Loading...
HomeMy WebLinkAbout20052062 Ver 2_Stormwater Info_20060323Ely. p ? a. 05- 2flt?2 STORMWATER MANAGEMENT REPORT WRS Retail Shopping Center Sanford, NC March 13, 2006 Prepared by: Freeland and Kauffman, Inc. Engineers - Landscape Architects 209 West Stone Ave. Greenville, SC 29609 864-233-5497 Q? C??" 006 s??? ??N CAR' pl P?? o?,40FESS/py:l??•,,, .: ; SEAL 's 25419 i E ST 3(?la? Ely. p ? a. 05- 2flt?2 STORMWATER MANAGEMENT REPORT WRS Retail Shopping Center Sanford, NC March 13, 2006 Prepared by: Freeland and Kauffman, Inc. Engineers - Landscape Architects 209 West Stone Ave. Greenville, SC 29609 864-233-5497 Q? C??" 006 s??? ??N CAR' pl P?? o?,40FESS/py:l??•,,, .: ; SEAL 's 25419 i E ST 3(?la? Ely. p ? a. 05- 2flt?2 STORMWATER MANAGEMENT REPORT WRS Retail Shopping Center Sanford, NC March 13, 2006 Prepared by: Freeland and Kauffman, Inc. Engineers - Landscape Architects 209 West Stone Ave. Greenville, SC 29609 864-233-5497 Q? C??" 006 s??? ??N CAR' pl P?? o?,40FESS/py:l??•,,, .: ; SEAL 's 25419 i E ST 3(?la? TABLE OF CONTENTS 1. Narrative ................................................................................................................................1 II. Pre-Developed Conditions ....................................................................................................2 Curve Number ..............................................................................................................2 Time of Concentration .................................................................................................2 Rainfall Amounts ..........................................................................................................2 Runoff Calculations ......................................................................................................3 III. Post-Developed Conditions ................................................................................................4 Curve Number ..............................................................................................................4 Time of Concentration . ................................................................................................4 Rainfall Amounts .......... ................................................................................................4 Runoff Calculations ...... ................................................................................................5 IV. Water Quality/Stormwater Detention .................................................................................6 Water Quality ...............................................................................................................6 Outlet Structure and Pond Release ..............................................................................6 III. Sediment and Erosion Control ............................................................................................8 APPENDICES Appendix A ....................................Maps, Tables and Figures USGS Site Location Quad Map Rainfall Tables Appendix B ....................................Pre-Development Stormwater Calculations and Figures Pre-Development Drainage Area Map Curve Number Charts Time of Concentration Calculations Hydrographs and Runoff Calculations Appendix C ....................................Post-Development Stormwater Calculations and Figures Post-Development Drainage Area Map Curve Number Charts Time of Concentration Calculations Hydrographs and Runoff Calculations Appendix D ....................................Stormwater Management Calculations and Figures Pond Summary/Stage Storage Chart Routing Hydrographs and Calculations Water Quality Calculations Appendix E ....................................Stormdrain Calculations Appendix F ....................................Erosion and Sediment Control Calculations and Figures Sediment Trap Calculations Sediment Basin Calculations Riprap Apron Calculations I. NARRATIVE The following is the stormwater management report for the proposed WRS Retail Development, located along NC Highway 87 (Homer Boulevard), at it's intersection with Wilson Road, in Sanford, NC. The site fronts both NC Highway 87 and Wilson Road, with the majority of the frontage being along NC Highway 87. Currently, the site consists mainly of farmland with a portion of the site being wooded. There are several existing drainage swales running through the site along with two wetland areas. The current topography of the site slopes from Horner Boulevard and Wilson Road to the rear of the site (west). The majority of the site drains to one of the two wetland areas, which outlet to the western portion of the site. The northern most wetland area continues off-site, and disturbance of this area will be limited to less than 0.5 acres. The southern most wetland area was determined to be isolated and will be abandoned completely. The remaining portion of the site drains to a drainage swale which outlets from the site, downstream of the off-site wetland area. There are several stormdrain pipes located along Horner Boulevard which drain to the site. The runoff from these pipes will be re-routed through a stormdrain by- pass system that will run through the site and outlet off-site, as in pre-developed conditions. The current plan is to construct a Wal-Mart Supercenter along with a Retail Shops Building and several outlot areas. There will be a regional Stormwater Management Pond which will be designed to handle the runoff from the entire development. This pond will be designed for Water Quality and Quantity purposes. The total developed area that will pass through the Pond will be approximately 50 acres. Construction will include the Wal-Mart and Retail Shops Building plus accompanying parking and landscaped areas along with the Stormwater Management Pond. Several outlot areas will also be graded as part of this project. The site contains approximately 50 acres, all of which will be disturbed during construction activities. The stormwater will sheet flow across the paved and landscaped areas to proposed inlets, which will lead to the aforementioned Pond. The Stormwater Management Pond will be designed to detain the first inch of runoff over a 48 hour period, • detain the 2 and 5 year storm events while passing the 10, 25, 50 and 100-yr storm events. It should be noted that Stormwater Detention is provided for the 2 and 5 year storm events is provided, although not required by the City of Sanford. r The Stormwater Management Pond will serve as a Sediment Basin during construction activities. There will be several sediment traps installed during construction activities as well. Silt fence, inlet protection, construction entrances, stone filters, and diversion ditches will also serve as erosion and sediment control devices. After the site has been stabilized, the silt fence, inlet protection and construction entrances will be removed, the Sediment Basin will be cleaned and converted to the Stormwater Management Pond, and the site will be graded to its final configuration. The storm water runoff calculations in this report are based on the SCS Method as prescribed by NCDENR. Also, please note that because the on-site Stormdrain System is flat and basically acts as an extension to the pond, there are no design calculations for the on-site system included in this report. See Appendix E for stormdrain calculation for the bypass systems. Site Soil Information The site soils were obtained from the Lee County Soil Survey (obtained from local NRCS office) and are as follows: Soil Types: Dothan (DoA) - Loamy Sand, 0-2% slopes, Hydraulic Soils Group B Dothan (DoB) - Loamy Sand, 2-8% slopes, Hydraulic Soils Group B Wehadkee (Wn) - Fine Sandy Loam, found in Wetland Areas, Hydraulic Soils Group D Gilead (GhB) Loamy Sand, 2-8% slopes, Hydraulic Soils Group C *To be conservative, Hydraulic Soils Group B will be used for design purposes. 2 II. PRE-DEVELOPED CONDITIONS The runoff for both the pre and post-developed conditions will be calculated using the SCS Method. This method considers land use, time of travel for runoff, rainfall precipitation for a 24-hour rainfall event for this particular area, and the size of the area. The rainfall will vary based on the design storm and the time of concentration. The time of concentration is the travel time, in minutes, of the runoff from the most remote point of the drainage basin to the outlet point. The area is also analyzed to determine its current land use and a Runoff Curve Number is then generated for each drainage basin. These values are then used to calculate the runoff for each drainage basin and the site as a whole. In pre-development conditions, the entire site drains to the west and south, leaving the site via direct runoff. Below are the pre-developed drainage areas for this project: Pre-Developed Drainage Area 1 - Area draining to existing on-site wetland area (which extends off-site) Pre-Developed Drainage Area 2 - Area draining to isolated wetland area and offsite (to southwest direction) Pre-Developed Drainage Area 3 - Area draining toward southern property boundary and off-site (See Appendix B for all Pre-Developed Calculations and Figures) Curve Number and Basin Characteristics The runoff curve number is based on land use (type) and the hydrologic soil group for each drainage basin. Other basin characteristics evaluated in this study include the overall basin area and average slope. The site will be divided into 2 drainage basins, whose combined area is approximately 50 acres. Based on this information, and using the TR-55 Manual, the curve number and basin characteristics for the pre-developed areas are as follows: Drainage Basin Area Land Type; (acres) CNw Pre-Dev Area 1 20.61 Brush, Woods, Wetlands, Farmland 66 Pre-Dev Area 2 26.2 Brush, Woods, Wetlands, Farmland 66 Pre-Dev Area 3 2.55 Brush, Woods, Farmland 67 Total' CN,. 66 Time of Concentration The time of concentration, Tc for the drainage areas will be calculated using overland flow, shallow concentrated flow and channel flow. The Tc is a function of distance and difference in elevation for overland sheet flow and distance and velocity for shallow concentrated and channel flow. The Tc values, as calculated from Worksheet 3 of the TR-55 Manual (See Appendix A), are as shown below: Area Tc(min) - Pre-Dev Area 1 13.97 Pre-Dev Area 2 15.54 Pre-Dev Area 3 11.76 3 Rainfall The rainfall precipitation amounts for a 24 hour rainfall as received from the North Carolina Erosion and Sediment Control Planning and Design Manual: Rainfall Amounts 2 year 3.70 in 5 year 4.75 in 10 year 5.50 in 25 year 6.45 in 50 year 7.20 im 100 year 8.0 in Runoff Calculations Per the SCS Method, the runoff will be calculated for the existing condition for the 2, 5, 10, 25,50 and 100-yr storm events. These storm events will be used to determine allowable release rates from the pond. The results are as follows: Runoff Amounts 2 year 5 year 10 year 25 year 50 year 100 year Pre-Dev Area 1 23.08 cfs 41.93 cfs 56.74 cfs 76.80 cfs 93.36 cfs 111.50 cfs Pre-Dev Area 2 27.71 cfs 50.62 cfs 68.64cfs 93.0 cfs 113.16 cfs 135.25 cfs Pre-Dev Areas 1 and 2 Combined 50.57 cfs 92.27 cfs 125.26 cfs 169.61 cfs 206.09 cfs 246.06 cfs Pre-Dev Area 3 3.25 cfs 5.75 cfs 7.70 cfs 10.34 cfs 12.50 cfs 14.87 cfs 4 III. POST-DEVELOPMENT CONDITIONS Next, the developed condition will be evaluated. The runoff rates will then be compared to the pre-developed runoff rates to determine the volume of detention storage required. In post-development conditions, the site will divided into the following 3 basins: Post-Developed Drainage Area 1 - Area draining to Stormwater Management Pond Post Developed Drainage Area 2 - Area bypassing pond, draining directly to on-site wetland area Post Developed Drainage Area 3 - Area bypassing pond, draining off-site to the west and south Post Developed Drainage Area 4 - Area bypassing pond, draining to the south Off-Site Drainage Area - Off-Site Area draining to detention pond It should be noted that the off-site drainage area will be added to Post-Developed Area 1 in the pond calculations, as both are routed to the pond via the same stormdrain system. From this point forward, when Post-Developed Area 1 is referenced it should be assumed that the off-site drainage area (in a fully developed condition) is included in the calculations. Curve Number and Basin Characteristics Based on site analysis, and using the TR-55 Manual, the Curve Number (CN) and basin characteristics for the post- developed areas are as follows: Drainage Basin - Area Land Typc (acres) CN. Post-Dev Area 1 (to pond) 50.0 Urban - Developed 95 Post-Dev Area 2 (bypass 1) 6.50 Brush, Woods, Wetlands, Farmland 66 Post-Dev Area 3 (bypass 2) 1.89 Grass 69 Post-Dev Area 4 (bypass 3) 0.1 Grass 69 Total CNY. 95` Time of Concentration The post-developed runoff will sheet flow across the paved and landscaped areas to the proposed inlets, which outlet to the pond. To be conservative, a minimum Tc value of 5 minutes will be used for each drainage basin. Area TC _ Post-Dev Area 1 (to pond) 5 min Post-Dev Area 2 (bypass 1) 10.38 min Post-Dev Area 3 (bypass 2) 5 min Post-Dev Area 4 (bypass 3) 5 min Rainfall The rainfall amounts as taken from the TR 55 Manual and West Virginia Erosion and Sediment Control Handbook are the same as in pre-developed conditions and are as follows: (See Appendix B): 5 Rainfall Amounts 2 year 3.70 in 5 year 4.75 in 10 year 5.50 in 25 year 6.45 in 50 year 7.20 in 100 year 8.0 in Runoff Calculations Per the SCS Method, the runoff will be calculated for the proposed condition for the 2, 5, 10, 25, 50 and 100-yr storm events. These storm events will be used to determine allowable release rates from the pond. The results are as follows: Runoff Amounts 2 year 5 year 10 year 25 year 50 year 100 year Post-Dev Area 1 261.42 cfs 341.55 cfs 398.44 cfs 470.20 cfs 526.69 cfs 586.81 cfs (to pond) Post-Dev Area 2 8.95 cfs 16.03 cfs 21.56 cfs 28.97 cfs 35.06 cfs 41.79 cfs (bypass 1) Post-Dev Area 3 3.72 cfs 6.25 cfs 8.20 cfs 10.78 cfs 12.86 cfs 15.13 cfs (bypass 2) Post-Dev Area 4 0.20 cfs 0.33 cfs 0.43 cfs 0.57 cfs 0.68 cfs 0.80 cfs (bypass 3) 6 IV. WATER QUALITY/STORMWATER DETENTION Water Quality Drainage Area to Pond = +/-50 acres Percent Impervious = +/-90% Depth = +1-4.0' PERMANENT POOL ELEVATION SA/DA (Surface Area/Drainage Area) Calculation SA/DA = 3.1 (from 85% TSS Removal Chart, as obtained from NCDENR Stormwater BMP Manual) SA = (3.1 /100) x 50 acres = +/-1.55 acres = +/-67,518 square feet The bottom of the Stormwater Management Pond was set at elevation 396.0. The depth of the Permanent Pool was set at 4.0 feet, corresponding to a top elevation of 400.0. The surface area available at elevation 400.0 is approximately 79,507 square feet (which is greater than the required 67,518 square feet). Therefore, the Permanent Pool Elevation will be set at elevation 400.0. (See attached Stage Storage Chart, Appendix X, for Volume Calculations). TEMPORARY POOL VOLUME AND ELEVATION Runoff Coefficient (Rv) = 0.05 + 0.0091 where I = percent impervious (%) = 90 = 0.05 + 0.009(90) = 0.86 Volume = Design Rainfall x Rv x Drainage Area = 0 "x(1'/12")) x (0.86) x (50) = +/-3.583 acre-ft =+/-156,076 cubic feet *(this volume will be released over a min 48 hour period) The Storage Volume from elevation 400.0 to elevation 401.9 is approximately 159,224 cubic feet, which is greater than the required 156,076 cubic feet. Therefore, the top of the Temporary Pool will be set at elevation 401.9. The Temporary Pool will release through a 5" orifice set at elevation 400.0 which will allow for a release time of approximately 56 hours. (See Appendix D for Calculations) Outlet Structure and Pond Release The Stormwater Management Pond will outlet through a proposed outlet structure to a 36" RCP Outlet Pipe(as shown on the Site Development Plans). The outlet structure will consist of a 6'x 6' concrete structure with a 5.75" orifice at elevation 400.0 to control the water quality volume. A 4.0' weir will be cut into the structure at elevation 402.0 to help with the controlled release of the 2 and 5-yr storm events. The top of the outlet structure will be set at elevation 403.9 and will act as a weir in releasing the 10, 25, 50 and 100 yr storm events. An emergency spillway will be set at elevation 405.0 and will assist in releasing the 10, 25, 50 and 100 yr storm events. The release rates from the pond are as follows (See Appendix D for Calculations): 7 Pre-dev (Allowable) Storm Event Release Rate Pond Release R,te Max Storage Elevation 2 year 37.9 cfs 27.8 cfs _ 403.89 5 year 69.99 cfs 67.86 cfs 404.83 10 year NA 118.39 cfs 405.41 25 year NA 211.88 cfs 405.94 50 year NA 282.03 cfs 406.26 100 year NA 353.84 cfs 406.56 *Allowable release rates for the 2 and 5 yr storm events were calculated by taking the Pre-developed Drainage Area 1 and 2 combined rate and subtracting Post-developed drainage areas 2 and 3. *It should be noted that the locations of the pond outfall and emergency spillway were placed as shown on the design plans in order to maximum the amount of downstream wetland area the runoff will pass through. 