Loading...
HomeMy WebLinkAbout20090792 Ver 1_401 Application_20090709e3yj a h Cre"ch 10253 N. 226 Hwy. P.O. Box 285 Bakersville, NC 28705 www.beechcreeknc.com July 17, 2009 Mr. Roger Edwards Regional Supervisor Surface Water Protection Section 2090 US Highway 70 Swannanoa, NC 2877 09-0 79 2 ks P D r= P= @ L9 0 W [2 5 JUL 2 ! 2009 DENR - WATER QUALITY WETLANDS AND STORMNATER BRANCH In response to the recent NOV issued by the Division, we have completed, to the best of our ability, the attached "after the fact" pre-construction notification form as requested. Streams are shown on the Soil and Sediment Erosion Control Plan maps and application which is attached. New pipes placed at the stream crossings are listed in the table in the application referencing the descriptions on the plan maps. Other crossings of streams have been accomplished by bridges or the replacement of existing pipes to accommodate flows based on our engineer's recommended pipe size. No additional stream crossings are required to complete this phase of development. Due to current economic conditions, there is no plan to further subdivide any portions of this project or develop within the foreseeable future. Sinccere/l W.D. Warnell 09-0 79 2 0??0'FyWN?ATF ??? O'2W C Office Use Only: Corps action ID no. DWQ project no. Form Version 1.3 Dec 10 2008 Pre-Construction Notification PC Form A. Applicant Information 1. Processing 1 a. Type(s) of approval sought from the Corps: ®Section 404 Permit El Section 10 Permit ------. 1 b. Specify Nationwide Permit (NWP) number: 29 or General Permit (GP) number: 1c. Has the NWP or GP number been verified by the Corps? ? Yes ® No Id. Type(s) of approval sought from the DWQ (check all that apply): ® 401 Water Quality Certification - Regular ? Non-404 Jurisdictional General Permit ? 401 Water Quality Certification - Express ? Riparian Buffer Authorization le. Is this notification solely for the record because written approval is not required? For the record only for DWQ 401 Certification: ? Yes ? No For the record only for Corps Permit: ? Yes ? No 1f. Is payment into a mitigation bank or in-lieu fee program proposed for mitigation of impacts? If so, attach the acceptance letter from mitigation bank or in-lieu fee program. ? Yes ® No 1g. Is the project located in any of NC's twenty coastal counties. If yes, answer 1 h below. ? Yes ® No 1 h. Is the project located within a NC DCM Area of Environmental Concern (AEC)? ? Yes ? No 2. Project Information 2a. Name of project: Beech Creek Estates, LLC 2b. County: Mitchell 2c. Nearest municipality / town: Herell Township 2d. Subdivision name: Beech Creek Estates 2e. NCDOT only, T.I.P. or state project no: 3. Owner Information El r= t; N r= n r% j- r 3a. Name(s) on Recorded Deed: W. D. Wamell 3b. Deed Book and Page No. 451,357 3c. Responsible Party (for LLC if applicable): Danny Warnell 3d. Street address: 10253 Hwy 226 N WETLANDS AND STOPA4ATER BRANCH 3e. City, state, zip: Bakerville, NC 28705 3f. Telephone no. 912-604-5905 3g. Fax no.: 3h. Email address: Page 1 of 11 PCN Form - Version 1.3 December 10, 2008 Version 4. Applicant Information (if different from owner) 4a. Applicant is: ? Agent ? Other, specify: 4b. Name: 4c. Business name (if applicable): 4d. Street address: 4e. City, state, zip: 4f. Telephone no.: 4g. Fax no.: 4h. Email address: 5. AgentlConsultant Information (if applicable) 5a. Name: 5b. Business name (if applicable): 5c. Street address: 5d. City, state, zip: 5e. Telephone no.: 5f. Fax no.: 5g. Email address: Page 2 of 11 PCN Form - Version 1.3 December 10, 2008 Version B. Project Information and Prior Project History 1. Property Identification 1a. Property identification no. (tax PIN or parcel ID): 1 b. Site coordinates (in decimal degrees): Latitude: 36.08 Longitude: - 82.21 (DD.DDDDDD) (-DD.DDDDDD) 1 c. Property size: acres 2. Surface Waters 2a. Name of nearest body of water (stream, river, etc.) to Beech Creek proposed project: 2b. Water Quality Classification of nearest receiving water: Class C, Trout Waters 2c. River basin: North Toe River 3. Project Description 3a. Describe the existing conditions on the site and the general land use in the vicinity of the project at the time of this application: The site is partially developed with roads, some houses and power infrastructure. We purchased the subdivision from a prior owner who had built many of the roads and subdivided lots. The adjacent land is National Forest, agricultural and residential. The development tries to blend with the adjacent land use. 3b. List the total estimated acreage of all existing wetlands on the property: None are shown on the erosion control plans. 3c. List the total estimated linear feet of all existing streams (intermittent and perennial) on the property: Approximately feet or streams are shown on the attached plans submitted for the erosion control permit. 3d. Explain the purpose of the proposed project: The purpose of the proposed project is to provide homes for people. The culverts are needed to access building sites and allow residents multiple ingress and egress alternatives depending on weather and other emergency conditions. 3e. Describe the overall project in detail, including the type of equipment to be used: The project is a residential development that will allow for homeowners to enjoy the mountains of North Carolina 4. Jurisdictional Determinations 4a. Have jurisdictional wetland or stream determinations by the Corps or State been requested or obtained for this property / ? Yes ? No Unknown project (including all prior phases) in the past? Comments: 4b. If the Corps made the jurisdictional determination, what type ? Preliminary ? Final of determination was made? 4c. If yes, who delineated the jurisdictional areas? Agency/Consultant Company: Name (if known): Other: 4d. If yes, list the dates of the Corps jurisdictional determinations or State determinations and attach documentation. 5. Project History 5a. Have permits or certifications been requested or obtained for ? Yes ? No ® Unknown this project (including all prior phases) in the past? 5b. If yes, explain in detail according to "help file" instructions. Page 3 of 11 PCN Form - Version 1.3 December 10, 2008 Version 6. Future Project Plans 6a. Is this a phased project? ® Yes ? No I 6b. If yes, explain. A portion of the project was completed when we purchased the property. Due to the current economic conditions no additional development is planned beyond those portions which have an approved sediment and erosion control permits. Page 4 of 11 PCN Form - Version 1.3 December 10, 2008 Version C. Proposed Impacts Inventory 1. Impacts Summary 1 a. Which sections were completed below for your project (check all that apply): ? Wetlands ® Streams - tributaries ? Buffers ? Open Waters ? Pond Construction 2. Wetland Impacts If there are wetland impacts proposed on the site, then complete this question for each wetland area impacted. 2a. 2b. 2c. 2d. 2e. 2f. Wetland impact Type of jurisdiction number - Type of impact Type of wetland Forested (Corps - 404, 10 Area of impact Permanent (P) or (if known) DWQ - non-404, other) (acres) Temporary W1 ? P ? T ? Yes ? Corps ? No ? DWQ W2 ? P ? T ? Yes ? Corps ? No ? DWQ W3 ? P ? T ? Yes ? Corps ? No ? DWQ W4 ? P ? T ? Yes ? Corps ? No ? DWQ W5 ? P ? T ? Yes ? Corps ? No ? DWQ W6 ? P ? T ? Yes ? Corps ? No ? DWQ 2g. Total wetland impacts 2h. Comments: 3. Stream Impacts If there are perennial or intermittent stream impacts (including temporary impacts) proposed on the site, then complete this question for all stream sites impacted. 3a. 3b. 3c. 3d. 3e. 3f. 3g. Stream impact Type of impact Stream name Perennial Type of jurisdiction Average Impact number - (PER) or (Corps - 404, 10 stream length Permanent (P) or intermittent DWQ - non-404, width (linear Temporary (T) (INT)? other) (feet) feet) S1 ®P ? T pipe for road at tributary to beech ? PER ® Corps 1 50 BC-C1A creek ® INT ® DWQ S2 ®P ? T pipe for drive at tributary to beech ? PER ® Corps 1 20 BC-C2 creek ® INT ® DWQ S3 ? P ? T pipe for road at tributary to beech ? PER ® Corps 1 40 BC-C4 creek ® INT ® DWQ S4 ? P ? T pipe for road at tributary to beech ? PER ® Corps 1 40 BC-C7 creek ® INT ® DWQ S5 ? P ? T ? PER ? Corps ? INT ? DWQ S6 ? P ? T ? PER ? Corps ? INT ? DWQ 3h. Total stream and tributary impacts 150 3i. Comments: All other stream crossings were existing pipes, existing pipes that were replaced with new ones, or bridges Page 5 of 11 PCN Form - Version 1.3 December 10, 2008 Version 4. Open Water Impacts If there are proposed impacts to lakes, ponds, estuaries, tributaries, sounds, the Atlantic Ocean, or any other open water of the U.S. then individually list all open water impacts below. 4a. 4b. 4c. 4d. 4e. Open water Name of waterbody impact number - (if applicable) Type of impact Waterbody type Area of impact (acres) Permanent (P) or 01 ?P?T 02 ?P?T 03 ?P?T 04 ?P?T 4E Total open water impacts 4g. Comments: 5. Pond or Lake Construction If and or lake construction pro pc 5a. 5b. Pond ID I Proposed use or purpose number of pond then complete the chart below. 5c. Wetland Impacts (acres) 5d. 5e. Stream Impacts (feet) Upland Flooded I Filled I Excavated I Flooded I Filled I Excavated I Flooded P1 P2 5E Total 5g. Comments: 5h. Is a dam high hazard permit required? ? Yes ? No If yes, permit ID no: 6a. Project is in which protected basin? 6b. 6c. 6d. Buffer impact number - Reason Permanent (P) or for 5i. Expected pond surface area (acres): 5j. Size of pond watershed (acres): 5k. Method of construction: 6. Buffer Impacts (for DWQ) If project will impact a protected riparian buffer, then complete the chart below. If yes, then individually list all buffer impacts below. If an impacts require mitigation, then you MUST fill out Section D of this form. ? Neuse ? Tar-Pamlico ? Other: ? Catawba ? Randleman 6e. 6f. 6o. Buffer Stream name mitigation required? ? Yes ? No ? Yes ? No ? Yes ? No 6h. Total buffer impacts Zone 1 impact Zone 2 impact (square feet) (square feet) 61 ?P?T B2 ?P?T B3 ?P?T 6i. Comments: Page 6 of 11 PCN Form - Version 1.3 December 10, 2008 Version D. Impact Justification and Mitigation 1. Avoidance and Minimization la. Specifically describe measures taken to avoid or minimize the proposed impacts in designing project. The project has used bridges and existing crossings (including old logging road locations) in order to minimize the amount of pipe and grading required, and enhance the natural beauty of the creeks. 1 b. Specifically describe measures taken to avoid or minimize the proposed impacts through construction techniques. See la 2. Compensatory Mitigation for Impacts to Waters of the U.S. or Waters of the State 2a. Does the project require Compensatory Mitigation for impacts to Waters of the U.S. or Waters of the State? ? Yes ® No 2b. If yes, mitigation is required by (check all that apply): ? DWQ ? Corps 2c. If yes, which mitigation option will be used for this project? ? Mitigation bank El Payment to in-lieu fee program ? Permittee Responsible Mitigation 3. Complete If Using a Mitigation Bank 3a. Name of Mitigation Bank: 3b. Credits Purchased (attach receipt and letter) Type -7 0uantity 3c. Comments: 4. Complete If Making a Payment to In-lieu Fee Program 4a. Approval letter from in-lieu fee program is attached. ? Yes 4b. Stream mitigation requested: linear feet 4c. If using stream mitigation, stream temperature: ? warm ? cool ?cold 4d. Buffer mitigation requested (DWQ only): square feet 4e. Riparian wetland mitigation requested: acres 4f. Non-riparian wetland mitigation requested: acres 4g. Coastal (tidal) wetland mitigation requested: acres 4h. Comments: 5. Complete If Using a Permittee Responsible Mitigation Plan 5a. If using a permittee responsible mitigation plan, provide a description of the proposed mitigation plan. Page 7 of 11 PCN Form - Version 1.3 December 10, 2008 Version 6. Buffer Mitigation (State Regulated Riparian Buffer Rules) - required by DWQ 6a. Will the project result in an impact within a protected riparian buffer that requires buffer mitigation? ? Yes ® No 6b. If yes, then identify the square feet of impact to each zone of the riparian buffer that requires mitigation. Calculate the amount of mitigation required. Zone 6c. Reason for impact 6d. Total impact (square feet) Multiplier 6e. Required mitigation (square feet) Zone 1 3 (2 for Catawba) Zone 2 1.5 6f. Total buffer mitigation required: 6g. If buffer mitigation is required, discuss what type of mitigation is proposed (e.g., payment to private mitigation bank, permittee responsible riparian buffer restoration, payment into an approved in-lieu fee fund). 6h. Comments: Page 8 of 11 PCN Form - Version 1.3 December 10, 2008 Version E. Stonmwater Management and Diffuse Flow Plan (required by DWQ) 1. Diffuse Flow Plan 1 a. Does the project include or is it adjacent to protected riparian buffers identified ? Yes ? No within one of the NC Riparian Buffer Protection Rules? 1 b. If yes, then is a diffuse flow plan included? If no, explain why. El Yes No ? Comments: 2. Stormwater Management Plan 2a. What is the overall percent imperviousness of this project? less than 6 % 2b. Does this project require a Stormwater Management Plan? ? Yes ® No 2c. If this project DOES NOT require a Stormwater Management Plan, explain why: No other requirement other than sediment and erosion control plan is known 2d. If this project DOES require a Stormwater Management Plan, then provide a brief, narrative description of the plan: ? Certified Local Government 2e. Who will be responsible for the review of the Stormwater Management Plan? ? DWQ Stormwater Program ? DWQ 401 Unit 3. Certified Local Government Stormwater Review 3a. In which local government's jurisdiction is this project? ? Phase II 3b. Which of the following locally-implemented stormwater management programs ? NSW ? USMP apply (check all that apply): ? Water Supply Watershed ? Other: 3c. Has the approved Stormwater Management Plan with proof of approval been ? Yes ? No attached? 4. DWQ Stormwater Program Review ? Coastal counties [3 HQW 4a. Which of the following state-implemented stormwater management programs apply ? ORW (check all that apply): ? Session Law 2006-246 ? Other: 4b. Has the approved Stormwater Management Plan with proof of approval been attached? ? Yes ? No 6. DWQ 401 Unit Stonmwater Review 5a. Does the Stormwater Management Plan meet the appropriate requirements? ? Yes ? No 5b. Have all of the 401 Unit submittal requirements been met? ? Yes ? No Page 9 of 11 PCN Form - Version 1.3 December 10, 2008 Version F. Supplementary Information 1. Environmental Documentation (DWQ Requirement) 1 a. Does the project involve an expenditure of public (federal/state/local) funds or the ? Yes ® No use of public (federal/state) land? lb. If you answered "yes" to the above, does the project require preparation of an environmental document pursuant to the requirements of the National or State ? Yes ? No (North Carolina) Environmental Policy Act (NEPA/SEPA)? 1c. If you answered "yes" to the above, has the document review been finalized by the State Clearing House? (If so, attach a copy of the NEPA or SEPA final approval ? Yes ? No letter.) Comments: 2. Violations (DWQ Requirement) 2a. Is the site in violation of DWQ Wetland Rules (15A NCAC 2H .0500), Isolated Wetland Rules (15A NCAC 2H .1300), DWQ Surface Water or Wetland Standards, ® Yes ? No or Riparian Buffer Rules (15A NCAC 2B .0200)? 2b. Is this an after-the-fact permit application? ® Yes ? No 2c. If you answered "yes" to one or both of the above questions, provide an explanation of the violation(s): This application is being submitted as a result of an NOV issued by the Division of Water Quality. We were not aware of this requirement and in no way was this an intentional breach of the law. We filed for the erosion control plan and did not know if this requirement. 3. Cumulative Impacts (DWQ Requirement) 3a. Will this project (based on past and reasonably anticipated future impacts) result in ? Yes ® No additional development, which could impact nearby downstream water quality? 3b. If you answered "yes" to the above, submit a qualitative or quantitative cumulative impact analysis in accordance with the most recent DWQ policy. If you answered "no," provide a short narrative description. No additional development is planned at this time 4. Sewage Disposal (DWQ Requirement) 4a. Clearly detail the ultimate treatment methods and disposition (non-discharge or discharge) of wastewater generated from the proposed project, or available capacity of the subject facility. Individual septic systems approved by the County. Page 10 of 11 PCN Form - Version 1.3 December 10, 2008 Version 5. Endangered Species and Designated Critical Habitat (Corps Requirement) 5a. Will this project occur in or near an area with federally protected species or ? Yes ? No habitat? 5b. Have you checked with the USFWS concerning Endangered Species Act ? Yes ® No impacts? ? Raleigh 5c. If yes, indicate the USFWS Field Office you have contacted. ? Asheville 5d. What data sources did you use to determine whether your site would impact Endangered Species or Designated Critical Habitat? 6. Essential Fish Habitat (Corps Requirement) 6a. Will this project occur in or near an area designated as essential fish habitat? ? Yes ? No 6b. What data sources did you use to determine whether your site would impact Essential Fish Habitat? 7. Historic or Prehistoric Cultural Resources (Corps Requirement) 7a. Will this project occur in or near an area that the state, federal or tribal governments have designated as having historic or cultural preservation ? Yes ? No status (e.g., National Historic Trust designation or properties significant in North Carolina history and archaeology)? 7b. What data sources did you use to determine whether your site would impact historic or archeological resources? 8. Flood Zone Designation (Corps Requirement) 8a. Will this project occur in a FEMA-designated 100-year floodplain? ? Yes ® No 8b. If yes, explain how project meets FEMA requirements: 8c. What source(s) did you use to make the floodplain determination? -7 Applicant/Agent's Printed Name Applicant/Agent's Signature Date (Agent's signature is valid only if an authorization letter from the applicant is provided.) Page 11 of 11 PCN Form - Version 1.3 December 10, 2008 Version I Freeman Environmental Consulting, LLC 411 Lower Hanging Rock Road, Spruce Pine, NC 28777 Phone: 828-765-1515 Office, 828-765-3571 Mobile E-mail: freemanenviromen(@)bellsouth.net March 14, 2008 Ms. Janet S. Boyer, PE Regional Engineer North Carolina DENR Land Quality Section 2090 US Highway 70 Swannanoa, NC 28778-8211 Subject: Project Name: Beech Creek Project ID: Mitch-2008-009 Mitchell County, NC Dear Ms. Boyer, copy Please find attached a Soil and Erosion Control Plan for the above site as a result of an NOV from your office in December of 2007. We requested and appreciate you granting of extensions in the time allowed prepare and submit this plan. The entire site is moire than 600 acres in size and a portion of that has already been developed and is currently a residential community. The site covered by the plan is recent construction that will develop 15 residential lots. The project is ongoing and the site is stable except for the roads which need to be graveled once the plan is approved. Grass planted last fall has vegetated the cut and fill slopes and a good sod layer is being established. The requested extensions allowed time for a flyover and ground controls for proper mapping of the entire site which will serve for the life of the development. All controls currently in place were located onsite and are as indicated on the maps. We thank you again for the extended time we were given and feel this plan to be complete as a result. Should you have questions or need to discuss this matter with Mr. Nunley or I, we can be reached at 828-765-5646 or 828-765-1515 respectively. Mr. Warnell can be reached at 912-858- 5327. Since Thom s (Tom) Freeman CPESC Freeman Environmental Consulting, LLC CC: WD Warnell, Mountaineer Land Surveying & FEC files Narrative Project Description This project will add 15 new lots to an existing residential development in the northern section of Mitchell County in the Harrell Hill Township. The project lots total 22.93acres exempting one extra large lot to the south west. The entire property is 627.65 acres and 63 lots have been developed and sold by the prior owner and will not be a part of this plan. The existing entrance road and the service road from North Carolina Highway 226 will also not be a part of this plan. The site is located 10253 North, Highway 226, about 12 miles north of Bakersville, NC. Total disturbed area for this project is 8.7 acres. Site Description The site is a peaceful valley where Big Rock Creek Drive (the entrance road) leaves Highway 226, passes a iron gate and crosses a covered bridge over Big Rock Creek to a common office area. Going north past the office area the current residential development is to the north and east. There are two ponds in the center of the valley along Beech Creek which flows through the property from north to south. There are also two blue line streams that feed into Beech Creek from the west and one is in the area of the current land disturbing activity. Beech Creek and Big Rock Creek are Trout Streams as classified by the North Carolina Department of Natural Resources (DENR), Division of Water Quality and are listed on the Environmental Sensitivity Map of 2007. Saddle and working horses are kept in pastures and there is a large barn and several small farm structures around the office and pond area. Deer and turkey and other wildlife are in abundance on the property. Page 2, Beech Creek Narrative The site shows signs of being timbered within the last 5-6 years but has scattered hardwoods such as oak, poplar, birch, beech, cherry, maple and ash throughout the property but more prominent on the upland slopes. There are also scattered groups of pines along the pasture areas of the valley. The higher elevation portions of the site have mountain laurel and other underbrush under the main canopy. Several logging roads cross the property along the ridges and around the slopes but no signs of severe erosion or large gullies were observed during the onsite visit. Adjacent Property Land use in the vicinity of the site is residential and agricultural. The site is located in the Buladean Community which is a highland valley to the west of Roan Mountain near the state border with Tennessee. The property is partially bordered on the east by NC Highway 226 and partially bordered on the northern side by the US government. Other land owners owning property adjoining the out side property boundary are: Davis Dacasto, Gerome Schnieder, Doris Byrd, Lee J. Blume, Frank Whitson, the United States of America, Penny Greene, Jack Street, Cecil Hopkins, Roger Jenkins, W.G. Honeycutt, Marshall Street, Bernice Bishop, Milan Street, Lloyd Garland, Marvin Hensley, Jack Hopson and lands of the Beech Creels Subdivision as described in the deed. Soils The Soils in the vicinity of the site are not listed on the General Soils Maps contained in the Soil