HomeMy WebLinkAboutSW3180606_6198 Engineer's Report Summary 5-28-18_20180627STORM WA TER MA NA GEMENT
AND EROSION CONTROL DESIGN
CA VESSON SUBDIVISION
Wesley Chapel, North Carolina
for
Bowman Development Group
E N G I NEE RLN G
44 W
John H. Ross, P.E.
EAGLE ENGINEERING, INC.
2013A Van Buren Ave.
Indian Trail, NC 28079
EEI PROJECT NO.: 6198
May 25, 2018
REVISION DATE:
Initials Date
llllll llfllll lrrr
sAR0Ll'-
A
`''' 14959 =�
--��rrrrrrllmnlnl�l���� 5-28-18
Cavesson Subdivision - Wesley Chapel, NC
Stormwater Management Report
Contents
EEI Project #6198
May 28, 2018
1.0 Project Address and Summary.....................................................................................................................3
2.0 Water Quality Volume Control and Peak Flow Control..............................................................................3
3.0 Predeveloped........................................................................................................................................... 3-4
4.0 Post Developed Conditions..........................................................................................................................4
5.0 Detention Stage/Storage Computations........................................................................................................4
6.0 Outlet Structures..........................................................................................................................................5
7.0 Stormwater System...................................................................................................................................... 5
8.0 Erosion Control............................................................................................................................................5
Cavesson Subdivision - Wesley Chapel, NC EEI Project #6198
Stormwater Management Report May 28, 2018
1.0 Project Address and Summary
The project is located within the City of Wesley Chapel, in Union County of North Carolina, on the east
side of Chambwood Road, between New Town Road and Potter Road. The proposed development will
include the construction of 28 single family lots.
The site was entitled as a low impact development and the construction will included only the installation
of the proposed roads, utility infrastructure, and BMP dry pond. The single family lots are intended to be
graded by each individual purchaser to accommodate a custom built home.
Runoff calculations were performed following the procedures outlined in the NCDEQ Stormwater BMP
Manual using the SCS method, while taking into consideration Section 14.5 "General Standards for
Stormwater Management" of the Village of Wesley Chapel Zoning Ordinance. Calculations are provided
in Appendix A of this report. The receiving drainage system for this site is East Fork Twelvemile Creek
(FIRM Map Number 3710449500J effective date 10/16/2008). Soils on the site consist of:
BdB2 —Badin Channery Silty Loam, 2 to 8 percent slopes, moderately eroded, Hydrologic Soils
Group "C"
ChA - Chewacla Silty Loam, 0 to 2 percent slopes, Hydrologic Soils Group "B/D"
TbB2 — Tarrus Gravelly Silty Clay Loam, 2 to 8 percent slopes, moderately eroded, Hydrologic
Soils Group "B"
Weighted curve number values based on the existing and proposed soils conditions were used to calculate
pre and post development runoff. Drainage area maps supporting curve number calculation information
can be found in Appendix C.
2.0 Water Quality Volume Control and Peak Flow Control
The project is a low impact development and no water quality control will be required for the site.
3.0 Predeveloped Conditions
The existing conditions currently consist of primarily prairie style grass with pockets of dense woods
sporadically throughout the site. A small cow pond is located on the south side of the site, alongside an
existing dirt road which parallels the existing flood plain. The terrain of the site consist of moderate to
steep slopes forming natural ditches conveying overland runoff to an existing pond to the west, and to the
flood plain at the southern portion of the property.
The total pre -development drainage from the site was studied at the southwest corner of the property
within the existing flood plain. This study point is the lowest elevation of the site. See the Pre -
Development and Post Development Drainage Area Maps included in the Appendix A of this report. The
time of concentration has been calculated using TR -55 and is outlined on the drainage area maps, and
calculations. Curve Numbers (CN) were computed as a composite average of the various existing soil
types and land features in the pre -development drainage area which is the following:
0 Pre -Development Area: CN = 71
Cavesson Subdivision - Wesley Chapel, NC
Stormwater Management Report
EEI Project #6198
May 28, 2018
Calculations have been included on the hydrographs in Appendix A of this report. See the Pre -
Development and Post Development Drainage Area Maps also included in the Appendix A of this report.
4.0 Post Developed Conditions
The development will consist of the grading of the proposed roads, BMP dry pond, and miscellaneous
drainage ditches that convey runoff into the proposed storm system. The remaining undisturbed area on
the site was treated as bypass area to be taken into consideration in terms of the overall pre/post
comparision of runoff from the site. The post development hydrographs have been modeled for the
proposed onsite improvements and the proposed bypass areas, and combined for a cumulative comparison
to the existing runoff from the site. The composite Curve Numbers calculated for the post developed
basins are the following
• Post Development Area: CN = 75
• Post Development Bypass Area 1: CN = 71
• Post Development Bypass Area 2: CN = 78
• Post Development Bypass Area 3: CN = 72
5.0 Detention Stage/Storage Computations
A dry detention pond has been designed to detain the 1 -year, 2 -year, 10 -year, and 25 -year storm
frequencies and control the 50 -year and 100 -year storm frequencies through proposed discharge outlet
controls. Due to the fact that the project is a low impact development, no water quality treatment is
required for the site. The pre -development and post development peak flow comparison is the following:
110.
No.
Hydrograph
type
(origin)
InfloW
hyd(s)
Peak Outflow (cfs)
Hydrograph
Descrkption
1 -yr
2 -yr
3 -yr
5 -yr
10 -yr
25 -yr
50 -yr
100 -yr
1
SCS Runoff
---
26.87
43.33
---
---
94-87
129.56
159.00
190.21
PRE -DEVELOPMENT AREA
3
SCS Runoff
---
41.96
90.99
---
---
117-70
15520
186.20
218.64
POST DEVELOPMENTAR EA
4
Reservoir
3
1.263
1.590
---
---
2.243
2.555
6.301
16.41
DRY POND DISCHARGE
6
SCS Runoff
---
6.447
10.26
---
---
22-19
3029
37.10
44.30
POST BYPASS 1
7
SCS Runoff
---
16.67
23.95
---
---
45-29
58.95
70.19
91.91
POST BYPASS 2
8
SCS Runoff
---
2.579
3.902
---
---
7.904
10.58
12.84
15.22
POST BYPASS 3
10
Combine
4, 6, 7,
24.82
36.76
----
---
72-38
95.50
114.64
134.70
TOTAL POST DISCHARGE
a,
The stage/storage calculations are included in Appendix A of this report. The rainfall intensities used are
for the 24 hour storm for each storm event for both the pre -developed and post -developed conditions
based on the latest rainfall data from NOAA.
Cavesson Subdivision - Wesley Chapel, NC
Stormwater Management Report
6.0 Outlet Structures
EEI Project #6198
May 28, 2018
The outlet structure will be constructed within the BMP near the downstream end of the pond. The
structure has been designed to efficiently provide control of the peak rate of discharge. An emergency
spillway has been included into the design to pass the 50 & 100 year storm events with at least 0.5' of
freeboard.
7.0 Stormwater System
Stormwater conveyances to the BMP forebay will be through overland flow and a closed stormwater
drainage pipe network. The pipe network calculations are based on the future build out of the site and
were sized for a 10 -year storm frequency. All proposed catch basins have be sized based on a flow of 4-
incehs per hour to effectively analyze gutter spread within the subdivision. The calculations have been
provided in Appendix B.
8.0 Erosion Control
Erosion control will be provided by utilizing construction entrance, perimeter silt fence, diversion
ditches, check dams, and a temporary skimmer basins (with Faircloth Skimmer device). Phase I1 erosion
control shall also utilize inlet protection until the project area has been adequately stabilized. Erosion
control devices will be maintain in place until approval by the Village of Wesley Chapel Engineering
staff at which time temporary measures will be removed. A copy of the erosion control plan and
sediment basin calculations has been provided in Appendix D.
Cavesson Subdivision - Wesley Chapel, NC
Stormwater Management Report
EEI Project #6198
May 28, 2018
Appendix A
Stormwater Hydrographs (24-hour: 1 -yr, 2 -yr, 10 -yr, 25 -yr, 50 -year, and 100 -year)
Pre -Development Drainage Area Map
Post -Development Drainage Area Map
O 4-J�DU c 0O via) -0 = n2 �N �0 -
+J (a Q)
•0 rr is LL • 41
� ca N = = 0 `� _ a) ate+ 6 rcna = = o
O= ca C N ca N N Q (a -0 O N 0 U) >
++ L E LU 0 .2++ 0-1 Q U
Q) W -0 N
m ate-+ LL °O [2 a) C a) N LL O E = u � •0 N C
L> (a ii= L O � O = O
� ra O W LL O y O (a Ln LL (a = ca cn O U) a) " � oN
(� }� O L }J C � � i (n = = O a) a)
'O a) � 0 (Ulf 0) .q V N }' � u N N W O N a
�0 Qw m Q0 = •o m �_ 1713 ,-
_ � � a Q LL o O
O 4-J >� ._ O- L L= e Q ++
Q a) = cu •0 _ w .. (a L C _0 E
O cn Ln 0) `� }' O 0 O c (a (a ca " O aj U) Mv -O Ln .0 > L
LL LL ca ~ ca = = E a) O O = U a) co O z °
O ib •O O 0= c_n - a) 0 (a N o 0) 0 � - m a) 0 N N U a) a
� LU O (a = O c � L v- Q- ,� = C u u' U (Q• 0, 1713 Q o
O 3 a) a) c LL O = = N N
U�� a) n 0- 'O cn f (a N a) O c `� '1713 m O O = 0 a a> _
Z U) = _ ~ 4- = .ra 4-J = +O+ () L) cn > fu _O v O o � � ^ +' 0 = 0 " 0 >
(!) Q (a N (a ° }' > N u) ib `� cn o -0 W _ N O �
4-J -0 (a = -1 ra Q a 17o LL 1713 , O
LU U � 'ED u> N FO O� O= 0 N 0 N S E a a) � a a -0 m= o �=
cJ O S (a -0 L (n Q 0 a) c L v O = _ >- 0 --, a O V a (n U 1713
Q Q a_ _ fu 4- O >� ++ J U fu= N c^ a) •� O� o E (n 0 0 0 0 a) o ate-+ a >
Z (a = (a O •0 >• ca O = O (a u 0 4-, cn o a) U) L ,� a) cn O
ZD O C O a) (a a) (a o .- � LU ca = a) 17N +•1 LL O
Z cn - (a > c •0 ca = (a �' = o U Q >. (a O O a) a) LU LU O a) = cn O +-
�W Z ms •0 o __ n ;_ •° '-' c = `� o > o U pC = 70 FO -a > >
V Q O p Mm
l U L• 0 I 0 0 0 (a a-1 W (a U a) -, a) � _ � = � v= 0 Q - v O a) a)
Q •0 ,--I C N a../ O 0 U Z u 4- Q a../ L = S- > a) 0 W
III -
LuN 0 O a) Q= a) N a) L 0 O N O =_ M 176 O 0 0_ m 0 0 70uj
Q ,� O U U 'O +.+ N N cn Q) fav > N Q c 'O cn C!) LU •0b 4-i = a >' 0 � _ ° °
_ X � = a) Q L c U a••+ 1 -O LU a) _ 1713 ❑ 1713 O O LL
J w L a) Q O M M O o }' z V O N 17=6 '. U (n 0 ip
2 N 0 O= = O 0 c LO '-' v= N o W a) a) a) 1713 LU L) N °O a 0' =� N cUS US
>- 0) _ .2 -a (a O a) a) = c!) L = m = o
D i Q (a > O ,--f a) N U a) a••+ ,--f 0C � 0 W O LL N V m -0 W m m
O - o Q) -J = ca =� of c w `nom Q fa o ~ O _�
m -5=o w > � �' _-0� L � ° fu= S oc �
°O Q ,� -0 _N O O 00 Ln Q N ++ D o = (a U) a) q- � i1 (a
LL Z 0• - a) O w N - ca 0 a) >� •0 Q O++ O N Q N Q E-=
O -0 a) LL O -0 � �' 70 0 +�+ `� u' O -� } a) 1713 LU E `-' m cw!) O
~ _°O 0' 4O Q ' LL 0 0• C_ N -0 C_ LL cn O O O _O C_ Q = O -0 < ) � ~> _ .
-i Q = ._ 4-J O ° -0 a) +=+ a••' - + �j = O +Ln O a) = Q a) J > N I •
Q Q) a ca E ul E %a fu - u Ul v E p � `n � oC cn 0' ca � _0 • , m I •
II _ �, (n O 00 a) 0 0 v v (a +0.+ Ln N O L 4-J .- W (a O W 176 176 (!) W U) : •
U Z � -0 a) }, cn + + Q- + + a) O O a) O }' a) a) a) _ • «
ca - z (:) a) �N z m �� ��� (Q -o -= n¢ n foo (L) OJ ��� O¢ fu E O a a p O p .•
ca c N a) N . Ln U p •0 : d M 0
0
fu LO
_ U N W = O CC G1 W ca (Lj c cn : - • -
fu Q)0 4-J -M a a s a a a > • • ���, x x 0 / � . •
/O /�
a fu Q) O O O O O O O O O O r'
NO 4 'N N N N // ib= • P = Q •
N
U
I
ti
W W
W W C~
LL LL
O O -
� O
�
° 0 LO r'
o o
W O o ti O � ti
LL 00
o M W L M
co co
80V8 �3N`dd SNIOf
O
O / mQ
a .
O
cD..
Y - 41V 4hj
3
O�
Q �%> A-
---- I . . - , M,- .pe - : v N, `- � g._.rrr
.
o - . ,. t
`J a
4J y -
O . LU
X
O ,
r
A
�, O eF
" IM 1%j� Q
U, . P ' CYz �
Q'` Z Z
,, i O$O
Y / m
r� - ` C�
_ .
F- � W � �, •
. ir Z C v
� a
..r � ( p�
W
O
N
6
c
L
f
L
W:
w
O LL
O
0
c
0
O
I�
LO
co
--
%s
E
a
o
}'
T
-O
a).0
Z3
�
O
E
u
0 T--
�
>
n >
J
00
U
4
O
Ln
"
O
W
p E (n
�
d «;� A
1713
O
�
4-
,O
1713
_
U)
�
U
1713
a
a
-
E
LL -
� c =
O
G
9n K� �
G
0
a
U
L
,O
O
fu.L
=�
ct
O
U
N0
Vv
E
a
17L13 �O
ILD rn rn
H N
0-
co
Q
6
U
L
a)
•C
V V
u
tf
0
-0
I
� - �I• .. ° '
O
�
O
E
O
V
Cfl
—)
T
O
L
0)4-
d0
4-
LL
L
a)
c2 O
W)
O
a)
c-
o
},a)
E
i-1
LE
.�E
O Q
L
WE
WO
0
v
a)
a CO
V
as
"
+'
E
�
rte) (c)
u
w
n�
c �
a)
a)
oQ
M
=
-
o o
--
vi
_
"
V fu Z
>, )
a)
V
a
C
O
coco
�
a)
a)
>
a)
= _
� �
_
�
V n
J
0 gg�
,a)
(n
1713
om•' 170
13-
ZU)O
(n �
1713
>, �
a)
_
V
C
LL
o
W9
0 0
`' `�
N
F-
_
L
=
� a)�a)
>
w
O
-
LL
00
N
N
LO
U
-1 a
0
E
CU �� O°
> O
ON
- U)Ln
u cn
N
) =
a)
0 M
CO
=
7o M
10�
O=
N a) u
>
O
z
L
0)
U
J
i c})
3 U)
V
=Q
Z
-
E
Oz
O O
fo ..
V
�
1713 �
Um �
W
U
ccoo-
a)
L
N
C:) a-
Al
=
Ln -
>
o
3:
a)rn
o
J
o
U
z
((D
D _
O
i
W
O
LO
2:
D
°
3
3
O
O
Z
oD
�<-
�
>-
z w
ON
J�j
w>< O O
O
° w
'
I
o
c9.S'
w
X
a)
O J -r- Lb J ~
U-
I
N
�
0
LwL
O
O®
O�
LO
I
ch
o
O
LO
LO
LO
T-
i
I
o
LO
C)
LO
LO
LO
)
i
I
I
ch
o
N
"t
r -
G
m
G
m
G
m
•
O=
UE
I
m
o'
r-
j N
o
N
O
�
=
W W
W W C~
LL LL
O O -
� O
�
° 0 LO r'
o o
W O o ti O � ti
LL 00
o M W L M
co co
80V8 �3N`dd SNIOf
O
O / mQ
a .
O
cD..
Y - 41V 4hj
3
O�
Q �%> A-
---- I . . - , M,- .pe - : v N, `- � g._.rrr
.
o - . ,. t
`J a
4J y -
O . LU
X
O ,
r
A
�, O eF
" IM 1%j� Q
U, . P ' CYz �
Q'` Z Z
,, i O$O
Y / m
r� - ` C�
_ .
F- � W � �, •
. ir Z C v
� a
..r � ( p�
W
O
N
)
J
i
'o
0
M
0
0
6
c
L
f
L
W:
w
O LL
O
0
c
0
O
I�
LO
co
n
%s
E •-
4-
�- O
O
0O
`1
Z3
�
O
Z �
co
u
0 T--
-0 c
D o =
n �
R W
O
N
J
00
U
/�
O
k� J
U)
I�
W
p E (n
�
d «;� A
G
O
CM
N
)
J
i
'o
0
M
0
0
��
_�..
r
Z,
A A
ft.on
Mm
_ _ _ _J_0_ . _ �I■ _ .S_N.1_4.0_0-�.�—�_`d_N_0_I.1`_d_N.
Cfl
M
U
m-0
O
O
I�
LO
N
I
WM
E •-
4-
LO
O
X
Z3
�
M
Cfl
u
00
-0 c
D o =
n �
Lc)
LL
I�
00
co
L
/�
O
k� J
LU
I�
W
p E (n
�
d «;� A
Ii
Q
u
z
Q
OL
L a)
U)
�
C
QQC M
P ti
s�
LO
LO
� c =
O
G
9n K� �
G
bj)
ct
O
�
00
J
=�
ct
O
a) 0 a)
W 0
M
Of
W
ILD rn rn
H N
0-
co
�
6
�
o'
Q
o C6
QD_
V V
u
a C
O O O
4
I
� - �I• .. ° '
0
�-I
5
UE
Cfl
—)
T
9
W
LL
�
W)
O
Ua�)nO
00
x
i-1
6
.�E
O Q
L
WE
WO
u
O
LU
0
O
Z
rte) (c)
u
w
n�
c �
W
--
LO
--
z
--
p
o o
--
vi
V
N
--
00
--
a_
.-- O
C)
coco
�
Z
�
-
O
�
J
0 gg�
P4�
Of
C)
-
r-
LL
o
W9
0 0
`' `�
�
W
co
E
o
w
O
-
LL
00
N
N
LO
U
LO
N
0
E
CU �� O°
J
Co
N
N
4
C7
U
N
(7)U
LL
ti
O
>
N
z
=
O CN
M
J
M
—
'I
�
Q
� 0-
ccoo-
coo
i
r." `.1
N
N
3:
o
�
J
°
c),
U
z
Z
D _
O
i
W
O
LO
2:
D
°
O
O
Z
oD
�<-
�
>-
z w
LLM
J�j
w>< O O
O
° w
"
O a,
ao
U-
c9.S'
INS
i' ..
- r
a)
��
_�..
r
Z,
A A
ft.on
Mm
_ _ _ _J_0_ . _ �I■ _ .S_N.1_4.0_0-�.�—�_`d_N_0_I.1`_d_N.
Cfl
M
U
m-0
O
O
I�
LO
N
I
WM
E •-
4-
LO
O
Cfl
Z3
�
M
Cfl
u
00
-0 c
D o =
n �
Lc)
�pF IZI
d
I�
00
co
L
O` O
O
k� J
Cfl
I�
p E (n
�
d «;� A
•=
u
a)
"�
OL
L a)
>
0
QQC M
P ti
s�
LO
LO
� c =
O
G
9n K� �
Lt
bj)
ct
O
=
n E m
00
LO
=�
ct
O
a) 0 a)
W 0
M
i--1
==�
H N
0-
co
�
6
�
_=
0. i6
(a
Q
o C6
` OL�y
0
u
a C
O O O
W N
I
� - �I• .. ° '
U
(�
�-I
5
UE
Cfl
> ■nom
W
T
W
.EU)
�
W
O
Ua�)nO
W
I�
i-1
.�E
O Q
L
WE
WO
u
O
-5�
UcELU
0
O
U
p
u
w
n�
c �
Zn
--
LO
--
M
--
--
O
��
_�..
r
Z,
A A
ft.on
Mm
_ _ _ _J_0_ . _ �I■ _ .S_N.1_4.0_0-�.�—�_`d_N_0_I.1`_d_N.
v
0
./ w �. 11 / N
1 -1 --�-
. a��.• ,19 �1 55P".4
V)
"I I
h
kf).. 0 X
.. O r _ _
r,
•�
�"`t .
.. � Wr r
M , : ,, N
O z s
Ili
�.
e' f _,
': .
1, w ^� _ .. , ,. �' ,, ���•:q. tl .- 1 ` V - O �0
A
r
w' ■?` -. .
-.
11
a _ - -
5 (]
i ,f :cr.' 447 O o :f. Iii w J
0 as } a • � , .(n O
R
_" .
,. `' 4
fit, ,t' o,..-*�.�
W
w IFFf .—&,iI —ak �2 . 1, Z�
A
` _ .W. W O 1 oO {ii -
W - �, .. N y o
C) .
0 ��
Z
I'- a, Q
W' - N I.,
� X W,. U T, O W
ti _W ,'
;*
W W ,. � - -
X- Z ' Z LO
-- ��
i0 _� .555 _ X h .
_... .
• e
.� ...
Y r
W k)
Ln Z - - �9 _
r-
i-
.: _, r- -_ _ ,_.. , .. . .. ;.. ;.E'�'L cyst N ' � _
•, +
0�
_ 1,
y'7
� � Wb
170i
. . . `) O
`I
.•.•.••
- ..
o. . . . . .179
. ss,,
rn
o ,
N
LO v.
.w
. Q GNPQE�
I
e • • O
Z - SLED `C
-x X F
X w w O GOv
co Z Z N LP`C'% ON
vN x .
�IIIIIIIIIIIIIIIIIIIII �
O N N Y. ,"
R_
/ _ � i
CO # z a I
.p17
x„r
'
4&1 Wrsti <�
n y'`
Z 1 f41.
-
r
..Q ,,4
vJ I U-ir �” =9at5 rK 8-,5..
Z =« r
a.. �.
O. `% 1 i./ K
4-0000 c'", L r . , '"s
�•I a
. . . �
* _', � r - -*..
", :1I. , .
f ^ .1
k:
C
I
ilk &
/ I .r r
,,<,�r- I I �Mdpwmf&� - I
' x� 11 m
tI
',��
. r_
M
v
b
O-'• ,
co i
O
ao J i
n W
-.
-- 2
U
W ®�
J Z 1.r
- : ��
w p \-� �
U ��
.� O Q X - �:
W4 I
J
- _. .
�_.
❑ ,:,
a
._
0_ `'
_:
I 11
,M 5
z
o -
F!-�-, ,,
V,. .. ., -
z — x :.
0 9 — L, .�
."--'---.
Q �i,.
at r.,,:
:�,fzl, 11 =: � h:� ': L', - -4 �, I'll
-. ,.-
.� m �w -}
- _
11
- ft- -
Z I I A ��-, 11
0�,/b ` ,.
�� /,Vv
\ I:
o N /O/�//M x .
7T �AO b�1 /
QI
M
o - : - - ���" �.
O
. �e •�
I oC
N `V
G
*4 4 it'
F- 2
w
M P / 1
N s Z�
O �S N
�M w s
p
_ N X`
0. Z
I s O
_ _ _ o N
6i�5J I431 I
h�
�.
` o
/ -
O O
/, \Q .-.
IN
. T .s, t,, Q U- U U) a) o o c
L I o U- O W co .EZ L
• "= O � Y) N a) o
+ i
�' ;y: 2'# Q L co
co w oo �,a) �E
^� _ ,F 4 W v - a) aa)i co u
0 . D .U) -0 (n 2! 0 4 __.- O O U C
O O W 2 U) c U N co a6
N �.AakL a) o c E) =
a) a) a) =
a c o 12 E
Ir L_.. I � CO 4- Q) w O
= E o0
CO
_ s=
.. o E-0 E o 26
L
�o • � r
L
_ > 6 U
Q "Ap
IP .�
_ . o� ! 111:�
z.