8 VI. STORMWATER HYDROGRAPH SUMMARY 9 0 -- rograph Summary Report Hyd. Hydrograph No. type (origin) Peak flow (cfs) Time interval (min) Time to peak (min) Volume (cult) Inflow hyd(s) Maximum elevation (ft) Maximum storage (cult) Hydrograph description i 2 SCS Runoff 23.08 1 723 68,176 - Pre-Dev Area 1 3 SCS Runoff 27.71 1 724 87,751 - Pre-Dev Area 2 4 Combine 50.57 1 724 155,927 2,3 Pre-Dev Areas 1-2 Combined 5 SCS Runoff 3.25 1 722 8,790 - Pre-Dev Area 3 8 SCS Runoff 261.42 1 717 586,904 - Post Dev Areal (to Pond) 9 SCS Runoff 8.95 1 720 21,502 - Post-Dev Area 2 (By-Pass Area 1) 10 SCS Runoff 3.72 1 718 7,612 - Post-Dev Area 3 (By-pass Area 2) 11 SCS Runoff 0.20 1 718 403 - Post-Dev Area 4 (By-pass Area 3) 14 Reservoir 27.80 1 738 487,554 8 403.89 343,464 Pond Routing 18 SCS Runoff 233.01 1 717 493,329 - Sediment Basin Drainage Area 19 SCS Runoff 23.30 1 717 49,333 - Sed Traps 1 and 2 Drainage Area 21 Reservoir 0.39 1 999 33,306 19 400.44 36,096 Sediment Basin Routing Pond Design-rev.gpw Return Period: 2 Year Saturday, Apr 1 2006, 10:17 AM Hydraflow Hydrographs by Intelisolve ---- -'rograph Summary Report Hyd. Hydrograph Peak Time Time to Volume Inflow Maximum Maximum Hydrograph No. type flow interval peak hyd(s) elevation storage description (origin) (cfs) (min) (min) (cult) (ft) (cult) 2 SCS Runoff 41.93 1 723 116,685 - Pre-Dev Area 1 3 ;SCS Runoff 50.62 1 724 150,188 - Pre-Dev Area 2 4 I Combine 92.27 1 723 266,873 2,3 Pre-Dev Areas 1-2 Combined 5 I SCS Runoff 5.75 1 722 14,862 - Pre-Dev Area 3 I 8 3CS Runoff 341.55 1 717 780,879 - Post Dev Areal (to Pond) 9 1 :SCS Runoff 16.03 1 720 36,800 - - Post-Dev Area 2 (By-Pass Area 1) 10 1 SCS Runoff 6.25 1 718 12,578 - Post-Dev Area 3 (By-pass Area 2) 11 ! SCS Runoff 0.33 1 718 665 - Post-Dev Area 4 (By-pass Area 3) 14 Reservoir 67.86 1 726 679,666 8 404.83 437,225 Pond Routing 18 SCS Runoff 315.24 1 717 680,483 - - Sediment Basin Drainage Area 19 !)CS Runoff 31.52 1 717 68,048 - Sed Traps 1 and 2 Drainage Area 21 Reservoir 0.53 1 980 48,311 19 400.61 50,028 Sediment Basin Routing __ ------- ___-1____.__t____ ___------ __-__ Pond Design-rev.gpw Return Period: 5 Year Saturday, Apr 1 2006, 10:17 AM Hydraflow Hydrographs by Intelisolve 2 rograph Summary Report Hyd. Hydrograph No. type (origin) Peak flow (cis) Time interval (min) Time to peak (min) Volume (cuft) Inflow hyd(s) Maximum elevation (ft) Maximum storage (cuft) Hydrograph description 2 SCS Runoff 56.74 1 723 155,350 - Pre-Dev Area 1 3 SCS Runoff 68.64 1 724 199,954 - - Pre-Dev Area 2 4 Combine 125.26 1 723 355,304 2,3 Pre-Dev Areas 1-2 Combined 5 SCS Runoff 7.70 1 721 19,675 - Pre-Dev Area 3 8 SCS Runoff 398.44 1 717 919,988 - Post Dev Areal (to Pond) 9 SCS Runoff 21.56 1 720 48,994 - Post-Dev Area 2 (By-Pass Area 1) 10 SCS Runoff 8.20 1 718 16,472 - Post-Dev Area 3 (By-pass Area 2) 11 SCS Runoff 0.43 1 718 872 - Post-Dev Area 4 (By-pass Area 3) 14 Reservoir 118.39 1 725 817,751 8 405.41 496,711 Pond Routing 18 SCS Runoff 373.64 1 717 816,052 - Sediment Basin Drainage Area 19 SCS Runoff 37.36 1 717 81,605 - Sed Traps 1 and 2 Drainage Area 21 Reservoir 0.60 1 994 58,514 19 400.74 60,580 Sediment Basin Routing Pond Design-rev.gpw Return Period: 10 Year Saturday, Apr 1 2006, 10:17 AM Hydraflow Hydrographs by Intelisolve Hydrograph Summary Report Hyd. No. Hydrograph type (origin) Peak flow (cfs) Time interval (min) Time to peak (min) Volume (cult) Inflow hyd(s) Maximum elevation (ft) Maximum storage (cuft) Hydrograph description 2 SCS Runoff 76.80 1 722 207,879 - - Pre-Dev Area 1 3 SCS Runoff 93.00 1 723 267,564 - Pre-Dev Area 2 4 Combine 169.61 1 723 475,443 2,3 Pre-Dev Areas 1-2 Combined 5 SCS Runoff 10.34 1 721 26,191 - Pre-Dev Area 3 8 SCS Runoff 470.20 1 717 1,096,591 - Post Dev Areal (to Pond) 9 SCS Runoff 28.97 1 720 65,561 - Post-Dev Area 2 (By-Pass Area 1) 10 SCS Runoff 10.78 1 718 21,708 - Post-Dev Area 3 (By-pass Area 2) 11 SCS Runoff 0.57 1 718 1,149 - Post-Dev Area 4 (By-pass Area 3) 14 Reservoir 211.88 1 723 993,292 8 405.94 552,780 Pond Routing 18 SCS Runoff 447.20 1 717 989,182 - Sediment Basin Drainage Area 19 SCS Runoff 44.72 1 717 98,918 - Sed Traps 1 and 2 Drainage Area 21 Reservoir 0.69 1 1012 70,672 19 400.91 74,253 Sediment Basin Routing Pond Design-rev.gpw Return Period: 25 Year Saturday, Apr 12006, 10:17 AM 4 Hydraflow Hydrographs by Intelisolve Hydrograph Summary Report Hyd. No. Hydrograph type (origin) Peak flow (cfs) Time interval (min) Time to peak (min) Volume (cuft) Inflow hyd(s) Maximum elevation (ft) Maximum storage (cuft) Hydrograph description 2 SCS Runoff 93.36 1 722 251,547 - Pre-Dev Area 1 3 SCS Runoff 113.16 1 723 323,771 - Pre-Dev Area 2 4 Combine 206.09 1 723 575,318 2,3 - Pre-Dev Areas 1-2 Combined 5 SCS Runoff 12.50 1 721 31,592 - - Pre-Dev Area 3 8 SCS Runoff 526.69 1 717 1,236,227 - Post Dev Areal (to Pond) 9 SCS Runoff 35.06 1 719 79,333 - Post-Dev Area 2 (By-Pass Area 1) 10 SCS Runoff 12.86 1 718 26,027 - - - Post-Dev Area 3 (By-pass Area 2) 11 SCS Runoff 0.68 1 718 1,377 - Post-Dev Area 4 (By-pass Area 3) 14 Reservoir 282.09 1 722 1,132,221 8 406.26 588,018 Pond Routing 18 SCS Runoff 504.98 1 717 1,126,642 - - Sediment Basin Drainage Area 19 SCS Runoff 50.50 1 717 112,664 - Sed Traps 1 and 2 Drainage Area 21 Reservoir 0.75 1 1024 79,566 19 401.04 85,152 Sediment Basin Routing Pond Design-rev.gpw Return Period: 50 Year Saturday, Apr 1 2006, 10:17 AM Hydraflow Hydrographs by Intelisolve Hydrograph Summary Report Hyd. No. Hydrograph type (origin) Peak flow (cfs) Time interval (min) Time to peak (min) Volume (cult) Inflow hyd(s) Maximum elevation (ft) Maximum storage (cuft) Hydrograph description 2 SCS Runoff 111.50 1 722 299,824 - Pre-Dev Area 1 3 SCS Runoff 135.25 1 723 385,909 - Pre-Dev Area 2 4 Combine 246.06 1 723 685,733 2,3 - - Pre-Dev Areas 1-2 Combined 5 SCS Runoff 14.87 1 721 37,552 - Pre-Dev Area 3 8 SCS Runoff 586.81 1 717 1,385,318 - Post Dev Areal (to Pond) 9 SCS Runoff 41.79 1 719 94,559 - - - Post-Dev Area 2 (By-Pass Area 1) 10 SCS Runoff 15.13 1 718 30,774 - Post-Dev Area 3 (By-pass Area 2) 11 SCS Runoff 0.80 1 718 1,628 - Post-Dev Area 4 (By-pass Area 3) 14 Reservoir 353.84 1 722 1,280,659 8 406.56 620,420 Pond Routing 18 SCS Runoff 566.37 1 717 1,273,809 - Sediment Basin Drainage Area 19 SCS Runoff 56.64 1 717 127,381 - Sed Traps 1 and 2 Drainage Area 21 Reservoir 0.81 1 1040 88,236 19 401.18 96,984 Sediment Basin Routing Pond Design-rev.gpw Return Period: 100 Year Saturday, Apr 12006, 10:17 AM Hydraflow Hydrographs by Intelisolve VII. SEDIMENT AND EROSION CONTROL Erosion and sediment runoff from the site will be controlled via a temporary sediment basin, temporary sediment trap, silt fence, inlet and outlet protection, diversion ditches, stone filters and two stone construction entrances. Temporary and permanent seeding will be utilized throughout construction in accordance with recommendations found in the North Carolina Erosion and SedimentContro/in Georgia. The erosion control measures will be installed in three phases and will be implemented per the North Carolina Erosion and SedimentContro/in Georgia along with the NCDENR Stormwater Best Management Practices Manuai. Erosion and Sedimentation Control Plans and Details, as well as pond sections, a generalized sequence of construction, and maintenance notes can be found in the Site Development Plans, prepared by Freeland & Kauffman, Inc. Phase I of the Erosion and Sediment Control plan will consist of the following. The stone construction entrances will be installed to prevent any mud or sediment being tracked onto adjacent roadways. A roadway will then be cleared for access to the proposed building pad area. Silt fence will be placed as shown on the plan. The contractor will then remove soil from the existing soil stockpile. Phase IA of the Erosion and Sediment Control plan will consist of the following. The Sediment Basin and Sediment Trap will be installed and onsite grading activities will commence. The Wal-Mart Building Pad will be brought to elevation, the site will be cleared and several stormdrain structures will be installed as shown on the design plans. Phase II of the Erosion and Sediment Control plan will consist of the following. The site will be graded to it's final configuration and all stormdrain, utilities, curbing, pavement, etc. will be installed. Once the site is stabilized, all temporary sediment control measures will be removed, the sediment trap will be removed and the sediment basin will be converted to the Water Quality Pond. SEDIMENT BASIN AND TRAP DESIGN The Sediment Basin and Sediment Trap will be designed as prescribed in the North Carolina Erosion and Sediment Control Manual. Please see Appendix F for calculations. Per the North Carolina Erosion and Sediment Control Planning and Design Manual, each basin was designed to handle the 25-year storm event. 10 w • • • • • • • • • • • • APPENDIX A 0 u SGS I,nc/r(ioH tAe ??? ?+ f, f?nK?w t? r llj?l`}?\-? ? S •??rrJ? rl 1 ???`?J ` ? f? ?' ? r, \ q `?j'?.t ? ? ?,'`'?,?,,, 3~23'. ub o • i ??, i ? ; ._..?. ? ? i ??{-.n j• ?'? ? ? 1 ?f,,f ? -?. - ? t?T indw . ¢. i -'? ? ?i.?. ? ? r y? j ls5lww Wei n Sti fs. Z GXiI 1 \ i ! 4 ? a _ t \....? '? Y ? • •r ? ? t did \?? \ ?C? ? ?? ? ?„J" ~" _. ? ? ' +? J Y -- , / • • ? - b , ? T N • -?! ? ; . 1 } 1. ? • - ., 41 ' ? ("" ? _ r' a t i -y A -1/ ? 'p.A Nil _??'? ? 1?r ' . ca 111 4!` '? C l ? / - 4 • ?r SOL ? "It ` ? +ti \ ? l? 1 ?? ? ? 1? tt ' ? ^) f • ? r!•S'??t ? • ; ?. t - o ?? J/ .1 ?Qg ? ? i, 1 ? j• ?± j'--^y • • ? +la t / 1? s w ? ? i T /? 5 ?, t'. , i?? 11 .? l r+ f ? t • j J /' 4` ?? 'y ??? f 1j4?/l ` ?\ t ? .R l??b r ` i : 5 ? s" n' .:?.? ti-•,41! Y t,,,? y? •' ?- rr;,..' ' . ? ??l?r 113 ` r? ) . f Q ?? $ \ ; c? r t'Pc??}° / l r t r i ;\u L a D f r .., r if " tot :j? ti ` ! j !;. 4 fJ Jj ?4l ?'? f ? ?. , ... \ 1 ....? , '??4 ?..,,. it ? t "f `? .?i .r ?1 •? .i (( } • i t i ?? ` O ? i? ` /'?1 ii ??.? t??` 1`?_i? ?? ••'_ sw' 'i \ _,it} ?.r' ?' p4 \? t ? ` ',? ; 1 _J ?```' i , .,r N35,26 ?" ? ? a ? .? ?? ;r _? r" ? ?.'. ?? F ? "? spa -? S. ? r if f ? ?.! ,(• f r "?•.,,,:t \ .S, J ; J? i k . _? f Ar CA 1.4 r' { t f t 7 zi U d ?/ N35 255 ?i. r avr ?, i 1 1 ?? rf r + ? L ??? t ?+? _ '??,... ? ?" ?' M ? i ?. f 1? 1? wi i 1` !!l ? ? ? f si Til4` ?? `' ?; ??l ?f %'11138 ..?? '1. ????. ( ? ?lr o r ?`?- t •{tt ?r ??? t w? - w i ?' ? t ?`'? • • _ A : }?' . r ?l 1- 1 ? ?. i f ? ? ? 1\ t ?:_ -? A\ ?1 1 ? ` Evil 1 j ',y I. ? ? ? ? ti „? ? ? f ' • ? , tt t '? i ? ` A "Now-, i ? ? ? 7 < i ^-- ? r ? '? I f ./ I l ? ? ? 1 fi. 11 / l ?\ ?\ ??? L? f rt ? ?% 1 t 35 25' y _ t J-t) lopolluaaS Lopyrlgnt u 1999 1JeLOrme YaMOUtn, ME U41J96 Source Lata: UJG -rJJU tt scale: I : 24,00U lletad: 13-U Datum: W GS84 I if, 3A 00 Appendices u, ?~I Ln I J? CHC?. fit` 1 z y, ? :?,1? j L\ o? j o / t m 10, 0 U c ? -• Lri CO emn a Z r > x t0 /; ; J M z =_J .+? cvn3?3 J?.f J / ) Ln j Figure 8.03h 2-year 1 day precipitation (inches) Y z 1' V_ ri ?v d r_ 1j 8.03.11 • • • • • • • • • • • • • • • • . • • • • 0 Ln •0 •0 Ln °r LA ,. } o 0 1 W l CNO" 'sue Ln t // ?? •_?' ? / o .'` ? J ? ? ` ? yea W 1 ?, 1 h 3 ?_ ) %0 Ll 1-1, Q• / ? o r f I ? / , O 1 A.Ntll10 `r o9 LAI ? r c I bo_ l ??. Y g 0 . a 1. ??r I u I o° \? j Ln ° I Z ^? - -'r=te! ?' ,? 1 Q : ° 1 to c j ; • ?, ?. ?, 1__ EHB?rtc,,? t!1 W• uE V: C? 1?° 1 + s 1 i ?• % i °Vn3n31 Ln 3.• r .T`, o en 3 icr er Ln V Z % E„y ` ti 1 10 Figure 8.031 5-year 1 day precipitation (inches) ` L a v Lrl Q 1 Lr1 r- 8.03.12 • • • Appendices • • • r- • Ln . • ?O .? o t _ i o ? o 00 v ?I \ a • tip, ?? ° ? ? l? 3 / ? ? / C (? ` N 8 ; i ''9 Ln ^rwano •: 1? CL a 15. z J Y 8 • a s • _ n Y 1 ? _ ° CD r14 1 r j :py : - = o Ln 313 • o Y V # °? J Ln u N? z ? ? m' \ ' 8 ' • 8 , iz 1 s z • ? I , 00? z , • Figure 8.031 10-year 1 day precipitation (inches) ? v 1 r` 8.03.13 • • • co 00 0 S J ! Tl ? S le. Lr! V> \ A _ i ? QV 10 • a d?NtlOO a 'o,,? Lr? .Q ? Q • • - ro Ji Y o 1 Y o` I o ?\ ? Cm Lr? ?.L?.• o ECKIENlURG • 1 r:1 r :o 'y. If 1 v I '? o n3n31?1 ^ • h? 3, Y • Ln • ? i "1r ? • r=, z eo a _ t11? ?• g O? LA ; z? • % 1 1.._ CO Figure 8.03k 25-year 1 day precipitation (inches) ?O 1 8.03.14 Appendices 0 a O i a 1 uJp o ll- V z 0 Iz? ' 3 .0 Ca a Ln 10 __ AL U C 40 r-N • i i ?' C J a < Ol .9 U. CO N Q 10 ' J ? ••ECw?E VRG?? .I T in ? ? W Ill ( r l Y o? z l o I •O w Ow?3r 3i % ? ?I 1 `? o ?•J t cl? OO 8 1r . •'t ? 1 1 Figure 8.031 50-year 1 day precipitation (inches) 8 Ln Y r` a. 8.03.15 O a ° I O - S , P.J c a Ln "bo L o , CL Q ?- yAh' .-.I m 5 a C J J ? i D 8 2 U Q tel.-_ r N. Z I I .n o - r 0 a ° T"!" V t 'O I. G CCCC L. Figure 8.03m 100-year 1 1 day precipitation (inches) 0 V f. fS 01. 2 ;.= wl C.- 8.03.16 0 OFREELAND and KAUFFMAN, INC. •Lw A N6/NEERS DSC.4PE RCN/TECTS 609 West Stone Avenue reenville, South Carolina 29609 Job 1'J-r Job No. elephons 864233-5499 efaz864-233-8915 Computed By Am? Checked Dy_ Date Date i , I f _._..._.__ i E' f i I ? i } 3 { .. 3 i t DMA..+Do6 i v DOB Laic i 421 ro F J F fir C, D, D6R r w }T.?,? ?deDo§ I?.? a j. QaF - o ,?a cam` d 5 1 D6B - = f s7 f` Wn v PaF"`? ;\ 7 GFB n Ise DcFi,. DOA GhB cfD_ L'. L)oA - f } ti 's BdDi 3i J C D k. a o 1'. LY Fp_ \ lJ ' C t' I l P_{ DoB; DoB F u B arc `?. r r Ey. ,1 ? Wn ?z DoB." A t Fay N.. DoA o n f13 DoB Cfa F.G `. rf 4es U n cA Ghf Doi - BaB DoA F3n n FU y 4 r.' HCfD u[II? f b w CfB Fu s FuB CFO, ?? >?°b Fu8 ?er Ddl '. Cam ?? n ?? 7 , r CfB ??, L t y CfB c t FIIV :ems Cali Ful3' .?, .- CfB j, °tD ?q0 , ??,,Ctv ?IaD / Do ToB. F,C. -/ ruP l CfD ?, Tip/ a Du ??? ?, Fu,S NaB% B . Tab: 1162 ? EuB` Coe ?f6 TaR TaD Cf f8' + 1s•_ DoA `,, .,'' tih \\ '' `? •! , of CfG a -?,?Ta6 iF. FA; } ? ? Ldp +? ?` 1 r'(D ? • to , : \ ?O .,?Ch ., ,. - - ... ? l G ToB a?r C -?t "CfD CfB."r - ?. ` °xYlri' \ ( Cf TaB _DuB Ch „ G{DmD Q S _ r TaD CfD?' \ f i CfD. D B C , `IDUB -•-L; uG Ctf34CfD Fug I _ ?Ch C J3 ( ? ? A ' -n C?,B *Ch ToB 'Ch `FuB_,;. Ch Pa _t CfD Du6 FuB °o DUB Wn F j ?FUL t? DuB _o `CfB - J m PaF 'CfD - i' \ -=??4DuB CfB- rp? 7 C _ CfB 4 DuB Du6 \ ?fJ FuB CfD QaF s. FuB CfD 1 /Fw ?? EEO FuB 3 cY ?CaB DuB it Ch:' Fu8 ` !Ch CfD w . Lee County, North Carolina This soil is well suited to most cultivated crops grown in the area. Wetness and steepness of slope are the main limitations. Conservation tillage, cover crops, crop. residue management, and contour tillage reduce runoff *and help, control erosion. The dominant trees on this soil are loblolly pine, shortleaf pine; water oak, white oak, red oak, sweetgum, and red maple. The understory -includes. flowering dogwood, greenbrier, redbud, sourwood, and winged elm: Wetness and steepness of slope are the main - limitations for woodland use. This soil, is poorly suited to most urban and Sirecreational uses. Very slow permeability, wetness, • steepness of slope, and moderate shrink-swell potential are the main limitations. This Creedmoor soil is,in capability subclass life. The • woodland ordination symbol is 3w... DoA-Dothan loamy sand, 0 to 2 percent slopes. This soil is well drained and is on broad,. smooth. interstream divides on Coastal Plain uplands. The areas of this soil are elongated or irregular in shape and range from 5: to 500 acres: Typically, the surface layer is brown loamy sand 9 inches thick. The subsurface layer to a depth of 15 inches is very pale brown loamy sand: The subsoil-to a depth of 65 inches is yellowish brown.sandy clay loam. Plinthite nodules are below a-depth of 30 inches. Permeability.is moderate in the upper part of the subsoil and moderately.slow in the lower part. A perched seasonal high water table is above the plinthite during 4the wet season. The available water capacity is moderate. This soil ranges from very strongly acid to medium acid except where lime has been added. Included with this soil in mapping are small areas of Fuquay, Gilead, and Blaney soils. The Fuquay soils are slightly lower on the landscape than the Dothan soil. Blaney soils are on outer edges of delineations. near sandy, gently sloping ridges, and Gilead soils are around the head of drainageways. This Dothan soil is mainly used as cropland. In some areas, it is used for hay and pasture. A very small acreage is woodland. This soil is well suited to most crops grown in the area. The major crops-are corn, soybeans, tobacco, and. small grains,. Conservation tillage,-cover, crops, and crop residue management reduce, runoff and help control erosion: The dominant trees on this soil are loblolly pine, yellow ir, water oak, and sweetgum. The understory ies flowering dogwood, sassafras, redbud, ibrier, and red maple.