HomeMy WebLinkAboutNC0021717_Authorization to Construct_20180622 (4)cubic
CALCULATIONS PACKAGE
.P
RA
100'-0" Diameter Clarifier Addition
Wastewater Treatment Plant
Town of Wilkesboro, NC
z
.-
June 20, 2018
Firm License No. C-1122
P.O. Drawer 1989 0 1503 West D Street ■ North Wilkesboro, NC 28659 0 p. 336.667.4241 ■ f. 336.667.5660 9 www.cubicdesigngroup.com
STRUCTURAL CALCULATIONS
100'-0" Diameter Clarifier Addition
Wastewater Treatment Plant
700 Snyder Street
Town of Wilkesboro
05/10/2018 180402-NC2012 (IBC -2009 -ASCE 7-05).123 Page No. 1
DESIGN LOADS SUMMARY
Project: 100'-0" Clarifier Addition
Owner: Town of Wilkesboro
City: Wilkesboro, NC
County: Wilkes
Job No: 16-040
Date: 02 -Apr -18
All loads applied in accordance with the
North Carolina Building Code, 2012 Edition (SEI/ASCE 7-05)
BuildingCategory: .......................................................
Floor Live Loads:
GroundFloor.......................................................................
Elevated Platforms & Catwalks ............................................
Stairs& Exitways..................................................................
Floor Dead Loads:
Floor Steel Grating............................................................
Floor Steel Framing...........................................................
Miscellaneous Collateral....................................................
100 PSF
60 PSF
100 PSF
10 PSF
2 PSF
3 PSF
Total Floor Dead Load........................................................... 15 PSF
Equipment Loads:
Per OVIVO Clarifier Manufacturer ......................................... Per Equipment
Roof Snow Loads:
Ground Snow Load(Pg)........................................................ 20 PSF
TerrainCategory .................................................................... C
Flat Roof Snow Load(Pf)...................................................... 22 PSF
Snow Exposure Factor(Ce).................................................. 1.00
Thermal Factor(Ct)............................................................... 1.20
Snow Load Importance Factor(Is)........................................ 1.10
Wind Loads:
Basic Wind Speed ( Three Second Gust) .............................. 90 MPH
Exposure Factor.................................................................... B
Importance Factor(1)............................................................. 1.15
Internal Pressure Coefficients ............................................... +/-0.18
Velocity Pressure Exposure Coefficient (Kz)......................... 0.70
Topographic Factor(Kzt)....................................................... 1.00
Wind Directional Factor(Kd)................................................. 0.85
Velocity Pressure (qz).......................................................... 14.19 PSF
Seismic Loads:
Spectral Acceleration(Ss)..................................................... 27.6 %g
Spectral Acceleration(S1)..................................................... 9.1 %g
Spectral Response Acceleration Maximum(Sms).................. 43.60 %g
05/10/2018 180402-NC2012 (IBC -2009 -ASCE 7-05).123 Page No. 2
DESIGN LOADS SUMMARY
Project: 100'-0" Clarifier Addition
Owner: Town of Wilkesboro
City: Wilkesboro, NC
County: Wilkes
Job No: 16-040
Date: 02 -Apr -18
All loads applied in accordance with the
North Carolina Building Code, 2012 Edition (SEI/ASCE 7-05)
Spectral Response Acceleration Maximum (Sm 1) ................. 22.00 %g
Spectral Response Acceleration(Sds)................................ 0.291 g
Spectral Response Acceleration(Sd1)................................ 0.147 g
Seismic Occupancy Category ................................................ II
Seismic Site Class................................................................ D
Seismic Importance Factor ................................................... 1.25
Seismic Design Category ..................................................... C
Seismic Base Shear.............................................................. 70 K
Structural Seismic Resisting System ..................................... Reinf. CIP Shear Walls
Seismic Response Coefficient(Cs)................................... 0.091
Response Modification Factor(R)......................................... 4.00
System Overstrength Factor (Oo)(Table 9.5.2.2) .................. 2.50
Deflection Amplification Factor(Cd)...................................... 4.00
Analysis Procedure................................................................ Equivalent Lateral
Load Procedure
05/10/2018 180402-NC2012 (IBC -2009 -ASCE 7-05).123 Page No. 3
DESIGN LOADS SUMMARY
Project: 100'-0" Clarifier Addition
Owner: Town of Wilkesboro
City: Wilkesboro, NC
County: Wilkes
Job No: 16-040
Date: 02 -Apr -18
All loads applied in accordance with the
North Carolina Building Code, 2012 Edition (SEI/ASCE 7-05)
Ct = 0.020 Table 12.8-2
X= 0.750 Table 12.8-2
hn= 16.00 Height above base @ highest level (ft)
Cu= 1.6 Coefficient for Upper Limit on Period (Table 12.8-1)
W= 768.0 Structure Dead Load (Kips)
Clarifier Addition -Town Of Wilkesboro, NC
Date and Time: 4/2/2018 4:00:11 PM
AIL(► -7
4
Conterminous 48 States
2003 NEHRP Seismic Design Provisions ,� o
Spectral Response Accelerations Ss and S1
Zip Code - 28697('ta
Zip Code Latitude = 36.138000 G1,ix �c;�� F,ctw�= ��z 0kj_(vt'
Zip Code Longitude = -081.176600
Ss and S1 = Mapped Spectral Acceleration Values f 1Ir 20�}
SiteClass B - Fa = 1.00, Fv = 1.00
Data are based on a 0.05 deg grid spacing.
Period Sa v
(sec) (g)
0.2 0.276 Ss, SiteClass B
1.0 0.091 S1, SiteClass B
Period Centroid Sa
(sec) (g)
0.2 0.276 Ss, SiteClass B
1.0 0.091 S1, SiteClass B
Period
Maximum Sa
(sec)
(g)
0.2
0.288 Ss,
SiteClass B
1.0
0.093 S1,
SiteClass B
Period
Minimum Sa
(sec)
(g)
0.2
0.264 Ss,
SiteClass B
1.0
0.090 S1,
SiteClass B
Conterminous 48 States
2003 NEHRP Seismic Design Provisions
Spectral Response Accelerations SMs and SM1
Zip Code - 28697
Zip Code Latitude = 36.138000
Zip Code Longitude = -081.176600
SMs = FaSs and SM1 = FvS1
Site Class D - Fa = 1.58, Fv = 2.40
Data are based on a 0.05 deg grid spacing.
