Loading...
HomeMy WebLinkAboutSW3180606_6198 Engineer's Report Summary 5-28-18_20180627STORM WA TER MA NA GEMENT AND EROSION CONTROL DESIGN CA VESSON SUBDIVISION Wesley Chapel, North Carolina for Bowman Development Group E N G I NEE RLN G 44 W John H. Ross, P.E. EAGLE ENGINEERING, INC. 2013A Van Buren Ave. Indian Trail, NC 28079 EEI PROJECT NO.: 6198 May 25, 2018 REVISION DATE: Initials Date llllll llfllll lrrr sAR0Ll'- A `''' 14959 =� --��rrrrrrllmnlnl�l���� 5-28-18 Cavesson Subdivision - Wesley Chapel, NC Stormwater Management Report Contents EEI Project #6198 May 28, 2018 1.0 Project Address and Summary.....................................................................................................................3 2.0 Water Quality Volume Control and Peak Flow Control..............................................................................3 3.0 Predeveloped........................................................................................................................................... 3-4 4.0 Post Developed Conditions..........................................................................................................................4 5.0 Detention Stage/Storage Computations........................................................................................................4 6.0 Outlet Structures..........................................................................................................................................5 7.0 Stormwater System...................................................................................................................................... 5 8.0 Erosion Control............................................................................................................................................5 Cavesson Subdivision - Wesley Chapel, NC EEI Project #6198 Stormwater Management Report May 28, 2018 1.0 Project Address and Summary The project is located within the City of Wesley Chapel, in Union County of North Carolina, on the east side of Chambwood Road, between New Town Road and Potter Road. The proposed development will include the construction of 28 single family lots. The site was entitled as a low impact development and the construction will included only the installation of the proposed roads, utility infrastructure, and BMP dry pond. The single family lots are intended to be graded by each individual purchaser to accommodate a custom built home. Runoff calculations were performed following the procedures outlined in the NCDEQ Stormwater BMP Manual using the SCS method, while taking into consideration Section 14.5 "General Standards for Stormwater Management" of the Village of Wesley Chapel Zoning Ordinance. Calculations are provided in Appendix A of this report. The receiving drainage system for this site is East Fork Twelvemile Creek (FIRM Map Number 3710449500J effective date 10/16/2008). Soils on the site consist of: BdB2 —Badin Channery Silty Loam, 2 to 8 percent slopes, moderately eroded, Hydrologic Soils Group "C" ChA - Chewacla Silty Loam, 0 to 2 percent slopes, Hydrologic Soils Group "B/D" TbB2 — Tarrus Gravelly Silty Clay Loam, 2 to 8 percent slopes, moderately eroded, Hydrologic Soils Group "B" Weighted curve number values based on the existing and proposed soils conditions were used to calculate pre and post development runoff. Drainage area maps supporting curve number calculation information can be found in Appendix C. 2.0 Water Quality Volume Control and Peak Flow Control The project is a low impact development and no water quality control will be required for the site. 3.0 Predeveloped Conditions The existing conditions currently consist of primarily prairie style grass with pockets of dense woods sporadically throughout the site. A small cow pond is located on the south side of the site, alongside an existing dirt road which parallels the existing flood plain. The terrain of the site consist of moderate to steep slopes forming natural ditches conveying overland runoff to an existing pond to the west, and to the flood plain at the southern portion of the property. The total pre -development drainage from the site was studied at the southwest corner of the property within the existing flood plain. This study point is the lowest elevation of the site. See the Pre - Development and Post Development Drainage Area Maps included in the Appendix A of this report. The time of concentration has been calculated using TR -55 and is outlined on the drainage area maps, and calculations. Curve Numbers (CN) were computed as a composite average of the various existing soil types and land features in the pre -development drainage area which is the following: 0 Pre -Development Area: CN = 71 Cavesson Subdivision - Wesley Chapel, NC Stormwater Management Report EEI Project #6198 May 28, 2018 Calculations have been included on the hydrographs in Appendix A of this report. See the Pre - Development and Post Development Drainage Area Maps also included in the Appendix A of this report. 4.0 Post Developed Conditions The development will consist of the grading of the proposed roads, BMP dry pond, and miscellaneous drainage ditches that convey runoff into the proposed storm system. The remaining undisturbed area on the site was treated as bypass area to be taken into consideration in terms of the overall pre/post comparision of runoff from the site. The post development hydrographs have been modeled for the proposed onsite improvements and the proposed bypass areas, and combined for a cumulative comparison to the existing runoff from the site. The composite Curve Numbers calculated for the post developed basins are the following • Post Development Area: CN = 75 • Post Development Bypass Area 1: CN = 71 • Post Development Bypass Area 2: CN = 78 • Post Development Bypass Area 3: CN = 72 5.0 Detention Stage/Storage Computations A dry detention pond has been designed to detain the 1 -year, 2 -year, 10 -year, and 25 -year storm frequencies and control the 50 -year and 100 -year storm frequencies through proposed discharge outlet controls. Due to the fact that the project is a low impact development, no water quality treatment is required for the site. The pre -development and post development peak flow comparison is the following: 110. No. Hydrograph type (origin) InfloW hyd(s) Peak Outflow (cfs) Hydrograph Descrkption 1 -yr 2 -yr 3 -yr 5 -yr 10 -yr 25 -yr 50 -yr 100 -yr 1 SCS Runoff --- 26.87 43.33 --- --- 94-87 129.56 159.00 190.21 PRE -DEVELOPMENT AREA 3 SCS Runoff --- 41.96 90.99 --- --- 117-70 15520 186.20 218.64 POST DEVELOPMENTAR EA 4 Reservoir 3 1.263 1.590 --- --- 2.243 2.555 6.301 16.41 DRY POND DISCHARGE 6 SCS Runoff --- 6.447 10.26 --- --- 22-19 3029 37.10 44.30 POST BYPASS 1 7 SCS Runoff --- 16.67 23.95 --- --- 45-29 58.95 70.19 91.91 POST BYPASS 2 8 SCS Runoff --- 2.579 3.902 --- --- 7.904 10.58 12.84 15.22 POST BYPASS 3 10 Combine 4, 6, 7, 24.82 36.76 ---- --- 72-38 95.50 114.64 134.70 TOTAL POST DISCHARGE a, The stage/storage calculations are included in Appendix A of this report. The rainfall intensities used are for the 24 hour storm for each storm event for both the pre -developed and post -developed conditions based on the latest rainfall data from NOAA. Cavesson Subdivision - Wesley Chapel, NC Stormwater Management Report 6.0 Outlet Structures EEI Project #6198 May 28, 2018 The outlet structure will be constructed within the BMP near the downstream end of the pond. The structure has been designed to efficiently provide control of the peak rate of discharge. An emergency spillway has been included into the design to pass the 50 & 100 year storm events with at least 0.5' of freeboard. 7.0 Stormwater System Stormwater conveyances to the BMP forebay will be through overland flow and a closed stormwater drainage pipe network. The pipe network calculations are based on the future build out of the site and were sized for a 10 -year storm frequency. All proposed catch basins have be sized based on a flow of 4- incehs per hour to effectively analyze gutter spread within the subdivision. The calculations have been provided in Appendix B. 8.0 Erosion Control Erosion control will be provided by utilizing construction entrance, perimeter silt fence, diversion ditches, check dams, and a temporary skimmer basins (with Faircloth Skimmer device). Phase I1 erosion control shall also utilize inlet protection until the project area has been adequately stabilized. Erosion control devices will be maintain in place until approval by the Village of Wesley Chapel Engineering staff at which time temporary measures will be removed. A copy of the erosion control plan and sediment basin calculations has been provided in Appendix D. Cavesson Subdivision - Wesley Chapel, NC Stormwater Management Report EEI Project #6198 May 28, 2018 Appendix A Stormwater Hydrographs (24-hour: 1 -yr, 2 -yr, 10 -yr, 25 -yr, 50 -year, and 100 -year) Pre -Development Drainage Area Map Post -Development Drainage Area Map O 4-J�DU c 0O via) -0 = n2 �N �0 - +J (a Q) •0 rr is LL • 41 � ca N = = 0 `� _ a) ate+ 6 rcna = = o O= ca C N ca N N Q (a -0 O N 0 U) > ++ L E LU 0 .2++ 0-1 Q U Q) W -0 N m ate-+ LL °O [2 a) C a) N LL O E = u � •0 N C L> (a ii= L O � O = O � ra O W LL O y O (a Ln LL (a = ca cn O U) a) " � oN (� }� O L }J C � � i (n = = O a) a) 'O a) � 0 (Ulf 0) .q V N }' � u N N W O N a �0 Qw m Q0 = •o m �_ 1713 ,- _ � � a Q LL o O O 4-J >� ._ O- L L= e Q ++ Q a) = cu •0 _ w .. (a L C _0 E O cn Ln 0) `� }' O 0 O c (a (a ca " O aj U) Mv -O Ln .0 > L LL LL ca ~ ca = = E a) O O = U a) co O z ° O ib •O O 0= c_n - a) 0 (a N o 0) 0 � - m a) 0 N N U a) a � LU O (a = O c � L v- Q- ,� = C u u' U (Q• 0, 1713 Q o O 3 a) a) c LL O = = N N U�� a) n 0- 'O cn f (a N a) O c `� '1713 m O O = 0 a a> _ Z U) = _ ~ 4- = .ra 4-J = +O+ () L) cn > fu _O v O o � � ^ +' 0 = 0 " 0 > (!) Q (a N (a ° }' > N u) ib `� cn o -0 W _ N O � 4-J -0 (a = -1 ra Q a 17o LL 1713 , O LU U � 'ED u> N FO O� O= 0 N 0 N S E a a) � a a -0 m= o �= cJ O S (a -0 L (n Q 0 a) c L v O = _ >- 0 --, a O V a (n U 1713 Q Q a_ _ fu 4- O >� ++ J U fu= N c^ a) •� O� o E (n 0 0 0 0 a) o ate-+ a > Z (a = (a O •0 >• ca O = O (a u 0 4-, cn o a) U) L ,� a) cn O ZD O C O a) (a a) (a o .- � LU ca = a) 17N +•1 LL O Z cn - (a > c •0 ca = (a �' = o U Q >. (a O O a) a) LU LU O a) = cn O +- �W Z ms •0 o __ n ;_ •° '-' c = `� o > o U pC = 70 FO -a > > V Q O p Mm l U L• 0 I 0 0 0 (a a-1 W (a U a) -, a) � _ � = � v= 0 Q - v O a) a) Q •0 ,--I C N a../ O 0 U Z u 4- Q a../ L = S- > a) 0 W III - LuN 0 O a) Q= a) N a) L 0 O N O =_ M 176 O 0 0_ m 0 0 70uj Q ,� O U U 'O +.+ N N cn Q) fav > N Q c 'O cn C!) LU •0b 4-i = a >' 0 � _ ° ° _ X � = a) Q L c U a••+ 1 -O LU a) _ 1713 ❑ 1713 O O LL J w L a) Q O M M O o }' z V O N 17=6 '. U (n 0 ip 2 N 0 O= = O 0 c LO '-' v= N o W a) a) a) 1713 LU L) N °O a 0' =� N cUS US >- 0) _ .2 -a (a O a) a) = c!) L = m = o D i Q (a > O ,--f a) N U a) a••+ ,--f 0C � 0 W O LL N V m -0 W m m O - o Q) -J = ca =� of c w `nom Q fa o ~ O _� m -5=o w > � �' _-0� L � ° fu= S oc � °O Q ,� -0 _N O O 00 Ln Q N ++ D o = (a U) a) q- � i1 (a LL Z 0• - a) O w N - ca 0 a) >� •0 Q O++ O N Q N Q E-= O -0 a) LL O -0 � �' 70 0 +�+ `� u' O -� } a) 1713 LU E `-' m cw!) O ~ _°O 0' 4O Q ' LL 0 0• C_ N -0 C_ LL cn O O O _O C_ Q = O -0 < ) � ~> _ . -i Q = ._ 4-J O ° -0 a) +=+ a••' - + �j = O +Ln O a) = Q a) J > N I • Q Q) a ca E ul E %a fu - u Ul v E p � `n � oC cn 0' ca � _0 • , m I • II _ �, (n O 00 a) 0 0 v v (a +0.+ Ln N O L 4-J .- W (a O W 176 176 (!) W U) : • U Z � -0 a) }, cn + + Q- + + a) O O a) O }' a) a) a) _ • « ca - z (:) a) �N z m �� ��� (Q -o -= n¢ n foo (L) OJ ��� O¢ fu E O a a p O p .• ca c N a) N . Ln U p •0 : d M 0 0 fu LO _ U N W = O CC G1 W ca (Lj c cn : - • - fu Q)0 4-J -M a a s a a a > • • ���, x x 0 / � . • /O /� a fu Q) O O O O O O O O O O r' NO 4 'N N N N // ib= • P = Q • N U I ti W W W W C~ LL LL O O - � O � ° 0 LO r' o o W O o ti O � ti LL 00 o M W L M co co 80V8 �3N`dd SNIOf O O / mQ a . O cD.. Y - 41V 4hj 3 O� Q �%> A- ---- I . . - , M,- .pe - : v N, `- � g._.rrr . o - . ,. t `J a 4J y - O . LU X O , r A �, O eF " IM 1%j� Q U, . P ' CYz � Q'` Z Z ,, i O$O Y / m r� - ` C� _ . F- � W � �, • . ir Z C v � a ..r � ( p� W O N 6 c L f L W: w O LL O 0 c 0 O I� LO co -- %s E a o }' T -O a).0 Z3 � O E u 0 T-- � > n > J 00 U 4 O Ln " O W p E (n � d «;� A 1713 O � 4- ,O 1713 _ U) � U 1713 a a - E LL - � c = O G 9n K� � G 0 a U L ,O O fu.L =� ct O U N0 Vv E a 17L13 �O ILD rn rn H N 0- co Q 6 U L a) •C V V u tf 0 -0 I � - �I• .. ° ' O � O E O V Cfl —) T O L 0)4- d0 4- LL L a) c2 O W) O a) c- o },a) E i-1 LE .�E O Q L WE WO 0 v a) a CO V as " +' E � rte) (c) u w n� c � a) a) oQ M = - o o -- vi _ " V fu Z >, ) a) V a C O coco � a) a) > a) = _ � � _ � V n J 0 gg� ,a) (n 1713 om•' 170 13- ZU)O (n � 1713 >, � a) _ V C LL o W9 0 0 `' `� N F- _ L = � a)�a) > w O - LL 00 N N LO U -1 a 0 E CU �� O° > O ON - U)Ln u cn N ) = a) 0 M CO = 7o M 10� O= N a) u > O z L 0) U J i c}) 3 U) V =Q Z - E Oz O O fo .. V � 1713 � Um � W U ccoo- a) L N C:) a- Al = Ln - > o 3: a)rn o J o U z ((D D _ O i W O LO 2: D ° 3 3 O O Z oD �<- � >- z w ON J�j w>< O O O ° w ' I o c9.S' w X a) O J -r- Lb J ~ U- I N � 0 LwL O O® O� LO I ch o O LO LO LO T- i I o LO C) LO LO LO ) i I I ch o N "t r - G m G m G m • O= UE I m o' r- j N o N O � = W W W W C~ LL LL O O - � O � ° 0 LO r' o o W O o ti O � ti LL 00 o M W L M co co 80V8 �3N`dd SNIOf O O / mQ a . O cD.. Y - 41V 4hj 3 O� Q �%> A- ---- I . . - , M,- .pe - : v N, `- � g._.rrr . o - . ,. t `J a 4J y - O . LU X O , r A �, O eF " IM 1%j� Q U, . P ' CYz � Q'` Z Z ,, i O$O Y / m r� - ` C� _ . F- � W � �, • . ir Z C v � a ..r � ( p� W O N ) J i 'o 0 M 0 0 6 c L f L W: w O LL O 0 c 0 O I� LO co n %s E •- 4- �- O O 0O `1 Z3 � O Z � co u 0 T-- -0 c D o = n � R W O N J 00 U /� O k� J U) I� W p E (n � d «;� A G O CM N ) J i 'o 0 M 0 0 �� _�.. r Z, A A ft.on Mm _ _ _ _J_0_ . _ �I■ _ .S_N.1_4.0_0-�.�—�_`d_N_0_I.1`_d_N. Cfl M U m-0 O O I� LO N I WM E •- 4- LO O X Z3 � M Cfl u 00 -0 c D o = n � Lc) LL I� 00 co L /� O k� J LU I� W p E (n � d «;� A Ii Q u z Q OL L a) U) � C QQC M P ti s� LO LO � c = O G 9n K� � G bj) ct O � 00 J =� ct O a) 0 a) W 0 M Of W ILD rn rn H N 0- co � 6 � o' Q o C6 QD_ V V u a C O O O 4 I � - �I• .. ° ' 0 �-I 5 UE Cfl —) T 9 W LL � W) O Ua�)nO 00 x i-1 6 .�E O Q L WE WO u O LU 0 O Z rte) (c) u w n� c � W -- LO -- z -- p o o -- vi V N -- 00 -- a_ .-- O C) coco � Z � - O � J 0 gg� P4� Of C) - r- LL o W9 0 0 `' `� � W co E o w O - LL 00 N N LO U LO N 0 E CU �� O° J Co N N 4 C7 U N (7)U LL ti O > N z = O CN M J M — 'I � Q � 0- ccoo- coo i r." `.1 N N 3: o � J ° c), U z Z D _ O i W O LO 2: D ° O O Z oD �<- � >- z w LLM J�j w>< O O O ° w " O a, ao U- c9.S' INS i' .. - r a) �� _�.. r Z, A A ft.on Mm _ _ _ _J_0_ . _ �I■ _ .S_N.1_4.0_0-�.�—�_`d_N_0_I.1`_d_N. Cfl M U m-0 O O I� LO N I WM E •- 4- LO O Cfl Z3 � M Cfl u 00 -0 c D o = n � Lc) �pF IZI d I� 00 co L O` O O k� J Cfl I� p E (n � d «;� A •= u a) "� OL L a) > 0 QQC M P ti s� LO LO � c = O G 9n K� � Lt bj) ct O = n E m 00 LO =� ct O a) 0 a) W 0 M i--1 ==� H N 0- co � 6 � _= 0. i6 (a Q o C6 ` OL�y 0 u a C O O O W N I � - �I• .. ° ' U (� �-I 5 UE Cfl > ■nom W T W .EU) � W O Ua�)nO W I� i-1 .�E O Q L WE WO u O -5� UcELU 0 O U p u w n� c � Zn -- LO -- M -- -- O �� _�.. r Z, A A ft.on Mm _ _ _ _J_0_ . _ �I■ _ .S_N.1_4.0_0-�.�—�_`d_N_0_I.1`_d_N. v 0 ./ w �. 11 / N 1 -1 --�- . a��.• ,19 �1 55P".4 V) "I I h kf).. 0 X .. O r _ _ r, •� �"`t . .. � Wr r M , : ,, N O z s Ili �. e' f _, ': . 1, w ^� _ .. , ,. �' ,, ���•:q. tl .- 1 ` V - O �0 A r w' ■?` -. . -. 11 a _ - - 5 (] i ,f :cr.' 447 O o :f. Iii w J 0 as } a • � , .(n O R _" . ,. `' 4 fit, ,t' o,..-*�.� W w IFFf .—&,iI —ak �2 . 1, Z� A ` _ .W. W O 1 oO {ii - W - �, .. N y o C) . 0 �� Z I'- a, Q W' - N I., � X W,. U T, O W ti _W ,' ;* W W ,. � - - X- Z ' Z LO -- �� i0 _� .555 _ X h . _... . • e .� ... Y r W k) Ln Z - - �9 _ r- i- .: _, r- -_ _ ,_.. , .. . .. ;.. ;.E'�'L cyst N ' � _ •, + 0� _ 1, y'7 � � Wb 170i . . . `) O `I .•.•.