- This soil is well. suited to most urban and recreational Wetness is a limitation for septic tank absorption fields.. This Dothan soil is in capability class I. The woodland atiorr symbol is 2o. 13 DoB-Dothan loamy sand, 2. to. 8 percent slopes. This soil is well drained.and is on broad, smooth interstream divides on the Coastal Plain uplands: The areas of this soil are oblong and range from 5 to 100 acres. Typically, the surface layer is brown loamy sand about 9 inches thick. The subsurface layer to a depth of 15 inches is very pale brown loamy sand. The subsoil to a depth of 65 inches is yellowish brown sandy clay loam. Plinthite nodules are below a depth of 30 inches. Permeability is moderate to moderately slow, and.the available water capacity is moderate. This soil ranges from very strongly acid to medium acid except where. lime has been added. A perched seasonal high water table is above the plinthite layer during wet seasons and after periods of high rainfall:' Included with this soil in mapping are small areas of Fuquay, Gilead, and Blaney soils. The Fuquay soils are` slightly higher on.the landscape than the Dothan soil. Gilead soils are on side slopes bordering drainageways. and at" the head of drainageways. Blaney soils are on outer, edges of delineations near sandy; gently sloping. ridges. This Dothan soil is mainly used as cropland. In some areas, it is used for hay and pasture. A very small acreage is woodland. This soil is well suited to most crops. The main crops are corn, soybeans, tobacco, and small grains. Conservation tillage, cover crops, and crop residue management reduce runoff and help control erosion. The main trees. on this soil are. loblolly pine, longleaf pine, yellow poplar, and water oak. The understory, includes flowering dogwood, sassafras, redbud, greenbrier, and red maple. The soil is well suited, to most urban and recreational uses. Wetness is a limitation for septic tank absorption fields. This Dothan soil is in capability subclass life. The woodland ordination symbol is 2o.' DuB-Durham, loamy sand, 2 to 8 percent slopes. This soil is well drained and is on . narrow.to broad, smooth ridges on Piedmont uplands. The areas of this soil are oblong and range from 5 to 100 acres. Typically, the surface layer is light yellowish brown .loamy. sand 10 inches thick. The subsurface layer to a depth of- 15 inches is very, pale brown loamy sand. The subsoil extends to a depth of- 56 inches. The upper part is brownish yellow sandy clay loam, the middle part is strong brown sandy clay loam, and the lower part is , Yellowish red sandy clay and sandy clay.loam. The underlying material to a depth of 70 inches is mottled yellowish brown, white, strong brown, and reddish yellow . saprolite that crushes to sandy loam. Permeability is moderate in the upper part of the subsoil and moderately slow in the lower part. The available water capacity is moderate, and the shrink- Lee County, North Carolina part is strong brown sandy loam, the middle part is red sandy clay loam, and the lower part is mottled red, yellowish red, brownish yellow, and very pale brown sandy loam.: The underlying material to a depth of 80 inches is mottled red, yellowish red, brownish yellow, and light gray sandy loam. Permeability is moderately rapid in the surface and subsurface layers and moderate in the subsoil. The available water capacity is low to moderate. This soil • ranges from extremely acid to strongly acid. Included with this soil in mapping are small areas of Blaney soils: This Vaucluse soil is mainly used as woodland. In a few small areas, it is used as pasture. This soil is poorly suited to use as cropland. Steepness of slope and the gravelly surface layer are the main limitations, and erosion is a hazard. This soil is suited to pasture and hay. Proper pasture management reduces runoff and helps control erosion. The dominant trees on this soil are loblolly pine, • longleaf pine, white oak, southern red oak, hickory, and sweetgum. The. understory includes flowering dogwood,. American holly, and sourwood. This soil is poorly suited to most urban and recreational uses because of steepness of slope and a • gravelly surface layer. This Vaucluse soil is in capability subclass Vie. The woodland ordination symbol is 30. Wn-Wehadkee fine sandy loam. This soil is nearly level and is poorly drained. It is on flood plains. The. areas of this soil are long and narrow and range from 5 to 100 acres. Where the streams flow across the Coastal . Plain, the areas are smooth and broad and range to about 300 acres. Typically, the surface layer. is gray fine sandy loam 6 inches thick. The subsoil extends to a depth of 46 inches:lt is, light brownish gray. sandy clay loam in the upper and middle parts and gray sandy clay loam in the lower part. The underlying material to a depth of 60 inches is mottled gray, greenish gray, reddish yellow, and • strong brown sandy loam. Permeability is moderate, and the available water capacity is very high. This soil is medium acid or'slightly acid except where lime has been added. The seasonal water table is within 2.5 feet of the surface. This soil is frequently flooded for brief periods. Included with this soil in mapping. are a few small areas. of Chewacla and Congaree soils. The Congaree, soils are along stream channels, and the Chewacla soils are between the Congaree and the Wehadkee soils. This Wehadkee soil is mainly used as woodland. A small acreage is pasture. This soil is poorly suited to crop production because of flooding and wetness. It is well suited to pasture forage, such as fescue and ladino clover. 25 The dominant trees on this soil are baldcypress, red maple, sweetgum, hickory, yellow poplar, American beech, river birch, water oak, and willow oak. The understory includes American holly,,sourwood, greenbrier, giant cane, and eastern redcedar. This soil is poorly suited to urban and recreational uses because of wetness and flooding: - This Wehadkee soil is in capability subclass. Vlw. The woodland ordination symbol is 1w. WsB-White Store silt loam; 2 to ,8 percent slopes. This soil is moderately well drained and is on broad, smooth fridges on Piedmont uplands. The areas of this soil are oblong and range from 10 to 1,000. acres. Typically, the surface layer is brown silt loam 4 inches thick. The subsurface layer to a depth of 7 inches is light brown silt loam. The subsoil extends to a depth of 35 inches. The upper part is red clay, and the lower part'is red silty clay loam. The underlying material to a depth of 96 inches is, mottled red and dark reddish brown silt loam in the upper part, dark reddish brown silt loam in the middle part, and fine grained sandstone and mudstone in the lower part. Permeability is slow to very slow; and the available water capacity is high. Shrink-swell potential is very high. This soil is very strongly acid or strongly acid except where lime has beenadded. Bedrock is at'a depth of 48` to 72 inches. The seasonal high water table is 1 foot to 1.5 feet below the surface. Included with this soil in mapping are small areas of Creedmoor and Pinkston soils. Creedmoor soils are in depressions, and Pinkston soils are along slope breaks. This White Store soil is mainly used as woodland. In . some areas; it is used for hay or pasture. The dominant trees on this soil are loblolly pine, shortleaf pine, hickory, white oak, northern red oak, southern red oak, and sweetgum. The understory includes flowering dogwood, sourwood, greenbrier, eastern redcedar, blackgum, and blueberry. The clayey subsoil is the main-limitation for woodland use and management. Crops are not grown on White Store soil, in this survey area, but this soil is suited to corn and small grains.- It is well suited to use as pasture. Steepness of slope is a limitation to the use of this soil as cropland or pasture, and erosion is a hazard. If this soil is used as cropland,. conservation tillage, cover crops, contour tillage, and crop residue management reduce runoff and help control. erosion. This soil is poorly suited to most urban and recreational uses because of very high shrink-swell potential and slow to very slow permeability. This White Store soil is in capability subclass Ile. The woodland ordination symbol is 4c. WsD-White Store silt loam, 8.to 15 percent slopes. This soil is moderately well drained and is on • • • • • • • • • • • • • • • • • • Exhibit A-1, continued: Hydrologic soil groups for United States soils OIGIORGIO a 1 OOLAND a 10 ILAMSON D I :OLazz C DILL / SNOT 1 OOLalE. • DILL?RO C TRA 1 su/STUM O,LLIT OOLIKCI • DILLrTN • I :OLEN / CILNAN C I DOLES C oiLTDM D 1 DOLLAR C I DILTS O 1 POLLARD C OINAL C I 0OLLAft"IC! 0 1 01NCa0K D I COLLYCLARK C DI "NICK D I DOLMAN C 11M0 • I DOLPM C 01 TAW C I COLLIS C. PIMA C I DONE / OINCO Dole / Dimas Dore"aIme C DINCTO a I DOMERI! / •I OINGL! C ( DOMt2 / OINGLISHMA 0 1 DOMINGUEZ C OINGMAM C 1 pOMIMiC a OlM[CLMAN - • 1 -DOMINO C I OINKELS / 1 OOMIMSOM • :I"kCN a I Demo / oINSO&Lt O I *DNA ANA ¦ OIMUSA C I DONAMYe C I OINNOGOV • i DONALD C OINZIP • i DONALDSON s DIO•suo C I DONAVAH a OIOKICE • 1 DOMERAIL C DIP"AN D 1 CONEY C I OIPSlA • I pOMICA A Di00t • •1 DON CA. LOAMY / DIalGO 0 1 SURFACE DISA•EL C I OONIPMAM / oisAUTRL OOMKEHILL 0 DISCO ! I oONLOMTON C 0 HNeR D i DONNA 0 OIS.IP - C I DOMMAN C DISTELL C I DOMMAROO / OISTCRHCFF _ C I DONNEL a I OM Ot C I DOMNCLLV A r 0 I000 0 1 DINNER C 1 DITCHCAMP C 1 OOMMING 0 I DITH00 C 1 DOMMT/ROOK 0 I OITMET C ( OOOOLILINK Divans OOOLCT C DIvIDC • 1 OOILIN O I 0IvaT C 1 :Dome / OIK A 1 DOOR / OIKALCTA- D I COONAK - A I 0IK00R0 a 1 DONA 9011 OIKtC C I DORAM C I OIKMONT C 1 OOR• C OIKOm a t OCRCHESTlR OIIONVILLE C I OOItERTOM • DITOU C ( DORMOMT C DOAK • 1 DORNA m DOAKUN • i OOROSMtm 0 DOBBINS C 1 DOROTHEA C DO. OS C 1 OOROVAM 0 DO/EL 0 1 1) ORPER D DO/ENT C i OORRANCC A DOBROW D ( Does m OCR" • D I DORSET a DOCAS m 1 OOSAMIGOS 0 DOCoee D I DOSPALOS - 0 OOCENA C 1 *ass C OOCKCRT C I DOSSNAN / DOCPAR • I DOCT C 1 OOTMAM e CODES a ( 0 LAK 0 '1 D0049 m 1 DOTSERO • CODGEVILLE • 1 GOTTA . / GODSON C 1 GOTT / I DOLL C I DOUCETTE / DOGE R A i DOUDLR ./ 1 DOGIECREEK a 1 COUDS a DOGM C 1 DOUGAL 0 1 DOUGAM DOUGCITT OOUGCLIFF_ DOUG" - D000HCRTT Oo"PTT DOUGLAS VOUGVILLC DOUM I CE DOUR: DOVER OcVRAT :Or OOVAGIAC :OMrO a DoreLLTON DOWMATA DINNER DON"ET DOWNEvVILL[ DONNE OOTC! D/YCE. LOAMY SUBSTRATUM OOTC9. PODERATCLY NET DOYCE. SANDY SUBSTRATUM DOYLESTOWN DOT" ORA oRAOAGCC CROM DRAGSTON DRAKE ORAKMAS ORALL DRANTOM CRAPER COAX DRAK. WET DREDGE DMESOEM pRlSfLa DOWNING OPENS OREM onIFTr000 DIGGs p:ISCOLL 001T DRIVER :POEM DRO V AL DRUM DRUMMER' DRUMMOND ORUMv DOT CREEK CRY LAKE DRTADINC OMYmUIf. DRYDEN DRYN DRTVALLIT Du PAGE DYAMW OWRT =AKELLA " DUMAKtLLA. GRAVELLY CU/AKELLA. COMLV DURST Dumas DURBS..FLOODED :IRINA OYSLON DYSo l s DUBUQUE C I DUCMIfME • 1 OUCKMILL 0 I OUCKR!! 0 1 CUCKfTOM ? 1 PUCO • 1 DUDA R 1 OUDGEM ! 1 DUDLEY I i DUEL / I DUELM ! I DUETTE C/01 CLIFF / 1 DUFFAU • 1 DUFFER a i CYFFCRM D ( DUFFIELD 0 i OUFFSOM ! 1 OYIFVPOMT a t OUFORT D I DYFUR ! 1 OYGGtMs { I DUGOUT C 1 OUGOAT i DUKES C I OULAC I DULCE C I DULEYLAKE I DULLES 0 1 DULUTH D 1 OUMAs' C ( DUMFRIES a ( OUNMERfTON C ( DUPONT C i DUN GLEN e ( DUNBAR A i DUMBARTON ! I OIMORIDGR • I CLINIC C ( :UMCAM e 1 DUNCANNON C 1 DUMCKLCY e i OMMCO" / I DUNDAS C 1 DUMOAT 0• i DUNDEE m I DUMELLEN e ( DUMFCP0 C/DI DUMGEMtsf a 1 DUNK I SK C 1 DUNLAP • 1 DMMLATOP C 1 CMNNORC C I DUMP C I DUNNING C i DUMNLACE Biol DUMMVILLC O I DUMOtR a 1 DUPONT C 1 OUM?MT. DRAINCO C I DUMONT. HARDPAN C I SUBSTRATUM m I OuNs"YIR e I OUMSMUI*. C I NONGRAVEILT C 1 CLINTON / I DU UL ! I DUPER C 1 OUPLIM C I OUPD C ( DUPONT 1 DUPRCE C 1 DUTA60S / i DURALOE / I DURAND C I Duma"O C ( DYRANT t I DURA20 C i DUR/IN a i DUMELLE • I DYRFe! 0 '1 DURHAM m t ouRKee ?/oi DORIC O I OURRSTEIN . A i DURST 0 1 OUSLCR 0 1 CUSTOM A 1 OUTCHISs A i DUTCK A I DUTTON IS i DUVAL • 1 DUKOURT C OUZEL • i DWIGHT a I DNO*SHAK • 1 DWYER C 1 DTC • I DYKE / 1 DYLAN C I DTRCrG D 1 EACHYS C I CACMOSTON A I CAD C I CAGAR D 1 IAGLICONI C I eAGLEPASS D 1 CAGLIROCK • 1 EAGLIVILLE • 1 EAGLIVING / 1 !AKIN s I !ALT • 1 IAN m 1 EARCRWC 0 I CARLE O I CARLMONT a I CARLMDNT. DR C I fA*P D I E•AOSMA" • 1 EASOY • 1 !ISLET D 1 CASPYR •/DI EAST FORK A 1 CAST LAKE C I EASTA/LE / I EASTCAN C 1 EASTCNCP a 1 CASTGATE It I EASTLAND C 1 EASTON • ( CASTPORT • ( IASTWELL A i CAfTNOOC D ( CATON D 1 CAUGALLIE IF I CAUGALLIRa a• I OEPRESSIONAL C I EAYPLEINC s I to& e 1 9/AL 1 EBseRT s I Items c 1 talc 1 t•OOA C 1 EBODA. SIGHT • I Cecil C 1 CORD C I ECCLES C ( ECrARO O I CCHAW O I EC"!"o0R • I ECKCPT C I ZCKLCY • I ECKMAH • I ECKRAMT O 1 CCKVOLL A 1 ECLIPSE D ( !COLA • 1 CCON AIMED C • C • O C C • • C • A C D • • D 0 O e 0 C s s 0 • 0 • • • • 0 O C B D 0 C • C A • • A s • D A O D D sio O / C • C/D • s C C 0 0 • C 0 / • 0 / m C a NOTIESI Tr0 MVCROLOGIC SOIL GROUPS SUCH AS a/C IMOICATIS THE ORAINED/UORAIMED SITUATION. MODIFIERS SHOW". I.G.. SCOROCK SUBSTRATUM. REVIEW TO A SPECIFIC SOIL SERIES PHASE FOUND IM SOIL MAP LEGEND. (210-VI-TR-55, Second Ed., June 1986 A-11" Exhibit A-1, continued: Hydrologic soil groups for United States soils FREEST FREESTONE FREETOWN FREEVAT[R FREEZENER FRE"COUT FRELSSURG FREMONT fRlN FRENCH FRENCHCPEEK FReNChiomh FRCMCMMAN FRfMCNTOWN FRISHWATEN FRESNO. SALINE-ALKALI FRESNO-. THICK SOLUN FREWA FRE INIK FRIANA FRIANT I•RIOLO FRIEDLANDER FRIEDNAN FRIENDS FRIENDSHIP FRIES FRIESLAND -RIJCLlS ' FRINOLE FRINES FRIO FRIONA gF molt FRIPP FRISCO FRISITF Ff.I T2 FRI22ELL FROSEPC - -- FR000 FRONMAN FROLIC FROLIC. ELEVATION<S000 FROLIC.-FLOOOEO IRONDORF FRONTENAC FPONT see FRONTON"-_,_ :- FROST FROZaRO FRUITA /RUITFIELD FRUITHURST PPUITLAKD FRUITLAND, MOO:RaTELY WET FRVtTLAMO. YET FRVE FRTEDURG Ft. DRUM Ft. GREEN FUaAY FUFSLE FUEGO FOEGOSTA FU:RA FUGAWEE FUGHES FULCMER FULDA POLLAN FULLEP FULLERTON FULMAR FULMAR. DRAIMED C I FULSMEAR C I FULSTONC O I FULTON • 1 FULTS e 1 FULVIGER 0 1 PUNTER D 1 FUOUAT C 1 FURNttf • 1 FURSHUR C I FURY • 1 FURY. DRAINED C ( FYSULIMA • ( FUSUVAR 0 I GAASTRA D I GAaALOOM D I GA•/S GASOVALLY C 1 GAOCL 1 GADIC• • 1 CASINO D 1 GACEY D I CACMADO D ( GACISA C I GAOOES C 1 CADDY C I GLDSDEN . C 1 GADSOEN. Yet A I SUBSTRATUM O 1 GADWCLL S I GAGESV a 1 GAGET06% C I GAGIL C 1 GAHEE I 1 GA1e C 1 GAILA C I GAINCS 4 1 GAINESOCRO 0 1 GAINESVILLE a 1 GALATA B I GAL•RETH C l GALCNUTT 0 1 GALE 0 1 GLLAN C I GALEPPI S I GALESTINA C I GALESTOYN I CALlT C 1 GALILEE a I GALISTCO % 1 GALISTEO. C i SALINE-ALKALI 0 1 GALLANO D 16ALLATIN C I GALLEGOS 0 1 GALLEN • 1 GALLIA C 1 GALLIM! 9 I GALLION C I GALLMAN I GALLUP C 't- GALOO C 1 GALT a 1 GALVA C I GALVESTON 0 1 GALVEZ C 1 CALVIN 0 1 GALWAY C 1 GAreLEQ D 1 GAN•OA C 1 GANGES • I GAMADO C 1 DANCE C I GANDO C/0) CANIS C I GANNETT 0 1 i.ANSNER a I GANSNER. PONOEC 0 1 GAMY C 1 CAPDUTTE C 1 CAPCOT C 1 GARD 0 1 CARD. DRAINED 0 I GANNAvER 0 I GABA O 1 GARFER • i GARIO -0 I GARPUTT O 1 GAACENO 0 I GARCLS C 1 GARCIA It 1 GARCTTAS C 1 GAPCON C I GAROELLa • 1 GARDENA C I GARDINER D I GAPOMeR•S FORK C I GAMON90VILLE D I GARDONE 0 1 GARB T C 1 GARFAN O 1 GARFIELD O 1 GAPMILL C I GARIPER A I GARITA C 1 GARLAND C i CARLEY I GARLOCK C 1 GARMON . 0 ( GARMOPE e 1 DARNEL ? 1 GARNER e 1 CANNES 0 1 CARD a ( GARB C 1 GAFReTSO`4 C 1 GARRETT • i GARRISON 0 1 GARWOCNALES 0 1 GARS ID C 1 GAPTCM a 1 GARvesoN e I GARV iN • 1 GARVIN, C I GARZA A I GIGICka a I GAS CREEK C I GASCCNAO! C 1 GASIL C 1 GASCUAT I CASSAWAY r 1 GASSVILLE C I GASTON • 1 GAT It I GATES S I CATESCN 0 1 CATEVIEV • 1 GATE?AT • I GATEYDOD e 1 GATLIN Ctol BATOR 0 I GATTOM F I CAULOV A I GAULCY C I GAVEL D 1 CAVIL&N • I GAVINS • I CAVIOTA a t Bay C 1 GATLESVILLS- D I GAYLORD C ( GAVMCR 0 1 GAVVILLE O i GAZELLE 0 1 GAZOS C I GAZEELL D I GEAKMART _ a 1 GEARY 0 1 cessOM 0 1 uD 0 D 1 GEE C C 1 GEE•URG C • 1 canon C C 1 GEER • 4 1 GEERTSEN • • a 4 Cara • 0 1 GEISEL • C 1 GEKE C 0 ( GEtKIE a C 1 KM C C t GEM. BURY O C 1 GEMID C 0 ( GEMSON • 0 I GENAW 0 A i GENEGSAF a a 1 "Nasal a C I GENEVA • • 1 "MCA D • t GENDLA a e 1 GIMTILLT 0 C t CINTRT 0 D 1 GtOCDMDA. C C 1 GEOMROCK a i ! 1 .CORGECREEK • • 1 CEORGCTOWM 0 E 1 GloRGaVILLE s I a I GEORGIA C I C i GEPFORO o I / i GCOP a I 0 t ""CRT C I 0 1 GERALD 0 I e ( GERPER 0 I D 1 GEPDRUM 0 I D ( GENING I I F I GERLACH D I B 1 CERLAME a 1 C 1 GEOLE a 1 D 1 GEPMaMTow" • 1 r ( GERMANY B 1 C t cERMER C I C I MONI • 1 D 1 GERRARD C 1 "of GERRARD. DRAINED E I ! 1 GERST D 1 0 1 GESSIE a' I D 1 GESSNER 0/01 D i CESTPIM a 1 0 ( GETAWAY • I • 1 GETCMELL C I 0 I GETRAIL D C I GETTTS C 1 C 1 GETZVILLE 0 1 P I GEWTER C 1 e I GETSEN C 1 C I GI/•LER C 1 a I GIBSON a I C I GIBBOMSCREEK C i C I Glees 0 1 • 1 GICNIT C I 0 1 GISSOMVILLE 0 t V 1 GI•VELL C 1 a I GIDEON C 1 C I GIELOY C I C I GIFFORD 0 I C 1 GIGGEP C 1 0 1 GILA • 1 D I 4IL•COT D i •/DI GILBOA .. 0 1 D 1 GILOT a i C 1 GILCHRIST,; A 1 C 1 GILCO a I O t I D 1 CIL!•0 C? t C I GILLS a 1 C I CILFORD //DI A i GILPCRD. 0 I a I SIPATIFIEO S 1 SUBSTRATUM I GILISPIC I GILLANO I GILLENDER GILLIAN GILLIGAN I GILLS GILLSOUP6 I GILMAN GILMORE GILPAR GILPIN GILROY GILSTOM GILT EDGE GIMLETT GINAT GINES GINGER GIMI GINLAND a1MNts GINGER GIRARD GIRAROOT GIRD GIST GITAKUP GITAN G1VIN GLACIERCREEK ' GLADDEN GLACEL GLAOEVILLE 0.ADEWATER GLADSTONE GLADVIN GLASGOW GLASSMER GLEAN GLEASON CLEVE GLEN GLEMaAP GLEMSAR. VIET GLEN•ERG GLEM•LAIR GLENSROOK GL!NCARS GLENCARB. WET. SALINE GLENCOF GLENCOE. PONOED GLENDALE GLENDALE. YET GLENDALE. RARELY FLOODED GLENOERSON GLENDIVE GLENDORA ' GLENEDEN GLENeLG GLEM/ORD GLEMMALL CLEMMAM GLEIM CM GLENPORA GLENNALLEN. GLlMOMA GLlMPOOL GLINRIO GLEMROSE GLENROSS GLEMSTEo GLENTON GLEMTOMo YET GLENTOSM GLENVIEW ° GLENVILLE GLENTON NOTES: IVO 0TOPOLOGIC SOIL GROUPS SUCH AS en t%0ICAT9S THE DRAIMEDfUNORAINED SITUATION. Ho01FIrRs SHOWN. E.G.. REOPOCK SUBSTRATUM. REFER TO A SPECIFIC S01L :TRIES PHAS! FOUMO IN SOIL MAP LEGEND. AID 0 • C C • • uo D• • C s • • C C • A D • O 0 • C A 0 1 C / A-16 (210-VI-TR-55, Second Ed., June 1986) • • • • • Exhibit A•1, continued: Hydrologic soil groups for United States soils l t • :ARM SPRINGS. C I -WAUPECAN . • i WIELD C -1 WETTIRHORN C 1 WI:AUX B C DRAINED. ALKALI I VAUOUIC 8 i MELVA C 1 YETZ[L D { 1 WICNTTA 1 ttCNUP O • WARM SPRINGi• C 1 rAURIKA D I VELLER C 1 YEre R TOM DRAINED I WAUflow onI WELLINGTON 0 1 WENCLA 0 I WICKAMONEY 0 "ApM s?RtNG•• COOL C 1 WAUTOMa 810E WELLPAN { 1 WEWOKA C V 1 WICKENBVwG DI WICKER•NAM - D • • WARMAN eiDl rA7EL•NO •/DI WELLS • I :ETERS { 1 WICKET? C ¦ARMAM• GAAVCLLT •n I WAVlLANO 0 ( WELLSBORO C I WEYMOUTH • SUBSOIL 0lP R E?sIOM•L ER A • I YIC[IN? C D I ? I r 8101 reltf[D C 11 VWLAM D t :1CKf•VwG • rARMERi CIDI :Ar•SEC e 1 ¦lLLSTOM • i rM•L!T - P - C • :ARMOC[ B 1 rA:INA a I W[LLSVILLE • 1 :MARION C I YICU N A ¦ARRC"TOM O i WAX - C i VCLLTON { I WHATCON C i WIDEMA C :ARSAW • ( :AKPOOL 0 1 rlLOT C I WMATELT 0 1 WIDEN • G K TRtO I - 1 OE WARWICK A I WATBC 0 I W[LSUM ?0 GE rM E• { VIEML C ' • rata 0 I : AYCUP B 1 1ICLTCR 0 1 WrlATrtL L[ • 1 rIILAMD R ATE C 0 r•SATCH • 1 rAVOCH O 1 V[MPLE • 1 WHECLER 8 G 1 WI[ WSCO 8 1 WAYLAND CiDI WENAS D ( WH!!LlRVILLE • I VIFFO D • WASDA :101 WAYMOR • 1 WENAS. DRAINED C I WHEELING • 1 WIGGLER 0 . OC TON • rASM:YRN 0 1 WATN!