency of the data, which may vary over several orders of magnitude. Reported geomeans were calculated using the four quarters of IMP data from 2018. A single sample result may not be an accurate representation of the concentrations observed over four quarters of data in 2018. Evaluating plume geometries with geomean data limits the potential for incorporating occasions when COIs are reported at concentrations outside of the typical Page 1-1 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra concentration range for a given sample location. Previous site assessments may have over -represented areas impacted by the ash basin by posting a single data set on maps and cross -sections that may have included isolated data anomalies. Rationale and procedures for calculating geomeans are discussed in greater detail in Section 3.2. 1.2 Site Overview and History Mayo is a coal-fired electricity -generating facility in north -central North Carolina owned and operated by Duke Energy Progress, LLC (Duke Energy). The Site is situated in the northeastern corner of Person County, north of the City of Roxboro. Figure 1-1 depicts the Site topography and nearby surface water features. Mayo began coal-fired power production in 1983. There is a single ash basin located northwest of the power block. The ash basin, which contains ash generated from the Plant's historic coal combustion, is approximately 140 acres in size and is constructed with an earthen dike. A 500-foot compliance boundary encircles the ash basin, except on the northeastern edge of the Site where the compliance boundary is co -located with the boundary of the Site. Mayo coal combustion residuals (CCR) are now handled dry. Beginning in November 2014, CCR from Mayo has been placed in the on -site industrial landfill (Monofill) (NCDEQ DWM Permit No. 7305-INDUS). Other CCR flows to the ash basin were ceased in 2017 and processed through the Thermal Evaporator. Groundwater flow is generally to the north from the ash basin. 1.3 Changing Site Conditions Several changes to Site operations and conditions to support ash basin closure occurred in 2018, or are scheduled to occur in 2019, that are relevant to ash basin groundwater evaluation. Decanting of the ash basin is anticipated to begin no later than June 30, 2019. Transducers and geochemical sondes are in place in select wells in and around the ash basin to record changes in water levels and geochemical parameters. Reducing the hydraulic head in the ash basin through decanting will reduce the vertical and horizontal hydraulic gradients that drive constituent migration, with the greatest reduction near the dam. Further, in compliance with a Special Order by Consent (August 2018), a seep collection system is operational that captures flow from the east and west ash basin toe drains. Page 1-2 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra Construction of a lined retention basin (LRB), wastewater treatment basin (WWTB), and associated conveyance piping was ongoing in 2018. This system will come online in 2019 to receive industrial stormwater currently flowing to the ash basin. 1.4 Regional Hydrogeology The Site is located in the Piedmont Physiographic Province. A conceptual model of groundwater flow in the Piedmont, which is applicable to Mayo, was developed by LeGrand (1988, 1989) and Harned and Daniel (1992). The model describes a regolith and bedrock drainage basin with a perennial stream valley system. Groundwater is recharged by drainage in the highlands followed by discharge to the perennial stream. Flow in the regolith follows porous media principles, while flow in bedrock is provided by the presence of secondary porosity features (fractures). Rarely does groundwater move beneath a perennial stream to another more distant stream or across drainage divides (LeGrand, 1989). 1.5 Site Hydrogeology Groundwater from the ash basin flows south to north toward Crutchfield Branch. The topographically controlled flow direction provides natural hydraulic control of potential COI migration within the former stream valley system. The predominant direction of groundwater flow is to the north. Three hydrostratigraphic units were identified at the Mayo Site. • Surficial Zone (alluvium, residual soil, fill/reworked soil, and saprolite): Thickness is related to the topography, type of parent rock and geologic history, but is generally only a few feet at the Mayo. Saprolite beneath the Site is almost entirely unsaturated. Saturated saprolite is more frequently encountered in the extreme south area of the Site and around Crutchfield Branch in the northern portion of the Site. • Transition Zone: A relatively transmissive zone of partially weathered rock. • Bedrock Zone: Fractured competent bedrock. As described in the 2017 Comprehensive Site Assessment (CSA) Update, most fractures observed at the Site are small and do not seem to be well-connected based on available data and observations (SynTerra, 2017). Ash pore water is present as wastewater within the ash basin. Page 1-3 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra The following presents a generalized conceptual site model (CSM) for Mayo ash basin, which was constructed within a former perennial stream valley in the Piedmont of North Carolina: • Generally, the physical setting for the ash basin within the former perennial stream valley limits the horizontal and vertical migration of constituents to areas near and directly downgradient of the basin dam. • The stream downgradient from the dam is a groundwater discharge zone that limits the horizontal migration of constituents downgradient of the basin. • The groundwater flow paths (the area of potential constituent migration in groundwater from the basins) remain in the former stream valley. • Topographic ridges located in areas upgradient and side -gradient of the basin reflect groundwater divides. • Crutchfield Branch (downgradient from the dam) is a groundwater discharge zone that limits the horizontal migration of constituents downgradient of the basin. • The migration of ash pore water to the underlying groundwater near the dam is the primary mechanism for constituent transport. • Boron is the CCR constituent most indicative of COI migration from the ash basin with a discernable plume pattern. Other less mobile metals such as arsenic, chromium, cobalt, and selenium, (if detected in groundwater), might be present within the area of the boron plume but to a lesser extent. • COI migration to downgradient surface water bodies has not caused constituent concentrations to be greater than surface water quality standards under current conditions. In summary, the ash basin is a flow -through system with groundwater discharging into the upgradient ends, flowing laterally through the central portions and migrating downward in the vicinity of the ash basin dam, then flowing upward beyond the dam toward Crutchfield Branch. This flow system, along with the stratified nature of the fly ash and bottom ash in the basin, results in limited downward vertical migration of COIs into the underlying groundwater upstream of the dam. In the vicinity of the dam, groundwater flows downward out of the basin and under the dam. Beyond the dam, groundwater flows upward toward the surface water discharge zone, limiting downward migration of COIs to the area near the dam. Boron is the CCR constituent Page 1-4 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra most indicative of groundwater migration from the ash basin with a discernable plume pattern. Monitoring wells are installed in the surficial, transition, and bedrock flow zones as part of the on -going ash basin assessment activities. Figure 1-2 illustrates the locations of the CAMA monitoring well network with respect to the ash basin and Site infrastructure. Table 1-1 is a well construction table of CAMA monitoring wells included in the 2018 IMP plus additional wells installed in 2018. 1.6 Previous Reporting Detailed descriptions of the Site operational history, the CSM, physical setting and features, geology/hydrogeology, and results of the findings of CAMA-related work are documented in full in the following reports: • Comprehensive Site Assessment Report - Mayo Steam Electric Plant (SynTerra, 2015a). • Corrective Action Plan Part 1 - Mayo Steam Electric Plant (SynTerra, 2015b). • Corrective Action Plan Part 2 — Mayo Steam Electric Plant (SynTerra, 2016a). • Comprehensive Site Assessment Supplement 1— Mayo Steam Electric Plant (SynTerra,2016b) • Comprehensive Site Assessment Update — Mayo Steam Electric Plant (SynTerra, 2017) NCDEQ provided partial approval of background threshold values in a letter to Duke Energy dated May 14, 2018 (Appendix A). Comparisons of data to BTVs in this report is in reference to those approved values. BTVs will be further refined and updated in 2019. In a letter dated May 7, 2018, NCDEQ indicated that assessment activities are sufficient to proceed with preparing a corrective action plan (CAP), However, additional assessment activities were identified to (e.g., groundwater to surface water migration) be addressed in conjunction with preparation of a CAP. This report provides an evaluation of the groundwater data collected during the 2018 calendar year. The following sections will present the 2018 CAMA monitoring data and provide an integrated interpretation of site conditions and plume status. Page 1-5 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra 1.7 Overview of Findings for 2018 Key findings of the CAMA groundwater data for 2018 include: • No imminent hazards to public health and safety have been identified. • The ash basin is considered the primary source of CCR-related constituent concentrations in groundwater at the Site. • COIs are contained within Duke Energy's property with the exception of unoccupied private property located north of Mayo Lake Road and downgradient of the ash basin. • The ash basin is a flow -through basin with groundwater migration into the upgradient ends. Groundwater flows predominantly laterally through the middle regions with downward migration in the vicinity of the dam. COI transport is downward out of the basin and under the dam. Downgradient of the dam, the hydraulic gradient causes upward flow toward the surface water discharge zone, limiting downward vertical migration of COIs. • Bedrock groundwater exhibits CCR-related effects at areas with a strong downward vertical gradient, as seen at the ash basin dam. • Boron continues to be a key indicator of plume characteristics associated with the ash basin. Additional COIs identified as being greater than their respective standards are generally confined within the extent of the boron plume at the Site. • Cobalt, molybdenum, manganese, total dissolved solids (TDS), and strontium have been detected at concentrations greater than applicable comparison criteria at areas downgradient of the ash basin based on geomeans of 2018 data. • Based on review and comparison with historical Site data, the COI plume at the Mayo Plant appears to be stable. • Boron concentrations in the surficial and transition flow zones downgradient of the basin have decreased. Mayo received a SOC in August 2018, which requires continuous operation of a collection system for water at the toe of the dam. Fourth quarter 2018 groundwater sampling occurred after the collection system began regular operations; whereas, third quarter 2018 sampling occurred prior to regular collection system operations. • Analytical results for the third and fourth quarter 2018 sampling events indicate a reduction of boron concentration in wells CW-2D and MW-16S, located downstream of the ash basin dam. Page 1-6 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra • Based on updated 2018 flow and transport modeling (SynTerra, 2018), decanting of the ash basin is predicted to cause the boron plume to recede. Evaluation of 2019 sampling results will provide additional data to determine if the previously estimated boron plume has receded inside the compliance boundary as fourth quarter 2018 results indicate. Page 1-7 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra 2.0 2018 MONITORING ACTIVITIES 2.1 2018 Quarterly Sampling Schedule The CAMA IMP monitoring well network was sampled on a quarterly basis during 2018. New wells installed during the year were included in the monitoring network. New wells will be monitoring quarterly until four events have occurred. Thereafter the data will further evaluated to determine the appropriate monitoring frequency. The sampling events occurred in accordance with the IMP schedule on the following dates: • Quarter 1 January 15 through 22, 2018 • Quarter 2 April 2 through 4, 2018 • Quarter 3 July 17 through19, 2018 • Quarter 4 November 6 through 8, 2018 Groundwater sampling was performed by technical personnel from Duke Energy or subcontracted by Duke Energy. Comprehensive data submittal to NCDEQ occurred on a monthly basis in 2018 until a quarterly submittal schedule was approved by NCDEQ (June 6, 2018 email to Duke Energy), in accordance with the following schedule: • Monthly: January through June 2018 • Quarterly: Quarter 3 September 2018 Quarter 4 January 2019 2.2 Changes to the CAMA Groundwater Monitoring Network One CAMA monitoring well was abandoned at the Site in 2018. Eleven CAMA wells were installed at the Site in 2018 to address data gaps identified in the 2017 CSA Update (SynTerra, 2017). Monitoring wells BG-01, BG-02, CW-01/D, CW-02/D, CW-03/D, CW- 04, CW-05, CW-06, MW-02, MW-03, and MW-12S/D are dual-purpose wells incorporated in both the IMP and CCR groundwater monitoring networks. Wells Abandoned during 2018 • ABMW-04 Abandoned due to erosion that undercut well pad Wells Installed during 2018 • ABMW-04X Replacement well for ABMW-04 • MW-103BRM Deep bedrock well downgradient of the ash basin Page 2-1 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra • MW-103BRL Deep bedrock well downgradient of the ash basin • MW-104BRM Deep bedrock well downgradient of the ash basin • MW-104BRL Deep bedrock well downgradient of the ash basin • MW-105BRM Deep bedrock well downgradient of the ash basin • MW-105BRL Deep bedrock well downgradient of the ash basin • MW-107BRM Deep bedrock well downgradient of the ash basin • MW-107BRL Deep bedrock well downgradient of the ash basin • AP-6 Ash basin pumping test well • CCR-109BR CCR characterization well Well installation and abandonment documentation for 2018 are included in Appendix B. Well locations are shown on Figure 1-2. 2.3 Water Level Measurements During each 2018 quarterly IMP sampling event, water levels were measured for the CAMA monitoring well network. Water level maps of monitored flow zones were prepared based on the December 2018 sampling event as discussed in Section 3.1. This information was used to calculate groundwater flow direction and rate. Water levels were recorded during a 24- to 48-hour period (prior to well purging and sampling) using an electric water level indicator and referenced to a surveyed top of casing mark. USEPA CCR Rule compliance monitoring well water level data are generally not included in data evaluations for 2018 because water levels from the wells were not collected during the 24-hour period in which CAMA IMP water levels were collected. As of Q12019, Duke Energy has implemented an optimized program that includes selected CCR wells to provide better water level data coverage across the Site. Groundwater elevations calculated from water levels measured during each quarterly 2018 IMP sampling events are provided in Table 2-1. Groundwater flow direction and velocity is discussed in Section 3.1. A copy of the water level measurements from the CAMA monitoring well network is included in Appendix B. 2.4 Groundwater Sampling Methods Field personnel conducted groundwater sampling following procedures outlined in the NCDEQ approved Low Flow Sampling Plan, Duke Energy Facilities, Ash Basin Groundwater Assessment Program, North Carolina, June 10, 2015. Groundwater sampling using low Page 2-2 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra flow methods helps to reduce agitation during sampling, resulting in lower sample turbidity. A copy of the Low Flow Sampling Plan is included as Appendix C. Field personnel measured and recorded groundwater quality field parameters during the monitoring well purging process. The field parameters included the following: pH, specific conductivity, temperature, dissolved oxygen (DO), oxygen -reduction potential (ORP), and turbidity. Upon collection of a groundwater sample, the chain of custody (COC) was updated and kept with the respective samples. Upon completion of the sampling, the sample bottles were packed on ice and chilled to approximately 4 degrees Celsius (°C). The sample coolers and accompanying COCs were shipped to Duke by courier. Copies of sampling logs are included in Appendix B. 2.5 Laboratory Analyses The groundwater samples were analyzed for the parameters listed in the IMPS at the time of collection (Appendix A). NC Certified Laboratories performed groundwater quality analyses for selected constituents. GEL Laboratories performed the radiological analyses on the groundwater samples. 2.6 Quality Control Summary (Data Validation) Data review and validation is conducted for CAMA analytical sampling. Data review is a systematic process for evaluation of data against a predefined set of criteria to provide assurance that the data meet project analytical Data Quality Objective (DQO) requirements. The purpose of the data review process is to evaluate whether the usability of analytical data is affected by the overall analytical processes and sample collection and handling procedures. If specific analytical DQOs are not met, the data are qualified (i.e., data flags are assigned to sample results) in accordance with guidelines established by the United States Environmental Protection Agency (USEPA, November 2002). Data review allows the data user to adequately determine whether the data can be used for its intended purpose. The data acceptance criteria are established according to Standard Operating Procedures (SOPs) and Statements of Work provided to the contracted analytical laboratory. Upon receipt of the groundwater analytical data from the respective laboratories, the data is uploaded into the project -specific database. SynTerra performs independent quality control checks of field and laboratory procedures that are used in collecting and analyzing the data. Steps and guidelines followed during the data validation process are modeled on the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (USEPA, January 2017a), Page 2-3 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, January 2017b), Multi -Agency Radiological Laboratory Analytical Protocols Manual (MARLAP), Manual Volume I: Chapter 8, Radiochemical Data Verification and Validation (MARLAP, July 2004), and Data Validation Standard Operating Procedures for Contract Laboratory Program Routine Analytical Services Inorganic Analysis (USEPA, September 2011). In addition, method - specific criteria set forth in the compendium of analytical methods found in the Test Methods for Evaluation Solid Waste; Physical/Chemical Methods (SW-846), Update VI (USEPA, November 2017 [Phase I] and July 2018 [Phase II]) are also evaluated during the validation process. The data review process has been adapted to meet the analytical DQO requirements for generation of definitive critical data. Quality control checks verify that the data collected are of appropriate quality for the intended data use and that the analytical DQOs are met. Thus, all data determined to be useable should be considered compliant and adequate for its intended use of monitoring water quality at the Site. Data validation checklists that were completed for each laboratory package, by quarter, are presented in Appendix D. Page 2-4 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra 3.0 2018 MONITORING RESULTS 3.1 Site -Wide Groundwater Occurrence and Flow No significant changes in water levels or groundwater flow directions are noted in the fourth quarter 2018 groundwater elevation data compared to previous measurements dating back to 2015. The findings are consistent with prior assessment and monitoring data for the Mayo Site. Monitoring well locations are shown on Figure 1-2. Water level elevations for the CAMA IMP monitoring in 2018 are summarized in Table 2-1. In large portions of the subsurface at the Mayo Plant, the surficial flow zone and transition zone are not saturated and shallow bedrock is where groundwater is first encountered. Water level maps were constructed from the most recent water level elevations measured for the fourth quarter (November 2018) (Figure 3-1 through Figure 3-3). General groundwater flow directions can be inferred from the water level contours on water level maps. Groundwater beneath the Site generally flows north-northeast, across the basin and toward Crutchfield Branch stream valley, in all flow zones. There is very little difference between water levels in the surficial or transition zones, where saturated, as compared to the bedrock, except immediately downgradient of the ash basin dam. Hydrographs of select wells are presented in Figure 3-4. Water levels in areas upgradient (MW-12S/D), within the basin (ABMW-2/BR/BRL), immediately downgradient of the dam (CW-2/1)), and downgradient of the Site (MW-16S/D/BR) are consistent over time. Figures 3-5 through 3-7 show plan view velocity vector maps for groundwater in the each of the three primary flow zones described for Mayo (saprolite, transition zone, and bedrock). Figure 3-8 is a cross-section velocity vector map oriented approximately southwest to northeast through the center of the ash basin. This figure was created from comprehensive Site data incorporated into the Site's flow and transport model. Black arrows illustrate the direction and magnitude of groundwater flow at thousands of individual modeled locations. Various colors illustrate relative flow velocities in feet per day (ft/day). These figures provide additional support in understanding groundwater flow throughout Mayo in three dimensions. Key conclusions from evaluation of these figures include: Page 3-1 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra • Velocity vector maps (Figures 3-5 through 3-7) generally align with groundwater flow directions throughout the Site inferred from water level maps (Figures 3-1 through 3-3). • Horizontal groundwater flow velocities in areas with free ponded water within the ash basin (Figure 3-5) are less than those seen upgradient of the ash basin and below the ash basin dam (Figure 3-6 and 3-7). • Downgradient of the ash basin dam, groundwater in all flow zones flows toward Crutchfield Branch, which is the main groundwater discharge point (Figures 3-6 through 3-8). • Higher groundwater velocities are indicated in each flow zone immediately downgradient of the ash basin dam (Figures 3-6 through 3-8). • Groundwater flow velocities and directions, as indicated by the flow velocity vector maps, confirm the conceptual model of groundwater flow at the Mayo Site. 3.1.1 Ash Basin Groundwater Occurrence and Flow In 2018, wells were installed downgradient of the ash basin to characterize groundwater in deep bedrock near the dam. Figure 3-9 shows cross section A -A' oriented northwest to southeast across the ash basin, perpendicular to the general direction of groundwater flow. Figure 3-10 shows cross section B-B' oriented southwest to northeast through the ash basin in the direction of groundwater flow. The groundwater levels and flow directions based upon November 2018 data are illustrated on the figures. The calculated geomeans for boron concentrations in 2018 are posted at the respective well locations at the screened intervals to provide a representation of boron distribution with depth. Detailed observations concerning groundwater flow in the vicinity of the ash basin include: • Groundwater flow direction in this area is northeast to Crutchfield Branch (Figures 3-1 through 3-3). • Ash pore water exhibits predominantly horizontal flow in the upgradient portion of the ash basin with slight downward flow into the thin saprolite zone and transition zone beneath the basin. Upstream of the ash basin dam where there is free ponded water, there is a strong downward vertical gradient as depicted in the groundwater flow and transport model (Figure 3-8). Page 3-2 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra • Downstream of the dam, there is a strong upward vertical gradient that produces some artesian conditions in low lying areas (Figure 3-8). 3.1.2 Horizontal Gradients Groundwater elevations from the fourth quarter 2018 were used in this evaluation (Table 3-2). Horizontal hydraulic gradients were derived for the transition and bedrock flow zones using November 2018 water level measurements. Those gradients were derived by calculating the difference in hydraulic head over the length of an inferred flow path between two water level contour intervals within the same flow zone (Table 3-1). The following equation was used to calculate horizontal hydraulic gradients: i=dh/dl Where i is the hydraulic gradient; dh is the difference between two hydraulic heads (measured in feet); and dl is the flow path length between the two water level contours within the same flow zone (measured in feet). Applying this equation along generalized groundwater flow paths observed at the Site, shown in Figures 3-1 through 3-3 cross the ash basin dam, the hydraulic gradient in the saprolite is approximately 0.25 feet per foot (ft/ft), the hydraulic gradient in the transition zone is approximately 0.17 ft/ft, and the hydraulic gradient in the bedrock is approximately 0.16 ft/ft (Table 3-1). 3.1.3 Vertical Gradients The vertical hydraulic gradient (dhldl) is calculated at clustered wells from the water level data and the midpoint elevations of the well screens. Overall, the vertical gradient magnitude and directions observed at the Site are similar in magnitude and direction to the vertical gradients presented in the CSA reports (SynTerra, 2018). Site -wide The vertical gradients illustrated on well hydrographs (Figure 3-4) and determined from flow and transport modeling (Figure 3-4) support the assumptions of the CSM. Groundwater flows laterally through the basins with downward migration in the vicinity of the peripheral dikes and basin dams. Upward vertical gradients occur below the dams and dikes in the vicinity of receiving water bodies (groundwater discharge areas). Page 3-3 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra Ash Basin Pore water flow within stratified ash and the groundwater flow beneath the ash basin in the saprolite is generally horizontal with a small downward component. Upward vertical gradients in the bedrock beneath the ask basin limit the downward transport of COIs. Groundwater in the transition zone and bedrock flow zones in the vicinity of the ash basin dam travels underneath the dam upward toward Crutchfield Branch. Figure 3-8 illustrates groundwater velocity vectors and magnitudes on a cross- section oriented through the ash basin. An upward vertical gradient under the basin near former stream valleys has been observed. This upward gradient acts to limit downward vertical migration of COIs under the basin. Upstream of the dam, the gradient from ash pore water to groundwater is downward. Within the ash basin, a small upward vertical gradient occurs in the vicinity of ABMW- 04/D/BR cluster between ash pore water and both the transition zone and bedrock flow zones. Downward gradients were observed in the ABMW- 02/BR/BRL and ABMW-03/S clusters (Table 3-2). These findings support the CSM. A downward vertical gradient is expected to be present in the saprolite, transition, and bedrock zones just upstream of the ash basin dam. There are no monitoring wells in the area immediately upgradient of the dam due to the presence of ponded water. In topographic low areas directly downslope from the ash basin dam, artesian conditions are present (MW-104BRM, MW-104BRL, MW- 105BRM, CCR-104BR). There is a slight downward gradient farther downgradient from the dam at MW-16S/BR and CW-02/1) (Table 3-2). Crutchfield Branch is a losing stream in the area of the MW-16 well cluster, which is supported by the observed downward gradient, due to impounded water conditions in the stream. These findings are consistent with the CSM. 3.1.4 Groundwater Seepage Velocity Groundwater seepage velocities are calculated using horizontal hydraulic gradients (Table 3-1) determined from measurements collected in the fourth quarter of 2018. Hydraulic conductivity and effective porosity values are taken from the November 2018 updated flow and transport model (Murdoch et al., 2019). Calibrated conductivity and porosity values for each flow zone were used to align velocity calculations with model predictions. Hydraulic conductivities presented in the November 2018 Updated Flow and Transport Model are: Hydraulic conductivity (k): Page 3-4 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra • Surficial: 3.0 feet per day (ft/day), • Transition Zone: 1.0 ft/day, • Bedrock: 0.03 ft/day. Effective porosity (n,): • Surficial: 20 percent, • Transition Zone: 20 percent, • Bedrock: 5 percent. The horizontal groundwater seepage flow velocity (vs) is estimated using a modified form of the Darcy Equation (Table 3-1). k dh _ VS ne (dl) The November 2018 quarterly sampling event, horizontal groundwater flow velocity in the vicinity of the ash basin dam is calculated to be: • Surficial: 3.72 ft/day (1,357.36 ft/yr) • Transition Zone 0.86 ft/day (312.41 ft/yr) • Bedrock: 0.09 ft/day (34.29 ft/yr) These groundwater velocities are averages for flow across the Site and are within the magnitude ranges for the velocities illustrated on Figures 3-4 through 3-6. 