•• - .. o. . . . . .179 . ss,, rn o , N LO v. .w . Q GNPQE� I e • • O Z - SLED `C -x X F X w w O GOv co Z Z N LP`C'% ON vN x . �IIIIIIIIIIIIIIIIIIIII � O N N Y. ," R_ / _ � i CO # z a I .p17 x„r ' 4&1 Wrsti <� n y'` Z 1 f41. - r ..Q ,,4 vJ I U-ir �” =9at5 rK 8-,5.. Z =« r a.. �. O. `% 1 i./ K 4-0000 c'", L r . , '"s �•I a . . . � * _', � r - -*.. ", :1I. , . f ^ .1 k: C I ilk & / I .r r ,,<,�r- I I �Mdpwmf&� - I ' x� 11 m tI ',�� . r_ M v b O-'• , co i O ao J i n W -. -- 2 U W ®� J Z 1.r - : �� w p \-� � U �� .� O Q X - �: W4 I J - _. . �_. ❑ ,:, a ._ 0_ `' _: I 11 ,M 5 z o - F!-�-, ,, V,. .. ., - z — x :. 0 9 — L, .� ."--'---. Q �i,. at r.,,: :�,fzl, 11 =: � h:� ': L', - -4 �, I'll -. ,.- .� m �w -} - _ 11 - ft- - Z I I A ��-, 11 0�,/b ` ,. �� /,Vv \ I: o N /O/�//M x . 7T �AO b�1 / QI M o - : - - ���" �. O . �e •� I oC N `V G *4 4 it' F- 2 w M P / 1 N s Z� O �S N �M w s p _ N X` 0. Z I s O _ _ _ o N 6i�5J I431 I h� �. ` o / - O O /, \Q .-. IN . T .s, t,, Q U- U U) a) o o c L I o U- O W co .EZ L • "= O � Y) N a) o + i �' ;y: 2'# Q L co co w oo �,a) �E ^� _ ,F 4 W v - a) aa)i co u 0 . D .U) -0 (n 2! 0 4 __.- O O U C O O W 2 U) c U N co a6 N �.AakL a) o c E) = a) a) a) = a c o 12 E Ir L_.. I � CO 4- Q) w O = E o0 CO _ s= .. o E-0 E o 26 L �o • � r L _ > 6 U Q "Ap IP .� _ . o� ! 111:� z. GIOk s cL' a) a) E ) a) a) a) a) Q 0- (D o a , �d '' O O U) O 0 O� O 0 .. - 51' �/ LU .' S ,� L E- U 0 W O Cu U ' rU O (6 a) U � .(D 0 U L E Urn O Zcn r � U) c: (n D= _0 . a)���>o O MW s ti ��.. - N> O U(D E (6 O L LL I O N c9 4. r, Q.ti = 70 L-0 U 0 O Cu LL L ^ 00 Q 0 Q Z. 7 (6 N a) O� O ti 0 O- ( �7 L � 0) U) MN -i (no- c6Q � n-. .- 0� LU O Q >, B O O Z N — 0 ( � O (6 Oma. >, O 0'O CLLR U O (6 ^ O J 0 (7 L i � k v O QO OD �� Oti a)- aa)� x m 0� -2 U � (a O E ao ��� V . At ` ��� o_ ° w aa)) °Q 0 c: CL . (n L L .� f L N (6-0 O U O 02=� P �:n.-. _y it � � (D L � � y 'Ll 11 '. X ii a) oOa�. (6 0 (6 a) =2 J Cu: 0a c: _ w \ ' Z... 0 a)� E a o� �LL c �LLw Uo ILI N �� oO� LI)c n E I 0-1- c�LL aa))N III��/ O L �,LL -) O CL 0- pti N�=� U • y !,�� co Q M w U O (v N 0 M Q co 0 0 0 O LO �Qc ` O O O O U E O U O (6 O __O LO (� 0 �>, c '>, y U 0 U U coO, e- LON `� LL N U- 0- 0 � CU > (O6 Q L O 0 I c62 U) cu=� .0 CU>,- }' O L 0)o CU o ��•°O-°Q E E U) c6 O (Z ° 0 - CU M O a) `� LE CU O 70 O Im a) > U v LLU L p O Q U O 0-U 0 U N Q O 0 U cu 0 Z U°O�>,O Qo0 maO)Q >,-J o O ��L��O 0O a0 �-- boa) N cu cu E 'I °� "� -0 °-0 u a) z � a) � = Q c O O a) WCU °La)�c°'i Lo'�O =E° oE°)�r"° co � EO-OMO U)Z'FL Z3�n OOM Eo M U o 0 0 U U N >, Z3 0 0 >, 0 O O E O ° L L O c6 > ,r -`` 540 J ���U�� a�UQ �a� QQc��.�E �� 329i 8cn I � W z • 7 ( n to �O 0 (6 0 O O ( to 0 / _ �. - L L+ a) `� O a) a) Q o-0-0 M � o Q= D �L ) W -6 o _0(D a 0 D E-� co to i �-0 0 0 M 0 (� 0 U f co N (6 O U O.. a) E E U 0- M 2 0 � � Mm-0cu EUS d. ,. _-0 Q � U N -w L x ,. _ * Z O �0. O O L � (6 = -_ M U LL a) _ � 'O (D v,+' ( y W_ 0 L- SIV O 0 �1)) ACU 0 O- Q cA �0 (U O X (� U >j - (6 O 0 -0" 0- U L N. -0° EQa)c>3 (1)CCUO>,o W C� �" 1)6c60)Q cuoa)cU(Ua) ZO `� � LL (u - Q)) 0- � CL I- M - N 4) U) o- °� � •� (D "`1. -0 TOS a�iO 2o� Q o Q n� _j ICU � i ,., I / U O = O -0 . t 11, / - 0 U �,W U (6 O ct v .. _ 0-� a) M= OU - (U D }' = O- O R , � ° O - ;--� � b r (1) 4- gL-M )OO Oc 0•_O �'� �P\R ' _ ..- �o coinLD ��'E E( o I- M�� ;n om U i , O t �' ,.� �" " 11- <�` E a) -d (Di -C (n wICU o0 0U -j - 0 w 0- 4 ms`s�g}- _ l� � s v� ti � c7E_O_(D 0o .L- 0) L '' t p� 9' . O M - �� Z U� 'ti M EI)O O� 0-L , >, N - O O O Z1, 7�� - 11O ��� �O c`� A ...: �,, 0 534 � N O .- -- O m N ci y 0 D •'-- �I. r' „ rul . A, �� � ; a i!� • 0 U U) 4 �O u U `gyp Q - :i � E �- 9 , O O O E O� O - , O o (6 = a) Cu �U 2� ` � , G� O LL -0 L- 0 ((D O U U O O E (v ' U 0 �d ' L �OVM`•-; `' �Aft_ o ° o O 0 Z3 Q co) °) � ° a) 0 �,�// y ` ,. �Q . `T � 'n � •° LL � o •- O o _0 � tea• . o O >p - y7■� Q y O ° O a) LL a) ` a) 0 ` 0., _ ZJ r : LU 'F ... M N U) � U •-- U = •-- a) N U) (6 > 0 _ _ - - Z G M O C�-0 (6 O O° N o CU 0 ? - �� �O """ I -���. 533 000 ,� --00- a)�}'�°� .J y ' ` F- N s I W U O - M ami > - -0 (6 (6 ate_.. U) > U _ Ti' .:u� :- a) a) �- (B ._ E L ,, ,_ U * LL, w - 1° - LL NCn O Q�c6 Q�.o Q N 4� C7 � �o O O O vi U N O c6 O cu AMEMI)mf w c o V.� U° U) E L- � . - — � L U to E + VER CREEK � R rn � a " o ° O (6 'in c6 O O '� - ." . E,IL - � - � L � O N •L a) - u ° U �) 0 .L) . LI) _ - CV U� E m> D_0 °U m O O O H 00 � _. _. _ , __ . �P- U „' Fu cu >, � o � U o � ami >, v ami ami o �) G' 0 _ 532 a) '° 3 LL � � cOLa O .-- ��- , K' ! W 0 0 0 0 J� U) n E� n o N �i O � PQ Q `� w �LWL � O -0 -�[` L- 04 � 80 G G� . w M = () L L (a�m�._Z, (D -0 - ct )Ip0�8 •� �G� Z, L ° o " :E � o ° _0 o a) _ � U) -,� H�IFi `` �� S� �. D_0 � >c (UN 3: (ate O � a)�--0 E�� . U N/ ca ocaO �O��>N , T E � --- O 0 a) 0 -� � U a>) U 0 c f_ O a�tr)N P;CG a)�Q wo•,>a)�.S 0�0- L) c: C/� N �.0 0 0 W LL -0 U N ca L N- U N� / �'�a) m o �o� LOz���E _ Z) -) 'L 3 O. a) - N a) 0 -0 � o •N 0 •� U U(U U 0 4C a) 7 � O� U 0 (i --I M - - p x O O O D O S 0 0 0) L ,- c (n O O 0 0 0- LL O 0 U 0 U O� U� 0 _ W - I U) a) -0 o L o �N - - Z D E O d 0 c U W 0 70 °O N D 0 0 O 0-0 w 0 L m 0 0 � `H L O 1 4 N LL � L a) E o 0) 0 c I. _ - ', a _ �,"' - _ ., : ,- u N Z3 0 LL LL • L U)j O 0) (Y N 0 0 °O ^ in ^ - - - - 0- Q-- (B N 0 (n 0 .. , f U ° %m a) ca - >, v A X �.. oo c6 � U rn n 0 L c LL o 0(U L LL >, O N (a 0 � �- ca Q �- �- ca LWL XI . Irl- C) co I � ° o 0 88t1t, �3N`dd SNIOf O O � M � O m � O O m O m � w p 0 F o U- co � co � co 00 00 °O co co O O O �- I O I I - a O� �(n(n Oma.^�(nO�O(nO(nLOo^ O 70>,O(n �' Q '°��(n� v�����L (6�UOo�(no �(6O'- 1 �. L U O �. N' �. (6 � O O-0 c6 M (6 E' L U - �. ,. 9� SZ n •>. �. >0cu amiZ3OLJQoa)(U 4-L-(UO�' >° as t ..... . -.o����c>i O°�ZaOio��DO�°OoE>, voio 00 �E�� i -`' c) - -% "I-" m , L w N S) (6 (6 O L �. Q 0 O cn • IL > v_ `� �• > a) O O (6 O m � - z 1 J, S0 I'A * U '0 U a) N O N U tY p U N 0° (L� (°n } 0 E❑ + N �" '�" 1ss ,q �\ ° M E00��a)LL�OULL0a) �O N Q) (D cn S(Q �<p fit+ oQ t� 0 a) Q .� -E� cn M a) 0)'i°-)� Qom° po > °��. a n - 1s A, z a) O a) � O -c O L a) > >, V — " S' S S S I =•oU-E=a) SDE (n o) (nom'>,Nc �-0 _ z NO�-0 O 6' cQ 9 S U O Q �. L O -W E O• L O O O O O C O Q O 0 I I O o - O 0 a) a) 0 0 (6 (6 a) U O J % p SSp mss, lssp mss, mss, >ss, mss, �n (/n �. Z O . _ U Z -0 ca �. O _ O cU L co = a) C77�� C7 (n a)� _'aM(n� Mm"E°a)E�� a) ❑ �('L_0 J O9 6)9 89 �9 90 S9 �9 �� Z o��Oa�'iIt �`n-0 E70o°>Oo d(noc6 > > o OD s 1S 1S 1 1S 1S A, � O O � 0 - L N U a) O Q Cu U W s S S S S S S S �Q ��-a°)i E,�c>3 ��a)a) U �- (no> a) z �c�(n Z O 6) d) 9 S Q (6 - 0 a) o LL O i �°- -> >, = ami c6 aOi 0 0 6 a� 70 >, U)) `Ss, s S'1s S� S� S� A. Cu�a)�° >, ('a�LOa)�-��- LOQ L a S S S SSS S � : CaC E O�oa) o�>o °0- o °�zcu a) m Z� a ? i, !A t., p �B SLS � I G U E E Q -O-0 � a) � a) U O O >j �� �' U 0-0 a) O Q w H N M O 15 w,5�� SS, 5's, z 1s 1SS w E��>E�U-c6OUD oOO��O (6 (n � MM (DFU ) . a)a)c�a)O �a)rn� o' oc>z u; >, (ate d O0, 6 z I , O 4-- -0 a)U�'Ooa)��cVO���(�n °� OHO � ic)o LL m � 's•' 'S) s' `� s' °s' � � OHO �'aOi� 4- (1) (flEO �� 0 oz DocU-6Q is � • Z +� _ O U L L O Q Cri L JU 70 L N� U� U U P � O O O N a U y� - ` ' c'S, Oa',S' 6'a' �a'1s <<� ��1s �� a'1s ° O U �. > O 0 It O U >, S S ,6, S S S S S 5 N U O°° a) L O Cu L= 0 Cu � 0� (a c6 L L (6 0-O O Q L- O U O O (6 Z O 6' cQ � 0 S A (6 '� U a) �. a) M a) O L �. a) U 6 E m (v a) a) I l / ! ! ! ! ! a) (6 -0 O O U a) a) Z U 0 L N >, Q N� L J ,� 1s 1s 15 8 zs Q O O (n _ � _ �. = � 0 -74 S S �S' S S S at L- �= U) Q= 0 CZ O� oO Cu�=pt > a`))= O=� a) 6n X08,0- �gO 1,90� 80� vn vnc , Q Q� °ern o�LZU�o ;c) " vD.>M >, �'0U a- � E a) E- (D15 ccn L a) o tea) o O _ 10 S S S S S 1 a) a) O H (n �: ° a) o > a) a) O 0 0 a� a) a) ? _ a) 0 �,_ =,� 1, 0 � � O �0 (j) CO N- a) a) O N Z� UCn� 0 U LL i OOP 0 V > • 6), 6 OO Nom. U�'O� L L a) �� O Lam. 0 Cn a) �,0�. U _ O O L (n 0 O (n O 2 o O�-0 o U �. 0 U 0 Cu 0 (9 '' ) N U O a) (a (n O > O c6 ° tY U � M - 0 M O �. a) a) _0 " O m 8/: �'- d 88 1� ® (On C7 0- 0 L -0 (D 11 • O Q .O 0 U- O a) c6 u) -0 L . O O O _ O Z CO a E -- � L OO O — O .= , (6 a) N � O O w % - �x ` In ', . ! /w • 0 z °' a) (6 O O 0 `� co N N (6 > a) O ° Cu U ° U O U a) L O LL Z v s�° pOO�o�E�70 o� �rn°)�oOE��o�>o.�O> o�N�� �,a)�N L - L O U O LU 9- - V�Cn U (6 O >��Q U> oma. O O� OQ� o o OV 0 �' O s -41 Lil a�a� � O c- U a)� OZ O (n Qz- �� p zc? (n O� Sn * 'L—LL (D— O OQ� a) O 0 a) NZ. O 000 O N °U�'N U >Nzti N0-0 -� W a) O (rj U 70 70 2 0 0 L N N O O= Cu M -> •0 ^� N >, Cu� (6 (L6 L LLn D O Cu O L p0 0 U LO O O N M'� - a) > (6 O �LL��.2.2LL� LLD (6�L (n U .� (nCn�OZ UIQ Z,-��L Q EL (06 °U F- 0 W o W LL I-- (=) O O O co O N O a4 SDNIAACI .LD Q -a m 0 � LL c cA E a) L >, M � U�(n20)LL� ���o0 f,c y y d .�` I I Z � � (D O U) � ; -a •M � - c)% O �r - t-4 I W--11 .6 O � _0 0 0 a) a) ° - L- -_ D (a ca � 70 O 0 "- c (n 0)0�' DZ)E�0 oL �0,O } r �- O- O O E E `� c O 0 O 0 'E � G L �. �-' U o a) �- a)0 0 c E 0. �. .w. 4. W O ) Q O (D o� 3i -0 Q U a) o o a) 70 e r = 0 0 cn CL M M � N �_0 -0 0 O U 0 ca 0 a) LO a) o O O a) E � 0 0 Z O w ca ov (n 0 � rn - E (a a) 0 �' ami F W a) � O N 70-0^� (B > O W� '' Z) 0 O t. c� U c M - () L U) a) >, a) (a 0 0 U E LL Z)OE 'FE(a (n�a)0 0��''��L C) O O E O 7 2 >, O O vUi U a) >o O n- o O a) U -a U U �O 0- O N O O (n a) � >, v o cn 00 >; Z) 0 °) _ L a) N U W U� L& O- U a) ca '(n I> i E U (a LL - (u 0 0 E 0 0 0 cn U " - M U L `� O 0 O O a) U V O 0> Z)� 0' O E Z)� U �� O i a) . N O o °) Q m E E E v°i H O (n � 9� 0- o L L E O O Cfl M M I` O I� LO N .S co O c E •- 4- LO LO Cfl N Cfl I� 00 M LO I� 00 co L .- o L LL E -0•-•s• N LO Cfl I� a) "� OL L a) > 0 LO LO LO LO LO Co co O LO M LO N O O O Ln M O LO UCY 0- co LO O � a) tc UE Cfl M N W N M O �. ° c a 42 Z co I� N WE WO O U p ° = cm n� c � N -- -- LO -- M -- -- O N -- -- vi -- N -- 00 -- 17n .-- O 'O � � _ � - O � 0 gg� C) - r- 0 0 `' `� � W co E W Z Q O - LL 00 N N LO LU LO N 0 E CU �� O° J Co N N 4 C7 M N v LL ti O a< N z (0) N O CN M M O = W Q = ccoo- coo i r." `.1 N N 3: � U) E co Z i O LO 2: 70 of 8 0 LR CU LU c Co (O °o - - Q O U " O a, ao c9.S' INS i' .. - r a) O J -r- Lb J ~ U- � .= � w �' o >, o Co w i U Z Co a) Y L O° Q O oN Z 42 O= UE m o' O � = LL c - N � O � 6� O Z . o O LL - � W Q co E o co w � E ,:.59 5 0 > - � �. o o LL a) o LL 0-O o � O .a= �,� v 0 ./ w �. 11 / N 1 -1 --�- . a��.• ,19 �1 55P".4 V) "I I h kf).. 0 X .. O r _ _ r, •� �"`t . .. � Wr r M , : ,, N O z s Ili �. e' f _, ': . 1, w ^� _ .. , ,. �' ,, ���•:q. tl .- 1 ` V - O �0 A r w' ■?` -. . -. 11 a _ - - 5 (] i ,f :cr.' 447 O o :f. Iii w J 0 as } a • � , .(n O R _" . ,. `' 4 fit, ,t' o,..-*�.� W w IFFf .—&,iI —ak �2 . 1, Z� A ` _ .W. W O 1 oO {ii - W - �, .. N y o C) . 0 �� Z I'- a, Q W' - N I., � X W,. U T, O W ti _W ,' ;* W W ,. � - - X- Z ' Z LO -- �� i0 _� .555 _ X h . _... . • e .� ... Y r W k) Ln Z - - �9 _ r- i- .: _, r- -_ _ ,_.. , .. . .. ;.. ;.E'�'L cyst N ' � _ •, + 0� _ 1, y'7 � � Wb 170i . . . `) O `I .•.•.•• - .. o. . . . . .179 . ss,, rn o , N LO v. .w . Q GNPQE� I e • • O Z - SLED `C -x X F X w w O GOv co Z Z N LP`C'% ON vN x . �IIIIIIIIIIIIIIIIIIIII � O N N Y. ," R_ / _ � i CO # z a I .p17 x„r ' 4&1 Wrsti <� n y'` Z 1 f41. - r ..Q ,,4 vJ I U-ir �” =9at5 rK 8-,5.. Z =« r a.. �. O. `% 1 i./ K 4-0000 c'", L r . , '"s �•I a . . . � * _', � r - -*.. ", :1I. , . f ^ .1 k: C I ilk & / I .r r ,,<,�r- I I �Mdpwmf&� - I ' x� 11 m tI ',�� . r_ M v b O-'• , co i O ao J i n W -. -- 2 U W ®� J Z 1.r - : �� w p \-� � U �� .� O Q X - �: W4 I J - _. . �_. ❑ ,:, a ._ 0_ `' _: I 11 ,M 5 z o - F!-�-, ,, V,. .. ., - z — x :. 0 9 — L, .� ."--'---. Q �i,. at r.,,: :�,fzl, 11 =: � h:� ': L', - -4 �, I'll -. ,.- .� m �w -} - _ 11 - ft- - Z I I A ��-, 11 0�,/b ` ,. �� /,Vv \ I: o N /O/�//M x . 7T �AO b�1 / QI M o - : - - ���" �. O . �e •� I oC N `V G *4 4 it' F- 2 w M P / 1 N s Z� O �S N �M w s p _ N X` 0. Z I s O _ _ _ o N 6i�5J I431 I h� �. ` o / - O O /, \Q .-. IN . T .s, t,, Q U- U U) a) o o c L I o U- O W co .EZ L • "= O � Y) N a) o + i �' ;y: 2'# Q L co co w oo �,a) �E ^� _ ,F 4 W v - a) aa)i co u 0 . D .U) -0 (n 2! 0 4 __.- O O U C O O W 2 U) c U N co a6 N �.AakL a) o c E) = a) a) a) = a c o 12 E Ir L_.. I � CO 4- Q) w O = E o0 CO _ s= .. o E-0 E o 26 L �o • � r L _ > 6 U Q "Ap IP .� _ . o� ! 111:� z. GIOk s cL' a) a) E ) a) a) a) a) Q 0- (D o a , �d '' O O U) O 0 O� O 0 .. - 51' �/ LU .' S ,� L E- U 0 W O Cu U ' rU O (6 a) U � .(D 0 U L E Urn O Zcn r � U) c: (n D= _0 . a)���>o O MW s ti ��.. - N> O U(D E (6 O L LL I O N c9 4. r, Q.ti = 70 L-0 U 0 O Cu LL L ^ 00 Q 0 Q Z. 7 (6 N a) O� O ti 0 O- ( �7 L � 0) U) MN -i (no- c6Q � n-. .- 0� LU O Q >, B O O Z N — 0 ( � O (6 Oma. >, O 0'O CLLR U O (6 ^ O J 0 (7 L i � k v O QO OD �� Oti a)- aa)� x m 0� -2 U � (a O E ao ��� V . At ` ��� o_ ° w aa)) °Q 0 c: CL . (n L L .� f L N (6-0 O U O 02=� P �:n.-. _y it � � (D L � � y 'Ll 11 '. X ii a) oOa�. (6 0 (6 a) =2 J Cu: 0a c: _ w \ ' Z... 0 a)� E a o� �LL c �LLw Uo ILI N �� oO� LI)c n E I 0-1- c�LL aa))N III��/ O L �,LL -) O CL 0- pti N�=� U • y !,�� co Q M w U O (v N 0 M Q co 0 0 0 O LO �Qc ` O O O O U E O U O (6 O __O LO (� 0 �>, c '>, y U 0 U U coO, e- LON `� LL N U- 0- 0 � CU > (O6 Q L O 0 I c62 U) cu=� .0 CU>,- }' O L 0)o CU o ��•°O-°Q E E U) c6 O (Z ° 0 - CU M O a) `� LE CU O 70 O Im a) > U v LLU L p O Q U O 0-U 0 U N Q O 0 U cu 0 Z U°O�>,O Qo0 maO)Q >,-J o O ��L��O 0O a0 �-- boa) N cu cu E 'I °� "� -0 °-0 u a) z � a) � = Q c O O a) WCU °La)�c°'i Lo'�O =E° oE°)�r"° co � EO-OMO U)Z'FL Z3�n OOM Eo M U o 0 0 U U N >, Z3 0 0 >, 0 O O E O ° L L O c6 > ,r -`` 540 J ���U�� a�UQ �a� QQc��.�E �� 329i 8cn I � W z • 7 ( n to �O 0 (6 0 O O ( to 0 / _ �. - L L+ a) `� O a) a) Q o-0-0 M � o Q= D �L ) W -6 o _0(D a 0 D E-� co to i �-0 0 0 M 0 (� 0 U f co N (6 O U O.. a) E E U 0- M 2 0 � � Mm-0cu EUS d. ,. _-0 Q � U N -w L x ,. _ * Z O �0. O O L � (6 = -_ M U LL a) _ � 'O (D v,+' ( y W_ 0 L- SIV O 0 �1)) ACU 0 O- Q cA �0 (U O X (� U >j - (6 O 0 -0" 0- U L N. -0° EQa)c>3 (1)CCUO>,o W C� �" 1)6c60)Q cuoa)cU(Ua) ZO `� � LL (u - Q)) 0- � CL I- M - N 4) U) o- °� � •� (D "`1. -0 TOS a�iO 2o� Q o Q n� _j ICU � i ,., I / U O = O -0 . t 11, / - 0 U �,W U (6 O ct v .. _ 0-� a) M= OU - (U D }' = O- O R , � ° O - ;--� � b r (1) 4- gL-M )OO Oc 0•_O �'� �P\R ' _ ..- �o coinLD ��'E E( o I- M�� ;n om U i , O t �' ,.� �" " 11- <�` E a) -d (Di -C (n wICU o0 0U -j - 0 w 0- 4 ms`s�g}- _ l� � s v� ti � c7E_O_(D 0o .L- 0) L '' t p� 9' . O M - �� Z U� 'ti M EI)O O� 0-L , >, N - O O O Z1, 7�� - 11O ��� �O c`� A ...: �,, 0 534 � N O .- -- O m N ci y 0 D •'-- �I. r' „ rul . A, �� � ; a i!� • 0 U U) 4 �O u U `gyp Q - :i � E �- 9 , O O O E O� O - , O o (6 = a) Cu �U 2� ` � , G� O LL -0 L- 0 ((D O U U O O E (v ' U 0 �d ' L �OVM`•-; `' �Aft_ o ° o O 0 Z3 Q co) °) � ° a) 0 �,�// y ` ,. �Q . `T � 'n � •° LL � o •- O o _0 � tea• . o O >p - y7■� Q y O ° O a) LL a) ` a) 0 ` 0., _ ZJ r : LU 'F ... M N U) � U •-- U = •-- a) N U) (6 > 0 _ _ - - Z G M O C�-0 (6 O O° N o CU 0 ? - �� �O """ I -���. 533 000 ,� --00- a)�}'�°� .J y ' ` F- N s I W U O - M ami > - -0 (6 (6 ate_.. U) > U _ Ti' .:u� :- a) a) �- (B ._ E L ,, ,_ U * LL, w - 1° - LL NCn O Q�c6 Q�.o Q N 4� C7 � �o O O O vi U N O c6 O cu AMEMI)mf w c o V.� U° U) E L- � . - — � L U to E + VER CREEK � R rn � a " o ° O (6 'in c6 O O '� - ." . E,IL - � - � L � O N •L a) - u ° U �) 0 .L) . LI) _ - CV U� E m> D_0 °U m O O O H 00 � _. _. _ , __ . �P- U „' Fu cu >, � o � U o � ami >, v ami ami o �) G' 0 _ 532 a) '° 3 LL � � cOLa O .-- ��- , K' ! W 0 0 0 0 J� U) n E� n o N �i O � PQ Q `� w �LWL � O -0 -�[` L- 04 � 80 G G� . w M = () L L (a�m�._Z, (D -0 - ct )Ip0�8 •� �G� Z, L ° o " :E � o ° _0 o a) _ � U) -,� H�IFi `` �� S� �. D_0 � >c (UN 3: (ate O � a)�--0 E�� . U N/ ca ocaO �O��>N , T E � --- O 0 a) 0 -� � U a>) U 0 c f_ O a�tr)N P;CG a)�Q wo•,>a)�.S 0�0- L) c: C/� N �.0 0 0 W LL -0 U N ca L N- U N� / �'�a) m o �o� LOz���E _ Z) -) 'L 3 O. a) - N a) 0 -0 � o •N 0 •� U U(U U 0 4C a) 7 � O� U 0 (i --I M - - p x O O O D O S 0 0 0) L ,- c (n O O 0 0 0- LL O 0 U 0 U O� U� 0 _ W - I U) a) -0 o L o �N - - Z D E O d 0 c U W 0 70 °O N D 0 0 O 0-0 w 0 L m 0 0 � `H L O 1 4 N LL � L a) E o 0) 0 c I. _ - ', a _ �,"' - _ ., : ,- u N Z3 0 LL LL • L U)j O 0) (Y N 0 0 °O ^ in ^ - - - - 0- Q-- (B N 0 (n 0 .. , f U ° %m a) ca - >, v A X �.. oo c6 � U rn n 0 L c LL o 0(U L LL >, O N (a 0 � �- ca Q �- �- ca LWL XI . Irl- C) co I � ° o 0 88t1t, �3N`dd SNIOf O O � M � O m � O O m O m � w p 0 F o U- co � co � co 00 00 °O co co O O O �- I O I I - a O� �(n(n Oma.