•BWO : I W[MDA": C K I WH[TR C I WIGTON AMA 1 D WAS?INGTON B I WIYMETOWN C ( . :EMOAN "AIMED • ( WHET TOME C WIL OYM YET W C; MCA a ER M C I :IL:PAHAM C • SU•STRA V EASM C I YEMOTE 0 I WMlD !Y R 8 WASNO! 8) WEATHERFORD • I VEMOMA C I •NILPHANG D I VIL:U ¦ASNOYGAI 8 1 WEAVER C I WENTWORTH { -) WHIPPANY_ C I WIL•URTON • • NASH19%AW CIDI WEAVERVtLL[ B( WEOGUFKA C I WHIPPLE 0 1 WILCO C raSLLA s 0 1 WEY• C 1 MEMO C I WHIPSTOCK' C 1 WILCOX D M "DJA B 1 WEDBRIDGC 8 1 WER[LD • 1 WNIRLO 8 1 WILCOKSDH C :AS[ISH 0 1 ¦E8BTOWN C I VIRLOG C I WMISKETOICK - C I WILOALe C WAfKOV C 1 iEseR • I W 0 1 WHISPERING C I WILDCAT. D • uSPO' 0 1 WE•TLE C 1 :::::K I :NESTLE • 1 WILDERNCBS C utSTC • 1 WEDSTe4 BID I WESCONMETT C I :NIT • I YILDGEN • . L SSIT r' D' I WlDEKIMO D 1 WlSDY C 1 WHITAKER ' C I WILONORSE A ISA• A C ( WEDE:TZ • I rlSFIL 0 1 VMITE House C 1 WILOORS C &TANA C 1 WEDGE A( rlSiK D ( 42TE'Slone 0 1 WILDWOOD 0 / rATAUGA s 1 r[oLAR C 1 :lSKA D :MITI Dr AN D I WILE C rATCNASO• C 1 rlDOrlE • 1 WESLEY { I WHITECAP 0 I Willy • ' • ¦ATCNAUG • 1 WEED • ( VESO • ( WMtTlCLOUO • 1 WILHITE T CID • ¦ATCNUNG 0 1 r!lotNG D 1 WESPAC 0 1 rMtTECOW { 1 rILNOI rATERIDUM D I ¦![DMARK • 1 WESPAC. SANDY C 1 WNITCCROSS D 1 WILKES C • ¦ATIRCAMTOM D 1 W[EKtWACMEE D 1 SUBSTRATUM I WHITEFISH • 1 WtLKESON { I MS • RrAN All - 0 1 :[EKSVILLE 8101 YEST•ROOK D I WNITlNAALL { I WILL VO : u Tl RT OWN A I r![ NA D 1 VEST•VIt C I rNI TEMILLS C I YtLLA•T C :aTERrILLC • I r[lPAN C 1 WEST•UTTE C 1 YMITENORN 0 I WILLACI • • u T[/NS D I WECSATCNC • I WEST CA MP C C I :MITENOR: • WILLAKEMZIE 1 C WA TK iMS RIDGE • 1 I WCSTCREEK B 1 WHITEKNOS • i VILLAMAR • WATO • 1 rCNAOKCE 0 ( r[STE C I WNtTlLA19 • I WILLAM[TTC • • W TONGA 0 1 WEIGANG 1 WESTlRTTLL! • 1 WNITEMAN 0 1 WILLAMETTE. WET C WaT00PaN R : I • 1 WEIGLE IcERT D 1 VOI WeSTFORK rl:IHAVEN D • I WHITEP[AK I WHITERIVER 0' C 1 WILLANCH I WILLAPA 0 C uT OUS WATSEKA : I ¦l VEIrER 0 ( WlSTHATCN. - C i WHITIROCK D ( WILLARD { WATSON C I WEIN:ACM C 1 SALINE'-ALKALI I. UMT TIS•ow0 C 1 WILLETTC AID WATSOMIA D 1 WEINGART 0 1 r[STINDIAM C I W041TESSUNG C I WILLMILL C WATSONVILLE D 1 YIINGARTCN C 1 WESTLAKE 0 1 WMITESON D 1 VILLMO 0 WATT 0 1 WEIR 0 1 WESTLAND SIDI WHITESTONI • 1 WILLIAMS • WATTON C I WIIRMAM C I rlSTMOR! C I WMITETMORN • I WILLIAMSBURG e WATUSI C( rlTRraN• WIT 0 1 WESTMORELAND • I W041TEWATEO D I WILLIAMSON C rau•Ar B I rEIArAN. • I ASTON D 1 WHTTEVOLF A I WILLIAMSPORT C WatB[E[ • 1 MOMPLOODED I WESTOVER • i WMITEWOOO C"I WILLIAMSTOWN C WAU:[RG 0 1 W[ISBUwG C I WESTPHALIA • 1 :HITErO0D. {/DI WILl1AMSVILL[ C WAU•OMSI[ • 1 W[TSe* • I ,}IEiTPL•1N 0 I MONFLOODED 1 WtLLIMAM BID WAUC[OAN 0 1 VCISNAUPT 0 1 WESTPORT A I W141TEWRIGHT C I WILLIS C WauCHULA 8101 WEISSIMFELS C 1 WESTPORT• THIN { I WHITING B 1 WILLISTON C WAUCHULA. 0 1 WEtTAS • i SURFACE i WHITINGlR C I WILLOW CREEK 8 DEPRESS.IDMAL 1 WEITCNPCC C i W[STSHORC 0 I WM/TLCT B i WILLOWDALC B WAUCO•A - D 1 ¦EKODA 0 I WESTVACO C 1 914ITLOCK • 1 WILLOWEMOC C VAUCOMA • 1 r[IAKA A i WESTVIEW • i WHITMAN D I WILLOWMAN • sAUCOMOa. B -1 WELBY • I WESTVILLE { ( WIUITWET C 1 WILLOWS 0 WAUKEE • 1 WELCH o f WESTWEGO O i WMITORE • i VtLLrO0D A WAUKEGAN. • I WELCH. GRAVELLY • 1 WESWINO C I WMITSOL • 1 WILMA e . WAUKZkA D I SUBSTRATUM. 1 WESW000 { I VNITSON D I WILMER C WAUKON • I ORAINED i :[TA 0 ( WHITTIER 8 ( WILMINGTON 0 ¦AULO C i WCLCH. OARCLY • I 9I109114FIELO C I WNITWELL C ( WILMONT • ¦AUNAC e 1 FLOODED. DRAINED 1 WETMEY C I WNO•w!? C 1 WILPONTON • 94UNBIK • t WELCH. DRAINED C I W[TMEY. DRAINED A I WHOLAN • 1 WILPAR C WAUNA C 1 :ELCHLANO e l W[TNORe D I WHORLED C 1 WtLPOTMT D WaWAtA 0 WIDE rELCDME • I WETSAW C I WHY { ( WILSHIRE A NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS VC INDICATES TMI DRAINED/UNORAINED SITUATION. MODIFIERS SHOWN. E.G.. BEDROCK SU STkATUM. RE?CR TO A SPECIFIC SOIL SERIES PHASE FOUND 108 SOIL MAP LEGEND. A-42 (210-VI•TR-55, Second Ed., June 1986) Table 2.2a.-Runoff curve numbers for urban areasl Curve numbers for Cover description hydrologic soil group- Average percent Cover type and hydrologic condition impervious areas A B C D Fully developed urban areas (vegetation established) Open space (lawns, parks, golf courses, cemeteries, etc.)': Poor condition (glass cover < 50%) .............. 68 & 86 19 89 84 Fair condition (grass cover 50% to 75%)........... 49 74 80 Good condition (grass cover > 75%) ............... 39 61 Impervious areas: Paved parking lots, roofs, driveways, etc. 98 (excluding right-of--way) .......................... 98 98 98 Streets and roads: Paved; curbs and storm sewers (excluding right-of-way)......... .. :.................. ... 98 98 98 98 Paved; open ditches (including right-0f--way) ....... 83 89 92 93 Gravel (including right-0f--way) ................... 76 85 89 91 89 Dirt (including right-of-way) ..................... 72 82 87 Western desert urban areas: 63 77 ` 85 88 ... Natural desert landscaping (pervious areas only) Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders) ............... 96 96 96 96 Urban districts: Commercial and business .......................... 85 89 92 94 95 Industrial ........................................ 72 81 88 91 93 Residential districts by average lot size: 77 85 90 92 1/8 acre or less (town houses) .................. 65 61 75 83 87 .......................... 38 1/4 acre'......... ...... 1/3 acre .......................................... 30 57 72 81 86 112 acre ........................................ 25 54 70 80 85 1 acre ........................................... 20 51 68 79 84 2 acres .......................................... 12 46 65 77 82 Developing urban areas Newly graded areas (pervious areas only, no vegetation)-s ................................... 77 86 91 94 Idle lands (CN's are determined using cover types similar to those in table 2-20, 'Average runoff. condition, and I. = 0.2S. rrhe average percent impervious area shown w-.w used to develop the composite CN's. Other assumptions are. as follows: impervious areas are directly connected to the drainage system. impervious ureas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other, combinations of conditions may be computed using figure 23 or 4. °CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type. (C\ `Composite CN's for natural desert land.?aping should be computed using figures 13 or 24 based on the impervious area percentag = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition. e -'Composite CN's to use fur the design of temporary measures during grading and construction should be computed using figure 2-:1 or 24. hased on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas. (210-VI-TR-55, Second Ed., June 1986) 2 -Table 2.2c.-Runoff curve numbers for other agricultura l landsr ., ..Curve numbers for . Cover description hydrologic soil group- . - Hydrologic Cover type condition A B C D • Pasture.:grassland, or range-continuous Poor 68 79 .. 86 89 forage for grazing.s Fair 49.: 69 79 ,. 84 Good 39 61 74 80 Meadow-continuous "grass, protected from - 30 58 71 = 78 grazing and generally mowed for hay.- . • --Zt/? Brush-brush-weed-grass mixture with brush Poor 48 35 56 i 70 83 7 the major element' Fair , • Good 430 48 65 73 Woods-grass combination (orchard Poor 57 73 82 86 • or tree farm).s Fair 43 65 .76 2 82 79 Go od 32 58 7 • --_ Woods .6 Poor 45 77 83 - ? Fair 36 73, 79 Good 430 55 70 . 77 Farmsteads-buildings, lanes, driveways, - 59 74 82• 86 and surrounding lots. • • 'Average runoff condition. and I, = 0.2S. • 211aar:•, <5M ground cover or heavily gazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed. Gxxi. > 75% ground cover and lightly or only occasionally grazed. °Puua: <50% ground cover. Fair: 50 to 75% ground cover. • Good: >75% ground cover. . 'Actual curve number is less than ft use CN = 30 fur runoff computations. 'CN*.; shuw n were computed for areas with 50% Kook- and 50% grass (pasture) cover. Other combinations of conditions ruty be computed from the CN's for w•uixls and pasture. Forest litter. small trees. and brush are destroyed by heavy grazing or regular burning. • Fait: Woods are grazed but nut burned, and some forest litter covers the soil. (xxxt. Wtxxh; are protected from grazing, and litter and brush adequately cover the soil. (210-VI•TR-56, Second Ed., June 1986) 2 Sheet flow Sheet flow is flow over plane surfaces., It usually occurs in the headwater, of streams. ,With sheet flow, the friction. value (Manning's n) is.an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, .and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet f low for various: surface conditions. For sheet flow of less than 300 feet, use Manning's kinematic. solution (Overton and Meadows 1976) to compute Tt: Tt 0.007 (nL)0? [Eq. 3-31 . (P2)15 g0.4 . Table 3-1.-Roughness coefficients (Manning's n) for sheet flow Surface description n= Smooth surfaces (concrete, asphalt, gravel, or bare soil) ................................... 0.011 Fallow (no residue) .......................... 0.05 Cultivated soils: Residue cover :00% ...................... 0.06 Residue cover >20% ...................... 0.17 Grass: Short grass prairie ........................ 0.15 Dense grasses? :........................... 024 Bermudagxass ............................. 0.41 Range (natural) ............................. 0.13 .woods? Light underbrush .......................... 0.40 Dense underbrush ......................... 0.80 where Tt = traveLtime'(hr), n = Manning's roughness coefficient (table 3-1), L = flow length (ft), P2 = 2-year, 24-hour rainfall (in), and s = slope" of hydraulic grade line (land slope, ft/ft). This simplified form of the Manning's kinematic solution is based on the following: (1) shallow uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth. can be obtained from appendix B. Shallow concentrated flow After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope, and type of channel. For slopes less than 0.005 ft/ft; use equations given in appendix F for figure 3-1: Tillage can affect. the direction of shallow concentrated flow. Flow may not always. be directly down the watershed slope if tillage runs across the slope. After determining average velocity in figure 3-1, use equation 3.1 to estimate travel time for the shallow concentrated flow segment. Open channels Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are, visible: on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS)'quadrangle sheets. Manning's equation or water surface profile information can, be...used to estimate average flow velocity. Average flow velocity is usually determined for bank-full elevation. 'The n values are a composite of information compiled by Engman (1985). 'Includes species such as weeping lvegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures. 'When selecting n consider Lcwer to a height.of about 0.1 ft. This-- is the only part of the plant ctmver that will obstruct sheet (low. (210-VI-TR-55, Second Ed., June 1986) 3- APPENDIX B - - - - - - - - - - - - - - - - L UA 66 .., PRE-DEVELOPED ARE4. TOTAL DA • *-255 ; AC , I CNN • 67. To 1176 , &4 N_ ------------- --- ----------- - PREDEVELOPED AREA I ` ' •__ ?, TOTAL DA • 1204 AC \ \ . \ To 13,97 ARJ AREA 2 f' ? .d f I A ------------------- -- ----- --- - ---------- t;1 ii i' l 1 v 1 l L ?e 'AN r--To--' .,' PATH - - . ?TaPATII , ---- t ON ???'> ------------- ------------- ------- ----- - ------ ----- -- -------- --------- --, yk?TC PQ I I I a ?( a lti I ?. wrr.?..? f' • \ t ` \ 1 `' -+-(OPTION d _ i •,d ,\.i/f ..\ ? '? +. ,1 ? ,\ ,l t'l ,\ \ .`'`-fin t I 1 \ 1 I ` I'\ PM `Y. . , t t , t f e - ------- ------ ------ %I PATH ` i /r< ?\ J rp ,, ?{ \\ ) 9 {, i d, `!t+ a\ ?, {{ d y?- " tl 117 ! ^ .... -° -r- ?'.' -, r SIrTi ___ _ __ J r R ,S f?td ;? efd {; c "F?:1? E}k B3 ! "?•?} '.11 j;" /' ? raj ,d' i r "? i $ d5 Pd t''d COX MAD00X*ROAD i?'7' ?V }}} (SR 1527) w 'r 35 MPH Se „7'-„yD EO' R1wel 19aj;1: a ; jr! WOODED AREA s _p \ \ `?} t \ FAf 00 qy? J \ 1 11 V\ r, ? I ,I 1 IV 1 V A.? ,SITE r 11 ? v Ot ??1 v? :p? ?a t PIPE u10 " •SrrE Ndw???HiQaQH dt??n e v,1PE Q.LHO???W ?? ` t 9 `, PIPE tub I +11 ?? r`,fd / ,? P;DF=l 6 SITE \ t}lilt IPE U7 Ill ? PC / ?+ -W i' S N' p'av LT ,? r j• f ^jj !, , ?i?f 8 f , { / V ORNER ROAD ;./;/% .e E N(DTH RI-CF-WAY '/;• ?,/ h HIGHWAY 421 SPEED LI`d.T 5G4T5 M?H •a ; I i, ?, j ASHBY ROAD ( (ASPHALT GOOD CONDITON) A yw.x wr •>m zo?r-r-r.r PQE-DEVELOPED DMA NAGS APEA MAP 01 :FREELAND and KAUFFMAN, INC. tNoNEERS • LANDSCAPE ARCHITECTS 1009 West Stone Avenue Job Job No. reenville, South Carolina 29609 e6 gelephone 864233-5497 x864-233-8915 Computed By Checked By_ Date 4- tX 3 f I E I Date 3 Worksheet 3: Time of concentration (Tc) or travel time Gt) Project `j1l NfU? L By Date Location Checked Date Circle one: rase Developed Circle one: Tt through subarea NOTES: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments.' Sheet flow (Applicable to Tc only) Segment ID 1. Surface description (table 3-1) ............ 2. Manning's roughness coeff., n (table 3-1) .. 3. Flow length, L (total L <.t00 ft) .......... ft 4. Two-yr 24-hr rainfall, P2 in 5. Land slope, s ft/ft 0.8 6. T t 0.007 (nL). Compute Tt ...... hr t P 0.5 s0.4 2 Shallow concentrated flow Segment ID 7. Surface description (paved or unpaved) ..... B. Flow length, L ............................. ft 9. Watercourse slope, s ft/ft 10. Average velocity, V (figure 3-1) .0006.06.00 ft/s 11. Tt ' 3600 V Compute Tt hr Channel flow Segment ID 12. Cross sectional flow area, a eeee.eeesosese ft2 13. Wetted perimeter, pw ....................... ft 14. Hydraulic radius, r - p, Compute r ....... ft w 15. Channel slope, s ft/ft 16. Manning's roughness coeff., n .............. 1.49 r2/3 8 1/2 17. V ? Compute V ......a ft/s n 18. Flow length, L ............................. ft 19. Tt 3600 V Compute Tt ...... hr 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 1. 644;5 100 } ?OZ + 'I 1 ?2 2.? fi OdSI + O,us?i + and 19) hr (210-VI-TR-55, Second Ed., June 1986) D? Worksheet 3: Time of concentration (Tc) or travel time (Tt) Project ?P N ?A , N L By Date Location _ Checked Date Circle one: rese Developed Circle one: Tt through subarea NOTES: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments.' Sheet flow (Applicable to T. only) Segment ID 1. Surface description (table 3-1) ............ 2. Manning's roughness coeff., n (table 3-1) .. 3. Flow length, L (total L <_t00 ft) .......... ft 4. Two-yr 24-hr rainfall, P2 in 5. Land slope, s ft/ft 6." Tt 0.00075(nL0)0.8 Compute Tt hr P2 s Shallow concentrated flow Segment ID 7. Surface description (paved or unpaved) ..... 8. Flow length, L ............................. ft 9. Watercourse slope, s ft/ft 10. Average velocity, V (figure 3-1) ft/s 11. Tt ' 3600 V Compute Tt ...... hr Channel flow Segment ID 12. Cross sectional flow area, a ft2 13. Wetted perimeter, P. ....................... ft 14. Hydraulic radius, r pa Compute r ....... ft w 15. Channel slope, s ft/ft 16. Manning's roughness coeff., n .............. 1.49 r2/3 a1/2 17. V n Compute V ....... ft/s 18. Flow length, L ............................. ft 19. Tt 3600 V Compute Tt ...... hr 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 1: 4 GAS ?S IuU ??? dllo + i D??VP N3? Z 1 Lo X11,0 pprry? 't' Z`I,0 ????J2Z 140 :t 0100d+ ., and 19) ....... hr (210-VI-TR-55, Second Ed., June 1986) I? D4 • • • do& • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Worksheet 3: Time of. concentration (Tc) or travel time (Tt) Project ?AN By Date ? ?L Location Checked Date Circle one: (r en Developed Circle one: (9 Tt through subarea NOTES: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments.' Sheet flow (Applicable to Tc only) Segment ID 1. Surface description (table 3-1) ............ 2. Manning's roughness coeff., n (table 3-1) .. 3. Flow length, L (total L <.too ft) .......... ft 4. Two-yr 24-hr rainfall, P2 in 5. Land slope, s ft/ft 6. T t 0.007 (W 0.8 Compute Tt ...... hr t P 0.5 a0.4 2 Shallow concentrated flow Segment ID 7. Surface description (paved or unpaved) ..... 8. Flow length, L ............................. ft 9. Watercourse slope, s ft/ft 10. Average velocity, V (figure 3-1) ft/s 11. Tt - 3600 V Compute Tt hr Channel flow Segment ID 12. Cross sectional flow area, a ft2 13. Wetted perimeter, pw ....................... ft 14. Hydraulic radius, r - a Compute r ....... ft Pw 15. Channel slope, a ........................... ft/ft 16. Manning's roughness coeff., n .............. 