Survey of Mitchell County, NC conducted by United Page 3, Beech Creek Narrative Stated Department of Agriculture (issued September 1995). A visual study of the soils at the site shows them to be a complex soil with much clay near the surface. Depth to soft stone is only 4-6 feet in places and some large cobbles are scattered throughout mainly in the lower portions of the slopes Some rock outcroppings were observed and small seeps and springs are scattered across the site. Soil and Erosion Control Measures Vegetated and Rip Rap Channels Several ditches need to be armored with rip rap stone due to the slope and runoff velocity. The Rip rap ditches shall have a fabric liner (Mirafi 18N or equivalent) placed in the ditch beneath the stone (see attached details). The vegetated ditches shall have net with straw (temporary lining) placed in the channel after the channels have been seeded, in accordance with the attached vegetation plan. Stone Check Dams Stone check dams may be used in ditches as needed to slow and control runoff velocity but must be installed properly to work properly. Stone check dams are not shown on the map but a detail is attached. Outlet Stabilization / Energy Dissipaters Energy dissipaters shall be provided at the exit of all culverts. The dissipaters shall be constructed as shown on the attached details and per the sizing chart also attached. All dissipaters shall have a fabric underlayment (Mirafi 18N or equivalent) to prevent scouring and be constructed according to the attached details. Sediment Fence Sediment fence shall be installed where there was potential for the fill slopes top produce runoff that would enter a stream or leave the property. All sediment fence installed must have wire backing and metal post and comply with the attached details. Surface Roughing Before seeding, graded surfaces should be roughed using the tracks of heavy equipment or a similar practice. See attached details. Soil & Erosion Control Measures Page 2 Vegetative Covering A vegetation plan is attached for the seeding and mulching of the site to prevent soil and erosion in disturbed areas. The mulching of seeded areas is a very important step in the establishment of a good vegetative cover. Seeding and or temporary mulching shall be performed within 21 days of any phase of grading. Erosion Control Matting Erosion control straw matting shall be used on all disturbed surfaces that are directly above the trout streams. Slope Stabilization Any fill slope with an angle steeper than 2:1 shall be made secure with stone or other measures to assure its stability. Stress cracks shall be addressed immediately and can indicate slope problems. Vegetation Plan 1 All of the disturbed area will be covered with dirt and or gravel as needed to prepare for seeding or filture use. Surface mulch shall be applied after seeding to provide a means of controlling runoff and erosion in disturbed areas. Straw mulch shall be applied at the rate of 1 ton per acre. Straw should be dry, unchopped, unweathered and free of weeds. Wheat or oat straw is preferred and can be spread by machine or hand. Straw must be tacked down to avoid loss by wind. The following seed and fertilizer mix will be used: 2 3 Agricultural lime 2,0004/acre Fertilizer 1,000#/acre Fescue (Ky-31) 1009/acre Clover 209/acre Rye Grain 1204/acre Shrub Lespedeza2 30#/acre 2In Spring planting use hulled seed, in Fall use unhulled seed. 4. After a vegetation growth is established, fertilization and reseeding will continue as needed until a sod layer is established. 5. Decorative landscaping may be added as a beautification project in stable areas, but only in areas not subject to erosion and heavy runoff. If landscaping is used in any area that is not level a felt or silt blanket shall be used to prevent erosion. Areas with only mulch for a ground cover shall be inspected weekly for signs of erosion and runoff flow problems. 6. All erosion and sediment controls shall be seeded as soon as they are constructed. Maintenance Plan 1. All erosion and sediment control will be checked for stability following each runoff producing rainfall but in no case less than once every week. Any needed repairs will be made immediately to maintain all controls as designed. 2. Sediment will be removed from the rock check dains when the storage capacity has been 50% filled. 3. All seeded areas will be fertilized, reseeded as necessary and mulched according to specification in the vegetation plan to maintain a vigorous dense vegetation cover. 4. If any sediment is being carried off site by runoff, sediment fence shall be placed to collect the sediment. 5. Culverts shall be inspected for loose or misplaced stones, straw and other debris that could prevent the flow of runoff. Table 6.62b Specifications For Sediment Fence Fabric Temporary Silt Fence Material Test Material Units Grab Strergtn ASTM D 4632 N (lbs) ------------------ l Machine Direction 't l X-Machine Direction Permittivityi ASTM D 4491 sec-1 Apparent Opening Size' A;TM D 4751 mm (US Sieve T) Ultraviolet Stabili % h' ASTM D 4355 Retained Strength Silt Fence support shall consist of 14 gage steel wire with a mesh span equivalent strength. These default values are based on empirical evidence with a variety of previous experience andior site or regionally specific geotextile tests in a by the agency to confirm suitability of these requirements. As measured in accordance with Test Method D 4632. property Requirements ?. Su'pported' Un-Supported' Silt Fence Silt Fence Type of Value 400 550 MARV (90) (90) 400 450 MARV (90) (90) 0.05 0.05 MARV ! 0.60 0.60 Max. ARV} (30) (30) 70% after 7011 after 500h of exposure 500h of exposure Typical f zg of 150 mm (6 inches). or prefabricated poylmer mesh of sediment. For environmentally sensitive areas, a review of xordance Mth Test Method D 5141 should be performed CONSTRUCTION 1. Construct the sediment barrier of standard strength or extra strength synthetic filter fabrics. 2. Ensure that the height of the sediment fence does not exceed 24 inches above the ground surface. (Higher fences may impound volumes of water sufficient to cause failure of the structure. t 3. Construct the filter fabric from a continuous roll cut to the length of the barrier to avoid joints. When joints are necessan. securely fasten the filter cloth only at a support post with 4 feet minimum overlap to the next post. 4. Support standard strength filter fabric by %s ire mesh fastened securer to the upslope side of the posts. Extend the wire mesh support to the bottom of the trench. Fasten the -wire reinforcement. then fabric on the upslope side of the fence post. Wire or plastic zip ties should haNTe ininitnu n 50 pound tensile strength- S. Then a wire mesh support fence is used. space posts a maximum of 8 feet apart. Suppon posts should be driven securely into the around a minimum of inches. ` 6. Extra strength filter fabric with 6 feet post spacing does not require wire mesh support fence. Securely fasten the filter fabric directly to posts. Wire or plastic zip ties should have minimum 50 pound tensile strength. 7. Exca? ate a trench approximateh' -i inches %ti ide and 8 inches deep aiong the proposed line of posts and upslope froni the barrier (Figure 6.62a). 8. Place 12 inches of the fabric along the bottoni and side of the trench. 9. Baekfill the trench with soil placed o%er the filter fabric and compact. ThorouLth compaction of the back-fill is critical to silt tence performance. 10. Do not attach filter fabric to existing trees. Practice Standards and Specific'atrons 8' max. standard strength fabric with wire fence 6' max. extra strength fabric without wire fence Steel C post C Wire ,? 18 24 fence t 8" down & 4" forward along 24" the trench 24" Plastic or wire ties Natural ground r/ Filter fabric Wire fence Cross-Section View Filter Steel fabric Backfill trench post and compact Natural /thoroughly ground Y min ,• ,? 8 . , ., 4 • • . min Figure 6.62a Installation detail of a sediment fence. xe%. 6/06 6.62. 5 Construction Construction Specifications Even if properly designed, if not properly installed, RECP's will probably not function as desired. Proper installation is imperative. Even if properly installed, if not properly timed and nourished, vegetation will probably not grow as desired. Proper seed/vegetation selection is also imperative. Grade the surface of installation areas so that the ground is smooth and loose. When seeding prior to installation, follow the steps for seed bed preparation, soil amendments, and seeding in Surface Stabilization, 6, 1. All gullies, rills, and any other disturbed areas must be fine graded prior to installation. Spread seed before RECP installation. (Important: Remove all large rocks, dirt clods, stumps, roots, grass clumps, trash, and other obstructions from the soil surface to allow for direct contact between the soil surface and the RECP.) Terminal anchor trenches are required at RECP ends and intermittent trenches must be constructed across channels at 25-foot intervals. Terminal anchor trenches should be a minimum of 12 inches in depth and 6 inches in width, while intermittent trenches need be only 6 inches deep and 6 inches wide. installation for Slopes- Place the RECP 2-3 feet over the top of the slope and into an excavated end trench measuring approximately 12 inches deep by 6 inches wide. Pin the RECP at 1 foot intervals along the bottom of the trench, baekfill, and compact. Unroll the RECP down (or along) the slope maintaining direct contact between the soil and the RECP. Overlap adjacent rolls a minimum of 3 inches. Pin the RECP to the ground using staples or pins in a 3 foot center-to-center pattern. Less frequent stapling/pinning is acceptable on moderate slopes. 6.17.8 Rev. 6/06 Practice Standards and Specifications Installation in Channels- Excavate terminal trenches (12 inches deep and 6 inches wide) across the channel at the upper and lower end of the lined channel sections. At 25-foot intervals along the channel, anchor the RECP across the channel either in 6 inch by 6 inch trenches or by installing two closely spaced rows of anchors. Excavate longitudinal trenches 6 inches deep and wide along channel edges (above water line) in which to bury the outside RECP edges. Place the first RECP at the downstream end of the channel. Place the end of the first RECP in the terminal trench and pin it at 1 foot intervals along the bottom of the trench. Note: The RECP should be placed upside down in the trench with the roll on the downstream side of the bench. Once pinned and backfilled, the RECP is deployed by wrapping over the top of the trench and unrolling upstream. If the channel is wider than the provided rolls, place ends of adjacent rolls in the terminal trench, overlapping the adjacent rolls a minimum of 3 inches. Pin at I foot intervals, backfill, and compact. Unroll the RECP in the upstream direction until reaching the first intermittent trench. Fold the RECP back over itself, positioning the roll on the downstream side of the trench, and allowing the mat to conform to the trench. Then pin the RECP (two layers) to the bottom of the trench, backfill, and compact. Continue up the channel (wrapping over the top of the intermittent trench) repeating this step at other intermittent trenches, until reaching the upper terminal trench. At the upper terminal trench, allow the RECP to conform to the trench, secure with pins or staples, backfill, compact and then bring the mat back over the top of the trench and onto the existing mat (2 to 3 feet overlap in the downstream direction), and pin at 1 foot intervals across the RECP. When starting installation of a new roll, begin in a. trench or shingle-lap ends of rolls a minimum of 1 foot with upstream RECP on top to prevent uplifting. Place the outside edges of the RECP(s) in longitudinal trenches, pin, backfill, and compact. Anchoring Devices-ll gauge, at least 6 inches length`by l inch width staples or 12 inch minimum length wooden stakes are recommended for anchoring the RECP to the ground. Drive staples or pins so that the top of the staple .orpin is flush with the ground surface. Anchor each RECP every 3 feet along its center. Longitudinal overlaps must be sufficient to accommodate row of anchors and uniform along the entire length of overlap and anchored* every 3 ,feet along the overlap length, Roll ends may be spliced by overlapping ;l foot (in the direction of water flow), with. the upstream/upslope mat placed on top of the downstream/ downsiope RECP. This overlap should be anchored at 1 foot spacing across the RECP. When installing multiple width mats heat seamed in the factory, all factory seams and field overlaps should be similarly anchored. Rev. 6/06 6.17.9 Figure 6.17d Temporary Channel Liners; Washington State Department of Ecology Overlap 6" min. Excavate channel to design p grade and cross-section t? _is?: Overcut channel 2" to al during seedbed preparati Typical installation with erosion control blankets or turf reinforcement mats Longitudinal anchor trench Prepor install temp NOTE5: 1. Design velocities exceeding 2 ft/sec require temporary blankets, mats or similar liners to protect seed and soil until vegetation becomes established. 2. Grass-lined channels with design velocities exceeding 6 ft/sec should include turf reinforcement mats 6.17.10 Rev, 6/06 Intermittent check slot Shingle-lap spliced ends or begin new Longitudinal anchor trench Practice Standards and Specifications Figure 6.17e Channel Installation and Slope Installation; Washington State Ecology Department Longitudinal anchor trench Stake at T-5' intervals Initial channel anchor trench NOTE: 1. Check slots to be constructed per manufacturers specifications 2. Stacking or stapling layout per manufacturers specifications. Terminal slope and channel anchor trench Intermittent check slot Slope surface shall be smooth before If there is a berm at the top of placement for proper soil contact, slope, anchor upslope of the berm. Stapling pattern as Min. 2„ overla Anchor in 6"x6" min, Trench per manufacturers and staple at 12" intervals, recommendations. Do not stretch blankets/matting tight-allow the rolls to any irregularities, For slopes less than 3H:1V, rolls may be placed in horizontal strips. Rev. 6/06 Min. 6" overlap. Staple overlaps max. 5" spacing, Bring material down to a level area, turn the end under 4" and staple at 12" intervals. Lime, fertilize, and seed before installation. Planting of shrubs, trees, etc. should occur after installation. 6.17.11 D Maintenance 1. Inspect Rolled Erosion Control Products at least weekly and after each significant (1/2 inch or greater) rain fall event repair immediately. 2. Good contact with the ground must be maintained, and erosion must not occur beneath the RECP. 3. Any areas of the RECP that are damaged or not in close contact with the ground shall be repaired and stapled. a. If erosion occurs due to poorly controlled drainage, the problem shall be fixed and the eroded area protected. 5. Monitor and repair the RECP as necessary until ground cover os established. References Sprague, C. Joel. TRY Environmental, Inc. "Green Engineering, Design principles and applications using rolled erosion control products" Storm Water Management Manual for Western Washington, Washington State Department of Ecology, Water Quality Program http://www.ecy.wa.gov/programs/wq/ston-nwater/index.html Erosion Control Technology Council, http://www.ectc.org 6.17.12 Rev. 6/06 Sediment trap Summary Trap Size Capacity ft' T-1 10'X 20'X 3' 600 T2 10'X20'X3' 600 T3 10'X 20'X 3' 600 T4 10'X20'X3' 600 T5 12'X 20'X,3' 720 T6 20'X 70'X 3' 4200 T7 10'X 20'X 3' 600 T8 20'X 70'X 3' 4200 Gravel and Rip Rap Sediment Basin / Trap Construction Specifications 5' Min. 314 Clean Stone' 1800 Cu. Ft.lAcre 5' Max. e!f; Rip Rap Stana t ri Cross Section Emergency By-pass 6" below top of settled dam and on natural ground 4' Min. Filter Fabric 3' Min. 1. Clear Grub and strip the area under the spillway area of all vegetation and root mat. 2. Excavate pond area below ground level and as required to construct to proper size 3. Using clean fill materials free of roots, woody vegatation and largs oragnic materials place fill in lifts not to exceed 9" and machine compact. 4. Construct dam and stone spillway to dimentions, slopes and depts as specified. 5. Ensure that the spillwat crest is level and at lease 1.5' below the top of the dam at all points. 6. Rip Rap Stone used for the spillway section shall be 6 to 9 inches in size and placed on filter fabric. 7. Stone used for the inside face of the filter shall be 3/4 clean stone. 8. Extend the stone outlet a minimum of 6' to prevent scouring. 9. Ensure that the emergency spillway is constructed on natural ground (earth). 10. Stabilize the embankments and any other disturbed areas and seed using the vegetation plan guidelines and specifications F6] Figure 6.65a Porous baffles in a sediment basin. The flow is distributed evenly across the basin to reduce flow rates and turbulence, resulting in greater sediment retention. Baffles need to be installed correctly in order fully provide their benefits. Refer to Figure 6.65b and the following key points: • The baffle material needs to be secured at the bottom and sides using staples or by trenching as for silt fence. • Most of the sediment will accumulate in the first bay, so this should be readily accessible for maintenance. Support rope Support post, to wire to pre- 24"into bottom vent sagging or side Stake to support Figure 6.65b Cross-section of a porous baffle in a sediment basin. Note that there is no weir because the water flows through the baffle material. 6.65.2 Re%'. 6/06 ? vn- itm m ur Stmtlar, STaplea or trenched into bottom or side Practice Standards and Vpeci/ications N N 0 U Z C_ 0 a- L 0) O T u Ln (D (D d 7 Ll- iccv. wuo ().OJ.3 0 Estimated sediment storage required (cu ft) Thousands o w o u+ ? ? 0 0 CL m 46< ?o II-CO y m = A d CL v V Co O a m G cx. y C O y ? ?D co CD 0 y y m O i 8.0736 Rev. U193 Culvert Summary All culverts are Smooth wall lined plastic Culvert Diameter BC-C1 15 in BC-C1a 30 in BC-C2 30 in BC-C3 15 in BC-C4 30 in BC-C5 15 in BC-C6 15 in BC-C7 18 in BC-C8 15 in BC-C9 15 in BC-C10 15 in BC-C11 18 in BC-C12 24 in BC-C13 15 in BC-C14 30 in BC-C15 15 in BC-C16 15 in BC-C17 15 in Runoff Calculations for Culvert BC-C1 n.,nnri r,+inr, Acres C-Value Coef. Bare Sand vSoil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.076 0.15 0.0114 Woodlands 0.51 0.1 0:051 Roadway ravel 0.101 0.35 0.0354 imais u.bui u.uyiu C= 0.1 (coef) / 0.687 (acres; = 0.1423 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1423 X 7.06 X 0.687 = 0.6901 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i)(A) = 0.1423 X 5.21 X 0.687 = 0.5093 cfs Project Description BC-C1 Worksheet Circular Channel - BC-C1 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.080000 ft/ft Diameter 15 in Discharge 0.69 cfs Results Depth 0.15 ft Flow Area 0.1 ft2 Wetted Perimeter 0.87 ft Top Width 0.80 ft Critical Depth 0.32 ft Percent Full 11.7 % Critical Slope 0.003095 f 1ft Velocity 8.58 ft/s Velocity Head 1.14 ft Specific Energy 1.29 ft Froude Number 4.78 Maximum Discharge 25.55 cfs Discharge Full 23.75 cfs Slope Full 0.000068 ft/ft Flow Type Supercritical 15 in I 0.15 ft --I-------- _J VA L- H:1.0 NTS Runoff Calculations for Culvert BC-C1a Acres C-Value Coef. Bare Sand vSoil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.0572 0.15 0.0086 Woodlands 48.81 0.1 4.881 Roadway ravel 0.376 0.35 0.1316 I otals 49243 5.U11L C = 5.02 (coef) / 49.24 (acres; = 0.102 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.102 X 7.06 X 49.24 = 35.45 cfs i = Rainfall Intensity for 2 year, 1 day storm ='5.21 inches Q = (C)(1) (A) = 0.102 X 5.21 X 49.24 = 26.16 cfs Project Description BC-C1a Worksheet Circular Channel - BC-C1 a Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.050000 ft/ft Diameter 30 in Discharge 35.45 cfs Results Depth 0.93 ft Flow Area 1.7 ft2 Wetted Perimeter 3.29 ft Top Width 2.42 ft Critical Depth 2.02 ft Percent Full 37.4 % Critical Slope 0.004534 ft/ft Velocity 21.18 ft/s Velocity Head 6.97 ft Specific Energy 7.91 ft Froude Number 4.49 Maximum Discharge 128.25 cfs Discharge Full 119.23 cfs Slope Full 0.004420 ft/ft Flow Type Supercritical 30 in I 0.93 ft V:1 H:1 NTS Runoff Calculations for Culvert BC-C2 Pl_ Arm-, (,-Value Coef. LJGO%11l LIV11 Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.572 0.15 0.0858 Woodlands 48.81 0.1 4.881 Roadway ravel 0.376 0.35 0.1316 i LAW5 "+y. f w ?.%Jvu-r C= 5.1 (coef) / 49.76 (acres; = 0.1025 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1025 X 7.06 X 49.76 = 35.995 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1025 X 5.21 X 49.76 = 26.563 cfs Project Description BC-C2 Worksheet Circular Channel - BC-C2 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.110000 ft/ft Diameter 30 in Discharge 36.00 cfs Results Depth 0.77 ft Flow Area 1.3 ft2 Wetted Perimeter 2.93 ft Top Width 2.30 ft Critical Depth 2.04 ft Percent Full 30.6 % Critical Slope 0.004615 ft/ft Velocity 28.27 ft/s Velocity Head 12.42 ft Specific Energy 13.18 ft Froude Number 6.70 Maximum Discharge 190.23 cfs Discharge Full 176.84 cfs Slope Full 0.004557 ft/ft Flow Type Supercritical 1- 30 in 0.77 ft I V:1 I H:1 NTS Runoff Calculations for Culvert BC-C3 UeSGI l IIUI I 0 0 2 0 Bare Sand Soil level . Bare Soil (sloping) 0 0.25 0 Grassland 0.09 0.15 0.0135 Woodlands 1.65 0.1 0.165 Roadway ravel 0.119 0.35 0.0417 w nrn A 77(17 I UICUZ) 1.U1Ja v•?-?-"'- C = 0.22 (coef) / 1.859 (acres; = 0.1184 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i)(A) = 0.1184 X 7.06 X 1.859 = 1.5543 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1184 X 5.21 X 1.859 = 1.147 cfs Project Description BC-C3 Worksheet Circular Channel - BC-C3 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.030000 ft/ft Diameter 15 in Discharge 1.55 cfs Results Depth 0.28 ft Flow Area 0.2 ftz Wetted Perimeter 1.22 ft Top Width 1.04 ft Critical Depth 0.49 ft Percent Full 22.1 % Critical Slope 0.003148 ft/ft Velocity 7.73 ft/s Velocity Head 0.93 ft Specific Energy 1.20 ft Froude Number 3.09 Maximum Discharge 15.65 cfs Discharge Full 14.54 cfs Slope Full 0.000343 ft/ft Flow Type Supercritical 15 in I 0.218 ft j VI L H:1 NTS Runoff Calculations for Culvert BC-C4 ArrrP,, C-Value Coef. V V V V I I Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.03 0.15 0.0045 Woodlands 46.71 0.1 4.671 Roadway ravel 0.115 0.35 0.0403 i oiais 40.000 +.1 Uo C = 4.72 (coef) / 46.86 (acres, = 0.1006 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1006 X 7.06 X 46.86 = 33.293 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1006 X 5.21 X 46.86 = 24.569 cfs Project Description BC-C4 Worksheet Circular Channel - BC-C4 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.090000 ft/ft Diameter 30 in Discharge 33.29 cfs Results Depth 0.77 ft Flow Area 1.3 ft2 Wetted Perimeter 2.95 ft Top Width 2.31 ft Critical Depth 1.96 ft Percent Full 31.0 % Critical Slope 0.004236 ft/ft Velocity 25.73 ft/s Velocity Head 10.29 ft Specific Energy 11.06 ft Froude Number 6.06 Maximum Discharge 172.07 cfs Discharge Full 159.96 cfs Slope Full 0.003899 ft/ft Flow Type Supercritical I 30 in 0.77 ft I I V:1 H:1 NTS Runoff Calculations for Culvert BC-C5 M,.,.,.r;..4;?n Acres C-Value Coef. vvvvBare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.09 0.15 0.0135 Woodlands 1.4 0.1 0.14 Roadway ravel 0.119 0.35 0.0417 i oiais I .Out) U. 1 UU4 C= 0.2 (coef) / 1.609 (acres; = 0.1213 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1213 X 7.06 X 1.609 = 1.3778 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i)(A) = 0.1213 X 5.21 X 1.609 = 1.0167 cfs Project Description BC-C5 Worksheet Circular Channel - BC-C5 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.030000 ft/ft Diameter 15 in Discharge 1.38 cfs Results Depth 0.26 ft Flow Area 0.2 ftz Wetted Perimeter 1.18 ft Top Width 1.01 ft Critical Depth 0.46 ft Percent Full 20.8 % Critical Slope 0.003127 ft/ft Velocity 7.46 ft/s Velocity Head 0.86 ft Specific Energy 1.12 ft Froude Number 3.08 Maximum Discharge 15.65 cfs Discharge Full 14.54 cfs Slope Full 0.000269 ft/ft Flow Type Supercritical 15 in I I 0,2L6 It v:1 H:1 NTS Runoff Calculations for Culvert BC-C6 Arras (?