3.2 Data Reduction and Evaluation No outliers were identified in the evaluation of the 2018 CAMA IMP groundwater sampling data. All data on Table 3-5 have been included for use in evaluating plume geometry in the vicinity of the ash basin. Groundwater samples from the CAMA monitoring well network were analyzed for the applicable constituents listed on the IMP approval letters (Appendix A). The analytical results from each sampling event in 2018 are summarized on Table 3-3. Data qualifiers and acronyms specific to the data table are summarized and defined on Table 3-4. Laboratory analytical reports and accompanying data validation checklists are presented in Appendix D. The geomean of sampling results for 2018 CAMA data is calculated for each identified COI to support the analysis of groundwater conditions and provide a basis for defining Page 3-5 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra the extent of the plume in 2018. The geomean method was selected in order to capture the central tendency of the data, which might vary over several orders of magnitude. If four quarters of valid data were not available, the most recent valid sample result was reported. Four quarters of valid data were not available either because the well was recently installed or sample results from one quarter were excluded. For use in calculating geomeans, non -detect values were assigned the lab detection limit, and estimated (J-flag) values were treated as the value reported. Based on USEPA's National Functional Guidelines (USEPA, 2017a, 2017b), published research on the leaching behavior of elements from coal combustion fly ash (Izquierdo and Querol, 2012), and professional judgement, sample results were excluded from calculations for the following conditions: • turbidity was greater than 10 Nephelometric Turbidity Units (NTUs) • pH was greater than 10 standard units (S.U.) (for antimony, arsenic, molybdenum, selenium, and vanadium only) • if the data was flagged as unusable (RO qualified) • if the data was non -detect at a reporting limit greater than the normal laboratory reporting limit Table 3-5 presents the calculated geomeans of the quarterly COI data. The grey highlighting in the table illustrates which reported values are not calculated geomeans. When geomeans could not be calculated, the most recent valid sample was evaluated to determine whether the sample result is an appropriate representation of the historical dataset. Sample results with COI concentrations significantly greater or lesser than the historical average concentration were identified as outliers. Geomeans are used to evaluate the occurrence of COIs at the Site. A single sample result may not be an accurate representation of the concentrations observed over four quarters of data in 2018. Evaluating plume geometries with geomeans limits the occurrence of isolated COIs at concentrations greater than enforceable groundwater standards. Previous site assessments have identified these isolated areas as not impacted by the ash basins and provided evidence based on groundwater flow direction and other constituent migration patterns (SynTerra, 2017). Data from CCR Rule compliance monitoring wells are used for evaluating plume geometry. Data from CCR wells is used in this report on isoconcentration figures and time -series plots for a complete evaluation of COI occurrence in the vicinity of the ash basins. These figures are discussed in Sections 3.4, 3.5, and 3.6 of this report. Page 3-6 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra The BTVs, 02L standard, and or IMAC for each COI are summarized by flow layer at the top of Table 3-3. Text, figures, and tables in this report reflect the updated BTVs approved by NCDEQ in 2017. Per 15A NCAC 02L .0202(b)(3), site -specific BTVs calculated at concentrations greater than 02L standards or IMACs are the enforceable groundwater standards. The BTVs for the Site are anticipated to be updated and included in the 2019 CAP Update. Table 3-6 is a summary of an evaluation of COIs at the Site. The COI list from the 2018 CSA Update was evaluated to determine which COIs effectively define the plume in the vicinity of the ash basin. Table 3-6 provides the following information: • Applicable comparison criteria (02L standard, IMAC, or approved BTVs). • Maximum 2018 geomean concentration near or outside compliance boundary. • Exceedance ratio of the maximum geomean divided by the comparison criteria value. • The number of wells above criterion near or outside of the compliance boundary. • Rationale for not including specific COIs in isoconcentration figures or time - series plots. Constituents that are detected near or beyond the compliance boundary at exceedance ratios greater than one are appropriate for defining plume geometry. For the purposes of monitoring groundwater quality, boron provides a good indication of the occurrence and distribution of CCR-related COIs. Manganese concentrations greater than the statistically derived background values occur but do not correlate precisely with the boron distribution pattern. Therefore, mapping the manganese concentrations in groundwater is not considered as useful for the purpose of depicting COI migration from the ash basin as mapping the boron distribution. Arsenic, barium, total chromium, hexavalent chromium, iron, sulfate, and vanadium were included as COIs in the CSA Update (SynTerra, 2017). These constituents do not occur near or outside of the compliance boundary at concentrations greater than criterion (Table 3-6). COIs are those parameters with concentrations greater than groundwater screening criteria (NCDEQ 02L standard, Interim Maximum Allowable Concentration [IMAC], or Page 3-7 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra background threshold values). COIs that meet the following criteria may be designated for future corrective action: 1) Occur downgradient of the ash basin in the direction of groundwater flow; 2) Exhibit concentrations in groundwater at or beyond the compliance boundary greater than the 02L standard, IMAC, or approved background values, whichever is greater; 3) Exhibit high to variable mobility (exhibit a discernable plume); and 4) Demonstrate correlation with other soluble constituents associated with coal ash. Based on the criteria above, the following groundwater COIs are anticipated to be evaluated in the CAP Update: Boron Cobalt Manganese Molybdenum Strontium Total Dissolved Solids (TDS) The groundwater COIs identified at Mayo occur in CCR and are also naturally occurring in groundwater. Certain COIs (e.g., cobalt and manganese) have background concentrations in some flow zones at the Site greater than their 02L standard or IMAC. The 2017 CSA Update used Provisional BTVs (PBTVs) for comparison. NCDEQ approved all BTVs for Mayo in a letter to Duke Energy dated May 14, 2018. The BTVs for the Site will be updated and submitted to NCDEQ to be approved for inclusion in the 2019 CAP. Table 3-7 provides a summary of background threshold values calculated for the Site COIs as defined in the 2017 CSA Update. The table includes previously approved BTVs BTVs are statistically derived upper tolerance limits (UTLs). The UTL represents an upper limit of a range of values in which a specified proportion of the data population resides with some level of statistical confidence. Concentrations observed in upgradient wells at the Site may exceed BTVs but still be within the range of typical background concentration in the North Carolina Piedmont. Table 3-7 includes constituent concentration ranges detected in background wells at Mayo and regional concentration ranges detected in background wells in the six Duke Energy facilities located in the North Carolina Piedmont. Isoconcentration maps and time series plots for selected constituents are the basis of evaluation of plume geometry and concentration trends for the source area in Sections Page 3-8 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra 3.4, 3.5, and 3.6. As a result, boron is the COI selected for creating isoconcentration maps because: • Boron is detected at concentrations greater than 02L standards, IMACs, or BTVs downgradient of the ash basin. • Boron is relatively mobile in groundwater as compared with other COIs. Boron can, therefore, provide an indication of the areal extent of CCR-related COIs in groundwater at the Site. • Plume migration is typically evaluated by means of a conservative (non -reactive) constituent with low or well- established concentrations in the natural environment. Cobalt and manganese are both geochemically reactive constituents with a potential for sub -surface transport (i.e., mobility determined by laboratory and PHREEQC simulated sorption coefficients) which varies orders of magnitude over the range of redox and pH conditions observed at the Site. Additionally, a study conducted by Polizzotto, et al. (2015) found that roughly 50 % of wells in NC have manganese concentrations greater than the 02L Standard (50 µg/L). This same report noted that manganese in NC is naturally sourced. Cobalt is known to naturally associate with manganese minerals in the Southeastern United States (Pierce, 1944). Given the geochemically reactive nature of cobalt and manganese and their known prevalence in the Piedmont Region of NC, they are not suitable constituents for evaluation of plume geometry. Time -series graphs for wells located within and at the leading edge of the ash basin plume were produced to provide an ongoing evaluation of change in water quality through time for key monitoring wells. COIs selected for time -series evaluations include the following: • Boron • Cobalt • Strontium Isoconcentration maps depicting the distributions of boron in the saprolite, transition zone, and bedrock flow zones across the Site are provided as Figures 3-11 through 3-13 and discussed in Sections 3.4.1, 3.5.1, and 3.6.1. Time -series plots presenting historic concentrations of boron, cobalt, and strontium at select monitoring wells within and downgradient of the ash basin are provided as Figures 3-14 through 3-15 and discussed in Sections 3.4.1 and 3.5.1. Page 3-9 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra 3.3 Ash Basin Water Quality 3.3.1 Site Conditions Decanting of the ash basin is anticipated to begin in Quarter 2 of 2019. Transducers are in place in wells near the ash basin to record changes in water levels and geochemical parameters, including pH and ORP. 3.3.2 Constituent Occurrence and Plume Status The geomean of the 2018 IMP monitoring boron and cobalt data were used to evaluate COIs in groundwater (Table 3-5). Boron is used to delineate the groundwater plume related to the ash basin because it is considered an indicator constituent for groundwater influence from CCR. Cobalt, manganese, molybdenum, and strontium occurrence outside the extent of boron is discussed below. Boron Figures 3-11, 3-12, and 3-13 are isoconcentration maps illustrating the occurrence of boron in the saprolite, transition zone, and bedrock across the Site based on geomeans of 2018 IMP data. Observations about boron distribution include: • Boron is detected at concentrations greater than 02L in one saprolite well (ABMW-03S) and one transition zone well (ABMW-04D) installed beneath the ash basin. (Figure 3-12). • Boron is detected at concentrations greater than 02L in three bedrock wells immediately downgradient of the ash basin dam (CCR-107BR, CCR- 105BR, CCR-103BR) (Figure 3-13). • Boron is detected at concentrations greater than 02L in two transition zone wells immediately downgradient of the dam (CCR-105D and CCR-103D) within the compliance boundary of the ash basin. (Figure 3-12). • Boron is not detected above 02L beyond the compliance boundary in the transition zone. • Boron is not detected outside the compliance boundary in bedrock. • Migration of ash pore water is limited in depth beneath the ash basin. Boron is not detected at concentrations greater than 02L in the bedrock flow zone wells beneath the ash basin (Figure 3-13) Well CW-02 (transition zone) is located downgradient of the ash basin dam near the current compliance boundary. Historical boron concentrations have been above the 021,; however, in the last quarter of 2018, the boron concentration in Page 3-10 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra CW-02 has decreased below the 02L. The well will be closely evaluated during 2019 monitoring. Observations of boron concentrations in groundwater, as presented above, provide evidence supporting predominantly horizontal flow through the basin in the CSM. Downward migration of ash pore water is limited beneath the basin. As discussed in Section 3.1, downward migration of groundwater is observed at the ash basin dam. There is no ash pore water data near the dam because of standing water in the vicinity. Cobalt As shown on Table 3-5, cobalt is detected at concentrations greater than background in bedrock groundwater downgradient of the ash basin. Figures 3- 14 and 3-15 are time versus concentration graphs of boron, cobalt, and strontium at wells located within the boron plume. The following observations are made when considering the distribution of cobalt: The statistically derived Site background value for cobalt in bedrock groundwater is 1.19 µg/L. The IMAC is 1 µg/L. The Site background value for cobalt is used as the primary comparison value (Table 3-7). In 2018, cobalt concentrations greater than the statistically derived background value are contiguous with boron concentrations greater than 02L in bedrock groundwater downgradient of the ash basin dam (Table 3-5). Concentrations of cobalt observed in background wells in all flow units range from 1 to 6.53 µg/L in all units (Table 3-7). All cobalt concentrations in 2018 were within the range of background concentrations observed (Table 3-7). • Cobalt concentrations are stable at all locations along the centerline of the plume (Figures 3-14 and 3-15). Cobalt is not observed at concentrations greater than IMAC in the transition zone or surficial zone (Table 3-5). There are inconsistent detections of cobalt greater than background in transition zone and bedrock groundwater, which fall within the range of concentrations observed in background wells. Manganese As shown on Table 3-5, manganese is detected at concentrations greater than background in saprolite beneath the ash basin (ABMW-03S), in the transition zone beneath the ash basin (ABMW-04D), in groundwater downgradient of the ash basin in the bedrock (MW-02, MW-03BR), in the saprolite (MW-03), side - gradient of the ash basin in the transition zone (MW-19D), and side -gradient of Page 3-11 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra the ash basin in the bedrock (MW-05BR, MW-18BR, MW-19BR,). The following observations are made when considering the distribution of manganese: Manganese is detected at concentrations greater than background in the transition zone beneath the ash basin (ABMW-04D), in groundwater downgradient of the ash basin in the bedrock (MW-02, MW-03BR), in the saprolite (MW-03), side -gradient of the ash basin in the transition zone (MW-19D), and side -gradient of the ash basin in the bedrock (MW-05BR, MW-18BR, MW-19BR). The approved, statistically derived background value for manganese in the surficial zone is 253 µg/L, in the transition zone is 298 µg/L, and in bedrock groundwater is 544 µg/L. The 02L is 50 µg/L. The Site background values for manganese were used as the primary comparison value (Table 3-7). • Concentrations of manganese observed in background wells in all flow units range from 5 µg/L to 648 µg/L (Table 3-7). • Manganese concentrations at the Site have not been conclusively proven to originate from the ash basin. Manganese exceeds the approved background threshold value outside of the compliance boundary and downgradient of the ash basin at MW-16BR and CW-06 (Table 3-5). The geomean of concentrations at CW-06 (1371 µg/L) is consistent with concentrations at wells side -gradient of the ash basin where boron is not detected (e.g. MW-05BR, MW-18BR, MW-19BR). The background concentrations of manganese at Mayo exceed the 02L standard by an order of magnitude. Occurrences of manganese in groundwater at any location on the Site are at least in part due to these naturally high concentrations given the range of concentrations observed in background (Table 3-7) and side - gradient (Table 3-5) wells. There have not been distinct trends in manganese historically (SynTerra, 2017) and concentrations have been sporadic and inconsistently detected. Molybdenum Geomeans of concentrations of molybdenum are presented in Table 3-5.The following observations are made when considering the distribution of molybdenum: Page 3-12 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra • Molybdenum is detected at concentrations greater than background in the transition zone beneath the ash basin (ABMW-04D), in the transition zone downgradient of the ash basin (MW-16D), in the bedrock downgradient of the ash basin (MW-16BR), and in the bedrock side -gradient to the ash basin (CW-01D). The approved, statistically derived background value for molybdenum in saprolite groundwater is 3.15 µg/L, in transition zone groundwater is 1 µg/L and in bedrock groundwater is 13.1 µg/L. There are no regulatory standards for molybdenum in groundwater. The Site background values for molybdenum are used as the comparison value (Table 3-7). Concentrations of molybdenum observed in background wells in all flow units range from 0.5 µg/L to 12.9 µg/L (Table 3-7). In 2018, molybdenum concentrations greater than background occur downgradient of the leading edge of boron concentrations above 02L in MW-16D (5.3 µg/L) and MW-16BR (23.5 µg/L) (Table 3-5). The molybdenum concentration at MW-16D is within the range of concentrations observed in background wells at the Site. • Molybdenum is also detected at concentrations greater than background in CW-01D, southeast of the ash basin, where boron was not detected (Table 3-5). • Concentrations of molybdenum greater than the Mayo BTVs downgradient of the ash basin are consistent with, and often less than, values of molybdenum in background wells at other Duke Energy ash basins in the Piedmont (Table 3-7). Molybdenum concentrations at the Site have not been conclusively proven to originate from the ash basin. Molybdenum exceeds the approved background threshold value outside of the compliance boundary and downgradient of the ash basin at MW-16D and MW-16BR (Table 3-5). The geomeans of concentrations at MW-16D (5.3 µg/L) and at MW-16BR (23.5 µg/L) are consistent with concentrations at wells side -gradient of the ash basin where boron is not detected (e.g. MW-09BRL, MW-18BR, CW- 01D). Strontium Geomeans of concentrations of strontium are presented in Table 3-5. Figures 3- 14 and 3-15 are time versus concentration graphs of boron, cobalt, and strontium Page 3-13 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra at wells located within the boron plume. The following observations are made when considering the distribution of strontium: Strontium is detected at concentrations greater than background in the saprolite beneath the ash basin (ABMW-03S), in the saprolite downgradient of the ash basin (MW-16S, MW-03), in the bedrock beneath the ash basin (ABMW-02BR, ABMW-02BRL, ABMW-04BR), and in the bedrock side -gradient to the ash basin (MW-18BR, MW-19BR). The statistically derived Site background value for strontium in saprolite groundwater is 25 µg/L, in transition zone groundwater is 391 µg/L and in bedrock groundwater is 418 µg/L. There are no regulatory standards for strontium in groundwater. The Site background values for strontium are used as the comparison value (Table 3-7). • Concentrations of strontium observed in background wells in all flow units range from 12 µg/L to 430 µg/L (Table 3-7). Strontium is also detected at concentrations greater than background in MW-18BR and MW-19BR, southeast of the ash basin, where boron was not detected (Table 3-5). MW-18BR and MW-19BR are located on the opposite side of a groundwater divide from the ash basin. • Strontium concentrations are stable in the wells along the plume centerline (Figures 3-14 and 3-15). Mixing of groundwater from the various flow layers beneath and downgradient of the ash basin may be causing concentrations above the BTV in the saprolite downgradient of the dam. Concentrations of strontium greater than the BTV downgradient of the ash basin are consistent with background values of other flow layers (Table 3-5). The CSM shows that there is mixing between flow layers as ash pore water flows downward upgradient of the dam through the bedrock and then upward immediately downgradient of the dam (Figure 3-8). Concentrations of strontium observed side -gradient to the ash basin in bedrock are only slightly above background and not attributable to the ash basin due to the direction of groundwater flow. Page 3-14 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra 4.0 SUMMARY AND CONCLUSIONS 4.1 Groundwater Occurrence and Flow A common finding from predictive groundwater flow and transport modeling is that reducing the hydraulic head in the ash basin through decanting will reduce the vertical and horizontal hydraulic gradients that drive constituent migration, with the greatest reduction near the dam. The following are conclusions pertaining to groundwater flow beneath the Mayo ash basin: • An upward vertical gradient is present at the upland edge of the ash basin (Figure 3-8, Table 3-2). • Horizontal flow primarily occurs across the basin, with downward flow from ash pore water to the underlying saprolite and transition zone in the area where water is ponded immediately upgradient of the ash basin dam. • Downward vertical gradients occur at the ash basin dam (Figure 3-8). • Upward vertical gradients occur beyond the dam near groundwater discharge zones (Figure 3-8). Groundwater level and quality data demonstrate that that groundwater flow and related COI transport is toward Crutchfield Branch. The CSM will continue to evolve and be updated to reflect new information as it becomes available. 