Loading...
HomeMy WebLinkAboutWQ0033455_Engineering report calculations and product bulletins_20081119WASTEWATER IRRIGATION SYSTEM CALCULATIONS ! PRODUCT BULLETINS PREPARED FOR: THE CLIFFS COMMUNITIES MR. DON NICKELL 3598 HIGHWAY 1 1 TRAVELERS REST, SOUTH CAROLINA 2969❑ ORIGINAL: OCTOBER 21, 2008 REVISED: NOVEMBER 1 9, 2008 ®ROOKS ENGINEERING ASSOCIATES PROJECT NO. 307808 17 Arlington Street ® Asheville, NC 28801 828.232.4700 1.1 Design Flow Table and Phasing Summary BEA Project # 307808 The Cliffs at High Carolina Design Flow Calculations mase n uzsvriwicaso_..-- 141 81 31 1201 40,320 gpd Site 8 site 8units Phase Il - brl unit flow/br 42 4 1201 20,160 d Site 11 Phase it Clubhouse Cottage SF units brl unit flow/br 24 4 120 11,520 d Site 12 Phase 11 SF Ridge Lots SF unitsbr/unit flow/br 40 4 120 19,200 g d Site 14 Phase 11 I Village Lake Overlook I Buildings I units I brl unit Iflow1br _7t 4 31 1201 10,080 gpd Prepared by: Matthew Rice Brooks Engineering Associates, PA 11/18/2008 1.2 VW/TP Head Calculations and Process Calculations & Supporting Charts PROCESS CALCULATIONS The Cliffs at High Carolina Aqueonics Treatment, Plant I. PUMP HEADLOSS CALCULATIONS A Equalization Tank Average daily flow 100,000 gpd equalized at: 70 gpm for Phase I. Pumps to be replaced for Phase II. Total Dynamic Head ("TDH"): Top of plant 100.00' Elev. EQ Tank Floor (Pump Inlet) - 83.71_ 16.29" Inlet to head box + 3.00' 19.29' Static Head Friction losses in pipe & fittings: Fittings 1 - 2" — 90°ell 3 - 6" - 900ell Pipe length = 16'- 2" 0 6'- 6110 Friction Loss/Ft. of Pipe 2" 0 loss =15.8'/100' 6110 loss= 0.1'/100' Fitting loss in equivalent feet of pipe, 2" ell = 5.2'x 1 pc. =: 5.2' 6" ell = 15.3'x 3 pc. == 45.9' Total frictional loss: 2" 0 = [16' + 5.2'] x 15.8/100 = 3.34' 6" 0 = [6'+ 45.9'] x 0.1/100 = 0.05' Total Frictional Losses 3.39' TDH = Static + frictional loss Static 19.3' Friction +3.4' Total 24.7' Approximately 25' TDH for pump sizing, P. 1 B. Tower Pumps Minimum Required Recirculation Flow Rate = 140 gpm. Total Dynamic Head ("TDH"): Static Head Losses: (Phase I and Phase II) Maximum Suction Head = 2.17' to top of slab Maximum Lift = 20.50' to top of header = 22.67' Total Static Head Discharge Elevation 120.50' Elev. Intake Elevation - 97.83' 22.67' Friction losses in spray nozzle, pipe & fittings: Distributor & Nozzle Headloss 5.00' Fittings 2 - 4" — 90°ell 1 -4"—Tee Pipe length — 28'- 4" o Friction Loss/Ft. of Pipe = 4" o loss= 2.227100' Fitting loss in equivalent feet of pipe, 4" ell = 10.2'x 2 pc. = 20.4' 4" Tee = 20.3 x 1 pc. = 20.3' Total frictional loss: 4" 0 Pipe = 28 x 2.2'/100' = 0.616' 4" O Ell =20.4'x2.2/100' = 0.4488' 6" 0 Tee = 20.3' x 2.2/100 = 0.4466' Nozzle & Header Loss = 5.00' Total Frictional Losses 5.53 ' TDH = Static + frictional loss Static 22.67' Friction +5.531 Total 28.20' Approximately 29' TDH for pump sizing p. 2 Blowers No 2 & 3 (duplicate and backup for No. 11 '- Sludge Mixing & Digestion = 86 cfrn @ 7 psi Sludge Thickening =10 cfin @ 7 psi Floculation = 10 cfm @ 7 psi Required = 107 cfin @ 7 psi 1.. Provided = 112 cfin @ 7 psi B Primary Treatment Raw influent = 350 mg/1 BOD, 60 mg/1 N Removal in primary clarifier = 30% BOD, 20% N Influent to aerobic Tower I = 0.7 x 350 = 245 mg/l BOD 0.8 x 60 = 48 mg/1 NH3-N C Stap-e I (aerobic tower) -- BOD and Ammonia Reduction Use minimum water effluent temperature = 13 degrees C Forward flow through plant = 70 gpm Surface area of tower = 12'x 12'= 144 ft2, Application Rate = 70/144 or 0.486 gpm per square foot Determination of the BOD removal fraction is performed, using B.F. Goodrich Information Bulletin VC -5.0-477-1, by application of the Schultze Equation: KOD Qv2 Where Le is the effluent BOD Lo is the influent BOD K is the treatability factor, 0.07 for domestic sewage 0 is the thermal factor, 0.78 at 13 degrees C D is the height of the column in feet, 20 feet Q is the raw flow distributed on the top surface of the filter. p. 4 II. WWTP PROCESS CALCULATIONS A Sludge Processing Influent = 100,000 gpd @ 350 mg/l BOD, = 2921bs/day of BOD. Process Sludge Production 0 0.15 lb/lb x 2921b/day = 44 lbs/day at 4-1/2% solids. o Gallons per day = 44 lbs/day/(8.34 lb/gal x .045) = 115 gallons/day. Primary Tank Sludge Production o Suspended solids = 210 lbs/day. 0 60% removed in primary clarification as primary sludge. o Primary Sludge = 0.60 x 2101b/day = 126 lbs/day at 2.5% o Sludge volume = 126 lb/day/(8.34 gal/lb x.025) = 606 gallons per day of primary sludge. Total sludge Production o Daily sludge production= 606 gal. + 115 gal.= 721 gpd Aerobic Sludge Processing o Sludge stabilized under aeration = 15 days, o Concentrated in the sludge conditioning chamber yield = 7-1/2% solids o Production of sludge for off-site disposal = 350 gallons per day o Sludge Storage Days Available = 21,263 gallons/350 gpd = 60 days. Air Requirements Mixing Air Required = 3 cfm/If x 261f of chamber = 78 cfm Aerobic Digestion = Oxygen requirements, = 30 cfm per 1,000 cubic feet of tank. 21,263 gallons /7.48 gal/cu.ft. = 2,843 cu.ft. 2,843/1000 = 2.843 thousand cu. ft. of tank 2.84 x 30 cfm = 86 cfm. SPECIFIC BLOWER REQUIREMENTS Blower No 1— Flow Equalization & Intermittent Airlift Flow Equalization = 78 cfm @ max 7 psi Airlift Pumps (2 max at a time) = 30 cfin @ 7 psi Required = 108 cfm @ max 7 psi Provided = 112 cfm @ 7 psi p. 3 From this Table we see a 79% removal of BOD per stage in Phase I is accomplished. BOD of effluent of Tower I =.21 x 245 = 51.45 mg/l. Nitrification in Tower I Minimal nitrification will occur because of the presence of a large BOD concentration (loading) of the tower. Heterotrophic bacteria are a dominant species in comparison to the autotrophic nitrifiers, and their rapid growth will inhibit the nitrification process. To determine the degree of inhibition we must first compute the biological BOD loading. The biological loading is: = 245 g/106 g x 100,000 gal/day x 8.34 lbs/gal = 204 lbs/day. There are 12'x 12'x 20'= 2880, cubic feet of media in the tower. Therefore the loading is 204/2.88 = 70.94 lbs/day/1000 W. This figure is important for computing the conversion of Ammonia -Nitrogen to Nitrate -Nitrogen in each aerobic tower, since presence of BOD interferes with the Nitrification efficiency as shown in Process Design Manual for Nitrogen Control. U.S. EPA Technology Transfer. October 1975. (See Attached Figures from this publication and BFGoodrich Information Bulletin VC -5.0-477-1). Ammonia conversion to nitrate is obtained by first using Figure 4-15 (from the above reference) which applies for minimal interference from BOD. Using the curve for 13 to 19° C, we see that for ammonia -nitrogen concentrations above 2.5 mg/1, 3,800 ft2 of surface area is required for conversion of one pound of ammonia -nitrogen to one pound of nitrate -nitrogen. Theoretically, if we have 30 ft2 of surface area per cubic foot of media, we would have: 2880 ft3 x 30 ft2/ft3 3,800 ft2/lb converted/day (from Figure 4-15) = 22.73 lbs/day of NH3-N removed if BOD were not also present in the influent Because there is BOD present, the most conservative value for nitrification is 0%. Therefore, a conservative view would credit no nitrification in Tower I, which we assume for purposes of this computation. Actual conversion of ammonia -nitrogen to nitrate -nitrogen in Stage I does occur from our experience when other than the most conservative data are selected, otherwise use of the first anaerobic reactor would be moot. We plan to further enhance the role of Anaerobic I by the recycling of fully nitrified liquor to tower I for enhancement of nitrification capacity. Stage I influent nitrogen = 48 x 10-6 x 8.34 x 100,000 = 40.0 lbs/day Effluent from Stageic treatment will be: BOD = 51.45 mg/l or 42.9 lbs/day Ammonia -nitrogen = 48 mg/1 or 40.0 lbs/day Nitrate -nitrogen = 0 (worst case) 7 p. 5 Removal of nitrate -nitrogen in the subsequent anaerobic reactor is nearly complete, since concentrations of BOD and bacteria are high; but we assume conservatively that no further oxidation of BOD or ammonia -nitrogen occurs in any of the anaerobic reactors. D Stage II - BOD Reduction (Iteration 1— no recycle) Influent BOD = 51.45 mg/l BOD -- 42.9 lbs/day = 48 mg/l ammonia -nitrogen or 40.0 lbs/day BOD reduction = 0.21 x 51.45 = 10.8 mg/l in the effluent (Using Methods as per Stage I & B.F. Goodrich Information Bulletin VC -5.0-477-1) The presence of BOD that survives the aerobic process is essential to the final denitrification process in anaerobic reactor III, and is an essential feature of the Aqueonics process. That is a key reason in the Aqueonics process for use of fixed film, as it places a limit on polishing of BOD through surface and contact time limitations. Nitrification in Tower II The desired ammonia effluent is 2.0 mg/l or more in this stage . Using 4-159 3,800 ft2 of surface is required per pound nitrified per day. As in the calculation for Stage I, the BOD loading is found to be 42.9/2.88 = 14.91bs/day/1000 ft2. From Figure 4-7 the most conservative nitrification efficiency is 41%. We find conversion o£ 2880 ft3 x 68 ft2/ft3 x 0.41 / 3,800 ft2/lb converted = 21.1 lbs/day converted Discharge from Aerobic II will therefore be: BOD =10.8 mg/1, = 9.0 lbs/day Ammonia -nitrogen = 481bs/d — 21.1 = 26.9 lbs/day Nitrate -nitrogen = 21.1 lbs/day The nitrate is consumed in the second anaerobic reactor (see anaerobic denitrification discussion below) E Stage III• (Iteration I — no recycle) With minimal influent BOD, there will be no inhibition of the nitrification process by the presence of BOD. Tower III contains 2880 ft3 of media which has a total of 195,840 ft2 of surface area (2880ft2 x 68 ft2/ft3). p. 6 `J Since 26.4 lbs. of ammonia -nitrogen remain, we have available 7418 ft2 per lb. of influent ammonia (19584W/ 26.41b). On first iteration, therefore, Figure 4-15 tells us that approximately 1.5mg/l effluent ammonia concentration could be predicted, which is more than the 1.0 mg/1 goal and indicates that recycle must be employed to achieve the goal . Since the conversion from nitrite to nitrate is highly efficient and immediate because of the action of nitrobacter, the presence of nitrite in effluent is not observed. F Stage II; (Iteration 2 - recycle.) By recycling flow from Aerobic stage III to the suction of stage I, the removal of BOD in stage I is unaffected, since raw flow distribution does not change. In going to stage 2, however, the composition of flow will be a mass balance betweeen stage I effluent and recycle flow: 56.45 mg/l x 70 gpm + 2.27 mg/l x 74 gpm = 26.17 mg/1 x 144 gpm 26.17 mg/1 x 8.34 x.144 MGD = 31.43 #/d of BOD, or 10.92 lb/d/1000 cult. Referring to figure 4-7 the removal efficiency for ammonia is 52%, and so the Tower II discharge is: 2880 cu ft x 68 sq ft/cu. ft. x .52 / 3800 sf/lb = 26.8 lbs of ammonia removed. BOD removal will be 67%, from information bulletin VC -5.0-477-1 based upon a raw flow rate of 1.0 gpm/sq. ft., resulting in a discharge concentration of .33 x 26.17 = 8.63 mg/l Tower II discharge BOD = 8.63 mg/l, 10.361bs/day Ammonia -N = 22.31 mg/l, or 21.2 lbs/day Nitrate -N = 22.3 mg/1, or 26.81bs/day G Stage III; (Iteration 2 recycle) As in iteration 1, the ammonia discharge from Tower III will be minimally interfered with by BOD concentration, and the slightly increased concentration of BOD will actually assist in the Nitrate removal in Anaerobic III. The recycle has had the effect of removal of additional ammonia, and reduction of the load on Tower III. We now have a loading of 21.2 lb/day on 195,840 sf of media surface, or 9,237 sf /lb/day, which, from Figure 4-15 will produce the desired 1.0 mg/l effluent. Tower III discharge of BOD and ammonia will therefore be: BOD < 8.63 x 0.33 = 2.8 mg/l, = 2.3 lbs/day Ammonia -nitrogen < 1.0 mg/l, = 0.83 lbs/day Nitrate -nitrogen = 22.3 -1.0 = 21.3 mg/1= 17.8 lbs/day p. 7 In the third anoxic reactor, the nitrate is consumed by facultative bacteria. Both BOD residue and nitrate are so low as to provide inefficient contact conversion. The same effect is noted in Figure 4-15 for the nitrification process. To assist in the removal of nitrate in the relative absence of BOD present, recycle capability has been made to return up to full flow of fully nitrified liquor to the first anaerobic reactor, where significant BOD is present. This is done by the now splitter/overflow weir located between Tower III and Anaerobic III. These facilities are controlled by valving that allows the operator to control the amount of recycle coming from Tower III, compared to that coming from Tower I. Submerged weirs in Anaerobic I and II, and a surface weir in the Primary clarifier allows for gravity retrograde flow from the secondary flow splitter to the suction of the Tower I recirculation pump. Anticipated discharge from Anaerobic III will therefore be: BOD < 2.3 mg/1, = 1.9 lbs/day Ammonia Nitrogen < 1 mg/1= 0.83 lbs/day Nitrite Nitrogen = 0 mg/1 = 0 lbs/day Nitrate Nitrogen < 3 mg/l = 2.5 lbs/day H. Anaerobic Calculations The "anaerobic" reactors achieve three functions. First, as a tube settler for solids removal, second, to create an anoxic environment to accomplish denitrification utilizing sewage as the organic carbon source and, third, to achieve partial "anaerobic" digestion of biomass. Each of the "anaerobic" reactors contain plastic media having a surface area of 30 ft2/ft3 placed atop precast concrete hoppers on fiberglass beams within the tankage. Influent enters each "anaerobic" unit beneath the media and flows in a serpentine fashion through the media. A hydraulic retention time of 2 hours is maintained in contact with the media for completion of the anoxic denitrification reaction. A surface overflow rate of 879 gpd /ft2 or less and presence of the media makes these reactors extremely efficient clarifiers in addition to their primary function in biological denitrification. Denitrification conversion efficiency is limited only by minimal concentration of the nitrate substrate with which the colonies of facultative anaerobe denitrifiers can be maintained. An effluent consistently less than 3 mg/1 nitrate -nitrogen has been achieved in similar facilities The process of anoxic denitrification is confirmed by EPA design data. (Process Design Manual for Nitrogen Control. U.S. EPA Technology Transfer. October, 1975.) Figure 5-13 shows that submerged high -porosity media reactors remove, at 13° C, approximately 600 pounds N/1,000 ft3/day. Aqueonics process removal efficiency with plastic media is calculated on a surface area per cubic foot basis is the same as the EPA reference system that uses sand particles. Detail calculations are available upon request. The rate of removal is proportional to biomass contact (the reaction area), and 600 lb N/1,000 ft3/day has been shown to be removed in the fluidized bed. The proportionate plastic media removal rate a p. 8 Volume Denitrification Rate (fixed media) = 0.116 x 600 (conversion factor to convert EPA's fluidized sand bed reactor to a fix media reactor) = 69.6 lbs /N /1,000 ft3/day of fixed media = 0.0696 lbs N per ft3 of fixed -film media/day = 0.069 lbs N /ft3 media using 30 ft2/ft3 media = .00232 lbs N /ft2 media/day In the present design, each anaerobic reactor has sufficient media to provide at least 2 hours of detention time. Thus, we have a design capacity in each reactor of 0.33 ft2 or more of surface per gpd, which is the nitrogen removal capacity of 0.002321bs N/ft2/day x .33 ft2/gpd = .00076 lbs N per gallon per day. However, the influent N concentration, at 60 mg/1, contains 0.0005 lbs of N per gallon (8.34 lb/gallon x 70.4 x 10-6 = .0005 lbs N per gallon). More than sufficient denitrification capacity exists within each reactor to complete the process: ie, there is no process limitation anticipated as a result of available surface area. In order to take full advantage of the BOD present in Anaerobic I, it is advantageous to provide for the recirculation of fully nitrified flow from Aerobic No. 3 to Anaerobic No. 1 to reduce the BOD requirements of Anaerobic No. 3 by denitrifying the recycle sidestream. This function is particularly useful where the aerobic portion provides excessive BOD consumption in the final stages. The recycle sidestream is variable, and controllable up to a flow of R = (144 — Q) gpm, where Q is the raw forward flow through the plant. Operational control is required to retain sufficient retention time in the anoxic reactors I and II when using recycle to assure completion of the anoxic reaction. Under conditions where R + Q exceeds 70 gpm, retention time would be reduced to less than 2 hours, the nominal design retention time. Above this flow, the operator must monitor the completion of the anoxic reactions in Anaerobic I and II after making a change in recycle flow. P. 9 FIGURE 4-7 EFFECT OF ORGANIC LOAD ON NITRIFICATION- EFFICIENCY EFFECT OF ORGANIC °I OAD ON IIT IFI ATIMEFFICIENCY OF Rf Y, TRICKLING FILTER t W U. tL Lu t rx Z 0 E . Po 30 40 50 BOD5 LAD -- L B 1000 CU F7` DA n VC - 5.0-477-1 BFGoodrich Information Bulletin a 9 OPGoodrich General Products Division DESIGN CALCULATION RESULTS TREATABILITY FACTOR K20 =0.07 Influent Waste Temperature —' 0qC a M A NVIAWIL Nk a INFORMAR WN BULLETIN Akron, Ohio 44318 DevoftmOnl 041A, WH8-3 VINYL CORE"' ,Influent Waste Temperature — 13'0 C % BOD ReMOVOCI Media DepthExpressedT'I'31''IM) media Depth Flaw F12,w Raw F Expressed T6GPM/ft-' of Tower Surface Area Feet Feet 0.3 0.5 0.. U 0,a 0.9 10, 1.1 1,2 1.3 1.4 1.5 12 66, 57 54. 51 49 47, 45 43 42 41 40 39 1472 77 63 67 ...69 r64, 56 61 54 52 50 48 47 2 46 50 44 49 43 48 16 1'8 80 72 68 66 tid 61- 59 57 56;----94--63 55 54 52 20 84 75 72 69 67 67 (3,5 ' 61 60 58 57 56 2-2 86 79 7673 76 70 68� 66 16 63 62 60 59 59 89 81 79 --7-674 76 72 70 68 56 -65 63 62 24 24 91 92 84 86 81 83 79 81 76 79 74 77 72 75 71 73 69 72 68 -65 70 - 9 -65- 68 28 30 93 ---9-46-9-87 88 85 83 85 81 83 79 -61— 77 —80 76 f6----77 74 73 75 72 74 70 '73-- —94 34 95 91 89 87 85 83 81 80 79 77 76 75 88 —!�6- 92 go 88 8'6 85 83 82 80 79 78 77 38 5 93 9 1 go 88 86 85 83 82 -- 81 80 7ry 9 -40-96 89 94 92 , 91 — 89 88 86 � 85 84 82 81 80 ,Influent Waste Temperature — 13'0 C Hemovea Media DepthExpressedT'I'31''IM) Flaw F12,w '' t. f7-9u—r—faceArea 0 Feet —1.0 0.3 0 5 ()�6 0,7- -' OT 0 1�1 1.4 1.5 . . . . ....... ....... 12 -(0 til 57 55 ��2 52 So 46 47 45 44 45T 42 -75 63--- 60 58 56 52 50 4 g 48 47 --- 14 16 80 .66 7168, 65 63 60 T9- 67. 55 54 52 51 —j�4-757'­�-2-----d-9— 67 (3,5 63 61 60 58 57 55 20 87 79. 76 73 7116 67 65-- 63 62 61 59 22 9 76 74 72 70- 68 67 65 64 63 24 � 1 2 79 ---- 77 - 75 - 73 72 70 69 — 67 66 2693 87 84 82 80 75 76 74 73 71 70 69 —94 Tq� - -8- 6--'- 8-4 82 8() 7977 75 74 73 72 5 go 88 86 84 82 81 -_81___ 79 76 — 75 74 32 95 92 9th 88 86 84 83 - 81 80 19 77 76 :34 — 95 93 91 89 88 86 85 83 82 81 79 78 95 94 92 91 so 88 86 85 84 82 81 8 0 38 95 94 93 92 go 89 88 86 85 84 83 B2 40 �Ef 95 95 34 93 91 90 89 88 87 85 84 83 FIGURE 4-15 SURFACE AREA REQUIRED FOR NITRIFICATION FIGURE', 4-15 WRFACE AREA REOUIREMENTS FOR IIT RIFICA110N - MIDLAND MICHIGAN qj000 CA Iq 4j k. to w �13 127000 N W 0 Itiffuent DoM (moun) ss 1� /I Orgonic ,N I - 4 mg/l N H4 N 8 - 418 ms./l / /TKt4 Id 7 to 11 C 113 1019C Key 7 to, 11 0 T 13 10 19 C Lo 4, o 4,0 CFFLUENr AMMOWA-N. mg/l 4-64 5-0 6:0 Q 10 0 Itiffuent DoM (moun) ss 1� /I Orgonic ,N I - 4 mg/l N H4 N 8 - 418 ms./l / /TKt4 Id 7 to 11 C 113 1019C Key 7 to, 11 0 T 13 10 19 C Lo 4, o 4,0 CFFLUENr AMMOWA-N. mg/l 4-64 5-0 6:0 FIGURE 5-12 VOLUME DENITRIFICATION RATE 11 2000 40 r 61) FIGURE, 5- 13 VOLUME DENITRIFICATION RATE FOR SUBMERGED jfjCjH POROSITY FINE MEDIA COLUMNS (REFERENCE 39) l.f 1.3 - Pump Curve for Irrigation Dose Pumps and Pump Curve for Pumps in Series 6d mad 4w Berkeley 10 HP Flow (gpm, Head (FT) 1 154 100 153 125 151 150 149 175 145 200 140 225 134 250 124 Paco 40 HP Flow (gpm, Head (FT) 1 360 100 360 125 358 150 356 175 354 200 350 225 345 250 340 Both Pumps in Series Flow (gpm, Head (FT) 1 514 100 513 125 509 150 505 175 499 200 490 225 479 250 464 no ■■m 'wm"/1►1n►\ursill w■VAUWAFNQN■ �rI �JI 1 � ��� J��■ ■r. �®►irrr��srr■■■■■ ■ slim milII■■me■■ ■allsM1rri■■■■■■ molls ■illi■■■■■r: ul,,Illllmmmmmm /16/2008 12;21pm fift A05 r" FU PUMPS 7 ov, 46 60 40- 1 20 0 WAT 7702766535 #439 Page 11/12 LC - 20953 Configured Curve r 0 so 100 150 200 260 300 350 400 450 Soo 550 600 650 700 " I Capacity - USgpm A,, 9.60 in Max i..._.......__.... ..... ..... . ....... F.EE . . ... - ----- .......... . . - - - --------- ........ ............ . _........................_, . ......... . ......... . ........ . . ..... . . ....... . .................--_.t.__.., )H: 350 ft Tamp: 68.00 dog F r 0 so 100 150 200 260 300 350 400 450 Soo 550 600 650 700 " I Capacity - USgpm A,, 9.60 in Max 100 -90 80 ,70 60 50 40 30 20 10 A V SD 100 1501 200 250 300 350 400 450 500 S50 600 650 700 40 Capacity - usgpm '+U p ,20 n.� 7:77 - -A............_. ..... .......... . . - - - --------- ........ ............ . _........................_, ......... 9.S4 In Rated. . .................--_.t.__.., )H: 350 ft Tamp: 68.00 dog F Dis. Press: *utoff Head: ........ .. .... ... . S.C., 0.998 Diff. Press: NPSHr ------------- . ........... . . . ...... . BHP- 303 hp ip. Dia., 9.54 In Pump Eff.: 58.16 Efficiency P% Of Stages, I IBEP: 426 USgpm_ Motor Data, 40 Voltage: 208-230/460 Eff; Aiminal RPM: ---------- Phase: Three phase . . ... . ....... dual RPM, 3500 Hz, 60 End,: ODP ......----------- 100 -90 80 ,70 60 50 40 30 20 10 A V SD 100 1501 200 250 300 350 400 450 500 S50 600 650 700 40 Capacity - usgpm '+U p ,20 n.� 100 ISO 200 250 300 350 400 450 500 550 600 650 700 capaefty - Usgpm Air 7:77 - I . . ..I.. . ' .. ' .1. . . . . .. I . • Design Datai.,..,.".` . I.-: : :;.. . . . ..' .......... . . - - - --------- ........ ............ . _........................_, . .. . ............ ....... ....... Fluid: Water Suct Press: 0.00_psi.a )H: 100 ISO 200 250 300 350 400 450 500 550 600 650 700 capaefty - Usgpm Air 7:77 - I . . ..I.. . ' .. ' .1. . . . . .. I . • Design Datai.,..,.".` . I.-: : :;.. . . . ..' 0 50 Fluid: Water Suct Press: 0.00_psi.a )H: 350 ft Tamp: 68.00 dog F Dis. Press: 100 ISO 200 250 300 350 400 450 500 550 600 650 700 capaefty - Usgpm Air 7:77 - I . . ..I.. . ' .. ' .1. . . . . .. I . • Design Datai.,..,.".` . I.-: : :;.. . . . ..' Qpw; 200 USqpm Fluid: Water Suct Press: 0.00_psi.a )H: 350 ft Tamp: 68.00 dog F Dis. Press: *utoff Head: 363 ft S.C., 0.998 Diff. Press: NPSHr 7.04 ft Viso.: 1.00 op BHP- 303 hp ip. Dia., 9.54 In Pump Eff.: 58.16 P% Of Stages, I IBEP: 426 USgpm_ Motor Data, 40 Voltage: 208-230/460 Eff; Aiminal RPM: 3500 Phase: Three phase S.F.; 1.15 dual RPM, 3500 Hz, 60 End,: ODP '0/1,6/2008 12:21pm WWSI ,ied: R r i 0 7702766535 #439 Page 12/12 MOTOR DRIVE B'->, TP MS Nominal RPM 3600 Eased on hreshr-Waterff-6B-dt q.., F rr-r)perrei Dicrnetur; 6-3fT6"fTCT }` 50 75 100 125 150 1 CAPACITY IN U.S•. GA]A.014C5 PER MINUTE 25 250 275 3C 7,5 70 Z �W W UU 65 U_( W 60 LL' W 10.0 U� J_ QTJOTED -.BY-- TAS .BY-TAS Q UOTED Ta. brooks job cliffs SELECi',10W CO'L` DI'TTOWi S' Flow: 200.0 GPM Priming Type; Standard, Total Dynamic Head: 140.0 feet I*ottor Loading: Stand"a rd PUMP DESCRIPTION Pump Model: 82TPMS Priming Type: Standard Impeller Diameter: 6.188 in, I•m•p-el-lar Material: Iron Suction: 2i/2"NPT Discharge- 2"NPT Shaft Seal: Mechanicar PUMP PERFaR2rfMANCR Flow: 200.0 GPM Po.wer._ Total Dynamic Head: 1 40. 6 feet EffiePe-ncy- 73:4 - Nominal Speed: 3600 RPM NPSHR: '14..2 feet Shut -Off Head: 154.3 feet Max Power: T'T.O BH'P Best Eff: 73.7 (99� 21.4.Gr Gt'1,4 MOTOR Size: 10 HP Enclosure: TEFL Voltage.: Corieull Catcrlog/Facto•ry PRICE/ORDER INFORMATION Catalnc� No.., Factory Weigh L; 200 lbs. QTJOTED -.BY-- TAS .BY-TAS Q UOTED Ta. brooks job cliffs 1.4 Pump Curve and TDH Calculations for Return Pumps BUNCOMBE COUNTY, NC THE CLIFFS AT HIGH CAROLINA PROJECT #307808 TDH = AH + hm where: AH = elevation head hn, = major pipe losses, utilize Hazen Williams equation with equivalent lengths for fittings hm = (4.727 U d4'87) (Q/C)1.85 where: Q in cfs, L in feet, d in ft. " i { , no user input 1 user input req'd Piping: in, g. Diameter =�p inches (nominal) equals 2.047 inches (ID) 0.1705833 ft. q Q (gpm) hm (feet) TDH PSI Velocity 5 173.001 0.34 173.34 75.0 0.51 10 173.001 1.24 174.24 75.4 1.02 15 173.001 2.63 175.63 76.0 1.53 20 173.001 4.48 177.48 76.8 2.04 22 173.00 5.35 178.35 77.2 2.25 25 173.00 6.78 179.78 77.8 2.55 30 173.00 9.50 182.50 79.0 3.07 35 173.00 12.64 185.64 80.4 3.58 40 173.00 16.19 189.19 81.9 4.09 45 173.001 20.14 193.14 83.6 1 4.60 50 173.00 24.47 197.471 85.5 1 5.11 Brooks Engineering Associates, PA P. 1 of 1 10/21/2008 Part Number H P Voltage Phase Amps Stages J 5030-0005 112 115 1 12.0 6 22-3/8" 5030-0006 112 230 J 6 10 GPM Models 5030-0007 19 GPM Models 115 R li 8 24-1/8" 5030-0008 1/2 230 1 6.0 8 24.1/8° 5030-0009 3/4 230 PUMP PERFORMANCE CURVE 12 28-7/8" w w LL PUMP PERFORMANCE CURVE 66 266 48 160 w 10 GPM "0 140 1HP- 4STAGE 19 GPM I sn _p ;t.J e° -y 40- 64 1114" NPT DISCHARGE Q 2 120 11/" NPT DISCHARGE 32 3l4HP•35TAGE ;T 120 400 1 1 100 280 1 HP-9STAG E 2460 112 314 HP• 12 STALE 126 80 32 100 16 2d 60 104 360 60 72 240 314 HP — t6 20 6 46 20 0 I I i i I 96 320 10 20 30 40 s0 60 6 7 STAGE GALLONS LITERSl' G11 -CNS 6 0 100 X40 0 40 80 120 160 200 UTEas 20 d6 66 FLOWPERMINUTE 015045 64 200 280 56 '. ..,. S 80 112 HP- 8 STAGE � = 72 240-46 160 U s4 200 40 1/2 HP 56 112 HP- 6 STAGE 120 5 STAGE 0 4s 160 32 40 0 24 80 Awl 120- o 32 16- 24- 60 B 40 40 0 +. s I 5 10 15 20 25 30 2 4 6 8 10 12 14 1s is GALLONS LITERS I—�--�—r— GALLONS 0 20 40 60 80 100 uTFRs 0 e 16 24 32 40 48 ss 64 FLOW PER MINUTE FLOW PER MINUTE I;.....'. 015413 015414 Part Number H P Voltage Phase Amps Stages Height 5030-0005 112 115 1 12.0 6 22-3/8" 5030-0006 112 230 1 6.0 6 22-318" 5030-0007 1/2 115 1 120 8 24-1/8" 5030-0008 1/2 230 1 6.0 8 24.1/8° 5030-0009 3/4 230 1 8.0 12 28-7/8" Part Number H P Voltage Phase Amps Stages Height 5031-0005 112 115 1 12.0 5 21-15116" 5031-0006 1/2 230 1 6.0 5 21-15/16" 5031-0007 314 230 1 8.0 7 25-1116° 5031-0008 1 230 1 9.8 9 28-118" L Part Number H P Voltage '1 Stages 27 GPM Models '�� %i1 l 5032-0005 35 GPM Models 115 1 12.0 PUMP PERZORMMCECURVE s 21-1/8" LL PUMP PERFORMANCE CURVE 112 230 11/4* NPT DISCHARGE t%4 -a2- 4 35 GPM 17 ,6_320 11/2 HP- 106TAGE 1 8.0 2" NPT DISCHARGE 24.5116" 5032-0008 300 ss 160 7 se 5032-0009 1-1/2 1-12 HP- 5 STAGE 1 13.1 10 260 66 266 48 160 ,rc 7Y "0 140 1HP- 4STAGE I sn _p ;t.J e° -y 40- 64 RIH 200 pp F 20D. Q 2 120 32 3l4HP•35TAGE 60� 100 2460 V2 HP-2STAGE 126 60 32 100 16 2d 60 40 60 8 t6 20 6 46 20 0 I I i i I 10 20 30 40 s0 60 6 5 1b is t6 zs 30 is da GALLONS LITERSl' G11 -CNS 6 0 100 X40 0 40 80 120 160 200 UTEas 20 d6 66 FLOWPERMINUTE 015045 FLOW PER MINUTE 015044 I L Part Number H P Voltage Phase Amps Stages Height 5032-0005 112 115 1 12.0 4 21-1/8" 5032-0006 112 230 1 6.0 4 21-118° 5032-0007 314 230 1 8.0 6 24.5116" 5032-0008 1 230 1 9.8 7 26-7/16° 5032-0009 1-1/2 230 1 13.1 10 31-7/8" Part Number H P Voltage Phase Amps Stages Height 5033-0005 112 115 1 120 2 19-7/16" 5033-0006 112 230 1 6.0 2 19-7116° 5033-0007 314 230 1 8.0 3 22-3116` 5033-0008 1 230 1 9.8 4 24-15116" 5033-0009 1-1/2 230 1 13.1 5 29-15116" r: © Copyright 2007 Zoeller Co. All rights reserved. BUNCOMBE COUNTY, NC THE CLIFFS AT HIGH CAROLINA TDH = LH + hm where: 4H = elevation head h,,, = major pipe losses, utilize Hazen Williams equation with equivalent lengths for fittings hm = (4.727 U d4.87) (Q/C)1.85 where: Q in cfs, L in feet, d in ft. no user input 'US er input req'd Piping: � Diameter equals 2.047 inches (ID) 0.1705833 ft. PROJECT #307808 Q (gpm) H hm (feet) TDH PSI Velocity 5 175.001 2.10 177.10 76.7 0.51 10 175.001 7.59 182.59 79.0 1.02 15 175.001 16.09 191.09 82.7 1.53 20 175.00 27.41 202.41 87.6 2.04 24 175.00 38.42 2.13.42 92.4 2.45 25 175.00 41.44 216.44 93.7 2.55 30 175.00 58.09 233.09 100.9 3.07 35 175.00 77.28 252.28 109.2 3.58 40 175.00 98.96 273.96 118.6 4.09 45 175.00 123.08 298.08 129.0 4.60 50 175.00 I 149.60 3-24.601 140.5 1 5.11 Brooks Engineering Associates, PA P. 1 of 1 10/21/2008 FLOW PER MINUTE 015413 Part Number PUMP PERFORMANCE DISCHARGE11/4" NPT Voltage Phase Amps Stages ! ■■■' 112 — 1 12.0 6 22-318' 5030-0006 112 230 1 6.0 6 22-318" moon _ 115 060 8 „ 5030-0008 1l2 230 ■''W.�■1 8 24-118" 5030-0009 314 230 1 8.0 12 28-718" 120 NH 32 0 24 80 16 40 8- FLOW PER MINUTE 015413 Part Number HP Voltage Phase Amps Stages Height 5030-0005 112 115 1 12.0 6 22-318' 5030-0006 112 230 1 6.0 6 22-318" 5030-0007 1/2 115 1 12.0 8 24-118" 5030-0008 1l2 230 1 6.0 8 24-118" 5030-0009 314 230 1 8.0 12 28-718" 7 GPM Models PUMP PERFORMANCE CURVE Ipm 27 GPM 11/4" NPT DISCHARGE 36 320 71/7 HP -18 STAGE 306 1 HP- 7 STA - 226 fi4 314 HP 206 '. BSTAGE 56 780 U S40 186 ta0 � d0 '1f2 HP -d STAGE 770 GALLONS UTERS FLOWPERMINUTE no 21 17M 015045 Part Number HP Voltage Phase Amps Stagesr317/8 PUMP PERFORMANCE CURVE 5032-0005 112 115 1 12.0 4 5032-0006 112 230 1 6.0 4 5032-0007 3/4 230 1 8.0 6 5032-0008 1 230 1 9.8 7 5032-D009 1-112 230 1 13.1 10 015414 Part Number H P 19 GPM Models Phase Amps LL PUMP PERFORMANCE CURVE 5031-0005 112 19 GPM 1 12.0 5 1"W NPT DISCHARGE 5031-0006 zeo 80 5 72 240 230 1 8.0 7 64- 5031-0008 1 230 200 9 56 5033-0009 1-1/2 0 46 160 5 U a 40 120 NH 32 0 24 80 16 40 8- 0 5 10 15 20 25 GALLONS LITERS 0 20 40 60 80 10( FLOW PER MINUTE 015414 Part Number H P Voltage Phase Amps Stages Height 5031-0005 112 115 1 12.0 5 21-15116' 5031-0006 112 230 1 6.0 5 21-15116" 5031-0007 314 230 1 8.0 7 25-1116" 5031-0008 1 230 1 9.8 9 28-118" 35 GPM Models w PUMP PERFORMANCE CURVE 35 GPM 2" NPT DISCHARGE 56 180. 1-12 HP- 5 STAGE 48 160- 140 1 HP-4STAG E 40 120- 2 3/4 HP -3 STAGE 100- z O 24 s6 12HP-2 STAGE O 60 16 40 8 20- 13-- 10 0010 20 30 40 50 60 GALLONS LITERS 0 40 80 120 160 200 FLOW PER MINUTE 015044 Part Number H P Voltage Phase Amps Stages Height 5033-0005 112 115 1 12.0 2 19.7116" 5033-0006 112 230 1 6.0 2 19-7116" 5033-0007 3/4 230 1 8.0 3 22-3116' 5033-0008 1 230 1 9.8 4 24-15/16' 5033-0009 1-1/2 230 1 13.1 5 29-15116' © Copyright 2007 Zoeller Co. All rights reserved. Uzi 1.5 Return Pump Tank Sizing Calculations i Uio 4, 7 TANK SIZING CALCULATIONS Return Flush Pump Tank 1850 gallon Pump Tank Selected Minimum dose (gal) Total Height Storage (gal/ft) Storage (gal/in) min pump submergence min dose volume space lost due to float spacing emergency storage Emergency Storage (gal) PT -298 Length (ft) Width (ft) Height (ft) Pump Tank 1 9.83 4.83 5.25 BEA Project # 307808 700 63 inches 355.51 29.63 26 inches 23.6 inches 8 inches 5.4 inches 159.14 Net On/Off Gal/ft Volume (gal) Setting (inches) 355.51 1866.4 23.63 I n/ft. 29.63 Brooks Engineering Associates, PA p.1 of 1 10/21/2008 BEA Project # 307808 TANK SIZING CALCULATIONS Return Flush Pump Tank 1850 gallon Pump Tank Selected Minimum dose (gal) 700 Total Height 63 inches Storage (gal/ft) 355.51 Storage (gal/in) 29.63 min pump submergence 21 inches min dose volume 23.6 inches space lost due to float spacing 12 inches emergency storage 6.4 inches Emergency Storage (gal) 188.77 Net On/Off PT -298 Length (ft) Width (ft) Height (ft) Gal/ft Volume (gal) Setting (inches) Pump Tank 1 9.83 4.83 5.25 355.51 1866.4 23.63 In/ft. 29.63 Brooks Engineering Associates, PA p.1 of 1 10/21/2008 f Pressure and Flow Anal 77 Zone Y 1.6 Irrigationsis MOM PRESSURE ANALYSIS . TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d4-87) (Q/C)185 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 1A-1 No. Laterals: 7 Tubing: ID in 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 3616 Design Flow (Qpm): 18.68 Supply Manifold Elev. 1A-SM2 Return Manifold Elev. 1A-RM2 Run Run Lateral Run Elev. Length 2 3 4 5 6 7 Brooks Engineering Associates, PA 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 35 43 48 62 83 114 123 129 132 131 115 73 71 71 82 76 74 72 70 65 51 32 Application Flow gpm : 18.7 Min. Design Scour Vel. (ftts) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour (gpm)' 2.30 Re 'd Flush Rate (qpm)': 34.8 Dose Flow (gp 0.3 0.4 0.4 0.5 0.6 0.9 1.2 1.3 1.3 1.4 1.4 1.2 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.5 0.3 PA of 3 Lateral Lateral Min. Flush enoth (ft) Dose (aom) Flow Wpm) 474 2.4 4.7 522 2.7 5.0 492 2.5 4.8 594 3.1 5.4 584 3.0 5.3 348 1.8 4.1 34.8 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 1A-1 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.0 e Line Size ID (in) Friction Headloss (ft) from Pump to H.0 .2 2 Total Segment Headloss (ft) = Friction + Elev. Inputs Dose Flow a Flush Flow (b 0.016 0.014 12.016 12.014 10/20/2008 Hydraulic Unit H.U. Elev Mom 3 Headloss from H.0 (ft J3 _-- Supply Force Main Friction Losses H.U. to J1 l Segment Flow Rate (gpm) r �'rti Line Length (ft) Line Size ID (in)5 4 Friction Headloss (ft) 3.058 2.778 Minor Losses (ft) 0.306 0.278 I Line Velocity (ft/s) 2.27 2.16 J1 to J2 141 Segment Flow Rate (gpm) =, Line Length (ft) Line Size ID (in)s 5 Friction Headloss (ft) 0.434 0.902 Minor Losses (ft) 0.043 0.090 Line Velocity (ft/s) 1.16 1.73 J2 to 1A-SM2 Segment Flow Rate (gpm) 1• Line Length (ft) 1 Line Size ID (in)5 6 Friction Headloss (ft) 1.512 4.770 Minor Losses (ft) 0.151 0.477 Line Velocity (ft/s) 1.25 2.33 Supply Farce Main Elevation Delta H.U. to Manifold 82 Wit 7Elevation (ft) from Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold" r Feed Manifold to Bottom Lateral Headloss (ft) in manifold" Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 0.700 3.213 9 Total Segment Headloss (ft) = Friction + Elev. -26.300 -30.787 N Return Force Main Friction Losses 1A-RM2 to J2 Segment Flow Rate (gpm) Line Length (ft) 606 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 10. 131 Line Velocity (ft1s) 2.5544 J2 to J1 ..4 Segment Flow Rate (gpm) Line Length (ft) 490 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 1.853 Line Velocity (ft/s) 2.03 J1 to WWTF Segment Flow Rate (gpm) h Line Length (ft) 1000 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 3.782 Line Velocity (ft/s) 2.03 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Fmj Brooks Engineering Associates, PA p.2 of 3 €dam 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 1A-1 Feet 274.2 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 203.5 88.1 Low Pressure Check: P at Min. Flush Flow at Return Manifold 296.5 128.4 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 412.8 178.7 Flush Pressure at backwash tank for Min. Flush Rate 452.4 195.8 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 274.2 PSI 51.2 Pressure at manifold before PRV 468.5 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 127.1 _ 55.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 39.1 16.9 Flush Pressure at W WTF for Min. Flush Rate 113.3 49.0 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 146.4 1 63.4 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 0, PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 1A-2 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE Inputs Dose Flow (all Flush Flow (b) 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.0 e Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 0.016 0.014 2 Total Segment Headloss (ft) = Friction + Elev. 12.016 12.014 Hydraulic Unit H.U. Elev NNW 3 Headloss from H.0 (ft.)3 $ Supply Force Main Friction Losses H.U. to J1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)s 3.058 2.778 4 Friction Headloss (ft) Minor Losses (ft) 0.306 0.278 Line Velocity (ft/s) 2.27 2.16 J1 to J2 Segment Flow Rate (gpm) mmmmmm t� Line Length (ft) Ij Line Size ID (in)5 5 Friction Headloss (ft) 0.434 0.902 Minor Losses (ft) 0.043 0.090 Line Velocity (ftts) 1.16 1.73 J2 to 1A-SM1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 1.078 3.426 6 Friction Headloss (ft) Minor Losses (ft) 0.108 0.343 Line Velocity (ft/s) 1.92 3.58 Supply Force Main Elevation Delta 82 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 8 Total Headloss (ft.) in ddp system from supply manifold to return manifold - Feed Manifold to Bottom Lateral Feed Headloss (ft) in manifold4 Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals 50 Line Size ID (In)" Friction Headloss (ft) from Manifold to Bottom Feed Latera12 0.933 3.504 9 Total Segment Headloss (ft) = Friction + Elev. -42.067 -46.496 Return Force Main Friction Losses 1A-RM1 to J2 Segment Flow Rate (gpm)-- Line Length (ft) 606 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 0.438 Line Velocity (fits) 1.50 1.50 J2 to J1 Segment Flow Rate (gpm) Line Length (ft) 490 Line Size ID (in.) Minor Losses (ft) 1.853 Friction Headloss (ft) Line Velocity (fUs) 3.66 3.66 J1 to WWTF FF�- Segment Flow Rate (gpm) Line Length (ft) 1000 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 3.782 Line Velocity (ft/s) 2.03 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Enaineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d487) (Q/C)1.es 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. R E uaIs the Required Flush Rate plus the Dose Flow Rate Zone: 1A-3 No. Laterals: 13 Tubin : ID (in) 0.79 Emitters h : 0.62 Emitter S adn ft 2 Total Footage: 7736 Design Flow (gpm): 39.97 Application Flow (gpm): 40.0 Min. Design Scour Vel. (ft/s) 2.0 Tubing ID in 0.787 Residual Flow for Scour pm)e 2.30 Req'd Flush Rate (gpm)': 69.9 Supply Manifold Elev. 1A-SM1 Return Manifold Elev. 1A-RM1 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Len th # Emitters Flow (g m)7 Length (ft) Dose(gpm) Flow pm)8 1 1 73 0.8 594 3.1 5.4 2 72 0.7 3 74 0.8 4 78 0.8 2 5 79 0.8 608 3.1 5.4 6 70 0.7 7 73 0.8 8 62 0.8 3 9 81 0.6 586 3.0 5.3 10 68 0.7 11 68 0.7 12 76 0.8 4 13 153 1.6 606 3.1 5.4 14 150 1.6 5 15 155 1.6 610 3.2 5.5 16 150 1.6 6 17 153 1.6 604 3.1 5.4 18 149 1.5 7 19 148 1.5 586 3.0 5.3 20 145 1.5 8 21 148 1.5 590 3.0 5.3 22 147 1.5 9 23 147 1.5 582 3.0 5.3 24 144 1.5 10 25 148 1.5 596 3.1 5.4 26 150 1.6 11 27 150 1.6 600 3.1 5.4 28 150 1.6 12 29 149 1.5 594 3.1 5.4 30 148 1.5 13 31 146 1.5 580 3.0 5.3 32 144 1.5 7736 3868 40.0 40.0 69.9 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 9 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 1A-3 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE Inputs Dose Flow Flush Flow (b) 1 Operating Head from Pump Curvet Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 0.016 0.014 2 Total Segment Headloss (ft) = Friction + Elev. 12.016 12.014 Hydraulic Unit H.U. Elev MUM 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J1 Segment Flow Rate (gpm) fR f? Line Length (ft) Line Size ID (in)s 4 Friction Headloss (ft) 3.058 2.778 Minor Losses (ft) 0.306 0.278 Line Velocity (ft/s) 2.27 2.16 J1 to J2 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)s 5 Friction Headloss (ft) 0.434 0.902 Minor Losses (ft) 0.043 0.090 Line Velocity (ft/s) 1.16 1.73 J2 to 1A-SM1 Segment Flow Rate (gpm) " 1+ Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 0.081 0.254 Minor Losses (ft) 0.008 0.025 Line Velocity (ft/s) 0.47 0.88 Supply Force Main Elevation Delta Manifold 82 7 Elevation (ft) from H.U. to Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.801 5.166 9 Total Segment Headloss (ft) = Friction + Elev. -43.199 -46.834 Return Force Main Friction Losses 1A-RM1 to J2 Segment Flow Rate (gpm) 1` Line Length (ft) 317 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 0.229 Line Velocity (ft/s) 1.30 J2 to J1 Segment Flow Rate (gpm) €, Line Length (ft) 490 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 1.853 Line Velocity (ft/s) 2.03 J1 to WWTF Segment Flow Rate (gpm) Line Length (ft) 1000 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 3.782 Line Velocity (ft/s) t' D It 2.03 Return Lme Eleve on e a Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d487) (Q/C)t es 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. S Equals the Required Flush Rate plus the Dose Flow Rate Zone: 1 B-5 No. Laterals: 15 Tubing: ID in 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 7732 Design Flow gpm); 39.95 Application Flow (gpm): 39.9 Min. Design Scour Vel. (ft/s) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour (gpm)a 2.30 Re 'd Flush Rate ( m)B: 74.7 Supply Manifold Elev. 1B-SM1 Return Manifold Elev. IB -RMI Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Length # Emitters Flow gpm)7 Length ft) Dose (pm) Flow pm)' 1 1 27 0.3 410 2.1 4.4 2 53 0.5 3 55 0.6 4 70 0.7 2 5 78 0.8 602 3.1 5.4 6 71 0.7 7 71 0.7 8 81 0.8 3 9 106 1.1 438 1.9 4.2 10 113 1.2 4 11 120 1.2 492 2.4 4.7 12 126 1.3 5 13 133 1.4 538 2.8 5.1 14 136 1.4 6 15 138 1.4 556 2.9 5.2 16 140 1.4 7 17 143 1.5 574 3.0 5.3 18 144 1.5 8 19 145 1.5 584 3.0 5.3 20 147 1.5 9 21 149 1.5 592 3.1 5.4 22 147 1.5 10 23 145 1.5 576 3.0 5.3 24 143 1.5 11 25 135 1.4 524 2.7 5.0 26 127 1.3 12 27 107 1.1 396 2.0 4.3 28 91 0.9 13 29 84 0.9 594 3.1 5.4 30 75 0.8 31 70 0.7 32 68 0.7 14 33 63 0.7 440 2.5 4.8 34 58 0.6 35 52 0.5 36 47 0.5 15 37 42 0.4 416 2.6 4.9 38 35 0.4 39 31 0.3 40 25 0.3 41 23 0.2 42 21 0.2 43 17 0.2 44 14 0.1 7732 3866 39.9 40.2 74.7 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 r-1 _. 3 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 18-5 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev OEM 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J1 o Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)s 3.058 2.776 4 Friction Headloss (ft) 0.306 0.278 Minor Losses (ft) Line Velocity (ft/s) 2.27 2.16 J1 to J3 ' Segment Flow Rate (gpm) Line Length (ft) Line Size ID 0n)s 0.081 0.278 5 Friction Headloss (ft) 0.008 0.028 Minor Losses (ft) Line Velocity (ft/s) 1.11 2.16 J3 to1B-SM1 �x•� �-- Segment Flow Rate (gpm) Line Length (ft) Line Size ID (1n)5 4 1.415 4.454 6 Friction Headloss (ft) Minor Losses (ft) 0.142 0.445 Line Velocity Ws) 1.75 3.24 Supply Force Main Elevation Delta 70 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold" Feed Manifold to Bottom Lateral Headloss (ft) in manifold° Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 1.491 4.759 9 Total Segment Headloss (ft) = Friction + Elev. -49.509 -53.241 Return Force Main Friction Losses 1 B -RMI to J3 34.5 Segment Flow Rate (gpm) Line Length (ft) 360 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 3.072 Line Velocity fts) 0.38 J3 to J1 -- Segment Flow Rate (gpm) Line Length (ft) 100 Line Size ID (in.) Minor Losses (ft) 0.419 Friction Headloss (ft) Line Velocity (ft/s) 2.15 J1 to WWTF Segment Flow Rate (gpm) Line Length (ft) 1000 Line Size ID (in.) KA; sses (ft) M' L 4.192 Friction Headloss (ft) 2.15 Line Velocity (ftls) 2.15 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 1 B-5 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 190.5 82.