^�(nO�O(nO(nLOo^ O 70>,O(n �' Q '°��(n� v�����L (6�UOo�(no �(6O'- 1 �. L U O �. N' �. (6 � O O-0 c6 M (6 E' L U - �. ,. 9� SZ n •>. �. >0cu amiZ3OLJQoa)(U 4-L-(UO�' >° as t ..... . -.o����c>i O°�ZaOio��DO�°OoE>, voio 00 �E�� i -`' c) - -% "I-" m , L w N S) (6 (6 O L �. Q 0 O cn • IL > v_ `� �• > a) O O (6 O m � - z 1 J, S0 I'A * U '0 U a) N O N U tY p U N 0° (L� (°n } 0 E❑ + N �" '�" 1ss ,q �\ ° M E00��a)LL�OULL0a) �O N Q) (D cn S(Q �<p fit+ oQ t� 0 a) Q .� -E� cn M a) 0)'i°-)� Qom° po > °��. a n - 1s A, z a) O a) � O -c O L a) > >, V — " S' S S S I =•oU-E=a) SDE (n o) (nom'>,Nc �-0 _ z NO�-0 O 6' cQ 9 S U O Q �. L O -W E O• L O O O O O C O Q O 0 I I O o - O 0 a) a) 0 0 (6 (6 a) U O J % p SSp mss, lssp mss, mss, >ss, mss, �n (/n �. Z O . _ U Z -0 ca �. O _ O cU L co = a) C77�� C7 (n a)� _'aM(n� Mm"E°a)E�� a) ❑ �('L_0 J O9 6)9 89 �9 90 S9 �9 �� Z o��Oa�'iIt �`n-0 E70o°>Oo d(noc6 > > o OD s 1S 1S 1 1S 1S A, � O O � 0 - L N U a) O Q Cu U W s S S S S S S S �Q ��-a°)i E,�c>3 ��a)a) U �- (no> a) z �c�(n Z O 6) d) 9 S Q (6 - 0 a) o LL O i �°- -> >, = ami c6 aOi 0 0 6 a� 70 >, U)) `Ss, s S'1s S� S� S� A. Cu�a)�° >, ('a�LOa)�-��- LOQ L a S S S SSS S � : CaC E O�oa) o�>o °0- o °�zcu a) m Z� a ? i, !A t., p �B SLS � I G U E E Q -O-0 � a) � a) U O O >j �� �' U 0-0 a) O Q w H N M O 15 w,5�� SS, 5's, z 1s 1SS w E��>E�U-c6OUD oOO��O (6 (n � MM (DFU ) . a)a)c�a)O �a)rn� o' oc>z u; >, (ate d O0, 6 z I , O 4-- -0 a)U�'Ooa)��cVO���(�n °� OHO � ic)o LL m � 's•' 'S) s' `� s' °s' � � OHO �'aOi� 4- (1) (flEO �� 0 oz DocU-6Q is � • Z +� _ O U L L O Q Cri L JU 70 L N� U� U U P � O O O N a U y� - ` ' c'S, Oa',S' 6'a' �a'1s <<� ��1s �� a'1s ° O U �. > O 0 It O U >, S S ,6, S S S S S 5 N U O°° a) L O Cu L= 0 Cu � 0� (a c6 L L (6 0-O O Q L- O U O O (6 Z O 6' cQ � 0 S A (6 '� U a) �. a) M a) O L �. a) U 6 E m (v a) a) I l / ! ! ! ! ! a) (6 -0 O O U a) a) Z U 0 L N >, Q N� L J ,� 1s 1s 15 8 zs Q O O (n _ � _ �. = � 0 -74 S S �S' S S S at L- �= U) Q= 0 CZ O� oO Cu�=pt > a`))= O=� a) 6n X08,0- �gO 1,90� 80� vn vnc , Q Q� °ern o�LZU�o ;c) " vD.>M >, �'0U a- � E a) E- (D15 ccn L a) o tea) o O _ 10 S S S S S 1 a) a) O H (n �: ° a) o > a) a) O 0 0 a� a) a) ? _ a) 0 �,_ =,� 1, 0 � � O �0 (j) CO N- a) a) O N Z� UCn� 0 U LL i OOP 0 V > • 6), 6 OO Nom. U�'O� L L a) �� O Lam. 0 Cn a) �,0�. U _ O O L (n 0 O (n O 2 o O�-0 o U �. 0 U 0 Cu 0 (9 '' ) N U O a) (a (n O > O c6 ° tY U � M - 0 M O �. a) a) _0 " O m 8/: �'- d 88 1� ® (On C7 0- 0 L -0 (D 11 • O Q .O 0 U- O a) c6 u) -0 L . O O O _ O Z CO a E -- � L OO O — O .= , (6 a) N � O O w % - �x ` In ', . ! /w • 0 z °' a) (6 O O 0 `� co N N (6 > a) O ° Cu U ° U O U a) L O LL Z v s�° pOO�o�E�70 o� �rn°)�oOE��o�>o.�O> o�N�� �,a)�N L - L O U O LU 9- - V�Cn U (6 O >��Q U> oma. O O� OQ� o o OV 0 �' O s -41 Lil a�a� � O c- U a)� OZ O (n Qz- �� p zc? (n O� Sn * 'L—LL (D— O OQ� a) O 0 a) NZ. O 000 O N °U�'N U >Nzti N0-0 -� W a) O (rj U 70 70 2 0 0 L N N O O= Cu M -> •0 ^� N >, Cu� (6 (L6 L LLn D O Cu O L p0 0 U LO O O N M'� - a) > (6 O �LL��.2.2LL� LLD (6�L (n U .� (nCn�OZ UIQ Z,-��L Q EL (06 °U F- 0 W o W LL I-- (=) O O O co O N O a4 SDNIAACI .LD Q -a m 0 � LL c cA E a) L >, M � U�(n20)LL� ���o0 f,c y y d .�` I I Z � � (D O U) � ; -a •M � - c)% O �r - t-4 I W--11 .6 O � _0 0 0 a) a) ° - L- -_ D (a ca � 70 O 0 "- c (n 0)0�' DZ)E�0 oL �0,O } r �- O- O O E E `� c O 0 O 0 'E � G L �. �-' U o a) �- a)0 0 c E 0. �. .w. 4. W O ) Q O (D o� 3i -0 Q U a) o o a) 70 e r = 0 0 cn CL M M � N �_0 -0 0 O U 0 ca 0 a) LO a) o O O a) E � 0 0 Z O w ca ov (n 0 � rn - E (a a) 0 �' ami F W a) � O N 70-0^� (B > O W� '' Z) 0 O t. c� U c M - () L U) a) >, a) (a 0 0 U E LL Z)OE 'FE(a (n�a)0 0��''��L C) O O E O 7 2 >, O O vUi U a) >o O n- o O a) U -a U U �O 0- O N O O (n a) � >, v o cn 00 >; Z) 0 °) _ L a) N U W U� L& O- U a) ca '(n I> i E U (a LL - (u 0 0 E 0 0 0 cn U " - M U L `� O 0 O O a) U V O 0> Z)� 0' O E Z)� U �� O i a) . N O o °) Q m E E E v°i H O (n � 9� 0- o L L E O O Cfl M M I` O I� LO N LO LO N LO LO Cfl N Cfl I� 00 M LO I� 00 O .- o L LL E -0•-•s• N LO Cfl I� LO LO LO LO LO LO LO `a) ca O ca > `� U U U 0� LO M LO N O O O Ln M O LO LO O � N L m- >> Cfl M N LO N M O LO M I� I� N U -_ -;�,_ � 3 0 70 M -- N -- -- LO -- M -- -- M -- N -- -- M -- -- N -- 00 -- � � N � � � _ � - O � 0 gg� LO M N N N N LO N CO M E CU �� O° N N N 0�0 M N M ti ON N N a) CU 0' - N N N 2: 70 of 8 0 LR CU a) O J -r- Lb J ~ U- Y LL c o 0 > m W cu CIO X000 E J - � � 0 4- - CU T ca W � Z c O — y U Q O �. Q�cn � a) `i L °' aca aY 0 w W N O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cuU) oO 0 L 0 00 N v- v- v- v- v- v- v- v- � LO M M M Q Q Q Q Q Q Q Q U W U W 0 0 0 0 0 0 0 0 0 O M M M M M M L) J_ _ 0 O W cu E JO LO O O N LO M O O O O N I� O LO O N 00 Cfl 00 LO O O LO W 0 0 0 0 0 0 N W Cfl Cfl M O O 00 N 00 I� Cfl Cfl I� N O O N_ O O 00 N 0 N M Cfl I� I� O O N M LO Cfl I� I� 00 (`> v v (V O O M M M M M M M (� Z) E O w J J O � > 0 LL U) 17n O W ti O M O 00 N 00 00 Cfl Cfl I` M O 00 W O ti ti ti O O-0 ca O j N M Cfl I� I� O O N M LO Cfl I� 00 00 V O O N I� O U M M M M M M M O O O O O O O O a q L u.l a O O Cfl M M I` O I� LO N LO LO N LO LO Cfl N Cfl I� 00 M LO I� 00 O O N LO Cfl I� LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO � LO LO LO LO LO LO LO SOF I �_ O 'C O ��� �Ov � ° S. W Z Q � ''LI ca �°o��°LL F � 171 E[0 O U LU -a cIM : Z a) � � U O `r- E � ° � Q = L O a) Q) � L O Q U C- U • (� a) � ° (n � O � 0 c5 . � z � � � 0 � (B a) � _ � a��o)c�'2o0) w c i O O)� � 'O � O S-- .- (Q � (B CARO O � � (B � � O (B r� U - CJVVM O 16 �Si ��' * � 0o E Q U (B � O IOU -Ougu0016e@'AAMM Oi,90-6££ (9L9) ZZZit-Z89 (.POL) 6000£ b'J `elleJeudlV 6LO9Z ON `Ileal ue!pul 155 X08 ,O,d enuan y uaan9 ueA VCt o,7 £290-0 # 3SN3011 YVWJ 3(1SS1 I Ae I 31b'O I 'ON, ON `3�-l1/13a31N(1H 7d LIb'8b'NNID g68£L 1N3Wd073/13a Nb'WM08 -7-3d dHO A -9-733M JO 3OV-17/A N0333AVO 9649 960Z/5Z/9 NMOHS SH Loam 8Of 31b'O ale�S &Hi^ M3�1 M3�1 8 O3NO3HO AS NMb2i4 .l8 O3NJIS3O dVYV V -9a ' -90VN/Vaa 1N3YVd0-13A3a-3bld �� CL 4k_ Mftft son Moft b 00 1-4 Wco i w z� I I — _ — 0 ' U� 1 ♦ ♦ I ' I ♦ 1 1 o 1 i I r I a o r i o I v ' Q W 1 � U ♦ ` z � ♦ ` r mac'; rC) �- ---000 1 000 r , w 0100 eI w tooCL O 41* 00 4%0 00 `IQ 3 +p0 , �� S1 - - �G� y"`- - �" o —TFC° Wcoo�� ', Nti°�X�- b,��. 1 - �k SNE t °° 10, '00-A8 / =z LU ♦� ` z 0 o(DC/)CQ " Ln- , 00 Lu NX / ♦`" � CL Q o U IL W Ilk o xo ` Jo x � ` z � \ ` CL �� co o0 0 }au"auiju08j6e@'AAMM OP,90-6££ (9L9) ZZZit-Zgg (t,OL) 6000£ V,9 `elleJeudlV 6L09J ON `11eJl uelpul l55 X09 'O'd enuany uaing ueA y£dOZ £L 80-0 # 3SN3011 YV813 S3N N 1�� 3 3(1SS1 I Ae I 31b'O I "ON, ON `37_l1/1S2131N(1H 7d 2Jb'8b'NNIO X68£6 1N3Wd013/130 Nb'WM08 _73dVHO A3_7S3M .=f0 3OV�-11A N0333A VO 8649 9koJ/9Z/9 NMOHS SH b3sym 8Of 31Ha aleaS &H!' M3>I M3>1 8 O3N.l O3HO 8 NMb210 / 8 O3NJIS3O d bl/V V_9aV 30VNI VaCl 1N3Wd073A341SOd 0 00 N �4 +S w �c U� E, co i U a o I-II C)l Cr _ N 6co _ LU CL O v N U) opo \' I- C) t— N v Lo _ I \ -mU 2T 'o o cs MND L moi) I �— — W 1 1 _ Q °� W Q ;� uj CL o I Or \ `\ Oma_ \ \. _ oma, \ ^� 00 -909 \ Z��>�7NNS , , LLJ U, Lu LU N v= I r \ oar \ Or'N Q0 � � ', Q3 � OLS „ 'l, or rn _ ° rnIF uj am col o'eriz F,7 °oC` °os O I 04 CO M co Co CIO cr—=- ._ i,' CL W I Lo CL uj LU C. C+J \ o �/ CL W U O a J Q y U I' _ Cl) -N EO' Lff„Lnn CV M W z 0 CL Hydraflow Table of Contents Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 6198-PRE-POST.gpw Tuesday, 06 / 5 / 2018 Hydrograph Return Period Recap............................................................................. 1 1 - Year SummaryReport......................................................................................................................... 2 HydrographReports................................................................................................................... 3 Hydrograph No. 1, SCS Runoff, PRE -DEVELOPMENT AREA ............................................... 3 TR -55 Tc Worksheet............................................................................................................ 4 Hydrograph No. 3, SCS Runoff, POST DEVELOPMENT AREA ............................................. 5 Hydrograph No. 4, Reservoir, DRY POND DISCHARGE........................................................ 6 PondReport - WET POND.................................................................................................. 7 Hydrograph No. 6, SCS Runoff, POST BYPASS 1.................................................................. 8 TR -55 Tc Worksheet............................................................................................................ 9 Hydrograph No. 7, SCS Runoff, POST BYPASS 2................................................................ 10 TR -55 Tc Worksheet.......................................................................................................... 11 Hydrograph No. 8, SCS Runoff, POST BYPASS 3................................................................ 12 Hydrograph No. 10, Combine, TOTAL POST DISCHARGE .................................................. 13 2 - Year SummaryReport....................................................................................................................... 14 HydrographReports................................................................................................................. 15 Hydrograph No. 1, SCS Runoff, PRE -DEVELOPMENT AREA ............................................. 15 Hydrograph No. 3, SCS Runoff, POST DEVELOPMENT AREA ........................................... 16 Hydrograph No. 4, Reservoir, DRY POND DISCHARGE...................................................... 17 Hydrograph No. 6, SCS Runoff, POST BYPASS 1................................................................ 18 Hydrograph No. 7, SCS Runoff, POST BYPASS 2................................................................ 19 Hydrograph No. 8, SCS Runoff, POST BYPASS 3................................................................ 20 Hydrograph No. 10, Combine, TOTAL POST DISCHARGE .................................................. 21 10 -Year SummaryReport....................................................................................................................... 22 HydrographReports................................................................................................................. 23 Hydrograph No. 1, SCS Runoff, PRE -DEVELOPMENT AREA ............................................. 23 Hydrograph No. 3, SCS Runoff, POST DEVELOPMENT AREA ........................................... 24 Hydrograph No. 4, Reservoir, DRY POND DISCHARGE...................................................... 25 Hydrograph No. 6, SCS Runoff, POST BYPASS 1................................................................ 26 Hydrograph No. 7, SCS Runoff, POST BYPASS 2................................................................ 27 Hydrograph No. 8, SCS Runoff, POST BYPASS 3................................................................ 28 Hydrograph No. 10, Combine, TOTAL POST DISCHARGE .................................................. 29 25 - Year SummaryReport....................................................................................................................... 30 HydrographReports................................................................................................................. 31 Hydrograph No. 1, SCS Runoff, PRE -DEVELOPMENT AREA ............................................. 31 Hydrograph No. 3, SCS Runoff, POST DEVELOPMENT AREA ........................................... 32 Hydrograph No. 4, Reservoir, DRY POND DISCHARGE...................................................... 33 Hydrograph No. 6, SCS Runoff, POST BYPASS 1................................................................ 34 Hydrograph No. 7, SCS Runoff, POST BYPASS 2................................................................ 35 Hydrograph No. 8, SCS Runoff, POST BYPASS 3................................................................ 36 Contents continued... 6198-PRE-POST.gpw Hydrograph No. 10, Combine, TOTAL POST DISCHARGE .................................................. 37 50 - Year SummaryReport....................................................................................................................... 38 HydrographReports................................................................................................................. 39 Hydrograph No. 1, SCS Runoff, PRE -DEVELOPMENT AREA ............................................. 39 Hydrograph No. 3, SCS Runoff, POST DEVELOPMENT AREA ........................................... 40 Hydrograph No. 4, Reservoir, DRY POND DISCHARGE...................................................... 41 Hydrograph No. 6, SCS Runoff, POST BYPASS 1................................................................ 42 Hydrograph No. 7, SCS Runoff, POST BYPASS 2................................................................ 43 Hydrograph No. 8, SCS Runoff, POST BYPASS 3................................................................ 44 Hydrograph No. 10, Combine, TOTAL POST DISCHARGE .................................................. 45 100 -Year SummaryReport....................................................................................................................... 46 HydrographReports................................................................................................................. 47 Hydrograph No. 1, SCS Runoff, PRE -DEVELOPMENT AREA ............................................. 47 Hydrograph No. 3, SCS Runoff, POST DEVELOPMENT AREA ........................................... 48 Hydrograph No. 4, Reservoir, DRY POND DISCHARGE...................................................... 49 Hydrograph No. 6, SCS Runoff, POST BYPASS 1................................................................ 50 Hydrograph No. 7, SCS Runoff, POST BYPASS 2................................................................ 51 Hydrograph No. 8, SCS Runoff, POST BYPASS 3................................................................ 52 Hydrograph No. 10, Combine, TOTAL POST DISCHARGE .................................................. 53 OFReport.................................................................................................................. 