4.2 Groundwater Quality The following are conclusions pertaining to groundwater quality beneath and downgradient of the ash basin based on data available through 2018: • Variably reactive constituents, such as cobalt, are not suitable for delineating the groundwater plume geometry and migration due to their sensitivity to changing geochemical conditions in the groundwater system. • Boron concentrations adequately describe and bound CCR influence on groundwater at the Site. • Boron occurrence in the saprolite, transition zone, and bedrock flow zones confirm the CSM. • The greatest boron concentrations in non -ash pore water wells are observed beneath the ash basin in the transition zone and downgradient of the ash basin dam in transition zone and shallow bedrock wells. Page 4-1 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra • The plume geometry of other COIs at the Site are generally contained within the boron plume. Exceptions to this are caused by naturally occurring conditions or Site conditions other than groundwater flow through the Site. Page 4-2 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra 5.0 INTERIM MONITORING PLAN UPDATES 5.1 Optimization of the Monitoring Program Duke Energy submitted an optimized IMP to NCDEQ on December 15, 2018. NCDEQ approved the optimized IMP by email on December 21, 2018. The plan recommended adjusting the well and water quality parameter lists to more efficiently monitor groundwater conditions at the Site. After additional correspondence and discussion with NCDEQ, Duke Energy submitted a revised optimized IMP on March 20, 2019 (Appendix E). The revised optimized IMP was approved on April 4, 2019, apart from the removal of five deep bedrock wells installed in early 2019 (Appendix E). The deep bedrock wells are under evaluation, and justification of this change to the IMP will be provided at later date. IMP analytical parameters were reduced to include the Site COI list and the federal CCR Rule Appendix III and Appendix IV parameter lists beginning Quarter 1 of 2019. A summary of the rationale for reducing the IMP well counts is provided below. Wells critical to the IMP were identified in the following locations: • Between CCR source areas and downgradient surface water bodies. • At the Site compliance boundary to verify plume stability. • At existing plume boundaries to detect plume expansion or contraction. • Along geochemical flow transects to monitor plume stability, support the geochemical model, and confirm horizontal and vertical distribution trends. The optimized IMP well list is divided into quarterly and semiannual sampling schedules. For 2019, site wells are sampled in the following manner: • Background wells - semiannually • Peripheral monitoring wells - semiannually • Wells along flow transect - semiannually • Downgradient wells used in model simulations - semiannually • Wells with increasing COI concentrations - quarterly New wells installed as part of the CAMA program will be monitored quarterly for at least four quarters for the full suite of CAMA parameters listed in the optimized IMP. After four quarterly events, Duke Energy will re-evaluate the monitoring frequency Page 5-1 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra and/or parameter list for the new wells with NCDEQ concurrence and revise the IMP if needed. The data evaluation in this annual report confirms the IMP for 2019 is appropriate. No additional changes to the IMP are recommended at this time. It is recommended that sampling continue in accordance with the IMP. 5.2 2019 Monitoring and Reporting Schedule Duke Energy will sample the monitoring well network on a quarterly and semi-annual basis during 2019 in accordance with the optimized IMP outlined above. New wells installed throughout the year are anticipated to be added to the monitoring network and quarterly sampling program. To maximize data available for evaluation in the CAP, an initial sample is collected from new wells after development has been completed and verified (i.e., turbidity <10 NTU 24 hours after development). Depending on timing of initial sample collection, variances in quarterly sampling schedule may be requested to avoid collection of auto -correlated data. In general, the sampling events are anticipated to occur in accordance with the following schedule: • Quarter 1 (wells sampled quarterly) January 2019 • Quarter 2 (wells sampled semi-annually and quarterly) April 2019 • Quarter 3 (wells sampled quarterly): July 2019 • Quarter 4 (wells sampled semi-annually and quarterly): October 2019 A quarterly, comprehensive data submittal to NCDEQ will occur in accordance with the following schedule: • Quarter 1 : March 2019 • Quarter 2: June 2019 • Quarter 3: September 2019 • Quarter 4: December 2019 (January 2019 data) (April 2019 data) (July 2019 data) (October 2019 data) Data from the 2019 IMP will help to refine and support groundwater quality, occurrence, and flow evaluations as conditions change due to decanting of the basin in the near future. The list of Site -specific COIs for inclusion into the CAPs is currently undergoing review using the COI management approach presented to the NCDEQ on March 15, 2019. COIs proposed for management under the CAP would be based on: Page 5-2 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra • Comparing constituent concentrations to regulatory standards and/or background values • Evaluating each constituent's relative mobility • Reviewing constituent distribution in groundwater based on geochemical conditions • Comparing each constituent's relative concentration observed in ash pore water to the concentration observed in groundwater • Evaluating constituent concentration trends over time The results of this review will be presented in the CAP and may result in proposed modifications to the monitoring program at that time. Page 5-3 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra 6.0 REFERENCES Harned, D., and Daniel, C., 1992. The transition zone between bedrock and regolith: Conduit for contamination. In Daniel, C.C., White, R., and Stone, P., eds., Groundwater in the Piedmont, Proceedings of a Conference on Ground Water in the Piedmont of the Eastern United States, Charlotte, N.C., Oct. 16-18, 1989. Clemson, SC: Clemson University (336-348). Duke Energy, June 10, 2015. Low Flow Sampling Plan, Duke Energy Facilities, Ash Basin Groundwater Assessment Program, North Carolina. General Assembly of North Carolina, 2014. Coal Ash Management Act of 2014. Senate Bill 729, Ratified Bill (Session 2013) (SB729). Izquierdo, M. and Querol, X., 2012. Leaching behaviour of elements from coal combustion fly ash: an overview. International Journal of Coal Geology 94 (2012): (pp. 54-66). LeGrand, H. (1988). Region 21, Piedmont and Blue Ridge. In: J. Black, J. Rosenshein, P. Seaber, ed. Geological Society of America, 0-2, (pp. 201-207). LeGrand, H. (1989). A conceptual model of ground water settings in the Piedmont region, in groundwater in the Piedmont. In: Daniel C., White, R., Stone, P., ed. Ground Water in the Piedmont of the Eastern United States (pp. 317-327). Clemson, SC: Clemson University. LeGrand, H. E. 2004. A Master Conceptual Model for Hydrogeological Site Characterization in the Piedmont and Mountain Region of North Carolina, A Guidance Manual, North Carolina Department of Environment and Natural Resources Division of Water Quality, Groundwater Section. Multi -Agency Radiological Laboratory Analytical Protocols Manual (MARLAP), July 2004. MARLAP Manual Volume I: Chapter 8, Radiochemical Data Verification and Validation. NCDEQ, May 1, 2017. Correspondence to Duke Energy, Subject: Response to the February 2, 2017 Letter from Duke Energy, Revised Interim Monitoring Plans for 14 Duke Energy Facilities. NCDEQ, 2017. Guidelines for the Investigation and Remediation of Soil and Groundwater Contamination. Page 6-1 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra NCDEQ, May 7, 2018. Correspondence to Duke Energy, Subject: 2017 Comprehensive Site Assessment Update Comments - Mayo Steam Electric Plant. NCDEQ, September 28, 2018. Correspondence to Duke Energy, Subject: Revised Interim Monitoring Plans for 14 Duke Energy Facilities, 41hQuarter 2018. Pierce, W. G. (1944). Cobalt -Bearing Manganese Deposits of Alabama, Georgia, and Tennessee. Strategic Minerals Investigations, 1943 (pp. 265-285). Washington D.C.: United States Department of Interior -Geologic Survey. Polizzotto, M., Amoozegar, A., Austin, R., Bolich, R., Bradley, P., Duckworth, O., & Hesterberg, D. (2015). Surface and Subsurface Properties Regulating Manganese Contamination of Groundwater in the North Carolina Piedmont. Raleigh, NC: UNC-WRRI. SynTerra. (2015a). Comprehensive Site Assessment Report - Mayo Steam Electric Plant - September 2, 2015. Roxboro, NC. SynTerra. (2015b). Corrective Action Plan - Part 1: Mayo Steam Electric Plant - December 1, 2015. Roxboro, NC. SynTerra. (2016a). Corrective Action Plan - Part 2: Mayo Steam Electric Plant - February 29, 2016. Roxboro, NC. SynTerra. (2016b). Comprehensive Site Assessment, Supplement 1 - Mayo Steam Electric Plant - July 7, 2016. Roxboro, NC. SynTerra. (2017b). 2017 Comprehensive Site Assessment Update - Mayo Steam Electric Plant - October 31, 2017. Roxboro, NC. SynTerra. (2018). Preliminary Updated Groundwater Flow and Transport Modeling Report for Mayo Steam Electric Plant, Roxboro, NC. United States Environmental Protection Agency, November 2002, Guidance on Environmental Data Verification and Data Validation. United States Environmental Protection Agency, January 2017a. National Functional Guidelines for Organic Superfund Methods Data Review. United States Environmental Protection Agency, January 2017b. National Functional Guidelines for Inorganic Superfund Methods Data Review. Page 6-2 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra United States Environmental Protection Agency, November 2017 (Phase I) and July 2018 (Phase II). Test Methods for Evaluating Solid Waste: Physical/Chemical Methods (SW-846), Update VI. Page 6-3 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra FIGURES r n 1 MAYO STEAM ASH BASIN COMPLIANCE •;a ! p �' ELECTRIC PLANT BOUNDARY :i PARCEL LINE J r fFRI1 r—^ ^ 3�: VIRGINIA. ^ _ 1 ^ IfALiFAX- f�`0� _ NORTH CAROLINA� . - - - i � _ YERS C� J APPROXIMATE ASH BASIN WASTE BOUNDARY r' 100• RIGHT-OF-WAY WASTE WATER —TREATMENT BASIN CCP MONOFILL FGD Z*APPROXIMATE 1981 ' �\ �4P PONDS C&D LANDFILL r If LINED RETENTION y* LOW VOLUME BASIN AREAiL PONDS APPROXIMATE FUTUREASH BASIN WASTE BOUNDARY_ t rr A (SEE NOTES, THIS DRAWING) 1� ,/ `�i� / POWER PLANT ^ Y COAL PILE AREA GYPSUM PAD AREA? 1-17 J �• � ��, � • �� 1. ��V : ,�Sr,�•" �� � � �}� d Cerr .c .. ). • ��, �. L� $M "y97 " .fir-, •� �, � �-�:,. I. ,. Pr r _ �_ C _S3D • 1� �" � ♦ 1 NOTES: _ •` w� 2017 USGS TOPOGRAPHIC MAP, QUADRANGLE NAME, CLUSTER SPRINGS, QUAD 1 36078E8, QUADRANGLE, OBTAINED FROM ARCGIS ONLINE, APRIL 25, 2019. r __ �� lL - /„•. �; j AREA OF INVESTIGATION THAT DETERMINED SETTLED CCR MATERIAL --, • '+ � 4LJ.i � .. - IS NOT PRESENT IN THIS AREA OF THE ASH BASIN. A FUTURE IS INCLUDED /� __- ` `T •, st.6' REPRESENTATIVE ASH BASIN WASTE AND COMPLIANCE BOUNDARY IS INCLUDED IN THE MAYO NPDES PERMIT NC0038 PART 1, S.) ATTACHMENTA FIGURE 1 AND ATTACHMENT B FIGURE 1.1 DATEDD JULJULY 13, 2018. PERSON COUNTY FIGURE 1-1 14' SITE LOCATION MAP synTerra W/NSTON-SALEM 2018 CAMA ANNUAL INTERIM MONITORING REPORT • RALE/GH MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC DUKE CHARLOTTE'• ROXBORO, NORTH CAROLINA ENERGY DRAWN BY: A. ROBINSON DATE: 4/26/2019 1,000 0 1,000 2,000 PROGRESS PROJECT MANAGER: J. WYLIE CONTOUR INTERVAL: 20 Ff GRAPHIC SCALE IN FEET CHECKED BY: P. ALTMAN MAP DATE: 2016 t � • / • CCR-1045 %CCR-103BR CCR-104BR • • / MW-104BRL W-104BRM .�•MW-2 aT If PZ-1A / MW-105BRL CCR-102BR-♦, MW-105BRM / CCR-105S , \ / CCR-105D CCR-105BR NORTH CAROLINA-VIRGINIA STATE LINE HALIFAX COUNTY ,.. (APPROXIMATE) __— —__—__—__—_____—__—__—__—_____—__—__—_____—__—__—__—__—__—__—__—__—__—__—_ —-- / W-15BR PERSON COUNTY CW-3 MW-16S MW-3BR CCR-109BR MW-166R �' CCR-106BR CW-2D-- •�• r r LAKE RD- MW-3 _ �MnvD , 7CV _6 9 MW-6BR , ♦ MW-8BR _ ... . . P-3 CCR-107BR MW-8D P-4 P-3A P-4A MW-107BRM (l MW-8S `♦ MW-107BRL CCR-108BR BR '• MW-17BR cmin ,. �\ ♦1 1 ABMW-1 I � .� ABMW-2 ABMW-3 e♦ CW-1 ABMW-2BR ABMW-3S `o �CW-1D ABMW-2BRL , �\\� ' 1 ♦ Im ��` �►� MW-19BR 11 `1 ,.- r �`� • � of . �L�• I I Imo, �-- �� • Ar / I , O ♦ CCR-101S-B APPROXIMATE FUTURE ASH BASIN WASTEBOUNDARY / , I 1 # (SEE NOTES, THIS DRAWING) CCR-101 D-B MW-11BR R.O.W. 1700' , NOTES: THE WATERS OF THE US HAVE NOT BEEN APPROVED BY THE US ARMY CORPS OF ENGINEERS AT THE TIME OF THE MAP CREATION. THIS MAP IS NOT TO BE USED FOR JURISDICTIONAL DETERMINATION PURPOSES. THE WETLANDS AND STREAMS BOUNDARIES WERE OBTAINED FROM AMEC FOSTER WHEELER ENVIRONMENTAL & INFRASTRUCTURE, INC. NATURAL RESOURCE TECHNICAL REPORT FOR MAYO STEAM ELECTRIC PLANT DATED JANUARY 20, 2014. AREA OF INVESTIGATION THAT DETERMINED SETTLED CCR MATERIAL IS NOT PRESENT IN THIS AREA OF THE ASH BASIN. A FUTURE REPRESENTATIVE ASH BASIN WASTE AND COMPLIANCE BOUNDARY IS INCLUDED IN THE MAYO NPDES PERMIT NCO038377 PART I, 5.A.(18.) ATTACHMENTA FIGURE 1 ANDATTACHMENT B FIGURE 1.1 DATED JULY 13, 2018. AERIAL PHOTOGRAPHY OBTAINED FROM GOOGLE EARTH PRO ON SEPTEMBER 27, 2017. AERIAL WAS COLLECTED ON JUNE 13, 2016. DRAWING HAS BEEN SET WITH A PROJECTION OF NORTH CAROLINA STATE PLANE COORDINATE SYSTEM FIPS 3200 (NAD83/2011). MW-12S MW-12D I • • , > I3 � MULLINS LN N � o OV 101 synTerra ENERGY PROGRESS 400 200 0 400 800 1,200 GRAPHIC SCALE IN FEET 148 RIVER STREET, SUITE 220 GREENVILLE, SOUTH CAROLINA 29601 PHONE 864-421-9999 DRAWN BY: A. ROBINSON DATE: 04/30/2019 PROJECT MANAGER: J. WYLIE CHECKED BY: E. KINSEY MONITORING WELL IN MONITORING WELL IN SAPROLITE MONITORING WELL IN TRANSITION ZONE MONITORING WELL IN BEDROCK MONITORING WELL IN ASH PORE MONITORING WELL C PIEZOMETER IN SAPROLITE C PIEZOMETER IN TRANSITION ZONE C PIEZOMETER IN BEDROCK • WATER SUPPLY WELL APPROXIMATE ASH BASIN WASTE WASTEWATER TREATMENT BASIN LINED RETENTION BASIN - - - ASH BASIN COMPLIANCE BOUNDARY HIGHWAY 501 RIGHT-OF-WAY (DUKE ENERGY PROPERTY) DUKE ENERGY PROGRESS MAYO PLANT SITE BOUNDARY 3 STREAM (AMEC NRTR) EFFLUENT CHANNEL 0 WETLAND (AMEC NRTR) FIGURE 1-2 SITE MAP WITH MONITORING WELL LOCATIONS 18 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC ROXBORO, NORTH CAROLINA LEGEND NOTES: �500 WATER LEVEL IN SURFICIAL ZONE (NAVD 88, FEET) PARCEL LINE DUKE ENERGY(APPROXIMATE) 1. WATER LEVELS COLLECTED BY SYNTERRA, NOVEMBER 05 & 06, 2018. 2. NOT ALL UTILITIES ARE IDENTIFIED ON THIS DRAWING. THE UTILITIES SHOWN ON THIS DRAWING INFERRED WATER LEVEL IN SURFICIAL ZONE 188,FEET) — — NORTHCAROLINA-VIRGINIASTATELINE(APPROXIMATE) ARE VISUAL AIDS TO LOCATE THE STREAMS AND WETLANDS IN THE FIELD. THE HORIZONTAL QIIII MW-12S WELL I D N SURFICIAL ZONE HIGHWAY 501/RAILROAD RIGHT OF WAY (DUKE ENERGY PROPERTY) LOCATION AND VERTICAL LOCATION HAVE NOT BEEN FIELD LOCATED ON ANY UTILITIES AND THE SHOWN LOCATIONS ARE APPROXIMATE. 555.04 WATER LEVEL IN SURFICIAL ZONE (NAVD 88, FEET) O P1 PIEZOMETER ID IN SURFICIAL ZONE — ASH BASIN 500 ft COMPLIANCE BOUNDARY 3. THE TOPOGRAPHY IS SHOWN FOR REFERENCE PURPOSES ONLY AND SHOULD NOT BE USED FOR DESIGN OR ENGINEERING PURPOSES. TOPOGRAPHY IS BASED ON LIDAR BARE EARTH DATA 442.74 WATER LEVEL IN SURFICIAL ZONE (NAVD 88, FEET) ASH BASIN WASTE BOUNDARY (APPROXIMATE) OBTAINED FROM THE NORTH CAROLINA SPATIAL DATA SITE AT https*.//sdd.nc.gov/sdd/DataDownload.aspx ABMW 1 MONITORING WELL IN ASH PORE WATER SURFACE WATER (AERIAL PHOTOGRAPH &TOPOGRAPHIC MAP BASED) 4. THE WATERS OF THE US HAVE NOT BEEN APPROVED BY THE US ARMY CORPS OF ENGINEERS AT Ql MW 3 MONITORING WELL IN ALLUVIUM MATERIAL �� STREAM THE TIME OF THE MAP CREATION. THIS MAP IS NOT TO BE USED FOR JURISDICTIONAL DETERMINATION PURPOSES. THE WETLANDS AND STREAMS BOUNDARIES WERE OBTAINED FMW-31 MONITORING WELL IN TRANSITION ZONE SURFACE WATER FLOW DIRECTION FROM All FOSTER WHEELER ENVIRONMENTAL& INFRASTRUCTURE,INC. NATURAL RESOURCE TECHNICAL REPORT FOR MAYO STEAM ELECTRIC PLANT DATED MW 14BR MONITORING WELL IN COMPETENT BEDROCK APPROXIMATE ASH BASIN FREE PONDED WATER 1ANUARY20,2014. 5. AREA OF INVESTIGATION THAT DETERMINED SETTLED CCR MATERIAL IS NOT PRESENT IN THIS AP-6L30 PIEZOMETER IN ASH PORE WATER NPDES REGULATED WATER FEATURE AREAOFTHEASH BASIN. A FUTURE REPRESENTATION ASH BASIN WASTE AND COMPLIANCE C 1 PIEZOMETER IN BEDROCK BOUNDARY IS INCLUDED IN THE MAYO NPDES PERMIT NCO038377 PART I, S.A. (18.) DEP WETLAND BY AMEC FOSTER WHEELER ATTACHMENT A FIGURE 1 AND ATTACHMENT B FIGURE 1.1 DATED JULY 13, 2018. O P1A PIEZOMETER IN EARTH DAM (FILL) STREAM BY AMEC FOSTER WHEELER MY-03 WATER SUPPLY WELL __ CULVERT LOCATION OUTFALL 002 NPDES OUTFALL (APPROXIMATE) 54o TOPOGRAPHIC CONTOUR (10' INTERVAL) TOPOGRAPHIC CONTOUR (2' INTERVAL) ♦� GROUNDWATER FLOW DIRECTION Ramwl • 11 mffi 100 `'.\ ..Z 1 � � I .I, till ,1 •. J Co �.1► �_ - "��1� ` � , `,�/ , - �•+V v 11I III/� ��l'UIII�/i`I� I� i• 1fill Ir��l �1�► ,� � 1 ; �'` C `• •`- i / ;w1w r 1+N fir„, �J�� �i `�.��►�► r ! �S•� - . , r, , � `� � � � -„_ � � _ -�_ �_ ''�-''ATM_ ►��.{� ., .ate � I - � +� � ;(' � 1 I:J �'� ,• .-��-vl�l•LYi� �,.. ac___ ems.. "���_>__ i • .--.•_ r. ,.v r �� • µ ` � 1 . ,. � I , _ )` � r � '�® • I w ass. _e� � �� ti 111 I.; i ' •+r-ii-..n..� 1 �' v�-fit I� '� - _.� •, � „ u� "fit . � 1 Ni.-'-i•- • >^� i • it .. 't t,+ 1 �IJI 'll%/I. •� �, �d c 51 r , • �• I�., � ��r R � •� . ,�` 1 ' ' j• ' it ' � � .c:.._ ® .,. �11!, �\\\\\\�1`I� LR •erg — �� . ����i•� �i+A°--" _- SIMON) 1; 1" � FlAmm 111 Y h J, II / ` 1 11 / q MENEM I{I I i I L / 111 0 _ 1 V I V,II I I 1 I� I I • III II Y II II / I 1 I IIII I 1 /' �. ,► I I II I I I I II I I I. I 1 ,,,,, yiii�iii/ii ' — y t I rr 1 — i 1 I ! I � i I � II I I III i 1 I , r I/ 1 I / • i / I c V I ti �. , .` � a . • 1 � a. ,T,1 , _� / �� �. ;, is .:1 \ , .�41 it , _ �:: \'9 .4 1 s•'yI 1 2 I , • 1 • l• f �f 6 � f , v I , i M r! I -, -- - - - liii > � •� _ter it w r � � /,�': I WO - 1 • �'+��r1-..•�X�11�" 1 - i � \III � i 6.1.•�..I� '111 II I f r , ,I / s I �•� I _ i •r I I' i ti I i•" I • lo- is / I o A� I '=r I \ I f I � . �•I�� (� _ /'. , �,, .. rig �I I - < �, J ,/ ^, a � •, I --vim 1 � � � IIII. �% /:' '� , n . r 1 r / - it i it I f 1� I I / I II. W �I • I II III � II I IIII I I I II I� 1 ►� Ir II II \ •I r r� aw -ti• r I _ / I I I ���% •• � -_ /�I s '9 1 �q Y. Ili , J � " :�\ � � ,• /'•� ,� , r.. .J ! � '.✓. � ,� ^-__._ -_ / I 1 II 1• , I I _ _ r Y � L. � G_ �- w. \ vs ��'i � � I ' I<'. III s ,• _ ,i I � _.J .� -_AAA � Ir(,'-,'� / • �(` ' I „ i . \,_ _- - - , I +; ! r/ / � �- � 6 ,: + of 1/�° III 1� .. _ � •\ . , I 1 I, � I � � � t�� __:. _ I� 4. I� :, • ..� '- , + _ yam: ;, + ., , .. ''>y,� � f ,ice- /.�•-.. ., / � ,II � �ri►. � �!L'�`7/�,� I •de%4111!111a 10 L VIRGINIII NORTH CAROLINA r + •i \, A !I i r � r � '•I 0./ 1 / . . �. /.. 1 / �. t r ^ _ � ;III �► _ _ _ _ �, �� .r� � _:: �,, :; /' ,/'' ��`, ■ / r �. .,, . .'. , , - , , / ,,� •Ir ti 1 ,mac I • ;' � •►_,.,. .„-_ ' � :., \� ', '.' �� /� ,fir �► - vo �, �► . ''I ;� .. 1im . _ - �� ��� / +�:,� '�►� ,:, _ , . ►. T. its` � I I , 1 Ir _ I I , v J I ♦ 7 , �• 1 a I,,, . e� V I r' �f art ♦ - �.e,"lr ` • _• i i I III I Ill / • s' I / ��.' � , , `� T 1 it II ♦ �' ! �//��� t �•�� I�IRS I P •i .a ,II r I I I ' r 0 • I I I I. I I i I I � ,,, II FYI,• - ` •7f " , .. < '• may. • � � '" .� � � ^II"' 'III 1�1� ' • - - • ■ : ♦ _ � r / II { / l - �; +^ , • `• •� \ )4,r • ` / : 4; � I �II IIII � � � I � � � // l � �� - r• � u rI • 1:r f t J 1 1 r u• II .+ f I l 1 - I r III , ., a� I I 'I I L I II I r r / 1 II. I - ,-_�� ,. ,'` � . � .;, ..; � '' ► �, f •� r' �-. (� ^Ir III IIII I. v 1 / 4 I `i c j I . ,r \a II a b V r V 1 fi 1 �I / • I' /s .•I K ) 1 / r , r I f ;r u a ' • � �\.:. _.._•_ a ', � �� _ �_ '.,,- --_ � ., ',� - • •' . '� � :;, ` ` f ` f ,51 MISS 0111 mall - ' tat FE OWN Aq ' ,I III ' v- y , "L II : , i ' 0 I • > • ,' � H. J� _ _.-_` � --,-.::. `. - tom- I T '1j \.` : IIII';' I,I r'.� /�-,. ...._ � V , 1. • ' �- \ .III )�� +I ♦ _ '`'�-�� 1 `•v . % 1. .! - s ti a� � h _ ,I IIIIrJ I I.. l• , ' moo. �_ - �Y'" I • � - • III - " _ . ' 4 . {' � J j - , _ III o • '. r I 1 R 1 , r •� it _,� _ � - � «ram " ' - � r ; � Im-,f _ ._ _ _ • r• I� a 1r{( �'I ��y'T�II 11 I �y • f 11 f •� �� :1 � 1 �R!R1li�il/rl_I.IeI+��,y"- \•. \ .��N- 1 ;, ^�-- / , /..yy/.^,� �` ��� . I A\titi►'��1L1�+lIrwa..�IYll�t.11711 _//,�l�l��+��1 _—�tr_'�— - /%�► •,%/��� _ �Lr�'r� ��/� ' ' ..� , WIN MAYO RESERVOIR WL ± 433' W WATER INTAKE .. ^r r �� - '.—.w++,+-'--__� - ter+ _ _-- •�' 1 r-� - 1 w -w -.�.- .,, > '� � I WRI �1M "' �/f!1/ms =`� ice--- ' �� .ram • ' ■ =ems /�' �.IMr% �- \� � .1. ;�w S71r .ter �.�' o-,.u�y •r.r� -_" r i ., � - _ Rom--- r -- ..•_ .•���, ' - C% i' I�Uppr !lIJJJ��{'[ - ... + • i - ' , III �_� LNI�� � � � `�� _ . Y. � ' �� - L{...�pop wwqm gplDUKE ice:. if ',NO ►1�:+�V\`� ��► syn erra ENERGY 148 River Street, Suite 220 MAYO STEAM ELECTRIC PLANT 864-421-9999 DRAWN BY: JOHN CHASTAIN\ C. NEWELL FIGURE 3-1 CHECKED BY: E. KINSEY WATER LEVEL MAP -1 (SHALLOW WIL) SURFICIAL FLOW ZONE GRAPHIC SCALE , �Y 7�'•` ' � _ /R ���7 d/ � �r�`.__�.` a 'Ire � � � n _ \ •• • 1 •• I 600 2018 CA 1 ANNUAL 1 INTERIM LEGEND NOTES: � 500 � WATER LEVEL IN TRANSITION ZONE (NAVD 88, FEET) PARCEL LINE DUKE ENERGY (APPROXIMATE) 1. WATER LEVELS COLLECTED BYSYNTERRA, NOVEMBER 05 & 06, 2018. 2. NOTALLUTILITIESAREIDENTIFIEDONTHISDRAWING.THEUTILITIESSHOWNONTHISDRAWING rrr�rrrr�rrr�INFERRED WATER LEVEL INTRANSITION ZONE ,__ (NAVD 88, FEET) NORTH AREVISUALAIDSTO LOCATE THE STREAMS AND WETLANDS IN THE FIELD. THE HORIZONTAL !9 CW-3 CW-3 WELL ID I N TRANSITION ZONE HIGHWAY 501/RAILROAD RIGHT OF WAY (DUKE ENERGY PROPERTY) LOCATION AND VERTICAL LOCATION HAVE NOT BEEN FIELD LOCATED ON ANY UTILITIES AND THE SHOWN LOCATIONS ARE APPROXIMATE. 419.41 WATER LEVEL IN TRANSITION ZONE (NAVD 88, FEET) — ASH BASIN 500 ft COMPLIANCE BOUNDARY 3. THE TOPOGRAPHY IS SHOWN FOR REFERENCE PURPOSES ONLY AND SHOULD NOT BE USED FOR ABMW 1 MONITORING WELL IN ASH PORE WATER DESIGN OR ENGINEERING PURPOSES. TOPOGRAPHY IS BASED ON LIDAR BARE EARTH DATA ASH BASIN WASTE BOUNDARY (APPROXIMATE) OBTAINED FROM THE NORTH CAROLINA SPATIAL DATA SITE AT � MW-3 MONITORING WELL IN ALLUVIUM MATERIAL https://sdd.nc.gov/sdd/DataDownload.aspx SURFACE WATER (AERIAL PHOTOGRAPH & TOPOGRAPHIC MAP BASED) 4. THEWATERS OFTHE US HAVE NOT BEENAPPROVED BYTHE USARMYCORPSOF ENGINEERSAT MW-12S MONITORING WELL IN SAPROLITE MATERIAL THETIMEOFTHE MAP CREATION. THIS MAP IS NOTTO BEUSED FOR JURISDICTIONAL —� - STREAM AERIAL PHOTOGRAPH & TOPOGRAPHIC MAP BASED) ) DETERMINATION PURPOSES. THE WETLANDS AND STREAMS BOUNDARIES WERE OBTAINED MW14BR MONITORING WELL IN COMPETENT BEDROCK FROM AMEC FOSTER WHEELER ENVIRONMENTAL & INFRASTRUCTURE, INC. c AP 6L30 f PIEZOMETER IN ASH PORE WATER SURFACE WATER FLOW DIRECTION NATURAL RESOURCE TECHNICAL REPORT FOR MAYO STEAM ELECTRIC PLANT DATED 2014. APPROXIMATE ASH BASIN FREE PONDED WATER JANUARY20, C DEP-1 PIEZOMETER IN BEDROCK 5. AREA OF INVESTIGATION THAT DETERMINED SETTLED CCR MATERIAL IS NOT PRESENT IN THIS N PDES REGULATED WATER FEATURE AREA OF TH E ASH BASI N. A FUTURE REPRESENTATION ASH BASIN WASTE AND COMPLIANCE O P1A PIEZOMETER IN EARTH DAM (FILL) BOUNDARY IS INCLUDED IN THE MAYO NPDES PERMIT NCO038377 PART I, S.A. (18.) � MY-03 WATER SUPPLY WELL WETLAND BY AMEC FOSTER WHEELER ATTACHMENT A FIGURE 1 AND ATTACHMENT B FIGURE 1.1 DATED JULY 13, 2018. STREAM BY AMEC FOSTER WHEELER OUTFACE 002 NPDES OUTFACE (APPROXIMATE) ---------- CULVERT LOCATION 540 TOPOGRAPHIC CONTOUR (10' INTERVAL) TOPOGRAPHIC CONTOUR (2' INTERVAL) GROUNDWATER FLOW DIRECTION 1 4 L \\\1\\ y - D \'\,\ \ l 1 " ' •,1161, mml 1114 r_ I,�C��,��1�� .� � • . ' -.' �--'—''����%��)�1�1T��� ���!%���U///���ll � 1111////D/0/lDI1I� ,.` i> .� I�III�h�. �'� ®r L 4 Lv IV! 11 -..-: 4s_ �, + •. tiff, Fill 2�• W �SIo I' FORMER SLUICE y. POINTS a • CMP O o 0 0o v CRUTCHFIELD BRANCH '• < 4 BEAVER POND o� 0. •�S� � t� q8° f! 400 r a � 410 420 P 4 43440 I}( I 450 H ° p60 O : �a ➢ 0 CRUTCHFIELD BRANCH°g \� 3 0 v O .39 400 P ° } .d 4y0 UNNAMED BRANCH DO, BOX CULVERT 470 : ® CW-21D - N-3 3g0 I �I — ---- —�---- --- z VIRGINIA�� NORTH CAROLINA W940r � 1 ` AN'ice.. r r�i a p' IIl llllliVui�l�o/j%n , I,oIJ' �I I IIIII,, III III - l:frl' � : 1 'i 1 Ili► � • � �� r�. �l .. � . I is r � r.. ,. �. � � .� v � �• an .I 1 � v 4 ,� 1 �"�_. � � }• ` - . � • � \ - � - � - � / /! ,�' mil' �~ .: ��� _ ♦ JI I , , 1 n i I� i Uy I 1 III r\I \ I I I I 1 II i� \ d I (- I W 'a! f a, S �I 11 1 i' II w' I r I \ ,I �I I r 1' I j„ �I ► I� r I 7 � I J V rV1�. 1 fl 7 I I,u 1} Q I/ J 7- I - I I I _F o I f I \ I ' I ' � ��V'. I a' `►� •I• . s ns+Y'-f !li� .�i, ,,` .'/ �� 1 r r 'c 1{ II I ' - . ,� - / ♦ -: r v , I 1 I wii d ow Ill ^ �� kw , I� �' / ✓ 11! i J, wo IAll I MISS y 5 r 1 ' I4. Mall Lis 74V r , t I .. I _ _ IIIII'', I 'r � � � � _ \� ��� ":'\• ,�(i{'� '. .y'., '• ',.`, � Y � . • 1 1 , -- - - � a-' �:^. •, \,; _ I III,„ illllu�^;Irl� �.. ,�� ; ,:''` �i/ -, �' '�. ` � �j' � :..r\, _ :-. Wil ,, �' .-� � �_,,�� � ,,� ./ � I 3,.,_ � ^♦/y �i�• yam. ,, 1 - ♦ f / 1 - I ° .! \ I. II � I, • \.-,..- � .' - � pia \ :ter .�,... . .� _ it ,I f • ICJ I .a - �''�✓/rt : -� •• 0 ., � _. 1 ` �j fwj �"'r • r .� �� %' � _ 1 ,� ,+ ✓� ". , � ram^-- -. 1,• � . ' � - yr l• - 'r :� ,v x _ � �,� A ,.�' am/ ..: /, ,r •' �. a%y;, •r. / f 1( ' � /, � ' I _ , / 11 1 II %� • : � ,' a - !'' ,: �'_ -,cam,:. -. - - ,_. ,/'"�'�., .. �- � •� •� .:�s�i' II I II ° ob II I� I NO �vcw WIVE -A hill : I I �L I .I. I u , Y: 1 F 1 II I. I I' - � r• I K a • :J. - 4 /y. i ` f A is a I, / I i f r `19 ?• 9 I" I 1 • i 'I I i D , , i- _ • , U%� I III r I I i v � I i t IA• r II I 1 I: - 4 a i ,h r I" _ r I i' i� I I I f I i I 4 it S Ir r M •i ■I a i' I I p r� I I I �II I II I o I II I r II i I. r r I % I t. ,I a II, i ti :v _ r 1 /I 4•, r . .mot Y v � h � ,� +I a, �, l 11 II `'\ � ,, �•.. �- �' ,- '' ;a ',� M ". � �'�'� �•:. � f i t Via.. .../" .�•. _ ,: , + .� ,` - ,,:� ,,- • . . - .. ��1�1� ,. ,, ; ; '�f III '�I'I ►—�Z / ' y _ �`_ --� ` c r r II:I� ; ;11 { / ` III) , % _.�� - ."9' /i^ %• - ` tea,• I -- • � p. ,. , _' I J ' 1 ~�11 I • -t II 1 I f_ii MIS J r - `r ` -= 0�� � �1� J / -'��1i.il►" ,�, .r�•i � � �.. "=--.19+e.� ' �` ►/1 111 m�. I'mil -m- `' 1 a �Y1 I�I■�+� r , (t�C+i2 /� , ,� •/� /fir- —�, ,\ i , y/ I —� ���r'i11f M��� fir'- �/ --- - _-----��.rncu _ ---' -"-"'/ �► � \ wl q t I IIIIII I 1 f _ ..ram-- ® � —�1^�I •� � li Ilw ti �� " 1 will M1, ! - 1 •' r j�/ �� -- ,. ,. "^,'"tom-.__�.. - - ' �` �. a'Af1 >�►�. ,.' w"�l .t1 �, I is �III'lil�ljl) ten. ri 64, G rrr•► RIM R - /i ' - • • - • • - - • ' ME-J, F Ell scrill ml 0 m m-.001111,11111 • r �I� . . ■ R•fi[�r/lOf! LEGEND NOTES: 500 WATER LEVEL IN BEDROCK ZONE (NAVD 88, FEET) — PARCEL LINE DUKE ENERGY (APPROXIMATE) 1. WATER LEVELS COLLECTED BYSYNTERRA, NOVEMBER 05 & 06, 2018. 2. NOTALL UTILITIESARE IDENTIFIED ON THIS DRAWING. THE UTILITIES SHOWN ON THIS DRAWING INFERRED WATER LEVEL IN BEDROCK ZONE (NAVD 88, FEET) — — NORTH CAROLINA - VIRGINIA STATE LINE (APPROXIMATE) AREVISUALAIDSTO LOCATE THE STREAMS AND WETLANDS IN THE FIELD. THE HORIZONTAL MW 2 WELL ID I N BEDROCK ZONE HIGHWAY 501/RAILROAD RIGHT OF WAY (DUKE ENERGY PROPERTY) LOCATION AND VERTICAL LOCATION HAVE NOT BEEN FIELD LOCATED ON ANY UTILITIES AND THE SHOWN LOCATIONS ARE APPROXIMATE. 434.53 WATER LEVEL IN BEDROCK ZONE (NAVD 88, FEET) — ASH BASIN 500 ft COMPLIANCE BOUNDARY 3. THE TOPOGRAPHY IS SHOWN FOR REFERENCE PURPOSES ONLY AND SHOULD NOT BE USED FOR ABMW 1 MONITORING WELL IN ASH PORE WATER DESIGN OR ENGINEERING PURPOSES. TOPOGRAPHY IS BASED ON LIDAR BARE EARTH DATA ASH BASIN WASTE BOUNDARY (APPROXIMATE) OBTAINED FROM THE NORTH CAROLINA SPATIAL DATA SITE AT Qii MW-3 MONITORING WELL IN ALLUVIUM MATERIAL httPs:Hsdd.nc.gov/sdd/DataDownload.aspx SURFACE WATER (AERIAL PHOTOGRAPH & TOPOGRAPHIC MAP BASED) 4. THEWATERSOFTHEUSHAVE NOT BEENAPPROVEDBYTHEUSARMYCORPSOFENGINEERSAT MW12S MONITORING WELL IN SAPROLITE MATERIAL THETIMEOFTHE MAP CREATION. THIS MAP IS NOTTO BEUSED FOR JURISDICTIONAL STREAM AERIAL PHOTOGRAPH &TOPOGRAPHIC MAP BASED ( ) DETERMINATION PURPOSES. THE WETLANDS AND STREAMS BOUNDARIES WERE OBTAINED CW-3 MONITORING WELL IN TRANSITION ZONE FROM AMEC FOSTER WHEELER ENVIRONMENTAL & INFRASTRUCTURE, INC. SURFACE WATER FLOW DIRECTION NATURAL RESOURCE TECHNICAL REPORT FOR MAYO STEAM ELECTRIC PLANT DATED c AP 6L30 PIEZOMETER IN ASH PORE WATER JANUARY20, 2014. APPROXIMATE ASH BASIN FREE PONDED WATER C DEP 1 PIEZOMETER IN BEDROCK 5. AREA OF INVESTIGATION THAT DETERMINED SETTLED CCR MATERIAL IS NOT PRESENT IN THS NPDES REGULATED WATER FEATURE AREA OF THE ASH BASIN. A FUTURE REPRESENTATION ASH BASIN WASTE AND COMPLIANCE O P1A PIEZOMETER IN EARTH DAM (FILL) BOUNDARY IS INCLUDED IN THE MAYO NPDES PERMIT NCO038377 PART I, S.A. (18.) WETLAND BY AM EC FOSTER WHEELER ATTACH M ENT A FIGURE 1 AND ATTACHMENT B FIGURE 1.1 DATED JULY 13, 2018. • MY-03 WATER SUPPLY WELL STREAM BY AMEC FOSTER WHEELER 1 OUTFALL 002 1OUTFALL (APPROXIMATE) ---- ----- CULVERT LOCATION 54o TOPOGRAPHIC CONTOUR (10' INTERVAL) -- TOPOGRAPHIC CONTOUR (2' INTERVAL) GROUNDWATER FLOW DIRECTION cl NORTH CAROLINA , I ��� '° III � � _ uf�ini6[ZeTi � IuUd6[•XlejGlly„ 1 11 �y1 1� •.�C, ,/ �. ,- �«; `"ems...' ; c. 1 J • ' �; Il-�S•r:. ��\V r110 I 1 , GATE 100'�RIGHT OF WAY �v,dIlo D 24'1 ,20 CRUTCHFIELD VERT BRANCH mow'' 43o / 81 (Ji VERT NAMED BRANCH CCR-1086R // WASTE WATER � . MA, r l �l 111 I II iI. I II ( I I I I I � I II I I I I I i J 1 I hill I� I II I 111•.1 M III II II I I I I\ I pl III ll 1111;1 o1)plll+ll I I .ryl Full ;- �: �_✓� ��. ons=� r r 'Ili ' � �' � ' •' - i �.�� s' ' 4, I `t, �f \, 'i , � i 1'/ . � � � ..� `' � �� /,i�±� 1 r 1 S L n ! I i ' ! �` �:'11' lilt, ( .' ..�` \` ♦ �� � l , .� —'"'1; � ;; 'I l� _.. _ ..•' � .... .,. ' � - � ,� ( r' � .. � ' � • ,. ,rim Via, �:�''► �'= s� - ,ri-•` � z* 1 °� .� �`� i r r � / f' ;� �� rid _ _ _!� ��;! � l � � Ili I�I� ,. a' .�►. ��!•" �rz�� / ��. �s �,� ''��lc • � ��� , . .ate//�' �� � , _,, e� G a' ,�i _,� ; 'r'"�.�y11, /" __.-� � �Ij.ram,. � / {P ,} �/ ���� ■ s I a � r- • 5 • , I w� , II �r , / �.��� , �"vl.�, /' ,ice �� i ; O`�" � ,,���� l _� ,. s'_.,-->.._... �`p .. o :`• � .;11�, `' _ ��' •, �' �i;l I i , • � •� `. ` , � s � � ,,, ,�' .:: - � - ,,v . , �", - .. � �, elf' ,��".�ii I! � .. , . �I li �Ip„ (`,� r � .. � � �%/i��+ <�. _ _.. aft > / ,,,% / - �. �,!/ �' _ ��;. 1 j,IYr , ., fM.►4I I ps ASINK all 1 wj Y`! � ', �- a' i� �. 1 � �►r,. • �- \.. Ravi PRO — o •rwl � - go /� II'I � ��� , u r'�' � • ARMS �"w / i 3 !id ♦7 ,..;it de:: A ,,;, � �� � �r � . � � _ � C � 'IV r _� �� . . - .i. _ -lr; ♦./J/ —�r�� IIIII I I ,r t-_ of � d -� _ _ i � f � • _ III S r y.. r i I _ i `� IIII -, j'Ii �II III ;•II 1� • - . - • � ._ � ';i / , II r: "� • ON WIN& �M t - � �' / 1�11 � ► ,�'�" ''J! _ 1. � ' ,� u 1 } r r x 5- L. i t , l /r r _ r 0 S r 4, r • y I . `•III .III 1I �` � � � i4, .r r . L RYA FA r MAYO RESERVOIR WL ± 433' W WATER INTAKE • ��� �\'� i� A °ter j ,, f . -ter ",..._ 1�... a � :!,+• ..-. t' �` � ����JJ • `,ell '� � • � �� .� >, _ dp .. l e• • • • •FIGURE 3-3 PROJECTCHECKED BY: E. KINSEY WATER LEVEL MAP LAYOUT NAME: FIGURE 3-3 (BEDROCK WL) BEDROCK FLOW ZONE f f `GRAPHIC SCALE (NOVEMBER 05 • 1618 l •� , i� s+ll ' I,li�,.. ...�+I� .� ��. _ ,ti s • Ise _ ' MONITORING •. REPORT .• 550 c 500 350 +- 01/15 07/15 01 /16 07/16 01 /17 07/17 01 /18 07/18 01 /19 Date 0 MW-12D ♦ - ABMW-2BRL ❑ MW-16D p MW-12S • CW-2 O MW-16S ❑ ABMW-2 0 CW-2D ABMW-2BR V MW-16BR Notes: 1. Hydrographs are drawn from water levels measured in the field at each monitoring well during routine monitoring events. 