Period Sa
(sec) (g)
0.2 0.436 SMs, Site Class D
1.0 0.220 SM1, Site Class D
Conterminous 48 States
2003 NEHRP Seismic Design Provisions
Spectral Response Accelerations SDs and SD1
Zip Code - 28697
Zip Code Latitude = 36.138000
Zip Code Longitude = -081.176600
SDs = 2/3 x SMs and SD1 = 2/3 x SM1
Site Class D - Fa = 1.58, Fv = 2.40
Data are based on a 0.05 deg grid spacing.
Period Sa
(sec) (g)
0.2 0.291 SDs, Site Class D
1.0 0.146 SD1, Site Class D
Page o:
CubicCUBIC DESIGN GROUP, PC Project: C ari ier A Itlon
P.O. BOX 1989 Owner: ITown of Wilkisboro
1503 West D Street Location: Wilkesboro, PI
design group PC NORTH WILKESBORO, NC 28659 Job M 16-04
PHONE 336-667-4241 Designer: Franc Taracido
FAX 336-667-5660 Date: Z-Apr-18
-
'L
LL
1♦�
�v
� a
17. h
+�6 ILU
J6
e�
Page No:
CUBIC DESIGN GROUP, P.C. Project:
100'-0" Diam ater Clarifer
P.O. BOX 1919 Owner:
Town of Wilkc sboro
1503 West D Street Location:
Wilkesboro, C
NORTH WILP ESBORO, NC 28659 Job M
16-040
PHONE 336-667-4241 Designer:
Frank Taracid
FAX 336-667-5660 Date:
02 -Apr- 18
Nonbuilding
Structures not similar to BuildinG s
StructureDescription:
Clarifier Tank
S1=
0.091 g Spectral Ac eleration @
1 Second P riod
Ss=
0.276 g Spectral Ac eleration @
Short Period
Sds=
0.291 g Design Spe tral Acceler
3tion @ Sho I Period
I =
1.25 - Importance Factor (Tabl
a 11.5-1)
R =
2.00 - Response modification f
actor (Table 15.4-2)
Oo=
2.00 - Overstreng h Factor (Ta
Die 15.4-2)
Cd=
2.00 - Deflection Amplification
actor (Table 15.4-2)
W=
8632 Kips Effective Seismic Weight
of Structure
V=
1569.95 Kips (Seismic Base Shear)
V1=
86.32 (W*Cs1)
V2=
245.47 (W*Cs2)
V3=
1569.95 (W*CS3)
If S1 >=0.6g,
Cs>=Cs2, Cs must be =Cs1, Cs=C 3 otherwise
Cs1=
0.01 (15.4.1-2: 5.4-1)
Cs2=
0.03 (15.4.1-2: 15.4-2)
Cs3=
0.18 (12.8.1.1:1 .8-2)
Page No:
CUBIC DESIGN GROUP, P.C. Project:
100'-0" Diam ter Clarifer
P.O. BOX 19f 9 Owner:
Town of Wilkesboro
1503 West D Street Location:
Wilkesboro, Is C
NORTH WILP ESBORO, NC 28659 Job #:
16-040
PHONE 336-667-4241 Designer:
Frank Taracid
FAX 336-667-5660 Date:
02 -Apr -18
Nonbuilding
Structures, not similar to Buildings
StructureDescription:
Clarifier Tank ( Live Load Only)
S1=
0.091 g Spectral Acceleration @
1 Second Period
Ss=
0.276 g Spectral Acceleration @
Short Period
Sds=
0.291 g Design Spe tral Acceleration
@ Sho I Period
I =
1.25 - Importance Factor (Tabl
a 11.5-1)
R =
2.00 - Response modification f
actor (Table 15.4-2)
Oo=
2.00 - Overstreng h Factor (Ta
le 15.4-2)
Cd=
2.00 - Deflection Amplification
Factor (Table 15.4-2)
W=
6590 Kips Effective S ismic Weig
t of Structure,
V=
1198.56 Kips (Seismic Base Shear)
V1=
65.90 (W*Cs1)
V2=
187.40 (W*Cs2)
V3=
1198.56 (W*CS3)
If S1>=0.6g
Cs>=Cs2, Cs must be =Csl, Cs=C3 otherwise
Cs1=
0.01 (15.4.1-2: 5.4-1)
Cs2=
0.03 (15.4.1-2: 15.4-2)
Cs3=
0.18 (12.8.1.1:1 .8-2)
Page No:
CUBIC DESIGN GROUP, P.C. Project:
100'-0" Diam ter Clarifer
P.O. BOX 1919 Owner:
Town of Wilkesboro
1503 West D Street Location:
Wilkesboro, N C
NORTH WILP ESBORO, NC 28659 Job M
16-040
PHONE 336-667-42411 Designer:
Frank Taracid
FAX 336-667-5660 Date:
02 -Apr -18
Nonbuilding
Structures not similar to BuildinG s
StructureDescription:
Clarifier Tank ( Dead Load Only)
S1=
0.091 g Spectral Ac eleration @
1 Second P riod
Ss=
0.276 g Spectral Ac eleration @
Short Period
Sds=
0.291 g Design Spe tral Acceleration
@ Short Period
I =
1.25 - Importance Factor (Tabl
a 11.5-1)
R =
2.00 - Response modification f
actor (Table 15.4-2)
Oo=
2.00 - Overstreng h Factor (Ta
Die 15.4-2)
Cd=
2.00 - Deflection Amplification
Factor (Table 15.4-2)
W=
2042 Kips Effective Seismic Weight
of Structure
V=
371.39 Kips (Seismic Base Shear)
V1=
20.42 (W*Cs1)
V2=
58.07 (W*Cs2)
V3=
371.39 (W*CS3)
If S1>=0.6g
Cs>=Cs2, Cs must be =Cs 1, Cs=C 3 otherwise
Cs1=
0.01 (15.4.1-2:15.4-1)
Cs2=
0.03 (15.4.1-2: 15.4-2)
Cs3=
0.18 (12.8.1.1:1 .8-2)
Cubic Design Group, P.C.