-Value Coef. vcat+i i uvi i are Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.182 0.15 0.0273 Woodlands 0.45 0.1 0.045 Roadwa ravel 0.142 0.35 0.0497 ., 1 otais V. i i 1+ V. « C = 0.12 (coef) / 0.774 (acres, = 0.1576 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1576 X 7.06 X 0.774 = 0.8613 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1576 X 5.21 X 0.774 = 0.6356 cfs Project Description BC-C6 Worksheet Circular Channel - BC-C6 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.060000 ft/ft Diameter 15 in Discharge 0.86 cfs Results Depth 0.17 ft Flow Area 0.1 ft2 Wetted Perimeter 0.96 ft Top Width 0.87 ft Critical Depth 0.36 ft Percent Full 14.0 % Critical Slope 0.003082 ft/ft Velocity 8.29 ft/s Velocity Head 1.07 ft Specific Energy 1.24 ft Froude Number 4.22 Maximum Discharge 22.13 cfs Discharge Full 20.57 cfs Slope Full 0.000105 ft/ft Flow Type Supercritical f 15 In i 0.17 ft i -------- v:1 H:1 NTS Runoff Calculations for Culvert BC-C7 Arrac -\/al jp Cnef_ LIGJIiI UVI Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.4165 0.15 0.0625 Woodlands 10.752 0.1 1.0752 Roadwa (gravel) 1 0.5086 0.35 0.178 w n w r? 1 otais i i.vi r I.J Ili ! C = 1.32 (coef) / 11.68 (acres, = 0.1127 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i)(A) = 0.1127 X 7.06 X 11.68 = 9.2887 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i)(A) = 0.1127 X 5.21 X 11.68 = 6.8547 cfs Project Description BC-C7 Worksheet Circular Channel - BC-C7 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.060000 ft/ft Diameter 18 in Discharge 9.29 cfs Results Depth 0.54 ft Flow Area 0.6 ft2 Wetted Perimeter 1.93 ft Top Width 1.44 ft Critical Depth 1.18 ft Percent Full 36.0 % Critical Slope 0.005025 ft/ft Velocity 16.20 ft/s Velocity Head 4.08 ft Specific Energy 4.62 ft Froude Number 4.53 Maximum Discharge 35.98 cfs Discharge Full 33.45 cfs Slope Full 0.004627 ft/ft Flow Type Supercritical 18 in I 0.514 ft VI L. HA NTS Runoff Calculations for Culvert BC-C8 nacr-rintinn Acres C-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.413 0.15 0.062 Woodlands 1.717 0.1 0.1717 Roadway ravel 0.312 0.35 0.1092 i otals L.44Z U.642U C = 0.34 (coef) / 2.442 (acres, = 0.1404 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1404 X 7.06 X 2.442 = 2.4205 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i)(A) = 0.1404 X 5.21 X 2.442 = 1.7862 cfs Project Description BC-C8 Worksheet Flow Element Method Solve For Input Data Circular Channel - BC-C8 Circular Channel Manning's Formula Channel Depth Mannings Coefficient 0.010 Slope 0.050000 ft/ft Diameter 15 in Discharge 2.42 cfs Results Depth 0.30 ft Flow Area 0.2 ftz Wetted Perimeter 1.29 ft Top Width 1.07 ft Critical Depth 0.62 ft Percent Full 24.2 % Critical Slope 0.003368 ft/ft Velocity 10.53 ft/s Velocity Head 1.72 ft Specific Energy 2.03 ft Froude Number 4.01 Maximum Discharge 20.20 cfs Discharge Full 18.78 cfs Slope Full 0.000831 ft/ft Flow Type Supercritical 15 in -1- 0.310 ft ----L--.- -_ _ VA L HA NTS Runoff Calculations for Culvert BC-C9 Aram-, ('.-\/aliie Coef. vcovuvBare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.218 0.15 0.0327 Woodlands 1.54 0.1 0.154 Roadwa ravel 0.207 0.35 0.0725 1 otais 1.yoU U.4 ut- C = 0.26 (coef) / 1.965 (acres, = 0.1319 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i)(A) = 0.1319 X 7.06 X 1.965 = 1.8296 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1319 X 5.21 X 1.965 = 1.3502 cfs Project Description BC-C9 Worksheet Circular Channel - BC-C9 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.070000 ft/ft Diameter 15 in Discharge 1.83 cfs Results Depth 0.24 ft Flow Area 0.2 ft2 Wetted Perimeter 1.14 ft Top Width 0.99 ft Critical Depth 0.54 ft Percent Full 19.4 % Critical Slope 0.003213 ft/ft Velocity 10.94 ft/s Velocity Head 1.86 ft Specific Energy 2.10 ft Froude Number 4.69 Maximum Discharge 23.90 cfs Discharge Full 22.22 cfs Slope Full 0.000475 ft/ft Flow Type Supercritical 15 in i 0.214 ft ---- -- - VA HA N TS Runoff Calculations for Culvert BC-C10 Orrac iP Coef. ue5L:1 i LIUI i Bare Sand Soil level -- 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.132 0.15 0.0198 Woodlands 5.408 0.1 0.5408 Roadway ravel 0.1899 0.35 0.0665 _ r ->nnn n r-771 1 VL010 %J.I cuv +•??• C = 0.63 (coef) / 5.73 (acres, = 0.1094 i = Rainfall Intensity for 10 year, 1 day storm 7.06 inches Q = (C)(i) (A) = 0.1094 X 7.06 X 5.73 = 4.4271 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1094 X 5.21 X 5.73 = 3.267 cfs Project Description BC-C10 Worksheet Circular Channel - BC-C10 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.200000 ft/ft Diameter 15 in Discharge 4.43 cfs Results Depth 0.29 ft Flow Area 0.2 ft2 Wetted Perimeter 1.26 ft Top Width 1.06 ft Critical Depth 0.85 ft Percent Full 23.2 % Critical Slope 0.004247 ft/ft Velocity 20.53 ft/s Velocity Head 6.55 ft Specific Energy 6.84 ft Froude Number 8.01 Maximum Discharge 40.40 cfs Discharge Full 37.55 cfs Slope Full 0.002779 ft/ft Flow Type Supercritical 15 in 029 ft -J-- V:1 L- H:1 NTS Runoff Calculations for Culvert BC-C11 Arrra-, (-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 1.406 0.15 0.2109 Woodlands 5.695 0.1 0.5695 Roadway ravel 2.013 0.35 0.7046 A A A C C = 1.48 (coef) / 9.114 (acres, = 0.1629 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1629 X 7.06 X 9.114 = 10.484 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1629 X 5.21 X 9.114 = 7.7366 cfs Project Description BC-C11 Worksheet Circular Channel - BC-C11 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.080000 ft/ft Diameter 18 in Discharge 10.48 cfs Results Depth 0.53 ft Flow Area 0.6 ftZ Wetted Perimeter 1.92 ft Top Width 1.44 ft Critical Depth 1.24 ft Percent Full 35.6 % Critical Slope 0.005769 ft/ft Velocity 18.59 ft/s Velocity Head 5.37 ft Specific Energy 5.90 ft Froude Number 5.23 Maximum Discharge 41.55 cfs Discharge Full 38.62 cfs Slope Full 0.005895 ft/ft Flow Type Supercritical 18 in 0.53 ft V:1 L--. H:1 NTS Runoff Calculations for Culvert BC-C12 r _ .-a: ArrPS C-Value Coef. V GJVI I 11v11 Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 2.376 0.15 0.3564 Woodlands 23.016 0.1 2.3016 Roadway (gravel) 1 0.31 0.35 0.1085 n -nnr Uld15 /_J.!vG L..I Vv.J C = 2.77 (coef) / 25.7 (acres; = 0.1076 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1076 X 7.06 X 25.7 = 19.531 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1076 X 5.21 X 25.7 = 14.413 cfs Project Description BC-C12 Worksheet Circular Channel - BC-C12 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.100000 ft/ft Diameter 24 in Discharge 19.53 cfs Results Depth 0.62 ft Flow Area 0.8 ft2 Wetted Perimeter 2.37 ft Top Width 1.85 ft Critical Depth 1.59 ft Percent Full 31.1 % Critical Slope 0.004682 ft/ft Velocity 23.43 ft/s Velocity Head 8.53 ft Specific Energy 9.16 ft Froude Number 6.16 Maximum Discharge 100.04 cfs Discharge Full 92.99 cfs Slope Full 0.004411 ft/ft Flow Type Supercritical 24 in ---T. 0.62 ft --- i--.__ VA HA NTS Runoff Calculations for Culvert BC-C13 floerrin4inn Acres (,-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.174 0.15 0.0261 Woodlands 0.381 0.1 0.0381 Roadway ravel 0.161 0.35 0.0564 Totals 0.716 0.1206 C = 0.12 (coef) / 0.716 (acres; = 0.1684 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i)(A) = 0.1684 X 7.06 X 0.716 = 0.8511 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1684 X 5.21 X 0.716 = 0.6281 cfs Project Description BC-C13 Worksheet Circular Channel - BC-C13 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.060000 ft/ft Diameter 15 in Discharge 0.85 cfs Results Depth 0.17 ft Flow Area 0.1 ftZ Wetted Perimeter 0.95 ft Top Width 0.86 ft Critical Depth 0.36 ft Percent Full 13.9 % Critical Slope 0.003083 ft/ft Velocity 8.26 ft/s Velocity Head 1.06 ft Specific Energy 1.23 ft Froude Number 4.21 Maximum Discharge 22.13 cfs Discharge Full 20.57 cfs Slope Full 0.000103 ft/ft Flow Type Supercritical 15 in 0.17 ft v:1 H:1 NTS Runoff Calculations for Culvert BC-C14 (-Value Coef. Bare Sand vSoil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 1.966 0.15 0.2949 Woodlands 20.376 0.1 2.0376 Roadway ravel 0.31 0.35 0.1085 i otais LL.bz)L L.'+'+ I C = 2.44 (coef) / 22.65 (acres, = 0.1078 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1078 X 7.06 X 22.65 = 17.233 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1078 X 5.21 X 22.65 = 12.718 cfs Project Description BC-C14 Worksheet Circular Channel - BC-14 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.020000 ft/ft Diameter 30 in Discharge 17.23 cfs Results Depth 0.81 ft Flow Area 1.4 ftZ Wetted Perimeter 3.03 ft Top Width 2.34 ft Critical Depth 1.40 ft Percent Full 32.5 % Critical Slope 0.002843 ft/ft Velocity 12.45 ft/s Velocity Head 2.41 ft Specific Energy 3.22 ft Froude Number 2.86 Maximum Discharge 81.11 cfs Discharge Full 75.40 cfs Slope Full 0.001045 ft/ft Flow Type Supercritical 30 in 0.61 ft I v:1 L-- H:1 NTS Runoff Calculations for Culvert BC-C15 rlccnrin4inn Acres C.-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.07 0.15 0.0105 Woodlands 4.65 0.1 0.465 Roadway (gravel) 1 0.121 0.35 0.0424 I otals 4.b41 U.Sl /y C = 0.52 (coef) / 4.841 (acres; = 0.107 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.107 X 7.06 X 4.841 = 3.656 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.107 X 5.21 X 4.841 = 2.698 cfs Project Description Worksheet Circular Channel - BC-C15 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.222200 ft/ft Diameter 15 in Discharge 3.66 cfs Results Depth 0.26 ft Flow Area 0.2 ftz Wetted Perimeter 1.18 ft Top Width 1.01 ft Critical Depth 0.77 ft Percent Full 20.5 % Critical Slope 0.003843 ft/ft Velocity 20.15 ft/s Velocity Head 6.31 ft Specific Energy 6.57 ft Froude Number 8.38 Maximum Discharge 42.58 cfs Discharge Full 39.58 cfs Slope Full 0.001896 ft/ft Flow Type Supercritical 15 in --_ - 0.2tI6 ft - -- I - -- - t VI L H:1 NITS Runoff Calculations for Culvert BC-C16 1 - _ _ :.-L:-- Arras (-\/aluP Coef. vco% I I v1 Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.92 0.15 0.138 Woodlands 0.402 0.1 0.0402 Roadway ravel 0.978 0.35 0.3423 n ?nnr I ULd15 L.J v.11cvv C = 0.52 (coef) / 2.3 (acres, = 0.2263 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i)(A) = 0.2263 X 7.06 X 2.3 = 3.6747 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.2263 X 5.21 X 2.3 = 2.7118 cfs Project Description Worksheet Circular Channel - BC-C16 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.030000 ft/ft Diameter 15 in Discharge 3.67 cfs Results Depth 0.43 ft Flow Area 0.4 ft2 Wetted Perimeter 1.56 ft Top Width 1.19 ft Critical Depth 0.77 ft Percent Full 34.3 % Critical Slope 0.003852 ft/ft Velocity 9.88 ft/s Velocity Head 1.52 ft Specific Energy 1.95 ft Froude Number 3.11 Maximum Discharge 15.65 cfs Discharge Full 14.54 cfs Slope Full 0.001915 ft/ft Flow Type Supercritical 15 in 1 0.43 ft v:1 1 H:1 NTS Runoff Calculations for Culvert BC-C17 Description Acres C-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.073 0.15 0.011 Woodlands 0 0.1 0 Roadway ravel 0.046 0.35 0.0161 Totals 0.119 0.0271 C = 0.03 (coef) 1 0.119 (acres; = 0.2273 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.2273 X 7.06 X 0.119 = 0.191 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.2273 X 5.21 X 0.119 = 0.1409 cfs Project Description Worksheet Circular Channel - BC-C17 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Slope 0.280000 ft/ft Diameter 15 in Discharge 0.19 cfs Results Depth 0.06 ft Flow Area 2.1e-2 ft' Wetted Perimeter 0.55 ft Top Width 0.53 ft Critical Depth 0.17 ft Percent Full 4.7 % Critical Slope 0.003383 ft/ft Velocity 8.99 ft/s Velocity Head 1.26 ft Specific Energy 1.32 ft Froude Number 7.93 Maximum Discharge 47.80 cfs Discharge Full 44.43 cfs Slope Full 0.000005 ft/ft Flow Type Supercritical 15 in 0.ft_ ... V:1 1_..._. H:1 NTS Rip Rap Apron Energy Dissipator Pipe Pipe Slope Diameter in M Inches L,D,W,S 0.5 1.0 2.0 4.0 6.0 15 L= (ft) 5 5 7.5 7.5 10 W= (ft) 4 4 5.5 5.5 6.5 D= (in) 9 9 24 24 24 S= (class) A 24 B B B/1 18 - L= (ft) 6 9- 9 12 12 W= (ft) 4.5 6 6 7.5 7.5 - D= (in) 9 24 24 24 24 S= (class) A B B B/1 B/1 24 L= (ft) 12 12 16 20 24 W= (ft) 8 8 10 12 14 D= (in) 24 24 24 24 24 S= (class) B B B/1 1 1 30 L= (ft) 15 15 20 30 30 W= (ft) 10 10 12.5 17.5 17.5 D= (in) 24 24 24 24 24 S= (class) B B B11 1 1 36 L= (ft) 18 24 30 36 W= (ft) 12 15 18 21 D= (in) 24 24 24 24 S= (class) B B/1 B/1 1 42 L= (ft) 28 28 42 W= (ft) 17.5 17.5 24.5 D= (in) 24 24 24 S= (class) B/I Bill B/1 48 L= (ft) 32 4 48 W= (ft) 20 24 28 D= (in) 24 24 24 S= (class) B/1 B/1 1 54 L= (ft) 36 45 54 W= (ft) 22.5 27 31.5 D= (in) 24 24 24 S= (class) B/1 1 1 60 L= (ft) 40 50 W= (ft) 25 30 D= (in) 24 30 S= (class) 1 1 /2 66 L= (ft) 55 66 W= (ft) 35 38.5 D= (in) 30 30 S= (class) 1 /2 1 /2 72 L= (ft) 60 72 W= (ft) 36 42 D= (in) 30 30 S= (class) 1 /2 1 /2 L= Lenath of Apron (ft) W= Width of Anron ft D= Thickness of stone (in) S= Class of stone Recommendations only - install as much pad as space allows Filter fabric should be used PIPE DIA. RIPRAP TYPICAL CONC. FLARED END SECTION ISOMETRIC VIEW i do = PIPE DIA La = APRON LENGTH W = APRON WIDTH 3 X PIPE ° MIN d = APRON DEPTH NOTES: SEE APPROPRIATE SCHEDULE FOR DIMENSIONS 1. La is the length of the riprap apron. 2. d = 1.5 times the maximum stone diameter but not less than 6" PLAN Filter blanket 3.. A filter blanket or filter fabric should be installed between the riprap and soil foundation. Ditch Design Calculations Input data for these calculations were taken from the North Carolina Erosion and Sediment Control Planning and Design Manual and the attached topo Map. All times of concentration were found to be less than 5 minutes. Rainfall intensity: 2 year storm = 5.71 inches (Table, 803c) 10 year storm = 7.50 inches (Table, 803c) Runoff Calculations: Q = CiA Q = Discharge (cfs) I = Rainfall intensity (inches/hour) A = Drainage Area (acres) Manning's n: Bare Soil = 0.035 (Table 805) Jute Netting = 0.028 Straw w/netting = 0.065 Rip Rap Stone = 0.104 Permissible Shear Stress: Jute Net = 0.045psf (Table 805) Straw w/netting = 1.45psf Rip Rap Stone = 4.00lb/ft2 Hydraulic Radius = A/P = Ratio of flow area to wetted perimeter VR = Product of velocity and hydraulic radius (Fig. 805c) for grass lined channel manning's n. Velocities greater than 2 fps must use temporary or permanent linings Shear Stress Calculations: T = yds T = Shear Stress Y = Unit weight of water (62.41b/ft2) D = Flow depth in Ft S = Channel Gradient in ft/ft Ditch Summary Ditch Lining BC-D1 Grass BC-D2 Grass BC-D3 Grass BC-D4 Grass BC-D5 Grass BC-D6 Grass BC-D7 Grass BC-D8 Grass BC-D9 Grass BC-D10 Grass BC-D11 Grass BC-D12 Grass BC-D13 Grass BC-D14 Grass BC-D14a Grass BC-D15 Rip Rap BC-D16 Rip Rap BC-D17 Grass BC-D18 Grass BC-D19 Grass BC-D20 Grass BC-D21 Grass BC-D22 Grass BC-D22a Grass BC-D23 Grass Temporary Liner Straw Liner w/ Net Straw Liner w/ Net Straw Liner w/ Net Straw Liner w/ Net Jute Lining Jute Lining Straw Liner w/ Net Jute Lining Straw Liner w/ Net Jute Lining Straw Liner w/ Net Straw Liner w/ Net Straw Liner w/ Net Straw Liner w/ Net Jute Lining Straw Liner w/ Net Straw Liner w/ Net Straw Liner w/ Net Straw Liner w/ Net Straw Liner w/ Net Straw Liner w/ Net Jute Lining Straw Liner w/ Net Runoff Calculations for Ditch BC-D1 nPSr rintinn Acres C-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.076 0.15 0.0114 Woodlands 0.51 0.1 0.051 Roadway ravel 0.101 0.35 0.0354 Totals 0.687 0.0978 C = 0.0978 (coef) / 0.687 (acres) = 0.1422853 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1423 X 7.06 X 0.687 = 0.690115 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1423 X 5.21 X 0.687 = 0.5092775 cfs Project Description BC-D1 Worksheet Trapezoidal Channel - BC-D1 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.145000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.73 cfs Results Depth 0.07 ft Flow Area 0.2 ftZ Wetted Perimeter 2.17 ft Top Width 2.07 ft Critical Depth 0.16 ft Critical Slope 0.012238 ft/ft Velocity 4.82 ft/s Velocity Head 0.36 ft Specific Energy 0.44 ft Froude Number 3.13 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel - BC-D1 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.145000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.56 cfs Results Depth 0.08 ft Flow Area 0.2 ftZ Wetted Perimeter 2.17 ft Top Width 2.08 ft Critical Depth 0.13 ft Critical Slope 0.024989 ft/ft Velocity 3.52 ft/s Velocity Head 0.19 ft Specific Energy 0.27 ft Froude Number 2.25 Flow Type Supercritical Determine the shear stress T=62.4 X 0.08 X 0.145 = 0.72384 Ib/ftZ Permissible shear stress if 0.45lb/ftZ Shear stress is too high Project Description Worksheet Trapezoidal Channel - BC-D1 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.145000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.56 cfs Results Depth 0.13 ft Flow Area 0.3 ft2 Wetted Perimeter 229 ft Top Width 2.13 ft Critical Depth 0.13 ft Critical Slope 0.134667 ft/ft Velocity 2.08 ft/s Velocity Head 0.07 ft Specific Energy 0.20 ft Froude Number 1.03 Flow Type Supercritical Determine the shear stress T=62.4 X 0.13 X 0.145 =1.17624 Ib/ft2 Permissible shear stress if 1.45lb/ft2 Temporary Lining OK VR= 2.08 x (0.3/2.29) =0.27 Mannings (Curve E figure 805c) = 0.057 Project Description Worksheet Trapezoidal Channel - BC-D1 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.057 Slope 0.145000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.69 cfs Results Depth 0.14 ft Flow Area 0.3 ft2 Wetted Perimeter 2.30 ft Top Width 2.14 ft Critical Depth 0.15 ft Critical Slope 0.100284 ft/ft Velocity 2.45 ft/s Velocity Head 0.09 ft Specific Energy 0.23 ft Froude Number 1.19 Flow Type Supercritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 2.45 is OK 0.14 ft 2.00 ft - V:1 [- :2.0 H:2.0 NTS Runoff Calculations for Ditch BC-D2 Acres C.-Value Coef. V t/JV11 Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.09 0.15 0.0135 Woodlands 1.65 0.1 0.165 Roadway ravel 0.119 0.35 0.0417 i otais i .oua V.LLVL C = 0.2202 (coef) / 1.859 (acres) = 0.1184239 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1184 X 7.06 X 1.859 = 1.554259 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1184 X 5.21 X 1.859 = 1.1469815 cfs Project Description BC-D2 Worksheet Trapezoidal Channel - BC-D2 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.115000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.55 cfs Results Depth 0.13 ft Flow Area 0.3 ft2 Wetted Perimeter 2.28 ft Top Width 2.13 ft Critical Depth 0.26 ft Critical Slope 0.011122 ft/ft Velocity 5.94 ft/s Velocity Head 0.55 ft Specific Energy 0.68 ft Froude Number 2.99 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel - BC-D2 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.115000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.15 cfs Results Depth 0.13 ft Flow Area 0.3 ft2 Wetted Perimeter 2.29 ft Top Width 2.13 ft Critical Depth 0.21 ft Critical Slope 0.022588 ft/ft Velocity 4.30 ft/s Velocity Head 0.29 ft Specific Energy 0.42 ft Froude Number 2.14 Flow Type Supercritical Determine the shear stress T=62.4 X 0.13 X 0.115 = 0.93288 Ib/ft2 Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel - BC-D2 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.115000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.50 ft Discharge 1.15 cfs Results Depth 0.19 ft Flow Area 0.5 ftZ Wetted Perimeter 2.92 ft Top Width 2.69 ft Critical Depth 0.18 ft Critical Slope 0.121950 ft/ft Velocity 2.35 ft/s Velocity Head 0.09 ft Specific Energy 0.27 ft Froude Number 0.97 Flow Type Subcritical Determine the shear stress T=62.4 X 0.19 X 0.115 =1.36lb/ft2 Permissible shear stress if 1.451b/ft2 Temporary Lining OK VR= 2.35 x (0.5/2.92) =0.40 Mannings (Curve E figure 805c) = 0.05 Project Description Worksheet Trapezoidal Channel - BC-D2 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.050 Slope 0.115000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.50 ft Discharge 1.55 cfs Results Depth 0.19 ft Flow Area 0.5 ftZ Wetted Perimeter 2.93 ft Top Width 2.69 ft Critical Depth 0.23 ft Critical Slope 0.069112 ft/ft Velocity 3.10 ft/s Velocity Head 0.15 ft Specific Energy 0.34 ft Froude Number 1.27 Flow Type Supercritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 3.10 is OK O.-1p ft -- --_---2.50 ft- ---- --_ _. _ -i VA H:2.0 NTS Runoff Calculations for Ditch BC-D3 nnot-rintinn Acres C-Value Coef. Bare Sand rSoil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.03 0.15 0.0045 Woodlands 1.39 0.1 0.139 Roadway ravel 0.115 0.35 0.0403 i otais 1.o15o U. 000 C= 0.1838 (coef) / 1.535 (acres) = 0.1197068 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1197 X 7.06 X 1.535 = 1.297275 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1197 X 5.21 X 1.535 = 0.9573375 cfs Project Description BC-D3 Worksheet Trapezoidal Channel - BC-D3 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.112000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.38 cfs Results Depth 0.12 ft Flow Area 0.2 ft2 Wetted Perimeter 2.27 ft Top Width 2.12 ft Critical Depth 0.24 ft Critical Slope 0.011274 ft/ft Velocity 5.64 ft/s Velocity Head 0.49 ft Specific Energy 0.61 ft Froude Number 2.93 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel - BC-D3 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.112000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.05 cfs Results Depth 0.12 ft Flow Area 0.3 ft2 Wetted Perimeter 2.28 ft Top Width 2.12 ft Critical Depth 0.20 ft Critical Slope 0.022849 ft/ft Velocity 4.12 ft/s Velocity Head 0.26 ft Specific Energy 0.39 ft Froude Number 2.10 Flow Type Supercritical Determine the shear stress T=62.4 X 0.12 X 0.112 = 0.84lb/ft2 Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel - BC-D3 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.112000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.50 ft Discharge 1.05 cfs Results Depth 0.18 ft Flow Area 0.5 ft2 Wetted Perimeter 2.90 ft Top Width 2.68 ft Critical Depth 0.17 ft Critical Slope 0.123620 ft/ft Velocity 2.26 ft/s Velocity Head 0.08 ft Specific Energy 0.26 ft Froude Number 0.96 Flow Type Subcritical Determine the shear s tress T=62.4 X 0.18 X 0.112 =1257894 Ib/ft2 Permissible shear stress if 1.45lb/ft2 Temporary Lining OK VR= 2.26 x (0.5/2.90) =0.39Mannings (Curve E figure 805c) _ .075 Project Description Worksheet Trapezoidal Channel - BC-D3 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.075 Slope 0.112000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.50 ft Discharge 1.30 cfs Results Depth 0.22 ft Flow Area 0.6 ftZ Wetted Perimeter 3.00 ft Top Width 2.72 ft Critical Depth 0.20 ft Critical Slope 0.159477 ft/ft Velocity 2.22 ft/s Velocity Head 0.08 ft Specific Energy 0.30 ft Froude Number 0.85 Flow Type Subcritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 2.22 is OK 0.2'2 ft - 2.50 ft - VA H :2.0 NTS Runoff Calculations for Ditch BC-D4 Ali-.nnrir?