2. All water levels are in feet (ft), NAVD 88. 148 RIVER STREET, SUITE 220 GREENVILLE, SOUTH CAROLINA 29601 PHONE: 864-421-9999 p�^ �TGI ra www.synterracorp.com :.DUKE DRAWN BY: ENK DATE: 4/3/2019 PROJECT MANAGER: JAW ►. ENERGY CHECKED BY: JAW FIGURE 3-4 HYDROGRAPHS 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC ROXBORO, NORTH CAROLINA lot COAL PILE — Notes: � � � ► � � � � �' _ -� �, .. �� i ..,,�R. r — _ — l ' � �. Velocity magnitudes in feet per day (ft/day). Velocity vectors are in three dimensions. Velocity vector directions shown as black arrows. Source: Preliminary Updated Groundwater Flow and Transport Modeling Report for Mayo Steam Electric Plant, Roxboro, NC, November 2018 (Murdoch, Yu, Graziano & Falta, Revised January 2019). LEGEND 0.1-0.2 ft/day 148 RIVER STREET, SUITE 220 FIGURE 3-5 ■0 — 0.001 ft da / y 0.2-0.3 ft/day GREENVILLE, SOUTH CAROLINA 29601 PHONE:864-421-9999 FLOW VELOCITY VECTORS AND MAGNITUDES ■ 0.001-0.01 ft/day 0.3-0.4 ft/day synTerra www.synterracorp.com SURFICIAL FLOW ZONE ■ 0.01-0.05 ft/day 0.4-0.5 ft/day 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT 0.05 — 0.075 ft/day 0.5 -1.0 ft/day �� DUKE `� DRAWN BY: J. EBENHACK DATE: 4/12/2019 DUKE ENERGY PROGRESS, LLC 0.075 — 0.1 ft/day . 1.0t ft/day ENERGY PR(' PROJECT MANAGER: J.WYLIE CHECKED BY: E. KINSEY ROXBORO, NORTH CAROLINA �� 1V � rr✓ram r- .� tX.4 ntiti b� `�� L� G ti �• ~` �g f/ �..'� P f ! r l7 t �;��. f'r 8.11�j ~ �' t i r i +� � ti ti `• ., �•w1.`.`.•,\. ••t 1 f%/J��-,. _ f P � +..�•. }-•.iifi ASH BASIN � .�� t t t 1 l r, �����ti�♦ `� 1 � j � \`� ��� � -, 93 ti i r �. � r.� ���'J, 111� ��1� PsI � / f .err • a �- ti� � IS ti jf 1 rT ¢•r't� 1 t�� • -�': ti �� ����� ` ti I `f �. rl S tilt 1 l � 1 1 r� ,� •,'\'� .♦ '. t "` �'�_.-_~ • •r 1 r11 t 1 l fi � _r'�'l � � "r�� �*�.ti'����\ti�ti�� `��'� "_y Y ry �� l-w ���'�� ti r�Y•�--"''- • rill\ 1't t ��f>t] r �•.♦\♦\����♦ ♦ ''�,r• � '' 1 •� r��`" ` , . 1 I L l 1 t P , t t ' -, '� ti�� � \ti s ► '� - t 1 ; 4% MAYO -- -� Tm J f `>>•�>>.�f .\\\�ti\\\\\\\ \ PLANT COAL PILE ��- Notes: Notes: Velocity magnitudes in feet per day (ft/day). Velocity vectors are in three dimensions. Velocity vector directions shown as black arrows. Source: Preliminary Updated Groundwater Flow and Transport Modeling Report for Mayo Steam Electric Plant, Roxboro, NC, November 2018 (Murdoch, Yu, Graziano & Falta, Revised January 2019). LEGEND 0.1-0.2 ft/day 148 RIVER STREET, SUITE 220 FIGURE 3-6 ■0 — 0.001 ft da / y 0.2-0.3 ft/day GREENVILLE, SOUTH CAROLINA 29601 PHONE:864-421-9999 FLOW VELOCITY VECTORS AND MAGNITUDES ■ 0.001-0.01 ft/day synTerra TRANSITION ZONE FLOW ZONE ■ 0.01-0.05 ft/day 0.3-0.4 0.4-0.5 ft/day ft/day www.synterracorp.com 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT 0.05-0.075 ft/day 0.5-1.0 ft/day ��DUKE `*' DRAWN BY: J.EBENHACK DATE: 4/12/2019 DUKE ENERGY PROGRESS, LLC 0.075 — 0.1 ft/day . 1.0t ft/day ENERGY FR.' PROJECT MANAGER: J. WYLIE CHECKED BY: E. KINSEY ROXBORO, NORTH CAROLINA 1 'l 'tI fl.ft��-�.� � � �• > t �, 1 >ti ���a 'r...�%if 1� rr 1 jam,. ".. • , . ��-+>>' P qS._� .� -- j `' r , .• . rr�__�..-,'Y /r tom--_ _.�-- � 1 � o � 1 l � r � ^� � . _ - r r t '� ;P� �� jt' :�ti ��- � ` + \�� Sr' r , 1 �•- .�r,f rf � Y Y ti z 1 1r _ . t d✓ \ � t t tip-' f` � - � .= �ti��ti P��•. � 1 � � r��.�r • ` \\\\\ +\� \'� tiL\` 1�ti�-: .. �•. . r� ?: ---'� _ 1 r r f �. _ � 4��`.S'`+Y1•\\\11�1\,`` Ii/". •'irl�r:.a'l � r✓��•j�~~~ �� f ` P ..��' f. � � _��-- r~...a�"-`• �.`� • .....,�4:"\ti\\k.• •, t t f 5 •A.1.��� 1 ..«��� r f j % � - .1 _., •4.. \ '- �t r� : f frtt t t { t1. `v,��• • . ti t f BASIN\ a r rr,° l i t ,� ..�- ��������.R t r r 1 1 1 �� y�� \'.1•. t'�� r t '' ,�� ���1 �� V- > / rl.�r ..� � ti•. \L •.rya\ y\ty\ti �""�-.��� � - �.� \ L%'� MAYO ,� ��w.-��-� --.ter Pit•��� •� L� .. �'�� ti. \\\\\1ti 1�� � �S� � � � �, �\ ; ! ` � f' -,_----���a � l; � rp P� N, y , •--�--".�� �, y 1\\ti�� �~ r �, f.. ti � �, a � � L 1 ���� �f~ t. r PJf 1ti� � t PJ,p f jr �,.. �R�titi\"�\\\\�'�•� ti� ~ ti �_' "� f r - � .. �"'1`"_��� . , 1 t y'a l 1 1 f P r ..-.�.� ••:'• .�����\ti �� \ � � ti �` � -� � �„ r l r � PLANT �� ,���• �,�� ���tiZ�.�-_-_,� r fr,l����titi��,������ � ti s, � ,` , r r--.~`r�„ �`:,1 � ��� �, P Ir PILE Notes: � ~ ~ . � ~ •. '` � ,. '..� R � , t . P � � R •` Z t � , T t . _• -. —~r i _, -• - Velocity magnitudes in feet per day (ft/day). Velocity vectors are in three dimensions. Velocity vector directions shown as black arrows. Source: Preliminary Updated Groundwater Flow and Transport Modeling Report for Mayo Steam Electric Plant, Roxboro, NC, November 2018 (Murdoch, Yu, Graziano & Falta, Revised January 2019). LEGEND 0.1-0.2 ft/day 148 RIVER STREET, SUITE 220 FIGURE 3-7 ■0 — 0.001 ft da / y 0.2-0.3 ft/day GREENVILLE, SOUTH CAROLINA 29601 PHONE:864-421-9999 FLOW VELOCITY VECTORS AND MAGNITUDES ■ 0.001-0.01 ft/day 0.3-0.4 ft/day synTerra www.synterracorp.com BEDROCK FLOW ZONE ■ 0.01-0.05 ft/day 0.4-0.5 ft/day 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT 0.05-0.075 ft/day 0.5-1.0 ft/day ��DUKE `*' DRAWN BY: J.EBENHACK DATE: 4/12/2019 DUKE ENERGY PROGRESS, LLC 0.075 — 0.1 ft/day . 1.0t ft/day ENERGY FR.' PROJECT MANAGER: J. WYLIE CHECKED BY: E. KINSEY ROXBORO, NORTH CAROLINA Ash Basin Ash Basin Pond Dam P f ... _ _ � � y 1 f f f � � � �� ri'JJ.•O�r/J/ f / t � Notes: 4 ''7' _ Flow Velocity Vectors and Magnitudes through the Ash Basin and Dam Current Conditions ` Velocity Magnitudes in feet per day (ft/day). Velocity vectors are in three dimensions. Velocity vector directions shown as black arrows.' f='' Vertical Exaggeration = 3xM.. Source: Preliminary Updated Groundwater Flow and Transport Modeling Report for Mayo Steam Electric Plant, Roxboro, NC, November 2018 (Murdoch, Yu, Graziano & Falta, Revised January 2019). 0 - 0.001 ft/day 148 RIVER STREET, SUITE 220 FIGURE 3-8 LEGEND 0.2 - 0.3 ft/day `� PHONE: 864-421-9999 GREENVILLE, SOUTH CAROLINA 29601 FLOW VELOCITY VECTORS AND 0.001 - 0.01 ft/day 0.3 - 0.4 ft/day 5�'lTerrd MAGNITUDES THROUGH DAM 0.01 - 0.05 ft/day www.synterracorp.com 2018 CAMA ANNUAL INTERIM 0.4 - 0.5 ft/day 0.05 - 0.075 ft/day DRAWN BY: J. EBENHACK MONITORING REPORT 0.5 - 1.0 ft/day �� DUKE DATE: 4/11/2019 MAYO STEAM ELECTRIC PLANT ( 0.075 - 0.1 ft/day 1+ ft/day � ENERGY. CHOJECTIVAN GER: JYWYUE DUKE ENERGY PROGRESS, LLC 0.1 - 0.2 ft/day ROXOBORO, NORTH CAROLINA A A' NORTHWEST SOUTHEAST DUKE ENERGY MAYO STEAM ELECTRIC PLANT PROPERTY a ASH BASIN COMPLIANCE BOUNDARY Lo PROFILE BASED ON HISTORIC a USGS TOPOGRAPHIC MAP ASH BASIN WASTE BOUNDARY m LANDFILL o s It K � S 'S tii r z .r ��+r vP` M ZO m n LSi o �tl �^ PROFILE BASED ON HISTORIC o�__ U �Y '�luf t ylyi^yrt� p /� /USGS TOPOGRAPHIC MAP ASH BASIN tI\ %/� it v;r+-- _TovoFDAMass'--___-- _—REGOLITH� ---------------------------------------- WATER ELEVATION=480'---------- — ASH �i� !,\/1\I `�\/�� I r \ MAYO RESERVOIR TOP OF DAM 444 _ t \ / \ _ _ \ / - \ / �r r• \ \ i \ / — l i I \ !! REGOLITH I 1 \ / / 1 \ / \—\ \ \ / GENERALIZED GROUNDWATER I \ / _ \ I / \ — \ I \ / _ \ \ / — \ IIP WATER ELEVATION=433 GROUNDWATER / / \ / _ \ / \FLOW DIRECTION / \ / 1 / \ \ / \ / 1 / \ / \ I / 1 / / \ / / 1 'FLOW DIRECTION / / �1 / - - _ / \ / 1 / / / —�� \ — — 1 \ — — 1'/ ASH / \ \ — 1 �/\—/ \ 1'/ —� \ — 1'/�—/—\ \ — 1'/�—//`—/ \ \%A 3 p \ I / \ i \ / I i \ i \ I / \ i \ / I \ \ I / \ i \_ �_� \ / I \ i \ I /�� \ / I i \ i \ / I / \ i \ / I i \ i \ I / \ irc�\ / I i \ i I / GENERALIZED \ \ /� _ \' \ / — \ ♦ i /N pI>� / — \ \ i / — _ \' / — \ \ i / — _ \ / — \ \ i / _ \ \� \ \ i / — — \' ` � �► / — _ \ / — \ \ i / — _ \ / — �_ ,F .h — _ ♦ —GROUNDWATER z 'Al \ \/\I/1\/\/\I/\/\I/1\/\/\I/\/\I/1\/\/\I/1\/\/\/\/1\/\/\I/1\/\/\I/1/3o/\I/1\/\/\I/1\/\/\I/1\'\/\I/1\/ /¢�w/1\/\/\I/1\/FLOW DIRECTION /FORMER CHANNEL OF 11 /\—_ \ \ /.� — — \ /\—_ \ 1 /\Z�>I� \—_ \ \ /.� — /.—_ \ 1 /.� — s1 zIQ Jw► \l_i�\\I \/I� —/\/—i`'\I./ /I\i / \ii\\I./I\—/\/_i\'\I•/ /I\,\l—/\I./I _/\/\\'\I�/ ;I\ /\ / /\I//1I,_/\l i/\I/1\/\_/\I/1�//\I//1\'/\_'\\I/1I\/\/\I// `/l\i/\I/` I �// 1\' /l\i/\I/1I�/BE�D/R\OIC/K1\'\/\I/1I _ CRUTCHFIELD BRANCH' PROFILE BASED ON HISTORIC 1qvo. \ USGS TOPOGRAPHIC MAP PROFILE BASED ON HISTORIC — \ %` BEDROCK%\.//�I / \\ `BEDROCK\\ ;\. �I / \\\USGS TOPOGRAPHIC MAP / 7% LEGEND MW 16S WELL IN ALLUVIUM MATERIAL MW 12S WELL IN SAPROLITE MATERIAL MW 16D WELL IN TRANSITION ZONE MW 16BR WELL IN COMPETENT BEDROCK ABMW 2 WELL IN ASH PORE WATER MY 1001 WATER SUPPLY WELL _ GENERALIZED WATER TABLE GENERALIZED GROUNDWATER FLOW DIRECTION GENERALIZED SUBSURFACE ASH PORE WATER FLOW DIRECTION — — — LITHOLOGIC CONTACT ASH — ASH PORE WATER BEDROCK 502.70' WATER LEVEL ry ASH FLOW LAYER WATER LEVEL ELEVATION SURFICIAL FLOW LAYER GROUNDWATER WELL WATER LEVEL ELEVATION TRANSITION ZONE FLOW LAYER GROUNDWATER WELL WATER LEVEL ELEVATION BEDROCK FLOW LAYER GROUNDWATER WELL WATER LEVEL ELEVATION ®j BORON CONCENTRATION IN ug/L 0116106i 1. DEPTH TO WATER GAUGED IN MONITORING WELLS ON NOVEMBER 5 & 6, 2018. 2. BORON CONCENTRATIONS ARE THE GEOMEAN FOR SAMPLES COLLECTED IN 2018. 3. THE NORTH CAROLINA 2L FOR BORON IS 700 Ng/L. 4. BACKGROUND THRESHOLD VALUE (BTV) FOR BORON IS 50 Ng/L WITHIN THE SHALLOW, 50 Ng/L DEEP, 50 Ng/L BEDROCK FLOW LAYERS. 5. ALL VERTICAL ELEVATIONS ARE MEASURED IN FEET, NORTH AMERICA VERTICAL DATUM (NAVD) OF 1988. SOURCE INFORMATION: 0 125 250 500 HORIZONTAL SCALE: 1" = 500' VERTICAL SCALE: 1" = 100' 5X VERTICAL EXAGGERATION EXISTING GROUND SURFACE BASED ON A DRAWING PROVIDED BY THE WSP GROUP, TITLED "MAYO PLANT FINAL", DATED MAY 19, 2015. HISTORIC GROUND SURFACE BASED ON THE 7-1/2' USGS TOPOGRAPHIC MAP FOR CLUSTER SPRINGS, VA DATED 1968. PRIVATE WATER SUPPLY WELL INFORMATION WAS OBTAINED FROM A LIST PROVIDED BY DUKE ENERGY PROGRESS 16, VERTICAL EXAGGERATION 5X FIGURE 3-9 GENERAL CROSS-SECTION A -A' WnTem 148 RIVER STREET, SUITE 220 2018 CAMA ANNUAL INTERIM MONITORING REPORT GREENVILLE, SOUTH CAROLINA 29601 PHONE864-421-9999 MAYO STEAM ELECTRIC PLANT www.synterracorp.com rp. com DUKE DUKE ENERGY PROGRESS, LLC P ENERGY DRAWN DATE:04/25/2019 ROXBORO, NORTH CAROLINA PROJECT MANAGER:JERRY WYLIE LAYOUT: SECTION A -A' PROGRESS B--a SOUTHWEST —w---=A=ROL=TE--- SMALL STREAM PROFILE BASED ON 1968 USGS TOPOGRAPHIC MAP v1 W — \ COAL PILE AREA 0 0 0 DUKE ENERGY MAYO STEAM ELECTRIC PLANT PROPERTY ASH BASIN COMPLIANCE BOUNDARY - ASH BASIN WASTE BOUNDARY J v ci D] CO (n N N I?m D] D7 D] D7 Q Q Q Q ASH BASIN EARTHEN DAM u:I_) (FILL) TOP OF DAM 488 - N r � O � m � m M m rr -mmm-- B' NORTHEAST PROFILE BASED ON 1968 USGS TOPOGRAPHIC MAP _ _ _ uJ uJ —� TRANSITION GENERALIZED G T= 1♦�� r_T SLOW DIRECTION OUNDWgTER — — — �,��1 — �� — 1 L • WATER ELEVATION=480 Q a O O O O O r c B. l \ / I / \l i l \ / I / \/ i l \ / i �� — — ASH � uJ ♦ \/ — _\/�/ / _\/\/� _ --- — fV N UUU Y m ------------ \ cq \/I/\� \/I/\il\/I/\\ \/I/ it\/I/��l\/I/\il\/I/\\� \TIT'\i'T1-•�- M ♦ / \ / — _ \ / / — \ \ / / — — ♦ / — \ / / — — \ / \ / — \ \ / \ / — / — \ \ / / — _�' �-•— �� TRANSITION ASH i\I/1\/\/\I/1//�/\I/1♦/\ \I \/\I/1`/\/\I/1`/�/\I/1`� I/1`/ /\I ♦/\/\I/1`i--/\I ♦T \?\'iT T� �•—.� ����—_ �,f cV cV _/� T1�� fir--+ �•�� _ �__ � /♦—_ \ — 1 � /♦� — � — \ � /♦—_ \ — j /♦� — � — 1 � /♦—_ \ — \ � /♦� — � — \ � / — j /♦/ — i — \ % /`—_ \ — 1 � /`/ i \ l /` — \ — 1 / /♦/ i \ l /♦ — \ — 1 / /♦/ i 1 / /♦ \ 1 / /♦/'1 \�♦ T — � � � � U U ♦ \ /I \/ \ / /I — `/ i /I `� \ / \ /I — \/ i /I \l \ / ♦ /I — `/ i \ — / \ /I — \/ i /I `/ \ / \ /I — `/_' i / I / \/_� /I — \/_� i / I / `/_� \ /I — \l i / / \l ` /I _ \l i / I / \//T/ ; r" r .-� _ i\I/1♦/\/\I/1,/\/\I/1`/\\I/1�'\/\I/1`/\/\I/1,/\/\I/1`/\/\I/1�/\/\I/1`/\/\I/1�/\/\I/1`/\/\I/1,/\/\I/1`/\/\I/1�/\/\I/1/\/\I/1,/\/\I/1`/\/\I/1`/\/\I/1`/\�I/1� ALLUVIUM Ar / \\/ I / \`� / \♦/ I � \ i l \\/ I / \` l \♦/ I / \ i l \\/ I / \l \♦/ I / \ i l \\/ I / \/ \♦/ I / \ `. /I � `\ ♦/ \♦/ I / ` \\ /I � \\ \� /I / \\ � /`I � `\ � /\� /I / \\ � /\. /I � \\ /I � \\i �\\/ I / \/ \♦/ I / \ i l \\/ I / \`� l \♦/ I / \ / \`�,l \♦ � �T�Nsr� � \I / 1 ♦ `\ / \BEDROCK / \ I / 1 ` \ \I / 1 ` / \I / 1 ♦ \ / \ I / 1 ♦ / \I / 1 ` \ / \I / 1 ` / \I / 1 \ / \ I / 1 ` / \I / 1 ` \ / \I / 1 ` / \ I / 1 ` \ / \I / 1 ` / \I / 1 \ / \ I / 1 ` / \ I / 1 ` \ / \I / 1 ` / \I / 1 ` \ / \ I / 1 ♦ \ / \I / \ \ \ \ / \ I / �� /♦ \ — 1 /♦-- \ — 1 /♦—_ \ — % /♦-- \ — 1 /♦ \ — \ /♦-- \ — 1 /♦ \ — \ /♦—_ \ — 1 .BEDROCK j /♦-- \ — \' /♦ \ — 1 /♦—_ \ — \' /♦—_ \ — \ /♦—_ \ — 1 ' / r \ — 1 /♦—_ \ 1 /♦__ \ — \ /♦—_ \ — \ ' /♦__ \ — \ /♦—_ \ 1 /♦_ \ — 1 / /♦-- \ \' /♦—_ \ — /♦ \/1 \/\/\/ \/\I/1 \/♦/1/ \/\I/1`�\i\I/1/ \/\I/1` \/\I/1�/ %\I/1` \i\I/1�/ /\I/1` \/\I/1�/ %\I/1` \/\I/1�//\I/1♦/\i\I/1/��BEDROCK/\/\I/1���%\I/1`/\i\I/1/��/♦I/1 \/\I/1/��\\I/1`/\i\I/ l \�/ I / \\ i l \♦/ I / \ i l \\/ I / \` i l \♦/ I / \ i l \\/ I / \` l \♦/ I / \ i l \\/ I / \` i l \♦/ I / \ i l \\/ I / \\ l \♦/ I / \ i l \\/ I / \` l \♦/ I / \ i l \\/ I / \` i l \♦/ I / \ i l \\/ I / \\ i l \♦/ I / \ i l \\/ I / \` i l \♦/ I / \ i l \\/ I / \\ i l \♦/ I / \ i l \\/ / \` i l \♦/ I CRUTCHF/ELD \ i l \♦ / 1 ` / I ♦ / — ♦ / I ♦ / — ♦ / I ♦ / — ♦ / I ♦ / — ♦ / I ♦ / — ♦ / I ♦ / — ♦ / I ♦ / — ♦ / I ♦ / — \ / I ♦ / — ♦ / I ♦ / — I -BRANCH I ol i \I / � ♦ \ � / \I / 1 ` � \ / \ I / 1 ` � \ / \I / 1 ` � \ / \I / 1 ` � \ / \ I / 1 ` � \ / \I / 1 ` � \ / \I / 1 ` � \ / \I / 1 ` � \ / \ I / 1 ` � \ / \I / 1 ` � \ / \I / 1 ` � \ / \ I / 1 ` � \ / \I / 1 ` � \ / \I / 1 ` � \ / \ I / 1 ` � \ / \ I / 1 ` � \ / \I / 1 ` � \ / \I / 1 ` � \ / \ I / 1 ` � \ / \I / 1 � \ / \I / 1 ` / \ / \ I / 1 ` / \ / \ I / • �\\/ I / \`� / \♦/ I � \ i l \\/ I / \`� / \♦/ I / \ i l \\/ I / \`� l \♦/ I / \ i l \\/ I / \`� /`♦ /I / \\ � /`� /I � `\ \ /\\ /I / `\ � /`\ /I � \\ ♦ /\♦ /I / \\ � /`�//I � `\ \ /\\ /I / \\ � /`� /I � \\ ♦ /\♦ /I / `\ � /`\//I � `\ ♦ /\♦ /I / \\ � /`�//I � `\ � /`♦//I / `\ � /`♦// � \\ � /`♦ /I / \\' /`\/ I / `\' /\\ \/1 _\/\/\/ \/♦/1 \/\/1/ \/♦/\ \/\/1/ \/\/1 _\/\/1/ \/\I/1 \/\/\/ \/\I/1 \/\/\/ \/\I/1 /\/`/1/ \/\I/1 \/\/\/ \/\I/1 /\/`/1/ \/\I/1 \/♦/li/\/♦I/1 '\/\I/1��\/\I/1`/\/\I/ — i \I / 1 ♦ \ \ / \I / 1 ♦ \ / \ I / 1 ` \ / \I / 1 ♦ \ / \I / 1 ` \ / \ I / 1 ♦ \ / \I / 1 ` \ / \I / 1 ♦ \ / \I / 1 ♦ \ / \ I / 1 ` \ / \I / 1 ` \ / \I / 1 ♦ \ / \ I / 1 ♦ \ / \I / 1 ` \ / \I / 1 ` \ / \ I / 1 ♦—\ / \ I / 1 ` \ / \I / 1 ` \ / \I / 1 ♦ \ / \ I / 1 \ \ / \I / 1 \ / \I / 1 ♦ \ / \ I / 1 ♦ \ / \ I / 4 LEGEND 0 125 250 500 NOTES MW 16S WELL IN ALLUVIUM MATERIAL ASH FLOW LAYER HORIZONTAL SCALE: 1" = 500' VERTICAL SCALE: V= 100' MW 12S WELL IN SAPROLITE MATERIAL WATER LEVEL ELEVATION 1. DEPTH TO WATER GAUGED IN MONITORING WELLS ON NOVEMBER 5 & 6, 2018. 5X VERTICAL EXAGGERATION MW16D WELL IN TRANSITION ZONE V SURFICIAL FLOW LAYER GROUNDWATER 2. BORON CONCENTRATIONS ARE THE GEOMEANFOR SAMPLES COLLECTED IN2018. MW 16BR WELL IN COMPETENT BEDROCK WELL WATER LEVEL ELEVATION 3. THE NORTH CAROLINA 2L FOR BORON IS 700 pg/L. ABMW 2 WELL IN ASH PORE WATER V TRANSITION ZONE FLOW LAYER GROUNDWATER 4. BACKGROUND THRESHOLD VALUE (BTV) FOR BORON IS 50 pg/L WITHIN THE SHALLOW, MY-1001 WATER SUPPLY WELL WELL WATER LEVEL ELEVATION 50 pg/L DEEP, 50 pg/L BEDROCK FLOW LAYERS. GENERALIZED WATER TABLE BEDROCK FLOW LAYER GROUNDWATER 5. ALL VERTICAL ELEVATIONS ARE MEASURED IN FEET, NORTH AMERICA VERTICAL DATUM (NAVD) OF 1988. _ WELL WATER LEVEL ELEVATION GENERALIZED GROUNDWATER FLOW DIRECTION BORON CONCENTRATION IN pg/L SOURCE INFORMATION: GENERALIZED SUBSURFACE ASH PORE WATER FLOW DIRECTION EXISTING GROUND SURFACE BASED ON A DRAWING PROVIDED BY THE WSP GROUP, TITLED "MAYO PLANT FINAL", DATED MAY 19, 2015. HISTORIC GROUND SURFACE BASED ON THE 7-1/2' USGS TOPOGRAPHIC MAP FOR CLUSTER SPRINGS, VA DATED 1968. - - - LITHOLOGIC CONTACT PRIVATE WATER SUPPLY WELL INFORMATION WAS OBTAINED FROM A LIST PROVIDED BY DUKE ENERGY PROGRESS 0 ASH ASH PORE WATER VERTICAL EXAGGERATION 5X FIGURE 3-10 BEDROCK pm GENERAL CROSS-SECTION B-B' 545.63' WATER LEVEL �Q 148 RIVER STREET, SUITE 220 2018 CAMA ANNUAL INTERIM MONITORING REPORT GREENVILLE, SOUTH CAROLINA 29601 DUKE 4n PHONE864-421-9999 MAYO STEAM ELECTRIC PLANT www.synterracorp.com DUKE ENERGY PROGRESS, LLC ENERGY DRAWN BY: C.NEWELL DATE:04/25/2019 ROXBORO, NORTH CAROLINA PROJECT MANAGER: JERRY WYLIE PROGRESS LAYOUT: SECTION B-B' E • } + + .� •- • • MW-16S 0 CCR-103S i 187.2 683 + + s CCR-104S + - 338 s� yyo 1 1 , r 1+ CCR-105S MW-3 �+ +1 + I 282 1089.4 ►y 1 1 I 1 I I d ■ `�� 1 1 •1 I ► I �� \ +r j r "-•�i � 1 • \ I I ABMW-1 ABMW-2 / I Rqi� I 5071.7 8486.7 A s Oe ABMW-3 �+ r , 1962.3 ■► ABMW-3S APO I I 1314.7 0� t ^ I ABMW-0 5900.0 ABMW-4X* 0 5290.0 ' S r I ..w� I► I -R A t --f , to , ► ' / . y`� I I lyl • �..� 41 I . •I % ►fk I APPROXIMATE FUTURE ASH BASIN WASTE BOUNDARY (SEE NOTES, THIS DRAWING) CCR-101 S-BG'y <50 r.. T 7 r I I � I I t R.C: W. 100' � , I I <50 + � . <50 , r ULLINS LN t , I rIl , 7 G � 400 200 0 400 800 1,200 GRAPHIC SCALE IN FEET synTerra 148 RIVER STREET, SUITE 220 GREENVILLE, SOUTH CAROLI A 29601 PHONE DUKE www.s nterracor .com terrac m.COM DRAWN BY: A. ROBINSON DATE: 04/25/2019 ENERGY ,i PROJECT MANAGER: J. WYLIE PROGRESS CHECKED BY: E. KINSEY NORTH CAROLINA-VIRGINIA STATE LINE (APPROXIMATE) LEGEND 0 0 = mm =i I NOTES: FIGURE 3-11 ISOCONCENTRATION MAP GEOMEAN OF BORON IN SURFICIAL FLOW ZONE 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC ROXBORO, NORTH CAROLINA E R rH FST FRRo ------------------ + + . - CW-03 MW-16D ' ■ ' a, CCR-103D r • <50 <50 ' + ' `■ 1670 + r r + _ J CCR-105D CW-02858 4 - - , . } � r ` 831 - - - � 1 r 1981 C&D t Q/ - �w � CW-01 <50 MW-19D <50 L I 4 + I . + A Bc-oz ' ' J r1lr I LMAYOPLA APPROXIMATE FUTURE ASH BASIN WASTE BOUNDARY f� `/ i t f• (SEE NOTES, THIS DRAWING) I � , IN I i vr^ , , r ULLINS LN � , I N , 7 G � r + 11 400 200 0 400 800 1,200 GRAPHIC SCALE IN FEET 148 RIVER STREET, SUITE 220 synTerra GREENVILLE, SOUTH CAROLI A 29601 PHONE 864-421-9999 I DRAWN BY: A. ROBINSON DATE:04/26/2019 ENERGY PROJECT MANAGER: J. WYLIE PROGRESS CHECKED BY: E. KINSEY NORTH CAROLINA-VIRGINIA STATE LINE (APPROXIMATE) 7 LEGEND NOTES: FIGURE 3-12 ISOCONCENTRATION MAP GEOMEAN OF BORON IN TRANSITION ZONE FLOW ZONE 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC ROXBORO, NORTH CAROLINA t RTh, FSTFR Rp r------ CW-04 + CCR-103BR + 2700 ■ a ~ MW-14BR + <50 � ■' � + � w CW-05 ■� r ti rr i ti MW-13BR 1 <50 =4/ r 1 - P7)E.w.105BIRM] yMW-02<509BR MW-16BR 3 <50 CCR-105BR 854 CW-06 <50 MW-08BR <50 MW-104BRL CCR-10813R ■� � CCR-104BR MW-04 <50 <50 - I „ • MW-0913RL <50 jp ■ ABMW-02BRL <50 � I <50 ABMW-02BR oPp <50 <50 gP��■ • l 1 BG-01 A ri II r 1 � I i 1■� � yl ,s— .�- � , 1 ` CW-02D 271.9 O` CCR-106BR ` 55 j MW-104BRM ` CCR-107BR ` �O <50 1060 " • MW-19BR ABMW-04BR i <50 <50 MW-18BR <50 + I MW-10BR <50 m APPROXIMATE FUTUREASH BASIN WASTE BOUNDARY (SEE NOTES, THIS DRAWING) - .ti ■ ilaoo zoo o aoo eoo 1.200 I- GRAPHIC SCALE IN FEET P 148 RIVER STREET, SUITE 220 synTerl'a ■ GREENVILLE, SOUTH CAROLINA 29601 DUKE PHONE864-421-9999 � www. n err r . m ENERGY DRAWN BY: A. ROBINSON DATE: 04/25/2019 PROJECT MANAGER: J. WYLIE + PROGRESS CHECKED BY: E. KINSEY NORTH CAROLINA-VIRGINIA STATE 7 LEGEND 0 0 NOTES: a FIGURE 3-13 ISOCONCENTRATION MAP GEOMEAN OF BORON IN BEDROCK FLOW ZONE 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC ROXBORO, NORTH CAROLINA ABMW-04D ABMW-03 5000 2000 f Boron ­v— Strontium —E]-- Cobalt 4000 c 0 � 0 c 3000 c 1500 0 U N U C O U O U jBoron 2000 Strontium Cobalt 0 1000 0 1000 U 10 U 5 0 0 ^� 1/1/15 1/1/16 1/1/17 1/1/18 1/1/19 1/1/15 1/1/16 1/1/17 1/1/18 1/1/19 Time Time CW-02 CW-02D 1100 500 1000 -0-- Boron f Boron ­�— Strontium Strontium J 900 --0-- Cobalt 400 —E]--- Cobalt 800 0 700 0 600 ca 300 500 400 U �o 200 300 c a� 200 o c 100 c 100 0 U U 5 5 0 0 1/1/10 1/1/11 1/1/12 1/1/13 1/1/14 1/1/15 1/1/16 1/1/17 1/1/18 1/1/19 1/1/10 1/1/11 1/1/12 1/1/13 1/1/14 1/1/15 1/1/16 1/1/17 1/1/18 1/1/19 Time Time Reference Boron Cobalt Manganese LEGEND Reporting Limits 148 RIVER STREET, SUITE 220 FIGURE 3-14 Criteria (pg/L) (pa/0 (pa/L) Boron (u9/L 5o GREENVILLE, SOUTH CAROLINA 29601 TIME —SERIES PLOTS 2L 700 N/A 50 L Cobalt (pg/) 0.1 PHONE:864-421-9999 IMAC N/A 1 N/A Manganese (pg/L) 5 ASH BASIN (1 OF 2) BTV (S) 50 1.02 253 Sulfate (mg/L.) 1 synTerra www.synterracorp.com 2018 CAMA ANNUAL INTERIM BTV (50 1 298 BTV (BR) R) 50 1.19 544 MONITORING REPORT Notes: N/A = Not Applicable BTV = Background Threshold Value S = Shallow D = Deep/Transition zone `�� DUKE DRAWN BY: H. GARRETT PROJECT MANAGER: J. WYLIE DATE: 4/3/2019 MAYO STEAM ELECTRIC PLANT BR = Bedrock IMAC = Interim Maximum Allowable Concentration pg/L = micrograms per liter '� ENERGY. CHECKED BY: E.KINSEY DUKE ENERGY PROGRESS, LLC mg/L. = milligrams per liter CAROLINAS ROXBORO, NORTH CAROLINA MW-16S MW-16D MW-16BR 700 200 600 f Boron �— Strontium 140 f Boron �— Strontium Cobalt 150 J J J 120 —0-- Cobalt 500 f Boron 100 0 100 400 —0—obat Cobalt 0 a) 300 v 50 80 �• N • •T�• •T• • 0 0 0 60 U 200 U 2 U c m c m 0 40 100 C: C 20 U U U 5 10 0 0 0 1/1/15 1/1/16 1/1/17 1/1/18 1/1/19 1/1/15 1/1/16 1/1/17 1/1/18 1/1/19 1/1/15 1/1/16 1/1/17 1/1/18 1/1/19 Time Time Time LEGEND Reference Boron Cobalt Manganese Reporting Limits 148 RIVER STREET, SUITE 220 FIGURE 3-15 Criteria (pg/L) (pa/0(pa/L) BoronGREENVILLE, 0011 SOUTH CAROLINA 29601 TIME -SERIES PLOTS 2L 700 N/A 50 Cobalt (pg/L) 0.1 PHONE:864-421-9999 IMAC N/A 1 N/A Manganese (pg/L) 5 ASH BASIN (2 OF 2) BTV (S) 50 1.02 253 Sulfate (mg/L.) 1 synTerra www.synterracorp.com 2018 CAMA ANNUAL INTERIM BTV (D) 50 1 298 DUKE DRAWN BY: H. GARRETT DATE: 4/3/2019 BTV (BR) 50 1.19 544 MONITORING REPORT Notes: N/A = Not Applicable BTV = Background Threshold Value S = Shallow D = Deep/Transition ZoneENERGY PROJECT MANAGER: J. WYLIE MAYO STEAM ELECTRIC PLANT BR = Bedrock IMAC = Interim Maximum Allowable Concentration pg/L = micrograms per liter x CHECKED BY: E.KINSEY DUKE ENERGY PROGRESS, LLC mg/L. = milligrams per liter CAROLINAS ROXBORO, NORTH CAROLINA 2018 CAMA Annual Interim Monitoring Report April 30, 2019 Duke Energy Progress, LLC - Mayo Steam Electric Plant SynTerra TABLES TABLE 1-1 MONITORING WELL CONSTRUCTION INFORMATION 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Well ID Date Installed Date Abandoned Monitoring Zone Material Diameter (Inches) Northing (Ft-NAD 83) Easting (Ft-NAD 83) Measuring Point TOC Elevation (Ft-NAVD 88) Ground Surface Elevation (Ft-NAVD 88) Boring Depth 3 (Ft-BGS) Surface Casing Depth (Ft-BGS) Total Well Depth (Ft-BGS) Measured Well Depth (Ft -TOC) Screened Interval (Ft-BGS) Top of Screen Elevation (Ft-NAVD 88) Bottom of Screen Elevation (Ft-NAVD 88) Ash Basin ABM W-01 6/2/2015 NA Ash PVC 2.00 1012988.38 2029253.96 483.81 481.11 13.3 NA 13.3 15.65 2.8 13.3 478.66 468.16 ABM W-02 5/31/2015 NA Ash PVC 2.00 1012778.26 2030477.81 493.90 490.68 41.5 NA 39.2 42.48 34.0 39.2 456.62 451.42 ABMW-02BR 6/3/2015 NA Bedrock PVC 2.00 1012781.97 2030476.42 493.85 490.65 130.0 0-41.0 106.0 107.64 94.0 104.0 396.21 386.21 ABMW-02BRL 1/12/2016 NA Bedrock PVC 2.00 1012774.00 2030465.00 493.97 491.05 180.0 0-120.0 165.0 168.57 155.0 165.0 335.40 325.40 ABMW-03 5/20/2015 NA Ash PVC 2.00 1012714.21 2030856.72 500.17 497.34 40.5 NA 40.5 43.50 35.3 40.5 461.87 456.67 ABMW-03S 5/27/2015 NA Saprolite PVC 2.00 1012718.52 2030858.24 500.30 497.33 68.0 0-43.0 61.0 63.16 50.0 1 60.0 1 447.14 437.14 ABM W-04 5/31/2015 8/17/2018 Ash PVC 2.00 1012345.36 2030478.85 491.44 488.76 60.0 NA 53.2 56.20 48.0 53.2 440.44 435.24 ABMW-04D 5/31/2015 NA Transition Zone PVC 2.00 1012350.06 2030467.97 491.50 488.68 64.5 0-54.5 64.5 65.75 55.8 61.0 430.95 425.75 ABMW-04BR 6/4/2015 NA Bedrock PVC 2.00 1012348.07 2030473.02 491.61 488.62 108.5 0-60.0 108.5 111.50 98.7 108.2 389.61 380.11 ABMW-04X 8/17/2018 NA Ash PVC 2.00 NM NM NM NM 60.0 NA 54.0 60.00 49.0 54.0 NM NM AP-06 8/8/2018 NA Ash PVC 6.00 1013194.33 2030385.13 488.76 486.57 73.0 NA 65.2 65.20 45.0 55.0 433.56 423.56 CSA Wells MW-03BR 2/10/2015 NA Bedrock PVC 2.00 1015654.79 2031277.75 438.24 435.53 77.0 NA 75.1 76.35 68.8 74.0 367.12 361.89 MW-05BR 1/30/2015 NA Bedrock PVC 2.00 1015146.30 2029179.66 511.40 508.74 67.0 NA 65.0 65.72 58.0 63.0 450.68 445.68 MW-06BR (piezometer) 4/13/2015 NA Bedrock PVC 2.00 1014756.09 2033040.31 463.99 461.70 100.0 NA 100.0 100.31 90.0 100.0 373.68 363.68 MW-07D 4/25/2015 6/12/2017 Transition Zone PVC 2.00 1014307.45 2034169.17 453.94 451.17 32.5 NA 32.5 32.70 19.5 30.5 432.24 421.24 M W-07BR 4/24/2015 6/12/2017 Bedrock PVC 2.00 1014311.86 2034175.46 453.50 451.21 77.5 NA 77.5 79.60 66.8 77.5 384.60 373.90 MW-08S (piezometer) 2/16/2015 NA Saprolite PVC 2.00 1014446.92 2034603.67 466.87 466.94 30.1 NA 30.1 30.20 25.0 30.0 441.67 436.67 MW-08D (piezometer) 2/16/2015 NA Transition Zone PVC 2.00 1014443.85 2034599.43 466.89 467.04 41.0 NA 41.0 38.30 33.3 38.5 433.79 428.59 MW-08BR 2/14/2015 NA Bedrock PVC 2.00 1014440.25 2034593.99 466.99 467.27 86.5 0-46.5 67.7 67.05 61.8 67.0 405.14 399.94 MW-09BR (piezometer) 4/11/2015 NA Bedrock PVC 2.00 1013360.32 2033864.48 495.39 492.85 66.0 NA 61.0 60.63 48.0 58.0 444.76 434.76 MW-09BRL 2/28/2017 NA Bedrock PVC 2.00 1013345.71 2033841.83 498.56 495.84 158.5 NA 70.3 73.44 60.5 70.3 435.00 425.12 M W-10BR 2/25/2015 NA Bedrock PVC 2.00 1011436.41 2032770.90 513.39 513.47 65.5 NA 65.5 57.60 48.0 58.0 465.79 455.79 MW-11BR(piezometer) 4/24/2015 NA Bedrock PVC 2.00 1010083.75 2027499.40 527.36 524.34 95.0 NA 95.0 98.80 84.3 94.4 438.66 428.56 MW-12S 4/29/2015 NA Saprolite PVC 2.00 1008653.91 2029202.47 587.38 587.48 56.0 NA 51.0 50.40 39.5 49.5 546.98 536.98 MW-12D 4/28/2015 NA Transition Zone PVC 2.00 1008654.13 2029191.43 588.02 588.17 97.0 NA 97.0 96.55 87.0 97.0 501.47 491.47 MW-13BR 4/15/2015 NA Bedrock PVC 2.00 1013587.37 2027633.00 528.83 526.67 107.0 NA 100.0 100.71 88.8 98.7 438.02 428.12 MW-14BR 2/5/2015 NA Bedrock PVC 2.00 1015432.97 2028964.70 520.75 517.76 46.4 NA 35.4 36.87 29.0 34.0 488.88 483.88 MW-15BR (piezometer) 5/12/2015 NA Bedrock PVC 2.00 1016021.83 2031813.20 460.92 460.94 78.5 NA 64.0 62.64 53.0 63.0 408.28 398.28 MW-16S 5/8/2015 NA Alluvium PVC 2.00 1015654.53 2032640.89 371.11 367.94 8.5 NA 8.5 10.59 4.9 7.6 363.22 360.52 MW-16D 5/8/2015 NA Transition Zone PVC 2.00 1 1015659.09 2032643.26 371.21 367.74 39.0 NA 39.0 41.44 28.7 38.9 339.97 329.77 MW-16BR 5/8/2015 NA Bedrock PVC 2.00 1015664.50 2032645.73 371.30 367.83 65.0 0-47.2 59.5 62.26 48.7 59.0 319.34 309.04 MW-17BR 1/10/2016 NA Bedrock PVC 2.00 1013955.00 2033766.00 490.55 487.51 120.0 NA 120.0 123.50 108.0 118.0 377.05 367.05 MW-18D 11/3/2016 NA Transition Zone PVC 2.00 1012472.09 2032396.93 516.71 514.46 49.5 NA 48.8 51.89 38.5 48.8 475.09 464.82 MW-18BR 11/8/2016 NA Bedrock PVC 2.00 1012468.45 2032399.87 516.78 514.45 129.5 59.50 111.0 113.69 96.0 111.0 418.09 403.09 MW-19D 11/4/2016 NA Transition Zone PVC 2.00 1012214.02 2032796.86 495.81 493.18 54.5 NA 54.1 57.03 43.5 54.1 449.41 438.78 MW-19BR 11/7/2016 NA Bedrock PVC 2.00 1012206.73 2032793.93 495.94 493.51 94.0 74.50 94.0 97.18 84.0 94.0 408.76 398.76 Previously Installed Wells BG-1 10/15/2008 NA Bedrock PVC 2.00 1012000.52 2028480.40 540.11 537.04 UNK NA 52.0 55.20 42.0 52.0 494.91 484.91 BG-2 9/28/2010 NA Transition Zone PVC 2.00 1010809.99 2028799.48 542.66 539.84 53.0 NA 53.0 48.40 25.4 44.9 513.76 494.26 CW-1 11/9/2010 NA Transition Zone PVC 2.00 1012696.54 2032714.46 489.88 486.96 25.5 NA 25.5 28.82 15.5 25.0 470.56 461.06 CW-11D 11/8/2010 NA Bedrock PVC 2.00 1012703.55 2032715.65 490.96 488.31 40.4 NA 40.4 43.65 30.1 39.9 457.11 447.31 CW-2 11/11/2010 NA Transition Zone PVC 2.00 1015043.98 2032238.71 389.00 386.56 18.0 NA 18.0 20.47 7.7 17.5 378.33 368.53 CW-2D 11/11/2010 NA Bedrock PVC 2.00 1015046.88 2032245.02 389.53 386.93 55.9 t NA 55.9 58.55 45.6 55.4 340.78 330.98 Page 1 of 2 TABLE 1-1 MONITORING WELL CONSTRUCTION INFORMATION 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Well ID Date Installed Date Abandoned Monitoring Zone Material Diameter (Inches) Northing (Ft-NAD 83) Easting (Ft-NAD 83) Measuring Point TOC Elevation (Ft-NAVD 88) Ground Surface Elevation (Ft-NAVD 88) Boring Depth 3 (Ft-BGS) Surface Casing Depth (Ft-BGS) Total Well Depth (Ft-BGS) Measured Well Depth (Ft -TOC) Screened Interval (Ft-BGS) Top of Screen Elevation (Ft-NAVD 88) Bottom of Screen Elevation (Ft-NAVD 88) Previously Installed Wells (Continued) CW-3 11/16/2010 NA Transition Zone PVC 2.00 1015647.59 2031278.02 437.68 435.27 32.3 NA 32.3 34.76 17.0 31.8 417.72 402.92 CW-4 11/12/2010 NA Bedrock PVC 2.00 1015911.44 2030436.27 451.31 448.76 40.3 NA 40.0 42.81 35.0 39.8 413.30 408.50 CW-5 11/15/2010 NA Bedrock PVC 2.00 1015162.23 2029182.29 509.60 507.21 43.0 NA 43.0 44.03 36.3 41.1 470.37 465.57 CW-6 11/11/2010 NA Bedrock PVC 2.00 1014743.82 2033046.08 462.83 NM 77.4 NA 77.4 80.56 72.1 76.9 387.07 382.27 MW-2 10/14/2008 NA Bedrock PVC 2.00 1015359.31 2030912.32 461.23 459.18 48.0 NA 48.0 50.12 38.0 48.0 421.11 411.11 MW-3 10/14/2008 NA Alluvium PVC 2.00 1 1014955.04 1 2032010.00 384.00 NM 18.0 NA 18.0 1 19.93 8.0 1 18.0 1 374.07 364.07 MW-4 10/15/2008 NA Bedrock PVC 2.00 1013846.48 2032346.28 522.77 519.46 55.0 NA 55.0 59.05 35.0 55.0 483.72 463.72 Previously Installed Piezometers P1 c. 1983 NA Earthen Dam PVC 2.00 1015210.58 2030732.42 475.86 473.43 UNK UNK UNK 51.22 UNK UNK UNK UNK PIA c. 1983 NA Earthen Dam PVC 2.00 1015207.52 2030735.62 475.00 473.38 UNK UNK UNK 36.40 UNK UNK UNK UNK P2 c. 1983 NA Earthen Dam PVC 2.00 1014965.67 2031226.56 458.65 455.77 UNK UNK UNK 49.66 UNK UNK UNK UNK P2A c. 1983 NA Earthen Dam PVC 2.00 1014968.75 2031221.26 458.62 456.17 UNK UNK UNK 18.66 UNK UNK UNK UNK P3 c. 1983 NA Earthen Dam PVC 2.00 1014648.01 2031793.01 446.99 443.69 UNK UNK UNK 67.84 UNK UNK UNK UNK P3A c. 1983 NA Earthen Dam PVC 2.00 1014650.72 2031787.93 445.69 443.39 UNK UNK UNK 51.34 UNK UNK UNK UNK P4 c. 1983 NA Earthen Dam PVC 2.00 1014521.83 2031950.40 454.57 452.59 UNK UNK UNK 64.15 UNK UNK UNK UNK P4A c. 1983 NA Earthen Dam PVC 2.00 1014524.33 2031947.13 454.99 452.70 UNK UNK UNK 36.17 UNK UNK UNK UNK Previously Installed Production Wells DEP-1 (piezometer) c. 1980 NA Bedrock Steel 6.00 1008975.82 2031689.61 518.32 517.91 130.00 0-36 130.00 UNK NA NA NA NA DEP-2 (piezometer) c. 1980 NA Bedrock Steel 6.00 1009275.47 2029241.25 562.58 562.01 238.00 0-21 238.00 UNK NA NA NA NA DEP-3 (piezometer) c. 1980 NA Bedrock Steel 6.00 1009247.06 2029946.59 539.52 539.29 250.00 0-21 250.00 UNK NA NA NA NA Staff Gauges/Sample Location SW-CB1 3/3/2016 NA Crutchfield Br Fiberglass 0.25 1015087.00 2032239.00 375.88 NA NA NA NA NA NA NA NA NA SW-CBT1 3/3/2016 NA Trib to C'field Br Fiberglass 0.25 1014867.00 2033298.00 407.22 NA NA NA NA NA NA NA NA NA SW-CB2 (no staff gauge) (no staff gauge) NA Crutchfield Br NA NA pending pending NA NA NA NA NA NA NA NA NA NA SW-REF1 3/3/2016 NA Background sw Fiberglass 0.25 1008502.11 2031771.53 486.00 NA NA NA NA NA NA NA NA NA Deep Bedrock Wells MW-103BRM 10/18/2018 NA Bedrock PVC 2.00 1015454.71 2030518.47 490.46 487.59 240.0 175.00 240.0 NM 225.0 240.0 262.59 247.59 MW-103BRL 10/11/2018 NA Bedrock PVC 2.00 1015456.10 2030508.86 491.88 488.53 351.0 61, 106 351.0 NM 336.0 351.0 152.53 137.53 MW-104BRM 10/12/2018 NA Bedrock PVC 2.00 1015163.11 2031305.40 410.23 407.04 180.0 150.00 180.0 NM 165.0 180.0 242.04 227.04 MW-104BRL 10/10/2018 NA Bedrock PVC 2.00 1015167.41 2031318.21 410.08 407.03 250.0 21, 80 250.0 NM 235.0 250.0 172.03 157.03 MW-105BRM 10/11/2018 NA Bedrock PVC 2.00 1014912.57 2031777.45 391.14 392.43 125.0 100.00 125.0 NM 110.0 125.0 282.43 267.43 MW-105BRL 10/9/2018 NA Bedrock PVC 2.00 1014904.91 2031768.75 391.35 388.07 250.0 46, 87 250.0 NM 235.0 250.0 153.07 138.07 MW-107BRM 10/18/2018 NA Bedrock PVC 2.00 1014573.82 2032267.89 441.55 438.30 192.0 125.00 192.0 NM 177.0 192.0 261.30 246.30 MW-107BRL 10/11/2018 NA Bedrock PVC 2.00 1014570.06 2032273.45 443.32 439.82 302.0 46, 67 302.0 NM 287.0 302.0 152.82 137.82 Notes: ** Estimated until ground surface elevation is resurveyed i - Well depths initially measured during well installation and updated as new wells are installed. 