Loading...
HomeMy WebLinkAboutNC0021717_Authorization to Construct_20180622 (4)cubic CALCULATIONS PACKAGE .P RA 100'-0" Diameter Clarifier Addition Wastewater Treatment Plant Town of Wilkesboro, NC z .- June 20, 2018 Firm License No. C-1122 P.O. Drawer 1989 0 1503 West D Street ■ North Wilkesboro, NC 28659 0 p. 336.667.4241 ■ f. 336.667.5660 9 www.cubicdesigngroup.com STRUCTURAL CALCULATIONS 100'-0" Diameter Clarifier Addition Wastewater Treatment Plant 700 Snyder Street Town of Wilkesboro 05/10/2018 180402-NC2012 (IBC -2009 -ASCE 7-05).123 Page No. 1 DESIGN LOADS SUMMARY Project: 100'-0" Clarifier Addition Owner: Town of Wilkesboro City: Wilkesboro, NC County: Wilkes Job No: 16-040 Date: 02 -Apr -18 All loads applied in accordance with the North Carolina Building Code, 2012 Edition (SEI/ASCE 7-05) BuildingCategory: ....................................................... Floor Live Loads: GroundFloor....................................................................... Elevated Platforms & Catwalks ............................................ Stairs& Exitways.................................................................. Floor Dead Loads: Floor Steel Grating............................................................ Floor Steel Framing........................................................... Miscellaneous Collateral.................................................... 100 PSF 60 PSF 100 PSF 10 PSF 2 PSF 3 PSF Total Floor Dead Load........................................................... 15 PSF Equipment Loads: Per OVIVO Clarifier Manufacturer ......................................... Per Equipment Roof Snow Loads: Ground Snow Load(Pg)........................................................ 20 PSF TerrainCategory .................................................................... C Flat Roof Snow Load(Pf)...................................................... 22 PSF Snow Exposure Factor(Ce).................................................. 1.00 Thermal Factor(Ct)............................................................... 1.20 Snow Load Importance Factor(Is)........................................ 1.10 Wind Loads: Basic Wind Speed ( Three Second Gust) .............................. 90 MPH Exposure Factor.................................................................... B Importance Factor(1)............................................................. 1.15 Internal Pressure Coefficients ............................................... +/-0.18 Velocity Pressure Exposure Coefficient (Kz)......................... 0.70 Topographic Factor(Kzt)....................................................... 1.00 Wind Directional Factor(Kd)................................................. 0.85 Velocity Pressure (qz).......................................................... 14.19 PSF Seismic Loads: Spectral Acceleration(Ss)..................................................... 27.6 %g Spectral Acceleration(S1)..................................................... 9.1 %g Spectral Response Acceleration Maximum(Sms).................. 43.60 %g 05/10/2018 180402-NC2012 (IBC -2009 -ASCE 7-05).123 Page No. 2 DESIGN LOADS SUMMARY Project: 100'-0" Clarifier Addition Owner: Town of Wilkesboro City: Wilkesboro, NC County: Wilkes Job No: 16-040 Date: 02 -Apr -18 All loads applied in accordance with the North Carolina Building Code, 2012 Edition (SEI/ASCE 7-05) Spectral Response Acceleration Maximum (Sm 1) ................. 22.00 %g Spectral Response Acceleration(Sds)................................ 0.291 g Spectral Response Acceleration(Sd1)................................ 0.147 g Seismic Occupancy Category ................................................ II Seismic Site Class................................................................ D Seismic Importance Factor ................................................... 1.25 Seismic Design Category ..................................................... C Seismic Base Shear.............................................................. 70 K Structural Seismic Resisting System ..................................... Reinf. CIP Shear Walls Seismic Response Coefficient(Cs)................................... 0.091 Response Modification Factor(R)......................................... 4.00 System Overstrength Factor (Oo)(Table 9.5.2.2) .................. 2.50 Deflection Amplification Factor(Cd)...................................... 4.00 Analysis Procedure................................................................ Equivalent Lateral Load Procedure 05/10/2018 180402-NC2012 (IBC -2009 -ASCE 7-05).123 Page No. 3 DESIGN LOADS SUMMARY Project: 100'-0" Clarifier Addition Owner: Town of Wilkesboro City: Wilkesboro, NC County: Wilkes Job No: 16-040 Date: 02 -Apr -18 All loads applied in accordance with the North Carolina Building Code, 2012 Edition (SEI/ASCE 7-05) Ct = 0.020 Table 12.8-2 X= 0.750 Table 12.8-2 hn= 16.00 Height above base @ highest level (ft) Cu= 1.6 Coefficient for Upper Limit on Period (Table 12.8-1) W= 768.0 Structure Dead Load (Kips) Clarifier Addition -Town Of Wilkesboro, NC Date and Time: 4/2/2018 4:00:11 PM AIL(► -7 4 Conterminous 48 States 2003 NEHRP Seismic Design Provisions ,� o Spectral Response Accelerations Ss and S1 Zip Code - 28697('ta Zip Code Latitude = 36.138000 G1,ix �c;�� F,ctw�= ��z 0kj_(vt' Zip Code Longitude = -081.176600 Ss and S1 = Mapped Spectral Acceleration Values f 1Ir 20�} SiteClass B - Fa = 1.00, Fv = 1.00 Data are based on a 0.05 deg grid spacing. Period Sa v (sec) (g) 0.2 0.276 Ss, SiteClass B 1.0 0.091 S1, SiteClass B Period Centroid Sa (sec) (g) 0.2 0.276 Ss, SiteClass B 1.0 0.091 S1, SiteClass B Period Maximum Sa (sec) (g) 0.2 0.288 Ss, SiteClass B 1.0 0.093 S1, SiteClass B Period Minimum Sa (sec) (g) 0.2 0.264 Ss, SiteClass B 1.0 0.090 S1, SiteClass B Conterminous 48 States 2003 NEHRP Seismic Design Provisions Spectral Response Accelerations SMs and SM1 Zip Code - 28697 Zip Code Latitude = 36.138000 Zip Code Longitude = -081.176600 SMs = FaSs and SM1 = FvS1 Site Class D - Fa = 1.58, Fv = 2.40 Data are based on a 0.05 deg grid spacing. Period Sa (sec) (g) 0.2 0.436 SMs, Site Class D 1.0 0.220 SM1, Site Class D Conterminous 48 States 2003 NEHRP Seismic Design Provisions Spectral Response Accelerations SDs and SD1 Zip Code - 28697 Zip Code Latitude = 36.138000 Zip Code Longitude = -081.176600 SDs = 2/3 x SMs and SD1 = 2/3 x SM1 Site Class D - Fa = 1.58, Fv = 2.40 Data are based on a 0.05 deg grid spacing. Period Sa (sec) (g) 0.2 0.291 SDs, Site Class D 1.0 0.146 SD1, Site Class D Page o: CubicCUBIC DESIGN GROUP, PC Project: C ari ier A Itlon P.O. BOX 1989 Owner: ITown of Wilkisboro 1503 West D Street Location: Wilkesboro, PI design group PC NORTH WILKESBORO, NC 28659 Job M 16-04 PHONE 336-667-4241 Designer: Franc Taracido FAX 336-667-5660 Date: Z-Apr-18 - 'L LL 1♦� �v � a 17. h +�6 ILU J6 e� Page No: CUBIC DESIGN GROUP, P.C. Project: 100'-0" Diam ater Clarifer P.O. BOX 1919 Owner: Town of Wilkc sboro 1503 West D Street Location: Wilkesboro, C NORTH WILP ESBORO, NC 28659 Job M 16-040 PHONE 336-667-4241 Designer: Frank Taracid FAX 336-667-5660 Date: 02 -Apr- 18 Nonbuilding Structures not similar to BuildinG s StructureDescription: Clarifier Tank S1= 0.091 g Spectral Ac eleration @ 1 Second P riod Ss= 0.276 g Spectral Ac eleration @ Short Period Sds= 0.291 g Design Spe tral Acceler 3tion @ Sho I Period I = 1.25 - Importance Factor (Tabl a 11.5-1) R = 2.00 - Response modification f actor (Table 15.4-2) Oo= 2.00 - Overstreng h Factor (Ta Die 15.4-2) Cd= 2.00 - Deflection Amplification actor (Table 15.4-2) W= 8632 Kips Effective Seismic Weight of Structure V= 1569.95 Kips (Seismic Base Shear) V1= 86.32 (W*Cs1) V2= 245.47 (W*Cs2) V3= 1569.95 (W*CS3) If S1 >=0.6g, Cs>=Cs2, Cs must be =Cs1, Cs=C 3 otherwise Cs1= 0.01 (15.4.1-2: 5.4-1) Cs2= 0.03 (15.4.1-2: 15.4-2) Cs3= 0.18 (12.8.1.1:1 .8-2) Page No: CUBIC DESIGN GROUP, P.C. Project: 100'-0" Diam ter Clarifer P.O. BOX 19f 9 Owner: Town of Wilkesboro 1503 West D Street Location: Wilkesboro, Is C NORTH WILP ESBORO, NC 28659 Job #: 16-040 PHONE 336-667-4241 Designer: Frank Taracid FAX 336-667-5660 Date: 02 -Apr -18 Nonbuilding Structures, not similar to Buildings StructureDescription: Clarifier Tank ( Live Load Only) S1= 0.091 g Spectral Acceleration @ 1 Second Period Ss= 0.276 g Spectral