GIOk s cL' a) a) E ) a) a) a) a) Q 0- (D o a
, �d '' O O U) O 0 O� O 0
.. - 51' �/
LU
.' S ,� L E- U 0 W O Cu U '
rU O (6 a) U � .(D 0 U L E Urn O
Zcn
r � U) c: (n D= _0 . a)���>o
O MW s ti ��.. - N> O U(D E (6 O L LL I O N
c9
4. r, Q.ti = 70 L-0 U 0 O Cu LL L ^ 00 Q 0
Q
Z. 7 (6 N a) O� O ti 0 O-
( �7 L � 0) U) MN -i (no- c6Q �
n-. .- 0� LU
O Q >, B O O Z N — 0 ( �
O (6 Oma. >, O 0'O CLLR
U O (6 ^ O J 0 (7 L i �
k
v O QO OD �� Oti a)- aa)�
x m 0� -2 U � (a O E ao ��� V
. At ` ��� o_ ° w aa)) °Q 0 c: CL
. (n L L .�
f L N (6-0 O U O 02=�
P �:n.-. _y it � � (D L � � y
'Ll 11 '. X ii a) oOa�. (6 0 (6 a) =2 J Cu: 0a c:
_ w
\ ' Z... 0 a)� E a o� �LL c �LLw Uo
ILI N �� oO� LI)c n E I 0-1- c�LL aa))N
III��/ O L �,LL -) O CL 0- pti N�=� U
• y !,�� co
Q M w U O (v N 0 M Q co 0 0 0 O LO
�Qc ` O O O O U E O U O (6 O
__O LO (� 0 �>, c '>, y U 0 U U coO,
e- LON `� LL N U- 0- 0 � CU > (O6 Q L O 0 I
c62 U) cu=� .0 CU>,- }' O L 0)o CU
o ��•°O-°Q E E U) c6 O (Z ° 0 - CU
M O a) `� LE CU O 70 O Im a) > U
v LLU L p O Q U O 0-U 0 U N Q O 0 U cu 0
Z U°O�>,O Qo0 maO)Q >,-J o
O ��L��O 0O a0 �-- boa)
N cu cu E
'I °� "� -0 °-0 u a) z � a) � = Q c O O a)
WCU °La)�c°'i Lo'�O =E° oE°)�r"°
co � EO-OMO U)Z'FL Z3�n OOM Eo
M U o 0 0 U U N >, Z3 0 0 >, 0 O O E O °
L L O c6 >
,r -`` 540 J ���U�� a�UQ �a� QQc��.�E
�� 329i 8cn I � W
z
• 7 ( n to �O 0 (6 0 O O ( to 0
/ _ �. - L L+
a) `� O a) a)
Q o-0-0 M � o Q= D �L
) W -6 o _0(D a 0 D E-�
co to i �-0 0 0 M 0 (� 0 U
f co N (6 O U O.. a) E E U 0- M 2
0 � � Mm-0cu EUS
d. ,. _-0 Q � U N -w L
x ,. _
* Z O �0. O O L � (6 = -_ M U LL
a) _ � 'O (D
v,+' ( y W_ 0 L- SIV O 0 �1)) ACU 0 O- Q cA �0 (U
O X (� U >j - (6 O 0 -0" 0- U L
N. -0° EQa)c>3 (1)CCUO>,o
W C� �" 1)6c60)Q cuoa)cU(Ua)
ZO `� � LL (u - Q)) 0- � CL I- M -
N 4) U) o- °� � •� (D
"`1. -0 TOS
a�iO 2o� Q o Q n� _j ICU
� i ,., I / U O = O -0
. t
11,
/ - 0 U �,W U (6 O
ct v .. _ 0-� a) M= OU - (U D }' = O- O
R
, � ° O
- ;--� � b r (1) 4- gL-M )OO Oc 0•_O
�'� �P\R ' _ ..- �o coinLD ��'E E( o I- M�� ;n om U
i ,
O
t �' ,.� �" " 11- <�` E a) -d (Di -C (n wICU o0 0U -j - 0
w 0-
4 ms`s�g}- _ l� � s v� ti � c7E_O_(D 0o .L- 0)
L '' t p� 9' . O M - �� Z U� 'ti M EI)O O� 0-L , >, N - O O O
Z1, 7�� - 11O ��� �O c`� A ...: �,, 0 534 � N O .- -- O m N ci y 0 D
•'-- �I. r' „ rul . A, �� � ; a i!� • 0 U U) 4 �O u U `gyp Q - :i �
E
�- 9 , O O O E O�
O - , O o (6 = a) Cu
�U 2� ` � , G� O LL -0 L- 0 ((D O U U O O E (v ' U
0 �d ' L �OVM`•-; `' �Aft_ o ° o O 0 Z3 Q co) °) � ° a) 0
�,�// y ` ,. �Q . `T � 'n � •° LL � o •- O o _0 � tea• . o
O >p - y7■� Q y O ° O a) LL a) ` a)
0 ` 0., _ ZJ r : LU 'F ... M N U) � U •-- U = •-- a) N U) (6 > 0
_ _ - -
Z G M O C�-0 (6 O O° N o CU 0
? - �� �O """ I -���. 533 000 ,� --00- a)�}'�°�
.J y ' ` F- N s I W U O - M ami > - -0 (6 (6
ate_.. U) > U _ Ti' .:u� :- a) a) �- (B ._ E L
,,
,_ U * LL,
w -
1° -
LL NCn O Q�c6 Q�.o Q N
4� C7 � �o O O O vi U N O c6 O
cu
AMEMI)mf w c o V.� U° U) E L- �
. - — � L
U to E
+ VER CREEK � R rn � a " o ° O (6 'in c6 O O '�
- ." . E,IL - � - � L � O N •L a) - u ° U �) 0 .L) . LI)
_ - CV U� E m> D_0 °U m O O O H 00
�
_.
_. _
,
__ . �P- U „' Fu cu >, � o � U o � ami >, v ami ami o �)
G' 0 _ 532 a) '° 3 LL � � cOLa O
.-- ��- , K' ! W 0 0 0 0 J� U) n E� n o
N �i O
� PQ Q `� w �LWL � O -0 -�[` L-
04
� 80 G G� . w M = () L L (a�m�._Z, (D -0 -
ct )Ip0�8 •� �G� Z, L ° o " :E � o ° _0 o a) _ � U)
-,� H�IFi `` �� S� �. D_0 � >c (UN 3: (ate O � a)�--0 E��
. U N/ ca ocaO �O��>N ,
T E
� ---
O 0 a) 0 -� � U a>) U 0 c f_ O
a�tr)N P;CG a)�Q wo•,>a)�.S 0�0- L) c:
C/� N �.0 0 0 W LL -0 U N ca L N- U
N� / �'�a) m o �o� LOz���E
_ Z) -) 'L
3 O. a) - N a) 0 -0 � o •N 0 •� U
U(U U 0 4C a) 7 � O� U 0
(i --I M - - p x O O O D O S 0 0 0) L ,- c (n O
O 0 0 0- LL O 0 U 0 U O� U� 0
_ W - I U) a) -0 o L o
�N - - Z D E O d 0 c U W 0 70 °O N D 0 0
O 0-0 w 0 L m 0 0 � `H L O
1 4 N LL � L a) E o 0) 0 c
I. _ -
', a _ �,"' - _ ., : ,- u N Z3 0 LL LL • L U)j O 0) (Y N 0 0 °O ^ in
^ - - - - 0- Q-- (B N 0 (n 0
..
, f U ° %m a) ca - >,
v A X
�..
oo c6 � U rn n 0 L c LL o 0(U L LL >,
O N (a 0 � �- ca Q �- �- ca
LWL XI .
Irl-
C)
co I �
° o 0 88t1t, �3N`dd SNIOf
O O � M � O
m � O O m O m
� w p 0 F o
U- co � co � co
00 00
°O co co
O
O
O
�- I O I I -
a O� �(n(n Oma.^�(nO�O(nO(nLOo^ O 70>,O(n
�' Q '°��(n� v�����L (6�UOo�(no �(6O'-
1 �. L U O �. N' �. (6 � O O-0 c6 M (6 E' L U
- �. ,. 9� SZ n •>. �. >0cu amiZ3OLJQoa)(U 4-L-(UO�' >°
as
t ..... . -.o����c>i O°�ZaOio��DO�°OoE>, voio 00 �E��
i -`'
c) - -% "I-" m ,
L w
N S) (6 (6 O L �. Q 0 O cn •
IL > v_ `� �• > a) O O (6 O m � -
z 1 J, S0 I'A * U '0 U a) N O N U tY p U N 0° (L� (°n } 0 E❑ + N
�" '�" 1ss ,q �\ ° M E00��a)LL�OULL0a) �O N Q) (D
cn S(Q �<p fit+ oQ t� 0 a) Q .� -E� cn M a) 0)'i°-)� Qom° po > °��.
a n - 1s A, z a) O a) � O -c O L a) > >,
V — " S' S S S I =•oU-E=a) SDE (n o) (nom'>,Nc �-0 _ z NO�-0
O 6' cQ 9 S U O Q �. L O -W E O• L O O O O O C O Q O 0 I I O o -
O 0 a) a) 0 0 (6 (6 a) U O
J % p SSp mss, lssp mss, mss, >ss, mss, �n (/n �. Z O . _ U Z -0 ca �. O _ O cU L co = a)
C77�� C7 (n a)� _'aM(n� Mm"E°a)E�� a) ❑ �('L_0
J O9 6)9 89 �9 90 S9 �9 �� Z o��Oa�'iIt �`n-0 E70o°>Oo d(noc6 > > o OD
s 1S 1S 1 1S 1S A, � O O � 0 - L N U a) O Q Cu U
W s S S S S S S S �Q ��-a°)i E,�c>3 ��a)a) U �- (no> a) z �c�(n
Z O 6) d) 9 S Q (6 - 0 a) o LL O i �°- -> >, = ami c6 aOi 0 0 6 a� 70 >, U))
`Ss, s S'1s S� S� S� A. Cu�a)�° >, ('a�LOa)�-��- LOQ L
a S S S SSS S � : CaC E O�oa) o�>o °0- o °�zcu a) m Z�
a ? i, !A t., p �B SLS � I G U E E Q -O-0 � a) � a) U O O >j �� �' U 0-0 a) O Q w H N M O
15 w,5�� SS, 5's, z 1s 1SS w E��>E�U-c6OUD oOO��O (6 (n
� MM (DFU ) . a)a)c�a)O �a)rn� o' oc>z u; >, (ate
d O0, 6 z I , O 4-- -0 a)U�'Ooa)��cVO���(�n °� OHO � ic)o
LL m � 's•' 'S) s' `� s' °s' � � OHO �'aOi� 4- (1) (flEO �� 0 oz DocU-6Q
is � • Z +� _ O U L L O Q Cri L JU 70 L N� U� U U P � O O O N
a U y� - ` ' c'S, Oa',S' 6'a' �a'1s <<� ��1s �� a'1s ° O U �. > O 0 It O U >,
S S ,6, S S S S S 5 N U O°° a) L O Cu L= 0 Cu � 0� (a c6 L L (6 0-O
O Q L- O U O O (6
Z O 6' cQ � 0 S A (6 '� U a) �. a) M a) O L �. a) U 6 E m (v a) a)
I l / ! ! ! ! ! a) (6 -0 O O U a) a) Z U 0 L N >, Q N� L
J ,� 1s 1s 15 8 zs Q O O (n _ � _ �. = �
0 -74 S S �S' S S S at L- �= U) Q= 0 CZ O� oO Cu�=pt > a`))= O=� a)
6n X08,0- �gO
1,90� 80� vn vnc , Q Q� °ern o�LZU�o ;c) " vD.>M >, �'0U
a- � E a) E- (D15 ccn L a) o tea) o O
_ 10 S S S S S 1 a) a) O H (n �: ° a) o > a) a) O 0 0 a� a) a) ? _ a) 0
�,_ =,� 1, 0 � � O �0 (j) CO N- a) a)
O N Z� UCn� 0 U LL i OOP 0
V > • 6), 6 OO Nom. U�'O� L L a) �� O Lam. 0 Cn a) �,0�. U
_ O O L (n 0 O (n O 2 o O�-0 o U �. 0 U 0 Cu 0
(9 '' ) N U O a) (a (n O > O c6 ° tY U � M - 0 M O �. a) a) _0 " O
m 8/: �'- d 88 1� ® (On C7 0- 0 L -0 (D 11 • O Q .O 0 U- O a) c6 u) -0 L . O O O
_ O Z CO a E -- � L OO O — O .= , (6 a) N � O
O w % - �x ` In ', . ! /w • 0 z °' a) (6 O O 0 `� co N N (6 > a) O ° Cu U ° U O U a) L O LL
Z v s�° pOO�o�E�70 o� �rn°)�oOE��o�>o.�O> o�N�� �,a)�N
L - L O U O
LU 9- - V�Cn U (6 O >��Q U> oma. O O� OQ� o o OV 0 �'
O s -41 Lil a�a� � O c- U a)� OZ O (n Qz- �� p zc? (n O�
Sn * 'L—LL (D— O OQ� a) O 0 a) NZ. O 000 O N °U�'N U >Nzti N0-0 -�
W a)
O (rj U 70 70 2 0 0 L N N O O= Cu M -> •0 ^� N >, Cu�
(6 (L6 L LLn D O Cu O L p0 0 U LO O O N M'� - a) > (6 O
�LL��.2.2LL� LLD (6�L (n U .� (nCn�OZ UIQ Z,-��L Q EL (06 °U
F- 0
W o
W
LL I--
(=)
O O
O co
O
N
O
a4 SDNIAACI .LD Q -a m 0 � LL c cA E a) L >,
M � U�(n20)LL� ���o0
f,c y y d .�` I I Z � � (D O U) � ; -a •M � - c)% O
�r - t-4 I W--11 .6 O � _0 0 0 a) a) ° - L- -_ D
(a ca � 70 O 0 "- c (n
0)0�' DZ)E�0 oL �0,O
} r �- O- O O E E `� c O 0 O 0 'E �
G L �. �-' U o a) �- a)0 0 c E 0. �.
.w. 4. W O ) Q O (D o� 3i -0 Q U a) o o a) 70
e r = 0 0 cn CL M M � N �_0 -0 0 O U 0 ca 0 a) LO a)
o O O a) E � 0 0 Z O w ca ov (n 0
� rn - E (a a) 0 �' ami
F W a) � O N 70-0^� (B > O W� '' Z) 0 O t.
c� U c M - () L U) a) >, a) (a 0 0 U E
LL Z)OE 'FE(a (n�a)0 0��''��L
C) O O E O 7 2 >, O O vUi U a) >o
O n- o O a) U -a U U �O 0- O N O O (n a)
� >, v o cn 00 >; Z) 0 °)
_ L a) N U W U� L& O- U a) ca '(n I> i
E U (a LL - (u 0 0 E 0 0 0 cn
U " - M U L `� O 0 O O a)
U V O 0> Z)� 0' O E Z)� U �� O i
a) . N O o °) Q m E E E v°i
H O (n � 9� 0- o L
L
E O
O
Cfl
M
M
I`
O
I�
LO
N
.S
co O
c
E •-
4-
LO
LO
Cfl
N
Cfl
I�
00
M
LO
I�
00
co
L
.- o L
LL E -0•-•s•
N
LO
Cfl
I�
a)
"�
OL
L a)
>
0
LO
LO
LO
LO
LO
Co
co
O
LO
M
LO
N
O
O
O
Ln
M
O
LO
UCY
0-
co
LO
O
�
a)
tc
UE
Cfl
M
N
W
N
M
O
�.
° c
a 42
Z
co
I�
N
WE
WO
O
U
p
°
= cm
n�
c �
N
--
--
LO
--
M
--
--
O
N
--
--
vi
--
N
--
00
--
17n
.-- O
'O
�
�
_
�
-
O
�
0 gg�
C)
-
r-
0 0
`' `�
�
W
co
E
W
Z
Q
O
-
LL
00
N
N
LO
LU
LO
N
0
E
CU �� O°
J
Co
N
N
4
C7
M
N
v
LL
ti
O
a<
N
z
(0) N
O CN
M
M
O
=
W
Q
=
ccoo-
coo
i
r." `.1
N
N
3:
�
U)
E
co
Z
i
O
LO
2:
70 of 8 0 LR CU
LU
c
Co
(O
°o
-
-
Q
O
U
"
O a,
ao
c9.S'
INS
i' ..
- r
a)
O J -r- Lb J ~
U-
�
.=
�
w
�'
o
>, o
Co w
i
U
Z
Co a)
Y
L
O°
Q
O
oN
Z
42
O=
UE
m
o'
O
�
=
LL
c
- N
�
O
�
6�
O
Z
.
o
O
LL
-
�
W
Q
co
E o
co
w
�
E
,:.59
5
0 >
-
�
�.
o
o
LL
a)
o LL
0-O
o
�
O
.a=
�,�
v
0
./ w �. 11 / N
1 -1 --�-
. a��.• ,19 �1 55P".4
V)
"I I
h
kf).. 0 X
.. O r _ _
r,
•�
�"`t .
.. � Wr r
M , : ,, N
O z s
Ili
�.
e' f _,
': .
1, w ^� _ .. , ,. �' ,, ���•:q. tl .- 1 ` V - O �0
A
r
w' ■?` -. .
-.
11
a _ - -
5 (]
i ,f :cr.' 447 O o :f. Iii w J
0 as } a • � , .(n O
R
_" .
,. `' 4
fit, ,t' o,..-*�.�
W
w IFFf .—&,iI —ak �2 . 1, Z�
A
` _ .W. W O 1 oO {ii -
W - �, .. N y o
C) .
0 ��
Z
I'- a, Q
W' - N I.,
� X W,. U T, O W
ti _W ,'
;*
W W ,. � - -
X- Z ' Z LO
-- ��
i0 _� .555 _ X h .
_... .
• e
.� ...
Y r
W k)
Ln Z - - �9 _
r-
i-
.: _, r- -_ _ ,_.. , .. . .. ;.. ;.E'�'L cyst N ' � _
•, +
0�
_ 1,
y'7
� � Wb
170i
. . . `) O
`I
.•.•.••
- ..
o. . . . . .179
. ss,,
rn
o ,
N
LO v.
.w
. Q GNPQE�
I
e • • O
Z - SLED `C
-x X F
X w w O GOv
co Z Z N LP`C'% ON
vN x .
�IIIIIIIIIIIIIIIIIIIII �
O N N Y. ,"
R_
/ _ � i
CO # z a I
.p17
x„r
'
4&1 Wrsti <�
n y'`
Z 1 f41.
-
r
..Q ,,4
vJ I U-ir �” =9at5 rK 8-,5..
Z =« r
a.. �.
O. `% 1 i./ K
4-0000 c'", L r . , '"s
�•I a
. . . �
* _', � r - -*..
", :1I. , .
f ^ .1
k:
C
I
ilk &
/ I .r r
,,<,�r- I I �Mdpwmf&� - I
' x� 11 m
tI
',��
. r_
M
v
b
O-'• ,
co i
O
ao J i
n W
-.
-- 2
U
W ®�
J Z 1.r
- : ��
w p \-� �
U ��
.� O Q X - �:
W4 I
J
- _. .
�_.
❑ ,:,
a
._
0_ `'
_:
I 11
,M 5
z
o -
F!-�-, ,,
V,. .. ., -
z — x :.
0 9 — L, .�
."--'---.
Q �i,.
at r.,,:
:�,fzl, 11 =: � h:� ': L', - -4 �, I'll
-. ,.-
.� m �w -}
- _
11
- ft- -
Z I I A ��-, 11
0�,/b ` ,.
�� /,Vv
\ I:
o N /O/�//M x .
7T �AO b�1 /
QI
M
o - : - - ���" �.
O
. �e •�
I oC
N `V
G
*4 4 it'
F- 2
w
M P / 1
N s Z�
O �S N
�M w s
p
_ N X`
0. Z
I s O
_ _ _ o N
6i�5J I431 I
h�
�.
` o
/ -
O O
/, \Q .-.
IN
. T .s, t,, Q U- U U) a) o o c
L I o U- O W co .EZ L
• "= O � Y) N a) o
+ i
�' ;y: 2'# Q L co
co w oo �,a) �E
^� _ ,F 4 W v - a) aa)i co u
0 . D .U) -0 (n 2! 0 4 __.- O O U C
O O W 2 U) c U N co a6
N �.AakL a) o c E) =
a) a) a) =
a c o 12 E
Ir L_.. I � CO 4- Q) w O
= E o0
CO
_ s=
.. o E-0 E o 26
L
�o • � r
L
_ > 6 U
Q "Ap
IP .�
_ . o� ! 111:�
z.
GIOk s cL' a) a) E ) a) a) a) a) Q 0- (D o a
, �d '' O O U) O 0 O� O 0
.. - 51' �/
LU
.' S ,� L E- U 0 W O Cu U '
rU O (6 a) U � .(D 0 U L E Urn O
Zcn
r � U) c: (n D= _0 . a)���>o
O MW s ti ��.. - N> O U(D E (6 O L LL I O N
c9
4. r, Q.ti = 70 L-0 U 0 O Cu LL L ^ 00 Q 0
Q
Z. 7 (6 N a) O� O ti 0 O-
( �7 L � 0) U) MN -i (no- c6Q �
n-. .- 0� LU
O Q >, B O O Z N — 0 ( �
O (6 Oma. >, O 0'O CLLR
U O (6 ^ O J 0 (7 L i �
k
v O QO OD �� Oti a)- aa)�
x m 0� -2 U � (a O E ao ��� V
. At ` ��� o_ ° w aa)) °Q 0 c: CL
. (n L L .�
f L N (6-0 O U O 02=�
P �:n.-. _y it � � (D L � � y
'Ll 11 '. X ii a) oOa�. (6 0 (6 a) =2 J Cu: 0a c:
_ w
\ ' Z... 0 a)� E a o� �LL c �LLw Uo
ILI N �� oO� LI)c n E I 0-1- c�LL aa))N
III��/ O L �,LL -) O CL 0- pti N�=� U
• y !,�� co
Q M w U O (v N 0 M Q co 0 0 0 O LO
�Qc ` O O O O U E O U O (6 O
__O LO (� 0 �>, c '>, y U 0 U U coO,
e- LON `� LL N U- 0- 0 � CU > (O6 Q L O 0 I
c62 U) cu=� .0 CU>,- }' O L 0)o CU
o ��•°O-°Q E E U) c6 O (Z ° 0 - CU
M O a) `� LE CU O 70 O Im a) > U
v LLU L p O Q U O 0-U 0 U N Q O 0 U cu 0
Z U°O�>,O Qo0 maO)Q >,-J o
O ��L��O 0O a0 �-- boa)
N cu cu E
'I °� "� -0 °-0 u a) z � a) � = Q c O O a)
WCU °La)�c°'i Lo'�O =E° oE°)�r"°
co � EO-OMO U)Z'FL Z3�n OOM Eo
M U o 0 0 U U N >, Z3 0 0 >, 0 O O E O °
L L O c6 >
,r -`` 540 J ���U�� a�UQ �a� QQc��.�E
�� 329i 8cn I � W
z
• 7 ( n to �O 0 (6 0 O O ( to 0
/ _ �. - L L+
a) `� O a) a)
Q o-0-0 M � o Q= D �L
) W -6 o _0(D a 0 D E-�
co to i �-0 0 0 M 0 (� 0 U
f co N (6 O U O.. a) E E U 0- M 2
0 � � Mm-0cu EUS
d. ,. _-0 Q � U N -w L
x ,. _
* Z O �0. O O L � (6 = -_ M U LL
a) _ � 'O (D
v,+' ( y W_ 0 L- SIV O 0 �1)) ACU 0 O- Q cA �0 (U
O X (� U >j - (6 O 0 -0" 0- U L
N. -0° EQa)c>3 (1)CCUO>,o
W C� �" 1)6c60)Q cuoa)cU(Ua)
ZO `� � LL (u - Q)) 0- � CL I- M -
N 4) U) o- °� � •� (D
"`1. -0 TOS
a�iO 2o� Q o Q n� _j ICU
� i ,., I / U O = O -0
. t
11,
/ - 0 U �,W U (6 O
ct v .. _ 0-� a) M= OU - (U D }' = O- O
R
, � ° O
- ;--� � b r (1) 4- gL-M )OO Oc 0•_O
�'� �P\R ' _ ..- �o coinLD ��'E E( o I- M�� ;n om U
i ,
O
t �' ,.� �" " 11- <�` E a) -d (Di -C (n wICU o0 0U -j - 0
w 0-
4 ms`s�g}- _ l� � s v� ti � c7E_O_(D 0o .L- 0)
L '' t p� 9' . O M - �� Z U� 'ti M EI)O O� 0-L , >, N - O O O
Z1, 7�� - 11O ��� �O c`� A ...: �,, 0 534 � N O .- -- O m N ci y 0 D
•'-- �I. r' „ rul . A, �� � ; a i!� • 0 U U) 4 �O u U `gyp Q - :i �
E
�- 9 , O O O E O�
O - , O o (6 = a) Cu
�U 2� ` � , G� O LL -0 L- 0 ((D O U U O O E (v ' U
0 �d ' L �OVM`•-; `' �Aft_ o ° o O 0 Z3 Q co) °) � ° a) 0
�,�// y ` ,. �Q . `T � 'n � •° LL � o •- O o _0 � tea• . o
O >p - y7■� Q y O ° O a) LL a) ` a)
0 ` 0., _ ZJ r : LU 'F ... M N U) � U •-- U = •-- a) N U) (6 > 0
_ _ - -
Z G M O C�-0 (6 O O° N o CU 0
? - �� �O """ I -���. 533 000 ,� --00- a)�}'�°�
.J y ' ` F- N s I W U O - M ami > - -0 (6 (6
ate_.. U) > U _ Ti' .:u� :- a) a) �- (B ._ E L
,,
,_ U * LL,
w -
1° -
LL NCn O Q�c6 Q�.o Q N
4� C7 � �o O O O vi U N O c6 O
cu
AMEMI)mf w c o V.� U° U) E L- �
. - — � L
U to E
+ VER CREEK � R rn � a " o ° O (6 'in c6 O O '�
- ." . E,IL - � - � L � O N •L a) - u ° U �) 0 .L) . LI)
_ - CV U� E m> D_0 °U m O O O H 00
�
_.