cubic. P.O. Box 1989
til Ign g,"5UP a 1503 West D Street
North Wilkesboro, NC 28659
Ph: 336-667-4241
General Footing
Description : Foundation Slab for Clarifier
Code References
Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used: ASCE 7-05
Increases based on footing Depth
General Information
=
Material Properties
Min Allow % Temp Reinf.
fc : Concrete 28 day strength =
3.0 ksi
fy : Rebar Yield =
60.0 ksi
Ec : Concrete Elastic Modulus =
3,122.0 ksi
Concrete Density =
145.0 pcf
N Values Flexure =
0.90
Project Title: 100' Diameter Clarifier Addition
Engineer: Frank Taracido Project ID: 16-040
Project Descr: Town of Wilkesboro, NC
q
Printed: 2 APR 2018, 5.16PM
File = P:\Projects\2016\16-040\4.0 Project Data\5.7 Calculations\16-040.ec6
ENERCALC, INC. 1983.2017, Build: 10.17.12.10, Ver.10.17.12.10
Soil Design Values
Allowable Soil Bearing
Increase Bearing By Footing Weight
Soil Passive Resistance (for Sliding)
Soil/Concrete Friction Coeff.
Shear =
Analysis Settings
0.750
Increases based on footing Depth
Min Steel % Bending Reinf.
=
Footing base depth below soil surface
Allow press. increase per foot of depth
Min Allow % Temp Reinf.
= 0.00180
when footing base is below
Min. Overturning Safety Factor
= 1.0 :1
# 5
Min. Sliding Safety Factor
= 1.0 :1
Increases based on footing plan dimension
Add Ftg Wt for Soil Pressure
Yes
Allowable pressure increase per foot of depth
Use ftg wt for stability, moments & shears
Yes
Add Pedestal Wt for Soil Pressure
No
when max. length or width is greater than
Use Pedestal wt for stability, mom & shear
No
Dimensions
Width parallel to X -X Axis = 90.50 ft
Length parallel to Z -Z Axis = 90.50 ft
Footing Thickness = 12.0 in
Pedestal dimensions...
px : parallel to X -X Axis = 1,074.0 in
pz : parallel to Z -Z Axis = 1,074.0 in
Height - in
Rebar Centerline to Edge of Concrete...
at Bottom of footing = 3.0 in
Reinforcin
Bars parallel to X -X Axis
Number of Bars =
90.0
Reinforcing Bar Size =
# 5
Bars parallel to Z -Z Axis
Number of Bars =
90.0
Reinforcing Bar Size =
# 5
x =�
2.0 ksf
= No
250.0 pcf
0.570
1.0 ft
ksf
ft
U
ksf
ft
Bandwidth Distribution Check (ACI 15.4.4.2)
Direction Requiring Closer Separation n/a
# Bars required within zone n/a
# Bars required on each side of zone n/a
Applied Loads
D Lr L S W E H
P: Column Load = 2,042.0 6,590.0 k
OB: Overburden = ksf
M-xx = 2,976.0 k -ft
M-zz = 2,976.0 k -ft
V -x = 1,570.0 k
V -z = 1,570.0 k
Cubic Design Group, P.C. Project Title: 100' Diameter Clarifier Addition
cru b � P.O. Box 1989 Engineer: Frank Taracido Project ID: 16-040
designr1�tEp P� 1503 West D Street Project Descr. Town of Wilkesboro, NC
North Wilkesboro, NC 28659 t
Ph: 336-667-4241
rax::1sb-bbl-bbbU Printed: 2APR2018, 5:16PN
General Footi n File = PAProjects12016116-04014.0 Project Data U Calculations116-040.ec6
g ENERCALC, INC. 1983-2017, Build:10.17.12.10, Ver:10.17.12.10
Description : Foundation Slab for Clarifier
DESIGN SUMMARY - •
Min. Ratio Item Applied Capacity Governing Load Combination