54 Hydrograph Return Period Recap Hyd flow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. Hydrograph Inflow Peak Outflow (cfs) Hydrograph No. type hyd(s) Description (origin) SCS Runoff ------ 1 -yr 2 -yr 3 -yr 5 -yr 10 -yr T25 -yr 50 -yr 100 -yr PRE -DEVELOPMENT AREA 1 26.87 43.33 ------- ------- 94.87 129.56 159.00 190.21 3 SCS Runoff ------ 41.96 60.99 ------- ------- 117.70 155.20 186.20 218.64 POST DEVELOPMENT AREA 4 Reservoir 3 1.263 1.580 ------- ------- 2.243 2.555 6.296 16.41 DRY POND DISCHARGE 6 SCS Runoff ------ 6.447 10.26 ------- ------- 22.19 30.29 37.10 44.30 POST BYPASS 1 7 SCS Runoff ------ 16.67 23.95 ------- ------- 45.29 58.95 70.19 81.91 POST BYPASS 2 8 SCS Runoff ------ 2.579 3.902 ------- ------- 7.904 10.58 12.84 15.22 POST BYPASS 3 10 Combine 4, 6, 7, 24.82 36.76 ------- ------- 72.38 95.50 114.64 134.70 TOTAL POST DISCHARGE 8, Proj. file: 6198-PRE-POST.gpw Tuesday, 06 / 5 / 2018 Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. Hydrograph type (origin) SCS Runoff Peak flow (cfs) 26.87 Time interval (min) 2 Time to Peak (min) 732 Hyd. volume (cult) Inflow hyd(s) Maximum elevation (ft) Total strge used (cuft) ------ Hydrograph Description PRE -DEVELOPMENT AREA 1 124,109 ------ ------ 3 SCS Runoff 41.96 2 718 84,217 ------ ------ ------ POST DEVELOPMENT AREA 4 Reservoir 1.263 2 914 84,028 3 543.24 46,188 DRY POND DISCHARGE 6 SCS Runoff 6.447 2 726 22,606 ------ ------ ------ POST BYPASS 1 7 SCS Runoff 16.67 2 722 48,023 ------ ------ ------ POST BYPASS 2 8 SCS Runoff 2.579 2 718 5,246 ------ ------ ------ POST BYPASS 3 10 Combine 24.82 2 722 159,903 4, 6, 7, ------ ------ TOTAL POST DISCHARGE 8, 6198-PRE-POST.gpw Return Period: 1 Year Tuesday, 06 / 5 / 2018 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 1 Time to peak PRE -DEVELOPMENT AREA Hydrograph type = SCS Runoff Storm frequency = 1 yrs Time interval = 2 min Drainage area = 46.720 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 2.95 in Storm duration = 24 hrs " Composite (Area/CN) _ [(12.580 x 60) + (28.490 x 74) + (5.650 x 80)] / 46.720 Q (cfs) 28.00 24.00 20.00 16.00 12.00 M U111111 0.00 ' 1' 0 2 4 Hyd No. 1 6 8 Tuesday, 06 / 5 / 2018 Peak discharge = 26.87 cfs Time to peak = 12.20 hrs Hyd. volume = 124,109 cuft Curve number = 71* Hydraulic length = 0 ft Time of conc. (Tc) = 27.80 min Distribution = Type II Shape factor = 484 PRE -DEVELOPMENT AREA Hyd. No. 1 -- 1 Year Q (cfs) 28.00 24.00 20.00 16.00 12.00 Exile1 1 9 I 1 1 1 1 1 I N 1 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) TR55 Tc Worksheet Hyd. No. 1 PRE -DEVELOPMENT AREA Description Sheet Flow Manning's n -value Flow length (ft) Two-year 24 -hr precip. (in) Land slope (%) Travel Time (min) Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s) Travel Time (min) Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n -value Velocity (ft/s) /1 0.150 300.0 3.56 3.65 = 17.59 = 203.16 = 9.18 = Paved =6.16 = 0.55 = 30.59 = 23.87 = 3.79 = 0.150 =2.28 4 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 B 0.011 0.0 0.00 0.00 + 0.00 0.00 0.00 Paved 0.00 + 0.00 0.00 0.00 0.00 0.015 C 0.011 0.0 0.00 0.00 + 0.00 0.00 0.00 Paved 0.00 + 0.00 0.00 0.00 0.00 0.015 0.00 Flow length (ft) ({0})1329.8 0.0 0.0 Travel Time (min) = 9.71 + 0.00 + 0.00 TotalTravel Time, Tc.............................................................................. Totals = 17.59 = 0.55 = 9.71 27.80 min Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 3 Time to peak POST DEVELOPMENT AREA Hydrograph type = SCS Runoff Storm frequency = 1 yrs Time interval = 2 min Drainage area = 26.660 ac Basin Slope = 0.0% Tc method = User Total precip. = 2.95 in Storm duration = 24 hrs * Composite (Area/CN) _ [(10.720 x 68) + (15.940 x 79)] / 26.660 Q (cfs) 50.00 40.00 30.00 20.00 10.00 0.00 ' 1' 0 2 4 Hyd No. 3 6 8 5 Tuesday, 06 / 5 / 2018 Peak discharge = 41.96 cfs Time to peak = 11.97 hrs Hyd. volume = 84,217 cuft Curve number = 75* Hydraulic length = 0 ft Time of conc. (Tc) = 5.00 min Distribution = Type II Shape factor = 484 POST DEVELOPMENT AREA Hyd. No. 3 -- 1 Year Q (cfs) 50.00 40.00 1911XIff 20.00 10.00 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report 6 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 4 DRY POND DISCHARGE Hydrograph type = Reservoir Peak discharge = 1.263 cfs Storm frequency = 1 yrs Time to peak = 15.23 hrs Time interval = 2 min Hyd. volume = 84,028 cuft Inflow hyd. No. = 3 - POST DEVELOPMENT ARISAx. Elevation = 543.24 ft Reservoir name = WET POND Max. Storage = 46,188 cuft Storage Indication method used Q (cfs) 50.00 40.00 30.00 20.00 10.00 0.00 ' 0 6 Hyd No. 4 DRY POND DISCHARGE Hyd. No. 4 -- 1 Year 12 18 24 30 36 42 48 54 60 Hyd No. 3 Total storage used = 46,188 cuft Q (cfs) 50.00 40.00 [011XIff 20.00 10.00 1 0.00 66 Time (hrs) Pond Report 7 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Pond No. 1 - WET POND Pond Data Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 541.00 ft Stage / Storage Table Stage (ft) Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft) 0.00 541.00 18,154 0 0 1.00 542.00 20,250 19,191 19,191 2.00 543.00 22,445 21,336 40,526 3.00 544.00 24,738 23,580 64,106 4.00 545.00 27,130 25,922 90,028 5.00 546.00 29,620 28,363 118,391 6.00 547.00 32,198 30,897 149,288 7.00 548.00 34,848 33,511 182,798 8.00 549.00 37,566 36,195 218,993 9.00 550.00 40,348 38,945 257,938 10.00 551.00 43,193 41,758 299,697 Culvert / Orifice Structures Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Weir Structures Storage / Discharge Table [A] [B] [C] [PrfRsr] Storage [A] [B] [C] [D] Rise (in) = 24.00 6.00 0.00 0.00 Crest Len (ft) = 16.00 10.00 0.00 0.00 Span (in) = 24.00 6.00 0.00 0.00 Crest EI. (ft) = 549.50 550.00 0.00 0.00 No. Barrels = 1 1 0 0 Weir Coeff. = 3.33 3.33 3.33 3.33 Invert EI. (ft) = 541.00 541.00 0.00 0.00 Weir Type = 1 Ciplti --- --- Length (ft) = 77.69 0.00 0.00 0.00 Multi -Stage = Yes No No No Slope (%) = 0.50 0.00 0.00 n/a 90,028 545.00 1.81 is 1.76 is --- N -Value = .013 .013 .013 n/a 118,391 546.00 1.99 is 1.99 is --- Orifice Coeff. = 0.60 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) 2.19 is --- Multi -Stage = n/a Yes No No TW Elev. (ft) = 0.00 2.38 is 2.38 is --- Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table Stage Storage Elevation Civ A Civ B CIV C PrfRsr Wr A Wr B Wr C Wr D Exfil User Total ft cuft ft cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs 0.00 0 541.00 0.00 0.00 --- --- 0.00 0.00 --- --- --- --- 0.000 1.00 19,191 542.00 0.78 is 0.76 is --- --- 0.00 0.00 --- --- --- --- 0.762 2.00 40,526 543.00 1.20 is 1.18 is --- --- 0.00 0.00 --- --- --- --- 1.181 3.00 64,106 544.00 1.50 is 1.50 is --- --- 0.00 0.00 --- --- --- --- 1.495 4.00 90,028 545.00 1.81 is 1.76 is --- --- 0.00 0.00 --- --- --- --- 1.757 5.00 118,391 546.00 1.99 is 1.99 is --- --- 0.00 0.00 --- --- --- --- 1.989 6.00 149,288 547.00 2.19 is 2.19 is --- --- 0.00 0.00 --- --- --- --- 2.194 7.00 182,798 548.00 2.38 is 2.38 is --- --- 0.00 0.00 --- --- --- --- 2.385 8.00 218,993 549.00 2.59 is 2.56 is --- --- 0.00 0.00 --- --- --- --- 2.561 9.00 257,938 550.00 21.09 oc 2.25 is --- --- 18.84 0.00 --- --- --- --- 21.09 10.00 299,697 551.00 45.04 is 0.35 is --- --- 44.68s 33.30 --- --- --- --- 78.33 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 6 Time to peak POST BYPASS 1 Hyd. volume Hydrograph type = SCS Runoff Storm frequency = 1 yrs Time interval = 2 min Drainage area = 8.510 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 2.95 in Storm duration = 24 hrs " Composite (Area/CN) _ [(1.860 x 61) + (6.650 x 74)] / 8.510 Q (cfs) 7.00 .M 5.00 4.00 3.00 2.00 1.00 0.00 ' 1' 0 2 4 Hyd No. 6 e Tuesday, 06 / 5 / 2018 Peak discharge = 6.447 cfs Time to peak = 12.10 hrs Hyd. volume = 22,606 cuft Curve number = 71* Hydraulic length = 0 ft Time of conc. (Tc) = 17.00 min Distribution = Type II Shape factor = 484 POST BYPASS 1 Hyd. No. 6 -- 1 Year Q (cfs) 7.00 M 5.00 4.00 3.00 2.00 MR1I11 I i i I I I I I I I% 1 0.00 8 10 12 14 16 18 20 22 24 26 Time (hrs) TR55 Tc Worksheet Hyd. No. 6 POST BYPASS 1 Description Sheet Flow Manning's n -value Flow length (ft) Two-year 24 -hr precip. (in) Land slope (%) Travel Time (min) Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s) Travel Time (min) Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n -value Velocity (ft/s) Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. 02 /1 = 0.150 = 300.0 = 3.56 = 4.56 16.09 = 54.56 = 9.35 = Unpaved =4.93 = 0.18 = 6.34 = 10.52 = 3.73 = 0.015 =13.66 B 0.011 0.0 0.00 0.00 + 0.00 0.00 0.00 Paved 0.00 + 0.00 0.00 0.00 0.00 0.015 C 0.011 0.0 0.00 0.00 + 0.00 0.00 0.00 Paved 0.00 + 0.00 0.00 0.00 0.00 0.015 0.00 Flow length (ft) ({0})562.9 0.0 0.0 Travel Time (min) = 0.69 + 0.00 + 0.00 TotalTravel Time, Tc.............................................................................. Totals = 16.09 = 0.18 = 0.69 17.00 min Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 7 Time to peak POST BYPASS 2 Hyd. volume Hydrograph type = SCS Runoff Storm frequency = 1 yrs Time interval = 2 min Drainage area = 12.410 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 2.95 in Storm duration = 24 hrs " Composite (Area/CN) _ [(6.760 x 75) + (5.650 x 81)] / 12.410 10 Tuesday, 06 / 5 / 2018 Peak discharge = 16.67 cfs Time to peak = 12.03 hrs Hyd. volume = 48,023 cuft Curve number = 78* Hydraulic length = 0 ft Time of conc. (Tc) = 16.10 min Distribution = Type II Shape factor = 484 POST BYPASS 2 Q (cfs) Hyd. No. 7 -- 1 Year Q (cfs) 18.00 18.00 15.00 15.00 12.00 12.00 9.00 9.00 6.00 6.00 3.00 3.00 0.00 0.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Hyd No. 7 Time (hrs) TR55 Tc Worksheet Hyd. No. 7 POST BYPASS 2 Description Sheet Flow Manning's n -value Flow length (ft) Two-year 24 -hr precip. (in) Land slope (%) Travel Time (min) Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s) Travel Time (min) Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n -value Velocity (ft/s) 11 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 /1 = 0.150 = 300.0 = 3.56 = 7.29 13.34 = 86.11 = 24.01 = Unpaved =7.91 = 0.18 = 45.34 = 31.62 = 0.64 = 0.015 =10.12 B 0.011 0.0 0.00 0.00 + 0.00 0.00 0.00 Paved 0.00 + 0.00 0.00 0.00 0.00 0.015 C 0.011 0.0 0.00 0.00 + 0.00 0.00 0.00 Paved 0.00 + 0.00 0.00 0.00 0.00 0.015 0.00 Flow length (ft) ({0})1551.3 0.0 0.0 Travel Time (min) = 2.56 + 0.00 + 0.00 TotalTravel Time, Tc.............................................................................. Totals = 13.34 = 0.18 = 2.56 16.10 min Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 8 POST BYPASS 3 Hydrograph type = SCS Runoff Storm frequency = 1 yrs Time interval = 2 min Drainage area = 1.980 ac Basin Slope = 0.0% Tc method = User Total precip. = 2.95 in Storm duration = 24 hrs " Composite (Area/CN) _ [(0.320 x 61) + (1.660 x 74)] / 1.980 Q (cfs) 3.00 2.00 1.00 0.00 ' 1' 0 2 4 Hyd No. 8 Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor POST BYPASS 3 Hyd. No. 8 -- 1 Year 6 8 10 12 14 16 12 Tuesday, 06 / 5 / 2018 = 2.579 cfs = 11.97 hrs = 5,246 cuft = 72* = Oft = 5.00 min = Type II = 484 Q (cfs) 3.00 2.00 1.00 0.00 18 20 22 24 26 Time (hrs) 13 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 10 TOTAL POST DISCHARGE Hydrograph type = Combine Peak discharge = 24.82 cfs Storm frequency = 1 yrs Time to peak = 12.03 hrs Time interval = 2 min Hyd. volume = 159,903 cuft Inflow hyds. = 4, 6, 7, 8 Contrib. drain. area = 22.900 ac TOTAL POST DISCHARGE Q (cfs) Hyd. No. 10 -- 1 Year Q (cfs) 28.00 28.00 24.00 24.00 20.00 20.00 16.00 16.00 12.00 12.00 8.00 8.00 4.00 4.00 0.00 0.00 0 4 8 12 16 20 24 28 32 36 Hyd No. 10 Hyd No. 4 Hyd No. 6 Hyd No. 7 Time (hrs) Hyd No. 8 14 Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. Hydrograph type (origin) SCS Runoff Peak flow (cfs) Time interval (min) 2 Time to Peak (min) 732 Hyd. volume (cult) Inflow hyd(s) Maximum elevation (ft) Total strge used (cuft) ------ Hydrograph Description PRE -DEVELOPMENT AREA 1 43.33 186,906 ------ ------ 3 SCS Runoff 60.99 2 718 121,977 ------ ------ ------ POST DEVELOPMENT AREA 4 Reservoir 1.580 2 934 121,732 3 544.31 72,072 DRY POND DISCHARGE 6 SCS Runoff 10.26 2 726 34,045 ------ ------ ------ POST BYPASS 1 7 SCS Runoff 23.95 2 722 67,777 ------ ------ ------ POST BYPASS 2 8 SCS Runoff 3.902 2 718 7,819 ------ ------ ------ POST BYPASS 3 10 Combine 36.76 2 722 231,373 4, 6, 7, ------ ------ TOTAL POST DISCHARGE 8, 6198-PRE-POST.gpw Return Period: 2 Year Tuesday, 06 / 5 / 2018 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 1 PRE -DEVELOPMENT AREA Hydrograph type = SCS Runoff Storm frequency = 2 yrs Time interval = 2 min Drainage area = 46.720 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 3.56 in Storm duration = 24 hrs " Composite (Area/CN) _ [(12.580 x 60) + (28.490 x 74) + (5.650 x 80)] / 46.720 Q (cfs) 50.00 40.00 30.00 20.00 10.00 0.00 ' 1' 0 2 4 Hyd No. 1 Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor PRE -DEVELOPMENT AREA Hyd. No. 1 -- 2 Year 6 8 10 12 14 16 15 Tuesday, 06 / 5 / 2018 = 43.33 cfs = 12.20 hrs = 186,906 cuft = 71* = Oft = 27.80 min = Type II = 484 Q (cfs) 50.00 40.00 W11XIII7 20.00 10.00 ' 0.00 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 3 Time to peak POST DEVELOPMENT AREA Hydrograph type = SCS Runoff Storm frequency = 2 yrs Time interval = 2 min Drainage area = 26.660 ac Basin Slope = 0.0% Tc method = User Total precip. = 3.56 in Storm duration = 24 hrs * Composite (Area/CN) _ [(10.720 x 68) + (15.940 x 79)] / 26.660 Q (cfs) 70.00 50.00 40.00 30.00 20.00 10.00 0.00 0 2 4 Hyd No. 3 e 16 Tuesday, 06 / 5 / 2018 Peak discharge = 60.99 cfs Time to peak = 11.97 hrs Hyd. volume = 121,977 cuft Curve number = 75* Hydraulic length = 0 ft Time of conc. (Tc) = 5.00 min Distribution = Type II Shape factor = 484 POST DEVELOPMENT AREA Hyd. No. 3 -- 2 Year Q (cfs) 70.00 50.00 40.00 30.00 20.00 10.00 ' J ' ' ' 0.00 8 10 12 14 16 18 20 22 24 26 Time (hrs) Storage Indication method used. Q (cfs) 70.00 50.00 40.00 30.00 20.00 10.00 DRY POND DISCHARGE Hyd. No. 4 -- 2 Year Q (cfs) 70.00 50.00 40.00 30.00 20.00 10.00 0.00 ' 1 1 1 1 ' 0.00 0 6 12 18 24 30 36 42 48 54 60 66 Time (hrs) Hyd No. 4 Hyd No. 3 Total storage used = 72,072 cuft 17 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 4 DRY POND DISCHARGE Hydrograph type = Reservoir Peak discharge = 1.580 cfs Storm frequency = 2 yrs Time to peak = 15.57 hrs Time interval = 2 min Hyd. volume = 121,732 cuft Inflow hyd. No. = 3 - POST DEVELOPMENT ARISAx. Elevation = 544.31 ft Reservoir name = WET POND Max. Storage = 72,072 cuft Storage Indication method used. Q (cfs) 70.00 50.00 40.00 30.00 20.00 10.00 DRY POND DISCHARGE Hyd. No. 4 -- 2 Year Q (cfs) 70.00 50.00 40.00 30.00 20.00 10.00 0.00 ' 1 1 1 1 ' 0.00 0 6 12 18 24 30 36 42 48 54 60 66 Time (hrs) Hyd No. 4 Hyd No. 3 Total storage used = 72,072 cuft Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 6 Time to peak POST BYPASS 1 Hyd. volume Hydrograph type = SCS Runoff Storm frequency = 2 yrs Time interval = 2 min Drainage area = 8.510 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 3.56 in Storm duration = 24 hrs " Composite (Area/CN) _ [(1.860 x 61) + (6.650 x 74)] / 8.510 Q (cfs) 12.00 10.00 4.00 2.00 0.00 0 2 4 Hyd No. 6 6 8 18 Tuesday, 06 / 5 / 2018 Peak discharge = 10.26 cfs Time to peak = 12.10 hrs Hyd. volume = 34,045 cuft Curve number = 71* Hydraulic length = 0 ft Time of conc. (Tc) = 17.00 min Distribution = Type II Shape factor = 484 POST BYPASS 1 Hyd. No. 6 -- 2 Year Q (cfs) 12.00 10.00 4.00 2.00 I i I I I I I I IN 1 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 7 Time to peak POST BYPASS 2 Hyd. volume Hydrograph type = SCS Runoff Storm frequency = 2 yrs Time interval = 2 min Drainage area = 12.410 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 3.56 in Storm duration = 24 hrs " Composite (Area/CN) _ [(6.760 x 75) + (5.650 x 81)] / 12.410 Q (cfs) 24.00 20.00 16.00 12.00 M 4.00 0.00 ' 1' 0 2 4 Hyd No. 7 6 8 19 Tuesday, 06 / 5 / 2018 Peak discharge = 23.95 cfs Time to peak = 12.03 hrs Hyd. volume = 67,777 cuft Curve number = 78* Hydraulic length = 0 ft Time of conc. (Tc) = 16.10 min Distribution = Type II Shape factor = 484 POST BYPASS 2 Hyd. No. 7 -- 2 Year Q (cfs) 24.00 20.00 16.00 12.00 M 4.00 _ - I I I I I I 1 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 8 POST BYPASS 3 Hydrograph type = SCS Runoff Storm frequency = 2 yrs Time interval = 2 min Drainage area = 1.980 ac Basin Slope = 0.0% Tc method = User Total precip. = 3.56 in Storm duration = 24 hrs * Composite (Area/CN) _ [(0.320 x 61) + (1.660 x 74)] / 1.980 Q (cfs) 4.00 3.00 2.00 1.00 0.00 ' 1' 0 2 4 Hyd No. 8 Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor POST BYPASS 3 Hyd. No. 8 -- 2 Year 6 8 10 12 14 16 20 Tuesday, 06 / 5 / 2018 = 3.902 cfs = 11.97 hrs = 7,819 cuft = 72* = 0 ft = 5.00 min = Type II = 484 Q (cfs) 4.00 3.00 2.00 1.00 0.00 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 10 TOTAL POST DISCHARGE Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 2 min Inflow hyds. = 4, 6, 7, 8 Q (cfs) 40.00 30.00 20.00 10.00 Peak discharge Time to peak Hyd. volume Contrib. drain. area TOTAL POST DISCHARGE Hyd. No. 10 -- 2 Year 0.00 ' 1 1 0 4 8 12 16 20 24 Hyd No. 10 Hyd No. 4 Hyd No. 6 Hyd No. 8 21 Tuesday, 06 / 5 / 2018 = 36.76 cfs = 12.03 hrs = 231,373 cuft = 22.900 ac 28 32 36 Hyd No. 7 Q (cfs) 40.00 30.00 20.00 10.00 --" 0.00 40 Time (hrs) 22 Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. Hydrograph type (origin) SCS Runoff Peak flow (cfs) 94.87 Time interval (min) 2 Time to Peak (min) 732 Hyd. volume (cult) Inflow hyd(s) Maximum elevation (ft) Total strge used (cuft) ------ Hydrograph Description PRE -DEVELOPMENT AREA 1 386,081 ------ ------ 3 SCS Runoff 117.70 2 716 237,763 ------ ------ ------ POST DEVELOPMENT AREA 4 Reservoir 2.243 2 998 237,293 3 547.25 157,536 DRY POND DISCHARGE 6 SCS Runoff 22.19 2 724 70,324 ------ ------ ------ POST