+i^n AcrP? C-Value Coef_ Bare Sand VSoil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.09 0.15 0.0135 Woodlands 1.4 0.1 0.14 Roadway ravel 0.119 0.35 0.0417 otais 'I .bUy U. I yZ) L C= 0.1952 (coef) / 1.609 (acres) = 0.1212865 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1213 X 7.06 X 1.609 = 1.377759 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1213 X 5.21 X 1.609 = 1.0167315 cfs Project Description BC-D4 Worksheet Trapezoidal Channel - BC-D4 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.077000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.38 cfs Results Depth 0.13 ft Flow Area 0.3 ftZ Wetted Perimeter 2.30 ft Top Width 2.13 ft Critical Depth 0.24 ft Critical Slope 0.011274 ft/ft Velocity 5.01 ft/s Velocity Head 0.39 ft Specific Energy 0.52 ft Froude Number 2.46 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel - BC-D4 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.077000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.02 cfs Results Depth 0.14 ft Flow Area 0.3 ftZ Wetted Perimeter 2.30 ft Top Width 2.14 ft Critical Depth 0.20 ft Critical Slope 0.022937 ft/ft Velocity 3.62 ft/s Velocity Head 0.20 ft Specific Energy 0.34 ft Froude Number 1.76 Flow Type Supercritical Determine the shear stress T=62.4 X 0.14 X 0.077 = 0.67lb/ft2 Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel - BC-D4 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.077000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.02 cfs Results Depth 0.23 ft Flow Area 0.5 ft2 Wetted Perimeter 2.51 ft Top Width 2.23 ft Critical Depth 0.20 ft Critical Slope 0.123609 ft/ft Velocity 2.11 ft/s, Velocity Head 0.07 ft Specific Energy 0.30 ft Froude Number 0.80 Flow Type Subcritical Determine the shear stress T=62.4 X 0.23 X 0.077 =1.111b/ft2 Permissible shear stress if 1.45lb/ft2 Temporary Lining OK VR= 2.11 x (0.5/2.51) =0.42 Mannings (Curve E figure 805c) = 0.049 Project Description Worksheet Trapezoidal Channel - BC-D4 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.049 Slope 0.077000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.38 cfs Results Depth 0.23 ft Flow Area 0.5 ft2 Wetted Perimeter 2.52 ft Top Width 2.23 ft Critical Depth 0.24 ft Critical Slope 0.067672 ft/ft Velocity 2.82 ft/s Velocity Head 0.12 ft Specific Energy 0.35 ft Froude Number 1.06 Flow Type Supercritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 2.82 is OK 0_.2? ft r - 2.00 ft - -- - - VA H:2.0 NTS Runoff Calculations for Ditch BC-D5 Descrintion Acres C-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.04 0.15 0.006 Woodlands 0.19 0.1 0.019 Roadway ravel 0 0.35 0 Totals 0.23 0.025 C = 0.025 (coef) / 0.23 (acres) = 0.1086957 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1087 X 7.06 X 0.23 = 0.1765 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1087 X 5.21 X 0.23 = 0.13025 cfs rroject Uescription BC-D5 Worksheet Trapezoidal Channel - BC-D5 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.150000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.19 cfs Results Depth 0.03 ft Flow Area 0.1 ft2 Wetted Perimeter 2.07 ft Top Width 2.03 ft Critical Depth 0.06 ft Critical Slope 0.015367 ft/ft Velocity 2.87 ft/s Velocity Head 0.13 ft Specific Energy 0.16 ft Froude Number 2.82 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel - BC-D5 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.150000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.14 cfs Results Depth 0.03 ft Flow Area 0.1 ft2 Wetted Perimeter 2.08 ft Top Width 2.03 ft Critical Depth 0.05 ft Critical Slope 0.031715 ft/ft Velocity 2.10 ft/s Velocity Head 0.07 ft Specific Energy 0.10 ft Froude Number 2.03 Flow Type Supercritical Determine the shear stres s T=62.4 X 0.03 X 015 = 0.28lb/ft2 Permissible shear stress if 0.45lb/ft2 Temporary' Lining OK VR= 2.10 x (0.1/2.08) =0.10 Mannings (Curve E figure 805c) = 0.083 Project Description Worksheet Trapezoidal Channel - BC-D5 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.083 Slope 0.150000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.18 cfs Results Depth 0.07 ft Flow Area 0.2 ftZ Wetted Perimeter 2.17 ft Top Width 2.07 ft Critical Depth 0.06 ft Critical Slope 0.267633 ft/ft Velocity 1.17 ft/s Velocity Head 0.02 ft Specific Energy 0.10 ft Froude Number 0.77 Flow Type Subcritical Tall Fescue permissible veloc ity is 5.0 fps - Velocity of 1.17 is OK ft - 2.00 ft - -- v:1 I H:2.0 NTS Runoff Calculations for Ditch BC-D6 nPGrrlntinn Bare Sand Soil level 1"1%11 GJ 0 %..-vaiuC 0.2 vvel. 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.142 0.15 0.0213 Woodlands 0.26 0.1 0.026 Roadway ravel 0.142 0.35 0.0497 i otals 0.544 0.097 C= 0.097 (coef) / 0.544 (acres) = 0.1783088 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1783 X 7.06 X 0.544 = 0.68482 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1783 X 5.21 X 0.544 = 0.50537 cfs Project Description BC-D6 Worksheet Trapezoidal Channel - BC-D6 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.030000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.68 cfs Results Depth 0.12 ft Flow Area 0.2 ft2 Wetted Perimeter 2.26 ft Top Width 2.12 ft Critical Depth 0.15 ft Critical Slope 0.012360 ft/ft Velocity 2.87 ft/s Velocity Head 0.13 ft Specific Energy 0.24 ft Froude Number 1.51 Flow Type Supercritical Velocity too high - temporar y lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel - BC-D6 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.030000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.51 cfs Results Depth 0.12 ft Flow Area 0.2 ft2 Wetted Perimeter 2.26 ft Top Width 2.12 ft Critical Depth 0.12 ft Critical Slope 0.025373 ft/ft Velocity 2.08 ft/s Velocity Head 0.07 ft Specific Energy 0.19 ft Froude Number 1.08 Flow Type Supercritical Determine the shear stress T=62.4 X 0.12 X 0.03 = 0.22lb/ft2 Permissible shear stress if 0.45lb/ft2 Temporary Lining OK VR= 2.08 x (0.212.26) =0.18 Mannings (Curve E figure 805c) = 0.065 rroject uescnptlon Worksheet Trapezoidal Channel - BC-D6 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data iviannmgs Coefficient 0.065 Slope 0.030000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.68 cfs Kesults Depth 0.24 ft Flow Area 0.5 ftZ Wetted Perimeter 2.53 ft Top Width 2.24 ft Critical Depth 0.15 ft Critical Slope 0.130559 ft/ft Velocity 1.35 ft/s Velocity Head 0.03 ft Specific Energy 0.27 ft Froude Number 0.50 Flow Type Subcritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 1.35 is OK °.# ft I I -2.00 ft------- VA i H:2.0 NTS Runoff Calculations for Ditch BC-D7 rlacrrinfinn Acres C-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.16 0.15 0.024 Woodlands 0.6896 0.1 0.069 Roadway ravel 0.169 0.35 0.0592 Totals 1.0186 0.1521 C = 0.1521 (coef) / 1.019 (acres) = 0.1493324 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i)(A) = 0.1493 X 7.06 X 1.019 = 1.0738966 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1493 X 5.21 X 1.019 = 0.7924931 cfs Project Description BC-D7 Worksheet Trapezoidal Channel - BC-D7 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.111000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.14 cfs Results Depth 0.11 ft Flow Area 0.2 ft2 Wetted Perimeter 2.24 ft Top Width 2.11 ft Critical Depth 0.21 ft Critical Slope 0.011532 ft/ft Velocity 5.24 ft/s Velocity Head 0.43 ft Specific Energy 0.53 ft Froude Number 2.87 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel - BC-D7 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.111000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.87 cfs Results Depth 0.11 ft Flow Area 0.2 ft2 Wetted Perimeter 2.25 ft Top Width 2.11 ft Critical Depth 0.18 ft Critical Slope 0.023429 ft/ft Velocity 3.83 ft/s Velocity Head 0.23 ft Specific Energy 0.34 ft Froude Number 2.06 Flow Type Supercritical Determine the shear stress T=62.4 X 0.11 X .111 = 0.76lb/ftz Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel - BC-D7 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.111000 ft /ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.79 cfs Results Depth 0.17 ft Flow Area 0.4 ftZ Wetted Perimeter 2.39 ft Top Width 2.17 ft Critical Depth 0.17 ft Critical Slope 0.127898 ft/ft Velocity 2.17 ft/s Velocity Head 0.07 ft Specific Energy 0.25 ft Froude Number 0.94 Flow Type Subcritical Determine the shear stress T=62.4 X 0.17X 0.111 =1.17 Ib/ft2 Permissible shear stress if 1.45lb/ftZ Temporary Lining OK VR= 2.17 x (0.4/2.39) =0.36 Mannin s (Curve E figure 805c) = 0.052 Project Description Worksheet Trapezoidal Channel - BC-D7 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.052 Slope 0.111000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.07 cfs Results Depth 0.18 ft Flow Area 0.4 ftZ Wetted Perimeter 2.41 ft Top Width 2.18 ft Critical Depth 0.20 ft Critical Slope 0.078592 ft/ft Velocity 2.79 ft/s Velocity Head 0.12 ft Specific Energy 0.30 ft Froude Number 1.18 Flow Type Supercritical Tall Fescue permissible velo city is 5.0 fps - Velocity of 2.79 is OK 0.19 ft 2.00 ft -- - - J VA H:.2.0 NTS Runoff Calculations for Ditch BC-D8 Description Arrac (:-\/nIiia rnaf Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.17 0.15 0.0255 Woodlands 0 0.1 0 Roadway ravel 0.057 0.35 0.02 1 otals 0.227 C = 0.0455 (coef) / 0.227 (acres) = 0.2002203 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.2002 X 7.06 X 0.227 = 0.320877 cfs 0.0455 i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i)(A) = 0.2002 X 5.21 X 0.227 = 0.2367945 cfs Project Description BC-D8 Worksheet Trapezoidal Channel - BC-D8 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.169000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.32 cfs Results Depth 0.04 ft Flow Area 0.1 ft2 Wetted Perimeter 2.10 ft Top Width 2.04 ft Critical Depth 0.09 ft Critical Slope 0.013955 ft/ft Velocity 3.67 ft/s Velocity Head 0.21 ft Specific Energy 0.25 ft Froude Number 3.13 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel - BC-D8 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.169000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.24 cfs Results Depth 0.04 ft Flow Area 0.1 ft2 Wetted Perimeter 2.10 ft Top Width 2.04 ft Critical Depth 0.08 ft Critical Slope 0.028859 ft/ft Velocity 2.66 ft/s Velocity Head 0.11 ft Specific Energy 0.15 ft Froude Number 2.24 Flow Type Supercritical Determine the shear stress T=62.4 X 0.04 X 0.169 = 0.42lb/ft2 Permissible shear stress if 0.45lb/ft2 Temporary Lining OK VR= 2.66 x (0.1/2.10) =0.22 Mannings (Curve E figure 805c) _ .061 Project Description Worksheet Trapezoidal Channel - BC-D8 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.061 Slope 0.169000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.32 cfs Results uepth 0.09 ft Flow Area 0.2 ftz Wetted Perimeter 2.19 ft Top Width 2.09 ft Critical Depth 0.09 ft Critical Slope 0.129815 ft/ft Velocity 1.85 ft/s Velocity Head 0.05 ft Specific Energy 0.14 ft Froude Number 1.13 Flow Type Supercritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 1.85 is OK i 2.0 - o ft- 0 -019 ft I-- _ - --- v:1I- H :2.0 NTS Runoff Calculations for Ditch BC-D9 Description Acres C-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.2785 0.15 0.0418 Woodlands 2.692 0.1 0.2692 Roadway ravel 0.325 0.35 0.1138 Totals 3.2955 0.4247 C = 0.4247 (coef) / 3.296 (acres) = 0.1288803 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i)(A) = 0.1289 X 7.06 X 3.296 = 2.9985585 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1289 X 5.21 X 3.296 = 2.2128173 cfs Project Description Worksheet Trapezoidal Channel - BC-D9 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.096000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 3.00 cfs Results Depth 0.20 ft Flow Area 0.4 ft2 Wetted Perimeter 2.45 ft Top Width 2.20 ft Critical Depth 0.40 ft Critical Slope 0.010460 ft/ft Velocity 7.12 ft/s Velocity Head 0.79 ft Specific Energy 0.99 ft Froude Number 2.87 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining rroject uescription vvorKsneet Trapezoidal Channel - BC-D9 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.096000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 2.21 cfs Results ueptn 0.20 ft Flow Area 0.4 ft2 Wetted Perimeter 2.46 ft Top Width 2.20 ft Critical Depth 0.33 ft Critical Slope 0.021035 ft/ft Velocity 5.14 ft/s Velocity Head 0.41 ft Specific Energy 0.62 ft Froude Number 2.05 Flow Type Supercritical Determine the shear stress T=62.4 X 0.20 X 0.096 = 1.20 Ib/ft2 Permissible shear stress if 0 45lb/ft2 Shear stress is too high . Try Straw liner with Net Project Description Worksheet Trapezoidal Channel - BC-D9 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.096000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.50 ft Discharge 2.21 cfs Results Depth 0.24 ft Flow Area 0.9 ft2 Wetted Perimeter 4.04 ft Top Width 3.74 ft Critical Depth 0.23 ft Critical Slope 0.112100 ft/ft Velocity 2.54 ft/s Velocity Head 0.10 ft Specific Energy 0.34 ft Froude Number 0.93 Flow Type Subcritical Determine the shear stress T=62.4 X 0.24 X .096 =1.44 Ib/ft2 Permissible shear stress if 1.45lb/ft2 Temporary Lining OK VR= 2.54 x (.9/4.04) =0.57 Mannin s (Curve E figure 805c) = 0.043 Project Description Worksheet Trapezoidal Channel - BC-D9 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.043 Slope 0.096000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.50 ft Discharge 3.00 cfs Results Depth 0.22 ft Flow Area 0.8 ft2 Wetted Perimeter 4.00 ft Top Width 3.72 ft Critical Depth 0.28 ft Critical Slope 0.046877 ft/ft Velocity 3.70 ft/s Velocity Head 0.21 ft Specific Energy 0.44 ft Froude Number 1.40 Flow Type Supercritical Tall Fescue permissible velo city is 5.0 fps - Velocity of 3.70 is OK 0.2;2 ft ?- -- -._ --- - 3.50 ft ----- VA i H:2.0 NTS Runoff Calculations for Ditch BC-D10 Descrintion Bare Sand Soil level /1li1GJ 0 t/-vaiuC UUel. 0.2 0 Bare Soil (sloping) 0 0 25 0 G l . rass and 0.175 0 15 0 0263 W dl d . . oo an s 0.2 0 1 0 02 R d . . oa way (gravel) I 0.1147 0.35 0.0401 i otais 0.4897 0.0864 C = 0.0864 (coef) / 0.49 (acres) = 0.1764243 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1764 X 7.06 X 0.49 = 0.6099487 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1764 X 5.21 X 0.49 = 0.450118 cfs Project Description BC-D10 Worksheet Trapezoidal Channel - BC-D10 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.033000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.61 cfs Results Depth 0.10 ft Flow Area 0.2 ft2 Wetted Perimeter 2.23 ft Top Width 2.10 ft Critical Depth 0.14 ft Critical Slope 0.012575 ft/ft Velocity 2.84 ft/s Velocity Head 0.12 ft Specific Energy 0.23 ft Froude Number 1.56 Flow Type Supercritical Velocity too high - tempo rary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel - BC-D10 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.033000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.45 cfs Results Depth 0.11 ft Flow Area 0.2 ft2 Wetted Perimeter 2.24 ft Top Width 2.11 ft Critical Depth 0.12 ft Critical Slope 0.025848 ft/ft Velocity 2.05 ft/s Velocity Head 0.07 ft Specific Energy 0.17 ft Froude Number 1.12 Flow Type Supercritical Determine the shear stres s T=62.4 X 0.11 X 0.033 = 0.23lb/ft2 Permissible shear stress if 0.45lb/ft2 Temporary Lining OK VR= 2.05x (0.2/2.24) = 0.18 Mannings (Curve E figure 805c) = 0.068 Project Description Worksheet Trapezoidal Channel - BC-D10 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.068 Slope 0.033000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.61 cfs Results Depth 0.22 ft Flow Area 0.5 ftZ Wetted Perimeter 2.50 ft Top Width 2.22 ft Critical Depth 0.14 ft Critical Slope 0.145372 ft/ft Velocity 1.30 ft/s Velocity Head 0.03 ft Specific Energy 0.25 ft Froude Number 0.50 Flow Type Subcritical Tall Fescue permissible veloci ty is 5.0 fps - Velocity of 1.30 is OK 0_2? ft --2.00 ft V:1 H:2.0 NTS Runoff Calculations for Ditch BC-D11 Descrintion Arrae (`-\/nh is (`nof Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.138 0.15 0.0207 Woodlands 1.28 0.1 0.128 Roadway ravel 0.1836 0.35 0.0643 I otals 1.6016 0.213 C = 0.213 (coef) / 1.602 (acres) = 0.132967 i = Rainfall Intensity for 10 year, 1 day storm 7.06 inches Q = (C)(i) (A) = 0.133 X 7.06 X 1.602 = 1.5034976 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.133 X 5.21 X 1.602 = 1.1095216 cfs Project Description Worksheet Trapezoidal Channel - BC-D11 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.090000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.50 cfs Results Depth 0.13 ft Flow Area 0.3 ft2 Wetted Perimeter 2.30 ft Top Width 2.13 ft Critical Depth 0.25 ft Critical Slope 0.011166 ft/ft Velocity 5.43 ft/s Velocity Head 0.46 ft Specific Energy 0.59 ft Froude Number 2.66 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel - BC-D11 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.090000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.50 cfs Results Depth 0.16 ft Flow Area 0.3 ft2 Wetted Perimeter 2.37 ft Top Width 2.16 ft Critical Depth 0.25 ft Critical Slope 0.021885 ft/ft Velocity 4.38 ft/s Velocity Head 0.30 ft Specific Energy 0.46 ft Froude Number 1.94 Flow Type Supercritical Determine the shear stress T=62.4 X 0.16 X 0.09 = 0.89lb/ft2 Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Flow Element Method Solve For Trapezoidal Channel - BC-D11 Trapezoidal Channel Manning's Formula Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.090000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.50 ft Discharge 1.50 cfs Results Depth 0.24 ft Flow Area 0.6 ft2 Wetted Perimeter 3.03 ft Top Width 2.74 ft Critical Depth 0.22 ft Critical Slope 0.117367 ft/ft Velocity 2.40 ft/s Velocity Head 0.09 ft Specific Energy 0.33 ft Froude Number 0.88 Flow Type Subcritical Determine the shear stress T=62.4 X 0.24 X 0.09 = 1.35lb/ft2 Permissible shear stress if 1.45lb/ft2 VR= 2.40 x (0.6/3.03) =0.0.475 Mannin s (Curve E figure 805c) = 0.048 Project Description Worksheet Trapezoidal Channel - BC-D11 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.048 Slope 0.090000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.50 ft Discharge 1.50 cfs Results Depth 0.20 ft Flow Area 0.5 ft2 Wetted Perimeter 2.94 ft Top Width 2.70 ft Critical Depth 0.22 ft Critical Slope 0.064003 ft/ft Velocity 2.91 ft/s Velocity Head 0.13 ft Specific Energy 0.33 ft Froude Number 1.17 Flow Type Supercritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 2.91 is OK 0.2IO ft 2.50 ft V:1 j..:. H:2.0 NTS Runoff Calculations for Ditch BC-D12 Descrintion Arras is r..naf Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.11 0.15 0.0165 Woodlands 0.34 0.1 0.034 Roadway ravel 0.11 0.35 0.0385 Totals 0.56 C = 0.089 (coef) / 0.56 (acres) = 0.1589286 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1589 X 7.06 X 0.56 = 0.62834 cfs 0.089 i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1589 X 5.21 X 0.56 = 0.46369 cfs Project Description BC-D12 Worksheet Trapezoidal Channel - BC-D12 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.182000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.63 cfs Results Depth 0.06 ft Flow Area 0.1 ft2 Wetted Perimeter 2.14 ft Top Width 2.06 ft Critical Depth 0.14 ft Critical Slope 0.012519 ft/ft Velocity 4.87 ft/s Velocity Head 0.37 ft Specific Energy 0.43 ft Froude Number 3.43 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel - BC-D12 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.182000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.46 cfs Results Depth 0.06 ft Flow Area 0.1 ft2 Wetted Perimeter 2.14 ft Top Width 2.06 ft Critical Depth 0.12 ft Critical Slope 0.025722 ft/ft Velocity 3.52 ft/s Velocity Head 0.19 ft Specific Energy 0.26 ft Froude Number 2.46 Flow Type Supercritical Determine the shear stress T=62.4 X 0.06 X .182 = 0.68lb/ft2 Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel - BC-D12 Flow Element Trapezoidal. Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.182000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.46 cfs Results Depth 0.11 ft Flow Area 0.2 ft2 Wetted Perimeter 2.24 ft Top Width 2.11 ft Critical Depth 0.12 ft Critical Slope 0.138625 ft/ft Velocity 2.09 ft/s Velocity Head 0.07 ft Specific Energy 0.18 ft Froude Number 1.13 Flow Type Supercritical Determine the shear stress T=62.4 X 0.11 X 0.182 =1.25 Ib/ft2 Permissible shear stress if 1.45lb/ft2 Temporary Lining OK VR= 2.09 x (0.2/2.24) =0.19 Mannings (Curve E figure 805c) = 0.066 Project Description Worksheet Trapezoidal Channel - BC-D12 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.066 Slope 0.182000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.63 cfs Results Depth 0.13 ft Flow Area 0.3 ft2 Wetted Perimeter 2.29 ft Top Width 2.13 ft Critical Depth 0.14 ft Critical Slope 0.136330 ft/ft Velocity 2.31 ft/s Velocity Head 0.08 ft Specific Energy 0.21 ft Froude Number 1.14 Flow Type Supercritical Tall Fescue permissible ve locity is 5.0 fps - Velocity of 2.31 is OK 9:1 ._-_. F--. _ 2.00 ft V:1 L_ H:2.0 NTS Runoff Calculations for Ditch BC-D13 Descrintion Acres C-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.303 0.15 0.0455 Woodlands 1.377 0.1 0.1377 Roadway ravel 0.202 0.35 0.0707 Totals 1.882 0.2539 C = 0.2539 (coef) / 1.882 (acres) = 0.1348831 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1349 X 7.06 X 1.882 = 1.792181 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1349 X 5.21 X 1.882 = 1.3225585 cfs Project Description Worksheet Trapezoidal Channel - BC-D13 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.095000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.79 cfs Results Depth 0.15 ft Flow Area 0.3 ft2 Wetted Perimeter 2.33 ft Top Width 2.15 ft Critical Depth 0.28 ft Critical Slope 0.010956 ft/ft Velocity 5.89 ft/s Velocity Head 0.54 ft Specific Energy 0.69 ft Froude Number 2.76 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel - BC- D13 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.095000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.32 cfs Results Depth 0.15 ft Flow Area 0.3 ft2 Wetted Perimeter 2.33 ft Top Width 2.15 ft Critical Depth 0.23 ft Critical Slope 0.022202 ft/ft Velocity 4.26 ft/s Velocity Head 0.28 ft Specific Energy 0.43 ft Froude Number 1.98 Flow Type Supercritical Determine the shear stress T=62.4 X 0.15 X 0.095 = 0.89lb/ft2 Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel - BC-D13 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.095000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.50 ft Discharge 1.32 cfs Results Depth 0.22 ft Flow Area 0.6 ft2 Wetted Perimeter 2.99 ft Top Width 2.72 ft Critical Depth 0.20 ft Critical Slope 0.119447 ft/ft Velocity 2.33 ft/s Velocity Head 0.08 ft Specific Energy 0.30 ft Froude Number 0.90 Flow Type Subcritical Determine the shear stress T=62.4 X 0.22 X 0.095 =1.30lb/ft2 Permissible shear stress if 1.451b/ft2 Temporary Lining OK VR= 2.33 x (0.6/2.99) =0.47 Mannings (Curve E figure 805c) =0.047 Project Description Worksheet Trapezoidal Channel - BC-D13 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.047 Slope 0.095000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.50 ft Discharge 1.79 cfs Results Depth 0.21 ft Flow Area 0.6 ft2 Wetted Perimeter 2.98 ft Top Width 2.71 ft Critical Depth 0.25 ft Critical Slope 0.059935 ft/ft Velocity 3.20 ft/s Velocity Head 0.16 ft Specific Energy 0.37 ft Froude Number 1.24 Flow Type Supercritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 3.20 is OK ?1 ft 0.2 ,_ _. _ _ ...... _ -2.50 ft---- --- VAI H :2.0 NTS Runoff Calculations for Ditch BC-D14 Descrintinn Bare Sand Soil level 0 0.2 V V 1 . 