PASS
0.5995
Soil Bearing
1.199 ksf
2.0 ksf
+D+L+H about Z -Z axis
PASS
27.554
Overturning - X -X
3,182.20 k -ft
87,683.3 k -ft
+0.60D+0.70E+H
PASS
27.554
Overturning - Z -Z
3,182.20 k -ft
87,683.3 k -ft
+0.60D+0.70E+H
PASS
1.015
Sliding - X -X
1,099.0 k
1,115.83 k
+0.60D+0.70E+H
PASS
1.015
Sliding -Z-Z
1,099.0 k
1,115.83 k
+0.60D+0.70E+H
PASS
n/a
Uplift
0.0 k
0.0 k
No Uplift
PASS
0.005652
Z Flexure (+X)
0.06820 k-ft/ft
12.066 k-ft/ft
+1.20D+0.50Lr+1.60L+1.60H
PASS
0.005652
Z Flexure (-X)
0.06820 k-ft/ft
12.066 k-ft/ft
+1.20D+1.60L+0.50S+1.60H
PASS
0.005652
X Flexure (+Z)
0.06820 k-ft/ft
12.066 k -f /ft
+1.20D+0.50Lr+1.60L+1.60H
PASS
0.005652
X Flexure (-Z)
0.06820 k-ft/ft
12.066 k-ft/ft
+1.20D+1.60L+0.50S+1.60H
PASS
n/a
1 -way Shear (+X)
0.0 psi
82.158 psi
n/a
PASS
n/a
1 -way Shear (-X)
0.0 psi
82.158 psi
n/a
PASS
n/a
1 -way Shear (+Z)
0.0 psi
82.158 psi
n/a
PASS
n/a
1 -way Shear (-Z)
0.0 psi
82.158 psi
n/a
PASS
n/a
2 -way Punching
0.0 psi
82.158 psi
n/a
Detailed Results
0.4198
n/a
n/a
0.210
Soil Bearing
Rotation Axis &
Xecc
Zecc
Actual Soil Bearing Stress @ Location
Actual 1 Allow
Load Combination... Gross Allowable
(in)
Bottom, -Z
Top, +Z
Left, -X
Right, +X
Ratio
X -X, D Only
2.0
n/a
0.0
0.3943
0.3943
n/a
n/a
0.197
X -X, +D+L+H
2.0
n/a
0.0
1.199
1.199
n/a
n/a
0.600
X -X. +D+Lr+H
2.0
n/a
0.0
0.3943
0.3943
n/a
n/a
0.197
X -X. +D+S+H
2.0
n/a
0.0
0.3943
0.3943
n/a
n/a
0.197
X -X. +D+0.750Lr+0.750L+H
2.0
n/a
0.0
0.9978
0.9978
n/a
n/a
0.499
X -X. +D+0.750L+0.750S+H
2.0
n/a
0.0
0.9978
0.9978
n/a
n/a
0.499
X -X. +D+W+H
2.0
n/a
0.0
0.3943
0.3943
n/a
n/a
0.197
X -X. +D+0.70E+H
2.0
n/a
11.824
0.3688
0.4198
n/a
n/a
0.210
X -X. +D+0.750Lr+0.750L+0.750W+H
2.0
n/a
0.0
0.9978
0.9978
n/a
n/a
0.499
X -X, +D+0.750L+0.750S+0.750W+H
2.0
n/a
0.0
0.9978
0.9978
n/a
n/a
0.499
X -X. +D+0.750Lr+0.750L+0.5250E+H
2.0
n/a
3.505
0.9787
1.017
n/a
n/a
0.509
X -X, +D+0.750L+0.750S+0.5250E+H
2.0
n/a
3.505
0.9787
1.017
n/a
n/a
0.509
X -X, +0.60D+W+H
2.0
n/a
0.0
0.2366
0.2366
n/a
n/a
0.118
X -X, +0.60D+0.70E+H
2.0
n/a
19.707
0.2111
0.2621
n/a
n/a
0.131
Z -Z. D Only
2.0
0.0
n/a
n/a
n/a
0.3943
0.3943
0.197
Z -Z. +D+L+H
2.0
0.0
n/a
n/a
n/a
1.199
1.199
0.600
Z -Z. +D+Lr+H
2.0
0.0
n/a
n/a
n/a
0.3943
0.3943
0.197
Z -Z. +D+S+H
2.0
0.0
nla
n/a
n/a
0.3943
0.3943
0.197
Z -Z. +D+0.750Lr+0.750L+H
2.0
0.0
n/a
n/a
n/a
0.9978
0.9978
0.499
Z -Z, +D+0.750L+0.750S+H
2.0
0.0
n/a
n/a
n/a
0.9978
0.9978
0.499
Z -Z, +D+W+H
2.0
0.0
n/a
n/a
n/a
0.3943
0.3943
0.197
Z -Z. +D+0.70E+H
2.0
11.824
n/a
n/a
n/a
0.3688
0.4198
0.210
Z -Z. +D+0.750Lr+0.750L+0.750W+H
2.0
0.0
n/a
n/a
n/a
0.9978
0.9978
0.499
Z -Z. +D+0.750L+0.750S+0.750W+H
2.0
0.0
n/a
n/a
n/a
0.9978
0.9978
0.499
Z -Z. +D+0.750Lr+0.750L+0.5250E+H
2.0
3.505
n/a
n/a
n/a
0.9787
1.017
0.509
Z -Z. +0+0.750L+0.750S+0.5250E+H
2.0
3.505
n/a
n/a
n/a
0.9787
1.017
0.509
Z -Z. +0.60D+W+H
2.0
0.0
n/a
n/a
n/a
0.2366
0.2366
0.118
Z -Z. +0.60D+0.70E+H
2.0
19.707
n/a
n/a
n/a
0.2111
0.2621
0.131
Overturning Stability
Rotation Axis &
Load Combination...