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 309.5 134.0 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 448.5 194.1 Flush Pressure at backwash tank for Min. Flush Rate 445.5 192.9 PRV NEEDED? YES ZONE SUMMARY W1 PRV Feet PSI Pressure loss required (high pressure - 60 psi) 309.9 51.2 Pressure at manifold before PRV 469.0 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 104.0 45.4 Low Pressure Check: P at Min. Flush Flow at Return Manifold 16.0 6.9 Flush Pressure at W WTF for Min. Flush Rate 82.3 35.6 Hioh Pressure Check: Emitter P on Bottom Lateral at Dose Flow 146.5 63.4 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 7 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 L/ d" $') (Q/C)t •ss 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 E uals the Required Flush Rate plus the Dose Flow Rate Zone: 15.5 No. Laterals: 10 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2- Total Footage: 5022 Design Flow pm): 25.95 Application Flow (gpm): 25.9 Min. Design Scour Vel. (fUs) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour pm)6 2.30 Re 'd Flush Rate(gpm)8: 48.9 Supply Manifold Elev. 1 B-SM2 Return Manifold Elev. 1 B-RM2 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Len th # Emitters Flow (g m)7 Length (ft) Dose ( m) Flow (g m) 1 1 11 0.1 532 2.7 5.0 2 15 0.2 3 19 0.2 4 24 0.2 5 31 0.3 6 49 0.5 7 55 0.6 8 62 0.6 2 9 62 0.6 582 3.0 5.3 10 69 0.7 11 79 0.8 12 81 0.8 3 13 102 1.1 420 2.2 4.5 14 108 1.1 4 15 113 1.2 462 2.4 4.7 16 118 1.2 5 17 123 1.3 504 2.6 4.9 18 129 1.3 6 19 131 1.4 528 2.7 5.0 20 133 1.4 7 21 136 1.4 548 2.8 5.1 22 138 1.4 8 23 140 1.4 566 2.9 5.2 24 143 1.5 9 25 145 1.5 582 3.0 5.3 26 146 1.5 10 27 83 0.9 298 1.5 3.8 28 66 0.7 5022 2511 25.9 25.9 48.9 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Friction Headloss (ft) from Pump to H.0 2 0.016 0,014 2 Total Segment Headloss (ft) = Friction + Elev. 12.016 12.014 Hydraulic Unit H.U. Elev Now 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J1 ROME Segment Flow Rate (gpm) Line Length (ft) y Line Size ID (in)5 h=. 4 Friction Headloss (ft) 3.058 2.778 Minor Losses (ft) 0.306 0.278 Line Velocity fts) 2.27 2.16 J1 to J4 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 0.597 2.042 Minor Losses (ft) 0.060 0.204 Line Velocity (ft/s) 1.11 2.16 J4 to 1B-SM2 Segment Flow Rate (gpm) 1 25.91 48.9 Line Length (ft) a Line Size ID (in)5 6 Friction Headloss (ft) 0.324 1.047 Minor Losses (ft) 0.032 0.105 Line Velocity (ft/s) 1.13 2.13 Supply Force Main Elevation Delta Manifold 82 7 Elevation (ft) from H.U. to Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold "4 Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 0.280 1.519 9 Total Segment Headloss (ft) = Friction + Elev. -24.720 -30.461 Return Force Main Friction Losses 1 B-RM2 to J4 Segment Flow Rate (gpm) 23.0 Line Length (ft) 185 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 5.983 Line Velocity (ft/s) 3.63 J4 to J1 Segment Flow Rate (gpm) MOMIM Line Length (ft) 735 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 1.178 Line Velocity (ft/s) 1.28 J1 to WWTF Segment Flow Rate (gpm) Line Length (ft) 1000 Line Size ID (in.) _ Minor Losses (ft) Friction Headloss (ft) 4.192 Line Velocity (fUs) 2.15 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF q Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 1 B-6 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 195.9 84.8 Low Pressure Check: P at Min. Flush Flow at Return Manifold 304,1 131.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 412.3 178.5 Flush Pressure at backwash tank for Min. Flush Rate 464.3 201.0 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) zi'.I . I. Pressure at manifold before PRV 469.6 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 50.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 32.5 14.1 Flush Pressure at WWTF for Min. Flush Rate 111.1 48.1 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 133.2 57.7 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d4'87) (Q/C)'•as 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 3A-7 No. Laterals: 18 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 9620 Design Flow g m : 49.70 Application Flow m): 49.7 Min. Design Scour Vel. ft/s) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour g m e 2.30 Req'd Flush Rate (gpm)8: 91.1 Supply Manifold Elev. 3A-SM1 Return Manifold Elev. 3A -RMI Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Length # Emitters Flow (gpm' Length (it) Dose (gpm) Flow (gpm) 1 1 23 0.2 554 2.9 5.2 2 33 0.3 3 42 0.4 4 50 0.5 5 58 0.6 6 71 0.7 2 7 90 0.9 378 2.0 4.3 8 99 1.0 3 9 108 1.1 432 2.2 4.5 10 108 1.1 4 11 111 1.1 448 2.3 4.6 12 113 1.2 5 13 115 1.2 462 2.4 4.7 14 116 1.2 6 15 118 1.2 476 2.5 4.8 16 120 1.2 7 17 121 1.3 494 2.6 4.9 18 126 1.3 8 19 134 1.4 540 2.8 5.1 20 136 1.4 9 21 138 1.4 552 2.9 5.2 22 138 1.4 10 23 139 1.4 558 2.9 5.2 24 140 1.4 11 25 140 1.4 564 2.9 5.2 26 142 1.5 12 27 144 1.5 580 3.0 5.3 28 146 1.5 13 29 146 1.5 588 3.0 5.3 30 148 1.5 14 31 148 1.5 594 3.1 5.4 32 149 1.5 15 33 150 1.6 600 3.1 5.4 34 150 1.6 16 35 150 1.6 600 3.1 5.4 36 150 1.6 17 37 150 1.6 600 3.1 5.4 38 150 1.6 18 39 150 1.6 600 3.1 5.4 40 150 1.6 - 9620 4810 49.7 49.7 91.1 Brooks Engineering Associates, PA p.1 of 3 11/18/2008 A F PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM i ZONE 3A-7 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.0 5 Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev HINN 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses 0.005 0.016 12.005 12.016 H.U. to J1 Segment Flow Rate (gpm) NEENEEMM Line Length (ft) Line Size ID (in)5 rtk 4 Friction Headloss (ft) 0.959 3.178 Minor Losses (ft) 0.096 0.318 Line Velocity (ft/s) 1.21 2.32 J1 to J6 Segment Flow Rate (gpm) NEW Line Length (ft) Line Size ID (in)" 5 Friction Headloss (ft) 1.017 3.369 Minor Losses (ft) 0.102 0.337 Line Velocity (ft/s) 1.21 2.32 J6 to 3A-SM1 Segment Flow Rate (gpm) REEMEMINIME Line Length (ft) Line Size ID (in)' 6 Friction Headloss (ft) 0.816 2.653 Minor Losses (ft) 0.082 0.265 Line Velocity (ft/s) 1.63 3.08 Supply Force Main Elevation Delta Manifold 96 7 Elevation (ft) from H.U. to Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold I' ) MEN Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.854 5.175 9 Total Segment Headloss (ft) = Friction + Elev. -35.146 -38.825 Return Force Main Friction Losses 3A-SM1 to J6 Segment Flow Rate (gpm) Line Length (ft) 325 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 2.478 Line Velocity (ft/s) 1.80 J6 to J1 Segment Flow Rate (gpm) Line Length (ft) 1060 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 4.898 Line Velocity (ft/s) 2.26 J1 to WWTF ¢,f; Segment' Flow Rate (gpm) EM MEN Length (ft) 1000 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 4.621 Line Velocity (ft/s) 2.26 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 11/18/2008 t9g PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 3A-7 Ziu•o a 1.z Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 211.2 91.4 Low Pressure Check: P at Min. Flush Flow at Return Manifold 287.8 124.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 409.1 177.1 Flush Pressure at backwash tank for Min. Flush Rate 470.1 203.5 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) Ziu•o a 1.z Pressure at manifold before PRV 469.9 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5d.Q,! Low Pressure Check: P at Min. Flush Flow at Return Manifold 34.5 14.9 Flush Pressure a' WWTF for Min. Flush Rate 121,5 52.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 143.6 62.2 Brooks Engineering Associates, PA p.3 of 3 11/18/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 fl/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d° 87) (Q/C)1.as 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 3A-8 No. Laterals: 8 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 4148 Design Flow (gpm): 21.43 Application Flow m : 21.4 Min. Design Scour Vel. (ft/s) 2.0 TubingID (in) 0.787 Residual Flow for Scour gpm)6 2.30 Reo'd Flush Rate (qpm)': 39.8 Supply Manifold Elev. 3A-SM1 Return Manifold Elev. 3A-RM1 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Len th # Emitters Flow (gpm)7 Length (ft) Dose (gpm) Flow m)8 1 1 15 0.2 510 2.6 4.9 2 17 0.2 3 19 0.2 4 21 0.2 5 24 0.2 6 26 0.3 7 29 0.3 8 31 0.3 9 34 0.4 10 39 0.4 2 11 41 0.4 598 3.1 5.4 12 45 0.5 13 100 1.0 14 113 1.2 3 15 127 1.3 512 2.6 4.9 16 129 1.3 4 17 128 1.3 508 2.6 4.9 18 126 1.3 5 19 124 1.3 494 2.6 4.9 20 123 1.3 6 21 122 1.3 488 2.5 4.8 22 122 1.3 7 23 120 1.2 450 2.3 4.6 24 105 1.1 8 25 87 0.9 588 3.0 5.3 26 79 0.8 2760 0.6 28 68 0.7 4148 2074 21.4 21.4 39.8 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 3A-8 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. ElevRM 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to A Segment Flow Rate (gpm) 01IMMEMIREl antra •3� ' Line Length (ft) a Line Size ID (in)5 4 Friction Headloss (ft) 0.959 3.178 Minor Losses (ft) 0.096 0.318 Line Velocity (ft/s) 1.21 2.32 A to J6 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 1.017 3.369 Minor Losses (ft) 0.102 0.337 Line Velocity (fUs) 1.21 2.32 J6 to 3A-SM1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 0.816 2.653 Minor Losses (ft) 0.082 0.265 Line Velocity (ft/s) 1.63 3.08 Supply Force Main Elevation Delta from H.U. to Manifold 96 7 Elevation (ft) Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateralz 1.786 5.066 9 Total Segment Headloss (ft) = Friction + Elev. -26.214 -29.934 Return Force Main Friction Losses 3A-SM1 to J6 Segment Flow Rate (gpm) Line Length (ft) 325 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 2.478 Line Velocity (ft/s) 0.80 J6 to J1 - Segment Flow Rate (gpm) _ � Line Length (ft) 1060 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 4.898 Line Velocity (ft/s) 2.26 A to WWTF Segment Flow Rate (gpm) _-•_ -' Line Length (ft) 1000 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 4.621 Line Velocity (ft/s) 2.26 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF IpiBrooks Engineering Associates, PA P.2 of 3 10/20/2008 H;v PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 3A-8 Zo' •o "•` Pressure at manifold before PRV Feet PSI Total Headioss at Min. Flush Rate at Return Manifold 218.2 94.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 280.8 121.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 400.1 173.2 Flush Pressure at backwash tank for Min. Flush Rate 463.1 200.5 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) Zo' •o "•` Pressure at manifold before PRV 469.9 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 50.0' Low Pressure Check: P at Min. Flush Flow at Return Manifold 27.5 11.9 Flush Pressure at WWTF for Min. Flush Rate 114.5 49.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 134.7 58.3 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones:) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U da.e7) (a C)t.es 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 E uals the Required Flush Rate Dlus the Dose Flow Rate Zone: 1 B•9 No. Laterals: 3 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 1358 Design Flow (g m): 7.02 Application Flow(gpm): 7.0 Min, Design Scour Vel. (ft/s) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour (gpm)6 2.30 Req'd Flush Rate (gpm)': 13.9 Supply Manifold Elev. 1 B-SM3 Return Manifold Elev. 1 B-RM3 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Len th # Emitters Flow (gpm' Length (ft) Dose (gpm) Flow g m)8 1 1 11 0.1 398 2.1 4.4 2 16 0.2 3 89 0.9 4 83 0.9 2 5 82 0.8 470 2.4 4.7 6 153 1.6 3 7 70 0.7 490 2.5 4.8 8 67 0.7 9 58 0.6 10 50 0.5 7.0 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 1B-9 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 2 Total Segment Headloss (ft) = Friction + Elev. In uts Dose Flow (a Flush Flow (b) Rom ', .. -11 summ 0.016 0.014 12.016 12.014 10/20/2008 Hydraulic Unit H.U. Elev MEW 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J3 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 4 Friction Headloss (ft) 3.373 3.056 Minor Losses (ft) 0.337 0.306 Line Velocity (ft/s) 2.27 2.16 J3 to J4 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 • 5 Friction Headloss (ft) 0.503 0.620 Minor Losses (ft) 0.050 0.062 Line Velocity (ft/s) 1.11 1.24 J4 to 1 B-SM3 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 0.071 0.231 Minor Losses (ft) 0.007 0.023 Line Velocity (ft/s) 1.01 1.91 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold 46 Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold ; Himi Feed Manifold to Bottom Lateral Headloss (ft) in manifold' Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 0.769 2.542 9 Total Segment Headloss (ft) = Friction + Elev. -18.231 -23.458 Return Force Main Friction Losses 1 B-RM3 to J4 Segment Flow Rate (gpm) Line Length (ft) 50 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) Line Velocity (ft/s) 0.394 0.66 J4 to J1 Segment Flow Rate (gpm) Line Length (ft) 620 Line Size ID (in.) f Minor Losses (ft) 0.993 Friction Headloss (ft) Line Velocity (ft/s) 1.28 J1 to WWTF ,r",• Segment Flow Rate (gpm) �� SEEM Line Length (ft) 1100 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 4.611 Line Velocity (ft/s) 2.15 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d4 87) (Q/C)''85 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 1B-10 No. Laterals: 4 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 1992 Design Flow m): 10.29 u 10.3 Return Manifoldw 2.0 Run Run Lateral Run Elev. Lenath Req'd Flush Rate (Qpm) : 19.5 13 14 2 15 $4 16 5.4 17 g 18 • is 20 4 21 cs Application Flow (gpm): 10.3 Min. Design Scour Vel. ft/s) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour (gpm)' 2.30 Req'd Flush Rate (Qpm) : 19.5 Dose Lateral Lateral Min. Flush nitters Flow (gpm)' Length (ft)_ Dose (gpm) Flow (gpm) 73 0.8 604 3.1 5.4 73 0.8 76 0.8 80 0.8 74 0.8 600 3.1 5.4 72 0.7 73 0.8 81 0.8 96 1.0 386 2.0 4.3 97 1.0 99 1.0 402 2.1 4.4 Brooks Engineering Associates, PA p.1 of 3 64 11/18/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 1B-10 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 2 Total Segment Headloss (ft) = Friction + Elev. 0.016 0.014 12.016 12.014 Friction Headloss (ft) 4.611 Line Velocity (ft/s) 2.15 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 11/18/2008 61111 Hydraulic Unit H.U. Elev �j 3 Headloss from H.0 (ft.)3li Supply Force Main Friction Losses H.U. to J3 Segment Flow Rate (gpm) Line Length (ft) 9yy Line Size ID (in)sii ( 4 Friction Headloss (ft) 3.373 3.056 Minor Losses (ft) 0.337 0.306 Line Velocity (ftls) 2.27 2.16 J3 to J4 Segment Flow Rate (gpm) NEEMENEMEM Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 0.503 0.620 Minor Losses (ft) 0.050 0.062 Line Velocity (ft/s) 1.11 1.24 J4 to 1 B-SM3 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 0.071 0.231 Minor Losses (ft) 0.007 0.023 Line Velocity (ft/s) 1.01 1.91 Supply Force Main Elevation Delta Manifold 46 7 Elevation (ft) from H.U. to Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold Feed Manifold to Bottom Lateral Headloss (ft) in manifold" Line Length (ft) from Supply Manifold to Bottom Feed Lateral' Elevation (ft) from Manifold to Bottom Feed Lateral' Line Size ID (in)s Friction Headloss (ft) from Manifold to Bottom Feed Lateral' 0.533 2.117 9 Total Segment Headloss (ft) = Friction + Elev. -10.467 -15.883 Return Force Main Friction Losses 1 B-RM3 to J4 Segment Flow Rate (gpm) Yiil Line Length (ft) 50 Line Size ID (in.) Minor Losses from Check Valve ( Friction Headloss (ft) 0.394 Line Velocity (ft/s) 0.88 J4 to J1 Segment Flow Rate (gpm) Line Length (ft) 620 t` Line Size ID (in.) Minor Losses (ft) Friction' Headloss (ft) 0.993 Line Velocity (ft/s) 1.28 J1 to WWTF Segment Flow Rate (gpm) Line Length (ft) 7100 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 4.611 Line Velocity (ft/s) 2.15 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 11/18/2008 61111 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 1B-10 295.5 51.2 Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 162.9 70.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 337,1 145.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 434.1 187.9 Flush Pressure at backwash tank for Min. Flush Rate 430.7 186.5 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) 295.5 51.2 Pressure at manifold before PRV 469.6 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 127.1 ° 55.0` ` Low Pressure Check: P at Min. Flush Flow at Return Manifold 39.1 16.9 Flush Pressure at WWTF for Min. Flush Rate 87.1 37.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 130.5 56.5 Brooks Engineering Associates, PA p.3 of 3 11/18/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 2A-12 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE inputs jDose Flow (a)l Flush Flow b 5 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unit' Line length (ft) from P.T. to H.0 .5 ;gym Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 0.017 0.016 2 Total Segment Headloss (ft) = Friction + Elev. 12.017 12.016 Hydraulic Unit �+ H.U. Elev Mom 3 Headloss from KLI (ft.)3 MEMEMN Supply Force Main Friction Losses H.U. to J1 Segment Flow Rate (gpm) REMERMIMEMN Line Length (ft) Line Size ID (in)' 4 Friction Headloss (ft) 3.301 3.107 Minor Losses (ft) 0.330 0.311 Line Velocity (ft/s) 2.37 2.29 A to J7 Segment Flow Rate (gpm) Wr Line Length (ft) Line Size ID (in)' 5 Friction Headloss (ft) 6.919 6.512 Minor Losses (ft) 0.692 0.651 Line Velocity (ft/s) 2.37 2.29 J7 to 2A-SM1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)' 6 Friction Headloss (ft) 0.929 2.882 Minor Losses (ft) 0.093 0.288 Line Velocity (ft/s) 2.54 4.69 Supply Force Main Elevation Delta Manifold 151 0 7 Elevation (ft) from H.U. to Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold' Feed Manifold to Bottom Lateral Headloss (ft) in manifold" Line Length (ft) from Supply Manifold to Bottom Feed Lateral' Elevation (ft) from Manifold to Bottom Feed Lateral' Line Size ID (in)' Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 1.854 5.175 9 Total Segment Headloss (ft) = Friction + Elev. -30.146 -33.825 n Return Force Main Friction Losses 2A-RM1 to J7 Segment Flow Rate (gpm)H t. d Line Length (ft) 162 Line Size ID (in.)'t Minor Losses from Check Valve Friction Headloss (ft) 2.551 Line Velocity (ft/s) 3.70 J7 to J1 Segment Flow Rate (gpm) Line Length (ft) 2096 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 8.786 Line Velocity (ft/s) 2.15 J1 to NM(fF f Segment Flow Rate (gpm) ( } Line Length (ft) 1000 t Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 4.192 Line Velocity (ft/s) 2.15 Return Line Elevation Delta Elevation (ft) from Return Manifold to VWVfF i Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 2A-12 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 276.5 119.7 Low Pressure Check: P at Min. Flush Flow at Return Manifold 222.5 96.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 339.9 147.1 Flush Pressure at backwash tank for Min. Flush Rate 515.0 222.9 PRV NEEDED? YES ZONE SUMMARY WI PRV Pressure loss required (high pressure - 60 psi) Feet 201.3 PSI 51.2 Pressure at manifold before PRV 460.7 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 104.0 45.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 16.0 6.9 Flush Pressure at WWTF for Min. Flush Rate 158.4 68.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 127.1 55.0 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 L/ d°.a�) (Q/C)1.as 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 E uals the Required Flush Rate plus the Dose Flow Rate Zone: 3A -13 - No. Laterals: 14 Tubing: ID in 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 6586 Design Flow (gpm): 34.03 Supply Manifold Elev. 34.0 3A-SM2 2.0 Return Manifold Elev. 0.787 3A-RM2 2.30 Run Run Lateral Run Elev. Length # Emitte 1 1 5.3 150 2 149 2 3 446 147 4 1.1 145 3 5 113 6 2.2 110 4 7 108 8 1.1 109 5 9 4.6 110 10 111 6 11 450 112 12 1.2 113 7 13 114 14 2.4 115 8 15 115 16 1.2 115 9 17 4.7 116 18 117 10 19 466 118 20 1.2 119 11 21 116 22 2.4 113 12 23 109 24 1.2 99 13 25 4.7 92 26 87 14 27 416 45 28 1.0 40 29 38 30 1.8 32 31 30 32 0.5 24 33 5.1 23 34 16 35 15 Application Flow m): 34.0 Min. Design Scour Vel. (fUs) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour (gpm)6 2.30 Re 'd Flush Rate m)8: 66.2 Dose -s Flow (gpm)7 Lateral Length (ft) Lateral Dose (gpm) Min. Flush Flow (gpm) 1.6 598 3.1 5.4 1.5 1.5 584 3.0 5.3 1.5 1.2 446 2.3 4.6 1.1 1.1 434 2.2 4.5 1.1 1.1 442 2.3 4.6 1.1 1.2 450 2.3 4.6 1.2 1.2 458 2.4 4.7 1.2 1.2 460 2.4 4.7 1.2 1.2 466 2.4 4.7 1.2 1.2 474 2.4 4.7 1.2 1.2 458 2.4 4.7 1.2 1.1 416 2.1 4.4 1.0 1.0 358 1.8 4.1 0.9 0.5 542 2.8 5.1 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.1 34.0 34.0 66,2 Brooks Engineering Associates, PA p.1 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 3A-13 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unit' Line length (ft) from P.T. to H.0 .5 Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev Mom 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J6 Segment Flow Rate (gpm) Kfflmmmfflr7 r xri�.1r7:l+r..�Prr, Line Length (ft) Line Size ID (in)' 4 Friction Headloss (ft) 1.976 6.547 Minor Losses (ft) 0.198 0.655 Line Velocity (ft/s) 1.21 2.32 J6 to 2A -SMI Segment Flow Rate (gpm) $r Line Length (ft) Line Size ID (in)' 5 Friction Headloss (ft) 0.161 0.552 Minor Losses (ft) 0.016 0.055 Line Velocity (ft/s) 0.42 0.82 2A-SM1 to 3A-SM2 Segment Flow Rate (gpm)' Line Length (ft) Line Size ID (in)' 6 Friction Headloss (ft) 0.663 2.276 Minor Losses (ft) 0.066 0.228 Line Velocity (fUs) 1.48 2.87 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold 109 Drip System Headloss Results s: 8 Total Headloss (ft.) in drip system from supply manifold to return manifold" Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Lateral' Elevation (ft) from Manifold to Bottom Feed Lateral' _ Line Size ID (in)' Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 0.000 0.000 9 Total Segment Headloss (ft) = Friction + Elev. -30.000 -37.000 Return Force Main Friction Losses 3A 0110 to 2A-RM1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) Line Velocity (ft/s) 2A-RM1 to J6 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) Line Velocity (ft/s) J6 to WWTF Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) Line Velocity (fUs) Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF f� Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 3A-13 Feet 252.3 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 231.4 100.2 Low Pressure Check: P at Min. Flush Flow at Return Manifold 267.6 115.8 High Pressure Check: Emitter P on Bottom Lateral at. Dose Flow 390.9 169.2 Flush Pressure at backwash tank for Min. Flush Rate 477.7 206.8 PRV NEEDED? YES ZONE SUMMARY W1 PRV Pressure loss required (high pressure - 60 psi) Feet 252.3 PSI 51.2 Pressure at manifold before PRV 469.9 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 104.0 45.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 16.0 6.9 Flush Pressure at WWTF for Min. Flush Rate 117.7 51.0 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 127.0 55.0 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U da.a7) (Q/C),.as 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 E uals the Required Flush Rate plus the Dose Flow Rate Zone: 28-14 No. Laterals: 9 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 4530 Design Flow (gpm): 23.41 Supply Manifold Elev. 23.4 26-SM1 Return Manifold Elev. Tubing ID in 2B-RM1 Run Run Lateral Run Elev. Length 1 1 2 3 4 5 6 7 8 2 9 10 11 12 3 13 14 452 4 15 4.6 16 5 17 18 6 19 20 7 21 22 436 8 23 4.6 24 9 25 13 16 20 24 28 33 38 45 53 60 68 89 129 134 134 134 135 136 137 137 138 138 139 139 Application Flow pm): 23.4 Min. Design Scour Vel. ft/s) 2.0 Tubing ID in 0.787 Residual Flow for Scourg m)6 2.30 Reo'd Flush Rate (gprnf: 42.5 Dose Flow (gpm)' Lateral Length (ft) Lateral Dose (gpm) Min. Flush Flow (gpm) 0.1 362 0.2 2.5 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.5 452 2.3 4.6 0.5 0.6 0.7 0.9 436 2.3 4.6 1.3 1.4 536 2.8 5.1 1.4 1.4 538 2.8 5.1 1.4 1.4 546 2.8 5.1 1.4 1.4 550 2.8 5.1 1.4 1.4 554 2.9 5.2 1.4 1.4 556 2.9 5.2 1.4 23.4 21.8 42.5 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 2B-14 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U' Line Size ID (in) Friction Headloss (ft) from Pump to H.U.Z 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev 3 Headloss from H.0 (ftJ9 too Supply Force Main Friction Losses H.U. to J1 Segment Flow Rate (gpm) j Line Length (ft) - t` Line Size ID (in)5 4 Friction Headloss (ft) 3.301 3.178 Minor Losses (ft) 0.330 0.318 Line Velocity (ft/s) 2.37 2.32 J1 to J7 Segment Flow Rate (gpm)1` Line Length (ft) Line Size ID (in)5 6.919 6.662 5 Friction Headloss ft O Minor Losses (ft) 0.692 0.666 Line Velocity (ft/s) 2.37 2.32 J7 to 26-SM7 � � ,. Segment Flow Rate (gpm)!��+ Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 0.342 1.303 Minor Losses (ft) 0.034 0.130 Line Velocity (ft/s) 1.12 2.32 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold 179 Drip System Headloss Results r 8 Total Headloss (ft.) in drip system from supply manifold to return manifold' Feed Manifold to Bottom Lateral Headloss (ft) in manifold' Line Length (ft) from Supply Manifold to Bottom Feed Laterals i Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 V Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.578 4.726 9 Total Segment Headloss (ft) = Friction + Elev. -22.422 -26.274 ' Return Force Main Friction Losses 2B -RMI to J7 Segment Flow Rate (gpm);t i Line Length (ft) 410 Line Size ID (in.) Minor Losses from Check Valve 1.551 Friction Headloss (ft) 2.03 Line Velocity (ft/s) 2.03 J7 to J1 Segment Flow Rate (gpm) Line Length (ft) Wb Line Size ID (in.) Minor Losses (ft) 928 Friction Headloss (ft) 2.03 Line Velocity (ft/s) 2.03 J1 to WWTF r Segment Flow Rate (gpm) Line Length (ft) 1000 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 3.782 Line Velocity (ft/s) 2.03 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 213-14 Feet 166.2 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 301.2 130.4 Low Pressure Check: P at Min. Flush Flow at Return Manifold 198.8 86.1 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 304.8 131.9 Flush Pressure at backwash tank for Min. Flush Rate 543.6 235.3 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 166.2 PSI 51.2 Pressure at manifold before PRV 461.4 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 104.0 45.0 ." Low Pressure Check: P at Min. Flush Flow at Return Manifold 18.0 7.8 Flush Pressure at WWTF for Min. Flush Rate 184.7 80.0 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 119.4 51.7 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ftts is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d"'87) (Q/C)t ee 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 2A-15 No. Laterals: 22 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 11548 Design Flow m): 59.66 Supply Manifold Elev. 2A-SM1 Return Manifold Elev. 2A-RM1 Run Run r l �A I Brooks Engineering Associates, PA k 1 1 2 2 3 4 3 5 6 4 7 8 5 9 10 6 11 12 7 13 14 8 15 16 9 17 18 10 19 20 11 21 22 12 23 24 13 25 26 14 27 28 15 29 30 16 31 32 17 33 34 18 35 36 19 37 38 20 39 40 21 IM 22 45 46 47 Application Flow (g m): 59.7 Min. Design Scour Vel. (ft/s) 2.0 Tubing ID in 0.787 Residual Flow for Scour ( m)6 2.30 Req'd Flush Rate (gpm)8: 110.3 Dose Emitters Flow (gpm)' Lateral Length (ft) Lateral Dose(Qpm) Min. Flush Flow (gpm)' 139 1.4 556 2.9 5,2 139 1.4 139 1.4 554 2.9 5.2 138 1.4 138 1.4 550 2.8 5.1 137 1.4 137 1.4 548 2.8 5.1 137 1.4 137 1.4 548 2.8 5.1 137 1.4 137 1.4 548 2.8 5.1 137 1.4 137 1.4 548 2.8 5.1 137 1.4 137 1.4 548 2.8 5.1 137 1.4 138 1.4 552 2.9 5.2 138 1.4 138 1.4 554 2.9 5.2 139 1.4 139 1.4 554 2.9 5.2 138 1.4 138 1.4 552 2.9 5.2 138 1.4 138 1.4 550 2.8 5.1 137 1.4 137 1.4 546 2.8 5.1 136 1.4 134 1.4 534 2.8 5.1 133 1.4 132 1.4 528 2.7 5.0 132 1.4 131 1.4 524 2.7 5.0 131 1.4 131 1.4 490 2.5 4.8 114 1.2 110 1.1 426 2.2 4.5 103 1.1 99 1.0 392 2.0 4.3 97 1.0 87 0.9 606 3,1 5.4 73 0.8 69 0.7 74 0.8 76 0.8 340 1.8 4.1 48 0.5 27 0.3 19 0.2 5774 59.7 59.7 110.3 p.1 of 3 10/20/2008 Friction Headloss (ft) 4.192 Line Velocity (ft/s) 2.15 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF [FRI 10/20/2008 Brooks Engineering Associates, PA p.2 of 3 i PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM €ice ZONE 2A•15 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE Inputs Dose Flow a) Flush Flow b) 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.U. 0.017 0.016 2 Total Segment Headloss (ft) = Friction + Elev. 12.017 12.016 Irk Hydraulic Unit H.U. Elev FBIM I" 3 Headloss from H.0 (ft.)s `c Supply Force Main Friction Losses H.U. to J1 Segment Flow Rate (gpm) !. Line Length (ft) l Line Size ID (in)' 4 Friction Headloss (ft) 3.301 3.107 Minor Losses (ft) 0.330 0.311 Line Velocity (ft/s) 2.37 2.29 J1 to J7 M.. MM Segment Flow Rate (gpm) "'° Line Length (ft) Line Size ID (in)6 5 Friction Headloss (ft) 6.919 6.512 Minor Losses (ft) 0.692 0.651 Line Velocity (fUs) 2.37 2.29 J7 to 2A -SMI Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 0.165 0.513 Minor Losses (ft) 0.017 0.051 Line Velocity (ft/s) 1.24 2.29 Supply Force Main Elevation Delta H.U. to Manifold 151 P 7 Elevation (ft) from Drip System Headloss Results x 8 Total Headloss (ft.) in drip system from supply manifold to return manifold° Feed Manifold to Bottom Lateral Headloss (ft) in manifold" Line Length (ft) from Supply Manifold to Bottom Feed Laterals UAW Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)s Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 0.648 3.049 9 Total Segment Headloss (ft) =Friction + Elev. -51.352 -55.951 t Return Force Main Friction Losses 2A-RM1 to J7 Segment Flow Rate (gpm) • - �'r)f Line Length (ft) 165 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 0.692 Line Velocity (ft/s) 2.15 J7 to J1 1 Segment Flow Rate (gpm) Line Length (ft) 2096 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 8.786 Line Velocity (ft/s) 2.15 J1 to WWTF Segment Flow Rate (gpm)- Line Length (ft) 1000 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 4.192 Line Velocity (ft/s) 2.15 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF [FRI 10/20/2008 Brooks Engineering Associates, PA p.2 of 3 i PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 2A-15 223.3 51.2 Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 275.1 119.1 Low Pressure Check: P at Min. Flush Flow at Return Manifold 223.9 96.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 361.9 156.7 Flush Pressure at backwash tank for Min. Flush Rate 518.2 224.3 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) 223.3 51.2 Pressure at manifold before PRV 461.6 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 104.0 ` 4&110' Low Pressure Check: P at Min. Flush Flow at Return Manifold 15.0 6.5 Flush Pressure at VWVfF for Min. Flush Rate 159.3 69.0 Hiah Pressure Check: Emitter P on Bottom Lateral at Dose Flow 148.3 64.2 Brooks Engineering Associates, PA P.3of3 10/20/2008 =mal PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: I ! Brooks Engineering Associates, PA p.1 of 3 10/20/2008 all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d4'87) (ojC)1.ee 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from 0 = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 2B-16 I ADolication Flow m : 67.8 No. Laterals: 26 Min. Design Scour Vel. (fVs) 2.0 Tubing: ID in 0.79 Tubing ID in 0.787 Emitters h : 0.62 Residual Flow forScour apm)s 2.30 Emitter Spacing ft 2 Re 'd Flush Rate ( m B: 127.6 Total Footage: 13132 Design Flow m : 67.85 Supply Manifold Elev._ 28-SM1 Return Manifold Elev. 2B -RMI Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Len th # Emitters Flow m)r Length (ft) Dose pm) Flow pm)' 1 1 89 0.9 368 1.9 4.2 2 95 1.0 2 3 95 1.0 384 2.0 4.3 4 97 1.0 3 5 100 1.0 408 2.1 4.4 6 104 1.1 4 7 110 1.1 448 2.3 4.6 8 114 1.2 5 9 116 1.2 470 2.4 4.7 10 119 1.2 6 11 122 1.3 494 2.6 4.9 12 125 1.3 7 13 128 1.3 516 2.7 5.0 14 130 1.3 8 15 133 1.4 536 2.8 5.1 16 135 1.4 9 17 139 1.4 562 2.9 5.2 18 142 1.5 10 19 144 1.5 582 3.0 5.3 20 147 1.5 11 21 149 1.5 600 3.1 5.4 22 .151 1.6 12 23 151 1.6 606 3.1 5.4 24 152. 1.6 13 25 152 1.6 608 3.1 5.4 26 152 1.6 14 27 150 1.6 598 3.1 5.4 28 149 1.5 15 29 147 1.5 584 3.0 5.3 30 145 1.5 16 31 143 1.5 568 2.9 5.2 32 141 1.5 17 33 139 1.4 546 2.8 5.1 34 134 1.4 18 35 132 1.4 522 2.7 5.0 36 129 1.3 19 37 125 1.3 496 2.6 4.9 38 123 1.3 20 39 120 1.2 474 2.4 4.7 40 117 1.2 21 41 114 1.2 452 2.3 4.6 42 112 1.2 22 43 110 1.1 434 2.2 4.5 44 107 1.1 23 45 102 1.1 396 2.0 4.3 46 96 1.0 24 47 93 1.0 366 1.9 4.2 48 90 0.9 25 81 0.8 540 2.8 5.1 69 0.7 63 0.7 57 0.6 26 53 51 0.5 574 3.0 5.3 54 48 0.5 55 42 0.4 56 38 0.4 57 30 0.3 58 30 0.3 59 24 0.2 60 24 0.2 13132 6566 67.8 67.8 127.6 I ! Brooks Engineering Associates, PA p.1 of 3 10/20/2008 p.2 of 3 10/20/2008 Brooks Engineering Associates, PA PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 28-16 TOP LOAD MANIFOLD PRESSURE ANALYSIS k INPUT LINE Inputs I Dose Flow a Flush Flow b 1 Operating Head from Pump Curve' i Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.U? 0.017 0.016 rias 2 Total Segment Headloss (ft) = Friction + Elev.. 12.017 12.016 Hydraulic Unit _I H.U. Elev 3 Headloss from H.0 (ft.)s F Supply Force Main Friction Losses H.U. to J1 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)" 4 Friction Headloss (ft) 3.301 3.178 Minor Losses (ft) 0.330 0.318 - Line Velocity (ft/s) 2.37 2.32 J7 to J7 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)s fel 5 Friction Headloss (ft) 6.919 6.662 Minor Losses (ft) 0.692 0.666 Line Velocity (ft/s) 2.37 2.32 J7 to 2B-SM1 Segment Flow Rate (gpm) l- yt=8 Line Length (ft) Line Size ID (in)s 6 Friction Headloss (H) 0.342 1.303 Minor Losses (ft) 0.034 0.130 2.32 Line Velocity (ft/s) 1.12 Supply Force Main Elevation Delta 179 %q 7 Elevation (ft) from H.U. to Manifold Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold Feed Manifold to Bottom Lateral fq Headloss (ft) in manifold" Line Length (ft) from Supply Manifoldto Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateral' 1.708 4.940 9 Total Segment Headloss (ft) = Friction + Elev. -53.292 -57.060 Return Force Main Friction Losses 2B-RM1to J7 Segment Flow Rate (gpm) Line Length (ft)Met 410 Line Size ID (in.) Minor Losses from Check Valve - - .Friction Headloss (ft) 1.551 Line Velocity (ft/s) 2.03 J7 to J1 Segment Flow Rate (gpm) Line Length (ft) 2096 mei Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 7 928 Line Velocity (ft/s) 2.03 J1 to WWTF Segment Flow Rate (gpm) - EM Line Length (ft) 1000 Line Size ID (in.) la" Minor Losses (ft) 3.782 Friction Headloss (ft) Line Velocity (ft/s) 2.03 Return Line Elevation Delta _ Elevation (ft) from Return Manifold to W WTF p.2 of 3 10/20/2008 Brooks Engineering Associates, PA Brooks Engineering Associates, PA PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 2B-16 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 305.2 132.1 Low Pressure Check: P at Min. Flush Flow at Return Manifold 194.8 84.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 335.7 145.3 Flush Pressure at backwash tank for Min. Flush Rate 539.6 233.6 PRV NEEDED? YES ZONE SUMMARY W1 PRV Feet PSI Pressure loss required (high pressure - 60 psi) 197.1 51.2 Pressure at manifold before PRV 461.4 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 104.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 14.0 6.0 Flush Pressure atWWTF for Min. Flush Rate 180.7 78.2 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 150.2 65.0 p.3 of 3 10/20/2008 I Pi PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d4.87) (Q/C)1.85 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 4A-17 No. Laterals: 7 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 3664 Design Flow (gpm): 18.93 Supply Manifold Elev. 4A-SM1 Return Manifold Elev. 4A-RM1 Run Run 1 1 2, 3 4 2 3 9 10 4 11 12 5 13 14 6 15 16 7 Brooks Engineering Associates, PA 3664 Application Flow (gpm): 18.9 Min. Desi n Scour Vel. (ft/s) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour (gpm)6 2.30 Re 'd Flush Rate (gpm)': 35.0 Dose mitters Flow (gpm)' Lateral Length (ft) Lateral Dose (gpm) Min. Flush Flow (gpm) 55 0.6 500 2.6 4.9 61 0.6 65 0.7 69 0.7 71 0.7 598 3.1 5.4 68 0.7 70 0.7 90 0.9 102 1.1 418 2.2 4.5 107 1.1 113 1.2 466 2.4 4.7 120 1.2 131 1.4 538 2.8 5.1 138 1.4 130 1.3 548 2.8 5.1 144 1.5 104 1.1 596 3.1 5.4 66 0.7 68 0.7 60 0.6 1832 18.9 18.9 35.0 p.1 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 4A-17 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses Inputs IDose Flow a Flush Flow (b 00-10011 0.007 0.016 12.007 12.016 H.U. tc J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 4 Friction Headloss (ft) 5.061 10.970 Minor Losses (ft) 0.506 1.097 Line Velocity (f /s) 1.51 2.30 J20 to J11 Segment flow Rate (gpm) Line Length (ft) Line Size ID (in)s 5 Friction Headloss (ft) 1.478 3.203 Minor Losses (ft) 0.148 0.320 Line Velocity (ft/s) 1.37 2.07 J11 to 4A -SMI Segment Flow Rate (gpm) Line Length (ft) Line SizeID (in)5 6 Friction Headloss (ft) 0.346 1.112 Minor Losses (ft) 0.035 0.111 Line Velocity (ft/s) 1.24 2.34 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold 229 Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed LateralZ 1.831 5.139 9 Total Segment Headloss (ft) = Friction + Elev. -12.169 -15.861 Return Force Main Friction Losses 4A-RM1 to J11 Segment Flow Rate (gpm) — Line Length (ft) 165 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 1.871 Line Velocity (ft/s) 2.41 All to J20 Segment Flow Rate (gpm) Line Length (ft) 1314 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 6.072 Line Velocity (ft1s) 2.26 J20 to WWTF -- Segment Flow Rate (gpm) Line Length (ft) 3503 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 16.186 Line Velocity (ft/s) 2.26 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF 17 Brooks Engineering Associates, PA p.2 of 3 I 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 4A-17 112.0 51.2 Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 357.3 154.7 Low Pressure Check: P at Min. Flush Flow at Return Manifold 141.7 61.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 250.6 108.5 Flush Pressure at backwash tank for Min. Flush Rate 578.2 250.3 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) 112.0 51.2 Pressure at manifold before PRV 467.4 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 138.6 &0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 50.6 21.9 Flush Pressure at WWTF for Min. Flush Rate 259.5 112.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 143.8 62.2 Brooks Engineering Associates, PA p.3of3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 L/ da.e7) (Q/C)t.ea 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 4A-18 No. Laterals: 4 Tubing: ID in 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 1872 Design Flow (gpm): 9.67 Supply Manifold Elev. 4A-SM1 Return Manifold Elev. 4A-RM1 Run Run 2 3 4 8 9 Application Flow (gpm): 9.7 Min. Design Scour Vel. ft/s) 2.0 TubingID in 0.787 Residual Flow for Scour (gpm)6 2.30 Req'd Flush Rate (gpm)e: 18.9 Dose Lateral Lateral Min. Flush mitters Flow (gpm)' Length (ft) Dose (gpm) Flow (gpm) 24 0.2 584 3.0 5.3 27 0.3 27 0.3 65 0.7 63 0.7 86 0.9 104 1.1 408 2.1 4.4 100 1.0 97 1.0 380 2.0 4.3 93 1.0 89 0.9 500 2.6 4.9 79 0.8 46 0.5 36 0.4 936 9.7 9.7 18.9 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 (°; I PRESSURE ANALYSIS I TOP FEED MANIFOLD SYSTEM ZONE 4A-18 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 .2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit i H.U. EleElm v 3 Headloss from H.0 (ft.toll )3 Supply Force Main Friction Losses J20 H.U. to Segment Flow Rate (gpm)3 if. Line Length (ft) Line Size ID (in)s 4 Friction Headloss (ft) 5.061 10.970 Minor Losses (ft) 0.506 1.097 Line Velocity (ft/s) 1.51 2.30 J20 to A 1 Segment Flow Rate (gpm) YS Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 1.478 3.203 Minor Losses (ft) 0.148 0.320 Line Velocity (ft/s) 1.37 2.07 A I to 4A -SMI Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 0.346 1.112 Minor Losses (ft) 0.035 0.111 Line Velocity (ft/s) 1.24 2.34 Supply Force Main Elevation Delta Manifold 229 7 Elevation (ft) from H.U. to Drip System Headloss Results r 8 Total Headloss (ft.) in drip system from supply manifold to return manifold" ?). Feed Manifold to Bottom Lateral Headloss (ft) in manifold" Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.323 4.297 9 Total Segment Headloss (ft) = Friction + Elev. -12.677 -16.703 Return Force Main Friction Losses 4A-RM1 to A 1 Segment Flow Rate (gpm) Line Length (ft) 165 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 1.871 Line Velocity (ft/s) 2.41 J11 to J20 Segment Flow Rate (gpm) M om Line Length (ft) 1314 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 6.072 Line Velocity (ft/s) 2.26 J20 to WWTF Segment Flow Rate (gpm) Line Length (ft) 3503 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 16.186 Line Velocity (ft/s) 2.26 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 4A-18 Feet 112.5 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 352.3 152.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 146.7 63.5 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 251.1 108.7 Flush Pressure at backwash tank for Min. Flush Rate 583.2 252.4 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 112.5 PSI 51.2 Pressure at manifold before PRV 467.4 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 138.6 60.