1.49 r2/3 al/2 17. V - n Compute V ....... ft/s 18. Flow length, L ............................. ft 19. Tt 3600 V Compute Tt ...... hr 20. Watershed or subarea T. or Tt (add Tt in steps 6, 1 4 U1?? UQ 10,147 ,1+ - OI??Y UN? ? 0,01 D,oq + L I - O,o?l1 C 24,0 pQ .?l t 0, ?2Z 0A +I and 19) hi (210-VI-T R.55, Second Ed., June 1986) ??-- D-, 110)" k4k Worksheet for Triangular Channel -:Fe 1ptkm--Z Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.030 Channel Slope 0.02200 ft/ft Normal Depth 2.00 ft Left Side Slope 6.00 ft/ft (H:V) Right Side Slope 6.00 ft/ft (H:V) Results Discharge Flow Area Wetted Perimeter Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type Supercritical 174.71 ft3/s 24.00 ft2 24.33 ft 24.00 ft 2.21 ft 0.01292 ft/ft 7.28 ft/s 0.82 ft 2.82 ft 1.28 GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data 0.00 ft 0.00 ft 0 Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 0.00 ft 0.00 ft Infinity fUs Infinity ft/s 2.00 ft 2.21 ft 0.02200 ft/ft 0.01292 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 212212006 7:56:24 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page i of 1 Worksheet 3: Time of concentration (Tc) or travel time (Tt) Project )I f N?(Z? , IY V By Date Location Checked Date Circle one: resen Developed Circle one: Tt through subarea NOTES: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments.' Sheet floe (Applicable to Tc only) Segment ID N' 1. Surface description (table 3-1) 4AArr 2. Manning's roughness coeff., n (table 3-1) .. 3. Flow length, L (total L <-bOO ft) .......... ft 0 4. Two-yr 24-hr rainfall, P2 .................. in c1 5. Land slope, a ft/ft 6. Tt 03 0.00075(nL0) 04.8 Compute` Tt hr ?Q ?3 + ???? 2 a P20 Shallow concentrated flow Segment ID 1{ ' 7. Surface description (paved or unpaved) ..... U N 8. Flow length, L ft 2?N 9. Watercourse slope, a ....................... ft/ft TO, oil 10. Average velocity, V (figure 3-1) ft/s 11. Tt ' 3600 V Compute Tt ...... hr + Q,Q Channel flow Segment ID 12. Cross sectional flow area, a ft2 13. Wetted perimeter, pw ....................... ft 14. Hydraulic radius, r pa Compute r ....... ft w 15. Channel slope, a ft/ft 16. Manning's roughness coeff., n so* 17. V . 1.49 r2/3 a1/2 n Compute V ......o ft/s 18. Flow length, L ............................. ft 19. Tt 3600 V Compute Tt hr + 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19) hr OI?? (210-VI-TR-55, Second Ed., June 1986) N • • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 2 Pre-Dev Area 1 • Hydrograph type = SCS Runoff Storm frequency = 2 yrs • Drainage area = 20.61 ac Basin Slope = 0.0% Tc method = USER • Total precip. = 3.70 in Storm duration = 24 hrs • • • • • Q (cfs) • n w nn Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 23.08 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 13.98 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 68,176 cuft Pre-Dev Area 1 Hyd. No. 2 - 2 Yr Q (cfs) 24.00 • 0 2 5 7 Hyd No. 2 • • • • 20.00 16.00 12.00 8.00 4.00 I I I I I I I \ ' 0.00 9 12 14 16 19 21 23 26 Time (hrs) 2 • • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 3 Pre-Dev Area 2 • Hydrograph type = SCS Runoff Storm frequency = 2 yrs • Drainage area = 26.20 ac • Basin Slope = 0.0% Tc method = USER • Total precip. = 3.70 in Storm duration = 24 hrs • • • • • Q (cfs) • no nn Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 27.71 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 15.54 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 87,751 cult Pre-Dev Area 2 Hyd. No. 3 -- 2 Yr Q (cfs) 28.00 24.00 20.00 16.00 12.00 8.00 4.00 0 00 ?J vvv 0 2 5 7 • Hyd No. 3 • • • • 9 12 14 16 19 21 23 26 Time (hrs) 3 • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 4 Pre-Dev Areas 1-2 Combined • Hydrograph type = Combine Storm frequency = 2 yrs Inflow hyds. = 2, 3 • • • • • • • Q (cfs) • 60.00 • • • 50.00 • • • 40.00 • • • 30.00 • • • 20.00 • • 10.00 • • 0 00 Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 50.57 cfs Time interval = 1 min Hydrograph Volume = 155,927 cult Pre-Dev Areas 1-2 Combined Hyd. No. 4 - 2 Yr Q (cfs) 60.00 50.00 40.00 30.00 20.00 10.00 0.00 • 0 2 5 7 9 12 14 16 19 21 23 26 • Hyd No. 4 Hyd No. 2 Hyd No. 3 Time (hrs) 4 • • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 5 • Pre-Dev Area 3 • Hydrograph type = SCS Runoff • Storm frequency = 2 yrs • Drainage area = 2.55 ac Basin Slope = 0.0% Tc method = USER • Total precip. = 3.70 in • Storm duration = 24 hrs • • • • • • Q (cfs) Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 3.25 cfs Time interval = 1 min Curve number = 67 Hydraulic length = 0 ft Time of conc. (Tc) = 11.76 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 8,790 cult Pre-Dev Area 3 Hyd. No. 5 -- 2 Yr Q (cfs) 4.00 3.00 2.00 1.00 0.00 1 1 j i 1 0.00 • 0 2 5 7 9 12 14 16 19 21 23 26 • Hyd No. 5 Time (hrs) • 5 • Hydrograph Plot • . Hydraflow Hydrographs by Intelisolve Hyd. No. 2 Pre-Dev Area 1 Hydrograph type = SCS Runoff Storm frequency = 5 yrs Drainage area = 20.61 ac • Basin Slope = 0.0% Tc method = USER Total precip. = 4.75 in • Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 41.93 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 13.98 min Distribution = Type II Shape factor = 484 w • • • Q (cfs) Hydrograph Volume = 116,685 cuft Pre-Dev Area 1 Hyd. No. 2 -- 5 Yr Q (cfs) 50.00 • 0 2 5 7 • Hyd No. 2 i • • • 40.00 30.00 20.00 10.00 1 ii 1 . -- ,---x 0.00 9 12 14 16 19 21 23 26 Time (hrs) 15 ii Hydrograph Plot • Hydraflow Hydrographs by Intelisolve i Hyd. No. 3 Pre-Dev Area 2 Hydrograph type = SCS Runoff Storm frequency = 5 yrs Drainage area = 26.20 ac i Basin Slope = 0.0% Tc method = USER . Total precip. = 4.75 in Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 50.62 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 15.54 min Distribution = Type II Shape factor = 484 Qcfs Hydrograph Volume = 150,188 cult Pre-Dev Area 2 Hyd. No. 3 - 5 Yr Q (cfs) 60.00 vvv 0 2 5 7 i Hyd No. 3 • i 50.00 40.00 30.00 20.00 10.00 1 1111 1 i i N 0.00 9 12 14 16 19 21 23 26 Time (hrs) 16 • Hydrograph Plot • 0 Hydraflow Hydrographs by Intelisolve • Hyd. No. 4 Pre-Dev Areas 1-2 Combined Hydrograph type = Combine Storm frequency = 5 yrs i Inflow hyds. = 2, 3 Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 92.27 cfs Time interval = 1 min 0 Q (cfs) 100 00 90 00 . 80 00 _ . 70 00 • . • 60.00 50.00 40 00 . 30 00 . 20 00 . 10.00 • U.UU 0 2 5 7 9 Hyd No. 4 Hyd No. 2 r Hydrograph Volume = 266,873 cult Pre-Dev Areas 1-2 Combined Hyd. No. 4 -- 5 Yr 12 14 16 Hyd No. 3 19 21 23 Q (cfs) 100.00 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 U.UU 26 Time (hrs) 17 Hydrograph Plot • Hydraflow Hydrographs by Intelisolve • Hyd. No. 5 Pre-Dev Area 3 Hydrograph type = SCS Runoff Storm frequency = 5 yrs Drainage area = 2.55 ac Basin Slope = 0.0% Tc method = USER Total precip. = 4.75 in a? Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 5.75 cfs Time interval = 1 min Curve number = 67 Hydraulic length = 0 ft Time of conc. (Tc) = 11.76 min Distribution = Type II Shape factor = 484 Q (cfs) Hydrograph Volume = 14,862 cuft Pre-Dev Area 3 Hyd. No. 5 - 5 Yr Q (cfs) 6.00 vVV 0 2 5 7 Hyd No. 5 5.00 4.00 3.00 2.00 1.00 I / I I I I I I -N 1 0.00 9 12 14 16 19 21 23 26 Time (hrs) 18 • Hydrograph Plot • Hydraflow Hydrographs by Intelisolve • Hyd. No. 2 Pre-Dev Area 1 • Hydrograph type = SCS Runoff • Storm frequency = 10 yrs Drainage area = 20.61 ac • Basin Slope = 0.0% Tc method = USER • Total precip. = 5.50 in • Storm duration = 24 hrs • • • • • • Q (cfs) • 60.00 • • • 50.00 • • • 40.00 • • • 30.00 • • • 20.00 • • • 10.00 • • 0 00 Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 56.74 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 13.98 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 155,350 cuft Pre-Dev Area 1 Hyd. No. 2 -10 Yr Q (cfs) 60.00 • 0 2 5 7 • Hyd No. 2 • • • • 50.00 40.00 30.00 20.00 10.00 I / I I I I I -?? 1 0.00 9 12 14 16 19 21 23 26. Time (hrs) 28 • • Hydrograph Plot e • Hydraflow Hydrographs by Intelisolve • Hyd. No. 3 • Pre-Dev Area 2 e Hydrograph type = SCS Runoff Storm frequency = 10 yrs • Drainage area = 26.20 ac • Basin Slope = 0.0% Tc method = USER Total precip. = 5.50 in Storm duration = 24 hrs 29 VVIdu[ budy, IVRII Gu evuO, a.oo r1Y1 Peak discharge = 68.64 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 15.54 min Distribution = Type II Shape factor = 484 • • • • Q (cfs) Hydrograph Volume = 199,954 cult Pre-Dev Area 2 Hyd. No. 3 -10 Yr Q (cfs) 70.00 vvv 0 2 5 7 • Hyd No. 3 i • • • 60.00 50.00 40.00 30.00 20.00 10.00 I I I 1 I 1 N 0.00 9 12 14 16 19 21 23 26 Time (hrs) • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve Hyd. No. 4 Pre-Dev Areas 1-2 Combined Hydrograph type = Combine Storm frequency = 10 yrs • Inflow hyds. = 2,3 • • • • • • • • • Q (cfs) • 140.00 • • 120.00 • • • 100.00 • • 80.00 • • 60.00 • 40.00 • • • 20.00 • • 0 00 Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 125.26 cfs Time interval = 1 min Hydrograph Volume = 355,304 cult Pre-Dev Areas 1-2 Combined Hyd. No. 4 -10 Yr Q (cfs) 140.00 0 2 5 7 Hyd No. 4 - • • • • 120.00 100.00 80.00 60.00 40.00 20.00 ' ' 0.00 9 12 14 16 19 21 23 26 Time (hrs) Hyd No. 2 Hyd No. 3 30 • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 5 • Pre-Dev Area 3 • • Hydrograph type = SCS Runoff Storm frequency = 10 yrs • Drainage area = 2.55 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 5.50 in • Storm duration = 24 hrs • Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 7.70 cfs Time interval = 1 min Curve number = 67 Hydraulic length = 0 ft Time of conc. (Tc) = 11.76 min Distribution = Type II Shape factor = 484 • • • • • Q (cfs) Hydrograph Volume = 19,675 cult Pre-Dev Area 3 Hyd. No. 5 -10 Yr Q (cfs) 8.00 6.00 4.00 2.00 0 2 5 7 • Hyd No. 5 • • • • 9 12 ' ' ' 0.00 14 16 19 21 23 26 Time (hrs) 31 • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 2 Pre-Dev Area 1 Hydrograph type = SCS Runoff • Storm frequency = 25 yrs • Drainage area = 20.61 ac Basin Slope = 0.0% Tc method = USER Total precip. = 6.45 in Storm duration = 24 hrs • • • • Q (cfs) Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 76.80 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 13.98 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 207,879 cult Pre-Dev Area 1 Hyd. No. 2 - 25 Yr Q (cfs) 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0 00 0 2 5 7 Hyd No. 2 • • • • 9 12 14 16 19 21 23 26 Time (hrs) 41 Hydrograph Plot • Hydraflow Hydrographs by Intelisolve Hyd. No. 3 Pre-Dev Area 2 Hydrograph type = SCS Runoff Storm frequency = 25 yrs • Drainage area = 26.20 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 6.45 in Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 93.00 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 15.54 min Distribution = Type II Shape factor = 484 Pre-Dev Area 2 Q (cfs) Hyd. No. 3 - 25 Yr 100.00 90.00 80.00 70.00 6.0.00 50.00 40.00 30.00 20.00 . 10.00 Hydrograph Volume = 267,564 cult 0 2 5 7 • Hyd No. 3 9 12 14 16 19 21 23 Q (cfs) 100.00 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 - 1 0.00 26 Time (hrs) 42 • • Hydrograph Plot Hydraflow Hydrographs by Intellsolve • Hyd. No. 4 • Pre-Dev Areas 1-2 Combined • Hydrograph type = Combine Storm frequency = 25 yrs • Inflow hyds. = 2, 3 . Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 169.61 cfs Time interval = 1 min • • • • • • • Q (cfs) Hydrograph Volume = 475,443 cuft Pre-Dev Areas 1-2 Combined Hyd. No. 4 - 25 Yr • vvv 0 2 5 7 9 • Hyd No. 4 Hyd No. 2 • • • • 12 14 16 Hyd No. 3 19 21 23 Q (cfs) 180.00 160.00 140.00 120.00 100.00 80.00 60.00 40.00 20.00 - 1 0.00 26 Time (hrs) 43 i Hydrograph Plot Hydraflow Hydrographs by Intellsolve Hyd. No. 5 Pre-Dev Area 3 Hydrograph type = SCS Runoff Storm frequency = 25 yrs Drainage area = 2.55 ac Basin Slope = 0.0% A Tc method = USER Total precip. = 6.45 in Storm duration = 24 hrs r Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 10.34 cfs Time interval = 1 min Curve number = 67 Hydraulic length = 0 ft Time of conc. (Tc) = 11.76 min Distribution = Type II Shape factor = 484 Q (cfs) Pre-Dev Area 3 Hyd. No. 5 -- 25 Yr Hydrograph Volume = 26,191 cult Q (cfs) 12.00 10.00 8.00 6.00 4.00 2.00 0.00 I I 1 1 1 1 1 - ' 0.00 0 2 5 7 9 12 14 16 19 21 23 26 Hyd No. 5 Time (hrs) 44 0 Hydrograph Plot o Hydraflow Hydrographs by Intelisolve Hyd. No. 2 • Pre-Dev Area 1 • Hydrograph type = SCS Runoff Storm frequency = 50 yrs Drainage area = 20.61 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 7.20 in • Storm duration = 24 hrs • Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 93.36 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 13.98 min Distribution = Type II Shape factor = 484 • • e • Pre-Dev Area 1 • Q (cfs) Hyd. No. 2 - 50 Yr 100.00 90.00 80.00 • 70.00 _ • 60.00 • 50.00 40.00 - --- - . - 30.00 • 20.00 -_. --._-- 0 10.00 0 00 Hydrograph Volume = 251,547 cuft 0 2 5 7 • Hyd No. 2 • 0 • 9 12 14 16 19 21 23 Q (cfs) 100.00 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 1 0.00 26 Time (hrs) 54 • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 3 Pre-Dev Area 2 • Hydrograph type = SCS Runoff Storm frequency = 50 yrs Drainage area = 26.20 ac Basin Slope = 0.0% Tc method = USER • Total precip. = 7.20 in Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 113.16 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 15.54 min Distribution = Type II Shape factor = 484 • Q (cfs) inn nn Hydrograph Volume = 323,771 cult Pre-Dev Area 2 Hyd. No. 3 - 50 Yr Q (cfs) 120.00 vvv 0 2 5 7 Hyd No. 3 • 100.00 80.00 60.00 40.00 20.00 I I I I 1 - ?? 1 0.00 9 12 14 16 19 21 23 26 Time (hrs) 55 • • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 4 Pre-Dev Areas 1-2 Combined Hydrograph type = Combine. Storm frequency = 50 yrs Inflow hyds. = 2, 3 Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 206.09 cfs Time interval = 1 min • • • • • • • Q (cfs) 210.00 • 180.00 • 150.00 • 120.00 • • 90.00 • 60.00 • 30.00 • n nn Hydrograph Volume = 575,318 cuft Pre-Dev Areas 1-2 Combined Hyd. No. 4 - 50 Yr 0 2 5 7 Hyd No. 4 • • • • 9 12 14 16 Hyd No. 2 Hyd No. 3 Q (cfs) 210.00 180.00 150.00 120.00 90.00 60.00 30.00 0.00 19 21 23 26 Time (hrs) 56 • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 5 • Pre-Dev Area 3 • Hydrograph type = SCS Runoff • Storm frequency = 50 yrs Drainage area = 2.55 ac Basin Slope = 0.0% Tc method = USER • Total precip. = 7.20 in Storm duration = 24 hrs • • • s • • Q (cfs) 14.00 • • • 12.00 a • 10.00 • 8.00 • 6.00 4.00 • 2.00 0 00 Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 12.50 cfs Time interval = 1 min Curve number = 67 Hydraulic length = 0 ft Time of conc. (Tc) = 11.76 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 31,592 cuft Pre-Dev Area 3 Hyd. No. 5 - 50 Yr Q (cfs) 14.00 • 0 2 5 7 Hyd No. 5 • • • 12.00 10.00 8.00 6.00 4.00 2.00 0.00 9 12 14 16 19 21 23 26 Time (hrs) 57 i • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve e Hyd. No. 2 • Pre-Dev Area 1 • Hydrograph type = SCS Runoff • Storm frequency = 100 yrs • Drainage area = 20.61 ac Basin Slope = 0.0% Tc method = USER e Total precip. = 8.00 in Storm duration = 24 hrs • • • • • • Q (cfs) AAA AA Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 111.50 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 13.98 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 299,824 cuft Pre-Dev Area 1 Hyd. No. 2 -100 Yr Q (cfs) 120.00 e 0 2 5 7 • Hyd No. 2 • • e • 100.00 80.00 60.00 40.00 20.00 i? I I I - , -I % 1 0.00 9 12 14 16 19 21 23 26 Time (hrs) 67 • • Hydrograph Plot • • Hydraflow Hydrographs by Intellsolve • Hyd. No. 3 Pre-Dev Area 2 • Hydrograph type = SCS Runoff Storm frequency = 100 yrs Drainage area = 26.20 ac Basin Slope = 0.0% Tc method = USER • Total precip. = 8.00 in Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 135.25 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 15.54 min Distribution = Type II Shape factor = 484 • • • • Pre-Dev Area 2 Q (cfs) Hyd. No. 3 - 100 Yr 140.00 • 120.00 • • 100.00 80.00 • • 60.00 • 40.00 • 20.00 0 00 Hydrograph Volume = 385,909 cuft • 0 2 5 7 Hyd No. 3 • • • • 9 12 14 16 19 .21 23 Q (cfs) 140.00 120.00 100.00 80.00 60.00 40.00 20.00 -1- 0.00 26 Time (hrs) 68 • • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 4 • Pre-Dev Areas 1-2 Combined • Hydrograph type = Combine • Storm frequency = 100 yrs • Inflow hyds. = 2, 3 • • • • • • • • Q (cfs) • Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 246.06 cfs Time interval = 1 min Hydrograph Volume = 685,733 cult Pre-Dev Areas 1-2 Combined Hyd. No. 4 -100 Yr Q (cfs) 280.00 240.00 200.00 160.00 120.00 80.00 40.00 0 0.00 ' ' ' ' www.- ' ' ' 0.00 • 0 2 5 7 9 12 14 16 19 21 23 26 Hyd No. 4 Hyd No. 2 Hyd No. 3 Time (hrs) 69 • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 5 Pre-Dev Area 3 • Hydrograph type = SCS Runoff • Storm frequency = 100 yrs • Drainage area = 2.55 ac • Basin Slope = 0.0% Tc method = USER • Total precip. = 8.00 in Storm duration = 24 hrs • • • Q (cfs) 15.00 • • • 12.00 • 9.00 • • 6.00 • • 3.00 0 00 Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 14.87 cfs Time interval Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor Hydrogr Pre-Dev Area 3 Hyd. No. 5 -100 Yr 1 min = 67 = Oft = 11.76 min = Type II = 484 aph Volume = 37,552 cuft Q (cfs) 15.00 12.00 9.00 6.00 3.00 _i i_i 0 2 5 7 • Hyd No. 5 • • 0 9 12 14 16 19 21 0.00 23 26 Time (hrs) 70 APPENDIX C do 4. W? A? 0 N 'r POST-DEVELOPED AREA 3 TOTAL DA ° *--1.89 AC CNw • 69 Tc - 5 UN,-"" i J \ f l\ t laETAL :asv m 'OPi 7.6,,-) f 7l, P NOTE: POST-DEVELOPED AREA 2 WAS INCLUDED IN TPE POND DESIGN (DEVELOPED CONDITION, USING A CN=95 AND Tc-5 MIN. POST-DEVELOPED AeE TOTAL DA - '--6.5 AC CNw - 66 Tc = 8.76 M',N y T-77. -77 i• i l o 7 "?l I l I I I, W I 11 .I I I I I'I I I I•,l I I I' l ?I l 'I I, I " 1 h I I 1 1 I ?