BYPASS 1 7 SCS Runoff 45.29 2 722 126,973 ------ ------ ------ POST BYPASS 2 8 SCS Runoff 7.904 2 718 15,908 ------ ------ ------ POST BYPASS 3 10 Combine 72.38 2 722 450,497 4, 6, 7, ------ ------ TOTAL POST DISCHARGE 8, 6198-PRE-POST.gpw Return Period: 10 Year Tuesday, 06 / 5 / 2018 23 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 1 PRE -DEVELOPMENT AREA Hydrograph type = SCS Runoff Peak discharge = 94.87 cfs Storm frequency = 10 yrs Time to peak = 12.20 hrs Time interval = 2 min Hyd. volume = 386,081 cuft Drainage area = 46.720 ac Curve number = 71* Basin Slope = 0.0% Hydraulic length = 0 ft Tc method = TR55 Time of conc. (Tc) = 27.80 min Total precip. = 5.21 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 * Composite (Area/CN) _ [(12.580 x 60) + (28.490 x 74) + (5.650 x 80)] / 46.720 Q (cfs) 100.00 90.00 80.00 70.00 50.00 40.00 30.00 20.00 10.00 0.00 0 2 4 Hyd No. 1 PRE -DEVELOPMENT AREA Hyd. No. 1 -- 10 Year Q (cfs) 100.00 90.00 80.00 70.00 50.00 40.00 30.00 20.00 10.00 0.00 6 8 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 3 Time to peak POST DEVELOPMENT AREA Hydrograph type = SCS Runoff Storm frequency = 10 yrs Time interval = 2 min Drainage area = 26.660 ac Basin Slope = 0.0% Tc method = User Total precip. = 5.21 in Storm duration = 24 hrs * Composite (Area/CN) _ [(10.720 x 68) + (15.940 x 79)] / 26.660 Q (cfs) 120.00 100.00 40.00 20.00 0.00 ' 1' 0 2 4 Hyd No. 3 6 8 24 Tuesday, 06 / 5 / 2018 Peak discharge = 117.70 cfs Time to peak = 11.93 hrs Hyd. volume = 237,763 cuft Curve number = 75* Hydraulic length = 0 ft Time of conc. (Tc) = 5.00 min Distribution = Type II Shape factor = 484 POST DEVELOPMENT AREA Hyd. No. 3 -- 10 Year Q (cfs) 120.00 100.00 40.00 20.00 "0— ' ' ' 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report 25 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 4 DRY POND DISCHARGE Hydrograph type = Reservoir Peak discharge = 2.243 cfs Storm frequency = 10 yrs Time to peak = 16.63 hrs Time interval = 2 min Hyd. volume = 237,293 cuft Inflow hyd. No. = 3 - POST DEVELOPMENT ARISAx. Elevation = 547.25 ft Reservoir name = WET POND Max. Storage = 157,536 cuft Storage Indication method used Q (cfs) 120.00 100.00 40.00 20.00 0.00 ' ' 0 8 Hyd No. 4 DRY POND DISCHARGE Hyd. No. 4 -- 10 Year 16 24 32 40 48 56 64 Hyd No. 3 Total storage used = 157,536 cuft Q (cfs) 120.00 100.00 40.00 20.00 1 0.00 72 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 6 Time to peak POST BYPASS 1 Hyd. volume Hydrograph type = SCS Runoff Storm frequency = 10 yrs Time interval = 2 min Drainage area = 8.510 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 5.21 in Storm duration = 24 hrs " Composite (Area/CN) _ [(1.860 x 61) + (6.650 x 74)] / 8.510 Q (cfs) 24.00 20.00 16.00 12.00 M 4.00 0.00 ' 1' 0 2 4 Hyd No. 6 6 8 26 Tuesday, 06 / 5 / 2018 Peak discharge = 22.19 cfs Time to peak = 12.07 hrs Hyd. volume = 70,324 cuft Curve number = 71* Hydraulic length = 0 ft Time of conc. (Tc) = 17.00 min Distribution = Type II Shape factor = 484 POST BYPASS 1 Hyd. No. 6 -- 10 Year Q (cfs) 24.00 20.00 16.00 12.00 M 4.00 Y I I I I I I T 1 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 7 POST BYPASS 2 Hydrograph type = SCS Runoff Storm frequency = 10 yrs Time interval = 2 min Drainage area = 12.410 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 5.21 in Storm duration = 24 hrs " Composite (Area/CN) _ [(6.760 x 75) + (5.650 x 81)] / 12.410 Q (cfs) 50.00 40.00 30.00 20.00 10.00 0.00 ' 1' 0 2 4 Hyd No. 7 Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor POST BYPASS 2 Hyd. No. 7 -- 10 Year 6 8 10 12 14 16 27 Tuesday, 06 / 5 / 2018 = 45.29 cfs = 12.03 hrs = 126,973 cuft = 78* = Oft = 16.10 min = Type II = 484 Q (cfs) 50.00 40.00 W11MI1I17 20.00 10.00 0.00 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 8 POST BYPASS 3 Hydrograph type = SCS Runoff Storm frequency = 10 yrs Time interval = 2 min Drainage area = 1.980 ac Basin Slope = 0.0% Tc method = User Total precip. = 5.21 in Storm duration = 24 hrs " Composite (Area/CN) _ [(0.320 x 61) + (1.660 x 74)] / 1.980 Q (cfs) 8.00 4.00 2.00 0.00 0 2 4 Hyd No. 8 Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor POST BYPASS 3 Hyd. No. 8 -- 10 Year 6 8 10 12 14 16 Tuesday, 06 / 5 / 2018 = 7.904 cfs = 11.97 hrs = 15,908 cuft = 72* = Oft = 5.00 min = Type II = 484 Q (cfs) 8.00 4.00 2.00 0.00 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 10 TOTAL POST DISCHARGE Hydrograph type = Combine Peak discharge = 72.38 cfs Storm frequency = 10 yrs Time to peak = 12.03 hrs Time interval = 2 min Hyd. volume = 450,497 cuft Inflow hyds. = 4, 6, 7, 8 Contrib. drain. area = 22.900 ac Q (cfs) 80.00 70.00 50.00 40.00 30.00 20.00 10.00 0.00 ' ' 0 4 8 Hyd No. 10 TOTAL POST DISCHARGE Hyd. No. 10 -- 10 Year Q (cfs) 80.00 70.00 50.00 40.00 30.00 20.00 10.00 '' 0.00 12 16 20 24 28 32 36 40 44 48 Hyd No. 4 Hyd No. 6 Hyd No. 7 Time (hrs) Hyd No. 8 ST -11 Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. Hydrograph type (origin) SCS Runoff Peak flow (cfs) 129.56 Time interval (min) 2 Time to Peak (min) 730 Hyd. volume (cult) Inflow hyd(s) Maximum elevation (ft) Total strge used (cuft) ------ Hydrograph Description PRE -DEVELOPMENT AREA 1 521,842 ------ ------ 3 SCS Runoff 155.20 2 716 314,852 ------ ------ ------ POST DEVELOPMENT AREA 4 Reservoir 2.555 2 1050 314,173 3 548.97 217,758 DRY POND DISCHARGE 6 SCS Runoff 30.29 2 724 95,053 ------ ------ ------ POST BYPASS 1 7 SCS Runoff 58.95 2 722 165,758 ------ ------ ------ POST BYPASS 2 8 SCS Runoff 10.58 2 716 21,388 ------ ------ ------ POST BYPASS 3 10 Combine 95.50 2 722 596,372 4, 6, 7, ------ ------ TOTAL POST DISCHARGE 8, 6198-PRE-POST.gpw Return Period: 25 Year Tuesday, 06 / 5 / 2018 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 1 Time to peak PRE -DEVELOPMENT AREA Hydrograph type = SCS Runoff Storm frequency = 25 yrs Time interval = 2 min Drainage area = 46.720 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 6.22 in Storm duration = 24 hrs " Composite (Area/CN) _ [(12.580 x 60) + (28.490 x 74) + (5.650 x 80)] / 46.720 Q (cfs) 140.00 120.00 100.00 40.00 20.00 0.00 ' 1' 0 2 4 Hyd No. 1 6 8 31 Tuesday, 06 / 5 / 2018 Peak discharge = 129.56 cfs Time to peak = 12.17 hrs Hyd. volume = 521,842 cuft Curve number = 71* Hydraulic length = 0 ft Time of conc. (Tc) = 27.80 min Distribution = Type II Shape factor = 484 PRE -DEVELOPMENT AREA Hyd. No. 1 -- 25 Year Q (cfs) 140.00 120.00 100.00 40.00 20.00 .� I I I I I I 1 \,. 1 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 3 Time to peak POST DEVELOPMENT AREA Hydrograph type = SCS Runoff Storm frequency = 25 yrs Time interval = 2 min Drainage area = 26.660 ac Basin Slope = 0.0% Tc method = User Total precip. = 6.22 in Storm duration = 24 hrs * Composite (Area/CN) _ [(10.720 x 68) + (15.940 x 79)] / 26.660 32 Tuesday, 06 / 5 / 2018 Peak discharge = 155.20 cfs Time to peak = 11.93 hrs Hyd. volume = 314,852 cuft Curve number = 75* Hydraulic length = 0 ft Time of conc. (Tc) = 5.00 min Distribution = Type II Shape factor = 484 POST DEVELOPMENT AREA Q (cfs) Hyd. No. 3 -- 25 Year Q (cfs) 160.00 160.00 140.00 140.00 120.00 120.00 100.00 100.00 80.00 80.00 60.00 60.00 40.00 40.00 20.00 20.00 0.00 0.00 0 2 4 6 8 10 12 14 16 18 20 22 24 Hyd No. 3 Time (hrs) Storage Indication method used. DRY POND DISCHARGE Q (cfs) Hyd. No. 4 -- 25 Year Q (cfs) 160.00 140.00 120.00 100.00 80.00 60.00 40.00 20.00 0.00 0 8 Hyd No. 4 16 24 32 Hyd No. 3 160.00 140.00 120.00 100.00 80.00 60.00 40.00 20.00 0.00 40 48 56 64 72 80 Time (hrs) Total storage used = 217,758 cuft 33 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 4 DRY POND DISCHARGE Hydrograph type = Reservoir Peak discharge = 2.555 cfs Storm frequency = 25 yrs Time to peak = 17.50 hrs Time interval = 2 min Hyd. volume = 314,173 cuft Inflow hyd. No. = 3 - POST DEVELOPMENT ARISAx. Elevation = 548.97 ft Reservoir name = WET POND Max. Storage = 217,758 cuft Storage Indication method used. DRY POND DISCHARGE Q (cfs) Hyd. No. 4 -- 25 Year Q (cfs) 160.00 140.00 120.00 100.00 80.00 60.00 40.00 20.00 0.00 0 8 Hyd No. 4 16 24 32 Hyd No. 3 160.00 140.00 120.00 100.00 80.00 60.00 40.00 20.00 0.00 40 48 56 64 72 80 Time (hrs) Total storage used = 217,758 cuft Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 6 Time to peak POST BYPASS 1 Hyd. volume Hydrograph type = SCS Runoff Storm frequency = 25 yrs Time interval = 2 min Drainage area = 8.510 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 6.22 in Storm duration = 24 hrs " Composite (Area/CN) _ [(1.860 x 61) + (6.650 x 74)] / 8.510 Q (cfs) 35.00 30.00 25.00 20.00 15.00 10.00 5.00 0.00 ' 1' 0 2 4 Hyd No. 6 6 8 34 Tuesday, 06 / 5 / 2018 Peak discharge = 30.29 cfs Time to peak = 12.07 hrs Hyd. volume = 95,053 cuft Curve number = 71* Hydraulic length = 0 ft Time of conc. (Tc) = 17.00 min Distribution = Type II Shape factor = 484 POST BYPASS 1 Hyd. No. 6 -- 25 Year Q (cfs) 35.00 30.00 25.00 20.00 15.00 10.00 IM11111 ''— ' ' ' ' 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 7 Time to peak POST BYPASS 2 Hyd. volume Hydrograph type = SCS Runoff Storm frequency = 25 yrs Time interval = 2 min Drainage area = 12.410 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 6.22 in Storm duration = 24 hrs " Composite (Area/CN) _ [(6.760 x 75) + (5.650 x 81)] / 12.410 Q (cfs) 60.00 50.00 40.00 30.00 20.00 10.00 0.00 ' 1' 0 2 4 Hyd No. 7 6 8 35 Tuesday, 06 / 5 / 2018 Peak discharge = 58.95 cfs Time to peak = 12.03 hrs Hyd. volume = 165,758 cuft Curve number = 78* Hydraulic length = 0 ft Time of conc. (Tc) = 16.10 min Distribution = Type II Shape factor = 484 POST BYPASS 2 Hyd. No. 7 -- 25 Year Q (cfs) 60.00 50.00 40.00 30.00 20.00 10.00 "r ' ' ' 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 8 Time to peak POST BYPASS 3 Hyd. volume Hydrograph type = SCS Runoff Storm frequency = 25 yrs Time interval = 2 min Drainage area = 1.980 ac Basin Slope = 0.0% Tc method = User Total precip. = 6.22 in Storm duration = 24 hrs " Composite (Area/CN) _ [(0.320 x 61) + (1.660 x 74)] / 1.980 Q (cfs) 12.00 10.00 2.00 0.00 0 2 4 Hyd No. 8 6 8 36 Tuesday, 06 / 5 / 2018 Peak discharge = 10.58 cfs Time to peak = 11.93 hrs Hyd. volume = 21,388 cuft Curve number = 72* Hydraulic length = 0 ft Time of conc. (Tc) = 5.00 min Distribution = Type II Shape factor = 484 POST BYPASS 3 Hyd. No. 8 -- 25 Year Q (cfs) 12.00 10.00 4.00 2.00 ''-- ' ' 0.00 10 12 14 16 18 20 22 24 26 Time (hrs) 37 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 10 TOTAL POST DISCHARGE Hydrograph type = Combine Peak discharge = 95.50 cfs Storm frequency = 25 yrs Time to peak = 12.03 hrs Time interval = 2 min Hyd. volume = 596,372 cuft Inflow hyds. = 4, 6, 7, 8 Contrib. drain. area = 22.900 ac Q (cfs) 100.00 90.00 80.00 70.00 50.00 40.00 30.00 20.00 10.00 0.00 0 4 8 Hyd No. 10 TOTAL POST DISCHARGE Hyd. No. 10 -- 25 Year Q (cfs) 100.00 90.00 80.00 70.00 50.00 40.00 30.00 20.00 10.00 0.00 12 16 20 24 28 32 36 40 44 48 52 Hyd No. 4 Hyd No. 6 Hyd No. 7 Time (hrs) Hyd No. 8 38 Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. Hydrograph type (origin) SCS Runoff Peak flow (cfs) 159.00 Time interval (min) 2 Time to Peak (min) 730 Hyd. volume (cult) Inflow hyd(s) Maximum elevation (ft) Total strge used (cuft) ------ Hydrograph Description PRE -DEVELOPMENT AREA 1 637,184 ------ ------ 3 SCS Runoff 186.20 2 716 379,666 ------ ------ ------ POST DEVELOPMENT AREA 4 Reservoir 6.296 2 828 378,888 3 549.67 244,925 DRY POND DISCHARGE 6 SCS Runoff 37.10 2 724 116,062 ------ ------ ------ POST BYPASS 1 7 SCS Runoff 70.19 2 722 198,138 ------ ------ ------ POST BYPASS 2 8 SCS Runoff 12.84 2 716 26,031 ------ ------ ------ POST BYPASS 3 10 Combine 114.64 2 722 719,118 4, 6, 7, ------ ------ TOTAL POST DISCHARGE 8, 6198-PRE-POST.gpw Return Period: 50 Year Tuesday, 06 / 5 / 2018 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 1 Time to peak PRE -DEVELOPMENT AREA Hydrograph type = SCS Runoff Storm frequency = 50 yrs Time interval = 2 min Drainage area = 46.720 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 7.04 in Storm duration = 24 hrs * Composite (Area/CN) _ [(12.580 x 60) + (28.490 x 74) + (5.650 x 80)] / 46.720 Q (cfs) 160.00 140.00 120.00 100.00 40.00 20.00 0.00 ' 1' 0 2 4 Hyd No. 1 39 Tuesday, 06 / 5 / 2018 Peak discharge = 159.00 cfs Time to peak = 12.17 hrs Hyd. volume = 637,184 cuft Curve number = 71* Hydraulic length = 0 ft Time of conc. (Tc) = 27.80 min Distribution = Type II Shape factor = 484 PRE -DEVELOPMENT AREA Hyd. No. 1 -- 50 Year Q (cfs) 160.00 140.00 120.00 100.00 40.00 20.00 i I I I I I I I1-1. 1 0.00 8 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 3 Time to peak POST DEVELOPMENT AREA Hydrograph type = SCS Runoff Storm frequency = 50 yrs Time interval = 2 min Drainage area = 26.660 ac Basin Slope = 0.0% Tc method = User Total precip. = 7.04 in Storm duration = 24 hrs * Composite (Area/CN) _ [(10.720 x 68) + (15.940 x 79)] / 26.660 Q (cfs) 210.00 180.00 150.00 120.00 30.00 0.00 ' 1' 0 2 4 Hyd No. 3 40 Tuesday, 06 / 5 / 2018 Peak discharge = 186.20 cfs Time to peak = 11.93 hrs Hyd. volume = 379,666 cuft Curve number = 75* Hydraulic length = 0 ft Time of conc. (Tc) = 5.00 min Distribution = Type II Shape factor = 484 POST DEVELOPMENT AREA Hyd. No. 3 -- 50 Year 6 8 Q (cfs) 210.00 180.00 150.00 120.00 30.00 ''— ' ' ' 0.00 10 12 14 16 18 20 22 24 Time (hrs) Storage Indication method used. DRY POND DISCHARGE Q (cfs) Hyd. No. 4 -- 50 Year Q (cfs) 210.00 210.00 180.00 180.00 150.00 150.00 120.00 120.00 90.00 90.00 60.00 60.00 30.00 30.00 0.00 0.00 0 8 16 24 32 40 48 56 64 72 Time (hrs) Hyd No. 4 Hyd No. 3 Total storage used = 244,925 cuft 41 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 4 DRY POND DISCHARGE Hydrograph type = Reservoir Peak discharge = 6.296 cfs Storm frequency = 50 yrs Time to peak = 13.80 hrs Time interval = 2 min Hyd. volume = 378,888 cuft Inflow hyd. No. = 3 - POST DEVELOPMENT ARISAx. Elevation = 549.67 ft Reservoir name = WET POND Max. Storage = 244,925 cuft Storage Indication method used. DRY POND DISCHARGE Q (cfs) Hyd. No. 4 -- 50 Year Q (cfs) 210.00 210.00 180.00 180.00 150.00 150.00 120.00 120.00 90.00 90.00 60.00 60.00 30.00 30.00 0.00 0.00 0 8 16 24 32 40 48 56 64 72 Time (hrs) Hyd No. 4 Hyd No. 3 Total storage used = 244,925 cuft Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 6 POST BYPASS 1 Hydrograph type = SCS Runoff Storm frequency = 50 yrs Time interval = 2 min Drainage area = 8.510 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 7.04 in Storm duration = 24 hrs * Composite (Area/CN) _ [(1.860 x 61) + (6.650 x 74)] / 8.510 Q (Cfs) 40.00 30.00 20.00 10.00 2 4 Hyd No. 6 Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor POST BYPASS 1 Hyd. No. 6 -- 50 Year 6 8 10 12 14 16 42 Tuesday, 06 / 5 / 2018 = 37.10 cfs = 12.07 hrs = 116,062 cuft = 71* = 0 ft = 17.00 min = Type II = 484 Q (cfs) 40.00 30.00 20.00 10.00 0.00 18 20 22 24 26 Time (hrs) 43 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 7 POST BYPASS 2 Hydrograph type = SCS Runoff Peak discharge = 70.19 cfs Storm frequency = 50 yrs Time to peak = 12.03 hrs Time interval = 2 min Hyd. volume = 198,138 cuft Drainage area = 12.410 ac Curve number = 78* Basin Slope = 0.0% Hydraulic length = 0 ft Tc method = TR55 Time of conc. (Tc) = 16.10 min Total precip. = 7.04 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 * Composite (Area/CN) _ [(6.760 x 75) + (5.650 x 81)] / 12.410 Q (cfs) 80.00 70.00 50.00 40.00 30.00 20.00 10.00 POST BYPASS 2 Hyd. No. 7 -- 50 Year Q (cfs) 80.00 70.00 50.00 40.00 30.00 20.00 10.00 0.00 ' ' ' ' ' 0.