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 55.6 24.1 Flush Pressure at WWTF for Min. Flush Rate 264.5 114.5 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 144.3 62.5 10/20/2008 Brooks Engineering Associates, PA p.3 of 3 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 fl/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d"-") (Q/C)' " 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 4A-20 No. Laterals: 8 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 4288 Design Flow (gpm): 22.15 Supply Manifold Elev. 4A-SM3 Brooks Engineering Associates, PA Application Flow pm): 22.2 Min. Design Scour Vel. (fUs) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour (gpm)6 2.30 Req'd Flush Rate (gpm)8: 40.6 P.1 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 4A-20 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unit' Line length (ft) from P.T. to H.0 .5 Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev OEM 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses Jnn Inputs IDose Flow a Flush Flow b) 0.007 0.016 12.007 12.016 H.U. to Segment Flow Rate (gpm) (,1 Line Length (ft) Line Size ID (in)5 4 Friction Headloss (ft) 5.061 10.970 Minor Losses (ft) 0.506 1.097 Line Velocity (ft/s) 1.51 2.30 J20 to J13 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 2.733 5.924 Minor Losses (ft) 0.273 0.592 Line Velocity (ft/s) 1.37 2.07 J13 to 4A-SM3 Segment Flow Rate (gpm) ._. . Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 0.623 1.903 Minor Losses (ft) 0.062 0.190 Line Velocity (ft/s) 1.49 2.72 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold 292 Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold Feed Manifold to Bottom Lateral Headloss (ft) in manifold" Line Length (ft) from Supply Manifold to Bottom Feed Lateral' Elevation (ft) from Manifold to Bottom Feed Lateral' Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.675 4.886 9 Total Segment Headloss (ft) = Friction + Elev. -8.325 -12.114 Return Force Main Friction Losses 4A-RM3 to J13 Segment Flow Rate (gpm) Line Length (ft) 165 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 3.531 Line Velocity (ft/s) 2.90 J 13 to J20 Segment Flow Rate (gpm)=- Line Length (ft) 2430 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.228 Line Velocity (ft/s) 2.26 J20 to W WTF Segment Flow Rate (gpm) _ Line Length (ft) 3503 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 16.186 Line Velocity (ft/s) 2.26 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 4A-20 Feet 43.5 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 418.8 181.3 Low Pressure Check: P at Min. Flush Flow at Return Manifold 80.2 34.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 182.1 78.8 Flush Pressure at backwash tank for Min. Flush Rate 633.6 274.3 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 43.5 PSI 51.2 Pressure at manifold before PRV 465.7 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 138.6 60.0 ; Low Pressure Check: P at Min. Flush Flow at Return Manifold 55.6 24.1 Flush Pressure at WWTF for Min. Flush Rate 318.7 137.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 139.9 1 60.6 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes .& Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 L/ d4 87) (Q/C)1 ea 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 5A-23 No. Laterals: 11 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spading ft 2 Total Footage: 4784 Design Flow (gpm): 24.72 Supply Manifold Elev. 5A-SM2 Return Manifold Elev. 5A-RM2 Run Run Lateral Run Elev. Length 2 3 4 5 6 7 8 9 10 11 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 70 69 88 98 98 96 96 94 94 94 93 92 91 110 112 109 105 103 102 100 99 88 85 70 Application Flow (gpm): 24.7 Min. Design Scour Vel. (ft/s) 2.0 Tubing ID in 0.787 Residual Flow for Scour (gpm)s 2.30 Req'd Flush Rate (gpm): 50.0 Dose Flow (gpi 0.8 0.7 0.7 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.1 1.2 1.1 1.1 1.1 1.1 1.0 1.0 0.9 0.9 0.7 0.7 Lateral Lateral Min. Flush :ngth (ft) Dose (gpm) Flow (gpm) 600 3.1 5.4 392 2.0 4.3 384 2.0 4.3 376 1.9 4.2 374 1.9 4.2 366 1.9 4.2 444 2.3 4.6 428 2.2 4.5 410 2.1 4.4 398 2.1 4.4 612 3.2 5.5 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 1 " PRESSURE ANALYSIS 1 TOP FEED MANIFOLD SYSTEM ZONE 5A-23 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unit' Line length (ft) from P.T. to H.U' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 .2 2 Total Segment Headloss (ft) = Friction + Elev. m Brooks Engineering Associates, PA p.2 of 3 10/2012008 Hydraulic Unit r H.U. Elev MUM 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)s rA 4 Friction Headloss (ft) 10.507 9.784 Minor Losses (ft) 1.051 0.978 f Line Velocity (ft1s) 2.25 2.16 J20 to J15 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 6.678 6.218 Minor Losses (ft) 0.668 0.622 Line Velocity (ft/s) 2.03 1.95 J15 to 5A-SM2 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 0.391 1.348 c Minor Losses (ft) 0.039 0.135 Line Velocity (ft1s) 1.46 2.85 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold 276 Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold° Feed Manifold to Bottom Lateral Headloss (ft) in manifold° Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)' Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.923 5.286 9 Total Segment Headloss (ft) = Friction + Elev. -19.077 -22.714 Ott Retum Force Main Friction Losses 5A-RM2 to J15 Segment Flow Rate (gpm) Line Length (ft) 190 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 1.343 Line Velocity (ft/s) 2.40 J15 to J20 Segment Flow Rate (gpm) Line Length (ft) 2860 Line Size ID (in.) Minor Losses (ft) s Friction Headloss (ft) 13.215 Line Velocity (ft/s) 2.26 J20 to WWTF Segment Flow Rate (gpm) RMIMIM Line Length (ft) 3503 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 16.186 11 Line Velocity (ft/s) 2.26 Retum Line Elevation Delta Elevation (ft) from Retum Manifold to WWTF m Brooks Engineering Associates, PA p.2 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE SA -23 oy 1 ° I .Z Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 408.4 176.8 Low Pressure Check: P at Min. Flush Flow at Return Manifold 91.6 39.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 197.7 85.6 Flush Pressure at backwash tank for Min. Flush Rate 618.3 267.7 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) oy 1 ° I .Z Pressure at manifold before PRV 454.7 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 50.01 Low Pressure Check: P at Min. Flush Flow at Return Manifold 25.5 11.0 Flush Pressure at WWTF for Min. Flush Rate 277.8 120.2 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 127.6 55.2 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d487) (Q/C)185 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 5A-24 No. Laterals: 13 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 6418 Design Flow (gpm): 33.16 Ap lication Flow (gpm): 33.2 Min. Design Scour Vel. (ft/s) 2.0 Tubing ID in 0.787 Residual Flow for Scour (gpm)6 2.30 Rea'd Flush Rate (gpm)': 63.1 Supply Manifold Elev. 5A-SM2 Return Manifold Elev. 5A-RM2 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Length # Emitters Flow g m 7 Length (ft) Dose (gpm) Flow (gpm)8 1 1 132 1.4 526 2.7 5.0 2 131 1.4 2 3 130 1.3 518 2.7 5.0 4 129 1.3 3 5 128 1.3 508 2.6 4.9 6 126 1.3 4 7 125 1.3 496 2.6 4.9 8 123 1.3 5 9 122 1.3 484 2.5 4.8 10 120 1.2 6 11 119 1.2 472 2.4 4.7 12 117 1.2 7 13 116 1.2 462 2.4 4.7 14 115 1.2 8 15 113 1.2 450 2.3 4.6 16 112 1.2 9 17 110 1.1 436 2.3 4.6 18 108 1.1 10 19 107 1.1 426 2.2 4.5 20 106 1.1 11 21 104 1.1 408 2.1 4.4 22 100 1.0 12 23 81 0.8 626 3.2 5.5 24 79 0.8 25 77 0.8 26 76 0.8 13 27 78 0.8 606 3.1 5.4 28 77 0.8 29 75 0.8 30 73 0.8 3209 33.2 63.1 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE SA -24 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE I Inputs Dose Flow Wj Flush Flow b) 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Unit' Line length (ft) from P.T. to H.U' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 0.015 0.014 2 Total Segment Headloss (ft) = Friction + Elev. 12.015 12.014 Hydraulic Unit H.U. Elev NEW 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) _ Line Length (ft) Line Size ID (1n)s 4 Friction Headloss (ft) 10.507 9.784 Minor Losses (ft) 1.051 0.978 Line Velocity (ft/s) 2.25 2.16 J20 to J15 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)' 5 Friction Headloss (ft) 6.678 6.218 Minor Losses (ft) 0.668 0.622 Line Velocity (ft/s) 2.03 1.95 J15 to 5A-SM2 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)' 6 Friction Headloss (ft) 0.391 1.348 Minor Losses (ft) 0.039 0.135 Line Velocity (ft1s) 1.46 2.85 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold 276 Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold" Feed Manifold to Bottom Lateral Headloss (ft) in manifold" Line Length (ft) from Supply Manifold to Bottom Feed Lateral' Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)' Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.888 5.230 9 Total Segment Headloss (ft) = Friction + Elev. -35.112 -38.770 Return Force Main Friction Losses 5A-RM2 to J15 Segment Flow Rate (gpm). Line Length (ft) 190 Line Size ID(in.)' _. .. Minor Losses from Check Valve Friction Headloss (ft) 1.343 Line Velocity (ft/s) 2.40 J15 to J20 Segment Flow Rate (gpm) k' Line Length (ft) 2860 Line Size ID (in.) Minor Losses (ft) - I Friction Headloss (ft) 13.215 Line Velocity (ft/s) 2.26 J20 to WWTF Segment Flow Rate (gpm) ROW Line Length (ft) 3503 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 16.186 Line Velocity (ft/s) 2.26 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF ra Brooks Engineering Associates, PA p.2 of 3 c 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 6A-24 Feet 75.2 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 411.4 178.1 Low Pressure Check: P at Min. Flush Flow at Return Manifold 88.6 38.4 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 213.8 92.5 Flush Pressure at backwash tank for Min. Flush Rate 615.3 266.4 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 75.2 PSI 51.2 Pressure at manifold before PRV 454.7 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 50.0 " Low Pressure Check: P at Min. Flush Flow at Return Manifold 22.5 9.7 Flush Pressure at WWTF for Min. Flush Rate 274.8 116.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 143.6 62.2 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hr = (4.727 U d°'87) (Q/C)1.ae 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 5B-25 No. Laterals: 11 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 5986 Design Flow m): 30.93 Supply Manifold Elev. 30.9 58 -SMI 2.0 Return Manifold Elev. 0.787 5B-RM1 2.30 Req'd Flush Rate (gpm)8: Run Run 5.2 Lateral Run Elev. Len th # Emittt 1 1 iii 136 2 2.2 136 2 3 3.0 136 4 137 3 5 137 6 138 4 7 139 8 139 5 9 140 10 141 6 11 141 12 142 7 13 142 14 143 8 15 110 16 106 9 82 75 67 70 10 21 70 22 65 23 63 24 60 11 57 53 48 43 Mi In 41 5986 Application Flow (gpm): 30.9 Min. Design Scour Vel. (ftls) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour (gpm)8 2.30 Req'd Flush Rate (gpm)8: 56.2 Dose 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.1 1.1 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 Lateral Lateral Min. Flush snath (ft) Dose (qpm) Flow (gpm) 546 2.8 5.1 550 2.8 5.1 556 2.9 5.2 562 2.9 5.2 566 2.9 5.2 570 2.9 5.2 432 2.2 4.5 588 3.0 5.3 516 2.7 5.0 556 2.9 5.2 30.9 56.2 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 r PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE SB -25 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.0 .5 Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev now 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) a� tl e�mai,d��r rlau Line Length (ft) Line Size ID (in)5 4 Friction Headloss (ft) 10.507 8.787 Minor Losses (ft) 1.051 0.879 Line Velocity (ft1s) 2.25 2.04 J20 to J16 Segment Flow Rate (gpm) i Line Length (ft) Line Size ID (in)s 5 Friction Headloss (ft) 7.752 6.483 Minor Losses (ft) 0.775 0.648 Line Velocity (ft/s) 2.03 1.84 A 6 to 5B-SM1 Segment Flow Rate (gpm)$ �" & Line Length (ft) f` Line Size ID (In)5 6 Friction Headloss (ft) 0.359 1.054 Minor Losses (ft) 0.036 0.105 Line Velocity (ft/s) 1.39 2.50 Supply Force Main Elevation Delta H.U. to Manifold 268 7 Elevation (ft) from Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold __ Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)s Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.610 4.779 9 Total Segment Headloss (ft) = Friction + Elev. -31.390 -35.221 Return Force Main Friction Losses 5B-RM1 to A 6 Segment Flow Rate (gpm) Line Length (ft) 190 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 2.511 Line Velocity (ft/s) 2.93 J16 to J20 Segment Flow Rate (gpm) ,,`.;/ see,": ` Line Length (ft) 3320 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.262 Line Velocity (ft/s) 1.91 J20 to WWTF Segment Flow Rate (gpm) - - Line Length (ft) 3503 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.883 Line Velocity (ft/s) 1.91 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 i§ 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 513-25 Feet 78.3 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 396.3 171.6 Low Pressure Check: P at Min. Flush Flow at Return Manifold 103.7 44.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 216.9 93.9 Flush Pressure at backwash tank for Min, Flush Rate 620.5 268.6 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 78.3 PSI 51.2 Pressure at manifold before PRV 453.5 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 50.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 28.5 12.3 Flush Pressure at W WTF for Min. Flush Rate 278.8 120.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 139.9 60.6 Brooks Engineering Associates, PA p.3 of 3 10120/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U d4'$') (Q/C)' as 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 5B-26 No. Laterals: 8 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 4714 Design Flow g m : 24.36 Application Flow (gpm): 24.4 Min. Design Scour Vel. ft/s) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour (gpm s 2.30 Read Flush Rate ( m)': 42.8 Supply Manifold Elev. 5B-SM1 Return Manifold Elev. 5B-RM1 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Length # Emitters Flow gpm' Length (ft) Dose ( m) Flow gpm 1 1 39 0.4 574 3.0 5.3 2 45 0.5 3 49 0.5 4 50 0.5 5 51 0.5 6 53 0.5 2 76 0.8 604 3.1 5.4 76 0.8 75 0.8 75 0.8 3 11 74 0.8 590 3.0 5.3 12 74 0.8 13 73 0.8 14 74 0.8 4 75 0.8 600 3.1 5.4 75 0.8 75 0.8 75 0.8 5 19 75 0.8 594 3.1 5.4 20 74 0.8 21 74 0.8 22 74 0.8 6 75 0.8 598 3.1 5.4 75 0.8 75 0.8 74 0.8 7 27 75 0.8 594 3.1 5.4 28 74 0.8 29 74 0.8 30 74 0.8 8 71 0.7 560 2.9 5.2 71 0.7 70 0.7 fi 68 0.7 4714 2357 24.4 24.4 42.8 Brooks Engineering Associates, PA p.1 of 3 10120/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM q ZONE 5B-26 TOP LOAD MANIFOLD PRESSURE ANALYSIS .1 INPUT LINE inputs Dose Flow (a) Flush Flow b Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size 1D (in) Friction Headloss (ft) from Pump to H.0 2 0.015 0.013 2 Total Segment Headloss (ft) = Friction + Elev. 12.015 12.013 Hydraulic Unit H.U. Elev i 3 Headloss from H.0 (ft.)3 ht Supply Force Main Friction Losses H.U. to J20 j Segment Flow Rate (gpm) Line Length (ft) `.. Line Size ID (1n)s L,u6 4 Friction Headloss (ft) 10.507 8.787 Minor Losses (ft) 1.051 0.879 r� Line Velocity (ft/s) 2.25 2.04 J20 to J16 Segment Flow Rate (gpm) Line Length (ft) KNOMM Line Size ID (in)6 _ 5 Friction Headloss (ft) 7.752 6.483 Minor Losses (ft) 0.775 0.648 w Line Velocity (ft/s) 2.03 1.84 J16 to 5B-SM1 Segment Flow Rate (gpm) g� Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 0.359 1.054 Minor Losses (ft) 0.036 0.105 Line Velocity (ft/s) 1.39 2.50 Supply Force Main Elevation Delta i 7 Elevation (ft) from H.U. to Manifold 268 Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold _ Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Laterals r-§ Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (1n)5 �� Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 1.631 4.815 9 Total Segment Headloss (ft) = Friction + Elev. -28.369 -32.185 Return Force Main Friction Losses 5B-RM1 to J16 Segment Flow Rate (gpm) Line Length (ft) 190 Line Size ID (in.) Minor Losses from Check Valve rq% Friction Headloss (ft) 2.511 Line Velocity (ft/s) 2.93 J16 to J20 Segment Flow Rate (gpm) Line Length (ft) 3320 In" Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.262 Line Velocity (ft/s) 1.91 J20 to WWfF Segment Flow Rate (gpm) Line Length (ft) 3503 9 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.883 Line Velocity (ft/s) 1.91 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF r Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 5B-26 _Feet 75.3 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 397.3 172.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 102.7 44.4 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 213.9 92.6 Flush Pressure at backwash tank for Min. Flush Rate 619.5 268.2 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) _Feet 75.3 PSI 51.2 Pressure at manifold before PRV 453.5 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 ' 50.0 - Low Pressure Check: P at Min. Flush Flow at Return Manifold 27.5 11.9 Flush Pressure at WWTF for Min. Flush Rate 277.8 120.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 136.9 1 59.3 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U da.s�) (Q/C),.es 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 E uals the Required Flush Rate plus the Dose Flow Rate Zone: 513-27 No. Laterals: 9 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 3986 Design Flow (gpm): 20.59 Application Flow (gpm): 20.6 Min. Design Scour Vel. ft/s) 2.0 Tubing ID (in) 0.787 Residual Flow for Scour g m)6 2.30 Re 'd Flush Rate (gpm)': 41.3 Supply Manifold Elev. 5B-SM2 Return Manifold Elev. 5B-RM2 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Len th # Emitters Flow gpm)' Length (ft) Dose (gpm) Flow (gpm) 1 1 144 1.5 574 3.0 5.3 2 143 1.5 2 3 137 1.4 542 2.8 5.1 4 134 1.4 3 5 131 1.4 516 2.7 5.0 6 127 1.3 4 7 123 1.3 484 2.5 4.8 8 119 1.2 5 9 114 1.2 446 2.3 4.6 10 109 1.1 6 11 106 1.1 416 2.1 4.4 12 102 1.1 7 13 90 0.9 338 1.7 4.0 14 79 0.8 8 15 71 0.7 272 1.4 3.7 16 65 0.7 9 56 0.6 398 2.1 4.4 52 0.5 48 0.5 43 0.4 _ 3986 1993 20.6 20.6 41.3 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 58-27 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.0 5 Line Size ID (in) Friction Headloss (ft) from Pump to H.0 .2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev NEW 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm).',1tt Line Length (ft) Line Size ID (in)s�` 4 Friction Headloss (ft) 10.507 8.787 Minor Losses (ft) 1.051 0.879 Line Velocity (ft/s) 2.25 2.04 J20 to J16 Segment Flow Rate (gpm)` %) Line Length (ft) Line Size ID (in)6 5 Friction Headloss (ft) 7.752 6.483 Minor Losses (ft) 0.775 0.648 Line Velocity (ft/s) 2.03 1.84 A 6 to 56-SM2 Segment Flow Rate (gpm)ffl� Line Length (ft) Line Size ID (in)6 6 Friction Headloss (ft) 2.563 8.678 Minor Losses (ft) 0.256 0.868 Line Velocity (ft/s) 1.50 2.90 Supply Force Main Elevation Delta Manifold 268 7 Elevation (ft) from H.U. to Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold" Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 0.867 3.478 9 Total Segment Headloss (ft) = Friction + Elev. -17.133 -21.522 Return Force Main Friction Losses 58-RM2 to J16 Segment Flow Rate (gpm) �- Line Length (ft) 865 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 6.497 Line Velocity (ft/s) 2.16 J16 to J20 Segment Flow Rate (gpm) RMEEM Line Length (ft) 3320 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.262 Line Velocity (ft/s) 1.91 J20 to WWTF Segment Flow Rate (gpm) _ Line Length (ft) 3503 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.883 Line Velocity (ft/s) 1.91 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 5B-27 PSI 51.2 Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 399.0 172.7 Low Pressure Check: P at Min. Flush Flow at Return Manifold 101.0 43.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 200.2 86.7 Flush Pressure at backwash tank for Min. Flush Rate 606.9 262.7 PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet Pressure loss required (high pressure - 60 psi) 61.6 PSI 51.2 Pressure at manifold before PRV 451.1 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 127.1 .55.0 , Low Pressure Check: P at Min. Flush Flow at Return Manifold 45.1 19.5 Flush Pressure at WWTF for Min. Flush Rate 284.4 123.1 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 137.2 59.4 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 r 6; PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hr = (4.727 U da.s7) ((�C)s.ss 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 5B-28 No. Laterals: 5 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 2684 Design Flow (gpm): 13.87 Application Flow (gpm): 13.9 Min. Design Scour Vel. fts) 2.0 TubingID (in) 0.787 Residual Flow for Scour (gpm)6 2.30 Req'd Flush Rate (gpm)': 25.4 Supply Manifold Elev. Lateral 5B-SM2 Min. Flush Return Manifold Elev. Length (ft) 5B-RM2 Flow (gpm) Run Run 3.0 Lateral Run Elev. Length # Emitters 1 1 43 2 45 3 47 4 0.5 48 5 51 6 53 2 484 56 4.8 0.6 59 63 64 3 11 67 12 0.7 70 13 5.2 71 14 70 4 69 0.7 69 68 546 2.8 67 5 19 67 20 0.7 37 21 36 22 32 23 524 28 24 0.4 24 25 21 26 _ 17 0.3 2684 1342 Brooks Engineering Associates, PA Dose Lateral Lateral Min. Flush N (gpm)' Length (ft) Dose (gpm) Flow (gpm) 0.4 574 3.0 5.3 0.5 0.5 0.5 0.5 0.5 0.6 484 2.5 4.8 0.6 0.7 0.7 0.7 556 2.9 5.2 0.7 0.7 0.7 0.7 546 2.8 5.1 0.7 0.7 0.7 0.7 524 2.7 5.0 0.4 0.4 0.3 0.3 0.2 0.2 p.1 of 3 10120/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 5B-28 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 2 Total Segment Headloss (ft) = Friction + Elev. Hydraulic Unit H.U. Elev OEM 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to J20 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 4 Friction Headloss (ft) 10.507 8.787 Minor Losses (ft) 1.051 0.879 Line Velocity (ft/s) 2.25 2.04 J20 to J16 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 7.752 6.483 Minor Losses (ft) 0.775 0.648 Line Velocity (ft/s) 2.03 1.84 J16 to 5B-SM2 Segment Flow Rate (gpm)5a Line Length (ft) Line Size ID (in)5 6 Friction Headloss (ft) 2.563 8.678 Minor Losses (ft) 0.256 0.868 Line Velocity (ft/s) 1.50 2.90 Supply Force Main Elevation Delta H.U. to Manifold 268 7 Elevation (ft) from Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)s Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.443 4.501 9 Total Segment Headloss (ft) = Friction + Elev. -26.557 -30.499 Return Force Main Friction Losses 5B-RM2 to J16 Segment Flow Rate (gpm) Line Length (ft) 865 Line Size ID (in.)) Minor Losses from Check Valve Friction Headloss (ft) 6.497 Line Velocity (ft/s) 2.16 J16 to J20 Segment Flow Rate (gpm) = Line Length (ft) 3320 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.262 Line Velocity (ft/s) 1.91 J20 to W WTF Segment Flow Rate (gpm) ' z Line Length (ft) 3503 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 11.883 Line Velocity (fUs) 1.91 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 613-28 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 399.0 172.7 Low Pressure Check: P at Min. Flush Flow at Return Manifold 101.0 43.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 209.6 90.8 Flush Pressure at backwash tank for Min. Flush Rate 606.9 262.7 PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet PSI Pressure loss required (high pressure - 60 psi) 71.0 51.2 Pressure at manifold before PRV 451.1 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 127.1 5 0 ; Low Pressure Check: P at Min. Flush Flow at Return Manifold 45.1 19.5 Flush Pressure at WWTF for Min. Flush Rate 284.4 123.1 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 146.6 1 63.5 Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curare. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U da.s�) 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 4B-29 No. Laterals: 7 Tubing: ID (in) 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 5018 Design Flow (gpm : 25.93 Application Flow (gpm): 25.9 Min. Design Scour Vel. ft/s 2.0 Tubing ID in 0.787 Residual Flow for Scour (gpm)' 2.30 Req'd Flush Rate (gpm)': 48.9 Supply Manifold Elev. 4B-SM1 Return Manifold Elev. 4B-RM2 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Length # Emitters Flow (gpm)7 Length (ft) Dose m) Flow g m)e 1 1 19 0.2 534 2.8 5.1 2 32 0.3 3 45 0.5 4 55 0.6 5 58 0.6 6 58 0.6 2 74 0.8 616 3.2 5.5 74 0.8 80 0.8 80 0.8 3 11 101 1.0 406 2.1 4.4 12 102 1.1 13 102 1.1 410 2.1 4.4 14 103 1.1 15 104 1.1 418 2.2 4.5 16 105 1.1 17 106 1.1 426 2.2 4.5 18 107 1.1 4 98 1.0 610 3.2 5.5 71 0.7 69 0,7 67 0.7 5 23 76 0.8 580 3.0 5.3 24 72 0.7 25 72 0.7 26 70 0.7 6 68 0.7 492 2.5 4.8 65 0.7 59 0.6 _ 54 0.6 7 31 49 0.5 526 2.7 5.0 32 43 0.4 33 39 0.4 34 35 0.4 35 30 0.3 36 26 0.3 37 23 0.2 38 18 0.2 5018 2509 25.9 2b.y Brooks Engineering Associates, PA p.1 of 3 10/20/2008 F 10/20/2008 PRESSURE ANALYSIS 6111111 TOP FEED MANIFOLD SYSTEM ZONE 4B-29 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE Inputs Dose Flow (a) Flush Flow (b) 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 0.007 0.001 2 Total Segment Headloss (ft) = Friction + Elev. 12.007 12.001 Hydraulic Unit H.U. Elev mom 3 Headloss from H.0 (ft.)3 MEMEMEM Supply Force Main Friction Losses H.U. to J20 - Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)5 4 Friction Headloss (ft) 5.061 0.920 Minor Losses (ft) 0.506 0.092 Line Velocity (ft/s) 1.51 0.60 J20 to A 6 Segment Flow Rate (gpm) _g ��� Line Length (ft) Line Size ID (in)5 5 Friction Headloss (ft) 0.209 0.679 i Minor Losses (ft) 0.021 0.068 Line Velocity (ft/s) 0.29 0.54 J16 to 4B-SM1 Segment Flow Rate (gpm) - - - �, Line Length (ft) Line Size ID (in)5 B 6 Friction Headloss (ft) 2.144 6.949 Minor Losses (ft) 0.214 0.695 Line Velocity (ft/s) 1.12 2.12 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold 254 Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold" wi Feed Manifold to Bottom Lateral Headloss (ft) in manifold° Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)5 Friction Headloss (ft) from Manifold to Bottom Feed Latera12 1.453 4.518 9 Total Segment Headloss (ft) = Friction + Elev. -30.547 -34.482 s�q Return Force Main Friction Losses 4B-RM1 to J16 Segment Flow Rate (gpm) - k Line Length (ft) 1230 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 4.958 i :.. Line Velocity (ft/s) 1.54 J76 to J20 Segment Flow Rate (gpm) Line Length (ft) 3320 Line Size ID (in.) Minor Losses (ft) 1.237 Friction Headloss (ft) Line Velocity (ft/s) 0.58 J20 to WWTF Segment Flow Rate (gpm) Line Length (ft) 3503 Line Size ID (in.) — Minor Losses (ft) Friction Headloss (ft) 1.305 Line Velocity (ft/s) 0.58 Willi Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 4B-29 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 379.5 164.3 Low Pressure Check: P at Min. Flush Flow at Return Manifold 125.5 54.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 243.4 105.4 Flush Pressure at backwash tank for Min. Flush Rate 631.8 273.5 PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet PSI Pressure loss required (high pressure - 60 psi) 104.8 51.2 Pressure at manifold before PRV 466.8 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 50.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 23.5 10.2 Flush Pressure at WWTF for Min. Flush Rate 276.0 119.5 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 139.0 1 60.2 Brooks Engineering Associates, PA p.3 of 3 w5.:. 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes .& Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: ht = (4.727 U d4.17) (Q/C)1.85 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 313-30 Application Flow (Ppm): 95.1 No. Laterals: 48 Min. Design Scour Vel. ft/s) 2.0 Tubing: ID (in) 0.79 3B-RM1 Run Tubing ID (in) 0.787 Emitters h : 0.62 Residual Flow Re 'd Flush for Scour (gpm)a 2.30 Emitter Spacing ft2 Rate m e: 205.5 Total Footage: 18398 Length (ft) Dose(gpm) Design Flow pm): 95.06 Supply Manifold Elev. 3B-SM1 Supply Manifold Elev. 3B-SM2 Return Manifold Elev. Run 3B-RM1 Run Return Manifold Dose Elev. Lateral Lateral 3B-RM2 Min. Flush Lateral Run Elev. Len th # Emitters Flow (gpm)7 Length (ft) Dose(gpm) Flow (gpm)' 1 1 156 1.6 1 312 1.6 3.9 2 2 167 1.7 334 1.7 4.0 3 3 169 1.7 338 1.7 4.0 4 4 171 1.6 342 1.8 4.1 5 5 173 1.8 346 1.8 4.1 6 6 175 1.8 350 1.8 4.1 7 7 177 1.8 354 1.8 4.1 8 8 179 1.8 358 1.8 4.1 9 9 182 1.9 364 1.9 4.2 10 10 183 1.9 366 1.9 4.2 11 11 184 1.9 368 1.9 4.2 12 12 185 1.9 370 1.9 4.2 13 13 185 1.9 370 1.9 4.2 14 14 185 1.9 370 1.9 4.2 15 15 186 1.9 372 1.9 4.2 16 16 186 1.9 372 1.9 4.2 17 17 187 1.9 374 1.9 4.2 18 18 188 1.9 376 1.9 4.2 19 19 188 1.9 376 1.9 4.2 20 20 190 2.0 380 2.0 4.3 21 21 192 2.0 384 2.0 4.3 22 22 194 2.0 388 2.0 4.3 23 23 196 2.0 392 2.0 4.3 24 24 199 2.1 398 2.1 4.4 25 25 202 2.1 404 2.1 4.4 26 26 205 2.1 410 2.1 4.4 27 27 209 2.2 418 2.2 4.5 28 28 212 2.2 424 2.2 4.5 29 29 216 2.2 432 2.2 4.5 30 30 220 2.3 440 2.3 4.6 31 31 217 2.2 434 2.2 4.5 32 32 216 2.2 432 2.2 4.5 33 33 216 2.2 432 2.2 4.5 34 34 217 2.2 434 2.2 4.5 35 35 215 2.2 430 2.2 4.5 36 36 214 2.2 428 2.2 4.5 37 37 213 2.21 426 2.2 4.5 38 38 208 2.1 416 2.1 4.4 39 39 204 2.1 408 2.1 4.4 40 40 200 2.1 400 2.1 4.4 41 41 197 2.0 394 2.0 4.3 42 42 193 2.0 386 2.0 4.3 43 43 188 1.9 376 1.9 4.2 44 44 183 1.9 366 1.9 4.2 45 45 178 1.8 356 1.8 4.1 46 46 172 1.8 344 1.8 4.1 47 47 166 1.7 332 1.7 4.0 48 48 161 1.7 322 1.7 4.0 18398 9199 95.11 95.1 205.5 i, Brooks Engineering Associates, PA p.1 of 3 Imi 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE 36-30 TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINE I Inputs Dose Flow(a Flush Flow b) 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' Line Size ID (in) Friction Headloss (ft) from Pump to H.U.Z 0.005 0.019 2 Total Segment Headloss (ft) = Friction + Elev. 12.005 12.019 Hydraulic Unit H.U. Elev 3 Headloss from H.0 (ft.)3 Supply Force Main Friction Losses H.U. to 3B-SM2 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)' 4 Friction Headloss (ft) 2.324 9.667 Minor Losses (ft) 0.232 0.967 Line Velocity (ft/s) 1,17 2.53 Supply force Main Elevation Delta 5 Elevation (ft) from H.U. to Manifold 66 Drip System Headloss Results 6 Total Headloss (ft.) in drip system from supply manifold to return manifold "t.. Feed Manifold to Bottom Lateral Headloss (ft) in manifold Line Length (ft) from Supply Manifold to Bottom Feed Laterals Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)' Friction Headloss (ft) from Manifold to Bottom Feed Lateral2 0.587 2.378 7 Total Segment Headloss (ft) = Friction + Elev. -50.413 -55.622 Return Force Main Friction Losses 3B-SM2 to WWTF Segment Flow Rate (gpm)' Line Length (ft) 2585 Line Size ID (in.) Minor Losses (ft) 8 Friction Headloss (ft) 17.538 Line Velocity (ft/s) 2.78 Return Line Elevation Delta 9 Elevation (ft) from Return Manifold to WWTF 1 Brooks Engineering Associates, PA p.2 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 3B-30 SUBMANIFOLD 3B-SM2 316.3 51.2 Pressure at manifold before PRV Feet PSI Total Headloss at Min, Flush Rate at Return Manifold 160.7 69.6 Low Pressure Check: P at Min. Flush Flow at Return Manifold 331.3 143.4 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 454.9 196.9 Flush Pressure at backwash tank for Min. Flush Rate 446.8 193.4 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) 316.3 51.2 Pressure at manifold before PRV 470.4 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 104.0 45.0` Low Pressure Check: P at Min. Flush Flow at Return Manifold 44.0 19.0 Flush Pressure at WWTF for Min. Flush Rate 94.4 40.9 Hi h Pressure Check: Emitter P on Bottom Lateral at Dose Flow 147.4 63.8 Note: Return Flush Tank needed. See Pressure Calcs for Zone 3B-30 Submanifold 1. Brooks Engineering Associates, PA p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 3B-30 SUBMANIFOLD 3B-SM1 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 98.7 42.7 Low Pressure Check: P at Min. Flush Flow at Return Manifold 393.3 170.3 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 517.0 223.8 Flush Pressure at backwash tank for Min. Flush Rate 382.8 165.7 PRV NEEDED? YES ZONE SUMMARY All PRV Feet PSI Pressure loss required (high pressure - 60 psi) 378.4 51.2 Pressure at manifold before PRV 470.4 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 104.0 45.0- 5.0 °Low LowPressure Check: P at Min. Flush Flow at Return Manifold 44.0 19.0 Flush Pressure at WWTF for Min. Flush Rate 30.4 13.2 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 147.5 63.9 Note: Return Flush Tank needed. Flush Pressure at W WTF is too low. May not have sufficient pressure to return the flush. Brooks Engineering Associates, PA P.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, . a flushing flow velocity of 2 ft1s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: ht = (4.727 L/ d4b) (Q/C)1.86 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Re uired Flush Rate plus the Dose Flow Rate Zone:F-6-AA-1-1 Application Flow m): 50.4 No. Laterals: 18 Min. Design Scour Vel. (foal 2.0 Tubing: ID in 0.79 Tubin ID in EEIF0.787 Emitters h : 0.62 Residual Flow for Scour ( m)s 2.30 Emitter S acin ft 2 Re 'd Flush Rate (pm)s: 91.8 Total Foota e: 9760 Daskin Flow m : 50.43 Supply Manifold Elev. 6A-SM5 Return Manifold Elev. 6A -RMS Supply Manifold Elev. 6A-SM4 Return Manifold Elev. 6A-RM4 Supply Manifold Elev. 6A-SM3 Return Manifold Elev. 6A-RM3 Run Run Dose Lateral Lateral Min. Flush teral Run Elev. Lenrith # Emitters Flow m)' Lenath (ft) Dose m) Flow (gpm' 1 1 158 1.6 630 3.3 5.6 2 157 1.6 2 3 157 1.6 628 3.2 5.5 4 157 1.6 3 5 156 1.6 622 3.2 5.5 6 155 1.6 4 7 154 1.6 616 3.2 5.5 8 154 1.6 5 9 153 1.6 612 3.2 5.5 10 153 1.6 6 11 124 1.3 496 2.6 4.9 12 124 1.3 7 13 126 1.3 506 2.6 4.9 14 127 1.3 8 15 129 1.3 518 2.7 5.0 16 130 1.3 9 17 131 1.4 526 2.7 5.0 18 132 1.4 10 19 134 1.4 538 2.8 5.1 20 135 1.4 11 67 0.7 622 3.2 5.5 54 0.6 51 0.5 48 0.5 46 0.5 45 0.5 12 44 0.5 514 2.7 5.0 45 0.5 45 0.5 45 0.6 46 0.5 32 0.3 13 49 0.5 392 2.0 4.3 49 0.5 49 0.5 49 0.5 14 37 49 0.5 598 3.1 5.4 38 50 0.5 39 50 0.5 40 50 0.5 41 50 0.5 42 50 D.5 15 43 51 0.5 612 3.2 5.5 44 50 0.5 45 510.5 46 51 0.5 47 51 0.5 48 52 0.5 16 49 52 0.5 624 3.2 5.5 50 52 0.5 51 52 0.5 52 52 0.5 53 52 0.5 54 52 0.5 17 55 49 0.5 488 2.5 4.8 56 45 0.5 57 42 0.4 58 39 0.4 59 36 0.4 60 33 0.3 18 61 31 0.3 218 1.1 3.4 62 28 0.3 63 26 0.3 Brooks Engineering Associates, PA p.1 of 3 11/18/2008 ftp PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM ZONE SA-31 TOP LOAD MANIFOLD PRESSURE ANALYSIS �.. INPUT LINE I Inputs I Dose Flow fall Flush Flow Ib 1 Operating Head from Pump Curve' 1, I Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U.' WWI Line Size ID (in) Friction Headloss (ft) from Pump to H.U' 0.010 0.011 2 Total Segment Headloss (ft) = Friction + Elev. 12.010 12.011 Hydraulic Unit H.U. Elev 3 Headloss from H.0 (ft.? . Supply Force Main Friction Losses H.U. to 38-SM2 Segment Flow Rate (gpm) 6 Line Length (ft) Line Size ID (in? 4 Friction Headloss (ft) 5.052 5.635 Minor Losses (ft) 0.505 0.564 Line Velocity lift(s) 1.78 1.89 3BSM2 to 3BSM1 Segment Flow Rate (gpm) Line Length (ft) j I Line Size ID (ln0 �q 0.410 0.458 5 Friction Headloss (ft) Minor Losses (ft) 0.041 0,046 Line Velocity (ft/s) 1.78 1.89 3BSM1 to 6A-SM3 Segment Flow Rate (gpm) Line Length (ft) Line Size ID (in)' Room 6 Friction Headloss (ft) 0.731 2.174 Minor Losses (ft) 0.073 0.217 Line Velocity (itis) 1.30 2.35 Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold -174 Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold` 6A-31_SM-3 Feed Manifold to Bottom Lateral Headloss (ft) in manifold' I Line Length (ft) from Supply Manifold to Bottom Feed Lateral s Im Elevation (ft) from Manifold to Bottom Feed Laterals Line Size ID (in)s Friction Headloss (ft) from Manifold to Bottom Feed Lateran 0.000 0.000 9 Total Segment Headloss (ft)= Friction +Elev. .49.000 -56.000 Return Force Main Friction Losses 6A-RM3 to 3B -SMI Segment Flow Rate (gpm) Line Length (ft) 440 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 5.261 Line Velocity (itis) 2.78 3B -SMI to 3B-SM2 Segment Flow Rate (gpm) Line Length (ft) 210 Line Size ID (in.) Minor Losses (ft) 71 Friction Headloss (ft) 0.515 Line Velocity (ft/s) 1.61 38-SM2 to W WTF Segment Flow Rate (gpm) Line Length (k) 2585 Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 6.341 Line Velocity (Itis) 1.61 Return Line Elevation Delta Elevation (ft) from Return Manifold to W WTF Brooks Engineering Associates, PA p.2 of 3 11/1812008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 6A-31 SUBMANIFOLD 6ASM3 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 45.7 -19.8 Low Pressure Check: P at Min. Flush Flow at Return Manifold 546.7 236.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 696.2 301.4 Flush Pressure at backwash tank for Min. Flush Rate 200.0 86.6 PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet PSI Pressure loss required (high pressure - 60 psi) 557.6 51.2 Pressure at manifold before PRV 473.2 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 Low Pressure Check: P at Min. Flush Flow at Return Manifold 20.5 8.9 Flush Pressure at W WTF for Min. Flush Rate -151.6 -65.6 Hi h Pressure Check: Emitter P on Bottom Lateral at Dose Flow 157.5 68.2 Note: Return Flush Tank needed. Flush Pressure at W WTF is too low. May not have sufficient pressure to return the flush. Brooks Engineering Associates, PA p.3 of 3 11/182008 Brooks Engineering Associates, PA PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 6A-31 Submanifold 6A-SM4 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 10.3 Low Pressure Check: P at Min. Flush Flow at Return Manifold - 490.7 LO High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 624.2Flush Pressure at backwash tank for Min. Flush Rate 254.0 PRV NEEDED? YES ZONE SUMMARY WI PRV Feet PSI Pressure loss required (high pressure - 60 psi) 485.6 512 Pressure at manifold before PRV 4732 117.7 PRV setfing calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 50.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 20.5 8.9 Flush Pressure at W WTF for Min. Flush Rate -97.6 .42.3 Mich Pressure Check: Emitter P on Bottom Lateral at Dose Flow 141.5 61.3 Note: Return Flush Tank needed. Flush Pressure at W WTF is too low. May not have sufficient pressure to return the flush p.3 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 6A31 SUBMANIFOLD SA -SMS Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 72.3 31.3 Low Pressure Check: P at Min. Flush Flow at Return Manifold 428.7 185.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 570.2 246.8 Flush Pressure at backwash tank for Min. Flush Rate 306.0 132.5 PRV NEEDED? YES ZONE SUMMARY WI PRV Feet PSI Pressure loss required (high pressure - 60 psi) 431.6 51.2 Pressure at manifold before PRV 473.2 117.7 PRV setting calculated (pressure at manifold - pressure lass required) 154.3 66.5 PRV setting utilized 115.5 •' 5'0.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 20.5 8.9 Flush Pressure at WWTF for Min. Flush Rate -45.6 -19.7 Hiah Pressure Check: Emitter P on Bottom Lateral at Dose Flow 149.5 64.7 Note: Return Flush Tank needed. Flush Pressure at W WTF is too low. May not have sufficient pressure to return the flush Brooks Engineering Associates, PA p.3 of 3 10/20/2008 5 8 e PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Engineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 ft/s is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hf = (4.727 U da.e7) 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate plus the Dose Flow Rate Zone: 6A-32 No. Laterals: 12 Tubing: ID in 0.79 Emitters h : 0.62 Emitter Spacing ft 2 Total Footage: 6350 Design Flow m): 32.81 Supply Manifold Elev. 6A-SM2 Return Manifold Elev. 6A-RM2 Run Run Lateral Run Elev. Length 1 2 7 8 9 10 11 12 3 IN, 4 17 18 5 19 20 6 21 22 7 23 24 8 25 26 9 27 28 10 29 30 11 31 32 12 33 34 35 36 37 38 Ap lication Flow (gpm): 32.8 Min. Design Scour Vel. ft/s) 2.0 Tubing ID in 0.787 Residual Flow for Scour (gpm)e 2.30 Req'd Flush Rate (gpm)5: 60.4 32M TOR Brooks Engineering Associates, PA p.1 of 3 10/20/2008 Supply Manifold Elev. 6A-SM1 Return Manifold Elev. 6A-RM1 Dose Lateral Lateral Min. Flush # Emitters Flow (gpm)' Length (ft) Dose (gpm) Flow (gpm)° 42 0.4 530 2.7 5.0 43 0.4 44 0.5 44 0.5 45 0.5 47 0.5 48 0.5 646 3.3 5.6 50 0.5 53 0.5 56 0.6 57 0.6 59 0.6 60 0.6 540 2.8 5.1 66 0.7 70 0.7 74 0.8 78 0.8 322 1.7 4.0 83 0.9 94 1.0 400 2.1 4.4 106 1.1 112 1.2 520 2.7 5.0 148 1.5 157 1.6 622 3.2 5.5 154 1.6 152 1.6 604 3.1 5.4 150 1.6 146 1.5 578 3.0 5.3 143 1.5 140 1.4 552 2.9 5.2 136 1.4 i 128 1.3 502 2.6 4.9 123 1.3 67 0.7 534 2.8 5.1 57 0.6 50 0.5 44 0.5 37 0.4 12 0.1 32M TOR Brooks Engineering Associates, PA p.1 of 3 10/20/2008 10/20/2008 PRESSURE ANALYSIS 1 TOP FEED MANIFOLD SYSTEM ZONE 6A-32 j TOP LOAD MANIFOLD PRESSURE ANALYSIS INPUT LINEInputs Dose Flow a) Flush Flow b i 1 Operating Head from Pump Curve' Pump Tank to H.U. Elevation (ft) from Pump to Hydraulic Units Line length (ft) from P.T. to H.U' Line Size ID (in) Friction Headloss (ft) from Pump to H.0 2 0.010 0.011 2 Total Segment Headloss (ft) = Friction + Elev. 12.010 12.011 Hydraulic Unit ?q H.U. Elev MOM 3 Headloss from H.0 (ft.)3 MEMEMEM Supply Force Main Friction Losses H.U. to 3B-SM2 Segment Flow Rate (gpm) Line Length (ft)) Line Size ID (in)5 �l 4 Friction Headloss (ft) 5.052 5.635 Minor Losses (ft) 0.505 0.564 I Line Velocity (ft/s) 1.78 1.89 3B-SM2 to 3B-SM1 Segment Flow Rate (gpm)+: Line Length (ft) Line Size ID (in)s 5 Friction Headloss (ft) 0.410 0.458 Minor Losses (ft) 0.041 0.046 Line Velocity (ft/s) 1.78 1.89 3B-SM1 to 6A-SM3 Segment Flow Rate (gpm) t Line Length (ft) Line Size ID (1n)5 6 Friction Headloss (ft) 0.731 2.174 Minor Losses (ft) 0.073 0.217 Line Velocity (ft/s) 1.30 2.35 f Supply Force Main Elevation Delta 7 Elevation (ft) from H.U. to Manifold 18 Drip System Headloss Results 8 Total Headloss (ft.) in drip system from supply manifold to return manifold°MONEINEERM ��� 6A -32 -SM -1 Feed Manifold to Bottom Lateral Headloss (ft) in manifold° Line Length (ft) from Supply Manifold to Bottom Feed Laterals r Elevation (ft) from Manifold to Bottom Feed Lateral' Line Size ID,(in)s y Friction Headloss (ft) from Manifold to Bottom Feed Latera13 1.333 4.313 9 Total Segment Headloss (ft) = Friction + Elev. -41.667 -45.687 Return Force Main Friction Losses .! 