Overturning Moment
Resisting Moment
Stability Ratio
Status
X -X, D Only
None
0.0 k -ft
Infinity
OK
X -X, +D+L+H
None
0.0 k -ft
Infinity
OK
X -X. +D+Lr+H
None
0.0 k -ft
Infinity
OK
X -X, +D+S+H
None
0.0 k -ft
Infinity
OK
X -X, +D+0.750Lr+0.750L+H
None
0.0 k -ft
Infinity
OK
X -X, +D+0.750L+0.750S+H
None
0.0 k -ft
Infinity
OK
X -X, +D+W+H
None
0.0 k -ft
Infinity
OK
X -X, +D+0.70E+H
3.182.20
k -ft
146.139 k -ft
45.924
OK
Cubic Design Group, P.C. Project Title: 100' Diameter Clarifier Addition
cubc P.O. Box 1989 Engineer: Frank Taracido Project ID: 16-040
design c�rai ac 1503 West D Street Project Descr. Town of Wilkesboro, NC
North Wilkesboro, NC 28659 ( 4
Ph: 336-667-4241
Fax: 336-667-5660 Printed: 2 APR 2018, 5:16PM
General FootingFile =P: IProjects12016116-04014.0 ProjectData15.7Calculations116-040.ec6
ENERCALC, INC. 1983-2017, Build: 10.17.12.10, Ver:10.17.12.10
r.rr -• i
Description : Foundation Slab for Clarifier
Overturning Stability
Rotation Axis &
Load Combination... Overturning Moment Resisting Moment Stability Ratio Status
X -X, +D+0.750Lr+0.750L+0.750W+H
None
0.0 k -ft
Infinitv
OK
X -X, +D+0.750L+0.750S+0.750W+H
None
0.0 k -ft
Infinitv
OK
X -X, +D+0.750Lr+0.750L+0.5250E+H
2,386.65 k -ft
369.787 k -ft
154.940
OK
X -X. +D+0.750L+0.750S+0.5250E+H
2.386.65 k -ft
369.787 k -ft
154.940
OK
X -X, +0.60D+W+H
None
0.0 k -ft
Infinitv
OK
X -X, +0.60D+0.70E+H
3,182.20 k -ft
87.683.3 k -ft
27.554
OK
Z -Z. D Only
None
0.0 k -ft
Infinitv
OK
Z -Z. +D+L+H
None
0.0 k -ft
Infinitv
OK
Z -Z. +D+Lr+H
None
0.0 k -ft
Infinitv
OK
Z -Z. +D+S+H
None
0.0 k -ft
Infinitv
OK
Z -Z. +D+0.750Lr+0.750L+H
None
0.0 k -ft
Infinitv
OK
Z -Z, +D+0.750L+0.750S+H
None
0.0 k -ft
Infinitv
OK
Z -Z. +D+W+H
None
0.0 k -ft
Infinitv
OK
Z -Z. +D+0.70E+H
3.182.20 k -ft
146.139 k -ft
45.924
OK
Z -Z. +D+0.750Lr+0.750L+0.750W+H
None
0.0 k -ft
Infinitv
OK
Z -Z. +D+0.750L+0.750S+0.750W+H
None
0.0 k -ft
Infinitv
OK
Z -Z, +D+0.750Lr+0.750L+0.5250E+H
2.386.65 k -ft
369,787 k -ft
154.940
OK
Z -Z. +D+0.750L+0.750S+0.5250E+H
2,386.65 k -ft
369.787 k -ft
154.940
OK
Z -Z. +0.60D+W+H
None
0.0 k -ft
Infinitv
OK
Z -Z. +0.60D+0.70E+H
3.182.20 k -ft
87.683.3 k -ft
27.554
OK
Sliding Stability
All units k
Force Application Axis
Load Combination...
Sliding Force
Resisting Force
Stability
Ratio
Status
X -X. D Only
0.0 k
1.852.18 k
No Slidino
OK
X -X. +D+L+H
0.0 k
5.608.48 k
No Sliding
OK
X -X. +D+Lr+H
0.0 k
1.852.18 k
No Slidina
OK
X -X, +D+S+H
0.0 k
1,852.18 k
No Slidina
OK
X -X, +D+0.750Lr+0.750L+H
0.0 k
4,669.40 k
No Sliding
OK
X -X, +D+0.750L+0.750S+H
0.0 k
4.669.40 k
No Sliding
OK
X -X. +D+W+H
0.0 k
1,852.18 k
No Slidino
OK
X -X. +D+0.70E+H
1.099.0 k
1,852.18 k
1.685
OK
X -X. +D+0.750Lr+0.750L+0.750W+H
0.0 k
4.669.40 k
No Slidino
OK
X -X. +D+0.750L+0.750S+0.750W+H
0.0 k
4,669.40 k
No Slidina
OK
X -X, +D+0.750Lr+0.750L+0.5250E+H
824.25 k
4.669.40 k
5.665
OK
X -X. +D+0.750L+0.750S+0.5250E+H
824.25 k
4,669.40 k
5.665
OK
X -X, +0.60D+W+H
0.0 k
1.115.83 k
No Slidina
OK
X -X. +0.60D+0.70E+H
1.099.0 k
1.115.83 k
1.015
OK
Z -Z. D Only
0.0 k
1,852.18 k
No Slidina
OK
Z -Z. +D+L+H
0.0 k
5.608.48 k
No Slidina
OK
Z -Z, +D+Lr+H
0.0 k
1,852.18 k
No Slidina
OK
Z -Z, +D+S+H
0.0 k
1.852.18 k
No Sliding
OK
Z -Z. +D+0.750Lr+0.750L+H
0.0 k
4,669.40 k
No Sliding
OK
Z -Z, +D+0.750L+0.750S+H
0.0 k
4,669.40 k
No Slidina
OK
Z -Z, +D+0.750Lr+0.750L+0.5250E+H
824.25 k
4,669.40 k
5.665
OK
Z -Z. +D+0.750L+0.750S+0.5250E+H
824.25 k
4.669.40 k
5.665
OK
Z -Z. +0.60D+W+H
0.0 k
1.115.83 k
No Slidina
OK
Z -Z, +0.60D+0.70E+H
1.099.0 k
1,115.83 k
1.015
OK
Z -Z, +D+W+H
0.0 k
1,852.18 k
No Slidina
OK
Z -Z, +D+0.70E+H
1.099.0 k
1,852.18 k
1.685
OK
Z -Z. +D+0.750Lr+0.750L+0.750W+H
0.0 k
4.669.40 k
No Slidina
OK
Z -Z. +D+0.750L+0.750S+0.750W+H
0.0 k
4,669.40 k
No Slidino
OK
Footing Flexure
Flexure Axis 8 Load Combination
_
Mu
Side Tension
As Req'd Gvrn. As Actual As
Phi'Mn
Status
k -ft
Surface
in A2 in^2
in 2
k -ft
X -X. +1.40D
0.01501
+Z Bottom
0.2592 Min TemD %
0.3083
12.066
OK
X -X, +1.40D
0.01501
-Z Bottom
0.2592 Min Temo %
0.3083
12.066
OK
X -X. +1.20D+0.50Lr+1.60L+1.60H
0.06820
+Z Bottom
0.2592 Min TemD %
0.3083
12.066
OK
X -X, +1.20D+0.50Lr+1.60L+1.60H
0.06820
-Z Bottom
0.2592 Min TemD %
0.3083
12.066
OK
X -X. +1.20D+1.60L+0.50S+1.60H
0.06820
+Z Bottom
0.2592 Min Temp %
0.3083
12.066
OK
X -X. +1.20D+1.60L+0.50S+1.60H
0.06820
-Z Bottom
0.2592 Min TemD %
0.3083
12.066
OK
Cubic Design Group, P.C.