_. _
,
__ . �P- U „' Fu cu >, � o � U o � ami >, v ami ami o �)
G' 0 _ 532 a) '° 3 LL � � cOLa O
.-- ��- , K' ! W 0 0 0 0 J� U) n E� n o
N �i O
� PQ Q `� w �LWL � O -0 -�[` L-
04
� 80 G G� . w M = () L L (a�m�._Z, (D -0 -
ct )Ip0�8 •� �G� Z, L ° o " :E � o ° _0 o a) _ � U)
-,� H�IFi `` �� S� �. D_0 � >c (UN 3: (ate O � a)�--0 E��
. U N/ ca ocaO �O��>N ,
T E
� ---
O 0 a) 0 -� � U a>) U 0 c f_ O
a�tr)N P;CG a)�Q wo•,>a)�.S 0�0- L) c:
C/� N �.0 0 0 W LL -0 U N ca L N- U
N� / �'�a) m o �o� LOz���E
_ Z) -) 'L
3 O. a) - N a) 0 -0 � o •N 0 •� U
U(U U 0 4C a) 7 � O� U 0
(i --I M - - p x O O O D O S 0 0 0) L ,- c (n O
O 0 0 0- LL O 0 U 0 U O� U� 0
_ W - I U) a) -0 o L o
�N - - Z D E O d 0 c U W 0 70 °O N D 0 0
O 0-0 w 0 L m 0 0 � `H L O
1 4 N LL � L a) E o 0) 0 c
I. _ -
', a _ �,"' - _ ., : ,- u N Z3 0 LL LL • L U)j O 0) (Y N 0 0 °O ^ in
^ - - - - 0- Q-- (B N 0 (n 0
..
, f U ° %m a) ca - >,
v A X
�..
oo c6 � U rn n 0 L c LL o 0(U L LL >,
O N (a 0 � �- ca Q �- �- ca
LWL XI .
Irl-
C)
co I �
° o 0 88t1t, �3N`dd SNIOf
O O � M � O
m � O O m O m
� w p 0 F o
U- co � co � co
00 00
°O co co
O
O
O
�- I O I I -
a O� �(n(n Oma.^�(nO�O(nO(nLOo^ O 70>,O(n
�' Q '°��(n� v�����L (6�UOo�(no �(6O'-
1 �. L U O �. N' �. (6 � O O-0 c6 M (6 E' L U
- �. ,. 9� SZ n •>. �. >0cu amiZ3OLJQoa)(U 4-L-(UO�' >°
as
t ..... . -.o����c>i O°�ZaOio��DO�°OoE>, voio 00 �E��
i -`'
c) - -% "I-" m ,
L w
N S) (6 (6 O L �. Q 0 O cn •
IL > v_ `� �• > a) O O (6 O m � -
z 1 J, S0 I'A * U '0 U a) N O N U tY p U N 0° (L� (°n } 0 E❑ + N
�" '�" 1ss ,q �\ ° M E00��a)LL�OULL0a) �O N Q) (D
cn S(Q �<p fit+ oQ t� 0 a) Q .� -E� cn M a) 0)'i°-)� Qom° po > °��.
a n - 1s A, z a) O a) � O -c O L a) > >,
V — " S' S S S I =•oU-E=a) SDE (n o) (nom'>,Nc �-0 _ z NO�-0
O 6' cQ 9 S U O Q �. L O -W E O• L O O O O O C O Q O 0 I I O o -
O 0 a) a) 0 0 (6 (6 a) U O
J % p SSp mss, lssp mss, mss, >ss, mss, �n (/n �. Z O . _ U Z -0 ca �. O _ O cU L co = a)
C77�� C7 (n a)� _'aM(n� Mm"E°a)E�� a) ❑ �('L_0
J O9 6)9 89 �9 90 S9 �9 �� Z o��Oa�'iIt �`n-0 E70o°>Oo d(noc6 > > o OD
s 1S 1S 1 1S 1S A, � O O � 0 - L N U a) O Q Cu U
W s S S S S S S S �Q ��-a°)i E,�c>3 ��a)a) U �- (no> a) z �c�(n
Z O 6) d) 9 S Q (6 - 0 a) o LL O i �°- -> >, = ami c6 aOi 0 0 6 a� 70 >, U))
`Ss, s S'1s S� S� S� A. Cu�a)�° >, ('a�LOa)�-��- LOQ L
a S S S SSS S � : CaC E O�oa) o�>o °0- o °�zcu a) m Z�
a ? i, !A t., p �B SLS � I G U E E Q -O-0 � a) � a) U O O >j �� �' U 0-0 a) O Q w H N M O
15 w,5�� SS, 5's, z 1s 1SS w E��>E�U-c6OUD oOO��O (6 (n
� MM (DFU ) . a)a)c�a)O �a)rn� o' oc>z u; >, (ate
d O0, 6 z I , O 4-- -0 a)U�'Ooa)��cVO���(�n °� OHO � ic)o
LL m � 's•' 'S) s' `� s' °s' � � OHO �'aOi� 4- (1) (flEO �� 0 oz DocU-6Q
is � • Z +� _ O U L L O Q Cri L JU 70 L N� U� U U P � O O O N
a U y� - ` ' c'S, Oa',S' 6'a' �a'1s <<� ��1s �� a'1s ° O U �. > O 0 It O U >,
S S ,6, S S S S S 5 N U O°° a) L O Cu L= 0 Cu � 0� (a c6 L L (6 0-O
O Q L- O U O O (6
Z O 6' cQ � 0 S A (6 '� U a) �. a) M a) O L �. a) U 6 E m (v a) a)
I l / ! ! ! ! ! a) (6 -0 O O U a) a) Z U 0 L N >, Q N� L
J ,� 1s 1s 15 8 zs Q O O (n _ � _ �. = �
0 -74 S S �S' S S S at L- �= U) Q= 0 CZ O� oO Cu�=pt > a`))= O=� a)
6n X08,0- �gO
1,90� 80� vn vnc , Q Q� °ern o�LZU�o ;c) " vD.>M >, �'0U
a- � E a) E- (D15 ccn L a) o tea) o O
_ 10 S S S S S 1 a) a) O H (n �: ° a) o > a) a) O 0 0 a� a) a) ? _ a) 0
�,_ =,� 1, 0 � � O �0 (j) CO N- a) a)
O N Z� UCn� 0 U LL i OOP 0
V > • 6), 6 OO Nom. U�'O� L L a) �� O Lam. 0 Cn a) �,0�. U
_ O O L (n 0 O (n O 2 o O�-0 o U �. 0 U 0 Cu 0
(9 '' ) N U O a) (a (n O > O c6 ° tY U � M - 0 M O �. a) a) _0 " O
m 8/: �'- d 88 1� ® (On C7 0- 0 L -0 (D 11 • O Q .O 0 U- O a) c6 u) -0 L . O O O
_ O Z CO a E -- � L OO O — O .= , (6 a) N � O
O w % - �x ` In ', . ! /w • 0 z °' a) (6 O O 0 `� co N N (6 > a) O ° Cu U ° U O U a) L O LL
Z v s�° pOO�o�E�70 o� �rn°)�oOE��o�>o.�O> o�N�� �,a)�N
L - L O U O
LU 9- - V�Cn U (6 O >��Q U> oma. O O� OQ� o o OV 0 �'
O s -41 Lil a�a� � O c- U a)� OZ O (n Qz- �� p zc? (n O�
Sn * 'L—LL (D— O OQ� a) O 0 a) NZ. O 000 O N °U�'N U >Nzti N0-0 -�
W a)
O (rj U 70 70 2 0 0 L N N O O= Cu M -> •0 ^� N >, Cu�
(6 (L6 L LLn D O Cu O L p0 0 U LO O O N M'� - a) > (6 O
�LL��.2.2LL� LLD (6�L (n U .� (nCn�OZ UIQ Z,-��L Q EL (06 °U
F- 0
W o
W
LL I--
(=)
O O
O co
O
N
O
a4 SDNIAACI .LD Q -a m 0 � LL c cA E a) L >,
M � U�(n20)LL� ���o0
f,c y y d .�` I I Z � � (D O U) � ; -a •M � - c)% O
�r - t-4 I W--11 .6 O � _0 0 0 a) a) ° - L- -_ D
(a ca � 70 O 0 "- c (n
0)0�' DZ)E�0 oL �0,O
} r �- O- O O E E `� c O 0 O 0 'E �
G L �. �-' U o a) �- a)0 0 c E 0. �.
.w. 4. W O ) Q O (D o� 3i -0 Q U a) o o a) 70
e r = 0 0 cn CL M M � N �_0 -0 0 O U 0 ca 0 a) LO a)
o O O a) E � 0 0 Z O w ca ov (n 0
� rn - E (a a) 0 �' ami
F W a) � O N 70-0^� (B > O W� '' Z) 0 O t.
c� U c M - () L U) a) >, a) (a 0 0 U E
LL Z)OE 'FE(a (n�a)0 0��''��L
C) O O E O 7 2 >, O O vUi U a) >o
O n- o O a) U -a U U �O 0- O N O O (n a)
� >, v o cn 00 >; Z) 0 °)
_ L a) N U W U� L& O- U a) ca '(n I> i
E U (a LL - (u 0 0 E 0 0 0 cn
U " - M U L `� O 0 O O a)
U V O 0> Z)� 0' O E Z)� U �� O i
a) . N O o °) Q m E E E v°i
H O (n � 9� 0- o L
L
E O
O
Cfl
M
M
I`
O
I�
LO
N
LO
LO
N
LO
LO
Cfl
N
Cfl
I�
00
M
LO
I�
00
O
.- o L
LL E -0•-•s•
N
LO
Cfl
I�
LO
LO
LO
LO
LO
LO
LO
`a) ca O ca >
`� U U U
0�
LO
M
LO
N
O
O
O
Ln
M
O
LO
LO
O
�
N
L
m- >>
Cfl
M
N
LO
N
M
O
LO
M
I�
I�
N
U
-_ -;�,_ �
3 0 70
M
--
N
--
--
LO
--
M
--
--
M
--
N
--
--
M
--
--
N
--
00
--
�
�
N
�
�
�
_
�
-
O
�
0 gg�
LO
M
N
N
N
N
LO
N
CO
M
E
CU �� O°
N
N
N
0�0
M
N
M
ti
ON
N
N
a)
CU 0' -
N
N
N
2:
70 of 8 0 LR CU
a)
O J -r- Lb J ~
U-
Y
LL
c
o
0 >
m
W
cu CIO
X000
E
J
-
� �
0
4-
-
CU T ca
W
� Z
c O —
y
U
Q
O �.
Q�cn �
a)
`i L
°'
aca
aY
0
w
W
N
O
0
0
0
0
0
0
0
0
0
0
0
0
0
0
cuU)
oO
0
L
0
00
N
v-
v-
v-
v-
v-
v-
v-
v-
�
LO
M
M
M
Q
Q
Q
Q
Q
Q
Q
Q
U
W U
W
0
0
0
0
0
0
0
0
0
O
M
M
M
M
M
M
L)
J_
_
0
O
W
cu
E
JO
LO
O
O
N
LO
M
O
O
O
O
N
I�
O
LO
O
N
00
Cfl
00
LO
O
O
LO
W
0
0
0
0
0
0
N
W
Cfl
Cfl
M
O
O
00
N
00
I�
Cfl
Cfl
I�
N
O
O
N_
O
O
00
N
0
N
M
Cfl
I�
I�
O
O
N
M
LO
Cfl
I�
I�
00
(`>
v
v
(V
O
O
M
M
M
M
M
M
M
(�
Z)
E
O
w
J
J
O
�
>
0
LL
U)
17n O
W
ti
O
M
O
00
N
00
00
Cfl
Cfl
I`
M
O
00
W
O
ti
ti
ti
O
O-0
ca
O j
N
M
Cfl
I�
I�
O
O
N
M
LO
Cfl
I�
00
00
V
O
O
N
I�
O
U
M
M
M
M
M
M
M
O
O
O
O
O
O
O
O
a
q
L
u.l
a
O
O
Cfl
M
M
I`
O
I�
LO
N
LO
LO
N
LO
LO
Cfl
N
Cfl
I�
00
M
LO
I�
00
O
O
N
LO
Cfl
I�
LO
LO
LO
LO
LO
LO
LO
LO
LO
LO
LO
LO
LO
LO
LO
LO
LO
�
LO
LO
LO
LO
LO
LO
LO
SOF I �_ O 'C O
��� �Ov � ° S. W Z Q
�
''LI ca �°o��°LL
F �
171 E[0 O U
LU -a cIM : Z a) � �
U O `r- E � ° �
Q = L O a) Q) � L
O Q U C- U
• (� a) � ° (n � O � 0
c5
. � z � � � 0 � (B a) �
_ � a��o)c�'2o0)
w
c i O O)� � 'O
� O S--
.- (Q � (B
CARO O � � (B � � O (B
r� U - CJVVM
O
16
�Si ��' * � 0o E Q U (B � O
IOU -Ougu0016e@'AAMM
Oi,90-6££ (9L9) ZZZit-Z89 (.POL)
6000£ b'J `elleJeudlV 6LO9Z ON `Ileal ue!pul
155 X08 ,O,d enuan y uaan9 ueA VCt o,7
£290-0 # 3SN3011 YVWJ
3(1SS1 I Ae I 31b'O I 'ON,
ON `3�-l1/13a31N(1H
7d LIb'8b'NNID g68£L
1N3Wd073/13a Nb'WM08
-7-3d dHO A -9-733M JO 3OV-17/A
N0333AVO
9649 960Z/5Z/9 NMOHS SH
Loam 8Of 31b'O ale�S
&Hi^ M3�1 M3�1
8 O3NO3HO AS NMb2i4 .l8 O3NJIS3O
dVYV V -9a ' -90VN/Vaa
1N3YVd0-13A3a-3bld
�� CL
4k_
Mftft son
Moft
b
00
1-4
Wco
i
w
z�
I I
— _
—
0
'
U�
1
♦
♦
I
'
I
♦
1
1
o
1
i
I
r I
a
o
r
i
o
I
v
'
Q
W
1
� U
♦
`
z �
♦
`
r
mac';
rC)
�-
---000
1
000
r
, w
0100
eI
w
tooCL
O
41*
00
4%0
00
`IQ
3 +p0
, �� S1 - -
�G� y"`- - �"
o
—TFC°
Wcoo�� ', Nti°�X�-
b,��.
1 -
�k
SNE
t °°
10,
'00-A8
/ =z
LU
♦�
`
z
0
o(DC/)CQ
"
Ln- ,
00
Lu
NX
/
♦`" �
CL
Q
o
U
IL
W
Ilk
o
xo
`
Jo
x
�
`
z
�
\ `
CL
��
co
o0
0
}au"auiju08j6e@'AAMM
OP,90-6££ (9L9) ZZZit-Zgg (t,OL)
6000£ V,9 `elleJeudlV 6L09J ON `11eJl uelpul
l55 X09 'O'd enuany uaing ueA y£dOZ
£L 80-0 # 3SN3011 YV813
S3N N
1�� 3
3(1SS1 I Ae I 31b'O I "ON,
ON `37_l1/1S2131N(1H
7d 2Jb'8b'NNIO X68£6
1N3Wd013/130 Nb'WM08
_73dVHO A3_7S3M .=f0 3OV�-11A
N0333A VO
8649 9koJ/9Z/9 NMOHS SH
b3sym 8Of 31Ha aleaS
&H!' M3>I M3>1
8 O3N.l
O3HO 8 NMb210 / 8 O3NJIS3O
d bl/V V_9aV 30VNI VaCl
1N3Wd073A341SOd
0
00
N �4
+S
w
�c U�
E, co
i
U
a
o
I-II
C)l Cr
_
N
6co
_
LU
CL
O
v
N U)
opo
\'
I- C) t—
N v
Lo
_ I
\
-mU
2T 'o
o
cs
MND
L
moi) I
�— —
W 1
1 _
Q
°�
W Q
;�
uj
CL
o
I Or
\
`\ Oma_ \ \. _
oma, \ ^�
00
-909
\ Z��>�7NNS
,
,
LLJ U,
Lu
LU
N v=
I
r
\
oar
\ Or'N
Q0
� � ',
Q3
� OLS „ 'l,
or
rn _
° rnIF
uj
am
col
o'eriz
F,7
°oC`
°os
O I
04
CO M
co
Co
CIO
cr—=-
._
i,'
CL
W
I Lo
CL
uj
LU
C.
C+J
\
o �/
CL
W
U O
a J
Q y U I'
_
Cl) -N EO' Lff„Lnn
CV
M
W
z
0
CL
Hydraflow Table of Contents
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
6198-PRE-POST.gpw
Tuesday, 06 / 5 / 2018
Hydrograph Return Period Recap............................................................................. 1
1 - Year
SummaryReport......................................................................................................................... 2
HydrographReports................................................................................................................... 3
Hydrograph No. 1, SCS Runoff, PRE -DEVELOPMENT AREA ............................................... 3
TR -55 Tc Worksheet............................................................................................................ 4
Hydrograph No. 3, SCS Runoff, POST DEVELOPMENT AREA ............................................. 5
Hydrograph No. 4, Reservoir, DRY POND DISCHARGE........................................................ 6
PondReport - WET POND.................................................................................................. 7
Hydrograph No. 6, SCS Runoff, POST BYPASS 1.................................................................. 8
TR -55 Tc Worksheet............................................................................................................ 9
Hydrograph No. 7, SCS Runoff, POST BYPASS 2................................................................ 10
TR -55 Tc Worksheet.......................................................................................................... 11
Hydrograph No. 8, SCS Runoff, POST BYPASS 3................................................................ 12
Hydrograph No. 10, Combine, TOTAL POST DISCHARGE .................................................. 13
2 - Year
SummaryReport.......................................................................................................................
14
HydrographReports.................................................................................................................
15
Hydrograph No. 1, SCS Runoff, PRE -DEVELOPMENT AREA .............................................
15
Hydrograph No. 3, SCS Runoff, POST DEVELOPMENT AREA ...........................................
16
Hydrograph No. 4, Reservoir, DRY POND DISCHARGE......................................................
17
Hydrograph No. 6, SCS Runoff, POST BYPASS 1................................................................
18
Hydrograph No. 7, SCS Runoff, POST BYPASS 2................................................................
19
Hydrograph No. 8, SCS Runoff, POST BYPASS 3................................................................
20
Hydrograph No. 10, Combine, TOTAL POST DISCHARGE ..................................................
21
10 -Year
SummaryReport.......................................................................................................................
22
HydrographReports.................................................................................................................
23
Hydrograph No. 1, SCS Runoff, PRE -DEVELOPMENT AREA .............................................
23
Hydrograph No. 3, SCS Runoff, POST DEVELOPMENT AREA ...........................................
24
Hydrograph No. 4, Reservoir, DRY POND DISCHARGE......................................................
25
Hydrograph No. 6, SCS Runoff, POST BYPASS 1................................................................
26
Hydrograph No. 7, SCS Runoff, POST BYPASS 2................................................................
27
Hydrograph No. 8, SCS Runoff, POST BYPASS 3................................................................
28
Hydrograph No. 10, Combine, TOTAL POST DISCHARGE ..................................................
29
25 - Year
SummaryReport....................................................................................................................... 30
HydrographReports................................................................................................................. 31
Hydrograph No. 1, SCS Runoff, PRE -DEVELOPMENT AREA ............................................. 31
Hydrograph No. 3, SCS Runoff, POST DEVELOPMENT AREA ........................................... 32
Hydrograph No. 4, Reservoir, DRY POND DISCHARGE...................................................... 33
Hydrograph No. 6, SCS Runoff, POST BYPASS 1................................................................ 34
Hydrograph No. 7, SCS Runoff, POST BYPASS 2................................................................ 35
Hydrograph No. 8, SCS Runoff, POST BYPASS 3................................................................ 36
Contents continued...
6198-PRE-POST.gpw
Hydrograph No. 10, Combine, TOTAL POST DISCHARGE .................................................. 37
50 - Year
SummaryReport.......................................................................................................................
38
HydrographReports.................................................................................................................
39
Hydrograph No. 1, SCS Runoff, PRE -DEVELOPMENT AREA .............................................
39
Hydrograph No. 3, SCS Runoff, POST DEVELOPMENT AREA ...........................................
40
Hydrograph No. 4, Reservoir, DRY POND DISCHARGE......................................................
41
Hydrograph No. 6, SCS Runoff, POST BYPASS 1................................................................
42
Hydrograph No. 7, SCS Runoff, POST BYPASS 2................................................................
43
Hydrograph No. 8, SCS Runoff, POST BYPASS 3................................................................
44
Hydrograph No. 10, Combine, TOTAL POST DISCHARGE ..................................................
45
100 -Year
SummaryReport.......................................................................................................................
46
HydrographReports.................................................................................................................
47
Hydrograph No. 1, SCS Runoff, PRE -DEVELOPMENT AREA .............................................
47
Hydrograph No. 3, SCS Runoff, POST DEVELOPMENT AREA ...........................................
48
Hydrograph No. 4, Reservoir, DRY POND DISCHARGE......................................................
49
Hydrograph No. 6, SCS Runoff, POST BYPASS 1................................................................
50
Hydrograph No. 7, SCS Runoff, POST BYPASS 2................................................................
51
Hydrograph No. 8, SCS Runoff, POST BYPASS 3................................................................
52
Hydrograph No. 10, Combine, TOTAL POST DISCHARGE ..................................................
53
OFReport.................................................................................................................. 54
Hydrograph Return Period Recap
Hyd flow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd.
Hydrograph
Inflow
Peak Outflow
(cfs)
Hydrograph
No.
type
hyd(s)
Description
(origin)
SCS Runoff
------
1 -yr
2 -yr
3 -yr
5 -yr
10 -yr T25
-yr
50 -yr
100 -yr
PRE -DEVELOPMENT AREA
1
26.87
43.33
-------
-------
94.87
129.56
159.00
190.21
3
SCS Runoff
------
41.96
60.99
-------
-------
117.70
155.20
186.20
218.64
POST DEVELOPMENT AREA
4
Reservoir
3
1.263
1.580
-------
-------
2.243
2.555
6.296
16.41
DRY POND DISCHARGE
6
SCS Runoff
------
6.447
10.26
-------
-------
22.19
30.29
37.10
44.30
POST BYPASS 1
7
SCS Runoff
------
16.67
23.95
-------
-------
45.29
58.95
70.19
81.91
POST BYPASS 2
8
SCS Runoff
------
2.579
3.902
-------
-------
7.904
10.58
12.84
15.22
POST BYPASS 3
10
Combine
4, 6, 7,
24.82
36.76
-------
-------
72.38
95.50
114.64
134.70
TOTAL POST DISCHARGE
8,
Proj. file: 6198-PRE-POST.gpw
Tuesday, 06 / 5 / 2018
Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd.
No.
Hydrograph
type
(origin)
SCS Runoff
Peak
flow
(cfs)
26.87
Time
interval
(min)
2
Time to
Peak
(min)
732
Hyd.
volume
(cult)
Inflow
hyd(s)
Maximum
elevation
(ft)
Total
strge used
(cuft)
------
Hydrograph
Description
PRE -DEVELOPMENT AREA
1
124,109
------
------
3
SCS Runoff
41.96
2
718
84,217
------
------
------
POST DEVELOPMENT AREA
4
Reservoir
1.263
2
914
84,028
3
543.24
46,188
DRY POND DISCHARGE
6
SCS Runoff
6.447
2
726
22,606
------
------
------
POST BYPASS 1
7
SCS Runoff
16.67
2
722
48,023
------
------
------
POST BYPASS 2
8
SCS Runoff
2.579
2
718
5,246
------
------
------
POST BYPASS 3
10
Combine
24.82
2
722
159,903
4, 6, 7,
------
------
TOTAL POST DISCHARGE
8,
6198-PRE-POST.gpw
Return Period: 1 Year
Tuesday, 06 / 5 / 2018
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 1
Time to peak
PRE -DEVELOPMENT
AREA
Hydrograph type
= SCS Runoff
Storm frequency
= 1 yrs
Time interval
= 2 min
Drainage area
= 46.720 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 2.95 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(12.580 x 60) + (28.490 x 74) + (5.650 x 80)] / 46.720
Q (cfs)
28.00
24.00
20.00
16.00
12.00
M
U111111
0.00 ' 1'
0 2 4
Hyd No. 1
6 8
Tuesday, 06 / 5 / 2018
Peak discharge
= 26.87 cfs
Time to peak
= 12.20 hrs
Hyd. volume
= 124,109 cuft
Curve number
= 71*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 27.80 min
Distribution
= Type II
Shape factor
= 484
PRE -DEVELOPMENT AREA
Hyd. No. 1 -- 1 Year
Q (cfs)
28.00
24.00
20.00
16.00
12.00
Exile1
1 9 I 1 1 1 1 1 I N 1 0.00
10 12 14 16 18 20 22 24 26
Time (hrs)
TR55 Tc Worksheet
Hyd. No. 1
PRE -DEVELOPMENT AREA
Description
Sheet Flow
Manning's n -value
Flow length (ft)
Two-year 24 -hr precip. (in)
Land slope (%)
Travel Time (min)
Shallow Concentrated Flow
Flow length (ft)
Watercourse slope (%)
Surface description
Average velocity (ft/s)
Travel Time (min)
Channel Flow
X sectional flow area (sqft)
Wetted perimeter (ft)
Channel slope (%)
Manning's n -value
Velocity (ft/s)
/1
0.150
300.0
3.56
3.65
= 17.59
= 203.16
= 9.18
= Paved
=6.16
= 0.55
= 30.59
= 23.87
= 3.79
= 0.150
=2.28
4
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
B
0.011
0.0
0.00
0.00
+ 0.00
0.00
0.00
Paved
0.00
+ 0.00
0.00
0.00
0.00
0.015
C
0.011
0.0
0.00
0.00
+ 0.00
0.00
0.00
Paved
0.00
+ 0.00
0.00
0.00
0.00
0.015
0.00
Flow length (ft) ({0})1329.8 0.0 0.0
Travel Time (min) = 9.71 + 0.00 + 0.00
TotalTravel Time, Tc..............................................................................