6A-RM3 to 3B-SM1 J Segment Flow Rate (gpm) Line Length (ft) 440 Line Size ID (in.) Minor Losses from Check Valve Friction Headloss (ft) 5.261 Line Velocity (ft/s) 2.78 I ,! 3B-SM1 to 3B-SM2 Segment Flow Rate (gpm) Line Length (ft) 210 � Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 0.515 Line Velocity (ft/s) 1.61 3B-SM2 to WWTF Segment Flow Rate (gpm) (- Line Length (ft) 2585 I Line Size ID (in.) Minor Losses (ft) Friction Headloss (ft) 6.341 Line Velocity (ft/s) 1.61 Return Line Elevation Delta Elevation (ft) from Return Manifold to WWTF Brooks Engineering Associates, PA p.2 of 3 (i 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 6A-32 Submanifoid 6A-SM1 Feet 358.2 PSI 51.2 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 143.3 62.0 Low Pressure Check: P at Min. Flush Flow at Return Manifold 357.7 154.9 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 496.8 215.1 Flush Pressure at backwash tank for Min. Flush Rate 383.0 165.8 PRV NEEDED? YES ZONE SUMMARY W/ PRV Pressure loss required (high pressure - 60 psi) Feet 358.2 PSI 51.2 Pressure at manifold before PRV 473.2 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 50.9 Low Pressure Check: P at Min. Flush Flow at Return Manifold 23.5 10.2 Flush Pressure at WWTF for Min. Flush Rate 31.4 13.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 150.2 65.0 Note: Return Flush Tank needed. Flush Pressure at WWTF is too low. May not have sufficient pressure to return the flush, Brooks Engineering Associates, PA p.3 of 3 10/2012008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 6A-32 Submanifold 6A-SM2 304.2 51.1 Pressure at manifold before PRV Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 187.3 81.1 Low Pressure Check: P at Min. Flush Flow at Return Manifold 313.7 135.8 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 442.8 191.7 Flush Pressure at backwash tank for Min. Flush Rate 427.0 184.8 PRV NEEDED? YES Pressure loss required (high pressure - 60 psi) 304.2 51.1 Pressure at manifold before PRV 473.2 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 50.0' Low Pressure Check: P at Min. Flush Flow at Return Manifold 23.5 10.2 Flush Pressure at WWTF for Min. Flush Rate 75.4 32.6 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 140.2 60.7 Note: Return Flush Tank needed. Flush Pressure at W WTF is too low. May not have sufficient pressure to return the flush. Brooks Engineering Associates, PA p.3 of 3 Itai 10/20/2008 IN Brooks Engineering Associates, PA p.1 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM Encineer's Notes & Instructions: 1. The purpose of this calculation spreadsheet is to determine the pressures in the drip system at critical points of interest. The governing criteria are: all emitters operate between 7 and 70 psi, there is sufficient pressure to return the flush to the Hydraulic Unit, a flushing flow velocity of 2 fVs is provided. 2. The source of either the calculations or the data inputs are indicated in the footnotes. 3. The inputs for the calculations of the Summary data is indicated by the Input Line number Footnotes 1 From PACO 200 GPM 40 hp Pump and Berkeley 200 GPM 10 HP Booster Pumps in Series Curve. (Flush flow is for single zone and Dose flow is for dual zones.) 2 Headloss from pipe friction calculated from Hazen -Williams Equation: hr = (4.727 U d4.11) (DjC)t.es 3 From Wastewater Systems Inc. Data 4 Headloss estimated from dosing and flushing curves for 20 mm Drip Tubing 5 From Engineering Drawings 6 Calculated from Q = VA 7 Equals the # of emitters in the run times the individual emitter flow rate in gpm. 8 Equals the Required Flush Rate Plus the Dose Flow Rate Zone: 8833 AD loation Flow (ppm): 59.6 No. Laterals: 30 Min. DeskinScour Vel. fy.) 2.0 Tubin : ID in 0.79 Tubin ID in 0.787 Emitters h: 0.62 Residual Flow for Scour( pm)s 2.30 Emitter 6 acin it2 Req'd Flush Rate ( pm)' 128.6 Total Footage: 11528 Design Flow (qpml, 59.56 supply Manifold Elev. 68SM3 Return Manifold Elev. 6B-RM3 Supply Manifold Elev. 68-SM2 Return Manifold Elev. 6B-RM2 Supply Manifold Elev. 6BSM1 Return Manifold Elev. 6B-RM1 Run Run Dose Lateral Lateral Min. Flush Lateral Run Elev. Length # Emitters Flow f. pnn� Length (ft) Dose qpm) Flow rn? 1 1 74 0.8 628 3.2 5.5 2 77 0.8 3 80 0.8 4 83 0.9 2 5 87 0.9 354 1.8 4.1 6 90 0.9 3 7 92 1.0 376 1.9 4.2 8 96 1.0 4 9 98 1.0 398 2.1 4.4 10 101 1.0 5 11 104 1.1 414 2.1 4.4 12 103 1.1 6 13 101 1.0 400 2.1 4R 14 99 1.0 7 15 98 1.0 388 2.0 4.3 16 96 1.0 8 17 96 1.0 380 2.0 4.3 18 94 1.0 9 19 93 1.0 372 1.9 4.2 20 93 1.0 10 21 92 1.0 368 1.9 4.2 22 92 1.0 11 23 910.9 364 1.9 4.2 24 91 0.9 12 25 91 0.9 364 1.9 4.2 26 91 0.9 13 27 90 0.9 360 1.9 4.2 _ 28 90 0.9 14 29 89 0.9 356 1.8 4.1 30 89 0.9 15 31 88 0.9 352 1.8 4.1 32 88 0.9 16 33 88 0.9 350 1.8 4.1 34 87 0.9 17 35 87 0.9 348 1.8 4.1 36 87 0.9 18 37 86 0.9 346 1.8 4.1 38 87 0.9 19 39 87 0.9 348 1.8 4.1 40 87 0.9 20 41 87 0.9 348 1.8 4.1 42 87 0.9 21 43 87 0.9 348 1.8 4.1 44 87 0.9 22 45 87 0.9 346 1.8 4.1 46 86 0.9 23 47 85 0.9 340 1.8 4.1 48 85 0.9 24 49 86 0.9 344 1.8 4.1 50 86 0.9 25 51 86 0.9 342 1.8 4.1 52 85 0.9 26 53 83 0.9 328 1.7 4.0 _ 54 81 0.8 27 55 80 0.8 316 1.6 3.9 56 78 0.8 28 57 75 0.8 592 3.1 5.4 58 74 0.8 59 74 0.6 60 73 0.8 29 61 70 0.7 518 2.7 5.0 62 66 0.7 63 63 0.7 64 60 0.6 30 65 58 0.6 440 2.3 4.6 IN 6s 56 0.6 67 54 0.6 Brooks Engineering Associates, PA p.1 of 3 10/20/2008 PRESSURE ANALYSIS TOP FEED MANIFOLD SYSTEM SUMMARY ZONE 4B-34 Submanifold 4B-SM3 Feet PSI Total Headloss at Min. Flush Rate at Return Manifold 11.3 4.9 Low Pressure Check: P at Min. Flush Flow at Return Manifold 493.7 213.7 High Pressure Check: Emitter P on Bottom Lateral at Dose Flow 611.6 284.8 Flush Pressure at backwash tank for Min. Flush Rate 259.0 112.1 PRV NEEDED? YES ZONE SUMMARY W/ PRV Feet PSI Pressure loss required (high pressure - 60 psi) 473.0 51.2 Pressure at manifold before PRV 468.2 117.7 PRV setting calculated (pressure at manifold - pressure loss required) 154.3 66.5 PRV setting utilized 115.5 50.0 .. Low Pressure Check: P at Min. Flush Flow at Return Manifold 25.5 11.0 Flush Pressure at W WTF for Min. Flush Rate -96.6 -41.8 Hiah Pressure Check: Emitter P on Bottom Lateral at Dose Flow 139.9 60.8 Note: Return Flush Tank needed. Flush Pressure at W WTF is too low. May not have sufficient pressure to return the flush. Brooks Engineering Associates, PA p.3 of 3 10/20/2008 1.7 Irrigation Schedule Spreadsheet d ai m •U O N Q O C C_ O) C W Y O O m o O N N O 000NNV Cl? Il- 00)0O ?r O1 00 'IT -t`001-000 00 fl- It 0 3 000ct!`00Cf) O) - N I- N M LL T T T T T N LL T T T T T T LL LL N N yM 00!-(00000 Ce) Mc,)c,) yM 0)NIq Cl) Cf) MMMM NN L Lo w .4+ J J O O C O Z Z (O M 0 O O) iT O O O 9 O O O v T T T LL LL O O D D C C N N 0 Oct ll' 00 9(0 T (M O O) M 3r-vMvoo ornrnorn0�rn T 3:MWVNMO arncOrnrnwm LL LL 0 0 0 0 C C .NO N Cl) V C O N M co 000 co J M M M .1 C C N N 00 (0 Ih 0) v M O f-- N 0 Nt O) 00 O (DOD O 00 0 0 c0 0 0) (0 cc O N I- M _ N T c N0 T (4 C 00 00 0 00 00 00 0) M 00 I-- i- T T T N T T T T T T T T H H O O LL LL d d G C J J O O O O (� V C O O rn c N c 3 C 0 3 c Co O c rn c0)m • 0 a ° r a 0) c ca v�O(D t�y�U�C7*20 (p d d d O N A Z O N e£4 Z C C = Z s Q mQ m m t m Q CO Q m¢ m i. U) T T (v N M M d 0) et v 0 0 (0 (0 d ai m •U O N Q O C C_ O) C W Y O O m o O N N O M w T r N OI N M0 0 0 0 0 0 0 0 0 M d p NO O O O O O N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...... 6 6 0 0 0 0 0 0 M C O O G O C O O o`p lmm � W OI Nm W �I�Iwp IpA rt�fp lDNr�nnr rr W NNNnI`�ntw0 lip tD tpNb m1�lO 1pnrAnn�`w tOnn��w9OM <fnf N V MM V OblD nlp oaa`rnp�rnm�rnrn'a`a amaaaoa"m'ms"Q�'mag,QQffm`m�mm�m�2'`�'�£'m'mE'ma`rn '�+'�+`mm�a"mrnmom�`wrnNrn O� f�VM NfOh W �t� "r m �� MQ NO to OOp �t�7MYNtpr Q ^l' V N O ----------------------------------------------- � Q � � O O O O O O OOO 9M. O 0 0 m- 0 0 OO 0 0 0 0 0 0 0 0 0 0 0 0 O O ........... 0 0 0 0 0 0 0 0 0$ 00 0 0 0 0 88-88888 00000000 0 0 0 0 0 0 0 ......... 0 w O O 0 0 0 0 0 0 0 0 0 O O O 0 0 0 0 0 0 N N N V NO(00� SYN NYtmp ON<NOYN � N a M 0 0 0 0� 0 0 N 0 0 0 0 0 0 0 (+J O C O G GO Or COO �O.C6 O CCC 16,6 GCC O O mmmm rwmmm�mrnmmmmnwo+mmammmmronmmmmrommwmmmmnmmnm�mmw�nnwm �w n�rommmmm��mmn�� "`mmaa�aa��aarn�ma_��maaa�am�aaaaa�aaaaa��maaaaaaaa �a��aaaaaa - A�m`na�Amrwrno nlMVNionmmo� Nmrwmo� mrmmo�Anv Nwnmmo�E; amm�wmo�.-�M eu��om k. 10 r 0n0rn rr non rnnnnorrnnnrnrrrnnnr 000000m00000000000000000000000000000°f 0 000 0000000 0000000000000000 0 f ' W o 0 0 0 0 o o o o T 0 � N N N N N N N N N N N c a � 'OO1 W e000000000 pm�00 W e�'f tp00 W M0000000 W N OOOOOON W 1`O NI`OOO W OO �000�- W l� ON�NOI�N e0 ONO 000 O� NO OON 00 O �o W 001 Y. W W M O C G G G C C C G C CCG C G O G C G O G G G O C G C O C C) I------------------ f aas¢a F t C..' I � `FB �%'iomm�nnmm�nnmmmnnmm�wwwmmwmmawrnmmmromr°immmmw�mmmmmmmmmroNW n�nallommmn��nnnm aWavl�nWrne.- a<„a�WWe�aa<WW��ae�aaa�WaW�,s�aM.�WW�WWW��a�$�o�WWe_�a M<�aa� 0000�0000�000000�00000000000000000000000000000000000000�000 �.0000000000 00000000000 000000000000000000000 000000000000000000e00000000000000 In N O N O N V N N V V N N N N< N N Y m r O1 o a 0 0 0 0 0 0 0.� VW � 0 0 0� COl O o p Wv o 0 0 0 o NO o O N 0 0 0 0 o NV m M O C O G -:6 C G O-. C G .6 G G 66 W O G o 6d <mNte0 torr W n1�rfA W � I�rtWD 1^p t0rn W N V NNN�r�nfWO b�<Yhn W I�rn nr�rorbr W W ArtO fOhNnt~D tOnNrA� W W nA N N N N N N N N rn N N N N N N m m N N N N N N N N N N N N N N m N N N N m N �1 m m rn N� N N N N rn� 8 9", N,� I N N N 9 m I� N mWmolmmWm mmmm�m��m00omommmmrnmrn Qi�Qiamm Q1�a+2'.. gm�� Q1 o�anvl`n fcrWWe�a i��nW�m�W�a��u-,WnWaW.=aro:r in ioi 'm of e.-a1n '<inWnmmW.-.-a�e`n vv>rormmW 000�000�.-�r„���,cccc�cccc�coW000WOWW��--��-����cccccccccceM=eee=�se�= o$0000000�000$$0000Soo�o�00000000000000000000000000000000000����000a� z j f17 Lai I fs:S� r I ; cgg00000000-8...0oo000000000000000o0OO00000000000oo0..0000000000oo oHE O 0 o o O o O 0 �1 S o o N N N N N 1T1 i p r � f0 o a I CO o 0 o G o C S C o G C G C O O C G O G o C FaBd� O�mNYf N mOmmM V N MM�N�M V nmmmNrmrnrnobr�Nlpnnl�OPnl�til�l�f0 i�nrmm rooronnfrnOoo rmOION V V V< Y V m N m mmm m m N m n m m V N N v 'm m m m m r n r n m N Y 'I p0mM M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M mmmm��� ���m�mmplmmmmmm0o�`mNnmOmmmrnOm��mmmm 2'2'Y'mmm�iOm Qimrnmgrnmmrnrnmg0m �' 'mnmrno� vv�mrmmo�� an3nmme� vin mr�mmo.=Ain vinmrmmo.-AManmi:mmo� .CC CCCCCNM �M�Qa00a000 �_��.-.-�����aCC CCCC��CC2ooQg0000����������-CC 0000 oo 00000000oo0ooO�000'o�o�o�o'o �oo�og�0000000��000000000000000000000 0 0 0 O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O pO.O ...... O O O O n o o C o 0 0 0 0 0 o 0 0 N N N N N N N N N NO.N NY N I N o a p ��oopoon000000000voo�00000000000000000pN000peeo 000�00000cgl�oo 00000 a O MO M C O C G O C G 6666 O O O O O C O o C G O NhN o�Y V <NYI V Y«<V <V NtNON V V V tND Nit Nh V h iD lOhh hhhN Y'��lmn MtmOMN V �NN MMM V M V u"I NN<V V hiO Nh V V M m��mmmmmmmrn0rn0mm0rnrn0mrno�0rnmorn0mrnmrnmmrnmrnrnrnolm0mmmrnm0rn0mrnmmrnrnmrnrnrnmmmmrnrnrnrn rmrno.=A na mlormrno�AMvv� Ainv v�nmrno.=AMVNmnm `m o.- vimm�m�Al�n eu�lonmmo�A C�vC�CC�00000� NN w�v ttvvo�voo oo00000� 5.. tta 00000000000000000000000000000000000000000000000000000000000000000 j I ----------------------- fs:S� �1 0 0 0 O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O pO.O ...... O O O O n o o C o 0 0 0 0 0 o 0 0 N N N N N N N N N NO.N NY N I N o a p ��oopoon000000000voo�00000000000000000pN000peeo 000�00000cgl�oo 00000 a O MO M C O C G O C G 6666 O O O O O C O o C G O NhN o�Y V <NYI V Y«<V <V NtNON V V V tND Nit Nh V h iD lOhh hhhN Y'��lmn MtmOMN V �NN MMM V M V u"I NN<V V hiO Nh V V M m��mmmmmmmrn0rn0mm0rnrn0mrno�0rnmorn0mrnmrnmmrnmrnrnrnolm0mmmrnm0rn0mrnmmrnrnmrnrnrnmmmmrnrnrnrn rmrno.=A na mlormrno�AMvv� Ainv v�nmrno.=AMVNmnm `m o.- vimm�m�Al�n eu�lonmmo�A C�vC�CC�00000� NN w�v ttvvo�voo oo00000� 5.. tta 00000000000000000000000000000000000000000000000000000000000000000 I F� I t mo0000000000000000000000so�osssossoooo soosooOo oocsooOssOO000ss$OOOco00 o0 T o 0 .. 0 0 0 p 00 0 0 00 00 00 o e s a ee o In N N N N N V N N YfO�ONOo0010 V 1p OODO'O W t00sdN 8<N N r d r � o a 0 o 01 ......... ro do d 00 o.br M o 0 0 o co 00 0 0o o 6 0 c000 0 f H 1 e-- - - - - - - - - - - - - - - - - - - t M<V <Otb') MMCM: IM"1 MYNN<M<NNf M1n+f V NMMMYf V YM�NMMNNMf V NOHNfO V OMNnmI<V N NbsirO V MY <hOtOO uO] tD tNO mt00 M M M M m M M M M M M M M a a a a a dada a � a a a f a d a a a a V d d a a a a f a a f a d a a M M�o100 mom�imm Ql 0 m IQl �+�i�' OOmO��i 0000 �1 Q1 Elm�+a Q1 �1rngi�mmm �lOOmrnrn gl0 vm�i lonmmo� �vlmnomo�.-AMau1 r3mo�AMdvlmnmmo� �dul �3 rbmom� db ammo. -cls Mav+mnmm a'aaaaa S SSS aaa00000aaa'a�ooaa'a'a'aoo 615 oo'O.. 'o..'. ..............000'o'000000 0000 00000 000 ............. ........ 00000000.......... o......00000.00 00000000 N N <N N N N N m m N M Oo a F "5 n h s s N N fp tm0 n f0 r I� � I� n�� n r b tmD {NO N S M tm] N N m t0 1[bi V b O Ybi tD fO m ti� t� lO fp v1 Y N (G �D fbD tNO tl N N Yai b VOi N fO N 4M'� itM1 i0 tff N V Y M N Y M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M OMf 6MioaM `OM`lSR OMi`�o� 00000001000010+0\ 000_ �mm000_0°' 0000m000O as 000W010m W0 �l�M bm aooasoasoaaao c-------ccaaaaaaaaaaaaaa � 000001.0000000001.0000080080000000000800000000000000000000000000001.000 Too o o N o o N o N N N N N N N N A o a p M NO O O O O< N O O O O O O O O m O 0 0 0 0 0 o N O 0 0 0 0 o p 0 0 0 NO O O O O Q NO 0 0 0 0 0 0 0 0 O� O O O O O O 0 0 0 0 0 0 0 Y (h O o do O 166 O o. O C O o. O o ;moaOoQmma�nm�cIWQo'oCL"aa£�CeaC'�Co;�CC MooVoVoVovoVoM., oo O 4Am�„n�ma�o o o00000 o0 o00000-..0000000000'- 00`00000000--0000^"--- o000000000000000e000 000eoee/.000000000 00000000000 m 1.00 00000 00000 1.88 00 1.1.888 T S S S S O 1!1 NON N ONON NO.DON NON NON N NYN NOfOON t0 .71 R tiC eO �- NG NC oryO 000mG mD 8C o1 O O O O mC mC o'mNN ooe0000000Y000000 O C 0 e a O C C G C O C nnnwrmommmmwronmwwn�mr mw �w`w�mm�nnnromww �m �nonmmmnmm�nwm��wmmmme�n�rm-�r�NmmmBmwm �a�v `nm��wo�aa "a �'nm�mmo'�� o�A`n v�nm�mmo� mio noamor�a nmmo��Avnm �nnnnn�nnr`r no nnnnrrnnr000mmmm "`00000°'OJ�� 00000000000 Oto 00000000000 000000000 00000000 000000000000000 0 ��f 4 I I I I I o0000000000000000000000000000000000000000000000000000000.0..000000000 m 4A7 � o0 0 0 0 0 000 . 0 .o O N N N N N N V N N N N Y � d o (+� OC O 00 O GG C 00 000 r CG C G CO O �N N a �;.y-„� t 1� I� n r W� OJ W W� r n W� W� W� W� W a00 T W W 001 00f mro W W W W m 001 001 T Of W W W W 00i W W n W 0W W n m ON W W 00! ONi OM1 Obi OMi OMi OOi W n ON N m W al I� n Lai mol -m-o------mommomommmmmmornommmmommornomomo --------------------m-h ................. 0......0000000000000000000000000000000000000000 ---------------------------------------------------------------------------------------------------------------------------------------------------- K:- Ii I f ... 0 000. e000000 ................oe0000000.00000 000 ONO � _* T ll'i o0 N OD 00 00 X 0 0 O O O O O oe 00 00 00 00.0 N N N N N V N NYt0O o0p 10D V N N � N I Lai � N � a p (h O O m 0 0 0 N O N O 0 0 0 0 0 0 C) N O C .6 00 OM N 00� NO OM MO O C O O 66, 66 C C C C O r 0 0. G G G O 6 C O YNMOOOJYNN01M0000�0�-NNMOYYOe0000 NONO�-v1r.-t000nMYf Y1nMYt0Y MY'IN N{O YO1 n100n ommrolo me�rrnvl use lonlcnrrc �n00lorr0mnnnrrmmmmnnnwrm00nronrnrwm��nrowrowlo �onnnrr 0 I I �m000mmmommmmm�m�m�m�ommmmmm�mmm�mmmmm�ommmmmm mmmmmm.mammm�mmm�mmmm aMma����a a�0000�rWoa�a�a���W�aZEm R NyvM o����000 �� L .eooax000aaao�a000aommmmm00000mmmoomoo............000�o0000�0�000�0�0 i 7 0000OO000a0000000OO.000.Oom00000OO000000e000O000000000000000m00000000 oo 0 o S S mBpO m g y7 ry N N N V N N N r � S a p O O O m 0 'MOO ^ m 0 0 0 0 0 0 m 0 0 0 0' O m O O O D n m O V O O N O O N b 0 0 0 0 0' N O O O b 0 0 0 0 0 0 0 0 0 0' N O 0 0 O V O O O O O O m VM O O O O N N O N1 C C C O G G G G C C O O C C � C 0 c;.; G C G C a39 1.9 41. S 4 8nnrmmanN M vO nO M zOO 9 N R P9 mma'IT Om b 2 bn22 M 21n S% mrnb mn99 a om W n m bm b b m m b b b b b 1010 b b m b m b b b m b m b b Nb b b b� b b@ b b m p b m m b b b bf b b mimmm ��,mmeeQQii eemem��mm,mppii mm� em�N��^^e„p mbmb��mm�m�b�n�mmeeeQ m�bm�m 1�M V i010n mO� pNo M bbd Om �l�Mabb�m01O�AM'V NfOnOmO�N im eta nmmO�l�1TI Ybbt�a�DmO�N� V mmnmm CC Q Q rrrr�-�-rrr o OOQOOOOO rr�-e-rr aaaaaaaaaaaaaaaaaaaaoooasaaaa aaaaaaaag00000=c00000=ccc0000 o0o.... Off[ 10 V �[m1N IOOCMYhN YM O V O V YMM�mNcblY��i0� tN')YYYM Meh Nfb01n0rahhhNl+niYN V NUnS fO vbi�N0Y0'i 1p 10 l�Hm��OhMM -Mot 'I mmmmmmmmm m mbbmmm bb mmmmbbu mmm bmmmmm mm mb mmmmmmmmmmmm i n'nlr�mwo� Mvvm"im�m`mo..-aMvmbnmmomaio a�imnmmo�A is vm�ibnmm� normo•=alm`yvmmnmao� 6� 00000000000000000000000000000000000000..00000011aoa220o200000000000 ---------------------------------------------------------------------------------------------------------------------------------------------- j i 000 om 00000e ee o'o va0000000ee00000e000000 O m � SSa oOo S 0000 000O00000 000ao S o S O o o pi m o 0 0 0 0 0 o O S o A O O m M N N � W O O (y G.O C N C o o r G o o G o Ci C C O G O o 0 0 Off[ 10 V �[m1N IOOCMYhN YM O V O V YMM�mNcblY��i0� tN')YYYM Meh Nfb01n0rahhhNl+niYN V NUnS fO vbi�N0Y0'i 1p 10 l�Hm��OhMM -Mot 'I mmmmmmmmm m mbbmmm bb mmmmbbu mmm bmmmmm mm mb mmmmmmmmmmmm i n'nlr�mwo� Mvvm"im�m`mo..-aMvmbnmmomaio a�imnmmo�A is vm�ibnmm� normo•=alm`yvmmnmao� 6� 00000000000000000000000000000000000000..00000011aoa220o200000000000 �. 00000000000000000000000$0�000000 eog0000ao o ...000000 OOOOO 0000 .Ooo. Q00000000 j O O o Oo pO 00000 0 0 OO pOp 00 000 lA N N N N<N N N V 1p V N N N N NdN N N VN lY1 O! W o a o 10 0 0 M O O N M d O O N o V O N 0 O M M O {7 O G O C C O G G O O O G G O G O C O C C O 66 0 O 6 C d C C G C) C bN< V 1p btm0 f0 NYNim tp tp tMO Ytm')<�<Ncaf MY� 1m'INNNM1OpNh<V YOaOd 1mD lmo tmp lMO UMi V hl0<nM n V M V MNIm0 bblm0 bums v�tNiN uml 1S 10n I m m�Nm mmmrrnrnrrrnrrnnrnrnrnrnnnrrn nn nnrnnnrrnnnnnnrrrrnnnnnnnnrnrnnn $m2m2m n m m m� m8 m mOmmrnm Bim m mmmomo mmmmmm�m rn22'2'O'21 Of 2'8' Wmom 2'2'8' 1aTi8 inm' 'oma.- mr ao?a�P�lonmOomaln aio 'aMM�I m o�AMMNmrmmomN�l ei a�n rma ooh oaoo";",,,,,�c&ccc��ccceeaaaaaa�aaa'aa''aa�oaaooSSaaaa�a��' o''oo'o'oo'o"o'o'o'0000'o 000'0 o'o b'o 000000'0 0'00000 0000000 00 0000000000 ------------------------------------------------------------------------------------------------------------------------------------- p 000GO000CvOppO cava, NQs--c: .. 6 G V .. G V - - ii --iq - -,N- - _'_N_ _ _ -ba _ _.NO _ _ m G O 616 O C O C G Is G G C O O C 6. C G nrn Nhhf0 nt�fm0 n1M0nnn W n1O0 V V N1m01p 101x0 M1MhMY V - V NbtmnHNYub 1O0 N V uM'1YNb V hOMumih Ylm')btm0 fONNNhOMMN Mb N ei 'ommomTO�'mm2mmmmmm'mao1mn9onrn mm'mmmm�am rn9 m9 $-m1 1 m1,�ao+7Q -UoanmQ22a1TA'aNi'anOa'a�OmnalmmaOm'ralmmamrna OSlmSm 0000000000000000000000 o000000000000000.o00o00000000000000000000000000 T o 0 o N A N N N Ol o a p m 0 OM .................. p " O O O m NO o O O O O 0 O N O O O N O O m m VV ...... 0 0 0 0 0 0 0< m O O O p N 0 0 0 0 O O O O O -06 G C G 6 C G G G C G I�I�nIMp t�nlmO nl�r���aD I�f�l�l�rONbfDH NtD fONhhfOp fNO 1p hlmD w.. UmIN<N W. V V MOlNO V O V n'! V NmNhhN V NNtND IphH YYm1 �2 nrn mrnnnnnnnnnnnnnnnnnnnrnrnnnnnnnnnnrnnnnrnnnnrnnnnnnrrrnrrrrnnrrnr om000Qiornrnrn000�Qirnom Qimamoomgi rnrn000ei Q+mmm000m bio Qi�orng om mE�E�Oi� Qi gi �i Qimm n" SAM mmnwoo�Ama�mnmm' a`�onm o Ain"mr �Nro`�ain �mm0 vmmr .- '-oo o o o o o -d o �`'�a _ 000000 - - -0000000000`000.-.-.-.-.-�-.--.-.-��- - - - - - - - - - -.-.- o000000000000000000000000000000000000000000000a0000000 00000000000 m o e IS 0 0 Ol i a p O O p O O N Q 0 0 ON D O o 0 0 0 0 0 MO O O O N O O D O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' 0 0 0 0 0 0 0 0 m0 O O �- (y O GC GGOG OGCO C C C G X00 CSG G C CfV f romrommnmmmmmmnnmwmw�nnnnnmmmmmmrnwmmnnno�m manommmwnm mnn 0m mmmnnnmmmmmm mm m��wm �I E rrnnnnrnrrnrnrrnrr mmmomoo'maCn'm�ovLv o`n000mommo0'o`0o�ooAo0ono0o'�"0inmo0nQmo0inrn�o0nmo"0no0n n.0- n�0nn�0n m9omovono3i nHC0roInHIMn0r«0non"0now�0rom�`0roo�0rg��m0iro�oiro�mrmaCmroi�mr`o`�m°inno�mrom�mnomm�nooLmnon"'nmn000noAomnmMoono`�o'nurnQoi�rQmooinonornnmomonmmrnonoorn�nm�rn�noA�on.o-ina.o-ngm.°i'nom�o non.O-1rom�orom.m- noo�ro'�no�noCnmv� 000000000000000000000 0 00000000 mmrnm`rommwmm'm ma mromnmmmmwm �iwmmo�wmomwnn'm oornmmm�$mmmmnmmmmmmmmrnmmrnmmrnmwwmnm m mmmmm mmmmm mmm m m mamm 1mmm2'Q�m m �m�m�g, aim mm�Q'°'�Q'rnmm��mmm22��mrn�mm�mmm�mm m°�J+�m���rn� mmap��m `rno mea mnmmo` m"mr` �Arovimm�o3mm.-Anvv�ionmmo.- �na r" sl ee o o��oQ„&c�11H g;m`ialmm'mmmmm�mmmm� m m mgmgmm�oo mmrrrrnnnnnnnrnnnrrnnrnnrnrnrrnnn0wm m m 60000000000000000000000000000000000000060000000000000000000aooa000000 ---------------------------------------------------------------------------------------------------------------------------- mS000.o006000eo 000000 0600000000000000000e000000000 0000666666 0000000 N N<fOYN N V'N N N N<N N � r W W M a p mp�000^oo��000 _m_ooN00000000000000o a mnWoO��0000 t�00000000000 0 0 (h O C G G O o C G G C G G C o C C G O O C C C o o 666c; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm �iernWrnernrnrnrnrnmmmeemeWmrnrnrnrnrnrnrnrnrnmrnomrnmrnrnrnmrnrnrnrnrn omaMv�rn`nmr.�mo�a�rn`n �vrn`imnrorno�aroa�n `m normo` an �A is�`n `nmmo�Aro a�A mnmmo`Aina pion l`; 8lHHloao�o$o06�-E.-���C`v`�"'Lv R Lv L`i ��Col'g'00000�Qoo�_���_�����_�L`i L'iC�L�Lv Lv i`i 000� 8366 oo0000000000000o 0000000000 o 0000000000000000000000000 oo0000000 P 60000000000666666606606000060000.0600060000000eoog 000000.......... 00 j. O O S S f0 N N N N N p W W a M a cc c O C6G o oG 6660 c mmrnm`rommwmm'm ma mromnmmmmwm �iwmmo�wmomwnn'm oornmmm�$mmmmnmmmmmmmmrnmmrnmmrnmwwmnm m mmmmm mmmmm mmm m m mamm 1mmm2'Q�m m �m�m�g, aim mm�Q'°'�Q'rnmm��mmm22��mrn�mm�mmm�mm m°�J+�m���rn� mmap��m `rno mea mnmmo` m"mr` �Arovimm�o3mm.-Anvv�ionmmo.- �na r" sl ee o o��oQ„&c�11H g;m`ialmm'mmmmm�mmmm� m m mgmgmm�oo mmrrrrnnnnnnnrnnnrrnnrnnrnrnrrnnn0wm m m 60000000000000000000000000000000000000060000000000000000000aooa000000 ---------------------------------------------------------------------------------------------------------------------------- mS000.o006000eo 000000 0600000000000000000e000000000 0000666666 0000000 N N<fOYN N V'N N N N<N N � r W W M a p mp�000^oo��000 _m_ooN00000000000000o a mnWoO��0000 t�00000000000 0 0 (h O C G G O o C G G C G G C o C C G O O C C C o o 666c; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm �iernWrnernrnrnrnrnmmmeemeWmrnrnrnrnrnrnrnrnrnmrnomrnmrnrnrnmrnrnrnrnrn omaMv�rn`nmr.�mo�a�rn`n �vrn`imnrorno�aroa�n `m normo` an �A is�`n `nmmo�Aro a�A mnmmo`Aina pion l`; 8lHHloao�o$o06�-E.-���C`v`�"'Lv R Lv L`i ��Col'g'00000�Qoo�_���_�����_�L`i L'iC�L�Lv Lv i`i 000� 8366 oo0000000000000o 0000000000 o 0000000000000000000000000 oo0000000 00000000000000000000000000000e000eooeoe0000000000oaae0000000000000000 op 0 ogo 000 LLi NON N NON NYN N d m o a o N� 0 0 0 0 MO O N O O O O O O M O O O O N O O O O O rn b O Cf O O O O f0 O M 0 0 0 0 � O r O 0 0 rn 0 0 0 0 0 0 0 0 0 0 0 0 0 0$ 0 0 0 0 0 < C N O O V N M o rn O O N N O G C C 66 C C C G G C O O YN9nh W ��nrorN aMDN00 VN�IO �a IDTNN�MMOOOIOOOMYTnIIDOn nI�noOD rl�lOr mml�t�nb m MN fDAfD�ro MN rnnOJ OW W n� W mmmlowTro lDomaon mlo nlDaornrro I ' 1 rnmrnmmmTrnmTmrnmrnrnmrnmrnrnmrnrnmmrnrnrnTrnTrnaTrnrnrnTrnmmrnTrnrnmTTrnrnrnrnmTmrnmrnmrnrnmmrnrnmrn W O1 I+�f aN O`I Otirt�mrnrn 01 a1 Qf rnmmrnrnrn rn rnrn�TQf Qf mm QI�OI 01�Trn�rnTrnrnTTT QITTrn T�1��`1T a`1 m�1TT�rn �i AA o�I�VnanlD�Trno�Aniin lanTTo�l�rn onTmo�Aln 'a inmr�rno� av1 nmmo.-.=AMv�nTn 0000000000'00 o00o000'0000000000000000000000000000000000000000000000000 ------------------------------------------------------------------------------------------------------------------------------- i t ,I i i� 0000000000 00000 000000000000000000 oo0000 000 oo0oo8pe000.-ooeooeeo ll'1 N ONO ONO N N N N NON N N p O 00 10�'i00000000tO00.NO000fNNON�-M��OVV'OONOOCl00'000MrO�000000�00VON0000 Y C O r 0 0 0 0 0 0 O IO O N r O N K1 .-O 0000 GG 6o6 CGCCG oo C C C CiCC o C G tOp l�O to 40'i iaN I�tO INa� V MNIO NfOON IOO IOO ID IMO IOO IDDM ON(NpNhaOMMMO <hhhalODNMNtD«MMa HMMM(.O nIp IND tp H.... <Yf00 NN j T T O rn rn rnrn O O T rn rn rn rn T T ................. T T m T T rn T T T T T m T T T T T m T m T T T T T T T rn T m T T T T T T Qi 010 W O)O�OOI OIrnrn rnrnTTTTQi a1T Ta1TT T TTTTaITQiTTATrn QiT O`1T QiTT QiT a1NTm TTm �immT �� 'Ly�MLv�^���M�0000000`T a1o�A'�In lo�wctotvv?Ili �n tati� �cmc��LnL��cwc��0000000000.-A'avlm 000`000'0000000000��0000000000000000000000000000000000o00000000 oo000000 X49 fq rs�aq k�!q �i. 00088888 Oe000000ee000 000e 000000000eeo Doo 000S0000000000 00000000000 f' m 8888 c 000 00008 O 000000 g T O O O O O O O O po Y N N O N N N O N N Y m Y N N N ONO N N lT o f0 o a 1h O O C 0 0 0 O G C G G G G C G C C O G �� m1m0 �N'Y<V <hYaf tNDNN M NYNMpM NNt01�NNNO1N�f MNtN<NO t•YiN NY1 h 1010 <ON tNp bhfOh V hNINO tYp nlm0 hY0l IDNhIOOh IO I�rN r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Oe 00 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 AroYmmnmao�AMa�mm�mrno� YvO�imnmao��Ain nmmo�Ainammnmrno� am rn?An�mm nmrn mo�00000e�„ ",",�c& ���c��ce;�oo�000aa'aaa'a'a'a'a'a'aa'aSS���SaSSS������MMa '000'o'o'o'oo'o `o 'o oo'o 888`8 o'o 'o 888'8 888'88'8 000000000000000 0000000000 -------------------------------------------------------------------------------------------------------------------------------- F :i 8000000 000000000000000000000e eo oo.o0000000000 00000000000000000 T N NON NON N N 01 o a p oe000000�m�0000000 �0000000000000^N00000000$o o moo0oo00000 000000000 M O C O G O O C C o j� 111o.11� Ile 1 1.10110.v1.8101 c emNn'oNnrvN1'o1.����� �N���N:��N�OaOMn anOrov�m am rnaaaarnrnrnaarnaarnrnrnrnaarnrnarnrn aaaaaarnrnaarnrnrnrnaaarnrn---- aaaaaarnrnrnrnmaa m_rnmmrn � arnrn�arna m aarn mamma rnarnaa I '.-`"P.-.-'0000—��oo.- '?'.-urn�i lo'mmoO1A^'P1".-'��anav�i lo�mmomc�lnvin `mama �amvv,�n o F 888888^ � �S�SS� �"------------------------ - a ---- �g of W ro n N V Y top trp A m r n n r n n t00 r n n r n r n n r r A A r r �O � fD fD r b N N 10 tD V V «M M d M< YOf V V ,f�f ��t1 h H Y V< M� V f�f V Y� V V I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 oho 000 0000 000000000000000000Q-�000e0000Qo000000000Qoo�000 g�000000 Homo.=a�v�mm�mmo <--rn`o,� QNn �a vo-i `m - - -..nmmo .-.-.- - v mo -a $p �g om oSooe o --- oo 000000� Sooco-- -- - ------------ ��-'--'- aN-at-`Nr aa -a t I I' S -------------------------------------------------------------------------------------------------------------------------------- o0000000000o000000 000000 0000000000oo o ooe000000000oo 0000000eo 0000 ��� T o N O 0000000 � ry N NYN<�O V N N N p oeo � eM^o^ooeeoo 000000000 oNo�00000000000a0000Ma�o�oo00000 oe (h G G O O C lC O o 0 0 o O C o 0 o G 666 0 0 mwmwomm�mm�'wmmo 000nnnmrornmmw<o ioommmmnmm�nnnomnicnnwao�wmwn�o n�omm om mnwnvein pie orn� 000000ee000000e 00000eeoo 000000 o ---------------eoo 0 88880 000 O000000000 00 - 00000000000000000000000000000 j aM nmao�aMauoim�mmo-a-a�n �onmmo.-man o�arovv�mnmmo- -mi m'mo�a CCoF."°�3 L'i'000 oro wmC��n�000 moo����.-.-.-.-���i'����`+L`���iaC L`iro oo 0000000000 O000000000000000 oo000000000000 00 o00000000 000 000000000000 1 00000cee0000oocce0000000000c0000000e 000cccc00000000cocc000c0000000 0 0Op 00000 T N N Y N N N "a I O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M C o0� G e o C �g of W ro n N V Y top trp A m r n n r n n t00 r n n r n r n n r r A A r r �O � fD fD r b N N 10 tD V V «M M d M< YOf V V ,f�f ��t1 h H Y V< M� V f�f V Y� V V I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 oho 000 0000 000000000000000000Q-�000e0000Qo000000000Qoo�000 g�000000 Homo.=a�v�mm�mmo <--rn`o,� QNn �a vo-i `m - - -..nmmo .-.-.- - v mo -a $p �g om oSooe o --- oo 000000� Sooco-- -- - ------------ ��-'--'- aN-at-`Nr aa -a t I I' S -------------------------------------------------------------------------------------------------------------------------------- o0000000000o000000 000000 0000000000oo o ooe000000000oo 0000000eo 0000 ��� T o N O 0000000 � ry N NYN<�O V N N N p oeo � eM^o^ooeeoo 000000000 oNo�00000000000a0000Ma�o�oo00000 oe (h G G O O C lC O o 0 0 o O C o 0 o G 666 0 0 mwmwomm�mm�'wmmo 000nnnmrornmmw<o ioommmmnmm�nnnomnicnnwao�wmwn�o n�omm om mnwnvein pie orn� 000000ee000000e 00000eeoo 000000 o ---------------eoo 0 88880 000 O000000000 00 - 00000000000000000000000000000 j aM nmao�aMauoim�mmo-a-a�n �onmmo.-man o�arovv�mnmmo- -mi m'mo�a CCoF."°�3 L'i'000 oro wmC��n�000 moo����.-.-.-.-���i'����`+L`���iaC L`iro oo 0000000000 O000000000000000 oo000000000000 00 o00000000 000 000000000000 1 oo om mm0000.000 m omoo mo o0 0 0 oo00ommmmoom000G0000 0000000m000e0000000Omoom O 1.88 0 D o o o 0 818.1 N 4C1 N N NV N N 000HRN N NV N o aW N. 0 0 0 0 0 0 0 0 O N O N M O O N G O O O O m O O r N O o N 0. CN M G o o. O G 1. GC C G C G C �- G GCC C o o O C C 1. 0 0 1. 0 2W2011. w w w n mm.A1'm m nrrm 22 n wmw w w w nz w Stour a w m m A m m W w o w A w o w ma MD W w z% Z9 nn on'm w .'1.2 �e w 1.9 0000000-0000Q000000Qoog0000-'ooQ'OoQ'000'o'm0000000No'Oogoo'o"o$o'oe000Q' icoomo.=a�v�n mi ��o�aa a�mm�mm�o,'o'0000000m `o �aMa"�mmo�a a ion o �ana�n iormmo a o.-�.-��� on��nr�nin`no �n�onrnrnnrrrnnmmmmwww mmmwmmmmmmmmmmmmm co mmmmmm... .mo 0001.1.1.1.1.0 000 0000m000000000000000000000000000000 0o0000m0000000 j 1.000oom000 ...........000moo 000 0000 00001.0 oo000000000000000000 0 1.a 000 000 m o 0 0 0 0 0 0 0 0 0 j, o 1.m 0 0 0 000 �p N 6 S a Myo 000vo00000maoNo�woo$oom.-Mm0000m0000om�0000000moOmmo 00000N oo,o 00 0 01. w G 0 c'> GG oGG G o 0000 1.6 1.0 ooGG G GG GGo .=o �onn�wmw�innn�nnfo��wmmao�n�ionicnnwnnnwnmm�imnn�romwmwmnwmwwwoi�omnnmmmromwmwm ------00000000 " " "'00000------00"'0000000000000" " "'o'000000000- �a s a�a R,g�,a��aM ab 5.- pp <am{ sooa<g �0�pp0 ��0�pp0�p �0p0 �p �{�p{�{pp{�{pp ��pp ���pp ���pp"�-. i�p�L`��C�pE�L`�� 000 O O O O O ........ O ............. O O ...... O w O 0 0 w w w w w w O 0 0 0 0 0 0 0 0 0 0 0 0 w 0 0 0 0 0 0 0 0 0 E000000000000000000000000000�00o000000 00000000000000000000 00000000000 T o 0 0 0 o 0 0 10 N N N N N N d N m � a p e�oea0000000mo Mo oQ�00000����0000�goo�00000000000mog00000000N�0000mm �VOo (h OC CCG C O C x-000 00 O O O NC C N N NO N NO NNN N N N N NO N N NO N N N N N N N N N N N N N N N N N ON N N N N N N N N N N N N N N N N N N N N N N N N N N N oo� QQogss000 No ooe00000wos oa0oo Q000ee��eo�oS0000Q eoo �aMammnmmo`ana7mnmmo�atnaniormmo�a�n vmm nmrno?�eQ3ammromo.-tea i team H?Q55 - oo.-`. 55,26.��� Croroe oo oda`t0000d'd'���.avavaeeraaamnnmmmmm��`mm�..�`...... mu�smmmmmno ommmmm. c"`mtom `io 'oog��0000a000000000000000000000000000000000000000000000000000�0 000 00000000000000000 e000e0 000000000000eeeo 000 0 ooeeoo m 0000 00$ 00000 N m N N Y N N N N N V t0 V N N N Y N p Ol m M o 0 0 o d Cl) 0o GG oci 0 o Gc o Ooo 06 G GG h n n {O V Y M M M M N 8 G Q N z h V 2 t0 N 2 O< 9 0 fp N �n+l V V V N 40Y tp tp Irp Ipp Q Yri N N n W n 0 f0 f00 fmD h M� tOp n� Y tpp n tD tD f0 r r N Y> h tp O O N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N ............. N N N N N N N N N 0000000000000000Q00000000000o0000Qon�000e0000000000000000000000000 am` ;i`onmmo�an `v vlmnmeo` `vnrcnn�o nam mo.=a `n a�n <onmmo`�nv�n ionmrno"aina a aa��aaaaaaaaaaaaaa�� t�t�t�vt�Vt�V�Nro`inMnro`into`nMtnnnnnnMnn �n�n�nn�nmtnm�nmm�`ooa'vea 000000 000000000000000000000000000000000000000000000000000000� 0000 O O O O O O O O O g p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WOO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 oSS IBSS o 0 0 o S S o o lo N N O N N N N N N N N m O) O N IL O N W N O Y O O p N v il li M o G G o G C o 0 0 0 o C lV o o G C r C C G C G fp N M M V v M M N M M N Y V N N v M M N Y v M v W n N V' Y M M v Y N Y V v W M M d N N v W N N P v O N W N N N r W N W W N W r r N N W W W M MO o0 o0 �0 a0 ^0 �0 M M�0 O'0 Oo0 Sm�0 Mo�0 M�L0vM Mn�0 MQ�0 MoN�0 MoW�0 MWn�0 MWao0�aMW�0 Mo0WMMW_�0 MW_oa0 M�oa0 MWioa0nMWaWa0 oNOa0M MQWaW0 Mono�MoWoa0 Mornoa0 MWo�a0 MQ.�a0-MWa�a0 MoN�a01MoV�a0 MWN�a0 MoW��MQr�a0 �aMW�0 MoO�a0f MaO0 Me�"�0 MoMoMeaO M�NMoWMenSMWWS0 0�MW-MWO MWiMWv0 W0Mu�M30Wa-MWnOMwW0MmMWo0MQ�20MWaMMMW� 0MOv=MaWin'0MW320MWi=�aMWw r 64 -------------------------------------------------------------------------------- FIR q P I 1 <N�Wn uW')YO'1 N Nbf0 t0 f0 �[Ni V Ym5 hNYNYW1Nh Ohb(NDHOM�t NM V N� V MOYYO V Y Yi�Y Nin V NN h� V V MM�Y�IpN N�[n1Y Y�fN1Y <YO"� N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N M nY M M M M M M ra mmo anvNN ____a____nW_o_a vnnnm `m o` a�ancnmm v cn oz000 7-77 ccc7c7eaaaaaaaaa'aaaa'a'a'a'a'a'a-SS--a--a-S-ao_o 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W W W W W W W 0 o p 0 o 00 0 0 0 o S SEESEE N N N C N N Y N N N N _ m o a V O W W W O. O N O O 0 No .6 1 � O 00 0 X00 0o M 00 Ooo 000 000 0 6 0 0 0 c0 o P I 1 <N�Wn uW')YO'1 N Nbf0 t0 f0 �[Ni V Ym5 hNYNYW1Nh Ohb(NDHOM�t NM V N� V MOYYO V Y Yi�Y Nin V NN h� V V MM�Y�IpN N�[n1Y Y�fN1Y <YO"� N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N M nY M M M M M M ra mmo anvNN ____a____nW_o_a vnnnm `m o` a�ancnmm v cn oz000 7-77 ccc7c7eaaaaaaaaa'aaaa'a'a'a'a'a'a-SS--a--a-S-ao_o W00o00ooe0o0o00ooeoee0000oeoo0oo00000000000o0ooe18eoe000.000e180000001800 o 000S 1881o. 0 18 C a r N S V N N! N N N N m b L a p O O O O O ....... N O O ...... ...... r ... G o YM o ... NO O O N 0 0 0 0 0' Q O O O O M O O 1810 O O IN O O Cl) O G C C G G C O C G N C 00 O C r G G 0 0 0 �nn°'i lomliOo�nn �o v°'i 11Ooer io v°'in�nnnmm�nnuune�n18v1810 �i°o io uO1i�ni M M M M M M M m M M M M M M M M M M M M M M m m M M M M M M M M M M M M M M M M M M< AMarlm� mo lo'c+a for o�?lojn wo�alo`I in mr;wm 1�, m Q 0 0\ 0 0 0 Q O M MMM M � 0 0 0 0 0 0 0 0 V x110 � W 010 �1�M V NID i��010 �`-l�M `V hbrmOl i�������l000000000rrrrrr��.-.- rrrrrr-aaaaa-------------- 000000000 0000 00000000oeee0oe00000000 oo io 000000000000000o0000eooeoo 18 N 0 0. p O Q O D O O NO 0' 0 0 0 0 0 0 0 0 0 0 0 0 0 NY O O O O Y 0 0 0 NO O O O O O N O 0 0 0 0 O O O O C o 0 0 0 0 0 00 a. r!2 n s (h n C O O C G C G G O C O O C O OO r C O O C G w18'm nrommwmmmmmrowwwmwmmwmmwrommmmmmm�nnnnnnwmnn�nm�nmon18ni: mul to to to vwi nio18nmml�n M M M M M M M M M M M M M M M M M M M M M MM M M M M M m M M M M M m m M M M m m m M M M M M M M vvl orAmvvl lo�mmo`AnvvlOnmmo"1�'n`v`1`n`m mo�t�ITly^n`mi: `mmo�An `v imm�mmo`An`v vl lorwoo� 00$�oo��rrrrrrrr����������Mnooe�o`8000rrrrr.r �\ `0O\~�`\ �O0000°' `momo,oeo'eammm "` m000000000000000000000000 00000000000000000000 0000 0000 00000000.,000 � 0O 000000eoe0000000000000000000O00000000000000000 000000000 0O OO t0 O N O N N O N N N ASH M a M O O M 0 Ie0 O M M O M W o a p NO O O M 0 0 0 0 0 0 0 0' m O N M m N m O O N 0 .......... G 0 0 r v ...... O M O r m m d 0 0 0 Q m r ........ M 0 0 0 O O m O r 0 0 0 O N d r O m N r O r d N r r M C C C CCC C O C G O C C CCC O C C> 0 P 0 mrro cNDro W mmm mm OOf W W n ��n0 W mr W OOf nnl�m W W CMO I�I��I�Mm Mme a0 dmmn��mmmro ro W roCOD rNAmM1rr rmm rorn� rn� rn o d d d d d o d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d 000 000Q000�o 00 00000000000 000000000000000aooaoO0000a000 vvo`imnwrnmoa:h rmmnmmor?� mmnmoo rte. icvmmr:mmm� dm �l. iammnmmm�Amamm�mmo L`���i'iro�o�o�0000g L" CC�� C�i`�mL'�i"l'oQ0000000�r_rr.-r r_r�rLv rorrrrr�rm mom"m"` "m�m O10000OOOOO°1OOOO °1 0000000000 ooa000000000000 00000000000 00000000000 0 00000 � ooeooOo 000000 000000000 00000O0000000000O0000000000000000O000 T O 0 0 0 O O O O O 0 0 0 0 0 O O N N< M N N M< M M V M Y M N N N N Q O d .d - V O O M G O O C O O 0 0 0 0 O O O O O O O O O O O O C O O O G O C O C G d d d d d d d d d d d d d d d d d d d d d d V d ggddddddddeoIS o 000008000 oedoo'oog000000to0oooo8edo�SeoeB0000000$080000 'onmmo�anamm�mmo`A`c�mm�ma`o`.=A.namio i:mmo.'-A.nvmmnmm `o'A:n"mnmmor.An'c nm�mmo.=ai z�� R���C C � �B00000 oo o orr rr rr r r r r C rg Q Q � �§ C§ g soo 0000000���� 000000000000000000000000000d800`8`Sgo00000�SoSS�888oSoSooaooSSre88SSSreSro88 WO O O O O ................... O O O O O O O O O O O ........ O O O O ...... O O O O O p O 0 ..... 0 ... o Ln N N N N N N N N N<N N p d N M o. p O O O O O n m m m 0 01 N m M r O O O O N O O O O O O O N n O 0 0 N N 0 0 � 0 0 0 O 8 O n N m O O a O N O Y 0 0 0 0 0 0 O m O m o. m 0 Om O m V N O O O O G G C C O G ... C G ...... O—p G O o m 113 m m N Y 1 m N -14 N m m m m N N m N m N m N N m m N Y f og00000000000000000Q00000000 _ Q 00000 000 o 0000g gog uu m�mmo�ananlonmmo`a i`In ion o�arlv�lonmrno�aMv�mnwmo��A`an`n�mo�Nauo`imnmm o.-aM _CCC"CCCCCCMoov0000������������C�LCC �L`IC CCCffi C00000S�000������ CCCC f•, .. 0000000m000go880000000000000000oo000a000a�ooa000�00000a000S000000S000 S o0000000000000 o0 e0 eo 00000000 000 00000 o o 000 0 o SSS S SSS �SSam o Soo In N Y N N V N N N< N N V N H- ................ V N N N N Y N p m a p oo�n oommoa o ' nM� oNo ooa�m 000ln�oo�Naoom 0000n�000M��o 00 O� OOm o0 OOMNO G � OOtD O O O G G C G Ym'l um'I ION V M'[p1Y Nt0 t00 .V a V V tN010 tpN V N V Cm'1M M V NNtmp tONO hNlrp nhi[N1<MNH ID INymlO fD t�l�mhnr NNNYmI I��l�lp iO l�mmmNNlph 0 0 0 0 0\ 0 0 0 0 0 0 0 0 0` 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0` 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 mnmmo�an•e In icrmrno� ----mea a.n `i wmo�aa<�`n I`onmmo� e�`n m normo a I`o` in` n m m o � a l -,v i oo. 00000�000�. CC MCHC CCCCC �a yn000�o�000.-.-.-.-.-.- aaaaaaa'aaa'aa"aa S S SaSaMaaMaMMaa;M=a.....MMMMMMMMMMMMa99g;gaaa______ 000000000000000000 00000000000000000000000000000000000000�00000ci o000000e OOoo.00000 e0oo0eeee00000000000e0000000 e. oe00000000ooe0000 1. SoO N N N V N N N N d O N p O V 0 0 0 010 O O O M V r O 0 0 0 0 W N ............ 0 0 M h". G ap I.;z 1. 9 M V. YlG2 V NN 211. to Y hM<1avYM Ir, V V 22M:C V h 1. 1. 1.N$8OM20 <N 1. 22, 2NmT W W rhm T s2 Nin of--Nin----hNh-----Nin NNhhhN88 Nin---------nNhNhhONNNin ro lOO N OOrrhh O O O O O O O O O 0 0 0 0 0 O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O m .-a a` n o+o�ai`a n�onwm `a`v ----c-"---'aaaaaaaaaaaaaaaaaa'-S-----aa-SSa00000mo��o0a� �����_����� 000000 OO��0000 2.0 Bulletins Bulletin A Aqueonics Plant Cut -Sheets for: concrete mix design, railing, chemical feed pumps, Parkson sand filter and air compressor, DuraPac trickling filter media, Trojan UV, level controller and tranduscers, chemical feed pumps and pressure relief valves. Bulletin B — Cut -Sheets and Pump Curves for WWTP Pumps: forward flow/recycle pumps, sand filter flow pumps, equalization tank grinder pumps, sludge tank decanting pump. Bulletin C — Cut -Sheets for WWTP Blowers Bulletin D — Cut -Sheets and Pump Curve for Irrigation Dosing/Flushing Pump Bulletin E — Cut -Sheets for Flushing Return Pumps and Tanks Bulletin F — Cut -Sheets for Alternate Pond Liner Bulletin G — WSI PC Controller Electrical Schematics Bulletin H — Cut -Sheets for Drip System Valving Bulletin I Cut -Sheets for Flow Meter Bulletin J - Cut -Sheets for Disc Filtration System Bulletin K - Cut -Sheet for Rainbird Rain Gauge Bulletin L - Drip Line Cut Sheets Bulletin M - Pole Blower Curve and Cut -Sheet Bulletin N - Back -Up Generator Cut -Sheets Bulletin O — Turbidity Meter E BULLETIN A Aqueonics Plant Cut -Sheets for: concrete mix design, railing, chemical feed pumps, Parkson sand filter and air compressor, DuraPac trickling filter media, Trojan UC, level controller and transducers, chemical feed pumps and pressure relief valves. MARION CENTER. SUPPLY, INC. READY MTX- C.ONCRE 1 E P.O. BOX 173 MARION CENTER, PA 15759 (724) 397-5505 Fax (724) 397-9077 WEBSITE: WWW.MARIONCENTERSUPPLY,COM DATE: 14 -Aug -08 N -st `z !'' 1 t x � 6, IJ Z7 --Al P L'� � E) PROJECT, Treatment Plant Slump (inches): 4" Maximum Calcul2ted Unit Weight (pC�' 145,60 Water l Ratio: 0.35 Marion Center Supply will not be held responsible for any type of cracking_ Cracking Is a natural thing which we have absolutely no control over- *** ADMIXTURE NOTES **' 1. At ambient temperatures below 75 degrees, 3 az/cwt of 20ON 2. At ambient temperatures from 75 - 85 degrees, 3 oz/cwt of 100XR B. At ambient temperatures above 85 degrees, 4 ozlcwt of 1 DOXR MATERIALS SOVIRCE ASTM TYPE DOSAGE Cement; Cemex, Fttsburgh/ Wampum, PA C-150 Illi n/a 1:XL Select- RM Excell Minerals, Sarver, PA 0114&1157 nia Coarse Aggregate: Hansen Aggregates, Torrance, PA C-33 957 n/a Fine Aggregate. Glacial Sand & Gravel, Tarrtown, PA C-33 A nfa Wafer: Onsite Well n/a potable n/a 1 Mai Air Entraining. Master Builders Inc„ MBAE 90 C-260 n/a As Required Water Reducer. Master Builders Inc., Pozzolith 20ON C-494 A -B -D See Below Retarder: Master Builders Inc,, Pozzolith 100XR C-494 B -D See Below Super Plastickder Master Builders Inc., Gienium 3030 NS C-494 A F As Required I.:I Non Chloride Aco, Master Builders Inc,, Pozzolity NC Sad C-494 C -E As Required MIX [DESIGN 4000 psi Air Entrained Material Weight Gallons S.G. Volume (Ibs,) (ru, ft.) Cement 420 3.15 2.14 EXL Select - RM 140 2.90 0.77 Coarse Aggregate 1800 2.68 10,76 Fine Aggregate 1376 2.57 8,58 fob Water 195 23.41 1.00 3.13 Air 6.Ow1,5°/a 6.00°!0 1.62 ® TOTAL 3931 27.00 Slump (inches): 4" Maximum Calcul2ted Unit Weight (pC�' 145,60 Water l Ratio: 0.35 Marion Center Supply will not be held responsible for any type of cracking_ Cracking Is a natural thing which we have absolutely no control over- *** ADMIXTURE NOTES **' 1. At ambient temperatures below 75 degrees, 3 az/cwt of 20ON 2. At ambient temperatures from 75 - 85 degrees, 3 oz/cwt of 100XR B. At ambient temperatures above 85 degrees, 4 ozlcwt of 1 DOXR SCC6SPL ,'s- L, t'>' m)e—fz r Valley City: Cement 488 lb 3.15 Sp Gr 62.4 2.48 ft3 Fly Ash 102 Ib 2.35 Sp Gr 62.4 0.70 ft3 Slag Cement 0 Ib 2.35 Sp Gr 62.4 0.00 ft3 Gravel 57 840 Ib 2.64 Sp Gr 62.4 5.10 ft3 Gravel 8 560 Ib 2.64 Sp Gr 62.4 3.40 ft3 Concrete sand 1568 Ib 2.64 Sp Gr 62A 9.52 ft3 Water gl 30.50 254.065 Ib 1 Sp Gr 62.4 4.07 ft3 Air 7% 1.89 1 1 1.89 ft3 6100 48 oz APA14 6 oz NC 50 oz If Needed Plastiment 15 oz If Needed 27,16 ft3 Comments: water/cem coarse/fine cem/f/a total agg agg cu.ft. 2968 590 1400.00 0.43 0.53 22% 40% 8.50 - 07� r Valley City: Cement 530 Ib 3.15 Sp Gr 62.4 2.70 ft3 Fly Ash 110 Ib 2.35 Sp Gr 62.4 0.75 ft3 Slag Cement 0 Ib 2.35 Sp Gr 62.4 0.00 ft3 Gravel 57 840 Ib 2.64 Sp Gr 62.4 5.10 M Grave! 