Acceleration @ Short Period Sds= 0.291 g Design Spe tral Acceleration @ Sho I Period I = 1.25 - Importance Factor (Tabl a 11.5-1) R = 2.00 - Response modification f actor (Table 15.4-2) Oo= 2.00 - Overstreng h Factor (Ta le 15.4-2) Cd= 2.00 - Deflection Amplification Factor (Table 15.4-2) W= 6590 Kips Effective S ismic Weig t of Structure, V= 1198.56 Kips (Seismic Base Shear) V1= 65.90 (W*Cs1) V2= 187.40 (W*Cs2) V3= 1198.56 (W*CS3) If S1>=0.6g Cs>=Cs2, Cs must be =Csl, Cs=C3 otherwise Cs1= 0.01 (15.4.1-2: 5.4-1) Cs2= 0.03 (15.4.1-2: 15.4-2) Cs3= 0.18 (12.8.1.1:1 .8-2) Page No: CUBIC DESIGN GROUP, P.C. Project: 100'-0" Diam ter Clarifer P.O. BOX 1919 Owner: Town of Wilkesboro 1503 West D Street Location: Wilkesboro, N C NORTH WILP ESBORO, NC 28659 Job M 16-040 PHONE 336-667-42411 Designer: Frank Taracid FAX 336-667-5660 Date: 02 -Apr -18 Nonbuilding Structures not similar to BuildinG s StructureDescription: Clarifier Tank ( Dead Load Only) S1= 0.091 g Spectral Ac eleration @ 1 Second P riod Ss= 0.276 g Spectral Ac eleration @ Short Period Sds= 0.291 g Design Spe tral Acceleration @ Short Period I = 1.25 - Importance Factor (Tabl a 11.5-1) R = 2.00 - Response modification f actor (Table 15.4-2) Oo= 2.00 - Overstreng h Factor (Ta Die 15.4-2) Cd= 2.00 - Deflection Amplification Factor (Table 15.4-2) W= 2042 Kips Effective Seismic Weight of Structure V= 371.39 Kips (Seismic Base Shear) V1= 20.42 (W*Cs1) V2= 58.07 (W*Cs2) V3= 371.39 (W*CS3) If S1>=0.6g Cs>=Cs2, Cs must be =Cs 1, Cs=C 3 otherwise Cs1= 0.01 (15.4.1-2:15.4-1) Cs2= 0.03 (15.4.1-2: 15.4-2) Cs3= 0.18 (12.8.1.1:1 .8-2) Cubic Design Group, P.C. cubic. P.O. Box 1989 til Ign g,"5UP a 1503 West D Street North Wilkesboro, NC 28659 Ph: 336-667-4241 General Footing Description : Foundation Slab for Clarifier Code References Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used: ASCE 7-05 Increases based on footing Depth General Information = Material Properties Min Allow % Temp Reinf. fc : Concrete 28 day strength = 3.0 ksi fy : Rebar Yield = 60.0 ksi Ec : Concrete Elastic Modulus = 3,122.0 ksi Concrete Density = 145.0 pcf N Values Flexure = 0.90 Project Title: 100' Diameter Clarifier Addition Engineer: Frank Taracido Project ID: 16-040 Project Descr: Town of Wilkesboro, NC q Printed: 2 APR 2018, 5.16PM File = P:\Projects\2016\16-040\4.0 Project Data\5.7 Calculations\16-040.ec6 ENERCALC, INC. 1983.2017, Build: 10.17.12.10, Ver.10.17.12.10 Soil Design Values Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff. Shear = Analysis Settings 0.750 Increases based on footing Depth Min Steel % Bending Reinf. = Footing base depth below soil surface Allow press. increase per foot of depth Min Allow % Temp Reinf. = 0.00180 when footing base is below Min. Overturning Safety Factor = 1.0 :1 # 5 Min. Sliding Safety Factor = 1.0 :1 Increases based on footing plan dimension Add Ftg Wt for Soil Pressure Yes Allowable pressure increase per foot of depth Use ftg wt for stability, moments & shears Yes Add Pedestal Wt for Soil Pressure No when max. length or width is greater than Use Pedestal wt for stability, mom & shear No Dimensions Width parallel to X -X Axis = 90.50 ft Length parallel to Z -Z Axis = 90.50 ft Footing Thickness = 12.0 in Pedestal dimensions... px : parallel to X -X Axis = 1,074.0 in pz : parallel to Z -Z Axis = 1,074.0 in Height - in Rebar Centerline to Edge of Concrete... at Bottom of footing = 3.0 in Reinforcin Bars parallel to X -X Axis Number of Bars = 90.0 Reinforcing Bar Size = # 5 Bars parallel to Z -Z Axis Number of Bars = 90.0 Reinforcing Bar Size = # 5 x =� 2.0 ksf = No 250.0 pcf 0.570 1.0 ft ksf ft U ksf ft Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads D Lr L S W E H P: Column Load = 2,042.0 6,590.0 k OB: Overburden = ksf M-xx = 2,976.0 k -ft M-zz = 2,976.0 k -ft V -x = 1,570.0 k V -z = 1,570.0 k Cubic Design Group, P.C. Project Title: 100' Diameter Clarifier Addition cru b � P.O. Box 1989 Engineer: Frank Taracido Project ID: 16-040 designr1�tEp P� 1503 West D Street Project Descr. Town of Wilkesboro, NC North Wilkesboro, NC 28659 t Ph: 336-667-4241 rax::1sb-bbl-bbbU Printed: 2APR2018, 5:16PN General Footi n File = PAProjects12016116-04014.0 Project Data U Calculations116-040.ec6 g ENERCALC, INC. 1983-2017, Build:10.17.12.10, Ver:10.17.12.10 Description : Foundation Slab for Clarifier DESIGN SUMMARY - • Min. Ratio Item Applied Capacity Governing Load Combination PASS 0.5995 Soil Bearing 1.199 ksf 2.0 ksf +D+L+H about Z -Z axis PASS 27.554 Overturning - X -X 3,182.20 k -ft 87,683.3 k -ft +0.60D+0.70E+H PASS 27.554 Overturning - Z -Z 3,182.20 k -ft 87,683.3 k -ft +0.60D+0.70E+H PASS 1.015 Sliding - X -X 1,099.0 k 1,115.83 k +0.60D+0.70E+H PASS 1.015 Sliding -Z-Z 1,099.0 k 1,115.83 k +0.60D+0.70E+H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.005652 Z Flexure (+X) 0.06820 k-ft/ft 12.066 k-ft/ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.005652 Z Flexure (-X) 0.06820 k-ft/ft 12.066 k-ft/ft +1.20D+1.60L+0.50S+1.60H PASS 0.005652 X Flexure (+Z) 0.06820 k-ft/ft 12.066 k -f /ft +1.20D+0.50Lr+1.60L+1.60H PASS 0.005652 X Flexure (-Z) 0.06820 k-ft/ft 12.066 k-ft/ft +1.20D+1.60L+0.50S+1.60H PASS n/a 1 -way Shear (+X) 0.0 psi 82.158 psi n/a PASS n/a 1 -way Shear (-X) 0.0 psi 82.158 psi n/a PASS n/a 1 -way Shear (+Z) 0.0 psi 82.158 psi n/a PASS n/a 1 -way Shear (-Z) 0.0 psi 82.158 psi n/a PASS n/a 2 -way Punching 0.0 psi 82.158 psi n/a Detailed Results 0.4198 n/a n/a 0.210 Soil Bearing Rotation Axis & Xecc Zecc Actual Soil Bearing Stress @ Location Actual 1 Allow Load Combination... Gross Allowable (in) Bottom, -Z Top, +Z Left, -X Right, +X Ratio X -X, D Only 2.0 n/a 0.0 0.3943 0.3943 n/a n/a 0.197 X -X, +D+L+H 2.0 n/a 0.0 1.199 1.199 n/a n/a 0.600 X -X. +D+Lr+H 2.0 n/a 0.0 0.3943 0.3943 n/a n/a 0.197 X -X. +D+S+H 2.0 n/a 0.0 0.3943 0.3943 n/a n/a 0.197 X -X. +D+0.750Lr+0.750L+H 2.0 n/a 0.0 0.9978 0.9978 n/a n/a 0.499 X -X. +D+0.750L+0.750S+H 2.0 n/a 0.0 0.9978 0.9978 n/a n/a 0.499 X -X. +D+W+H 2.0 n/a 0.0 0.3943 0.3943 n/a n/a 0.197 X -X. +D+0.70E+H 2.0 n/a 11.824 0.3688 0.4198 n/a n/a 0.210 X -X. +D+0.750Lr+0.750L+0.750W+H 2.0 n/a 0.0 0.9978 0.9978 n/a n/a 0.499 X -X, +D+0.750L+0.750S+0.750W+H 2.0 n/a 0.0 0.9978 0.9978 n/a n/a 0.499 X -X. +D+0.750Lr+0.750L+0.5250E+H 2.0 n/a 3.505 0.9787 1.017 n/a n/a 0.509 X -X, +D+0.750L+0.750S+0.5250E+H 2.0 n/a 3.505 0.9787 1.017 n/a n/a 0.509 X -X, +0.60D+W+H 2.0 n/a 0.0 0.2366 0.2366 n/a n/a 0.118 X -X, +0.60D+0.70E+H 2.0 n/a 19.707 0.2111 0.2621 n/a n/a 0.131 Z -Z. D Only 2.0 0.0 n/a n/a n/a 0.3943 0.3943 0.197 Z -Z. +D+L+H 2.0 0.0 n/a n/a n/a 1.199 1.199 0.600 Z -Z. +D+Lr+H 2.0 0.0 n/a n/a n/a 0.3943 0.3943 0.197 Z -Z. +D+S+H 2.0 0.0 nla n/a n/a 0.3943 0.3943 0.197 Z -Z. +D+0.750Lr+0.750L+H 2.0 0.0 n/a n/a n/a 0.9978 0.9978 0.499 Z -Z, +D+0.750L+0.750S+H 2.0 0.0 n/a n/a n/a 0.9978 0.9978 0.499 Z -Z, +D+W+H 2.0 0.0 n/a n/a n/a 0.3943 0.3943 0.197 Z -Z. +D+0.70E+H 2.0 11.824 n/a n/a n/a 0.3688 0.4198 0.210 Z -Z. +D+0.750Lr+0.750L+0.750W+H 2.0 0.0 n/a n/a n/a 0.9978 0.9978 0.499 Z -Z. +D+0.750L+0.750S+0.750W+H 2.0 0.0 n/a n/a n/a 0.9978 0.9978 0.499 Z -Z. +D+0.750Lr+0.750L+0.5250E+H 2.0 3.505 n/a n/a n/a 0.9787 1.017 0.509 Z -Z. +0+0.750L+0.750S+0.5250E+H 2.0 3.505 n/a n/a n/a 0.9787 1.017 0.509 Z -Z. +0.60D+W+H 2.0 0.0 n/a n/a n/a 0.2366 0.2366 0.118 Z -Z. +0.60D+0.70E+H 2.0 19.707 n/a n/a n/a 0.2111 0.2621 0.131 Overturning Stability Rotation Axis & Load Combination... Overturning Moment Resisting Moment Stability Ratio Status X -X, D Only None 0.0 k -ft Infinity OK X -X, +D+L+H None 0.0 k -ft Infinity OK X -X. +D+Lr+H None 0.0 k -ft Infinity OK X -X, +D+S+H None 0.0 k -ft Infinity OK X -X, +D+0.750Lr+0.750L+H None 0.0 k -ft Infinity OK X -X, +D+0.750L+0.750S+H None 0.0 k -ft Infinity OK X -X, +D+W+H None 0.0 k -ft Infinity OK X -X, +D+0.70E+H 3.182.20 k -ft 146.139 k -ft 45.924 OK Cubic Design Group, P.C. Project Title: 100' Diameter Clarifier Addition cubc P.O. Box 1989 Engineer: Frank Taracido Project ID: 16-040 design c�rai ac 1503 West D Street Project Descr. Town of Wilkesboro, NC North Wilkesboro, NC 28659 ( 4 Ph: 336-667-4241 Fax: 336-667-5660 Printed: 2 APR 2018, 5:16PM General FootingFile =P: IProjects12016116-04014.0 ProjectData15.7Calculations116-040.ec6 ENERCALC, INC. 1983-2017, Build: 10.17.12.10, Ver:10.17.12.10 r.rr -• i Description : Foundation Slab for Clarifier