Totals
= 17.59
= 0.55
= 9.71
27.80 min
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 3
Time to peak
POST DEVELOPMENT
AREA
Hydrograph type
= SCS Runoff
Storm frequency
= 1 yrs
Time interval
= 2 min
Drainage area
= 26.660 ac
Basin Slope
= 0.0%
Tc method
= User
Total precip.
= 2.95 in
Storm duration
= 24 hrs
* Composite (Area/CN) _ [(10.720 x 68) + (15.940 x 79)] / 26.660
Q (cfs)
50.00
40.00
30.00
20.00
10.00
0.00 ' 1'
0 2 4
Hyd No. 3
6 8
5
Tuesday, 06 / 5 / 2018
Peak discharge
= 41.96 cfs
Time to peak
= 11.97 hrs
Hyd. volume
= 84,217 cuft
Curve number
= 75*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 5.00 min
Distribution
= Type II
Shape factor
= 484
POST DEVELOPMENT AREA
Hyd. No. 3 -- 1 Year
Q (cfs)
50.00
40.00
1911XIff
20.00
10.00
0.00
10 12 14 16 18 20 22 24 26
Time (hrs)
Hydrograph
Report
6
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Tuesday, 06 / 5 / 2018
Hyd. No. 4
DRY POND DISCHARGE
Hydrograph type
= Reservoir
Peak discharge
= 1.263 cfs
Storm frequency
= 1 yrs
Time to peak
= 15.23 hrs
Time interval
= 2 min
Hyd. volume
= 84,028 cuft
Inflow hyd. No.
= 3 - POST DEVELOPMENT ARISAx. Elevation
= 543.24 ft
Reservoir name
= WET POND
Max. Storage
= 46,188 cuft
Storage Indication method used
Q (cfs)
50.00
40.00
30.00
20.00
10.00
0.00 '
0 6
Hyd No. 4
DRY POND DISCHARGE
Hyd. No. 4 -- 1 Year
12 18 24 30 36 42 48 54 60
Hyd No. 3 Total storage used = 46,188 cuft
Q (cfs)
50.00
40.00
[011XIff
20.00
10.00
1 0.00
66
Time (hrs)
Pond Report 7
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018
Pond No. 1 - WET POND
Pond Data
Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 541.00 ft
Stage / Storage Table
Stage (ft) Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft)
0.00
541.00
18,154
0
0
1.00
542.00
20,250
19,191
19,191
2.00
543.00
22,445
21,336
40,526
3.00
544.00
24,738
23,580
64,106
4.00
545.00
27,130
25,922
90,028
5.00
546.00
29,620
28,363
118,391
6.00
547.00
32,198
30,897
149,288
7.00
548.00
34,848
33,511
182,798
8.00
549.00
37,566
36,195
218,993
9.00
550.00
40,348
38,945
257,938
10.00
551.00
43,193
41,758
299,697
Culvert / Orifice Structures
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).
Weir Structures
Storage / Discharge Table
[A]
[B]
[C]
[PrfRsr]
Storage
[A]
[B]
[C]
[D]
Rise (in)
= 24.00
6.00
0.00
0.00
Crest Len (ft)
= 16.00
10.00
0.00
0.00
Span (in)
= 24.00
6.00
0.00
0.00
Crest EI. (ft)
= 549.50
550.00
0.00
0.00
No. Barrels
= 1
1
0
0
Weir Coeff.
= 3.33
3.33
3.33
3.33
Invert EI. (ft)
= 541.00
541.00
0.00
0.00
Weir Type
= 1
Ciplti
---
---
Length (ft)
= 77.69
0.00
0.00
0.00
Multi -Stage
= Yes
No
No
No
Slope (%)
= 0.50
0.00
0.00
n/a
90,028
545.00
1.81 is
1.76 is
---
N -Value
= .013
.013
.013
n/a
118,391
546.00
1.99 is
1.99 is
---
Orifice Coeff.
= 0.60
0.60
0.60
0.60
Exfil.(in/hr)
= 0.000 (by
Contour)
2.19 is
---
Multi -Stage
= n/a
Yes
No
No
TW Elev. (ft)
= 0.00
2.38 is
2.38 is
---
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).
Stage /
Storage / Discharge Table
Stage
Storage
Elevation
Civ A
Civ B
CIV C
PrfRsr
Wr A
Wr B Wr C
Wr D Exfil User Total
ft
cuft
ft
cfs
cfs
cfs
cfs
cfs
cfs cfs
cfs cfs cfs cfs
0.00
0
541.00
0.00
0.00
---
---
0.00
0.00 ---
--- --- --- 0.000
1.00
19,191
542.00
0.78 is
0.76 is
---
---
0.00
0.00 ---
--- --- --- 0.762
2.00
40,526
543.00
1.20 is
1.18 is
---
---
0.00
0.00 ---
--- --- --- 1.181
3.00
64,106
544.00
1.50 is
1.50 is
---
---
0.00
0.00 ---
--- --- --- 1.495
4.00
90,028
545.00
1.81 is
1.76 is
---
---
0.00
0.00 ---
--- --- --- 1.757
5.00
118,391
546.00
1.99 is
1.99 is
---
---
0.00
0.00 ---
--- --- --- 1.989
6.00
149,288
547.00
2.19 is
2.19 is
---
---
0.00
0.00 ---
--- --- --- 2.194
7.00
182,798
548.00
2.38 is
2.38 is
---
---
0.00
0.00 ---
--- --- --- 2.385
8.00
218,993
549.00
2.59 is
2.56 is
---
---
0.00
0.00 ---
--- --- --- 2.561
9.00
257,938
550.00
21.09 oc
2.25 is
---
---
18.84
0.00 ---
--- --- --- 21.09
10.00
299,697
551.00
45.04 is
0.35 is
---
---
44.68s
33.30 ---
--- --- --- 78.33
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 6
Time to peak
POST BYPASS 1
Hyd. volume
Hydrograph type
= SCS Runoff
Storm frequency
= 1 yrs
Time interval
= 2 min
Drainage area
= 8.510 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 2.95 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(1.860 x 61) + (6.650 x 74)] / 8.510
Q (cfs)
7.00
.M
5.00
4.00
3.00
2.00
1.00
0.00 ' 1'
0 2 4
Hyd No. 6
e
Tuesday, 06 / 5 / 2018
Peak discharge
= 6.447 cfs
Time to peak
= 12.10 hrs
Hyd. volume
= 22,606 cuft
Curve number
= 71*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 17.00 min
Distribution
= Type II
Shape factor
= 484
POST BYPASS 1
Hyd. No. 6 -- 1 Year
Q (cfs)
7.00
M
5.00
4.00
3.00
2.00
MR1I11
I i i I I I I I I I% 1 0.00
8 10 12 14 16 18 20 22 24 26
Time (hrs)
TR55 Tc Worksheet
Hyd. No. 6
POST BYPASS 1
Description
Sheet Flow
Manning's n -value
Flow length (ft)
Two-year 24 -hr precip. (in)
Land slope (%)
Travel Time (min)
Shallow Concentrated Flow
Flow length (ft)
Watercourse slope (%)
Surface description
Average velocity (ft/s)
Travel Time (min)
Channel Flow
X sectional flow area (sqft)
Wetted perimeter (ft)
Channel slope (%)
Manning's n -value
Velocity (ft/s)
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. 02
/1
= 0.150
= 300.0
= 3.56
= 4.56
16.09
= 54.56
= 9.35
= Unpaved
=4.93
= 0.18
= 6.34
= 10.52
= 3.73
= 0.015
=13.66
B
0.011
0.0
0.00
0.00
+ 0.00
0.00
0.00
Paved
0.00
+ 0.00
0.00
0.00
0.00
0.015
C
0.011
0.0
0.00
0.00
+ 0.00
0.00
0.00
Paved
0.00
+ 0.00
0.00
0.00
0.00
0.015
0.00
Flow length (ft) ({0})562.9 0.0 0.0
Travel Time (min) = 0.69 + 0.00 + 0.00
TotalTravel Time, Tc..............................................................................
Totals
= 16.09
= 0.18
= 0.69
17.00 min
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 7
Time to peak
POST BYPASS 2
Hyd. volume
Hydrograph type
= SCS Runoff
Storm frequency
= 1 yrs
Time interval
= 2 min
Drainage area
= 12.410 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 2.95 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(6.760 x 75) + (5.650 x 81)] / 12.410
10
Tuesday, 06 / 5 / 2018
Peak discharge
= 16.67 cfs
Time to peak
= 12.03 hrs
Hyd. volume
= 48,023 cuft
Curve number
= 78*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 16.10 min
Distribution
= Type II
Shape factor
= 484
POST BYPASS 2
Q (cfs) Hyd. No. 7 -- 1 Year Q (cfs)
18.00 18.00
15.00 15.00
12.00 12.00
9.00 9.00
6.00 6.00
3.00 3.00
0.00 0.00
0 2 4 6 8 10 12 14 16 18 20 22 24 26
Hyd No. 7 Time (hrs)
TR55 Tc Worksheet
Hyd. No. 7
POST BYPASS 2
Description
Sheet Flow
Manning's n -value
Flow length (ft)
Two-year 24 -hr precip. (in)
Land slope (%)
Travel Time (min)
Shallow Concentrated Flow
Flow length (ft)
Watercourse slope (%)
Surface description
Average velocity (ft/s)
Travel Time (min)
Channel Flow
X sectional flow area (sqft)
Wetted perimeter (ft)
Channel slope (%)
Manning's n -value
Velocity (ft/s)
11
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
/1
= 0.150
= 300.0
= 3.56
= 7.29
13.34
= 86.11
= 24.01
= Unpaved
=7.91
= 0.18
= 45.34
= 31.62
= 0.64
= 0.015
=10.12
B
0.011
0.0
0.00
0.00
+ 0.00
0.00
0.00
Paved
0.00
+ 0.00
0.00
0.00
0.00
0.015
C
0.011
0.0
0.00
0.00
+ 0.00
0.00
0.00
Paved
0.00
+ 0.00
0.00
0.00
0.00
0.015
0.00
Flow length (ft) ({0})1551.3 0.0 0.0
Travel Time (min) = 2.56 + 0.00 + 0.00
TotalTravel Time, Tc..............................................................................
Totals
= 13.34
= 0.18
= 2.56
16.10 min
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 8
POST BYPASS 3
Hydrograph type
= SCS Runoff
Storm frequency
= 1 yrs
Time interval
= 2 min
Drainage area
= 1.980 ac
Basin Slope
= 0.0%
Tc method
= User
Total precip.
= 2.95 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(0.320 x 61) + (1.660 x 74)] / 1.980
Q (cfs)
3.00
2.00
1.00
0.00 ' 1'
0 2 4
Hyd No. 8
Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor
POST BYPASS 3
Hyd. No. 8 -- 1 Year
6 8 10 12 14 16
12
Tuesday, 06 / 5 / 2018
= 2.579 cfs
= 11.97 hrs
= 5,246 cuft
= 72*
= Oft
= 5.00 min
= Type II
= 484
Q (cfs)
3.00
2.00
1.00
0.00
18 20 22 24 26
Time (hrs)
13
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018
Hyd. No. 10
TOTAL POST DISCHARGE
Hydrograph type = Combine Peak discharge = 24.82 cfs
Storm frequency = 1 yrs Time to peak = 12.03 hrs
Time interval = 2 min Hyd. volume = 159,903 cuft
Inflow hyds. = 4, 6, 7, 8 Contrib. drain. area = 22.900 ac
TOTAL POST DISCHARGE
Q (cfs) Hyd. No. 10 -- 1 Year Q (cfs)
28.00 28.00
24.00 24.00
20.00 20.00
16.00 16.00
12.00 12.00
8.00 8.00
4.00 4.00
0.00 0.00
0 4 8 12 16 20 24 28 32 36
Hyd No. 10 Hyd No. 4 Hyd No. 6 Hyd No. 7 Time (hrs)
Hyd No. 8
14
Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd.
No.
Hydrograph
type
(origin)
SCS Runoff
Peak
flow
(cfs)
Time
interval
(min)
2
Time to
Peak
(min)
732
Hyd.
volume
(cult)
Inflow
hyd(s)
Maximum
elevation
(ft)
Total
strge used
(cuft)
------
Hydrograph
Description
PRE -DEVELOPMENT AREA
1
43.33
186,906
------
------
3
SCS Runoff
60.99
2
718
121,977
------
------
------
POST DEVELOPMENT AREA
4
Reservoir
1.580
2
934
121,732
3
544.31
72,072
DRY POND DISCHARGE
6
SCS Runoff
10.26
2
726
34,045
------
------
------
POST BYPASS 1
7
SCS Runoff
23.95
2
722
67,777
------
------
------
POST BYPASS 2
8
SCS Runoff
3.902
2
718
7,819
------
------
------
POST BYPASS 3
10
Combine
36.76
2
722
231,373
4, 6, 7,
------
------
TOTAL POST DISCHARGE
8,
6198-PRE-POST.gpw
Return Period: 2 Year
Tuesday, 06 / 5 / 2018
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 1
PRE -DEVELOPMENT
AREA
Hydrograph type
= SCS Runoff
Storm frequency
= 2 yrs
Time interval
= 2 min
Drainage area
= 46.720 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 3.56 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(12.580 x 60) + (28.490 x 74) + (5.650 x 80)] / 46.720
Q (cfs)
50.00
40.00
30.00
20.00
10.00
0.00 ' 1'
0 2 4
Hyd No. 1
Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor
PRE -DEVELOPMENT AREA
Hyd. No. 1 -- 2 Year
6 8 10 12 14 16
15
Tuesday, 06 / 5 / 2018
= 43.33 cfs
= 12.20 hrs
= 186,906 cuft
= 71*
= Oft
= 27.80 min
= Type II
= 484
Q (cfs)
50.00
40.00
W11XIII7
20.00
10.00
' 0.00
18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 3
Time to peak
POST DEVELOPMENT
AREA
Hydrograph type
= SCS Runoff
Storm frequency
= 2 yrs
Time interval
= 2 min
Drainage area
= 26.660 ac
Basin Slope
= 0.0%
Tc method
= User
Total precip.
= 3.56 in
Storm duration
= 24 hrs
* Composite (Area/CN) _ [(10.720 x 68) + (15.940 x 79)] / 26.660
Q (cfs)
70.00
50.00
40.00
30.00
20.00
10.00
0.00
0 2 4
Hyd No. 3
e
16
Tuesday, 06 / 5 / 2018
Peak discharge
= 60.99 cfs
Time to peak
= 11.97 hrs
Hyd. volume
= 121,977 cuft
Curve number
= 75*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 5.00 min
Distribution
= Type II
Shape factor
= 484
POST DEVELOPMENT AREA
Hyd. No. 3 -- 2 Year
Q (cfs)
70.00
50.00
40.00
30.00
20.00
10.00
' J ' ' ' 0.00
8 10 12 14 16 18 20 22 24 26
Time (hrs)
Storage Indication method used.
Q (cfs)
70.00
50.00
40.00
30.00
20.00
10.00
DRY POND DISCHARGE
Hyd. No. 4 -- 2 Year
Q (cfs)
70.00
50.00
40.00
30.00
20.00
10.00
0.00 ' 1 1 1 1 ' 0.00
0 6 12 18 24 30 36 42 48 54 60 66
Time (hrs)
Hyd No. 4 Hyd No. 3 Total storage used = 72,072 cuft
17
Hydrograph
Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Tuesday, 06 / 5 / 2018
Hyd. No. 4
DRY POND DISCHARGE
Hydrograph type
= Reservoir
Peak discharge
= 1.580 cfs
Storm frequency
= 2 yrs
Time to peak
= 15.57 hrs
Time interval
= 2 min
Hyd. volume
= 121,732 cuft
Inflow hyd. No.
= 3 - POST DEVELOPMENT ARISAx. Elevation
= 544.31 ft
Reservoir name
= WET POND
Max. Storage
= 72,072 cuft
Storage Indication method used.
Q (cfs)
70.00
50.00
40.00
30.00
20.00
10.00
DRY POND DISCHARGE
Hyd. No. 4 -- 2 Year
Q (cfs)
70.00
50.00
40.00
30.00
20.00
10.00
0.00 ' 1 1 1 1 ' 0.00
0 6 12 18 24 30 36 42 48 54 60 66
Time (hrs)
Hyd No. 4 Hyd No. 3 Total storage used = 72,072 cuft
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 6
Time to peak
POST BYPASS 1
Hyd. volume
Hydrograph type
= SCS Runoff
Storm frequency
= 2 yrs
Time interval
= 2 min
Drainage area
= 8.510 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 3.56 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(1.860 x 61) + (6.650 x 74)] / 8.510
Q (cfs)
12.00
10.00
4.00
2.00
0.00
0 2 4
Hyd No. 6
6 8
18
Tuesday, 06 / 5 / 2018
Peak discharge
= 10.26 cfs
Time to peak
= 12.10 hrs
Hyd. volume
= 34,045 cuft
Curve number
= 71*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 17.00 min
Distribution
= Type II
Shape factor
= 484
POST BYPASS 1
Hyd. No. 6 -- 2 Year
Q (cfs)
12.00
10.00
4.00
2.00
I i I I I I I I IN 1 0.00
10 12 14 16 18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 7
Time to peak
POST BYPASS 2
Hyd. volume
Hydrograph type
= SCS Runoff
Storm frequency
= 2 yrs
Time interval
= 2 min
Drainage area
= 12.410 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 3.56 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(6.760 x 75) + (5.650 x 81)] / 12.410
Q (cfs)
24.00
20.00
16.00
12.00
M
4.00
0.00 ' 1'
0 2 4
Hyd No. 7
6 8
19
Tuesday, 06 / 5 / 2018
Peak discharge
= 23.95 cfs
Time to peak
= 12.03 hrs
Hyd. volume
= 67,777 cuft
Curve number
= 78*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 16.10 min
Distribution
= Type II
Shape factor
= 484
POST BYPASS 2
Hyd. No. 7 -- 2 Year
Q (cfs)
24.00
20.00
16.00
12.00
M
4.00
_ - I I I I I I 1 0.00
10 12 14 16 18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 8
POST BYPASS 3
Hydrograph type
= SCS Runoff
Storm frequency
= 2 yrs
Time interval
= 2 min
Drainage area
= 1.980 ac
Basin Slope
= 0.0%
Tc method
= User
Total precip.
= 3.56 in
Storm duration
= 24 hrs
* Composite (Area/CN) _ [(0.320 x 61) + (1.660 x 74)] / 1.980
Q (cfs)
4.00
3.00
2.00
1.00
0.00 ' 1'
0 2 4
Hyd No. 8
Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor
POST BYPASS 3
Hyd. No. 8 -- 2 Year
6 8 10 12 14 16
20
Tuesday, 06 / 5 / 2018
= 3.902 cfs
= 11.97 hrs
= 7,819 cuft
= 72*
= 0 ft
= 5.00 min
= Type II
= 484
Q (cfs)
4.00
3.00
2.00
1.00
0.00
18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 10
TOTAL POST DISCHARGE
Hydrograph type = Combine
Storm frequency = 2 yrs
Time interval = 2 min
Inflow hyds. = 4, 6, 7, 8
Q (cfs)
40.00
30.00
20.00
10.00
Peak discharge
Time to peak
Hyd. volume
Contrib. drain. area
TOTAL POST DISCHARGE
Hyd. No. 10 -- 2 Year
0.00 ' 1 1
0 4 8 12 16 20 24
Hyd No. 10 Hyd No. 4 Hyd No. 6
Hyd No. 8
21
Tuesday, 06 / 5 / 2018
= 36.76 cfs
= 12.03 hrs
= 231,373 cuft
= 22.900 ac
28 32 36
Hyd No. 7
Q (cfs)
40.00
30.00
20.00
10.00
--" 0.00
40
Time (hrs)
22
Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd.
No.
Hydrograph
type
(origin)
SCS Runoff
Peak
flow
(cfs)
94.87
Time
interval
(min)
2
Time to
Peak
(min)
732
Hyd.
volume
(cult)
Inflow
hyd(s)
Maximum
elevation
(ft)
Total
strge used
(cuft)
------
Hydrograph
Description
PRE -DEVELOPMENT AREA
1
386,081
------
------
3
SCS Runoff
117.70
2
716
237,763
------
------
------
POST DEVELOPMENT AREA
4
Reservoir
2.243
2
998
237,293
3
547.25
157,536
DRY POND DISCHARGE
6
SCS Runoff
22.19
2
724
70,324
------
------
------
POST BYPASS 1
7
SCS Runoff
45.29
2
722
126,973
------
------
------
POST BYPASS 2
8
SCS Runoff
7.904
2
718
15,908
------
------
------
POST BYPASS 3
10
Combine
72.38
2
722
450,497
4, 6, 7,
------
------
TOTAL POST DISCHARGE
8,
6198-PRE-POST.gpw
Return Period: 10 Year
Tuesday, 06 / 5 / 2018
23
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018
Hyd. No. 1
PRE -DEVELOPMENT AREA
Hydrograph type
= SCS Runoff
Peak discharge
= 94.87 cfs
Storm frequency
= 10 yrs
Time to peak
= 12.20 hrs
Time interval
= 2 min
Hyd. volume
= 386,081 cuft
Drainage area
= 46.720 ac
Curve number
= 71*
Basin Slope
= 0.0%
Hydraulic length
= 0 ft
Tc method
= TR55
Time of conc. (Tc)
= 27.80 min
Total precip.
= 5.21 in
Distribution
= Type II
Storm duration
= 24 hrs
Shape factor
= 484
* Composite (Area/CN) _ [(12.580 x 60) + (28.490 x 74) + (5.650 x 80)] / 46.720
Q (cfs)
100.00
90.00
80.00
70.00
50.00
40.00
30.00
20.00
10.00
0.00
0 2 4
Hyd No. 1
PRE -DEVELOPMENT AREA
Hyd. No. 1 -- 10 Year
Q (cfs)
100.00
90.00
80.00
70.00
50.00
40.00
30.00
20.00
10.00
0.00
6 8 10 12 14 16 18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 3
Time to peak
POST DEVELOPMENT
AREA
Hydrograph type
= SCS Runoff
Storm frequency
= 10 yrs
Time interval
= 2 min
Drainage area
= 26.660 ac
Basin Slope
= 0.0%
Tc method
= User
Total precip.
= 5.21 in
Storm duration
= 24 hrs
* Composite (Area/CN) _ [(10.720 x 68) + (15.940 x 79)] / 26.660
Q (cfs)
120.00
100.00
40.00
20.00
0.00 ' 1'
0 2 4
Hyd No. 3
6 8
24
Tuesday, 06 / 5 / 2018
Peak discharge
= 117.70 cfs
Time to peak
= 11.93 hrs
Hyd. volume
= 237,763 cuft
Curve number
= 75*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 5.00 min
Distribution
= Type II
Shape factor
= 484
POST DEVELOPMENT AREA
Hyd. No. 3 -- 10 Year
Q (cfs)
120.00
100.00
40.00
20.00
"0— ' ' ' 0.00
10 12 14 16 18 20 22 24 26
Time (hrs)
Hydrograph
Report
25
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Tuesday, 06 / 5 / 2018
Hyd. No. 4
DRY POND DISCHARGE
Hydrograph type
= Reservoir
Peak discharge
= 2.243 cfs
Storm frequency
= 10 yrs
Time to peak
= 16.63 hrs
Time interval
= 2 min
Hyd. volume
= 237,293 cuft
Inflow hyd. No.