- I I?I I I I I I?I I I I I tl I I ?Is?1 1 ? I I i'V1 1 _1_. tg a \ x - a3 ir'3ag ?.;,s g PJ„ \.. l= , v -po • O Cp O ?, p w (ENJS\ AT\ `, \\\ \ °oyAV? 1 ., •• •\ t, ,.',I 1, ,,, 1, ` ? , ` , ' ? 1 ?"s^pr r 11?AtfJYS E =1 E OFF-S / PIKE n10't p33d5 dt?bn v ll?'"3?v 3'0 =9 yhv'j???d??tivH?1N e f \ 0 ' owrFO Err OTHERS ? e f OFF-SITE f e x APE a8 a OFP SITE ARG , ?7 X i F APE Er rain w?'Q ? f, 1. x \ V /\ t 47AL DA _ ._-'" J TLESDAYS ? I ?\ ?t .{ ? 1` SIT - h ?f I` V1. ? ;?rV\Fi?l:? % '?•':? %, /7i ?;, ./i". ,1 P 6' r 11 I PIPS tt/ o i?';'4 ' .? FfJR.f?_=Y 87 ?T zr != 1 dac HICH AY P ,;=? ?tORM1ER ROAD D / / k t , U5 HIGh'WAY 421 A;T', y, Vf..P,?EnE A"0TH RIGHT-OF-WAY 7 ?_??, dr1 '! d SPEED LIMIT 55 V,PH l % ASHBY ROAD Y (ASPHALT GOOD CC?`lDITION 1 / «ue?az row M,nm .w. r - = _.,---; ----`.t i. ?, -- --- - --_ ----? ---- - ------- ? e7'3---fff - pf3,; - /b;?_• , a ,;??4-??, _&., POST-DE1/EL0PED II COX MADDOX R0A0 (SR isv) R,r ??? NOTE REFER TO INLET DRAINAGE AREA MAP D 2 A I N A G E A E A 35 Man AND OFF-SITE PiPc CALCULATIONS (APPENDIX E) 60' R/','r?_ FOR BYPASS SYSTEM AREAS AND FLOW CALCS i • • • • s • • • • • • s • • • • • • • • • • • • • • • • • • • i 0 • Worksheet 3: Time of concentration (Tc) or travel time (Tt) Proiect ohm, m . Nti By Date Location _ Checked Date Circle one: Present veld d' Circle one: ?.Y Tt through subarea NOTES: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments. Sheet flow (Applicable to Tc only) Segment ID 1. Surface description (table 3-1) ............ 2. Manning's roughness coeff., n (table 3-1) .. 3. Flow length, L (total L <.t00 ft) .......... ft 4. Two-yr 24-hr rainfall, P2 in 5. Land slope, s ft/ft 6. T . 0.007 (nL)0o8 Compute T ...... hr t P 0.5 s0.4 t 2 Shallow concentrated flow Segment ID 7. Surface description (paved or unpaved) ..... 8. Flow length, L ............................. ft 9. Watercourse slope, i ....................... ft/ft 10. Average velocity, V (figure 3-1) ft/s 11. Tt - 3600 V Compute Tt ...... hr Channel flow Segment ID 12. Cross sectional flow area, a ft2 13. Wetted perimeter, pw ....................... ft 14. Hydraulic radius, r - pa Compute r ....... ft w 15. Channel slope, a ft/ft 3 Ott 7e? C 16. Manning's roughness coeff., n .............. 1.49 r2/3 sl/2 17. V - n Compute V ......0 ft/s 18. Flow length, L ............................. ft 19. Tt 3600 V Compute Tt ....., hr + tt 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19) hr ? ?,1to n,,,n (210NI-TR-55, Second Ed., June 1986) D- • • Hydrograph Plot Hydraflow Hydrographs by Intelisolve • Hyd. No. 8 Post Dev Areal (to Pond) • Hydrograph type = SCS Runoff Storm frequency = 2 yrs • Drainage area = 50.00 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 3.70 in • Storm duration = 24 hrs • • • • Q (cfs) 280.00 • 240.00 • • 200 00 . • 00 160 . • 120 00 . 80 00 • . 40.00 • Q (cfs) 280.00 240.00 200.00 160.00 120.00 80.00 40.00 0.00 0 00 • 0.0 2.0 4.0 6.0 • Hyd No. 8 • • • • Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 261.42 cfs Time interval = 1 min Curve number = 95 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 586,904 cult Post Dev Areal (to Pond) Hyd. No. 8 - 2 Yr 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Time (hrs) • • Hydrograph Plot • Hydraflow Hydrographs by Intelisolve Hyd. No. 9 S Post-Dev Area 2 ( By-Pass Area 1) • Hydrograph type = SCS Runoff Storm frequency = 2 yrs Drainage area = 6.50 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 3.70 in • Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 8.95 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 8.8 min Distribution = Type II Shape factor = 484 • • • • • Post-Dev Area 2 (By-Pass Area 1) Q (cfs) Hyd. No. 9 - 2 Yr A1116 A- -^ Hydrograph Volume = 21,502 cult Q (cfs) 10.00 8.00 6.00 4.00 2.00 • 0 2 5 7 Hyd No. 9 • • • • 0.00 9 12 14 16 19 21 23 26 Time (hrs) • • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve Hyd. No. 10 • Post-Dev Area 3 (By-pass Area 2) • Hydrograph type = SCS Runoff Storm frequency = 2 yrs • Drainage area = 1.89 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 3.70 in * Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 3.72 cfs Time interval = 1 min Curve number = 69 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 • • • • • Post-Dev Area 3 (By-pass Area 2) • Q (cfs) Hyd. No. 10 - 2 Yr w nn Hydrograph Volume = 7,612 cult Q (cfs) 4.00 3.00 2.00 1.00 • 0 2 5 7 • Hyd No. 10 • • • 0.00 9 12 14 16 19 21 23 26 Time (hrs) I? • Hydrograph Plot • Hydraflow Hydrographs by Intelisolve Hyd. No. 11 Post-Dev Area 4 (By-pass Area 3) • Hydrograph type = SCS Runoff Storm frequency = 2 yrs ! Drainage area = 0.10 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 3.70 in Storm duration = 24 hrs • • • • Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 0.20 cfs Time interval = 1 min Curve number = 69 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 403 cult 0 Post-Dev Area 4 (By-pass Area 3) . Q (cfs) Hyd. No. 11 - 2 Yr • 0 2 5 7 • Hyd No. 11 • • • • 9 12 14 16 19 21 23 Q (cfs) 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 26 Time (hrs) • • Hydrograph Plot • Hydraflow Hydrographs by Intelisolve Hyd. No. 8 • Post Dev Areal (to Pond) • Hydrograph type = SCS Runoff Storm frequency = 5 yrs • Drainage area = 50.00 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 4.75 in • Storm duration = 24 hrs • • • • • Q (cfs) • 350.00 • • • 300.00 • 250.00 • 200.00 _ • • 150.00 • 100.00 50.00 Q (cfs) 350.00 300.00 250.00 200.00 150.00 100.00 50.00 • 0.00 0 00 • 0.0 2.0 4.0 6.0 • Hyd No. 8 I• • • Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 341.55 cfs Time interval = 1 min Curve number = 95 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 780,879 cult Post Dev Areal (to Pond) Hyd. No. 8 - 5 Yr 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Time (hrs) •. • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve Hyd. No. 9 • Post-Dev Area 2 ( By-Pass Area 1) • Hydrograph type = SCS Runoff Storm frequency = 5 yrs Drainage area = 6.50 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 4.75 in Storm duration = 24 hrs Hydrograph Volume = 36,800 cult • • • Post-Dev Area 2 (By-Pass Area 1) Q (cfs) Hyd. No. 9 -- 5 Yr 18.00 • 15.00 12.00 • 9.00 • • 6.00 • 3.00 0 00 Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 16.03 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 8.8 min Distribution = Type II Shape factor = 484 15.00 12.00 9.00 6.00 3.00 Q (cfs) 18.00 0 00 • 0 2 5 7 r Hyd No. 9 • 9 12 14 16 19 21 23 26 Time (hrs) • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve Hyd. No. 10 • Post-Dev Area 3 ( By-pass Area 2) • Hydrograph type = SCS Runoff • Storm frequency = 5 yrs • Drainage area = 1.89 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 4.75 in • Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 6.25 cfs Time interval = 1 min Curve number = 69 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 • • • • • Post-Dev Area 3 (By-pass Area 2) Q (ofs) Hyd. No. 10 - 5 Yr Hydrograph Volume = 12,578 cult Q (cfs) 7.00 6.00 5.00 4.00 3.00 2.00 1.00 ?VV 0 2 5 7 Hyd No. 10 • • • 11 ' ' 0.00 9 12 14 16 19 21 23 26 Time (hrs) • • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 11 • Post-Dev Area 4 ( By-pass Area 3) • Hydrograph type = SCS Runoff • Storm frequency = 5 yrs • Drainage area = 0.10 ac • Basin Slope = 0.0% Tc method = USER • Total precip. = 4.75 in • Storm duration = 24 hrs • • • • Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 0.33 cfs Time interval = 1 min Curve number = 69 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 665 cult • Post-Dev Area 4 (By-pass Area 3) • Q (cfs) Hyd. No. 11 - 5 Yr „ r-., • 0 2 5 7 • Hyd No. 11 • • • 9 12 14 16 19 21 23 Q (cfs) 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 26 Time (hrs) i • Hydrograph Plot • Hydraflow Hydrographs by Intelisolve i Hyd. No. 8 Post Dev Areal (to Pond) Hydrograph type = SCS Runoff Storm frequency = 10 yrs Drainage area = 50.00 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 5.50 in i Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 398.44 cfs Time interval = 1 min Curve number = 95 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 i Q (cfs) 420.00 360 00 . 300.00 240 00 i . • 180.00 120 00 i . 60.00 • Q (cfs) 420.00 360.00 300.00 240.00 180.00 120.00 60.00 0.00 0 00 i 0.0 2.0 4.0 6.0 i Hyd No. 8 i Ali i i Hydrograph Volume = 919,988 cuft Post Dev Areal (to Pond) Hyd. No. 8 -10 Yr 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Time (hrs) • Hydrograph Plot a _ Hydraflow Hydrographs by Intelisolve Hyd. No. 9 • Post-Dev Area 2 ( By-Pass Area 1) • Hydrograph type = SCS Runoff Storm frequency = 10 yrs Drainage area = 6.50 ac Basin Slope = 0.0% Tc method = USER Total precip. = 5.50 in Storm duration = 24 hrs • • • • Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 21.56 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 8.8 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 48,994 cult • Post-Dev Area 2 (By-Pass Area 1) • Q (cfs) Hyd. No. 9 - 10 Yr 24.00 • • 20 00 . • 16 00 . I ' • 12 00 . • 8 00 . • 4 00 . • -- -------- - - -- - -- - i Q (cfs) 24.00 20.00 16.00 12.00 8.00 4.00 o.oo • 0 2 5 7 • Hyd No. 9 • • • • 9 12 14 16 19 21 23 o.oo 26 Time (hrs) • • Hydrograph Plot • Hydraflow Hydrographs by Intelisolve Hyd. No. 10 • Post-Dev Area 3 (By-pass Area 2) Hydrograph type = SCS Runoff i Storm frequency = 10 yrs Drainage area = 1.89 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 5.50 in • Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 8.20 cfs Time interval = 1 min Curve number = 69 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 • • Post-Dev Area 3 (By-pass Area 2) • Q (cfs) Hyd. No. 10 -10 Yr 10.00 • i 8.00 • • 6.00 • • • 4.00 2.00 i 0 00 Hydrograph Volume = 16,472 cuft i 0 2 5 7 Hyd No. 10 • • 9 12 14 16 19 21 23 Q (cfs) 10.00 8.00 6.00 4.00 2.00 -- 1 0.00 26 Time (hrs) • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve Hyd. No. 11 Post-Dev Area 4 (By-pass Area 3) Hydrograph type = SCS Runoff Storm frequency = 10 yrs Drainage area = 0.10 ac Basin Slope = 0.0% Tc method = USER Total precip. = 5.50 in Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 0.43 cfs Time interval = 1 min Curve number = 69 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 Post-Dev Area 4 (By-pass Area 3) Q (cfs) Hyd. No. 11 -10 Yr 0.50 0.45 • 0.40 • 0.35 0.30 0.25 0.20 • 0.15 • 0.10 0.05 0.00 • 0 2 5 7 Hyd No. 11 9 12 14 16 19 21 23 Hydrograph Volume = 872 cult Q (cfs) 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 26 Time (hrs) a Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve Hyd. No. 8 Post Dev Areal (to Pond) Hydrograph type = SCS Runoff Storm frequency = 25 yrs Drainage area = 50.00 ac Basin Slope = 0.0% Tc method = USER Total precip. = 6.45 in Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 470.20 cfs Time interval = 1 min Curve number = 95 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 • Q (cfs) 490.00 • 420.00 350.00 280.00 210.00 140.00 70.00 Q (cfs) 490.00 420.00 350.00 280.00 210.00 140.00 70.00 Ah 0.00 0 00 • 0.0 2.0 4.0 6.0 Hyd No. 8 Hydrograph Volume = 1,096,591 cuft Post Dev Areal (to Pond) Hyd. No. 8 - 25 Yr 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Time (hrs) • • Hydrograph Plot • Hydraflow Hydrographs by Intelisolve • Hyd. No. 9 • Post-Dev Area 2 ( By-Pass Area 1) • Hydrograph type = SCS Runoff • Storm frequency = 25 yrs • Drainage area = 6.50 ac Basin Slope = 0.0% • Tc method = USER • Total precip. = 6.45 in • Storm duration = 24 hrs • • • • Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 28.97 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 8.8 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 65,561 cuft • Post-Dev Area 2 (By-Pass Area 1) • Q (cfs) Hyd. No. 9 - 25 Yr Aft ? v.vv 0 2 5 7 • Hyd No. 9 • • • 0 Q (cfs) 30.00 25.00 20.00 15.00 10.00 5.00 ' ' ' ' 0.00 9 12 14 16 19 21 23 26 Time (hrs) i • Hydrograph Plot Hydraflow Hydrographs by Intelisolve Hyd. No. 10 ! Post-Dev Area 3 ( By-pass Area 2) Hydrograph type = SCS Runoff Storm frequency = 25 yrs Drainage area = 1.89 ac Basin Slope = 0.0% Tc method = USER Total precip. = 6.45 in Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 10.78 cfs Time interval = 1 min Curve number = 69 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 Post-Dev Area 3 (By-pass Area 2) Q (cfs) Hyd. No. 10 - 25 Yr en nn Hydrograph Volume = 21,708 cuft Q (cfs) 12.00 10.00 8.00 6.00 4.00 2.00 • 0 2 5 7 Hyd No. 10 i? 1--? 0.00 9 12 14 16 19 21 23 26 Time (hrs) • • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 11 • Post-Dev Area 4 ( By-pass Area 3) Hydrograph type = SCS Runoff Storm frequency = 25 yrs Drainage area = 0.10 ac Basin Slope = 0.0% Tc method = USER Total precip. = 6.45 in • Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 0.57 cfs Time interval = 1 min Curve number = 69 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 w • • • Post-Dev Area 4 (By-pass Area 3) • Q (cfs) Hyd. No. 11 - 25 Yr • 1.00 • 0.90 • 0.80 • 0.70 • 0.60 • • 0.50 • 0.40 • • 0.30 • 0.20 • 0.10 • • 0.00 • 0 2 5 7 • Hyd No. 11 • • • • 9 12 14 16 19 21 23 Hydrograph Volume = 1,149 cult Q (cfs) 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 26 Time (hrs) • • Hydrograph Plot • Hydraflow Hydrographs by Intelisolve • • Hyd. No. 8 • Post Dev Areal (to Pond) • Hydrograph type = SCS Runoff Storm frequency = 50 yrs • Drainage area = 50.00 ac Basin Slope = 0.0% • Tc method = USER • Total precip. = 7.20 in • Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 526.69 cfs Time interval = 1 min Curve number = 95 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 • Hydrograph Volume = 1,236,227 cuft • • • • Q (cfs) 560.00 • • • 480.00 • • 400.00 • • • 320.00 • • 240.00 • • • 160.00 • • 80.00 • • • 0.00 • • • • • 0 Post Dev Areal (to Pond) Hyd. No. 8 - 50 Yr Q (cfs) 560.00 480.00 400.00 320.00 240.00 160.00 80.00 0.00 F- ).0 2.0 F- 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.1 Hyd No. 8 Time (hrs) • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve Hyd. No. 9 • Post-Dev Area 2 ( By-Pass Area 1) • Hydrograph type = SCS Runoff Storm frequency = 50 yrs Drainage area = 6.50 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 7.20 in • Storm duration = 24 hrs • • • • Wednesday, Mar 29 2006, 5.36 PM Peak discharge = 35.06 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 8.8 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 79,333 cult • Post-Dev Area 2 (By-Pass Area 1) • Q (cfs) Hyd. No. 9 - 50 Yr 40.00 • • 30.00 0 • • • 20.00 • • • • 0 10.00 • 0 • 0 0 00 Q (cfs) 40.00 30.00 20.00 10.00 • 0 2 5 7 • Hyd No. 9 • • 9 12 14 16 19 21 23 1 0.00 26 Time (hrs) Hydrograph Plot • . Hydraflow Hydrographs by In telisolve Hyd. No. 10 Post-Dev Area 3 (B y-pass Area 2) Hydrograph type = SCS Runoff Storm frequency = 50 yrs Drainage area = 1.89 ac Basin Slope = 0.0% Tc method = USER Total precip. = 7.20 in Storm duration = 24 hrs r Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 12.86 cfs Time interval = 1 min Curve number = 69 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 26,027 cult w Post-Dev Area 3 (By-pass Area 2) 0 Q (cfs) Hyd. No. 10 - 50 Yr Ift A A f%f% Q (cfs) 14.00 12.00 10.00 8.00 6.00 4.00 2.00 . 0 2 5 7 Hyd No. 10 9 12 14 16 19 21 -rt---- % ' 0.00 23 26 Time (hrs) • Hydrograph Plot • • Hydraflow Hydrographs by In telisolve Hyd. No. 11 Post-Dev Area 4 (B y-pass Area 3) Hydrograph type = SCS Runoff Storm frequency = 50 yrs Drainage area = 0.10 ac Basin Slope = 0.0% Tc method = USER Total precip. = 7.20 in Storm duration = 24 hrs • • • • Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 0.68 cfs Time interval = 1 min Curve number = 69 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type 11 Shape factor = 484 Hydrograph Volume = 1,377 cult Post-Dev Area 4 (By-pass Area 3) • Q (cfs) Hyd. No. 11 -- 50 Yr 1.00 • 0.90 • 0.80 0.70 • 0.60 • • 0.50 • • 0.40 • 0.30 0.20 • 0.10 • • 0.00 • 0 2 5 7 • Hyd No. 11 • • • • 9 12 14 16 19 21 23 Q (cfs) 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 26 Time (hrs) • Hydrograph Plot • Hydraflow Hydrographs by Intelisolve Hyd. No. 8 Post Dev Areal (to Pond) Hydrograph type = SCS Runoff Storm frequency = 100 yrs Drainage area = 50.00 ac Basin Slope = 0.0% Tc method = USER Total precip. = 8.00 in Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:37 PM Peak discharge = 586.81 cfs Time interval = 1 min Curve number = 95 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 • Q (cfs) 640.00 560.00 • 480.00 400.00 320.00 240.00 . 160.00 80.00 ? 