Project Title: 100' Diameter Clarifier Addition
cu b hP.O.
Box 1989
Engineer: Frank Taracido
Project ID:
16-040
1503
West D Street
Project Descr.
Town
of Wilkesboro, NC
design group a:
7 n North Wilkesboro, NC
28659
Ph:
336-667-4241
Fax:
336-667-5660
Printed
2 APR 2018,
5.16PM
General FootingFile=
P:lProjects12 M16-04014.0
ProjectData15.7Calculations116040.ec6
ENERCALC, INC. 19832017, Build: 10. 17.12. 10, Ver. 10.17.12.10
r.0rGROUP,
Description : Foundation Slab for Clarifier
Footing Flexure
Flexure Axis 8 Load Combination
Mu
Side
Tension
As Req'd
Gvrn. As
Actual As
Phi*Mn
Status
k-ft
Surface
in 2
in 2
in 2
k-ft
X-X. +1.20D+1.60Lr+0.50L
0.03016
+Z
Bottom
0.2592
Min Temp %
0.3083
12.066
OK
X-X, +1.20D+1.60Lr+0.50L
0.03016
-Z
Bottom
0.2592
Min Temp %
0.3083
12.066
OK
X-X. +1.20D+1.60Lr+0.80W
0.01286
+Z
Bottom
0.2592
Min Temp %
0.3083
12.066
OK
X-X. +1.20D+1.60Lr+0.80W
0.01286
-Z
Bottom
0.2592
Min Temp %
0.3083
12.066
OK
X-X. +1.20D+0.50L+1.60S
0.03016
+Z
Bottom
0.2592
Min Temp %
0.3083
12.066
OK
X-X. +1.20D+0.50L+1.60S
0.03016
-Z
Bottom
0.2592
Min Temp %
0.3083
12.066
OK
X-X. +1.20D+1.60S+0.80W
0.01286
+Z
Bottom
0.2592
Min Temp %
0.3083
12.066
OK
X-X. +1.20D+1.60S+0.80W
0.01286
-Z
Bottom
0.2592
Min Temp %
0.3083
12.066
OK
X-X. +1.20D+0.50Lr+0.50L+1.60W
0.03016
+Z
Bottom
0.2592
Min Temp %
0.3083
12.066
OK
X-X. +1.20D+0.50Lr+0.50L+1.60W
0.03016
-Z
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
X-X. +1.20D+0.50L+0.50S+1.60W
0.03016
+Z
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
X-X, +1.20D+0.50L+0.50S+1.60W
0.03016
-Z
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
X-X. +1.20D+0.50L+0.20S+E
0.03172
+Z
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
X-X. +1.20D+0.50L+0.20S+E
0.02859
-Z
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
X-X. +0.90D+1.60W+1.60H
0.009646
+Z
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
X-X. +0.90D+1.60W+1.60H
0.009646
-Z
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
X-X. +0.90D+E+1.60H
0.01121
+Z
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
X-X. +0.90D+E+1.60H
0.008080
-Z
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z, +1.40D
0.01501
-X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.40D
0.01501
+X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+0.50Lr+1.60L+1.60H
0.06820
-X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+0.50Lr+1.60L+1.60H
0.06820
+X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+1.60L+0.50S+1.60H
0.06820
-X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+1.60L+0.50S+1.60H
0.06820
+X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+1.60Lr+0.50L
0.03016
-X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z, +1.20D+1.60Lr+0.50L
0.03016
+X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+1.60Lr+0.80W
0.01286
-X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+1.60Lr+0.80W
0.01286
+X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z, +1.20D+0.50L+1.60S
0.03016
-X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z, +1.20D+0.50L+1.60S
0.03016
+X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+1.60S+0.80W
0.01286
-X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z, +1.20D+1.60S+0.80W
0.01286
+X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+0.50Lr+0.50L+1.60W
0.03016
-X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+0.50Lr+0.50L+1.60W
0.03016
+X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+0.50L+0.50S+1.60W
0.03016
-X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+0.50L+0.50S+1.60W
0.03016
+X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+0.50L+0.20S+E
0.02859
-X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +1.20D+0.50L+0.20S+E
0.03172
+X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z, +0.90D+1.60W+1.60H
0.009646
-X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +0.90D+1.60W+1.60H
0.009646
+X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +0.90D+E+1.60H
0.008080
-X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
Z-Z. +0.90D+E+1.60H
0.01121
+X
Bottom
0.2592
Min TemD %
0.3083
12.066
OK
One Way Shear
Load Combination..
Vu @ -X
Vu @ +X Vu
@ -Z Vu @
+Z Vu:Max Phi Vn Vu I Phi*Vn
Status
+1.40D
0,00 DSI
0.00 DSI
0.00 DSI
0.00 DSI
0.00 DSi
82.16 DSI
0.00
0.00
+1.20D+0.50Lr+1.60L+1.60H
0.00 osi
0.00 Dsi
0.00 Dsi
0.00 Dsi
0.00 DSi
82.16 Dsi
0.00
0.00
+1.20D+1.60L+0.50S+1.60H
0.00 Dsi
0.00 osi
0.00 Dsi
0.00 Dsi
0.00 Dsi
82.16 Dsi
0.00
0.00
+1.20D+1.60Lr+0.50L
0.00 Dsi
0.00 Dsi
0.00 Dsi
0.00 Dsi
0.00 osi
82.16 Dsi
0.00
0.00
+1.20D+1.60Lr+0.80W
0.00 Dsi
0.00 [)Si
0.00 Dsi
0.00 osi
0.00 Dsi
82.16 Dsi
0.00
0.00
+1.20D+0.50L+1.60S
0.00 DSI
0.00 DSi
0.00 DSI
0.00 Dsi
0.00 DSi
82.16 Dsi
0.00
0.00
+1.20D+1.60S+0.80W
0.00 DSI
0.00 DSi
0.00 DSI
0.00 DSI
0.00 DSI
82.16 DSi
0.00
0.00
+1.20D+0.50Lr+0.50L+1.60W
0.00 Dsi
0.00 Dsi
0.00 Dsi
0.00 Dsi
0.00 osi
82.16 Dsi
0.00
0.00
+1.20D+0.50L+0.50S+1.60W
0.00 Dsi
0.00 osi
0.00 Dsi
0.00 osi
0.00 Dsi
82.16 Dsi
0.00
0.00
+1.20D+0.50L+0.20S+E
0,00 DSI
0.00 DSI
0.00 DSi
0.00 DSI
0.00 DSI
82.16 DSI
0.00
0.00
+0.90D+1.60W+1.60H
0.00 Dsi
0.00 osi
0.00 Dsi
0.00 osi
0.00 Dsi
82.16 DSi
0.00
0.00
+0.90D+E+1.60H
0,00 DSI
0.00 DSI
0.00 DSI
0.00 DSI
0.00 DSi
82.16 DSI
0.00
0.00
Two-Way "Punching" Shear
All
units
k
Load Combination...