= 3 - POST DEVELOPMENT ARISAx. Elevation
= 547.25 ft
Reservoir name
= WET POND
Max. Storage
= 157,536 cuft
Storage Indication method used
Q (cfs)
120.00
100.00
40.00
20.00
0.00 ' '
0 8
Hyd No. 4
DRY POND DISCHARGE
Hyd. No. 4 -- 10 Year
16 24 32 40 48 56 64
Hyd No. 3 Total storage used = 157,536 cuft
Q (cfs)
120.00
100.00
40.00
20.00
1 0.00
72
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 6
Time to peak
POST BYPASS 1
Hyd. volume
Hydrograph type
= SCS Runoff
Storm frequency
= 10 yrs
Time interval
= 2 min
Drainage area
= 8.510 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 5.21 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(1.860 x 61) + (6.650 x 74)] / 8.510
Q (cfs)
24.00
20.00
16.00
12.00
M
4.00
0.00 ' 1'
0 2 4
Hyd No. 6
6 8
26
Tuesday, 06 / 5 / 2018
Peak discharge
= 22.19 cfs
Time to peak
= 12.07 hrs
Hyd. volume
= 70,324 cuft
Curve number
= 71*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 17.00 min
Distribution
= Type II
Shape factor
= 484
POST BYPASS 1
Hyd. No. 6 -- 10 Year
Q (cfs)
24.00
20.00
16.00
12.00
M
4.00
Y I I I I I I T 1 0.00
10 12 14 16 18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 7
POST BYPASS 2
Hydrograph type
= SCS Runoff
Storm frequency
= 10 yrs
Time interval
= 2 min
Drainage area
= 12.410 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 5.21 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(6.760 x 75) + (5.650 x 81)] / 12.410
Q (cfs)
50.00
40.00
30.00
20.00
10.00
0.00 ' 1'
0 2 4
Hyd No. 7
Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor
POST BYPASS 2
Hyd. No. 7 -- 10 Year
6 8 10 12 14 16
27
Tuesday, 06 / 5 / 2018
= 45.29 cfs
= 12.03 hrs
= 126,973 cuft
= 78*
= Oft
= 16.10 min
= Type II
= 484
Q (cfs)
50.00
40.00
W11MI1I17
20.00
10.00
0.00
18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 8
POST BYPASS 3
Hydrograph type
= SCS Runoff
Storm frequency
= 10 yrs
Time interval
= 2 min
Drainage area
= 1.980 ac
Basin Slope
= 0.0%
Tc method
= User
Total precip.
= 5.21 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(0.320 x 61) + (1.660 x 74)] / 1.980
Q (cfs)
8.00
4.00
2.00
0.00
0 2 4
Hyd No. 8
Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor
POST BYPASS 3
Hyd. No. 8 -- 10 Year
6 8 10 12 14 16
Tuesday, 06 / 5 / 2018
= 7.904 cfs
= 11.97 hrs
= 15,908 cuft
= 72*
= Oft
= 5.00 min
= Type II
= 484
Q (cfs)
8.00
4.00
2.00
0.00
18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Tuesday, 06 / 5 / 2018
Hyd. No. 10
TOTAL POST DISCHARGE
Hydrograph type =
Combine
Peak discharge
= 72.38 cfs
Storm frequency =
10 yrs
Time to peak
= 12.03 hrs
Time interval =
2 min
Hyd. volume
= 450,497 cuft
Inflow hyds. =
4, 6, 7, 8
Contrib. drain. area
= 22.900 ac
Q (cfs)
80.00
70.00
50.00
40.00
30.00
20.00
10.00
0.00 ' '
0 4 8
Hyd No. 10
TOTAL POST DISCHARGE
Hyd. No. 10 -- 10 Year
Q (cfs)
80.00
70.00
50.00
40.00
30.00
20.00
10.00
'' 0.00
12 16 20 24 28 32 36 40 44 48
Hyd No. 4 Hyd No. 6 Hyd No. 7 Time (hrs)
Hyd No. 8
ST -11
Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd.
No.
Hydrograph
type
(origin)
SCS Runoff
Peak
flow
(cfs)
129.56
Time
interval
(min)
2
Time to
Peak
(min)
730
Hyd.
volume
(cult)
Inflow
hyd(s)
Maximum
elevation
(ft)
Total
strge used
(cuft)
------
Hydrograph
Description
PRE -DEVELOPMENT AREA
1
521,842
------
------
3
SCS Runoff
155.20
2
716
314,852
------
------
------
POST DEVELOPMENT AREA
4
Reservoir
2.555
2
1050
314,173
3
548.97
217,758
DRY POND DISCHARGE
6
SCS Runoff
30.29
2
724
95,053
------
------
------
POST BYPASS 1
7
SCS Runoff
58.95
2
722
165,758
------
------
------
POST BYPASS 2
8
SCS Runoff
10.58
2
716
21,388
------
------
------
POST BYPASS 3
10
Combine
95.50
2
722
596,372
4, 6, 7,
------
------
TOTAL POST DISCHARGE
8,
6198-PRE-POST.gpw
Return Period: 25 Year
Tuesday, 06 / 5 / 2018
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 1
Time to peak
PRE -DEVELOPMENT
AREA
Hydrograph type
= SCS Runoff
Storm frequency
= 25 yrs
Time interval
= 2 min
Drainage area
= 46.720 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 6.22 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(12.580 x 60) + (28.490 x 74) + (5.650 x 80)] / 46.720
Q (cfs)
140.00
120.00
100.00
40.00
20.00
0.00 ' 1'
0 2 4
Hyd No. 1
6 8
31
Tuesday, 06 / 5 / 2018
Peak discharge
= 129.56 cfs
Time to peak
= 12.17 hrs
Hyd. volume
= 521,842 cuft
Curve number
= 71*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 27.80 min
Distribution
= Type II
Shape factor
= 484
PRE -DEVELOPMENT AREA
Hyd. No. 1 -- 25 Year
Q (cfs)
140.00
120.00
100.00
40.00
20.00
.� I I I I I I 1 \,. 1 0.00
10 12 14 16 18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 3
Time to peak
POST DEVELOPMENT
AREA
Hydrograph type
= SCS Runoff
Storm frequency
= 25 yrs
Time interval
= 2 min
Drainage area
= 26.660 ac
Basin Slope
= 0.0%
Tc method
= User
Total precip.
= 6.22 in
Storm duration
= 24 hrs
* Composite (Area/CN) _ [(10.720 x 68) + (15.940 x 79)] / 26.660
32
Tuesday, 06 / 5 / 2018
Peak discharge
= 155.20 cfs
Time to peak
= 11.93 hrs
Hyd. volume
= 314,852 cuft
Curve number
= 75*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 5.00 min
Distribution
= Type II
Shape factor
= 484
POST DEVELOPMENT AREA
Q (cfs) Hyd. No. 3 -- 25 Year Q (cfs)
160.00 160.00
140.00 140.00
120.00 120.00
100.00 100.00
80.00 80.00
60.00 60.00
40.00 40.00
20.00 20.00
0.00 0.00
0 2 4 6 8 10 12 14 16 18 20 22 24
Hyd No. 3 Time (hrs)
Storage Indication method used.
DRY POND DISCHARGE
Q (cfs) Hyd. No. 4 -- 25 Year Q (cfs)
160.00
140.00
120.00
100.00
80.00
60.00
40.00
20.00
0.00
0 8
Hyd No. 4
16 24 32
Hyd No. 3
160.00
140.00
120.00
100.00
80.00
60.00
40.00
20.00
0.00
40 48 56 64 72 80
Time (hrs)
Total storage used = 217,758 cuft
33
Hydrograph
Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Tuesday, 06 / 5 / 2018
Hyd. No. 4
DRY POND DISCHARGE
Hydrograph type
= Reservoir
Peak discharge
= 2.555 cfs
Storm frequency
= 25 yrs
Time to peak
= 17.50 hrs
Time interval
= 2 min
Hyd. volume
= 314,173 cuft
Inflow hyd. No.
= 3 - POST DEVELOPMENT ARISAx. Elevation
= 548.97 ft
Reservoir name
= WET POND
Max. Storage
= 217,758 cuft
Storage Indication method used.
DRY POND DISCHARGE
Q (cfs) Hyd. No. 4 -- 25 Year Q (cfs)
160.00
140.00
120.00
100.00
80.00
60.00
40.00
20.00
0.00
0 8
Hyd No. 4
16 24 32
Hyd No. 3
160.00
140.00
120.00
100.00
80.00
60.00
40.00
20.00
0.00
40 48 56 64 72 80
Time (hrs)
Total storage used = 217,758 cuft
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 6
Time to peak
POST BYPASS 1
Hyd. volume
Hydrograph type
= SCS Runoff
Storm frequency
= 25 yrs
Time interval
= 2 min
Drainage area
= 8.510 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 6.22 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(1.860 x 61) + (6.650 x 74)] / 8.510
Q (cfs)
35.00
30.00
25.00
20.00
15.00
10.00
5.00
0.00 ' 1'
0 2 4
Hyd No. 6
6 8
34
Tuesday, 06 / 5 / 2018
Peak discharge
= 30.29 cfs
Time to peak
= 12.07 hrs
Hyd. volume
= 95,053 cuft
Curve number
= 71*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 17.00 min
Distribution
= Type II
Shape factor
= 484
POST BYPASS 1
Hyd. No. 6 -- 25 Year
Q (cfs)
35.00
30.00
25.00
20.00
15.00
10.00
IM11111
''— ' ' ' ' 0.00
10 12 14 16 18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 7
Time to peak
POST BYPASS 2
Hyd. volume
Hydrograph type
= SCS Runoff
Storm frequency
= 25 yrs
Time interval
= 2 min
Drainage area
= 12.410 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 6.22 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(6.760 x 75) + (5.650 x 81)] / 12.410
Q (cfs)
60.00
50.00
40.00
30.00
20.00
10.00
0.00 ' 1'
0 2 4
Hyd No. 7
6 8
35
Tuesday, 06 / 5 / 2018
Peak discharge
= 58.95 cfs
Time to peak
= 12.03 hrs
Hyd. volume
= 165,758 cuft
Curve number
= 78*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 16.10 min
Distribution
= Type II
Shape factor
= 484
POST BYPASS 2
Hyd. No. 7 -- 25 Year
Q (cfs)
60.00
50.00
40.00
30.00
20.00
10.00
"r ' ' ' 0.00
10 12 14 16 18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 8
Time to peak
POST BYPASS 3
Hyd. volume
Hydrograph type
= SCS Runoff
Storm frequency
= 25 yrs
Time interval
= 2 min
Drainage area
= 1.980 ac
Basin Slope
= 0.0%
Tc method
= User
Total precip.
= 6.22 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(0.320 x 61) + (1.660 x 74)] / 1.980
Q (cfs)
12.00
10.00
2.00
0.00
0 2 4
Hyd No. 8
6 8
36
Tuesday, 06 / 5 / 2018
Peak discharge
= 10.58 cfs
Time to peak
= 11.93 hrs
Hyd. volume
= 21,388 cuft
Curve number
= 72*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 5.00 min
Distribution
= Type II
Shape factor
= 484
POST BYPASS 3
Hyd. No. 8 -- 25 Year
Q (cfs)
12.00
10.00
4.00
2.00
''-- ' ' 0.00
10 12 14 16 18 20 22 24 26
Time (hrs)
37
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Tuesday, 06 / 5 / 2018
Hyd. No. 10
TOTAL POST DISCHARGE
Hydrograph type =
Combine
Peak discharge
= 95.50 cfs
Storm frequency =
25 yrs
Time to peak
= 12.03 hrs
Time interval =
2 min
Hyd. volume
= 596,372 cuft
Inflow hyds. =
4, 6, 7, 8
Contrib. drain. area
= 22.900 ac
Q (cfs)
100.00
90.00
80.00
70.00
50.00
40.00
30.00
20.00
10.00
0.00
0 4 8
Hyd No. 10
TOTAL POST DISCHARGE
Hyd. No. 10 -- 25 Year
Q (cfs)
100.00
90.00
80.00
70.00
50.00
40.00
30.00
20.00
10.00
0.00
12 16 20 24 28 32 36 40 44 48 52
Hyd No. 4 Hyd No. 6 Hyd No. 7 Time (hrs)
Hyd No. 8
38
Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd.
No.
Hydrograph
type
(origin)
SCS Runoff
Peak
flow
(cfs)
159.00
Time
interval
(min)
2
Time to
Peak
(min)
730
Hyd.
volume
(cult)
Inflow
hyd(s)
Maximum
elevation
(ft)
Total
strge used
(cuft)
------
Hydrograph
Description
PRE -DEVELOPMENT AREA
1
637,184
------
------
3
SCS Runoff
186.20
2
716
379,666
------
------
------
POST DEVELOPMENT AREA
4
Reservoir
6.296
2
828
378,888
3
549.67
244,925
DRY POND DISCHARGE
6
SCS Runoff
37.10
2
724
116,062
------
------
------
POST BYPASS 1
7
SCS Runoff
70.19
2
722
198,138
------
------
------
POST BYPASS 2
8
SCS Runoff
12.84
2
716
26,031
------
------
------
POST BYPASS 3
10
Combine
114.64
2
722
719,118
4, 6, 7,
------
------
TOTAL POST DISCHARGE
8,
6198-PRE-POST.gpw
Return Period: 50 Year
Tuesday, 06 / 5 / 2018
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 1
Time to peak
PRE -DEVELOPMENT
AREA
Hydrograph type
= SCS Runoff
Storm frequency
= 50 yrs
Time interval
= 2 min
Drainage area
= 46.720 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 7.04 in
Storm duration
= 24 hrs
* Composite (Area/CN) _ [(12.580 x 60) + (28.490 x 74) + (5.650 x 80)] / 46.720
Q (cfs)
160.00
140.00
120.00
100.00
40.00
20.00
0.00 ' 1'
0 2 4
Hyd No. 1
39
Tuesday, 06 / 5 / 2018
Peak discharge
= 159.00 cfs
Time to peak
= 12.17 hrs
Hyd. volume
= 637,184 cuft
Curve number
= 71*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 27.80 min
Distribution
= Type II
Shape factor
= 484
PRE -DEVELOPMENT AREA
Hyd. No. 1 -- 50 Year
Q (cfs)
160.00
140.00
120.00
100.00
40.00
20.00
i I I I I I I I1-1. 1 0.00
8 10 12 14 16 18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 3
Time to peak
POST DEVELOPMENT
AREA
Hydrograph type
= SCS Runoff
Storm frequency
= 50 yrs
Time interval
= 2 min
Drainage area
= 26.660 ac
Basin Slope
= 0.0%
Tc method
= User
Total precip.
= 7.04 in
Storm duration
= 24 hrs
* Composite (Area/CN) _ [(10.720 x 68) + (15.940 x 79)] / 26.660
Q (cfs)
210.00
180.00
150.00
120.00
30.00
0.00 ' 1'
0 2 4
Hyd No. 3
40
Tuesday, 06 / 5 / 2018
Peak discharge
= 186.20 cfs
Time to peak
= 11.93 hrs
Hyd. volume
= 379,666 cuft
Curve number
= 75*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 5.00 min
Distribution
= Type II
Shape factor
= 484
POST DEVELOPMENT AREA
Hyd. No. 3 -- 50 Year
6 8
Q (cfs)
210.00
180.00
150.00
120.00
30.00
''— ' ' ' 0.00
10 12 14 16 18 20 22 24
Time (hrs)
Storage Indication method used.
DRY POND DISCHARGE
Q (cfs) Hyd. No. 4 -- 50 Year Q (cfs)
210.00 210.00
180.00 180.00
150.00 150.00
120.00 120.00
90.00 90.00
60.00 60.00
30.00 30.00
0.00 0.00
0 8 16 24 32 40 48 56 64 72
Time (hrs)
Hyd No. 4 Hyd No. 3 Total storage used = 244,925 cuft
41
Hydrograph
Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Tuesday, 06 / 5 / 2018
Hyd. No. 4
DRY POND DISCHARGE
Hydrograph type
= Reservoir
Peak discharge
= 6.296 cfs
Storm frequency
= 50 yrs
Time to peak
= 13.80 hrs
Time interval
= 2 min
Hyd. volume
= 378,888 cuft
Inflow hyd. No.
= 3 - POST DEVELOPMENT ARISAx. Elevation
= 549.67 ft
Reservoir name
= WET POND
Max. Storage
= 244,925 cuft
Storage Indication method used.
DRY POND DISCHARGE
Q (cfs) Hyd. No. 4 -- 50 Year Q (cfs)
210.00 210.00
180.00 180.00
150.00 150.00
120.00 120.00
90.00 90.00
60.00 60.00
30.00 30.00
0.00 0.00
0 8 16 24 32 40 48 56 64 72
Time (hrs)
Hyd No. 4 Hyd No. 3 Total storage used = 244,925 cuft
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 6
POST BYPASS 1
Hydrograph type
= SCS Runoff
Storm frequency
= 50 yrs
Time interval
= 2 min
Drainage area
= 8.510 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 7.04 in
Storm duration
= 24 hrs
* Composite (Area/CN) _ [(1.860 x 61) + (6.650 x 74)] / 8.510
Q (Cfs)
40.00
30.00
20.00
10.00
2 4
Hyd No. 6
Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor
POST BYPASS 1
Hyd. No. 6 -- 50 Year
6 8 10 12 14 16
42
Tuesday, 06 / 5 / 2018
= 37.10 cfs
= 12.07 hrs
= 116,062 cuft
= 71*
= 0 ft
= 17.00 min
= Type II
= 484
Q (cfs)
40.00
30.00
20.00
10.00
0.00
18 20 22 24 26
Time (hrs)
43
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018
Hyd. No. 7
POST BYPASS 2
Hydrograph type
= SCS Runoff
Peak discharge
= 70.19 cfs
Storm frequency
= 50 yrs
Time to peak
= 12.03 hrs
Time interval
= 2 min
Hyd. volume
= 198,138 cuft
Drainage area
= 12.410 ac
Curve number
= 78*
Basin Slope
= 0.0%
Hydraulic length
= 0 ft
Tc method
= TR55
Time of conc. (Tc)
= 16.10 min
Total precip.
= 7.04 in
Distribution
= Type II
Storm duration
= 24 hrs
Shape factor
= 484
* Composite (Area/CN) _ [(6.760 x 75) + (5.650 x 81)] / 12.410
Q (cfs)
80.00
70.00
50.00
40.00
30.00
20.00
10.00
POST BYPASS 2
Hyd. No. 7 -- 50 Year
Q (cfs)
80.00
70.00
50.00
40.00
30.00
20.00
10.00
0.00 ' ' ' ' ' 0.00
0 2 4 6 8 10 12 14 16 18 20 22 24 26
Hyd No. 7 Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 8
Time to peak
POST BYPASS 3
Hyd. volume
Hydrograph type
= SCS Runoff
Storm frequency
= 50 yrs
Time interval
= 2 min
Drainage area
= 1.980 ac
Basin Slope
= 0.0%
Tc method
= User
Total precip.
= 7.04 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(0.320 x 61) + (1.660 x 74)] / 1.980
Q (cfs)
14.00
12.00
10.00
.M
4.00
2.00
0.00 ' '
0 2 4
Hyd No. 8
6 8
44
Tuesday, 06 / 5 / 2018
Peak discharge
= 12.84 cfs
Time to peak
= 11.93 hrs
Hyd. volume
= 26,031 cuft
Curve number
= 72*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 5.00 min
Distribution
= Type II
Shape factor
= 484
POST BYPASS 3
Hyd. No. 8 -- 50 Year
Q (cfs)
14.00
12.00
10.00
M
4.00
2.00
' ' ' 1 0.00
10 12 14 16 18 20 22 24
Time (hrs)
45
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Tuesday, 06 / 5 / 2018
Hyd. No. 10
TOTAL POST DISCHARGE
Hydrograph type =
Combine
Peak discharge
= 114.64 cfs
Storm frequency =
50 yrs
Time to peak
= 12.03 hrs
Time interval =
2 min
Hyd. volume
= 719,118 cuft
Inflow hyds. =
4, 6, 7, 8
Contrib. drain. area
= 22.900 ac
TOTAL POST DISCHARGE
Q (cfs) Hyd. No. 10 -- 50 Year Q (cfs)
120.00 120.00
100.00 100.00
80.00 80.00
60.00 60.00
40.00 40.00
20.00 20.00
0.00 0.00
0 4 8 12 16 20 24 28 32 36 40 44 48 52
Hyd No. 10 Hyd No. 4 Hyd No. 6 Hyd No. 7 Time (hrs)
Hyd No. 8
46
Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd.
No.
Hydrograph
type
(origin)
SCS Runoff
Peak
flow
(cfs)
190.21
Time
interval
(min)
2
Time to
Peak
(min)
730
Hyd.
volume
(cult)
Inflow
hyd(s)
Maximum
elevation
(ft)
Total
strge used
(cuft)
------
Hydrograph
Description
PRE -DEVELOPMENT AREA
1
760,428
------
------
3
SCS Runoff
218.64
2
716
448,422
------
------
------
POST DEVELOPMENT AREA
4
Reservoir
16.41
2
750
447,622
3
549.91
254,461
DRY POND DISCHARGE
6
SCS Runoff
44.30
2
724
138,511
------
------
------
POST BYPASS 1
7
SCS Runoff
81.91
2
722
232,323
------
------
------
POST BYPASS 2
8
SCS Runoff
15.22
2
716
30,983
------
------
------
POST BYPASS 3
10
Combine
134.70
2
722
849,439
4, 6, 7,
------
------
TOTAL POST DISCHARGE
8,
6198-PRE-POST.gpw
Return Period: 100 Year
Tuesday, 06 / 5 / 2018
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 1
Time to peak
PRE -DEVELOPMENT
AREA
Hydrograph type
= SCS Runoff
Storm frequency
= 100 yrs
Time interval
= 2 min
Drainage area
= 46.720 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 7.89 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(12.580 x 60) + (28.490 x 74) + (5.650 x 80)] / 46.720
Q (cfs)
210.00
180.00
150.00
120.00
30.00
0.00 ' 1'
0 2 4
Hyd No. 1
e
47
Tuesday, 06 / 5 / 2018
Peak discharge
= 190.21 cfs
Time to peak
= 12.17 hrs
Hyd. volume
= 760,428 cuft
Curve number
= 71*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 27.80 min
Distribution
= Type II
Shape factor
= 484
PRE -DEVELOPMENT AREA
Hyd. No. 1 -- 100 Year
Q (cfs)
210.00
180.00
150.00
120.00
30.00
lir I I I I I I I\ 1 0.00
8 10 12 14 16 18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 3
Time to peak
POST DEVELOPMENT
AREA
Hydrograph type
= SCS Runoff
Storm frequency
= 100 yrs
Time interval
= 2 min
Drainage area
= 26.660 ac
Basin Slope
= 0.0%
Tc method
= User
Total precip.
= 7.89 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(10.720 x 68) + (15.940 x 79)] / 26.660
Q (cfs)
240.00
210.00
180.00
150.00
120.00
30.00
48
Tuesday, 06 / 5 / 2018
Peak discharge
= 218.64 cfs
Time to peak
= 11.93 hrs
Hyd. volume
= 448,422 cuft
Curve number
= 75*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 5.00 min
Distribution
= Type II
Shape factor
= 484
POST DEVELOPMENT AREA
Hyd. No. 3 -- 100 Year
Q (cfs)
240.00
210.00
180.00
150.00
120.00
30.00
0.00 ' ' ' ' ' -'- ' ' 0.00
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0
Hyd No. 3 Time (hrs)
49
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Tuesday, 06 / 5 / 2018
Hyd. No. 4
DRY POND DISCHARGE
Hydrograph type =
Reservoir
Peak discharge
= 16.41 cfs
Storm frequency =
100 yrs
Time to peak
= 12.50 hrs
Time interval =
2 min
Hyd. volume
= 447,622 cuft
Inflow hyd. No. =
3 - POST DEVELOPMENT ARISAx. Elevation
= 549.91 ft
Reservoir name =
WET POND
Max. Storage
= 254,461 cuft
Storage Indication method used.
DRY POND DISCHARGE
Q (cfs) Hyd. No. 4 -- 100 Year Q (cfs)
240.00 240.00
210.00 210.00
180.00 180.00
150.00 150.00
120.00 120.00
90.00 90.00
60.00 60.00
30.00 30.00
0.00 0.00
0 6 12 18 24 30 36 42 48 54 60 66 72
Time (hrs)
Hyd No. 4 Hyd No. 3 Total storage used = 254,461 cuft
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 6
POST BYPASS 1
Hydrograph type
= SCS Runoff
Storm frequency
= 100 yrs
Time interval
= 2 min
Drainage area
= 8.510 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 7.89 in
Storm duration
= 24 hrs
" Composite (Area/CN) _ [(1.860 x 61) + (6.650 x 74)] / 8.510
Q (cfs)
50.00
40.00
30.00
20.00
10.00
0.00 ' 1'
0 2 4
Hyd No. 6
Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor
POST BYPASS 1
Hyd. No. 6 -- 100 Year
6 8 10 12 14 16
50
Tuesday, 06 / 5 / 2018
= 44.30 cfs
= 12.07 hrs
= 138,511 cuft
= 71*
= Oft
= 17.00 min
= Type II
= 484
Q (cfs)
50.00
40.00
W11MI1I17
20.00
10.00
0.00
18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 7
Time to peak
POST BYPASS 2
Hyd. volume
Hydrograph type
= SCS Runoff
Storm frequency
= 100 yrs
Time interval
= 2 min
Drainage area
= 12.410 ac
Basin Slope
= 0.0%
Tc method
= TR55
Total precip.
= 7.89 in
Storm duration
= 24 hrs
* Composite (Area/CN) _ [(6.760 x 75) + (5.650 x 81)] / 12.410
Q (cfs)
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00
0 00
0 2 4
Hyd No. 7
51
Tuesday, 06 / 5 / 2018
Peak discharge
= 81.91 cfs
Time to peak
= 12.03 hrs
Hyd. volume
= 232,323 cuft
Curve number
= 78*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 16.10 min
Distribution
= Type II
Shape factor
= 484
POST BYPASS 2
Hyd. No. 7 -- 100 Year
Q (cfs)
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00
+— ' I I I 1 1 7=-0.00
8 10 12 14 16 18 20 22 24 26
Time (hrs)
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Hyd. No. 8
Time to peak
POST BYPASS 3
Hyd. volume
Hydrograph type
= SCS Runoff
Storm frequency
= 100 yrs
Time interval
= 2 min
Drainage area
= 1.980 ac
Basin Slope
= 0.0%
Tc method
= User
Total precip.