0 00 Hydrograph Volume = 1,385,318 cult Post Dev Areal (to Pond) Hyd. No. 8 -100 Yr Q (cfs) 640.00 560.00 480.00 400.00 320.00 240.00 160.00 80.00 0 00 • 0.0 2.0 4.0 6.0 Hyd No. 8 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Time (hrs) • Hydrograph Plot 0 Hydraflow Hydrographs by Intelisolve 0 Hyd. No. 9 i Post-Dev Area 2 ( By-Pass Area 1) i Hydrograph type = SCS Runoff Storm frequency = 100 yrs Drainage area = 6.50 ac Basin Slope = 0.0% Tc method = USER Total precip. = 8.00 in Storm duration = 24 hrs 0 • • Wednesday, Mar 29 2006, 5:37 PM Peak discharge = 41.79 cfs Time interval = 1 min Curve number = 66 Hydraulic length = 0 ft Time of conc. (Tc) = 8.8 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 94,559 cult • Post-Dev Area 2 (By-Pass Area 1) i Q (cfs) Hyd. No. 9 -100 Yr 50.00 • • • 40.00 i 30.00 20.00 10.00 0 00 i 0 2 5 7 Hyd No. 9 • • i i Q (cfs) 50.00 40.00 30.00 20.00 10.00 0 00 9 12 14 16 19 21 23 26 Time (hrs) 0 Hydrograph Plot • Hydraflow Hydrographs by Intelisolve Hyd. No. 10 Post-Dev Area 3 (By-pass Area 2) Hydrograph type = SCS Runoff Storm frequency = 100 yrs Drainage area = 1.89 ac Basin Slope = 0.0% Tc method = USER Total precip. = 8.00 in Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:37 PM Peak discharge = 15.13 cfs Time interval = 1 min Curve number = 69 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 Hydrograph Volume = 30,774 cult • Post-Dev Area 3 (By-pass Area 2) Q (cfs) Hyd. No. 10 -100 Yr 18.00 15.00 12.00 9.00 6.00 3.00 0.00 • 0 2 5 7 Hyd No. 10 Q (cfs) 18.00 15.00 12.00 9.00 6.00 3.00 0.00 9 12 14 16 19 21 23 26 Time (hrs) • Hydrograph Plot • Hydraflow Hydrographs by Intelisolve Hyd. No. 11 • Post-Dev Area 4 ( By-pass Area 3) • Hydrograph type = SCS Runoff • Storm frequency = 100 yrs Drainage area = 0.10 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 8.00 in Storm duration = 24 hrs Wednesday, Mar 29 2006, 5:37 PM Peak discharge = 0.80 cfs Time interval = 1 min Curve number = 69 Hydraulic length = 0 ft Time "of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 • • Post-Dev Area 4 (By-pass Area 3) Q (cfs) Hyd. No. 11 -100 Yr 1.00 0.90 • 0.80 • 0.70 • 0.60 0.50 • 0.40 • 0.30 • 0.20 • 0.10 0.00 • 0 2 5 7 Hyd No. 11 • 9 12 14 16 19 21 23 Hydrograph Volume =1,628 cult Q (cfs) 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 26 Time (hrs) APPENDIX D Pond Report Hydraflow Hydrographs by Intelisolve Wednesday, Mar 29 2006, 5:36 PM Pond No. 1 - Detention Pond . Pond Data Pond storage is based on known contour areas. Average end area method used. Stage / Storage Table • Stage (ft) Elevation (ft) Contour area (sgft) Incr. Storage (cult) Total storage (cult) 0.00 400.00 79,507 0 0 • 1.00 401.00 83,892 81,700 81,700 2.00 402.00 88,384 86,138 167,838 3.00 403.00 92,987 90,686 258,523 4.00 404.00 97,707 95,347 353,870 . 5.00 405.00 102,520 100,114 453,984 6.00 406.00 107,391 104,956 558,939 7.00 407.00 112,317 109,854 668,793 8.00 408.00 117,300 114,809 783,602 • Culvert / Orifice Structu res [A] [B] [C] [D] • Rise (in) = 42.00 5.75 0.00 0.00 Span (in) = 42.00 5.75 0.00 0.00 No. Barrels = 1 1 0 0 Invert El. (ft) = 400.00 400.00 0.00 0.00 Length (ft) = 51.00 0.00 0.00 0.00 Slope (%) = 1.00 0.00 0.00 0.00 N-Value = .013 .013 .000 .000 Orif. Coeff. = 0.60 0.60 0.00 0.00 Multi-Stage = n/a Yes No No • e • • • Stage (ft) . 8.00 6.00 4.00 • 2.00 000. Weir Structures [A] [B] [C] [D] Crest Len (ft) = 4.00 20.00 50.00 0.00 Crest El. (ft) = 402.00 403.90 405.00 0.00 Weir Coeff. = 2.60 2.60 2.60 3.33 Weir Type = Broad Broad Broad - Multi-Stage = Yes Yes No No Exfiltration = 0.000 in/hr (Contour) Tailwater Elev. = 0.00 it Note: Culvert/0rifice outflows have been analyzed under inlet and outlet control. r Stage / Discharge Stage (ft) 8.00 0.00 80.00 Total Q 6.00 4.00 2.00 ' 0.00 160.00 240.00 320.00 400.00 480.00 560.00 640.00 720.00 800.00 Discharge (cfs) Pond Re ort Hydraflow Hydrographs by Intelisolve Pond No. 1 - Detention Pond Pond Data . Pond storage is based on known contour areas. Average end area method used. ! Stage / Storage Table Wednesday, Mar 29 2006, 5:54 PM • Stage (ft) Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft) • 0.00 400.00 79,507 0 0 1.00 401.00 83,892 81,700 81,700 2.00 402.00 88,384 86,138 167,838 3.00 403.00 92,987 90,686 258,523 • 4.00 404.00 97,707 95,347 353,870 5.00 405.00 102,520 100,114 453,984 • 6.00 406.00 107,391 104,956 558,939 7.00 407.00 112,317 109,854 668,793 8.00 408.00 117,300 114,809 783,602 • Culvert / Orifice Structures • [A] [B] [C] Rise (in) = 42.00 5.75 0.00 • Span (in) = 42.00 5.75 0.00 No. Barrels = 1 1 0 . Invert El. (ft) = 400.00 400.00 0.00 Length (ft) = 51.00 0.00 0.00 • Slope (%) = 1.00 0.00 0.00 N-Value = .013 .013 .000 Orif. Coeff. = 0.60 0.60 0.00 Multi-Stage = n/a Yes No • • • • • • • Stage (ft) Weir Structures [D] [A] [B] [C] [D] 0.00 Crest Len (ft) = 4.00 20.00 50.00 0.00 0.00 Crest El. (ft) = 402.00 403.90 405.00 0.00 0 Weir Coeff. = 2.60 2.60 2.60 3.33 0.00 Weir Type = Broad Broad Broad - 0.00 Multi-Stage = Yes Yes No No 0.00 .000 0.00 No Exfiltration = 0 .000 in/hr (Contour) Tailwater Elev. = 0.00 ft Stage / Storage Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control Stage (ft) 8.00 6.00 4.00 2.00 • - -- 0 Storage 200,000 400,000 600,000 0.00 800,000 Storage (cult) 9 • Hydrograph Plot • Hydraflow Hydrographs by Intelisolve Hyd. No. 14 Pond Routing Hydrograph type = Reservoir Storm frequency = 2 yrs . Inflow hyd. No. = 8 Reservoir name = Detention Pond Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 27.80 cfs Time interval = 1 min Max. Elevation = 403.89 ft Max. Storage = 343,464 cuft • Storage indication method used. Q (cfs) qW 280.00 240 00 . 200 00 . 160 00 • . r _ 120.00 80 00 . 40.00 - --- - ----- ---.. _-._.. ------ --- - - Q (cfs) 280.00 240.00 200.00 160.00 120.00 80.00 40.00 0.00 I I- 0 00 0 5 10 15 19 Hyd No. 14 Hyd No. 8 0 Pond Routing Hyd. No. 14 - 2 Yr Hydrograph Volume = 487,554 cult 24 29 34 39 44 48 Time (hrs) i • Hydrograph Plot • Hydraflow Hydrographs by lntelisolve Hyd. No. 14 Pond Routing Hydrograph type = Reservoir Storm frequency = 5 yrs Inflow hyd. No. = 8 Reservoir name = Detention Pond Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 67.86 cfs Time interval = 1 min Max. Elevation = 404.83 ft Max. Storage = 437,225 cuft • Storage indication method used. • 0 • Q (cfs) Ah „^ Hydrograph Volume = 679,666 cuft Pond Routing Hyd. No. 14 -- 5 Yr Q (cfs) 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0 5 10 15 19 • Hyd No. 14 Hyd No. 8 I? • • 0 0.00 24 29 34 39 44 48 Time (hrs) • • Hydrograph Plot • Hydraflow Hydrographs by Intelisolve Hyd. No. 14 • Pond Routing • Hydrograph type = Reservoir • Storm frequency = 10 yrs • Inflow hyd. No. = 8 • Reservoir name = Detention Pond Wednesday, Mar 29 2006, 5:36 PM Peak discharge Time interval Max. Elevation Max. Storage = 118.39 cfs = 1 min = 405.41 ft = 496,711 cuft Storage indication method used. • • • • • Q (cfs) r 420.00 360 00 - . 300 00 . 240 00 . • 180.00 • 120 00 . 60.00 • • Q (cfs) 420.00 360.00 300.00 240.00 180.00 120.00 60.00 0.00 n nn • 0 3 6 9 11 Hyd No. 14 Hyd No. 8 • • • Hydrograph Volume = 817,751 cuft Pond Routing Hyd. No. 14 -10 Yr 14 17 20 23 26 28 31 Time (hrs) • • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 14 • Pond Routing • Hydrograph type = Reservoir Storm frequency = 25 yrs • Inflow hyd. No. = 8 • Reservoir name = Detention Pond Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 211.88 cfs Time interval = 1 min Max. Elevation = 405.94 ft Max. Storage = 552,780 cuft • Storage Indication method used. • • • • • • Q (cfs) Hydrograph Volume = 993,292 cult Pond Routing Hyd. No. 14 - 25 Yr Q (cfs) 490.00 420.00 350.00 280.00 210.00 140.00 70.00 • 0 3 5 8 11 Hyd No. 14 Hyd No. 8 • • • • 1 0.00 13 16 19 21 24 27 Time (hrs) • Hydrograph Plot • • Hydraflow Hydrographs by Intelisolve • Hyd. No. 14 • Pond Routing • Hydrograph type = Reservoir • Storm frequency = 50 yrs • Inflow hyd. No. = 8 • Reservoir name = Detention Pond Wednesday, Mar 29 2006, 5:36 PM Peak discharge = 282.09 cfs Time interval = 1 min Max. Elevation = 406.26 ft Max. Storage = 588,018 cuft storage indication method used. • • Q (cfs) COA nn Hydrograph Volume = 1,132,221 cult Pond Routing Hyd. No. 14 - 50 Yr Q (cfs) 560.00 480.00 400.00 320.00 240.00 160.00 80.00 vvv 0 3 5 8 10 Hyd No. 14 Hyd No. 8 0.00 13 15 18 20 23 25 28 . Time (hrs) Hydrograph Plot • Hydraflow Hydrographs by Intelisolve Hyd. No. 14 Pond Routing Hydrograph type = Reservoir Storm frequency = 100 yrs Inflow hyd. No. = 8 e Reservoir name = Detention Pond Wednesday, Mar 29 2006, 5:37 PM Peak discharge = 353.84 cfs Time interval = 1 min Max. Elevation = 406.56 ft Max. Storage = 620,420 cuft e Storage indication method used. • e e e • e Q (cfs) MAn nn Hydrograph Volume = 1,280,659 cult Pond Routing Hyd. No. 14 -100 Yr e 0 3 5 8 10 e Hyd No. 14 Hyd No. 8 • • • e Q (cfs) 640.00 560.00 480.00 400.00 320.00 240.00 160.00 80.00 0.00 13 15 18 20 23 25 28 Time (hrs) • 4PREELAND and KAUFFMAN, INC. NG/NEER9 • LANDSCAPE ARCHITECTS 4k09 West Stone Avenue reenville, South Carolina 29609 Telephone 864233-5497 Wx 864233-8915 RF • • • e • • 0 • Date Computed By Checked 13y Date _ EfZEN E alculati n Far. ? ?N I, ?L ? t Dis inlirr e: ! f ! ? . f f f . . I'A , ! t : ! ! s i 1 ? ! < Vic 40m7 , 6v U t ! IV. ' f s I Vu 7 ? ? ? ^F{ ? ? ? ? + x I I ? i I f I (. V s 1 i < _I t ? E ?i 1 . N t I J 01, w I : i ? ? i - 1 S 3 ? 1 1 3 f 1 ! 3 1 t t ITM s € > ? l Sig a : : ! Ito 71 0 I x U F J? {({( 1 g f 1 i ! ' 4 I I 1 Al A t'1«<? tlY x € j h? 0 i-- • 3. General a. Basin shape should minimize dead storage areas and short circuiting. Length to width ratios should be 3:1 or greater. (Barfield, et al., 1981, pp. 426=429; Florida DEP, 1982, pg. 6-289). b. If the basin is used as a sediment trap during construction, all sediment deposited during construction must be removed before normal; operation begins. c. Aquatic vegetation should be included for a wetland type detention basin (Maryland DNR, March 1987; Schueler, 1987, Chapter 4 and 9). A minimum ten foot wide shallow sloped shelf is needed at the edge of the basin for safety and to provide appropriate conditions for aquatic vegetation (Schueler, 1987). This shelf should be sloped 6:1 or flatter and extend to a depth of.2 feet below the surface of the permanent pool (Shaver and Maxted, DNREC, 1994). A list of suitable wetland species and propagation techniques are provided in Schueler (1987) and Maryland DNR (1987). d. An emergency drain (with a pipe sized to drain the pond in less than 24 hours) should be installed in all ponds to allow access for riser repairs and sediment removal (Schueler, 1987). Table 1.1 Surface Area to Drainage Area Aatio vor Permanent Pool Sizing For 85% Pollutant Removal Efficiency in the Piedmont % Impervious 1 1 Cover 3.0 4.0. 5.0 6.0 7.0 8.0 9.0 10 050. .049 0:43 035 0 31 0 29 0 26 20 .0.97 0.79 0.70 0.59 . 0.51 . 0.46 - 0.44 30 1'.34 1.08' 0.97 .0.83- 0.70 0.64 0.62 40' 1.73. 1.43 1.25 1.05 - 0.90 :0.82 0.77 ' 50 2.06 1.73 1:50. 1.30. L09 1.00 0.92' 60 2.40 2.03 1.71 1.51 1.29. 1.18 1.10 70 2.88. 2.40 2.07 1.79' 1.54 1.35 1.26 80 3.36 2.78 2.38 2.10 1.86 1.60 1.42 90 .3.74 3.10, 2.66. 2.34 2.11 1.83 1.67 Notes: Numbers given in the body of the table are given in percentages. Coastal SA/DA ratios can be obtained from the local DWQ Regional Office. 5 e, STORMWATER MANAGEMENT POND (TEMPORARY POOL) Elevation Area Average Area Pond Volume Total Volume Cumulative Volume (FT) (SF) (SF) (CF) (CF) (CF) 400.0 79,507 0 0 0 81,700 401.0 83,892 81,700 81,700 81,700 86,138 402.0 88,384 86,138 86,138 167,838 90,686 403.0 92,987 90,686 90,686 258,523 99,267 404.0 105,547 99,267 99,267 357,790 109,885 405.0 114,222 109,885 109,885 467,675 118,643 406.0 123,064 118,643 118,643 586,318 127,517 407.0 131,970 127,517 127,517 713,835 136,452 408.0 140,933 136,452 136,452 80,228s ?I STORMWATER MANAGEMENT POND (PERMANENT POOL) Elevation Area Average Area Volume Cumulative Volume (FT) (SF) (SF) (CF) (CF) --3 65,014 397.0 66,992 65,014 65,014 69,024 398.0 71,056 69,024 134,038 73,142 399.0 75,228 73,142 207,180 77,368 400.0 79,507 77,368 284,548 FOREBAY AREA #1 Elevation Area Average Area Volume Cumulative Volume (FT) (SF) (SF) (CF) (CF) 396.0 4,894 0 0 5,792 397.0 5,757 5,792 5,792 6,722 398.0 6,689 6,722 12,514 7,188 399.0 7,687 7,188 19,702 8,216 400.0 8,745 8,216 27,918 FOREBAY AREA #2 Elevation Area Average Area Volume Cumulative Volume (FT) (SF) (SF) (CF) (CF) 396.0 4,682 0 0 272 397.0 5,875 5,279 5,279 6,524 398.0 7,173 6,524 11,803 7,873 399.0 8,573 7,873 19,676 9,323 400.0 10,072 9,323 28,998 Total S6,916 0 0 0 C rn 0 0 C CD C) O ? ; r 0 Cl ? co ? ' o o U d ? O . N CD V) O O CL O o L O o CL E - C) O o -o c - o CL o C) co V? Cl O C5 Q O O CV CL 0 o - o 0 0 0 0 0 0 0 o O o o O o C) co f- CD CA I' M N r O m O O O O O O O O O O CA Iq V V' Iq V If V IT C ?Y m uOi}enal3 C OFREELAND and KAUFFMAN, INC. '"ENGINEERS • LANDSCAPEARCH/TECTS 09 West Stone Avenue reenviile, South Carolina 29609 Job Job No. 4elephone664-233-5497 Computed By fa x664-233-5915 Checked By_ ? n Date _ Date _ R FEIZEN E alculati nFor . • t , ! t • I t f ? 1I I i • t ' _ t i t f ! E t} _.,,.?? 5 , ' I `11 ??._ : : f t T a? ?_._...,_ 'R1 ? ! _._?, 1 i ! 1 4 0---- --- i -- -- ....... f f I j !_ ! t t i i ! • ?, Fwlq?m- • ...iii ........ .. ... ?_..... .. .. ?._._..... I !... _. t - i ? ` _ _."__ .__- _. - _ i • , 1111 < 3! p I r- 1 E 1 ? t Lim I f # f i ` ` 1 t tit 1 t ? t lii 3 -?- - E _._ : _ ? ? •--' ?I`?'{/r,1/?,'3?C IC.?Ib?[/} ./13'i; ? ? _._ (E! f t e i i --- • ! ! i { ; • t VV lY ? i t f ... he ? ofi APPENDIX E 3 3 0 ea L V ? W O CV O O N M O ar. K ./ rn N (D C \ ?$ J U Z r 9 T N O L U C_ O co O N N Q U ) O A- 0 N N N r x Storm Sewer Summary Report Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor Dns No. rate size length EL Dn EL Up slope down up loss line (cfs) (in) (ft) (ft) (ft) (%) (ft) (ft) (ft) No. 1 63-64 98.84 48 c 36.0 388.56 389.14 1.611 391.57 392.08 1.32 End 2 64-65 98.96 48 c 93.0 389.24 390.14 0.968 393.40 393.68 0.49 1 3 65766 99.29 48 c 249.0 390.24 392.66 0.972 394.18 395.61 0.70 2 4 66-67 99.76 48 c 352.0 392.76 395.58 0.801 396.31 398.53 0.23 3 5 67-68 100.3 48 c 352.0 395.68 398.50 0.801 398.77 401.46 2.36 4 6 68-69 56.00 48 c 268.0 398.60 400.75 0.802 403.82 404.15 0.06 5 7 69-70 56.46 48 c 268.0 400.85 403.00 0.802 404.20 405.22 1.45 6 8 70-70A 4.01 24 c 51.0 404.50 409.00 8.824 406.67 409.71 0.25 7 9 68-68A 3.86 24 c 268.0 399.98 404.00 1.500 403.82 404.70 0.24 5 Project File: bypass2 (no 60 inch).stm Number of lines: 9 Run Date: 03-29-2006 NOTES: c = circular, e = elliptical; b = box; Return period = 25 Yrs.; * Indicates surcharge condition. Hydraflow Storm Sewers 2003 m a • • • • • • • • • • • • • • Doi L OE wL 0 0 0 (V C 't In to r, co m a ? 0 CO V m 1, ab (D o co 0 0 c0 0 co co 0 co n w 0 N . CV C ID N LO a M M N C? C, O O- O C? Co O CD N W C) O O N co to O O O O O O ? f0 U7 O O O O O O O O D D C ` N h M o M N h O .-• N O O O C ` r CD c CO cD CD O O O co co co V D V' 0 0 Ci n aN0 N C~O W d m CO CD C D V' f0 M W M M m M M V O V VO J C9 co co M O 0 N O = C, O CD cD O cr N n r? co c07 M M v OV OV v v CD C it) N N co cOD co co In co N W N d 0 0. N- 6 cd C5 V. _ W co co co N M M v v O M O t: o 0 ° n ° ° ° CD C m o o o E co M rn M rn M rn M rn M o0 Q 0 V 0 'ct 0 V Z O e CD O ni a) co co W M co LO Lx ' y 0 0 0 0 0 o Cp .- a N d7 C .:. O' co co O O O co N N V V V ' V co It Oni Cl It ID VLO : U-) M cOD m co co (A CD V 0 CV N C. M M CD O CO n n m O pl () w V CN co ? CO 04 CO CO CO n i N ? . -- ? CO N O W N co (n N to O VO' .' Co 10- ?.. .V rn m O Oi rn O to 0 O V' a0 M C a. "? L ? 00 o O 0 O n M h M : .-- 0 M 0 M 0 c ( rl } C O n N T 0 0 0 m n n o 0 u N r- 6 0 6 0 6 Sri H o C 0 o Cl 0 0 0 0 o 0 i 0 o 0 i 0 i o i n u u u u E V C CT T CT m N O I ? a? K C D. fl V: A F N N N N N - r- O 0 _ ` O Q 1 ; M O O ? ? O 2 O O O O O O O O O O O O O O O O O O O co p C V O O O O rn O O rn rn + V O O O O O O O O O N O L E R •? O C) s r a-- •?- •?- O h O r? to M V C w N I" Cl) M M CM CM Cl 0 O v c? o R O O O O n O n O 0 = O o N C V N CCR O O O O O O r O O N N CA O O O O Dj O CV O N O 0 O 0 q O 0 CL r1 J co N N M M N co O N y C CB O O LL C C O C ?"° _j C W r N M V• O CD n O 'U O Z6 W N c o a. 0 ?j N M V' O O n O O Z N H 3 N s 9 0 S >.C O 4-- m_Z o 0 0 0 0 0 0 0 0 CL O O O O C O O O O O C3 ' O C o O CN O o N o - co O O y N ?,. O O O O O O O O O 0 N Cq h o CA C H v O O O O NN o CA C7 O O C) 0 C3 . N 0, O O O O 0 M M N a) O O O O 0 O e- O O ? C V r- CN a O O O co O O o 0 y 9 O O O O O N h H O o 0 o N o O v N m LO O O O O O N co CL c Ci d o 0 0 o CD O o o a CD O 0 (D C3 C) C) C) C O O O O O O O O 0 0 o O o o O 0 0 O O O O Cl O O O O C N O O O O O O O O O p O O O O O C3 O 0 Cl a O C3 O d 'a N W O o 0 0 0 C7 C 0 0 0 0 0 0 0 0 z 3 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o Y 0 0 o N O N N N rn N U N co tm cm cm 0) tm cm cm 0) w in in w in in in cn co O o o O o o O o 0 ?? 0 0 0 0 0 0 0 0 0 r O o 0 o N o N N CV d O O O O O O O O O p a) J M ?p O O O O .4 O v v O (7 Q 0 C) 0 0 0 0 0 C) a O 0 O O 0 0 0 O O C co 0 0 0 o ai o of ri cri E LL +r o 0 0 0 0 0 o O o O d J O o 0 0 0 0 0 0 0 - c o 0 0 0 0 0 o v o -o " Co ? o V ., v - o O O O o 0 o O o c co o < S 0 0 0 0 o 0 Cl co 0 0 ai o v a 2 = S S _ o + E C1 T o 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a a+ N O O O O co ' O CC) n O co (h0 V O O O O N O N CC) o a C) O o eP o LO V ce) CA O O O O O O Cl O O 11 .?' d? V c p O O O O O C O O O - ? y k k N C W co 11 Q O O 0 C) O 0 V co U O O N O N a 0 C O O o o o O V CM O O co 0 O 11 .C. N N N U) d T z C m 0 ¢ ai c a CO cn O CO 0 h O co CO 0 O 0 h h m 0 U- C/) U W C ? O. o o J Z r N M ?