Vu
Phi*Vn
Vu I Phi*Vn
Status
+1.40D
0.00
Dsi
85.57osi
0
OK
+1.20D-0.50Lr+1.60L+1.60H
0.00
osi
85.57Dsi
0
OK
Cubic Design Group, P.C.
Project Title:
100' Diameter Clarifier Addition
fi <:
cubic
P.O. Box 1989
Engineer:
Frank Taracido
Project ID: 16-040
1503 West D Street
Project Descr.
Town of Wilkesboro, NC
�GesirrrrucEp P�
North Wilkesboro, NC
28659
Ph: 336-667-4241
Fax: 336-667-5660
Printed: 2 APR 2018. 5:16PM
GeneralFootin
File=PAProjects12016116-04014.0 Project Data15.7Calculations116-040.ec6
g
ENERCALC, INC. 19832017, Build:10.17.12.10, Ver:10.17.12.10
r.rro
-•
Description : Foundation Slab
for Clarifier
Two-Way "Punching" Shear
_
All units k
Load Combination...
Vu
Phi*Vn
Vu / Phi*Vn
Status
+1.20D+1.60L+0.50S+1.60H
0.00 Dsi
85.57osi
0
OK
+1.20D+1.60Lr+0.50L
0.00 psi
85.57osi
0
OK
+1.20D+1.60Lr+0.80W
0.00 psi
85.57osi
0
OK
+1.20D+0.50L+1.60S
0.00 Dsi
85.57osi
0
OK
+1.20D+1.60S+0.80W
0.00 Dsi
85.57Dsi
0
OK
+1.20D+0.50Lr+0.50L+1.60W
0.00 Dsi
85.57osi
0
OK
+1.20D+0.50L+0.50S+1.60W
0.00 psi
85.57osi
0
OK
+1.20D+0.50L+0.20S+E
0.00 Dsi
85.57osi
0
OK
+0.90D+1.60W+1.60H
0.00 Dsi
85.57osi
0
OK
+0.90D+E+1.60H
0.00 Dsi
85.57osi
0
OK
cubicP.O.
design group PC
Page o:
CUBIC DESIGN GROUP, PC Project: Can ler A ItlOn
BOX 1989 Owner: ITown of Wilkesboro
1503 West D Street Location: Wilkesboro, NC
NORTH WILKESBORO, NC 28659 Job #: 16-04 1_
PHONE 336-667-4241 Designer: Franc Taraci o
FAX 336-667-5660 Date: Z - Apr -18
Ring Tension for Fixed Base
H = 14 Tank Water Height (ft)
D = 100 Tank Diameter (ft)
R = 50 Tank Radius ft
t = 12 Wall Thickness (in)
f = 60000 Reinforcing Steel Yield (psi)
fc = 4000 Compressive Strength of Concrete (psi)
W = 62.5 Liquid Density(lbs/cf)
Wu = 175.31 Factored Weight of Liquid (lbs/cf)
H^2/Dt = 2.0
wuHR = 122,719 Ring Tension asFree Base (lbs/ft)
Point @ Tabele I Ring Tension
Wall Height Coefficient (lbs/ft)
0.01-1 0.234 28,716
0.11-1 0.251 30,802
0.2H 0.273 33,502
0.31-1 0.285 34,975
0.41-1 0.285 34,975
0.51-1 0.274 33,625
0.61-1 0.232 28,471
0.7H 0.172 21,108
0.81-1 0.104 12,763
0.91-1 0.031 3,804
cubic
design group PC
age o:
CUBIC DESIGN GROUP, PC Project: Claritier Addition
P.O. BOX 1989 Owner: ITown of Wilkisboro
1503 West D Street Location: Wilkesboro, N
NORTH WILKESBORO, NC 28659 Job #: 16-04
PHONE 336-667-4241 Designer: Frank Taracl o
FAX 336-667-5660 Date: 3 -Apr -18
D
z
I�
-� -FMA,, N
a
fig,c v , o A 5 +
I
cubicCUBIC
design group PC
Page o:lb
DESIGN GROUP, PC Project: ari ler Itlon
P.O. BOX 1989 Owner: ITown of Wilkesboro
1503 West D Street Location: Wilkesboro, NC
NORTH WILKESBORO, NC 28659 Job #: 16-04
PHONE 336-667-4241 Designer: Frank Taraci o
FAX 336-667-5660 Date: 17 -Apr -1
_
, N
yyy� 1 s
G dxl�
� aicL
�
w Le
Cubic Design Group, P.C.