8 560 Ib 2.64 Sp Gr 62.4 3.40 ft3 Concrete sand 1428 ib 2.64 Sp Gr 62.4 8.67 ft3 Water gl 34.00 283.22 Ib 1 Sp Gr 62.4 4.54 ft3 Air 7% 1.89 1 1 1.89 ft3 6100 48 oz AEA14 4 oz NC 50 oz if Needed Plastiment 15 oz if Needed 27.04 ft3 Comments: water/cem coarse/fine cemlfla total agg agg cu.ft. 2828 640 1400.00 0.40 0.50 22% 40% 8.50 N 1 Cat 1A S1 p OnFittings 2/15/04 12:39 PM Page 1 f � R14 Wb 0Z_ tw4ellsender. Your Handrail Source. Structural Slip -Do fittings used with aluminum, galvanized steel, stainless steel and black iron pipe an installations around the world top over fifty years. Hollaender Products are produced from only the highest quality materials and feature proprietary fasteners and design features. Aluminum Allay 535 • ivlost corrosive resistant aluminum casting alloy available today • High strength as cast • Bright, attractive burnished mill finish • Conforms to ASTM B26 & BI 79 Proprietary Internal/External Reverse Knurl Cup Point Set Screw • Knurl cup point design provides tremendous resist- ance to loosening due to heavy vibration • Full contact of point greatly resists pullout and rotational slip • Conforms to FF -S-200, ANSIIASNiEBIS.3 Type CIG The Hollander Advantage • Speed of Installation —Studies have shown significant cost savings when compared to the cost of welded handrail and other structures • Ease of Installation —Only tools required are a saw, hex key and tape measure • Flexibility — Cast fittings can be used with galva- nized steel, aluminum, stainless steel and black iron pipe • Reusability — Structures fabricated with Hollaender fittings can easily be disassembled and reconfioured The Rib® Design Hollaender® Speed -Railer Nu -Rada Speed -Railer II Rackmastera Mend-A-RailO Interna -Rail'• Bumble Bee' AH are registered trademarks of the Hollaender Manufacturing Company. Call Tali Free; 800.772-8800 • www bollaeader.com rmt� T t;�V! • Strength — Railing systems can be designed using standard Hallaender products to meet any building code. Please refer to Technical Section of Catalog, www.hoilaendercom or call our engineers. • Time Tested — Products are backed by over 50 years of experience Hogaendep features the Worids hest known brands Speed -Rail" Inline design has become the benchmark for quality throughout the industry. Nu -Rail• Offset design of heavier duty structural fittings allows multiple pieces of pipe to cross, minimizing number of cuts. Rackmaster• Heaviest duty line developed for the construction of rack systems. Mend-A-RailO Ideal for repairing broken welds on existing pipe structures. Speed -Rail" Il Patented modular fitting system which easily allows for additions and changes to existing structures without having to entirely disassemble. Applications are limited only by the imagination Handrails & guardrails, playgrounds and carts, store fixtures, offshore petro/chemical, industrial plants, racking systems, warehouses, health & medical buildings, portable structures, recreational areas, amusement parks, film industry, government facilities & public works, displays, and much, much more. Instant Structures r� d a Cat 1A Slip-OnFittings 2/16/04 12:39 PM Page 2 I Willi j Wei I � 1 Nbur Handrail Source. l Y Typicall Hslip-On Filings speed-Rail speed-Rail® it • NU-Balle RaclMaster° 51 ;�}� Will . Y � a'.�n'F?_�.Y t � { 4::°'Y_ yz,. �%"`au-F."•.0 x +�, �3 Pa, - b,� k' t om � � as � ,±? s � '� �s, L.� r rfY �'✓t " ��� -�` ������f� � "� � -m � ��',�,... '`^ yg.,�, ;, �y � 4:, s '�'��. `'p'�.�'� `� „.., � r� " .�P.daE ,`�� Baa �` 3��m .'<•, 3.� �� �P ��� '� .�', §s911UCL i ,y g73{%'.. `ass mrWo �26pilfee z#f71U9 �,�<�MwkTcs -``f,x ,fiM. 99':'ss�,, #9 Slide outlet Me% t #11111E Side Outlet Tee — #47 Rectangular Range Call Toil Free; 800-772.2300 • www,hollaendeccom Notes: • Handrail post must be installed as one piece. Never splice post at mid -rail. • Top -rail should be spliced using an internal or external splice.. Never splice inside a single set screw tee (5E). "The Fitting nth the Rib"' FF 05060 I' 06060 1-1/4" 01060 1.112" 08060 2 fCat la Slip-On;:ittings 2/16/04 12:39 PM Page 3 I.. r 3 US. Size Iiem Number 3/4° 15000 1.1/4° 11000 �3 1-1/2' 18000 R4� , a 1 Components: It) No. 99C Ili k 2S0 r SAE A0P►Sta6 UNU k (L 4,11, 01 f� I'I'I �h �.Nlf 5A['At�f�ke(� �" iia TC�Oss 3 g f v ellsendemr- Your Handrail Source. I.P.S. Size Item Number 3/4' 05060 I' 06060 1-1/4" 01060 1.112" 08060 I.P.S. Size Item Number 2° 09010 I.P.S. Size Item Number 1-1/4' 01000 1-1/2" 08080 I.P,S. Size Item Number 3/4' 05090 t" 06090 01090 08090 2 09000 011mander. Your Handrail Source. Call Tall Free: 800-772-8000+ www.hollaender,com Cat 3A Flames 2(16101 12:49 PM Page 1 Y Y f cs "! Hollaender offers an extensive line of flanges for mounting handrail, guardrail, and other pipe structures. These flanges are available in all the optional finishes. Selecting the right flange becomes extremely MRM x important in all handrail applications. To aid in the selection process, please refer to the chart on the following page, and dimensional drawings on the subsequent pages. �a Our engineering staff is available m answer questions regarding the appropriate hardware. Concrete a anchors and machined bolts maybe ordered to complete the handrail system. Many applications require toeplate. (Refer to Tech Information section, building codes and OSHA standard pipe railing for requirements.) Refer to our accessories section for our toeplate and toeplate brackets. Please refer to our web page at www.hollaender.com for additional technical support ni a wig .. ..' a T i J' 4 4 !�llwA V 011mander. Your Handrail Source. Call Tall Free: 800-772-8000+ www.hollaender,com 0 " , Sulzer CompaXTm The space -saving solution Sulzer Chemtech 3 Sq ate: dA6 aY. vt � 9tt M M 01" CampaX`117%chno�ogy Sulzer CompaXTm for turbulent flow Sulzer CompaX is the name for the new, space -saving and efficient solution to your mixing problems in the turbulent flow regime. In comparsion to conventional static mixer configurations, the Sulzer CompaX has an amazingly reduced overall length. This greatly im- proves your operational flexibility and reduces installa- tion costs. Further more the additive can be admixed in an easy and reliable way. Functional description The patented Sulzer CompaX design consists of a highly efficient mixing device with integrated dosing in- let point. The additive is fed into the zone where strong turbulent flow prevails. This design secures homogeneous mixing over a very short distance with the use of only one mixing element and with only one additive dosing point. The Sulzer CompaX is patented technology. Field of application The Sulzer CompaX is widely used for the inline mixing of liquids, gases and suspensions in the turbulent flow regime. Outstanding features The following features make the Sulzer.CompaX an advantageous and efficient solution to.your mixing needs: • very short mixing distance independent -of mixing ratio, a homogeneous mixture is achieved only.3 pipe diameters .downstream. of the mixer • low pressure drop (typically 10 —100 mbar) • extremely short overall installation length (approx. 0.3 pipe -0) • easy to fit, low installation costs • simple dosing of additive: no multipoint dosing system necessary • no clogging (both in the main flow and in additive stream) • robust construction, no moving parts • easy to clean • excellent price/performance ratio Main fio —0. Homogeneity data 1 0.01 1000 9 100 0 a 1 0,1 0,5 1 Velocity (In s) iSulzer CompaX O 11 :2000 • t: too 8 1:20 UD [-1 Homogeneity curve measured at different mixing ratios calculation of the homogeneity with CFD (Computational Fluid Dynamics) Pressure drop (lip) The pressure drop can be calculated as follows: Ap=0.015pv2 ©p = pressure drop (mbar) p = density (kg/m3) v velocity (m/s) In the case of water, the relevant pressure drop value can be seen in the diagram below. _ _ Sulzer CompaX 5 Sulzer CornpaX�M Applications There are many potential application areas for the Sulzer CompaX: • concentration and temperature equalisation of low - viscosity liquids and gases • mixing of additives • dilution of concentrates • water and wastewater treatment (adjustment of pH value, mixing of flocculation agents, neutralisation processes using acids or caustic solutions) • concentration- and flow equalisation for an accurate representative sampling from a single point down- stream the mixer • etc. Design features The Sulzer CompaX consists of a mixer with an inte- grated dosing point. The dosing point is designed for the mixing of an additive into a primary stream at ratios ranging from 1 to 3. The mixer is installed in the pipe, mounted between two flanges (DIN 2633 or ANSI B16.5). The overall installa- tion length is equivalent to less than half of the actual pipe diameter. Sulzer CompaX is available in the following materials: • Stainless steel (1.4571) • Polypropylene (PP) • FRP for diameters > DN 500 • following other materials on request PVC, PTFE, SS-ETFE coated For mixing ratios > 1 to 3 and nominal diameters DN > 100 mm flanged versions are available. Pressure rating: Stainless steel = 16 bar @ 120 °C PP = 10 bar @ 20'C Headquarters Sulzer Chemtech Ltd P.O. Box 65 8404 Winterthur, Switzerland Phone +41 52 262 50 28 Fax +41 52 262 01 82 chemtech@sulzeccom www.sulzerchemtech.com North and South America Sulzer Chemtech USA, Inc. 4019 South Jackson Avenue Tulsa, OK 74107, USA Phone +1 918 446 6672 Fax +1 918 446 5321 Asia Pacific Sulzer Chemtech Pte. Ltd. 10 Benoi Sector Singapore 629845 Phone +65 6515 5500 Fax +65 6862 7563 Sulzer Chemtech Ltd, a member of the Sulzer Corporation, with head- The activity program comprises: quarters In Winterthur, Switzerland, is active in the field of process engi- . Process components such as trays, structured and random neering and employs some 2500 persons worldwide. packings, internals for separation columns and reaction technology Sulzer Chemtech is represented in all important industrial countries and , Engineering services for separation and reaction technology such sets standards in the field of mass transfer and static mixing with its as optimizing energy consumption, plant optimization studies, advanced and economical solutions. pre -engineering for governmental approval, basic engineering • Separation and purification of organic chemicals by means of crystallization and membranes • Mixing and reaction technology with static mixers • Mixing and Cartridges Technology • Tower field services Distributed by: 1A 23.13.06,40 - 11.08 - 50 - Printed in Switzerland diaki i z q-yLyy-yyI�L-Ly�zl�Sn O AAAmCA 119 CIAO s 0 NW N_ rola N AAI w w m m z SIM z z9 OO m �i m C rr -- - ---- ----r c i - -got z q-yLyy-yyI�L-Ly�zl�Sn O AAAmCA 119 CIAO s 0 NW N_ rola N AAI (CMD ~ fi 3. O � V m o c 0 m P� z z ma mm �QN� AAT ZN f ZZ�2 2.11 gyp+ n211 �g o y -oz $m@< U5 Za 'LGo rD TD CAO FTPA POP m 4mg L� mA Ix Aims ,KIPARKSON CORPORATION DynaSancr Filter DSF 19FT2 DBTF SS SALES DRAWING PROJECT NUMBER DRAWING FILE NUMBER: REVISION: NAME 003758-01 PROJECr SHEET NUMBER 1 1 OF 1 b iz -- - ---- ----r c i - -got LT I R I v I Ws 0013% PROM DW4MFL ALD ALL mIWR9 UNLESS OTHERWISE SPECIFIED SIGNATURES RMM WRH THE FFAkW o ULKr DIMENSIONS ARE IN FEET DRAWN: F. J. CAMARGO IAN FOLLOW ALL SAFM SmNVN4 AND s RE%%W Lx LOON. mRE AND FB m LMS . ,I t CHECKED: P. TATASCIORE 5 .( � PW" SWAM Nm WE OUSw1 PMO. = ol99L APPROVED: P .TATASCIORE PRal9oM OOAPORRNN WLL LOT BE IEWONSES SIM. B SCALE 3/. ; FOR mGItlN AND/OR PAummR OF EpLFIEIR DATE 3-22-99 BY: F. J. CAMARGO CHECKED: P. N TILE PVM DENK NOR B lWAKSON LLLSPOILSBE FOR R/Nr SAFT]Y DE4pN AFN FOR APPROVED: P. TATASgORE DESCRIPTION T E FAtlJ1� TO ADW APProFhure SAFM = MODIFIED BASE PLATE AS SHOWN PP01JRId19 N WE OPEMNNL AND VAwnmwm DP PRE00N Om wLum wipmeLr. O i EL. OF NOZZLE "C" WAS 16'-6 1/2" (CMD ~ fi 3. O � V m o c 0 m P� z z ma mm �QN� AAT ZN f ZZ�2 2.11 gyp+ n211 �g o y -oz $m@< U5 Za 'LGo rD TD CAO FTPA POP m 4mg L� mA Ix Aims ,KIPARKSON CORPORATION DynaSancr Filter DSF 19FT2 DBTF SS SALES DRAWING PROJECT NUMBER DRAWING FILE NUMBER: REVISION: NAME 003758-01 PROJECr SHEET NUMBER 1 1 OF 1 NEMA Premium" BaUdor5.0 horsepower totally enclosed, f@O-cOOled.electric 6W DlOto[8. Specifications: EM3615T Catalog Number: EK43615T Specification Number: 36G271T081 Horsepower: 5 | � Voltage: 230/468 Hertz: SD Phase: 3 Full Load Amps: 13/6.5 Usable at2O8Volts: 13.6 RPM: 1750 Frame Size: 184T Service Factor: 1.16 Rating: 40C AMB -CONT Locked Rotor Code: N NEMA Design Coda: B Insulation Class: F Full Load Efficiency: 90.2 Power Factor: OO � ! Enu\ooupa� � TEFC — Bo|dorType: 3643M DE Bearing: 8206 [� ODE Bearing: � 6205 ` Electrical Specification Number: 36VVGTO31 Mechanical Specification Number: 36G271 Base: R8 Mounting: F1 F N I RASCHIG GmbH Mundenheirner Strasse'100 67061 Ludwigshafen - Germany Phone: +49.621.5618-602 Fax: +49.621 �5611 8.604 email: hneis@raschig.de www.raschig.de Locations/Production Sites Ludwigshafen and Espenhain, Germany Houston, Texas El Dorado, Kansas Monterrey, Mexico DURA -PAC flow PVC sheet submerged fixed beds wastewater treatment crossflow media for DU RA -PAC is a self- supporting PVC sheet media, capable of withstanding loads in excess of industry standards. DURA -PAC modules are available in various sizes and specific surface areas of 30, 31, 48 or 68 ft2lfV. and vertical tricklinct filters, and other applications DURA -PAC is a plastic sheet media available in two basic designs. DURA -PAC XF is a cross flow media recommended for low to medium BOD loading applications. DURA -PAC VF is a vertical flow media recommended for high BOD loading applications. DURA -PAC's volumetric void ratios of at least 95% allow for uniform redistribution of wastewater and air while maximizing contact between the biomass and the wastewater. DURA -PAC is available in specific surface areas of 30, 31, 48 and 68 ftl/ft. 31 ftl/ft' media is typically used for BOD removal and 48 ftl/ft' media can be used for nitrification to reduce the size of new nitrifying trickling filters. The DURA -PAC media is non-toxic to microorganisms and immune to rot. It is resistant to degradation by ultraviolet light, fungi, bases and acids, and other compounds normally found in wastewater. DURA -PAC consists of thermoformed flat PVC sheets. Sheets are sized in varied thicknesses indexed to applications. For cross flow applications (DURA -PAC XF) these sheets are corrugated horizontally and bonded to one another in a honeycomb pattern module. Vertical flow media modules (DURA -PAC VF) are formed by alternating flat and corrugated sheets. DURA -PAC modules typically measure 2'x 4'x 2'. Custom module sizes are available. DURA -PAC sheets can also be shipped to the job site for assembly, if the application requires. DURA -PAC is one of five trickling filter media designs from Jaeger Environmental. Jaeger Environmental has manufactured trickling filter media since 1979, with system installations worldwide. We offer random and structured media for municipal and industrial applications. Product specifications for DURA -PAC are detailed on the reverse side of this presentation. For further information, or to discuss your application, contact Jaeger Environmental via phone, fax or e-mail. 4 DURA -PAC TRICKLING FILTER MEDIA A. Standard Product Specifications B. Installation C. Module Testing 1 , The media shall be fabricated from rigid PVC I . The media shall be placed inside the filter by 1 � Structural testing of fabricated modules shall sheets completely corrugated forming a crane or mechanical conveyor. The media be performed by an Independent testing cross -corrugated pattern with adjacent sheets modules shall be transported by cranes or laboratory approved by the engineer. to permit continuous horizontal redistribution placed on wooden slides or conveyors to the of both the air and wastewater throughout the working level. The media modules shall be 2. All tests shall simulate service conditions and depth f the media. The PVC roll stork sheets placed by hand In their final location. conform to the following criteria, shall b'e' of uniform thickness with no sections less than :k 0.002 inch manufacturing 2. Use 112 inch thick plywood, pegboard or other a. The test samples shall consist of a stack tolerance The media shall be specifically suitable temporary planking to protect the of modules at least two modules high. The designed for use in the biological oxidation media from foot traffic. Do not allow workers arrangement of the stack shall simulate of municipal and industrial wastewater. to directly walk or stand on the media. the geometry as placed in the filter towers. 2� The polyvinyl chloride used in the media shall 3. Place each module as close as possible to b� Modules intended for the base layer shall be tested on a simulation of the support be resistant to degradation from ultraviolet radiation, rot, fungi, bacteria and other forms each other while avoiding damage to the modules. The sheets of all modules in a layer system. Modules intended for all other of microorganisms. The media shall be shall be placed parallel to each other in order to maximize horizontal layers shall be tested on a flat base. chemically resistant to concentrations of uniform and continuous c. Test loads shall be the design loads of the common inorganic mineral acids or alkalies movement of air and water, media specified. and organic solvents or compounds normally experienced in sewage. 4. Modules in each layer shall be rotated 90' d. The test load shall be uniformly applied at to the layer immediately below to enhance a temperature of 75* F, (± 21 F) and the 3. Each module shall consist of several water redistribution and to maximize design load shall be applied as follows; PVC sheets, bonded together to form a self-supporting of the media. structurally self-supporting block measuring 5. The media modules shall be carefully I . A pre -load, equal to 10 percent of the design load, shall be applied for I hour 2Vwide x 24" high x 48" or 72" long. The trimmed or cut to fit within 2 inches (50.8 mm) to seat modules and to establish a modules shall be designed with a minimum or less of the center column, Cut or trim baseline flexural condition. specific surface area of 30 (or 31, 48 or 68) modules to fit within 2 inches (50.8 mm) or square feet per cubic foot with a minimum less of the filter perimeter wall. 2. The loading shall be increased in 100- 95% void volume ratio. Each module shall pound -per -square -foot intervals. Each be capable of withstanding a minimum load 6. Shaping, trimming and cutting of the media loading shall be held for a minimum of of 35 pounds per square foot per foot of may be done in the filter provided appropriate 5 minutes and the deflection recorded media depth. Maximum allowable deflection measures are taken to prevent any chips, at the end of the 5 -minute period. shall be limited to 2%. broken pieces or similar debris from falling into the media. Canvas or similar working 3, Incremental loading shall continue until 4� The manufacturer shall submit test reports materials shall be used to cover the media recorded deflections are I percent and, for the mil thicknesses to be supplied.Test modules, Before a new layer of modules is subsequently, 2 percent. reports shall comply with the requirements added, the existing layer shall be cleared of of paragraph C. If there are no test reports all construction material or objects that may a- Maximum allowable compressive deflection or if there are any alterations to the media have fallen on it. The top layer of media shall of the individual modules shall be 2 in respect to materials or design, the also be protected from damage caused by percent. manufacturer shall test the modules in failing material due to any subsequent work f. If more than 10 percent of the modules accordance with paragraph C. until start-up of the system. tested in any strength gradation exhibit 5. Individual sheets used in the manufacture 7. The media modules in the bottom layer shall a compressive deflection of greater than of the media shall conform to commercial be placed on the supports provided. Support 2.0 percent, or if any one module exhibits standards ANSI/ASTMD1784-78:12454C with ledge (a minimum of 4 inches wide) should a deflection greater then 4,0 percent, the following physical properties when tested be provided around the center column and additional testing may be required as in accordance with the method indicated: the tank perimeter wall, The top of the support considered necessary to determine the beams and ledges should be at the same structural suitability of the media, If the elevation and within a maximum tolerance tests indicate the media is structurally of :k 1/8 inch (3.18 mm) in their elevation. unsuitable for its intended use, the media may be replaced with new media meeting the specifications and passing the structural testing. D. Product Handling And Storage I . If storage is required, assembled media Properties Test Method Results modules shall be stored on a flat, clean surface to prevent damage to the module A. Tensile Strength (psi) ASTIVI D-638/882 4,000-8,000 edges. B. Tensile Modulus ASTM D-6381882 300,000-550,000 C. Modulus of Elasticity (psi) ASTM D-746 Min 325,000 2. Modules should be checked at least once per D. Impact Strength (ft-lb/In of notch) ASTM D-256 1.0-5.0 week- Modules that rnay have fallen shall be inspected for any damage and undamaged E. Gardner Impact ASTM D-4226 Proc.A 0.8in. lb./mil modules should be restacked and secured. F. Heat Distortion Temp (*F@264 psi) ASTM D-648 155 — 170* F Damaged modules should be either repaired G. Izod Impact (ft-lbAn) ASTM D-256 0-6-2.2 or discarded. H, Maximum Service Temp 135' F 1. UL Flammability 94 V-0 3. During shipment and storage, modules shall always be stacked on their long face with the J. Specific Gravity ASTM D-792 1.3- 1.5 plastic sheets in a vertical position. Modules K. Resistance to Grease, Fats & Oils ASTM D-722 Excellent shall not be stacked more than four high, L. Resistance to Acids & Alkalies ASTM 0-534 Excellent and modules in each layer shall be set at M. Flammability AsTm D-635 <5 secs, <5mm burn right angles to those below, Weathered or otherwise damaged media are not acceptable and will be replaced as deemed necessary or DURA -PAC Is Represented By: appropriate, E. Cleaning As Installation of each module layer is completed modules surfaces should be inspected for the presence of debris or other construction materials. Any foreign material detected should be removed and all surfaces cleaned. Upon completion of the media installation, a final check of the media surface should be conducted for the presence of foreign material and any material detected removed prior to the application of water. Following completion of the inspection and the removal of all foreign material, the media should be thoroughly flushed with clean water - (b 2366 Durapac Flyer 08/07 N @ Siemens AG 2008 Poll ij, �, ��, - -­ � , , _� t � Continuous level measurement - Ultrasonic controllers 6esign ciiF Weight Made of Operation - Wall mount 1-37 kg (3.02 lbs) Measuring principle Ultrasonic level measurement Measuring range 0.3 to 15 m (1 to 50 ft), transducer - Panel mount 1.50 kg (3.31 lbs) dependent Material (enclosure) Polycarbonate Measuring points 1 or 2 Degree of protection (enclosure) fdow Input - Wall mount I P65[Type 4X/NEMA 4X Analog 0 to 20 mA or 4 to 20 mA, from - Panel mount I P54/Type 3/NEMA 3 alternate device, scaleable (6 Cable relay model) Discrete 10 to 50 V DC switching level Transducer and mA output signal 2 -core copper conductor, twisted, Logical 0 = < 0.5 V DC shielded, 300 Vrims, 0.82 mm2 Logical 1 = 10 to 50 V DC (18 AWG), Beldeno 8760 or Max. 3 mA equivalent is acceptable Max. separation between trans- 365 m (1200 ft) Output ducer and transceiver EchomaxO transducer 44kHz Displays and controls 100 x 40 mm (4 x 1.5') multi -block Ultrasonic transducer Compatible transducers: ST -H LCD with backlighting and Echomax series XPS-10/1 OF, XPS 15/15F, XCT-8, XCT-1 2 and Programming Programming using handheld programmer or via PC with XRS-5 SIMATIC PDM software KffiL Relays') Rating 5 A at 250 V AC, non- . . . . . . . . Power supply4) inductive 44 1 1 Model with 1 relay2) AC version 100 to 230 V AC 15%, 50160 Hz, 2) 1 SPST Form A 36 VA (17 W) Model with 3 relays 2 SPST Form All SPDT Form C DC version 12 to 30 V DC (20 W) Model with 6 relays 4 SPST Form A/2 SPIDT Form C Certiffeates and approvals - CE, C-TICKI mA output 0 to 20 mA or 4 to 20 mA - Lloyd's Register of Shipping - Max. load 750 n, isolated - ABS Type Approval - Resolution 01 % of range - FM, CSANRTL/C, UL listed Accuracy - CSA Class 1, Div. 2, Groups A, 8, C and D, Class 11, Div. 2, Groups Error in measurement 0.25% of range or 6 mm (0.24"), F and G, Class III (wall mount whichever is greater only) Resolution 0.1 % of measuring range or 2 mm - MCERTS Class 1 approved for (0.08"), whichever is greater3) Open Channel Flow Temperature compensation - -50 to +150 'C (-58 to +302 'F) Communication - RS -232 with Modbus RTU or - Integral temperature sensor in ASCII via RJ -1 1 connector transducer - RS -485 with Modbus RTU or - External TS -3 temperature sen- ASCII via terminal blocks sor (optional) - Optional: SmarILinx8 cards for - Programmable fixed tempera- PROFIBUS DP ture values DeviceNejm Rated operating conditions Allen-Bradleye Remote 1/0 Installation conditions 1) All relays certified for use with equipment that fails in a state at or under the rated maximums of the relays Location indoor / outdoor 2) This model is level control only; no open channel flow, differential level or Installation category 11 volurne conversion functions 4 ducer plus any range extension Pollution degree 3) Program range is defined as the empty distance to the face of the trans - Ambient conditions 4) Maximum power consumption is listed 5) EMC performance available upon request Ambient temperature (enclosure) -20 to +50 *C (-4 to +122 *F) Siemens FI 01 , 2009 (D Siemens AG 2008 g Continuous level measurement - Ultrasonic controllers i�,-(;alon and Ordering data Order No. Selection and Ordering data Order No. Siemens HydroRanger 200 G) 7MLS034- Siemens HydroRanger 200 C)7MLS034- Ultrasonic level controller for up to six pumps that Ultrasonic level controller for up to six pumps that b VS, M V provides control, differential control and open provides control, differential control and open Order code liannef flow monitoring. The HydroRanger 200 is channel flow monitoring. The HydroRanger 200 is a so available as a level measurement controller Y15 also available as a level measurement controller only. Select option from model code below. only. Select option from model code below. Order No. Mounting C) 7ML1998-5FC03 c ce S 5 o' nw C) 7ML1998-5FC11 Wall mount, standard enclosure C) 7ML1998-5FC32 Handheld programmer 7ML1830-2AK Wall mount, 4 entries, 4 M20 cable glands included 2 Tag, stainless steel, 12 x 45 mm (0.47 x 1.77'), one 7ML1930-IAC Panel mountl) 3 text line, suitable for enclosure Power supply TS -3 Temperature Sensor - see TS -3 on page 5/147 100 to 230 V AC A SITRANS RD100 Remote display - see RDIOO on 12 to 30 V DC B page 51263 SITRANS RD200 Remote display - see RD200 on Number of measurement points page 5/265 Single point model, 6 relays A Dual point model, 6 relays a 6 r t F, Single point model, level only, 1 relay2) C Power Supply Board (100 to 230 V AC) C) 7ML1830-lMD Single point model, level only, 3 relays2) D Power Supply Board (12 to 30 V DC) C) 7ML1830-IME Display Board C) 7ML1830-1MF Communication (SmartL!nx) See SmartLinx product page 5/260 for more infor- Without module 0: mation. SmartLinxO Allen-Bradleye Remote 1/0 module 1 SmartLinx PROFIBUS DP module 2 Available with approval option 1 only SmarlLinx DeviceNetTm module 3. 2) This model is level control only; no open channel flow, differential level, or See SmartLinx product page 5/260 for more infor- volume conversion functions C) Subject to export regulations AL N, ECCN: EAR99 mation. Approvals General Purpose CE, FM, CSAus/c, UL listed, C -TICK CSA Class 1, Div. 2, Groups A, B, C and D; Class 11, Div 2, Groups F and G: Class ]H (for wall mount applications only) F�v' "F, -A dosign.s. Order code Please add "-Z" to Order No. and specify Order code(s). Stainless steel tag [69 mm x 50 mm (2,71 x 1.97")]: Y15 MeasurIng-point numberlidentification (max. 16 characters) specify in plain text lf;sir'ut�:i'fon m��n"ua! Order No. English C) 7ML1998-5FC03 French C) 7ML1998-5FC11 German C) 7ML1998-5FC32 Note: The instruction manual should be ordered as a separate line on the order, This device is shipped with the Siemens Milltronics manual CD containing the complete ATEX Quick Start and instruction manual library. SmartLInx Allen-Bradley Remote 1/0, English C) 7ML1998-IAP03 SmartLinx PROFIBUS DP, English C) 7ML1998-lAQ03 SmartLinx PROFIBUS DP, German C) 7ML1998-IA033 SmartLinx PROFIBUS DP, French C) 7ML1998-IA012 SmartLinx DeviceNet, English C) 7ML1998-lBHO2 Note: The appropriate SmartLinx instruction manual should be ordered as a separate line on the order. Siemens Fl 01 - 2009 N @ Siemens AG 2008 RN '_ 1111111 Number of measurement points Single point model, 6 relays Dual point model, 6 relays Single point model, level only 1 relay2) Single point model, level only, 3 relays2) eModbus is a registered trademark of Schneider Electric. @Belden is a registered trademark of Belden Wire and Cable Company, eAllen-Bradley is a registered tradernark of Rockwell Automation. .2 TMDeviceNet is a trademark of Open DeviceNet Vendor Association (ODVA) :3 Furthwr dr,.z;iKy-,q Order code Please add "-Z" to Order No. and specify Order code(s). Stainless steel tag [69 mm x 50 mm (2.71 x 1.97")]: Y15 Measuring -point numberfidentification (max. 16 characters) specify in plain text fos"I'LIC-Hop n7anuo" Order No. English C) 7ML1998-lFC06 French C) 7ML1998-lFC14 German 4 Note: The instruction manual should be ordered as a separate line on the order. Continuous level measurement - Ultrasonic controllers manual CID containing the complete ATEX Quick Start and instruction manual library. Evauff SmartLinx Allen-Bradley Remote 110, English C) 7ML1998-lAP03 SmartLinx PROFIBUS DP, English C) 7ML1998-1A003 SmartLinx PROFIBUS DP, German C) 7ML1998-IA033 SmartLinx PROFIBUS DID, French � SmartLinx DeviceNet, English C) 7ML1998-IBHO2 I ta Ii�' - 0. Milltronics HydroRanger 200 C) 7M L 10 3 4 - Milltronics HydroRanger 200 C) 7ML1034- Ultrasonic level controller for up to six pumps that Ultrasonic level controller for up to six pumps that w v, a P, provides control, differential control and open provides control, differential control and open channel flow monitoring. The HydroRanger 200 is channel flow monitoring. The HydroRanger 200 is also available as a level measurement controller also available as a level measurement controller only. Select option from model code below. only. Select option from model code below. Mounting ories Wall mount, standard enclosure Handheld programmer 7ML1830-2AK Wall mount. 4 entries, 4 M20 cable glands included 2 Tag, stainless steel, 12 x 45 mm (0.47 x 1.77"), one 7ML1930-1AC Panel mount') text line, suitable for enclosure Power supply TS -3 Temperature Sensor - see TS -3 on page 5/147 100 to 230 V AC A SITRANS RD100 Remote display - see RD100 on 12 to 30 V DC B page 51263 Communication (SmartLlInx) SITRANS RD200 Remote display - see RD200 on Without module. page 5/265 SmartLinxO' Allen-BradleyO Remote 1/0 module B Spore pa� SmartLinx PROFIBUS DID module Power Supply Board (100 to 230 V AC) C) 7ML1830-lMD SmartLinx DeviceNetT" module Power Supply Board (12 to 30 V DC) C) 7ML1830-lME See SmartLinx product page 5/260 for more infor- Display Board C) 7ML1830-lMF mation. See SmartLinx product page 5/260 for more infor- Approvals mation. General Purpose CE, FM, CSAustc, UL listed, 1 C -TICK 1) Available with approval option 1 only CSA Class 1, Div. 2, Groups A, B, C and D; Class fl, 21 2) This model is level control only; no open channel flow, volume conversion functions differential level, or Div 2, Groups F and G; Class III (for wall mount C) Subject to export regulations AL: N, ECCN: EAR99 applications only) RN '_ 1111111 Number of measurement points Single point model, 6 relays Dual point model, 6 relays Single point model, level only 1 relay2) Single point model, level only, 3 relays2) eModbus is a registered trademark of Schneider Electric. @Belden is a registered trademark of Belden Wire and Cable Company, eAllen-Bradley is a registered tradernark of Rockwell Automation. .2 TMDeviceNet is a trademark of Open DeviceNet Vendor Association (ODVA) :3 Furthwr dr,.z;iKy-,q Order code Please add "-Z" to Order No. and specify Order code(s). Stainless steel tag [69 mm x 50 mm (2.71 x 1.97")]: Y15 Measuring -point numberfidentification (max. 16 characters) specify in plain text fos"I'LIC-Hop n7anuo" Order No. English C) 7ML1998-lFC06 French C) 7ML1998-lFC14 German C) 7ML1998-lFC34 Note: The instruction manual should be ordered as a separate line on the order. This device is shipped with the Siemens Milltronics manual CID containing the complete ATEX Quick Start and instruction manual library. SmartLinx Allen-Bradley Remote 110, English C) 7ML1998-lAP03 SmartLinx PROFIBUS DP, English C) 7ML1998-1A003 SmartLinx PROFIBUS DP, German C) 7ML1998-IA033 SmartLinx PROFIBUS DID, French C) 7ML1998-lAQ12 SmartLinx DeviceNet, English C) 7ML1998-IBHO2 Note: The appropriate SrnartLinx instruction manual should be ordered as a separate line on the order, g Siemens A 01 .2009 P @ Siemens AG 2008 0 Continuous level measurement - Ultrasonic controllers 1 6j 1 t Schematics IN Dimensional drawings TB2 Wall Mount Version 6W 14.9 mm 160.3 mm mounting 91 Mon 6.6 mm 15.2 nun +-T holes (0.26") (0.6") 0 43 finnn (0.17") (A) Iva IAINP� P lveqs on cover 240 rnm LAY I txc6rrs (9.45") 227 —�A V :,3FIFLAY2 OUTPOIS + + sulta6ie EafR fu, WW conclull t efitninces. us O�mer 'Slarnens Milltronics mountin :h I a hole. (66cess6cl under lid) -h E) I f d'Ilihg the holes. �4.3 .17") -TRE�AY4 Panel Vair F MM rnnn�, 07:rfirn 82) ffIRELAY5 F z 1 Notes' with.phlelo, for ekipansion up.16 366P (1200%).. 278 tran ants are installed in accbr:fance.:�ih instr uktions. . 3; Cori 6 nectl on 6 A6iddiffere r) gal (10.. 1r) 4� K060 exposed cbnou . . ct . o . rs or) .,..shield c ]a : s, as 06 a as� Oossibleto reduce noise n o 6 i4i 6 apse.d.by so stray transmis i ns and noise pickup. 6MI HydroRanger 200 dimensions 1 6j 1 t Schematics HydroRanger 200 connections Siemens Fl 01 .2009 &06 TB2 T., L21N L G +-T See note TB3 12- �OY�.- —7 IAINP� P lveqs on E) LAY I —�A V :,3FIFLAY2 OUTPOIS + + E) I -TRE�AY4 F G i ffIRELAY5 F z 1 Notes' with.phlelo, for ekipansion up.16 366P (1200%).. 6461 d f Qin, grgun. ed,�,netal, conrlpit; separate: rom othercables, ants are installed in accbr:fance.:�ih instr uktions. . 3; Cori 6 nectl on 6 A6iddiffere r) gal 4� K060 exposed cbnou . . ct . o . rs or) .,..shield c ]a : s, as 06 a as� Oossibleto reduce noise n o 6 i4i 6 apse.d.by so stray transmis i ns and noise pickup. HydroRanger 200 connections Siemens Fl 01 .2009 I I for i'll't ushlial application of tilt nolson if's 1 W� t nI j ti, 1 4 1� it n I j iL. F.t t.-vw our %. !i ,te 0 r y5 mii Y4 kzi it I - Sol I oic -I IVAONJI�t v: It 4 it I - I SPECIFICATIONS- ECHOMAX@ NON -CONTACTING ULTRASONIC TRANSDUCERS Model Min.Range Max Range Beam He metically Dam Foam Built In Temp.Range Chemical Thread FlangeA Freq. Weight Angle Sealed Housing acing Temp. Temp. Celsius Immunity Size Mount. kHz Kg M Ft. =M[ =Ft -3dB XPS & XCT opt Rating Rating (Fahrenheit) Rating Opt, (nom.) (lbs.) THE SURE SIIOT XPS SERIES XPS-10 0.3 1 10 33 12* Kvnar@ Kyna r@ .(White) 95. Yes -40' to 95' 1 Excellent 1 1 NPT 1 NPT 1 BSP 43 .75 .75 (1.65) :XCT�l 2 pq� 0.46 1.5 12. 40 (6lue) �ynuS :(white) (203') W'. 41. 1,4M49, ffia,..'� .,.any (40- to 203-) -40' to 145* (-40' to 293') 1 BSP 1 NPT 1 BSP (1.65) XPS-15 03 1 15 50 6' Kynar@ Tal -31016 W 15-12 '.� —Mlr' W. ll '02 95, Yes -40' to 95' Excellent 1 NPT Yes 43 1.28 1, N.pT,:.:, 7_::::� 13 (blue) (203-) (40- to 203-) 1" BSP (2.81) XPS-30 0.6 2 30 100 6* Kynar@) (14;0):l 95" Yes -40' to 95' Excellent 1 '12 " 56. 30 4.14 Yes Ad' to Fill N PT (blue) (203') .4.4 (40- to 203-) BSP/NPT Compa- (9.12) ed — 019 3 40 130 6' Kynar@) 4 65' Yes -40' to 95' Excellent Xj 50 22 7,9 I—T-1XPS-40 :i6d: m-, (blue) -40' to 150' (1149') (40- to 203-) tible -13 63 (17.4) THE HOT SHOT XCT SERIES XCT-8* 0,45 t5 8 26 12' Kyna r@ .(White) Yes Yes -40' to 145' (-40- to 293 Excellent 1 NPT 1 BSP 43 .75 (1.65) :XCT�l 2 pq� 0.46 1.5 12. 40 '..6*:,: �ynuS :(white) Gr . W'. 41. 1,4M49, ffia,..'� .,.any :Yes -40' to 145* (-40' to 293') Excellent 1 NPT 1 BSP 43 1.28 THE LONG SHOT XLT 1XLS SERIES O�' A R�-Jlnciklgy Customer diwen. j:00. �M4 �1�11ola.o D', P 0 3. Qz4 Yes -401 to 90' Fair V. NOT It, - 32(QI3326 45 54 F.— �3Z(0)3UI .5 21 :22,:� 1 4�4 :1 131W Fl --- 6.1, 69 m F,�. 31 � �2 59 63 .1 Gr . W'. 41. 1,4M49, ffia,..'� .,.any �9 2 1 �r2 1.21 F7 -4� 111 16� 61M 40* td:1.94') W.-, S— 602, Q-ry 8,y. Nang Klag T.l -ol 1"135228bG 31�16 IF— �ol 1 — �811,2oli� F (9.7) ---1 1., .1-1823 Aft B-1., — N.1an I.no,l Tal -31016 W 15-12 '.� —Mlr' W. ll '02 200 log —,— D— I -, I.— U,S.A. '— �7 Yes :-40* to 90.* Fair 1, N.pT,:.:, 7_::::� 13 (40'to 19V . (14;0):l 36:�::! i :160 56. A luminum: Yes Ad' to Fill N PT 2Z:] .4.4 ed j-401 116.3.001). (9.7 F Xj 50 :i6d: m-, Yes... -40' to 150' Fair N p] -13 63 T: 40, to 300 Note: Effective maximum range capability may vary aepenaing on application. . t-000 sale. rulA dcueptuu Our continuous program to improve products may result in changes in design and specifications withOLIt notice. For XRS-5, XKS-6, XPS-10F, see Technical Specification Sheets. ECHOMAX' SERIES APPROVALS CENELEC EEx m 11 T5: XLS Series. EEx m 11 T4: XPS Series. EEx m 11 T3: XLT & XCT Series, TS -3. CSA Class 1, 11, Div. 1, Group A, B, C, D/E, F, G. Class Ill. FM Class 1, 11, Div. 2, Group A, B, C, D/F, G. Class Ill. FM XPS 10115: Class 1, 11, Div. 1, Group A, B, C, D/E, F, G. Class 111, CSA. FM. TS -3 Temperature sensor: Class 1, Div. 1, Group C & D Class 11, Div. 1, Group E, F & G. NOTE XCT-8, unfaced only, CSA approved. CONDENSED APPROVALS LISTING. CONSULT AGENCY APPROVAL GUIDE FOR DETAILS. Representative 35751080 NA � hit I. 1-- 1.1, — ..". . ..... N Polyester covering is standard. Milltronics versatile line of sophisticated Ranger- transceivers provide reliable level con- trol in a single vessel or a multiple tank farm. 35751082 A4 69-1 ,N!"ib.— A R�-Jlnciklgy Customer diwen. �M4 �1�11ola.o D', P 0 3. Qz4 14, 2`l3l N—" .. it- 3,l% — u., —11139691-M. 1- —1613�—Wo wqw. It, - 32(QI3326 45 54 F.— �3Z(0)3UI .5 21 131W Fl --- 6.1, 69 m F,�. 31 � �2 59 63 .1 W'. 41. 1,4M49, ffia,..'� .,.any �9 2 1 �r2 1.21 F7 -4� 111 16� 61M W.-, S— 602, Q-ry 8,y. Nang Klag T.l -ol 1"135228bG 31�16 IF— �ol 1 — �811,2oli� A—.1 N", 11-55, - - V-� G31OG M -11a D F —il- To, -521,bI62128 F;�� -12-112686 ---1 1., .1-1823 Aft B-1., — N.1an I.no,l Tal -31016 W 15-12 '.� —Mlr' W. ll '02 log —,— D— I -, I.— U,S.A. '— "'- '1 111.2 11 �543 r— � 1 811 389" A aint ­ana, in Si.q.p.­ a —1- ni- in 8111il and in �a 6W Mm I -A Lm) WALLACE: &TIERNAN ,k) ENCORE" 700 DIAPHRAGM METERING PUMP SB.440.400.GE ENCORE"' 700 DIAPHRAGM METERING PUMP MORE APPUCATIONS, MORE 2ZNEF$TS, MORE FEATURES ... MORE PLIMP flydrauflc diaphragri) pamin am renownedfoj- their dur,8billty, burstart-up iml maintemvice can be Jabot-Jous, pat-ticubidy when ser -vice mquirar purffing arld PePlacing Intermediate flums. Additionally, 117,.?ny designs av? vei- n n .y sensitive to rhang! 9 .1 actfu t-unditions. If andjagnased, hlockpd m- stinvvd Suction can lead to h.,;,draulic omrfill and szjAvpquFnt rRaygmagm 1�dlufv. jWEdminical diaplmvgni pumpf are lar Aess SUP11-isdemcd. slarr-tq.? and sez-vice afe �ypically niuch smoorhei- sInce thprp. al v 120 n2emy 112termedi'me flulds, internal I-ellef valvp,� oz, hTdr-m.dic Tefill cin-Wis to timp.1- with. But, urmil nmv, rnediarVeal diaphl-agril Pulnivs haven't Shaled the hydivulir dhaphl'agm pump , s.mpatedon.fol- robustn(,�Ss. WPIC017)e W the &]WIlt"11' 700 A whole new class of motering combines thp rolmisinem of hydraulle dRiphragn) drives with the unpiralletcd economy, simptichy ancl serviceability of rnechanical diaphmgm liquir.1 ends. Handles capaciti�.!s to 2,400 1/h, back pressums to 1.2 bar. Non -loss rnotion (amplitude modulation) stroke. adjust mechanism renders unrNaled efficiency, longevty arld rehabili(.Y� Choice of' two lield convertible drives. direct coupled or pulley coupled, for an additional 4:1 turntlown onstroke frequency wilh a sian(hirrl induction rnot.or, Pmc.Nion engineered licivid e.nds mater 11111d soluliom, a&qressive chernicaK bigh viscosity polymens and slurries witli far greater effidency ihim conventional liquid (:!n(3%. Clear f.`vT' cartridge. �,alves f6r Fast, fbOlproof szvvjce� with I lo pifAn.g disturbanccS Mid built -in yi�,,ual indication of operation. 11remium diaphragm design ensure.q high inetej ing acc.urwy everi at vaoyng dtscharf�je pressurt'v, TYPICAL APPLICATIONS, METERING AND PUMPING FULL MECHANICAL MOVEMENT AMPLITUDE MODULATION ADVANTAGE Typical Industries Typical AI:iPlications, Metering &- pturiping Watel and Wastewater Cnagulants, oxidising agents, disinfectants, corrosion Treat.went inlifbitors, chenilcals, for taste, odour and pli control IPME Svvinifning Pools ACIdS, caustics, disinfectants and oxidising agents IN Food Proce-ising Ba(Aericides, algaccicics, acids, caustics, detergents', nil corrosion inhibitorsand lubricants chealical PrOcessink Additives for petrochemical, pharmaccutical, Pulp and paper, plastics and textile rninul'arture, Brewing & Distillation Filtration and Fermentation pids� Nictiricides, aci(is, caustics and detergents Agriculture Fertilisers, herbicides, pesticides and food supplerrients NI�wring purnp manufacturers gcnerally use one, of three diaphragni actuation methods. Solenoid Pumps, The rriust. simple and eWnOlfftal type 01' purnp, these provide a pulsed Now with huge pressure spikes, considerable noise and wear. Lost -Motion Purrips. These motor driven pumps are higher In capacily Nan solenoid puaips, but also give rapid accelerntion to the liquid at rest. in the punip head due lo diaphragm rnotion, Non -Loss Motion Pumps. 