• O 0 h 0 CA d z M O Z' 3 m N O N 2 r- _ M O d p 2. I.w 3 st ?-' } 30 S ? 1, 3 Cl) s o m a ai QI 0 a 0 0 3 0 fn O Storm Sewer Summary Report Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor Dns No. rate size length EL Dn EL Up slope down up loss line (cfs) (in) (ft) (ft) (ft) (%) (ft) (ft) (ft) No. 1 3-4 190.8 54 c 13.0 407.00 407.10 0.769 411.24 411.35 2.34 End 2 4-5 138.8 48 c 180.0 407.20 408.10 0.500 413.69* 415.37* 0.28 1 3 5-6 138.9 48 c 113.0 408.20 408.77 0.504 415.66* 416.71 * 1.61 2 4 6-7 137.4 48 c 140.0 414.19 415.59 1.000 418.33 419.57 2.05 3 5 7-8 112.3 48 c 111.0 415.69 416.80 1.000 421.62* 422.30* 0.62 4 6 8-9 97.45 48 c 231.0 416.90 419.11 0.957 422.92* 423.98* 0.47 5 7 9-10 76.68 48 c 79.0 419.21 420.00 1.000 424.45* 424.68* 0.58 6 8 4-11 52.65 54 c 208.0 407.20 408.57 0.659 413.69* 413.84* 0.08 1 9 11-12 52.88 54 c 201.0 408.67 410.00 0.662 413.92 414.04 0.10 8 10 12-13 11.30 54 c 195.0 410.50 416.00 2.821 414.13 416.96 0.32 9 11 6-6A 2.45 24 c 86.0 415.19 417.33 2.488 418.33 418.32 0.02 3 12 6A-613 1.32 18 c 69.0 417.43 418.47 1.507 418.34 418.91 0.15 11 Project File: bypassl.stm Number of lines: 12 Run Date: 03-29-2006 NOTES: c = circular, e = elliptical; b = box; Return period = 25 Yrs.; * Indicates surcharge condition. Hydraflow Storm Sewers 2003 0 d C O r Q co O M LO co 6 o ca : a) 6 r ? ¢ CO 4 ( I 6 v r C o C O Co N > O to O O O 0 O O O O O N CD O N M O O CO f0 N N O ' O O O W C> CN co N N N N `d v N C E v v v v v v v v v < - v v o hi m co LO 0 0 0 LO 0 0 0 0 0 O V CL Cli Vi D W? N rn e (p Cn i o 0 0 0 ; O O c N C C14 C ) N m N M v v v c N a d' V V N N 'ct tt' V O O N O O M N W N M O C C O C 7 ( O ? N C 7 M _M ui CO r CN IT M M y Co CO W v v v v v J S M h r M 0 O ss?? O e?}} O 0 M W C. C U 0 1 C O C 0 1 v Co ?- O N N M N V N M V' It ; 0 O a- CC) N O O O N O N 0) .- W CO O O N O N r CO O O M 7 M '? w N d C D O O co v Cn 0 0 O O u) r C W v v v v v v v v O v v v _ v p V d O O r m O = o r O O M r c d : 6 r o i co d f o o 0 6 0 o o 6 M ri v o E i' o C o C o u ( ? o v ° C Z v v v v t v v v v v v CL r o 0 0 o co o co CD N O O a r u) O O O O O CO CD CO Q. N O 0 O r .- 0 r 0 a N N ? N_ N C v LO CO O co co CO co v v v v w O v v v v v It M O CC1 N •-- N O O CD V n_ O M Nv I*- CO C r .? r W n (O M (h (V CV d_ Cn CO O CO CO O CO 0 O M M M U w V O Cl Iq v v v LO CCD M 0 cq e a 3 y O co CO C? fM D O CO M O N O O v CA Cl) M T r (D N N N F' 0) r CCl CO C 2 Cl) O r N O M N O CO N t.: h h CO CD CO O I4 CD O r-: CO O N a. to C • CJ O M r O O O O O O O O II N ? co co OD CCi LO ui O CD CA O CO LO O O C O O O O O O O O O O O O C1 E C E O 6 O Cn ui ui C:i C; ((i O ui u; N M N M C. O r Ci C O CCR C O. C c 0 O 7 x F- CV r' G 0 0 O C C C NO (D 41 O a ?. V O O O O O O co CO 'aY O O O O O O CO CO O Cn r CO < C O O O O O O O O O O O O Cp 0 O O O O LO O O O CC) CC) in LO O N + p V O O O 0) C) 0) O O CA 0) 0) M Ci O O O O O O O O O O O O 4) G V LO Cl) M O M Cf) O N N M N - m .0 . O 0) 0) (O v CA O (A C) O Cl C Q [• . N •- ?-- e- O O O C] O C) O . . m E ` o V V O O O r N O O O ? O O y ?' 0 C W O O O ? v O O O ? CD 0 0 0 0 O O O O 0 O O N C O O O O O O O O O O O O C T II J r r r r N n N N O ? C co C O N ? y p O LL C C O C .J C W r N M v C[) CO o O M r r- C/j i a o v i C) C14 Z J ?-- N M v tl) CO r M- W ?-- 0 N N m N 0 Cn A v S M (D c m Z O O O O O O O O O O M CL o 0 o O o 0 0 0 0 0 0 0 Cy C O O O O O O O O O O O O 0- O O 0 N N N O 0 CV O CV N CD O m LO CD O d O O O O CR co n O O b Cl) co co m C t . v O O O fV 0I O O Ch O N N 0 O O d' v C7 O N tCi Lo +- ? N O O 0 M M co O O c) O st +?• CL O O q v v Co . O O co c) c r t9 O O O M , ?- .- O O CD G o C C M 7 O O O co co N m r1l O O O O O W : O O - M Co CO -- a v O 6 G O N. Di CO . Co ? N V v o O N U ) L ?- w O O 0 ?- Cl) O O O O N C O O d' Co O O CD Ch M . -- .? C O O co r z C O Co C O O O O Cl) C O O O O O O O O O O O O O 0 O 0 O O O O O 0 O Cl O O O O O C7 0 O N O O O O O O O O O O O O N )C O O O M Ch M O C7 Cl) M M M C O O O O O O O O O O O O O O O O O O O O O 0 O O ?O a Cl O O O O O O O O O O O RI 3 rn o 0 O 0 o 0 0 0 0 0 o 0 0 r- 0 -: 0 o 17 C7 0 0 0 0 0 0 0 0 0 0 c o z 3 0 c _ O CD O o 0 0 0 0 o O o o Y O O O O O O O O O O O O N O O O CV N N O N N CV N N CU _ f0 U O m m m m m m co m m m m m o C Cl) U N to CO CO W U co U U U O O O O O O C) O O O O O 2 O O O O O O O O O O O O ?. r+ O O O O O N O CV CV O CN N C N ' O O O O O O O O O O O O 11 ?+ -J i?. O O O O O O O O O O O O . Cp r O O O O O v O th It 0 v ? O C7 ? Q o O o o O o 0 0 0 0 0 0 a o o O o 0 0 0 0 O o 0 0 E 0 0 0 0 0 M 0 M ri 0 vi 6 o m LL .? O o o O O O O O o 0 0 o O m J O o o O o o O Cl 0 0 0 0 - c 0 0 0 v v 0 0 0 0 0 v v a C 0 V ., ? 0 0 0 0 0 0 0 0 0 0 0 0 rj o 0 0 0 co co 0 0 0 0 0 co co a Q L N + Q = _ _ m = _ `? a LL (U ?' U U C7 C7 C? U (9 D E C!a 0 0 o O o o c°DO o a o 0 0 O O o 0 0 0 co 0 0 o q o c 0 0 0 0 0 0 r- 0 0 0 0 0 0 Q w O O O N O r- O O LO Cm CC) N v O O O ui 6 O O O N C`•) . .. O O 0 N N O O V •-' .y ? V O O O Cl O O O O O O O O O O O O O O O O O O O O II w •N . .. V O O O O O O O O O O O O D y * C N O co II Q w O O O n Co O LO Cl) Cn N O ar U V O O O ?j 6 O Co O ? N M O O 0 N N F, O IT - - .-- O O E II N (D D r y 7 o Cu CL Z c .o - m y c v CC) CD r- Co 0) ° r r r U. U U W ? ? O . J Z .- N 0 v Lo 0 n 0 m ° .- r d Z M 0 N 0 y S Worksheet for Circular Pipe - Off-Site Pipe 1 Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.013 Channel Slope 0.01000 fUft Normal Depth 1.41 ft Diameter 1.50 ft Results Discharge 11.30 ft3/s Flow Area 1.72 ft2 Wetted Perimeter 3.97 ft Top Width 0.71 ft Critical Depth 1.28 ft Percent Full 94.0 % Critical Slope 0.01078 ft/ft Velocity 6.55 ft/s Velocity Head 0.67 ft Specific Energy 2.08 ft Froude Number 0.74 Maximum Discharge 11.30 ft3/s Discharge Full 10.50 fV/s Slope Full 0.01157 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 It Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 94.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.001 212212006 8:54:17 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for Circular Pipe - Off-Site Pipe 1 GVF Output Data Normal Depth 1.41 ft Critical Depth 1.28 ft Channel Slope 0.01000 ft/ft Critical Slope 0.01078 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster 108.01.058.001 212212006 8:54:17 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for Circular Pipe - Off-Site Pipe 2 Pro}ect Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.013 Channel Slope 0.01000 ft/ft Normal Depth 1.89 ft Diameter 2.00 ft Results Discharge 24.33 ft'/s Flow Area 3.07 ft' Wetted Perimeter 5.34 ft Top Width 0.91 ft Critical Depth 1.74 ft Percent Full 94.5 % Critical Slope 0.01052 ft/ft Velocity 7.91 ft/s Velocity Head 0.97 ft Specific Energy 2.86 ft Froude Number 0.76 Maximum Discharge 24.33 ft3/s Discharge Full 22.62 ft /s Slope Full 0.01156 Tuft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 94.50 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity fUs Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.001 212212006 8:54:28 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for Circular Pipe - Off-Site Pipe 2 GVF Output Data Noirnal Depth 1.89 ft Critical Depth 1.74 ft Channel Slope 0.01000 ft/ft Critical Slope 0.01052 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 2122/2006 8:54:28 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for Circular Pipe - Off-Site Pipe 3 Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.013 Channel Slope 0.01700 Wit Normal Depth 1.89 ft Diameter 2.00 ft Results Discharge 31.72 ft'/s Flow Area 3.07 ft2 Wetted Perimeter 5.34 ft Top Width 0.91 ft Critical Depth 1.89 ft Percent Full 94.5 % Critical Slope 0.01699 ft/ft Velocity 10.32 ft/s Velocity Head 1.65 ft Specific Energy 3.54 It Froude Number 0.99 Maximum Discharge 31.73 W/s Discharge Full 29.49 ft3/s Slope Full 0.01966 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 94.50 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 212212006 8:54:35 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for Circular Pipe - Off--Site Pipe 3 - GVF Output Data Normal Depth 1.89 ft Critical Depth 1.89 ft Channel Slope 0.01700 ft/ft Critical Slope 0.01699 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 212212006 8:54:35 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for Circular Pipe - Off-Site Pipe 4 Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.013 Channel Slope 0.01000 ft/ft Normal Depth 1.41 ft Diameter 1.50 ft Results Discharge 11.30 fr/s Flow Area 1.72 ft2 Wetted Perimeter 3.97 ft Top Width 0.71 ft Critical Depth 1.28 ft Percent Full 94.0 % Critical Slope 0.01078 ft/ft Velocity 6.55 ft is Velocity Head 0.67 ft Specific Energy 2.08 ft Froude Number 0.74 Maximum Discharge 11.30 fP/s Discharge Full 10.50 ft'/s Slope Full 0.01157 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 94.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.09]. 212212006 8:54:40 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for Circular Pipe - Off-Site Pipe 4 GVF Output Data Normal Depth 1.41 ft Critical Depth 1.28 ft Channel Slope 0.01000. ft/ft Critical Slope 0.01078 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 212212006 8:54:40 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for Circular Pipe - Off-Site Pipe 5 Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.013 Channel Slope 0.01000 ft/ft Normal Depth 1.41 ft Diameter 1.50 ft Results Discharge 11.30 fN/s Flow Area 1.72 ft2 Wetted Perimeter 3.97 ft Top Width 0.71 ft Critical Depth 1.28 ft Percent Full 94.0 % Critical Slope 0.01078 ft/ft Velocity 6.55 ft/s Velocity Head 0.67 ft Specific Energy 2.08 ft Froude Number 0.74 Maximum Discharge 11.30 ft'/s Discharge Full 10.50 ft°/s Slope Full 0.01157 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 94.00 % Downstream Velocity - Infinity ft/s Upstream Velocity Infinity ft/s Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.001 212212006 8:54:46 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for Circular Pipe - Off-Site Pipe 5 GVF Output Data Normal Depth 1.41 ft Critical Depth 1.28 ft Channel Slope 0.01000 ft/ft Critical Slope 0.01078 ft/ft • . Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster 108.01.058.00] 212212006 8:54:46 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 • Worksheet for Circular Pipe - Off-Site Pipe 6 Project Descriptions Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.013 Channel Slope 0.02000 ft/ft Normal Depth 1.88 ft Diameter 2.00 ft Results Discharge 34.41 ft'/s Flow Area 3.06 ft2 Wetted Perimeter 5.29 ft Top Width 0.95 ft Critical Depth 1.92 ft Percent Full 94.0 % Critical Slope 0.02012 ft/ft Velocity 11.23 ft/s Velocity Head 1.96 ft Specific Energy 3.84 ft Froude Number 1.10 Maximum Discharge 34.41 fP/s Discharge Full 31.99 fN/s Slope Full 0.02314 ft/ft Flow Type SuperCritical GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Average End Depth Over Rise Normal Depth Over Rise Downstream Velocity Upstream Velocity 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft 0.00 % 94.00 % Infinity ft/s Infinity ft/s Bentley Systems, Inc. Haestad Methods Solution Center . FlowMaster [08.01.058.001 312912006 3:40:40 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page ' 1 of 2 Worksheet for Circular Pipe - Off-Site Pipe 6 GVF Output Data Normal Depth 1.88 ft Critical Depth 1.92 ft Channel Slope 0.02000 ft!ft Critical Slope 0.02012 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster 108.01.058.00] 312912006 3:40:40 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for Circular Pipe - Off-Site Pipe 7 Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient Channel Slope Normal Depth Diameter Results Discharge Flow Area Wetted Perimeter Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full Flow Type GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Average End Depth Over Rise Normal Depth Over Rise Downstream Velocity Upstream Velocity 0.013 0.02600 ft/ft 2.35 ft 2.50 ft 71.14 ft'/s 4.79 ft2 6.62 ft 1.19 ft 2.44 ft 94.0 % 0.02681 ft/ft 14.86 ft/s 3.43 ft 5.78 ft 1.30 71.14 ft'/s 66.13 ft'/s 0.03008 ft/ft SuperCritical 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft 0.00 % 94.00 % Infinity ft/s Infinity ft/s Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 3/2912006 4:24:31 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for Circular Pipe - Off-Site Pipe 7 GVF Output Data Normal Depth 2.35 ft Critical Depth 2.44 ft Channel Slope 0.02600 ft/ft Critical Slope 0.02681 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 312912006 4:24:31 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for Circular Pipe - Off-Site Pipe 8 Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.013 Channel Slope 0.01400 ft/ft Normal Depth 1.41 ft Diameter 1.50 ft Results Discharge 13.37 Wls Flow Area 1.72 ft2 Wetted Perimeter 3.97 ft Top Width 0.71 ft Critical Depth 1.36 ft Percent Full 94.0 % Critical Slope 0.01416 ft/ft Velocity 7.76 fUs Velocity Head 0.93 ft Specific Energy 2.34 ft Froude Number 0.88 Maximum Discharge 13.37 ft3/s Discharge Full 12.43 ft3/s Slope Full 0.01620 ft/ft Flow Type SubCntical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 94.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.001 212212006 8:54:59 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for Circular Pipe - Off-Site Pipe 8 GVF Output Data Normal Depth Critical Depth Channel Slope Critical Slope 1.41 ft 1.36 ft 0.01400 ft/ft 0.01416 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 212212006 8:54:59 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for Circular Pipe - Off-Site Pipe 9 Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.013 Channel Slope 0.01000 ft/ft Normal Depth 1.41 ft Diameter 1.50 ft Results Discharge 11.30 ft'/s Flow Area 1.72 ft2 Wetted Perimeter 3.97 ft Top Width 0.71 ft Critical Depth 1.28 ft Percent Full 94.0 % Critical Slope 0.01078 ft/ft Velocity 6.55 ft/s Velocity Head 0.67 ft Specific Energy 2.08 ft Froude Number 0.74 Maximum Discharge 11.30 ft'/s Discharge Full 10.50 ft3/s Slope Full 0.01157 fUft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 94.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.001 2122/2006 8:55:04 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for Circular Pipe - Off-Site Pipe 9 GVF Output Data Normal Depth 1.41 ft Critical Depth 1.28 ft Channel Slope 0.01000 ft/ft Critical Slope 0.01078 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.001 2/2212006 8:55:04 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for Circular Pipe - Off-Site Pipe 10 Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.013 Channel Slope 0.01000 ft/ft Normal Depth 1.41 ft Diameter 1.50 ft Results Discharge 11.30 ft3/s Flow Area 1.72 ft' Wetted Perimeter 3.97 ft Top Width 0.71 ft Critical Depth 1.28 ft Percent Full 94.0 % Critical Slope 0.01078 ft/ft Velocity 6.55 ft/s Velocity Head 0.67 ft Specific Energy 2.08 ft Froude Number 0.74 Maximum Discharge 11.30 ft3/s Discharge Full 10.50 ft'/s Slope Full 0.01157 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF' Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 94.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.001 212212006 8:55:08 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Worksheet for Circular Pipe - Off-Site Pipe 10 GVF Output Data Normal Depth 1.41 ft Critical Depth 1.28 ft Channel Slope 0.01000 ft/ft Critical Slope 0.01078 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 212212006 8:55:08 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Worksheet for Circular Pipe - Off-Site Pipe 11 GVF Output Data Normal Depth 1.41 ft Critical Depth 1.48 ft Channel Slope 0.04000 ft/ft Critical Slope 0.04215 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 212212006 8:55:13 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of . 2 i • ! a • • • • • • • 0 • i • • • . i a M . . • • ! • O • ! . • • • . • APPENDIX F WREELAND and KAUFFMAN, INC. NGINEERS • LANDSCAPE ARCHITECTS 009 West Stone Avenue S A-M FOA m t? 0reenville, South Carolina 29609 Job -y Job No. elephone 864233-5497 Computed By Wax 864233-8915 Checked By_ EREN E !CalcUlati n Fdr. l_s ?'I LN ' I Date t i i l F } I f i j# i E i ! I ! II3 ? f t • ? { { I I ! f i # i .. 3 ? ? { I ? I ! I a 1 I L.._ . E ? 1 • E ? .._ ._ .} . :.. .... ... .. ... t , ! _. _.. :;. . _. i ... ._._ _. _._ .... .. .. 1 Date _ i 1 1 of i Hydrograph Plot • Hydraflow Hydrographs by Intelisolve Hyd. No. 18 Sediment Basin D rainage Area Hydrograph type = SCS Runoff Storm frequency = 10 yrs Drainage area = 50.00 ac Basin Slope = 0.0% • Tc method = USER Total precip. = 5.50 in Storm duration = 24 hrs Friday, Mar 24 2006, 11:11 AM Peak discharge = 373.64 cfs Time interval = 1 min Curve number = 90 Hydraulic length = 0 ft Time of conc. (Tc) = 5 min Distribution = Type II Shape factor = 484 i Sediment Basin Drainage Area Q (cfs) Hyd. No. 18 -10 Yr 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 n nn Hydrograph Volume = 816,052 cult • 0.0 2.0 4.0 6.0 Hyd No. 18 8.0 10.0 12.0 14.0 16.0 18.0 Q (cfs) 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 20.0 Time (hrs) Worksheet for Circular Pipe - On-Site 24 inch GVF Output Data Normal Depth 1.89 ft Critical Depth 1.74 ft Channel Slope 0.01000 ft/ft Critical Slope 0.01052 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 311412006 7:06:44 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2