= 7.89 in
Storm duration
= 24 hrs
* Composite (Area/CN) _ [(0.320 x 61) + (1.660 x 74)] / 1.980
Q (cfs)
18.00
15.00
12.00
3.00
0.00 ' '
0 2 4
Hyd No. 8
52
Tuesday, 06 / 5 / 2018
Peak discharge
= 15.22 cfs
Time to peak
= 11.93 hrs
Hyd. volume
= 30,983 cuft
Curve number
= 72*
Hydraulic length
= 0 ft
Time of conc. (Tc)
= 5.00 min
Distribution
= Type II
Shape factor
= 484
POST BYPASS 3
Hyd. No. 8 -- 100 Year
6 8 10 12 14
Q (cfs)
18.00
15.00
12.00
3.00
' 0.00
16 18 20 22 24
Time (hrs)
53
Hydrograph Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Tuesday, 06 / 5 / 2018
Hyd. No. 10
TOTAL POST DISCHARGE
Hydrograph type =
Combine
Peak discharge
= 134.70 cfs
Storm frequency =
100 yrs
Time to peak
= 12.03 hrs
Time interval =
2 min
Hyd. volume
= 849,439 cuft
Inflow hyds. =
4, 6, 7, 8
Contrib. drain. area
= 22.900 ac
TOTAL POST DISCHARGE
Q (cfs) Hyd. No. 10 -- 100 Year Q (cfs)
140.00 140.00
120.00 120.00
100.00 100.00
80.00 80.00
60.00 60.00
40.00 40.00
20.00 20.00
0.00 ilL 0.00
0 4 8 12 16 20 24 28 32 36 40 44 48 52
Hyd No. 10 Hyd No. 4 Hyd No. 6 Hyd No. 7 Time (hrs)
Hyd No. 8
Hydraflow Rainfall Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12
Return
Period
Intensity -Duration -Frequency Equation Coefficients (FHA)
(Yrs)
B
D
E
(N/A)
1
66.8196
12.9000
0.8963
--------
2
71.1962
12.5000
0.8678
--------
3
0.0000
0.0000
0.0000
--------
5
77.9030
12.9000
0.8403
--------
10
71.8008
12.0000
0.7927
--------
25
66.0145
11.1000
0.7420
--------
50
59.2567
10.1000
0.6965
--------
100
53.8843
9.2000
0.6563
--------
File name: 6198-NOAA.IDF
Intensity = B / (Tc + D)^E
54
Tuesday, 06 / 5 / 2018
Return
Period
(Yrs)
Intensity Values (in/hr)
5 min
10
15
20
25
30
35
40
45
50
55
60
1
5.03
4.04
3.38
2.92
2.57
2.30
2.08
1.91
1.76
1.63
1.52
1.43
2
5.94
4.78
4.01
3.47
3.07
2.75
2.50
2.29
2.12
1.97
1.84
1.73
3
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
5
6.90
5.61
4.75
4.14
3.67
3.31
3.02
2.78
2.57
2.40
2.25
2.12
10
7.60
6.19
5.27
4.60
4.10
3.71
3.39
3.13
2.91
2.72
2.56
2.42
25
8.40
6.87
5.87
5.15
4.61
4.19
3.85
3.56
3.33
3.12
2.95
2.79
50
8.94
7.33
6.28
5.53
4.97
4.53
4.17
3.88
3.63
3.42
3.23
3.07
100
9.44
7.75
6.66
5.88
5.30
4.85
4.48
4.18
3.92
3.70
3.51
3.34
Tc = time in minutes. Values may exceed 60.
K:\Land Proiects R2\6198 - Chambwood Rd - Weslev Chanel - Bowman\Calculations\Stormwater\6198-NOAA 24hr.DCD
Storm
Distribution
Rainfall Precipitation Table (in)
1 -yr 2 -yr 3 -yr 75 -yr 10 -yr 25 -yr 50 -yr 100 -yr
SCS 24-hour
2.95
3.56
0.00
4.48
5.21
6.22
7.04
7.89
SCS 6 -Hr
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Huff -1st
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Huff -2nd
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Huff -3rd
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Huff -4th
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Huff -Indy
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Custom
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
5/14/2018 Precipitation Frequency Data Server
eNOAA Atlas 14, Volume 2, Version 3
Location name: Monroe, North Carolina, USA
Latitude: 34.9917°, Longitude: -80.6777°
Elevation: 601.43 ft -
source: ESRI Maps .%1
0
** source: USGS
POINT PRECIPITATION FREQUENCY ESTIMATES
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley
NOAA, National Weather Service, Silver Spring, Maryland
PF tabular I PF graphical I Maps & aerials
PF tabular
11 PDS -based point precipitation frequency estimates with 90% confidence intervals (in inches/hour)' 11
10 -min
7 ? 5 3)I $ 6.69 1 5 4I 0(3.437) (4.37518) (5.07602 (5.57659) 11(6.25) 11(6.477.73) I(6.79814) I(7.6852) I(7.35896) (7.52925)
Average recurrence interval (years)
3.98
1
2
5
10
25
50 100 200 500 1000
6.92
5.04
5.94
6.90
7.60 7
F 8.40
8.95
9.46
9.91
10.4 IF
10.8
5 -min
(4.64-5.47)
(5.47-6.48)
(6.34-7.51)
(6.96-8.24)
1 (7.67-9.11)
11 (8.12-9.70) 11
(8.54-10.2) 11
(8.90-10.8) 11
(9.29-11.3) 11
(9.54-11.7)
10 -min
7 ? 5 3)I $ 6.69 1 5 4I 0(3.437) (4.37518) (5.07602 (5.57659) 11(6.25) 11(6.477.73) I(6.79814) I(7.6852) I(7.35896) (7.52925)
1.43 1.73 2.12 2.42 11 2.79 11 3.07 3.341 3.61 1 3.95 4.20
60 -min (1.32-1.56) (1.59-1.88) (1.95-2.31) (2.22-2.62) (2.55-3.02) (2.79-3.33) (3.02-3.62) (3.24-3.91) (3.52 4.29) I (3.72 4.58)
3.35
3.98
4.66
5.12
5.66
6.02
6.33
6.60
6.92
7.11
1 5 -min
(3.09-3.64)
1 (3.66-4.34)
2.75
1 (4.28-5.07)
3.31
1 (4.70-5.56)
3.71
1 (5.16-6.13)
4.19
(5.46-6.52)
4.53
1 (5.72-6.86)
F 4.85
1 (5.94-7.16)
5.14
(6.17-7.52)
1 (6.29-7.74)
2.30
5.50
5.76
30 -min
(2.12-2.49)
1 (2.53-3.00)
1 (3.04-3.60)
1 (3.40-4.03)
(3.82-4.54)
1(4.12-4.91)
1 (4.38-5.25)
1 (4.62-5.58)
(4.91-5.98)
1 (5.09-6.27)
1.43 1.73 2.12 2.42 11 2.79 11 3.07 3.341 3.61 1 3.95 4.20
60 -min (1.32-1.56) (1.59-1.88) (1.95-2.31) (2.22-2.62) (2.55-3.02) (2.79-3.33) (3.02-3.62) (3.24-3.91) (3.52 4.29) I (3.72 4.58)
0.353 11 0.425 0.531
0.614
0.727
6 -hr (0.323 0 387) (0.390 0 467) (0.485-0.582) 1(0.560 0 672)11(0.659-0.793)11(0.736-0.8 9) (0.811 -0 990) (0.8910-10.09) (0.994-4.24) (1.07-21435)
12 -hr 0.207
(0.190-0.227)
24 -hr 0.123
(0.114-0.133)
0.250
(0.229-0.275)
0.827
1.00
1.24
1.42
1.66
1.84
2.02
2.20
2.43
11 2.61
2 -hr
1(0.758-0.904)1(0.916-1.10)
1 (1.13-1.36)
(1.30-1.55)
1.02
1 (1.51-1.81)
1.20
1 (1.66-2.00)
1 (1.81-2.20)
11 (1.96-2.39)
1 (2.15-2.65)
11 (2.29-2.85)
0.585
0.706
0.881
1.35
1.49
1.64
1.85
2.01
3 -hr
(0.535-0.644)
(0.647-0.777)
(0.805-0.968)
(0.926-1.11)
1 (1.09-1.31)
1 (1.21-1.47)
1 (1.33-1.63)
(1.46-1.79)
1 (1.62-2.02)
(1.74-2.20)
0.353 11 0.425 0.531
0.614
0.727
6 -hr (0.323 0 387) (0.390 0 467) (0.485-0.582) 1(0.560 0 672)11(0.659-0.793)11(0.736-0.8 9) (0.811 -0 990) (0.8910-10.09) (0.994-4.24) (1.07-21435)
12 -hr 0.207
(0.190-0.227)
24 -hr 0.123
(0.114-0.133)
0.250
(0.229-0.275)
0.313 0.364 0.435 0.492 0.551 I 0.613
(0.287-0.344) (0.332-0.399) (0.394-0.475) (0.442-0.536) (0.491-0.600) (0.540-0.667)
0.701 0.772
(0.607-0.762) (0.660-0.839)
0.149 IF0.187
1(0.137-0.161)1(0.172-0.202)11(0.200-0.235)1
0.088
0.217
0.259
(0.238 0.281)
0.293
(0.268-0.318)
0.329
(0.299-0.357)
F 0.366
(0.332-0.398)
F 0.418
(0.377-0.455)
0.461
(0.413-0.502)
2 -day 0.072 0.087 0.109 0.126 0.150 0.169 0.189 0.210 0.239 0.263
2-d7.y
(0.067-0.079) (0.081-0.095) (0.101-0.118) (0.116-0.137) (0.138-0.163) (0.155-0.184) (0.172-0.205) (0.191-0.229)11(0.216-0.261)11(0.235-0.288)1
7 -day 0.027 0.032 0.039
(0.02 -0 029) (0.030 0 034) (0.036 0 042) 1(0.04 -0 048)11(0.049 0 056)11(0.054 0 063) 0.052 0.059 1(0.060 0 070)i (0. 66 0 077)i (0.074-0.088) 1(0. 810-0 096)
0.051
0.062
0.076
0.088
0.105
0.118
0.132
0.146
0.166
0.182
3 -day
(0.047-0.055)
(0.057-0.067)
(0.071-0.083)
(0.081-0.095)
(0.096-0.113)
(0.108-0.128)
(0.120-0.143)
(0.133-0.158)
(0.150-0.181)
(0.164-0.199)
20 -day
0.041
0.049
0.060
0.069
0.082
0.092
0.103
0.114
0.129
0.142
4 -day
(0.038-0.044)
(0.045-0.053)
(0.056-0.065)
(0.064-0.075)
(0.076-0.089)
(0.085-0.100)
(0.094-0.111)
(0.104-0.123)
(0.117-0.141)
(0.128-0.155)
7 -day 0.027 0.032 0.039
(0.02 -0 029) (0.030 0 034) (0.036 0 042) 1(0.04 -0 048)11(0.049 0 056)11(0.054 0 063) 0.052 0.059 1(0.060 0 070)i (0. 66 0 077)i (0.074-0.088) 1(0. 810-0 096)
30 -day (0.011--0 012) (0.01 -0 015) (0.01 -0 017) (0.017--0 019) (0.019 0 021) (0.021--0 023) (0.02 -0 025) j(0.
024-0 027) (0.026-0 030) (0.028-0 032)
45 -day 0.010 0.012 0.013 0.015 0.016 0.017 0.019 0.0200.022 0.023
(0.009-0.010) (0.011-0.012) 1(0.013-0.014)11(0.014-0.015) 1(0.015-0.017)11(0.017-0.018)11(0.018-0.020) (0.019-0.021)11(0.020-0.023)11(0.021-0.024)1
60 -day 0.009 0.010 0.012 0.013 0.014 0.015 1 0.016) ( 0.017 0.018 T-0 19
(0.008 0.009) (0.010 0.011) (0.011 0.012) (0.012 0.013) (0.013 0.015) (0.014-0.016) (0.015-0.017 0.016-0.018) (0.017-0.019) (0.018-0.020)
1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for
a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not
checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
Please refer to NOAA Atlas 14 document for more information.
Back to Top
https://hdsc. nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=34.9917&Ion=-80.6777&data=intensity&units=english&series=pds 1/4
0.022
0.026
0.031
0.035
0.041
0.045
0.049
0.054
0.060
0.066
10 -day
(0.020-0.023)
(0.024-0.027)
(0.029-0.033)
(0.033-0.037)
(0.038-0.043)
(0.042-0.048)
1(0.046-0.053)11(0.050-0.058)
1(0.056-0.065)11(0.060-0.071
20 -day
0.014
(0.014-0.015)
0.017
(0.016-0.018)
0.020
(0.019-0.021)
0.023
(0.021-0.024)
0.026
(0.024-0.028)
0.028
(0.027-0.030)
0.031
1(0.029-0.033)11(0.031-0.036)
0.034
0.037
(0.035-0.040)11(0.037-0.043)
0.040
30 -day (0.011--0 012) (0.01 -0 015) (0.01 -0 017) (0.017--0 019) (0.019 0 021) (0.021--0 023) (0.02 -0 025) j(0.
024-0 027) (0.026-0 030) (0.028-0 032)
45 -day 0.010 0.012 0.013 0.015 0.016 0.017 0.019 0.0200.022 0.023
(0.009-0.010) (0.011-0.012) 1(0.013-0.014)11(0.014-0.015) 1(0.015-0.017)11(0.017-0.018)11(0.018-0.020) (0.019-0.021)11(0.020-0.023)11(0.021-0.024)1
60 -day 0.009 0.010 0.012 0.013 0.014 0.015 1 0.016) ( 0.017 0.018 T-0 19
(0.008 0.009) (0.010 0.011) (0.011 0.012) (0.012 0.013) (0.013 0.015) (0.014-0.016) (0.015-0.017 0.016-0.018) (0.017-0.019) (0.018-0.020)
1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for
a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not
checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
Please refer to NOAA Atlas 14 document for more information.
Back to Top
https://hdsc. nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=34.9917&Ion=-80.6777&data=intensity&units=english&series=pds 1/4
5/14/2018 Precipitation Frequency Data Server
eNOAA Atlas 14, Volume 2, Version 3
Location name: Monroe, North Carolina, USA
Latitude: 34.9917°, Longitude: -80.6777°
Elevation: 601.43 ft -
source: ESRI Maps .%1
0
** source: USGS
POINT PRECIPITATION FREQUENCY ESTIMATES
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley
NOAA, National Weather Service, Silver Spring, Maryland
PF tabular I PF graphical I Maps & aerials
PF tabular
PDS -based point precipitation frequency estimates with 90% confidence intervals (in inches)1
Duration
Average recurrence interval (years)
=0.420
5-min(0.387-0.456)
1
2
5
1 100
10 25 50 100 200 500 1000
1.50 F 1.58
0.495
(0.456 0.540)
0.575
(0.528 0.626)
0.633
(0.580 0.687)
0.700
(0.639-0.759)
0.746
(0.677-0.808)
0.788
(0.712-0.854)
0.826
(0.742-0.896)
0.869
(0.774-0.944)
0.899
(0.795-0.979)
10 -min
0.670 11 0.792 11 0.921 1
�l(O.618-0.728)1(0.729-0.863)1(0.845-1.00)
1.01 11 1.12
(0.928-1.10) 1 (1.02-1.21)
1.19
(1.08-1.29)
1.25 1
(1.13-1.36)
1.31 11 1.37 11 1.42
(1.18-1.42) (1.23-1.49) (1.25-1.54)
10.8
0.838 0.996 1.16 1.28 1.41
1.50 F 1.58
1.65 1.73 1.78
1 5 -min
1(0.772-0.910)1(0.916-1.09) 1 (1.07-1.27)
(1.17-1.39) (1.29-1.53)
(1.37-1.63)
(1.43-1.71) 1
(1.49-1.79) 11 (1.54-1.88) (1.57-1.94)
(9.06-10.4)
1.15 1.38 1.65
1.86 2.09
2.27
2.4-2F
2.57 F 2.75 2.88
30 -min
(1.06-1.25) (1.27-1.50) (1.52-1.80)
(1.70-2.02) (1.91-2.27)
(2.06-2.46)
(2.19-2.63)
(2.31-2.79) (2.45-2.99) (2.55-3.13)
13.7
1.43 1.73 2.12 2.42 2.79
3.07 3.34
3.61 3.95 4.20
60 -min
(1.32-1.56) (1.59-1.88) (1.95-2.31)
(2.22-2.62) (2.55-3.02)
(2.79-3.33) 1
(3.02-3.62)
(3.24-3.91) (3.52-4.29) (3.72-4.58)
(11.6-13.2)
1.65 2.00 2.48 2.85 3.32
3.68 F 4.04 F 4.39 F 4.86 F 5.22
2 -hr
(1.52-1.81) 1 (1.83-2.19) 1 (2.27-2.72) 1
(2.59-3.11) (3.01-3.62)
(3.32-4.01) 11
(3.63-4.40) 1
(3.92-4.79) (4.30-5.31) 1 (4.58-5.70)
1.76 2.12 2.65 3.06 3.60
F 4.04
4.48
4.93 5.55 6.04
3 -hr
(1.61-1.93) (1.94-2.33) (2.42-2.91)
(2.78-3.35) (3.26-3.94) 1
(3.64-4.41) 1
(4.01-4.88) 1
(4.38-5.38) (4.86 6.06) (5.24-6.60)
2.11 2.55 3.18 3.68 4.35 IF
4.89 F 5.45 F 6.02 6.81 F 7.44
6 -hr
(1.93-2.32) (2.33-2.79) (2.91-3.49)
(3.35-4.02) (3.95-4.75)
(4.41-5.33)
(4.87-5.93) 11
(5.33-6.55) (5.95-7.40) 1 (6.43-8.09)
2.49 3.01 3.78 4.39 5.24 5.93 6.64 7.39 8.45 9.30
12 -hr
(2.29-2.74) (2.76-3.31) (3.46-4.14)
(4.00-4.81) (4.74-5.72)
(5.33-6.46)
(5.91-7.23) I
(6.51-8.04) 11 (7.32-9.18) 11 (7.95-10.1)
2.95 3.56 4.48 5.21 6.22 7.04
7.89 8.78 10.0 11.1
24 -hr
(2.73-3.20) (3.30-3.87) (4.14-4.86)
(4.80-5.65) 11 (5.71-6.74)
(6.44-7.63) 1
(7.19-8.56) 11
(7.96-9.54) 11 (9.04-10.9) (9.90-12.0)
3.48 4.19 5.23 6.05 7.20 8.13
9.09 10.1 11.5 12.6
2 -day
(3.22-3.77) (3.88-4.55) (4.83-5.67)
(5.58-6.56) 1 (6.61-7.81)
(7.43-8.81)
(8.28-9.86)
(9.15-11.0) 1 (10.4-12.5) (11.3-13.8)
3 -.6 -9 -1F -4-.4-3-1F-5.50 6.35 7.53
8.49 9.47 10.5 12.0 13.1
3 -day
(3.42-3.99) 1 (4.11-4.80) 1 (5.09-5.96) 1
(5.86-6.87) (6.93 8.15)
(7.78-9.19)
(8.66-10.3)
(9.56-11.4) 1 (10.8-13.0) 11 (11.8-14.3)
3.90 4.68 5.77 F 6.65 7.87
8.85
9.86 10.9 12.4 13.6
4 -day
(3.62-4.21) (4.34-5.05) (5.35-6.24) 1
(6.15-7.18) (7.25 8.50)
(8.13-9.57)
(9.04-10.7)
(9.97-11.8) 11 (11.3-13.5) 1 (12.3-14.8)
IF
6.5604)
7 -day
(4.22-4.84) (5.04-5.78) (6
(7.00-8.05) (8.18-9.46)
(9.13-810.6)
(10.10-11.8)
(11113.0) (1215 4.7) (13.6-16.2)
30 -day 8.48 9.9711.6 12.9 14.6 15.8 17.1 18.4 20.1 21.4
(8.01-8.98) (9.42-10.6) (11.0-12.3) (12.1-13.7) 11 (13.7-15.4) 11 (14.9-16.8) (16.0-18.2) (17.2-19.6) (18.7-21.4) (19.9-22.9)
45 -day
60 -day
10.7
5.16
6.15
7.40
8.39
9.73
10.8
11.9
13.0
14.5
15.8
10 -day
(4.85-5.53)
(5.76-6.57)
(6.92-7.91)
(7.83-8.97)
(9.06-10.4)
(10.0-11.5)
(11.0-12.7)
(12.0-13.9)
(13.3-15.6)
(14.4-17.0)
16.8
6.92
F 8.16
F 9.64
F 10.8
12.4
13.7
F 14.9
F 16.2
F 18.0
F 19.3
20 -day
(6.51-7.36)
(7.68-8.69)
(9.06-10.3)
(10.1-11.5)
(11.6-13.2)
(12.8-14.6)
(13.9-15.9)
(15.1-17.3)
(16.6-19.2)
(17.8-20.7)
30 -day 8.48 9.9711.6 12.9 14.6 15.8 17.1 18.4 20.1 21.4
(8.01-8.98) (9.42-10.6) (11.0-12.3) (12.1-13.7) 11 (13.7-15.4) 11 (14.9-16.8) (16.0-18.2) (17.2-19.6) (18.7-21.4) (19.9-22.9)
45 -day
60 -day
10.7
12.5
14.3
15.7 IF
17.5 IF
18.9
20.2
F 21.5
23.3
24.6
(10.2-11.2)
1 (11.9-13.1)
1 (13.6-15.0)
1 (14.9-16.5)
1 (16.6-18.4)
1 (17.9-19.9) 11
(19.1-21.3)
1 (20.3-22.7)
1 (21.8-24.6) 11
(23.0-26.0)
12.7
14.8
16.8
18.3
20.2
21.7
23.1
24.5
26.3
27.6
(12.1-13.3)
1 (14.1-15.5)
1 (16.0-17.6)
1 (17.4-19.1)
1 (19.3-21.2) 11
(20.6-22.8) 11
(21.9-24.3)
1 (23.2-25.7)
1 (24.8-27.6) 11
(26.0-29.1)
Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
umbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for
given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not
iecked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
lease refer to NOAA Atlas 14 document for more information.
Back to Top
https://hdsc. nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=34.9917&Ion=-80.6777&data=depth&units=english&series=pds 1/4
Cavesson Subdivision - Wesley Chapel, NC
Stormwater Management Report
EEI Project #6198
May 28, 2018
Appendix B
Storm Drain Calculations (Pipes, Catch Basins, HGL, Gutter Spread)
jawaulluoajoea-mmm
Ob90-6££ (9L9) ZZZb-Z88 (bOL)
6000£ b'O 'eV9JeydlV 6208Z ON `Pe -Il uelpul
k99 xoa 'o'd enueAV uejn8 ueA b'£dOZ
£L80-0 # 3SN301 1 YVYJ
JNIS33NIJN3
3 l J V 3
3nSS1 I Ae I 3ivo I -ON,
ON `3_I71/1SL31Nl1H
7d 2IH8b'NNID S68£d
1N3Wd073/134 Nb'WM08
13d VHD A3 133M -40 30 V I IIA
N0333AVO
8649 SdOZ/5Z/5 NMOHS SV
83sym 80r 31b'4 eleoS
aH!' M3N Ag
.l8 03)103HO 8 NMb'2i4 .l8 O3NJIS3a
d VYV b 3aV 30VNI VLfCl
NISVEI HO1bO
o
co
+i
U�
E-, CCOD
W
Lo
Ct=
\ U
U O
O
EL,
'to M U
N
- U
-_`
m
N U o
CJ
Q
CO
~moo
'
Oho
Nf
1 N I
CZ
N
°
J
I
V) Cb
O N
� O
O O
C�
— II
m
�oC
m
\
I I m O
17
I
C% co o`c
�
Qb
a U
I
I
O
O V CZ �
I
I
30
m
co CN
w
co
C\4
_
NU)
v m �2 rn
`-
\
° N
aS
m�
°oma�o \
Lo
Co
UoCN
�
�o
z\
Lr)
0 �O� (o cr
m
Lr\
C�
mLq16
LU
IL
$� Uo m o
E5 ¢� N �r
\
�.
C)�.i
0
J
I
ca �o
91.
cn
Um�t,u , I I
\ 1' l \�
b to
\ ' \ U,o y-M��,1
CN
I I % I I . I 1 0 Ill- a,
I
' / J cs
r°\im:
Lo
CDo
J ,p O ,
co co
\
-°off-\= 1
i w
�1 m LL
W
i
z �
0
CL
0
3
d
rn
a
C!
«s
:3
.s:!c
Fo.
(D
"20
,oDm
CD
0
o
F./
i75
O)
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
.
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
0)
J
Q
it
Q
it
Q
Q
Q
Q
it
Q
it
Q
Q
Q
Q
Q
Q
it
Q
Q
Q
Q
a
a
a
0-
a
a
a
a
0-
a
a
a
a-
0-
a
0-
a
a
a
a
a
a
w
0
N
V
w
w
V
V
CO
w
v
w
M
r-
V
(A
w
w
O
N
v
N
w
N
N
N
N
CA
M
(.
w
M
w
�
N
L
O
O
CO
M
N
W
(A
w
O
O
N
V
co
w
O
V
V
co
N
O
N
0
N
CO
O
CA
LO
V)
w
w
w
w
r-
r`
f --P-
w
w
w
w
w
00
w
w
w
w
w
w
R_
O
IT
Cn
LO
V
Cn
CO
q
w
CO
r
d'
_
W
CO
w
W
N
It
N
m
O
Cl!