'PhL dlaphragin is driven by aroLating crankshaf't, where the. eccentricity can be smoothly -d 'here , adjuste during operation. I are no return and the diaphragm moves with simple harinunic inot-ion� The rluid velocity profile is sinusoicial at all stroke lengths, ad.iu,5flng stroke length simply alters the amplitude or Ihe sine. wave. This design provides reliability and Iongevwv and purrip valves operate vvilh Far greater efficiency. I - 'his graph shovvs the ve.locity proffles for eich purnp -type. For any given output. the areas circumscribed by each curie are identical. Note the difference in non loss -motion (jesigns. Encore' 700 non4oss motion mechanical diaphragm pump & [ost motion PUMP Aa �M �J ENCORE@ 700 DIAPHRAGM METERING PUMP Look kt: the d a V'�7�7 Available with standard induction and variable speeAl motors (optional) for wider operating ranges and autornatic process control. Short suction and discharge porting minimises friction losses and cavitation, improving hydraulic characteristics and providing bir more efficient fluld metering than conventional liquid end designs. 0LIf fferniUrn COMPOSItC diaphragin is mai stringent specifications to ensure long life even under the most demanding applications, T'he design incorporates teflon - facing, for the highest clegre.e. of churnical resistance and nylon reinforcements, all boraded to a pre -formed elastomeric supporL We've added convolutions for un(nnstralned rolling action, a steel backing plate to assurn, volurnetric accuracy even at varying discharge preSSUres and an o -ring groove in the. head's d1aphragni cavity for complete seating. High precWon guirled ball -and -seat clear PVC cartridge valves (except 165rnm head) provide buill -it) sight flow indication and fast, foolproof service, The. design includes wide flow paths and four -point guides to control ball rise and assure propei seating. The. valve housing is compression sealed to the. purnp A secondary diaphragni seal completelyseparaies the pumphead From the drive (init, This double diaphragm isolating design climinates the risk of cro.55-ronjarninating gearbox lubricant and process fluid. I Avaftble in two field convertible drive arrangentents: dlrecL (Irive or pulley drive. for an additional 4: 1. r,jrig(-�abjiity on stroke frequency with a standard Induction motor. When the putlPy drive arrangerrient is combined with -a DC variable spep,d motor, total operating turridown can be as high as 800:1! With double siniplex: capability, two drive units, each with independent capacity control, can be multiplexed for blending applications or future process expansion, This robust mecharrical assembly Fuature- liberal use of.'heavy duty ------ � parts including at-, epoxy painted cast iron gearbox for superior corrosion resistance, 316 SS fastcners, load absorbing tapered roller bearings, robust Sears and steel and rjodular iron drive components, Obtain precise and highly repeatable Feed rate satings with a 10 turn inicrunietuir-type stroke length adjjt1ster. A percent scale and vernier indicate stroke length III iricretykent.s Feed rate. is infinite.1y I(Ijus �j F . ta le roni G to 100%. Autornadc capadtv control vlastroke length is alsio available. An optional cliaphragin leak detection systein styrses d -le early stages of (11aphrigin Caflum The �Yslern consists ofa solki-state, electro optic sen,5or that mounts to the liquid uric] and it IP 65 contrul box. This box, which can be motinted at ilia pump, or up to 30 metrez, c2n monitor two liquid Prids, LED's and a rclay provide both local jkrict reinote indicadon of'NJure.. 6A Elorlm-optir Sensor MANUAL AND AUTOMATIC STROKE LENGTH CONTROL 'Flip Exworp.T) 700 metering purnp can be controlled by varying the stroke length or stroke frequency. The rollowing control -c -hernes -are avallabie: Manual or Remote malluat Control Start Stop Control where the motor is wired Into the circuit of a transferpurrip, switch, tinier or con(roller - Flow Proportiomil Control froin a single process variable Residual, Compound Loop or Setpoinl. Control USirlg One or two process variables Manual Stroke Length Control A 10 turn micrometer gives continuous feed rate a4justinent overa 10: 1. range. A percent scalp, and vernier indicate stroke length setting to I part in 400. Each revoltition of the knob changes feed late by 10%� Stroke lungth is infinitely adjustable from 0 to 100%6. ENCORE@ 700 DIAPHRAGM METERING PUMP Automatic Stroke Length Control For autornatic capacity contral vi -a stroke length, our TIM IP 65 actuator is used in con.junction vvith either of two new process variable controllers'. The compact, field- retrofittable actuator easily installs on the. purnp and features local inanual override and a window for clear indicat !oil of stroke length. Two new micropracessor-based controllers are available: SCU, Signal Conditioning Unit The econornical SCU gives autnniatic. iocess control in r response to one process variable., typicalky now rate Homed in a TP 6� enclosure, the SCU features all 8-0111-acter alphanUrneric LCD display with 6-buttori ke.y1jad arid menti -driven operator' prornpts for simple operation, setup and calibration, Input flow scaling kind output dosage adu ustment allow independent scaling from 10 to 400%. See publication T1 40. 1 00GE for oiore details. Variable Speed Control For precise and accurate leed rate controt via stroking speccl, an SCR Drive Unit varies thc. speed of a DC pump tnotor� Stroke frequency can he, regulated manually by potentiometer sLtlingr or aut,onlatically via a 4-20 rnA process variable Input signal (optional). Closed-loop speed regulation provides I'Led rate. control accurate to 1% of full sc rn .ale. With continuous adjust - ent over a 20:1 range, total operating tumdown with water -like solutions is 200: 1. oil direct drive units, 800:1 on pulley drives, Dosing or scaling ol'a process variable carl be acromplished by rneans of ail SCU, Signal Conditioning Unit used in conjunction with an SCR' drive.. For More complex control, a PCU. Process Control Unit can be used to provide setpoint control in response to two PrO(,C-,S WIFiables, such as plant flow and chlorine residual. PCU, Process Control Unit The PCU is a full feature setpolrA controller. It provides autcrnatic process control in response to Lwo process inputs, ty ically flow rate and chlorine residual. , p The. PC U C-811 operate in ally Of r0rUr different control inodes Including residual Feedback, compound loop, dual signal feed forward (for dechlorinitinn) and now proportiona . n additkin, the. PC, U caTi be configured for mnter-zero operatlon in compound loop z t, rnoc e w en a DEOX/2000�' Dechlorination Analyzer is used. Housed in a IP 65 enclosure, the fICU reatkires a large alphanumeric display, an LED bargraph to indir.a(e now input or WtUat0V Position ill 5% increments, a 13 - button Rcypad and menu driven operator pron).pts for silliple operation, st..tup and calibration. For inore information reclu(�st. publication '11 40.200CE, I I TECHNICAL INFORMATION CAPACITIES AND DISCHARGE PRESSURES 501-l'. 1450 RPM Pro- (1,or) Dl.phr�qnl SlhAe C�P.'q' P"liq oo ASO RFM MY n, T1 IN, .31 W?) 737 1.551 .55 WIN 31) ]A) I 12 611) 2.1 7.9 1 1? R k" I,/, 1T), 120 4. ?. 15.8 1 1 44 5.0 18.9 1 12 30 �Al 22.1 1 12 50 60 10J) 44.2 1 12 P, 1�1 12D ZOD 80.0 1 I� 144 24 1136.0 1 12 N 9.4 3.9.5 1 ill 7 f, F, 11 " �F.' 71 1 10 120 3 7 �;-, 141.9 1 144 45.0 370.3 1 3.0 19.0 6G.7 1 9 ill() fit) 3 2 1 12 1 A I - 9 wil 64.2 242.9 1 144 77.0 1 291.4 1 30 3T5 A1.9 1 5 12, `0 7511 283.9 1 R 1 120 ]."O.o IiIMA 1 5 144 Me 681.3 1 30 66.0 NO.() 1 3 16, at) 132.0 520.0 1 - 3 120 164.0 1041.0 1 3 1-1.1 3 17.0 12511.0 1 .1 'Rdl,m �inipl�.x !�padZy, double,i,nplx arfanil�.)n,.Ats iiw.,t N� ... d Mth -�. stn,k�-ftpqu-��, - b(,th liquid unis, pulle� 'I'M m i"'geme, Its, wp'itj�' ll�t,l n� fm pulhty wti. 1. Capadl i�,, ror slep,,Z. 3. afid 4 an 7 5%. 50% mid 25% r,�5pL�Uwly. Accuracy Repeatable metering accuracy is + 2% of Full scale, at constant hyclraullc conditions, over a 10:1 operating range. Stroke Length L.iejaid End Si7e .3.5 and 50mm: 4. Sinn? (01881� Liquid Fnc.&Silp 7.5. 101.9, 125 and 165inrn: 9,6rnin (0.375 ") � Feed Rate Adjustment Feed rate is Infinitely adjustable from 0 through 100%. A percent scale and vernier Indicate struke length scidn�� in 0.?5% increments. F.,ach revolution of the knob changes strokL tength by 10LYo. Operating Range Dlrrcr Drivr Arranffrinant: Stroke Ieng _,th is adjustable over a 10: 1 range; stroke rrerjupTicy is adjustable over a 20:1 range (using art optional variable speed drive). 'Total corribined maximum operating turndown CATI i)c its high as 200:1. Above 100:1 conflnuous turticlown, total available operating range should be evaluated apiinsf specific cheinicals being nietemd, pulley DzyVe Stri)ke length is adjustable, ever a 10: 1. range; stroke frequency is aqjustablL over an 80:1 rangL (using arl Optional variable speed drive). Total combined maximurn operating turridown can be as high -is 800: 1. Above. 100: 1. contimions turndown, totalavailable ol.w.rating range should be evaluated against specific c.heinloals being metered. Speed of Response Autornatic stroke length control response. time is LOO seconds front 0 to 100%. Variable Speed COntr0l response tirno is Under 3 seconds from 0 to 1,00%, Suction Lift The punip will self pritne with 3 nictres of water Suction lift (wetted valves, ze.ro back pressurc� full stroke and speed, waterlike sohjtion%)� Once Primed, tile puirip will operate with 3 metres of wite.irsuction lift., FIC30CICCI suction Ls recortirnended. Weight and Shipping Weight Singil,simplay. 50 kg-. 60 kg; doublesh77131ex 73 kg; 88 kg. Fur arningernents Willi autornatic stroke length contral add 5,5 kg; 7.3kg. Temperature Limits With frotin 2-52'C, process fiLlid tt.Toperatures LIP to 52'C. With 7�ynarljfjvld cnd: process ffiiid remperatures tip to 62-C. (fechnical Information continued un next Fine.) Dfl,m, Hy � El DuNnt N I Electrical Requirments Standard induction inotor arranginent Is 1450 rpm, 115/230 Volts, 5OHz, single phase, TEFC. k4otors with other electrical characteristics are available as art option. Diaphragm leak detector requires 115/230 Volts, Rela�y rating 5 Amps @ 250 Volts. 30 VDC. IP 65 enclosure. Vat -table speed drive control unit requires 11.5/230 Volts, 50/60 Hz, single phase, 200 mA 0 I,sv, 100 mA (230V). Automatic sLi-oke length actuator - 3 alarm contacts (hig)i, low, actuator disengaged) N.O., rated 5 Anips @ 250 Volts. Materials of Construction box and liquid end adopter.'epoxy painted, cast iron Sti-oke positioner 6ridosum., epoxy painted, cast alurninutia Pump bead: PVC or PVDF Suction and efi.scharge va/vr housings -,'clear I'VC, gxey PVC or PVDF Vah-ebalft,,316 stainless.TFE, curanlic, glass and potyurethane (for slurry service) Valve seals.- Hypalon and Viton Dmpjijz�gm. TFE-faced, fabric reltiffirced, elastorner backed, Witt) a s (eel or cast. Iron baddrig, pkite Alloanang box (optional).- A13S The pump is UV u-sistalyl: Due to cGritinval produrt developrr&nt nd ilrqlY0vLMl Lill L � C.Mla�ll STATificatiolls 11MY chaqe livithout prior �tntiomiceinent. ENCORE 700 DIAPHRAGM METERING PUMP Polymer and Slurry Handling Capabilities Polymer solutions at viscosities up to �,000 cps at 144 spi'm Viscosities measured with a B17001diOld Viscometer with No. 9— spindle at 3 rpm. I Iiydratecl lime slurries up to 0,38 kg per litre ofxater� activated carbon slurries up to 0. 11 kg per litre of water: diatomaceous earth sJurries up to 0. 17 kg per litre of water. Chemical Metering Systems Low cost packaged sysLerns can be CLIStOln configurLd from standard stock components including tanks, ri-Axers, instrurnent,ation and a wide range. of controls. All systeras are shipped assembled, prewired and reody to install. Our comprehensive range ofco-ordinated , -icce, ssortes provide the abtlity to produce the best. possible installation, Accessories Choose ('rorri Bad- Pressure Valves, 1'ressultl Relief Valves, Antisyphon \IaNeS, KIM' runction Valves, Main Connections, Strainers, Pulsation Darnpeners, Calibration Chanibers, Solution Thril�s, Mixers, Liquid I -eve] Switches, slurr.y Flushing Systems and nurnerous MOUnttrig Accessories,just to natne a Pnv. PM Kits'" Preveynive Maiwenance kits contain original Wallace & Tiernan replacernerils Cor those parts most susceptible to weat. They facilitate scheduled maintenatic.e and help maintain tiquipmerit In good working order, eliminating equipment brPakdowns and costly downtimp. For further technical Information see P1,1blicitions: '1140.400,13E & Tj.440,400,2.GF, WALL.A.CTIE& TIERNAN 07/02 Che,nAfeed Dmitcd Priory Works T6ni--teidge, Ke i it TN I I 0QL Telephone: +44 (0) 1732 771777 Fax: Alt (0) 1,732 771800 Srl�jlf; hap.111-viviv, r 7 7 f7 LAO ,7 L. -I 02/09/2000 113�21 7658273669 .TEC,'Inc. 1!L*1@qq11 �'Bl. � TEC INC PAGE 02 SPECIFICATIONS PRESSURE RELIEF VALVES WEIGHT LOAD -ED The TEC weight loaded pressure relief valve offers non- ----- — vibrating, reliable capacity relief for positive displacement blowers. The pressure relief valve Is instilled in the discharge air 'Eve displacement blowers -stream to prevent damage- to post when operating pressures exceed the maximum pressure rating -of the blower. As the system pressure approaches the valve s,et point, the weight loaded cylinder is forced up from the valve seat and exposes the vent ports for fast and efficient blow -down. When acceptable system pressures are re-stcred, the valve automatically returns to the original set position. The valve cylinder and seat are constructed of cast Iron and accurately machined to very tight tolerances for smooth C operation, OPEN Removable weights have been carefully designed to permit accurate pressure settings in Y2 PSI increments. Adjustments In the relief setting can be made by adding or removing weights. DIMENSIQNS SIZE A 8 C . D E WL (08.) 771 7– 1.0"FPT , !';;.t 4.19 4.75 ' 2.00 6.00 a - -.— 1.5" FPT 5.81 6.44- 2.63 8.13 --- I 110 - 2-1127 2.5" FPT 7.63 8.88 3.63 9.88 Es— .mx oirmnernsiconss in iricnes PERF � A � PIPETAP TEC, Inc. 3594 S. CR. 350 E. Connersville, -IN 47331 PH: (765) 827-3868 FX_ (765) 827-3869 SWL1199 FLOW RATING - CFM (68 F & 14.7 PSIA). VALVE SET PRESSURE - PSIG SIZE 1 2 3 4 5 6 7 9 10 is 40 60 80 100 120 140 160 185 205 39 80 120 160 1 205 2.5 285 330 370 410 2-11T 119 240 366 490 1 620 740 - 866 1000 1125 1260 TEC, Inc. 3594 S. CR. 350 E. Connersville, -IN 47331 PH: (765) 827-3868 FX_ (765) 827-3869 SWL1199 Lo a -1 1 . �U.r­mrl CrUnIz GENERAL DIMENSIONS FOR STYLE 5002 MATERIAL -TEMPERATURE RANGE 5002 -AL 1 3-1/2 1.315 1-5/8 4 6 1 41/2 4-7/8 El 1.660 MAL 5 7 5-9/16 6-1/8 1-1/2 4 1.900 2-1/4 6 .8 6-5/8 7-1/8 4 2-3/8 2-'3/4 8 10 8-6/8 9-1/2 5 2-7/8 1 3-1/4 10 12 10-3/4 11-1/2 5-1/2 Lo a -1 1 . �U.r­mrl CrUnIz GENERAL DIMENSIONS FOR STYLE 5002 ALL DIMENSIONS IN INCHES STANDARD MODELS & MATERIALS 6_j MATERIAL -TEMPERATURE RANGE 5002 -AL 1 3-1/2 1.315 1-5/8 4 6 1 41/2 4-7/8 1-1/4 3-1/2 1.660 2 5 7 5-9/16 6-1/8 1-1/2 4 1.900 2-1/4 6 .8 6-5/8 7-1/8 4 2-3/8 2-'3/4 8 10 8-6/8 9-1/2 5 2-7/8 1 3-1/4 10 12 10-3/4 11-1/2 5-1/2 3-1/2 3-7/8 12 14 12-3/4 13-3/4 ALL DIMENSIONS IN INCHES STANDARD MODELS & MATERIALS 6_j 0 OPTIONAL MATERIAL SELECTION * Aluminum * Bronze * 304 Stainless.Steel 316 Stainless Steel Cadmium Plated Steel Electroless Nickel Plated Steel or Aluminum Monel* Titanium* a Hastalloy* *Nan stock item — Available upon request. MATERIAL -TEMPERATURE RANGE 5002 -AL Aluminum Aluminum 50 6002 -B R Srass Brass 150 6002-304 304 Stainless Steel 304 Stainless Steel 150 5002-316 316 Stainless Steel 316 Stainless Steel 150 5002 -Class A Steel Aluminum 160 5002 -Class D Steel I Cadmium Plated Steel 150 Standard Elastomer: Buna-N 0 OPTIONAL MATERIAL SELECTION * Aluminum * Bronze * 304 Stainless.Steel 316 Stainless Steel Cadmium Plated Steel Electroless Nickel Plated Steel or Aluminum Monel* Titanium* a Hastalloy* *Nan stock item — Available upon request. 11._� . a.. i *This temperature range is for general guidance. The * 304 Stainless Steel figures may vary with application. . 316 Stainless Steil CONSULT FA Monel and Inconel springs available upon rsquest CTORY FOR MATERIALS, SIZES AND PRESSURE RATINGS NOT SHOWN. COMBINATION END CONFIGURATIONS ALSO AVAILAtLE. MATERIAL -TEMPERATURE RANGE • Buna-N —60 to 225, F • Neoprene —40 to 225* F • Butyl —65 to 3M- F • Hypalon —20 to 300- F EPDM —40 to 350* F Viton —20 to 400, F Teflon —20 to 450, F Silicone —100 to WO* F FDA Approved —40 to 2251 F White Neoprene 11._� . a.. i *This temperature range is for general guidance. The * 304 Stainless Steel figures may vary with application. . 316 Stainless Steil CONSULT FA Monel and Inconel springs available upon rsquest CTORY FOR MATERIALS, SIZES AND PRESSURE RATINGS NOT SHOWN. COMBINATION END CONFIGURATIONS ALSO AVAILAtLE. BULLETIN B Cut -Sheets and Pump Curves for \NWTP Pumps: forward flow/recycle pumps, sand filter flow pumps, equalization tank grinder pumps, sludge tank decanting pump. Data Point --- Flow: 147 US gpm Head: 30 ft Eff: 44% Power: 2.5 hp NPSHr: 6.54 ft Design Curve --- Shutoff head: 39.9 ft Shutoff dP: 17.2 psi Min flow: -- US gpm BEP: 47%@18OUSgpm NOL power. 2.66 hp @ 180 US gpm 4 10 Performance Evaluation: Flow Speed Company: Aqueonics Name: Recirculation Pump Selection IrU,?O " i 4,00ate: 1015/2008 1 US gpm rpm HYDROMAT110- % hp ft 4W 111, 27.9 46 2.63 Pump: Search Criteria: 30.2 61� Size: 30MMP 2.49 Flow: ---US gpm Head: --- ft Type: Self-Primer3 Speed: 1200 rpm Fluid: Synch speed: Adjustable Dia: 8.4062 in 115 1200 31.9 41 2.26 Water Temperature: 60 *F Curve: 30MM2000 Impeller: Density: 62.25 lb/ft' Vapor pressure: 0.2563 psi a Specific Speeds: Ns: --- Viscosity: 1. 105 cP Atm pressure: 14.7 psi a 27 Nss: --- NPSHa: --- ft Dimensions: Suction: --- in Discharge: 3 in Motor Standard: NEMA --- hp Pump Urnits: Enclosure: TEFC Speed: --- Temperature: 140 'F Power: --- hp Frame: --- Pressure: 125 psi g Eye area: --- in' Sizing criteria: Max Power on Design Curve Sphere size: 2.5 in Data Point --- Flow: 147 US gpm Head: 30 ft Eff: 44% Power: 2.5 hp NPSHr: 6.54 ft Design Curve --- Shutoff head: 39.9 ft Shutoff dP: 17.2 psi Min flow: -- US gpm BEP: 47%@18OUSgpm NOL power. 2.66 hp @ 180 US gpm 4 10 0� H20ptimize Hydromatic 8 90 80 70 60 UJI 40 20 Selected from catalog: Self -Primer Pumps 60Hz Vers: Feb 2006 Performance Evaluation: Flow Speed Head Efficiency Power NPSHr 1 US gpm rpm it % hp ft 4W 173 1200 27.9 46 2.63 8.31 144 1200 30.2 44 2.49 6.39 115 1200 31.9 41 2.26 4.55 86.4 1200 33.4 35 2.07 3.07 57.6 1200 35.4 27 1.94 1.69 0� H20ptimize Hydromatic 8 90 80 70 60 UJI 40 20 Selected from catalog: Self -Primer Pumps 60Hz Vers: Feb 2006 Operation is recommended in the bounded area with operational point within the curve limit. Performance curves are based on actual tests with clear water at 70' F. and 1280 feet site elevation. loom 28- 1 0 so 101 MIS 0 MINES Is Is Nil MWEEN 24. 0 so mmismormal SON Is Is EMENE so Hill MAN IN MIS 20" MIJOW1 IN 11 1 HE 0 1 101011201 1 '00"M 011011100111111111 No k , I MEE i Is ism IMMINUMIN MEMO= IMMENSE! =04 omr HLik"INIMIAMIS 1101191IRWEEK1 Il. Raq SH I I Is Otis -ROME 0110012 Billion No NOISOME FAIMMU No -M FINE ISM 11011 u on I 1 own No 1 11 1- 0 50 100 150 200 250 300 .350 400 -T-� io �0 6 1 0 io 1001! Operation is recommended in the bounded area with operational point within the curve limit. Performance curves are based on actual tests with clear water at 70' F. and 1280 feet site elevation. MP/MPH Self Priming Sewage and Trash Pumps CM NOTE! To the installer: Please make sure you provide this manual to the owner of the pumping equipment orto the responsible party who maintains the system. US) rjr- HYDROMATIC' Pentair Pump Group I The MP I MPH self -priming centrifugal pump has a semi -open impeller and suction flap valve. Pump is designed to handle raw un -screened sewage, mild indus- trial waste and slurries containing entrained solids. The material of construction is a cast iron volute case and bearing frame, ductile iron impeller and wear plate. Thank you for purchasing your Hydromatic self -priming pump. If there are any additional questions not covered in this manual please contact the HYDROMATIC representative or HYDROMATIC Pump Co. Before Operation: Read the following instructions carefully. Reasonable care and safe methods should be practiced for installation and operation of pump. Check all local codes and requirements before installation. Attention: This manual contains important information for the safe use of this product. Read this manual completely before using this product and refer to it often for continued safe product use. DO NOT THROW AWAY OR LOSE THIS MANUAL. Keep it in a safe place so that you may refer to it often. Unpacking Pump: Remove pump from pallet. When unpacking unit, check for concealed damage. Claims for damage must be made at the receiving end through the delivery 2 carrier. Damage claims cannot be processed from the factory. Check for and tighten all loose attaching hardware. Check oil levels and lubricate as necessary. Warning: Before handling these pumps and controls, always disconnect the power first. Do not smoke or use sparkable electrical devices or flames in a septic (gaseous) or possible septic area. Pump Not Operating Or In Storage: If pump is not put into service immediately, it must be properly stored to prevent damage. Store unit in a dry warm location. Never store unit in the open even if it is protected with plastic or other covering. The bearing housing and motor will draw moisture, which may result in pump failure after being put in operation. C, While in storage pumps with carbon ceramic seals must have impellers manually rotated (6 to 12 revolutions) after setting non -operational for 3 months or longer and prior to electrical startup. Pumps with tungsten carbide seals must have impellers manually rotated (6 to 12 revolutions) after setting non -operational for 3 weeks or longer and prior to electrical startup. Motors: Pump unit may be shipped less the motor for customer to supply and mount. Motor Types: Pumps can be driven by Standard drip -proof, totally enclosed fan cooled, totally enclosed explosion proof or drip proof with encapsulated windings for moisture protection. If motor is to operate in the open or in a dusty location a totally enclosed fan cooled motor must be used. If pump is to operate in a damp location a motor with encapsulated winding should be used. Motors are to be sized so that no overload will exist in the operating range of the pump. Note: When pump units are mounted at the factory, the driver and pump are aligned before shipment. During transit and handling of pump and components misalignment may occur. Before operation the drive alignment should be checked. Shaft Couplings: We recommend using Wood's flexible coupling to prevent misalignment and noise that can be caused by other couplings. The extra cost of the coupling is easily saved in installation and field service that can result from coupling problems. V -belt drive: Where V -belts are used, keep belts tight by adjusting motor base screws. Belts should run cool. If belts heat up it will indicate slipping. The V -belts should be fiddle string tight CAUTION: Belt guards and coupling guards must be properly installed before operating pump unit. Electrical Starting Equipment: If electrical starting equipment is not furnished with pump, certain precautions must be observed in selecting motor starter. I I Type Of Starter: For three phase power a magnetic starter with 3 leg overload protection is recommended to prevent motor burn out that can occur from single phasing or transformer faults on three phase systems. For single-phase motors a standard starter with 2 -leg overload protection is recommended. Electrical: For motor overload protection the magnetic starter trip amp rating should not be more than 1.25 times the full load amps of the motor. HYDROMATIC recommends a rating of 1.15 times the full load amps of the motor. 2. Always use fused disconnect switch or circuit breaker ahead of magnetic starter for short circuit protection. When duplex pumps are used and are operated from single disconnect switch be sure disconnect switch is large enough to withstand the starting current of both pumps coming on at once. This can occur after a power failure, This is impor- tant as a blown fuse or tripped circuit breaker can make both pumps and an alarm system inoperative resulting in flooding or other damage. Ground: Connect a ground wire to motors, control box and other related con- trols. Ground wired to be sized to the National Electric Code article 250-95. Ground wire must be con- nected to a driven ground stake or to a ground wire from the supply service. If a ground stake is used it must be driven at least 8 feet into the ground. M Codes: All local wiring codes must be observed and any exceptions to data given must be followed in accordance with the local code. Consult the local inspector before installation to avoid costly delays that can occur due to rejection afterjob is finished. Pump Installation Foundation: Pump frame or base should be installed on a concrete floor with proper shims and grout. Use hardwood tapered shims to drive under base to level. Base should be about I to 1 1/2" off the floor. Build form around the base and fill base inside cavity with grout. Foundation bolts can be set in the grout or set in the concrete floor with expansion bolts. Grout should be made with I part cement and 2 parts sand. Mixture should be fluid enough to run under base. Wood shim blocks can be removed after grout has set and holes filled with quick set cement. Piping: All piping to suction and discharge openings of pump must be supported to remove stress from the pump case and bearing frame. Suction Pipe: 1 . Suction pipe should be same size as pump opening. DO NOT use larger suction pipe as priming time will be increased and velocity may not be high enough to properly carry solids. 2. Pump should be installed as close to the liquid being pumped as possible with a minimum of elbows or fittings. To avoid air pockets suction pipe must be as short and direct as possible. Suction pipe must always slope upwards to the pump from the source of the liquid being pumped. 4. The suction pipe should be installed at a distance equal to I 1h times the diameter of the suction pipe from the wall of the wet well, minimum. 5. The suction pipe should be installed at a distance equal to one half the diameter of the suction pipe or 3" from the floor of the wet well, minimum. 6. If more than one suction pipe is to be installed in the same wet well, a distance equal to at least 3 times the diameter of the suction pipe should separate them, minimum. 7. Submergence of the suction pipe is critical to efficient pump operations. See the following chart for recommended minimum submergence vs. velocity. Submergence may be reduced by installing a standard pipe increaser fitting at the end of the suction pipe. The larger opening size will reduce the inlet velocity and required submergence. See Figure #1. Vertical Suction Lift: Vertical lift should not be more than 15 feet. This is for starting level only. After pump primes, level can be pumped down to 18 to 20 feet if desired, but sump level must rise up to the original level for restart. All suction line joints must be air tight as a leak in the suction pipe can cause pump to loose prime or not prime at all. Always check N.P.S.H. calculations for available atmosphere pressure before applying purnp. R1 Hydromatic Pump pentair Water WELCOME News & Evenis Distributor Locator Search This Site Feedback WHOLESALE PRODUCTS SumplEffluent Pumps Effluent Punips Sewage E-jector "Pumps Packaged Pump systerns Special Purpose Pumps Price Pages (poj�&) 'D�5 4,' <A" 7Z - — IN _p f/ _7& Page I of 2 10/412008 ENGINEERED V PRODUCTS Superior Features: -s Grinder.. Pumps Grinder Pump -Carbon/Ceramic type 21 mecharfical seal Systems -Oil-filled motor with automatic reset thermal Non -Clog Dry Pit overload for maximum: protection (one phase Pumps models) Non -Clog Pumps -Upper and lower single -row ball-bearing Self-primIng Pumps cons-troction Sewage Ejector -Piggyback plug available for easy maintenance PUrIlDS and switch replacement ACCESSORIES Download PDF Saies Sheet Control Panel�:, Download PDF Mianual Float Switches Download Specification Submittal Data VALUE SERVICES Specifications: Cont'act Us Typical High-capacity surnp/effluent, Directions to Application: sewage. Hydrornatic Capacities: up to 120 GPM (T5 LPS) Requests Heads: up to 28 ft (8,5 m) Softsuare; 115V, lo, 9,5: FLA, 60Hz- 23OV, lo, 41 FLA, 6OHz' MADE FOR YOU 4/10 HP split phase with Click here if you are a Motor, thermal overload protection, Hydromatic distributor 1750 RPM or representatives. Intermittent Liquid 140-F (60"C) _e'jeet__rAp40,htmI Page I of 2 10/412008 Hydromatic Pump Copyright C Pentair Pump Group Ali Rights Reserved. I Privoq Policy f'enrfs and Cmdi Lion - Temp: Minim urn simplex -- 18" (45-7 mm) Recommended Duplex = 30" (762 mm) Sump Diameter: Automatic Diaphragm pressure switch Operation: (manual available) Materials of, Class 30 cast iron Construction: Impeller: Thermoplastic Discharge, Size, T' N PT (50. 8 mm) Solids Handling, 1-1/4" (31.8 mm) Power Cord.: 101, $JTW (20'optional) Performance. 0 us Q -TIN", A) 40 (11) 80 100 1 V11 flydroni.alic re.,-;erves� flie. iight to make revisions to it� productsand their specificati Oils, this cata.log and relaW information without notice. 'Page 2 of 2 http://vv-w w.hydroma 0.1itml 1014/2008 Company: aqueonics "MI Name: �mOate: 10/5/2008 Pump Limits: Temperature: 140 *F Pressure: --- psi g Sphere size: --- in Speed: 1750 rpm Dia: 7.0625 in Impeller: Ns: --- Nss: --- Suction: --- in Discharge: 2 in Power: --- hp Eye area: --- in' Search Criteria: Flow: 70 US gpm Fluid: Water Density: 62.25 lb/ft' Viscosity: 1,105cp NPSHa: 46.4 ft 16,1?0 HYDROMATIC; Head: 23 ft Temperature: 60 *F Vapor pressure: 0.2563 psi a Atm pressure: 14.7 psi a Motor PU AsrNlWYORRENWR to select a motor for this pump. Catalog does not contain data to verify that NPSHa is sufficient. ;Pump: Size: HPGF/H/X-300 Type: GRINDER-SUBM Synchspeed: 18OOrpm curve: Specific Speeds: Dimensions: Pump Limits: Temperature: 140 *F Pressure: --- psi g Sphere size: --- in Speed: 1750 rpm Dia: 7.0625 in Impeller: Ns: --- Nss: --- Suction: --- in Discharge: 2 in Power: --- hp Eye area: --- in' Search Criteria: Flow: 70 US gpm Fluid: Water Density: 62.25 lb/ft' Viscosity: 1,105cp NPSHa: 46.4 ft 16,1?0 HYDROMATIC; Head: 23 ft Temperature: 60 *F Vapor pressure: 0.2563 psi a Atm pressure: 14.7 psi a Motor PU AsrNlWYORRENWR to select a motor for this pump. Catalog does not contain data to verify that NPSHa is sufficient. LA—dH20ptimize Hydromatic 8 Selected from catalog: Grinder Pumps 60Hz Vers: Feb 2006 Data Point 8 in Flow: 70 US gpm Head: 23 ft 50 Eff: --- % Power: 3 hp NPSHr: --- ft 40 Design Curve Shutoff head: 34.5 ft .0 25 in Shutoff dP: 14.9 psi V Min flow: 5USgpm 30 BER % NOL power: 3 hp @ 5 US gpm 20 Max Curve Max power: 3 hp @ 5 US gpm 10 lb M W 40 6 . 0 60 70 80 06 100 110 120 0.5 Z 0 10 20 30 40 50 60 70 80 90 100 110 120 4 2 0 10 2 0 3 1 0 4b 50 60 70 80 9 0 100 1 10 120 US gpm Performance Evaluation: Flow Speed Head Efficiency Power NPSHr US gpm rpm ft % hp ft 84 1750 19.9 --- 3 --- 70 1750 23 --- 3 56 1750 25.9 --- 3 42 1750 28.6 --- 3 --- 28 1750 30.9 3 LA—dH20ptimize Hydromatic 8 Selected from catalog: Grinder Pumps 60Hz Vers: Feb 2006 DECANTING PUMP -- HYDROMATIC Model SK50 Tical Application ities to to 12 ILW6 1 + 1 .10, 120. Lla*S�AO 2 4 Performance Curve Sewage, High capacity sump 120 GPM (7.5 1/s) ft (7.3 m.) 1115V, lo, 12.OFLA, 60Hz; 230V, lo, 6.OFLA, 60Hz 11/2 HP split phase w/thermal overload protection, 11750 RPM Recommended 118" (457mm) 'Sump Diameter Duplex ....... ... ---- -- iAutomatic Operation 30" (762mm) ---- ... . ....... ..... .. .... ...... Wide angle float switch (manual available) Materials of Construction 'Class 30 cast iron !Impeller XClass 30 cast iron non -clog I tDischarge Size 12" (50.8mm); 3" (76.2mm) optional lSolids handling 12" (50.8mrn) IPower cord '10', SJTW, (20'optional) Carbon/Ceramic type 21 mechanical seal 'Superior Features I Oil filled motor w/automatic reset thermal overload !for maximum protection Upper and lower single row ball bearing ,construction I Piggy -back plug available for easy maintenance iand. replacement BULLETIN C Cut -Sheets for WWTP Blowers /"'^j \ 4A) ff,1/f 7' ( Mk--) (j) MEN MIMM� - MMA 1,760 111M 46 2.6 !!! m 4 3.0 41 3A HP I VII -S 0,045 2265 800 76 1 1 1.6 67 2.1 63 2.5 59 3.0 56 3.5 2LP 211-S 0.035 250 91 1.3 86 1.8 B2 2.4 79 2.9 75 3.4 72 4.0 2LVP 1,760 560 102 1.4 97 2.0 93 2.6 78 3.2 86 3,7 83 4.3 7 162 2.0 157 2.8 153 3,7 149 4.6 146 5.3 143 6.1 110 5.0 107 760 149 1.9 142 2,8 135 31 130 4,5 124 5.2 120 6.1 3LP 2W�S 0.104 265 202 2.4 194 3.5 188 4.7 182 5.6 177 6.7 172 7.8 3LVP 8.2 204 2,770 254 2.9 247 4.3 240 5.5 235 6.8 230 8.2 225 9.6 -154 -7.0 1-51 3.600 341 3.7 333 5,3 27 7.1 321 8.9 1 316 10.6 311 12.4 191 8.2 187 1,760 253 3.0 24 -�-.5 �34 5.7 227 7.1 220 2%"-S 213 9,9 4LP 9.8 235 2,190 326 3.7 31 5.3 307 7,1 Soo 8 , 8 293 il,5 0.6 286 12.4 4LVP 31�s 0.170 2,620 400 4.4 389 6.3 381 8.4 373 10.6 366 , 2.7 360 14,8 188 8.8 182 3.600 566 5.8 556 8.7 54�71 1.6 539 14.5 533 17.4 526 20.3 321 133 316 1,500 463 12 5.2 449 7.5 3 8 438 10.0 427 12.4 418 14.9 409 17.4 5LP 4"-S 0.350 1,760 554 5.8 a 540 8.8 529 '2 9 11.7 518 IC6 509 17.5 Soo 20.4 5LVP 17.7 450 2,100 P Alin 673 an r2 0 659 9" 1 M 14.2 648 13.9 18-9 637 900 17.4 P -q 6 628 RAn 20.9 PA4 619 681; 24.4 �3j 332 14.2 326 1,170 739 E7. 8.0 716 11.9 L4 697 15.9 680 19.9 664 23.9 650 27.9 6L p 1TS 434 20A 1,162 , 0 12.0 1,139 18.0 1,120 24.0 1,103 29,9 1,088 35.9 1,074 41.9 6LVP 6"-F 0,718 11:761 930 1,284 13.1 1,261 191 1,242 26.3 1,225 32.8 1,210 39.4 1,196 46 , 0 655 25.0 649 2.350 1586 32.1 1 s9q 94 n 1544 32,0- 1,527 40,0 1.512 48.0 1.4Q7 560 363 16.5 354 1,170 1,277 13 1::4' 20.0 1,224 16.6 1,203 33.3 1,184 39.9 170 7LP 8`-F 1.200 25.1 1,6;3 , 1 a�'7 1 .2 25�O 1.578 33.3 1,557 0.7 1,538 50.0 0.566 1:375 7LVP 2 25.8 634 11:465 760 1,985 20.0 1,966 30.0 1,932 40.0 1,911 50, 1 1 892 60, 1,800 884 33.8 875 2.050 2.333 23.3 2.304 85.0 2,280 46.6 2.269 58.3 2:240 70.. 6" 1 '6 14,5 1,329 21.8 1,298 29.0 1:27;51 3' 3 ':"' " 5 SLP 10`�F 740 1,171 1:'.71 19.3 1,834 28.9 1,803 38.6 1 1 48:2 1 750 57.9 SLVP Ll . 1,375 2,228 22.7 2,191 34.0 2,159 45.4 2. 56.7 2,107 68.0 1,800 2,967 297 2,930 44.5 2,899 59.4 1 2. 74.2 2.847 , 89.1 uh, - "11� M, uNgeim 2,800 25 1.7 22 2.1 2MP ill -S 0.017 3250 33 3:560 38 1 9 2'. 1 30 35 Z5 2.7 28 34 2.7 3.0 & 7 7 r 2MVP 5275 67 3.1 64 3,9 63 4.4 60 5.1 1,760 64 3.6 59 4.6 45 Imp 3mvp 2"-S 0.060 A ��265 . 7t 95 -1 2V - 4.6 5.5 - 89 11-6-*' 7.1 87 117 6.4 7.9 112 9.5 3�600 176 7.2 1 169 9.2 167 10,2 162 12.3 1 1 1,760 144 6.8 136 8,8 132 4MP -S 0.117 2,190 194 8.5 186 1 0.9 182 19.8 2.1 4MVP 2,620 245 1 0.2 236 13.1 233 14.5 3,600 359 1 4.0 351 18.0 347 20.0 - - 1,500 237 10.5 227 13 , 4 222 14.9 213 17.9 209 19A amp 4"-,9 0.210 1�760 292 12.3 2Bl 15.8 277 17.5 268 21.0 263 22,8 5mvp 2,100 363 14.6 353 18.8 348 20.9 339 25.1 335 27.2 2.850 521 19.9 510 25.5 506 28.4 497 34�O 493 36.9 1,170 332 14.9 316 191 309 21.2 296 25.5 269 27.6 283 29.7 Imp 5"-S 0.383 1 111 22.4 542 28.8 5 35 32.0 522 38.3 515 41.5 509 44.7 6mvp 1:761 930 622 24.5 607 31.5 600 35.0 587 42.0 580 45.5 574 49.1 2.350 784 29.9 768 38.4 761 42.7 748 51.2 741 55.5 735 59.7 1,170 693 28.5 671 36.6 661 40.7 7mp 6`-F 0,733 1 6 1 909 35.6 887 45.8 877 50.9 7MVP 760 ,:4 1,125 42.8 1,103 55.0 1,093 61.1 2,050 1,338 49.9 1,316 64.1 11,306 1 71 2 ISO 9 30.4 681 39.0 669 43� amp T -F 1.040 1 170 1,011 40.4 983 51 �9 970 5 .7 1 8mvp 1:375 1,224 47.4 196 11:638 6 1.0 1,183 67.8 1 1 1 1,800 1 1,666 62.1 . 1 79.9 1,625 88.7 MEN MIMM� - 1,760 111M 46 2.6 !!! m 4 3.0 41 3A HP I VII -S 0,045 2265 69 3.4 66 3.9 64 4.3 60 5.3 VP P:770 91 4.1 7 89 4.7 7�4 87 5.3 83 6.5 3,600 129 5.4 126 6.1 124 6.9 120 8A 7- 117 10.0 113 11.5 '3 -- - 1,760 so 4.0 7 77 46 - 74 5.2 p 4 HP H I WI -S 0.069 2190 110 5.0 107 5.7 104 6.4 99 7.9 HVP 4 H V p 2:620 139 6.0 137 6.9 134 7.7 129 9.4 124 11.1 3,600 207 8.2 204 9.4 201 106 196 13.0 192 1 15.3 188 17 -T�5-00- -154 -7.0 1-51 8.0 147 9.0 140 10.9 5HP 5 H p 1,760 191 8.2 187 9.3 183 10.5 177 12.8 171 15.2 111 1" 17 1 H V p 5HVP I 2%"-S OA40 2,100 238 9.8 235 11.1 231 12.5 224 15.3 2 is 18.1 213 20.9 2,850 3 13.2 34 15A 336 17.0 329 20.8 323 24.6 31872 8.. 4 " 1,170 188 8.8 182 10A 177 11.3 - 168 13.8 159 16.4 .'p 6HP 1 760 321 133 316 15.1 311 1TO 302 20.8 293 24.6 266 28.4 6HVP 6 Vp 3"-S 0.227 1:930 360 14.5 355 16A 350 18.7 340 22A 332 27.0 324 31.1 2,350 455 17.7 450 20.2 445 22.8 436 27.8 427 32.9 419 37.9 1,170 332 14.2 326 16.3 319 18.3 308 22.4 297 26.5 287 30.5 p 7HP 465 441 1TS 434 20A 428 22.9 416 28.0 405 33.1 396 38.2 Vp 7HVP 4"-S 0.367 1,760 549 21.4 542 24.5 536 27�6 524 33.7 514 39.8 504 45.9 21050 655 25.0 649 28.5 642 32.1 631 39.2 620 46.4 610 5 .5 Sao 363 16.5 354 18.9 345 21.2 329 26.0 315 0.7 301 35.4 8HP 170 528 528 22.0 22-0 518 25.1 509 28.3 493 34.5 479 40.6 465 47.1 8 Vp BHVP 4",S 0.566 1:375 644 644 2 25.8 634 29.5 626 33.2 609 40.6 595 48.0 581 55.3 1,800 884 33.8 875 38.6 866 43.5 850 53.1 835 62.8 822 72A 5 RPAA I I I Proven Performance. Global Applications. Local Support. Below are just a few examples of the industries that, over the decades, have depended Upon the Sutorbilt' Legend- to deliver clean, oil -free air to a wide range of global applications. Industry Application Aquaculture Aeration Cement and Lime Fluidization and Conveying Chemical Vacuum Processing and Conveying Coal Bed/Landlill Methane Gas Recovery Dairy Automated Milking Dry Bulk Hauling Trailer Unloading and Aeration Environmental Services Sewer Cleaning and Portable Restroom Services Industrial Material Vacuuming Milling and Baking Blending and Conveying Oil and Gas Gas Collection and Sparging Power Generation Fly Ash Conveying and Aeration Process Gas Gas Boosting Pulp and Paper Chip Conveying and Process Vacuum Resin and Plastic Processing and Conveying Soil Remediation Vacuum Extraction and Sparging Vacuum Excavation Potholing and Slurry Recovery Wastewater Aeration and Backwashing The sound data shown compares the Legend and a comparably sized blower operating at 3,275 rpm and 12 psig. An improved blower design significantly reduces the sound pressure output of the Legend blower. The typical reduction is 3 dBA which represents 50% less noise than the competition. Superior Local Sales and Service Our extensive network of authorized Sutorbilt distributors offers the most convenient local sales and service sup- port of anyone in the industry today. These factory trained professionals are experts in btower/vacuum. pump technology providing system instaRation guidance, troubleshooting and optimization recommendations of your new or existing applications. Even a Legendary Warranty Every Sutorbilt Legend Series blower/ vacuum PUMP is covered by an uncontested warranty for 24 months from the date of shipment or 18 months from the date of installation on all blower materials and workmanship. Replacement or repair costs will be at no charge . 1 1. r . f � — � ­ ---I C'.____L:1_ 14 =-.* Small Compact Filter Silencers w/ Standard Filter Design TS" Series 1/2" - 3" MPT -APPLIGA-TIONIE��EQU�FP�ME-60��4 + Industrial &Severe Duty Engines + Waste Water Aeration # Piston Compressors Constructlon\Contractor Industry 4 Nailers and Staplers + Screw Compressors Workshop + Vacuum Vent Breathers + Blowers - Side Channel & P.D. # Medical0ental Industry o Hydraulic Breathers — fine filtration o Pneumatic Conveying + Polyester: 99%+ removal efficiency standard to 5 micron + Interchangeable media: Polyester, Paper, HEPA # Paper: 99%+ removal. efficiency standard to 2 micron + Several element sizes available per given connection # Fully drawn weatherhood - no welds to rust or vibrate apart (safety factor) # Tubular silencing design - tube is positioned to maximize + Temp (continuous): min -1 5oF (-26'C ) max 2207 (1 04*C attenuation and air flow while minimizing pressure drop * Filter change out differential: 10"-15" H20 over initial delta P * Durable carbon steel construction with baked enamel + Pressure drop graphs available upon request finish and powder coated weatherhood + 1/8" tap holes # Available in Stainless Steel + Various media available # Pressure Drop Indicator * Epoxy coated housings # Special connections, BSPT CONFIGURATON DRAWNG DOLE7 4LET Dimension tolerance + 1/4" Wi " W/Pe 11h ��L —Cm 15tV —7 TYPICAL NOISE ATTENUATION — FS SEFUES 20 Z 0 10 '000 !-Wih L. li� �L. * '�; 71�; 4oloo aolw OCTAVE SMID MTEI FREGUENCIES — HZ Noise attenuation may very due to the wide range of applications and machines Note: Model offerfngs and design parameters may change without notice. Solberg — Discover the Possibilities FS25-406 pg. 3 1151 Ardmore Ave. 4 Itasca, IL 60143 USA Sales/Service: 630,773.1363 � Fax: 630.773.0727 E-mail: sales@solbergmfg.com # Web Site: www.solbergmfg.com with Polyester Element v0th Paper Element MPT Outlet DIMENSIONS - inches A B C (Rated Flow SCFM) fc—rew (2EE� Element Piston Fan Rating No. of Silencing Tubes Approx. Wt. lbs I FS -15-050 FS -14-050 1/2" 4 1 1/2 6 10 10 35 1 2 I FS -15-075 FS -14-075 3/4" 4 1 1/2 6 20 25 35 2 2 1 FS -15-100 FS -14-100 V 4 1 1/2 6 25 35 35 3 2 I FS -19P-150 FS -18P-150 1 1/2" 65/8 1 5/8 6 70 85 100 5 4 I FS -31 P-200 FS -30P-200 2" 7 1/4 21/4 10 85 6135) 195 5 8 S FS -231 P-20-0 1 FS -230P-200 2" 121/4 21/4 10 135 135 300 5 N - '0� 1, Note: Model offerfngs and design parameters may change without notice. Solberg — Discover the Possibilities FS25-406 pg. 3 1151 Ardmore Ave. 4 Itasca, IL 60143 USA Sales/Service: 630,773.1363 � Fax: 630.773.0727 E-mail: sales@solbergmfg.com # Web Site: www.solbergmfg.com BULLETIN D Cut -Sheets and Pump Curve for Irrigation Dosing/Flushing Pump !FF 4 Marr," 11111M BEIM] 111111ml Mul milli �0/16/2008 12;21pm wwsi 7792766535 #439 Page 11/12 c On By: TGJ LC - 20953 Configured Curve Date: lo/g/200S ",",Pumps Rev.