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.218 0.15 0.0327 Woodlands 1.54 0.1 0.154 Roadway ravel 0.207 0.35 0.0725 otais 1.965 0.2592 C = 0.2592 (coef) / 1.965 (acres) = 0.131883 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1319 X 7.06 X 1.965 = 1.829599 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1319 X 5.21 X 1.965 = 1.3501715 cfs Project Description Worksheet Trapezoidal Channel BC-D14 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.097000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.83 cfs Results Depth 0.15 ft Flow Area 0.3 ft2 Wetted Perimeter 2.33 ft Top Width 2.15 ft Critical Depth 029 ft Critical Slope 0.010932 ft/ft Velocity 5.98 ft/s Velocity Head 0.56 ft Specific Energy 0.70 ft Froude Number 2.79 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel BC-D14 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.097000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.35 cfs Results Depth 0.15 ft Flow Area 0.3 ft2 Wetted Perimeter 2.34 ft Top Width 2.15 ft Critical Depth 0.24 ft Critical Slope 0.022149 ft/ft Velocity 4.32 ft/s Velocity Head 0.29 ft Specific Energy 0.44 ft Froude Number 2.00 Flow Type Supercritical Determine the shear stress T=62.4 X .15 X .097 = .911b/ft2 Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel BC-D14 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.097000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.50 ft Discharge 1.35 cfs Results Depth 0.22 ft Flow Area 0.6 ft2 Wetted Perimeter 2.99 ft Top Width 2.72 ft Critical Depth 0.21 ft Critical Slope 0.119102 ft/ft Velocity 2.36 fUs Velocity Head 0.09 ft Specific Energy 0.31 ft Froude Number 0.91 Flow Type Subcritical Determine the shear stress T=62.4 X .22 X .097 =1.33lb/ft2 Permissible shear stress if 1.45lb/ft2 Temporary Lining OK VR= 2.36 x (.6/2.99) =.47 Mannings (Curve E figure 805c) =.O 6 Project Description Worksheet Trapezoidal Channel BC-D14 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.046 Slope 0.097000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.50 ft Discharge 1.83 cfs Results Depth 0.21 ft Flow Area 0.6 ft2 Wetted Perimeter 2.98 ft Top Width 2.71 ft Critical Depth 0.25 ft Critical Slope 0.057248 ft/ft Velocity 3.29 ft/s Velocity Head 0.17 ft Specific Energy 0.38 ft Froude Number 1.28 Flow Type Supercritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 3.29 is OK 0.21 fl ,.._ _ .. ._ _ - -2.50 ft v:11 - _ H:2.0 NTS Runoff Calculations for Ditch BC-D14a Descriotion Acres C-Value Coef Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.204 0.15 0.0306 Woodlands 0.144 0.1 0.0144 Roadway ravel 0.138 0.35 0.0483 Totals 0.486 0.0933 C = 0.0933 (coef) / 0.486 (acres) = 0.1919753 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.192 X 7.06 X 0.486 = 0.658698 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.192 X 5.21 X 0.486 = 0.486093 cfs Project Description Worksheet Trapezoidal Channel BC-D14a Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.060000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.66 cfs Results Depth 0.09 ft Flow Area 0.2 ft2 Wetted Perimeter 2.20 ft Top Width 2.09 ft Critical Depth 0.15 ft Critical Slope 0.012431 ft/ft Velocity 3.52 ft/s Velocity Head 0.19 ft Specific Energy 0.28 ft Froude Number 2.07 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel BC-D14a Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.060000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.49 cfs Results Depth 0.09 ft Flow Area 0.2 ft2 Wetted Perimeter 2.21 ft Top Width 2.09 ft Critical Depth 0.12 ft Critical Slope 0.025530 ft/ft Velocity 2.54 ft/s Velocity Head 0.10 ft Specific Energy 0.19 ft Froude Number 1.48 Flow Type Supercritical Determine the shear stress T=62.4 X .09 X .06 = 0.34lb/ft2 Permissible shear stress if 0.45lb/ft2 Temporary Lining OK VR= 2.54 x (.2/2.21) =0.23 M annings (Curve E figure 805c) = 0.06 Project Description Worksheet Trapezoidal Channel BC-D14a Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Slope 0.060000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.66 cfs Results Depth 0.18 ft Flow Area 0.4 ft2 Wetted Perimeter 2.40 ft Top Width 2.18 ft Critical Depth 0.15 ft Critical Slope 0.111849 ft/ft Velocity 1.76 ft/s Velocity Head 0.05 ft Specific Energy 0.23 ft Froude Number 0.75 Flow Type Subcritical Tall Fescue permissible vel ocity is 5.0 fps - Velocity of 1.76 is OK 0.-10 ft _2.00 ft- - -- _? va H:2.0 NTS Runoff Calculations for Ditch BC-D15 n,ncrrrinfiinn Acres C-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.132 0.15 0.0198 Woodlands 2.56 0.1 0.256 Roadway ravel 0.1899 0.35 0.0665 I otals 2.8b1 y U.64L?5 C = 0.3423 (coef) / 2.882 (acres) = 0.1187637 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1188 X 7.06 X 2.882 = 2.4163909 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1188 X 5.21 X 2.882 = 1.7832007 cfs Project Description Worksheet Trapezoidal Channel BC-D15 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.170000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 4.00 ft Discharge 2.42 cfs Results Depth 0.10 ft Flow Area 0.4 ft2 Wetted Perimeter 4.21 ft Top Width 4.10 ft Critical Depth 0.22 ft Critical Slope 0.010556 ft/ft Velocity 6.24 ft/s Velocity Head 0.60 ft Specific Energy 0.70 ft Froude Number 3.58 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel BC-D15 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.170000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 1.78 cfs Results Depth 0.12 ft Flow Area 0.4 ft2 Wetted Perimeter 3.26 ft Top Width 3.12 ft Critical Depth 0.22 ft Critical Slope 0.021346 ft/ft Velocity 5.00 ft/s Velocity Head 0.39 ft Specific Energy 0.50 ft Froude Number 2.61 Flow Type Supercritical Determine the shear stress T=62.4 X .12 X .17 = 127 Ib/ft2 Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel BC-D15 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.170000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 1.78 cfs Results Depth 0.19 ft Flow Area 0.6 ft2 Wetted Perimeter 3.44 ft Top Width 3.19 ft Critical Depth 0.22 ft Critical Slope 0.115037 ft/ft Velocity 2.95 ft/s Velocity Head 0.14 ft Specific Energy 0.33 ft Froude Number 1.20 Flow Type Supercritical Determine the shear stress T=62. 4 X 0.19 X 0.17 =2.01 Ib/ft2 Permissible shear stress if 1.45lb/ft2 Shear stress is too high Try Rip Rap (10-Year Storm) Project Description Worksheet Trapezoidal Channel BC-D15 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.104 Slope 0.170000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 2.42 cfs Results Depth 0.31 ft Flow Area 1.0 ft2 Wetted Perimeter 3.70 ft Top Width 3.31 ft Critical Depth 0.27 ft Critical Slope 0.281947 ft/ft Velocity 2.44 ft/s Velocity Head 0.09 ft Specific Energy 0.41 ft Froude Number 0.79 Flow Type Subcritical Determine the shear stress T=62.4 X 0.31X0.17 =3.2880lb/ft2 Rip Rap Lining OK Permissible shear stress for rip rap 4.Olb/ft2 _ 0.3f ft - 4.00 ft - - v:1 L._. H:2.0 NTS Runoff Calculations for Ditch BC-D16 Arras (;-Value Coef. Bare Sand Soil (level) 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 1.406 0.15 0.2109 Woodlands 2.56 0.1 0.256 Roadway ravel 2.013 0.35 0.7046 locals Z).zi I y ! .I., C = 1.1715 (coef) / 5.979 (acres) = 0.1959274 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(1)(A) = 0.1959 X 7.06 X 5.979 = 8.270437 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1959 X 5.21 X 5.979 = 6.1032545 cfs Project Description Worksheet Trapezoidal Channel BC- D16 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.114000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 8.27 cfs Results Depth 0.27 ft Flow Area 0.9 ft2 Wetted Perimeter 3.61 ft Top Width 3.27 ft Critical Depth 0.60 ft Critical Slope 0.009137 ft/ft Velocity 9.63 ft/s Velocity Head 1.44 ft Specific Energy 1.71 ft Froude Number 3.31 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel BC-D16 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.114000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 8.27 cfs Results Depth 0.34 ft Flow Area 1.1 ft2 Wetted Perimeter 3.75 ft Top Width 3.34 ft Critical Depth 0.60 ft Critical Slope 0.017909 ft/ft Velocity 7.75 ft/s Velocity Head 0.93 ft Specific Energy 1.27 ft Froude Number 2.42 Flow Type Supercritical Determine the shear stress T=6 2.4 X 0.34 X 0.11.4=2.42 Ib/ft2 Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel BC-D16 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.114000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 8.27 cfs Results Depth 0.57 ft Flow Area 1.9 ft2 Wetted Perimeter 4.27 ft Top Width 3.57 ft Critical Depth 0.60 ft Critical Slope 0.096514 ft/ft Velocity 4.44 ft/s Velocity Head 0.31 ft Specific Energy 0.87 ft Froude Number 1.08 Flow Type Supercritical Determine the shear stress T=62.4 X 0.57 X 0.114 =4.05 Ib/ft2 Permissible shear stress if 1.45lb/ftz Shear stress is too high Try Rip Rap (10-Year Storm) Project Description Worksheet Trapezoidal Channel BC-D16 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.104 Slope 0.114000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 4.00 ft Discharge 8.27 cfs Results Depth 0.63 ft Flow Area 2.7 ft2 Wetted Perimeter 5.41 ft Top Width 4.63 ft Critical Depth 0.50 ft Critical Slope 0.240325 ft/ft Velocity 3.05 ft/s Velocity Head 0.14 ft Specific Energy 0.77 ft Froude Number 0.70 Flow Type Subcritical Determine the shear stress T=62.4 X 0.56X0.114 =4.08lb/ft2 Permissible shear stress for rip rap 4.Olb/ft2 Rip Rap Lining OK 0.6j_ ft 8.00 ft VA H:2.0 NTS Runoff Calculations for Ditch BC-D17 nPSrrintinn Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.174 0.15 0.0261 Woodlands 0.381 0.1 0.0381 Roadway ravel 0.161 0.35 0.0564 i otals 0.716 0.1206 C = 0.1206 (coef) / 0.716 (acres) = 0.1683659 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1684 X 7.06 X 0.716 = 0.851083 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1684 X 5.21 X 0.716 = 0.6280655 cfs Project Description Worksheet Trapezoidal Channel BC-D17 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.126000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.85 cfs Results Depth 0.09 ft Flow Area 0.2 ft2 Wetted Perimeter 2.19 ft Top Width 2.09 ft Critical Depth 0.18 ft Critical Slope 0.011984 ft/ft Velocity 4.88 ft/s Velocity Head 0.37 ft Specific Energy 0.46 ft Froude Number 2.98 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel BC- D17 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.126000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.63 cfs Results Depth 0.09 ft Flow Area 0.2 ft2 Wetted Perimeter 2.19 ft Top Width 2.09 ft Critical Depth 0.14 ft Critical Slope 0.024538 ft/ft Velocity 3.53 ft/s Velocity Head 0.19 ft Specific Energy 0.28 ft Froude Number 2.13 Flow Type Supercritical Determine the shear stress T=62.4 X .09 X.126 = .71 lb/ft' Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel BC-D17 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.126000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.63 cfs Results Depth 0.15 ft Flow Area 0.3 ftZ Wetted Perimeter 2.33 ft Top Width 2.15 ft Critical Depth 0.14 ft Critical Slope 0.132240 ft/ft Velocity 2.08 ft/s Velocity Head 0.07 ft Specific Energy 0.21 ft Froude Number 0.98 Flow Type Subcritical Determine the shear stress T=62.4 X . 15 X .126 =1.18 Ib/ftZ Permissible shear stress if 1.45lb/ft2 Temporary Lining OK VR= 2.08 x (0.3/2.33) =0.27 Mannings (Curve E figure 805c) = 0.057 Project Description Worksheet Trapezoidal Channel BC-D17 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.057 Slope 0.126000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.85 cfs Results Depth 0.16 ft Flow Area 0.3 ftZ Wetted Perimeter 2.36 ft Top Width 2.16 ft Critical Depth 0.18 ft Critical Slope 0.097364 ft/ft Velocity 2.53 ft/s Velocity Head 0.10 ft Specific Energy 0.26 ft Froude Number 1.13 Flow Type Supercritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 2.53 is OK 0.116 ft --2.00 ft V:1 I_..:. H:2.0 NTS Runoff Calculations for Ditch BC-D18 nPSrrintinn Acres C-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.187 0.15 0.0281 Woodlands 1.03 0.1 0.103 Roadway ravel 0.149 0.35 0.0522 Totals 1.366 0.1832 C = 0.1832 (coef) / 1.366 (acres) = 0.1341142 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1341 X 7.06 X 1.366 = 1.293392 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1341 X 5.21 X 1.366 = 0.954472 cfs Project Description Worksheet Trapezoidal Channel BC-D18 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.160000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 5.00 ft Discharge 1.29 cfs Results Depth 0.06 ft Flow Area 0.3 ft2 Wetted Perimeter 5.13 ft Top Width 5.06 ft Critical Depth 0.13 ft Critical Slope 0.012125 ft/ft Velocity 4.41 ft/s Velocity Head 0.30 ft Specific Energy 0.36 ft Froude Number 3.23 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel BC-D18 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.160000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.95 cfs Results Depth 0.10 ft Flow Area 0.2 ft2 Wetted Perimeter 2.23 ft Top Width 2.10 ft Critical Depth 0.19 ft Critical Slope 0.023142 ft/ft Velocity 4.44 ft/s Velocity Head 0.31 ft Specific Energy 0.41 ft Froude Number 2.46 Flow Type Supercritical Determine the shear stress T=62.4 X .10 X .16 = 0.99 Ib/ft2 Permissible shear stress if 0.45ib/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel BC-D18 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.160000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 0.95 cfs Results Depth 0.14 ft Flow Area 0.4 ft2 Wetted Perimeter 3.30 ft Top Width 3.14 ft Critical Depth 0.14 ft Critical Slope 0.127184 ft/ft Velocity 2.29 ft/s Velocity Head 0.08 ft Specific Energy 0.22 ft Froude Number 1.11 Flow Type Supercritical Determine the shear stress T=62.4 X 0.14 X 0.16 =1.39 lb/ft' Permissible shear stress if 1.451b/ft2 Temporary Lining OK VR= 2.29 x (.2/3.3) =0.14 Mannings (Curve E figure 805c) = 0.0 .071 Project Description Worksheet Trapezoidal Channel BC-D18 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.071 Slope 0.160000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 1.29 cfs Results Depth 0.17 ft Flow Area 0.5 ft2 Wetted Perimeter 3.38 ft Top Width 3.17 ft Critical Depth 0.18 ft Critical Slope 0.144264 ft/ft Velocity 2.43 ft/s Velocity Head 0.09 ft Specific Energy 0.26 ft Froude Number 1.05 Flow Type Supercritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 2.43 is OK _ 0.1ft I -5.00 ft - -- -- -- - -- V:1 H:2.0 NTS Runoff Calculations for Ditch BC-D19 Descrintion Ar,rAC ('-\/ali is (:naf Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.073 0.15 0.011 Woodlands 0.287 0.1 0.0287 Roadway ravel 0.11 0.35 0.0385 Totals 0.47 0.0782 C = 0.0782 (coef) / 0.47 (acres) = 0.1662766 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1663 X 7.06 X 0.47 = 0.551739 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1663 X 5.21 X 0.47 = 0.4071615 cfs Project Description Worksheet Trapezoidal Channel BC-D19 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.167000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.55 cfs Results Depth 0.06 ft Flow Area 0.1 ft2 Wetted Perimeter 2.13 ft Top Width 2.06 ft Critical Depth 0.13 ft Critical Slope 0.012775 ft/ft Velocity 4.51 ft/s Velocity Head 0.32 ft Specific Energy 0.38 ft Froude Number 3.26 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel BC-D19 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.167000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.41 cfs Results Uepth Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type Determine the shear stress T=62.4 X Shear stress is too high 0.06 ft 0.1 ft2 2.14 ft 2.06 ft 0.11 ft 0.026243 ft/ft 3.27 ft/s 0.17 ft 0.23 ft 2.34 Supercritical 06 X .167 = 0.63 lb/ft' Permissible shear stress if 0.45lb/ft2 Try Straw liner with Net Project Description Worksheet Trapezoidal Channel BC-D19 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.167000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.41 cfs Results Depth 0.10 ft Flow Area 0.2 ftZ Wetted Perimeter 2.23 ft Top Width 2.10 ft Critical Depth 0.11 ft Critical Slope 0.141426 ft/ft Velocity 1.94 ft/s Velocity Head 0.06 ft Specific Energy 0.16 ft Froude Number 1.08 Flow Type Supercritical Determine the shear stress T=62.4 X 0.10 X 0.167 =1.041b/ft2 Permissible shear stress if 1.45lb/ftZ Temporary Lining OK VR= 1.94 x (.2/2.23) =0.17 Mannin s (Curve E figure 805c) = 0.068 Project Description Worksheet Trapezoidal Channel BC-D19 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.068 Slope 0.167000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.55 cfs Results Depth 0.13 ft Flow Area 0.3 ftZ Wetted Perimeter 2.28 ft Top Width 2.13 ft Critical Depth 0.13 ft Critical Slope 0.147681 ft/ft Velocity 2.10 ft/s Velocity Head 0.07 ft Specific Energy 0.20 ft Froude Number 1.06 Flow Type Supercritical Tall Fescue permissible velo city is 5.0 fps - Velocity of 2.10 is OK i j _- 2.00 ft VA H :2.0 NTS Runoff Calculations for Ditch BC-D20 Descrintion Arrce (`_\/nli nn Bare Sand Soil level 0 0.2^ 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.096 0.15 0.0144 Woodlands 3.06 0.1 0.306 Roadway ravel 0.161 0.35 0.0564 I otals 3.317 0.3768 C = 0.3768 (coef) / 3.317 (acres) = 0.1135815 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1136 X 7.06 X 3.317 = 2.659855 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1136 X 5.21 X 3.317 = 1.9628675 cfs Project Description Worksheet Trapezoidal Channel BC- D20 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.113000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 2.66 cfs Results Depth 0.14 ft Flow Area 0.4 ft2 Wetted Perimeter 3.31 ft Top Width 3.14 ft Critical Depth 0.29 ft Critical Slope 0.010293 ft/ft Velocity 6.32 ft/s Velocity Head 0.62 ft Specific Energy 0.76 ft Froude Number 3`04 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel BC-D20 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.113000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 1.96 cfs Results Depth 0.14 ft Flow Area 0.4 ft2 Wetted Perimeter 3.31 ft Top Width 3.14 ft Critical Depth 0.23 ft Critical Slope 0.021047 ft/ft Velocity 4.57 ft/s Velocity Head 0.32 ft Specific Energy 0.46 ft Froude Number 2.18 Flow Type Supercritical Determine the shear stress T=6 2.4 X 0.14 X 0.113 = 0.98lb/ft2 Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel BC-D20 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.113000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.50 ft Discharge 1.96 cfs Results Depth 0.21 ft Flow Area 0.8 ft2 Wetted Perimeter 3.97 ft Top Width 3.71 ft Critical Depth 0.21 ft Critical Slope 0.114253 ft/ft Velocity 2.56 ft/s Velocity Head 0.10 ft Specific Energy 0.31 ft Froude Number 0.99 Flow Type Subcritical Determine the shear stress T=62.4 X 0.21 X 0.113 =1.43lb/ft2 Permissible shear stress if 1.45lb/ft2 Temporary Lining OK VR= 2.56x (.8/3.97) =0.52 Mannings (Curve E figure 805c) = 0.045 Project Description Worksheet Trapezoidal Channel BC-D20 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.045 Slope 0.113000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.50 ft Discharge 2.66 cfs Results Depth 0.20 ft Flow Area 0.7 ft2 Wetted Perimeter 3.96 ft Top Width 3.70 ft Critical Depth 0.26 ft Critical Slope 0.052248 ft/ft Velocity 3.62 ft/s Velocity Head 0.20 ft Specific Energy 0.41 ft Froude Number 1.43 Flow Type Supercritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 3.62 is OK 0 2?ft _.---5.50 ft - VA I- .. H:2.0 NTS h Runoff Calculations for Ditch BC-D21 Descrintinn Bare Sand Soil level 0 v--vuiuc 0.2 VVG1. 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.07 0.15 0.0105 Woodlands 1.81 0.1 0.181 Roadwa ravel 0.121 0.35 0.0424 i otais 2.UU1 0.2339 C = 0.2339 (coef) / 2.001 (acres) = 0.1168666 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1169 X 7.06 X 2.001 = 1.650981 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.1169 X 5.21 X 2.001 = 1.2183585 cfs Project Description Worksheet Trapezoidal Channel BC-D21 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.160000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.65 cfs Results uepth 0.12 ft Flow Area 02 ft2 Wetted Perimeter 2.27 ft Top Width 2.12 ft Critical Depth 0.27 ft Critical Slope 0.011050 ft/ft Velocity 6.74 ft/s Velocity Head 0.71 ft Specific Energy 0.83 ft Froude Number 3.50 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Protect Description Worksheet Trapezoidal Channel BC-D21 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.160000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.22 cfs Results Depth 0.12 ft Flow Area 0.3 ft2 Wetted Perimeter 2.27 ft Top Width 2.12 ft Critical Depth 0.22 ft Critical Slope 0.022417 ft/ft Velocity 4.88 ft/s Velocity Head 0.37 ft Specific Energy 0.49 ft Froude Number 2.50 Flow Type Supercritical Determine the shear stress T=62.4 X 0.12 X 0.16 = 1.20lb/ft2 Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel BC-D21 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.160000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.50 ft Discharge 1.22 cfs Results Depth 0.14 ft Flow Area 0.5 ftz Wetted Perimeter 3.82 ft Top Width 3.64 ft Critical Depth 0.15 ft Critical Slope 0.123667 ft/ft Velocity 2.39 ft/s Velocity Head 0.09 ft Specific Energy 0.23 ft Froude Number 1.13 Flow Type Supercritical Determine the shear stress T=62.4 X 0.14 X 0.16 =1.39 lb/ft' Permissible shear stress if 1.45lb/ftz VR= 2.39x (.5/3.82) =0.31 Mannin s (Curve E figure 805c) = 0.056 Project Description Worksheet Trapezoidal Channel BC-D21 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.056 Slope 0.160000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 1.65 cfs Results Depth 0.17 ft Flow Area 0.5 ftZ Wetted Perimeter 3.39 ft Top Width 3.17 ft Critical Depth 0.21 ft Critical Slope 0.086364 ft/ft Velocity 3.09 ft/s Velocity Head 0.15 ft Specific Energy 0.32 ft Froude Number 1.33 Flow Type Supercritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 3.09 is OK - 0.1 ft 3.25 ft V:1 H:2.0 NTS Runoff Calculations for Ditch BC-D22 Description Acres C-Value Coef. Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 1.007 0.15 0.1511 Woodlands 1.43 0.1 0.143 Roadway ravel 0.1878 0.35 0.0657 Totals 2.6248 0.3598 C = 0.3598 (coef) / 2.625 (acres) = 0.1370695 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1371 X 7.06 X 2.625 = 2.5400468 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches 0 = (C)(i)(A) = 0.1371 X 5.21 X 2.625 = 1.8744538 cfs Project Description Worksheet Trapezoidal Channel BC-D22 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.038000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 2.54 cfs Results Depth 0.24 ft Flow Area 0.5 ftz Wetted Perimeter 2.54 ft Top Width 2.24 ft Critical Depth 0.36 ft Critical Slope 0.010602 ft/ft Velocity 4.97 ft/s Velocity Head 0.38 ft Specific Energy 0.63 ft Froude Number 1.84 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel BC-D22 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.038000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.87 cfs Results Depth 0.25 ft Flow Area 0.5 ftz Wetted Perimeter 2.55 ft Top Width 2.25 ft Critical Depth 0.29 ft Critical Slope 0.021378 ft/ft Velocity 159 ft/s Velocity Head 0.20 ft Specific Energy 0.45 ft Froude Number 1.31 Flow Type Supercritical Determine the shear stress T=62.4 X 0.25 X 0.038 = 0.59lb/ftz Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel BC-D22 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.038000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.87 cfs Results Depth 0.41 ft Flow Area 0.9 ft2 Wetted Perimeter 2.92 ft Top Width 2.41 ft Critical Depth 0.29 ft Critical Slope 0.115209 ft/ft Velocity 2.05 ft/s Velocity Head 0.07 ft Specific Energy 0.48 ft Froude Number 0.59 Flow Type Subcritical Determine the shear stress T=62.4 X 0.60 X 0.038 =1.42lb/ft2 Permissible shear stress if 1.45lb/ft2 Temporary Lining OK VR= 2.05 x (0.9/2.92) =0.63 Mannin s (Curve E figure 805c) = 0.0.042 Project Description Worksheet Trapezoidal Channel BC-D22 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.042 Slope 0.038000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 2.54 cfs Results Depth 0.38 ft Flow Area 0.8 ft2 Wetted Perimeter 2.85 ft Top Width 2.38 ft Critical Depth 0.36 ft Critical Slope 0.046754 ft/ft Velocity 3.04 ft/s Velocity Head 0.14 ft Specific Energy 0.52 ft Froude Number 0.91 Flow Type Subcritical all Fescue permissible velocity is 5.0 fps - Velocity of 4.43 is OK 0.37 ft - -3.00ft- --- - V:1 1 H:2.0 NTS Runoff Calculations for Ditch BC-D22a Description Arras ('.-\/nIiis (-.n,=,f Bare Sand Soil level 0 0.2 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.073 0.15 0.011 Woodlands 0 0.1 0 Roadway ravel 0.046 0.35 0.0161 I otals 0.119 0.0271 C = 0.0271 (coef) / 0.119 (acres) = 0.2273109 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.2273 X 7.06 X 0.119 = 0.190973 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i) (A) = 0.2273 X 5.21 X 0.119 = 0.1409305 cfs Project Description Worksheet Trapezoidal Channel BC-D22a Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.100000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.19 cfs Results Depth 0.04 ft Flow Area 0.1 ft2 Wetted Perimeter 2.08 ft Top Width 2.04 ft Critical Depth 0.07 ft Critical Slope 0.015328 ft/ft Velocity 2.55 ft/s Velocity Head 0.10 ft Specific Energy 0.14 ft Froude Number 2.35 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel BC-D22a Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.100000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.19 cfs Results Depth 0.05 ft Flow Area 0.1 ft2 Wetted Perimeter 2.10 ft Top Width 2.05 ft Critical Depth 0.07 ft Critical Slope 0.030042 ft/ft Velocity 2.08 ft/s Velocity Head 0.07 ft Specific Energy 0.11 ft Froude Number 1.73 Flow Type Supercritical Determine the shear stress T=62.4 X 0.05 X 0.1 = 0.31 lb/ft' Permissible shear stress if 0.45lb/ft2 Temporary Lining OK Shear VR= 2.08 x (0.1/2.10) =.10 M annings (Curve E figure 805c) =0.082 Project Description Worksheet Trapezoidal Channel BC-D22a Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.082 Slope 0.100000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 0.19 cfs Results Depth 0.09 ft Flow Area 0.2 ft2 Wetted Perimeter 2.19 ft Top Width 2.09 ft Critical Depth 0.07 ft Critical Slope 0.257643 ft/ft Velocity 1.07 ft/s Velocity Head 0.02 ft Specific Energy 0.10 ft Froude Number 0.65 Flow Type Subcritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 1.07 is OK 0-019 rc 2.00 fl v:1 H:2.0 NTS Runoff Calculations for Ditch BC-D23 DP_scrintinn Bare Sand Soil level ?,..co 0 v-va1uc 0.2 L.uCI. 0 Bare Soil (sloping) 0 0.25 0 Grassland 0.087 0.15 0.0131 Woodlands 1.03 0.1 0.103 [Roadway ravel 0.096 0.35 0.0336 i otais 1.213 0.1497 C = 0.1497 (coef) / 1.213 (acres) = 0.1233718 i = Rainfall Intensity for 10 year, 1 day storm = 7.06 inches Q = (C)(i) (A) = 0.1234 X 7.06 X 1.213 = 1.056529 cfs i = Rainfall Intensity for 2 year, 1 day storm = 5.21 inches Q = (C)(i)(A) = 0.1234 X 5.21 X 1.213 = 0.7796765 cfs Project Description Worksheet Trapezoidal Channel BC-D23 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.020 Slope 0.170000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.06 cfs Results Depth 0.09 ft Flow Area 0.2 ft2 Wetted Perimeter 2.20 ft Top Width 2.09 ft Critical Depth 0.20 ft Critical Slope 0.011640 ft/ft Velocity 5.82 ft/s Velocity Head 0.53 ft Specific Energy 0.62 ft Froude Number 3.48 Flow Type Supercritical Velocity too high - temporary lining required Try Jute Lining Project Description Worksheet Trapezoidal Channel BC-D23 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.028 Slope 0.170000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 2.00 ft Discharge 1.06 cfs Results Depth 0.11 ft Flow Area 0.2 ft2 Wetted Perimeter 2.24 ft Top Width 2.11 ft Critical Depth 0.20 ft Critical Slope 0.022815 ft/ft Velocity 4.72 ft/s Velocity Head 0.35 ft Specific Energy 0.46 ft Froude Number 2.55 Flow Type Supercritical Determine the shear stress T=62.4 X 0.11 X 0.17 = 1.17 lb/ft' Permissible shear stress if 0.45lb/ft2 Shear stress is too high Try Straw liner with Net Project Description Worksheet Trapezoidal Channel BC-D23 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.065 Slope 0.170000 ft/ft Left Side Slope. 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 1.06 cfs Results Depth 0.14 ft Flow Area 0.4 ft2 Wetted Perimeter 3.32 ft Top Width 3.14 ft Critical Depth 0.16 ft Critical Slope 0.124861 ft/ft Velocity 2.43 ft/s Velocity Head 0.09 ft Specific Energy 0.23 ft Froude Number 1.15 Flow Type Supercritical Determine the shear stress T=62.4 X 0.14 X 0.16 =1.43lb/ft2 Permissible shear stress if 1.45lb/ft2 VR= 2.43 x (0.4/3.32) =.29 Mannin s (Curve E figure 805c) =0.056 Project Description Worksheet Trapezoidal Channel BC-D23 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.056 Slope 0.170000 ft/ft Left Side Slope 2.00 V : H Right Side Slope 2.00 V : H Bottom Width 3.00 ft Discharge 1.06 cfs Results Depth 0.13 ft Flow Area 0.4 ft2 Wetted Perimeter 3.29 ft Top Width 3.13 ft Critical Depth 0.16 ft Critical Slope 0.092677 ft/ft Velocity 2.67 ft/s Velocity Head 0.11 ft Specific Energy 0.24 ft Froude Number 1.32 Flow Type Supercritical Tall Fescue permissible velocity is 5.0 fps - Velocity of 2.67 is OK - - 0.1 ft 3.50 ft _ -j V:1 [- H:2.0 NTS FINANCIAL RESPONSIBILITY/OWNERSHIP FORM SEDIMENTATION POLLUTION CONTROL ACT No person may initiate any land-disturbing activity on one or more acres as covered by the Act before this form and an acceptable erosion and sedimentation control plan have been completed and approved by the Land Quality Section, N.C. Department of Environment and Natural Resources. (Please type or print and, if the question is not applicable or the e-mail and/or fax information unavailable, place N/A in the blank.) Part A. 1. Project Name-Beech C 2. Location of land-disturbing activity: County Mitchell- City or Township_Bakersville Highway/Street-NC 226 Latitude-036-04-48.19N_ Long itude_082-12-31.86W 3. Approximate date land-disturbing activity will commence: After the fact plan (current) 4. Purpose of development (residential, commercial, industrial, institutional, etc.):_Residential 5. Total acreage disturbed or uncovered (including off-site borrow and waste areas): 8.7 6. Amount of fee enclosed: $ 585 . The application fee of $65.00 per acre (rounded up to the next acre) is assessed without a ceiling amount (Example: a 9-acre application fee is $585). 7. Has an erosion and sediment control plan been filed? Yes No Enclosed X 8. Person to contact should erosion and sediment control issues arise during land-disturbing activity: Name-WD Warnell E-mail Address Telephone 828-688-1051 Cell # _912-663-4040 Fax # _828-688-1099_ 9. Landowner(s) of Record (attach accompanied page to list additional owners): Warne Warnell Name P.O. Box 6 Current Mailing Address _828-688-1051 _828-688-1099 Telephone Fax Number _256 Eldora nRoad Current Street Address _ Pembroke _GA _31321_ Ellabell_ _GA _31308_ City State Zip- City State Zip 10. Deed Book No._451 Page No._357 Provide a copy of the most current deed. Part B. 1. Person(s) or firm(s) who are financially responsible for the land-disturbing activity (Provide a comprehensive list of all responsible parties on an attached sheet): _ W.D. Warnell Name E-mail Address P.O. Box 6 Current Mailing Address 256 Eldora nRoad Current Street Address -Pembroke _GA _31321_ _ Ellabell_ City State Zip City Telephone 828-688-1051 Fax Number _GA _31308_ State 828-688-1099 Zip 2. (a) If the Financially Responsible Party is not a resident of North Carolina, give name and street address of the designated North Carolina Agent: Samuel Mosley Name 714 Mullberry Lane Current Mailing Address _Bakersville City Telephone, E-mail Address _714 Mullberry Lane Current Street Address NC 28705 Bakersville NC 28705 State Zip City State 385 3722 Fax Number. (b) If the Financially Responsible Party is a Partnership or other person engaging in business under an assumed name, attach a copy of the Certificate of Assumed Name. If the Financially Responsible Party is a Corporation, give name and street address of the Registered Agent: Name of Registered Agent E-mail Address Current Mailing Address Current Street Address City State Zip City State Zip Telephone Fax Number The above information is true and correct to the best of my knowledge and belief and was provided by me under oath (This form must be signed by the Financially Responsible Person if an individual or his attorney-in-fact, or if not an individual, by an officer, director, partner, or registered agent with the authority to execute instruments for the Financially Responsible Person). I agree to provide corrected information should there be any change in the information provided herein. _WD Warnell -Owner Type or print ame Title or Authority 1?)Z?j Signature Date I ,L t' r G1 a Notary Public of the County of State of North Carolina, hereby certify that ' eiappeared personally before me this day and being duly sworn acknowledged that the above. f? ?L executed by him, ??=yd° t-y 'YYf n Witness my hand and notarial seal, this day of , 20 NotarYl ,i Seal My commission expires Zip Issued Jim 10 2007 426M.00 iftat• of MITCHELL North c,rorrn county Real Estate Excise Tax F on Jan IL D 10 2MIT 907Hif 03 ?2y-PM by: PATTY YOUNG Roolot or of Dada BOOK 451 PAGE 357 Prepared By: Staunton Norris,. Attorney at Law, PO Box 548, Burnsville, NC 28714 STATE OF NORTH CAROLINA WARRANTY DEED COUNTY OF MITCHELL DATE: 10 JANUARY, 2007 PARCEL ID NO: 085600151451 . a. fq 00 JERRY WAYNE HOPSON and wife, MELISSA HOPSON, GRANTORS, hereby deed to W.D. WARNELL of P.O. Box 6, Pembroke, Georgia 37321, GRANTEE, thus; WITNESSETH: FOR TEN DOLLARS AND 0/100 ($10.00) and other good and valuable considerations, the receipt of which are hereby acknowledged, the GRANTORS do hereby bargain, sell and convey (subject to the exceptions and restrictions, hereinafter set forth, if any,) unto the GRANTEE, his heirs, successors and assigns, a one-fourth (1/4`s) undivided interest in and to that certain parcel or tract of land lying and being in Herrell Township, Mitchell County, North Carolina, adjoining the lands of David Dacasto, Gerome Schneider, Doris Byrd, Lee J. Blume, Frank Whitson, the United States of America, Penny Greene, Jack Street, Cecil Hopkins, Roger Jenkins, W.G. Honeycutt, Marshall Street, Bernice Bishop, Milan Street, Lloyd Garland, Marvin Hensley, Jack Hopson, and lands in the Beech Creek Estates Subdivision and being more particularly described as follows: BEING that certain 627.65 acre parcel or tract of land particularly described in a Deed of Gift dated 12 August, 2005 from Barbara Hopson and husband, Jack Hopson to the GRANTOR filed of record in the Mitchell County Deed Registry at Instrument Book 420, Page 413, reference to which is hereby made for the incorporation of a metes and bounds description of said parcel or tract of land. ALSO CONVEYED HEREWITH is the GRANTOR'S interest in a certain Deed of Easement and Road Right of Way from Jack Hopson and wife, Barbara Hopson to W.D. Warnell and Jerry Wayne Hopson appearing of record in the Mitchell County Deed Registry at Instrument Book 420, Page 418. THIS CONVEYANCE is made subject to the rights of way of the North Carolina Department of Transportation for NC Hwy. 226 as the same traverses the premises as well as the rights of others in and to a 0.01 acre cemetery and a 0.26 acre cemetery shown on the map and plat of Randy A. Carpenter referenced in the description of the aforesaid 627.65 acre parcel or tract of land. EXCEPTING AND EXCLUDING HEREFROM the parcels or tracts of land described. in a deed from the GRANTORS and the GRANTEE to Dwayne Taxes Paid APPROVED BY TAX ASSESSOR TO BE Thru Year RECORDED IN THE MITCHELL. COUNTY Dater t? REGISIT OF DEED FICE DATE 1?010? BOOK 951 PAGE 358 Douglas, et ux, recorded in Mitchell County Deed Registry at Instrument Book 427, Page 77; the lands described in two deeds from the GRANTORS and the GRANTEE to Beech Creek Estates, LLC recorded in Instrument Book 430, Page 358 and Instrument Book 427, Page 777, reference to which is hereby made for the incorporation of a more definite and particular description of the lots and land therein described. ALSO EXCEPTING AND EXCLUDING HEREFROM the parcels or tracts of land described in a deed recorded simultaneously herewith from the GRANTORS and the GRANTEE to Beech Creek Estates, LLC for Lot No.'s 41-54 recorded simultaneously herewith at Instrument Book L4 5(_, Page 35S . TO HAVE AND TO HOLD the GRANTOR'S one-fourth (1/4a') undivided interest in and to the hereinabove described parcel or tract of land, subject to the exceptions and reservations hereinabove set forth, together with all rights, privileges and appurtenances thereto belonging unto him, the said GRANTEE, his heirs, successors and assigns, forever. GRANTORS COVENANT to and with GRANTEE, his heirs, successors and assigns, that they are seized of a one-fourth (1/4a') undivided interest in the foregoing land in fee; have the right to convey the same in fee simple; that said land is free and clear of all liens and encumbrances and that they will forever warrant and defend the title to the same against the lawful claims of all persons whomsoever. IN WITNESS WHEREOF, the GRANTORS have hereunto set their hands and affixed their seals this the day and year first above written. I (SEAL) WA PSON q_A '. IlDr3?_ (SEAL) MEL SA HOPS N STATE Od)n4k 00 n0.J COUNTY OF I, , Notary Public, do hereby certify that JERRY WAYN HOP ON ?an d ife, MELISSA HOPSON personally appeared before me this day and acknowledged their due execution of the foregoing WARRANTY DEED for all purposes therein expressed. WITNESS my hand and Notarial Seal this the day of 2007. t NOTARY PJJBLIC V My Commission Expires *Suv -ri O O O r .L7 Ln Lf1 O Lri w r r r r ti r r r o m m ti 9 STYLE xPP M O> 0-j-< 0m O s too i ` 41! O rr? ? Vl `CI `V ! fC) ?s 03 03 m move W Un wN rzC. 0 -"6) m ZONigom n2Am OD r CT r n D -I (m nn `` V? 4z. Q Cc o? m m ? $ Cfl = V N ?u W o° 0 2 1,3'3010 " W N, ?... I 5 1 5 ?'tt ?t 0 0 (3 J rT-?? Tie _Z Z t0 li IMF ? '? ?! 1 ? t ? '` Z ? f t •,,. '' -? ?f If ,i' `? i '.; y ?! .< S I S J r !f '., x t ? } '''?.,, ?.,n; (M I ?- i3`.kEE 1 E," 4 •F :r? {??i 5xa tt ?..,,'h `'???? .p ??t t n (?Z r I lit 't r •..,.?11 f i z . ' eP t I ?t?tiI J 1 t Z l 0 1 x 1S `iy?lr7??tr Z • c IF' 1x ?` r J a ?' ?, ?1 f Z r = 2 j ' tJ 5 ? ? ? ,r 3 t 11{4' n >? .' o0 7777, C; 082 13' ?0!Od" w 082° 13'0.00" W j ! 082° 1?2' RO!00" 1N' 8?° 12-10.601' v? Name: BAKERSVILLE Location: 036° 05'29.6" N 082° 12'46.4" W Date: 3/10/108 Caption: Site and Location Map for Beech Creek Residential Scale: 1 inch equals 1333 feet Development 082" 14" O,OQ" W Q82° 12', O.OQ" W P82, 10'10. "77 ?7 ??- c F jS? 4firl?A3 ?- Ly.? Y f. S G A- 13? _ ycuaws flc ?? TL C7 A v b°q E Z f I . F r 1 F _ ... r Z + 71 M P t" .r V4 ? ? _ r , _ f ' H_rr. r.l pa. cGap ? ' ? ? O O gat: - I 04 O ? , - ID t L , I • I Y i i ? Imo: ? , 1 y f ? h S ?? t ? ? 1 ? iiahtk n 1 r J y ? 4/ t i p „a. M? ` ?I 5 - - '? i M I M „e Mappetl antl edited by Tennessee Voley Authority i 1 1 b824 14'10.06" W 082° 12'10.00" W 682° 10'i0.00" W o Name: BAKERSVILLE Date: 3/10/108 Scale: 1 inch equals 4000 feet Location: 036° 02' 53.7" N 082° 12' 09.8" W Caption: Location Map for Beech Creek Residential Development aptech. Inc. •y .k 4 ~ . N• a d I !77.1 d r • J J d + 7 + ,S € ~.f J c a' , F,J ~ ! ! { m`wF,. h V. y, y '4 ~~,p t t, 6 4 Ly Y . . i. wrv.,.ucw,rw„^owwwa.t.w.aw.r. ~ J ~ J ' ,,{v 3 t f tF .r J' : ~r".~, ,r i ."'r r + ! J ~ d c + ,W ~„d,•• ~r + "w.:.awa , ~ '4~ q~ ~ .L Y q ' S t' 4 ,7!' ' d , r i , ~J€ s,r rrn.. ,a / "4ffgryy,a ' ~ 5: ! 4 G.{ Y ~'r^,n,K,a,+wenr:wmww«w, .r 7 i . , f, 7 aJ. i F.. ^ j r i`! " d rd' J ,f' f i" ,w' . Y w w, a"'S... bv' '4.. S " + )/D t d F' r + . t r t, ~ S / : d r i A Y r s~A r' w^+ :D~ ~ i {y, Rs.M.,.. , a' ; r ' ' i i ~ e : 1 t P . J i ,l a' ' ' ?F° ; ~ } rr ~ f 7i'~1~,3 ,ir s"° ,r .w ~Y; '4 0. '4. q R ~ l $ ~y tj 9 E. ae++,^.,owwm,www..r.,wr.4 - ip*° '"!'•aJ° m d 7.P : f` 1' ° f J > ,i r rf, ~ ,,7r ',E ,d' d % ,A"' atMw, ~h„ s y,~t1 ;F l ~ Y'. J1 r ~ i f., .frY ' ,J ? J'^ ~ I4„' ^«.nw^y,,.ww : M "i tl' 0 ~ Y p i +t ~Ji ,r rr, 3'~',' t' x ;Ps- ~ ,r d ~ s~~ .`'k ~ 4'k fi J.' v ~ _ % a' . ! + f " a , 1'• ~`P` r`, e,r .F "w' ".,4.,w, t b`s. s°~.,,~4..<«rwa~,,.,~a«w,.m ,~,4~"_ , r s ' r ' r ~d' /1 ~ « ' , i~ f 1 ' r , f , J s f' r!. ' Z:" ' ,,f i' r : .nr' Y ""'"'°M+.,» S 'f''~',. y, ~e ~ { 4 ~ tt y ,y"''n'. J. ,°t, s, .7~; r `rF Y,+l~ J ,i! :r ~ df y rF~~ s ^`.w„„, tl. ci k~'L.RLi C 7 i ' B . , ' r . a" t ! , r{ r"r , :r rJ,f ^f JJ .,N'""""' .^'W vm.+,nww:w•r.,:~„ ~ ~ y f a 0'°~ a~ w* f'• 1 i v } 7 ) F a,J 9 . ''r i 7 : 3. ,9 0, rJ r"^ y '~,,V' r ,~f,~+'~ wr.cy„ rR ~ ~ . n.. M1 ^b+ewawvw,www^""' t + {'i` ° r a ~ d + d ! I P rr~"" d a, ` at f e „r> ad'"' ''i'.i ' d ,f i ~ T ~•.^a ^rJ'.it: ^ ,7' Jr! ;'f,1. r r , ; r.. r r J'.r' ~ f + +.J' ri ' ,a•". p'. . ,.~a~."'„„+.ene. " ^",r.;,,, ~..',y'^. , a t~ t "^wm~ ,rv , . 80 9 1 j . F r , i /-~r• ' a~ rr' + v ~ I ^+a, . ~ ~ 4 b ~a~, ' z r J ; r ~ r 1`~ t l ~y` ' s ~ ,y'+ v4,,. ,~dt ,yd - a,,,awav .,,.~:m . "4. `i; ~F, } y ~ , c tC. i~ F +t' arrr' ,F''" . h \ t z , 3 ~ s.,,w,,, ,,r d' R r ^ € : { + ~w w*'a +,,,r<' ~ ,,w,-,,r, "+,,,,,;,;,r.,, ~ ,4, , a L, 1i ~ . , yM wx.,,a^w„r,,,,Y«,.w~"` d"~ ~ ~ "'o.a f via ~ ; .J Q d 7 > .if Ar t' p w a" e ~ x, t . a,,lr ~s` 3,~°t'. : ~r r~ /~I~ 1. ,~fl1 'i,' "P,r"#' l 3a€' r 4`"' ~a~,t t f e?^! / f r "i < I: f `1 r . .r' f r" ',,.r "°",w r , ~,y~ 1 rww c r` r i r , : r r' "6 3 ~ .:r .,at , ,r" a, ~ - `t ¢ a ~ ati~}~ t "w,w:,~,,,:w, p~ ;,y^/ d, ' r a' ' f ~ { t J: r ; a r r, J'°r`f ' r` ~ :t r ~ r ff f . c,..~+"~~ ,y 't 4,a , t l x~A' t" s e~2rY ` ,7' /{1y}'j~~ !7 ~ f i lAY@ Ro~6 "'w^'~' 1 :f i s d a+' .?",r+ ,p w~.,~ .4 1,• t 5 9 •ct l ,N .t `t •Ir , `5 .0~9'~ ~ w, mti..` ,i`ie 1 1 i Ya .'^"J`r... ,f ' ~ ` ~ ~ j ' ~ ' ~ ~ ~ ( ~ SYto NCSR 1380 , r ; , , 1 ,r`' r~ i ! ~ f r' P` J ~1 r'" + ~l F 1 S• ty Yi ~E , '4. °~m ' r"A 'a ' f ~ i f ~ rp.J a ) . u•. , ' ~1 ~ t I ~y c fit, nw awawam,»..w.r,~,+ gip t r 9 d ' J' y,~, ~,e F 9 ".,xnv+a Y + ' y } Y t~ rrr^"" p6~ + • i , P r ?r •r •d' e+ J te''~ , .LM. ~ , -4 LA ~ ! 4 ~ b "b m' ,m,,wa ~aa, f , r i > yi 3' :~~,r ? ,A ~r ~;r. + ,J,^`I f, ,vr + 'r~" `t, ^ i• '`+r k , (y ,~t F "Ay'''wwe,,,°w,,,awwm„rx,+r+!,",~,r~ `•v w«. S ~ ~ r r t ' a f J) J" .f : yr "r "~.r'' ,p'~ •Yy t< . '+t 1. 4 ti. ~ > ? "G Y A' ww"'" ' wm,°""tl°r .~"d " d ~ `""•M "r ~ i 9 s ,~0~{'J,' a+ ? rdr ~ ,(B r f f i. ,l 9 d r~ . f' jP':,~~°"' ,,a'''y: ~ d, ~,,,r'`• •r'^wra;,,i '`t y °'r~ i ~ t } f } ; ~ °w1 r t P ~ r' .l f 4 d a :r' r a Y V. 9. ~~y}. 't t. ~ A tt I t t , ~y r YL" y, °t t c ki.~ 3 ,w++^ , , i r a t ~3'p , ..as i' ! ! } r f f 1`' ? ,Y,,r* " rri'' ,w+' .r~ t c^ 5 p 1 {l +,..~•r>we ~,ww,~~d +y ..~'w,.• b t` t r ' r .i <a r t s i ~ i 1 i t r 1 + ~ ~ l .,V .,yt ,tJ 1 r ,~r'' ''6 f.~' ,s°'~',r ,.r` d'"r, is ' 1. ~ 4~ <>wr""" ,:ram r? r Y "+.;w•a., " 6Q. T C rt ~ : 7 . t, ~ , , < f~ , r' t• ? , r r" , i x r' r+'' s ,v w .ri+ ,rr . ? ~{,'r7~yy S. Y ± a '{'6 p ' ~ ~ 1, M,rs, ,<rw °w" J=+'' ,'M:•., ® + ~ r r ar' r P ~ r ,,''',I ,r' ,r J'.^', . 'f°' . 1 , c • i i tt ^„,,,,e r r"" ;dY . ` ' .f sr ~ ,P' ''r,r y,,, r,,.r.• a,,,, w, a Tf ~ ~ ,'4"°ry..•ww«w""•« ca•^• J,. 0 ) j i : ~ : r 1 y' fr a' r"a' ~ v.W"'..N' .vr°"" a^~, ~ v`h.. } E + y. E ~ '•,r,..,°'",a•w.-«~.vw"a"w ~ a<°" .'M, ~JJ $ J jf P~r y : t° d . r x ,i' .r" ' .l 1 i J' s• ,d ,r w.,~ °t , . r E l 'i ~ 4 `wo,. «w> y+"" ,i . . A'~ J~' F,,f ~r? f rf"• ~,r~r o'a'r ~ ~ r ~ 3 ~ r ' ~ ;P"~,A~ r ~ ~ / i ~f ~ { ~ ~ Creek Rd5 '7r'~ , e a r , ! Y" r" rt'' o~. t,f a '+w 4 4 1 i „""„yw.r•„: •."'+w..^"°r' y.<a••'a.".?" .ar"-d r'" d~ i . d t : t y : i ; ) f { . ~ ? tr f 6n r+r u!"..,•s`e •w,,, ",w„ 1 ,•L ` ,.F @ 4t ."w..wwo p c 7J t 7 I' r~ r~ ,r r' r•Y , a 1:, i i ~Y ~ 4 y ~,~?',,,,I",~p r t ' J , 7 ~i f 9 '.W d"' ~'x ''r ~ 'S : 9 j ~ g ~ ""aa„,+,^.,k ,r+w"'~4w"! ~j®~ yg }~~/n~~ ! ! i .r , '1 i, rSJ' 1 ~ 1. p ~0Y '^"'awMw w~ °°er"°"rw+w ~,~.r• v ~®ir~~ . ~ , V ~ 1' ~ Di1+`~ ' r~ ,JJ'//i Y d , .aw 't ; e ~ y`. ~ r wn wx~ r'°" ~ r~ p~' ~ ' i:s { NCSR 132 ~ l .1 f T ' A .,""r' d sar^,, a,'t '~y q ~ ` : a. ~ 1 „nwwNwu w"~ji4ir,.v" M. ,d' p ! + ! 3 : r ' , > " 7" f r p ~ r ~ d i .d' eJ,r P'.r M`' .,fi'r`"" Y. Y `ti ° ~ ~ a ~ E ~ g'~~.; } a q t ~ , 41i. ,n^O r ' P ,J~V r , ~ t d a' 1 1 i ~ ,t f.: "'•„w. '4 ~ ~ t ; r , f a : r,,.,...,w ,...wim+w.^,-.a,..e"w.w°'"'„, ++n' .r,' ~ ! d r { 7 1 F r. e ,,''',:Y' , ' k. '1 ) i1 ° Fty yq S Y .~f ~ vn~ .rr ,ow` D ~ • r r J 1 ~ r 2 , .r' w"' .w""'~++ <m+"'"• ^w,y~. Y' t t i l ` ; i Y 3 'Mn. we.wn.w,,,r,a,«:« d' . ~B ~.,.~p~p~/~Dw" p` Q~ a" 7 f { dj J• 4 "'t `c. • 't ' , Y ~ 'mow ~„"'.'~,w"'" 4N"r' ' v°~ ` a ° ,e' 0 f~ , t ,fi J? I d ? 4 ? f J ~.i , ,d~.~,~~• ' ; ~a~ t~ ~ P ; j ~ r' ~ ~ ~ ~ F Fork Mtn R .a',°YA",er 7 .f, i . i y i C "«'.w.. ,a,,,w,a," ww,`",d a, .7' > F b i : fi ; 11 x•J` ,,a"y ar r`1 G i q ,J6`' ( r i' . 1 r ~ i 7 > y, r .a p 4 •4 ``s, ."n S 'h t i'J 6 1 S ~ V: h .,r,< r r F ~ F : r J 1. , 1 o,r"''et ~r.,w+'.:""` '"'''h, k 1. ~ 5 ~ • t S ~ i wr" a - 9 t f - i ~ ) '''~r` : ' d f r{ f p . t ~ i, J a r t~ , r R r r r ~ ~ 1 ,f r ~ ,t Y f ' e ,,.r" ,+r' ,may. - ,t t. , t ~ ~ 4 , t! y ' } ~"w,"•^^o.,,,,.awrax ,.w.«wew""'wvn'°""o<'~'"' ,a`! ,,r 7 r" t~;~ ' r. ,w.. , r f n „aw"' wy,,., a'"c,1 ' 2 ,k,~y ! r t .''l ~.d t t,' t, z.,.' +,"""r' r,° .9~ J~ t ~ ~ ~ , ~ NCSR 1338 f -fir. af,~d,;~„ ^.1 ~ ~ ~j~f~ i- t ' F : ti 2 r % .f r'°' t i 1 ,r' # y " •f ,a:r""'~ .b7a s "T' ~'°*v ''t, < ;Ld 4 " S 1 ~ k , i `nu.,,,,w,,, 'r<,,,wa.,w°r'u°wrw ' w", ~ ~ & eb "'l''! 