N
N
N
O
0A
O
w
M
w
r`
N
CO
O
O
w
0)
C
C
CO
W
CO
CO
CA
CA
N
V
CO
w
O
V
V
M
N
O
N
N
M
CA
7
p
*
w
CO
Cn
CO
CC)
w
Cn
CO
CC)
CO
w
r`
Cn
rl.
w
r-
w
�
w
w
w
w
w
w
w
w
Cn
w
w
w
Cn
w
w
w
w
w
w
w
w
w
CC)
00
w
(Y
M_
LO
V
N
w
N
M
w
N
N
M
CA
Cn
CA
O
CC)
M
M
M
CO
O
w
w
n
M
w
CO
O
M
r`
O
w
O
w
O
OR
4
CO
w
V
�
CA
O
O
N
M
M
V
V
cO
w
r-
CA
CO
w
Q'
_
u
co
co
LO
co
co
LO
u
u
LO
V)
u
N.
u
N.
[)
V)
LLw')
V)
LO
C)
C)
d
LU
M
Cn
N
co
N
W
V
N
w
�
r-
co
w
CA
w
m
W
m
O
w
w
f`
w
L
M
V
CA
r�
O
M
n
O
CA
w
w
w
V
rl
wM
V
�
m
O
O
M
M
M
V
V'
CO
w
r-
W
CO
2
C
_
I-V
w
LO
LO
CO
U')
CO
w
w
U")
CO
Lo
w
(n
w
(n
w
(n
r-
Cn
r-
(n
f�
(n
r`
V)
r-
w
r-
w
r-
w
h
U')u�
r-
h
U')
r-
w
r-
w
w
w
p
V
V
L
m
OL
OM
N
L
CA
V
V
CA
r-
L
CA
V
N
M
V
V
VN
N
N
CO
w
m
N
CO
�
r-
w
O
ON
M
Cr)
L
w
V
CO
CL
Y3m
Lo
Lo
Lo
co
L
co
co
co
co
r-
r-
�
r-
r-
r-
�
r-
r-
w
w
—
>
>
LO
U')
LO
rn
(o
LO
U-)
LO
rn
(o
rn
LO
LO
LO
LO
rn
LO
rn
(o
LO
LO
L
o
m
W
O
V
w
O
w
O
O
O
O
t
f`
M
N
N
�
V
r -
O
L
CO
M
L
r
w
0)
M
r�
Co
r-
w
CA
0)
w
E
CO
V'
w
(A
N
CO
r-
w
w
m
O
N
N
M
CO
co
w
7
=1
_
LO
LO
LO
wO
Z
C
CLO
CO
CO
CO
w
C
CLO
CLO
U')
U')
U')
U')
CO
w
CO
w
w
w
w
CO
w
V)
Q.
O
w
O
h
M,
r-
L
O
O
O
O
O
O
O
W
C,
CO
n
O
0
LO
CO
c0
w
w
w
O
CI')
CO
CO
CO
L
CO
V
CO
CO
w
O
v
N
e
M
O
M
M
O
O
N
M
O
O
O
O
O
O
O
O
O
O
N
4
d
Q
00
w
w
N
N
N
N
N
N
N
N
N
NN
N
NN
L
O
V
w
Cn
IL
N
C
v
v
v
V
V
V
V
V
V
V
V
V
V
V
V
V
V
M
Co
N
It
-
O
M
LCO
to
CO
H
O
r�
r-
co
N
O
O
m
w
L
CO
O
(A
L
O
41
6
w
w
w
w
w
w
w
w
w
r-'
r
r-
r
r-
L
r-
rl-
to
w
X
M
�_
L
M
V
CO
N
M
V
O
V
V
W
V
M
O
(O
N
O
O
4
CL_
d'
L
�
(O
CO
w
v
R
w
P-
O
�
m
t`
M
w
0
t`
O
n
O
7
N
M
N
L) w
.U.
N
N
(A
CO
N
d
CO
W
N
W
CO
N
r-
CO
M
M
M
V
w
O
w
^v
w
N
j0
_
W
M
M
w
w
CO
Cl?
L
w
O
O
N
w
N
CO
O
M
O O
M
U)
r-
CO
CO
O
W
n
co
v
CO
N
O
r-
co
N
L
M
O
V
-
II
.V_.
w
w
w
w
w
w
LO
Cl)
LO
LO
CO
CO
M
V
V
V
Cl)
N
N
-
r-�
L
N
i
U
C
L
w
w
w
O
O
O
O
N
V
V
Cn
(O
L
�
O
O
M
M
II
L
LO
LO
LO
LO
L
CO
L
L
L
L
co
co
CO
co
CO
CO
r
r-
r-�
r-
r. -
CA
CA
f-
(O
M
O
w
w
M
5
E
O
O
O
O
N
O
'ORD
h00
CA
O
CA
w
w
w
w
w
CO
w
CO
II
U
~
N
C
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Lo
Lo
CC)
CO
C[)
CC)
Lo
Lo
Lo
m
Cfl
Lo
CCS
(n
CC)
Lo
CC)
CCS
(n
Cn
d
N
N
h
CA
O
CO
C
in
'r
i
"u�
iii
LN
._
v
._
M
M
0)
0
CO
_.
_.
w
OD
M
7
C
0
�
CO
M
�
(OO
N
OR
M
�
V
�
�
OR
O
W
f,
�
O
O
CA
w
w
w
�
r-
w
CO
w
co
N
N
O
O
Q'
x
O
Cl)
w
O
L
Nw
N
O
w
N
CO
O
L
M
CO
Cf)
V
0)
V
ai
r`•
y
Cj
O
N
N
N
7
V
M
M
M
Ln
w
M
w
O
M
OR
O
O
M
cj
Q
C
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
C,
tt:
O
O
O
O
O
O
O
O
O
O
O
O
O
O
0
0
C)
,•
�
0
0
0
O
C d
O
w
co
w
co
w
w
w
w
co
w
co
co
w
co
(o
(o
Co
co
co
(o
c0
CV
��
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
�.
0)
CO
M
w
N
w
V
w
O
w
w
w
w
CO
t*-:
t�:
w
£�
T
0
C
V
CO
Iq
w
V'
N
6
00
w
w
w
G
L
.,
L
G
w
UO
O
w
4
V,
4
w
M
-
M
N
N
LN
w
O
O
r
M
CSO.
N
�
d
.cc
CV
N
r
r
r
r
M
CO
V
M
-
r
d)
"
O>
O
"^
(0
L
r`
w
w
0
O
O
co
Cl)
w
O
m
w
w
N
t`
CO
w
V
V
O
c)
N
M
w
c
r
w
w
rn
w
O
CO
M
O
CO
O
CO
£
O
C
o
O
o
0
0
0
0
0
0
0
0
0
o
—
o
o
0
0
0
Oco
O
O
w
M
M
00
0
M
w
M_
O
00
N_
L
O
p
r'
M
L
O
O
C>
w
O
@
0
CO
O
O
N
CO
N
�
L
CO
�
O
III
O
w
O
w
w
w
w
w
v
O
O
w
M
O
Q
)n
N
M
co
'IT
Cr
w
M
w
w
w
w
O
N
O
O
M
v
w
O
O
M
M
N
(O
J
N
h
N
O
w
Co
CO
N
co
w
V
co
w
r�
N
CO
i?
["
O C
C
W
-
-
-
-
L
-
w
O
N
LL
~ J
r
N
M
V'
L
w
rl-
w
m
-O
-
-
V)
e
ul
4)
O
F-
C
CMN
d
�-
N
J
N
M
V
CO
CO
w
CA
N
N
N
0
co
cu
CL
CD
.i
.r..
....
....
....
....
....
....
....
.r..
...
...
...
...
`.
....
....
....
.r..
0)
N
O)
N
O)
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
(D
O)
J
n
n
n
n
n
n
0_
0_
0_
0_
n
n
n
n
n
n
0_
0_
0_
Q
0_
0_
a
a
a
a
a
a
0-
a
a
a
a-
a
'a
a
a-
a
a
a
a
a
a
a
o
0
N
N
M
d'
M
O
cD
V
0V
O
O
O
O
O
O
O
0
WIT
O
O
M
M
O
O
O
O
co
O
N
r
r
O
O
�
O
N
CL
V
O
Cl)
N
O
O
O
O
OD
Cl)
O
co
r-
O
O
00
r`
M
M
W
O
LD
00
O
00
O
00
O
00
O
Oo
O
0D
O
r`
LD
r`
O
rl-
O
r`
O
(D
O
(D
O
co
O
(D
O
(D
O
rl-
O
r-
O
co
O
(D
O
CD
O
(0
O
E
M
N_
IT
CO
O
cD
00
IT
O
CD
O
O
O
O
O
O
cD
CD
ICU
'
O
O
M
O
O
O
O
N
r
r`
O
q
O
N
r
r
O
r�
r`
C
C
O
O
Mm
O
N
C0
O
O
O
M
O
c0
r-
O
O
r`
M
M
7
$
00
O
00
O
00
O
00
O
00
O
M
O
OD
O
00
O
r-
O
co
O
r-
O
co
O
co
O
co
O
co
O
co
O
co
O
r`
O
O
co
O
CD
O
co
O
d'
C
c0
ODO
N
M
M
N
N
O
VM
r-
O
O
V
O
O
O
c0
M
O0;
O
M
M
O
00
N
O
r`
O
OIt
_r`
O
O
O
O
O
OD
r --r`
Cl)
00
O
O
O
Cl)
M
V
V
O
O
V0
O
Q.
_
co
V)
U)
V)
N.
LO
U)
U)
co
Lo
LO
co
co
co
co
co
co
co
V)
V)
V)
d
LU
M
O
r
M
co
r
OD
O
co
V
N
00
N
O
M
00
O
O
00
O
O
J
r
r
N
N
W
r`
M
Co
O
CoN
r
M
V
r,
O
(0
r
c0
O
O
O
O
00
to
c0
N
O
OD
00
O
M
V
It
V
O
V
O
O
2
C
_
00
O
O
O
00
O
OD
O
r--
O
h
O
rl-
O
r-
O
N.
O
0
O
c0
O
O
O
O
O
O
O
0
O
co
O
co
O
CO
O
co
O
c0
O
O
O
c0
O
V
V
r�
N
N
O
M
O
W
O
N
O
N
00
00
O
O
O
O
O
O
O
�
r-
O
M
r`
O
r`
O
N
M
M
q
O
q
O
O
2
O
co
r-
r-
r-
r-
r-
r-
co
rl-
O
V)
O
co
(D
(D
co
(D
co
O
O
-
>
O
O
M
O
O
M
O
O
O
O
O
O
O
O
O
O
LD
O
O
O
LD
O
o
m
W
�
O r` v r` lb h V O N V V O M V r`
t+
Nt
O
O
N
O
f�
O
V
r-
O
N
M
M
M
r`
7
co
O
O
W
N
E
0)
O
v
00
O
O
�
co
O
N
O
r-�
r`
O
O
N
N
M
M
V
M
co
O
=1
>
C
_
00
co
r-
r`
r-
r-
r-
�
Il-
(0
c0
O
O
co
CD
co
0
c0
(D
0
O
O
Z
C
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Q.
O
O
r
O
O
O
O
O
O
N
O
O
O
O
O
'-
O
O
O
0
00
O
O
O
O
O9
O
CD
r
M
M
M
M
M
O
O9
O
O
e
M
N
O
O
N
O
N
N
N
IT
It
(D
O
O
O
O
O
N
r
r
(D
Q-
O
O
M
M
M
O
O
W
O
O
O
O
O
V
V
O
O
V
7
d
N
C
r
r
r
r
r
r
r
r
r
r
r
Cl)
Co
N
N
N
N
N
r
r
N
N
-
.T
N
r
fl -r-
OD
O
r
CD
V
N
M
O
O
V
cD
h
O
O
M
41
N
M
N
M
�'
O
r
M
M
(D
(6
r
O
M
4
4
M
r
O
M
X
N
v
O
O
N
(0
....
N
r`
0
CL
N
co
a.
O
w
O
O
r
�N^v
O
v
O
O
Lo
CD
O
4
m
n
O
cc
O
co
N
IT
�
co
C9
c"i
Co.
O
ODO
O
�--
(0
cli
(0
O
O
N
6)
M
O
II
O O
.V..
N
r
�
O
O
-
r
V
-
O
(D
N
-
r
-
O
-
O
OD
O
N
O
M
r-
N
i
U
r
L
M
(4
O
(q
(D
(O
(q
(O
(fl
(q
(O
DJ
O
N
M
M
(9
(D
M
(D
II
OC
r
�
�
r-
r-
r--
�
r-�
r-
o
(o
(o
r-�
�
r-
r-
r-
r-
�
�
U
O
r
U)
C
Oui
OLri
Oui
OLri
Oui
O
M
O
O
O
r
M
M
O
O
M
O
r
j
ui
LriOui
ui
co
6
c6
r�
I�
o
o
L6
6
6
6
L6
6
i
51
�
m
O
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n
-
co
_
q
._
co
-
M
N
N
N
O
Lia
N
C,
N
M
E0)
7
O
0
M
7
0�
f-
O
N
7
�
O
OR
N
O
r�
c0
LD
N
O
OR
M
�
W
�
U
O
O
O
O
O
O
O
r
O
O
O
N
r
r
r
r
O
O
Co
r
CD
Q'
x
V
O
(0
(D
r
O
00
00
O
M
O
M
N
O
M
M
O
ai
h
y
cj
Cl)
r
N
O
N
r
O
O
O
N
O
r
r
r
r
N
O
M
r
r
O
C)
Q
C
O
O
C)
O
O
C)
O
r
O
O
C)
O
O
O
O
O
O
O
O
O
O
O
C,
tt:
O
O
O
O
O
O
O
O
O
O
O
O
(--
CD
0
CD
C)
,.
..
0
.,
0
O
O C)
co
co
co
O
co
co
(o
co
O
co
O
co
(D
cc
c0
cc
cD
co
(D
(D
(D
(D
cV
�0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
a)
T
LO
coN
v
O
_.
(D
(D
- '
LO
�
co
O
N
O
cli
cc,
C)
r-
Lai
£_
C
0
V
q
Cfl
N
O
�
N
N
O
't
d'
W
00
�
O
O
W
M
U0
N
00
q
•'
.�..
O
O
r
r
O
O
O
M
O
r
O
V
N
N
N
N
r
r
O
O
r
r
Q)
C>
-
O
O
O
O
r`
N
O
co
N
00
n
V
CD
OD
IN
1-
CO
Co
O
N
`
0
cj
co
N
Cl)
N0
N
N
O
O
It
r
r
-
N
N
v
OD
O
N
N
O
£
O
O
O
O
O
O
O
O
N
0
0
M
Or
M
CD
cD
co
rl-
r`
O
O
N
p
r•
I
O
O
O
O
O
O
O
r`
O
1
N
O
t-
[,-
Cl)
-q-N
O
v
O
O
)
r
III
O
O
O
O
O
O
O
r�
O
M
M
00
O
O
_
0
)n
N
co
n
c0
O
(O
CO
(O
cV
c0
C)4
0
6
6
O
00
CO
(O
Co
J
N
N
N
N
N
N
O
OD
w
O
Lo
M
N
N
V
CO
0)
i -
N)
N
O
O
W
(D
N
7
M
M
O
O
Cl)
LL-
i.
O
~ J
N
N
N
N
r
r
r
-
r
O
O
M
N
CO
M
M
M
M
M
M
M
'cY
M
M
M
M
r
U
ul
O
F-
CF
N
C
M
v
O
co
I--
co
O
O
N
M
eY
O
(D
rl-
OD
O
O
N
co
V'
d
�-
N
J
N
N
N
N
N
N
N
M
M
M
M
M
M
M
M
M
M
v
V
v
V
Nt
r-
d
0tt=
tt=
4--
4--
tl--
4--
tl--
4--
tt=
4--
4--
t:
t:u
u
m J
L
O
O
O
O
O
O
O
O
O
O
O
Op
O
O
O
O
O
O
O
O
O
O
Q v
O
O
M
C
(6
O
I-
Cl)
co
M
(n
IN
-
'^
M
M
I-
M
M
O
M
M
M
O
V
(n
C,N
c
L
O
M
ID
V
O
V
M
N
07
W
Lq
O
(0
O
M
v
O
v
Lj
O
M
N
Lr)
N
N
-
M
v
N
h
O
(t7
N
O
O
NQ
NN
w
OM
OD
M
cm)
00
M
00
v
M
OD
C,
-
(0
O
O
_
0$
O
O
O
O
O6
O
O0
O
O
O
O
O
O
O
O
O
O
O
O
O
c
C
7
V
M
(0
O
O
Cl)
M,
Cl)
(I)
(I)
00
O
=
M
M
O
M
c;
co
-
I-
M
L
Q^
O M f� Ib M V O O O N M M CO O v G) v Lj (0 V O V'
O v v N Cl) v (. It co (n M M (0 Il- M I` - M N - N M M
O
M_
v
cl-_
N_
CO_
co
CO_
I-
LO
co
o
O
00
I'
W
00
(O
M
h
0)
(A
(0
C
O
O
N
O
O
0)
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
f6
OM
M
M
M
M
M
M
M
M
M
M
M
M
M
O
M
O
O
M
M
M
M
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
C
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
y
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
(6
O
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
ay+
O
O
O
O
O
O
O
O
O
O
N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
0
C
O
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
O
N
N
N
N
7
O
v
v
v
v
v
v
v
vvv
O
vv
v
v
v
v
v
v
N
v
v
v
v
E
V
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
_
Q
fn
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
z
Ni
OO O O OO O
_
O
O
O
O
OOOOOOOOO
O
O
OO
O
O
O
OO
O
O
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
c31
IM
IM
rn
rn
rn
rn
rn
rn
rn
rn
o
0
0
0
0
0
�
,-
0
c:
3;
0
0
0
0"
0
0
0
0"
o
o"
0
0
0
`o"
a
`0"
m
m
o
0
0
0
°c'
Uo
fn
o
0
0
0
0
0
0
0
0
0
0
0
0
0
(A
o
fn
fn
o
0
0
0
m
C)
c
c
c
o
o
c
o
o
c
m;
0
0
0
0
0
0
0
0
0
0
0
0
o
O
O
O
o
o
O
o
0
0
0
O
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
=pi
_d
_
_
O
C
_
_
_
O
C
_
_
O
O
O
_
_
O
O
O
C)_
CDG
C
c
c
c
c
c
O
O
c
c
c
c
c
O
O
c
c
c
c
O
c
c
c
c
.-
O
J
0
Cl)
M
M
Cl)
(h
Cl)
(h
M
Cl)
Cl)
Cl)
M
co
Cl)
m
Cl)
M
M
Cl)
m
(h
(M
Im
ca
d a
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00
o
O
o
0
0
0
0
a M
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
O
to
(O
o
0
o
O
p0
`mi
0
0
0
°`
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
E
d
J
O
N
N
N
N
N
N
N
N
N
N
N
N
N
N
O
N
N
O
N
N
N
N
_p!
[Y:
0
0
0
0
0
0
0
0
o
O
o
0
0
0
0
0
0
0
o
O
o
0
0
O
y C
O
M
M
M
(O
M
(O
M
M
M
M
(O
M
M
M
M
M
M
O
(0
(O
M
(O
Oi
C!
Co
�
c a
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
c7
E
E
E
E
o
=
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
H
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
D
U
U
U
U
c;
•+
LO
a,
T
O
O
O
�
M
O
_
N
M
N
(0
h
M
O
O
O
O
O
O
N
M
E_:
c m .V..
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
o
O
Mi
C:
0
O
-
"'
M
O
0
(C1
(0
M
M
M
v
N
(v
M
-
M
" i
M
I-
O
N
(CJ
.\
2
u7 V
O
M
O
6i
O
M
O
M
O
i*
O
N
-
(O
O
N
-
O)
O
O
(C7
M
O
M
M
O
N
-
M
M
7
O
M
O
-=i
N
.V..
a
w
u
L
U V
o
o
0
O
0
o
0
o
0
0
0
o
0
0
0
o
0
o
0
o
0
o
0
0
0
o
0
0
0
o
0
o
0
o
0
o
0
o
0
o
0
0
0
o
0
o
C:
Ni
O
O
M
(f1
(O
M
N
M
O
i-
-C,
N
O
M
M
�
M
"Zr
M
-C
II Q w
O
W
M
CO
M
CO
I�
M
-
V
,;rM
-
"
M
-
M
�
f9i
U V.
O
O
O
O
O
O
-
"
N
N
c;
E
II
iA
IE
O
O
IOi
0
NM
v
(n
(0
I-
M
O
O
N
M
O
N
M
•Zi
W
O
O
O
O
O
O
O
O
7
7
7
7
7
7
7
7
7
C
CN
C\j
!
C7
=
m
7
m
7
m
7
m
7
m
7
m
7
m
7
m
m
m
m
m
m
m
m
m
m
m
m
m
m
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
I1
(/J
V
N
LLI
O
i�
O O
�
N
M
v
(�
CO
I-
M
O
O
-
-
-
-
-
co
-
M
c
O
N
�--
N
N
N
Cl)
N
d
.Z.
J Z
N
IL
r-
d
�
�
4--
4--
�
4--
�
4--
�
4--
4--
t:
t:u
u
m J Z
L
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
r
r
r
r
r
r
r
r
r
0r
r
O
(D v
O
M>
O
N
c4
V
N
O
O
N
N
W
OO
�
N
W
to
f-
r
C
M
V
=
M
C
M
M
M
N
r
O
r
F
0
r
N0
V
N
O
Cl)
r
r
O
O
r
r
N
Cl)
r
r
NN
U)
r+
CG
M
O
00
O
v.
(v
7
Cl)
7
7
r
N
M
7
O
m
Q.
O
r
N
N
�
r
r
r
7
N
N
❑
Q$
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
C
7
CY
V
co
O
00
R
V
V
v
(o
N
"'
M
O
'^
V
N
N
r
O
r-
(n
M
(o
O
-
W
L
O. ^
C O co r- V (fl N N DJ W M f� C m O r
O V N r r} N V r Cp r M M V V (n (0 r N N
00
N_
Ce)
t'
V
MO
N_
M_
M_
CO
00
N_
N
C
N
G
_
O
N
d
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
�^.
f6
O
M
O
M
O
O
O
M
M
M
O
M
M
M
M
M
M
O
M0
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
c6
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
ay+
N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
cA
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
0
C
O
N
O
N
N
N
O
N
N
N
N
N
N
N
N
N
N
O
N
N
O
7
^r
N
V
N
V
V
V
N
V
V
O�'
V
V
V
N
-0
U
Q
fn
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
z
Ni
CO O O O OO o
_
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
m'
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
c3�
o
V
rn
rn
o
�
r�_
m
(n
m
m
_v,
(n
o
O
rn
(p
O
rn
(p
O
rn
(p
rn
(p
rn
(p
O
O
O
rn
rn
rn
rn
V% ...
U)
O
U)
O
w
w
w
O
O
O
U)
O
O
O
O
O
O
U)
O
Ni
ID
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Oji
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
=pi
_d
G
_
_
O
C
_
_
_
O
C
_
_
0
O
O
_
_
O
O
O
O
C
C
C
C
C
C
C
C
C
C
C
C
C
C
O
C
C
C
C
O
O
O
.-
N
J
M
Cl)
M
M
Cl)
C)
Cl)
C)
M
Cl)
Cl)
Cl)
M
Cl)
Cl)
Cl)
M
M
Cl)
m
M
m
I
O
O
C
O
^
0
^
O
0
^
0
^
0
^
O
^
O
O
(ry
p
d a
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
a M
co
O
co
C3
co
c0
(D
C3
CD
O
to
O
C3
O
C3
CD
O
to
O
co
(D
pp
`mi
0
0
0
0
0
°`
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
E
(D
J
O
N
O
N
N
N
O
N
N
N
N
N
N
N
N
N
N
O
N
N
O
_]!
�I
L
[Y:
C)
o
O
o
0
0
0
0
o
O
o
0
0
0
0
0
0
0
0
0
0
O
y C
O
(o
O
(o
(o
(o
O
(o
(o
(o
(.
(o
(o
(o
(o
(o
(o
O
(o
(o
O
(]i
V
(]'
(]I
c a
U
EU
E
E
E
U
E
E
E
E
E
E
E
E
E
E
U
E
E
U
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C
H
❑
U
❑
U
U
U
❑
U
U
U
U
U
U
U
U
U
U
❑
U
U
❑
cji
a
T
0
0
0
0
0
0
0
0
Co
0
0
0
0
o
N
m
0
0
0
o
E:
Ci m
0
0
o
o
0
0
0
o
o
0
o
0
o
0
o
o
o
0
o
o
o
C:
2 y
[o
I�
O
Mop
O
r-:
C
M
M
V
V
(n
N
V
N
V
(f7
C
•�
u7 V v
O
O
M
O
r
O
I-
O
r
O
O
O
O
O
O
O
r
r
O
O
M=i
a
Z,
...
0
...