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Hyd No. 7 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 8 Time to peak POST BYPASS 3 Hyd. volume Hydrograph type = SCS Runoff Storm frequency = 50 yrs Time interval = 2 min Drainage area = 1.980 ac Basin Slope = 0.0% Tc method = User Total precip. = 7.04 in Storm duration = 24 hrs " Composite (Area/CN) _ [(0.320 x 61) + (1.660 x 74)] / 1.980 Q (cfs) 14.00 12.00 10.00 .M 4.00 2.00 0.00 ' ' 0 2 4 Hyd No. 8 6 8 44 Tuesday, 06 / 5 / 2018 Peak discharge = 12.84 cfs Time to peak = 11.93 hrs Hyd. volume = 26,031 cuft Curve number = 72* Hydraulic length = 0 ft Time of conc. (Tc) = 5.00 min Distribution = Type II Shape factor = 484 POST BYPASS 3 Hyd. No. 8 -- 50 Year Q (cfs) 14.00 12.00 10.00 M 4.00 2.00 ' ' ' 1 0.00 10 12 14 16 18 20 22 24 Time (hrs) 45 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 10 TOTAL POST DISCHARGE Hydrograph type = Combine Peak discharge = 114.64 cfs Storm frequency = 50 yrs Time to peak = 12.03 hrs Time interval = 2 min Hyd. volume = 719,118 cuft Inflow hyds. = 4, 6, 7, 8 Contrib. drain. area = 22.900 ac TOTAL POST DISCHARGE Q (cfs) Hyd. No. 10 -- 50 Year Q (cfs) 120.00 120.00 100.00 100.00 80.00 80.00 60.00 60.00 40.00 40.00 20.00 20.00 0.00 0.00 0 4 8 12 16 20 24 28 32 36 40 44 48 52 Hyd No. 10 Hyd No. 4 Hyd No. 6 Hyd No. 7 Time (hrs) Hyd No. 8 46 Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. Hydrograph type (origin) SCS Runoff Peak flow (cfs) 190.21 Time interval (min) 2 Time to Peak (min) 730 Hyd. volume (cult) Inflow hyd(s) Maximum elevation (ft) Total strge used (cuft) ------ Hydrograph Description PRE -DEVELOPMENT AREA 1 760,428 ------ ------ 3 SCS Runoff 218.64 2 716 448,422 ------ ------ ------ POST DEVELOPMENT AREA 4 Reservoir 16.41 2 750 447,622 3 549.91 254,461 DRY POND DISCHARGE 6 SCS Runoff 44.30 2 724 138,511 ------ ------ ------ POST BYPASS 1 7 SCS Runoff 81.91 2 722 232,323 ------ ------ ------ POST BYPASS 2 8 SCS Runoff 15.22 2 716 30,983 ------ ------ ------ POST BYPASS 3 10 Combine 134.70 2 722 849,439 4, 6, 7, ------ ------ TOTAL POST DISCHARGE 8, 6198-PRE-POST.gpw Return Period: 100 Year Tuesday, 06 / 5 / 2018 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 1 Time to peak PRE -DEVELOPMENT AREA Hydrograph type = SCS Runoff Storm frequency = 100 yrs Time interval = 2 min Drainage area = 46.720 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 7.89 in Storm duration = 24 hrs " Composite (Area/CN) _ [(12.580 x 60) + (28.490 x 74) + (5.650 x 80)] / 46.720 Q (cfs) 210.00 180.00 150.00 120.00 30.00 0.00 ' 1' 0 2 4 Hyd No. 1 e 47 Tuesday, 06 / 5 / 2018 Peak discharge = 190.21 cfs Time to peak = 12.17 hrs Hyd. volume = 760,428 cuft Curve number = 71* Hydraulic length = 0 ft Time of conc. (Tc) = 27.80 min Distribution = Type II Shape factor = 484 PRE -DEVELOPMENT AREA Hyd. No. 1 -- 100 Year Q (cfs) 210.00 180.00 150.00 120.00 30.00 lir I I I I I I I\ 1 0.00 8 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 3 Time to peak POST DEVELOPMENT AREA Hydrograph type = SCS Runoff Storm frequency = 100 yrs Time interval = 2 min Drainage area = 26.660 ac Basin Slope = 0.0% Tc method = User Total precip. = 7.89 in Storm duration = 24 hrs " Composite (Area/CN) _ [(10.720 x 68) + (15.940 x 79)] / 26.660 Q (cfs) 240.00 210.00 180.00 150.00 120.00 30.00 48 Tuesday, 06 / 5 / 2018 Peak discharge = 218.64 cfs Time to peak = 11.93 hrs Hyd. volume = 448,422 cuft Curve number = 75* Hydraulic length = 0 ft Time of conc. (Tc) = 5.00 min Distribution = Type II Shape factor = 484 POST DEVELOPMENT AREA Hyd. No. 3 -- 100 Year Q (cfs) 240.00 210.00 180.00 150.00 120.00 30.00 0.00 ' ' ' ' ' -'- ' ' 0.00 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 Hyd No. 3 Time (hrs) 49 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 4 DRY POND DISCHARGE Hydrograph type = Reservoir Peak discharge = 16.41 cfs Storm frequency = 100 yrs Time to peak = 12.50 hrs Time interval = 2 min Hyd. volume = 447,622 cuft Inflow hyd. No. = 3 - POST DEVELOPMENT ARISAx. Elevation = 549.91 ft Reservoir name = WET POND Max. Storage = 254,461 cuft Storage Indication method used. DRY POND DISCHARGE Q (cfs) Hyd. No. 4 -- 100 Year Q (cfs) 240.00 240.00 210.00 210.00 180.00 180.00 150.00 150.00 120.00 120.00 90.00 90.00 60.00 60.00 30.00 30.00 0.00 0.00 0 6 12 18 24 30 36 42 48 54 60 66 72 Time (hrs) Hyd No. 4 Hyd No. 3 Total storage used = 254,461 cuft Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 6 POST BYPASS 1 Hydrograph type = SCS Runoff Storm frequency = 100 yrs Time interval = 2 min Drainage area = 8.510 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 7.89 in Storm duration = 24 hrs " Composite (Area/CN) _ [(1.860 x 61) + (6.650 x 74)] / 8.510 Q (cfs) 50.00 40.00 30.00 20.00 10.00 0.00 ' 1' 0 2 4 Hyd No. 6 Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor POST BYPASS 1 Hyd. No. 6 -- 100 Year 6 8 10 12 14 16 50 Tuesday, 06 / 5 / 2018 = 44.30 cfs = 12.07 hrs = 138,511 cuft = 71* = Oft = 17.00 min = Type II = 484 Q (cfs) 50.00 40.00 W11MI1I17 20.00 10.00 0.00 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 7 Time to peak POST BYPASS 2 Hyd. volume Hydrograph type = SCS Runoff Storm frequency = 100 yrs Time interval = 2 min Drainage area = 12.410 ac Basin Slope = 0.0% Tc method = TR55 Total precip. = 7.89 in Storm duration = 24 hrs * Composite (Area/CN) _ [(6.760 x 75) + (5.650 x 81)] / 12.410 Q (cfs) 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0 00 0 2 4 Hyd No. 7 51 Tuesday, 06 / 5 / 2018 Peak discharge = 81.91 cfs Time to peak = 12.03 hrs Hyd. volume = 232,323 cuft Curve number = 78* Hydraulic length = 0 ft Time of conc. (Tc) = 16.10 min Distribution = Type II Shape factor = 484 POST BYPASS 2 Hyd. No. 7 -- 100 Year Q (cfs) 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 +— ' I I I 1 1 7=-0.00 8 10 12 14 16 18 20 22 24 26 Time (hrs) Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Hyd. No. 8 Time to peak POST BYPASS 3 Hyd. volume Hydrograph type = SCS Runoff Storm frequency = 100 yrs Time interval = 2 min Drainage area = 1.980 ac Basin Slope = 0.0% Tc method = User Total precip. = 7.89 in Storm duration = 24 hrs * Composite (Area/CN) _ [(0.320 x 61) + (1.660 x 74)] / 1.980 Q (cfs) 18.00 15.00 12.00 3.00 0.00 ' ' 0 2 4 Hyd No. 8 52 Tuesday, 06 / 5 / 2018 Peak discharge = 15.22 cfs Time to peak = 11.93 hrs Hyd. volume = 30,983 cuft Curve number = 72* Hydraulic length = 0 ft Time of conc. (Tc) = 5.00 min Distribution = Type II Shape factor = 484 POST BYPASS 3 Hyd. No. 8 -- 100 Year 6 8 10 12 14 Q (cfs) 18.00 15.00 12.00 3.00 ' 0.00 16 18 20 22 24 Time (hrs) 53 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Tuesday, 06 / 5 / 2018 Hyd. No. 10 TOTAL POST DISCHARGE Hydrograph type = Combine Peak discharge = 134.70 cfs Storm frequency = 100 yrs Time to peak = 12.03 hrs Time interval = 2 min Hyd. volume = 849,439 cuft Inflow hyds. = 4, 6, 7, 8 Contrib. drain. area = 22.900 ac TOTAL POST DISCHARGE Q (cfs) Hyd. No. 10 -- 100 Year Q (cfs) 140.00 140.00 120.00 120.00 100.00 100.00 80.00 80.00 60.00 60.00 40.00 40.00 20.00 20.00 0.00 ilL 0.00 0 4 8 12 16 20 24 28 32 36 40 44 48 52 Hyd No. 10 Hyd No. 4 Hyd No. 6 Hyd No. 7 Time (hrs) Hyd No. 8 Hydraflow Rainfall Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12 Return Period Intensity -Duration -Frequency Equation Coefficients (FHA) (Yrs) B D E (N/A) 1 66.8196 12.9000 0.8963 -------- 2 71.1962 12.5000 0.8678 -------- 3 0.0000 0.0000 0.0000 -------- 5 77.9030 12.9000 0.8403 -------- 10 71.8008 12.0000 0.7927 -------- 25 66.0145 11.1000 0.7420 -------- 50 59.2567 10.1000 0.6965 -------- 100 53.8843 9.2000 0.6563 -------- File name: 6198-NOAA.IDF Intensity = B / (Tc + D)^E 54 Tuesday, 06 / 5 / 2018 Return Period (Yrs) Intensity Values (in/hr) 5 min 10 15 20 25 30 35 40 45 50 55 60 1 5.03 4.04 3.38 2.92 2.57 2.30 2.08 1.91 1.76 1.63 1.52 1.43 2 5.94 4.78 4.01 3.47 3.07 2.75 2.50 2.29 2.12 1.97 1.84 1.73 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 6.90 5.61 4.75 4.14 3.67 3.31 3.02 2.78 2.57 2.40 2.25 2.12 10 7.60 6.19 5.27 4.60 4.10 3.71 3.39 3.13 2.91 2.72 2.56 2.42 25 8.40 6.87 5.87 5.15 4.61 4.19 3.85 3.56 3.33 3.12 2.95 2.79 50 8.94 7.33 6.28 5.53 4.97 4.53 4.17 3.88 3.63 3.42 3.23 3.07 100 9.44 7.75 6.66 5.88 5.30 4.85 4.48 4.18 3.92 3.70 3.51 3.34 Tc = time in minutes. Values may exceed 60. K:\Land Proiects R2\6198 - Chambwood Rd - Weslev Chanel - Bowman\Calculations\Stormwater\6198-NOAA 24hr.DCD Storm Distribution Rainfall Precipitation Table (in) 1 -yr 2 -yr 3 -yr 75 -yr 10 -yr 25 -yr 50 -yr 100 -yr SCS 24-hour 2.95 3.56 0.00 4.48 5.21 6.22 7.04 7.89 SCS 6 -Hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff -1st 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff -2nd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff -3rd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff -4th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Huff -Indy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Custom 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5/14/2018 Precipitation Frequency Data Server eNOAA Atlas 14, Volume 2, Version 3 Location name: Monroe, North Carolina, USA Latitude: 34.9917°, Longitude: -80.6777° Elevation: 601.43 ft - source: ESRI Maps .%1 0 ** source: USGS POINT PRECIPITATION FREQUENCY ESTIMATES G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland PF tabular I PF graphical I Maps & aerials PF tabular 11 PDS -based point precipitation frequency estimates with 90% confidence intervals (in inches/hour)' 11 10 -min 7 ? 5 3)I $ 6.69 1 5 4I 0(3.437) (4.37518) (5.07602 (5.57659) 11(6.25) 11(6.477.73) I(6.79814) I(7.6852) I(7.35896) (7.52925) Average recurrence interval (years) 3.98 1 2 5 10 25 50 100 200 500 1000 6.92 5.04 5.94 6.90 7.60 7 F 8.40 8.95 9.46 9.91 10.4 IF 10.8 5 -min (4.64-5.47) (5.47-6.48) (6.34-7.51) (6.96-8.24) 1 (7.67-9.11) 11 (8.12-9.70) 11 (8.54-10.2) 11 (8.90-10.8) 11 (9.29-11.3) 11 (9.54-11.7) 10 -min 7 ? 5 3)I $ 6.69 1 5 4I 0(3.437) (4.37518) (5.07602 (5.57659) 11(6.25) 11(6.477.73) I(6.79814) I(7.6852) I(7.35896) (7.52925) 1.43 1.73 2.12 2.42 11 2.79 11 3.07 3.341 3.61 1 3.95 4.20 60 -min (1.32-1.56) (1.59-1.88) (1.95-2.31) (2.22-2.62) (2.55-3.02) (2.79-3.33) (3.02-3.62) (3.24-3.91) (3.52 4.29) I (3.72 4.58) 3.35 3.98 4.66 5.12 5.66 6.02 6.33 6.60 6.92 7.11 1 5 -min (3.09-3.64) 1 (3.66-4.34) 2.75 1 (4.28-5.07) 3.31 1 (4.70-5.56) 3.71 1 (5.16-6.13) 4.19 (5.46-6.52) 4.53 1 (5.72-6.86) F 4.85 1 (5.94-7.16) 5.14 (6.17-7.52) 1 (6.29-7.74) 2.30 5.50 5.76 30 -min (2.12-2.49) 1 (2.53-3.00) 1 (3.04-3.60) 1 (3.40-4.03) (3.82-4.54) 1(4.12-4.91) 1 (4.38-5.25) 1 (4.62-5.58) (4.91-5.98) 1 (5.09-6.27) 1.43 1.73 2.12 2.42 11 2.79 11 3.07 3.341 3.61 1 3.95 4.20 60 -min (1.32-1.56) (1.59-1.88) (1.95-2.31) (2.22-2.62) (2.55-3.02) (2.79-3.33) (3.02-3.62) (3.24-3.91) (3.52 4.29) I (3.72 4.58) 0.353 11 0.425 0.531 0.614 0.727 6 -hr (0.323 0 387) (0.390 0 467) (0.485-0.582) 1(0.560 0 672)11(0.659-0.793)11(0.736-0.8 9) (0.811 -0 990) (0.8910-10.09) (0.994-4.24) (1.07-21435) 12 -hr 0.207 (0.190-0.227) 24 -hr 0.123 (0.114-0.133) 0.250 (0.229-0.275) 0.827 1.00 1.24 1.42 1.66 1.84 2.02 2.20 2.43 11 2.61 2 -hr 1(0.758-0.904)1(0.916-1.10) 1 (1.13-1.36) (1.30-1.55) 1.02 1 (1.51-1.81) 1.20 1 (1.66-2.00) 1 (1.81-2.20) 11 (1.96-2.39) 1 (2.15-2.65) 11 (2.29-2.85) 0.585 0.706 0.881 1.35 1.49 1.64 1.85 2.01 3 -hr (0.535-0.644) (0.647-0.777) (0.805-0.968) (0.926-1.11) 1 (1.09-1.31) 1 (1.21-1.47) 1 (1.33-1.63) (1.46-1.79) 1 (1.62-2.02) (1.74-2.20) 0.353 11 0.425 0.531 0.614 0.727 6 -hr (0.323 0 387) (0.390 0 467) (0.485-0.582) 1(0.560 0 672)11(0.659-0.793)11(0.736-0.8 9) (0.811 -0 990) (0.8910-10.09) (0.994-4.24) (1.07-21435) 12 -hr 0.207 (0.190-0.227) 24 -hr 0.123 (0.114-0.133) 0.250 (0.229-0.275) 0.313 0.364 0.435 0.492 0.551 I 0.613 (0.287-0.344) (0.332-0.399) (0.394-0.475) (0.442-0.536) (0.491-0.600) (0.540-0.667) 0.701 0.772 (0.607-0.762) (0.660-0.839) 0.149 ­IF0.187 1(0.137-0.161)1(0.172-0.202)11(0.200-0.235)1 0.088 0.217 0.259 (0.238 0.281) 0.293 (0.268-0.318) 0.329 (0.299-0.357) F 0.366 (0.332-0.398) F 0.418 (0.377-0.455) 0.461 (0.413-0.502) 2 -day 0.072 0.087 0.109 0.126 0.150 0.169 0.189 0.210 0.239 0.263 2-d7.y (0.067-0.079) (0.081-0.095) (0.101-0.118) (0.116-0.137) (0.138-0.163) (0.155-0.184) (0.172-0.205) (0.191-0.229)11(0.216-0.261)11(0.235-0.288)1 7 -day 0.027 0.032 0.039 (0.02 -0 029) (0.030 0 034) (0.036 0 042) 1(0.04 -0 048)11(0.049 0 056)11(0.054 0 063) 0.052 0.059 1(0.060 0 070)i (0. 66 0 077)i (0.074-0.088) 1(0. 810-0 096) 0.051 0.062 0.076 0.088 0.105 0.118 0.132 0.146 0.166 0.182 3 -day (0.047-0.055) (0.057-0.067) (0.071-0.083) (0.081-0.095) (0.096-0.113) (0.108-0.128) (0.120-0.143) (0.133-0.158) (0.150-0.181) (0.164-0.199) 20 -day 0.041 0.049 0.060 0.069 0.082 0.092 0.103 0.114 0.129 0.142 4 -day (0.038-0.044) (0.045-0.053) (0.056-0.065) (0.064-0.075) (0.076-0.089) (0.085-0.100) (0.094-0.111) (0.104-0.123) (0.117-0.141) (0.128-0.155) 7 -day 0.027 0.032 0.039 (0.02 -0 029) (0.030 0 034) (0.036 0 042) 1(0.04 -0 048)11(0.049 0 056)11(0.054 0 063) 0.052 0.059 1(0.060 0 070)i (0. 66 0 077)i (0.074-0.088) 1(0. 810-0 096) 30 -day (0.011--0 012) (0.01 -0 015) (0.01 -0 017) (0.017--0 019) (0.019 0 021) (0.021--0 023) (0.02 -0 025) j(0. 024-0 027) (0.026-0 030) (0.028-0 032) 45 -day 0.010 0.012 0.013 0.015 0.016 0.017 0.019 0.0200.022 0.023 (0.009-0.010) (0.011-0.012) 1(0.013-0.014)11(0.014-0.015) 1(0.015-0.017)11(0.017-0.018)11(0.018-0.020) (0.019-0.021)11(0.020-0.023)11(0.021-0.024)1 60 -day 0.009 0.010 0.012 0.013 0.014 0.015 1 0.016) ( 0.017 0.018 T-0 19 (0.008 0.009) (0.010 0.011) (0.011 0.012) (0.012 0.013) (0.013 0.015) (0.014-0.016) (0.015-0.017 0.016-0.018) (0.017-0.019) (0.018-0.020) 1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Top https://hdsc. nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=34.9917&Ion=-80.6777&data=intensity&units=english&series=pds 1/4 0.022 0.026 0.031 0.035 0.041 0.045 0.049 0.054 0.060 0.066 10 -day (0.020-0.023) (0.024-0.027) (0.029-0.033) (0.033-0.037) (0.038-0.043) (0.042-0.048) 1(0.046-0.053)11(0.050-0.058) 1(0.056-0.065)11(0.060-0.071 20 -day 0.014 (0.014-0.015) 0.017 (0.016-0.018) 0.020 (0.019-0.021) 0.023 (0.021-0.024) 0.026 (0.024-0.028) 0.028 (0.027-0.030) 0.031 1(0.029-0.033)11(0.031-0.036) 0.034 0.037 (0.035-0.040)11(0.037-0.043) 0.040 30 -day (0.011--0 012) (0.01 -0 015) (0.01 -0 017) (0.017--0 019) (0.019 0 021) (0.021--0 023) (0.02 -0 025) j(0. 024-0 027) (0.026-0 030) (0.028-0 032) 45 -day 0.010 0.012 0.013 0.015 0.016 0.017 0.019 0.0200.022 0.023 (0.009-0.010) (0.011-0.012) 1(0.013-0.014)11(0.014-0.015) 1(0.015-0.017)11(0.017-0.018)11(0.018-0.020) (0.019-0.021)11(0.020-0.023)11(0.021-0.024)1 60 -day 0.009 0.010 0.012 0.013 0.014 0.015 1 0.016) ( 0.017 0.018 T-0 19 (0.008 0.009) (0.010 0.011) (0.011 0.012) (0.012 0.013) (0.013 0.015) (0.014-0.016) (0.015-0.017 0.016-0.018) (0.017-0.019) (0.018-0.020) 1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Top https://hdsc. nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=34.9917&Ion=-80.6777&data=intensity&units=english&series=pds 1/4 5/14/2018 Precipitation Frequency Data Server eNOAA Atlas 14, Volume 2, Version 3 Location name: Monroe, North Carolina, USA Latitude: 34.9917°, Longitude: -80.6777° Elevation: 601.43 ft - source: ESRI Maps .