Overturning Stability Rotation Axis & Load Combination... Overturning Moment Resisting Moment Stability Ratio Status X -X, +D+0.750Lr+0.750L+0.750W+H None 0.0 k -ft Infinitv OK X -X, +D+0.750L+0.750S+0.750W+H None 0.0 k -ft Infinitv OK X -X, +D+0.750Lr+0.750L+0.5250E+H 2,386.65 k -ft 369.787 k -ft 154.940 OK X -X. +D+0.750L+0.750S+0.5250E+H 2.386.65 k -ft 369.787 k -ft 154.940 OK X -X, +0.60D+W+H None 0.0 k -ft Infinitv OK X -X, +0.60D+0.70E+H 3,182.20 k -ft 87.683.3 k -ft 27.554 OK Z -Z. D Only None 0.0 k -ft Infinitv OK Z -Z. +D+L+H None 0.0 k -ft Infinitv OK Z -Z. +D+Lr+H None 0.0 k -ft Infinitv OK Z -Z. +D+S+H None 0.0 k -ft Infinitv OK Z -Z. +D+0.750Lr+0.750L+H None 0.0 k -ft Infinitv OK Z -Z, +D+0.750L+0.750S+H None 0.0 k -ft Infinitv OK Z -Z. +D+W+H None 0.0 k -ft Infinitv OK Z -Z. +D+0.70E+H 3.182.20 k -ft 146.139 k -ft 45.924 OK Z -Z. +D+0.750Lr+0.750L+0.750W+H None 0.0 k -ft Infinitv OK Z -Z. +D+0.750L+0.750S+0.750W+H None 0.0 k -ft Infinitv OK Z -Z, +D+0.750Lr+0.750L+0.5250E+H 2.386.65 k -ft 369,787 k -ft 154.940 OK Z -Z. +D+0.750L+0.750S+0.5250E+H 2,386.65 k -ft 369.787 k -ft 154.940 OK Z -Z. +0.60D+W+H None 0.0 k -ft Infinitv OK Z -Z. +0.60D+0.70E+H 3.182.20 k -ft 87.683.3 k -ft 27.554 OK Sliding Stability All units k Force Application Axis Load Combination... Sliding Force Resisting Force Stability Ratio Status X -X. D Only 0.0 k 1.852.18 k No Slidino OK X -X. +D+L+H 0.0 k 5.608.48 k No Sliding OK X -X. +D+Lr+H 0.0 k 1.852.18 k No Slidina OK X -X, +D+S+H 0.0 k 1,852.18 k No Slidina OK X -X, +D+0.750Lr+0.750L+H 0.0 k 4,669.40 k No Sliding OK X -X, +D+0.750L+0.750S+H 0.0 k 4.669.40 k No Sliding OK X -X. +D+W+H 0.0 k 1,852.18 k No Slidino OK X -X. +D+0.70E+H 1.099.0 k 1,852.18 k 1.685 OK X -X. +D+0.750Lr+0.750L+0.750W+H 0.0 k 4.669.40 k No Slidino OK X -X. +D+0.750L+0.750S+0.750W+H 0.0 k 4,669.40 k No Slidina OK X -X, +D+0.750Lr+0.750L+0.5250E+H 824.25 k 4.669.40 k 5.665 OK X -X. +D+0.750L+0.750S+0.5250E+H 824.25 k 4,669.40 k 5.665 OK X -X, +0.60D+W+H 0.0 k 1.115.83 k No Slidina OK X -X. +0.60D+0.70E+H 1.099.0 k 1.115.83 k 1.015 OK Z -Z. D Only 0.0 k 1,852.18 k No Slidina OK Z -Z. +D+L+H 0.0 k 5.608.48 k No Slidina OK Z -Z, +D+Lr+H 0.0 k 1,852.18 k No Slidina OK Z -Z, +D+S+H 0.0 k 1.852.18 k No Sliding OK Z -Z. +D+0.750Lr+0.750L+H 0.0 k 4,669.40 k No Sliding OK Z -Z, +D+0.750L+0.750S+H 0.0 k 4,669.40 k No Slidina OK Z -Z, +D+0.750Lr+0.750L+0.5250E+H 824.25 k 4,669.40 k 5.665 OK Z -Z. +D+0.750L+0.750S+0.5250E+H 824.25 k 4.669.40 k 5.665 OK Z -Z. +0.60D+W+H 0.0 k 1.115.83 k No Slidina OK Z -Z, +0.60D+0.70E+H 1.099.0 k 1,115.83 k 1.015 OK Z -Z, +D+W+H 0.0 k 1,852.18 k No Slidina OK Z -Z, +D+0.70E+H 1.099.0 k 1,852.18 k 1.685 OK Z -Z. +D+0.750Lr+0.750L+0.750W+H 0.0 k 4.669.40 k No Slidina OK Z -Z. +D+0.750L+0.750S+0.750W+H 0.0 k 4,669.40 k No Slidino OK Footing Flexure Flexure Axis 8 Load Combination _ Mu Side Tension As Req'd Gvrn. As Actual As Phi'Mn Status k -ft Surface in A2 in^2 in 2 k -ft X -X. +1.40D 0.01501 +Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK X -X, +1.40D 0.01501 -Z Bottom 0.2592 Min Temo % 0.3083 12.066 OK X -X. +1.20D+0.50Lr+1.60L+1.60H 0.06820 +Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK X -X, +1.20D+0.50Lr+1.60L+1.60H 0.06820 -Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK X -X. +1.20D+1.60L+0.50S+1.60H 0.06820 +Z Bottom 0.2592 Min Temp % 0.3083 12.066 OK X -X. +1.20D+1.60L+0.50S+1.60H 0.06820 -Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK Cubic Design Group, P.C. Project Title: 100' Diameter Clarifier Addition cu b hP.O. Box 1989 Engineer: Frank Taracido Project ID: 16-040 1503 West D Street Project Descr. Town of Wilkesboro, NC design group a: 7 n North Wilkesboro, NC 28659 Ph: 336-667-4241 Fax: 336-667-5660 Printed 2 APR 2018, 5.16PM General FootingFile= P:lProjects12 M16-04014.0 ProjectData15.7Calculations116040.ec6 ENERCALC, INC. 19832017, Build: 10. 17.12. 10, Ver. 10.17.12.10 r.0rGROUP, Description : Foundation Slab for Clarifier Footing Flexure Flexure Axis 8 Load Combination Mu Side Tension As Req'd Gvrn. As Actual As Phi*Mn Status k-ft Surface in 2 in 2 in 2 k-ft X-X. +1.20D+1.60Lr+0.50L 0.03016 +Z Bottom 0.2592 Min Temp % 0.3083 12.066 OK X-X, +1.20D+1.60Lr+0.50L 0.03016 -Z Bottom 0.2592 Min Temp % 0.3083 12.066 OK X-X. +1.20D+1.60Lr+0.80W 0.01286 +Z Bottom 0.2592 Min Temp % 0.3083 12.066 OK X-X. +1.20D+1.60Lr+0.80W 0.01286 -Z Bottom 0.2592 Min Temp % 0.3083 12.066 OK X-X. +1.20D+0.50L+1.60S 0.03016 +Z Bottom 0.2592 Min Temp % 0.3083 12.066 OK X-X. +1.20D+0.50L+1.60S 0.03016 -Z Bottom 0.2592 Min Temp % 0.3083 12.066 OK X-X. +1.20D+1.60S+0.80W 0.01286 +Z Bottom 0.2592 Min Temp % 0.3083 12.066 OK X-X. +1.20D+1.60S+0.80W 0.01286 -Z Bottom 0.2592 Min Temp % 0.3083 12.066 OK X-X. +1.20D+0.50Lr+0.50L+1.60W 0.03016 +Z Bottom 0.2592 Min Temp % 0.3083 12.066 OK X-X. +1.20D+0.50Lr+0.50L+1.60W 0.03016 -Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK X-X. +1.20D+0.50L+0.50S+1.60W 0.03016 +Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK X-X, +1.20D+0.50L+0.50S+1.60W 0.03016 -Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK X-X. +1.20D+0.50L+0.20S+E 0.03172 +Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK X-X. +1.20D+0.50L+0.20S+E 0.02859 -Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK X-X. +0.90D+1.60W+1.60H 0.009646 +Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK X-X. +0.90D+1.60W+1.60H 0.009646 -Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK X-X. +0.90D+E+1.60H 0.01121 +Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK X-X. +0.90D+E+1.60H 0.008080 -Z Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z, +1.40D 0.01501 -X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.40D 0.01501 +X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+0.50Lr+1.60L+1.60H 0.06820 -X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+0.50Lr+1.60L+1.60H 0.06820 +X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+1.60L+0.50S+1.60H 0.06820 -X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+1.60L+0.50S+1.60H 0.06820 +X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+1.60Lr+0.50L 0.03016 -X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z, +1.20D+1.60Lr+0.50L 0.03016 +X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+1.60Lr+0.80W 0.01286 -X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+1.60Lr+0.80W 0.01286 +X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z, +1.20D+0.50L+1.60S 0.03016 -X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z, +1.20D+0.50L+1.60S 0.03016 +X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+1.60S+0.80W 0.01286 -X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z, +1.20D+1.60S+0.80W 0.01286 +X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+0.50Lr+0.50L+1.60W 0.03016 -X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+0.50Lr+0.50L+1.60W 0.03016 +X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+0.50L+0.50S+1.60W 0.03016 -X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+0.50L+0.50S+1.60W 0.03016 +X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+0.50L+0.20S+E 0.02859 -X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +1.20D+0.50L+0.20S+E 0.03172 +X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z, +0.90D+1.60W+1.60H 0.009646 -X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +0.90D+1.60W+1.60H 0.009646 +X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +0.90D+E+1.60H 0.008080 -X Bottom 0.2592 Min TemD % 0.3083 12.066 OK Z-Z. +0.90D+E+1.60H 0.01121 +X Bottom 0.2592 Min TemD % 0.3083 12.066 OK One Way Shear Load Combination.. Vu @ -X Vu @ +X Vu @ -Z Vu @ +Z Vu:Max Phi Vn Vu I Phi*Vn Status +1.40D 0,00 DSI 0.00 DSI 0.00 DSI 0.00 DSI 0.00 DSi 82.16 DSI 0.00 0.00 +1.20D+0.50Lr+1.60L+1.60H 0.00 osi 0.00 Dsi 0.00 Dsi 0.00 Dsi 0.00 DSi 82.16 Dsi 0.00 0.00 +1.20D+1.60L+0.50S+1.60H 0.00 Dsi 0.00 osi 0.00 Dsi 0.00 Dsi 0.00 Dsi 82.16 Dsi 0.00 0.00 +1.20D+1.60Lr+0.50L 0.00 Dsi 0.00 Dsi 0.00 Dsi 0.00 Dsi 0.00 osi 82.16 Dsi 0.00 0.00 +1.20D+1.60Lr+0.80W 0.00 Dsi 0.00 [)Si 0.00 Dsi 0.00 osi 0.00 Dsi 82.16 Dsi 0.00 0.00 +1.20D+0.50L+1.60S 0.00 DSI 0.00 DSi 0.00 DSI 0.00 Dsi 0.00 DSi 82.16 Dsi 0.00 0.00 +1.20D+1.60S+0.80W 0.00 DSI 0.00 DSi 0.00 DSI 0.00 DSI 0.00 DSI 82.16 DSi 0.00 0.00 +1.20D+0.50Lr+0.50L+1.60W 0.00 Dsi 0.00 Dsi 0.00 Dsi 0.00 Dsi 0.00 osi 82.16 Dsi 0.00 0.00 +1.20D+0.50L+0.50S+1.60W 0.00 Dsi 0.00 osi 0.00 Dsi 0.00 osi 0.00 Dsi 82.16 Dsi 0.00 0.00 +1.20D+0.50L+0.20S+E 0,00 DSI 0.00 DSI 0.00 DSi 0.00 DSI 0.00 DSI 82.16 DSI 0.00 0.00 +0.90D+1.60W+1.60H 0.00 Dsi 0.00 osi 0.00 Dsi 0.00 osi 0.00 Dsi 82.16 DSi 0.00 0.00 +0.90D+E+1.60H 0,00 DSI 0.00 DSI 0.00 DSI 0.00 DSI 0.00 DSi 82.16 DSI 0.00 0.00 Two-Way "Punching" Shear All units k Load Combination... Vu Phi*Vn Vu I Phi*Vn Status +1.40D 0.00 Dsi 85.57osi 0 OK +1.20D-0.50Lr+1.60L+1.60H 0.00 osi 85.57Dsi 0 OK Cubic Design Group, P.C. Project Title: 100' Diameter Clarifier Addition fi <: cubic P.O. Box 1989 Engineer: Frank Taracido Project ID: 16-040 1503 West D Street Project Descr. Town of Wilkesboro, NC �GesirrrrucEp P� North Wilkesboro, NC 28659 Ph: 336-667-4241 Fax: 336-667-5660 Printed: 2 APR 2018. 