0
...
0
...
0
...
0
_..
0
0
0
0
0
0
0
...
0
0
0
0
^
0
._
0
_.
0
...
0
...
0
...
0
0
0
0
0
C-1
u
L
0
0
0
o
0
o
0
o
0
0
0
0
0
0
o
0
o
o
o
o
o
C:
Ni
I-
V
O
�
N
N
OM
V
00
M
MLO
O
O
O
M
Co
-C
_
M
OJ
r
r
O
(O
00
O
M
M
M
(A
(0
O
(�
?
O
f9i
U v
O
O
M
O
O
I-
O
N
r
o
O
O
O
C
r
N
O
O
M
<7i
(7;
E
II
z
Ni
O
]'
O
(Oi
0)
N
00
O
r-
LO
M
V
LO
(O
r
M
C
O
_
N
U)�
M
M
CY)
cli
C14
CIA
CY)
r
cor
L
CO
CO
Co
07
0]
CO
m
m
m
m
m
m
m
m
00
m
0)
C
❑
U
❑
U
U
U
❑
U
U
U
U
U
U
U
U
U
U
❑
U
U
❑
I1
(n!
V
�
FLI
c,
O
V
N
(Cl
N
(o
N
I—
N
M
N
C
N
O
co
Mm
N
co
Mm
V
(n
co
(o
M
I-
co
M
M
C
M
O
V
V
N
V
Cl)
V
V
d
.�.
J Z
Cavesson Subdivision - Wesley Chapel, NC
Stormwater Management Report
Appendix C
Hydrological Soils Map and Summary Report
SCS Curve Number Designations
EEI Project #6198
May 28, 2018
Hydrologic Soil Group—Union County, North Carolina
(6198 -PRE -DEVELOPMENT SOILS)
oo
529300 525400 9500 52 529600 529700 529800
529900 530000
34° 59' 40" N
34° 59' 40" N
N
�i
Pr
g
�
g
K
2S
34° 59' 6' N
34° 59'6" N
529300 529400 529500 529600 529700 529900
529900 530000
3
3
Map Scale: 1:5,030 if printed on A portrait (8.5" x 11") sheet.
LnLn
Meters
N0 50 100 200 300
Feet
0 200 400 800 1200
Map projedion: Web Mercator Comer coordinates: WGS84 Edge tics: UTM Zone 17N WGS84
USDA
Natural Resources Web Soil Survey
5/9/2018
Conservation Service National Cooperative Soil Survey
Page 1 of 4
as
C
0
c4
U
0 J
Z
_ Un
c~
Z
O W
U�
ca
00
7 J
D W
Iw
0_ p
o W
�a
U) rn
U �
rn �—
O
O
T
0
Z
/W
V
W
J
a
CL
E
O
U
L
a
0 0 @
U O 0 OO
O UO
Co
U ? EO)
� U _O a)
N QCL
@ aS
Em C
0 w 0)m 0
,L O
m mO- O C
a mm L 0
E 0
> w Oc >
s c:� ocl,
a
c -a n a
T Q LO.m O
m y� E
E O O N f4
+L
as E 0)
0 -0 .O
Un 0 E m
cEa)Up
o a as
c
wE_U�n
00 v
0 0
CV CV
LO 0
a
a)
U
a
ca
Ch
C6
m r 0
m
a
m
L
�
3 c 0
U
0
S O L
a
w
T
-C
(6
Com O C
f0
E
o
Q Mh E
0-0w6 r
3
t
CAN
c E
-gym
O
> 7 a3 a
N
a
m
6
m
a)co
a)
O ip lf)
w Q m co C7
(n
c
c
U w
a)
al CO
O@ U
O N
U
Z
0
r
T
Y .LU. .: c
a
ani C7
0
Z
as
Uo
p
o Z
as N
N C f6
7 to O E
v E m�
a
U)a
a�aas
L N
3
-a
o�>
0
E
V W
N@" O N
p
M
L
3 L al
L
U
. C a N U
O
Z v
a)
C
C O V) Q
o Q
L)
v m@
@
°y c o
w 3
-0
m
o
T
ocl � u; o
O i
T a) O U
`
C�
U)
O
E T N E
0
0
Z a 0 0 al
0 Q
O
Q
N E
w-0
O
U O
.UU..
m� o m
as
m
In a) a� 0 o
a o
c.L
a
a)
3
o �' a
oa�iQL,o
m co -a
Q O C
�`�
c0
=
aoi
a�Q"w3
O O
Q
m
2
1] EL 6 U
O U
@
O
O N_ O
N
O
O
C
o C
c0 3< j
,LO„ a U
75
y
0
Q�
+U-'
m
O a n a1
o
'72
O
0a o
��
N 7
0
(n E
o o a�
U (0
U
0 0
>
� Q
3 T
ao
m O
m
O)
co m
U •E
7 L O
C i
Q N w O U
Q
U LO.
Q O
O
�
w n
N O
N E m f5
aE
U) L)
to
2Q_'oQm
FE —0
U)U)
U)
pN
F-UELA
00 v
0 0
CV CV
LO 0
a
a)
U
a
ca
T
-C
o
U
3
t
CL
'o
6
m
a)co
a)
N
O
N
ca
L
m
E
m
o
T
a
U U
p
o Z
as N
N C f6
7 to O E
a1
c
U)
5
o
'(0
m
L)
J
m
.�
Q
m
.
❑ ❑
❑ ❑
Q7 0
LL C
C
C
7
N
�r k C
a7 of
`
1
u
U
H
m
a
N
O
O
C
O
C
O
N
C
O
O
_
C
0
a)
y
a
N
Q O
a)
N
C
cc
H m
CL°❑
❑
❑_
a
C
❑
❑
❑ o
�° ❑ ❑
Q
y
OI Q
C
Q a] 0]
U
U
❑
Z
O) Q Q
C
m co
U U ❑ Z
O) Q Q m m
C
0 0 13 13C
Go)
O N
U
U
Q
M
00 v
0 0
CV CV
LO 0
a
a)
U
Hydrologic Soil Group—Union County, North Carolina
Hydrologic Soil Group
6198 -PRE -DEVELOPMENT SOILS
USDA Natural Resources Web Soil Survey 5/9/2018
Conservation Service National Cooperative Soil Survey Page 3 of 4
Map unit symbol
Map unit name
Rating
Acres in AOI
Percent of AOI
BdB2
Badin channery silty
C
28.5
61.0%
clay loam, 2 to 8
percent slopes,
moderately eroded
5.6
ChA
Chewacla silt loam, 0 to
B/D
12.1%
2 percent slopes,
frequently flooded
TbB2
Tarrus gravelly silty clay
B
12.6
26.9%
loam, 2 to 8 percent
slopes, moderately
eroded
Totals for Area of Interest
46.7
100.0%
USDA Natural Resources Web Soil Survey 5/9/2018
Conservation Service National Cooperative Soil Survey Page 3 of 4
Hydrologic Soil Group—Union County, North Carolina
Description
6198 -PRE -DEVELOPMENT SOILS
Hydrologic soil groups are based on estimates of runoff potential. Soils are
assigned to one of four groups according to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive
precipitation from long -duration storms.
The soils in the United States are assigned to four groups (A, B, C, and D) and
three dual classes (A/D, B/D, and C/D). The groups are defined as follows:
Group A. Soils having a high infiltration rate (low runoff potential) when
thoroughly wet. These consist mainly of deep, well drained to excessively
drained sands or gravelly sands. These soils have a high rate of water
transmission.
Group B. Soils having a moderate infiltration rate when thoroughly wet. These
consist chiefly of moderately deep or deep, moderately well drained or well
drained soils that have moderately fine texture to moderately coarse texture.
These soils have a moderate rate of water transmission.
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist
chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture or fine texture. These soils have a slow rate of
water transmission.
Group D. Soils having a very slow infiltration rate (high runoff potential) when
thoroughly wet. These consist chiefly of clays that have a high shrink -swell
potential, soils that have a high water table, soils that have a claypan or clay
layer at or near the surface, and soils that are shallow over nearly impervious
material. These soils have a very slow rate of water transmission.
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is
for drained areas and the second is for undrained areas. Only the soils that in
their natural condition are in group D are assigned to dual classes.
Rating Options
Aggregation Method: Dominant Condition
Component Percent Cutoff. None Specified
Tie-break Rule: Higher
uSDA Natural Resources Web Soil Survey 5/9/2018
Conservation Service National Cooperative Soil Survey Page 4 of 4
Cavesson Subdivision
Wesley Chapel, North Carolina
Project Number: 6198
May 25, 2018
COMPOSITE SCS RUNOFF CURVE NUMBERS
24 Hour Storm Event
Pre Development
Soil Type: TbB2-Tarrus Gravelly Silty Clay Loam - HSG "B"
Total Drainage Area = 12.58 ac.
Roofs, driveways, etc 0.00 ac.
CN = 98
Open Space (Good Condition) 0.00 ac.
CN = 61
Woods 1.61 ac.
CN = 55
Pasture, grassland or range 10.97 ac.
CN = 61
Composite CN 60
Soil Type: BdB2-Badin Channery Silty Clay Loam - HSG "C"
Total Drainage Area = 28.49 ac.
Roofs, driveways, ponds, etc 0.43 ac.
CN = 98
Open Space (Good Condition) 0.00 ac.
CN = 74
Woods 5.16 ac.
CN = 70
Pasture, grassland or range 22.90 ac.
CN = 74
Composite CN 74
Soil Type: ChA-Chewacla Silt Loam - HSG "B/D"
Total Drainage Area = 5.65 ac.
Roofs, driveways, ponds, etc 0.06 ac.
CN = 98
Dirt 1.04 ac.
CN = 89
Woods 1.90 ac.
CN = 77
Pasture, grassland or range 2.65 ac.
CN = 80
Composite CN 81
Cavesson Subdivision
Wesley Chapel, North Carolina
Project Number: 6198
May 25, 2018
COMPOSITE SCS RUNOFF CURVE NUMBERS
24 Hour Storm Event
Post Development
Soil Type: Tb132-Tarrus Gravelly Silty Clay Loam - HSG "B"
Total Drainage Area = 10.72 ac.
Roofs, driveways, etc 0.00 ac.
CN = 98
Open Space (Good Condition) 0.00 ac.
CN = 61
Woods
CN = 55
0.00 ac.
AVERAGE LOT SIZE = 1 ACRE 10.72 ac.
CN = 68
Composite CN 68
Soil Type: BdB2-Badin Channery Silty Clay Loam - HSG "C"
Total Drainage Area = 13.20 ac.
Roofs, driveways, etc 0.00 ac.
CN = 98
Open Space (Good Condition) 0.00 ac.
CN = 74
Woods 0.00 ac.
CN = 70
AVERAGE LOT SIZE = 1 ACRE 13.20 ac.
CN = 79
Composite CN 79
Soil Type: Cmb-Cid Channery Silt Loam - HSG "D"
Cavesson Subdivision
Wesley Chapel, North Carolina
Project Number: 6198
May 25, 2018
COMPOSITE SCS RUNOFF CURVE NUMBERS
24 Hour Storm Event
Post Development Bypass 1
Soil Type: TbB2-Tarrus Gravelly Silty Clay Loam - HSG "B"
Total Drainage Area = 1.86 ac
Roofs, driveways, etc 0.00 ac.
CN = 98
Open Space (Good Condition) 0.00 ac.
CN = 61
Woods 0.00 ac.
CN = 55
Pasture, grassland or range 1.86 ac.
CN = 61
Composite CN 61
Soil Type: BdB2-Badin Channery Silty Clay Loam - HSG "C"
Total Drainage Area = 6.65 ac.
Roofs, driveways, ponds, etc 0.43 ac.
CN = 98
Open Space (Good Condition) 0.00 ac.
CN = 74
Woods 1.97 ac.
CN = 70
Pasture, grassland or range 4.25 ac.
CN = 74
Composite CN 74
Cavesson Subdivision
Wesley Chapel, North Carolina
Project Number: 6198
May 25, 2018
COMPOSITE SCS RUNOFF CURVE NUMBERS
24 Hour Storm Event
Post Development Bypass 2
Soil Type: BdB2-Badin Channery Silty Clay Loam - HSG "C"
Total Drainage Area = 6.76 ac.
Roofs, driveways, ponds, etc 0.43 ac.
CN = 98
Open Space (Good Condition) 0.00 ac.
CN = 74
Woods 0.53 ac.
CN = 70
Pasture, grassland or range 5.80 ac.
CN = 74
Composite CN 75
Soil Type: ChA-Chewacla Silt Loam - HSG "B/D"
Total Drainage Area = 5.65 ac.
Roofs, driveways, ponds, etc 0.06 ac.
CN = 98
Dirt
CN = 89
1.04 ac.
Woods 1.90 ac.
CN = 77
Pasture, grassland or range 2.65 ac.
CN = 80
Composite CN 81
Cavesson Subdivision
Wesley Chapel, North Carolina
Project Number: 6198
May 25, 2018
COMPOSITE SCS RUNOFF CURVE NUMBERS
24 Hour Storm Event
Post Development Bypass 3
Soil Type: TbB2-Tarrus Gravelly Silty Clay Loam - HSG "B"
Total Drainage Area = 0.32 ac.
Roofs, driveways, etc 0.00 ac.
CN = 98
Open Space (Good Condition) 0.00 ac.
CN = 61
Woods 0.00 ac.
CN = 55
Pasture, grassland or range 0.32 ac.
CN = 61
Composite CN 61
Soil Type: BdB2-Badin Channery Silty Clay Loam - HSG "C"
Total Drainage Area = 1.66 ac.
Roofs, driveways, ponds, etc 0.00 ac.
CN = 98
Open Space (Good Condition) 0.00 ac.
CN = 74
Woods 0.00 ac.
CN = 70
Pasture, grassland or range 1.66 ac.
CN = 74
Composite CN 74
Cavesson Subdivision - Wesley Chapel, NC
Stormwater Management Report
Appendix D
Riser Uplift Calculations
Rip -rap Calculations
Erosion Control Plan & Calculations
EEI Project #6198
May 28, 2018
ENGINEERING
41
2013-A. Van Buren .Avenue
Indian Trail. NC 28479
(7C-4) 882-4222
Riser Buoyancy Calculations - Dry Detention Pond
Project Name: Cavesson Subdivision
Project No.: 6198
1 ft. Spillway Height
550 ft. Spillway Elev.
Riser Width:
Riser Thickness:
Barrel Size:
Top of Basin:
Bottom of Basin
Riser Weir:
Spillway Height from top of Basin:
48
in
in 549 ft. Riser Weir
in
ft.
ft. 8 ft.
ft.
ft.
541 ft. Bottom of Basin
6
24
551
541
549
1
Unit wt. of H201 62.4 ft3
Volume of Riserl 1601M
Wt. of H2O displaced in riserl 9,984 lbs
Unit Wt. of concrete (pcf) 150 lbs/ft3
Volume of concrete in riser 37.5 ft3
Wt. of concrete riser 5,625 lbs
Total Buoyancy Force to displace 15,609 lbs
Concrete Base Required to Stabilize Riser:
48 in. RISER
Ballast Pad
551 ft. Top of Basin
24 in. RCP
9 ft.
Wt. of H2O displaced in riser + Wt. of concrete riser
Concrete Pad Thinckness
18
in.
Concrete Pad Width/length
10
ft
Volume of concrete pad
150.00
ft3
Wt. of H2O displaced =
9,360
lbs
Wt. of concrete pad
22,500
lbs
10 ft.
/48 in. RISER
y4 No
Ballast Pad
/ 18 in.
Factor of Safety: 11.4415 1 10 ft.
Factor of safety should be greater than 1.10 F Ballast Pad Dimensions: 10 ft. X 10 ft. X 18 in.
Channel Report
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.
6198 BMP POND
DITCH (Q25 = 2.56 cfs)
Trapezoidal
Area (sqft)
Bottom Width (ft)
= 6.00
Side Slopes (z:1)
= 2.00, 2.00
Total Depth (ft)
= 4.00
Invert Elev (ft)
= 540.61
Slope (%)
= 0.77
N -Value
= 0.150
Calculations
Compute by:
Known Q
Known Q (cfs)
= 2.56
Elev (ft)
545.00
544.00
543.00
542.00
541.00
540.00
539.00
Section
0 5 10 15 20
Reach (ft)
Tuesday, Jun 5 2018
Highlighted
Depth (ft)
= 0.63
Q (cfs)
= 2.560
Area (sqft)
= 4.57
Velocity (ft/s)
= 0.56
Wetted Perim (ft)
= 8.82
Crit Depth, Yc (ft)
= 0.18
Top Width (ft)
= 8.52
EGL (ft)
= 0.63
25 30
Depth (ft)
4.39
3.39
2.39
1.39
0.39
-0.61
1 -1.61
35
T
T" LLI
N
in Y
N
LO
(4�) azig d-eadid D5p
��qq�� N p ❑
N
-----�--
� AAs
All
i
It! w w
w w w
U
sr
0
N
W
J
—_
U-
a
II
II
> i
m
45 E
0 �
U
a as
'a
�
U
It! w w
w w w
0 0 0
U
sr
0
�
Y
a
II
II
> i
0 �
^O
t/]
z
0 0 0
U
�
Y
Y
�
Y
O
'pi
J4
N
w
o
o
w
Y
}
W
N
�_
'C
4:5,
N
iz
�
•k
II
II
II
II
II
v'
c0
O
3F
O
Vl
w
O
b
o
r-
Y
ti
cd
0 0 0
w w w
U
Z
>r
0
ZCL
�
M EPEE
�
�
o07u
a
km
II
II
> i
•Pr
-
0 �
l
�
7
ell
_
N
^O
t/]
C�
>,
o
t
'a
.�
N
S
a�
i�
z
�
cd
W
U
IL
E
O
C.
•�.y
it
w
w w w
U
Z
>r
0
ZCL
�
~
�
�
o07u
a
°
II
II
> i
•Pr
-
0 �
l
�
ell
U
N
^O
t/]
C�
>,
o
t
'a
N
S
i�
z
w w w
U
Z
>r
0
ZCL
�
~
�
�
o07u
a
°
II
II
> i
•Pr
0 �
ell
U
N
^O
t/]
C�
>,
o
t
'a
N
m
z
�
cd
W
U
IL
E
O
C.
•�.y
it
w
c
II
II
w
°
^,
W
�
0.4
�
'"
E
cpdoMQ
N
O
A
Z
=
w
O
z
ci
W
y
4
Q
�_
y
O
v
..2
m
v
w
c
O
II
cn_o
II
0
II
b
�
0
o
d
J
D
cC
d
a
w w w
>r
0
�
~
�
�
o07u
a
II
II
> i
•Pr
0 �
^O
t/]
C�
a
t
'a
z
�
b
�
�
•Pr
o
a
t
'a
�
cd
b
O
C.
•�.y
it
w
W
°
�
m
�
'"
cpdoMQ
N
A
w
O
O
W
y
O
�_
y
O
�
•k
II
II
II
II
II
b
�
o
Ot
Vl
w
O
b
�
o
r -
Cd
Y
ti
0
0
0
Project
Project #
Designation
SKIMMER
CAVESSON
6198
SKIMMER BASIN 1
BASIN
Client BOWMAN
Date 5/28/2018
Designer KEW
ENGINEERING
2013A Van Buren Ave.
Indian Trail, NC 28079
NC Erosion and Sediment Control Planning and Design Manual
Total Drainage Area
12.32 Acres
536,659 Square Feet
Total Disturbed Area
3.19 Acres
I 138,956 Square Feet
C
0.50
Contour
Area
Volume
Net Volume
Tc
5 Minutes
575
5,190
0
0
110
7.03 Inches per Hour 576
11,309
8,250
8,250
0110
43.30 CFS
577
18,065
14,687
22,937
578
25,456
21,761
44,697
Required Volume
11,484 Cubic Feet
579
31,285
9,156
53,853
Required Surface Area
18,838 Square Feet
Provided Volume
44;697 Cubic Feet
OK
Provided Surface Area
25 456 Square Feet
OK
Length 245 Feet Minimum Spillway Design
Width 120 Feet 011043.30 CFS
L/W Ratio 2.04 OK H 1 Feet
C 3
Spillway Elevation 578
Surface Area at Spillway 25,456 L 14.43 Feet
Spillway Design
Spillway Length 20 Feet Days to Drain 3 Days
Head over Spillway 1 Feet Skimmer Size 4 Inches
Weir Coefficient 3 Orifice Radius 1.7 Inches
Max Flow 60 CFS OK Orifice Diamter 3.4 Inches
EAGLE, ENGINEERING, INC.
2013 VAN BUREN AVENUE, STE A
INDIAN TRAIL, NORTH CAROLINA 28079
Project
Project #
Designation
SKIMMER
CAVESSON
6198
SKIMMER BASIN 1
BASIN
Client BOWMAN
Date 5/28/2018
Designer KEW
ENGINEERING
2013A Van Buren Ave.
Indian Trail, NC 28079
NC Erosion and Sediment Control Planning and Design Manual
Total Drainage Area
12.32 Acres
536,659 Square Feet
Total Disturbed Area
3.19 Acres
I 138,956 Square Feet
C
0.50
Contour
Area
Volume
Net Volume
Tc
5 Minutes
575
5,190
0
0
110
7.03 Inches per Hour 576
11,309
8,250
8,250
0110
43.30 CFS
577
18,065
14,687
22,937
578
25,456
21,761
44,697
Required Volume
11,484 Cubic Feet
579
31,285
9,156
53,853
Required Surface Area
18,838 Square Feet
Provided Volume
44;697 Cubic Feet
OK
Provided Surface Area
25 456 Square Feet
OK
Length 245 Feet Minimum Spillway Design
Width 120 Feet 011043.30 CFS
L/W Ratio 2.04 OK H 1 Feet
C 3
Spillway Elevation 578
Surface Area at Spillway 25,456 L 14.43 Feet
Spillway Design
Spillway Length 20 Feet Days to Drain 3 Days
Head over Spillway 1 Feet Skimmer Size 4 Inches
Weir Coefficient 3 Orifice Radius 1.7 Inches
Max Flow 60 CFS OK Orifice Diamter 3.4 Inches
EAGLE, ENGINEERING, INC.
2013 VAN BUREN AVENUE, STE A
INDIAN TRAIL, NORTH CAROLINA 28079
NC Erosion and Sediment Control Planning and Design Manual
Total Drainage Area 26.66 Acres 1,161,310 Square Feet
Total Disturbed Area 9.98 Acres 434,729 Square Feet
C 0.50 Contour Area Volume Net Volume
Tc 5 Minutes 541 18,154 0
110 7.03 Inches per Hour 542 20,250 19,202
410 93.71 CFS 543 22,445 21,347
544 24,738 23,591
Required Volume 35,928 Cubic Feet 545 27,130 25,934
Required Surface Area 1 40,764 ISquare Feet 546 29,620 28,375
547 32,198 30,909
Provided Volume 278,573 Cubic Feet OK 548 34,848 33,523
Provided Surface Area 41,762 ISquare
Feet OK j 549 37,566 36,207
550 40,348 38,957
550.5 41,762 20,528
Length 417 Feet Minimum Spillway Design
Width 176 Feet 410 93.71 CFS
L/W Ratio 2.37 OK H 0.5 Feet
C 3
Spillway Elevation 550
Surface Area at Spillway 40,348 L 88.35 Feet
1
1
21
Spillway
Spillway Length
Head over Spillway
Weir Coefficient
Max Flow
Design
Feet Days to Drain 5 Days
Feet Skimmer Size 6 Inches
Orifice Radius 3.0 Inches
CFS OK Orifice Diamter 6.0 Inches
32
1
SKIMMER
BASIN
ENGINEERING
Project
CAVESSON
Client BOWMAN
Project #
6198
Date 5/28/2018
_
2013A Van Buren Ave.
Designation
SKIMMER BASIN 3
Designer KEW
Indian Trail, NC 28079
NC Erosion and Sediment Control Planning and Design Manual
Total Drainage Area 26.66 Acres 1,161,310 Square Feet
Total Disturbed Area 9.98 Acres 434,729 Square Feet
C 0.50 Contour Area Volume Net Volume
Tc 5 Minutes 541 18,154 0
110 7.03 Inches per Hour 542 20,250 19,202
410 93.71 CFS 543 22,445 21,347
544 24,738 23,591
Required Volume 35,928 Cubic Feet 545 27,130 25,934
Required Surface Area 1 40,764 ISquare Feet 546 29,620 28,375
547 32,198 30,909
Provided Volume 278,573 Cubic Feet OK 548 34,848 33,523
Provided Surface Area 41,762 ISquare
Feet OK j 549 37,566 36,207
550 40,348 38,957
550.5 41,762 20,528
Length 417 Feet Minimum Spillway Design
Width 176 Feet 410 93.71 CFS
L/W Ratio 2.37 OK H 0.5 Feet
C 3
Spillway Elevation 550
Surface Area at Spillway 40,348 L 88.35 Feet
1
1
21
Spillway
Spillway Length
Head over Spillway
Weir Coefficient
Max Flow
Design
Feet Days to Drain 5 Days
Feet Skimmer Size 6 Inches
Orifice Radius 3.0 Inches
CFS OK Orifice Diamter 6.0 Inches
32
1
3
96
EAGLE, ENGINEERING, INC.
2013 VAN BUREN AVENUE, STE A
INDIAN TRAIL, NORTH CAROLINA 28079