%1 0 ** source: USGS POINT PRECIPITATION FREQUENCY ESTIMATES G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland PF tabular I PF graphical I Maps & aerials PF tabular PDS -based point precipitation frequency estimates with 90% confidence intervals (in inches)1 Duration Average recurrence interval (years) =0.420 5-min(0.387-0.456) 1 2 5 1 100 10 25 50 100 200 500 1000 1.50 F 1.58 0.495 (0.456 0.540) 0.575 (0.528 0.626) 0.633 (0.580 0.687) 0.700 (0.639-0.759) 0.746 (0.677-0.808) 0.788 (0.712-0.854) 0.826 (0.742-0.896) 0.869 (0.774-0.944) 0.899 (0.795-0.979) 10 -min 0.670 11 0.792 11 0.921 1 �l(O.618-0.728)1(0.729-0.863)1(0.845-1.00) 1.01 11 1.12 (0.928-1.10) 1 (1.02-1.21) 1.19 (1.08-1.29) 1.25 1 (1.13-1.36) 1.31 11 1.37 11 1.42 (1.18-1.42) (1.23-1.49) (1.25-1.54) 10.8 0.838 0.996 1.16 1.28 1.41 1.50 F 1.58 1.65 1.73 1.78 1 5 -min 1(0.772-0.910)1(0.916-1.09) 1 (1.07-1.27) (1.17-1.39) (1.29-1.53) (1.37-1.63) (1.43-1.71) 1 (1.49-1.79) 11 (1.54-1.88) (1.57-1.94) (9.06-10.4) 1.15 1.38 1.65 1.86 2.09 2.27 2.4-2F 2.57 F 2.75 2.88 30 -min (1.06-1.25) (1.27-1.50) (1.52-1.80) (1.70-2.02) (1.91-2.27) (2.06-2.46) (2.19-2.63) (2.31-2.79) (2.45-2.99) (2.55-3.13) 13.7 1.43 1.73 2.12 2.42 2.79 3.07 3.34 3.61 3.95 4.20 60 -min (1.32-1.56) (1.59-1.88) (1.95-2.31) (2.22-2.62) (2.55-3.02) (2.79-3.33) 1 (3.02-3.62) (3.24-3.91) (3.52-4.29) (3.72-4.58) (11.6-13.2) 1.65 2.00 2.48 2.85 3.32 3.68 F 4.04 F 4.39 F 4.86 F 5.22 2 -hr (1.52-1.81) 1 (1.83-2.19) 1 (2.27-2.72) 1 (2.59-3.11) (3.01-3.62) (3.32-4.01) 11 (3.63-4.40) 1 (3.92-4.79) (4.30-5.31) 1 (4.58-5.70) 1.76 2.12 2.65 3.06 3.60 F 4.04 4.48 4.93 5.55 6.04 3 -hr (1.61-1.93) (1.94-2.33) (2.42-2.91) (2.78-3.35) (3.26-3.94) 1 (3.64-4.41) 1 (4.01-4.88) 1 (4.38-5.38) (4.86 6.06) (5.24-6.60) 2.11 2.55 3.18 3.68 4.35 IF 4.89 F 5.45 F 6.02 6.81 F 7.44 6 -hr (1.93-2.32) (2.33-2.79) (2.91-3.49) (3.35-4.02) (3.95-4.75) (4.41-5.33) (4.87-5.93) 11 (5.33-6.55) (5.95-7.40) 1 (6.43-8.09) 2.49 3.01 3.78 4.39 5.24 5.93 6.64 7.39 8.45 9.30 12 -hr (2.29-2.74) (2.76-3.31) (3.46-4.14) (4.00-4.81) (4.74-5.72) (5.33-6.46) (5.91-7.23) I (6.51-8.04) 11 (7.32-9.18) 11 (7.95-10.1) 2.95 3.56 4.48 5.21 6.22 7.04 7.89 8.78 10.0 11.1 24 -hr (2.73-3.20) (3.30-3.87) (4.14-4.86) (4.80-5.65) 11 (5.71-6.74) (6.44-7.63) 1 (7.19-8.56) 11 (7.96-9.54) 11 (9.04-10.9) (9.90-12.0) 3.48 4.19 5.23 6.05 7.20 8.13 9.09 10.1 11.5 12.6 2 -day (3.22-3.77) (3.88-4.55) (4.83-5.67) (5.58-6.56) 1 (6.61-7.81) (7.43-8.81) (8.28-9.86) (9.15-11.0) 1 (10.4-12.5) (11.3-13.8) 3 -.6 -9 -1F -4-.4-3-1F-5.50 6.35 7.53 8.49 9.47 10.5 12.0 13.1 3 -day (3.42-3.99) 1 (4.11-4.80) 1 (5.09-5.96) 1 (5.86-6.87) (6.93 8.15) (7.78-9.19) (8.66-10.3) (9.56-11.4) 1 (10.8-13.0) 11 (11.8-14.3) 3.90 4.68 5.77 F 6.65 7.87 8.85 9.86 10.9 12.4 13.6 4 -day (3.62-4.21) (4.34-5.05) (5.35-6.24) 1 (6.15-7.18) (7.25 8.50) (8.13-9.57) (9.04-10.7) (9.97-11.8) 11 (11.3-13.5) 1 (12.3-14.8) IF 6.5604) 7 -day (4.22-4.84) (5.04-5.78) (6 (7.00-8.05) (8.18-9.46) (9.13-810.6) (10.10-11.8) (11113.0) (1215 4.7) (13.6-16.2) 30 -day 8.48 9.9711.6 12.9 14.6 15.8 17.1 18.4 20.1 21.4 (8.01-8.98) (9.42-10.6) (11.0-12.3) (12.1-13.7) 11 (13.7-15.4) 11 (14.9-16.8) (16.0-18.2) (17.2-19.6) (18.7-21.4) (19.9-22.9) 45 -day 60 -day 10.7 5.16 6.15 7.40 8.39 9.73 10.8 11.9 13.0 14.5 15.8 10 -day (4.85-5.53) (5.76-6.57) (6.92-7.91) (7.83-8.97) (9.06-10.4) (10.0-11.5) (11.0-12.7) (12.0-13.9) (13.3-15.6) (14.4-17.0) 16.8 6.92 F 8.16 F 9.64 F 10.8 12.4 13.7 F 14.9 F 16.2 F 18.0 F 19.3 20 -day (6.51-7.36) (7.68-8.69) (9.06-10.3) (10.1-11.5) (11.6-13.2) (12.8-14.6) (13.9-15.9) (15.1-17.3) (16.6-19.2) (17.8-20.7) 30 -day 8.48 9.9711.6 12.9 14.6 15.8 17.1 18.4 20.1 21.4 (8.01-8.98) (9.42-10.6) (11.0-12.3) (12.1-13.7) 11 (13.7-15.4) 11 (14.9-16.8) (16.0-18.2) (17.2-19.6) (18.7-21.4) (19.9-22.9) 45 -day 60 -day 10.7 12.5 14.3 15.7 IF 17.5 IF 18.9 20.2 F 21.5 23.3 24.6 (10.2-11.2) 1 (11.9-13.1) 1 (13.6-15.0) 1 (14.9-16.5) 1 (16.6-18.4) 1 (17.9-19.9) 11 (19.1-21.3) 1 (20.3-22.7) 1 (21.8-24.6) 11 (23.0-26.0) 12.7 14.8 16.8 18.3 20.2 21.7 23.1 24.5 26.3 27.6 (12.1-13.3) 1 (14.1-15.5) 1 (16.0-17.6) 1 (17.4-19.1) 1 (19.3-21.2) 11 (20.6-22.8) 11 (21.9-24.3) 1 (23.2-25.7) 1 (24.8-27.6) 11 (26.0-29.1) Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). umbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not iecked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. lease refer to NOAA Atlas 14 document for more information. Back to Top https://hdsc. nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=34.9917&Ion=-80.6777&data=depth&units=english&series=pds 1/4 Cavesson Subdivision - Wesley Chapel, NC Stormwater Management Report EEI Project #6198 May 28, 2018 Appendix B Storm Drain Calculations (Pipes, Catch Basins, HGL, Gutter Spread) jawaulluoajoea-mmm Ob90-6££ (9L9) ZZZb-Z88 (bOL) 6000£ b'O 'eV9JeydlV 6208Z ON `Pe -Il uelpul k99 xoa 'o'd enueAV uejn8 ueA b'£dOZ £L80-0 # 3SN301 1 YVYJ JNIS33NIJN3 3 l J V 3 3nSS1 I Ae I 3ivo I -ON, ON `3_I71/1SL31Nl1H 7d 2IH8b'NNID S68£d 1N3Wd073/134 Nb'WM08 13d VHD A3 133M -40 30 V I IIA N0333AVO 8649 SdOZ/5Z/5 NMOHS SV 83sym 80r 31b'4 eleoS aH!' M3N Ag .l8 03)103HO 8 NMb'2i4 .l8 O3NJIS3a d VYV b 3aV 30VNI VLfCl NISVEI HO1bO o co +i U� E-, CCOD W Lo Ct= \ U U O O EL, 'to M U N - U -_` m N U o CJ Q CO ~moo ' Oho Nf 1 N I CZ N ° J I V) Cb O N � O O O C� — II m �oC m \ I I m O 17 I C% co o`c � Qb a U I I O O V CZ � I I 30 m co CN w co C\4 _ NU) v m �2 rn `- \ ° N aS m� °oma�o \ Lo Co UoCN � �o z\ Lr) 0 �O� (o cr m Lr\ C� mLq16 LU IL $� Uo m o E5 ¢� N �r \ �. C)�.i 0 J I ca �o 91. cn Um�t,u , I I \ 1' l \� b to \ ' \ U,o y-M��,1 CN I I % I I . I 1 0 Ill- a, I ' / J cs r°\im: Lo CDo J ,p O , co co \ -°off-\= 1 i w �1 m LL W i z � 0 CL 0 3 d rn a C! «s :3 .s:!c Fo. (D "20 ,oDm CD 0 o F./ i75 O) .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... . N N N N N N N N N N N N N N N N N N N N N 0) J Q it Q it Q Q Q Q it Q it Q Q Q Q Q Q it Q Q Q Q a a a 0- a a a a 0- a a a a- 0- a 0- a a a a a a w 0 N V w w V V CO w v w M r- V (A w w O N v N w N N N N CA M (. w M w � N L O O CO M N W (A w O O N V co w O V V co N O N 0 N CO O CA LO V) w w w w r- r` f --P- w w w w w 00 w w w w w w R_ O IT Cn LO V Cn CO q w CO r d' _ W CO w W N It N m O Cl! N N N O 0A O w M w r` N CO O O w 0) C C CO W CO CO CA CA N V CO w O V V M N O N N M CA 7 p * w CO Cn CO CC) w Cn CO CC) CO w r` Cn rl. w r- w � w w w w w w w w Cn w w w Cn w w w w w w w w w CC) 00 w (Y M_ LO V N w N M w N N M CA Cn CA O CC) M M M CO O w w n M w CO O M r` O w O w O OR 4 CO w V � CA O O N M M V V cO w r- CA CO w Q' _ u co co LO co co LO u u LO V) u N. u N. [) V) LLw') V) LO C) C) d LU M Cn N co N W V N w � r- co w CA w m W m O w w f` w L M V CA r� O M n O CA w w w V rl wM V � m O O M M M V V' CO w r- W CO 2 C _ I-V w LO LO CO U') CO w w U") CO Lo w (n w (n w (n r- Cn r- (n f� (n r` V) r- w r- w r- w h U')u� r- h U') r- w r- w w w p V V L m OL OM N L CA V V CA r- L CA V N M V V VN N N CO w m N CO � r- w O ON M Cr) L w V CO CL Y3m Lo Lo Lo co L co co co co r- r- � r- r- r- � r- r- w w — > > LO U') LO rn (o LO U-) LO rn (o rn LO LO LO LO rn LO rn (o LO LO L o m W O V w O w O O O O t f` M N N � V r - O L CO M L r w 0) M r� Co r- w CA 0) w E CO V' w (A N CO r- w w m O N N M CO co w 7 =1 _ LO LO LO wO Z C CLO CO CO CO w C CLO CLO U') U') U') U') CO w CO w w w w CO w V) Q. O w O h M, r- L O O O O O O O W C, CO n O 0 LO CO c0 w w w O CI') CO CO CO L CO V CO CO w O v N e M O M M O O N M O O O O O O O O O O N 4 d Q 00 w w N N N N N N N N N NN N NN L O V w Cn IL N C v v v V V V V V V V V V V V V V V M Co N It - O M LCO to CO H O r� r- co N O O m w L CO O (A L O 41 6 w w w w w w w w w r-' r r- r r- L r- rl- to w X M �_ L M V CO N M V O V V W V M O (O N O O 4 CL_ d' L � (O CO w v R w P- O � m t` M w 0 t` O n O 7 N M N L) w .U. N N (A CO N d CO W N W CO N r- CO M M M V w O w ^v w N j0 _ W M M w w CO Cl? L w O O N w N CO O M O O M U) r- CO CO O W n co v CO N O r- co N L M O V - II .V_. w w w w w w LO Cl) LO LO CO CO M V V V Cl) N N - r-� L N i U C L w w w O O O O N V V Cn (O L � O O M M II L LO LO LO LO L CO L L L L co co CO co CO CO r r- r-� r- r. - CA CA f- (O M O w w M 5 E O O O O N O 'ORD h00 CA O CA w w w w w CO w CO II U ~ N C O O O O O O O O O O O O O O O O O O O O O O O Lo Lo CC) CO C[) CC) Lo Lo Lo m Cfl Lo CCS (n CC) Lo CC) CCS (n Cn d N N h CA O CO C in 'r i "u� iii LN ._ v ._ M M 0) 0 CO _. _. w OD M 7 C 0 � CO M � (OO N OR M � V � � OR O W f, � O O CA w w w � r- w CO w co N N O O Q' x O Cl) w O L Nw N O w N CO O L M CO Cf) V 0) V ai r`• y Cj O N N N 7 V M M M Ln w M w O M OR O O M cj Q C O O O O O O O O O O O O O O O O O O O O O O C, tt: O O O O O O O O O O O O O O 0 0 C) ,• � 0 0 0 O C d O w co w co w w w w co w co co w co (o (o Co co co (o c0 CV �� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �. 0) CO M w N w V w O w w w w CO t*-: t�: w £� T 0 C V CO Iq w V' N 6 00 w w w G L ., L G w UO O w 4 V, 4 w M - M N N LN w O O r M CSO. N � d .cc CV N r r r r M CO V M - r d) " O> O "^ (0 L r` w w 0 O O co Cl) w O m w w N t` CO w V V O c) N M w c r w w rn w O CO M O CO O CO £ O C o O o 0 0 0 0 0 0 0 0 0 o — o o 0 0 0 Oco O O w M M 00 0 M w M_ O 00 N_ L O p r' M L O O C> w O @ 0 CO O O N CO N � L CO � O III O w O w w w w w v O O w M O Q )n N M co 'IT Cr w M w w w w O N O O M v w O O M M N (O J N h N O w Co CO N co w V co w r� N CO i? [" O C C W - - - - L - w O N LL ~ J r N M V' L w rl- w m -O - - V) e ul 4) O F- C CMN d �- N J N M V CO CO w CA N N N 0 co cu CL CD .i .r.. .... .... .... .... .... .... .... .r.. ... ... ... ... `. .... .... .... .r.. 0) N O) N O) N N N N N N N N N N N N N N N (D O) J n n n n n n 0_ 0_ 0_ 0_ n n n n n n 0_ 0_ 0_ Q 0_ 0_ a a a a a a 0- a a a a- a 'a a a- a a a a a a a o 0 N N M d' M O cD V 0V O O O O O O O 0 WIT O O M M O O O O co O N r r O O � O N CL V O Cl) N O O O O OD Cl) O co r- O O 00 r` M M W O LD 00 O 00 O 00 O 00 O Oo O 0D O r` LD r` O rl- O r` O (D O (D O co O (D O (D O rl- O r- O co O (D O CD O (0 O E M N_ IT CO O cD 00 IT O CD O O O O O O cD CD ICU ' O O M O O O O N r r` O q O N r r O r� r` C C O O Mm O N C0 O O O M O c0 r- O O r` M M 7 $ 00 O 00 O 00 O 00 O 00 O M O OD O 00 O r- O co O r- O co O co O co O co O co O co O r` O O co O CD O co O d' C c0 ODO N M M N N O VM r- O O V O O O c0 M O0; O M M O 00 N O r` O OIt _r` O O O O O OD r --r` Cl) 00 O O O Cl) M V V O O V0 O Q. _ co V) U) V) N. LO U) U) co Lo LO co co co co co co co V) V) V) d LU M O r M co r OD O co V N 00 N O M 00 O O 00 O O J r r N N W r` M Co O CoN r M V r, O (0 r c0 O O O O 00 to c0 N O OD 00 O M V It V O V O O 2 C _ 00 O O O 00 O OD O r-- O h O rl- O r- O N. O 0 O c0 O O O O O O O 0 O co O co O CO O co O c0 O O O c0 O V V r� N N O M O W O N O N 00 00 O O O O O O O � r- O M r` O r` O N M M q O q O O 2 O co r- r- r- r- r- r- co rl- O V) O co (D (D co (D co O O - > O O M O O M O O O O O O O O O O LD O O O LD O o m W � O r` v r` lb h V O N V V O M V r` t+ Nt O O N O f� O V r- O N M M M r` 7 co O O W N E 0) O v 00 O O � co O N O r-� r` O O N N M M V M co O =1 > C _ 00 co r- r` r- r- r- � Il- (0 c0 O O co CD co 0 c0 (D 0 O O Z C O O O O O O O O O O O O O O O O O O O O O O Q. O O r O O O O O O N O O O O O '- O O O 0 00 O O O O O9 O CD r M M M M M O O9 O O e M N O O N O N N N IT It (D O O O O O N r r (D Q- O O M M M O O W O O O O O V V O O V 7 d N C r r r r r r r r r r r Cl) Co N N N N N r r N N - .T N r fl -r- OD O r CD V N M O O V cD h O O M 41 N M N M �' O r M M (D (6 r O M 4 4 M r O M X N v O O N (0 .... N r` 0 CL N co a. O w O O r �N^v O v O O Lo CD O 4 m n O cc O co N IT � co C9 c"i Co. O ODO O �-- (0 cli (0 O O N 6) M O II O O .V.. N r � O O - r V - O (D N - r - O - O OD O N O M r- N i U r L M (4 O (q (D (O (q (O (fl (q (O DJ O N M M (9 (D M (D II OC r � � r- r- r-- � r-� r- o (o (o r-� � r- r- r- r- � � U O r U) C Oui OLri Oui OLri Oui O M O O O r M M O O M O r j ui LriOui ui co 6 c6 r� I� o o L6 6 6 6 L6 6 i 51 � m O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n - co _ q ._ co - M N N N O Lia N C, N M E0) 7 O 0 M 7 0� f- O N 7 � O OR N O r� c0 LD N O OR M � W � U O O O O O O O r O O O N r r r r O O Co r CD Q' x V O (0 (D r O 00 00 O M O M N O M M O ai h y cj Cl) r N O N r O O O N O r r r r N O M r r O C) Q C O O C) O O C) O r O O C) O O O O O O O O O O O C, tt: O O O O O O O O O O O O (-- CD 0 CD C) ,. .. 0 ., 0 O O C) co co co O co co (o co O co O co (D cc c0 cc cD co (D (D (D (D cV �0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a) T LO coN v O _. (D (D - ' LO � co O N O cli cc, C) r- Lai £_ C 0 V q Cfl N O � N N O 't d' W 00 � O O W M U0 N 00 q •' .�.. O O r r O O O M O r O V N N N N r r O O r r Q) C> - O O O O r` N O co N 00 n V CD OD IN 1- CO Co O N ` 0 cj co N Cl) N0 N N O O It r r - N N v OD O N N O £ O O O O O O O O N 0 0 M Or M CD cD co rl- r` O O N p r• I O O O O O O O r` O 1 N O t- [,- Cl) -q-N O v O O ) r III O O O O O O O r� O M M 00 O O _ 0 )n N co n c0 O (O CO (O cV c0 C)4 0 6 6 O 00 CO (O Co J N N N N N N O OD w O Lo M N N V CO 0) i - N) N O O W (D N 7 M M O O Cl) LL- i. O ~ J N N N N r r r - r O O M N CO M M M M M M M 'cY M M M M r U ul O F- CF N C M v O co I-- co O O N M eY O (D rl- OD O O N co V' d �- N J N N N N N N N M M M M M M M M M M v V v V Nt r- d 0tt= tt= 4-- 4-- tl-- 4-- tl-- 4-- tt= 4-- 4-- t: t:u u m J L O O O O O O O O O O O Op O O O O O O O O O O Q v O O M C (6 O I- Cl) co M (n IN - '^ M M I- M M O M M M O V (n C,N c L O M ID V O V M N 07 W Lq O (0 O M v O v Lj O M N Lr) N N - M v N h O (t7 N O O NQ NN w OM OD M cm) 00 M 00 v M OD C, - (0 O O _ 0$ O O O O O6 O O0 O O O O O O O O O O O O O c C 7 V M (0 O O Cl) M, Cl) (I) (I) 00 O = M M O M c; co - I- M L Q^ O M f� Ib M V O O O N M M CO O v G) v Lj (0 V O V' O v v N Cl) v (. It co (n M M (0 Il- M I` - M N - N M M O M_ v cl-_ N_ CO_ co CO_ I- LO co o O 00 I' W 00 (O M h 0) (A (0 C O O N O O 0) O O O O O O O O O O O O O O O O O O O O O O O f6 OM M M M M M M M M M M M M M O M O O M M M M O O O O O O O O O O O O O O O O O O O O O O C O O O O O O O O O O O O O O O O O O O O O O O y O O O O O O O O O O O O O O O O O O O O O O O (6 O N N N N N N N N N N N N N N N N N N N N N N ay+ O O O O O O O O O O N O O O O O O O O O O O O O O O O O O O O O O O 0 C O N N N N N N N N N N N N N N N N N O N N N N 7 O v v v v v v v vvv O vv v v v v v v N v v v v E V O O O O O O O O O O O O O O O O O O O O O O _ Q fn O O O O O O O O O O O O O O O O O O O O O O O z Ni OO O O OO O _ O O O O OOOOOOOOO O O OO O O O OO O O N N N N N N N N N N N N N N N N N N N N N N c31 IM IM rn rn rn rn rn rn rn rn o 0 0 0 0 0 � ,- 0 c: 3; 0 0 0 0" 0 0 0 0" o o" 0 0 0 `o" a `0" m m o 0 0 0 °c' Uo fn o 0 0 0 0 0 0 0 0 0 0 0 0 0 (A o fn fn o 0 0 0 m C) c c c o o c o o c m; 0 0 0 0 0 0 0 0 0 0 0 0 o O O O o o O o 0 0 0 O N N N N N N N N N N N N N N N N N N N N N N =pi _d _ _ O C _ _ _ O C _ _ O O O _ _ O O O C)_ CDG C c c c c c O O c c c c c O O c c c c O c c c c .- O J 0 Cl) M M Cl) (h Cl) (h M Cl) Cl) Cl) M co Cl) m Cl) M M Cl) m (h (M Im ca d a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 o O o 0 0 0 0 a M O O O O O O O O O O O O O O O - O to (O o 0 o O p0 `mi 0 0 0 °` 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o E d J O N N N N N N N N N N N N N N O N N O N N N N _p! [Y: 0 0 0 0 0 0 0 0 o O o 0 0 0 0 0 0 0 o O o 0 0 O y C O M M M (O M (O M M M M (O M M M M M M O (0 (O M (O Oi C! Co � c a E E E E E E E E E E E E E E E E E c7 E E E E o = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H U U U U U U U U U U U U U U U U U D U U U U c; •+ LO a, T O O O � M O _ N M N (0 h M O O O O O O N M E_: c m .V.. O O O O O O O O O O O O O O O O O O O O O o O Mi C: 0 O - "' M O 0 (C1 (0 M M M v N (v M - M " i M I- O N (CJ .\ 2 u7 V O M O 6i O M O M O i* O N - (O O N - O) O O (C7 M O M M O N - M M 7 O M O -=i N .V.. a w u L U V o o 0 O 0 o 0 o 0 0 0 o 0 0 0 o 0 o 0 o 0 o 0 0 0 o 0 0 0 o 0 o 0 o 0 o 0 o 0 o 0 0 0 o 0 o C: Ni O O M (f1 (O M N M O i- -C, N O M M � M "Zr M -C II Q w O W M CO M CO I� M - V ,;rM - " M - M � f9i U V. O O O O O O - " N N c; E II iA IE O O IOi 0 NM v (n (0 I- M O O N M O N M •Zi W O O O O O O O O 7 7 7 7 7 7 7 7 7 C CN C\j ! C7 = m 7 m 7 m 7 m 7 m 7 m 7 m 7 m m m m m m m m m m m m m m U U U U U U U U U U U U U U U U U U U U U U I1 (/J V N LLI O i� O O � N M v (� CO I- M O O - - - - - co - M c O N �-- N N N Cl) N d .Z. J Z N IL r- d � � 4-- 4-- � 4-- � 4-- � 4-- 4-- t: t:u u m J Z L O O O O O O O O O O O O O O O O O O O O O r r r r r r r r r 0r r O (D v O M> O N c4 V N O O N N W OO � N W to f- r C M V = M C M M M N r O r F 0 r N0 V N O Cl) r r O O r r N Cl) r r NN U) r+ CG M O 00 O v. (v 7 Cl) 7 7 r N M 7 O m Q. O r N N � r r r 7 N N ❑ Q$ O O O O O O O O O O O O O O O O O O O O O C 7 CY V co O 00 R V V v (o N "' M O '^ V N N r O r- (n M (o O - W L O. ^ C O co r- V (fl N N DJ W M f� C m O r O V N r r} N V r Cp r M M V V (n (0 r N N 00 N_ Ce) t' V MO N_ M_ M_ CO 00 N_ N C N G _ O N d O O O O O O O O O O O O O O O O O O O O O �^. f6 O M O M O O O M M M O M M M M M M O M0 O O O O O O O O O O O O O O O O O O O O O O c6 O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N ay+ N O O O O O O O O O O O O O O O O O O O O O cA O O O O O O O O O O O O O O O O O O O O O 0 C O N O N N N O N N N N N N N N N N O N N O 7 ^r N V N V V V N V V O�' V V V N -0 U Q fn O O O O O O O O O O O O O O O O O O O O O z Ni CO O O O OO o _ O O O O O O O O O O O O O O O O O O O m' N N N N N N N N N N N N N N N N N N N N N c3� o V rn rn o � r�_ m (n m m _v, (n o O rn (p O rn (p O rn (p rn (p rn (p O O O rn rn rn rn V% ... U) O U) O w w w O O O U) O O O O O O U) O Ni ID O O O O O O O O O O O O O O O O O O O O O Oji N N N N N N N N N N N N N N N N N N N N N =pi _d G _ _ O C _ _ _ O C _ _ 0 O O _ _ O O O O C C C C C C C C C C C C C C O C C C C O O O .