5:16PM GeneralFootin File=PAProjects12016116-04014.0 Project Data15.7Calculations116-040.ec6 g ENERCALC, INC. 19832017, Build:10.17.12.10, Ver:10.17.12.10 r.rro -• Description : Foundation Slab for Clarifier Two-Way "Punching" Shear _ All units k Load Combination... Vu Phi*Vn Vu / Phi*Vn Status +1.20D+1.60L+0.50S+1.60H 0.00 Dsi 85.57osi 0 OK +1.20D+1.60Lr+0.50L 0.00 psi 85.57osi 0 OK +1.20D+1.60Lr+0.80W 0.00 psi 85.57osi 0 OK +1.20D+0.50L+1.60S 0.00 Dsi 85.57osi 0 OK +1.20D+1.60S+0.80W 0.00 Dsi 85.57Dsi 0 OK +1.20D+0.50Lr+0.50L+1.60W 0.00 Dsi 85.57osi 0 OK +1.20D+0.50L+0.50S+1.60W 0.00 psi 85.57osi 0 OK +1.20D+0.50L+0.20S+E 0.00 Dsi 85.57osi 0 OK +0.90D+1.60W+1.60H 0.00 Dsi 85.57osi 0 OK +0.90D+E+1.60H 0.00 Dsi 85.57osi 0 OK cubicP.O. design group PC Page o: CUBIC DESIGN GROUP, PC Project: Can ler A ItlOn BOX 1989 Owner: ITown of Wilkesboro 1503 West D Street Location: Wilkesboro, NC NORTH WILKESBORO, NC 28659 Job #: 16-04 1_ PHONE 336-667-4241 Designer: Franc Taraci o FAX 336-667-5660 Date: Z - Apr -18 Ring Tension for Fixed Base H = 14 Tank Water Height (ft) D = 100 Tank Diameter (ft) R = 50 Tank Radius ft t = 12 Wall Thickness (in) f = 60000 Reinforcing Steel Yield (psi) fc = 4000 Compressive Strength of Concrete (psi) W = 62.5 Liquid Density(lbs/cf) Wu = 175.31 Factored Weight of Liquid (lbs/cf) H^2/Dt = 2.0 wuHR = 122,719 Ring Tension asFree Base (lbs/ft) Point @ Tabele I Ring Tension Wall Height Coefficient (lbs/ft) 0.01-1 0.234 28,716 0.11-1 0.251 30,802 0.2H 0.273 33,502 0.31-1 0.285 34,975 0.41-1 0.285 34,975 0.51-1 0.274 33,625 0.61-1 0.232 28,471 0.7H 0.172 21,108 0.81-1 0.104 12,763 0.91-1 0.031 3,804 cubic design group PC age o: CUBIC DESIGN GROUP, PC Project: Claritier Addition P.O. BOX 1989 Owner: ITown of Wilkisboro 1503 West D Street Location: Wilkesboro, N NORTH WILKESBORO, NC 28659 Job #: 16-04 PHONE 336-667-4241 Designer: Frank Taracl o FAX 336-667-5660 Date: 3 -Apr -18 D z I� -� -FMA,, N a fig,c v , o A 5 + I cubicCUBIC design group PC Page o:lb DESIGN GROUP, PC Project: ari ler Itlon P.O. BOX 1989 Owner: ITown of Wilkesboro 1503 West D Street Location: Wilkesboro, NC NORTH WILKESBORO, NC 28659 Job #: 16-04 PHONE 336-667-4241 Designer: Frank Taraci o FAX 336-667-5660 Date: 17 -Apr -1 _ , N yyy� 1 s G dxl� � aicL � w Le Cubic Design Group, P.C. cubic P.O. Box 1989 design group PC 1503 West D Street North Wilkesboro, NC 28659 Ph: 336-667-4241 Steel Beam Description : BM -1: Hoist Beam over Sludge Return Pump Station with 2 ton Hoist CODE REFERENCES Project Title: 100' Diameter Clarifier Addition Engineer: Frank Taracido Project ID: 16-040 171Project Descr:Town of Wilkesboro, NC Printed: 4 JUN 2018, 3 18PM File = P:\Projects\2016\16-040\4.0 Project Data\5.7 Calculations\16-040.ec6 Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-05 Material Properties Analysis Method: Allowable Strength Design Fy : Steel Yield : 36.0 ksi Beam Bracing: Beam bracing is defined Beam -by -Beam E: Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending Unbraced Lengths Span # 1, Defined Brace Locations, First Brace at 7.0 ft, Second Brace at 39.0 ft, Third Brace at ft D(1), L(5) S20x66 Span = 46.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weiqht calculated and added to loadinq Load(s) for Span Number 1 Point Load : D =1.0, L = 5.0 k @ 22.50 ft, (Hosit Loading) DESIGN SUMMARY 249.70 1.63 Maximum Bending Stress Ratio = 0.950:1 Maximum Shear Stress Ratio = Section used for this span S20x66 Section used for this span Ma: Applied 86.336 k -ft Va : Applied Mn / Omega: Allowable 90.896 k -ft Vn/Omega : Allowable Load Combination +D+L+H Load Combination Location of maximum on span 22.474ft Location of maximum on span Span # where maximum occurs Span # 1 Span # where maximum occurs Maximum Deflection 0.014 12.58 Max Downward Transient Deflection 0.509 in Ratio= 1,083 >=360 Max Upward Transient Deflection 0.509 in Ratio= 1,083 >=360 Max Downward Total Deflection 0.805 in Ratio= 686 >=180 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces & Stresses for Load Combinations 30.32 Load Combination Max Stress Ratios 30.32 4 Summary of Moment Values Segment Length Span # M V Mmax + Mmax - Ma Max D Only 249.70 1.63 1.00 2.03 218.16 145.44 Dsgn. L = 6.97 ft 1 0.050 0.014 12.53 218.16 12.53 4 Dsgn. L = 31.94 ft 1 0.335 0.011 28.93 12.53 28.93 1 Dsgn. L = 7.10 ft 1 0.050 0.014 12.58 218.16 12.58 4 +D+L+H 90.90 1.18 1.00 4.12 218.16 145.44 Dsgn. L = 6.97 ft 1 0.121 0.032 30.32 218.16 30.32 4 Dsgn. L = 31.94 ft 1 0.950 0.028 86.34 29.94 86.34 1 Dsgn. L = 7.10 ft 1 0.120 0.031 29.94 218.16 29.94 4 +D+Lr+H 249.70 1.60 1.00 2.01 218.16 145.44 Dsgn. L = 6.97 ft 1 0.050 0.014 12.53 218.16 12.53 4 Dsgn. L = 31.94 It 1 0.335 0.011 28.93 12.53 28.93 1 Dsgn. L = 7.10 ft 1 0.050 0.014 12.58 218.16 12.58 4 +D+S+H 249.70 1.66 1.00 3.94 218.16 145.44 Dsgn. L = 6.97 ft 1 0.050 0.014 12.53 218.16 12.53 4 Dsgn. L = 31.94 ft 1 0.335 0.011 28.93 12.53 28.93 1 Dsgn. L = 7.10 ft 1 0.050 0.014 12.58 12.58 4 +D+0.750Lr+0.750L+H Dsgn. L = 6.97 ft 1 0.104 0.027 25.88 25.88 4 Dsgn. L = 31.94 ft 1 0.797 0.024 71.98 25.60 71.98 1 Dsgn. L = 7.10 ft 1 0.103 0.026 25.60 25.60 4 0.032 :1 S20x66 4.583 k 145.440 k +D+L+H 0.000 ft Span # 1 Summary of Shear Values Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega 17.00 249.70 1.63 1.00 2.03 218.16 145.44 44.04 86.25 1.12 1.00 1.57 218.16 145.44 17.00 249.70 1.60 1.00 2.01 218.16 145.44 17.00 249.70 1.66 1.00 4.58 218.16 145.44 51.80 90.90 1.18 1.00 4.12 218.16 145.44 17.00 249.70 1.63 1.00 4.45 218.16 145.44 17.00 249.70 1.63 1.00 2.03 218.16 145.44 44.04 86.25 1.12 1.00 1.57 218.16 145.44 17.00 249.70 1.60 1.00 2.01 218.16 145.44 17.00 249.70 1.63 1.00 2.03 218.16 145.44 44.04 86.25 1.12 1.00 1.57 218.16 145.44 17.00 249.70 1.60 1.00 2.01 218.16 145.44 17.00 249.70 1.66 1.00 3.94 218.16 145.44 50.89 90.35 1.17 1.00 3.48 218.16 145.44 17.00 249.70 1.63 1.00 3.84 218.16 145.44 Cubic Design Group, P.C. Project Title: 100' Diameter Clarifier Addition P.O. Box 1989 Engineer: Frank Taracido 1503 West D Street Project ID: 16-040 (p/ design group PSC North Wilkesboro, NC 28659 Project Descr:Town of Wilkesboro, NC :ate, Ph: 336-667-4241 Fax: 336-667-5660 Printed: 4 JUN 2018, 3.18PM Steel Beam File = P:1Projects12016116-04014.0 Project Data15.7 Calculations116-040.ec6 Description : BM -1: Hoist Beam over Sludge Return Pump Station with 2 ton Hoist Support 1 Support 2 Overall MAXimum 4.583 4.453 Overall MINimum 1.217 Load Combination D Only Max Stress Ratios 2.007 +D+L+H Summary of Moment Values 4.453 Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega +D+0.750L+0.750S+H 2.029 2.007 +D+0.70E+H 2.029 2.007 +D+0.750Lr+0.750L+0.750W+H 3.945 3.841 +D+0.750L+0.750S+0.750W+H 3.945 3.841 +D+0.750Lr+0.750L+0.5250E+H Dsgn. L = 6.97 ft 1 0.104 0.027 25.88 +0.60D+W+H 25.88 417.00 249.70 1.66 1.00 3.94 218.16 145.44 Dsgn. L = 31.94 ft 1 0.797 0.024 71.98 25.60 71.98 150.89 90.35 1.17 1.00 3.48 218.16 145.44 Dsgn. L = 7.10 ft 1 0.103 0.026 25.60 25.60 417.00 249.70 1.63 1.00 3.84 218.16 145.44 +D+W+H Dsgn. L = 6.97 ft 1 0.050 0.014 12.53 12.53 417.00 249.70 1.63 1.00 2.03 218.16 145.44 Dsgn. L = 31.94 It 1 0.335 0.011 28.93 12.53 28.93 144.04 86.25 1.12 1.00 1.57 218.16 145.44 Dsgn. L = 7.10 ft 1 0.050 0.014 12.58 12.58 417.00 249.70 1.60 1.00 2.01 218.16 145.44 +D+0.70E+H Dsgn. L = 6.97 ft 1 0.050 0.014 12.53 12.53 417.00 249.70 1.63 1.00 2.03 218.16 145.44 Dsgn. L = 31.94 ft 1 0.335 0.011 28.93 12.53 28.93 144.04 86.25 1.12 1.00 1.57 218.16 145.44 Dsgn. L = 7.10 ft 1 0.050 0.014 12.58 12.58 417.00 249.70 1.60 1.00 