# rc)j - ect Waste Water Systems ag 9 P-1 P-2 IP -0. Model: 209S3 __f_- 69 Qty: 2 SPE .9DU 0UU JbU 400 450 Soo 550 600 650 700 capacky - usgpnl 1+U 20 - 0. I" 4;vw _1W JuU J�)U 400 450 Soo 660 600 650 700 capacky - Usgpm U �U 100 ISO �00 250 300 350 400 450 Soo $50 Soo 650 700 capacay - usgpm N r IPSHr i .... ... . ................ ...... . ...... . .. .. ...... U �U 100 ISO �00 250 300 350 400 450 Soo $50 Soo 650 700 capacay - usgpm N PU 200 USspm �Fluid: Water Uct Press: 0.00 PsLa ;H: 350 ft Tamp: 68.00 dog F DI Dls. Press- �fttoff Head; 363 ft 0.998 5iff. Press: NPSHr 7.04 ft Visc.; I �60 cp�-gg 0 SHP: 310.3 hp Iffi-)- Dig-: 9.54 In jPump Eff.- 58.16 N�� Of Stages: I REP' 426 USgprn D 40 lVoltage: 208-2301460 7 tL inal RPM., 3500 ... I I Phase: Three phase 1 F.. 1.15 ctual RPM- 3500 — - [Encl,: ODP -1 PU SELECTIOW CaNDITTOWS Flow: Total Dynamic Hend: 200.0 GPM 140.0 feat Priming Type: M-ot-or Loading. Standard, Sta n d"a rd, PUMP DESCRIPTION Pump Model: 92TPMS Pr�rnfng Type: Ston-dard Impeller Diameter: 6. 18 a i.n. lrr-p-al-ler Material; Iron Suction; 2Yz"NPT Digcharge: 2)"WPT Shaft Seal; Mechonicas PUMP PERFGRMANCE Flow: ToLal Dynamic Head; 200.0 GPM 140-6 feet po.wer. Efficiency: q.-7 EtIl. P Nominal Speed., 3600 Rpm NPSHR: 73;4 7 '14..2 feet Shut—Off Head: 154.3 feet Max Power: T'T.(J ErHP. Sest Eff; 73.7 @r 2 1- 4.9 OPM MOTOR Size: 70 HP Enclosure: TEFC Voltage; CorisulL Catcflog/Facto,ry PRICE/ORDER INFORMATION Ca t a I n 9 N Factory wcigh L: 200 lbs. BULLETIN E Cut -Sheets for Flushing Return Pumps and Tanks �Kl& IrY lallURS . FINZ-F /9, 7,q Product information presented here reflects conditions at time of publication. Consult fac- tory regarding discrepancies or inconsistencies. SECTION: 3.20.022 FM2D91 0207 Supersedes 0506 visit our web site: www.zoeller.com ZOE1616ER ONmSITE WASTEWATER PRODUCTS a Effluent turbine pumps are used in on-site applications that demand more head than a traditional single stage centrifugal submersible pump. Zoeller Pump Company is able to meet this need by offering a complete line of submersible effluent turbine pumps. These pumps have been proven in field applications and have many years of development behind them. Typical appli- cations include mound systems, drip systems, and recirculating media filters. All units include cool running submersible motors that do not require external water flow to prevent overheating. An outer pump sleeve is not required. Pumps can be installed directly in a dose tank as long as an effluent filter is used on the septiGtank outlet. These pumps can also be used in conjunction with the Zoeller Effluent Turbine Filtered STEP system. FEATURES: * Corrosion resistant. * Many models available - 10, 19, 27, 35, 55 and 85 GPM. * 1/2 thru 3 HP units. * 115 and 230 Volt. * 1-1 /4" discharge (10, 19, 27 gpm) or 2" discharge (35, 55 and 85 GPM). 10, 19,27 GPM Models 35, 55, 85 GPM Models * Heavy wall stainless steel pump shell. * Franklin Electric submersible motors. * Stainless steel hex drive pump shaft. * High Efficiency floating stack. -DISCONNECT * Glass -filled Noryl discharge and mounting ring (10, 19, and 27 GPM models). TO DRA N * Stainless steel discharge and mounting ring TO CONTROL FIELD PANEL (35, 55 and 85 GPM models). * No external capacitors or relays required for starting PREWIRED -J CONDUIT (1/2-11/2 HP). * Starting box provided for 2 & 3 HP units. * External check valves available. * Pressure effluent filter available. * 10 feet of jacketed SO type power cord (1/2 - 11/2 HP units only). Consult Factory for longer lengths. * Timed dosing panels available. * 5 year extended warranties available. (Consult Factory for details.) SK2226 @ Copyright 2007 Zoeller Co. All rights reserved. i 1: U�LA rl,N 75 70 65 60 56 50 45 40 35 30 25 20 15 10 6 0 co LU PUMP PERFORMANCE CURVE 85 GPM 2" NPT DISCHARGE 60 — 200 — 1 1 3 HP -6 STAGE 55 — 175 _�_.l 1 50 — 45 — 150 40 — STAGE 2 HP -4 < 125 z 35 — _5HP 30 — 100 — 3 STAGE 25 — 75 20 — 1 HP -2 STAGE 15 — 50 — 10 — 3/4 H P-1 STAGE 25 - 5- 0 1 20 40 60 80 100 120 140 GALLONS LITERS ' �FTERS 0 410 810 1210 1610 2010 2410 2810 3210 3 (T) 0 8� 1�0 2� 3�O 40'0 4 8'0 FLOW PER HOU RIMINUTE 015649 FLOW PER HOURIMINUTE 015845 - -Part Number PUMP PERFORMANCE CURVE 55 GPM Voltage 2" NPT DISCHARGE Amps Stages Height 6034-0005 112 115 1 3 HP -7 STAGE 1 18-5/16' 225 — 112 230 1 6.0 1 18-5/16' 5034-0007 — 230 1 8.0 200 21-9/16' 5034-0008 1 175 — 1 9.8 3 24-3/4' 2 H P-5 STAGE Ilk 1-1/2 230 150 — 13.1 6 30-3/16' 5034-00101 1 2 1 230 1 1 13.2 1.5 HP -4 STAGE 32-5116' 1 5034-10011* 1 125 230 1 1 14.5 1 7 40-71W 100 — 1 HP -3 STAGE See FM2244 for more information. See FM2090 for more information. 75 — 3/4 H P-2 -0-1 AG E 60 — 112 H P-1 STAGE NNI 10 20 30 40 60 60 70 80 90 10 GALLONS co LU PUMP PERFORMANCE CURVE 85 GPM 2" NPT DISCHARGE 60 — 200 — 1 1 3 HP -6 STAGE 55 — 175 _�_.l 1 50 — 45 — 150 40 — STAGE 2 HP -4 < 125 z 35 — _5HP 30 — 100 — 3 STAGE 25 — 75 20 — 1 HP -2 STAGE 15 — 50 — 10 — 3/4 H P-1 STAGE 25 - 5- 0 1 20 40 60 80 100 120 140 GALLONS LITERS ' �FTERS 0 410 810 1210 1610 2010 2410 2810 3210 3 (T) 0 8� 1�0 2� 3�O 40'0 4 8'0 FLOW PER HOU RIMINUTE 015649 FLOW PER HOURIMINUTE 015845 - -Part Number H P Voltage Phase Amps Stages Height 6034-0005 112 115 1 12.0 1 18-5/16' 6034-0006 112 230 1 6.0 1 18-5/16' 5034-0007 3/4 230 1 8.0 2 21-9/16' 5034-0008 1 230 1 9.8 3 24-3/4' 5034-0009 1-1/2 230 1— 13.1 6 30-3/16' 5034-00101 1 2 1 230 1 1 13.2 1 5 32-5116' 1 5034-10011* 1 3 1 230 1 1 14.5 1 7 40-71W Part Number H P Voltage Phase Amps Stages Height 6035-0005 314 230 1 8.0 1 20-1/8' 5035-0006 1 230 1 9.F 2 24" 5035-0007 1-1/2 230 1 13.1--- 3 30-1/8' 5035-OOOB* 2 230 1 13.2 4 32-7/8' 6035-0009* 3 230 1 14.5 6 42-3/8' I*Includes starter box and 2& long flat wire cable assembly. @ Copyright 2007 Zoeller Co. All rights reserved *Includes starter box and 251ong flat Wre cable assemUy. Accessories Filtered STEP System Zoeller Pressure Effluent Filter This Zoeller Filtered STEP The Zoeller Pressure Filter will help System is designed as an prolong the life of an on-site drainfield economical and reliable by filtering out solids which cause solution to an On -Site plugging. Used in both residential and pumping requirement, commercial applications, this unique When the effluent must design and mounting location allows be pumped up hill, for easy access to the filtering screen. enhanced flow, pressure sewer or where alternative Use in low-pressure pipe, drip, or systems require high head, enhanced flow applications. Use asa the Filtered STEP System prefilter for dosed treatment devices is the answer without the such as recirculating media filters. extra cost of a pumping chamber. For use with pumps up to 55 GPM. Contact Factory for 85 GPM applications. See FM2244 for more information. See FM2090 for more information. @ Copyright 2007 Zoeller Co. All rights reserved 1�7 ugs� _J = _,Trr_� All brass spring loaded check valves are designed to screw directly into the pump discharge. Check valves are assembled with components suitable for a septic environment. Check valves should be used at the pump in a pressure sewer system. A redundant PVC check valve and isolator (ball) valve should also be used at the sewer connection in pressure sewers. Part Number Piping Size Pressure Rating Weight 30-0187 1-1/4" 400 psi 2 lbs. 30-0189 2" 400 psi 3 lbs. 10N PVC check valves can be used inline with the pump discharge piping or at the street service connection in a pressure sewer system. Check valves are a true -union design so they can be removed and serviced without cutting the pipe. Clear PVC for easy inspection and connection via a glue joint. Part Number Piping Size Pressure Rating Weight 30-0207 ill 125 psi 1 lb. 30-0209 1-1/2" 125 psi 1 1 lb 30-0210 2" 125 psi I Rail systems are used for easy pump removal from an efflu- ent pit. Service personnel will not need to enter a hazardous environment. Pump sits on floor and engages piping system via a sliding disconnect fitting. All parts are stainless steel or brass and suitable for a septic environment. Part Number Piping Size Weight 39-0098 1-1/4" Female pipe thread 10 lbs. 39-0099 1-1/2" Female pipe thread 11 lbs. 39-0100 2" Female pipe thread 12 lbs, Disconnects Onlv Part Pipe Number Size Weight 39-0053 1-1/4" 2 lbs. 39-0001 1-1/2" 2 lbs. 139-0002 1 2" 1 2.5 lbs Stainless Steel Pull Rods 3/8"-16 UNC Part Number Length 39-0069 11 39-0006 2%' 39-0007 3% . 39-0008 4%' 39-0009 5%' 39-0018 39-0010 ALL ZOELLER ON-SITE WASTEWATER PRODUCTS MUST BE INSTALLED IN ACCORDANCE WITH LOCAL AND/OR STATE PLUMB- ING AND/OR HEALTH DEPARTMENT CODES. Q Copyright 2007 Zoeller Co. All rights reserved. Part Number H P Voltage P 9 9 5030-0005 1/2 115 1 12.0 6 22-3/8' 5030-0006 112 MOW= 1 6.0 6 22-3/8' 5030-0007 112 115 1 12.0 8 24-1/8' 10 GPM Models 1/2 19 GPM Models 1 6.0 8 24-1/8' 5030-0009 , 314 230 1 8.0 12 28-7/8' 2" NPT DISCHARGE BB 300- t1ki w 56- ! 20 Lj PUMP PERFORMANCE CURVE 1 -T 48- PUMP PERFORMANCE CURVE 72- ami 140 - -1 HP- 4 STAGE 10GPM IHP-7 GE 22 40- A 19 GPM 2g] 3/4 HP 17011 120- 1 1 /4" NPT DISCHARGE 32- L314 HP,- 3 STAGE "It, 1%" NPT DISCHARGE 'r 1�1 120- 400- 1 1 z 280 - 24- so - V2 HP - 2 STA�E 1 112 - In HP- 4 MGE 114 HP, 12 3TAGE —+, 120- 9 STAGE so- 380 %._� 24� 80 - 40- 1 04- T-- 16- 40 -- — — — — 72- 240 314 HP — 20 -- — — — — — 0 2 10 20 30 40 50 60 7 GE 10 95 40 I GALLONS GALI LITERS ------ 64- 200 __ __ — 6 �O A 66 do 1`00 1T20 IE 0 40 80 120 160 200 80- FLONPERMINUTE 015045 112 HP- a STAGE FLOWPERMINUTE 016044 56- 72- 48- 160 so- 0 1/2 P-GSTAGE Is < 40- 120 - 1/2 P H 48- ISO- It. 32- 6 STAG E IP 40- 120- &—. 24 - 32 _ 16- - 8 0 - 40- 24 40- 8- 0 5 10 15 20 25 30 2 4 8' lb 12 14 16 18 GALLONS I GALLONS LITERS LITERS I I 0 8 116 24' 32 40 '4856 64 0' 2'0 410 610 810 1010 FLOW PER MINUTE FLOW PER MINUTE L1W 015413 015414 Part Number H P Voltaoe I Phase Am s I Sta es wl� ki Part Number H P Voltage P 9 9 5030-0005 1/2 115 1 12.0 6 22-3/8' 5030-0006 112 230 1 6.0 6 22-3/8' 5030-0007 112 115 1 12.0 8 24-1/8' 5030-0008 1/2 230 1 6.0 8 24-1/8' 5030-0009 , 314 230 1 8.0 12 28-7/8' Part Number H P Voltage Phase Amps Stages Height 5031-0005 112 115 1 12.0 5 21-15/16' 5031-0006 1/2 '230 E230 1 6.0 5 21-15116" 5031-0007 3/4 '230 1 8.0 7 25-1116' 5031-0008 1 230 1 9.8 9 28-1/8' Part Number H P Voltage Phase Amps Stages 27 GPM Models 5032-0005 35 GPM Models 115 - 1 12.0 4 21-1/8' 5032-0006 JHP 1/2 230 PUMP PERFORMANCE CURVE 4 21-1/8' 6032-0007 3/4 27 GPM 1 8.0 PUMP PERFORMANCE CURVE 24-5116' 6032-0008 1 114"NPT DISCHARGE 230 35 GPM 7 go 320 1-112. 230 r-1 10 11/2HP- IOSTAGE 2" NPT DISCHARGE BB 300- t1ki w 56- ! 20 I-WHP-5STAGE 1 -T 48- 'so- 7 7: IN 72- '_ x 140 - -1 HP- 4 STAGE IHP-7 GE 22 40- A L-�J 2g] 3/4 HP 17011 120- 56- 32- L314 HP,- 3 STAGE "It, 'r 100 4B �43' z 1 40- 24- so - V2 HP - 2 STA�E In HP- 4 MGE —+, 120- so- 24� 80- 40- 16- 40 -- — — — — 20 -- — — — — — 0 10 20 30 40 50 60 10 95 40 I GALLONS GALI LITERS ------ .TTERS __ __ — 6 �O A 66 do 1`00 1T20 IE 0 40 80 120 160 200 FLONPERMINUTE 015045 FLOWPERMINUTE 016044 Part Number H P Voltage Phase Amps Stages Height 5032-0005 112 115 - 1 12.0 4 21-1/8' 5032-0006 JHP 1/2 230 1 6.0 4 21-1/8' 6032-0007 3/4 230 1 8.0 6 24-5116' 6032-0008 1 230 1 9.8 7 26-7116' 5032-0009 1-112. 230 1 13.1 10 31-7/8' Part Number H P Vdtage I Phase Amps Stages Height 5033-0006 112 115 1 12.0 2 19-7/16' 5033-0006 1/2 230 1 6.0 2 19-7116- 5033-0007 3/4 230 -1-3 1 8.0 22-3/1-- T 503M008 1 230 1 9.8 _4 24-15/16- 6033-0009 1-1/2 230 1 13.1 6 29-15/16' �n,' 11 11 Copyright 2007 Zoeller Co. All rights reserved. �J Part Number H P Voltage Phase Amps Stages Haight 5030-0005 1/2 115 1 12.0 6 22-318' 5030-0006 1/2 230 1 6.0 6 22-3/8' 5030-0007 112 115 1 12.0 8 24-1/8' 5030-0008 10 GPM Models 230 19 GPM Models 6.0 8 24-1/8' 1 5030-0009 1 314 1 230 1 1 1 8.0 1 12 1 28-718' 2 0- 1-1/2HP-58TAGE 80- 260- 48- PUMP PERFORMANCE CURVE 72- '- PUMP PERFORMANCE CURVE 40- -1 HP -48 E TAG IHP-7$TAGE 20 10GPM 19 GPM 120 11/4" NPT DISCHARGE 32- 314HP 3 STAGE 1%` NPT DISCHARGE 10 120- 400- 1 1 1 280 - 1% W 2H P-4ST AGE 24- 112- 3A HP- 12 STAGE 12 - 1 . -7� so - rl-_] I HP 9 STAGE 32- 10 is - 60 24- SO- 40- u,j a- 104 16- 72- 240 - k/4 H 314 HP 213- 0 10 20 30 40 50 60 7,T 7 STAGE 0 25 Is 40 GALLONS 10 64 - a 40 80 120 16 2GO FLCWPERMINUTE 015045 FLOW PER M INU TE 015044 200 - `0 - 112 HP- 8 STAGE 56- 72- 240- 48 - 160 - 6�4 - 56- 112 H < 40- 120 - 1/2 HP 32- 5 STAGE 413 - NA < 40- 24 - 8 120 - 32- Is- 24- 80- 40 16 - 40- 0 6 10 1 � 20 26 30 0- GALLONS GAL�L �NS 24681012141618 LITERS 0 20 40 60 80 100 LIT12RS 0 8, 1'8 24 32 0 48 56 64 FLOW PER MINUTE FLOW PER MINUTE 015413 015414 �J Part Number H P Voltage Phase Amps Stages Haight 5030-0005 1/2 115 1 12.0 6 22-318' 5030-0006 1/2 230 1 6.0 6 22-3/8' 5030-0007 112 115 1 12.0 8 24-1/8' 5030-0008 1/2 230 1 6.0 8 24-1/8' 1 5030-0009 1 314 1 230 1 1 1 8.0 1 12 1 28-718' Part Number H P Voltage Phase Amps Stages Height 5031-0005 1/2 115 1 12.0 5 21-15/16" 5031-0006 112 230 1 6.0 5 21-15/16' 5031-0007 314 230 1 8.0 7 25-1116' 5031-0008 1 230 1 9.8 9 28-1/8' Part Number H P e Voltage Phase Amps Stages Height 27GPMModels 112 35 GPM Models 1 12.0 4 21-1/8' 5032-0006 112 230 1 6.0 4 21-1/8" PUMP PERFORMANCE CURVE 27 GPM 314 PUMP PERFORMANCE CURVE 1 8.0 6 24-5116' I 114'NPT DISCHARGE 5 1 35 GPM 1 9.8 7 26-7/16' 1 11 HP- 10 STAGE 1-1/2 2" NPT DISCHARGE 1 13.1 10 1--718- 3 0 56- 180- BB_ 2 0- 1-1/2HP-58TAGE 80- 260- 48- 160 72- '- 40- -1 HP -48 E TAG IHP-7$TAGE 20 40- 21- 3M HP 6MGE 120 32- 314HP 3 STAGE 10 46- 1% W 2H P-4ST AGE 24- so- 1/2HP-2STA E 12 - 1 . -7� 60 32- 10 is - 24- SO- 40- u,j a- 16- 20- 213- 0 10 20 30 40 50 60 0 25 Is 40 GALLONS 10 LITERS a 40 80 120 16 2GO FLCWPERMINUTE 015045 FLOW PER M INU TE 015044 Part Number H P e Voltage Phase Amps Stages Height 5032-0005 112 115 50 1 12.0 4 21-1/8' 5032-0006 112 230 1 6.0 4 21-1/8" 5032-0007 314 230 V23 1 8.0 6 24-5116' 5032-0008 1 230 1 9.8 7 26-7/16' 6032-0009 1-1/2 230 1 13.1 10 1--718- Part Number H P Voltage Phase Amps Stages Height 5033-0005 1/2 115 1 12.0 2 19-7/16' 5033-0006 112 230 1 6.0 2 19-7/16' 5033-0007 314 230 1 8.0 3 22-3/16' 5033-0008 1 230 1 9.8 4 24-1511 IF 5033-0009 1-112 230 1 13.1 6 29-15116" Copyright 2007 Zoeller Co. All rights reserved. Cable Guide: SJOW. Junior hard service, same construction as type SOW but only rated for 300V Oacket thickness different). 601C. *Dry run capable for up to 24 hours Without damage. **Minimum Liquid Level (measured from bottom of pump). 9) Copyright 2006 Zoeller Co. All rights reserved. 7 ----TT .44 CQ cn W �4 tin r-4 m co co 7 ----TT .44 CQ W �4 r-4 lu !a rm 41 44 w 4-1 a 0 w 5 t; kw fd 0 tp 0 0) fa ru w 4) 9 - la) tm Ul )w cu -A m r -i rm (v A xw 0 a -4 0 4J W4 to :4 T -:F CA 04 x k9 U3 9 0 9 tp 0 .11 = F 'H 0 41 b �4 t;n rd Cid 44 5, -H 4J u 0) 0 0 W V Q) �i 4.) tP 0 c u 7 ----TT .44 CQ W �4 r-4 :5 u 1-4 P4 —4 0 m 49 llm— .44 CQ r-4 lu llm— E4 m4 I i-% r1l --j C). I'l .44 r-4 E4 m4 I i-% r1l --j C). I'l UNJ BULLETIN F Cut -Sheets for Alternate Pond Liner a) >, Ln c Ln >, fa — -0 Ln L- CU 0 -C -0 0 M-0 0 E 0 c 0 c o Ln 4� .2 Z c c CL .7 %- 0 CL Ln c 0 C W 0 a) Q (U 4- E x > cn C F- > 4-- c 4� (a M C W aj 0 0 C W > " ,0 v; u C 4.1 a) > 0 :3 0 iq aj -C: 75 c *r- u 4- u -C :3 q- -C aj M U 0- ai 0 0 4-J 4- 4- LA ai Ln 3: Ln ra =3 4� r_ 0 C 0 0 V) M E E cn Ln 4-1 0 - 4- Ln 0 0) u 0 U Ln 4- c (U aj CU 0 >% 4� a) r— =3 7E 6 -�: E 0 E =0 44 aj E C: 0 Ln 0 Ln Z a) Ln 0 4- 0 aj (U Ln > 0 4 a) E o +, i> vi > -E 4� -- 'n Ln o Ln > E 0 W E 4- 4� = CL M (31 > 0 4- 4- -C U 4-� ai 0 4� =3 (3) = L- 0- -�d -0 0- +-, m 0 5- m aJ E r- W tn x 0 71- CL 0 E u M 'n 0 (a 0 Ln Ln Ln n cu -0 4- —.Y, 4- C u 4- o 4- - 0 U j_ t 4� -D 41 Q aj 0 u c a) W r,4 M 4- CL c w o c - 0 ul 4-- (a w = X 0 CU . 0 " CL CL CL 0 w E CL tn V).- w Ln " 0 C: :3 ai ai 0 (V 4� =3 c Ln -a ai +- t- tA QJ a) 7-, a) CU -0 0 E 4- o ai w > .n aj 4-1 CL E 5 kn V� m u -C 4- 4- aj 0 CT =3 a) a) — aj ra 4-1 E 4-1 0 0 =3 E 4-1 > M Ln a) 4– ai (u o ai 4-1 (u 0 E X va Q 0- E > E aj Qj CL a) a " av) 3: w 4- m a) aj :E CL (U Ln :3 -a �: tn 0 ai 4 -C U- In 0 4� 4-1 " N.. 0 u +, -0 m LA 0 W 0 0 3: — X 8 - ID M -P.G C� Cf) 0 u L- i I 9 Ln co 4A c 0 cm 0 fn 0 u m Ln 4i E C cn 0 E 10- 0) 0 4� 0) 4- 4- ai 0- 0 _0 0 E 4-1 LU 0 r= 4� -C 0 x (3) 4� CL LA 4- (1) " > +� a) 0 (1) Ln 0 (U &A (3) Qj >% 4-1 .5 = 40 > Ln r, 4- 4� Ln 0 C) 0 CL 4� tn (L) Ln N M -C -C 0 4- a) u 0 C)) -C +1 u -C 4- :3 0 cli =3 0 +1 u :3 ro -0 > aj Ln uj cn L- (Ij to ai C :3 4- W o- E aj > Ln ra m c -C IA ai ai L) (U C) Ln Ln 4- 0 4� m Gi Ln a; CL :3 4.1 c 0 E V) -C E :6 +� 0-0 4- +1 u — 0 (A -C a) 4- 0 Ln cn- �o E -2 Ln 0 u 0 +� 0) 4-1 o u c to 4- 7E 14-: -76 m lu o Ln -C (D $A -C u ai X 4� c >-. = IA Ul m Ln -0 c -0 u -0 ai E uj 0) C: fa o I., U o W a- 4-1 0 tA m C: m u u &A aj Ln Lu 0 C) 4- c > 0 a) +� ai a) c m 0- Ln 0 E _0 u E U, aj Ln W c 4- o Ln M C: =3 -a 4- 0 > .�:: 4- 0 4- r - = aj L- �: 4� 0 .- r Ln Q) L- >, +-j aj > 0 c c: ko 0 4� =3 co +, > +, ra 0 (A ai 0 c ai >l. -0 ai ig co 0) 0 > c -0 0) Ln -0 E 1,4 pi m 4� V) Ln E 0 u W LU (U LU 4- aj 0 4� 4-1 ai E tA ui V) (A -C 4- -6 a% C m 0 Ln +� Q- m 4- c 0 4� = CY) 0 0 10 0 - 0 Vi V) Lu 0 0 C 0 u Ln E c c 0 0 c fa 0 (3) c 3: (31 -C 4- 1- c 0 0 .- . 4- 4- M W 1- C)) 4� 0 ra U " 4- -S -t! W Ln C) -0 4� 0 -0 4- > = .- 4� 0 =3 4- 41 0 4� 00 0 Ln CIO (A C u 4) CL 6 E 0 cu 0 c -C E a) c aj c m E w Ln 4- ro LU a) -C tz E -6 a) CL aj 0 aj aj 4� _0 C: m u 4- 0 E 0 u Ln aj E 0 +1 u fu :3 Ln 0 'A M I Ln V) LU tA 0 u r� (U a - ) M ai 4- 4- 0 c c E Ln 0 0 E Ln rn 0 I -n IA LU 0) -C 4- 4- 4-1 aj 0 -C CL 0 -C 4 - Ln U ro 0 CL E -E 0 0 In 0 4- Ln (D aj (V -C -C -C Ln IA 4-1 - C4� rn 0 4-1 c: A ai -0 E c 42 -r- 'o aj Ln In aj > 0 0 u C: E5 0 tn +1 Q) C 0 Ln 4- 4-1 0 L) 4- I.n m 7 LA Ln aj c U '4- 0 aj = L'I 4-1 OJ c Ln -C 4- 0 E LA 0 E E E ai aj +1 4 - Ln M 07 R Ln 4-1 Ln V) LU 4- 0 -0 ru 4-� -0 LO Ln Ln LU 0 OJ VI E _cw 0 0 Ln 4-1 0 cu E CL LU 5 aj cr = di 4-1 ai cn 4- X E U 0 0) 4-1 CU .Ln 0 L - 4� 0 0 u ai 0 4-1 o Ln 0 Ln CL aj :3 " o Ln Ln 'n U CU U 4- C: o 4- " c 0 CL 0 u >, o 01 Ln cr 7E t 4-1 ai Ln +1 0 > Ln C E 153 4 (v -0 .0 Ln 4., 4- >1 -C U fa tA 0- M E 0 Ln Ln LU C: M aj > U- a) r 0 - u 0 4- qj Es > . 4L, IV 0 CL a) E M I go E u ai !E 0 :C 4- M z Qj Z Qj Qj cu 9 0 E 0 0 0 00 MELMMW 4-r tt-- c —I t-- >% u 0 w > LA c 0 > 0 C: -C 0 u 0 CU 0 .c cu c o :3 Ln 0 4- 0 0 4� " +� -0 0 0 L.1 Ln 0 C CU u m Ln Ln 0 CA = 0 = u C: > 0 cu .2 4� cu 4� 0 (U > -C m u u a) > �e u -C �g: 0 Ln > *0) w u CL 0 cu >% -a 4- W E ai E co uw .6 f 0 v Ul L j �'!� -7—A Fit BULLETIN G WSI PC Controller Electrical Schematics L,J PUMP A & B 120 VAC DISCONNECTS DISCONNECTS CONTACTOR A FM� OVERLOAD A CONTACTOR B FIR OVERLOAD B 120V POWER DISTRIBUTION BLOCKS IFM MIM -M M-12MKu"11 IF" -0111=211w, IMMIRMHr"], IF--11111"KIM, 1"Emnf"11 1F"-1nMp0Fw1 NF"—]Z��rwvll Ir"Ir"IMOM, 11"R�Kr"11 I M11 I 191FLITIF11 24 VAC CONTROL TRANSFORMER (o 24 VAC ISOLATION TRANSFORMER C- L '7 .. o D� 2 1' -8 - RACK I 0' E E ------- 0 Fw m7m m7m a7a cp 0 MIM 010 MIT 010 010 V(D V(D 010 M 0 0 7-0 M6 DIL..", . . . 14 1� FF -e-1 +12 VDC POWER SUPPLY F 7;� IN 1. . . I le 01 F -p -31 S 11 L SCP30 J -DN +5 VDC POWER SUPPLY IN IN 0. G (DI .... an - - . aa., ............ w.04 --al!".) DISTRIBUTION BLOCKS 11 - 30 0 0j Nx 13-1 I CONTROLLER opm a, RACK 2 ON 0 0 "0 40 0 IM 00 010 MIT MIM MIM 00 -a17ZDR-) (DIM F0 (Dim 0 3 D 0 0 o o C) RACK 3 .2. 120 VAC CPU 0 POWER 0 a Ir I I Pro ILRI ILRO 1211 IN -11 u ORION 1, 1 ---------------- r- "111 010 jz 250 CORO. 0MORMER n IN calm IIIIIII In wl I I RL C PANEL LAYOUT 1 of 1 Waste Water REV -0 Rose Hill P.O. BOX 1023 "PercAR.ite" DATE: 09/22/07 Fl I IJAY (A -�O.F)4n Systems, Inc. (706) 276-3139 F,, (7r)r,) MEMMMMM Si6 M PUMP A & B 120 VAC DISCONNECTS DISCONNECTS CONTACTOR A FM� OVERLOAD A CONTACTOR B FIR OVERLOAD B 120V POWER DISTRIBUTION BLOCKS IFM MIM -M M-12MKu"11 IF" -0111=211w, IMMIRMHr"], IF--11111"KIM, 1"Emnf"11 1F"-1nMp0Fw1 NF"—]Z��rwvll Ir"Ir"IMOM, 11"R�Kr"11 I M11 I 191FLITIF11 24 VAC CONTROL TRANSFORMER (o 24 VAC ISOLATION TRANSFORMER C- L '7 .. o D� 2 1' -8 - RACK I 0' E E ------- 0 Fw m7m m7m a7a cp 0 MIM 010 MIT 010 010 V(D V(D 010 M 0 0 7-0 M6 DIL..", . . . 14 1� FF -e-1 +12 VDC POWER SUPPLY F 7;� IN 1. . . I le 01 F -p -31 S 11 L SCP30 J -DN +5 VDC POWER SUPPLY IN IN 0. G (DI .... an - - . aa., ............ w.04 --al!".) DISTRIBUTION BLOCKS 11 - 30 0 0j Nx 13-1 I CONTROLLER opm a, RACK 2 ON 0 0 "0 40 0 IM 00 010 MIT MIM MIM 00 -a17ZDR-) (DIM F0 (Dim 0 3 D 0 0 o o C) RACK 3 .2. 120 VAC CPU 0 POWER 0 a Ir I I Pro ILRI ILRO 1211 IN -11 u ORION 1, 1 ---------------- r- "111 010 jz 250 CORO. 0MORMER n IN calm IIIIIII In wl I I RL C PANEL LAYOUT 1 of 1 Waste Water REV -0 Rose Hill P.O. BOX 1023 "PercAR.ite" DATE: 09/22/07 Fl I IJAY (A -�O.F)4n Systems, Inc. (706) 276-3139 F,, (7r)r,) 120V 20 A from panel 120V from UPS F G G G G G G G T G (D 01 D30 WMS3D30 415V - 10000 B — D30 WMS3D30 415V — 10000 ABB ABB S-261 D 4 -230/40( mm ON Vt-- 40 A 17-1 S-261 D 4 -230/40( M= iTt 40 A ON ON LON ON [IN LO N PUMP A K B DISCONNECTS 120 VAC DISCONNECTS kuy WWSI) IN OMING POWER CONNECTIONS 1 of 1 Waste Water Systems, Inc, REV -0 Rose Hill P.O. BOX 1023 (706) 276-3139 DAT I E: 09 / 1 22/07 ELLIJAY, GA. 30540 Fox (706) 276-6535 0 — 0 — < M > 1 vac DISTRIBUTION IE "C E3 < M 'ED '.ED n (D F ED 'S REV -0 a :> tj e IWO= El 0 — 0 — < M > 1 vac DISTRIBUTION IE "C 1 of 1 '.ED (b (D REV -0 a Rose Hill DATE . 09/2 1 2/07 IWO= Eg td td 2> Qo rA FO 41 < < 1> tj 0 -9 n v Co ED ED E3 41 70 j 0 -= = �0 z I> �0 0 0000 e - . . . ( F9 M o Co 00 1 ��i 5 0 �fl .1 M, ..... .. (D E:1 Ci e E) 7 tDd j(D F-1 n 7�\ F bd FE�l CIO + C: ro F-1 + C: Cil F- < CD -0 tj u < n r -0 F-1 E3 M :�C �D M �u td r_ E' '7) E:1 M CD ED < 1> 1) 1-9 1 vac DISTRIBUTION 1 of 1 Waste Water Systems, Inc. REV -0 Rose Hill DATE . 09/2 1 2/07 IWO= Mrs-= --I MWISM FO 41 < < 1> tj 0 -9 n v Co ED ED E3 41 70 j 0 -= = �0 z I> �0 0 0000 e - . . . ( F9 M o Co 00 1 ��i 5 0 �fl .1 M, ..... .. (D E:1 Ci e E) 7 tDd j(D F-1 n 7�\ F bd FE�l CIO + C: ro F-1 + C: Cil F- < CD -0 tj u < n r -0 F-1 E3 M :�C �D M �u td r_ E' '7) E:1 M CD ED < 1> 1) 1-9 1 vac DISTRIBUTION 1 of 1 Waste Water Systems, Inc. REV -0 Rose Hill DATE . 09/2 1 2/07 P.O. BOX 1023 (706) 276-3139 ELLIJAY, GA. 30540 Fcx (706) 276-6535 L—Iv� 7 1 � Old iw 24 VAC CONTROL TRANSFORMER SIGNAL TRANSFORMER 0 DP -241-8-24 0 CLASS B ECD 4 10 9 7 6 0 0 0 24 VAC ISOLATION TRANSFORMER SIGNAL TRANSFORMER 0 DP -241-8-24 0 CLASS B EC0134 10 9 8 7 6 0 0 0 DISTRIBUTION h BLOCKS 11 -30 11 12 14 151 1'. OPTO 22 r 4 6 8 W 12 14 16 1 18 1 20 1 24 1 2;v E E ID a)IM MIM MIM M10) 01(l) (DI(I . ....... --- --- --- --- -- (1) GACD 010 01 =0000 =0020 0 I 0 0 0 0-0 2-0 2.0 2 2.0 220 Q01 D . . N -0 t 0 0 0 0 0 0 0 0 ) 0 0 0 0 I I I I 1 6 1 1 1 11 11 11 13 C) RACK 2 OPTO 22 I 11E 4 16 1 19 1 1 221 2� 2 6 9 W �2 1 E E 60) (3) 010) (DIG) (1)1(1) 0)[M MIM M11 — --- --- --- --- 0 M= WJ D �00000000 0 0 AWE] RACK3 TERMINAL BLOCKS Es I-- E-- E E; i EA, E E 9 e e al Fg) 9M) HE 0 0 0 C - 0 " 0 0 rg Ell i i i 1: FIELD ISOLATION RELAYS r4 - r20 24vac DISTRIBUTION 1 of 1 Waste Water Systems, Inc. REV -0 Rose Hill P.O. BOX 1023 (706) 276-3139 "PercdRite" DATE: 09/22/06 ELLIJAY, GA. 30540 Fox (706) 276-6535 I D- H 71 == 22 Didt) e e Fo. -7 e em et; e. �2 '4 e r > e L z e D? k4 e e Q -w Le- 0 0 + tA '4 E) (T� a.- 0- 0— '- 11 110 E. 0- 0 0- 7--1 11E] 22 01dD o[li 22 01ja ofi. e e - 0 e w C) e e - e e e e s t4 e —e = e= e;; em ets e�; e. �ipo e a - E) 5z e ezi ez; ea; 9 e e S 9 em e e 8 M el 8 F, 0� e Fo m. Pmo N e0-0 .0-0 5vdc DISTRIBUTION 1 of 1 Waste Water Systems, Inc, REV -0 Rose Hill P.O. BOX 1023 (706) 276-3139 "P e rc,i RJ t e DATE: 09/2 1 2/07 FLILIJAY, (,A. .30.54n FnY (7nr)) 0- ov nm P 0 X = WLLW �13 -Er C �L-J LJ L -J 0 1:11 Q. ru 22 MdO e e em J �iu 0 0- M, e ezi e -� en! ['oo o FM e r e e u [coo o e lo -o o .1 e n - -n e E; --- 22 U1,M (Ai i�5 zo e e e ro e- t AM e 0- ov nm P 0 X = WLLW �13 -Er C �L-J LJ L -J 0 1:11 Q. ru 22 MdO e e em �iu e ezi e -� en! ['oo o e e e r e e u [coo o e lo -o o .1 e n - -n 0- ov nm P 0 X = WLLW �13 -Er C �L-J LJ L -J COMMUNICATIN WIRING 1 of 1 — Waste Water Systems, Inc, REV -0 RDse Hill P.O. BOX 1023 (706) 276-3139 "Perc.gR.ite" DATE: 09/2 . 2/07 F111JAY (A -�n.'�40 Fw (70r,) 0 1:11 22 MdO e e e e E; i�5 zo e e e e e 15 L(90-0 J 00-0 COMMUNICATIN WIRING 1 of 1 — Waste Water Systems, Inc, REV -0 RDse Hill P.O. BOX 1023 (706) 276-3139 "Perc.gR.ite" DATE: 09/2 . 2/07 F111JAY (A -�n.'�40 Fw (70r,) oNnH ED -0 oiwx --j .0 n 0/\Oa )n- 0 ONI R) rL) "ANA cc 33 tj rk) 22 []Jcjo C: 10, r7i .10 e - i 0 .�IJFLOWMETER 0 ru - '011 -OW WATER —10 �L! 10 e 0 e DOSE ENABLE e 0 HIGH WATER E) 0 e.,o LE=i1j 01 --JI]DELTA PRESSURE p, Cfl e.8. -10 e- 0110 GMTR STARTER A 0 ew A 10 *MTR STARTER B 'I AUTO PUMP A 0 e" e 0 El. 41 AUTO PUMP B e Lj ;: 0 e. SYSTEM RESET e .2 AUXILLARY SHUTDOWN 0 ro e 000 0 01 0 e 000 0 C E) Ln 0 lb n e 000 0 C] e 0 e -m 000 0 o] e 0 e 000 c 0 E) 0 ID e (Do —0 CONTROLLER RACK 1 I of 1 Waste Water Systems, Inc. REV -0 Rose Hill P.O. BOX 1023 (706) 276-3139 Perc,iRite" DATE: 09/ 1 22/07 Fl I MAY CA -in.54n Fny (70R) nrl ow�i M F1 M oiwx FN (D/�3a ED -E=F- --E� r)j 0 ni --ED- -C=- R) -C=- z x tz .;0 z M 70 M .;u E3 M -i r E3 z -mi > no z< Ln H91ffdt,D 22 []Jdo -3 Ln M cc:)) L! 0 1 r- r 2> c:> 0 E) - R. e ZONE I 1A e -w e ZONE 2 1D ro K:7 >< 40 ZONE 3 2A E) P2 0 E (:F),., e ZONE 4 2B ji E) ZONE 5 3A e e ZONE 6 9B DI e E) 40 ZONE 7 4A ZONE 8 4B E) CC) 9 / 5A 2 e G LUNE 10 5B r2 0 Z�ji - eru ro ZONE 11 6A -T -w e 01 oEffi, -40 ZONE 12 GB 0 CA ZONE 13 / 7A 0 M 01 E) ZONE 14 7B oEsm 40 ZONE 15 BA e e ZONE 16 8B 00-0 CON ROLLER RACK 3 1 of 1 Waste Water Systems, Inc, REV -0 Rose Hill P.O. BOX 1023 (706) 276-3139 "PerciRite" DATE: 09/22/07 F1 I MAY (,A. -in.)4n FnY (7np)) M V00)J JaVOM mOl WO -AJ 1\1�2 4-�001-4 alcl-Oua aSOP w0J-4 ut,2 �-'001,j J3q-'OM Ld(D-IL� LJO-4j U-�2 (D t7' UNIT CONNECTIONS 1 of 1 Waste Water Systems, Inc. REV -0 Rose Hill P,O. BOX 1023 (706) 276-3139 "Perc.dR.ite" DATE: 09/ . 22/07 Fl I IJAY (A "�n.1�4n F,, (7nr,) -4,34-aW M01_4 00, DPA 2T+4 F—+—] &1 0 10 F-317 J80,aW M01 0:� DPA 2T-4 jai-aw mol -4 woj _4 :�ndui asjnd� F 3311& 0 33 17 1 abrvob jC[ o4-4 — 34 0 F-34- 35nnb da WOJJO — F-35]1&1 0 F3 57 aD[Aap UMOPOr)qS 'Xr)'O 00, 4 — - F36�1& 0 (2) 36 3DIAap UM0Pq-nqS'Xr)n wo-Ajo F37 �O 377 T -4,34-IIJ 04-4 F 38 0 01 F38] 2 JD 4-11,4 0 q- F 0 01 F39] t7l C Ja�4-4 04-4 --] F40 0 0 --1 _ F40 to 17, —41 C JD q- 11,4 04-4 741] & 0 0 F -� r) 9 Jaq-l!-4 Oq- F42 & 0 F472 9 -Aa4-jjj o4-4 F43] & 0 F-437 aAj'0A Jaq-S�)Ld 00,4 F44 & 0 0 744] aA)'OA (5upnpaA ainssaid o4-4 - ] F45 & 0 0 F45] g-� - 8C sq-ndui joj pj�-nau4 F46] & 0 (2) F2 4 N� 11F46 & 0 01 [24N] suOwwOD Y D q-! m S VO 0 1-4 4 11 1 '(S) 0 101 oq- I-ojol-nau D'OA -�2 47 47 M V00)J JaVOM mOl WO -AJ 1\1�2 4-�001-4 alcl-Oua aSOP w0J-4 ut,2 �-'001,j J3q-'OM Ld(D-IL� LJO-4j U-�2 (D t7' UNIT CONNECTIONS 1 of 1 Waste Water Systems, Inc. REV -0 Rose Hill P,O. BOX 1023 (706) 276-3139 "Perc.dR.ite" DATE: 09/ . 22/07 Fl I IJAY (A "�n.1�4n F,, (7nr,) I I bedrock. The top surface of layer one was set to actual field survey elevations and given a layer thickness of 5'. Layer two for each model was given a uniform thickness of 100' based on the depth of the deepest boring measured from the bottom of Layer 1. Layer 3 was given a uniform thickness of 100' measured from the bottom of layer 2. 5.5.2.2 Time Parameters The groundwater model was analyzed as a steady-state model. A model run time of 365 days was used as the time period of simulation. Loading rates were calculated at a yearly rate to successfully calculate the annual loading rate for the groundwater model. 5.5.2.3 Hkdrogeologic Parameters Monthly precipitation data was averaged over a 30 year period to determine a precipitation 6W rate of 48.6 inches/year for the study site. An annual evapotranspiration rate value of 28.2 inches/year was subtracted from the averaged precipitation value for a net precipitation rate. An industry held practice of utilizing 10 percent of the net precipitation rate was utilized as a baseline groundwater recharge rate. 2.1 inches/year was applied to the surface layer 1 of the model to simulate the groundwater recharge that occurs naturally. Additional recharge values were utilized to calibrate the base model to field conditions. Hydraulic conductivity values, well head observations, and stream elevation observations were utilized in the groundwater model to simulate the actual field conditions. 5.5.3 Boundary Conditions A River boundary condition was utilized to model the effect of the branch that exists along the eastern side of area F. Each cell had a specified stage level, branch bottom level, and bottom conductance value assigned to it, taken from field data from the site survey. The bottom of layer 3 and the outer perimeter cells are considered no -flow boundaries. 5.6 Model Calibration The base groundwater model was calibrated using actual field measurements of well levels and hydraulic conductivity. Recharge values were varied to achieve a model that simulated in-situ field conditions within 0% - 10% Root Mean Square Error. The base numerical groundwater model of area F was calibrated to 3.815% Root Mean Square Error. The calibration graph is included in Attachment D. r -I Brooks Engineeting Associates, PA Hydrogeological Assessment Report L-1 BEA Project No. 307808 23 The Cliffs at High Carolina SaAI)OA 1013IJ 00, j'0Jfr)aU ::)-OA -�2 aA)'OA ujn4-aj Duoz 04. �-ndq-nc D'OA t,2 aAjnA )OT/T allOZ 01, �-nc]4.no D'OA t72 8AI'OA 01/2 aU0Z 04- ;-nd�-no :)'OA V2 ,DAInA -02/C auoz o), q-r)dq-no :)'OA t,2 aAj'0A 012/t auoz o�- j-nd4.no :)'OA t,2 ,DAI'OA 'OC/9 Duoz o�- or)dq-r)o ::))OA �2 aAj'0A cic/9 auoz oq, qr)d4-r)o ::)'OA t2 aA)-OA ot,1Z @U0Z O�- q-nd4-no D'OA t2 aA)nA qt7/8 allOZ 0�, q-ndq-no DnA V2 8AI-OA �)g/6 DUOZ 00, qndqno :)�)A t72 aA)'OA cig/ol auoz o4- q-nd4-no :)'OA t,2 aAj�OA )09/TT @u0z o4- q-ndq-no :)'OA t,2 aAj�DA C11)/21 allOZ 0�, �-nd;-no D -OA @Aj'0A '0//Cl aLAoz o�, 4-nd�-no :)'OA t2 aAI'OA CIZI�j allOZ oq, �,nd�-nc D'OA t2 8 A j0 A 'oe/gi auoz o�, 4-ndol-no :)'OA �2 8AI'OA 08/1)T allOZ 0q- ql-nd:�no :)�OA t,2 FIELD VALVE CONNECTIONS 1 of 1 Waste Water Systems, Inc. REV -0 "��rqsRite" Rose Hill DATE: 09/22/07 P.O. BOX 1023 (706) 276-3139 ELLIJAY, GA. 30540 Fox (706) ---------- BULLETIN H Cut -Sheets for Drip System Valving , W Diaphragm Actuated Valve Piston Actuated Valve 1c odel 700/705 diaphragm -actuated and the 800/805 t ted valves are hydraulically -operated, globe valves in either t e, star) oblique M or angle pattern design. Each valve comprises two major components- the body -seat assembly and the actuator 314"J" I he actuator assembly is unitized and is removable from the body as an integral unit, It consists of both an upper and a lower control -chamber. Each basic valve can easily be configured, on-site, either as a single -chamber control valve (Model 705/805), or a double -chamber control valve (Model 700/800). The shaft sub -assembly, in both single and double -chambered versions is center -guided, providing an unobstructed seat area. The Model 700/800 Basic double -chambered valve operation is independent of valve differential pressure since the line pressure actually serves as the actuator differential pressure. This develops maximum power, ensuring immediate valve response, fhe upper control -chamber is pressurized to close, and vented to open the valve. The lower control - chamber is usually vented to the atmosphere, but can also be pressurized to power the valve open, The Model 705/805 Basic Valve uses valve differential pressure to power the actuator open or closed. The lower control -chamber, which serves AM T' Piston Actuated Valve 1c odel 700/705 diaphragm -actuated and the 800/805 t ted valves are hydraulically -operated, globe valves in either t e, star) oblique M or angle pattern design. Each valve comprises two major components- the body -seat assembly and the actuator 314"J" I he actuator assembly is unitized and is removable from the body as an integral unit, It consists of both an upper and a lower control -chamber. Each basic valve can easily be configured, on-site, either as a single -chamber control valve (Model 705/805), or a double -chamber control valve (Model 700/800). The shaft sub -assembly, in both single and double -chambered versions is center -guided, providing an unobstructed seat area. The Model 700/800 Basic double -chambered valve operation is independent of valve differential pressure since the line pressure actually serves as the actuator differential pressure. This develops maximum power, ensuring immediate valve response, fhe upper control -chamber is pressurized to close, and vented to open the valve. The lower control - chamber is usually vented to the atmosphere, but can also be pressurized to power the valve open, The Model 705/805 Basic Valve uses valve differential pressure to power the actuator open or closed. The lower control -chamber, which serves AM BERMAD�Watc-pwopks L 700 Seples Availab,le Sizes & Patterns ' 0 1',12" - 20" 00 - 500 mm)0Y nd Angle a 24" - 32" (600 - 800 mm) - Globe r�i�e�tion StandagA -J�9� �Flarn6—e� ISO 7005-2 (ANSI B-16.42), re6ded, NPT or BSP 40, 50, 65 & 80 mm Water Temr-,"Quiturf" a Up to 800C (11 800F) �Vorkmg Pressure — 0 ISO PN 16: 16 bar Class 4#150: 250 '�Cl fl 50. �r SS4 0 ISO PN 25: 25 bar im C;ass #�300:psi Standard Kiterials Main valve body and cover Ductile iron EN 1563 (ASTM A-536) Main valve internals Stainless steel and bronze Lm� Control Trim Brass components/accessories 117 Forged brass fittings & copper tubing 1 Elastomers NBR (Buna-N) Coating Fusion Bonded Epoxy, RAL 5005 (Blue) NSF 61 and WRAS approved or Electrostatic Polyester Powder, RAL 6017 (Green) 17 WRAS approved I kzdl oplional Material's Main valve body/internals 7 Carbon steel (ASTM A-216-WCB) Stainless steel 316 CF8M (316) Aluminum Nickel Aluminum Bronze Titanium Alloy 20 Duplex Hastalioy Marine Bronze 254 SMO Control Trim Stainless steel 316 Hastailoy C-276 Elastomers EPDM i,.J Viton 7-1 Hydraulic,r..ontroll ValvEs r- 700 & Boo Se ies Pies Available Size5 Patterns ;5 0- (140 -115(�)�Omrnl - Y F It 11/2��.;�20"(4 500mm) Pattern 11/2" -`11 18"(401- 450 mm) - Angle 'a Flangeitf: ISO 7005-1 (ANSI B`16-5)� Water 1'0i iperahi Upto�1�11C(1800F) Working f ressuri * ISOPN116:16bar a Class #150:250 psi * ISO PN"25:25 ar a Class #300: 400 psi * ISO PN!40: 40 'ar a Class #400: 600 psi ,Standard Oateria * Main �valve b y Carlion steel �STM A-216-WCB) Duc ile iron Ef� 1563 (ASTM A-536) * Valvei cover (piIston cylinder) Brorize or staikess steel Main 1�vallve iQrnals Stai6less steelland bronze Con�ol Trim Bra compononts/accessones Fi ;d brass fi�tings & copper tubing -j Flq-thmpr.-z I NBRI (Buna-N) -, ( a I Fus! In Bonded!Epoxy, RAL 5005 (Blue) I NSF 1 and WqAS approved or El I ctrostatic Polyester Powder, RAL 6017 (Green) i WRA approved Optiori,aJ aterials Main Ive bodyfinternals Staid ss steel 316 CF8M (316) Aluminum Nickel *uminum, Bronzee Alloy 2( Duplex Marine Qrom 254 SM6 -j Control TA m Stainless Ste Hastalloy C-, Elastomers�, EPDM Viton : 6,6 1 BERMAD�Watc-pwopks L 700 Seples Availab,le Sizes & Patterns ' 0 1',12" - 20" 00 - 500 mm)0Y nd Angle a 24" - 32" (600 - 800 mm) - Globe r�i�e�tion StandagA -J�9� �Flarn6—e� ISO 7005-2 (ANSI B-16.42), re6ded, NPT or BSP 40, 50, 65 & 80 mm Water Temr-,"Quiturf" a Up to 800C (11 800F) �Vorkmg Pressure — 0 ISO PN 16: 16 bar Class 4#150: 250 '�Cl fl 50. �r SS4 0 ISO PN 25: 25 bar im C;ass #�300:psi Standard Kiterials Main valve body and cover Ductile iron EN 1563 (ASTM A-536) Main valve internals Stainless steel and bronze Lm� Control Trim Brass components/accessories 117 Forged brass fittings & copper tubing 1 Elastomers NBR (Buna-N) Coating Fusion Bonded Epoxy, RAL 5005 (Blue) NSF 61 and WRAS approved or Electrostatic Polyester Powder, RAL 6017 (Green) 17 WRAS approved I kzdl oplional Material's Main valve body/internals 7 Carbon steel (ASTM A-216-WCB) Stainless steel 316 CF8M (316) Aluminum Nickel Aluminum Bronze Titanium Alloy 20 Duplex Hastalioy Marine Bronze 254 SMO Control Trim Stainless steel 316 Hastailoy C-276 Elastomers EPDM i,.J Viton 7-1 Hydraulic,r..ontroll ValvEs r- 700 & Boo Se ies Pies Available Size5 Patterns ;5 0- (140 -115(�)�Omrnl - Y F It 11/2��.;�20"(4 500mm) Pattern 11/2" -`11 18"(401- 450 mm) - Angle 'a Flangeitf: ISO 7005-1 (ANSI B`16-5)� Water 1'0i iperahi Upto�1�11C(1800F) Working f ressuri * ISOPN116:16bar a Class #150:250 psi * ISO PN"25:25 ar a Class #300: 400 psi * ISO PN!40: 40 'ar a Class #400: 600 psi ,Standard Oateria * Main �valve b y Carlion steel �STM A-216-WCB) Duc ile iron Ef� 1563 (ASTM A-536) * Valvei cover (piIston cylinder) Brorize or staikess steel Main 1�vallve iQrnals Stai6less steelland bronze Con�ol Trim Bra compononts/accessones Fi ;d brass fi�tings & copper tubing -j Flq-thmpr.-z I NBRI (Buna-N) -, ( a I Fus! In Bonded!Epoxy, RAL 5005 (Blue) I NSF 1 and WqAS approved or El I ctrostatic Polyester Powder, RAL 6017 (Green) i WRA approved Optiori,aJ aterials Main Ive bodyfinternals Staid ss steel 316 CF8M (316) Aluminum Nickel *uminum, Bronzee Alloy 2( Duplex Marine Qrom 254 SM6 -j Control TA m Stainless Ste Hastalloy C-, Elastomers�, EPDM Viton BERMAD WatEpwopks Flo FlIma Chart fic Control ValvEs Valvc- Flow CoefficiEnt Y -Pattern inr,h Flat Disc 2" 2.51' Y -Pattern 411 6'0 U_Plug 10" 1 TO 14*1 16" 18' _T Kv Angle Flat Disc L 55 An,.Ile 200 460 815 1,250 1,850 1,990 3,310 Clo� 7669 800 SEMEs PIN` inr,h 1.5" 2" 2.51' 30Y 411 6'0 87' 10" 1 TO 14*1 16" 18' '20" Kv 42 50 55 115 200 460 815 1,250 1,850 1,990 3,310 3,430 .3,550 CV 49 58 64 133 230 530 940 1,440 2,140 2,300 3,820 3,960 4,100 Kv 36 43 47 98 170 391 693 1,063 1,573 1,692 2,814 2,916 3,018 CV 41 49 54 113 200 450 800 1,230 1,820 1,950 3,250 3,370 3,490; Kv 46 55 61 127 220 506 897 .1,375 �2,035 2,189 3,641 3 Cv 53 64 70 146 250 580 1,040 1,590 2,350 2,530 4,210 4,360 N�� Kv 39 47 51 108 187 430 762 1,169 1,730 1,861 3,095 3 ' 207 NA CV 45 54 59 124 220 500 880 1,350 2,000 2,150 3,580 3,710 _�� inch 24" 28" 30" 32" G -Pattern Kv 7,350 7,500 7,500 7,500 Fla'Disc Cv 8,490 8,670 8,670 18,670 F-Gf Valve fiow coefficient, Kv or Cv Kv(Cv)=Q � �-p Where: Kv = Valve flow coefficient (flow in m3/h at 1 bar Diff � Press.) Cv = Valve flow coefficient (flow in gpm at Diff . Press. 1 psi) Q = Flow rate (m -'11h ; gpm) AP Differential pressure (bar; psi) Gf Liquid specific gravity (Water = 1.0) Ail 11 01-1 610 300 Sales MML:80DY HYDRAULIC I ELECTRI CONTROL VALVES I 6 Dimensions and Weights Model 300 Hydraulic Control Valve Model 300 is a hydraulically operated control valve, requiring a pressure command to close. Model 310 Electric Control Valve Model 310 has a 3 -way solenoid pilot valve with manual override. Standard: N.C, (normally closed), requiring electrical energy to open. Option: N.O. Model 320 Pressure Reducing Control Valve Model 320 reduces high upstream pressure to lower set downstream pressure. TECHNICAL DATA Specifications . Valve Configuration., Y -pattern and angle . Sizes: Y — Y -pattern: 11/2", 2" & 3" A —Angle: 2" . End Connections: - 11/2" & 2": threaded NPT, BSP — 3": female threaded NPT/BS or flanged to ANSi/ISO/BS-D FIRM . Operating Pressure Range: 10-150 psi (0.7-10 bar) U4 - Temperature Range: Water up to 1 80'F (80'C) Materials: Body: (11/2" & 2") Brass, (3") Polyester -coated Cast Iron Actuator: Plastic, Brass and Stainless Steel Diaphragm: Nylon-tabric, Reinforced Natural Rubber Seals: BNR and NR Flow Chart 6 Dimensions and Weights Model 300 Hydraulic Control Valve Model 300 is a hydraulically operated control valve, requiring a pressure command to close. Model 310 Electric Control Valve Model 310 has a 3 -way solenoid pilot valve with manual override. Standard: N.C, (normally closed), requiring electrical energy to open. Option: N.O. Model 320 Pressure Reducing Control Valve Model 320 reduces high upstream pressure to lower set downstream pressure. I 4 LMMIL NMIIMEI�MEI 3/4" LOW41OW PRESSURE REGUUtOR OUTLET PRESSURE VS. INLET PRESSURE AT 1.3 GPM 50 40 30 20 10 0 28 56 84 1,12 140 Inlet Pressui e (psi) Product Advantages • Instant response to variations in pressure assures that outlet pressure will remain constant regardless of inlet pressure. • Pressure Regulators are preset with flows from 3.5 to 175 GPM. • Manufactured from non -corrosive, high quality plastic and brass, to withstand all fertilizers and chemicals in common use. • Regulating unit has a stainless steel spring and screw. • The EDPM rubber diaphragm creates a fight seal eliminating leakage. • The rise versus the decline in outlet pressure has significantly decreased ensuring better hydraulic perfomance, • Sealed regulating unit is field replaceable and easy to maintain. • Built-in operating indicator visually shows when proper outlet pressure is achieved. • New regulating units are compatible with existing Pressure Regulator bodies. 3/4" Low Fkvw Pressure FteWlator • Improved in-line unit, • Female threaded 3/4" X 3/4" connections. • One-piece seoled unit regulates oc(urately at low flows. • Silicon diaphragm and stainless steel spring — no leakage. 