1 ' y ~ 3 r Yr ' y + { v r ~ '1.. ~ y 'i„ i 4. ' +w„ "wwww:a,:waww^a ~,,,,ne„r7,a'•r'"^m"~"'W,w„w"^"' o. tn~"«'w :'T, f 4 . I .t 4 ; f ,r s a• i~ ~ ~ o ~r~ ~ ~ J ry" ~~x r'' ' a" f d r J t s r t pp i P^ " tf ~ 1 ,tl r a e, ac , ,,.,.,,,„a,r_wv. ' . r ,t + : ! , i ; r 2 ~ Jr 7 i t ! ~ .,r^'0 s«+w' ~ b ~ 4 >w.rwa'•ap""" i d ' r 17 ! x r' J , a" ; I' t i { 1 a Y 1 a ~ ~1 t• 7 s fo ' "^c,. 4 i o k'~ z t ~s wrw.aw,v,..a. ~,r„aaww"^~°"'w++ ~ : . ' ~ t ; a ~ ~ , Tipton NCSR 1307 x - ~ ~ f q~ . ` ~ ~ ~ ~ ~ ~ 1' ' ~ ~ ~ ' Hall Hie;~"Yr»..e:: t , ~ /'p i ,i : t ! j ( 1 x ~ i 1 J ~ , ! 9 „m•""?" r,y, •w . R ,,1 C ' ~ r , ~ t B wmw•wwd,4r^wwaL,..w ' ~ f ~g J r :f w j ~ 4' S e i , i : • , ~I ~ 1 3 r .r3 } 3'" ,w" ~dq . a s. ,t e t , ~ ,d ^w,,, r ) . r s t $py P{ p/' ,.r.+ »:`^x 'b" t { : ~+,yi 4y „zr,..."e'^r"w j ,dd,,,' V fr ) j ~ i : ~ ` 7 S 1 ~ tt d t I f r d of 3 J r' 7 .f , J ,1"'- ,:M`~ 'y~ q,,1 y: w ~ t ~ 7 ~ { ^ b l ~ ryY uw.na,s.rnw,w« MC4dw'W°w'u rw06wwu,w^w..vw.vwl ,?'4~P ,Y•`'J~ !r 0' ~ ~wa°'' ~w,. 1i ~r ~ ) ~ j ~ ~ ` ~ ~ .psi RBd HI~ 1 °'k, 4- t t t';, vt L ~ . E ~ ~ w'^roa~ay;~ .wwv^ww,v!^r' .nadw^mn,wa,,,r.«+e*""r~ 2 , ~P 7r~~ 1a°` 7 , i ; ~ i < , , ~ i p % ~ I ~ ~ ; rf' ~t i , t ~ ~ wMw~...,~ ~ Y f i m , a.^~ , ~ a ~ ' i j ~ f 1 r ~ I ` % i f : • .f , f f ( p 9'ir ~ ;,"'t yw, '.°,W. `'o. ~ , r,aw»a""'' ' r . 1 , d f i ; a ? t ~ ; [ , S ~ { T ~ t ~ i 1', v d `y ~ l . Y ~1'' ti ~ } ,w.~;...,a,w..~Y.m~u.:wwa...w~. w«,waa~,r""«°' fy~ P~ j r' d . r ! , 7 s 3 4 } ' { f , a~~ A . u t it r P ~ d ?i f rc"+, ' 1 ~ ~ 1. C ~ $ "M, r:omwn, ,d'r° Y', P, + '"°'"'~~'~y;9'~ ~ ~ d^"~,,.r''~• . r°" j ~ ~ a ,J ~ ~ 3 ~ P ~ j ~ ~ T~ Hwy 187 'B ~r,..we ,.s''' : , r~ r € + ~ t" i ~ 7 Y ~ 7 , i + : , ~ i 1 r i ! ~ ~ ~ ~ ~ t 9 4~ rd f ~ ~ a f d ~ rr,` + j 3 1 T ,r~` 1 ° ~L ~ y'~0. a t S u ~ °y''~ ».wr,w.wwwlw»..aw+rw.r,w.~.,.wr+,w„v^~ "°'"':r', + . ' l . 1 . 3 t r ' d, ( t tJ ~ , 1 ) 1 ! : F d i' ` 7 r" r' , J ' c y a 4 , ! ~ .ru«,.«,,,.ww,n.w,.xm.r..w, ,r° J' % d y'r af', . ~ ,1 - i . t ; 1 t , i r ! t J 7 ,Y ~ 0'y t y : { (g ty.{ l 5 +ww•°" r~°",,ny etl. % f . 4 , d : d i f ; j { t . 6 f ~ 7 f ~ f t • f f t e+ jt i p~ x; ~ '"'q~ t i R E `5 t, Y 'f + ~ ' , 1.. 1 '',nn - mv„ww^^a"' a+ar,•'e•"~w°'r"°' +y d'" n a,~war'y++;a'" y l i E 1 i t t + i ~ ~ I ' . ! /r . i ~ .f f ~ ~ ty J) ! f + y~ f ~ of ~ t t~: a t h.,'a' \ t . .k a. ey,,~N >,..,w.,ww...,,,„,:,w,«,..w,w„,«:ww,~..x' ,.,,,,a++,o^„^u" wrw,.m d a+> r ,;~'"a•' .r y +„y" ..,,w^ w~ r~f~ ~ .',r,l ~ q 7 6 ~ f . ~ ~ ~ 1 ww ' ` 1 " •w' " .wrmu'ra v..w«,"r"" ~Pr - ,r" . .y p ~r `1 t F//g i~ ~ ~ {.>rr i~f ~ r ) r i r f ~ t,~ ° i +'k kt Y. ~ ~ s.. ',1~ ~ `F, w+,.ua..,.w,,,,rm,,.«..Wras.,waru. ;m+wwr _ ,,,,,,d'" Yap, ,,f w'a J «,~b~ pg j~6~{~~,1• ~ ~ 1 ~ 4~, ~ ~ ~ ` i 1 a~ i wYr,i ~ r E J. i _ e s a ~ , a' -r ~,w 1. 4, ~ ; 0 1~ q q a } r S rR '1~""°°w""w+.wa.««.,r„mw,oM,c,.w:..,^,.w^"*'~°a.vr'w`" r7'' ~1"' a+' j99w rv ~&0.9f~ 9e' ' ; 0 i~ i i i ~ '4 ~'t+, a " t ~ 0 ,"w,..v„•^•^,^""""" ,,,,,r'~°'""""' r~ ~ a" : + r ~ ~ ; , . , r • f S ti u Yt ~ i R, ~ p 's } g~ C '4.': m.,wr,rr.,....,a:^,wr,r„». r,,,..rd ,a„y : y I''' wh~ eo~°D- r ~ ` ~ ~tt ~ ~ Bakersville ff. r E op i ~ tr ' i } f n 7' : . :5 ~ i s.} ~~t ~ ~ w~..w.•w"" .die ?7° ' t ' ~ i ~ f F tY Ly ~ ; , > ; > t Yu , , T. } G~,~'t v,+,,, .w.,,,,,,.~„,w~w^" eww,ry, n,wr I^ ' C , i~ i j f r~f 'r F 0 ! 7 1 t j , .i 4 4 7• Y Y "4 a pA 3. Hwy, `V , ",n,^.". „ ,~w,ww'~ <w»n~• . a:,t' ,~r~r, rr,? ~ , ~,.~,~y~,Y 4 ~ tlr trr~ y.~ ,d . ;C~y t t/t~it7 P ' 1~ ~ i } ~ ~ i ,l~ -!t d f F t j k. ~ 'S. 1' ~i 's i Y, 4 ~'y. ,,s 1 ~ 4'f ~ ~`'f ' ~,.w,..w,.r.~~L•..,,,'"'SC' .1...,..~~, wa,n,w,.,,uw>m..rm.,w.a+°'r""'•s++^M' r ' '4r,,w.?r, d $ GW,. ,r" ~ ~f . W . ~i~ ~ . 3,i 'X J f r D ` s a :l t 1 i wA. '^1,,, ,.a+^'„r.,..n~ •a,,.wwmr,w,,.....r :'"wwmwY.•e"v . ar"`• o~ ','^wwr' v'' ,a~' 6P ..,,~~i6w•• r ' S ,1{ .r ~s s ! a k x ! ! , i G'",wa. "wa,,,.w+w++' w..w,a., + + { r J ; J t E , : 6 t i s E ! I i 7 r J~~ a J ~ 4 t d i r 7;C i, v ~ +y 3 , ~ , S ~ ••.ti,'^ ±„„^wW d ~ e F r, s: i. f i ~ d" :i' 7 ! r 3 t S ~1 i 7 t S J f q ~ 4 "`w'.~ Ww•~,f a a+rt ' r' ' 1 r 7 . ; , t S ? L ~ n t ~ % t ,E =.f' ' d t i f 3 d 1 , i. 4 g{ Y JJJ pp 1 % 4 ~ «,°'.r"°w. m" m•"~,,r~',. ~,,,a'~~d?fr*: f _ ~ ~ } ~ I ~ yt ~ 'i ~r .i,,-•,rr,,>' ,r"'"s,,r ,.v^' a ' JHr r''r''1'J yl it +f ,xi J i py{q > ! + 1 V t i ? 1 5 i ° + f ,l -~r ~ d 1 1 J 4~.in i l S ~i 1 tt k. 3 vww""°°""„v"*w"',w~°w"~ rrr' a" ,,P,'f /1. , Y.• "'tld . ! , G J jj i+ r rt'' ! Y ^ t J 5 t__j{ gy y% # ,.wr• i} J t L ' p . 1 . 7' ~ x' 1 ~ n3~'E 1 c ,?.rna,ut'sr"'°%~~J 1 .f'. i ".1 • P 1 1 ~ t -t ~+a ` ' T ~{p~ i~ annarv+r~ ~h"sMw ~t',~~r" ~ „ v.r f . , J . i ~ " 97' 1 of "r 1 Y p 1 - k rr ` t', 'i } ` Y. `bo. .n..,xm^. «w ~N'" ~'l'"ir s'~ ~ ~ ! ® ~ F ! k1~ ~ y ~~dA q4 ~ '4M• 'w>M' ~;;wY^"awv...o..n'•'A ~r.~ ur~" ,~~'`•d~`,Fp',!'a"~°,Y i''': ,y < . - ~`w^`"'^+~.,,.r,,,,r r f r r i { ; Y ~ i % i , e 3 r V f , a:+' ~ y` z } t 4 { ~ > 2 .""r^w „~awa.r., s„ wra,.w,,,w~,wd'~~4.. w ""gww?"'r ,r~" .,rw.w^""" t , 2 2 } D' ~ f t ~ . t .wamw.~'" "t.,w`` ' • ,rr . I f + i ' z f g d ~ : ~ i a ~v. ° 'wu:u.:ru~ ° +"`p •..,o...„, c . , ~ t' d 1 rS' per , J ' r p f a r F ? it ' 1 ~ :?rr ~ S S ~ a•ww,w ~ J' c,.. r 7 + 7 ~ ` 1 } ~ 3 ~ F. 9' >P f .v+,+ ~ t j§ wa '"waw„ ~ P 7i 7~ ;F 1 ,i y~ 7'~wr.~"~"'~'""'."~^"°"« „ f ~rs~ Jay p/'Y,. r„ "w»r,,.. , S,+ v i r .l , ! + f S ' f A i f ' Y S t V J' y t ' , 't ~ tq i r~ ' R ,>A,mw" a,°w,a„w„m,,uruw,w+" . w...,.,,.,. "w-<«.~ a'' f' 'rr.lf„ A' ~ f` I . Y t s t t 4 ~ ~ ~ ~ ~ • } R= 7:. d ~ d' 4 ~ ^ r" o J/• ,,.,Y" ~ ~ F A l w>waw ,,,w,,,r.ax y`~4 a• "aw` >^„N ' •i~ s* . 2' ,1 t ( . S 1 S i t FF i f ~ J,~1 t . r $ f • 't } ~ t ~ •i : ( ~~;1, j~~ ~ q 1 r' r' ,t v w" Y S , 3 ~ ^ Z } • ~ ; ,r ~ 7 t 7 r' / r K S ; ,,,.~,w ,•r r r f , ' I : ~ t 3 t , ~ ^ i ~ } + + f'.. I a / ~ I} ti'$ f L 1 g i 1 '4 `t p~,, a""'-: ,p'"" .«,ww,w,~y _ r' ~ i'f i fi : s i' ~ } ~ r f ' a R „J' 6" ;f+ t. i 4~ ) ~ , 1 1 } r ~ ~ 4 ,,,6„ (Wti'" ,r+" oi' ~ :~.7 J~ - ~ ,7 s2t ~ ~1 v. 9 ~ ~ ~ ~y .w«°''"`.w ~ M«x...«"'y,.~~,../~+~,ar',/~,J,'~3 na'°r ~,Y' Q~ , , , „ M - ~ 1 S~ tt'! i;t 7 ao Y ,€.r rr~ ,t'rl rl'r r f ~p a'o t {+e y t. 4 i 1 ~ t t' 1y~ ar r ""m,`'",+S"` ~,,,.~aw d d aJ ,r , } : (s f ! Y ~ } ` 1 ~ i r a e ' f + w'~~ r W ` + , t i 4 4 S 1 yy ~ ~ 9 y~ °k..~ wn,w""^w,w aw;r"".. ~y!' .''M31osa_ t" 1 Q • R E • p 1 r J r i ,r • i ' i , r °q.' v' 9 . ~ x ~ 5 - t F ~ i 9 D ~ 4 oatw«.. '°ma 'a+n N 7r fl~~M'-'~ ~ ~ ! ~ xi"~~ 1 J~ ' i ~ ~u ~ dt ~f ~ 5 v~nM~'°~n.~w.n°"'"a+i' , .K. orau.P a+' r~,/~,,arr'",r / s~ ° ? #(j{~? - ~ t. . t ~;I ~ nru.~^~~~,w+•~ ~,~..M'w^'~~~.w•»`.'x"r a.~ Jr' ~u''rr r.~,.`aJ' ~r,~ . ~ ~ ' ~ - ~ ' ~ ~ + l p~ ~ yj ~ ~ ~ ~4"'~ri~'a""`"'s '~„'""..rs~'rJw~ ,,..n.w^.~...+^""''`x, ` ,r,,,a';"`', ,y,; ,e~~ ~d, .J , 7 r. ` dA. i 3 . i , S p ~ d t pp ".7 t ! r ' , Y t .d° k t y s. : t t. ~ ~ r ti,,,,:w,awrwn. ~ .i' t i , ~ y r ' r f f 1 ' s rr ~ ; t • ~ r ' 6 ,vane r+r'"?''a~~P'' .,,.,w .eJ J' t F i ~ t r ~ ji is s ® @~o +i m;w^. 1 1 u?'~ Jf,f,r'' a'r'" ,f, •f' ; j. r,, at ;:r , t,~, a' , f ~ r p i d ~ t 4~a g s ~~u M , ® d p ~ t S ~ 4 6v~,~.^"..dr` ,",,,w,,,w-~ .~,r'~cd","`r ,p~ y'A~ ~j~ i i ' of J+' / J i f ^ 1 r J i ~ i , , ~ , d i F d` A i ~ G ' ~ ~ 5 ,a~a,wwmwNww" °-d ' W t~ :,r+" + 'w•"",a. ? ,Y' ~ J' W i `7 i i p S ' S M«ia> ~'°'°"'w'N> ,a "^^•,wq, t' / J ' ! . d. r ,J hr X i' 7 s f r ~ x ~ } J i ~ .1~^,v .rww,Wwa'd Wa° ,j •~:.,;;;.y,.«„ ^~w".w,,,,~ ~ i / , ,i i~ ~ p ? g , # ; a F s ~ rr~'r =~>°F' ppd~, ~ J ' i ~G ~~t ~ ' .wad ,t' I r. ,p "`a""`^,M., ,",w`^ J'p'' .J'r` r = } f.fp,' :'3'Fi rf ¢j}9 .r XI Jdl f ,i'.3 r' .d 6 S a~1. Q @ .h, e }r r .r a t t - z ~ ~ p =whs "^Yy„ '°"''a+«.r,.." ' , s,. if",, i'',T : + FJ a'r d ; ~ r ,7.' i i= ~ " ~7, ( r z r' ~ 1 `w r~ „•...,r,.•.Ma''w,,, °"'w. r` .,d° ?"y ,N t~ d",i' yy``~~ r fd 4.9'r+ r r~ vt r= "g i. j+ . t® ''`4: r t 1. '1 f^'"'" .,,,~„~w.. of ' ' ,,r ?r r f +r' r' d r `4d r „a, f,. i r 1 r ,~1 i,~d •f ~ iP,r ' 7' } p ( + + H~~.aa, '^wf""'r"~a+«a ,''"?w„ ,r' ~q ' ~ e / } / n^P<rW'd'~" wrwM°°M~,?,~r-r~"~yY~° y,J~.+"",~,,+Jp ~'f }F M • pf ~S ~ ~ ~ ~ ~ ~ 8~ ~ ~ {yd - °~~ww°n wr""""Y..u^„n'r+'w°Y~,„ ~p.,rrr ' N" "~'r"~. a'`'"•? "«rvw"' d'° r`'` d1 7{t f f r, r 4 d a ~ y wn, } ^Y " . ::Jr J:' Jr ' 1' a ,.~d ~i ~ ~ f 7 i ~ 4 ® ; ?b~ ~•„+•"'""~,.^wt'"~ , "~,w,, ' w ' y''`~ - 0j~k't,r• •CF. Y ~ dd i ,y { . ,t #F ;4 ' t raw'. " . x,.«'`,;,",a•';r '.d ! ~,J'' r cJ .•d J'j i~ r'.r'' f-~ w • a I1 ii: !%Y"""+""www rP ~ a+ P . r .r++,*w^' \nc"' ."N ,r° w '~r JJ /a}' r".d rr er.`Yrr!' df'~ ~ Y~'. {y.t'• ~ I Y l j.T iU .t ,yyF"'. µ'W~ '""'q, .w ''r ,r/•' ,,l ,,df,:•ri, a . r j..`f •ir fiP . 1 • s~ <,f~ a f B e 41 a ww„ww ,s,wwwowM +w . . 'o ~ d • . ~ t kK.. t S' } ~ sM" .r:wr~ s..' w~ s~~,,,~+" r' ..A'".:''`.,+T" jJ J iJr f e t t 1.rt o .!,aw! ~a,,.p' ~~r y.. f .t. • i ""~'e '.wrd r F far , „.,r.w,.e °4,,,, ,.M""• A'r?% J f>r ,d' ,r I .,''r ,,r. .~t; ~ji P p 1 ! l : i. t 4. 9 +y, .~.s >rarri+r,ww'v",""^,w 1b-- ..'.:w ,...,,r,. f ;a' ! ,,'r ; ,r" ~ .F' a .a 3o f ! .,r• ! ' Yl d 4 4 ,.mw..'a»°""^"'""' ~""^'^'wa"'•"'"y vr4`' L,w.. .r^rJr• n~J..I ? "1 .f ,l' r'' ,r ~ y( .Y- "Y E .A ~ ~wr wre W.y, . v w re • i. d' ,r r° r 'rE '1 j c r) ) ,9r ~ i t, ~p; ,,,^u'rw, r'^' a?' r' , ' 9J~ r« f'tj r' 1 ~ f f ~ ~ ,P• - i ' 6 , ' 6'QHO~, ` ,y ~1 V ~~d` YMm . ° a ? .r J it Y ~ 1 ~ * 3 eM 4 . ~ ""w ",+«.«,.r ~."'"c,° ryf"'r+ v.ya"" J ~ prF-, ,r ~°t r f C~ J f)• ~ ff J ai . , +4. 5 y x,~ ''s• ~ ad"~ ` sw a: wwr~'' =may. i~ w,x.,. ,d' • ? t'•..>' J" « d" .l try J t , f' ~ JT ,,d { ~ t S' aA }!~~"N"yw4e r+? hy,4 T ...:%,"m 9 ~r r 3 ~ .A' r'" • .6 c '.-4. sJ'~ .d• ..•r M r+ f, ~f<~ + .r dr%,'dJ s / ~ : r,,~"'='r~."`"^`. pr.,Jw aar ~ -"'"wa '*yw«, ''w ..,aa .n. rr,,, Y r' + ' P '?'r ,Jr 1r , $.r ~ t j: r~ R,, p W^ .i• n Mwww ' 'W, { . N~ y { y ~ R i. 3. ~ / Ypy~ r ~Y ' r.w"'.M'.wnW„A+ rntlT ' _J''r " ,i ,r: J"' . r 1 f, t N rr,r•' J•,?~' , i~ 1 Y. l V ' k '4 i~' ,dwp'" d~yw~w,,.N ="r.«w"„ 0 4:. , ' J'? ~ , r f t J +i ~ ~ r'r ,r Y %Y.r. r 1 .F 1, - „a ,w". .rr ~r' { ! ~ t 4'. W„ wee" wi.. Jr .J ,t'r .1' ,11 t 'Yk t' 4 , °!"'+'+w .r .1 r' r . .9 .r / J .a' ~ri~ try, 5 ~y, t o _ ,N m~ra, "a"u"`uw^wr.~ `"w^. .w ' ,rr' '•f'' ~ ' { f S •yt .7 ,~i 7 I r7r j O: ) J r F" „J'' ,~p'' J' f~ ° ^ Z~4'r.0 " ~I. y ,y~'y° •xw,.a«iwurm""ro'"` ' ' , e ""^a , `.T` i r I 1. I + 1. ! ~ d p f~ ,r^ t ,n l ~ Y an*'+. ~"w, , f' i - t.7 ; t t } J j ; r j .1 'k h 'k, b: ~ w:~ t' rrdarxw r" .ww. . w , „ + .,;'',,a a % r,, rJ, {r ~ ~ t r f . .3'/W ° ,y I' ~•f wd lr ee'Yy'1~`y4 0. ..nu,~'~w,wr±N,.'^.r'air,~`~wrr~,.,r«,.'a+w , 6 ° f. ^ ~ i. k. ~ l °r 4'j ~ ,e+•' ~~°a~.d'r•`dr'r'~ NJ''^ ' f' r 3 4 '~L.. - 4w . ,i••' ,f"! ~ ,+4' , s 'N r" ~ ' j ' .3 £ r f r ,7 dJ° t / ~ 1, u' w ~+,~'L. "5,0 ~ ~d'; acl7r""~waa~ """""K"7wre.gr«w"'' °."^La ' ; 4 ,a."o rq ."„`r y J e~ ' ? 1: 3 i 1 0 j f ~ P 1, ~ ~ . ~s+•u"°._ .4•' ~t,•,~,q.W,:. mat, e ,,Nw . a . « mM :,^'^,r'>', r `~,rr:~r r 5 t f 3 c F 7 ' f r J i L ! dj ~ t r , $ df ,^'r,r s,; ' w. Y`,, bw'°'w« t'" .,!'W r' ~ r,' ~ .+I 1 i S V ' : ?,r ~ d ~ r ,/ff) i+' .6 v~ 3 a ~ ~ +C 5 '1,w`w+'°' '^rwr+nlh. W"i.r ,ry -t:'""'''".w q y a' w. N ,AA, ' : r s'' 3 1 ^ ~ 4t ~ ,J " d r t »a"'' ,?i0J'w a a'w p ?'7:'' r, "r.:r" ,W; i ; "B f ~ t ?d~ JJ a" rQL ;W "''~+.s•^~``« q ~`aw ''b*,:w+ ~ w,~,~ Pe,~a ~ Q • ~ y# . ~ e ~ q rY 1 ~ .p °d~,'. ~a,~r~,,' ,,o~~,.,~",'"~"s'`f's' t. K`°a^ ' w. a' .l • ' ? ~ J 9 ; t : ! ;/Ij?~} , >"f a>?' J7 Y °a,. .w ,W uaw ~i~,. 4- rr" ' r+' r .r , f # z) L + ' f , ^ r .r + rd P d ,rr ' b 'F ~ a.",w,a^~~gpiW" s°" '~+y^, ~ ~ 4y ~o a'' f•-' ~~.r .r',~'.+: .t' q!'11 / t ''i'pjr ~ir +~,d~ ,s' ~ g yF, a"'wa.~" s° h~'.w.a''f . ~ - q, "a6, '"w ti. '~'v. 'mar fa' Y'.' 1 3 v d 1 • i' d .P • f 4 ` 'e yy,` ~ 'W 'may, T'.l' • t.. Patz r. '°'ro 9' ' r^ ~,v'' 'w. w, ;,rn"r,p ` r• J I ' ? i ~ ' r • 0 ~ ,{.v' ~ f ~4 1 c '"4,', ~,,p',~+ ~'~w~x~,,." r+ +^'M ~'"W' .r' $r'r1" . 9 { 5 t i . Y ~ ~ f i,y ~''a ,a°~ ~^h, '4wr s?" ,.e' ° ~,r • r q! fqd~ a`'f . ! M u .Gya ap '.fit „ ,r'+"+"':r• 4A" ~ M•" ,r";,.rn"wo,' 'dn ,i'`'p'~ a; yt ,t. Yi e.e~ J. y~ q o a „p"',r,~r„ ,,r~''~ ,r,,,,""~. "^rr' .N^"'"w`r"«wa '~a~ 4.. w . ap f, ' r p' rJ ! A i , ~ ~ + f •P p{ ,f (r° !7 ' .t`" Y., ~ '°n +'siJ`ua a" `t t i 6 ,y . , F ra"''+ ,r'" r ,A r , +r J ~ r , ~ r r ) ~ •rP'y T „h a,""9,. ~°"'>,wh„ ; ~,k '+~'^x..,a, ~ ' , r r I .f r ~ 1, ! ' y' r~ 4 y' p,"° ...a'w" .~d~,a' ' ~a„ ,w" / a"' rr r'' ".j:, ,r' % ' 1 t{ 1t ( t'sF r'',y f.~ ~yj~ . » ~ y^sw'tu~~ r ,r^ win ,~aam {d A,.. a~~ t-p~ a.„ ,r~ }w rr,.. •"r' br Jj,. r r".. ~ r'•?,,r,r aR, t'< £ ~ Is 3',' rP .s" a'd ~ ^nc. c~ k~„ ~°''a. ,f' ,,,vrwur g. j. "°w ~ ''L " :ti. s' ;a r"wa,,. r „a'a ? •'.:Y r` I,J ! 3 7 r ~ Wt' ~ 9. 1`~~ "b„ 'w' ,^f'.~!,awr' 7r'. ,a' ' ~ d t } . 1 }.1 P 'k y :ti t ~ `0"„r ,r'"a' ~r ~ ~ ,,.,^o. ~ r .t S ' r.f f' e, ~ q~f ,i ~ 1 'S.. ~ ! wr='".• ~',~i•~'° ,Y <'t''. ' Sa'• .rte .7''. ,r I'i' I 1', 7t i a~r 7' O t t~ ~ C T t~' ' +"'m`~ B; . r ~ r r r. .,r, ! ,~V',d t°,' } ] it i i' , 1 f^ r' F f r ~ ~ ..r4 wrd" er J.'a ! + W. d'. + t %1 . .d o+ p ~t e . .v r, t ~S ir'r• 7 o..t1 ~ @ ~ 0 1 2, ~ , r~ ~ ~ ~~4, ~ p3°~ 4 ~ ~Pwr.w««!^"w ~ ".+f ,r'" +y+~',,,r.W' ~r~',p'v'~"~, ~ ~f,'' ''w. e ? ' 1 + 9 f ? r ~ l w^a n ! ~ ,v~R. ` t,' t "~;~P'r~,i?'. o- t •R., a'v ; ,r i1 r"' /r,',A', t r ~ • i w 5 , i'y ty,, ~ ` p A rJ ! _ e' Q 1 f" < I } f 1 r .f r f J 1' i t'j `1t +P ~ +A .t"" r r jf$. ' Nr'~ ~ x,11, 'i~' t `s+'° e ww'r"'u"w'"w,wnay 'J ' ~ y ,,<~"T,~!•v,^L'q: r',.+°' i` : r, f J :`/tt I~ 1 i' V .,r+r' , , 1~ y, ,rr. i 7a' : ° ~ ~ S`~ 6 { \(y{ ~ } ~f,p~ w'~ d'?•~ J'' r~'' ° r+„~°',"ae~Ja^"" ~ ~ Mr.Jf y,,. ~ ~ ~ ~ t. 4 4t~`~~4 ~ ~ 'Y~ roMVN ~M ~ ~ ~7~~ • pJp, y"YM^ RY` •~/n • ~tW'~ uJ.~` rJ•V .~"r' "Wq ' j L y ~~!twxuaawrw'oww~w""ww°w` , .Dr e+' / r•'~'' ~,~w '~.j0'~ „s+'d .a"u .n~9 ,r" f.t. f r' P , d i • r • Y a° ~?i 4 ' ..«w•.. , hv:^q.:r~ ;r'" ,rS J' "rf t J"r.' % ~f~ rr i riry .V ~1 ' ~'r ri M . '„n.,Nnaw:r ~t ~ f N' t `L ~ y~rr .''°y ` '^v.,,, .p ~ ! • ? ,.wi0 r r,r ~ ,.r , Y }17 d t j r >7 f i ,a+~ ,rr a"' ,r' ^ ~ ~ V'wy~,, .+r w,oo,"' 6Q ii t t ; t~°' mr. ''•!r. r w« d ' ~ i ) t ~ ! ' .N d ~ 5 yk ~ ',d ~ .t t^~.• 1Y~ . "•w ''•r.. f ,F f '.r+` ~ . J r S' J it ' f ~ Ji ~ ,,rs 1 7+ tt a 6' n4 g 1 ,J r,~ d," 'r . i Jt ' ti ~1 fr, ~ r t a+"" ,v'r'"" ,gi..eaaww< + .S. t ti ~t 4: 1 ~a.n ,y+`° ~7 ,~s ~ ,r°+ } jM'' E ~e„ ',d"'•,,, r'' at ' 7 ' ?;=~;7• r ra'` J • f,>f 3 .X r" • o yr. .r f""^`wd" , W", ;,r' r' ~ ~ ^ ^a.ex "w ~r.r...ww.r' ? a r' wa"" 't''• ,Pr' .d ,f' 4 rl JEd Y3" ,,,r 'L~:.: y f ~ r, r.r',',• r. J rJi ? ! { ~¢'`Jd.' ~ ,f ~~t l ' ome' a+ d (stk ~ } ~ ~ ~ ~ ~ ~ q '6 'Fy+r'°'~~,,,. W`",,,~,"', J'?;rk d°.s`,~ dt. 2. ~ ~f, : t ~~D~~ .w°"'" ~ }WJ Y""..I'"~,~~~y~a'>" ~^d+~i'~F:r''. ,"'"4 'aw, "'wa^ ?a'~ ? r'" ' '6M"~ ~ `~F ,,t~ + 7 t , 3 ] i Ra ,4` + Fr Y „ wr..y.<.„« ~ Y i+ 6` `"t.e . " S a° I - t 7 _f ` P a' r S ,w„xw'+*v, ~ .4 £ + " .fr , ~ r ~ t j t. ~ f,s ,J, ~ y Y ,gyp L ~ ,w' M s r .?Y e"°.' rW' r.°'~ ar J' i r JfJ' i€ ! € d ~ @ LE ~ ..y ia~~i 6Rt'r., a f ,~m,~' ~ ,d^ ^ ' .y„ w , .d rJr, " FFd r :1 .f ^ d"r ~.{l e' 1 ,l f or"` w • a`' pa. ^a: ? rr: r y.. «r:' ~ ?'ra 7'~ra~ f%,, ,Yi d'~ ,^w"' ~ •x~; e, ,.~<,wr~"' J , (y~~~ ,,.~v ,r'` ,,r~p• , ,r, , ,J,r'.r ® i J' r€e P f 7r ? . e ~ r d ~I P ~ , ,/,(,pry r Y'O uo*?~„,+' ,rF f,+J (g ~ + 16n ~ ~ ~ t. ~ y„ "~"rnWrw~W~`•T i~~pr ~.C ~°„JAP "~,Y'~',,J,p~',ry";°ea' 3 y .^~~,:.~^,4' 3 Y yp A r+' ~5 ~ i F ~ll. ~ ~ 1 / y^ ~r/'• N' ~ ~^°~~t"~' t` f ?~ar i _ r~ f'' J f t M" J 9. ' Y rt. t f r y.:: ~ al, ,.J ~,dAr~ r X r S'f"~ ~ ~ J f~, ° DC. SY ~ ~""nn,,r„"r pr t~~, ~ra,~y, , I = ,v J P .:a^" J r Y'r d' ~ i.f 7 1 ) ~j~i 'W ,M ,>r t,*Mr'€ 9 j t Y, °,v.f'" ~r p f , r ~ d CJIBCIC D ( ~ ~ F 7 , O®F: ...r P J' f ~ , I f" . f . r' 9 / .t f Y P f ~4 a-'^ I rJ r,S ~ p~ .w,", ti ~ r + ,a S, t r+^~ ,,r r. ~e ,~°~7 r { j ~ tr r 1 sf ~ , . «^'°'r ' ' P i°'^°" am a'' `~d y~ipp ~ . I i. V : ~ ~ r J' f . ' t r ~.~,,,,~t~yl~,.,. rtld2° p~ ~ '~1~ ' r"',r' ' d 3 d ' f ! ~ ! a 3 r , °wr«w„ ~i17'11Q l w,w ~ k J :a Yy .!Pg rr 4\/ , t. ~r •+f+'.. d' ra It .r i i ,ir } f I'~ yp ' t 'iii 7 ''r • J':P ~ .f ri ? f ~l J 'h<,,,• -..•NP."^..,„4 1' , f ~ r' Yb r,° ait;r r J f , + i~ + ~ ? ~ ~ a«.n0" Y c' .dt7a D ~ ~ 'v t' a o" ,p ~,,r'' J' a + a~, { 5 ~ ~ F, 4. °1. YR~"r` ~ f~,? f'°,'`" y f` .f ~,+:f,`~r" 'awa r /a'" (r~' 4°d r r'9.r, ;1rd~ df% .r ? ~ J + 5 t b,. ~ t, "V. 9 x,r J!. ri',I 11 'w / ` ~ 3 ; A' tY;% t f r ' 7 , , tr . 7 ~ i Y r t "•,•w,.xe..- ''k ~ i Y Ar ..r.. ~ p P r / , .r ' it u~,^+'"p" a t •1 b,F y, 1 tf "«Y 7 ,r' J .f`i~g :t" , f r~ti J 7 . J' p 3 'G, • i f,+ d''' ,y+'rt~' p i I 5 J' i ! r iv, .d v^,+~ ' rE 1 ~p:rn 'Ww. ~R 7?~ ~Y ,g r~ , 7 ~ fy+ A ,7• J i ~ ~ I ~ ~ F ( 5.~w~ , 4 idv ~d ~~t ~ r ,.r :~1+•!'''~ d s ' f . „ J r i , r:. f i ~r t' .y^+` can:, ypp~•" f yp,t " ' {,t'' ' .t ,.•p , r a ,v ~q W.,„ a,aw+" a t ~ >r t ' ! f'. i P' , i' ft J Y r + ,av ~ 1. 'a° ~ V.T Qq , ff i 't, ' M'',r.,° r' f a.1r).r r,.rr. ~ »^'w ~ K r~ "°"N,wy,' r r` A , : t i p ~ ~nr t? 5 ew~~. + A r' d ~q d ~ ?'~lr ~ ~~q~ ~ ~~};`h ~ c urmerw+'""T.»""oaww~° ,~'~y ,'~~r'~ ~•'+a, sr? ~~r r r,,..,,,, f • • r'° f f, . r ' f d ar, ` d, ,.,a.+*+"" ~'"wa.• t >P P t +i;: ~ ~ sr . ,.n v..,an~ ~ t $ ,F ~ >t ~ 7. f d d F ~ r r ~ ~ i ~ ~ r vw ~ ~ 1, ~rx~+,, ~ , j t /p ,J ? ~ `v7 ) ! ,i i j ! P i Wr, ~ ,a„ ,7v,!^',.,g q { t c ~ r f t f 1' ~ : i t { a d t f' ~ Y ( i p• ~ 1 r d'~,,^.a+' r,w" I' x ~ l r, »w,r j 1 i ~ t t ri a i ~ ,f r t, tl r S i S ~ jj ~I f ~ tl S t1 1 E r~ s~ ~ ..wa+.'r`rN"..' w~"'d 1 +w. ~ ~.~1 ~ff ( f y~ ~Jr , " a.a,w« f 4 7 r ~ 7 7 ~ ~ 1 } t t 7 ' w..... ar t .d r 1 # t , s ~ 1 3 ~ r ~ 1, ~ r .r ~ ~ ,t~'t~ ~ f~ ~ r 1 r ~ C 4 3~ .n" w+ y J : ~ ' ~ ~ t`1 M 1~li 5., ~ ~ , 1• +~~'"""a"'"w°"""`;:"""`a+~""~~m?W ',,,e+'+'+~','~.~,"a^'~`(.~Ar .'"~~.Y`r" Y `~~"r ..?"oI~ ,/r~ i "w, H,,...,n,« 7 ~ i~' y ~ F ~ f Yap ~ S } r € a7 Y ~^.w+u« ? ,,.w i ~ ~ gf~,t ~ ~ ,I .f .J~ ai ,,.p'° ~ ~ : r ' f 1` 1 d(n r r b r ^~i I t v i r~i' 7 +7 P ~ 1~ d ~ Y. ~ . . 1~yl~y~' 3 . 1~p-,~44,~4t ~'1~tur<w+~"~ y. ",y,,• 8~ . ' ~,,~,r+'~"Pw'" I ,,J`'N''.~~~ ~ . ,p ; ~ d ~ ~ ~ l~ °`P` 4~ 4 ~ ~Pi, ,'4, rt, ~ P<~~n ~ ~ 2i a '~r ''w.,'`f~d ~.^''"i , '..w ,..,a,,.. , t 7 E ~ _ i ~ t 1j # ! ? psr ~ ,a „«,~T bd^,~~ Y E / ~ „ , f. ~ e 8~ n . ,n t J f r , t ` ~ J ~ a J r'"^~ ~ rro 4 ~ o )J ? ~ ,f a i ' ' y f « .«.N, , i } J 7 tf$ ~ } b ~ > ;P ~ :1 ~9 aa"°• '^,I,e y t ~ ~ ~ f r rP < flt . tt f~ ~ i 1+ ,,r,~ 3 7 ~ ~ ,,J~,"~,,~~~'"'' fir' ~ 1' ¢ P 3 + p mr' .;8`!~~a 'r°, A 2 L 9 gft Y! } 1 a,+uw' s.. r ! 1 P 'r'~, .r° :7' ya r•:. b + E + J .i' { . 7 f r ,a;w ~ ~~~'f ~,rrri "Jri :a+`>?' ~ ,,r ~3{~ ~ J!',,~ r,J:~ p~~ y, ~ ~ !t a'' dkd' 2 ~'3t •q o~ ~ ti yy """°"uw».+"'"" r~yrw•a"w"„""'"r,y,'Y+~ ~r?N,,,,,+'" .",",""•^`~'"~,ru ~^~r~ ~•''I}'""~ ,r! 1,ay"'"~+-'"^D'", r' ,/~^f . ~ ~ S i 1 l } J ' .r yprr " .+f ~d'r ~ ~ % } ~ d? . j ~ i' 7 ,rf J f" yr 2' a ;1 1 .f f lE ~ ° ~~'mww,.a,».fw: - ^ ,"a..,. , , { + .i f } t .l ~ o i' ! ,0 it r ~,,,,a,,. s' rJ.,". A e , , l ~ { i ° q" ~f dj ~ b 1 d '1 d b ~"x„~ nxrnw. - j(1(f ~3(}y f1 1 } ~4}9p°~p~^,, +k~~:~ pl~ try, w. '4n.w~.w.a,^wwNr+"~ ~,A' ~`~~i~N'~,f ,~/~,ro"~'C^,~Y ~ F' P+,y~1ta'~'da'' Jr ,Y_ r, , • f f j t " ? %r t y ,:;r we ~ o ~ i ~r f i' + t1 ? ~ y ~ J ~ ' / y S t, ~i F "`.u„nm, .d`' " ,.+~n.,n.»,, r..r l Y .7, y 9, .:d r i x '.J ••I I 1 "y ! ~ ~ i t ! ' ; - a ®'~u1 f ' r t 1 e' j y o. ~ ,m i; c:. ",.,w..,. ``k'y, ,oa:w.... ,r"""„ 1 r Ir. 7 i•J ~f' '!f,' ) it r, `t~ .Y twwruNt.w -l ' A, ~.3 rf~`~ } ; Af ~ ' 1~ i '1' S A~ ~ 1. ~4. 1 ~~.Y.:F.... h i»^M. nM•~fA.,/" ~J"•' y^' "'~Y'" ?MIM" y)~ ~~jr.J^ ,IA~~'Y(p/.Y ~ryy~ f" 7 ~Wwy/AQA.wi./M'""" i °r y.~,>~~ ~r:+X ~g}~ i ~~.L .w ~ ~4 ,.uwv,,,,w,M,ww1.~~~~ " or" arJ'Or^"'.w.~!'..,,,,r'•s" •~,v p'j: Yr'J' J~ I s 1 f . re i. } r®" rf Ji ] Ny' ~ ~ I i.i : ) r°; r,t"~{! 7~ 'iYf 1-,~ r? ' i r ~ 1 ~ •4~, `.y.~Q'` @"S:'k,~''~ f r i r' 7 Y i", ,n ...o.,a ~1. , ~f ' 7 r i fl •Lt, ` +M E: ti 1 r r " ' t u 'e, 1 r;"..;„ ,.;t a.Q '}a' ,i ~l'P' rat '1 / i rl "~n,« b - ~ f~ 33 ~ ^'1 ° ~ ~ ~'~"ru•w4.4wn4~'~k - +yr/'sA^. ,~A'A"r 1.~.r~+A +~jAi! ~ ~ 4 d .1r ,9a.~.'pQp,1 ~ la "11 (ll wrwraMwwaw.~^~w"eo~°w' r,n".',~r~_',~+~ n' 0^~+/) ~(}j)jp i ~r r d °"`w"w r i 7P 7 ~ { ~ ~ p ,X 1 ~ 't • ~ r. f aft : ,r r ; r ~ t 'r t , c ^~`w`'", a ~+*.~w, w„ „~,~,""`w ~"0c r~. e' ....w.r.n.ver",=.,,,,,,r.,.., , r .F i r , .Jr W^„.. I Y .9 j r a P J .j ! 'ta.+w 'ti'k,.. ''t,,,,i, °ztg/n"°"''.w.^?"'~ ,r. ~s . ~ ,I ~ d : r / "ya, «,y ~ : } 3 ; ~ r ! ! r i1 YP ~ t .t ~ 'it '^w "G "'u' ;4.P+'y"°'.'vra~",~.4~ f• 4. ~ ~ ~ t ~ q~ «wm'^v°"*.awr.ww.rr~~°"'_ a M'w'^vw+W .,J'^' X'v'"x,',r,.J'j.l~"! 1 1 ^.1 ,roorcf' ? a ~ . ( ~ 3 ~ t ti ~ { s~rw,w.w , ~ ,yY.r.^`" ,,~"','~p ,,.w Y a^', o°. .i~ f £ 1 l•~ f, P ~f. ~t, arm'u'yWrN"wrlr+JW' ~y sn,A.Wtia.,rwyC'" _~,pw4mWM~ -~"~w~' J~,y?~~N~~ J ~4 i t . w,„ . i. . J r i + d ! d • ® "«waY„, `''^ww,:? «...,n,..,.. , ; r ' a / € ~ ` w` s' ? e r r , F r ~ g t p 1` < f ~ f ,aww*+w+~" wwr wa 'S, " _ : i I r d ® >~f f 't t ww t ".w,awmww+"'"'^"•w... w a*a,,,a F 1 ~ ~ 1 '`v{ S~ t i',r'?~' 'S7 :v,"°rt' ~r Y d~I f } a' ti y~.w^.,,n,..ww fie, b Nn„w," ~wq.p«' r~ Y'. .e~'" ' / , ~ ~ ~ ~ " ~.nYW""..,, m/"' .,W ~y"r ?"-,ry^' ~r,y P ;lll~ ~ / ~p.+a.~,•ya, 4~~~1 "+w~ ? : rt ~ ~ 1 ~ ~ ~iV ` r S, . ~ ~ y ~w..mw.ww"n.~~,"~iw+~yw>~.M~~ IYW~aww. .•"'a.+,w.. w, ~~.v~'"~w''~J""• tl~lr y. ,~,~,,,.N ~..,.w 4 : .r' f~ , ) v` I ,i/~''" ta' ,yk ' • J a = J a~`a`"'"+, .Y ?,sr .l'°'.P°' ~ ~ ~ ,»,......",ww„ ~ , ~ . " ~ t ~ j ! • a ~ T ~ i ~ a f .t ~ ~ ~''iy t .1t ,w~..'+M"'n°"' `'M.. ,unwv .ya , wva. ~ 7 j • r , F , 1 r `y • r p~ ~ ' ''w^,:. '~R~°*R ~°'"°Y ~4- ~m • ade ,unwvJ.^°". +a f F; Y ~ 6Y..ww;a. rwew+ ~an.+~rnw,~w'w°'",~ ,w~ ~+,r„~„ ",:a^"' M'~a+..>.J:...a / ,yy . ® ° qO~,P ~ ° O ~ f ; 1~ I j T}' w~^~ ` ~ ~yP~.. ~~W~, _ "~'~~m"nu'+,••~w.wr~ w.+^rr `mwMxur..r^'r`~ . , ~ 2 E 1 ~ A r ~ } r I ' ~ : ~ .r,.,. rf i al! •'~4' •f r t , ~ , P 4 1bi y. ~'~w..: ~,ao-•w.'~ ,,med. + qt ~'^t eh } Y' 3.1,AY 1 S'° 'i D~'„~,~~bARCP~ ,r' ' ; j ~ ' J i d 1 t: 'w,.:;: ~ `ay~..m,« 1 u''f ' f ..r..,r mss" r"' t , j~ `"~sM`""Yw^v. ",J ~ r + ` ~ k' ~ S~"`I.. ~3 ~,w+~'""~`,,.w.,.~ ~ ' ~,,,,...~«~^,".,...w-...,w+..w~~""""m r..,,~..~°"•,,,,. r~w~~..««w~.wY. m w +na. , " ~ ~>rr""~a•'" .s*a.^",M'.~'w""^"~`~ v,hw,'";+m""ww""'6Y.'.'"1Pw<~.A r~^`"""'",»>.nr«6~.~.r~a, ' P ! ( ~ ;•J' jf . , •t+i''J xrrl ~ r 4 J"f~ tZ ~4, 1 j ..7`~ ~++1 r ~rw•a,,,, ae,~ W +vw„ ~''P " ..,a«c, :.,y~ w..,.. ..r {7 ~ k $ ~,J ? 9J 'r'ff : ''i'" rlyw~`W'"o "~,r! E ? ,•f t 4 7 6 , Y a • 3 y' ~ fiQ~ ° ^t,,twn°;nwaaw' ,+rE' • .,a a , • = f r f t l J +,>rd° w+'t p~ d' t 7 ~g ~ B` 3 i r i i ~ ~ } !ro, ~ , t a d°` ~ J, ~ ~0 \ ~ ,r„r""~,~,"~„,m ~w.,...w..www"w"`•~a, ~x ®r- t i ~ ? S I',• ; ,1 fi +4< • 7e;' J`,,.w.+ ..r"r a_.., i i .i' ~ # G "ww^`.wr.M y°"'aM,^.«m ' f' r D Jo f?' 6'~•'t, ffi•" yrtPa%f>,.; ~r.r%"' «,:.w,w,,.w.-"" , ,i," t r,,,... i ` iYrl ~e J £ } ~ ;.o-a«a..rwa'I•Y. '"4,w~+y at"",aa„ ~,r" { 'i,: / ~M i .1 i r: M' ` ~F ..r' 1 ' ' f ! rP ! r ~ ~ t, g~ ,?p"'w"r++!",s+*"er„wya~"'m*w. 4" .«wa"r`"'' ,•,M;.arrs° a: 1 '~.)®.r arr~ Y ~'.J1 ,;+l ~f' fr wy' ,r .r'~ ? w~, f, j 'Fa r ~3 ,r „•,.w''; ..~,.4,ckL`„a !"b , . , e..rv ,,.,w.+wve,-,...>v i" , . ' /by"' 'r ;r d,i''"'~ ,J~ 'r''' .P,, ' f ~ „,r'' JJ` f { a ~ j ? i~ a r' r r ; ,r°p' a~?'rm ti+y„w» `n •'k ti J'i,` 6' ~ r .l~ 1 w.,."..,e „w:,erd'' `7 t } pF ,r,vE v d i ~ ~ •,F:'N`,r• ,r,wr^r"a:"°yn+ e,,,., ~ ; .w w~H,., t7 t ~/l+? 7 ~ ''I )f I r d ~ , B r .