2 - "Boring Depth" is the total depth of soil boring; "Total Well Depth" is the depth to the bottom of the filter pack 3 - Values measured during well installation BGS - Below ground surface NM - Not measured Ft -Feet PVC- Polyvinyl chloride NA - Not applicable RM - Needs to be remeasured NAD 83 - North American Datum 1983 TOC - Top of Casing NAVD 88 - North American Vertical Datum 1988 UNK - Data not known Prepared by: RKD Checked By: JAW Page 2 of 2 TABLE 2-1 2018 CAMA WATER ELEVATIONS 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO NC Well ID Quarter 1 Quarter 2 Quarter 3 Quarter 4 Screened Interval (Ft-BGS) Monitoring Zone Groundwater Elevation (Ft - NAVD-88) 01/15-01/18/18 Groundwater Elevation (Ft - NAVD-88) 04/02-04/03/18 Groundwater Elevation (Ft - NAVD-88) 07/12-07/18/18 Groundwater Elevation (Ft - NAVD-88) 11/05-11/06/18 ABMW-1 480.75 480.47 478.54 481.3 2.8 13.3 Ash ABMW-2 482.36 483.05 482.93 483.66 34.0 39.2 Ash ABMW-2BR 481.75 482.93 482.83 483.02 94.0 104.0 Bedrock ABMW-2BRL 481.44 482.51 482.26 482.73 155.0 165.0 Bedrock ABMW-3 482.52 483.12 482.96 483.54 35.3 40.5 Ash ABMW-3S 482.48 483.13 482.9 483.52 50.0 60.0 Saprolite ABMW-4 483.56 484.99 - 484.94 48.0 53.2 Ash ABMW-4BR 483.76 485.13 484.9 485.91 98.7 108.2 Bedrock ABMW-4D 483.49 484.98 484.74 485.67 55.8 61.0 Transition Zone BG-1 507.93 508.91 510.25 513.23 42.0 52.0 Bedrock BG-2 509.74 509.66 510.16 510.8 25.4 44.9 Transition Zone CCR-101D-BG - - 511.24 513.62 11.20 16.20 Transition Zone CCR-101S-BG - - 500.3 501.28 29.16 34.16 Surficial (Saprolite) CCR-102BR-BG - - 499.26 501.18 63.15 73.15 Bedrock CCR-103BR - - 472.47 472.96 67.48 77.48 Bedrock CCR-103D - - 470.94 471.76 46.55 56.55 Transition Zone CCR-103S - - 469.69 470.84 23.19 33.19 Surficial (Saprolite) CCR-104BR - - 401.72 408.58 40.2 50.2 Bedrock CCR-104S - 407.08 404.93 6.75 11.75 Surficial (Saprolite/ Alluvium CCR-105BR - - 379.18 381.75 37.36 47.36 Bedrock CCR-105D - - 380.50 383.05 21.93 26.93 Transition Zone CCR-105S - - 378.30 383.15 11.12 16.12 Surficial (Saprolite) CCR-106BR - - 375.56 377.6 34.16 44.16 Transition Zone CCR-107BR - - 434.03 438.55 25.18 35.18 Bedrock CCR-108BR - - 471.12 473.35 48.53 58.53 Bedrock CCR-109BR - - - 396.36 53.65 68.65 Bedrock CW-1 470.37 471.17 471.09 472.27 15.5 25 Transition Zone CW-1D 470.36 470.96 470.95 472.11 30.1 39.9 Bedrock CW-2 374.95 376.48 374.54 376.82 7.7 17.5 Transition Zone CW-2D 373.07 374.10 373.08 373.67 45.6 55.4 Bedrock CW-3 417.54 419.19 419.17 419.41 17 31.8 Transition Zone CW-4 427.19 428.16 428.05 428.78 35 39.8 Bedrock Page 1 of 3 TABLE 2-1 2018 CAMA WATER ELEVATIONS 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO NC Well ID Quarter 1 Quarter 2 Quarter 3 Quarter 4 Screened Interval (Ft-BGS) Monitoring Zone Groundwater Elevation (Ft - NAVD-88) 01/15-01/18/18 Groundwater Elevation (Ft - NAVD-88) 04/02-04/03/18 Groundwater Elevation (Ft - NAVD-88) 07/12-07/18/18 Groundwater Elevation (Ft - NAVD-88) 11/05-11/06/18 CW-5 493.62 498.42 499.09 501.66 36.3 41.1 Bedrock CW-6 446.40 447.38 448.65 449.89 72.1 76.9 Bedrock DEP-1 - 502.82 503.82 504.84 NA NA Bedrock DEP-2 - 544.73 544.84 545.63 NA NA Bedrock DEP-3 - 518.27 515.92 518.52 NA NA Bedrock MW-10BR 498.31 498.24 498.29 501.16 48.0 58.0 Bedrock MW-11BR - 490.06 - 490.54 84.3 94.4 Bedrock MW-12D 553.31 553.74 555.17 555.52 87.0 97.0 Transition Zone MW-12S 552.94 553.39 555.03 555.04 39.5 49.5 Saprolite MW-13BR 498 498.46 498.5 499.34 88.8 98.7 Bedrock MW-14BR 499.28 501.9 501.55 502.7 29.0 34.0 Bedrock MW-15BR - 401.32 - 402.16 53.0 63.0 Bedrock MW-16BR 364.23 365.41 364.08 366.78 48.7 59.0 Bedrock MW-16D 364.62 365.62 364.32 367.13 28.7 38.9 Transition Zone MW-16S 365.21 365.51 364.46 367.27 4.9 7.6 Alluvium MW-17BR - 457.27 - 460.76 108.0 118.0 Bedrock MW-18BR 492.02 495.64 496.25 504.35 96.0 111.0 Bedrock MW-18D 489.59 492.02 492.93 505.06 38.5 48.8 Transition Zone MW-19BR 483.57 485.97 485.73 487.86 84.0 94.0 Bedrock MW-19D 484.77 487.34 487.29 488.76 43.5 54.1 Transition Zone MW-2 431.81 433.29 433.81 434.53 38.0 48.0 Bedrock MW-3 377.4 377.53 - 378.15 8.0 18.0 Alluvium MW-3BR 418.62 419.69 419.64 420.11 68.8 74.0 Bedrock MW-4 486.95 489.67 491.23 492.26 35.0 55.0 Bedrock MW-5BR 493.89 497.39 498.54 501.92 58.0 63.0 Bedrock MW-6BR - 447.89 449.19 449.61 90.0 100.0 Bedrock MW-8BR 430.25 430.82 431.52 431.89 61.8 67.0 Bedrock MW-8D - 431.29 431.54 438.71 33.3 38.5 Transition Zone MW-8S - 437.01 437.01 437.02 25.0 30.0 Saprolite MW-9BR - 463.96 463.51 466.54 48.0 58.0 Bedrock MW-9BRL 461.16 465.25 464.49 467.32 60.5 70.3 Bedrock PZ-1 - 443.01 437.8 442.74 UNK UNK Earthen Dam PZ-1A - 438.21 441.38 437.52 UNK UNK Earthen Dam Page 2 of 3 TABLE 2-1 2018 CAMA WATER ELEVATIONS 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO NC Well ID Quarter 1 Quarter 2 Quarter 3 Quarter 4 Screened Interval (Ft-BGS) Monitoring Zone Groundwater Elevation (Ft - NAVD-88) 01/15-01/18/18 Groundwater Elevation (Ft - NAVD-88) 04/02-04/03/18 Groundwater Elevation (Ft - NAVD-88) 07/12-07/18/18 Groundwater Elevation (Ft - NAVD-88) 11/05-11/06/18 PZ-2 - 412.92 412.86 434.35 UNK UNK Earthen Dam PZ-2A - - - 442.16 UNK UNK Earthen Dam PZ-3 - 394.36 394.05 395.23 UNK UNK Earthen Dam PZ-32D - - - - - - - PZ-32S - - - - - - - PZ-3A - 396.32 393.9 399.91 UNK UNK Earthen Dam PZ-4 - 414.77 414.28 414.98 UNK UNK Earthen Dam PZ-4A - - - - UNK UNK Earthen Dam Notes: 0 - water level identified as anamolous likely due to field transcription error Not measured/available * - Abandoned sampling location ** - Survey information incomplete/not available Artesian conditions present Z - Installed in 2018, not sampled BGS - below ground surface BTP - Water Level below top of pump Dry - Well was dry at time of Water Level check Ft - feet NAVD 88 - North American Vertical Datum of 1988. UNK - Unknown Prepared by: HEG Checked by: GTC Page 3 of 3 TABLE 3-1 HORIZONTAL HYDRAULIC GRADIENTS AND FLOW VELOCITIES 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Saprolite Source Area Upgradient Groundwater Level hl (ft)1 Downgradient Groundwater Level h2 (ft)1 K (ft/day)2 Ah (ft) Al (ft) n 2 a v (ft/day) v (ft/yr) Gradient (Ah/AI) Ash Basin 480 380 3.000 100.00 375 0.2 4.000 1460.00 0.27 Ash Basin 1 480 1 380 1 3.000 100.00 350 1 0.2 4.286 1564.291 0.29 Ash Basin 1 470 1 380 1 3.000 1 90.00 1 450 1 0.2 3.000 1 1095.001 0.20 Saprolite Geometric Mean 1 3.72 11357.361 0.25 Average 1 3.76 11373.10 0.25 Deep Flow Zone Upgradient Downgradient Source Area Groundwater Groundwater K Ah Al n 2 vs vs Gradient Level hl (ft)1 Level h2 (ft)1 (ft/day)2 (ft) (ft) a (ft/day) (ft/yr) (Ah/AI) Ash Basin 480 380 1.000 100.00 350 0.2 1.429 521.43 0.29 Ash Basin 480 1 380 1 1.000 100.00 975 1 0.2 0.513 187.18 1 0.10 Transition Zone Geometric Mean 0.86 312.41 0.17 Average 0.97 354.30 0.19 Bedrock Flow Zone Upgradient Downgradient Source Area Groundwater Groundwater K Ah Al n 2 vs vs Gradient Level hl (ft)1 Level h2 (ft)1 (ft/day)2 (ft) (ft) a (ft/day) (ft/yr) (Ah/AI) Ash Basin 480 380 0.030 100.00 375 0.05 0.160 58.40 0.27 Ash Basin 480 380 0.030 100.00 1088 0.05 0.055 20.14 0.09 Bedrock Geometric Mean 0.09 34.29 0.16 Average 0.11 39.27 0.18 Prepared by: GTC Checked by:ENK Notes: 1 - Groundwater level shown corresponds to upgradient groundwater contour on Figures 3-1 through 3-3 2 - Groundwater level shown corresponds to downgradient groundwater contour on Figures 3-1 through 3-3 3 - Values taken from Preliminary Updated Groundwater Flow and Transport Modeling Report for Allen Steam Station, Belmont, NC, November 2018 (SynTerra) 4 - The length of a flow path between an upgradient and downgradient groundwater contor within the same flow zone dh/dl - horizontal hydraulic gradient (ft/ft) ft - feet h - water level height in feet K - horizontal hydraulic conductivity I - horizontal distance between wells ne - effective porosity vs - horizontal seepage velocity Page 1 of 1 TABLE 3-2 VERTICAL HYDRAULIC GRADIENTS 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Well ID Monitoring Zone Reference Cross -Section Total Well Depth (Ft-BGS) Water Level Elevation 4Q-2018 Vertical Gradient (dh/dl) and Flow Direction Upgradient of Ash Basin CW-5 Bedrock A -A' 43 501.66 1.31E-02 Upward MW-05BR Deep Bedrock 65 501.92 MW-12S Saprolite B-B' 51 555.04 1.05E-02 Upward MW-12D Transition 97 555.52 Within Ash Basin ABMW-02 Saprolite B-B' 39.2 483.66 1.02E-02 Downward AMBW-02BR Bedrock 106 483.02 ABMW-02BR Bedrock B-B' 106 483.02 4.77E-03 Downward ABMW-02BRL Deep Bedrock 165 482.73 ABMW-03 Ash Pore Water B-B' 40.5 483.54 1.17E-03 Downward ABMW-03S Saprolite 61 483.52 ABMW-04 Ash Pore Water NA 53.2 484.94 1.83E-02 Upward ABMW-04BR Bedrock 108.5 485.91 ABMW-04 Ash Pore Water NA 53.2 484.94 7.69E-02 Upward ABMW-04D Transition 64.5 485.67 Downgradient of Ash Basin MW-16S Saprolite B-B' 8.5 367.27 1.03E-02 Downward MW-16BR Bedrock 59.5 366.78 CW-2 Transition B-B' 18 376.82 8.39E-02 Downward CW-2D Bedrock 40.4 373.67 CW-3 Transition NA 32.3 419.41 1.53E-02 Upward MW-03BR Bedrock 75.1 420.11 Sidegradient of Ash Basin MW-18D Transition A -A' 48.8 505.06 1.20E-02 Downward MW-18BR Bedrock 111 504.35 M W-19D Transition A -A' 54.1 488.76 2.23E-02 Downward MW-19BR Bedrock 94 487.86 CW-1 Transition NA 25.5 472.27 1.18E-02 Downward CW-ID Bedrock 40.4 472.11 M W-08S Saprolite NA 30.1 437.02 2.12E-01 Upward MW-08BR Bedrock 67.7 431.89 Notes: ' - "Boring Depth" is the total depth of soil boring; "Total Well Depth" is the depth to the bottom of the filter pack. z - Values measured during well installation BGS - Below ground surface Ft - Feet NAVD 88 - North American Vertical Datum 1988 Vertical gradient calculations based on June 19-20, 2017 water level data collected within 24 hours Prepared by: GTC Checked by: ENK Page 1 of 1 TABLE 3-3 2018 COMPREHENSIVE GROUNDWATER QUALITY DATA 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC FIELD PARAMETERS WATER QUALITY PARAMETERS SELECTED 40CFR257 APPENDIX III CONSTITUENTS plus Sr INORGANIC PARAMETERS (TOTAL CONCENTRATION) Analytical Parameter pH Water Level Temp Spec Cond DO ORP Eh Turbidity Alkalinity Bi- carbonate Alkalinity Sulfide Total Organic Carbon Total Suspended Solids Boron Calcium Chloride Strontium Sulfate Total Dissolved Solids Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium (VI) Chromium Cobalt Reporting Units S.U. ft Deg C umhos/cm mg/L mV mV NTUs mg/L mg/L mg/L mg/L mg/L ug/L mg/L mg/L ug/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L 15A NCAC 02L Standard 6.5-8.5 NE NE NE NE NE NE NE NE NE NE NE NE 700 NE 250 NE 250 500 NE 1* 10 700 4* 2 10 10 1* Provisional Background Threshold Values (Surficial Unit) 4.9-6.5 NE NE NE NE NE NE NE 13 13 0.1 2 NE 50 2.89 3.3 25 1.6 85 566 1 1 19 1 1 0.088 3.23 1.02 Provisional Background Threshold Values (Transition Zone Unit) 5.7-6.5 NE NE NE NE NE NE NE 302 302 0.1 1.8 NE 50 59.2 33.3 391 7.5 430 490 1 1 78.3 1 1 1.26 6 1 Provisional Background Threshold Values (Bedrock Unit) 5.0-7.3 NE NE NE NE NE NE NE 223 223 0.1 1.01 NE 50 73.3 43 418 18 340 536 1 1 97 1 1 0.4 7 1.19 Sample ID Well Screen Location Sample Collection Date Analytical Results ABMW-01 Ash Pore Water O1/16/2018 7.8 3.06 13 555 0.16 -145 60 8.3 281 281 <0.1 3.851 <5 5900 49.9 15 1850 29 300 156 12 172 430 <1 <1 <0.025 <1 2.86 ABMW-01 Ash Pore Water 04/03/2018 7.9 3.20 16 562 0.19 -217 -12 5.9 264 264 <0.1 3.3 S1 <5 5400 49.8 14 1680 25 300 132 5.06 282 476 <1 <1 0.039 0.4j 3.04 ABMW-01 Ash Pore Water 07/19/2018 7.4 4.92 21 981 0.20 -57 148 5.3 453 453 <0.1 3 16 4080 99.5 16 3640 11 500 90 10.3 368 1010 <1 <1 <0.025 0.371j 11.1 ABMW-01 Ash Pore Water 11/08/2018 7.9 2.66 14 551 0.61 -178 27 9.7 286 286 <0.1 Ml,RI 3.2 S1 6 5090 48.6 15 1890 23 340 160 7.67 373 546 <1 <1 <0.025 0.393j 1.78 ABMW-02 Ash Pore Water 01/16/2018 8.9 11.54 14 629 0.27 -136 69 1.0 284 252 <0.1 7.8SI <5 9140 12 13 815 35 370 96 <1 936 54 <1 <1 <0.025 <1 <1 ABMW-02 Ash Pore Water 04/03/2018 9.3 10.89 16 690 0.24 -75 130 1.7 287 239 <0.1 7.3 <5 7980 11.5 14 728 39 390 72 <1 935 48 <1 <1 <0.025 <1 <1 ABMW-02 Ash Pore Water 07/19/2018 9.4 10.92 34 733 0.26 51 256 1.1 326 274 0.23 7.3 <5 8270 23.1 14 921 36 410 77 <1 896 64 <1 <1 <0.025 <1 <1 ABMW-02 Ash Pore Water 11/07/2018 9.0 10.29 23 685 0.45 65 270 0.7 270 212 0.27 7.6 <5 8600 14.2 SS 784 35 340 78 1.07 920 53 <1 <1 0.027 <1 <1 ABMW-02BR Bedrock 01/16/2018 7.5 12.10 14 572 0.44 -133 72 2.3 274 274 0.1 1.3SI <5 <50 76.1 26 1080 11 340 48 <1 3.26 105 <1 <1 0.025 <1 <1 ABMW-02BR Bedrock 04/03/2018 7.5 11.01 SS 594 0.40 -60 145 1.3 283 283 <0.1 1.1 sl <5 <50 80.8 26 1140 12 320 27 <1 2.98 109 <1 <1 <0.025 <1 <1 ABMW-02BR Bedrock 07/19/2018 7.5 11.14 29 607 0.30 19 224 1.4 269 269 <0.1 0.75 <5 <50 76.9 27 1090 12 360 17 <1 3 104 <1 <1 <0.025 P4,RO <1 <1 ABMW-02BR Bedrock 11/07/2018 7.3 10.61 23 618 0.53 82 287 0.4 245 245 <0.1 0.704 SI <5 19.895j 86.3 28 1180 13 320 11 <1 3.11 110 <1 <1 <0.025 <1 <1 ABMW-02BRL Bedrock 01/16/2018 7.5 12.53 15 492 0.48 -159 46 0.9 236 236 0.14 1.5 S1 5 <50 67.3 21 2250 <0.1 280 16 <1 2.6 72 <1 <1 <0.025 <1 <1 ABMW-02BRL Bedrock 04/03/2018 7.6 11.54 16 507 0.57 6 211 1.3 256 256 <0.1 1.3 6 <50 69.9 20 2210 <0.1 280 13 <1 2.68 75 <1 <1 <0.025 <1 <1 ABMW-02BRL Bedrock 07/19/2018 7.6 11.76 28 519 0.45 24 229 1.1 244 244 <0.1 0.955 <5 <50 65.3 20 2130 0.26 310 15 0.373j 2.86 72 <1 <1 <0.025 <1 <1 ABMW-02BRL Bedrock 11/07/2018 7.4 11.13 21 528 0.55 63 268 1.0 221 221 <0.1 0.97 SI <5 <50 72.1 22 2280 0.38 270 SS <1 2.23 72 <1 <1 <0.025 <1 <1 ABMW-03 Ash Pore Water 01/16/2018 6.8 17.65 17 573 0.22 -122 83 1.6 138 138 <0.1 Ml 2.8 S1 15 2010 60.4 66 1600 36 320 61 <1 247 242 <1 <1 0.027 <1 <1 ABMW-03 Ash Pore Water 04/03/2018 6.9 17.13 21 581 0.22 -34 171 2.3 137 137 <0.1 2.5 SI 12 1940 62.7 M4 67 1480 38 310 34 <1 93.8 215 <1 <1 <0.025 <1 <1 ABMW-03 Ash Pore Water 07/18/2018 6.5 17.15 27 591 0.43 264 469 2.4 171 171 <0.1 2.3 S1 9 1940 63.6 64 1590 23 320 30 <1 67.2 242 <1 <1 <0.025 0.383j <1 ABMW-03 Ash Pore Water 11/08/2018 6.9 16.56 18 594 0.44 80 285 0.7 115 115 <0.1 2.4 SI 14 1960 59.3 70 1370 41 310 33 <1 288 203 <1 <1 <0.025 0.359j <1 ABMW-03S Saprolite 01/16/2018 5.2 17.82 14 109 0.31 126 331 8.8 30.7 30.7 <0.1 1.2 S1 <5 1280 3.35 12 75 0.39 100 82 <1 1.54 25 <1 <1 0.04 P4,RO <1 1.88 ABMW-03S Saprolite 04/03/2018 5.2 17.08 21 116 0.44 115 320 8.4 30.6 30.6 <0.1 0.953 SI <5 1300 3.39 12 77 0.42 SI 88 27 <1 0.701j 26 0.502j <1 <0.025 1.08 1.62 ABMW-03S Saprolite 07/18/2018 5.0 17.32 26 105 0.21 511 716 9.2 32.1 32.1 <0.1 0.59 S1 <5 1340 3.18 12 77 0.39 94 22 <1 0.732j 28 0.452j <1 <0.025 <1 1.59 ABMW-03S Saprolite 11/08/2018 5.2 16.76 18 111 0.46 376 581 8.3 29 29 <0.1 0.643 SI <5 1340 3.32 13 80 0.35 97 26 <1 0.862j 30 0.473j <1 <0.025 <1 1.45 ABMW-04 Ash Pore Water 01/16/2018 7.2 7.88 14 852 0.29 -178 27 2.4 477 477 0.11 2.8 S1 18 6130 117 11 3060 44 540 27 <1 346 587 <1 <1 <0.025 <1 1.82 ABMW-04 Ash Pore Water 04/03/2018 7.4 6.52 17 893 0.30 -132 73 2.3 502 502 0.12 2.7 SI 20 5900 123 11 3050 49 530 21 <1 382 623 <1 <1 <0.025 <1 2.41 ABMW-04BR Bedrock 01/16/2018 7.3 7.85 9 519 0.61 -173 32 1.0 236 236 0.11 1.1 S1 <5 <50 80.1 5.1 2060 49 320 21 <1 1.8 108 <1 <1 <0.025 P4,RO <1 <1 ABMW-04BR Bedrock 04/03/2018 7.8 6.53 16 540 0.37 -144 61 4.7 234 234 0.12 0.848 SI <5 20.206j 84.4 5.3 2020 48 300 26 <1 1.91 113 <1 <1 <0.025 <1 <1 ABMW-04BR Bedrock 07/18/2018 7.4 6.50 24 537 0.70 211 416 0.6 234 234 <0.1 0.47SI <5 <50 80.1 5.4 2020 46 310 15 <1 2.02 109 <1 <1 <0.025 0.347j <1 ABMW-04BR Bedrock 11/08/2018 7.8 5.67 17 526 0.47 66 271 0.8 225 225 0.34 0.788 SI <5 38.274j 76.7 5.7 1920 37 320 19 <1 1.97 118 <1 <1 <0.025 0.521j <1 ABMW-04D Transition Zone 01/16/2018 6.4 8.01 13 1052 0.40 -90 115 9.9 556 556 <0.1 7.5SI 100 3450 111 14 1840 1.7 550 386 <1 24.9 890 <1 <1 <0.025 P4,110 1.16 5.85 ABMW-04D Transition Zone 04/03/2018 6.3 6.60 18 1072 0.37 -54 151 7.6 513 513 <0.1 7.4 82 3050 111 14 1590 0.55 sl 520 184 <1 23 904 <1 <1 <O.025 P4,R0 0.95j 6.11 ABMW-04D Transition Zone 07/18/2018 6.1 6.74 24 1081 0.32 292 497 0.9 522 522 <0.1 7 71 3430 114 14 1760 1.6 530 159 <1 23.1 907 <1 <1 <0.025 P4,110 0.759j 5.34 ABMW-04D Transition Zone 11/08/2018 6.3 5.90 19 1059 0.40 174 379 6.7 481 481 <0.1 7 70 3040 111 13 1580 2.3 500 115 <1 21.4 901 <1 <1 <0.025 0.795j 6.3 ABMW-04X Ash Pore Water 11/08/2018 7.0 6.50 20 709 0.20 -48 157 5.5 311 311 <0.1 5.6 S1 17 5290 91.2 12 2310 43 430 88 <1 63 443 <1 <1 <0.025 0.692j 0.444j BG-01 Bedrock O1/16/2018 5.7 32.18 13 147 2.42 187 392 2.5 54.1 54.1 <0.1 0.992 SI <5 <50 12 10 174 0.28 110 22 <1 <1 83 <1 <1 0.34 <1 <1 BG-01 IMP Bedrock 04/04/2018 5.5 31.10 16 149 1.58 335 540 0.8 58.5 58.5 <0.1 0.86 S1 <5 <50 12.7 10 177 0.3 130 230 <1 <1 94 <1 <1 0.36 0.703j <1 BG-01 IMP Bedrock 07/16/2018 5.5 28.89 20 146 1.67 494 699 3.8 56.8 56.8 <0.1 0.585 SI <5 <50 12.5 10 170 0.24 98 Ill <1 <1 88 <1 <1 0.42 0.687j <1 BG-01 Bedrock 11/06/2018 5.6 26.84 17 145 2.18 338 543 1.4 51.2 51.2 <0.1 0.494 S1 <5 <50 12.6 8.9 176 0.25 110 553 <1 <1 86 <1 <1 0.47 0.839j <1 BG-02 Transition Zone O1/15/2018 6.5 32.92 15 579 0.17 17 222 1.9 218 218 <0.1 1.5 sl <5 <50 50.4 B2 39 292 5.6 270 62 <1 <1 41 <1 <1 <0.025 <1 <1 BG-02 IMP Transition Zone 04/03/2018 6.4 32.90 18 565 0.21 262 467 1.9 222 222 <0.1 1.7SI <5 <50 50.9 39 291 5.5 300 49 <1 <1 42 <1 <1 <0.025 4.33 <1 BG-02 IMP Transition Zone 07/17/2018 6.3 32.28 20 527 0.21 368 573 1.1 206 206 <0.1 1.3SI <5 <50 49.5 42 277 5.5 340 30 <1 <1 38 <1 <1 <0.025 MI <1 <1 BG-02 Transition Zone 11/06/2018 6.3 31.85 17 579 0.12 240 445 1.4 203 203 <0.1 1.4SI <5 <50 52.6 39 299 5.2 290 14 <1 <1 42 <1 <1 <0.025 <1 <1 CW-OS Transition Zone O1/15/2018 6.0 19.51 13 148 4.79 127 332 3.0 36.7 36.7 <0.1 0.539 SI <5 <50 9.32 B2 17 59 8.4 130 SOS sl <1 <1 <5 <1 <1 0.12 <1 <1 CW-01 IMP Transition Zone 04/03/2018 5.9 18.05 1S 142 5.65 327 532 2.0 37 37 <0.1 0.67 S1 7 <50 9.34 16 64 8.2 120 349 <1 <1 3.289j <1 <1 0.13 1.14 <1 CW-OS IMP Transition Zone 07/16/2018 5.6 18.80 30 160 4.06 434 639 0.5 38.4 38.4 <0.1 RI 0.39 SI <5 <50 8.79 16 65 9.1 110 25 <1 <1 <5 <1 <1 0.11 <1 <1 CW-Ol Transition Zone 11/06/2018 5.7 17.61 20 161 3.88 289 494 1.0 35.9 35.9 <0.1 0.55 Sl <5 <50 8.61 16 61 9.4 110 24 <1 <1 <5 <1 <1 0.15 0.425 j <1 CW-OID Bedrock O1/15/2018 7.3 20.60 11 380 0.50 21 226 3.0 193 193 <0.1 0.371 SI <5 <50 57.8 B2 9.8 211 3.1 220 88 <1 <1 <5 <1 <1 <0.025 <1 <1 CW-01D IMP Bedrock 04/03/2018 7.0 19.95 20 354 2.14 315 520 2.3 185 185 <0.1 0.583 SI <5 <50 48.2 9.4 172 3 200 7 <1 <1 1.845j <1 <1 0.056 0.432j <1 CW-01D IMP Bedrock 07/17/2018 6.7 20.00 25 334 1.89 406 611 8.6 176 176 <0.1 0.264 SI <5 <50 47.2 9.4 180 2.8 220 18 <1 <1 1.742j <1 <1 0.12 0.805j <1 CW-01D Bedrock 11/06/2018 6.7 18.85 20 387 0.54 313 518 3.2 164 164 <0.1 0.311 S1 <5 <50 47.2 8.3 177 2.4 ISO 25 <1 <1 2.008j <1 <1 0.063 0.646j <1 CW-02 Transition Zone O1/17/2018 5.3 14.05 11 311 2.15 220 425 0.3 6.2 6.2 <0.1 1.3 <5 1060 19.7 B2 61 297 44 170 16 <1 <1 143 <1 <1 0.12 <1 <1 CW-02 IMP Transition Zone 04/03/2018 5.3 12.60 11 236 4.52 327 532 0.3 <5 <5 <0.1 1.4SI <5 799 16.1 45 210 42 150 19 <1 <1 Ill <1 <1 0.099 <1 <1 CW-02 IMP Transition Zone 07/16/2018 5.0 14.60 22 259 0.97 501 706 0.2 7.5 7.5 <0.1 0.811 SI <5 970 16.2 43 221 42 140 12 <1 <1 109 <1 <1 0.095 <1 <1 CW-02 Transition Zone 11/07/2018 5.2 1 12.34 17 190 1 0.81 1 174 1 3791 5.1 1 6.27 1 6.27 1 <0.1 I 1.3SI 1 <5 661 1 11.1 1 26 1 159 1 33 100 126 <1 <1 78 <1 <1 0.1 <1 <1 Page 1 of 9 TABLE 3-3 2018 COMPREHENSIVE GROUNDWATER QUALITY DATA 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Analytical Parameter INORGANIC PARAMETERS (TOTAL CONCENTRATION) INORGANIC PARAMETERS (DISSOLVED CONCENTRATION WITH FILTER SIZE) Copper ug/L Iron ug/L Lead ug/L Lithium ug/L Magnesium mg/L Manganese ug/L Mercury ug/L Molybdenum ug/L Nickel ug/L Nitrate + Nitrite mg-N/L Potassium mg/L Selenium ug/L Sodium mg/L Thallium ug/L Vanadium ug/L Zinc ug/L Aluminum (0.45u) ug/L Antimony (0.45u) ug/L Arsenic (0.45u) ug/L Barium (0.45u) ug/L Beryllium (0.45u) ug/L Boron (0.45u) ug/L Cadmium (0.45u) ug/L Chromium (0.45u) ug/L Cobalt (0.45u) ug/L Copper (0.45u) ug/L Iron (0.45u) ug/L Reporting Units 15A NCAC 02L Standard 1000 300 15 NE NE 50 1 NE 100 NE NE 20 NE 0.2* 0.3* 1000 NE NE NE NE NE NE NE NE NE NE NE Provisional Background Threshold Values (Surficial Unit) 1.9 385 1 NE 0.753 253 0.2 3.15 3.03 0.798 3.78 1 5.49 0.2 0.974 227 NE NE NE NE NE NE NE NE NE NE NE Provisional Background Threshold Values (Transition Zone Unit) 5 1319 1 NE 13.5 298 0.2 1 5 1 0.295 1 3.61 1 53.3 0.2 5.88 12 NE NE NE NE NE NE NE NE NE NE NE Provisional Background Threshold Values (Bedrock Unit) 5 2550 1 NE 13.1 544 0.05 13.1 5 1 1.03 1 6.56 1 72.6 0.2 S.s2 37.9 NE NE NE NE NE NE NE NE NE NE NE Sample ID Well Screen Location Sample Collection Date Analytical Results ABMW-01 Ash Pore Water 01/16/2018 <1 1260 <1 1050 22.6 566 <0.05 268 3.2 <0.02 20.7 <1 17.5 BI 0.328 85.4 <5 154 12.5 125 402 <1 5530 <1 <1 2.67 <1 825 SI ABMW-01 Ash Pore Water 04/03/2018 0.489j 1950 <1 1010 26.3 601 <0.05 267 2.4 <0.02 22.3 <1 17.4 0.17j 32.7 <5 112 5.28 251 438 <1 5450 <1 <1 2.77 <1 1260 ABMW-01 Ash Pore Water 07/19/2018 0.959j 5600 <1 804 45.7 1870 <0.05 167 11.8 <0.01 24.7 <1 19.1 0.55 52.5 7 73 9.52 363 932 <1 4480 <1 <1 9.89 <1 4300 ABMW-01 Ash Pore Water 11/08/2018 0.728j 1940 <1 930 31.5 627 <0.05 274 1.55 <0.01 24.1 <1 17.9 <0.2 27.4 6 156 6.98 376 540 <1 5400 <1 <1 1.58 <1 1430 ABMW-02 Ash Pore Water 01/16/2018 <1 23 S1 <1 1130 16.8 16 <0.05 1340 <1 <0.02 65.2 M4 <1 60.2 B1 <0.2 0.618 <5 73 <1 987 71 <1 8450 <1 <1 <1 <1 35 S1 ABMW-02 Ash Pore Water 04/03/2018 <1 15 <1 1060 17.1 21 <0.05 1360 0.422j <0.02 78.7 <1 67.3 <0.2 0.569 <5 67 <1 992 98 <1 8670 <1 <1 <1 <1 69 ABMW-02 Ash Pore Water 07/19/2018 <1 33 <1 1100 17.2 152 <0.05 1350 2.96 <0.01 72.7 <1 61.7 <0.2 0.852 <5 68 <1 943 92 <1 8360 <1 <1 <1 <1 41 ABMW-02 Ash Pore Water 11/07/2018 <1 12 <1 1120 18.7 47 <0.05 1330 <1 <0.05 74.5 <1 60.7 <0.2 0.655 <5 72 0.501j 1020 68 <1 8440 <1 <1 <1 <1 19 ABMW-02BR Bedrock 01/16/2018 <1 1330 <1 <5 12.5 236 <0.05 18.4 <1 <0.02 5.74 B3 <1 24.2 B1 <0.2 <0.3 <5 <5 <1 1.63 105 <1 <50 <1 <1 <1 <1 1210 S1 ABMW-02BR Bedrock 04/03/2018 <1 1270 <1 2.508 j 13.4 235 <0.05 17.3 <1 <0.02 6 <1 23.9 <0.2 0.19 j <5 3.406 j <1 2.46 110 <1 <50 <1 <1 <1 <1 1100 ABMW-02BR Bedrock 07/19/2018 <1 1250 <1 4.082j 12.9 228 <0.05 19 <1 <0.01 5.67 <1 22.5 0.083j 0.335 3.287j 4.8671 <1 2.2 115 <1 <50 <1 <1 <1 <1 1110 ABMW-02BR Bedrock 11/07/2018 <1 1280 <1 <5 14.4 227 0.018j 20.1 <1 <0.01 5.83 <1 24.1 <0.2 0.161j <5 3.462j <1 2 117 <1 18.662j <1 <1 <1 <1 1040 ABMW-02BRL Bedrock 01/16/2018 <1 1950 <1 <5 10.4 358 <0.05 2.62 <1 <0.02 5.95 B3 <1 17.4 B1 <0.2 <0.3 <5 7 <1 2.03 73 <1 <50 <1 <1 <1 <1 1660 S1 ABMW-02BRL Bedrock 04/03/2018 <1 18s0 <1 2.99j 11 357 <0.05 2.38 <1 <0.02 6.15 <1 17.6 <0.2 0.189j <5 7 <1 2.02 74 <1 <50 <1 <1 <1 <1 1670 ABMW-02BRL Bedrock 07/19/2018 <1 1860 <1 4.1911 10.4 339 <0.05 2.62 <1 <0.01 5.8 <1 16.6 <0.2 0.375 2.526 j 8 <1 2.28 76 <1 <50 <1 <1 <1 <1 1750 ABMW-02BRL Bedrock 11/07/2018 <1 1630 <1 1.828 j 11.2 328 0.023 j 2.16 <1 <0.01 6.09 <1 17.5 <0.2 <0.3 <5 6 <1 1.7 74 <1 <50 <1 <1 <1 <1 1520 ABMW-03 Ash Pore Water 01/16/2018 <1 13300 <1 234 12.7 763 <0.05 37.6 <1 0.04 13.2 B3 <1 12.5 BI <0.2 0.584 <5 21 <1 243 229 <1 1870 <1 <1 <1 <1 11000 ABMW-03 Ash Pore Water 04/03/2018 <1 6060 <1 218 13.5 616 <0.05 34.7 <1 <0.02 13.4 <1 15.1 <0.2 0.397 <5 13 <1 143 208 <1 1920 <1 <1 <1 <1 5400 ABMW-03 Ash Pore Water 07/18/2018 <1 6170 <1 215 14.1 785 <0.05 19.2 <1 0.00731 13.7 <1 13.7 B2 <0.2 0.34551 2.173j,B2 11 <1 106 231 <1 1920 <1 <1 <1 <1 4740 ABMW-03 Ash Pore Water 11/08/2018 <1 8160 <1 238 13.1 504 <0.05 38.3 <1 0.012 12.7 <1 15.8 0.1j 0.335 2.029j 18 <1 280 193 <1 2000 <1 <1 <1 <1 6220 ABMW-03S Saprolite 01/16/2018 <1 2700 <1 <5 0.765 303 <0.05 <1 <1 <0.02 0.938 B3 <1 15.8 B1 <0.2 0.711 <5 10 <1 <1 23 <1 1280 <1 <1 1.86 <1 1740 S1 ABMW-03S Saprolite 04/03/2018 0.338j 1120 <1 <5 0.816 304 <0.05 0.108j 0.627j <0.02 0.936 <1 15.9 <0.2 0.371 2.738j 10 <1 <1 24 <1 1270 <1 <1 1.59 <1 307 ABMW-03S Saprolite 07/18/2018 <1 1100 <1 3.7891 0.832 294 <0.05 <1 <1 <0.01 0.941 <1 15.7 B2 <0.2 0.39 S1 7 B2 11 <1 <1 27 0.385j 1310 <1 <1 1.56 <1 167 ABMW-03S Saprolite 11/08/2018 <1 1340 <1 1.876 j 0.798 285 <0.05 0.099 j <1 <0.01 0.926 <1 15.8 <0.2 0.642 S1 4 j 39 S1 <1 0.466 j 29 0.439 j 1350 <1 <1 1.46 <1 653 ABMW-04 Ash Pore Water 01/16/2018 <1 6980 <1 546 31.5 R1 2150 <0.05 281 <1 0.03 27.3 B3 <1 15.5 BI <0.2 4.06 <5 17 <1 375 612 <1 6040 <1 <1 2.11 <1 6860 ABMW-04 Ash Pore Water 04/03/2018 <1 8150 <1 530 32.7 2190 <0.05 320 1.05 <0.02 27.5 <1 14.5 0.105j 3.94 <5 15 <1 387 654 <1 6150 <1 <1 2.18 <1 7420 ABMW-04BR Bedrock 01/16/2018 <1 790 S1 <1 <5 5.61 448 <0.05 5.55 <1 <0.02 5.92 B3 <1 20.7 B1 <0.2 <0.3 <5 11 <1 1.32 127 <1 <50 <1 <1 <1 <1 733 SI ABMW-04BR Bedrock 04/03/2018 0.564j 918 <1 2.571j 5.98 474 <0.05 5.36 <1 <0.02 5.86 <1 20.7 <0.2 0.218j <5 13 <1 1.43 125 <1 33.916j <1 <1 <1 <1 591 ABMW-04BR Bedrock 07/18/2018 0.393j 790 <1 3.2551 5.96 483 <0.05 5.5 0.362j <0.01 5.84 <1 20.2 <0.2 0.349 S1 <5 11 <1 1.27 132 <1 34.188j <1 <1 <1 <1 646 ABMW-04BR Bedrock 11/08/2018 <1 589 <1 3.015j 5.58 435 <0.05 22.3 <1 <0.01 6.18 <1 27 <0.2 0.189j <5 9 <1 1.39 126 <1 28.812j <1 <1 <1 <1 904 ABMW-04D Transition Zone 01/16/2018 <1 56900 <1 24 34.1 6160 <0.05 15.7 1.52 0.071 15 B3 <1 16.3 BI <0.2 8.58 <5 69 <1 25.6 900 <1 3750 <1 <1 5.14 <1 53500 ABMW-04D Transition Zone 04/03/2018 <1 57900 <1 12 34.2 6190 <0.05 3.26 1.46 0.046 13.1 <1 15.9 <0.2 10.3 <5 65 <1 23.2 871 <1 3290 <1 0.709j 5.15 <1 53800 ABMW-04D Transition Zone 07/18/2018 <1 54500 <1 31 37.5 6360 <0.05 17.1 0.893j 0.027 16.3 <1 17 B2 0.106 j,S1 8.52 6 B2 65 <1 22 880 <1 3400 <1 0.627j 4.82 <1 50600 ABMW-04D Transition Zone 11/08/2018 <1 53600 <1 17 33.2 6s90 <0.05 8.07 0.947j 0.037 13.7 <1 16.1 <0.2 9.75 <5 41 <1 21.2 886 <1 3410 <1 0.779j 5.43 <1 51100 ABMW-04X Ash Pore Water 11/08/2018 <1 3570 <1 505 23.3 1390 <0.05 158 <1 0.0069j 18.7 0.508j 16.3 <0.2 2.81 <5 16 <1 80.9 465 <1 5610 <1 0.483j 0.3571 <1 4520 BG-01 Bedrock 01/16/2018 <1 18 S1 <1 <5 3.16 <5 <0.05 <1 1.2 0.83 1.33 B3 <1 11.7 BI <0.2 3.84 <5 <5 <1 <1 85 <1 <50 <1 <1 <1 <1 <10 BG-01 IMP Bedrock 04/04/2018 0.899 j 126 SI <1 3.629 j 3.35 9 <0.05 <1 1.32 0.92 1.34 <1 11.8 0.081 j 4.42 3.977 j 2.866 j <1 <1 88 <1 <50 <1 0.384 j <1 <1 <10 BG-01 IMP Bedrock 07/16/2018 <1 91 <1 3.143j 3.35 8 0.02j <1 1.36 0.869 1.33 <1 11.2 <0.2 3.94 4.785j 2.527j <1 <1 87 <1 <50 <1 0.464j <1 <1 <10 BG-01 Bedrock 11/06/2018 0.899j 286 <1 2.1751 3.3 14 0.029j <1 1.04 0.886 1.31 <1 11.7 <0.2 4.58 5 2.2531 <1 <1 86 <1 <50 <1 0.604j <1 <1 <10 BG-02 Transition Zone 01/15/2018 <1 180 <1 6 10.5 86 <0.05 <1 <1 0.026 SI 3.36 <1 45.6 B3 <0.2 4.44 <5 <5 <1 <1 41 <1 <50 <1 <1 <1 <1 97 BG-02 IMP Transition Zone 04/03/2018 0.41j 187 <1 4.6671 10.5 82 <0.05 0.8511 3.98 0.028 3.26 <1 43.8 0.082j 4.26 <5 1.6991 <1 <1 40 <1 <50 <1 3.58 <1 <1 126 BG-02 IMP Transition Zone 07/17/2018 <1 94 <1 3.739j 9.85 62 <0.05 0.629j 0.508j 0.033 3.31 <1 42.7 <0.2 4.72 1.975j <5 <1 <1 37 <1 <50 <1 <1 <1 <1 52 BG-02 Transition Zone 11/06/2018 0.617j 122 <1 2.9551 10.9 105 0.02j 0.6351 0.355j 0.024 3.32 <1 45 <0.2 4.61 <5 <5 <1 <1 39 <1 <50 <1 <1 <1 <1 82 CW-01 Transition Zone 01/15/2018 1.56 130 <1 <5 3.48 11 <0.05 <1 <1 1.5 1.24 <1 15.9 B3 <0.2 0.884 12 22 <1 <1 <5 <1 <50 <1 <1 <1 1.36 <10 CW-01 IMP Transition Zone 04/03/2018 2.51 279 <1 2.733j 3.35 18 <0.05 0.4581 0.975j 1.6 1.16 <1 15.7 <0.2 1.03 11 2.665j <1 <1 1.966j <1 <50 <1 <1 <1 0.7191 <10 CW-01 IMP Transition Zone 07/16/2018 1.32 23 <1 <5 3.71 4.043j <0.05 0.321j 0.649j 1.5 1.01 <1 15.8 <0.2 O.s02 S1 9 315 <1 <1 4.816j <1 <50 <1 0.806j <1 1.72 424 CW-01 Transition Zone 11/06/2018 2.41 22 <1 1.803j 3.48 3.707j 0.018j 0.3571 0.376j 1.5 1.03 <1 16 <0.2 0.561 11 3.079j <1 <1 <5 <1 <50 <1 0.335j <1 1.27 <10 CW-OSD Bedrock 01/15/2018 <1 69 <1 <5 8.97 65 <0.05 24.8 <1 <0.02 2.73 <1 13.4 B3 <0.2 1.28 <5 <5 <1 <1 <5 <1 <50 <1 <1 <1 <1 <10 CW-01D IMP Bedrock 04/03/2018 <1 7.226j <1 <5 9.29 10 <0.05 20.6 <1 0.31 2.18 <1 13.3 <0.2 1.14 1.9731 2.216j <1 <1 1.748j <1 <50 <1 <1 <1 0.3821 <10 CW-01D IMP Bedrock 07/17/2018 0.36j 21 <1 <5 9.17 8 <0.05 21.8 <1 0.276 2.12 <1 13.1 <0.2 1.27 2.447j 2.257j <1 <1 1.729j <1 <50 <1 0.478j <1 <1 14 CW-011) Bedrock 11/06/2018 0.809j 26 <1 <5 9.38 17 <0.05 22.2 <1 0.227 2.16 <1 13.3 <0.2 1.37 2.7931 3.104j <1 <1 1.819j <1 <50 <1 <1 <1 0.4941 <10 CW-02 Transition Zone 01/17/2018 <1 <10 <1 <5 9.48 92 <0.05 <1 1.29 0.055 2.08 <1 17.8 B3 <0.2 <0.3 9 10 <1 <1 140 <1 966 <1 <1 <1 <1 <10 CW-02 IMP Transition Zone 04/03/2018 <1 4.441j <1 <5 8.21 58 <0.05 <1 0.846j <0.02 1.83 <1 16.1 <0.2 j 0.18j 3.636j 11 <1 <1 110 <1 792 <1 <1 <1 <1 <10 CW-02 IMP Transition Zone 07/16/2018 <1 3.724j <1 <5 7.55 313 <0.05 <1 1.87 0.02 1.87 <1 17 <0.2 0.222 j,S1 3.404j 9 <1 <1 106 <1 959 <1 <1 <1 <1 7.195j CW-02 Transition Zone 11/07/2018 0.588j 92 <1 1 <5 5.37 107 1 0.018j <1 0.997j 0.017 1.74 <1 13 <0.2 0.441 6 9 <1 <1 76 <1 649 <1 <1 <1 0.5191 11 Page 2 of 9 TABLE 3-3 2018 COMPREHENSIVE GROUNDWATER QUALITY DATA 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Analytical Parameter INORGANIC PARAMETERS (DISSOLVED CONCENTRATION WITH FILTER SIZE) RADIONUCLIDES OTHER PARAMETERS Lead (0.45u) ug/L Lithium (0.45u) ug/L Manganese (0.45u) ug/L Mercury (0.45u) ug/L Molybdenum (0.45u) ug/L Nickel (0.45u) ug/L Phosphorus (0.45u) mg/L Selenium (0.45u) ug/L Silver (0.45u) ug/L Strontium (0.45u) ug/L Thallium (0.45u) ug/L Vanadium (0.45u) ug/L Zinc (0.45u) ug/L Radium-226 pCi/L Radium-228 pCi/L Total Radium pCi/L Uranium-238 ug/mL Total Uranium ug/mL Carbonate Alkalinity mg/L Fluoride mg/L Phosphorus mg/L Reporting Units 15A NCAC 02L Standard NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE 5^ NE 0.03^ NE 2 NE Provisional Background Threshold Values (Surficial Unit) NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE 4 NE 0.000367 5 NE NE Provisional Background Threshold Values (Transition Zone Unit) NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE 9 NE 0.001 5 NE NE Provisional Background Threshold Values (Bedrock Unit) NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE 7.6 NE 0.00203 5 NE NE Sample ID Well Screen Location Sample Collection Date Analytical Results ABMW-01 Ash Pore Water 01/16/2018 <1 1010 507 <0.05 277 2.87 <0.05 <1 NA 1780 0.284 88.2 <5 <1 <1 <RL NA 0.105 <5 0.19 0.087 SI ABMW-01 Ash Pore Water 04/03/2018 <1 1030 539 <0.05 301 2.2 0.077 <1 NA 1600 0.194j 12.2 <5 0.897 0.256 U 1.153 NA 0.0885 <5 0.17 0.097 ABMW-01 Ash Pore Water 07/19/2018 <1 866 1710 <0.05 192 9.77 0.076 <1 NA 3340 0.469 33.6 5 0.434 0.288 U 0.722 NA 0.0762 <5 0.14 0.14 ABMW-01 Ash Pore Water 11/08/2018 <1 981 613 <0.05 284 0.829j 0.12 <1 NA 1950 <0.2 12.3 1.817j 0.123 U 0.372 U 0.495 0.0733 0.0733 <5 0.21 0.19 ABMW-02 Ash Pore Water 01/16/2018 <1 1030 159 <0.05 1410 <1 0.064 <1 NA 967 <0.2 0.621 <5 NA NA NA NA NA 31.5 1.2 0.051 M1,S1 ABMW-02 Ash Pore Water 04/03/2018 <1 1060 329 <0.05 1490 <1 0.084 <1 NA 1300 0.117j 0.727 <5 NA NA NA NA NA 48 1.2 0.06 ABMW-02 Ash Pore Water 07/19/2018 <1 1050 298 <0.05 1420 0.346j 0.12 <1 NA 1230 <0.2 0.666 <5 NA NA NA NA NA 51.6 1.1 0.1 ABMW-02 Ash Pore Water 11/07/2018 <1 1060 154 <0.05 1500 <1 0.077 <1 NA 938 <0.2 0.698 <5 NA NA NA NA NA 57.9 0.88 0.064 ABMW-02BR Bedrock 01/16/2018 <1 <5 227 <0.05 17.6 <1 <0.05 <1 NA 1100 <0.2 <0.3 36 NA NA NA NA NA <5 1.2 <0.05 ABMW-02BR Bedrock 04/03/2018 <1 2.962j 220 <0.05 15.9 <1 <0.05 <1 NA 1110 <0.2 <0.3 <5 NA NA NA NA NA <5 1.2 <0.05 ABMW-02BR Bedrock 07/19/2018 <1 4.4851 221 <0.05 16.6 <1 <0.05 <1 NA 1160 <0.2 <0.3 <5 NA NA NA NA NA <5 1.1 <0.05 ABMW-02BR Bedrock 11/07/2018 <1 1.803j 205 <0.05 17.1 <1 <0.05 <1 NA 1160 <0.2 0.255j <5 NA NA NA NA NA <5 1.1 <0.05 ABMW-02BRL Bedrock 01/16/2018 <1 <5 339 <0.05 2.05 <1 <0.05 <1 NA 2310 <0.2 <0.3 12 NA NA NA NA NA <5 0.93 <0.05 ABMW-02BRL Bedrock 04/03/2018 <1 2.964j 353 <0.05 2.08 <1 <0.05 <1 NA 2210 <0.2 0.104j <5 NA NA NA NA NA <5 0.89 <0.05 ABMW-02BRL Bedrock 07/19/2018 <1 4.1831 313 <0.05 1.62 <1 <0.05 <1 NA 2370 <0.2 <0.3 <5 NA NA NA NA NA <5 0.84 <0.05 ABMW-02BRL Bedrock 11/07/2018 <1 1.739j 337 0.018j 1.77 <1 <0.05 <1 NA 2330 <0.2 0.227j <5 NA NA NA NA NA <5 0.77 <0.05 ABMW-03 Ash Pore Water 01/16/2018 <1 219 673 <0.05 38.2 <1 <0.05 <1 NA 1510 <0.2 <0.3 <5 NA NA NA NA NA <5 0.47 <0.05 ABMW-03 Ash Pore Water 04/03/2018 <1 223 569 <0.05 38 <1 <0.05 <1 NA 1440 <0.2 0.16j <5 NA NA NA NA NA <5 0.42 <0.05 ABMW-03 Ash Pore Water 07/18/2018 <1 222 718 <0.05 19.9 <1 <0.05 <1 NA 1610 <0.2 0.185 j,B3 1.968j NA NA NA NA NA <5 0.43 <0.05 ABMW-03 Ash Pore Water 11/08/2018 <1 237 458 <0.05 44.6 <1 <0.05 <1 NA 1310 <0.2 0.199j <5 NA NA NA NA NA <5 0.43 <0.05 ABMW-035 Saprolite 01/16/2018 <1 <5 300 <0.05 <1 <1 <0.05 <1 NA 75 <0.2 <0.3 <5 NA NA NA NA NA <5 <0.1 <0.05 ABMW-03S Saprolite 04/03/2018 <1 <5 294 <0.05 <1 <1 <0.05 <1 NA 74 <0.2 <0.3 3.283 j NA NA NA NA NA <5 <0.1 0.052 ABMW-03S Saprolite 07/18/2018 <1 <5 278 <0.05 0.134j <1 <0.05 <1 NA 72 <0.2 0.182 j, B3 4.082j NA NA NA NA NA <5 <0.1 <0.05 ABMW-03S Saprolite 11/08/2018 <1 <5 269 0.018 j <1 <1 <0.05 <1 NA 75 <0.2 <0.3 5 NA NA NA NA NA <5 0.0547 j <0.05 ABMW-04 Ash Pore Water 01/16/2018 <1 516 2160 <0.05 289 <1 <0.05 <1 NA 3140 <0.2 4.09 <5 0.817 0.773 1.59 NA 0.000872 <5 0.27 <0.05 ABMW-04 Ash Pore Water 04/03/2018 <1 540 2270 <0.05 310 0.997j 0.055 <1 NA 3220 <0.2 4 <5 1.12 0.431 U 1.551 NA 0.000677 <5 0.27 0.057 ABMW-04BR Bedrock 01/16/2018 <1 <5 399 <0.05 19.1 <1 <0.05 <1 NA 2020 <0.2 <0.3 <5 NA NA NA NA NA <5 1.1 <0.05 ABMW-04BR Bedrock 04/03/2018 <1 3.946j 381 <0.05 21 <1 <0.05 <1 NA 1940 <0.2 0.163j <5 NA NA NA NA NA <5 1 <0.05 ABMW-04BR Bedrock 07/18/2018 <1 2.4451 423 <0.05 17.2 <1 <0.05 <1 NA 2060 <0.2 0.232 j,B3 1.891j NA NA NA NA NA <5 1.1 <0.05 ABMW-04BR Bedrock 11/08/2018 <1 1.804j 419 0.019j 12.2 <1 <0.05 <1 NA 2020 <0.2 <0.3 <5 NA NA NA NA NA <5 1.1 <0.05 ABMW-04D Transition Zone 01/16/2018 <1 33 5640 <0.05 21 <1 <0.05 <1 NA 2010 <0.2 7.76 <5 NA NA NA NA NA <5 0.14 <0.05 ABMW-04D Transition Zone 04/03/2018 <1 22 5750 <0.05 9.43 0.861j <0.05 <1 NA 1710 <0.2 8.62 <5 NA NA NA NA NA <5 0.2745j <0.05 ABMW-04D Transition Zone 07/18/2018 <1 29 6050 <0.05 16.3 0.7991 <0.05 <1 NA 1850 <0.2 7.34 B3 2.537j NA NA NA NA NA <5 0.14 <0.05 ABMW-04D Transition Zone 11/08/2018 <1 27 6040 <0.05 15.8 0.585j <0.05 <1 NA 1820 <0.2 8.88 1.903j NA NA NA NA NA <5 0.11 <0.05 ABMW-04X Ash Pore Water 11/08/2018 <1 517 1520 <0.05 169 <1 0.058 0.401j NA 2480 <0.2 2.36 <5 1.1 0.394 U 1.494 0.000272 0.000272 <5 0.33 0.056 BG-01 Bedrock 01/16/2018 <1 <5 <5 <0.05 <1 <1 0.17 <1 NA 175 <0.2 3.79 <5 2.97 <1 2.97 NA 0.00147 <5 0.12 0.1771 BG-01 IMP Bedrock 04/04/2018 <1 <5 5 <0.05 0.1j 1.26 0.2 <1 NA 174 0.225 3.7 4.779j 4.13 0.215 U 4.345 NA 0.0001231 <5 0.0923j 0.17 BG-01 IMP Bedrock 07/16/2018 <1 3.787j 4.808j <0.05 <1 1.14 0.16 <1 NA 168 <0.2 3.2 6 2.52 0.186 U 2.706 NA <0.0002 <5 0.0658j 0.17 BG-01 Bedrock 11/06/2018 <1 1.756j 4.451j <0.05 <1 1.02 0.18 <1 NA 177 <0.2 3.82 4.545j 1.69 0.0533 U 1.7433 <0.0002 <0.0002 <5 0.0793j 0.19 BG-02 Transition Zone 01/15/2018 <1 6 70 <0.05 <1 <1 0.15 <1 NA 294 <0.2 B2 4.23 <5 0.706 <1 0.706 NA 0.000839 <5 0.34 0.16 BG-02 IMP Transition Zone 04/03/2018 <1 4.688j 69 <0.05 0.798j 5.04 0.16 <1 NA 280 0.104j 4.04 <5 2.75 0.172 U 2.922 NA 0.000718 <5 0.31 0.16 BG-02 IMP Transition Zone 07/17/2018 <1 3.674j 57 <0.05 0.507j 0.533j 0.14 <1 NA 273 <0.2 4.39 <5 2.29 0.0147 U 2.3047 NA 0.00061 <5 0.28 0.14 BG-02 Transition Zone 11/06/2018 <1 3.288j 82 <0.05 0.628j <1 0.15 <1 NA 290 <0.2 4.21 1.707j 1.56 0.145 U 1.705 0.000639 0.000639 <5 0.26 0.15 CW-01 Transition Zone 01/15/2018 <1 <5 <5 <0.05 <1 <1 0.17 <1 NA 59 <0.2 B2 0.744 13 NA NA NA NA NA <5 0.13 0.18 CW-01 IMP Transition Zone 04/03/2018 <1 3.05 j 3.103 j <0.05 0.486 j 0.699 j 0.16 <1 NA 65 <0.2 0.528 9 NA NA NA NA NA <5 0.0808 j 0.18 CW-01 IMP Transition Zone 07/16/2018 <1 <5 14 <0.05 0.296j 0.907j 0.17 MI <1 NA 67 <0.2 1.03 13 NA NA NA NA NA <5 0.0817j 0.21 CW-01 Transition Zone 11/06/2018 <1 2.047j 2.91 <0.05 0.316j <1 0.2 <1 NA 66 <0.2 0.547 11 NA NA NA NA NA <5 0.0964j 0.19 CW-OSD Bedrock 01/15/2018 <1 <5 15 <0.05 27.2 <1 0.13 <1 NA 198 <0.2 B2 1.25 <5 NA NA NA NA NA <5 0.17 0.12 CW-01D IMP Bedrock 04/03/2018 <1 <5 4.192 j <0.05 21.8 0.54 j 0.16 0.363 j NA 169 <0.2 1.27 2.485 j NA NA NA NA NA <5 0.13 0.17 CW-01D IMP Bedrock 07/17/2018 <1 <5 <5 <0.05 20.4 0.347j 0.14 0.608j NA 178 0.169j 1.23 1.744j NA NA NA NA NA <5 0.15 0.15 CW-011) Bedrock 11/06/2018 <1 <5 <5 <0.05 21.9 <1 0.19 <1 NA 174 <0.2 1.24 3.281 j NA NA NA NA NA <5 0.13 0.18 CW-02 Transition Zone 01/17/2018 <1 <5 83 <0.05 <1 1.29 <0.05 <1 NA 286 <0.2 <0.3 7 1.92 <1 1.92 NA <0.0002 <5 <0.1 <0.05 CW-02 IMP Transition Zone 04/03/2018 <1 <5 56 <0.05 <1 0.936j <0.05 <1 NA 209 0.104j 0.103j 4.08j 4.63 0.0451 U 4.6751 NA <0.0002 <5 <0.1 <0.05 CW-02 IMP Transition Zone 07/16/2018 <1 <5 305 <0.05 <1 1.74 <0.05 <1 NA 217 <0.2 0.117j 4.039j 0 U 0.308 U 0.308 NA <0.0002 <5 <0.1 <0.05 CW-02 Transition Zone 11/07/2018 <1 <5 305 <0.05 <1 0.934j <0.05 <1 NA 153 <0.2 0.289j 7 2.68 0.265 U 2.945 <0.0002 <0.0002 <5 <0.1 <0.05 Page 3 of 9 TABLE 3-3 2018 COMPREHENSIVE GROUNDWATER QUALITY DATA 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC FIELD PARAMETERS WATER QUALITY PARAMETERS SELECTED 40CFR257 APPENDIX III CONSTITUENTS plus Sr INORGANIC PARAMETERS (TOTAL CONCENTRATION) Analytical Parameter pH Water Level Temp Spec Cond DO ORP Eh Turbidity Alkalinity carBi- bonate Alkalinity Sulfide Total Organic Carbon Total Suspended Solids Boron Calcium Chloride Strontium Sulfate Total Dissolved Solids Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium (VI) Chromium Cobalt Reporting Units S.U. ft Deg C umhos/cm mg/L mV mV NTUs mg/L mg/L mg/L mg/L mg/L ug/L mg/L mg/L ug/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L 15A NCAC 02L Standard 6.5-8.5 NE NE NE NE NE NE NE NE NE NE NE NE 700 NE 250 NE 250 Soo NE 1* 10 700 4* 2 10 10 1* Provisional Background Threshold Values (Surficial Unit) 4.9-6.5 NE NE NE NE NE NE NE 13 13 0.1 2 NE So 2.89 3.3 25 1.6 85 566 1 1 19 1 1 0.088 3.23 1.02 Provisional Background Threshold Values (Transition Zone Unit) 5.7-6.5 NE NE NE NE NE NE NE 302 302 0.1 1.8 NE 50 59.2 33.3 391 7.5 430 490 1 1 78.3 1 1 1.26 6 1 Provisional Background Threshold Values (Bedrock Unit) 5.0-7.3 NE NE NE NE NE NE NE 223 223 0.1 1.01 NE 50 73.3 43 418 18 340 536 1 1 97 1 1 0.4 7 1.19 Sample ID Well Screen Location Sample Collection Date Analytical Results CW-02D Bedrock 01/17/2018 7.0 16.46 6 547 0.42 25 230 2.6 147 147 <0.1 M1 1.1 <5 242 77.8 B2 34 369 71 320 33 <1 <1 22 <1 <1 0.033 <1 <1 CW-02D IMP Bedrock 04/03/2018 7.1 15.45 14 515 0.96 211 416 0.8 100 100 <0.1 0.991 SI <5 407 48.3 42 321 57 260 533 0.537j 0.561j 40 <1 <1 1.7 22.7 0.65j CW-02D IMP Bedrock 07/16/2018 7.0 16.56 22 633 0.80 339 544 9.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CW-02D IMP Bedrock 07/17/2018 6.8 30.30 23 565 3.72 404 609 9.5 162 162 <0.1 0.735 SI 9 263 80.4 36 409 80 360 180 0.553j 0.405j 26 <1 <1 0.45 5.28 <1 CW-02D Bedrock 11/07/2018 7.2 15.73 16 745 0.33 18 223 8.5 158 158 <0.1 0.532 S1 <5 211 83.5 35 386 76 310 55 0.3991 0.427j 19 <1 <1 0.25 1.07 <1 CW-03 Transition Zone O1/22/2018 6.7 20.14 16 581 1.96 43 248 9.9 140 140 <0.1 2.1 SI 17 <50 62.3 94 309 17 350 414 <1 <1 15 <1 <1 0.055 <1 <1 CW-03 IMP Transition Zone 04/04/2018 6.6 18.40 17 598 2.76 53 258 3.6 147 147 <0.1 2.1 S1 9 <50 61.6 91 312 17 350 110 <1 <1 19 <1 <1 0.052 0.484 j <1 CW-03 IMP Transition Zone 07/17/2018 6.2 18.60 22 543 1.33 410 615 3.5 137 137 <0.1 1.8 SI 10 <50 59.2 88 304 16 370 220 <1 <1 17 <1 <1 0.053 0.583 j <1 CW-03 Transition Zone 11/08/2018 6.2 18.28 16 580 0.96 63 268 7.6 129 129 <0.1 1.9 SI <5 <50 58.5 88 300 17 350 161 <1 <1 14 <1 <1 0.065 S1 0.381 j <1 CW-04 Bedrock O1/17/2018 6.0 24.12 10 232 3.20 197 402 5.5 40.2 40.2 <0.1 0.975 <5 <50 14.7 B2 12 193 40 150 87 <1 <1 37 <1 <1 0.55 MI <1 <1 CW-04 IMP Bedrock 04/04/2018 6.0 23.10 17 176 2.27 316 521 4.6 57.3 57.3 <0.1 0.883 S1 <5 <50 13.5 7.5 133 22 160 53 <1 <1 27 <1 <1 0.18 0.399j <1 CW-04 IMP Bedrock 07/17/2018 5.9 23.30 21 186 2.80 370 575 0.9 51.9 51.9 <0.1 0.473 SI <5 <50 12.9 8.8 141 26 180 15 <1 <1 29 <1 <1 0.22 <1 <1 CW-04 Bedrock 11/08/2018 5.9 22.55 15 180 1.36 158 363 8.8 55.4 55.4 <0.1 0.414 S1 <5 <50 13.3 6.1 116 17 140 198 <1 <1 24 <1 <1 0.053 <1 <1 CW-05 Bedrock O1/22/2018 6.8 15.98 16 463 0.34 -7 198 7.3 165 165 <0.1 1.3 SI <5 <50 56.6 41 172 6.3 280 22 <1 <1 56 <1 <1 <0.025 2.16 <1 CW-05 IMP Bedrock 04/04/2018 6.7 10.96 19 436 1.65 273 478 3.3 169 169 <0.1 1.3 S1 <5 <50 53.8 39 170 7 280 19 <1 <1 55 <1 <1 <0.025 0.459j 0.805j CW-OS IMP Bedrock 07/17/2018 6.5 10.80 25 429 0.73 250 455 2.5 154 154 <0.1 1 SI <5 <50 52.9 35 164 6.8 290 12 <1 <1 52 <1 <1 <0.025 0.443j 1.08 CW-05 Bedrock 11/06/2018 6.6 7.53 17 415 0.36 -13 192 7.3 151 151 <0.1 1 S1 <5 <50 53.5 33 163 6.6 260 38 <1 <1 55 <1 <1 <0.025 0.629j 0.964j CW-06 Bedrock O1/22/2018 6.8 16.43 15 846 0.30 -53 152 3.0 285 285 <0.1 2 SI <5 <50 115 95 321 39 510 13 <1 <1 41 <1 <1 <0.025 <1 <1 CW-06 IMP Bedrock 04/03/2018 6.6 15.45 13 885 0.41 226 431 1.7 289 289 <0.1 2 SI <5 <50 104 M4 94 328 38 500 8 <1 <1 43 <1 <1 <0.025 <1 0.671j CW-06 IMP Bedrock 07/16/2018 6.5 14.20 19 865 0.27 315 520 3.7 293 293 <0.1 1.7 S1 <5 <50 99.1 92 326 36 480 19 <1 <1 43 <1 <1 <0.025 <1 0.741j CW-06 Bedrock 11/07/2018 6.6 12.88 16 883 0.26 12 217 4.1 264 264 <0.1 1.9 <5 <50 110 94 340 37 480 21 <1 <1 42 <1 <1 <0.025 <1 0.628j MW-02 Bedrock O1/15/2018 5.9 29.42 14 326 0.37 92 297 1.6 1O1 SOS <0.1 5.5 <5 <50 19.4 B2 22 218 18 210 73 <1 <1 73 <1 <1 <0.025 <1 4.34 MW-02 Bedrock 04/03/2018 6.0 27.92 17 298 0.18 65 270 1.2 113 113 <0.1 2.1 S1 <5 <50 18.2 16 192 17 190 42 <1 <1 60 <1 <1 <0.025 <1 2.44 MW-02 Bedrock 07/18/2018 5.6 27.41 22 330 0.60 355 560 4.4 108 SOS <0.1 2.1 S1 5 <50 20.1 18 220 18 200 385 <1 0.343j 74 <1 <1 <0.025 <1 4.79 MW-02 Bedrock 11/06/2018 5.5 26.59 18 329 0.37 97 302 17.6 104 104 <0.1 S1 6 <50 18.9 14 191 18 ISO 1520 JF4 <1 <1 <0.025 0.575j 1.76 MW-03 Alluvial O1/15/2018 6.1 6.60 11 326 1.77 207 412 1.2 65.9 65.9 <0.1 1.1 S1 <5 1040 25.7 B2 46 318 23 200 22 S1 <1 <1 53 <1 <1 0.19 <1 <1 MW-03 Alluvial O1/16/2018 NM NM NM NM NM NM NM NM NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA MW-03 Alluvial 04/03/2018 6.0 6.47 13 353 0.82 296 501 0.5 78.2 78.2 <0.1 1.2 SI <5 1010 29.4 47 330 23 190 7 <1 <1 56 <1 <1 0.14 <1 <1 MW-03 Alluvial 07/18/2018 5.8 6.80 19 333 1.41 565 770 0.2 64.7 64.7 <0.1 0.987 S1 <5 1230 25.1 47 325 25 200 4.668j <1 <1 56 <1 <1 0.2 <1 <1 MW-03 Alluvial 11/08/2018 5.8 6.39 16 312 1.39 336 541 0.9 61.9 61.9 <0.1 0.937 S1 <5 1090 23.7 40 302 23 190 34 <1 <1 55 <1 <1 0.19 0.495j <1 MW-03BR Bedrock 01/22/2018 7.1 19.62 16 899 0.44 -75 130 1.5 237 237 <0.1 2 S1 <5 <50 139 150 394 11 570 23 <1 <1 40 <1 <1 <0.025 <1 <1 MW-03BR Bedrock 04/04/2018 7.0 18.46 17 954 0.46 6 211 1.7 227 227 <0.1 2 SI <5 <50 143 140 413 10 600 44 SI <1 0.556j 53 <1 <1 <0.025 0.863j <1 MW-03BR Bedrock 07/17/2018 6.8 18.60 25 876 0.36 306 511 3.1 228 228 <0.1 1.7 S1 <5 <50 135 150 387 11 690 9 <1 <1 40 <1 <1 <0.025 <1 <1 MW-03BR Bedrock 11/08/2018 6.6 18.09 15 917 0.32 -10 195 3.7 212 212 <0.1 1.7 SI <5 <50 141 ISO 395 11 610 33 <1 <1 42 <1 <1 <0.025 0.505j <1 MW-04 Bedrock 01/15/2018 6.4 35.82 13 309 0.58 124 329 9.4 101 101 <0.1 0.765 S1 19 <50 25.8 B2 9.1 95 39 200 151 <1 <1 8 <1 <1 0.068 1.34 <1 MW-04 Bedrock 04/04/2018 6.3 32.90 16 330 0.43 112 317 8.9 110 110 <0.1 1.1 SI 7 <50 28.4 7.9 109 38 210 153 1.6 <1 9 <1 <1 0.044 1.82 <1 MW-04 Bedrock 07/18/2018 6.3 31.55 20 344 1.78 408 613 1.5 116 116 <0.1 0.738 S1 <5 <50 33.9 8.7 124 38 210 20 <1 <1 6 <1 <1 0.028 <1 <1 MW-04 Bedrock 11/06/2018 6.6 30.30 17 406 0.66 63 268 2.4 136 136 <0.1 0.634 SI <5 <50 50.6 8.1 167 35 220 6 <1 <1 7 <1 <1 0.14 <1 <1 MW-05BR Bedrock 01/22/2018 7.2 17.51 15 642 0.29 -132 73 3.6 237 237 0.14 2 S1 13 <50 96.2 69 228 0.98 380 15 <1 <1 35 <1 <1 <0.025 <1 <1 MW-05BR Bedrock 04/04/2018 7.0 13.05 18 641 0.41 132 337 7.5 243 243 <0.1 2.1 SI 25 <50 98.9 70 229 2.1 400 13 <1 1.04 37 <1 <1 <0.025 0.843j 0.563j MW-05BR Bedrock 07/17/2018 6.8 13.10 31 669 0.88 89 294 1.1 228 228 <0.1 1.7 S1 18 <50 103 68 229 2.4 460 10 <1 0.698j 35 <1 <1 <0.025 <1 <1 MW-05BR Bedrock 11/06/2018 7.0 9.06 17 632 0.39 -130 75 2.4 215 215 <0.1 1.8 S1 17 <50 97.2 64 225 2.6 380 14 <1 1 34 <1 <1 <0.025 1.76 <1 MW-08BR Bedrock 01/16/2018 6.5 36.74 14 749 0.23 -26 179 5.8 148 148 <0.1 2.2 S1 12 <50 68.5 120 354 38 460 80 <1 <1 22 <1 <1 <0.025 6.17 <1 MW-08BR Bedrock 04/04/2018 6.4 35.85 16 777 0.36 -11 194 7.3 149 149 <0.1 1.9 SI <5 <50 71.3 120 365 40 420 104 <1 <1 20 <1 <1 <0.025 MI 1.22 0.499j MW-08BR Bedrock 07/18/2018 6.1 35.61 23 707 0.72 409 614 1.2 139 139 <0.1 1.5 S1 <5 <50 69.7 120 357 40 480 32 0.811 0.5j 15 0.498j 0.389j 0.03 0.494j 0.821j MW-08BR Bedrock 11/06/2018 6.2 35.10 16 724 0.59 246 451 2.9 129 129 <0.1 1.6 SI <5 <50 72.9 110 364 36 400 25 <1 <1 14 <1 <1 <0.025 0.734j 0.343j MW-09BRL Bedrock O1/16/2018 7.1 37.40 8 840 0.70 115 320 9.5 108 108 <0.1 2.4 S1 <5 <50 40.3 83 203 12 300 229 <1 <1 29 <1 <1 0.039 <1 <1 MW-09BRL Bedrock 04/04/2018 6.6 33.51 17 422 0.28 42 247 82.2 47.6 47.6 <0.1 MS 3 S1 <5 <50 13.1 16 71 9.6 240 4950 <1 0.571j 26 <1 <1 0.031 MW-09BRL Bedrock 07/19/2018 6.7 34.34 18 650 0.51 -3 202 16.3 76.3 76.3 <0.1 2.1 <5 <50 24.8 46 128 9.5 220 859 0.681j 0.574j 16 <1 <1 <0.025MW-09BRL Bedrock 11/06/2018 6.2 30.40 17 251 0.65 291 496 86.5 48.6 48.6 <0.1 2S1 7 <50 12.4 19 64 8.8 220 7160 <1 0.559j 18 <1 <1 0.028MW-104BRL Bedrock 11/29/2018 7.2 Artesian 16 630 0.29 20 225 1.8 197 197 <0.1 0.825 <5 <50 112 55 957 55 390 14 <1 <1 29 <1 <1 <0.025MW-104BRM Bedrock 11/29/2018 8.0 107.28 15 453 8.72 129 334 9.9 196 196 <0.1 0.782 13 <50 65.2 13 714 37 290 262 0.469j 0.871j 19 <1 <1 0.53 N-32O MW-105BRM Bedrock 11/29/2018 7.2 89.85 14 566 1.14 39 244 16.1 244 244 <0.1 1.4 6 <50 77.2 26 441 29 350 32 <1 <1 0.036MW-10BR Bedrock O1/15/2018 6.4 15.08 10 451 0.47 160 365 2.2 106 106 <0.1 2S1 <5 <50 29.3 B2 20 201 88 310 21 S1 <1 <1 <5 <1 <1 0.09MW-10BR Bedrock 04/03/2018 6.2 14.40 14 457 0.36 197 402 1.1 113 113 <0.1 2.1S1 <5 <50 29.9 20 202 89 300 8 <1 <1 3.739j <1 <1 0.049 Page 4 of 9 TABLE 3-3 2018 COMPREHENSIVE GROUNDWATER QUALITY DATA 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Analytical Parameter INORGANIC PARAMETERS (TOTAL CONCENTRATION) INORGANIC PARAMETERS (DISSOLVED CONCENTRATION WITH FILTER SIZE) Copper ug/L Iron ug/L Lead ug/L Lithium ug/L Magnesium mg/L Manganese ug/L Mercury ug/L Molybdenum ug/L Nickel ug/L Nitrate + Nitrite mg-N/L Potassium mg/L Selenium ug/L Sodium mg/L Thallium ug/L Vanadium ug/L Zinc ug/L Aluminum (0.45u) ug/L Antimony (0.45u) ug/L Arsenic (0.45u) ug/L Barium (0.45u) ug/L Beryllium (0.45u) ug/L Boron (0.45u) ug/L Cadmium (0.45u) ug/L Chromium (0.45u) ug/L Cobalt (0.45u) ug/L Copper (0.45u) ug/L Iron (0.45u) ug/L Reporting Units 15A NCAC 02L Standard 1000 300 15 NE NE 50 1 NE 100 NE NE 20 NE 0.2* 0.3* 1000 NE NE NE NE NE NE NE NE NE NE NE Provisional Background Threshold Values (Surficial Unit) 1.9 385 1 NE 0.753 253 0.2 3.15 3.03 0.798 3.78 1 5.49 0.2 0.974 227 NE NE NE NE NE NE NE NE NE NE NE Provisional Background Threshold Values (Transition Zone Unit) 5 1319 1 NE 13.5 298 0.2 1 5 1 0.295 1 3.61 1 53.3 0.2 5.88 12 NE NE NE NE NE NE NE NE NE NE NE Provisional Background Threshold Values (Bedrock Unit) 5 2550 1 1 NE 13.1 544 0.05 13.1 5 1 1.03 6.56 1 72.6 0.2 5.52 37.9 NE NE NE NE NE NE NE NE I NE NE NE Sample ID Well Screen Location Sample Collection Date Analytical Results CW-02D Bedrock 01/17/2018 <1 32 <1 <5 9 66 <0.05 2.3 <1 0.08 4.23 <1 18.7 B3 <0.2 1.23 <5 <5 <1 <1 26 <1 312 <1 <1 <1 <1 <10 CW-02D IMP Bedrock 04/03/2018 2.69 575 0.862 j 4.684 j 8.9 22s <0.05 2.06 12.1 0.082 4.17 <1 21 0.133 j 1.11 15 1.943 j 0.449 j 0.597 j 33 <1 410 <1 1.92 <1 0.403 j 6.452 j CW-02D IMP Bedrock 07/16/2018 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA CW-02D IMP Bedrock 07/17/2018 0.976j 208 <1 2.4j 9.13 201 <0.05 2.25 2.74 0.038 4.59 <1 19.5 <0.2 1.45 10 2.641j 0.607j 0.366j 22 <1 245 <1 0.671j <1 0.456 j,B2 4.324j CW-02D Bedrock 11/07/2018 20.1 45 <1 <5 8.99 31 0.017j 2.18 1.23 0.041 4.52 <1 18.1 <0.2 1.19 20 1.7391 <1 0.438j 22 <1 219 <1 0.336j <1 0.3871 28 CW-03 Transition Zone 01/22/2018 <1 374 <1 6 7.36 19 <0.05 <1 <1 0.302 4.37 <1 41.9 B3 <0.2 2.14 5 <5 <1 <1 13 <1 <50 <1 <1 <1 <1 <10 CW-03 IMP Transition Zone 04/04/2018 1.62 95 S1 <1 4.9451 7.48 13 <0.05 0.372j <1 0.34 4.28 <1 41.4 <0.2 1.96 <5 6 <1 <1 17 <1 <50 <1 <1 <1 <1 15 CW-03 IMP Transition Zone 07/17/2018 0.692j 238 <1 3.952j 7.16 15 <0.05 0.364j 0.495j 0.31 4.17 <1 41.7 <0.2 1.93 4.662j <5 <1 <1 15 <1 <50 <1 <1 <1 <1 <10 CW-03 Transition Zone 11/08/2018 0.442j 133 <1 5 7.24 9 <0.05 0.3561 <1 0.306 4.1 <1 42.2 <0.2 1.81 <5 42 <1 <1 16 <1 <50 <1 <1 <1 <1 3.717j CW-04 Bedrock 01/17/2018 <1 61 <1 <5 4.58 <5 <0.05 <1 1.91 0.084 1.19 <1 19.1 B3 <0.2 1.4 <5 <5 <1 <1 37 <1 <50 <1 <1 <1 <1 <10 CW-04 IMP Bedrock 04/04/2018 0.695 j 25 SI <1 3.953 j 3.5 <5 <0.05 0.358 j 0.539 j 0.16 S3 1.57 0.395 j 17.5 <0.2 1.11 4.136 j 2.017 j <1 <1 27 <1 <50 <1 <1 <1 <1 <10 CW-04 IMP Bedrock 07/17/2018 <1 12 <1 2.329 j 3.6 2.954 j <0.05 0.279 j 0.642 j 0.118 1.3 0.336 j 17.5 <0.2 0.978 1.786 j 1.89 j <1 <1 29 <1 <50 <1 0.357 j <1 <1 11 CW-04 Bedrock 11/08/2018 <1 84 <1 3.83 j 3.34 <5 <0.05 0.455 j <1 0.134 1.64 0.335 j 16.7 <0.2 1.22 4.048 j 2.0011 <1 <1 25 <1 <50 <1 <1 <1 <1 3.561 j CW-05 Bedrock 01/22/2018 4.68 705 <1 7 7.77 669 <0.05 <1 2.15 <0.01 6.1 <1 19.2 B3 <0.2 <0.3 12 <5 <1 <1 52 <1 <50 <1 <1 <1 <1 347 CW-05 IMP Bedrock 04/04/2018 1.11 326 <1 7 7.9 593 <0.05 0.89 j 1.94 <0.02 6.02 <1 19.1 <0.2 0.268 j 2.242 j 1.746 j <1 <1 52 <1 <50 <1 <1 0.653 j <1 207 CW-05 IMP Bedrock 07/17/2018 <1 413 <1 5 7.49 803 <0.05 0.985j 0.711j <0.01 5.8 <1 18.4 <0.2 0.244j 5 <5 <1 <1 50 <1 <50 <1 <1 0.874j <1 217 CW-05 Bedrock 11/06/2018 <1 810 <1 5 7.44 787 0.024j 0.9861 0.343j <0.01 5.71 <1 18 <0.2 0.149j 2.4511 2.871 <1 <1 53 <1 <50 <1 <1 0.9321 <1 401 CW-06 Bedrock 01/22/2018 <1 1520 <1 6 23.9 1330 <0.05 3.03 1.32 <0.01 9.18 <1 37.2 B3 <0.2 <0.3 <5 <5 <1 <1 41 <1 <50 <1 <1 <1 <1 1530 CW-06 IMP Bedrock 04/03/2018 <1 1570 <1 7 21.8 1370 <0.05 2.83 1.27 <0.02 9.75 <1 37.1 <0.2 0.134j <5 2.8253 <1 <1 43 <1 <50 <1 <1 0.677j <1 1520 CW-06 IMP Bedrock 07/16/2018 <1 1600 <1 6 22 1330 <0.05 2.83 1.31 <0.01 9.43 <1 36.5 <0.2 0.166 j,S1 7 4.47j <1 <1 42 <1 <50 <1 <1 0.676j <1 1500 CW-06 Bedrock 11/07/2018 <1 1670 <1 4.9711 20.8 1460 <0.05 2.93 0.863 j <0.01 9.47 <1 38.8 <0.2 0.248 j <5 2.684 j <1 <1 41 <1 <50 <1 <1 0.7 j <1 1550 MW-02 Bedrock 01/15/2018 <1 1020 <1 8 8.14 1350 <0.05 <1 3.56 0.16 SI 4.99 <1 26.2 B3 <0.2 0.53 <5 6 <1 <1 59 <1 <50 <1 <1 2.81 <1 587 MW-02 Bedrock 04/03/2018 <1 674 <1 6 8.02 761 <0.05 0.8411 2.94 0.18 3.78 <1 27.8 0.088j 0.467 <5 5 <1 <1 54 <1 <50 <1 <1 1.93 0.6711 472 MW-02 Bedrock 07/18/2018 3.4 1240 <1 8 B2 8.34 1310 <0.05 1.22 3.2 0.12 4.86 <1 29.1 B2 <0.2 0.76 S1 2.73 j,B2 5 <1 <1 59 <1 <50 <1 <1 2.62 <1 645 MW-02 Bedrock 11/06/2018 1.4 848 j <1 4.937j 7.78 537 0.019j 1.98 3.54 0.17 3.58 <1 31.4 <0.2 1.27 7 5 3.25 <1 <1 <50 <1 <1 1.5 <1 314 MW-03 Alluvial 01/15/2018 <1 35 <1 <5 8.55 1160 <0.05 <1 2.47 0.065 S1 2 <1 21.2 B3 <0.2 <0.3 <5 <5 <1 <1 53 <1 1020 <1 <1 <1 <1 13 MW-03 Alluvial 01/16/2018 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA MW-03 Alluvial 04/03/2018 <1 8.159j <1 <5 9.02 1530 <0.05 0.401j 2.81 0.053 2.14 <1 21.1 <0.2 0.233j <5 <5 <1 <1 56 <1 1070 <1 <1 <1 <1 <10 MW-03 Alluvial 07/18/2018 1.86 4.883j <1 3.0091 8.9 1040 <0.05 0.1461 2.12 0.074 2.13 <1 22.1 B2 <0.2 0.319 S1 <5 1.71 <1 <1 57 <1 1200 <1 <1 <1 <1 3.581j MW-03 Alluvial 11/08/2018 <1 12 <1 1.9j 8.17 1320 0.022j 0.3j 2.19 0.052 2.09 <1 20.7 0.145j 0.335 8 <5 <1 <1 50 <1 991 <1 0.443j <1 <1 <10 MW-03BR Bedrock 01/22/2018 <1 329 <1 9 10.8 555 <0.05 <1 <1 <0.01 7.41 <1 20.6 B3 <0.2 <0.3 <5 <5 <1 <1 38 <1 <50 <1 <1 <1 <1 271 MW-03BR Bedrock 04/04/2018 1.46 SI 694 <1 9 11 745 <0.05 1.78 0.38j <0.02 7.51 <1 22.7 <0.2 0.627 <5 4.089j <1 <1 39 <1 <50 <1 <1 <1 <1 254 MW-03BR Bedrock 07/17/2018 <1 331 <1 7 10.6 564 <0.05 0.9511 <1 <0.01 7.2 <1 20.5 <0.2 0.249j <5 1.748j <1 <1 35 <1 <50 <1 <1 <1 <1 214 MW-03BR Bedrock 11/08/2018 <1 361 <1 9 11.1 574 <0.05 0.981j <1 <0.01 7.42 <1 20.9 <0.2 0.134j <5 86 <1 <1 40 <1 22.379j <1 <1 <1 <1 270 MW-04 Bedrock 01/15/2018 2 170 <1 6 7.44 72 <0.05 2.35 2.38 0.65 5.37 <1 19.7 B3 <0.2 0.968 21 <5 <1 <1 7 <1 <50 <1 <1 <1 <1 12 MW-04 Bedrock 04/04/2018 2.8 151 SI 0.445 j 4.971 j 7.38 63 <0.05 2.83 2.13 0.55 5.57 <1 20.2 <0.2 1.41 45 2.265 j 1.36 <1 7 <1 <50 <1 <1 <1 2.35 <10 MW-04 Bedrock 07/18/2018 4.2 25 <1 6 B2 7.42 53 <0.05 2.57 0.606 j 0.389 5.31 <1 19.8 B2 <0.2 0.6 S1 19 B2 2.052 j <1 1.26 4.867 j <1 <50 <1 <1 <1 1.15 4.288 j MW-04 Bedrock 11/06/2018 1.2 6.703 j <1 2.87 j 7.27 511 <0.05 4.13 1.27 0.052 5.17 <1 20.1 <0.2 0.655 37 16 <1 <1 3.863 j <1 <50 <1 <1 <1 <1 <10 MW-05BR Bedrock 01/22/2018 <1 5070 <1 <5 6.9 1790 <0.05 <1 <1 0.011 5.93 <1 16.8 B3 <0.2 <0.3 <5 13 <1 <1 36 <1 <50 <1 <1 <1 <1 8370 MW-05BR Bedrock 04/04/2018 0.762j 8570 <1 3.698j 7.23 1910 <0.05 0.938j 0.823j <0.02 5.56 <1 17.6 <0.2 0.4 <5 14 <1 0.557j 36 <1 <50 <1 <1 1.68 <1 10700 MW-05BR Bedrock 07/17/2018 <1 5430 <1 3.559j 7.1 1750 <0.05 0.804j <1 0.01 5.57 <1 18.7 <0.2 0.207j 2.0981 11 <1 0.681j 36 <1 <50 <1 <1 0.7521 <1 8190 MW-05BR Bedrock 11/06/2018 <1 59s0 <1 2.427j 7 1780 0.019j 1.1 <1 0.0056j 5.37 <1 19.4 <0.2 0.119j 1.948j 8 <1 0.84j 35 <1 <50 <1 <1 0.951j <1 8030 MW-08BR Bedrock 01/16/2018 <1 320 S1 <1 <5 21.9 330 <0.05 2.85 4.95 0.23 5.68 B3 <1 28.9 BI <0.2 0.849 9 <5 <1 <1 20 <1 <50 <1 1.05 <1 <1 146 SI MW-08BR Bedrock 04/04/2018 0.737j 219 <1 3.847j 22.4 258 <0.05 3.34 2.4 0.24 SI 5.34 <1 29.3 <0.2 0.943 28 2.415j <1 <1 18 <1 <50 <1 <1 0.47j <1 44 MW-08BR Bedrock 07/18/2018 2.37 53 0.7261 5 B2 21.6 188 <0.05 2.46 2.5 0.252 4.78 0.552j 28.5 B2 0.608 S1 1.52 S1 4.843 j,B2 2.9j <1 <1 15 <1 <50 <1 <1 0.3981 <1 <10 MW-08BR Bedrock 11/06/2018 0.996j 104 <1 2.053j 23.2 156 0.018j 1.76 1.73 0.248 4.7 <1 28.6 <0.2 0.995 6 <5 <1 <1 14 <1 <50 <1 <1 0.394j <1 <10 MW-09BRL Bedrock 01/16/2018 2.66 211 51 <1 <5 11.6 491 <0.05 4.59 2.28 0.043 7.32 B3 <1 37.1 BI <0.2 1.9 <5 <5 <1 <1 23 <1 <50 <1 <1 <1 2.47 24 51 MW-09BRL Bedrock 04/04/2018 11.1 4620 1 7 3.66 187 0.022j 0.949j 3.44 0.25 S1 2.32 <1 14 <0.2 6.97 14 12 <1 <1 4.246j <1 <50 <1 0.843j <1 6.67 7.502j MW-09BRL Bedrock 07/19/2018 4.62 573 <1 4.656j 6.89 493 0.018j 2.41 2.98 0.062 4.12 <1 22.1 <0.2 1.97 4.067j 6 0.82j 0.354j 13 <1 <50 <1 <1 <1 2.2 12 MW-09BRL Bedrock 11/06/2018 10.5 4620 0.695j 6 4.14 223 0.033j 1.43 2.84 0.202 2.6 <1 15.3 0.136j 6.63 9 9 <1 <1 4.508j <1 <50 <1 <1 <1 8.25 20 MW-104BRL Bedrock 11/29/2018 <1 224 <1 6 6.47 80 <0.05 2.22 <1 0.00441 4.73 <1 15.6 <0.2 <0.3 2.349j 3.362j <1 <1 29 <1 <50 <1 <1 <1 <1 212 MW-104BRM Bedrock 11/29/2018 0.501j 158 <1 42 4.48 17 <0.05 4.95 5.87 0.00791 23.3 <1 22.8 <0.2 3.63 22 77 0.527j 0.938j 18 <1 <50 <1 0.826j <1 <1 3.513j MW-105BRM Bedrock 11/29/2018 0.874j 337 <1 8 16.9 1 3.23 0.011 7.8 <0.2 1.2 1 0.867j <1 1 105 MW-10BR Bedrock 01/15/2018 <1 12 <1 6 13.3 48 <0.05 <1 2.13 0.042 S1 4.04 <1 38.6 B3 <0.2 2.03 66 <5 <1 <1 <5 <1 <50 <1 <1 <1 <1 <10 MW-10BR Bedrock 04/03/2018 <1 11 <1 4.863 j 13.7 53 <0.05 0.595 j 1.69 <0.02 4.12 <1 39.4 0.082 j 1.91 3.6 j 3.084 j <1 <1 3.608 j <1 <50 <1 <1 <1 <1 <10 Page 5 of 9 TABLE 3-3 2018 COMPREHENSIVE GROUNDWATER QUALITY DATA 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Analytical Parameter INORGANIC PARAMETERS (DISSOLVED CONCENTRATION WITH FILTER SIZE) RADIONUCLIDES OTHER PARAMETERS Lead (0.45u) ug/L Lithium (0.45u) ug/L Manganese (0.45u) ug/L Mercury (0.45u) ug/L Molybdenum (0.45u) ug/L Nickel (0.45u) ug/L Phosphorus (0.45u) mg/L Selenium (0.45u) ug/L Silver (0.45u) ug/L Strontium (0.45u) ug/L Thallium (0.45u) ug/L Vanadium (0.45u) ug/L Zinc (0.45u) ug/L Radium-226 pCi/L Radium-228 pCi/L Total Radium pCi/L Uranium-238 ug/mL Total Uranium ug/mL Carbonate Alkalinity mg/L Fluoride mg/L Phosphorus mg/L Reporting Units 15A NCAC 02L Standard NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE 5^ NE 0.03^ NE 2 NE Provisional Background Threshold Values (Surficial Unit) NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE 4 NE 0.000367 5 NE NE Provisional Background Threshold Values (Transition Zone Unit) NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE 9 NE 0.001 5 NE NE Provisional Background Threshold Values (Bedrock Unit) NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE 7.6 NE 0.00203 5 NE NE Sample ID Well Screen Location Sample Collection Date Analytical Results CW-02D Bedrock 01/17/2018 <1 <5 <5 <0.05 2.34 <1 <0.05 <1 NA 358 <0.2 0.908 6 0.41 R1 <1 0.41 NA 0.00296 <5 0.18 <0.05 CW-02D IMP Bedrock 04/03/2018 <1 3.792j 16 <0.05 1.86 2.14 <0.05 <1 NA 319 0.089j 0.427 8 0.405 U 0.229 U 0.634 NA 0.00196 <5 0.12 0.055 CW-02D IMP Bedrock 07/16/2018 NA NA NA NA NA NA NA NA NA NA NA NA NA 0.347 0.449 U 0.796 NA 0.00189 NA NA NA CW-02D IMP Bedrock 07/17/2018 <1 1.972j 119 <0.05 2.03 0.728j <0.05 <1 NA 371 <0.2 0.957 6 NA NA NA NA NA <5 0.16 <0.05 CW-02D Bedrock 11/07/2018 <1 <5 174 <0.05 2.3 0.4441 <0.05 <1 NA 460 <0.2 0.997 4.485j 0.159 U 0.457 0.616 0.00252 0.00252 <5 0.12 <0.05 CW-03 Transition Zone 01/22/2018 <1 6 <5 <0.05 <1 <1 0.13 <1 NA 308 <0.2 B3 1.46 <5 NA NA NA NA NA <5 0.24 0.14 CW-03 IMP Transition Zone 04/04/2018 <1 2.623 j 4.249 j <0.05 0.385 j <1 0.15 <1 NA 313 <0.2 1.48 2.089 j NA NA NA NA NA <5 0.21 0.14 CW-03 IMP Transition Zone 07/17/2018 <1 3.912j <5 <0.05 0.28j 0.39j 0.13 <1 NA 289 <0.2 1.27 <5 NA NA NA NA NA <5 0.16 0.14 CW-03 Transition Zone 11/08/2018 <1 3.3261 <5 0.0181 0.357j <1 0.18 <1 NA 308 <0.2 1.44 4.031j NA NA NA NA NA <5 0.1876j 0.15 CW-04 Bedrock 01/17/2018 <1 <5 <5 <0.05 <1 1.27 0.19 <1 NA 189 <0.2 1.06 <5 NA NA NA NA NA <5 0.13 0.19 CW-04 IMP Bedrock 04/04/2018 <1 <5 <5 <0.05 0.306 j 0.604 j 0.19 0.435 j NA 132 <0.2 1.03 <5 NA NA NA NA NA <5 0.12 0.18 CW-04 IMP Bedrock 07/17/2018 <1 2.522 j 2.065 j <0.05 0.219 j 0.711 j 0.17 0.37 j NA 147 <0.2 0.838 <5 NA NA NA NA NA <5 0.11 0.17 CW-04 Bedrock 11/08/2018 <1 1.7061 <5 0.0181 0.376j <1 0.19 <1 NA 114 <0.2 1 <5 NA NA NA NA NA <5 0.13 0.18 CW-05 Bedrock 01/22/2018 <1 6 647 <0.05 <1 <1 0.12 <1 NA 173 <0.2 <0.3 <5 NA NA NA NA NA <5 0.29 0.21 CW-05 IMP Bedrock 04/04/2018 <1 4.1881 554 <0.05 0.885j 1.67 0.11 <1 NA 169 <0.2 0.182j 2.306j NA NA NA NA NA <5 0.27 0.12 CW-05 IMP Bedrock 07/17/2018 <1 4.789 j 688 <0.05 0.89 j 0.711 j 0.1 <1 NA 158 <0.2 <0.3 2.49 j NA NA NA NA NA <5 0.26 0.14 MI CW-05 Bedrock 11/06/2018 <1 5 767 <0.05 0.993j <1 0.15 <1 NA 161 <0.2 0.225j 2.637j NA NA NA NA NA <5 0.24 0.26 CW-06 Bedrock 01/22/2018 <1 6 1370 <0.05 2.94 1.03 0.09 <1 NA 330 <0.2 B3 <0.3 <5 47.8 10.1 57.9 NA 0.00026 <5 0.39 0.094 CW-06 IMP Bedrock 04/03/2018 <1 6 1360 <0.05 2.96 1.27 0.1 <1 NA 329 <0.2 <0.3 <5 1.39 10.6 11.99 NA 0.000245 <5 0.35 0.1 CW-06 IMP Bedrock 07/16/2018 <1 7 1330 <0.05 2.64 1.3 0.088 <1 NA 320 0.113j <0.3 3.644j 22.1 5.79 27.89 NA 0.000179j <5 0.29 0.11 CW-06 Bedrock 11/07/2018 <1 6 1420 <0.05 2.9 1.37 0.11 <1 NA 331 <0.2 0.227j 1.727j 110 8.76 118.76 0.000216 0.000216 <5 0.26 0.1 MW-02 Bedrock 01/15/2018 <1 6 762 <0.05 1.01 2.69 0.14 <1 NA 189 <0.2 B2 0.541 <5 NA NA NA NA NA <5 0.23 0.16 MW-02 Bedrock 04/03/2018 <1 6 575 <0.05 0.937j 2.89 0.17 <1 NA 185 0.143j 0.449 2.948j NA NA NA NA NA <5 0.19 0.18 MW-02 Bedrock 07/18/2018 <1 4.322j 815 <0.05 1.09 2.48 0.15 <1 NA 193 <0.2 0.397 B3 2.854j NA NA NA NA NA <5 0.23 0.15 MW-02 Bedrock 11/06/2018 <1 3.452j 455 <0.05 1.98 0.17 <1 NA 178 <0.2 0.68 3.185j NA A NA NA 0.24 0.18 MW-03 Alluvial 01/15/2018 <1 <5 974 <0.05 M2 <1 2.11 <0.05 <1 NA 324 <0.2 B2 0.301 <5 NA NA NA NA NA <5 0.17 <0.05 MW-03 Alluvial 01/16/2018 NA NA NA NA NA NA NA NA NA NA NA NA NA 3.39 <1 3.39 NA 0.000134 j NA NA NA MW-03 Alluvial 04/03/2018 <1 <5 1230 <0.05 0.361j 2.6 <0.05 <1 NA 338 <0.2 0.159j <5 4.58 0.487 5.067 NA <0.0002 <5 0.12 <0.05 MW-03 Alluvial 07/18/2018 <1 <5 1030 <0.05 0.191j 2.01 <0.05 <1 NA 323 <0.2 0.31 B3 2.23j 6.5 -0.015 U 6.485 NA <0.0002 <5 0.15 <0.05 MW-03 Alluvial 11/08/2018 <1 <5 1210 <0.05 0.161j 2.06 <0.05 <1 NA 281 <0.2 0.171j 3.58j 0.454 U 0.522 0.976 <0.0002 <0.0002 <5 0.12 <0.05 M1 MW-03BR Bedrock 01/22/2018 <1 8 538 <0.05 <1 <1 <0.05 <1 NA 399 <0.2 <0.3 <5 NA NA NA NA NA <5 <0.5 <0.05 MW-03BR Bedrock 04/04/2018 <1 7 538 <0.05 0.852j <1 0.058 <1 NA 397 <0.2 0.163j <5 NA NA NA NA NA <5 0.348j 0.051 MW-03BR Bedrock 07/17/2018 <1 6 486 <0.05 0.736j <1 <0.05 <1 NA 362 <0.2 <0.3 <5 NA NA NA NA NA <5 0.24 <0.05 MW-03BR Bedrock 11/08/2018 <1 7 557 0.018j 0.732j <1 0.064 <1 NA 406 <0.2 <0.3 4.431j NA NA NA NA NA <5 0.28j 0.06 MW-04 Bedrock 01/15/2018 <1 5 36 <0.05 2.44 1.3 0.066 <1 NA 96 <0.2 B2 0.721 14 NA NA NA NA NA <5 0.24 0.067 MW-04 Bedrock 04/04/2018 <1 2.824j 25 <0.05 2.69 0.954j 0.066 0.439j NA 102 0.112j 0.599 40 NA NA NA NA NA <5 0.22 0.066 MW-04 Bedrock 07/18/2018 <1 3.3231 12 <0.05 2.54 0.487j <0.05 <1 NA 114 <0.2 0.518 B3 15 NA NA NA NA NA <5 0.21 0.051 MW-04 Bedrock 11/06/2018 <1 3.294j 112 <0.05 3.32 0.506j 0.064 <1 NA 127 <0.2 0.638 20 NA NA NA NA NA <5 0.19 <0.05 MW-05BR Bedrock 01/22/2018 <1 <5 1820 <0.05 <1 <1 0.085 <1 NA 228 <0.2 B3 <0.3 <5 NA NA NA NA NA <5 0.25 0.091 MW-05BR Bedrock 04/04/2018 <1 1.894j 1810 <0.05 2.3 0.442j 0.11 <1 NA 219 <0.2 0.11j <5 NA NA NA NA NA <5 0.2 0.11 MW-05BR Bedrock 07/17/2018 <1 3.1961 1820 <0.05 0.849j <1 0.079 <1 NA 227 <0.2 0.121j <5 NA NA NA NA NA <5 0.19 0.11 MW-05BR Bedrock 11/06/2018 <1 2.935j 1860 0.021j 2.2 <1 0.12 <1 NA 219 <0.2 0.147j <5 NA NA NA NA NA <5 0.18 0.12 MW-08BR Bedrock 01/16/2018 <1 <5 299 <0.05 2.65 3.04 0.051 <1 NA 352 <0.2 0.667 <5 NA NA NA NA NA <5 0.2 0.075 SI MW-08BR Bedrock 04/04/2018 <1 2.078j 242 <0.05 2.78 2.05 0.063 <1 NA 358 <0.2 0.757 38 NA NA NA NA NA <5 0.162j 0.071 MW-08BR Bedrock 07/18/2018 <1 2j 198 <0.05 1.89 1.81 0.055 <1 NA 360 <0.2 0.76 B3 4j NA NA NA NA NA <5 0.1566j 0.058 MW-08BR Bedrock 11/06/2018 <1 2.21j 180 <0.05 1.8 1.43 0.069 <1 NA 353 <0.2 0.974 4.257j NA NA NA NA NA <5 0.1314j 0.074 MW-09BRL Bedrock 01/16/2018 <1 <5 471 <0.05 3.62 1.79 0.13 <1 NA 177 <0.2 1.44 <5 NA NA NA NA NA <5 0.19 0.11 S1 MW-09BRL Bedrock 04/04/2018 <1 <5 98 <0.05 0.72 j 1.38 0.26 <1 NA 46 <0.2 1.09 19 NA NA NA NA NA <5 0.15 0.3 MW-09BRL Bedrock 07/19/2018 <1 4.448j 423 <0.05 2.22 1.41 0.22 <1 NA 116 <0.2 1.06 2.238j NA NA NA NA NA <5 0.13 0.22 MW-09BRL Bedrock 11/06/2018 <1 2.161 j 163 0.02 j 1.6 1.19 0.34 <1 NA 45 <0.2 1.27 8 NA NA NA NA <5 0.15 0.4 MW-104BRL Bedrock 11/29/2018 <1 4.124j 81 <0.05 2.29 <1 <0.05 <1 NA 989 <0.2 <0.3 <5 0.71 2.99 3.7 0.00124 0.00124 <5 0.78 <0.05 MW-104BRM Bedrock 11/29/2018 <1 43 14 <0.05 4.9 2.84 <0.05 <1 NA 707 <0.2 3.32 16 3.21 -0.121 U 3.089 0.00306 0.00306 <5 1.3 <0.05 MW-105BRM Bedrock 11/29/2018 <1 7 <0.05 <1 NA NA 200 <0.2 <0.2 B2 .84 2.13 0.671 0.11 U <1 0.588 0.00133 NA 0.00133 <0.0002 <5 0.39 0.22 MW-10BR Bedrock 01/15/2018 <1 6 44 <0.05 <1 1.46 0.22 <1 7 0.588 MW-10BR Bedrock 04/03/2018 <1 5 54 <0.05 0.655j 1.67 0.22 <1 NA 204 0.155j 1.93 4.755j 2.38 0.26 U 2.64 NA 0.00007981 <5 0.39 0.22 Page 6 of 9 TABLE 3-3 2018 COMPREHENSIVE GROUNDWATER QUALITY DATA 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC FIELD PARAMETERS WATER QUALITY PARAMETERS SELECTED 40CFR257 APPENDIX III CONSTITUENTS plus Sr INORGANIC PARAMETERS (TOTAL CONCENTRATION) Analytical Parameter pH Water Level Temp Spec Cond DO ORP Eh Turbidity Alkalinity carBi- bonate Alkalinity Sulfide Total Organic Carbon Total Suspended Solids Boron Calcium Chloride Strontium Sulfate Total Dissolved Solids Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium (VI) Chromium Cobalt Reporting Units S.U. ft Deg C umhos/cm mg/L mV mV NTUs mg/L mg/L mg/L mg/L mg/L ug/L mg/L mg/L ug/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L 15A NCAC 02L Standard 6.5-8.5 NE NE NE NE NE NE NE NE NE NE NE NE 700 NE 250 NE 250 Soo NE 1* 10 700 4* 2 10 10 1* Provisional Background Threshold Values (Surficial Unit) 4.9-6.5 NE NE NE NE NE NE NE 13 13 0.1 2 NE So 2.89 3.3 25 1.6 85 566 1 1 19 1 1 0.088 3.23 1.02 Provisional Background Threshold Values (Transition Zone Unit) 5.7-6.5 NE NE NE NE NE NE NE 302 302 0.1 1.8 NE 50 59.2 33.3 391 7.5 430 490 1 1 78.3 1 1 1.26 6 1 Provisional Background Threshold Values (Bedrock Unit) 5.0-7.3 NE NE NE NE NE NE NE 223 223 0.1 1.01 NE 50 73.3 43 418 18 340 536 1 1 97 1 1 0.4 7 1.19 Sample ID Well Screen Location Sample Collection Date Analytical Results MW-10BR Bedrock 07/18/2018 6.0 12.91 21 448 0.35 184 389 0.5 102 102 <0.1 RI 1.9 51 <5 <50 29.1 21 200 87 290 6 <1 <1 4.689j <1 <1 0.16 <1 <1 MW-10BR Bedrock 11/06/2018 6.1 12.26 18 456 0.43 296 501 1.3 98.9 98.9 <0.1 1.8 S1 <5 <50 31.3 19 207 85 290 23 <1 <1 4.263j <1 <1 0.14 0.404j <1 MW-12D Transition Zone 01/16/2018 6.2 34.71 14 128 3.46 96 301 7.0 54.9 54.9 <0.1 0.689 51 <5 <50 11.3 4.2 85 1.1 98 31 <1 <1 14 <1 <1 0.77 <1 <1 MW-12D Transition Zone 04/02/2018 6.0 34.28 17 129 3.28 104 309 3.7 59.9 59.9 <0.1 0.495 SI <5 <50 12.4 4.1 91 1.1 65 38 <1 <1 15 <1 <1 0.64 M1 0.882 j <1 MW-12D Transition Zone 07/18/2018 5.8 32.84 18 132 3.41 171 376 2.6 61.9 61.9 <0.1 0.254 SI <5 <50 12.1 4.3 92 1.1 110 22 <1 <1 16 <1 <1 0.96 0.791j <1 MW-12D Transition Zone 11/07/2018 6.0 32.60 16 151 3.85 316 521 8.1 53.8 53.8 <0.1 0.264 S1 <5 <50 12.7 4.4 92 1.1 86 82 <1 <1 15 <1 <1 0.82 1.02 <1 MW-12S Saprolite 01/16/2018 6.0 34.44 13 IN 45 1 3.06 85 1 29W 32.2 13.8 13.8 0.1 2.2 51 31 <50 1.43 2.1 19 1 <1 V 0.03 1.42 1.98 MW-12S Saprolite 04/02/2018 5.9 33.99 18 46 0.32 97 302 9.9 14.5 14.5 <0.1 5.8 5 <50 0.843 1.6 12 1.6 32 370 <1 0.908j 12 <1 <1 0.052 <1 0.695j MW-12S Saprolite 07/18/2018 5.2 33.49 21 50 0.35 165 370 9.9 14.6 14.6 <0.1 1.9 S1 <5 <50 2.16 2.5 21 1.6 52 490 <1 0.52 j 17 <1 <1 0.045 0.851 j 0.667 j MW-12S Saprolite 11/07/2018 5.8 32.40 15 61 1.28 318 523 15.3 14.6 14.6 <0.1 3.4 6 <50 2.86 2.4 18 1.3 <25 1020 <1 0.53 j 16 <1 <1 0.063 0.996 j 0.948 j MW-13BR Bedrock 01/16/2018 7.0 30.83 14 494 0.46 -79 126 8.7 197 197 <0.1 0.98851 10 <50 61.3 29 322 15 290 134 <1 <1 22 <1 <1 <0.025 5.7 6.53 MW-13BR Bedrock 04/04/2018 6.9 30.22 17 493 0.43 39 244 9.8 205 205 <0.1 0.781 S1 11 <50 65.2 30 333 16 290 162 0.581j <1 22 <1 <1 <0.025 3.96 4.77 MW-13BR Bedrock 07/18/2018 6.8 30.50 22 1.92 -84 121 14.9 206 206 jjj<O.1 0.405 SI 36 <50 64.2 29 341 16 310 1040 0.37j <1 40 <1 <1 <0.025 3.48 5.99 MW-13BR Bedrock 11/08/2018 6.8 29.55 18 473 0.46 -82 123 4.7 184 184 0.11 0.496 S1 8 <50 62.3 28 319 16 280 111 <1 <1 18 <1 <1 0.045 0.727j 4.67 MW-14BR Bedrock 01/22/2018 6.9 21.47 16 315 2.56 195 400 2.2 138 138 <0.1 1.1 51 <5 <50 15 14 230 9.1 220 42 <1 <1 20 <1 <1 0.054 <1 <1 MW-14BR Bedrock 04/04/2018 6.6 18.66 16 276 2.42 196 401 2.3 115 115 <0.1 1.1 SS <5 <50 16 13 161 8.9 200 85 <1 0.621j 18 <1 <1 0.025 <1 <1 MW-14BR Bedrock 07/18/2018 6.5 19.39 22 273 0.85 79 284 5.8 112 112 <0.1 0.793 S1 <5 <50 15.6 14 147 9.2 190 118 <1 0.538j 17 <1 <1 <0.025 M1 <1 0.581j MW-14BR Bedrock 11/07/2018 6.3 17.94 18 276 0.48 180 385 9.2 SOS SOS <0.1 0.8 SI <5 <50 14.2 13 166 9.5 160 236 <1 0.582j 16 <1 <1 0.028 <1 1.53 MW-16BR Bedrock 01/22/2018 7.7 7.07 13 355 0.17 -200 5 2.6 157 157 0.12 8.4 B3 <5 <50 38.2 8.4 140 0.92 180 13 <1 <1 15 <1 <1 <0.025 <1 <1 MW-16BR Bedrock 04/03/2018 7.7 5.89 11 334 0.21 -106 99 4.0 166 166 <0.1 2.5 SI <5 26.161j 38.2 8.2 140 1.4 SI 180 11 <1 0.392j 15 <1 <1 <0.025 <1 <1 MW-16BR Bedrock 07/18/2018 7.5 7.22 20 316 0.16 -157 48 9.8 156 156 <0.1 0.823 51 6 25.78j 34.7 8.6 132 0.75 180 12 <1 0.428j 15 <1 <1 <0.025 <1 <1 MW-16BR Bedrock 11/06/2018 7.5 4.52 18 309 0.35 -179 26 9.6 147 147 <0.1 0.765 SI 7 22.397j 37.3 8.2 135 1.4 160 11 <1 <1 14 <1 <1 0.025 <1 <1 MW-16D Transition Zone 01/22/2018 6.9 6.59 14 241 1.55 166 371 2.4 82.8 82.8 <0.1 0.293 51 <5 <50 26.6 12 175 8.7 150 44 <1 <1 <5 <1 <1 0.14 M1 <1 <1 MW-16D Transition Zone 04/03/2018 7.1 5.59 13 230 1.99 8 213 4.5 80.6 80.6 <0.1 0.565 SI 6 <50 25.8 11 168 7.7 140 83 <1 <1 4.04 j <1 <1 0.15 <1 <1 MW-16D Transition Zone 07/18/2018 7.0 6.89 18 227 1.90 72 277 9.5 80.7 80.7 <0.1 0.172 SI 5 <50 26.3 11 170 7.7 140 134 <1 <1 4.956j <1 <1 0.14 0.37j <1 MW-16D Transition Zone 11/06/2018 6.9 4.08 18 226 2.20 110 315 2.9 72.8 72.8 <0.1 0.293 SI 7 <50 27 11 175 7.3 130 140 <1 <1 4.907j <1 <1 0.15 0.447j <1 MW-16S Alluvial 01/22/2018 6.2 5.90 30 192 2.76 188 393 3.0 41.8 41.8 <0.1 1.1 51 <5 402 16.4 25 215 15 100 7 <1 <1 110 <1 <1 <0.025 <1 <1 MW-16S Alluvial 04/03/2018 6.1 5.60 10 155 2.69 169 374 5.5 23.9 23.9 <0.1 0.801 SI <5 190 11.8 14 148 11 80 7 <1 <1 75 <1 <1 <0.025 <1 <1 MW-16S Alluvial 07/18/2018 5.6 6.65 21 121 0.50 166 371 7.8 24.8 24.8 <0.1 0.497 51 <5 164 10.4 9.7 133 8.7 80 21 0.364j <1 75 <1 <1 <0.025 <1 <1 MW-16S Alluvial 11/06/2018 5.7 3.84 18 121 1.19 196 401 1.9 30.9 30.9 <0.1 0.536 SI <5 98 9.64 1 4.1 126 9.6 51 12 <1 <1 71 <1 <1 0.044 <1 <1 MW-18BR Bedrock 01/15/2018 7.3 24.76 8 626 0.61 -90 115 2.7 268 268 <0.1 0.898 51 <5 <50 106 67 462 14 400 106 <1 <1 96 <1 <1 <0.025 RS <1 <1 MW-18BR Bedrock 04/04/2018 7.1 20.86 18 697 0.36 -79 126 5.2 250 250 <0.1 1.2 SI <5 <50 103 70 481 15 400 15 <1 1.01 98 <1 <1 <0.025 <1 <1 MW-18BR Bedrock 07/18/2018 7.2 20.47 23 716 0.33 -93 112 4.0 512 512 <0.1 0.892 51 <5 <50 95.5 69 444 21 420 39 <1 2.51 90 <1 <1 <0.025 <1 <1 MW-18BR Bedrock 09/12/2018 6.9 20.89 21 702 0.40 -38 167 2.3 248 248 <0.1 1.3 <5 <50 96.8 B2 65 450 17 410 18 <1 2.01 91 <1 <1 <0.025 <1 <1 MW-18BR Bedrock 11/06/2018 7.1 11.01 19 720 0.47 121 326 4.9 244 244 <0.1 0.878 S1 6 <50 99.3 66 462 18 380 111 <1 1.96 92 <1 <1 <0.025 <1 <1 MW-18BR Bedrock 12/05/2018 7.1 11.78 11 703 0.45 2 207 5.8 235 235 <0.1 0.825 <5 <50 97.3 B2 67 448 17 390 82 <1 1.29 91 <1 <1 <0.025 <1 <1 MW-18D Transition Zone 01/15/2018 6.4 27.12 12 387 0.37 49 254 2.6 128 128 <0.1 1.2 51 <5 <50 44.5 B2 25 161 38 270 137 51 <1 <1 <5 <1 <1 <0.025 <1 <1 MW-18D Transition Zone 04/04/2018 6.3 24.33 16 415 0.26 99 304 6.4 132 M1 132 <0.1 1.4 SI <5 <50 46.5 25 168 38 280 202 SI <1 <1 3.713j <1 <1 <0.025 0.383j <1 MW-18D Transition Zone 07/18/2018 6.3 23.76 22 407 0.42 86 291 9.1 126 126 <0.1 1.1 51 <5 <50 40.4 25 156 37 270 40 <1 <1 3.536j <1 0.385j 0.034 <1 <1 MW-18D Transition Zone 09/12/2018 6.0 24.04 19 409 0.22 88 293 3.1 123 123 <0.1 1.1 <5 <50 40.6 B2 23 158 36 260 14 <1 <1 3.691j <1 <1 <0.025 <1 <1 MW-18D Transition Zone 11/06/2018 6.2 12.68 18 421 0.31 297 502 6.2 121 121 <0.1 1 51 <5 <50 46.7 22 172 36 260 932 <1 <1 6 <1 <1 <0.025 0.594j <1 MW-18D Transition Zone 12/05/2018 6.1 12.63 10 387 0.39 178 383 9.3 114 114 <0.1 1 <5 <50 39.6 B2 23 152 37 250 332 <1 <1 4.775j <1 <1 0.058 0.528j <1 MW-19BR Bedrock 01/15/2018 6.9 12.37 7 935 0.53 -123 82 0.6 247 247 <0.1 2 S1 <5 <50 124 B2,M4 140 421 57 570 46 S1 <1 <1 56 <1 <1 <0.025 <1 <1 MW-19BR Bedrock 04/04/2018 6.9 9.82 17 990 0.28 -6 199 1.2 251 251 <0.1 2.1 SI <5 <50 119 150 439 60 580 4.845j <1 0.405j 58 <1 <1 <0.025 <1 0.404j MW-19BR Bedrock 07/18/2018 6.8 10.27 20 980 0.34 -52 153 2.7 475 475 <0.1 1.8 51 <5 <50 118 150 440 60 670 9 <1 0.415j 58 <1 <1 <0.025 <1 0.387j MW-19BR Bedrock 11/06/2018 6.7 8.80 17 1098 0.34 108 313 8.7 230 230 <0.1 1.9 S1 <5 <50 124 130 436 56 560 16 <1 0.442j 58 <1 <1 <0.025 <1 0.41j MW-19D Transition Zone 01/15/2018 6.8 11.04 10 841 0.31 -76 129 1.7 207 207 <0.1 1.8 51 <5 <50 97 B2 130 359 58 SID 50 51 <1 <1 60 <1 <1 <0.025 <1 <1 MW-19D Transition Zone 04/04/2018 6.6 8.34 16 890 0.27 144 349 9.8 199 199 <0.1 2 SI <5 <50 94.3 130 363 63 500 21 <1 <1 61 <1 <1 <0.025 <1 0.832j MW-19D Transition Zone 07/18/2018 6.7 8.97 19 881 0.65 -33 172 4.3 208 208 <0.1 1.751 <Sj <50 1 92.1 1 130 357 62 580 12 <1 <1 58 <1 <1 <0.025 <1 0.757j MW-19D Transition Zone 11/06/2018 6.8 7.05 1 18 1 1114 1 0.22 1 106 1 3111 9.7 199 199 <0.1 1.8 SS 1 6 1 <50 1 98.7 1 120 1 374 59 470 21 1 <1 1 0.39j 61 <1 <1 <0.025 0.354j 0.77j Prepared by: BER Checked by: JAW Page 7 of 9 TABLE 3-3 2018 COMPREHENSIVE GROUNDWATER QUALITY DATA 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Analytical Parameter INORGANIC PARAMETERS (TOTAL CONCENTRATION) INORGANIC PARAMETERS (DISSOLVED CONCENTRATION WITH FILTER SIZE) Copper ug/L Iron ug/L Lead ug/L Lithium ug/L Magnesium mg/L Manganese ug/L Mercury ug/L Molybdenum ug/L Nickel ug/L Nitrate + Nitrite mg-N/L Potassium mg/L Selenium ug/L Sodium mg/L Thallium ug/L Vanadium ug/L Zinc ug/L Aluminum (0.45u) ug/L Antimony (0.45u) ug/L Arsenic (0.45u) ug/L Barium (0.45u) ug/L Beryllium (0.45u) ug/L Boron (0.45u) ug/L Cadmium (0.45u) ug/L Chromium (0.45u) ug/L Cobalt (0.45u) ug/L Copper (0.45u) ug/L Iron (0.45u) ug/L Reporting Units 1SA NCAC 02L Standard 1000 300 15 NE NE 50 1 NE 100 NE NE 20 NE 0.2* 0.3* 1000 NE NE NE NE NE NE NE NE NE NE NE Provisional Background Threshold Values (Surficial Unit) 1.9 385 1 NE 0.753 253 0.2 3.15 3.03 0.798 3.78 1 5.49 0.2 0.974 227 NE NE NE NE NE NE NE NE NE NE NE Provisional Background Threshold Values (Transition Zone Unit) 5 1319 1 NE 13.5 298 0.2 1 5 1 0.295 1 3.61 1 53.3 0.2 5.88 12 NE NE NE NE NE NE NE NE NE NE NE Provisional Background Threshold Values (Bedrock Unit) 5 2550 1 1 NE 13.1 544 0.05 13.1 5 1 1.03 1 6.56 1 72.6 0.2 5.52 37.9 NE NE NE NE NE NE NE NE NE NE NE Sample ID Well Screen Location Sample Collection Date Analytical Results MW-10BR Bedrock 07/18/2018 2.43 7.238j <1 6 B2 13.4 40 0.05 0.617j 1.79 0.062 4.17 <1 38.7 B2 0.152 j,S1 1.93 S1 27 B2 2.738j <1 <1 7 <1 <50 <1 0.385j <1 <1 <10 MW-10BR Bedrock 11/06/2018 0.486 j 27 <1 3.935 j 14 34 0.039 j 0.622 j 1.44 0.019 M1 4 <1 38.9 0.171 j 2.05 17 2.67 j <1 <1 4.296 j <1 <50 <1 <1 <1 0.402 j <10 MW-12D Transition Zone 01/16/2018 <1 92 S1 <1 <5 3.03 20 <0.05 <1 <1 0.23 1.33 B3 <1 9.03 B1 <0.2 0.741 <5 <5 <1 <1 14 <1 <50 <1 <1 <1 <1 <10 MW-12D Transition Zone 04/02/2018 1.66 89 <1 <5 3.36 22 <0.05 0.604j 1.23 0.25 1.41 <1 9.35 0.109j 0.709 3.621j <5 <1 <1 16 <1 <50 <1 0.815j <1 0.463j <10 MW-12D Transition Zone 07/18/2018 2.83 48 <1 3.184j 3.36 18 <0.05 0.342j 0.794j 0.25 1.41 <1 9.4 B2 <0.2 0.747 S1 1.962 j,B2 <5 <1 <1 16 <1 <50 <1 0.845j <1 <1 <10 MW-12D Transition Zone 11/07/2018 0.582j 149 <1 <5 3.39 28 0.021j 0.37j 0.371j 0.241 1.42 <1 9.25 0.083j 0.68 14 2.501j <1 <1 15 <1 <50 <1 0.889j <1 0.76j 9.654j MW-12S Saprolite 01/16/2018 3.88 3010 1.52 .856 <1 1.29 0.024 2.19 B3 4.05 B1 <0.2 2.09 15 23 <1 <1 1.46 <1 1880 S1 MW-12S Saprolite 04/02/2018 1.06 809 <1 <5 0.577 128 <0.05 0.205j 0.805j 0.047 1.62 <1 4.69 0.091j 1.05 24 6 <1 0.875j 10 <1 <50 <1 <1 0.624j <1 517 MW-12S Saprolite 07/18/2018 3.51 510 0.383j 3.692j 0.91 101 <0.05 0.332j 1.4 0.135 2.06 <1 4.11 B2 <0.2 1.5 S1 126 B2 41 <1 0.588j 16 <1 <50 <1 0.471j 0.724j <1 346 MW-12S Saprolite 11/07/2018 2.57 776 0.597j <5 0.861 153 0.023j 0.272j 0.837j 0.214 2.23 < 3.9 <0.2 2.09 94 47 <1 0.446j 13 <1 <50 <1 0.666j 0.925j 41 323 MW-13BR Bedrock 01/16/2018 <1 1850 <1 <5 11.3 369 <0.05 2.34 3.52 <0.02 4.14 B3 <1 16.2 BI <0.2 0.408 <5 <5 <1 <1 21 <1 <50 <1 <1 5.78 <1 1430 S1 MW-13BR Bedrock 04/04/2018 0.945j 1640 <1 3.056j 12.5 321 <0.05 2.02 2.7 <0.02 4.24 <1 16.4 <0.2 1 0.363 3.817j 3.134j 0.384j <1 20 <1 <50 <1 0.357j 4.41 <1 1290 MW-13BR Bedrock 07/18/2018 2.86 2080 1.27 5 B2 303 <0.05 2.06 .87 <0.01 <1 16.3 B2 <0.2 1.97 S1 9 B2 4.952j <1 <1 17 <1 <1 1 3.97 ]JILI 488 MW-13BR Bedrock 11/08/2018 0.635j 675 <1 2.316j 12.2 260 0.02j 2.11 <1 <0.01 4.34 <1 15.9 <0.2 0.282j <5 2.587j <1 <1 16 <1 <50 <1 <1 4.54 <1 554 MW-14BR Bedrock 01/22/2018 1.52 30 B2 <1 47 2.49 57 <0.05 5.96 <1 0.126 8.63 <1 49.1 B3 <0.2 2.23 <5 <5 <1 <1 19 <1 <50 <1 <1 <1 1.01 <10 MW-14BR Bedrock 04/04/2018 2.09 45 S1 <1 7 2.72 55 <0.05 3.99 <1 0.4 3.9 <1 37 <0.2 2.4 2.407 j 1.9581 <1 0.575 j 17 <1 <50 <1 <1 <1 0.856 j <10 MW-14BR Bedrock 07/18/2018 3.23 104 <1 9 B2 2.71 119 <0.05 4.37 0.42j 0.364 4.11 <1 38.8 B2 <0.2 2.55 Si 3.146 j,B2 4.119j <1 0.482j 15 <1 <50 <1 <1 <1 0.566j <10 MW-14BR Bedrock 11/07/2018 2.65 178 <1 9 2.49 114 0.019j 4.18 <1 0.427 3.91 <1 40.6 <0.2 2.74 2.656j 3.511j <1 0.518j 13 <1 <50 <1 <1 <1 1.22 <10 MW-16BR Bedrock 01/22/2018 <1 1290 <1 <5 4.4 366 <0.05 25.7 <1 0.014 3.24 <1 24.4 B3 <0.2 <0.3 <5 5 <1 <1 13 <1 <50 <1 <1 <1 <1 894 MW-16BR Bedrock 04/03/2018 0.508j 1650 <1 2.401j 4.55 346 <0.05 23 <1 0.033 3.36 <1 24.5 <0.2 0.234j 2.671j 3.603j <1 0.452j 14 <1 30.726j <1 <1 <1 <1 612 MW-16BR Bedrock 07/18/2018 0.789j 1950 <1 3.388j 4.21 306 <0.05 25.5 <1 0.0067j 3.3 <1 24.3 B2 <0.2 0.222 j,S1 2.042 j,B2 4.318j <1 0.388j 14 <1 25.176j <1 <1 <1 <1 1530 MW-16BR Bedrock 11/06/2018 0.613j 2400 <1 <5 4.51 319 <0.05 20.1 <1 0.007j 3.12 <1 21.9 <0.2 0.103j 3.136j 3.257j <1 0.339j 14 <1 24.161j <1 <1 <1 <1 1720 MW-16D Transition Zone 01/22/2018 <1 47 B2 <1 <5 5.29 49 <0.05 5.64 <1 2.7 1.87 <1 9.63 B3 <0.2 0.677 <5 <5 <1 <1 <5 <1 <50 <1 <1 <1 <1 <10 MW-16D Transition Zone 04/03/2018 <1 117 <1 1.672 j 5.2 10 <0.05 4.58 <1 3.3 1.82 0.547 j 10 <0.2 0.669 <5 2.442 j <1 <1 3.386 j <1 <50 <1 <1 <1 <1 <10 MW-16D Transition Zone 07/18/2018 1.38 195 <1 3.187j 5.36 128 <0.05 5.49 <1 2.9 1.84 0.49j 9.88 B2 <0.2 0.823 SI <5 4.063j <1 <1 3.128j <1 <50 <1 <1 <1 <1 <10 MW-16D Transition Zone 11/06/2018 0.885j 156 <1 <5 5.14 173 <0.05 5.41 0.404j 3 1.77 <1 9.73 <0.2 0.761 7 1.882j <1 <1 3.179j <1 <50 <1 <1 <1 <1 <10 MW-16S Alluvial 01/22/2018 <1 80 <1 <5 4.36 17 <0.05 <1 1.08 0.182 1.26 <1 12.1 B3 <0.2 <0.3 8 <5 <1 <1 107 <1 397 <1 <1 <1 <1 34 MW-16S Alluvial 04/03/2018 <1 151 <1 <5 3.03 6 <0.05 0.197j 0.905j 2.2 1.08 <1 8.32 <0.2 0.175j 2.953j 2.009j <1 <1 78 <1 200 <1 <1 <1 <1 <10 MW-16S Alluvial 07/18/2018 1.3 657 <1 2.174j 2.72 23 <0.05 0.423j 1.51 2.6 1.33 <1 6.65 B2 <0.2 0.3 S1 7 B2 <5 <1 <1 75 <1 183 <1 <1 0.429j <1 <10 MW-16S Alluvial 11/06/2018 0.937j 5o <1 <5 2.52 10 <0.05 0.261j 0.599j 0.432 1.29 <1 5.92 <0.2 0.144j 4.052j 4.201j <1 <1 73 <1 105 <1 <1 <1 <1 <10 MW-18BR Bedrock 01/15/2018 <1 343 <1 9 8.21 1510 <0.05 1.88 <1 <0.02 7.37 <1 22.5 B3 <0.2 <0.3 <5 <5 <1 <1 94 <1 <50 <1 <1 <1 <1 243 MW-18BR Bedrock 04/04/2018 0.622j 430 <1 7 8.43 1420 <0.05 5.85 <1 <0.02 7.73 <1 25.2 <0.2 0.188j <5 3.189j <1 0.573j 97 <1 <50 <1 <1 <1 <1 327 MW-18BR Bedrock 07/18/2018 0.502j 690 <1 6 B2 8.32 1300 <0.05 27.8 <1 <0.01 8.19 <1 36.7 B2 <0.2 0.398 S1 <5 3.495j <1 1.74 90 <1 <50 <1 <1 <1 <1 603 MW-18BR Bedrock 09/12/2018 <1 632 <1 3.49j 8.38 1320 <0.05 20.3 <1 <0.01 7.92 <1 33.7 <0.2 0.25j <5 3.238j <1 1.11 91 <1 <50 <1 <1 <1 <1 445 MW-18BR Bedrock 11/06/2018 0.388j 625 <1 5 8.36 1380 0.017j 19.3 <1 <0.01 7.75 <1 32.8 <0.2 0.284j 2.331j 3.481j <1 1.44 89 <1 <50 <1 <1 <1 <1 513 MW-18BR Bedrock 12/05/2018 <1 491 <1 6 8.18 1360 <0.05 12.6 <1 <0.01 7.46 <1 28.8 <0.2 <0.3 2.298 j,B2 3.374j <1 0.826j 92 <1 <50 <1 <1 <1 <1 421 MW-18D Transition Zone 01/15/2018 <1 87 S1 <1 30 5.75 S1 7 0.08 S1 <1 <1 0.91 5.6 <1 28.3 B3 <0.2 1.51 8 S1 <5 <1 <1 <5 <1 <50 <1 <1 <1 <1 <10 MW-18D Transition Zone 04/04/2018 2.05 118 SI <1 8 5.63 7 0.06 0.802 j 0.743 j 0.92 5.5 0.397 j 28.8 <0.2 1.98 6 SI 2.567 j <1 <1 3.212 j <1 <50 <1 <1 <1 0.505 j <10 MW-18D Transition Zone 07/18/2018 1.56 28 <1 9 B2 6.15 3.055j <0.05 0.698j 0.752j 0.864 5.28 0.336j 28 B2 0.114 j,S1 1.5 S1 18 B2 2.049j <1 <1 3.474j <1 <50 <1 <1 <1 <1 <10 MW-18D Transition Zone 09/12/2018 0.741 j 7.779 j <1 4.811 j 6.46 2.249 j <0.05 0.669 j 0.57 j 0.87 5.3 0.401 j 29.1 <0.2 1.29 21 43 <1 <1 3.44 j <1 <50 0.342 j <1 <1 1.04 8.094 j MW-18D Transition Zone 11/06/2018 1.33 385 <1 7 6.03 26 0.03j 0.777j 0.55j 0.797 5.48 <1 28.3 <0.2 1.9 12 <5 <1 <1 3.948j <1 <50 <1 <1 <1 0.531j <10 MW-18D Transition Zone 12/05/2018 0.816 j 144 <1 7 5.92 4.426 j <0.05 0.668 j 0.634 j 0.857 5.06 <1 28.1 <0.2 1.36 15 B2 1.812 j <1 <1 3.862 j <1 <50 <1 <1 <1 0.482 j <10 MW-19BR Bedrock 01/15/2018 <1 1300 <1 <5 35.5 1370 <0.05 <1 <1 <0.02 7.17 <1 27.2 B3 <0.2 B3 <0.3 <5 <5 <1 <1 59 <1 <50 <1 <1 <1 <1 1310 MW-19BR Bedrock 04/04/2018 <1 1340 <1 3.394 j 33.5 1330 <0.05 0.563 j 0.408 j <0.02 7.15 <1 27.7 <0.2 0.178 j <5 5 <1 0.358 j 58 <1 <50 <1 <1 0.37 j <1 1280 MW-19BR Bedrock 07/18/2018 0.917j 1360 <1 6 B2 35.8 1340 <0.05 0.594j 0.413j 0.0039j 7.37 <1 28.2 B2 <0.2 0.214j,S1 4.007j,B2 6 <1 <1 61 <1 <50 <1 <1 0.389j <1 1340 MW-19BR Bedrock 11/06/2018 <1 1330 <1 2.549 j 33.6 1360 <0.05 0.797 j <1 <0.01 7.13 <1 28 <0.2 0.19 j <5 3.5663 <1 0.345 j 60 <1 <50 <1 <1 0.376 j <1 1370 MW-19D Transition Zone 01/15/2018 <1 1770 1.76 7 34.7 1040 <0.05 <1 <1 <0.02 6.99 <1 27.6 B3 <0.2 <0.3 6 <5 <1 <1 60 <1 <50 <1 <1 <1 <1 1240 MW-19D Transition Zone 04/04/2018 0.622j 2140 4.15 4.139j 32.8 941 <0.05 0.382j 0.565j <0.02 6.8 <1 28.5 0.091j 0.263j <5 2.773j <1 <1 59 <1 <50 <1 <1 0.75j <1 1200 MW-19D Transition Zone 07/18/2018 0.643j 1470 0.478j 6 B2 33.9 981 <0.05 0.434j 0.589j <0.01 6.98 <1 28.8 B2 0.084 j,S1 0.184j,S1 2.234j,B2 3.02j <1 <1 58 <1 <50 <1 <1 0.696j <1 1110 MW-19D Transition Zone 1 11/06/2018 0.478j 2470 5.98 1 2.935j 32.9 1190 0.017j 0.744j 0.455j <0.01 7.3 <1 29.2 <0.2 0.281j 3.13j 2.799j <1 <1 59 <1 1 <50 <1 <1 0.713j <1 1120 Prepared by: BER Checked by: JAW Page 8 of 9 TABLE 3-3 2018 COMPREHENSIVE GROUNDWATER QUALITY DATA 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Analytical Parameter INORGANIC PARAMETERS (DISSOLVED CONCENTRATION WITH FILTER SIZE) RADIONUCLIDES OTHER PARAMETERS Lead (0.45u) ug/L Lithium (0.45u) ug/L Manganese (0.45u) ug/L Mercury (0.45u) ug/L Molybdenum (0.45u) ug/L Nickel (0.45u) ug/L Phosphorus (0.45u) mg/L Selenium (0.45u) ug/L Silver (0.45u) ug/L Strontium (0.45u) ug/L Thallium (0.45u) ug/L Vanadium (0.45u) ug/L Zinc (0.45u) ug/L Radium-226 pCi/L Radium-228 pCi/L Total Radium pCi/L Uranium-238 ug/mL Total Uranium ug/mL Carbonate Alkalinity mg/L Fluoride mg/L Phosphorus mg/L Reporting Units 15A NCAC 02L Standard NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE 5^ NE 0.03^ NE 2 NE Provisional Background Threshold Values (Surficial Unit) NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE 4 NE 0.000367 5 NE NE Provisional Background Threshold Values (Transition Zone Unit) NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE 9 NE 0.001 5 NE NE Provisional Background Threshold Values (Bedrock Unit) NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE 7.6 NE 0.00203 5 NE NE Sample ID Well Screen Location Sample Collection Date Analytical Results MW-10BR Bedrock 07/18/2018 <1 4.011j 36 <0.05 0.579j 1.75 0.19 <1 NA 203 <0.2 1.84 B3 50 5.71 0.307 U 6.017 NA 0.0000671j <5 0.37 0.21 MW-10BR Bedrock 11/06/2018 <1 3.597j 31 <0.05 0.644j 1.37 0.22 <1 NA 201 <0.2 2.05 22 1.54 -0.0199 U 1.5201 <0.0002 <0.0002 <5 0.35 0.23 MW-12D Transition Zone 01/16/2018 <1 <5 17 <0.05 <1 <1 <0.05 <1 NA 84 <0.2 0.606 <5 2.74 <1 2.74 NA 0.000102j <5 0.1 <0.05 MW-12D Transition Zone 04/02/2018 <1 1.829j 17 <0.06 0.388j 0.882j <0.05 <1 NA 91 <0.2 0.523 3.138j 0.421 0.246 U 0.667 NA 0.000108j <5 0.0968j 0.053 MW-12D Transition Zone 07/18/2018 <1 <5 14 <0.05 0.354j 0.779j <0.05 <1 NA 89 0.106 j,B3 0.605 B3 1.986j 16.1 -0.155 U 15.945 NA 0.0000928j <5 0.0788j <0.05 MW-12D Transition Zone 11/07/2018 <1 <5 21 <0.05 0.31j 0.654j 0.053 <1 NA 90 <0.2 0.641 13 3.61 0.245 U 3.855 0.000107j 0.000107j <5 <0.1 0.056 MW-12S Saprolite 01/16/2018 <0.05 <0.05 1 NA 18 <0.2 0.69 NA JILO.0000804j <0.05 MW-12S Saprolite 04/02/2018 <1 1.712j 125 <0.05 0.194j 0.465j <0.05 <1 NA 12 <0.2 0.661 22 0.153 U 0.441 U 0.594 NA 0.0000866j <5 0.0782j <0.05 MW-12S Saprolite 07/18/2018 <1 <5 146 <0.05 0.297 j 1.07 <0.05 <1 NA 21 <0.2 1.12 B3 92 0.407 -0.0751 U 0.3319 NA <0.0002 <5 0.0703 j <0.05 MW-12S Saprolite 11/07/2018 <1 <5 53 <0.05 .27j 0.953j <0.05 <1 NA 17 <0.2 1.59 77 0.54 0.22 U 0.0000899j 0.0000899j <5 0.0493j <0.05 MW-13BR Bedrock 01/16/2018 <1 <5 337 <0.05 2.06 1.22 0.059 <1 NA 329 <0.2 <0.3 <5 NA NA NA NA NA <5 0.15 0.06951 MW-13BR Bedrock 04/04/2018 <1 <5 296 <0.05 2.04 1.46 0.08 <1 NA 333 <0.2 0.122j 3.709j NA NA NA NA NA <5 0.12 0.089 MW-13BR Bedrock 07/18/2018 .044j 1.92 0.409j 0.058 NA 326 <0.2 0.16 j,B3 2.724j kp.11 0.073 MW-13BR Bedrock 11/08/2018 <1 <5 257 <0.05 1.63 <1 0.083 <1 NA 340 <0.2 <0.3 <5 NA NA NA NA NA <5 0.0772j 0.073 MW-14BR Bedrock 01/22/2018 <1 39 51 <0.05 5.78 <1 0.36 <1 NA 218 <0.2 2.23 <5 NA NA NA NA NA <5 0.36 0.35 MW-14BR Bedrock 04/04/2018 <1 6 43 <0.05 3.78 <1 0.3 <1 NA 161 0.12 j 2.22 3.693 j NA NA NA NA NA <5 0.32 0.3 MW-14BR Bedrock 07/18/2018 <1 7 70 <0.05 3.69 <1 0.31 <1 NA 155 <0.2 2.23 B3 3.077 j NA NA NA NA NA <5 0.3 0.3 MW-14BR Bedrock 11/07/2018 <1 8 57 <0.0555 3.38 <1 0.38 <1 NA 159 <0.2 2.46 2.701j NA NA NA NA NA <5 0.25 0.37 MW-16BR Bedrock 01/22/2018 <1 <5 265 <0.05 34.1 <1 <0.05 <1 NA 124 <0.2 <0.3 <5 0.125 U -0.0772 U 0.0478 NA 0.0000771j <5 0.36 <0.05 MW-16BR Bedrock 04/03/2018 <1 2.007j 268 <0.05 35.2 <1 <0.05 <1 NA 125 <0.2 <0.3 <5 0.378 0.112 U 0.49 NA 0.000105j <5 0.33 <0.05 MW-16BR Bedrock 07/18/2018 <1 <5 304 <0.05 23.2 <1 <0.05 <1 NA 131 <0.2 0.146 j,B3 <5 0.0518 U 0.126 U 0.1778 NA 0.000114j <5 0.4 <0.05 MW-16BR Bedrock 11/06/2018 <1 <5 351 <0.05 20.6 <1 <0.05 <1 NA 137 <0.2 0.158j <5 0.0388 U 0.0964 U 0.1352 0.000151j 0.000151j <5 0.32 <0.05 MW-16D Transition Zone 01/22/2018 <1 <5 <5 <0.05 5.15 <1 0.11 <1 NA 178 <0.2 0.611 <5 0.462 0.368 U 0.83 NA 0.000416 <5 0.24 0.11 MW-16D Transition Zone 04/03/2018 <1 2.185j <5 <0.05 4.61 <1 0.13 0.577j NA 165 0.181j 0.567 1.87j 4.17 0.174 U 4.344 NA 0.000281 <5 0.21 0.13 MW-16D Transition Zone 07/18/2018 <1 <5 2.952j <0.05 4.74 <1 0.11 0.447j NA 169 <0.2 0.57 B3 <5 0.903 0.357 U 1.26 NA 0.000276 <5 0.22 0.12 MW-16D Transition Zone 11/06/2018 <1 <5 3.044 j <0.05 5.09 <1 0.13 0.44 j NA 176 <0.2 0.704 <5 3.45 0.19 U 3.64 0.000289 0.000289 <5 0.2 0.13 MW-16S Alluvial 01/22/2018 <1 <5 21 <0.05 <1 <1 <0.05 <1 NA 214 <0.2 <0.3 <5 NA NA NA NA NA <5 <0.1 <0.05 MW-16S Alluvial 04/03/2018 <1 <5 7 <0.05 0.215 j 0.956 j <0.05 <1 NA 147 0.101 j <0.3 2.374 j NA NA NA NA NA <5 <0.1 <0.05 MW-16S Alluvial 07/18/2018 <1 <5 36 <0.05 0.233j 1.24 <0.05 <1 NA 137 <0.2 0.126 j, B3 3.94j NA NA NA NA NA <5 0.0594j <0.05 MW-16S Alluvial 11/06/2018 <1 <5 10 <0.05 0.241j 0.552j <0.05 <1 NA 128 <0.2 0.171j 3.428j NA NA NA NA NA <5 <0.5 <0.05 MW-18BR Bedrock 01/15/2018 <1 8 1400 <0.05 1.61 <1 <0.05 <1 NA 464 <0.2 B2 <0.3 <5 NA NA NA NA NA <5 0.22 <0.05 MW-18BR Bedrock 04/04/2018 <1 6 1430 <0.05 3.62 <1 <0.05 <1 NA 471 0.085j <0.3 2.376j NA NA NA NA NA <5 0.19 <0.05 MW-18BR Bedrock 07/18/2018 <1 4.578j 1340 <0.05 16.9 <1 <0.05 <1 NA 447 <0.2 0.166 j, B3 <5 NA NA NA NA NA <5 0.19 <0.05 MW-18BR Bedrock 09/12/2018 <1 6 1340 <0.05 8.84 <1 <0.05 <1 NA 448 0.148j 0.253j 2.023j 0.371 U 0.275 U 0.646 0.00601 0.00601 <5 0.18 <0.05 MW-18BR Bedrock 11/06/2018 <1 6 1360 <0.05 14.5 <1 <0.05 <1 NA 442 <0.2 <0.3 1.775j NA NA NA NA NA <5 0.16 <0.05 MW-18BR Bedrock 12/05/2018 <1 4.631j 1390 <0.05 8.7 <1 <0.05 <1 NA 457 <0.2 <0.3 <5 1.64 0.737 2.377 0.00485 0.00485 <5 0.14 <0.05 MW-18D Transition Zone 01/15/2018 <1 9 <5 <0.05 <1 <1 0.17 <1 NA 162 <0.2 B2 1.29 21 NA NA NA NA NA <5 0.19 0.17 MW-18D Transition Zone 04/04/2018 <1 6 2.529j <0.05 0.677j 0.567j 0.18 0.413j NA 159 <0.2 1.22 23 NA NA NA NA NA <5 0.17 0.16 MW-18D Transition Zone 07/18/2018 <1 6 2.371j <0.05 0.632j 0.537j 0.18 <1 NA 156 <0.2 1.13 B3 23 NA NA NA NA NA <5 0.16 0.17 MW-18D Transition Zone 09/12/2018 <1 6 1.783j <0.05 0.726j 0.664j 0.17 <1 NA 157 <0.2 1.49 25 1.41 0.102 U 1.512 0.000224 0.000224 <5 0.16 0.17 MW-18D Transition Zone 11/06/2018 <1 7 20 <0.05 0.773j 0.356j 0.17 <1 NA 162 <0.2 1.34 15 NA NA NA NA NA <5 0.15 0.18 MW-18D Transition Zone 12/05/2018 <1 5 3.403j <0.05 0.645j 0.489j 0.17 <1 NA 151 <0.2 1.14 13 2.87 -0.0417 U 2.8283 0.000204 0.000204 <5 0.11 0.16 MW-19BR Bedrock 01/15/2018 <1 8 1330 <0.05 <1 <1 <0.05 <1 NA 434 <0.2 B2 <0.3 <5 NA NA NA NA NA <5 <0.5 <0.05 MW-19BR Bedrock 04/04/2018 <1 <5 1310 <0.05 0.657j 0.442j <0.05 <1 NA 424 <0.2 <0.3 <5 NA NA NA NA NA <5 0.2805j <0.05 MW-19BR Bedrock 07/18/2018 <1 2.819j 1360 <0.05 0.696j 0.439j <0.05 <1 NA 437 <0.2 0.156 j,B3 1.711j NA NA NA NA NA <5 0.1894j <0.05 MW-19BR Bedrock 11/06/2018 <1 2.326j 1390 <0.05 0.828j <1 <0.05 <1 NA 438 0.124j 0.165j 1.867j NA NA NA NA NA <5 0.236j <0.05 MW-19D Transition Zone 01/15/2018 <1 6 944 <0.05 <1 <1 <0.05 <1 NA 366 <0.2 B2 <0.3 <5 NA NA NA NA NA <5 <0.5 0.12 MW-19D Transition Zone 04/04/2018 <1 2.12j 946 <0.05 0.355j 0.639j <0.05 <1 NA 358 <0.2 0.114j 2.288j NA NA NA NA NA <5 0.2815j 0.081 MW-19D Transition Zone 07/18/2018 <1 2.991j 970 <0.05 0.41j 0.591j <0.05 <1 NA 353 <0.2 0.151 j,B3 2.631j NA NA NA NA NA <5 0.1886j <0.05 MW-19D Transition Zone 11/06/2018 <1 3.004j 1030 <0.05 0.419j 0.554j <0.05 <1 NA 363 <0.2 0.199j 3.801j NA NA NA NA NA <5 0.1626j 0.13 Prepared by: BER Checked by: JAW Page 9 of 9 TABLE 3-4 DATA QUALIFIERS AND ACRONYMS 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC COLOR NOTES Bold highlighted concentration indicates exceedance of the 15A NCAC 02L .0202 Standard or the IMAC. (Effective date for 15A NCAC 02L .0202 Standard and IMAC is April 1, 2013) Turbidity of Sample >_ 10 NTUs Provisional Background Threshold Values updated with Background Results through October 2017. Analytical data review has not been completed for this dataset. ABBREVIATION NOTES BGS - below ground surface BOD - Biologic Oxygen Demand CB - Compliance Boundary COD - Chemical Oxygen Demand Deg C - Degrees Celsius DMAs - dimethylarsinic acid DUP - Duplicate Eh - Redox Potential ft - Feet GPM - gallons per minute IMAC - Interim Maximum Allowable Concentrations. From the 15A NCAC 02L Standard, Appendix 1, April, 1, 2013. MDC - Minimum Detectable Concentration McSe - Methylseleninic acid mg/kg - milligrams per kilogram mg/L - milligrams per liter mg-N/L - Milligram nitrogen per liter MMAs - mono methylarsonic acid mV - millivolts NA - Not available or Not Applicable NE - Not established NM - Not measured NTUs - Nephelometric Turbidity Units pCi/L - picocuries per liter PSRG - Primary Soil Remediation Goals RL - Reporting Limit SeCN - selnocynante SeMe (IV) - Selenomethionine SPLP - Synthetic Precipitation Leaching Procedure S.U. - Standard Units TCLP - Toxicity Characteristic Leaching Procedure ug/L - micrograms per liter ug/mL - microgram per milliliter umhos/cm - micromhos per centimenter Well Locations referenced to NAD83 and elevations referenced to NAVD88 LABORATORY FLAGS < - concentration not detected at or above the adjusted reporting limit. A Federal MCL. * Interim Maximum Allowable Concentrations (IMACs) of the 15A NCAC 02L Standard, Appendix 1, April 1, 2013. ** - 15A NCAC 02B .0218 Standards for Class WS-V Waters only applicable to SW-REF1 and S-06 locations (for turbidity, 25 NTUs). lg - Result confirmed by second analysis performed out of hold. 2g - The concentration in the Blank QC is less than the reporting limit but greater than 1/2 the reporting limit. B - Target analyte detected in method blank at or above the reporting limit. Target analyte concentration in sample is less than 1OX the concentration in the method blank. Analyte concentration in sample could be due to blank contamination. Bl - Target analyte detected in method blank at or above the reporting limit. Target analyte concentration in sample was greater than 1OX the concentration in the method blank. Anal to concentration in sample is not affected by blank contamination. Page 1 of 2 TABLE 3-4 DATA QUALIFIERS AND ACRONYMS 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC LABORATORY FLAGS (CONTINUED) B2 - Target analyte was detected in blank(s) at a concentration greater than 1/2 the reporting limit but less than the reporting limit. Analyte concentration in sample is valid and may be used for compliance purposes. B3 - Target analyte was detected in Continuing Calibration Blank(s) at a concentration greater than 1/2 the reporting limit but less than the reporting limit. Analyte concentration in sample is valid and may be used for compliance purposes. 134 - Target analyte was detected in Continuing Calibration Blank(s) at or above the reporting limit. B5 - Target analyte was present in blank(s) above the method detection limit but less than the reporting limit. Data is valid for compliance purposes. B6 - Target analyte was detected in Continuing Calibration Blank(s) at a concentration greater than the reporting limit. CH - The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high. CL - The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low. CR - The dissolved metal result was greater than the total metal result for this element. Results were confirmed by reanalysis. CU - The continuing calibration for this compound is outside of Pace Analytical acceptance limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias. D3 - Sample was diluted due to the presence of high levels of non -target analytes or other matrix interference. D4 - Sample was diluted due to the presence of high levels of target analytes. D6 - The precision between the sample and sample duplicate exceeded laboratory control limits. E - Analyte concentration exceeded the calibration range. The reported result is estimated. H - Sample analyzed past the recommended holding time. H1 - Analysis conducted outside the EPA method holding time. H2 - Extraction of preparation conducted outside EPA method holding time. H3 - Sample was received or analysis requested beyond the recognized method holding time. H6 - Analysis initiated outside of the 15 minute EPA required holding time. HS - Results are from sample aliquot taken from VOA vial with headspace (air bubble greater than 6 mm diameter). j - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Ll - Analyte recovery in the laboratory control sample (LCS) was above quality control (QC) limits. Results may be biased high. L2 - Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low. L3 - Analyte recovery in the laboratory control sample (LCS) exceeded quality control (QC) limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias. M - Matrix spike / matrix spike dup failure. M1 - Matrix spike recovery was high: the associated Laboratory Control Spike (LCS) was acceptable. M2 - Matrix spike recovery was Low: the associated Laboratory Control Spike (LCS) was acceptable. M4 - The spike recovery value was unusable since the analyte concentration in the sample was disproportionate to the spike level. M6 - Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution. N2 - The lab does not hold accreditation for this parameter. ND - Not detected P2 - Re -extraction or re -analysis could not be performed due to insufficient sample amount. P4 - Sample field preservation does not meet EPA or method recommendations for this analysis. P8 - Analyte was detected in the method blank. All associated samples had concentrations of at least ten times greater than the blank or were below the reporting limit. PM - The data are unusable (analyte may or may not be present). Resampling and reanalysis is necessary for verification. Manual review of raw data is recommended in order to determine if the defect impacts data use. RO - The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample. RI - Relative Percent Difference (RPD) value was outside control limits. S - Associated calibration check did not meet specified criteria. S1 - Data review findings indicate result may be unreliable. Use with caution. U - Analyte was analyzed for, but not detected above the MDC. Page 2 of 2 TABLE 3-5 GEOMETRIC MEAN OF COIs - 2018 QUARTERLY DATA 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Analytical Parameter SELECTED CONSTITUENTS OF INTEREST (COIs) Boron Strontium Total Dissolved Solids Cobalt Manganese Molybdenum Reporting Units Ng/L Ng/L mg/L Ng/L Ng/L Ng/L 15A NCAC 02L Standard Zo NE 529 1* 50 NE Background Threshold Values (Surficial Zone) 50 25 85 1.02 253 3.15 Background Threshold Values (Transition Zone) 50 = 430 1 1 ZQ$ 1 Background Threshold Values (Bedrock) 50 418 340 1.19 544 13.1 Sample ID Well Screen Location Location Description Sample Collection Date Analytical Results ABMW-01 Ash Pore Water Within ash basin Geomean 5072 2150 352 3.6 795 239 ABMW-02 Ash Pore Water Within ash basin Geomean 8487 809 377 1.0 39.4 1345 ABMW-02BR Bedrock Beneath ash basin Geomean 39.7 1122 335 1.0 231 18.7 ABMW-02BRL Bedrock Beneath ash basin Geomean 50.0 2217 285 1.0 345 2.4 ABMW-03 Ash Pore Water Within ash basin Geomean 1962 1507 315 1.0 657 31.3 ABMW-03S Saprolite Beneath ash basin Geomean 131 77.2 95 1_6 296 0.32 ABMW-04 Ash Pore Water Within ash basin Geomean 5900 3050 530 2.4 2190 320 ABMW-04BR Bedrock Beneath ash basin Geomean 37.3 2004 312 1.0 460 7.8 ABMW-04D Transition Zone Beneath ash basin Geomean 3236 1689 521 L2 6323 9.2 ABMW-04X Ash Pore Water Within ash basin Geomean 5290 2310 430 0.44 1390 15 BG-01 Bedrock Background well Geomean 50.0 174 111 1.0 8.4 1.0 BG-02 Transition Zone Background well Geomean 50.0 290 299 1.0 82.3 0.76 CW-01 Transition Zone Sidegradient of ash basin, outside of compliance boundary Geomean 50.0 62.2 117 1.0 7.4 0.48 CW-01D Bedrock Sidegradient of ash basin, outside of compliance boundary Geomean 50.0 184 204 1.0 17.2 22.3 CW-02 Transition Zone Downgradient of ash basin, immediately inside of compliance boundary Geomean 216 137 1.0 116 1.0 CW-02D Bedrock Downgradient of ash basin, immediately inside of compliance boundary Geomean 272 370 310 0.90 98.1 2.2 CW-03 Transition Zone Downgradient of ash basin, immediately inside of compliance boundary Geomean 50.0 306 355 1.0 14 0.47 CW-04 Bedrock Downgradient of ash basin, immediately inside of compliance boundary Geomean 50.0 143 157 1.0 4.4 0.46 CW-05 Bedrock Sidegradient of ash basin, inside compliance boundary Geomean 50.0 167 277 1.0 zo 1.0 CW-06 Bedrock Downgradient of ash basin, outside of compliance boundary Geomean 50.0 329 492 0.75 1371 2.9 MW-02 Bedrock Downgradient of ash basin, inside of compliance boundary Geomean 50.0 220 200 �8 1310 1.2 MW-03 Saprolite Downgradient of ash basin, inside of compliance boundary Geomean 1089 319 195 1.0 1249 0.36 MW-03BR Bedrock Downgradient of ash basin, immediately inside of compliance boundary Geomean 50.0 397 ¢j¢ 1.0 605 1.1 MW-04 Bedrock Sidegradient of ash basin Geomean 50.0 121 210 1 1.0 105 2.9 MW-05BR Bedrock Sidegradient of ash basin, inside compliance boundary Geomean 50.0 228 404 0.87 Im 1.0 Page 1 of 2 TABLE 3-5 GEOMETRIC MEAN OF COIs - 2018 QUARTERLY DATA 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Analytical Parameter SELECTED CONSTITUENTS OF INTEREST (COIs) Boron Strontium Total Dissolved Solids Cobalt Manganese Molybdenum Reporting Units Ng/L pg/L mg/L Ng/L pg/L pg/L 15A NCAC 02L Standard Zo NE 529 1* 50 NE Background Threshold Values (Surficial Zone) 50 25 85 1.02 253 3.15 Background Threshold Values (Transition Zone) 50 = 430 1 1 2M i Background Threshold Values (Bedrock) 50 418 340 1.19 544 13.1 Sample ID Well Screen Location Location Description Sample Collection Date Analytical Results MW-08BR Bedrock Side gradient of ash basin, outside of compliance boundary Geomean 50.0 360 439 0.61 224 2.5 MW-09BRL Bedrock Sidegradient of ash basin, outside of compliance boundary Geomean 50.0 203 300 1.0 491 4_6 MW-10BR Bedrock Upgradient of ash basin Geomean 50.0 202 297 1.0 43.1 0.69 MW-12D Transition Zone Background well Geomean 50.0 90.0 88 1.0 21.7 0.53 MW-12S Saprolite Background well Geomean 50.0 21.0 52 0.67 101 0.33 MW-13BR Bedrock Background well Geomean 50.0 319 280 4_7 260 2_I MW-14BR Bedrock Background well Geomean 50.0 173 191 1.0 80.8 } ¢ MW-16BR Bedrock Downgradient of ash basin, outside of compliance boundary Geomean 29.5 137 175 1.0 333 23.5 MW-16D Transition Zone Downgradient of ash basin, outside of compliance boundary Geomean 50.0 172 140 1.0 57.4 5.3 MW-16S Saprolite Downgradient of ash basin, outside of compliance boundary Geomean 187 152 76 1.0 12.4 0.38 MW-18BR Bedrock Sidegradient of ash basin, outside of compliance boundary Geomean 50.0 9;z$ 400 1.0 1380 10.7 MW-18D Transition Zone Sidegradient of ash basin, outside of compliance boundary Geomean 50.0 161 265 1.0 5.8 0.76 MW-19BR Bedrock Sidegradient of ash basin, outside of compliance boundary Geomean 50.0 9¢ 0.50 1350 0.72 MW-19D Transition Zone Side gradient of ash basin, outside of compliance boundary Geomean 50.0 363 513 0.83 1034 0.59 Prepared by: HEG Checked by: ENK Notes: Geometric means were calculated for wells with four or more valid sample results. Sample results were excluded if turbidity>10, pH>10 (for antimony, arsenic, chromium (total), molybdenum, selenium and vanadium only) and unusable data (RO qualified). For wells with datasets containing fewer than four valid results, the most recent valid sample was used. All data is from 2018. Bold, underlined, italicized text - Constituent concentration exceeds applicable comparison criteria. 0 - Constituent concentration shown is most recent valid sample available due to insufficient dataset for geomean calculation. * - Interim Maximum Allowable Concentrations (IMACs) of the 15A NCAC 02L Standard, Appendix 1, April 1, 2013. < - concentration not detected at or above the adjusted reporting limit. pg/L - Micrograms per liter mg/L - Milligrams per liter NE - Not Established S.U. - Standard Unit Page 2 of 2 TABLE 3-6 CONSTITUENTS OF INTEREST EVALUATION 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC Constituent of Interest (2019 IMP Parameters) 2L Criterion Groundwater Zone Statistically Derived Background Value' Maximum 2018 Geomean Concentration Near or Outside of Compliance Boundary (mg/L) Exceedance Ratio Number of Wells Above Criterion Near or Outside of Compliance Boundary Rationale for Exclusion from Mapping in Annual Report Constituents with 2L Criteria Shallow: 1 <1.0 0 0 No concentrations greater than criterion. Arsenic 10 (pg/L) Transition Zone: 1 <1.0 0 0 No concentrations greater than criterion. Bedrock: 1 <1.0 0 0 No concentrations greater than criterion. Shallow: 19 81.41 0.12 0 No concentrations greater than criterion. Barium 700 (pg/L) Transition Zone: 78.3 107.80 0.15 0 No concentrations greater than criterion. Bedrock: 97 43.40 0.06 0 No concentrations greater than criterion. Shallow: 50 187.18 0.27 0 Figure 3-11 Boron 700 (pg/L) Transition Zone: 50 858.40 1.2 1 Figure 3-12 Bedrock: 50 271.90 0.4 0 Figure 3-13 Shallow: 3.23 <1.0 0 0 No concentrations greater than criterion. Chromium (Total) 10 (pg/L) Transition Zone: 6 <1.0 0 0 No concentrations greater than criterion. Bedrock: 7 5 0.5 0 No concentrations greater than criterion. Shallow: 0.088 0.03 0 0 No concentrations greater than criterion. Chromium (Hexavalent) 10 (pg/L) Transition Zone: 1.26 0.1 0 0 No concentrations greater than criterion. Bedrock: 0.4 0.3 0.03 0 No concentrations greater than criterion. Shallow: 385 141.14 0.37 0 No concentrations greater than criterion. Iron 300 (pg/L) Transition Zone: 1319 152.7 0.1 0 No concentrations greater than criterion. Bedrock: 2550 1776.6 0.7 0 No concentrations greater than criterion. Shallow: 253 12.38 0.05 0 No concentrations greater than criterion. Manganese 50 (pg/L) Transition Zone: 298 115.6 0.4 0 No concentrations greater than criterion. Bedrock: 544 1371.5 2.52 2 Occurs in high and variable concentrations in background - does not exhibit a discernable plume. Variably reactive COI. Shallow: 1.6 10.83 0.04 0 No concentrations greater than criterion. Sulfate 250 (mg/1) Transition Zone: 7.5 40 0.16 0 No concentrations greater than criterion. Bedrock: 18 70.4 0.28 0 No concentrations greater than criterion. Shallow: 85 75.59 0.15 0 No concentrations greater than criterion. Total Dissolved Solids 500 (mg/1) Transition Zone: 430 139.8 0.28 0 No concentrations greater than criterion. Bedrock: 340 616 1.23 1 Does not exhibit a discernable plume. Shallow: 4 0.00 0.00 0 No concentrations greater than criterion. Total Radium 5 (pCi/L) Transition Zone: 9 2.95 0.33 0 No concentrations greater than criterion. Bedrock: 7.6 118.76 15.63 1 Does not exhibit a discernable plume. Shallow: 0.000367 0.00 0.00 1 0 0-co ncentrations greater than criterion. Total Uranium 0.3 (pg/m L) Transition Zone: 0.001 0.00 0.01 0 No concentrations greater than criterion. Bedrock: 0.00203 0.00 0.08 0 No concentrations greater than criterion. Constituents with IMAC Criteria Shallow: 1.02 1 0.98 0 No concentrations greater than criterion. Cobalt 1 (pg/L) Transition Zone: 1 1 1 2 Exceedances due to matching background values of 1. Bedrock: 1.19 1 0.84 0 No concentrations greater than criterion. Shallow: 0.974 <0.3 0 0 No concentrations greater than criterion. Vanadium 0.3 (pg/L) Transition Zone: 5.88 0.7 0.12 0 No concentrations greater than criterion. Bedrock: 5.52 2 0.35 0 No concentrations greater than criterion. Background Criteria Shallow: 3.15 0.38 0.12 0 No concentrations greater than criterion. Molybdenum NE Transition Zone: 1 5.3 5.26 2 Does not exhibit a discernable plume and does not correlate to boron plume. Bedrock: 13.1 23.5 1.79 1 Does not exhibit a discernable plume and does not correlate to boron plume. Shallow: 25 151.96 6.08 1 Concentration is attributed to transition zone and bedrock background groundwater based on updated CSM. Values are consistent with TZ and BR BTVs. Strontium NE Transition Zone: 391 216.4 0.55 0 No concentrations greater than criterion. Bedrock: 418 397.1 0.95 0 No concentrations greater than criterion. Notes: 1 - Background values shown reflect those accepted by NCDEQ in June 15, 2018 letter. These values are currently being updated for re -approval from NCDEQ in 2019. 2 - Constituent list reflects the COI list identified in the CSA Update (SynTerra, 2018) with radium included per NCDEQ request (per Comments to CSA Update) 3 - The following wells were used to calcuate geomean concentrations at or near the compliance boundary: CW-02/D, CW-03, CW-04, CW-06, MW-03BR, MW-16S/D/BR❑ *IMAC **Shallow background values come from transition zone ^ Federal MCL pg/L - micrograms per liter Highlighted value reference criterion mg/L - milligrams per liter NE - Not Established Prepared by: DAA Checked by: ENK Page 1 of 1 TABLE 3-7 GROUNDWATER BACKGROUND THRESHOLD VALUES AND REGIONAL BACKGROUND CONCENTRATION RANGES 2018 CAMA ANNUAL INTERIM MONITORING REPORT MAYO STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ROXBORO, NC 1 Constituent Reporting Unit 15A NCAC 02L Standard Background Threshold ValueS2 Constituent Concentration Ranges in Background Wells Constituent Concentration Ranges in Big 6 Piedmont Background Wells Surficial Flow Zone Transition Zone Bedrock Flow Zone Surficial Flow Zone Transition Flow Zone Bedrock Flow Zone Shallow Flow Zone Deep Flow Zone Bedrock Flow Zone pH S.U. 6.5-8.5 4.9-6.5 5.7-6.5 5.0-7.3 4.9-6.5 5.6-6.7 5.0-7.4 4.0-7.8 3.8-8.5 4.5-8.5 Arsenic pg/L 10 1 1 1 <1 <1 <1 <0.1 - 1.1 <0.1 - 2.1 <0.1 - 3.13 Barium pg/L 700 19 78 97 10 - 19 13 - 65 14 - 95 9.8 - 730 <5 - 146 <5 - 880 Boron pg/L 700 50 50 50 <50 <50 <50 <50 <50 <50 Chromium dig/L 10 3.23 6 7 <1 - 1.78 <1 - 4.6 <1 - 7.65 <0.5 -14.1 <0.5 - 19.5 <0.5 - 11.3 Chromium (VI) pg/L NE 0.088 1 0.4 0.038 - 0.16 <0.025 - 0.82 <0.025 - 0.47 <0.025 - 7.1 <0.025 - 12.2 <0.025 - 8 Cobalt pg/L 1* 1.02 1 1.19 <1 - 1.59 <1 <1 - 6.53 <0.1 - 17.3 <0.1 - 6.1 <0.1 - 21.7 Iron pg/L 300 385 1319 2550 108 - 6820 48 - 585 11 - 3260 <50 - 6820 <50 - 3200 <50 - 8730 Manganese pg/L 50 253 298 544 11 - 395 18 - 237 <5 - 648 <5 - 780 <5 - 408 <5- 1510 Molybdenum pg/L NE 3.15 1 13.1 <1 <1 <1 - 12.9 <0.5 - 10.7 <0.5 - 30.2 <0.5 - 24.3 Strontium pg/L NE 25 391 418 12 - 27 83 - 391 131 - 430 <5 - 309 <5 - 782 <5 - 458 Sulfate mg/L 250 1.6 7.5 18 0.85 - 2.2 0.96 - 5.8 0.21 - 140 <1 - 12.8 <1 - 48.1 <1 - 140 TDS mg/L 500 85 430 340 26 - 110 65 - 420 66 - 510 <25 -164 <25 - 750 <25 - 820 Vanadium pg/L 0.3* 0.974 5.88 5.52 <0.3 - 5.9 0.637 - 5.88 <0.3 - 4.74 <0.3 - 15.4 <0.3 - 24.4 <0.3 - 26.6 Notes: * - Interim Maximum Allowable Concentrations (IMACs) of the 15A NCAC 02L Standard, Appendix 1, April 1, 2013. pg/L - micrograms per liter 1 - Indicates that BTVs were calculated for constituents identified as a COI in the 2018 CSA Update (January 2018) Z - Indicates that BTVs were calculated using data from background groundwater samples collected June 2015 to March 2017 BTV - Background Threshold Value BTVs represent UTLs calculated from background datasets COI - Constituent of Interest CSA - Comprehensive Site Assessment mg/L - milligrams per liter NCAC - North Carolina Administrative Code NE - Not Established S.U. - Standard Units TDS - Total Dissolved Solids UTL - Upper tolerance limit Nreparea oy: iMwMtS unecKea oy: MtL3 Page 1 of 1