2.01 218.16 145.44 +D+0.750Lr+0.750L+0.750W+H Dsgn. L = 6.97 ft 1 0.104 0.027 25.88 25.88 417.00 249.70 1.66 1.00 3.94 218.16 145.44 Dsgn. L = 31.94 ft 1 0.797 0.024 71.98 25.60 71.98 150.89 90.35 1.17 1.00 3.48 218.16 145.44 Dsgn. L = 7.10 ft 1 0.103 0.026 25.60 25.60 417.00 249.70 1.63 1.00 3.84 218.16 145.44 +D+0.750L+0.750S+0.750W+H Dsgn. L = 6.97 ft 1 0.104 0.027 25.88 25.88 417.00 249.70 1.66 1.00 3.94 218.16 145.44 Dsgn. L = 31.94 ft 1 0.797 0.024 71.98 25.60 71.98 150.89 90.35 1.17 1.00 3.48 218.16 145.44 Dsgn. L = 7.10 ft 1 0.103 0.026 25.60 25.60 417.00 249.70 1.63 1.00 3.84 218.16 145.44 +D+0.750Lr+0.750L+0.5250E+H Dsgn. L = 6.97 ft 1 0.104 0.027 25.88 25.88 417.00 249.70 1.66 1.00 3.94 218.16 145.44 Dsgn. L = 31.94 ft 1 0.797 0.024 71.98 25.60 71.98 150.89 90.35 1.17 1.00 3.48 218.16 145.44 Dsgn. L = 7.10 ft 1 0.103 0.026 25.60 25.60 417.00 249.70 1.63 1.00 3.84 218.16 145.44 +D+0.750L+0.750S+0.5250E+H Dsgn. L = 6.97 It 1 0.104 0.027 25.88 25.88 417.00 249.70 1.66 1.00 3.94 218.16 145.44 Dsgn. L = 31.94 ft 1 0.797 0.024 71.98 25.60 71.98 150.89 90.35 1.17 1.00 3.48 218.16 145.44 Dsgn. L = 7.10 It 1 0.103 0.026 25.60 25.60 417.00 249.70 1.63 1.00 3.84 218.16 145.44 +0.60D+W+H Dsgn. L = 6.97 ft 1 0.030 0.008 7.52 7.52 417.00 249.70 1.63 1.00 1.22 218.16 145.44 Dsgn. L = 31.94 ft 1 0.201 0.006 17.36 7.52 17.36 144.04 86.25 1.12 1.00 0.94 218.16 145.44 Dsgn. L = 7.10 ft 1 0.030 0.008 7.55 7.55 417.00 249.70 1.60 1.00 1.20 218.16 145.44 +0.60D+0.70E+H Dsgn. L = 6.97 ft 1 0.030 0.008 7.52 7.52 417.00 249.70 1.63 1.00 1.22 218.16 145.44 Dsgn. L = 31.94 ft 1 0.201 0.006 17.36 7.52 17.36 144.04 86.25 1.12 1.00 0.94 218.16 145.44 Dsgn. L = 7.10 ft 1 0.030 0.008 7.55 7.55 417.00 249.70 1.60 1.00 1.20 218.16 145.44 Overall Maximum Deflections Load Combination Span Max. ° " Defl Location in Span Load Combination Max. "+" Defl Location in Span +D+L+H 1 0.8050 23.000 0.0000 0.000 Vertical Reactions Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 4.583 4.453 Overall MINimum 1.217 1.204 D Only 2.029 2.007 +D+L+H 4.583 4.453 +D+Lr+H 2.029 2.007 +D+S+H 2.029 2.007 +D+0.750Lr+0.750L+H 3.945 3.841 +D+0.750L+0.750S+H 3.945 3.841 +D+W+H 2.029 2.007 +D+0.70E+H 2.029 2.007 +D+0.750Lr+0.750L+0.750W+H 3.945 3.841 +D+0.750L+0.750S+0.750W+H 3.945 3.841 +D+0.750Lr+0.750L+0.5250E+H 3.945 3.841 +D+0.750L+0.750S+0.5250E+H 3.945 3.841 +0.60D+W+H 1.217 1.204 +0.60D+0.70E+H 1.217 1.204 D Only 2.029 2.007 Lr Only L Only 2.554 2.446 S Only W Only E Only H Only Cubic Design Group, P.C. cubic P.O. Box 1989 1503 West D Street design group Pc North Wilkesboro, NC 28659 Ph: 336-667-4241 Project Title: 100' Diameter Clarifier Addition ILI I Engineer: Frank Taracido Project ID: 16-040 Project Descr:Town of Wilkesboro, NC Fax: 336-667-5660 Printed: 4 JUN 2018, 3:18PM Steel Beam File = P:1Projects12016116-04014.0 Project Data15.7 Calculations116-040.ec6 0.00GROUP, Description : BM -1: Hoist Beam over Sludge Return Pump Station with 2 ton Hoist Steel Section Properties : S20x66 Depth = 20.000 in I xx = 1,190.00 in^4 J = 3.580 in^4 Web Thick = 0.505 in S xx 119.00 in13 Cw = 2,530.00 in^6 Flange Width = 6.260 in R xx = 7.830 in Flange Thick = 0.795 in Zx = 139.000 in^3 Area = 19.400 in^2 1 yy = 27.500 in^4 Weight = 66.000 plf S yy = 8.780 in A3 Wno = 30.000 in^2 Kdesign = 1.630 in R yy = 1.190 in Sw = 37.300 in^4 K1 = 0.000 in Zy = 15.400 in A3 Qf = 21.900 in"3 rts = 1.490 in Qw = 69.100 in^3 Ycg = 10.000 in CUBIC DESIGN ' • • • • •ition P.O. BOX 1989 Owner: ,Town of Wilkesboro PHONENORTH WILKESBORO, NC 28659 Job#: 16-0 FE7miRFAX 1503 West • Street Location:•• • 1• .• .• Date: aif■�-- � CC ��� ��•iLQ:Eiioi�ia - MM2". , W.E � IMM� o 1��� Page o: CUBIC DESIGN GROUP, PC Project: C ari ier A ition P.O. BOX 1989 Owner: ITown of Wilkesboro C � b1c1503 West D Street Location: Wilkesboro, NC design group PC NORTH WILKESBORO, NC 28659 Job #: 16-04 PHONE 336-667-4241 Designer: Franc Taracl o FAX 336667-5660 Date: 25 -Apr -18 44AA Kit - Y sa.-C ? lc. 1 4 ' LY2r% 12 fAr Nv v'VoLrr �I v I s �J t1K a aLl.p KFi z 7. d v I�G�J�i la'-v� •� L 2 z y Hydraulic Calculations 100'-0" Diameter Clarifier Addition Wastewater Treatment Plant 700 Snyder Street Town of Wilkesboro Page o: cubicCUBIC DESIGN GROUP, PC Project: Ma—rifli—er–Addition P.O. BOX 1989 Owner: Town o Wilkesboro oro 1503 West D Street Location: Wilkesboro, N design group PC NORTH WILKESBORO, NC 28659 Job #:16160 PHONE 336-667-4241 Designer: Franc Taraci o FAX 336-667-5660 Date: 25-Apr-18 ry iso T-qiL p a� cubic design group PC Page No: CUBIC DESIGN GROUP, PC Project: ier il Itton P.O. BOX 1989 Owner: Toww n Wilkes Coro T 1503 West D Street Location: — es oro, N NORTH WILKESBORO, NC 28659 Job #: 16-040 PHONE 336-667-4241 Designer: Fran TaraciO FAX 33"67-5660 Date: 26=Apr-1 Dynamic Head Loss Calculations Description: Scum Pump Piping Pipe Diameter: ` 3 " inch g = 32.174 ft/sec^2 Design Flow: 300 gpm Velocity: 13.6 ft/sec 1. Elevation Head Loss Calculation Pump Suction Invert Elevation (ft) = 939.00 Discharge Pipe Invert Elevation (ft) = 942.00 Total Elevation Head (ft) = 3.00 2. Friction Head Loss Calculation Cameron Hydraulics Section 3-12 to 3-47 2a. Pipe Friction Loss Material Pipe _-Head Loss Pipe Length Total (ft) Diameter (ft) Per 100 ft. (ft) Head Loss DI 3 26.80 5 1.34 3 1 0.00 Cameron Hydraulics Section 3-12 to 3-47 Total Friction Head Loss Pipes (ft) 1.34 2b. Fittings Friction Loss Fitting Number Resistance Total Description Fittings Coeff (K) Coeff (K) 90 L 1 0.54 0.54 3-4 Increase 1 0.26 0.26 Entrance 1 0.28 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total Resistance Coefficient( 1.08 Total Friction Head Loss Fittings (ft) 3.10 Total Dynamic Head Loss = 7.44 (ft) Cameron Hydraulics Section 3-111 to 3-116 hf=K(V^2/2g) cubic design group P CUBIC DESIGN GROUP, PC Page No: Project: Carl ler A00nlon P.O. BOX 1989 Owner: ITown Wilkesboro 1503 West D Street Location: Wilkesboro, NC NORTH WILKESBORO, NC 28659 Job #: 16-040 PHONE 336-667-4241 Designer: Franc Taracl o _ FAX 336-667-5660 Date: 26 -Apr -18 - pr - Dynamic Dynamic Head Loss Calculations Cameron Hydraulics Description: Scum Pump Piping g = 32.174 7.66 Pipe Diameter: 4- inch Design Flow: 300 gpm 1. Elevation Head Loss Calculation ft/sec^2 Velocity: ft/sec Section 3-12 to 3-47 Pump Suction Invert Elevation ft = 942.00 Discharge Pipe Invert Elevation (ft) = 961.00 Total Elevation Head (ft) = 19.00 2. Friction Head Loss Calculation _ _2a. Pipe Friction Loss Material �. Pipe Head Loss Pipe Length Total (ft) Diameter (ft) Per 100 ft. (ft) Head Loss DI 4 6.02 135 8.13 4 0.00 Total Friction Head Loss Pipes (ft) 8.13 2b. Fittings Friction Loss Fitting Number Resistance Total Description Fittings Coeff (K) Coeff (K) 90 L 4 0.51 2.04 Check V 1 0.9 0.90 Gate V 1 0.14 0.14 Exit 1 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - - 0.00 -- Total Resistance Coefficient (K) 4.08 Total Friction Head Loss Fittings (ft) 3.72 Total Dynamic Head Loss = 30.85 (ft) Cameron Hydraulics Section 3-12 to 3-47 Cameron Hydraulics Section 3-111 to 3-116 hf=K(V^2/2g) CUBIC DESIGN GROUP, PC Page No: Project: Carl ler A Ibon cubic P.O. BOX 1989 Owner: ITown Wilkesboro design group P 1503 West D Street NORTH WILKESBORO, NC 28659 Location: Wilkesboro, NC Job #: 16-040 PHONE 336-667-4241 Designer: Franc Taraci o FAX 336-667-5660 Date:Zb-Apr-18 Dynamic Head Loss Calculations Description: Scum Pump Piping g = 32.174 8.17 Cameron Hydraulics Pipe Diameter: inch ft/sec^2 Design Flow: gpm Velocity: ft/sec Section 3-12 to 3-47 1. Elevation Head Loss Calculation Pump Suction Invert Elevation ft) = 939.00 Discharge Pipe Invert Elevation (ft) = 942.00 Total Elevation Head (ft) = 3.00 2. Friction Head Loss Calculation 2a. Pipe Friction Loss Material Pipe Head Loss Pipe Length Total (ft) Cameron Hydraulics Diameter (ft) Per 100 ft. (ft) Head Loss Section 3-12 to 3-47 DI 3 j 9.81 5 0.49 3 0.00 Total Friction Head Loss Pipes (ft) 0.49 2b. Fittings Friction Loss Fitting Number Resistance Total Cameron Hydraulics Description ;_,Fittings Coeff (K) Coeff (K) Section 3-111 to 3-116 90 L 1 0.54 0.54 3-4 Increase 1 0.26 0.26 Entrance 1 0.28 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total Resistance Coefficient (K) 1.08 - Total Friction Head Loss Fittings (ft) 1.12 hf=K(V^2/2g) Total Dynamic Head Loss = 4.61 (ft) cubic design group P Page No: CUBIC