3/40 � Low ROW 3/40 _6, Applicatims ; For use in drip and sprinkler irrigation systems. specmcaflon$ * Available in the following pre-set pressures: 9Y 12, 15, 20, 25, 30, 35, 43, 50, 57 and 65 psi * 3/4" Low Flow available in: 15, 20, 25, 35 and 43 psi * Maximum operating pressure: 145 psi Pressure Reguli Technical Infonnation . .... ..................... . . REGULATED PRESSURE vs FLOW RATE HEAD LOSS vs FLOW RATE 60 12 '4 10 "j, Z 50 6 45 40 2 35 0 20 40 60 80 100 30 Flow Rve (CAX) AMPLE: HE -AD I I OSS vs FLOW RATE (3xJ0) 12) 25 I.xGiven Flow Rate 63 GPM, Nominal required pressure 20 psi� 10 20 Using Pressure Regulator Model 2" x 6 8 MAI (6 regulafing units) will result in I O� 5 GPM per iegulaling unit. 6 15 10, 5 GPM per iegulafing unit will result in an output pressure of 18 psi. (See Regulated 4 10 Pressure vs. Flow Rate graph). Head loss of Pressure Regulator 2" x 6 at 2 63 GPM is 5 psi. (See Head Loss vs, flow rm� 5 Rate graph). Design pressure of inlet of Pressure Regulator 90 105 120 135 150 16 5 175 should be 18 + 5 23 psL Flow Rate (GAVI) 3.5 8 12 16 175 Flow Rate (per regakting unit) 100 PARTNUMBERS, 40 0 W'101-1-� omw "11,00 W-11 "I' W"W" �r 10 W "WWi V., Ww"W"," 91%1-w A,00 , WN, NIPM." 071 WTI W-1 SM! -!,I NO ON W", INP -1,11, MAW"I'', W1,11, "O"'Nom � OVIF 90"WI 0�0: IS I W "t7 -I ISM W.- "W" _V171'"', W'' MO �WV'011 100-00"W"e"'! IS(- "Y"O , W'', The Dorot Quick Reacting Relief (QR) Valve is a direct -sealing diaphragm valve activated by line pressure and controlled by an adjustable pilot, When the network pressure exceeds the pressure setting of the pilot, the valve fully opens instantly. When the network pressure decreases below the set point, the valve closes slowly. Standalrd Featupe$ (see diagram) A, Self -Cleaning Filter B, Needle Valve C. Ball Valves D. Quick Response Pilot (66-300) E. Quick Response Relay 2" (for 6' and larger valves) The 2' QR valve (bronze) is available in a globe or angle pattern. A pilot (68-200) with a built-in needle valve ensures slow closure. The QR valve is installed on a tee -junction in a pipeline and releases excess pressure to protect the pipe network from dangerous surges. The slow closing of the valve, adjustable with a needle valve, prevents secondary surges, n i P irl tanne U" U"a UPFU The QR valve is not a modulating valve and should not be used to maintain a certain pressure in the network, A pressure sustaining/relief valve should be used. 0 A quick reacting pressure relief valve cannot prevent water -hammer caused by power failure, A surge anticipating valve should be used. 0 The use of an isolation valve is recommended at the upstream side of the QR valve. 0 A discharge pipe attached to the downstream side of the valve must be sized for the maximum flow and not restrict the flow, 0 QR valves operate in case of emergency, usually for a short time, The valve should be sized to accommodate 50%-80% of the system's nominal flow rate. Recommended Maximum Flow Rates (GPM) Flow 450 1,100 1,700 4,000 7,000 10,000 15,000 28,000 pilots *The green spring is standard for the 68-200 and the red -300 spring is standard for the 66 pilot, 68-200 66-300 For detailed information, material specifications and dimensions, see the Dorot Basic Valve brochure. C _,,NETAF1M.___., (_!A,Quahty Works (" 11 NETAFIM IRRIGATION, INC. WEST COAST: 3025 E. Hani,,top- - Fro M_ CA 93721 (209) 49"680 - FAX t2O9) 442-3119 EAST COAST: 548 N. Dougln AVC. - Allamonte Spfings, FL 32714 (407) 788-6352 - FAX (407) 662-0259 Pilot Specs 68-200 66-300 Staring Yellow B-30 PSI 8-30 PSI Green 14-140 PSI 14-100 PSI Red * 115-360 PSI 30-190 PSI Black N/A 100-360 Dimensions Pori Size Height 6 V�­ 9" Width 1 2" 3 112" Max. Press. 350 PSI 350 PSI Materiols Body/b t Bross Br.a.,,, , ,,,onne PI, St � Steel SJ.S Diaphragm Not. Rubber Not, Rubber 0 -rings Nitrile Nitrile _,,NETAF1M.___., (_!A,Quahty Works (" 11 NETAFIM IRRIGATION, INC. WEST COAST: 3025 E. Hani,,top- - Fro M_ CA 93721 (209) 49"680 - FAX t2O9) 442-3119 EAST COAST: 548 N. Dougln AVC. - Allamonte Spfings, FL 32714 (407) 788-6352 - FAX (407) 662-0259 BULLETIN I Cut -Sheets for Flow Meter f,* i A T()TAIJ,-fFR (VISIC"RIF I ON MOVEL MIAO FIAW,EP TlJef MEYFP�,S iriaiftll'�AiALIFtM tO 'lle tli�MES! IP w4odty I ol, f 0 M-"Ioi AVM,'Ar3h,0",fJ Thp ikm�pd end W4r' d��siP rrf��foll�' lisf, in wid�� 0 veAfi jjp �rj 3',Y) psi working 'md'� ""rp "Kil" it;, AowWA zhls� 'P fah3od fact� steol W" tut*� hav�� straviterwqg, vane5, end aot �swrf C-Poxy resin. INSTALLATQN i,,, mVj'!-� V� c ' hurt 101,Ctfi'l Y iiRrIgoo vid, pipt; k,", tha �"r indmed F'o su�ficll or Fufl�' C'- OF"A "a Irml— t�i o1wi! Plat 1wid tc, &Ot tip ol' tp—pl rx� Oa�'H�Aens qslmam and 'in"e c'�Jp� fmw� thq lma'er PROPELLEP, wilh ljw vive,inod alw�'m 1hrough tile om M '��'Jl qsafbox 1!0,,� walir ontering thfe� a, wpl! a,, PKi, ne',A hv any paAwtq glaod The, propaller voqk"'al ��Hapf.w'l 1"', mok"u", ot Nch, fkxv SEAWNG 41 �FtQf �pii-4e sy�,Ap_rn lhousl Oaalings, � d rec jo is "�n "la f 'o� a, I S f',af, oi- �hn�i �z in totb an o r e��, o r ;� , t t r., . -�fvnaiwm-""l -,"i) rfr"E Proo-Illei N� vJuiu J-� uwwi mm�';hpntsm a* she' d ! mji� Aol q lh�� !lf47 'm lhe ie"7 h mt�l a S�'� fitt I lit, Straigm -lig x �4�jlar.;�jT ",-41 ho a! all W S f�:' '—i 6va Units f�: j 01 pi d1k)"J, �Wiij" O�PING ",EAI -S ?'4 wlm�"� u 15�)y (A RIG tv 11, 1 quid" Inemw-atl b", the V W A, vo - P� t� t' MODEL fAL-08 - :zA� R� f 300 psi FLA f,,J' E Cl F -JI -3E MIE'HE SEALED M�ETER MECHANIISJA (AIA N F, I C U V2,'V F I r j_' F� NDICA-1 OR - i R �l 11 j" Ij 'W'�' - 'A, A,' T OPTIONAL ECAMMIENT A "�Jl.�1�6':4y'W' 'k MODEL ML -08 300 psi FLANGED TUBE METER SEALED METER MECHANISM -- MAGNETIC DRIVE INDICATOR -TOTALIZER SIZES 3" thru 48 E - Bolt Circle F - Number of Bolts G - Size of Bolts METER & PIPE SIZE FLOW RANGES,GPM *LOWVELOCITY STANDARD HIGHVIELOCITY CONSTRUCTION CONSTRUCTION CONSTRUCTION MIN. - MAX. MIN. - MAX. - INT. MIN. - MAX. DIMENSIONS SHIPPING WEIGHT POUNDS A B1 B2 C D I E F G H K �3 40-250 45-250-350 N/A 18 81/4 5 11/8 7 65/8 8 3/4 53116 9 85 4 50-500 55-500-700 200-700 18 10 63/16 11/8 7 77/8 8 314 53/16 9 122 6 90-1200 120-1200-1500 300-1500 22 121/21 81/2 13/8 1 9 105/8 12 3/4 61/4 9 167 8 100-1500 150-1500-2000 400-2500 24 15 10518 19/16 9 13 12 7/8 71/4 9 237 10 125-2000 180-2000-3000 500-3500 26 171/2 123/4 15/8 10 15v4 16 1 81/2 11 310 12 150-2800 200-3000-3500 800-5000 28 1 201/2 15 1 113/16 10 1 17314 1 16 11/8 91/2 1 11 400 14 250-3750 300-4000-4500 1000-6000 42 23 161/4 115/16 12 201/4 20 11/8 1101/2 131/2 600 16 350-4750 400-5000-6000 1200-7500 48 251/2 181/2 21/16 12 221/2 20 11/4 111/2 131/2 800 18 450-5625 700-6000-7500 1500-9000 54 28 21 23!16 15 243/4 24 1114 12112 13112 1080 20 550-6875 850-8000-9000 2000-12000 60 30112 23 27/16 15 27 24 11/4 131,,2 1131/2 1260 24 800-10000 1000-10000-13500 3000-15000 72 36 27114 211/16 18 32 24 1 v2 173/4 23 2040 30 1200-15000 1800-15000-21000 4000-25000 84 43 35 215/16 18 1391/4128 13/4 203f4 23 3220 36 1500-20000 2000-20000-30000 5000-35000 96 50 42 33/16 201 46 132 2 233/4 23 4550 42 2000-28000 3000-30000-40000 6000-50000 108 57 507/ir q711 9 28 36 5900 48 2500-35000 5500-35000-5000n 7onn-snc Standard construction will be supplied for all main line meters unless special flow range, materials, or construction are required. Low velocity (LV) construction has the same low and maximum flow rates as AWWA C704. For lower f lows refer to Model TM -01 turbine meters. Y rD­ P ""'I V (L i 4, 04, 3 A 1-1, HU)Nr 14 n fl- 1"t �q f FA'x' YQ " 1� ... .. ... N TEE, LaLj BULLETIN J Cut -Sheets for Disc Filtration System Q,,- La� 'k MEMMM mmmm- Fully Automatic Disc Filters For 50-800 GPM Flow Ranges 2 I. o o.4 0.2 2ff & 3" DISC-KLEEN FILTERS Headloss 4o 100 200 400 1000 2000 Flow PAte (GPM) Procluct Advantnes • Quick Installation — factory assembled and tested, arriving on a pallet ready for hook-up and immediate operation. • Less Maintenance — molded spine, chemically resistant and performs reliable backflush. Monual cleaning is practically eliminated. • Filtration Grade Versatility — filtration discs can he changed quickly and easily from 40 mesh up to 200 mesh. • Optimizes Irrigation — less backflush time means more uniform application of water in the field. • System Flexibility — each Disc-Kleen Battery is capable of handling a wide operational flow range. • Lasts Longer — manufactured from engineered synthetics to resist rust and corrosion from chemicals and weather. • Standard with installed polypropylene drain manifold. Filtration Process As dirty water travels through a Disc-Kleen Filter, debriis is captured along the walls and in the grooves of the channels in the filter element During the backflush cycle, the valve changes position, the pressure in the outlet manifold loosens the discs automatically. A specially designed nozzle system inside the filter stack then sprays pressurized water against the loosened discs, spinning them clean quickly and efficiently. After backflushing, the stack of discs automatically compress to resume filtrdon. 3" Disc-l(leen Filter Battery I . . = For surface water containing algae and other organic materials such as reservoirs, canals, rivers and waste water applications. For well water containing light sand (,3 ppm) and other contaminants. Specifications Includes installed drain manifold Inlet and outlet connections: Grooved Backflush valve flush port: 2" NIPT Maximum operating pressure: 140 psi Minimum backflush pressure required: 40 psi downstream of filter during backflush Minimum backflush flow per spine: 35 GPM Minimum PH: 5 Mesh sizes and color: 40 - Blue 80 - Yellow 120 - Red 140 - Black 200 - Green Materials Manifold: Polypropylene Filter Body: Glass Reinforced Polyamide Spine: Polypropylene O-Riings and Seals: EPDM itNEYARM"', S' NETARM USA 5470 E. Home Ave. a Fresno, CA 93727 888.638.2346 * 559.453.6800 FAX800.695.4753 www.netafimusa,com MONA ii� ii�am Subsfitute XXX for proper mesh siae. GR = Grooved. 3" Disc-l(leen Filter Battery I . . = For surface water containing algae and other organic materials such as reservoirs, canals, rivers and waste water applications. For well water containing light sand (,3 ppm) and other contaminants. Specifications Includes installed drain manifold Inlet and outlet connections: Grooved Backflush valve flush port: 2" NIPT Maximum operating pressure: 140 psi Minimum backflush pressure required: 40 psi downstream of filter during backflush Minimum backflush flow per spine: 35 GPM Minimum PH: 5 Mesh sizes and color: 40 - Blue 80 - Yellow 120 - Red 140 - Black 200 - Green Materials Manifold: Polypropylene Filter Body: Glass Reinforced Polyamide Spine: Polypropylene O-Riings and Seals: EPDM itNEYARM"', S' NETARM USA 5470 E. Home Ave. a Fresno, CA 93727 888.638.2346 * 559.453.6800 FAX800.695.4753 www.netafimusa,com I 211 & 311 Disc-lGeen Filter Batteries Technical Infonination ftaii� AL M 41,04 AL IMPORTANT NOTE: We have categoflzed water quality as a guideline for filtration requirements. Be aware all water quality categories shown above are general. Your water quality may vary. If your water contains more thon two parts per million of sand, a sand separator is recommended. If in doubt, consult an authorized Netaft USA dealer. BULLETIN K Cut -Sheet for Rainbird Rain Gauge Amok Ammk AN-= PAIA V -, RIRDc, @ TECH SPECS Rainfall and Wind Speed Sensors Rain Bird Rainfall Gauge The Rain Bird Rainfall Gauge customizes the weather data gathering features of Maxicom2 by providing site-specific rainfall measurements. The central controller retrieves this information daily, adjusting station rundmes using the site-specific weather data. The Rainfall Gauge may be used to automatically interrupt MaxiCOM2 during an irrigation cycle if it starts to rain, If enough rainfall occurs, further irrigation will be cancelled. If only a small amount of rainfall occurs, irrigation will resume, adjusting runtimes for the amount of rainfall that occurred. Features Identifies localized rainfall and adjusts system operation accordingly Watering cycle can be interrupted or cancelled when rainfall commences Provides site specific rainfall measurements in increments of 0.0 1,, (.025 cm) Heavy-duty construction, with a gold anodized aluminum collector funnel and white baked enamel coated aluminum sensor housing Filter screen for capturing debris Integrates into the Maxicom2 system using the Rain Bird pulse decoder for two-vdre CCU systems, or directly to the sensor input on ESP -Site and MAMLink satellite controllers Specifications • Resolution: 0.01" (.025 cm) • Accuracy 1.0% at 1" (2.5 cm) /hour or less • Average switch closure time: 135 ins Maximum bounce settling time: .75 ms Maximum switch rating: 30 VDC @ 2 A, 115 VAC @ IA Temperature limits: +32'F to +125'F (0' C to +521 Q Humidity limits: o — I 00% Height: 4.5 " (11,4 cm) Weight: 1.5 pounds (0,68 Kg) Receiving orifice diameter: 3.80" (9,7 cm) Cable: 60 feet (18 meters) Model , RAINGAUGE Rain Bird Anemometer (Wind Speed Meter) The Rain Bird Anemometer provides additional custornization to the MaxicoM2 Central Control system by providing site- specific windfall measurements. Local wind speed is captured by the Wind Speed Meter and input to the Cluster Control Unit (CCU). The CCU can interrupt irrigation when wind velocity reaches a programmed set point. Interrupting a watering cycle during windy conditions saves water, avoids property damage, and improves sprinkler distribution uniformity. Features • Precision three -cup anemometer for measuring wind velocity • Balanced rotor and low friction bearings detect wind speeds from 4 MPH to 8OMPH (6,5 to 128 km/h) • Electronics supplied with a weather tight enclosure exceeding NEMA 4 and 6 specifications • Mounting bracket and 20 feet (6 meters) of cable • Identifies localized wind speed and adjusts system operation accordingly • Watering cycle can be interrupted during windy conditions • Integrates into the MaxiCOM2 SySteM using the Rain Bird pulse decoder for two -wire CCU systems, or directly to the sensor input on ESP -Site and MAXILink satellite controllers Specifications Power supply. 5 to 24 VDC Current draw. 3 to 7 mA Output signal: K = 1.6965, offset of +0.059 Cable: 20 feet (6 meters) Weight: 1.3 Lbs (0,6 Kg) Dimensions: 22"L x 8"Wx 8"H (56 cmL x 20cmW x 20cmH) Model 0 ANEMOMETER (Wind Speed Meter) Rainfall Gauge Anemometer RAINGAUG AMEMOME Specifications Model: RAINGAUGE The rainfall gauge shall be a tipping bucket type, with each tip of the tipping bucket producing a momentary switch closure. The rainfall gauge will be constructed of a gold anodized aluminum collector funnel, white baked enamel coated aluminum sensor housing, stainless steel shafts, screws and nuts, and brass shaft collars. The tipping bucket will be injection molded plastic providing rainfall measurements in increments of 0.01 " (.025 cm). The rainfall gauge shall have three mounting feet for use on flat surfaces as well as a side bracket for mast mounting. The rainfall gauge shall operate in temperatures ranging from +32' F to +125o F (Oo C to +52' Q. 60 feet (18 meters) of 2 -conductor cable shall be included. This rainfall sensor shall be Rain Bird Model RAINGAUGE. Model- ANEMOMETER The wind speed meter shall be a three -cup anemometer providing wind speed measurements from 4 — 80 miles per hour (6,5 to 128 km/h). The wind speed meter electronics shall be housed in a weather -tight enclosure exceeding NEMA 4 and 6 specifications, The wind speed meter shall include a mounting bracket and 20 feet (6 meters) of cable. This wind speed meter shall be Rain Bird Model ANEMOMETER. Rain Bird Corporation Contractor Division 970 West Sierra Madre Avenue, Azusa, CA 91702 Phone: (626) 963-9311 Fax., (626) 812-3411 Rain Bird Corporation Commercial Division 6991 East Southpoint Road, Tucson, AZ 85706 Phone: (520) 741-6100 Fax: (520) 741-6522 Rain Bird International, Inc. 145 North Grand Avenue, Glendora, CA 91741 Phone: (626) 963-9311 Fax: (626) 963-4287 Rain Bird Technical Service (800) 247-3782 (U.S. only) www.rainbird.com CentralControl@rainbird.com Rain Bird. Conserving More Than Water. 0 Registered trademark of Rain Bird Corporation. @ 2002 Rain Bird Corporation 9102 D37238A BULLETIN L Drip Line Cut Sheets NEWIMUSA Product Advantages • Wide pressure range U to 60 psi) produce uniform dripper flow rates - longer runs and steep topographies are irrigated with high uniformity. • Mechanical barrier pieven�s root infirusion - ideal for sub -surface irrigation (SDI). • lowest coefficient of manufacturing variability (Cv) in the industry. • Seamless, one-piece construction prevents damage to drippers during installation and retrieval. • Design flexibility and performuncewith various dripper flows and spacings allow for specific application rates and coritiolling of wetting pattern in differentsoil types. • Pressure compensating feature delivers precise water applications anywhere in the field. /5 Applications • For sub -surface or surface applications. • For tree, vine, row crops, geenhouse and nursery. • Multi-scasonal use. • For undulating fields. Specifications Nominal flow rates (GPH): .32, .42, .53, .62_92 Common spacings: 24", 30", 36", 42.25", 48" Recommended filtration: 120 mesh Inside diameter: .540 - 16mm (45 rnil) .570 � 1.7mm (45 mil) .620 - 18mm, (45 mil) ,690 - 20rrm-i (48 mil) .820 - (35, 45 mil) VineLlne Vineyard Solutions Pire-Installed Adjustable Nipperline Ring See back for detak The Most Successful Pressure Compensating Dripper in the History of Irrigation C-4 Industry's Widest Flow Path Self -Adjusting Wider cross-section allows large Diaphragm particles through short flow path. diusts Continuously a A to varing water -M pressures - crushing, minimizin g and �,_,Ial`,,�� N flushing debris. Large Filter Inlets, Secondary Filtration Reduces clogging and Pressure maimains the essential (ompensatin lilt 80 th and Out supply of water to the Delivers precise water dripper for constant delivery of water f1mv. appkations anywhere in the fiek Increased Flow Path Velocity Commonly used turbulent chippers have overlapping tooth patterns, easily ocitc4iing debris. Turbonet Technology improves dripper performance by widening the tooth pattern, maximizing flow path velocity, allowing contaminants to pass easily through the dripper, virtually eliminating plugging. Product Advantages • Wide pressure range U to 60 psi) produce uniform dripper flow rates - longer runs and steep topographies are irrigated with high uniformity. • Mechanical barrier pieven�s root infirusion - ideal for sub -surface irrigation (SDI). • lowest coefficient of manufacturing variability (Cv) in the industry. • Seamless, one-piece construction prevents damage to drippers during installation and retrieval. • Design flexibility and performuncewith various dripper flows and spacings allow for specific application rates and coritiolling of wetting pattern in differentsoil types. • Pressure compensating feature delivers precise water applications anywhere in the field. /5 Applications • For sub -surface or surface applications. • For tree, vine, row crops, geenhouse and nursery. • Multi-scasonal use. • For undulating fields. Specifications Nominal flow rates (GPH): .32, .42, .53, .62_92 Common spacings: 24", 30", 36", 42.25", 48" Recommended filtration: 120 mesh Inside diameter: .540 - 16mm (45 rnil) .570 � 1.7mm (45 mil) .620 - 18mm, (45 mil) ,690 - 20rrm-i (48 mil) .820 - (35, 45 mil) VineLlne Vineyard Solutions Pire-Installed Adjustable Nipperline Ring See back for detak Lateral Length I I I I A I RM 540 -� 0.42 GPH Flows (6PH): -32_42-53-62-92 1 �Iw 4 i Wall thickness (mil): 45 ..... . ........ .. . ....... . . ... I 2r' Flows (GPH): .32, A2_53-62-92 Wall thickness (mil): 45 RAM 690 Flows (GPH): .32, A2, �53_62_92 Wall thickness (inil): 48 WO F Law! RAM 820 flows (GPH): RAM 570 Flows (6PH): -32_42-53-62-92 1 �Iw 4 i Wall thickness (mil): 45 ..... . ........ .. . ....... . . ... RAM 620 Flows (GPH): .32, A2_53-62-92 Wall thickness (mil): 45 RAM 690 Flows (GPH): .32, A2, �53_62_92 Wall thickness (inil): 48 WO F Law! RAM 820 flows (GPH): -32� .42_53-62, .92 Wall thickness (mill: 45 110 .8 s .6 .4 ,2 RAM Flow Rate vs. Pressure ' to, 20 30 40 50 60 Pressuri'psi) Drii;per L�iglth Pep4h Width PACKAGING DATA 1= C1 -470 4 3, A20 1 -4 Ih 20 coils pet pullet. VineLlne Vineyard Solutions Pro -installed Adjustable Dripperline Ring • Easily adjustable — moves from one end of the dapperline to the other preventing water migration • Economical — saves labor costs • Flexible options — available with Rom or Tirilon Heavywall Dripperlines • Available for 540, 620, and 690 siizes. • Pre-installed at Netalhim USA Netofifm USA — Delivering Total Growing Solutions #Dripperlines oFilters -Valves oAirVenfs -Sprinklers -Autornation *FlowMeters For Agriculture, Greenhouse & Nursery and Landseape Too" 0 f` lagak-Z&L FIT'. k7F1T1T1;rM.- I* - . L_ Cornpensating Operation . .......... . ... - ........... Ram's self-cleaning pressure compensating dripper is a fully self-contained unit welded to the interior wall of the dripper tubing. Both tubing and dripper are manufactured. from high quality synthetic elastorners to withstand chemicafs and fertflizers. The Rain dripper contains a diaphragm that continuously adjusts to varying water pressure to ensure a constant flow rate, The diaphragm allows particles to pass through the dripper, promoting reliable performance and a longersystern. life. This continuous flushing feature and wide flow path keep drippers flowing at optimal rates without clogging or interrupting operation. Particles that may accumulate at the dripper outlet cart cause a reduction of flow. Pressure a.-ov.- PRECISION IRRIGATION" For more information call your Authorized Netafim USA Dealer or call Nelahm USA Customer Service at (888) 638-2346, A007 8,/02 BULLETIN M Pole Blower Curve and Cut -Sheet 4W Description Dayton PSC and Shaded Pole blowers provide economical air delivery for general heating, cooling, ventilating, or component cooling. Typical applications include cooling greenhouses, blowers for wood and corn stoves, ventilating small buildings, cooling electrical enclosures and removing heat from machinery. The blowers are exact replacements for many OEM blowers with the same physical footprint. Forward curve wheels driven by Dayton motors are rated for continuous duty with all -position mount. These units incorporate balanced ball or sleeve -bearing motors with cast aluminum end shields. This provides greater heat dissipation and protection, reducing down time due to component failure and accidental damage. Direct drive blower wheels are dynamically balanced to reduce noise and vibration and to maintain CFM at higher static pressures. Specifications 1TDT9* 794 780 750 690 670 Replaces 4C668 NOTE: Includes Conduit Box with 81' Lead Length. NOTE: Not suitable for use with speed -controlled devices. Dimensions in. (mm) 13.109 (332,98) /07j.0 13 1 ;0 7 8. 0 0) 0 -7- Li r*� Ln Ln I I 610 570 — (261.00) 115/230 2.75 @1 15V 60 1.45 @230V Features • PSC motor • Baked enamel Gray finish • Heavy gauge steel housing • All position Mounting • Maximum Ambient Temperature 1040F Suitable for 50Hz operation Additional Benefits 9 Permanently Lubricated Ball -Bearings . Extruded Aluminum Blower Frame for Increased Rigidity 9 Auto -Thermal Protection Inv Motor Component Recognition C US E47479 =w 6,A I MM Cummins Power Generation commercial generator sets are fully integrated power generation systems providing optimum performance, reliability and versatility for stationary and prime power applications. MMM� Cummine heavy-duty engine - Rugged 4 -cycle, industrial diesel delivers reliable power, low emissions and fast response to load changes. Alternator - Several alternator sizes offer selectable motor starting capability %vith low reactance 2/3 pitch windings, low waveform distortion With non-linear loads and fault clearing short-circuit capability. Contmil system - The PowerCommando 1.1 electronic control is standard equipment and provides total genset system integration including automatic remote starting/stopping, precise frequency and voltage regulation, alarm and status message display, output metering, auto -shutdown at fault detection and NFPA 110 Level 1 complianm The opirional PowerCommand 2.2 control is UL 508 Uisted and provides AmpSentry", protection. Cooling system - Standard integral set -mounted radiator system, designed and tested for rated ambient temperatures, simplifies facility design requirements for rejected heat. Enclosures - Optional weather protective and sound attenuated enclosures are available. NFPA - The genset accepts full rated load in a single step in accordance with NFPA 110 for Level 1 systems. Wamanty and service - Backed by a comprehensive warranty and worldwide distributor network. D2008 I Cumm4is Power Generation Inc. I All rights reserved I specifications subject to change without notice I Cummins Power Generation and Cummins are negisterad tradernaft of Cummins In. Power0ornmand, InPower and 'Our energy working for you,' are trademarks of Cummins Power Generation, Other company, product or service names may be trademarks or service marks of others, ,-J This generator set is designed in facifffies certified to IS09001 and manufactured in facilibes certified to IS09001 or IS09002. The Prototype Test Support (PTS) progr ,, , am verifies the performance integrity of the generator set design. Cummins Power Generation products bearling the PTS symbol meet the prototype test requirements of NFPA 110 for Level 1 systems. All low voltage models are CSA cerfified to product class 4216-01. The generator set is available Listed to UL2200, Stationary Engine Generator Assemblies. U.S. EPA Engine certified to U.S. EPA Nonroad Source Emissions Standards, 40 CFR 89, Tier 3. MMM� Cummine heavy-duty engine - Rugged 4 -cycle, industrial diesel delivers reliable power, low emissions and fast response to load changes. Alternator - Several alternator sizes offer selectable motor starting capability %vith low reactance 2/3 pitch windings, low waveform distortion With non-linear loads and fault clearing short-circuit capability. Contmil system - The PowerCommando 1.1 electronic control is standard equipment and provides total genset system integration including automatic remote starting/stopping, precise frequency and voltage regulation, alarm and status message display, output metering, auto -shutdown at fault detection and NFPA 110 Level 1 complianm The opirional PowerCommand 2.2 control is UL 508 Uisted and provides AmpSentry", protection. Cooling system - Standard integral set -mounted radiator system, designed and tested for rated ambient temperatures, simplifies facility design requirements for rejected heat. Enclosures - Optional weather protective and sound attenuated enclosures are available. NFPA - The genset accepts full rated load in a single step in accordance with NFPA 110 for Level 1 systems. Wamanty and service - Backed by a comprehensive warranty and worldwide distributor network. D2008 I Cumm4is Power Generation Inc. I All rights reserved I specifications subject to change without notice I Cummins Power Generation and Cummins are negisterad tradernaft of Cummins In. Power0ornmand, InPower and 'Our energy working for you,' are trademarks of Cummins Power Generation, Other company, product or service names may be trademarks or service marks of others, ,-J Generator set specifications Engine specifications Alternator specifications Available voltages 60 Hz Three phase line-neutmililine-line 410 Hz Single phase fino-neutralfilifte-line 6110/190 *115/23ODelta *1271220 *240/416 -110/220 1151230 1201240 *110/220 -1201208 e139/240 o255/440 *115/2-00 120/240 Delta -220/380 o277/480 * 23CV400 &347/600 Note. Consult factory for other volitages. Generator set options and accessoeies Engine Alterwator Exhaust system IN PowerCommand Network * 120V, 150WIubeoil heater 13 105 IC rise alternator El Heavy duty exhaust elbow Communications Module * 120/240 V, 1500 W coolant ill 125 �C rise alternator El Slip on exhaust connection (NOM) heater 0 120 V, 100 W anti -condensation 0enerator set 0 Remote annunciator panel Fuel System heater 11 PMG excitation fill Battery 0 EJ Spring isolators UL 2200 Usted 6 24 hour dual wall sub -base 0 Single phase N Battery charger 0 2 year prime power warranty tank IN Enclosure.- aluminum, steel, 0 2 year standby power weather protective or sound warranty attenuated 11 5 year basic power warranty IN Main line circuit breaker Notw. Some options may not be available on all models - consult factory for availability, E �j 1,"7,j7=, , T,t W, e2M I Cumn�na Power Generation Inc, I All righu. resemad I Specifications subject to change without notice I Cummins Power Generation Power ard Cummins an regivered Vacrernaft of cummlins Inc, PoweTCornmand. InPower and *Our "rgy worldng for you.'are ItademeAs of Generation Gummins Power Gener0m. other company, produot or service nurnes may be trademaft Or service fraft of others. S-15441' (4/08) ce bz Control system Operator panel features PowerCommand control - An integrated generator set control system providing voltage regulation, engine protection, generator protection, operator interface and isochronous governing (optional). ConUot - Provides battery monitoring and testing features and smart -starting control system. InPower"m - PC-based service toot availaWe for detailed diagnostics. PCCNet RS485 - Network interface (standard) to devices such as remote annunciator for NFPA 110 applications. Control boards - Potted for environmental protection. High ambient operation - Suitable for operation in ambient temperatures from -40 OC to +70 OC and attitudes to 13,000 feet (5000 meters). Prototype tested - UL, GSA and CE compliant. Standard control functions Engine data • DC voltage • Lube oil pressure • Coolant temperature Other data • Genset model data • Start attempts, starts, running hours • Fault history • R6485 Modbue interface • Data logging and fault simulation (requires InPower service t000 Digital governing (optional) Integrated digital electronic isochronous governor Temperature dynamic governing Digital voltage regulation * Integrated digital electronic voltage regulator * 2 -phase line -to -line sensing a Configurable torque matching Control functions • Time delay start and cooldown • Glow plug control (some models) • Cycle cranking - PCCNet interface a (2) Configurable inputs - (2) Gonfigurable outputs - Remote emergency stop Options o Auxiliary output relays (2) 11 120/240 V, 100 W anti -condensation heater ii Remote annunciator with (3) configurable inputs and (4) oonfigurable outputs a PMG alternator excitation n PowerCornmand for Windows! remote monitoring software (direct connect) Ei Auxiliary, configurable signal inputs (8) and configurable relay outputs (8) u AC output analogue meters EJ PowerCommand 2,2 control with AmpSantry protection Standard PowerCommand 1.1 control opemtor/dIsplay panel u2008 I Cummins Power Generation Inc. I At right,. reserved I Specifications subject to change without noitivs I Cummins Power Goneration and Cummins ore registered tradernaftotCummins; Inc. PowerCornmand, InPower and 'Our energy wo*fng for you." are tradernaft of Cummins Power Generation. other company, product or service names may be trademarks or service Marks of others, SAWt (4MB) Uf, VA = Optional AC output analog meters CP0,47wer e oerkeration AC protection Over current warning and shutdown Over and under voltage shutdown Over and under frequency shutdown Over excitation Poss of sensing) fault Field overload Engine protection - Overspeed shutdown - Low oil pressure warning and shutdown a High coolant temperature warning and shutdown o Low coolant level warning or shutdown * Low coolant temperature warning e High, low and weak battery voltage warning e Fail to start (overcrank) shutdown e Fail to crank shutdown L—A * Redundant start disconnect a Cranking lockout e Sensor failure indication e Law fuel level warning or shutdown - Fuel-in-rupture�basin warning or shutdown Operatorldisplay panel * Manual off switch * Alpha -numeric display with pushbutton access for viewing engine and alternator data and providing setup, controls and adjustments (English or international symbols) # LED lamps indicating genset running, not in auto, common warning, common shutdown, manual run mode and remote start o Suitable for operation in ambient temperatures from -20 IC to +70 11C Aftemator data * Utne-to-neutral AC volts o Line -to -line AC volts -P 3-phase AC current o Frequency o Total kVA Our energy worldng for you-rm AUTAI-QUE it _n 4 112MI'M KSIQ CH Standard control functions Engine data • DC voltage • Lube oil pressure • Coolant temperature Other data • Genset model data • Start attempts, starts, running hours • Fault history • R6485 Modbue interface • Data logging and fault simulation (requires InPower service t000 Digital governing (optional) Integrated digital electronic isochronous governor Temperature dynamic governing Digital voltage regulation * Integrated digital electronic voltage regulator * 2 -phase line -to -line sensing a Configurable torque matching Control functions • Time delay start and cooldown • Glow plug control (some models) • Cycle cranking - PCCNet interface a (2) Configurable inputs - (2) Gonfigurable outputs - Remote emergency stop Options o Auxiliary output relays (2) 11 120/240 V, 100 W anti -condensation heater ii Remote annunciator with (3) configurable inputs and (4) oonfigurable outputs a PMG alternator excitation n PowerCornmand for Windows! remote monitoring software (direct connect) Ei Auxiliary, configurable signal inputs (8) and configurable relay outputs (8) u AC output analogue meters EJ PowerCommand 2,2 control with AmpSantry protection Standard PowerCommand 1.1 control opemtor/dIsplay panel u2008 I Cummins Power Generation Inc. I At right,. reserved I Specifications subject to change without noitivs I Cummins Power Goneration and Cummins ore registered tradernaftotCummins; Inc. PowerCornmand, InPower and 'Our energy wo*fng for you." are tradernaft of Cummins Power Generation. other company, product or service names may be trademarks or service Marks of others, SAWt (4MB) Uf, VA = Optional AC output analog meters CP0,47wer e oerkeration Ratings definitions Emergency standby power (ESP): Prime power jPRP).- Applicable for supplying power to varying electrical load with ISO 8528. Ten pment overload capability is available �in accordance with ISO 3046, AS 2789, DIN 6271 ai�d BS 5514. I r, ZI , — - , I , 2789, DIN 6271 and BS 5514. Dim "All I Dirn "S" M NIMES Z This outline drawing is for reference only. See respective model data sheet for specific model outline drawing number- zWi 172�7 � Note: Weights represent a set With standard tures� See outline drawings for weights of other configurations. Curnmins Power Generation 140D 73' Avenue NE. Minneapolis, MN 55432 USA Telephone, 763 574 5000 Fax: 763 574 5298 ILM Important: Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any building's electrical system except through an approved deAce or after building main sm(itch is open. 02008 1 Cummiris RmW Generation InG, I All rights resmed I SWtheations subject to ctianqewiOw rotim j Cummins Power Generittion Power mid Cummins are registered trademarks of C=rrins Inc- PowerCornmaM, InPower and *Out energy worldng for yoa' are trademarks of Gerweration Curriffflin Power Generation. Other company, product or service names may be tradernaft or service maft Qf others. S-1 544 f S(41M Cs BULLETIN 0 Turbidity Meter 1 720Lg experience + accuracy + simplicity CW �Sl PRINCIPLE OF OPERA11ON NEPHELOMETRIC MEASIi�MENT 6 Incandescent light directed from the sensor head �down into the turbidirritter body is a ss'r scattered by suspended particles in the sample. The se sor`� submerged photocell detects light scattered at 90, from the incident beam. Ie T� SAMPLE FLOW PATH Sample enters the center column of the tUr'bidimeter, rises into the measuring chamber and ,0 spills over the weir into the drain port. TV Is configuration results in an optically flat surface free of turbulence. 6� SIMPLIFIED CIALIBRATIO One -point calibration ith prep'ar4 w Stab]Cal' Stabilized Formallsolution eliminates the errors of formazin suspension ��fu'tion, takes less than two minut4 per sensor, and is a USEPA-accepted method. BUILT-IN BUBBLE REMOV Continuously flowing sample flows through the patented* bubble remo system, which vents entrained air from the sample stream and eliminates the most significantA- erference in low-level turbidity measurement. The built-in bubble removal system is imm�', to changes in sample flow and pressure. COMPLIANT DESIGN The 1720E Low Range Turbidimettr applies the instrument design and meets performance criteria established by the U.S. Environmental Protection Agency (USEPA) in Method 180.1, making it suitable for regulatory reporting. ptot 5,831,727 Lw SIMPLE RELIABLE CALI BRA I ION TOOLS .................. .......... ................. �­�� ....... ............. ...... ............... .............. . ............................... .......... ................ ..................... ....... JCE-PIC 1 STABLCALO," �STABILIZED VERIFICAT ION, MODULE FORMAZIN PRIMAR Y, S ANDA . ................................. .............................. ........... I RDS ........... ................ ................ .. . ..................................................................... TheICE-PIQ'Modult i's a new&, fastt'r,way to calibrate and check i > Disposable and nlon�tbxic, .............. ......... the ance of:Hach 1 72b, st ptrfor m ries turbidimeters., The,benefits , > AVo id preparation and dilution of formazin standards of -using �tht� ICE�PIC Module include: StablCal st a n d'� r ds with �Sl I 720E SPECIFICATIONS* Range 0.001-100 Nephelo metric Turbidity Units (NTU) Accuracy" ± 20/b ofreading or ± 0.015 NTU (whichever is grnter) from 0 to 10 NTU; ± SO/o ofreading from 10 to 40 NTU; ± 10% of reading from 40 to too NTU Displayed Resolution uool NTLI from o to 9.9999 NTUI o.00l NTIJ from 10.000 to 99.999 NTU Repeatability" Better than ± 1.0% of reading or ± 0.002 NTU, whichever is greater Response Time For a full-scale step change, initial response in I min ute, 15 seconds Signal Average Time User Selectable ranging from 6, 30, 60, 90 seconds; user default 30 seconds Sample Flow Required 200 to 750 ml-Iminute (3.1 to 11.9 galthour) Storage Temperature -20 to +60' C (-4 to 140' F) Operating Temperature 0 to SO: C (32 �22' F) for single sensor system, tto 0 to 40 C (32 o 04' F) for two sensor system Operating Humidity 5 to 95% non -condensing Sample Temperature 0 to So' C (32 to 122' F) Recorder Outputs Two selectable for 0-20 mA or 4-20 ni Output span programmable over any portion of the c -loo NTU range; built into the scloo Controller Alarms Three set -point alarms, each equipped witl- an SPDT relay wth unpowered contacts rated 5A resistive load at 230 VAC; built into the scloo Controller Power Requirements 100-230VAC, 50160 Hz, auto selecting; 40VA Sample Inlet Fitting 114" NPT fernale, 7/4" compression fitting (provided) Drain Fitting 1/2" NPT fernale, 1/2" hose barb (provided) Enclosures NEMA-4XIIP66 Controller Digital Communications Network card compatible; MODBUS/RS485, MODBUSIRS232, LonWoike protocol (optional) Wireless Communication IR Port on the scloo Controller to download into a h@ndheld Personal Digital Assistant (PDA) or laptop computer via MODBUS Compliance Standard Methods 2130B, USEPA 180.1, Hach Method 8195 Certification Safety: Listed by ETL to UL 6101OA-1: Certified by ETL to CSA C22.2 No. 1010.1: CE certified by Hach Company to EN G1010-1 Immunity: CE certified by Hach Company to EN61326 (industrial levels) Emissions Class A: EN 61326, CISPR 11, FCC Part 15, Canadian Interference -Ca using Equipment Regulation ICES -003 Dimensions Turbidimeter Body and Cap: 10 x 12 x 16 inches �25.4 x 30.5 x 40.6 cm) scloo Controller: S.67 x 5.67 x 5.91 inches (14.4 X 14.4 X 15.0 cm) Mounting Turbid imeter Body a nd Head Assembly: wal I a nd floor stand sc100 Controller: wall, pole, panel, and floor stand Shipping Weight 1720F Tuibidimeter and sc100 Controller: 13.5 bs. (6.12 kg) 1720E Turbidirneter: 10 hs, (4.54 kg� S.bj,�t to eh�q, �Rhut �t­ Defined according to ISO 15839. 671 HOW TO ORDER 60101-00 1720E Turbidimeter with scloO Controller 60 101-01 1720E Turbidimeter. Sensor Only 1720E with DigitalDirect communications 60101-02 1720EIsclOO with MODBUS/RS485 output 60101-03 1720EIscloo with MODBUSIRS232 output 60101-04 1720E/scIC)o with LonWorks output 60101-05 1720E/scloo with PROFIBUS output CABLES* 66-1 57960-00 25 fL (7.7 M) Eytension Cable Power Cord with Strain Relief (125 VAQ 46308-00 Power Cord with Strain Relief (230 VAQ, European Style Plug *Note: Power cables must be ordered separately. 6AI OPTIONAL ACCESSORIES ICE -PIC Verification Module/1720E: 52250-00 20 NTU 52215-00 1 NTU STABLCAL COMPARATIVE CALIBRATION STANDARDS (for 1720E, 1720D, and 1720C Tu rb id !meters)*** 26601-53 20.0 NTU, I L each — Note: Calibration Cylinder must be ordered separately. STABLCAL VERIFICATION STANDARDS 26598-S3 1.o NTU, 1 L each 27463-53 40.0 NTU, 1 L each 26979-53 0.3 NTU, 1 L each 26980-53 o.s NTU, 1 L each 27233-53 0.1 NTU, I Leach FORMAZIN CALIBRATION STANDARDS 44156-00 Formazin Calibration Kit for user -prepared calibration includes 4000 NTU Formazin, (500 mQ, TenSette, Pipet, and Calibration Cylinder 2461-49 Formazin Primary Standard, 4000 NTU, 500 ml_ replacement for kit #44156 -Go 44153-000 Calibration Cylinder, 1L 57432-00 Floor Stand MODEL SCJOOTM CONTROLLER The Model scloo Controller receives data from one or two sensors. Its "plug and play", mix -and -match operation lets it fit into any facility or workflow. Digital communication with any Hach digital sensor or probe is simple and reliable. i, s,,, MODEL SCI OOOTM CONTROLLER Get the same great features as the scl 00 Controller above— "plug and play", all digital operation and communication—but with the Hach sc1000 Controller, up to eight Hach sensors can be used with one controller in any combination. The sc`1000 Controller is also expandable and upgradeable to easily adapt to you needs. F7 Lit. No. 2446 155 Printed in U.S.A 0 Hach Company, 2005. Ad[ rights reserved. ATTACHMENT M Pole Blowe Curve and Cut -Sheet ATTACHMENT N Back -Up Generator Cut -Sheets ATTACHMENT 0 Turbidity Meter 6-d