+d•,."w,,, e,r,,.m :,r`" 2 f i , ~ ~r ' + t 7 ,t r 1 ~ ~t''" u,o•' ~"aw ",,'•'~.e '""4 r ~ r.,+'~ ~ Via. ,J~"~" ° , ,~.Y~w»dr~,w..,»,~°°"d ~ x t, ~ ~ t ,y ° J , ' a ' ,r~^' ~ r ' ! r J ' ~ 1 f d l i ~ t ~ r':',."p ;'~r~"" ~ ,8'•. 'ems.., .!4'~: .«s" 1 (k r'd fa + t. . 7 i ! F } .7 ~ } { i ~ ' s° .r''~ rd""yr.«.m"'" n,,,cv,'4 ny i 'y'r '"'V ~4 'y' s.® q4C «,„rir?'a' 4 .r' B~rr'~ q1® ~ Fr~ ~e~6Pd1$ r''~ i ! i 1 e t ` ~ t ~ 1 d'f~a^;:w ,r' ,?",>d"• "K, wb 't 4 .u^~ 't a•f PI. T'l~ ~ ~ F" .f ! f r:: ~f ~f 4 f W W., ,rq ,Fr dr t~t~, , Q c ~ ~ ~`~~,,)'A' •d'~r''da'' ~ys `h'+~"~^'""°•~ ,;,.,~w~Y,~,."..~.,wn.,~,w ..»..«.Y•"r.,..^ ~..w,..~,•,H,r.,,,,,w,~ & 'w v, r~ ' w.•,M , d. , f( 1 v fif : t 1 i. ~ 1''c ,r ro P y,, y. `'U ~'4, '~a ~ .u'r' ' frA ' ! 11 i ' t. 'h r~ai..• .u+°°"" "bvq , ~'4, t „~w~+' ~ . i ~d' l~ r` rr P~' v 5~ $1oPe ?y i 3 'l ~ ~ t # to ~ ~ ` ~ ti~ .'sir^• +r•."" ,.aorw, 'w.~„ "t'w, "'F' q4 t" :,d ar ~''',~n q ~r t r~ jj ! .x ~ dr r A Fr1 ; l` i vp %r V r'' i r a J i , i fi ' S h `@ `i bya4t, n 1 ' r,~°,,"` ~h,y.~wy,• ba +c;,., +,,.,a;:,,,,^o, . i : ~ w ir,V € J t+J' r;~ ~ • + ,:,J i } ~ ' I t i 1 4 p ;1 q ~ u.«~ ~W,,?: ~ ~1V +r " ?!,t., "„^''NU.. ~d" 1 ® ~ ! t 9r' ,+,•a x Y L€ ai ) l ~t9 ,p '+iTa ,rI"" I Y ~ E ; 1 J 2 ^i "Lyt k+'vc,„°"ww" .r '"'i'' J°:• rfn* aar wyy ~'+c,•,"" ~'~4.!' ~,y war,6.+~ y~~ ~f!' f ~ T th~ '!vyM4',+w'~^~"~ {,~y, ~,~~~i~.wn+"" ~ l,. .wrw°'°° '"f^.•o:MV `'~,5 ~~F~ d~~°' ~ ".w~ dY,,1d' ? N ` y 1 1'l~q Vii81:Y~,,~d"" T y ~,w,,w,~ ""w.rw.,° ~',y ~ *y.ti. ..r' . M~, a1 V 'f 1` f r J 3 J '€r f , y'Y %,M.,,,.;,~ d"""" y'' ; i r ! y ! fI j t '`Y. "w ' v':~ +4 >.'~•w"w.^'w»wws+f, • 't. ,„„v,„ f d9 ,f % 'i of fr. if } f i rI Jr d+~ y t".. ~vr W? ' ! ~ { . r r t i ~ ~ ~ 'q . "W, '`m' r~ ••a, a w~.~'M ~a c 'w,w .J A d .,,//f,``'ff/ ~ p, 5. ~j q"'-day 4 x4 Wr~°~~~Way, .M 0 ~U~~.Md ~f~ ~ ~ C 0 +t~ d~{~r .yP..~li'ti 'N~~"~'h~,yl+ ~ ~ ~~!.i. A~ .wn ~+Wryq, ~.n.~ ^..tir, - k w^a,,.w,a»,., ' f+ r' A'J i .r~ +r ` ~ t',J y` "1F,r f "*„roY. "a,W' .x y, f ' f ! ` 4 + ) jf' t J 1~. ` 4 ~ •Yw ~q,`~, r yw" ' `v f 4,rw h. ` e .,.Yr' , ` ar,wa «•.+,5w,.c,~:`" ,i".ts, t f e 4 J+ rt y rrw.a". n.+" AY tk i ~ i f 7 ~ i & ~ tb4, Vie„ ,u,+a, ti!W "pa.`'a w'ktiL:a,. ,."w'r','," „u;a:.„;,..,.,..., f„a"' r ,r ~ iJJ+,r y+$. `""h ~ P ~t ( ~`e`'e. h, N«« w,.,~ Af ^raaa,W °h . ,:..Q,ar. ,r..++r,^•~ 1 !f j "w+.., s o. J• a,y^+"mw a""'a,,,w .w.,°~a. i`ar,ww.M1n rrywyWWWW........ ~ ///yyy~~~ ~ q3j}' ~a ~ ylyV" ..~~YYpN" P R.~~M r+<"..r.nY~• V y R „ ;.w av+' + ,f ,+r F + F f a P.'} tit ,P ~~q t i 1' ' 1 ? t • e'"' "wv arc..»,w ,~u°"~ w 7 w:. y;u xr,a.«+ "R, r+~'r9"114 ~,,F'. ~r .+r J.1~~ f Y,+o,c ,,,r,,'+°' z. 1 a ~ . ~ s r ~ ~ P t j; m, V w„aw ~~:w• Y• ,,,:,et"^yP,`~~,h. ~,,,+^t~ y,„~ ~t"+~a '""ww v'w µ,6rr.` n.&, ~'roa i.f .rr ,t,if :rrr«:' "+,;.."::.«.m _.e+• i 4j.'_~~ Sit. St 'W wyy+••' ..•~,±~{'r' ~W' """aJ.;ay,a ::.yyrwr ~``k.,,., *o,,., ,:w,,:r+' N W ~{`d/ %r': t ,tY FI., i~ 1 ~ I "«~rnw w, i`,^1T aJ' ,4 ~,~r a ~ °5+r«•. 'u. ~r "w.rm ~ p is a' r,J . .,off" ^ >'',J' I vt . % °.d ^w : i , , e; ; i ~ 4 .~~?,a": ,.'r ' ,'9~.,y {S' o.,., 'wM„i,,,, "'"'"''w q fa 7.ar• ~.,n'""' ~ w...r,''°„f~ '%~'"Y r+ ,t 4 a i I ; t4„n 'w'r»,~` "^•w„ aw"v„~',~"'',,k °'+r "e `~f; 4i • f a ~ ~W, .e +rr; f''/" ,+~f' J a'' %~"''d ~ .V'' Syr ,li' ~ i~J.{ ,r'rY.,~ ; ~t , ,vr,,,,,,. „„w.:k:,,«>«~: "fi,l, w °"'.4~;..,,,,J"nw,"'~,,,;.., W1~,,, ~t+ . 'w, w`"""`""a,r { ~ t.: Y,.r•+ w„+" ,9~ .r .F r+ + f. ! r .o, qt'y' J S ~ '"'"•w 9 7 3 k`! i E • , ~ s, `°cw.,J,c;„S".' a,~ 's,: a "'etW,w ~~•'~myiq~r°"w~,. 'Wy TM ~~~~f Y tc o "°'.a`w~ aY~~ ~ ~ ~n,.NM'."mv®®.mmmm~m hwsa,.,. nw,y ^~'k'W.. y~ . ~ ~f 'Nra°". ~ ~ ~S7 n ~ . .~py~ ~yY P r+' m"` ~w.+ I n,w.+~,.?r, t ! f° o- / i ,w.rc«w~•" ff f' 4d ; .1 .J ,J"'Y r `n"+a..x.+ww.w.w,-,w.«, ti i g. ~.Y • ~ .+,r..w..'m"""w,,. `~ri Y ""r,`•t+w^ ~ rw~ "wa"'r ,,rJ p } E ~ i . t S. 1! f mna'• n ` '>.ay ;,,jJ" r,";',fP"'' "yr„k "W0`ay,'4•°a'.,arwmwyp'W`a'"w"r'n+'^~'+r 4. ,.i.,,"1 ! jrr`v "t~r ,r dyF! as ,3'9'+I%`~ p Ji,«v p,"y„^.^ ) 5 9 rw , „fig .`°w,, ~ k,a ^4igy w•,m,wic ,.'Ri . '"v: ° • : r ~ ? ,,r. > r" p s' ry ~'r ,t ~,f j"f +r w:.;, 1 t ' wti~ ;,^cd ,,"ww, "",Y,. wr. ~r ~y~~ ,e^,w L"r~y ~,.,ywb 1Pmr'mw.nue»nr4 Fyr r„r's .(A' fir" ,,.1 % ti ,~°t`tf i!''f° tr.~>. w,, , i y. l,;~x ~-.8k4-• .,r"'~ ,,u~Maauay, ww`~,1v„w,w, .Nir,. ~'ah. w. .,w ,t r` lu'' .,w ' .,,'F'. " a w,rr € ~ ~ ~ u ! ,.1 ''"aa,r 'arr nw„ W«yvw,w n ` F` "^+brx+o.w.:ona.wwea. ^w. 1 d ,r' e''1~ •~f>,J : ,ar f r .f 4, y i ~ t , a,~me%"'"t, o' . ,,~a^ "°w„ w,4» ,r:,"w;w:w „~"^•a,~~"r~rr~j e ~'W ,.,,„n'^ .,r ! ) W :r I Jr'' ? ~'',f w„ r~-,. } 4 .d' ,w,uw•vA'°yr ow' 'Mv~ ^.'+',•nL,a..mwn„wwr„pw"'.. ^,,y"r''' °•W ^4r M, ,~w~ ""waar ,J' ",r° ~ J ~ we,e,.lm, ,7 J ~ J I~ ' ^1, ,1m' ~0„y ,W . pn• M°" Fa,?,J'v,•r t M ' 4 a', w,~ ^W 4 ~F E 'auSmJ. . g, +b, ~o.,n°~.r~~, ~ 9 yrrow"' ~°J ' / ~Y'° ~ ~ ~J1 o." `.a,wHa ~ ,.:.~...w...,.w '"^NOgWWIDyy~b~PW ~y ® ~ ~p^'' ~J~i~ ~~pp A~4J , r'a' r+' " n..".. , I' . n ' r'fn~ o ~ .a } M«ayVWw" eta. iJ Ry Yr~a4uut aroM J ~ wr. ""'f rr t` ^tc,+r y !,!;,1~ ~ ;f' J o`r„a"'°'"°' 1 1 kC n ' t 'E`'in• ~wr"'w,x,rwrN"""`s,,v",rr"' '"°xa"'t^Y,~~v^~"ya`ro,•'""" ~ Vpr g~r~ `~~MW ,^ty` pt°vw+w,aew.wnwa v ~"~{°,Vrr r'"' ~ n.N'i d,! d fr!',,r c' J"gd'~p a p1 ~ \ 'Wx a++ °""'~'w"awa„w.. N y,+ `F,y t "~a„« w,.y ~ ~ ~ fir" e~ dS Ce' ~~Y' ~ s~ s~~, ~""~~w r' ~ r V ' "r' ' ,.t!,+' Or %.9" v,~" . a . M '..,,r,"~'•~~,n,°.,,dw:..xnW ~ fi f iL . . J r ,YF' t f ' t 't k ya, ^'^'w°M"suWw ' y p4 « ..4 4 Y ^M .r aa, ~t;`'`a„ 'G,°~ ~ ter" «r t~ ~ , a.,w~'~' ~ e;,~ ~'Y~;,„+~Yw ` 4 ? '.e' ,1 4, m..,,xe q .r ? ~ ~"N' P.i a? c'" bra "`^'".o;• ~ ',Y...« ,~w~"' wow,,, 'Wwaarr "wr ^~wrWa"*~u«rWf4 wyy wy %.~„N6•,..,, ,..,,,a,.M'r•"`Y C~~sr~' yr,µ ~ • "~wr'" r~~w~'wwL,r„um,w~'na.mww,^.n' w ^r arrmw aeww „b. .,r"~ .n" ^ t.. ,..n,<«a .,^ea ~ ,.•,w".+" a i. y rA;,''`it ,f!•,d"~ ,~,,,,,a,w.,h .:?'1 i S t"a.. ~R a"" '`^"^"'w+m,s.Mr'w!"'~?.,a~" pow" vw.rww„~„yw4.,,wrn,z..,xw.rr~* ,~o` `S,yb°: au+rtm"„w„°u,r~w,y f ~w'„"°~'r~+'.Y«~"' ""~~r~ ~ ' g ~ _,ww ~,yn...aw".. fr,? f,,,.-..^"''-^w".~. f v - o .d' i+''. " ft 9 ,f~C 7: d ~p ,d «,aa t, ~ Yti," . a,+w+r r+.twaA"n`"" ,e' ,d" s try ..rP t• P ~.trr ~ vaaawau '~w,,, uv"ba"'no~ .r4,,, f _a ~,..w~u,n~tiy„ ~"~Y.,` A-ru>..ww.+. ,f~~g~ SP 'wr""^".^aw,°•F ,~,,~n rw+awwo~'~"'yy„w ^+i'^ a°'°°a °~a,~ ''.y, ah, x4 « .`,~l'„ ',,?.°,o?'r <~ya";...,.,mow„r": ti 'r`A ! rtr ww4^q, ~ tt 'nw'.,~v~` «,:aa .:.w+, ,mww+..rv"w'+°° aw:wvrwwr 4v 'Yy 'V~ci •annmmww.;,,'"'~•w t; ,+-„a ,r rr' ~a+'„a,,e' .r, r+"'.il1!' ~ .++p"f .a,r!''" ,,,m'W' ,w«"+.'., °'^a ww,~,w+""" ~""""w "H oa,n++ew mwt„, w~',,"""'°uvr»,. .,,w r,r?',"",w"?" „ar', ^'„a' ..,a....." ,'wa„w«.•,wwwr:.,ww+',„,yw")r° ~g'~~ rf,'t.~} 'w, tw' ~ 4a, ~ ,1 .:``",+ww,.;wwaw+ y '"~"""rwy '.'°'°n Mwaro-an'"•'"w'^"*„,,M` m"oa„Bw,w a'rw` `~p" ,R J a w?.w', ,r• .,e,r^.,o a.waw .rar„`-~,,•t .r ,F°y~^,' a..:,^^,«ua, :r ~y` ,.w,"w "ww" ~~yva~"^"w' 'idra•"w'w,u ,y,~ hy~~~~ iy, n, W{,~,,~~ 4~ y.wa.rw, , .'rw,e+w"„µ,n.,,''" ir,9't ` F' ~0 ,y r"^u..wawwa K^' r,,,,"~'". "W,y,,~ "^h, y.M y,e '^W,au, 1` , ~J~~.. , .+„^"'"'"rn ,,~,a f{'r~,+°. ,y "",y- Wr C. R"t yw^"'.. ~r!!' ,,,n+ .^`"~wnw.ea.,w>,aw a'+r, '"r, awaw,•'w?"'y` .m""^'"w ~y r, ,,.,,a •~,e+ „w r' pf?+ F' Lw,~,^a P -i ?t , wt~ .M»".a,.rawa.,.+ccw+" ~ a^" "«'°wye: ' ""•w,w,v~^r",u`av ^"a^yorv .`w:xr^ 'h, ,,,w e,rw ,+,eaw"'n,Nwos+~i/7"'•r' ""'4 ~`4 ,~r ,r 4.b i a~ ~ ,n'om'' ~_py~"''d~+'w _ "OP-•~~y}u~ .,r„ ar .r' "`ti,.rr'°" e ` ~ k «w•w""'"sw°"' ? w`""^': M,. "b"`"^^.w..`"..ww" ~~Yrv"~`^4q a " r~, „1s4' ,Y'. " v a`4' .vs s-,.r .a'""''" ?'•vi`' dd` r * ~r .%~:w.^r' ,J'"a"" •''w"ww ~:W rw \t. . ,G , Nr 7 v r ~5. Y •P ~ wn~w,w+ k,J", , •Y ! r r'a or'" c. r i t Yr v `fa. y„ ,,t .re,«..". ~ ,w /"1" ~r°"""•r„w w„a ="V ,,a?'- ;at a,w.w.,w,.,«.. ~ waY,,e«a+ >+,o+d+ 'r aY ';.r'. ti~ .,!^w.w.,.a.R„ r,,wr r+"'c •j `Yr : ,r +„r~'°..+ ° ' 0''.t: ..,,,,,.r+", ,,.,v'°.,,..,~?^'vr'y "J 1,, 6 1j<q N .r"` •vr^'^ ""'.nr..Y, ~ w,vewoa. . r 7 'r ~.,?r 1 4 , „wr'„o,W,,r k ~"yr ~a 1 =w"„a,.w" ,rah' Ana,, ,yi,ame? t I r rr T r•a„~ ,r.'~''p+' ,pN; M"" J l ^=a rf~ ~ ^q~ ...,.now^,«w'+++"w" a "',,e4 y,.aew ! i r.r1'•/r r'., J' , J'' ,d ~r d ; i ~ „arrr^^«,«,ar ~r ~"r` ,,,,,,.F~'""' , r`"' C'b +`,a ,.^%",w~ j E i r' , r,. 1,?r' ~ ~ J ,r !'r : t. w~,ar.'n. ~ .,,w.w..r.w,.,,•.,,",.,:,^,,,r» ~''4, a ~ v~ w.awa^^""•"""",vr" r, t ? r r' rr ,Y ,?`a,•' ~i 4 tr ,wr,a,„ ",v+^on.a:~s.r„r' w„r" wai1"""~".. ,bF R J° ~ t9:., .d° J ,i r i ' r'' 'A',"'rJ ,0' ' 4 r,+" y' t ^ 'h ....,.oMw•rxr„:':+aw.vr..vwuw b w Y~° wivarwwwam^`+'o 'Y + f rr a a^~ ~r`A y'~i,~,w«A'~'"~wxrw++~ qry, Maw•,re^.«,..,,,,,.r,.. ..«.,..w,.«w:mnr"""+ ~ I i, 1 s ' i Y i " r e. w r'' t , ' R s' r ««.L.w~=^"'t„«m~ ,4 ~tq ,,d,`,j Ji ~ L..;., ~ o~,;+ "*w "~"aY,t."„~+,w+4+rx„ : ! % ~4 f.• '^aa,,,.a.o:'r"`Aa ,M'°ar" f4 4 0' 8' ~t "`"^@,,, ' { rrfA i('' , .."W~~` , `k„w., w,.a,aaxuar,. y,pa q'' 1. 3 i { y~' h,,, e».,>nr ~r.0'^f ~ ~ `1w•rwwr,u.,+u ~,:/~,i'n'J iyi' f ~w ,yxM ~qy/ M ' , Y t Y,W ~~'~h,y~W«" ~ M m"~^r^4YyryrywA%'M.W ' ~l •i Y 'v Y Y ~ 1' •(t ,ww•wvwwvnrrae+5wrn, ~ ~qr.w ~'^A~A ' ~ ~~~,,:y~°~ Total ~ Dastkred ~,7D Acres 'r: a t II ,.t r % rr ~ t C"ti . ,N• ~ ,f~~r~ a` ~"Mn~y ,,,,^""w.v. "wWp•'^'`p~w`" *'"q•....w.m:+"'r A~ ~ `\~.k",w..` J "Y4°«.rwaw:a,rw",A'^w^„vwmawil W,. ~"'r°4':"'R , , 1f 1, \ V .a.,,~• 'wr"`.,:.,",„„ J~ 6 'rw r^waJ ~NwaJ`N"w~Vtl6yyn ~ f ? apw 6 r ~ ~ i .MJ.ww} ® ® 0 1 ~ l~ 'y S S .r a+ •dr ,P 1 I kyc,wwrFa'" rS ~ •r^t~rt~ 'Vpr ,w , : ~ ~ ~ oil 2 r . 1 ~ j rr'a ;r,~® % ./'ws4^41a""^mt3 ny, wwwy. y, , { 7 Y. ~ ] +'p ~ ~ i• '~.~,NrwwJ' "4. w'"• w.r ~'amw.w+'w'^•'^wa,w t i ` /'`f Jlr' ~ ,I ~ ` ,,r~ R~ ~ 4 G ~ yyrw,u? ,4'N'wo 4W,~ rarreaww~~~ ~ P , 1'," f+ { 7 y ,x' ja l w,,,:,w"'`o- y,y"' "'"wb. ~Y"' ~,r+ ,m w«M„w, "`b, w.v,,,,,,•xa~y , ly T - / 7 + - Y JJ a' f, ~ ~,w+ . Y C ;w 7,«'a'~~ r~w.":'' '"a^~.`°"w.o,w,,,.n....,.w..w.,.>x,yw °`~s,,,m w,,. . , • • r' , t r I, , r ~ 7~ 1 ,ae,,,,k '''W::,a,,yw, ,,,,e•,,,..,,, w.w w.mua,,ux,,~ . i i'l 'n.4, ,w+'"c,".`«,y" • f rr ^"'w e^ra +oww'",«'"n•,e«r. i i ,i r" R wat° „w" °,wwat^+w,u"d "wiwn,N„xw•,w.:,, •.a,,~ •.n.,,><,v~ ,,,,,raw"•""" ww4mwn,w/ac :C 'l ! t rf ,f" Y' 4 a '4. >a~,.av'r y+.F 4`r+y,. M'<,`,`+wrau.. ~ se ~,m~' i' ,'4 ~ r r . , , . , A ~ F^/ ~ b` www*"w,ianrr. ,prp"°d' a'° uc.aa.,,eµ.w ~bgHw:o,"•r•N'".,w".,,; '`4,.rev,,:.ww„^",wa,.aay s"' ao a.. ~r s/ r"a , 4 , < , ' : I ~ aw,war,awf°' ,W.. ",4a , L'1. y it M*" Ma„ ~ . ~ , , c, w+%'' r 1 t ,.....ru ",",>W ' ;r~,,r ~ 4 'w„p' +v are,,,,.,ow,"""r""w+'+>.•ss°° yy~ ` 'c ~ `^aR ,.~4 I _ ~,j awpviw~a><^++. r.."~va*,ww,wa.w"''rrwivm"'mr% ~~l - r ~ } a` .1- ~ ,:r' wf%' r°°+'~ ~ S ,Frt'"Y' ~"w•~'+°""o`w,an t"s ~+e+w~, ~ +'r,.,y ",o. wr'. W,Arr,,"'. u,wr:a.wiwa0"'w•~'~~°La,,.ar,,,nx^ ^ ~ ~ a,~".~' ,a>+a~` ~ +w,.n.:,~.._nr.~, .,ti~ o ~ ~ ,a~wa,a~ivrww„Y ~w r'' 1`S' W e''« f } ed "°^^W., ` °''w.«r,r,.s w~ eufwae^+". i't'J,' sJ'" E -J' ,w«wa„w"w"'w'~ .A ""a^<,<w. `w.r d ,r' J.,a+°n""r'wr,~`" i r•+<f:, ;a;r ~ ",ac f ~ ,«.,,,,o-.a«•""'°• J,v r,v `"c,,, ,"'wry'" { ~ ~ ~ d~ ~ ' .r• 'lr ,o:N+,,, j 4F P b v,erov"..,rw,...wa ,y, w~^'"'""'"^w„ "`^•q~ 4 ? r. ? r.. q~ pp'~ ,re"' J r,.,,,,,,,~~ N w awrw=„•a..,s.~a..,vm•~.: r A.7';r•`,rr p'/: eV f mow.. ~,~Y,'p `m " d~^~~p°~ ~F . , r I'M~~ 1> ~ Mr'•` '•,a,.n•a......M Y'" f a""''^v,"Ww+an..r,,:ww••n'"'.avmw,w,.uvm, yy„4 y„ ~~r,/~" ~ rid ~ p~ ~ ~~,p~g',~ • " .~"„',,,,,,w.,~,«,.,,...W, ne,n,,..,. ,r•~' , , a„+"" / - v' / 'w ~".4, wa,o:umr.."w.,vn<wr ew^°'"""'""w^" ,,.a,',r""`awr'",'d",.o,~"° e•"p' ~ ,1 J: rr ~ ^4, .r` ,r ,1 N; 'ww.•.w.+,~"" .:w' rw,~w,•~ ~ i8 r" ~i'1 w a wpb" r7 " ' r , ~ ~ w^'' ra''y /,~~r ®®®.r... iB,.a .y.irara' «„paai^" " ' w . n / ^m.. ~ w»,rc^.„"«warvn."^"«'~ Y'a°r Y,µa J`• Y ~ y~` Y'"' ~,p~ ~B7T 1~ f~ ~ • J)~ L .~fff y7'~7f' t'^ ® r ~ / ~ S •t ` rp.ra,a i 1L ,`N?' it S` .v ' ,.r. ~ i ,.,wra f ; rm.. .a.r."'s9 2 r r ' w„" ~ a Y y~ lay" j ~ ~ f' .f~ . J 0 .~W ' A1~ ~I r/ ~4v. .~~7 t' t f .S ~ d J d ,f,J~ y fy{ p fa pppp ~I p ~ t ~ ~ f %r "t. 4 / ~ a ' .P" J^ 666""".., d' ''r . ~ a" ~ t`yC / ",.w , li ..,,*r v , I ? ~ ' a d,••~m^ . /~dP t"~ • 1 7' ~ n+tF J:1 ` J' J . r'r ,.1f r.. ,w.~ (~V yr / ~ , "~F°' _i r J'!e ,rr p .,+f ,v+ ./r ^J J -Y r Jr %r ,,r J r,'r , ( yy d ? J • . " Tiara ~ ~ ;~•v° f , i " t0yt1 IOIBEi , P F Y v e~, a!a , P' $ ? .y ,,r{ J•' fa, ^y^` Apr ,.,N a, , , 0 ®00000®® ~ B~ F ! ~ I , ~ ,ra W,x,,. yw J" o"'~ ~ s+"• p B / ' d , f ~r ,r~ r"' ,p,'y +r. air ~P'~a ,:da+ ,r"" . va°~~~r~'P ' N`g".° ,~o" i,.~^" Y+,J ~a ~,,f~ ~f O iio7 didl/' 1!/®~ 101 r s i~oo d~ ~~+s® n® S' i"., it r J` t~p~~ R f s^'r~ % p'.r~< a ri" a7f ! •V"•ua a^"~ ,}~•PW Fp ~ ~ ,Ya, p J} Y sr Q> ~ uS~>~.uawswil ~~....a ~ 1 y~~~ ~s•6'° > ~yr!°' ~.5~ ~JJJ, d d ~ a S E. ~I i ...t> l.'..C.LU~.,.... _ o d~T 0 Q+ 'Ss® rv a a ®1°®w ` t~ i`/ ~ I , .,Y _ ,,Ir 5'' .,r' .r'or .S~ .r~ of ,r N` ."M" a • y~NY ® o . J 'f P ? r ,rte ay r" SL ° '-;1 ...t . , r f d j` .~y ~ y+"' o~ /y ,y sI ~ • • ~ ~ ® i /1r .11/, .fly "o 7~ r`:~ ?~~~~o'• t + e`Co Contour In t 7,A p a 1 i ® • r e~ d !J yo- d d 'A 4P m ! S sue t eer n e A 1.41 r. r' 7 m rtk 3 W Pr rlr~o A m ~ 2g."- t o eau S.a P . AIA•11{0111 e~ n" }•x ,rs .'J'' J ',+"J J i ,r ~'"""io"n t' ~ Y / 1 Ir + p r" 1' f r i'° y+ys' w , y N ° P ; cA Job No. 0-009 Erosion 00 All Holm . i J9uladesn ~ ~ ~ t Pine Root p, ` s ~ ~ Y~ ~ 1, . ~ I t ~ ~ ~ Site N SR 1 0 . , ~ j „ ~ ~ 5, ~ ~ ~ I ~ ~ "i 1 . Creed Rd ~ ° NCSR 1926 1 1 ~ ~ ~ , , .1 ~ ~ e ~ Fort 1~Cn Rd NC9R 1998 , ~ n NCSR 1907 ~ I ~ ~ ~ ~ ~ ~ , ~ ~ Rod Bill I e e filP9167 IiKy 228 ~ ~ Rakere~lie ~ i ~ A A ~ 4 Q 1 r ° I{ ~ ~ ~ ® ~ y ° e t ~ ~ ~ ~ r e,~. . 4 \4 ~ ~Vyn~Yw.r.,,,r,nw ? ~ War, ' / ~ ®r fi' ~ ~ , ~ 0 ~ 7 . ~ 1 ~ > . r~ e Q I a ~ ~ ~ ~ ~ a t~ ~ ~ ~ ~ a ~ ~ I~ ,w ~ M My II~WW ~ ~ r ~ . Mwawei ° 4 ~ e r~ ` ,p ~ ` ~ ~ ~ ~ 1 1~ r J f, .r+'" f e r ! ~ : , ,p Mr 4. ~ f e' } r , ~ ~ ~ , . a ~ a ~ ~ • y ~ , 7' ~ ~ ~ p o ~p Y e ~ ~ ' ~ 3 si ~ , ~ ~ ~ r'~ ° ®/~h ? ~ ! F d ~F 1 f s ~ ' X ~ "w: ~ 1,; rl~ ~ i ~ p ~ J ~ ~.r err .9 6 ~ s I C r a - ~ f ~ f I ~ ~ ~ ,f ,r ,,~r d ' t , ~ ~ ~ ~ r"1Y ' 1 ~:a 1 r ire 1 s ,~a, ~f}~ 1 ~3 e: f t + f~ 0 7• ~ 1 / ~ r~, {r ~ a ~ ~ i 1 ! I y R ~ ]y(j ~ y t r r r f~ ,l t . p I .I°' ~ e ~ ~ / ~ ~ .i a ' ~ ~ ~ o' i , f ' ' 1 ~ 6 ' 6 l ~ f ~°"*~wl w? vw~l . j T ~ ~ ~ , ~ I r~ er.; ~ rI ~ .I~ aI: ~ ' ! ~ ~r y ) , : ~ ~ d J~' ~ rrr~., ~ ~ ~ i ~ ~ • ~ ~ ~ f 0 a~M ~t s ~ ~ ~ , ~ a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ a`' ' cpe B i ~r .r r~ ,~.1~l~, ~ 1 t r y~ 3 e ~ p f ® y !wrvy ~ ~ s~ f 1 i .r ~ ~ ~ ~ o ~ ~ ~ ~ e f /s I x .l ;~;1. ~ ~ ~ ti r ~ ~ r > . 1 ; e. ~ i ~ .o`r a ~ ~ ~ o , r r' 1 I k ~ ti~ ~ ° ~4 , t ~ s e +cvs+v..~r t ~ a ~ s ~ ~ k ~ ~ d w ~ ~ ~ ~ ~ ~ ~ ~ ~ W ~ ~ ~ . 4 . d r" ,r 1 B . ~ IMO •h ,Y,. ~ r ~ • ~ ~ ~ ~ ~ ~ "'a w ~k i ~ ~ ~ 7 2 ,,,w, "~m~ u •w~ S+ tt t . ~ . ~ ~ ~ 3f , , t 1y ti l t({ i ~ o. 4~~ L 1. k •1 1 ~ a~ ~ a i ~ ~ r I r Y k ~ r,. ? h ~4. ~ a ~ ~ ~ o ~a.."'""'w ~ E ~ ~ ~ t a° ~`bwx~w~w.wnw,..~y i 1 ~1,~ w, ~ • ~ I ~ ~ ~ ~ q~ ; ~ ~ i ~ ~ ~ ~ ~ ` 0~ `4, ''v, '0 f 3 r ~ ~ ~ ~ e t ~ ~ ~ 'i 4 1 1 4 q7 k ~ 6 4 d . E~ t , t,4 , ~ Et ~ . 4 I 1, 14 5 ` ? y l 1, t ; o .f qq ,,y+ iti ~ t ti ~ ~ 'z j• t. ~ ! ~ ~ t P ~ ~ ~s r . ~ ~ ~ ~ ~ 1 ~ . ~t k, ~ ~ 1 t~ ~ , + h ~ s. iy `y`~~ ! 'fit ti ti~ ~"`t } ( t ~ , ~ ~ ~ ~ j ~ 1 4 t4 \ `i ~ e a, 1 ~ z ~ e, ~ ~ ~ J I ~ g ~ / ~ ~ ~ ti ~ ~ ~ i ~ t f ; s ~ ~ ~ o~ ~ ~ 1, ~ ~ ~ ~ N 9d ~ . I ~ : ~ ~ ~ ~ ~ t ~ ' ~ ~t ~ ~>s tV ~ OD 3y .r ~ ~ ~ w ~v 1 1 . °~t ~ ~ tsi .,wu~- ~ ~ ~ I~ ~ ~ ~ C~9 i ~i 3 ~ °'o ~ ~ f ~ 4 m ~ ~C , j ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ 2 .,3 f ~ ~ C.i • ~ . ~ ~ ® w u.w.^`~~" r r ~ .v.,~ „w,,,, t ~ ~'y + ! ~ 0 Iwo""""r+?`""""w.ww..»..I+wN`"~„'?.a+.w+"''"'"'~ ~a ~'~Cp'~' w~p t t ~ r~ ~ t w„~Y„~. ~ ~ i ~ ~w ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 "~.~-"„per,"'" ~ r ~ ~ } ~ ~ ~ . ^«w.r....~,..,,w,.~....,,.,......~w+~».w ,r„«~n'"y~y"~"..,W+...c~" ,„.,,w~'y0'a"~ ~."""~~«,~W" . Tod . e Acres ~ j MYrIF1.MTVWMMMr.LPAIMhMN~~~~~,,I.M.ywMwY'r'gM ~~xX Y~W~I' ~~pM rgrM r .~W yi.9 aMVINS.w.Y+~Www+wM?~MM~yvM~~wY~,~y~n,-~,y~,yy rvr.w~"rN..liM^'. Y' N- ~ MYYyyy.~~~ Ylr ~WW..•w~MY ~ rW~^' .rMMM ~M^'rMy.MNw^"' ~ ~,"yyWM"rMi?.JD'" .IM"~wr~~~~M~ WrouYM.MMV.Yts/rN~• p,yrlW~y ~yNWr*~~PVM^"~iM?M'~nMIMMw+reWl ,.,~a~_`.'W!~. rl .,',~'yp,~VM~+J ,~~~-•,-Jf •ylpwlwF'q.PWWMAVM •w^"' w+'""w" MK~~yW^' ..+ew"~i,N.~'wwlr~„^ N°"^"N?.vyylonvr.wv~„rw~!°" ~ yap' . d+~P^" ~~,~x~ M~w~yo Awr ~ ~w+4"m~" ~+"`"M+'Aw,wwaww°uvam^w'nr^""" w,w~ ~a,n~WN"' wwww 2mai+nw 9 ~•~°~'H ~.~~~w+"'""`"~ ?"Y Irw"''"~ y'~.a~^`"~'•~,.,„„.aw...+M•"'"' r+~W "w °'r < • .w.+i""+W w"-'" .W"' ws""a ~~„W..+r'w. ~w.w.A'y .aiM+.-~f"~~"nYSJ ~*w h>t/ryµNl yYYM.F M ..Y"vpuiYav++~,W,"W rV Pond ~ .W1rN.wrtW3MW.w.w"^" V.~x"`".wln N~ "~~'rI' Wo`~""Iw.wuw~M~a..1JI/ ~r~ ~wl"~""~I~..~r.~ ~ n i,,,«.°'""n+* a.+""'w""..,.v^»"` ~ ynw-W'yr" ,+~r+""'v.~""o.w ~,v.,,.,...,~wl+"^'".w""'.«" uw„"'~" . wWM~~r°~..r~^a«`~"µ...,...w ~a"~.,rr.~'n,-av^'"~,.,"wN~.+~a~.y?? , ~ ` ~ ~ t ~ ~.:7 ~ aa+"'Iw"' _,,.~~~°~.~"''~~.r+e•H ~~n"w"rr Iw'°'^°'"".° ~ r ~y;nnoW~ w.w+.^"w'M ~~_,~r w~_~'yw+ N ~.^M~„rww`" "'r,.~wa"w~~r+.aw. wi>~~ wN,rM"~ e.w°".`,~"r+~!'°' „w*"" ~ yp+° ~,.,.roa'p1° ,r,.xw 4~,wr„,.vw». ,,,,,wr^'a~.rn ~~w„o.+T wM.n,+Wwro W ~ ,dwru~~yyw"~ima^r`rw~~•.a,'"H ~o~„W,+,.mwo"'0~ . o ~~lo by w"' ~.,w+• ~w r~^"' _,~nw ey^.'i"r °ra ~a+...naM°'n'w~ ,.ux~a~,",I,,,..,..w...W^'W'"~~- w .~rrwWN ^"~I.^°u°" eWw"° uw""°" ,,,.a rro~"^~aW m.+wn..+ r~ ' ~ ® 1 ww+.raw++`"' we.N'"~„.,nwn' ~~o.w."""I,~„w»'W~Npwew°''° ~w,,,"'°°`•'.nrr~"""._ ,ww,"^""~".'w.µw~. . • 'Mao , v..-s'","~`r~,y?'r~"` ,p,aw ~,,,,r.w""' ,,Wr a,rw.~'N,,,.MOa°""',I"r'~" ~p fir. ,w.w..o«.^w"" ~,,~W~ ~~,nw.^~`" ~,y~1....N""'".w`.w~ «w.w~^" ~,,,y~a~`~.wn'°,~r+y~.+wwp~"~r~-.wad ~,,.ww" ~n,.al ,„~...aurr+nw.w~ ~ ~ 814 .Ir.Nr+w'wyw'"Yn- . Olvr~. 'p' PrA''W w•~" W°" Vrp/~P^"' r...N vIM%ewa»' °e0 r .w...a~^^~^""'"'"~'»+-„..ram"" ,We ,e* ar.+""d' p,,.r~"'""w,,.w~ w~''r' ,Yow,v. "`0"' ,,,~...,.u PAD .n.wr.Ww'•"A ..vv^` Yw wJy.Jw•"11""'~ayw, vw p~y,w ~,rw ~~r°'`'',",.wi.1N wwy.xvw pl y,rWd'"'"~,,,.? W,`.. N+^~ ~yM'"' Vr^•I"" p•N+^' w .Mw"r.'wl'^~~W~o ~a ~ r" ev rw.n++ ~'wwv.~ P~ ',~a"WIMr"~ /.~~w+~ s.? p ...W~+..W~..+''""'" .,sw'',.~+"pnr *w....•+`0N ~~n„" ~,vw°",.r~,rr,N ~,~u~~~,Nn ~ ~ 3 • w.ww'" r .war" .n""f~ .vro"'~~w.w .nw,l~ ~ ~ • e . ~ = f .r^'r ,.W""'~+.»~"..w~.ww. ,,,.,,>.,.r°"" a~""I yd'"»r' ~r ,a?"~~ tea. wMM N,,..?.r~ly r+' ~"W,yrM.ixwW.+4 M M,vwy,,.aJ yrW~,~F ..wr P GYM 'WM~A~M ~ . irM'r~v+wM'a'W~'~WW /'YWnw~.+• ,,,o.•.+wµ"^'rrww..++wrwr. r^..M^,pM"~N' .?'yY'" ~y~.~q~. .ww+cwY.^I.WWHK. WxiwV^^•''rtrµ•"M 1~M'`Hy?.hl+.r"ir^ --r/PM4W'" ...?W v,.a v1C~y +NyW .(r "~tWw ~ MW .,.w.arwww.«»«n+N+ m .y"M,.r."'a.'° .vrw^'r~'"~rW,wwx~N.wwa•+.+~~ _„w"~'M+r- ..w~'od"_~.,a+.„,.W ~,.r°`y.aa°"»rw y N ~.My, . o~w,n+M^ ~y,J ,r,•rn ggr,a.w.~.wrw. n~worlwr.•r.r^' y++Kr~ rW r•+a ~.N"W,.r~"'. •~.a'~,. v'" aa'd'.~yw"'N'""""'"'°^.Mw ma.lw.are,,.w d ~ `~e. .rwwM^"o ,,.,ra-,~,,w" ^•r.w"`"W.".m,.....wrw-.,w.¢,wrxvw,, a~ ~ ~ ~,.~nr ypd'0. r+' yr N" r , ~t .a.. ..aw++o"~r"" w o~'y ry+' d a.." ...rv,.. "'v" ~.mo-"" .+"`~'"~w."om o.J aa` rr" n+° +'+..w...eti,r,. c ` I.,yn,W~wrmnaw.w..r os?ra yww.""~~„~,.r.yN"M,w evo"µr"'~n•"o'Ir",w,nrv .w«n,,,,,.e.wn"' r';,.."" .,«,~.'"•w'• ~~?~'I'''~•r''"~' '`4 `F ~Mr+w~.•+w°w~l'..wnwwvm:.W M< 't~n .,w„,w.w°°~'>,+r+"' ~~.r~••. mr''° ww.nW. ` p r.rF''~~ u•o'"~yd ~w.. v"r aww+.rr ~ w wow+r,.r ~ ,,we~~,~+«w~.~~ ..r,~ M~,rM. `r, ~C Cl .,.+rPw'^'r'"""WW ~y'a' w~+' ~,,Np~~f'~,,,n r"'M'w.r. «M'.w"wrr~"JOwe'ww~ rrN' w'"' _,s,a "yr+" ~,,.yw».wn,~ ® ® i r~'" . ~y~+' ? rr a+mv~viw .u°`ww+ww.. N„r re.+~r+" wy" '~,w . w+?^"" ~,v" ,rw'' wry ..".",,,,,.w,+.,ww.""w~ . ,~,~y+'-rurew,,.wy' y? ww~''~.r+" wl~.w.w ~ y • ,.vwrwo• fir.' .w'~~ r.+°w~°N• J ~ _.r+ ' •uw""""`"rrw..u+a"'•"'a ,yam roa.. °n.ww«nW^•`oW ~ r,rvjO'a~e+"'r .*d•' ,,,Y,'~,~y~,W. ~ y~,o....+n. ~,y„a'~w ^'0wwe ~ - ' 8. • • o .~,rsWw w~1°'^"a" ~J' aP .y~.le „~~yr ~ ~,~:doy,~~ p!J'" y? 0'`"r fru ' .t o. wuwwwl..•'r"'°°.w•" ,M'?° ^v°~J"a''.v" n»'°'.a.,mu..yv~~ywe,,.a ,ww« wd ,s',?r~eN•a^' .,ru+^'a."'"++w+h.: ~'v I ~,~I Ff r o, ~.,,`r ~.w" ~',~W'~y./, ?_y~/^~~'yy'~he? ~,p,oew.wwnw.+.unu,y ,J i NM"^" ,,,r?'~y ~ rJ~ .J..+~~hu.?N^Y r,•,J~' n.Y~u' e'N'"' O5"AvM". ~,~.1? ~W.MV+NNNVnTrNn \u.y,._ tI1N~ ~p~ ~.iw~'"~~.~y PM~~xY^ ~N~rJYe.•?~~pu;'~°WMw/'~'NyYWr pyJ~NI~~~M~'•~yYNd!~.fw ~NN..IMUrnmW.yw,yw~y+~t~ ^~Y~ ' M_MSFMwv~.""' iwr"'a~W wMW~ . n'Y wi. ~..wn ~+"~,.,~e~/N•H`~•,,.afi rR~ ~,,p~~'SJf/MI ~ V ~lv , ' y,,,,mWn+a°"`°w`v .v.ow? av"W .r w•.,w. .r"'~?Www...n';.W~~~"~'M~ y,Wd~ v ~.C ny,NwyWV•~yw W '"'w..W w+wuw~.,.r~..w~w„ar•.~w ~,,,,,n~"" r,N:•.a, ~~~M U..nsm~ym~wwwi.. W w„n~.rW ..rsr m.«.+>,.w. y~ w :.w~~~"~i,tiw.ra rwM~ rrw' ww" ""dr 'Ai wvrlnnb.r.WrM"rwWr?RM~~wrW.MN~ "J"' I~w.. wPfW .M"' V"~N'~ ~',.~wII'RN`~ .w.wiWPwH. r~hh 6 ~ _ ~ - a«++,ww .yrA" rlw'r` ~yvW ' r~..n.:.r"' ~.,?uw""" ..,r *',.~..nwuw.w«.ww~..- rw r ,w, ""w~,.~~w~ ~«w,""°°,wu", aw+w'~.~+""'~.,,W.~wW"wa' ww^ "r?' ".caw, °j0'o't' ''N,~ f I~„ ~ ~ • ~ ! ouw...,w..unw y .n,,r~°• ,c;.,-° .r.^.""? w~°'. ,...ws ~,,,,v.K..r.l.a..»ww..a,,M v, ,C° 'p, ~Y'~° w,~,nw ~ r«r,J M.«,..,.»..~,..., .n .r'I:,.. ,w^"' `Ww ~'a ~ ~"hw D/~p1/~ 6 "'"'.w~..rr,,W~~~""~r,?,~.~ w„.w.w.+""'r• o. ...W .,,w,,.ww.x-«^a r '.t,*~, .a' i N66Y ,wawawwwy^'."~~„~.,wrr"`"m >r ~.nr ».,w• ~ .,....,.w w..:u,+.a.arw ~ '+~w,..wwu. . Pond o, ~ rrn....rrrrW*"' awe",'",• r,,,....w ~ ° r~ aal•' ~rr' w+ew.^'°!1wJ"' .mn' eo.wnK^"`y,,,d.N"',u.rv.•--•...,.rc. . ~ ' ..w ~w..+' r`"'"n.n+. ".r..ww..l.a " r,,,~w;,:ww.w wry0""xy,w.w~,~,r+ ~ Mmy°°°°y„` "'"'aw"" ,v ...w°' W" °o w~''"" ,,,+ex ~y, ° . C = ~ ~ JUL 2009. ~ ~.+rw.w..nx wN ..rl~ Mrr ~.rr ~ ~1 •"w"ewr.. . µnr•I`~ qwN 4wF~!~ ' w,..a'rw, _ ~ fly a "y -?..m»w...l w ..N~'"'0g14~/[I'101; r"Ww i J ..1,'+, o so ~ ~ zoo, ~ ~ i OEpR•Yd~iERrn~a~nv d ~,/0 A1'p° •>~~'X.4 'h, J ~H.~,„M„w~nd,n• ;w.r«~a~6-.~wn^.'w~,+~w,wY `q '^Wrs.wo„ywy,,,,.ra'°°. f,......' . ~P . •H ~,~yYi°wNU ryw„p, ,~rF w~W^'w~'Mkwww:N'.V.Mp.W.WViN+~wwrw~„~ W.~ .y, TIANDSAND$T . _ R weYmugw"~ ® ~ .NNwWM~~~ • M.''w'N M'~.ytPK+W^bN4NNN,1.Yw~xY.'+wNwtn.~..~m ~x+~ ~p ry ~AI 1~' ,,~,,,,,~~y.A/nnwryyM ?..N~";LK1.*w.F4by ~y'~wyww.. ~wMYd% Big Rock Creek 've MANCH ' _y~+ .~nMM~W+.W.WWVS.tw^' ~,.4•°K wyyry~wWMMW.Mrwn.Ww "Wi'^~ y~1 ,.npy.y.yYVSw w+ ° •O,p.~ M/F•'°w• .o.+v~wY~ M.yw ywcrywy ^ yr~~'G~yY i t d- y Contour Interv'als r ! 07 9 2 r.NYw?'°MMw'6? i+' 'WVnrrnd V °e~ '•wsYMwY `w.fut'., W.!''` . ~1." ' ~w„„, .~ywy,NVInMM•~'- IM'?. ~ ~ ~"""°'Y4Yaw?.N++/wHVM+.W w11y~ - 00 .+W N.aW.w/ .pM~'~yw Yw.Ny ~.k tl~wMw '.ww•+.4.w.• a•.en•.m+.. „„...p,...."rw•."~.wv.~~wwM ~,;.M""a w..°""°+«y°.w+44J+riwM. +xA'~Wy.a u+wrou•'"r""` pP .o"'~ .wna..n..w.w.'..•n. p•y.±'w~ww^" M`~w>M'~ ,~•,w'wmw„~Vy~"+w,,M,~ w+.„,.:°naax.e...rw.ip, 1~wO'~ .n=•.R o. M,.,wc:.r~, r...•1"'"",4w.w.w wr~rr..aw.ww++ r q...aw W"ww.,.~. .1..w.w..au~`~w.w. vM~' w+rMw,.w~'+,.a~ g A.,N..„"4w...~.+.+,.•,,,„,r.+•"",.cw "'"ww.,"w+u~..x,..,... w"'° "•.oy~ •w ~'r~•°n t ...»rn.s,w.•asrm^'~•T.,. ~ .+6 ~y+ .w.w:~K ..•°„'"'w .N...y," ~w '"~w.+aw .,~~r~~ '4•aw. .i J~".~~~yµps~~' ypy rm'r~p~a IVrv e h ® M Y ww~,r... Wort .:w ha ~rwy~mx`x`^v.•u r,«wa..~wwN.r ~ uW ~~/~y¦ ! •MW..wti•WM +heWwmuWYiM d~ WµN.x M'.V w.+'~' M~ W'• l • a+r+w••"' ~„,o»•wY w,owo•Y+...r«.w•?• °„+w....w ..w..r«.. , ++..,,4...,W ~^`•w• •'6a "'•4r rMrwa,~,we„as~wrw .r.•.w'^" ® 1 ® m ~ Irv. 29 MA. t Avep v-4 ,.^...+,+»rII 0~~•.nwa+..r+.»„°.«,.,a„,,...w.""m" ~a4 "°`•4...,.ay. - Job No. 08-069 Erosion ° i ww+.n„~*a'•"„".myyy~'WU""w`nrr.~~ ~.+M~~„r,„K+*nw°`"ww,,,o "ww"'I „`~'~tt -