DESIGN GROUP, PC Project: ClarMer Ac Itlon P.O. BOX 1989 Owner: ITown Wilkesboro 1503 West D Street Location: Wilkes oro, NC NORTH WILKESBORO, NC 28659 Job#: 16-040:::::a PHONE 336-667-4241 Designer: Franc Taracl o FAX 336.667-5660 Date:Zb-Apr-18 Dynamic Head Loss Calculations Description: Scum Pump Piping 4 inch 180 ;, ' gpm 32.174 ft/sec"2 4.6 ft/sec Pipe Diameter: g = Design Flow: Velocity: Cameron Hydraulics Section 3-12 to 3-47_ 1. Elevation Head Loss Calculation Pump Suction Invert Elevation (ft) = Tmm 942.00 Discharge Pipe Invert Elevation (ft) = 961.00 Total Elevation Head (ft) = 19.00 2. Friction Head Loss Calculation _ _2a. iPipe Friction Loss Material Pipe Head Loss Pipe Length Total (ft) Diameter (ft) Per 100 ft. (ft) Head Loss DI 4 2.23 135 3.01 4 0.00 Total Friction Head Loss Pipes (ft) 3.01 Cameron Hydraulics Section 3-12 to 3-47 _ 2b. Fittings Friction Loss Fitting Number Resistance Total Description Fittings Coeff (K) Coeff (K) 90 L 4 0.51 2.04 Check V 1 0.9 0.90 Gate V 1 0.14 0.14 Exit 1 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TotaIR esistance Coefficient (K) 4.08 Total Friction Head Loss Fittings (ft) 1.34 I t Total Dynamic Head Loss = 23.35 (ft) Cameron Hydraulics Section 3-111 to 3-116 hf=K(V^2/2g) pe Diameter: inch g = 32.174 ft/sec ^2 Design Flow: gpm Velocity: 13.6 ft/sec Page No: DESIGN GROUP, PC Project: C ari ler A C ItlOn cubicCUBIC P.O. BOX 1989 Owner: I own (eSGoro design group PC 1503 West D Street NORTH WILKESBORO, NC 28659 Location: Wilkesboro, NC Job #: 16-040 90 L '' 5 0.54 PHONE 336-667-4241 Designer: Frank Taraciclo 0.90 FAX 336-667-5660 Date: - pr-' Gate V 1 0.14 Dynamic Head Scum Pump Loss Calculations Piping all 3" Pump Suction Invert Elevation (ft) = Discharge Pipe Invert Elevation (ft) = Total Elevation Head (ft) = Description: pe Diameter: inch g = 32.174 ft/sec ^2 Design Flow: gpm Velocity: 13.6 ft/sec Cameron Hydraulics Section 3-12 to 3-47 Cameron Hydraulics Section 3-12 to 3-47 Cameron Hydraulics Section 3-111 to 3-116 �- 2b. Fittings Friction Loss Fitting Number Resistance Total 1. Elevation Head Loss Calculation 90 L '' 5 0.54 2.70 Check V 1 0.9 0.90 Entrance 1 0.28 0.28 Gate V 1 0.14 0.14 Exit 1 1 Pump Suction Invert Elevation (ft) = Discharge Pipe Invert Elevation (ft) = Total Elevation Head (ft) = 939.00 961.00 22.00 0.00 0.00 0.00 0.00 0.00 0.00 2. Friction Head Loss Calculation Total Resistance Coefficient (K) 5.02 Total Friction Head Loss Fittings (ft) 14.43 Total Dynamic Head Loss = 73.95 (ft) 2a. !Pipe Friction Loss Material Pipe Head Loss Pipe Length Diameter (ft) Per 100 ft. (ft) DI 3 26.80 140 3 Total Friction Head Loss Pipes (ft) Total (ft) Head Loss 37.52 0.00 37.52 Cameron Hydraulics Section 3-12 to 3-47 Cameron Hydraulics Section 3-12 to 3-47 Cameron Hydraulics Section 3-111 to 3-116 �- 2b. Fittings Friction Loss Fitting Number Resistance Total Description Fittings Coeff (K) Coeff (K) 90 L '' 5 0.54 2.70 Check V 1 0.9 0.90 Entrance 1 0.28 0.28 Gate V 1 0.14 0.14 Exit 1 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total Resistance Coefficient (K) 5.02 Total Friction Head Loss Fittings (ft) 14.43 Total Dynamic Head Loss = 73.95 (ft) Cameron Hydraulics Section 3-12 to 3-47 Cameron Hydraulics Section 3-12 to 3-47 Cameron Hydraulics Section 3-111 to 3-116 6" Gravity Scum Pipe Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.012 Channel Slope 0.01000 ft/ft Normal Depth 0.50 ft Diameter 0.50 ft Results Discharge 0.61 W/s Flow Area 0.20 ftz Wetted Perimeter 1.57 ft Hydraulic Radius 0.13 ft Top Width 0.00 ft Critical Depth 0.40 ft Percent Full 100.0 % Critical Slope 0.01066 ft/ft Velocity 3.10 ft/s Velocity Head 0.15 ft Specific Energy 0.65 ft Froude Number 0.00 Maximum Discharge 0.65 ft3/s Discharge Full 0.61 ft3/s Slope Full 0.01000 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 100.00 % Downstream Velocity Infinity fUs 213.7 &TM Bentley Systems, Inc. Bentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 4/25/2018 10:41:46 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 31 6" Gravity Scum Pipe GVF Output Data Upstream Velocity Infinity ft/s Normal Depth 0.50 ft Critical Depth 0.40 ft Channel Slope 0.01000 Tuft Critical Slope 0.01066 ft/ft Bentley Systems, Inc. Bentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 4/25/2018 10:41:46 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 u71111atched '-Reliabilityzhoer pp IMPELLER DIAMETER ���han 1740 10.30" 262 mm B 15 1745 10.00" 254 mm acs 9► C 15 PERFORMANCE CURVE 9.70" 246 mm D 15 1745 9.50" 241 mm E 15 1745 9.20" 234 mm Models: F 10 1755 9.00" 229 mm G 10 SE3P 8.50" 216 mm H 7.5 1730 8.20" (208 mm) 7.5 1730 8.00" 203 mm S3P Back -Pull -Out Casing 3 -Blade Impeller 3" Discharge DO NOT OPERATE PUMP IN DOTTED PORTION OF CURVES. PUMPS MAY EXCEED HP SHOWN IF OPERATED IN DOTTED PORTION OF CURVE. CURVES ARE SUBJECT TO CHANGE WITHOUT NOTICE. EFFICIENCIES SHOWN ARE NOMINAL BOWL. GUARANTEED MINIMUM EFFICIENCIES PER H.I. LEVEL A 'EXCEEDS 15 HP AFTER 500 GPM. CAPACITY (CUBIC METERS PER HOUR) 120 0 10 20 30 40 50 60 70 80 90 100 110 120 MEE 110 M M, 035 100 30 90 MR1111- 80 LLJ w 25 w r 0 70 u�]NOR = ¢�¢ 60I'Mhe 20 W v Mh mp g z z01001 0 50 z z 15 r -i F J O 40 H � Ow F 30 10 t, 20 OR 10 5 0 0 50 100 150 200 250 -- 0 300 350 400 450 500 550 CAPACITY (U.S. GALLONS PER MINUTE) Form V370-S3P-1750 04118 CURVE POWER HP SPEED RPM IMPELLER DIAMETER A 20* 1740 10.30" 262 mm B 15 1745 10.00" 254 mm C 15 1745 9.70" 246 mm D 15 1745 9.50" 241 mm E 15 1745 9.20" 234 mm F 10 1755 9.00" 229 mm G 10 1755 8.50" 216 mm H 7.5 1730 8.20" (208 mm) 7.5 1730 8.00" 203 mm ' \_ F2 N I \ Ll I a a ooo ^ a U rco m o > w� w Iz o w � W z • i w U e U U o � o I- I _ — ti uJ mY O b �p v �I - a - e Fjobb"—�I I � sL rcx Ll �a =m I � o I I I I m I ^� I o r U U n O p U < w t K Z a - __j$2O raj ¢ l�g a ' N �'� • ow � V N j O O � t3 e3 o � J YN O O G mY O b �p v �I - a - e Fjobb"—�I I � sL rcx Ll �a =m I � o I I I I m I ^� I o r U U n O p U < w t K Z a - __j$2O raj ¢ l�g a ' N �'� • ow � V N j O O � t3 e3 V) of N N za wm maw rc� o I C3 V) �or F ZWo J— O W --- -� L J2-7 — m �_ OWN J_ --r y O w lZ{ p .11i gp d d s K � I:n� ` if, mini o � x w >� w a ygPp�IPq�• NA� o f a ry 0 o yuyp� W5 Zg2 uZg2 a (gY9E9:byLl `i' w w arc 3 prc rcu�i V C'b Iii z rc .o ooz r „„ u w u u a ry n a n a w a u R u VJ4 ��• � i'S' R� 8 4i a 0 o I "s o � _ o x32 �3� m �z + um K yy W <� ID lo co --z a J W I I x I I I Go I az w ga I m o n 0 ry G •^ J IPP - 3 �u O 6 Erosion Control Calculations 100'-0" Diameter Clarifier Addition Wastewater Treatment Plant 700 Snyder Street Town of Wilkesboro Page o: cubicCUBIC DESIGN GROUP, PC Project: Clarifier Addition P.O. BOX 1989 Owner: Town of Wilkesboro 1503 West D Street Location: Wilkesboro, NC design group PC NORTH WILKESBORO, NC 28659 Job #: 16-04 PHONE 336-667-4241 Designer: Frank Taracio FAX 336-667-5660 Date: Z3-Apr-18 W .O G �.- x�- v•k a a 1 d - o. ►. a. e - io alow - GL I. G� G �l = JM cl c/ v i 2,0 t' Yd - � voom 0cu0 -o X3 � v+ r4p. 3 o °, y n 3 o < c v ° r° 3 CD � CA N CD cl) o a 5' 3. m0_ c 3 _m 0 o• m S• n -n cn W (D N� fl. TI TI TI (D (D (D (D (D (D O r c 9 m Cl 0 O O N o o 3 (D (D 3 0 x m v- v 3(n c' (D Z3 M D 0 0 o Z Z Ir (u m In U Practice Standards and Specifications 6.61 SEDIMENT BASIN 0 Definition An earthen embankment suitably located to capture sediment with a primary spillway system consisting of a riser and barrel pipe. Purpose To retain sediment on the construction site, and prevent sedimentation in off-site streams, lakes, and drainageways. Conditions Where Special limitation — This practice applies only to the design and installation of Practice Applies sediment basins where failure of the structure would not result in the loss of life, damage to homes or buildings, or interrupt the use of public roads or utilities. All high hazard potential dams and structures taller than 25 feet, and that also have a maximum storage capacity of 50 acre-feet or more are subject to the N.C. Dam Safety Law of 1967. Sediment basins are needed where drainage areas exceed design criteria of other measures. Specific criteria for installation of a sediment basin are as follows: • Keep the drainage area less than 100 acres; • Ensure that basin location provides a convenient concentration point for sediment -laden flows from the area served; • Ensure that basin location allows