- N J M Cl) M M Cl) C) Cl) C) M Cl) Cl) Cl) M Cl) Cl) Cl) M M Cl) m M m I O O C O ^ 0 ^ O 0 ^ 0 ^ 0 ^ O ^ O O (ry p d a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a M co O co C3 co c0 (D C3 CD O to O C3 O C3 CD O to O co (D pp `mi 0 0 0 0 0 °` 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o E (D J O N O N N N O N N N N N N N N N N O N N O _]! �I L [Y: C) o O o 0 0 0 0 o O o 0 0 0 0 0 0 0 0 0 0 O y C O (o O (o (o (o O (o (o (o (. (o (o (o (o (o (o O (o (o O (]i V (]' (]I c a U EU E E E U E E E E E E E E E E U E E U o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C H ❑ U ❑ U U U ❑ U U U U U U U U U U ❑ U U ❑ cji a T 0 0 0 0 0 0 0 0 Co 0 0 0 0 o N m 0 0 0 o E: Ci m 0 0 o o 0 0 0 o o 0 o 0 o 0 o o o 0 o o o C: 2 y [o I� O Mop O r-: C M M V V (n N V N V (f7 C •� u7 V v O O M O r O I- O r O O O O O O O r r O O M=i a Z, ... 0 ... 0 ... 0 ... 0 ... 0 _.. 0 0 0 0 0 0 0 ... 0 0 0 0 ^ 0 ._ 0 _. 0 ... 0 ... 0 ... 0 0 0 0 0 C-1 u L 0 0 0 o 0 o 0 o 0 0 0 0 0 0 o 0 o o o o o C: Ni I- V O � N N OM V 00 M MLO O O O M Co -C _ M OJ r r O (O 00 O M M M (A (0 O (� ? O f9i U v O O M O O I- O N r o O O O C r N O O M <7i (7; E II z Ni O ]' O (Oi 0) N 00 O r- LO M V LO (O r M C O _ N U)� M M CY) cli C14 CIA CY) r cor L CO CO Co 07 0] CO m m m m m m m m 00 m 0) C ❑ U ❑ U U U ❑ U U U U U U U U U U ❑ U U ❑ I1 (n! V � FLI c, O V N (Cl N (o N I— N M N C N O co Mm N co Mm V (n co (o M I- co M M C M O V V N V Cl) V V d .�. J Z Cavesson Subdivision - Wesley Chapel, NC Stormwater Management Report Appendix C Hydrological Soils Map and Summary Report SCS Curve Number Designations EEI Project #6198 May 28, 2018 Hydrologic Soil Group—Union County, North Carolina (6198 -PRE -DEVELOPMENT SOILS) oo 529300 525400 9500 52 529600 529700 529800 529900 530000 34° 59' 40" N 34° 59' 40" N N �i Pr g � g K 2S 34° 59' 6' N 34° 59'6" N 529300 529400 529500 529600 529700 529900 529900 530000 3 3 Map Scale: 1:5,030 if printed on A portrait (8.5" x 11") sheet. LnLn Meters N0 50 100 200 300 Feet 0 200 400 800 1200 Map projedion: Web Mercator Comer coordinates: WGS84 Edge tics: UTM Zone 17N WGS84 USDA Natural Resources Web Soil Survey 5/9/2018 Conservation Service National Cooperative Soil Survey Page 1 of 4 as C 0 c4 U 0 J Z _ Un c~ Z O W U� ca 00 7 J D W Iw 0_ p o W �a U) rn U � rn �— O O T 0 Z /W V W J a CL E O U L a 0 0 @ U O 0 OO O UO Co U ? EO) � U _O a) N QCL @ aS Em C 0 w 0)m 0 ,L O m mO- O C a mm L 0 E 0 > w Oc > s c:� ocl, a c -a n a T Q LO.m O m y� E E O O N f4 +L as E 0) 0 -0 .O Un 0 E m cEa)Up o a as c wE_U�n 00 v 0 0 CV CV LO 0 a a) U a ca Ch C6 m r 0 m a m L � 3 c 0 U 0 S O L a w T -C (6 Com O C f0 E o Q Mh E 0-0w6 r 3 t CAN c E -gym O > 7 a3 a N a m 6 m a)co a) O ip lf) w Q m co C7 (n c c U w a) al CO O@ U O N U Z 0 r T Y .LU. .: c a ani C7 0 Z as Uo p o Z as N N C f6 7 to O E v E m� a U)a a�aas L N 3 -a o�> 0 E V W N@" O N p M L 3 L al L U . C a N U O Z v a) C C O V) Q o Q L) v m@ @ °y c o w 3 -0 m o T ocl � u; o O i T a) O U ` C� U) O E T N E 0 0 Z a 0 0 al 0 Q O Q N E w-0 O U O .UU.. m� o m as m In a) a� 0 o a o c.L a a) 3 o �' a oa�iQL,o m co -a Q O C �`� c0 = aoi a�Q"w3 O O Q m 2 1] EL 6 U O U @ O O N_ O N O O C o C c0 3< j ,LO„ a U 75 y 0 Q� +U-' m O a n a1 o '72 O 0a o �� N 7 0 (n E o o a� U (0 U 0 0 > � Q 3 T ao m O m O) co m U •E 7 L O C i Q N w O U Q U LO. Q O O � w n N O N E m f5 aE U) L) to 2Q_'oQm FE —0 U)U) U) pN F-UELA 00 v 0 0 CV CV LO 0 a a) U a ca T -C o U 3 t CL 'o 6 m a)co a) N O N ca L m E m o T a U U p o Z as N N C f6 7 to O E a1 c U) 5 o '(0 m L) J m .� Q m . ❑ ❑ ❑ ❑ Q7 0 LL C C C 7 N �r k C a7 of ` 1 u U H m a N O O C O C O N C O O _ C 0 a) y a N Q O a) N C cc H m CL°❑ ❑ ❑_ a C ❑ ❑ ❑ o �° ❑ ❑ Q y OI Q C Q a] 0] U U ❑ Z O) Q Q C m co U U ❑ Z O) Q Q m m C 0 0 13 13C Go) O N U U Q M 00 v 0 0 CV CV LO 0 a a) U Hydrologic Soil Group—Union County, North Carolina Hydrologic Soil Group 6198 -PRE -DEVELOPMENT SOILS USDA Natural Resources Web Soil Survey 5/9/2018 Conservation Service National Cooperative Soil Survey Page 3 of 4 Map unit symbol Map unit name Rating Acres in AOI Percent of AOI BdB2 Badin channery silty C 28.5 61.0% clay loam, 2 to 8 percent slopes, moderately eroded 5.6 ChA Chewacla silt loam, 0 to B/D 12.1% 2 percent slopes, frequently flooded TbB2 Tarrus gravelly silty clay B 12.6 26.9% loam, 2 to 8 percent slopes, moderately eroded Totals for Area of Interest 46.7 100.0% USDA Natural Resources Web Soil Survey 5/9/2018 Conservation Service National Cooperative Soil Survey Page 3 of 4 Hydrologic Soil Group—Union County, North Carolina Description 6198 -PRE -DEVELOPMENT SOILS Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long -duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff. None Specified Tie-break Rule: Higher uSDA Natural Resources Web Soil Survey 5/9/2018 Conservation Service National Cooperative Soil Survey Page 4 of 4 Cavesson Subdivision Wesley Chapel, North Carolina Project Number: 6198 May 25, 2018 COMPOSITE SCS RUNOFF CURVE NUMBERS 24 Hour Storm Event Pre Development Soil Type: TbB2-Tarrus Gravelly Silty Clay Loam - HSG "B" Total Drainage Area = 12.58 ac. Roofs, driveways, etc 0.00 ac. CN = 98 Open Space (Good Condition) 0.00 ac. CN = 61 Woods 1.61 ac. CN = 55 Pasture, grassland or range 10.97 ac. CN = 61 Composite CN 60 Soil Type: BdB2-Badin Channery Silty Clay Loam - HSG "C" Total Drainage Area = 28.49 ac. Roofs, driveways, ponds, etc 0.43 ac. CN = 98 Open Space (Good Condition) 0.00 ac. CN = 74 Woods 5.16 ac. CN = 70 Pasture, grassland or range 22.90 ac. CN = 74 Composite CN 74 Soil Type: ChA-Chewacla Silt Loam - HSG "B/D" Total Drainage Area = 5.65 ac. Roofs, driveways, ponds, etc 0.06 ac. CN = 98 Dirt 1.04 ac. CN = 89 Woods 1.90 ac. CN = 77 Pasture, grassland or range 2.65 ac. CN = 80 Composite CN 81 Cavesson Subdivision Wesley Chapel, North Carolina Project Number: 6198 May 25, 2018 COMPOSITE SCS RUNOFF CURVE NUMBERS 24 Hour Storm Event Post Development Soil Type: Tb132-Tarrus Gravelly Silty Clay Loam - HSG "B" Total Drainage Area = 10.72 ac. Roofs, driveways, etc 0.00 ac. CN = 98 Open Space (Good Condition) 0.00 ac. CN = 61 Woods CN = 55 0.00 ac. AVERAGE LOT SIZE = 1 ACRE 10.72 ac. CN = 68 Composite CN 68 Soil Type: BdB2-Badin Channery Silty Clay Loam - HSG "C" Total Drainage Area = 13.20 ac. Roofs, driveways, etc 0.00 ac. CN = 98 Open Space (Good Condition) 0.00 ac. CN = 74 Woods 0.00 ac. CN = 70 AVERAGE LOT SIZE = 1 ACRE 13.20 ac. CN = 79 Composite CN 79 Soil Type: Cmb-Cid Channery Silt Loam - HSG "D" Cavesson Subdivision Wesley Chapel, North Carolina Project Number: 6198 May 25, 2018 COMPOSITE SCS RUNOFF CURVE NUMBERS 24 Hour Storm Event Post Development Bypass 1 Soil Type: TbB2-Tarrus Gravelly Silty Clay Loam - HSG "B" Total Drainage Area = 1.86 ac Roofs, driveways, etc 0.00 ac. CN = 98 Open Space (Good Condition) 0.00 ac. CN = 61 Woods 0.00 ac. CN = 55 Pasture, grassland or range 1.86 ac. CN = 61 Composite CN 61 Soil Type: BdB2-Badin Channery Silty Clay Loam - HSG "C" Total Drainage Area = 6.65 ac. Roofs, driveways, ponds, etc 0.43 ac. CN = 98 Open Space (Good Condition) 0.00 ac. CN = 74 Woods 1.97 ac. CN = 70 Pasture, grassland or range 4.25 ac. CN = 74 Composite CN 74 Cavesson Subdivision Wesley Chapel, North Carolina Project Number: 6198 May 25, 2018 COMPOSITE SCS RUNOFF CURVE NUMBERS 24 Hour Storm Event Post Development Bypass 2 Soil Type: BdB2-Badin Channery Silty Clay Loam - HSG "C" Total Drainage Area = 6.76 ac. Roofs, driveways, ponds, etc 0.43 ac. CN = 98 Open Space (Good Condition) 0.00 ac. CN = 74 Woods 0.53 ac. CN = 70 Pasture, grassland or range 5.80 ac. CN = 74 Composite CN 75 Soil Type: ChA-Chewacla Silt Loam - HSG "B/D" Total Drainage Area = 5.65 ac. Roofs, driveways, ponds, etc 0.06 ac. CN = 98 Dirt CN = 89 1.04 ac. Woods 1.90 ac. CN = 77 Pasture, grassland or range 2.65 ac. CN = 80 Composite CN 81 Cavesson Subdivision Wesley Chapel, North Carolina Project Number: 6198 May 25, 2018 COMPOSITE SCS RUNOFF CURVE NUMBERS 24 Hour Storm Event Post Development Bypass 3 Soil Type: TbB2-Tarrus Gravelly Silty Clay Loam - HSG "B" Total Drainage Area = 0.32 ac. Roofs, driveways, etc 0.00 ac. CN = 98 Open Space (Good Condition) 0.00 ac. CN = 61 Woods 0.00 ac. CN = 55 Pasture, grassland or range 0.32 ac. CN = 61 Composite CN 61 Soil Type: BdB2-Badin Channery Silty Clay Loam - HSG "C" Total Drainage Area = 1.66 ac. Roofs, driveways, ponds, etc 0.00 ac. CN = 98 Open Space (Good Condition) 0.00 ac. CN = 74 Woods 0.00 ac. CN = 70 Pasture, grassland or range 1.66 ac. CN = 74 Composite CN 74 Cavesson Subdivision - Wesley Chapel, NC Stormwater Management Report Appendix D Riser Uplift Calculations Rip -rap Calculations Erosion Control Plan & Calculations EEI Project #6198 May 28, 2018 ENGINEERING 41 2013-A. Van Buren .Avenue Indian Trail. NC 28479 (7C-4) 882-4222 Riser Buoyancy Calculations - Dry Detention Pond Project Name: Cavesson Subdivision Project No.: 6198 1 ft. Spillway Height 550 ft. Spillway Elev. Riser Width: Riser Thickness: Barrel Size: Top of Basin: Bottom of Basin Riser Weir: Spillway Height from top of Basin: 48 in in 549 ft. Riser Weir in ft. ft. 8 ft. ft. ft. 541 ft. Bottom of Basin 6 24 551 541 549 1 Unit wt. of H201 62.4 ft3 Volume of Riserl 1601M Wt. of H2O displaced in riserl 9,984 lbs Unit Wt. of concrete (pcf) 150 lbs/ft3 Volume of concrete in riser 37.5 ft3 Wt. of concrete riser 5,625 lbs Total Buoyancy Force to displace 15,609 lbs Concrete Base Required to Stabilize Riser: 48 in. RISER Ballast Pad 551 ft. Top of Basin 24 in. RCP 9 ft. Wt. of H2O displaced in riser + Wt. of concrete riser Concrete Pad Thinckness 18 in. Concrete Pad Width/length 10 ft Volume of concrete pad 150.00 ft3 Wt. of H2O displaced = 9,360 lbs Wt. of concrete pad 22,500 lbs 10 ft. /48 in. RISER y4 No Ballast Pad / 18 in. Factor of Safety: 11.4415 1 10 ft. Factor of safety should be greater than 1.10 F Ballast Pad Dimensions: 10 ft. X 10 ft. X 18 in. Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. 6198 BMP POND DITCH (Q25 = 2.56 cfs) Trapezoidal Area (sqft) Bottom Width (ft) = 6.00 Side Slopes (z:1) = 2.00, 2.00 Total Depth (ft) = 4.00 Invert Elev (ft) = 540.61 Slope (%) = 0.77 N -Value = 0.150 Calculations Compute by: Known Q Known Q (cfs) = 2.56 Elev (ft) 545.00 544.00 543.00 542.00 541.00 540.00 539.00 Section 0 5 10 15 20 Reach (ft) Tuesday, Jun 5 2018 Highlighted Depth (ft) = 0.63 Q (cfs) = 2.560 Area (sqft) = 4.57 Velocity (ft/s) = 0.56 Wetted Perim (ft) = 8.82 Crit Depth, Yc (ft) = 0.18 Top Width (ft) = 8.52 EGL (ft) = 0.63 25 30 Depth (ft) 4.39 3.39 2.39 1.39 0.39 -0.61 1 -1.61 35 T T" LLI N in Y N LO (4�) azig d-eadid D5p ��qq�� N p ❑ N -----�-- � AAs All i It! w w w w w U sr 0 N W J —_ U- a II II > i m 45 E 0 � U a as 'a � U It! w w w w w 0 0 0 U sr 0 � Y a II II > i 0 � ^O t/] z 0 0 0 U � Y Y � Y O 'pi J4 N w o o w Y } W N �_ 'C 4:5, N iz � •k II II II II II v' c0 O 3F O Vl w O b o r- Y ti cd 0 0 0 w w w U Z >r 0 ZCL � M EPEE � � o07u a km II II > i •Pr - 0 � l � 7 ell _ N ^O t/] C� >, o t 'a .� N S a� i� z � cd W U IL E O C. •�.y it w w w w U Z >r 0 ZCL � ~ � � o07u a ° II II > i •Pr - 0 � l � ell U N ^O t/] C� >, o t 'a N S i� z w w w U Z >r 0 ZCL � ~ � � o07u a ° II II > i •Pr 0 � ell U N ^O t/] C� >, o t 'a N m z � cd W U IL E O C. •�.y it w c II II w ° ^, W � 0.4 � '" E cpdoMQ N O A Z = w O z ci W y 4 Q �_ y O v ..2 m v w c O II cn_o II 0 II b � 0 o d J D cC d a w w w >r 0 � ~ � � o07u a II II > i •Pr 0 � ^O t/] C� a t 'a z � b � � •Pr o a t 'a � cd b O C. •�.y it w W ° � m � '" cpdoMQ N A w O O W y O �_ y O � •k II II II II II b � o Ot Vl w O b � o r - Cd Y ti 0 0 0 Project Project # Designation SKIMMER CAVESSON 6198 SKIMMER BASIN 1 BASIN Client BOWMAN Date 5/28/2018 Designer KEW ENGINEERING 2013A Van Buren Ave. Indian Trail, NC 28079 NC Erosion and Sediment Control Planning and Design Manual Total Drainage Area 12.32 Acres 536,659 Square Feet Total Disturbed Area 3.19 Acres I 138,956 Square Feet C 0.50 Contour Area Volume Net Volume Tc 5 Minutes 575 5,190 0 0 110 7.03 Inches per Hour 576 11,309 8,250 8,250 0110 43.30 CFS 577 18,065 14,687 22,937 578 25,456 21,761 44,697 Required Volume 11,484 Cubic Feet 579 31,285 9,156 53,853 Required Surface Area 18,838 Square Feet Provided Volume 44;697 Cubic Feet OK Provided Surface Area 25 456 Square Feet OK Length 245 Feet Minimum Spillway Design Width 120 Feet 011043.30 CFS L/W Ratio 2.04 OK H 1 Feet C 3 Spillway Elevation 578 Surface Area at Spillway 25,456 L 14.43 Feet Spillway Design Spillway Length 20 Feet Days to Drain 3 Days Head over Spillway 1 Feet Skimmer Size 4 Inches Weir Coefficient 3 Orifice Radius 1.7 Inches Max Flow 60 CFS OK Orifice Diamter 3.4 Inches EAGLE, ENGINEERING, INC. 2013 VAN BUREN AVENUE, STE A INDIAN TRAIL, NORTH CAROLINA 28079 Project Project # Designation SKIMMER CAVESSON 6198 SKIMMER BASIN 1 BASIN Client BOWMAN Date 5/28/2018 Designer KEW ENGINEERING 2013A Van Buren Ave. Indian Trail, NC 28079 NC Erosion and Sediment Control Planning and Design Manual Total Drainage Area 12.32 Acres 536,659 Square Feet Total Disturbed Area 3.19 Acres I 138,956 Square Feet C 0.50 Contour Area Volume Net Volume Tc 5 Minutes 575 5,190 0 0 110 7.03 Inches per Hour 576 11,309 8,250 8,250 0110 43.30 CFS 577 18,065 14,687 22,937 578 25,456 21,761 44,697 Required Volume 11,484 Cubic Feet 579 31,285 9,156 53,853 Required Surface Area 18,838 Square Feet Provided Volume 44;697 Cubic Feet OK Provided Surface Area 25 456 Square Feet OK Length 245 Feet Minimum Spillway Design Width 120 Feet 011043.30 CFS L/W Ratio 2.04 OK H 1 Feet C 3 Spillway Elevation 578 Surface Area at Spillway 25,456 L 14.43 Feet Spillway Design Spillway Length 20 Feet Days to Drain 3 Days Head over Spillway 1 Feet Skimmer Size 4 Inches Weir Coefficient 3 Orifice Radius 1.7 Inches Max Flow 60 CFS OK Orifice Diamter 3.4 Inches EAGLE, ENGINEERING, INC. 2013 VAN BUREN AVENUE, STE A INDIAN TRAIL, NORTH CAROLINA 28079 NC Erosion and Sediment Control Planning and Design Manual Total Drainage Area 26.66 Acres 1,161,310 Square Feet Total Disturbed Area 9.98 Acres 434,729 Square Feet C 0.50 Contour Area Volume Net Volume Tc 5 Minutes 541 18,154 0 110 7.03 Inches per Hour 542 20,250 19,202 410 93.71 CFS 543 22,445 21,347 544 24,738 23,591 Required Volume 35,928 Cubic Feet 545 27,130 25,934 Required Surface Area 1 40,764 ISquare Feet 546 29,620 28,375 547 32,198 30,909 Provided Volume 278,573 Cubic Feet OK 548 34,848 33,523 Provided Surface Area 41,762 ISquare Feet OK j 549 37,566 36,207 550 40,348 38,957 550.5 41,762 20,528 Length 417 Feet Minimum Spillway Design Width 176 Feet 410 93.71 CFS L/W Ratio 2.37 OK H 0.5 Feet C 3 Spillway Elevation 550 Surface Area at Spillway 40,348 L 88.35 Feet 1 1 21 Spillway Spillway Length Head over Spillway Weir Coefficient Max Flow Design Feet Days to Drain 5 Days Feet Skimmer Size 6 Inches Orifice Radius 3.0 Inches CFS OK Orifice Diamter 6.0 Inches 32 1 SKIMMER BASIN ENGINEERING Project CAVESSON Client BOWMAN Project # 6198 Date 5/28/2018 _ 2013A Van Buren Ave. Designation SKIMMER BASIN 3 Designer KEW Indian Trail, NC 28079 NC Erosion and Sediment Control Planning and Design Manual Total Drainage Area 26.66 Acres 1,161,310 Square Feet Total Disturbed Area 9.98 Acres 434,729 Square Feet C 0.50 Contour Area Volume Net Volume Tc 5 Minutes 541 18,154 0 110 7.03 Inches per Hour 542 20,250 19,202 410 93.71 CFS 543 22,445 21,347 544 24,738 23,591 Required Volume 35,928 Cubic Feet 545 27,130 25,934 Required Surface Area 1 40,764 ISquare Feet 546 29,620 28,375 547 32,198 30,909 Provided Volume 278,573 Cubic Feet OK 548 34,848 33,523 Provided Surface Area 41,762 ISquare Feet OK j 549 37,566 36,207 550 40,348 38,957 550.5 41,762 20,528 Length 417 Feet Minimum Spillway Design Width 176 Feet 410 93.71 CFS L/W Ratio 2.37 OK H 0.5 Feet C 3 Spillway Elevation 550 Surface Area at Spillway 40,348 L 88.35 Feet 1 1 21 Spillway Spillway Length Head over Spillway Weir Coefficient Max Flow Design Feet Days to Drain 5 Days Feet Skimmer Size 6 Inches Orifice Radius 3.0 Inches CFS OK Orifice Diamter 6.0 Inches 32 1 3 96 EAGLE, ENGINEERING, INC. 2013 VAN BUREN AVENUE, STE A INDIAN TRAIL, NORTH CAROLINA 28079