access for sediment removal and proper disposal under all weather conditions; and • Keep the basin life limited to 3 years, unless it is designed as a permanent structure; Do not locate sediment basins in intermittent or perennial streams. Planning Select key locations for sediment basins during initial site evaluation. Install Considerations basins before any land -disturbance takes place within the drainage area. Select basin sites to capture sediment from all areas that are not treated adequately by other sediment controls. Always consider access for cleanout and disposal of the trapped sediment. Locations where a pond can be formed by constructing a low dam across a natural swale are generally preferred to sites that require excavation. Where practical, divert sediment -free runoff away from the basin. Sediment trapping efficiency is primarily a function of sediment particle size and the ratio of basin surface area to inflow rate. Therefore, design the basin to have a large surface area for its volume. Figure 6.61a shows the relationship between the ratio of surface area to peak inflow rate and trap efficiency observed by Barfield and Clar (1986). Sediment basins with an expected life greater than 3 years should be designed as permanent structures. Often sediment basins are converted to stormwater ponds. In these cases, the structure should be designed by a qualified professional engineer experienced in the design of dams. Permanent ponds and artificial lakes are beyond the scope of this practice standard. USDA Soil Conservation Services Practice Standard Ponds Code No. 378 provides criteria for design of permanent ponds. Rev. 5/13 6.61.1 Practice Standards and Specifications Basin locations- Select areas that: • Provide capacity for sediment storage from as much of the planned disturbed area as practical; • Exclude runoff from undisturbed areas where practical; • Provide access for sediment removal throughout the life of the project and; • Interfere minimally with construction activities. Basin shape- Ensure that the flow length to basin width ratio is at least 2:1 to improve trapping efficiency. This basin shape may be attained by site selection or excavation. Length is measured at the elevation of the principal spillway. Storage volume- Ensure that the sediment storage volume of the basin, as measured to the elevation of the crest of the principal spillway, is at least 1,800 ft3/acre for the disturbed area draining into the basin (1,800 ft3 is equivalent to a '/2 inch of sediment per acre of basin drainage area). Remove sediment from the basin when approximately one-half of the storage volume has been filled. Spillway capacity- The spillway system must carry the peak runoff from the 10 - year storm with a minimum 1 foot freeboard in the emergency spillway. Base runoff computations on the disturbed soil cover conditions expected during the effective life of the structure. Principal spillway- Construct the principal spillway with a vertical riser connected to a horizontal barrel that extends through the embankment and outlets beyond the downstream toe of the dam, or an equivalent design. • Capacity- The primary spillway system must carry the peak runoff from the 2 -year storm, with the water surface at the emergency spillway crest elevation. Sediment cleanout elevation- Show the distance from the top of the riser to the pool level when the basin is 50 percent full. This elevation should also be marked in the field with a permanent stake set at this ground elevation (not the top of the stake). Crest elevation- Keep the crest elevation of the riser a minimum of 1 foot below the crest elevation of the emergency spillway. Riser and Barrel- Keep the minimum barrel size at 15 inches for corrugated metal pipe or 12 inches for smooth wall pipe to facilitate installation and reduce potential for failure from blockage. Ensure that the pipe is capable of withstanding the maximum external loading without yielding, buckling or cracking. To improve the efficiency of the principal spillway system, make the cross-sectional area of the riser at least 1.5 times that of the barrel. The riser should be sized to minimize the range of stages when orifice flow will occur. Pipe Connections- Ensure that all conduit connections are watertight. Rod and lug type connector bands with gaskets are preferred for corrugated metal pipe to assure watertightness under maximum loading and internal pressure. Do not use dimple (universal) connectors under any circumstances. • Trash guard- It is important that a suitable trash guard be installed to prevent the riser and barrel pipes from becoming clogged. Install a trash guard on the top of the riser to prevent trash and other debris from Rev. 5/13 6.61.3 Practice Standards and Specifications Flashboard Riser- A different approach is to use a flashboard riser, which forces the basin to fill to a given level before the water tops the riser. In this way it is similar to a solid riser, but with the option of being able to lower the water level in the basin when accumulated sediment must be removed. Flashboard risers are usually fabricated as a box or as a riser pipe cut in half. The open face has slots on each side into which boards or "stop logs" are placed, forcing the water up and over them. This device should be sized the same way as a typical riser. Forcing the water to exit the sediment basin from the top of the water column has the same advantages in sediment capture as the skimmer. A flashboard riser basin will have an adjustable, permanent pool which also improves basin efficiency. This method is a disadvantage when the sediment needs to be removed because the operator may need to remove the boards down to the sediment level to drain the basin. Flashboard risers are a good option for stilling basins for pump discharges, or when sandy soil conditions will allow dewatering of the basin through infiltration. They should not be selected when the basin will have to be cleaned frequently, or when located in clay soils. Figure 6.61c Flashboard Riser installation example. Photo credit: NC State University Rev. 5113 6.61.5 Practice Standards and Specifications • Baffles- Provides a minimum of three porous baffles to evenly distribute flow across the basin and reduces turbulence. Basins less than 20 feet in length may use 2 baffles . • Inlets- Locate the sediment inlets to the basin the greatest distance from the principal spillway. • Dewatering- Allow the maximum reasonable detention period before the basin is completely dewatered-at least 48 hours. • Inflow rate- Reduce the inflow velocity and divert all sediment -free runoff. Construction 1. Site preparations- Clear, grub, and strip topsoil from areas under the Specifications embankment to remove trees, vegetation, roots, and other objectionable material. Delay clearing the pool area until the dam is complete and then remove brush, trees, and other objectionable materials to facilitate sediment cleanout. Stockpile all topsoil or soil containing organic matter for use on the outer shell of the embankment to facilitate vegetative establishment. Place temporary sediment control measures below the basin as needed. 2. Cut-off trench- Excavate a cut-off trench along the center line of the earth fill embankment. Cut the trench to stable soil material, but in no case make it less than 2 feet deep. The cut-off trench must extend into both abutments to at least the elevation of the riser crest. Make the minimum bottom width wide enough to permit operation of excavation and compaction equipment, but in no case less than 2 feet. Make side slopes of the trench no steeper than 1:1. Compaction requirements are the same as those for the embankment. Keep the trench dry during backfilling and compaction operations. 3. Embankment- Take fill material from the approved areas shown on the plans. It should be clean mineral soil, free of roots, woody vegetation, rocks, and other objectionable material. Scarify areas on which fill is to be placed before placing fill. The fill material must contain sufficient moisture so it can be formed by hand into a ball without crumbling. If water can be squeezed out of the ball, it is too wet for proper compaction. Place fill material in 6 to 8 inch continuous layers over the entire length of the fill area and compact it. Compaction may be obtained by routing the construction hauling equipment over the fill so that the entire surface of each layer is traversed by at least one wheel or tread track of heavy equipment, or a compactor may be used. Construct the embankment to an elevation 10 percent higher than the design height to allow for settling. 4. Conduit spillways- Securely attach the riser to the barrel or barrel stub to make a watertight structural connection. Secure all connections between barrel sections by approved watertight assemblies. Place the barrel and riser on a firm, smooth foundation of impervious soil. Do not use pervious material such as sand, gravel, or crushed stone as backfill around the pipe or anti -seep collars. Place the fill material around the pipe spillway in 4 -inch layers, and compact it under and around the pipe to at least the same density as the adjacent embankment. Care must be taken not to raise the pipe from firm contact with its foundation when compacting under the pipe haunches. Rev. 5/13 6.61.7 W v D cc V) ul U z W Wuj K w I N t0 N � O LL Cr Qa CO z r Z w Q CO LO LL W �U oU UQ ccCL 3I= 0 i Practice Standards and Specifications LL x d O Z w ,! F! w 0 U F N Y U CO O w z v~i x � m � - 1 Lu Cc amOZ x Cr V H OO at Z <z Z J w C Q LW J Cr W O z 00 u' z Q W �� W F CC rw JN O w a V) v c� V)gQ av I N t0 N � O LL Cr Qa CO z r Z w Q CO LO LL W �U oU UQ ccCL 3I= 0 i Practice Standards and Specifications LL x d O Z w ,! F! w 0 U F N Y U CO O I Z Q m O 2 r- 0 Ca 2 O m LD J V1 LL LL wo `4 Z) O Q Z LLJ Z4 Z Z �IQZDC m w m w oU2� wuu,� Y X F - w d Z = Q ~ H Z m�WW w U 0 Z UJ Z W O F- O LLj OU Z) LD ULL JQv0 cc Z Z) _ F N 0 -j U LL w LU 0 Ca N 1= O Z) 0 LLI F- m W LL Z Z w w J LL O O a U Q Z) U m0 > Z LL U Q r O o x Q2zJ �Z)"Q U 2 w g Z ALOU a a Y z Q N Q J J kA p Q Q Q W W N N w D V) F- Z.-inimv Rev. 5/13 6.61.9 w w z v~i x � m � Y Ln � X N ga U" I Z Q m O 2 r- 0 Ca 2 O m LD J V1 LL LL wo `4 Z) O Q Z LLJ Z4 Z Z �IQZDC m w m w oU2� wuu,� Y X F - w d Z = Q ~ H Z m�WW w U 0 Z UJ Z W O F- O LLj OU Z) LD ULL JQv0 cc Z Z) _ F N 0 -j U LL w LU 0 Ca N 1= O Z) 0 LLI F- m W LL Z Z w w J LL O O a U Q Z) U m0 > Z LL U Q r O o x Q2zJ �Z)"Q U 2 w g Z ALOU a a Y z Q N Q J J kA p Q Q Q W W N N w D V) F- Z.-inimv Rev. 5/13 6.61.9 w Preliminary Clarifier Calculations (ovwo USA) 100'-0" Diameter Clarifier Addition Wastewater Treatment Plant 700 Snyder Street Town of Wilkesboro O 0. C m OX v D T x z. m N d ? D m O of D m Z G) O 0 m O Z m 7EF D N d D m 2 ni as m v D �^ = N d Gl D 00 r<0 of n m _s T W m T F, zj $O Z` G1 O 00 a 0 n-4 �° T N T $O ` O 2 O 1 z H 70 v x anz T v Kv 0 N S T< l D N jm ' m G1 Z m 7D D v O m CC C r z D T m C)f*. O N A A< O _ 7 X O - 3 m 2 3 c 0 a o- � N V1 N T m W N T W N T_ (I N N A 2L �_ N - 0 0 5. O) 0 T G1 0 v A W p �L A W Gl 0 `L In N iD 'n < X N D n O N 00 < 0 Vi l~n O A ao O vi O r a0 Q 00 n v cr'i oZ CD f+ O 7 m z m <x _ s n D L vim, m D 10 CD s r ��< n o d 00 00 O c o n w N 3 f m t^ 3 f m v+ 3 ov oW 3 !2 ID o W c { v ^ O o o � X 0( n fD � � m a n < FD X m 0o o_ a v < F N T O V O _ !D A Z 00 d fD n v m N O_ 00 v ZIP O_ 00 G { m W N W V A A N N N 00 l0l1 N N w 00 N 00 ID N 00w V1 A O O1 00 A W W V1 to W N x m O 2K V O O c O O c C K 7D 11 .fie .moi .fie .fie V V d O d V rD m rD M OG x 00 F 7 N 7 N O ? O ? f f O O N n 7 rD rD N N O 1 rte+ O d re m CL n O c 7 O O N N H X (� a FD. � rD 7 N ~O 00 00 c 00 O O O i IQ CL D 000 O O ry Ln N N y A V V N a d n tD m m 3 v N w w p n a N O d O 0! N O D+ m 3 (� N W A O O C.) O �G D D f1 rD rD 5 01 W A x A T m n m c c 70 a- o. H 2 N W d L4 �c x 2 N N cl 7' 7' F f 11 II O) x 3 41 21 00 G a cr O 00 O O 00 O F+ O 9 m x v x A O r T T r C 'A O ^x' O m O A v O v Z N 00 c A WG C C G m m Z S 2 00 D D r re) rF > m m z � N D 00 Z mN < 2 0 O O n m C < m O � D x m M O G1 Z � D < N T A " C 0 x CoC C n A W m G m 00 x A o m 2fD'1 > O � N m G) m m z z O O m A 11 O O m - 00 v x A b+ 00 m O T T r 'A O ^x' m O v O v N 00 A WG C C G 00 D D > m m z � N D 00 Z 0 O O n C < m O M G1 Z < N m T S_ O L' Z _ O m 2fD'1 n T z x 00 01 0 N 00 to W N A W A W h+ O1 vmi G) tmi+ G1 O O n u O C A W W 4+ V A W l0 F+ N G1 G) W 00 W W W F+ n n m v T T r 'A O m v O z �^ m O A O 0 O C G1 S_ _ m 2fD'1 T z D z z O O —DI !Di m 6) G) v_ D r m D r D D r O D O N O m D m m m A m Z 0 Z m r 2 Z 2 T Z m O O v z z z A x O n O 70 II O z O = m O m Q m u = p v Z O II O Z T O T O O T s T m z N N p N N W N N A ul W NN W W W V1 O l0 tD O O 00 ll1 V1 N ll'1 01 Ol W N t0 N N N A O 01 W L" F+ V1 01 t0 N VI _ x0 m SO 2 m i SO m z Z Z O 0 3 O O m Z m 0 Z N O Z N O = O C G) 2 D r W 00 W W W F+ n n o A D r r m C Z O Aw A !J II 11 II r N F+ O C 00 O A A A A 1 x D < - 1 1 N 1--, F, O N W O In 00 O N A 0 0 0 v v O r" 7c D D D A v - u G) G) G) 11 II II m m m Z C w w a > o 00)0 AAAA A 00 m m m ''' + + + <<<< G) (.) G) G) O o o c n m O ,�„ c N w O O m_ (D^ Q ID ID O m O I x O O� � F a fD. N A G 3 v d O r r r O O 3 ID WO O N- In 7 O O O v+ ID O t; 1 x 7c 7c 1 v v O r" x u v - � 11 II II 11 II II A Z C w w a > v ,n r 1 of v D i V a 0 0 0 o o 0 N 1 1 A O O N ID 0 II II 0 0 D Z I A0 LnkDD O O O O Gl C m go �n w � C _ D V W A I V w m Z - • Y M m W N C m. F N O" � I C O 1 = 7 m I I O r T i r W N N O O r 1 O O O O N O m m m Z Z A A A m m A to W N F D D D w n- 0 V1 N VI -I N tP V II II II 0 7 7 7 n n n A a > d fp � A x 7 w w a > v 3 I:r of v V a 0 0 0 o o 0 N N N W A O O N ID 0 II II 0 0 O O O LnII A0 LnkDD O O O O A A A m m A to W N F D D D w n- 0 V1 N VI -I N tP V II II II N A 7 7 7 n n n A a > d fp � A w w a > 3 3 3 3 I:r y v V a w O Gi II O O II II 0 0 7 M LnII A0 LnkDD O N A A A m m A to W N F D D D w n- 0 V1 N VI -I N tP V II II II m it m W W N m O A N A 7 7 7 n n n � II II > d fp � w w a > 3 3 3 3 I:r y m V a > a N Gi d 7 M 3 m go �n w D V W A I V w m W N C m. F N O" O O W _ Q N 2 K K K r f+ O O O O O m it m W W N m O A r 7 7 7 n n n � II II S S S d fp � w w a 3 0 v 3 3 3 m0 o m m y m V a > a N m m m N j N G1 7 M Am A N 0 OD R. H Q O O 00O O O C D D D D pm 5 m O O Z T_ n D 7D N m N m O z D Z 6D a m Z a O w O N � G D Gl O 0 C) O r C � O 3 O o A o A G) G) Z o v v 0 v v v f+ 0 0 co x d 0 O O x ry Z 0 N A A G) = N 00 N W N 00 N W N N W A N W A N W A 11 I I Ol W N 0 0 Ol W N OI W N O G1 G1 N T T T v v O m m v 3 VN 00 D N o D x V m N O N o D N N A A N A N v N V v t0 N m v N A N V N V w W D u It nn C A O O O O M w 00 L+ O w m v, w 00 W OI r w T T — — m m '"' r o 0 w Z oA - A A " A A " A A m M T T N N m m A D A D r r 0 0 Gl N N O O Gl m V V V A A A W W W O O O w w lD r r r w lD w � lD w lD N N N m A A A N r r OA C N r W a, 00 C 10 tD r w w -O A o 1O ' 4 A m N w Ol 'D Ol 3 H 00 V w r oo o1Do 3 A O 7O w 00 r V N v V Ol r io N 0) V cn ( C CO) m n n D D N m N m Z Z A A y O w O N � G Gl 0 � 3 s o A o A 0 d 3 = N 00 N W 00 N W 00 N W N W A N W A N W A 11 I I Ol W N Ol W N OI W N O N T O A 3 X m v A N A D u It C O O M w 00 L+ w m v, w 00 W r w w Ao '"' r o 0 w Z oA - A A " A A " A A m T T N N m m A D A D ^ m m V V V A A A W W W O O O w w lD r r r w lD w lD w lD N N N A A r 00 A 00 H � m 00 r V N v V Ol r N 0) V cn O1 A O A A O W W Ol O G G > M N > A > p N > f G) d Gl d O O O N O O O N O O O 00 O N N O r O O r A r A N r O 00 O A N r tD W 01 r A A 00 V W 00 O lD Ot r A N N m 0 0 0 = 0 0 0_ ni 0 0 N OO w r A r o» V 00 V 00 Ol kD r N 00 O1 W N V ID O N < A A W W T N D F+ W A m > w v w > w W N -I W N G N bo D ' X N In V O V 0) O) rn D n n T = _ O D D D cn mv D c � m a Z G) m A 7 m m A N A 00 0 0 O N Z w n n v a z a n m n A �n > n� O D� a 2 c N vDi N 2 M r D D z m X n O O O c m ci m y T T T a m W a T z m D z cmi. > D .. Z m A O p 'O a z m m m z D 2 m O v to G1 in it v zc O a O m a A z a 2 A A a : N m a n D u n n �' p f O T O m m Gr n "' < O S n _ z GD I (A x r 4 o o I X D r N (n A m i C T r r W A D oo W W O N W W N to w . w N w D Imo- <O ID Vf W A W A t+ v In W m m O m m v N pl Q < z z z z z 2 m D G c = I I I C W;oO j O I I It N I II z O 3 C 0 0 m i j r N x p m N z 0-_ O w m Ln m N V1 r �-+ A O �- N O m v - m j A r r = G o j ~ O � I m O t+ W w O V to m m N 0 N W A i O m N n 0 0 0 r 1 7 Dpi V.I j v z T n T I m D 11 rn Cl) rn cn fJ O D O N < A A W W T N D F+ W A m > w v w > w W N -I W N G N bo D ' X N In V O V 0) O) rn D n n T = _ O D D D cn mv D c � m a Z G) m A 7 m m A N A 00 0 0 0 > r O T O A p p m p n u C Z r T D T D O r) 7° O z w 0 0 0 0 0 0 0 0 w O F+ A T � N 00 0 W N � O O O l0 V T r N F. - (D !D 6 O O O 00 O N O O 000 7 v