cubic P.O. Box 1989
design group PC 1503 West D Street
North Wilkesboro, NC 28659
Ph: 336-667-4241
Steel Beam
Description : BM -1: Hoist Beam over Sludge Return Pump Station with 2 ton Hoist
CODE REFERENCES
Project Title: 100' Diameter Clarifier Addition
Engineer: Frank Taracido
Project ID: 16-040 171Project Descr:Town of Wilkesboro, NC
Printed: 4 JUN 2018, 3 18PM
File = P:\Projects\2016\16-040\4.0 Project Data\5.7 Calculations\16-040.ec6
Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set: ASCE 7-05
Material Properties
Analysis Method: Allowable Strength Design Fy : Steel Yield : 36.0 ksi
Beam Bracing: Beam bracing is defined Beam -by -Beam E: Modulus: 29,000.0 ksi
Bending Axis: Major Axis Bending
Unbraced Lengths
Span # 1, Defined Brace Locations, First Brace at 7.0 ft, Second Brace at 39.0 ft, Third Brace at ft
D(1), L(5)
S20x66
Span = 46.0 ft
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weiqht calculated and added to loadinq
Load(s) for Span Number 1
Point Load : D =1.0, L = 5.0 k @ 22.50 ft, (Hosit Loading)
DESIGN SUMMARY
249.70
1.63
Maximum Bending Stress Ratio =
0.950:1 Maximum Shear Stress Ratio =
Section used for this span
S20x66
Section used for this span
Ma: Applied
86.336 k -ft
Va : Applied
Mn / Omega: Allowable
90.896 k -ft
Vn/Omega : Allowable
Load Combination
+D+L+H
Load Combination
Location of maximum on span
22.474ft
Location of maximum on span
Span # where maximum occurs
Span # 1
Span # where maximum occurs
Maximum Deflection
0.014
12.58
Max Downward Transient Deflection
0.509 in Ratio=
1,083 >=360
Max Upward Transient Deflection
0.509 in Ratio=
1,083 >=360
Max Downward Total Deflection
0.805 in Ratio=
686 >=180
Max Upward Total Deflection
0.000 in Ratio=
0 <180
Maximum Forces & Stresses for Load Combinations
30.32
Load Combination Max Stress Ratios
30.32 4
Summary of Moment Values
Segment Length Span # M V Mmax + Mmax - Ma Max
D Only
249.70
1.63
1.00
2.03
218.16
145.44
Dsgn. L = 6.97 ft
1
0.050
0.014
12.53
218.16
12.53 4
Dsgn. L = 31.94 ft
1
0.335
0.011
28.93
12.53
28.93 1
Dsgn. L = 7.10 ft
1
0.050
0.014
12.58
218.16
12.58 4
+D+L+H
90.90
1.18
1.00
4.12
218.16
145.44
Dsgn. L = 6.97 ft
1
0.121
0.032
30.32
218.16
30.32 4
Dsgn. L = 31.94 ft
1
0.950
0.028
86.34
29.94
86.34 1
Dsgn. L = 7.10 ft
1
0.120
0.031
29.94
218.16
29.94 4
+D+Lr+H
249.70
1.60
1.00
2.01
218.16
145.44
Dsgn. L = 6.97 ft
1
0.050
0.014
12.53
218.16
12.53 4
Dsgn. L = 31.94 It
1
0.335
0.011
28.93
12.53
28.93 1
Dsgn. L = 7.10 ft
1
0.050
0.014
12.58
218.16
12.58 4
+D+S+H
249.70
1.66
1.00
3.94
218.16
145.44
Dsgn. L = 6.97 ft
1
0.050
0.014
12.53
218.16
12.53 4
Dsgn. L = 31.94 ft
1
0.335
0.011
28.93
12.53
28.93 1
Dsgn. L = 7.10 ft
1
0.050
0.014
12.58
12.58 4
+D+0.750Lr+0.750L+H
Dsgn. L = 6.97 ft
1
0.104
0.027
25.88
25.88 4
Dsgn. L = 31.94 ft
1
0.797
0.024
71.98
25.60
71.98 1
Dsgn. L = 7.10 ft
1
0.103
0.026
25.60
25.60 4
0.032 :1
S20x66
4.583 k
145.440 k
+D+L+H
0.000 ft
Span # 1
Summary of Shear Values
Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega
17.00
249.70
1.63
1.00
2.03
218.16
145.44
44.04
86.25
1.12
1.00
1.57
218.16
145.44
17.00
249.70
1.60
1.00
2.01
218.16
145.44
17.00
249.70
1.66
1.00
4.58
218.16
145.44
51.80
90.90
1.18
1.00
4.12
218.16
145.44
17.00
249.70
1.63
1.00
4.45
218.16
145.44
17.00
249.70
1.63
1.00
2.03
218.16
145.44
44.04
86.25
1.12
1.00
1.57
218.16
145.44
17.00
249.70
1.60
1.00
2.01
218.16
145.44
17.00
249.70
1.63
1.00
2.03
218.16
145.44
44.04
86.25
1.12
1.00
1.57
218.16
145.44
17.00
249.70
1.60
1.00
2.01
218.16
145.44
17.00
249.70
1.66
1.00
3.94
218.16
145.44
50.89
90.35
1.17
1.00
3.48
218.16
145.44
17.00
249.70
1.63
1.00
3.84
218.16
145.44
Cubic Design Group, P.C. Project Title: 100' Diameter Clarifier Addition
P.O. Box 1989 Engineer: Frank Taracido
1503 West D Street Project ID: 16-040 (p/
design group PSC North Wilkesboro, NC 28659 Project Descr:Town of Wilkesboro, NC
:ate,
Ph: 336-667-4241
Fax: 336-667-5660 Printed: 4 JUN 2018, 3.18PM
Steel Beam File = P:1Projects12016116-04014.0 Project Data15.7 Calculations116-040.ec6
Description : BM -1: Hoist Beam over Sludge Return Pump Station with 2 ton Hoist
Support 1
Support 2
Overall MAXimum
4.583
4.453
Overall MINimum
1.217
Load Combination
D Only
Max Stress Ratios
2.007
+D+L+H
Summary of Moment Values
4.453
Summary of Shear Values
Segment Length Span #
M
V
Mmax +
Mmax -
Ma Max
Mnx
Mnx/Omega Cb Rm
Va Max
Vnx
Vnx/Omega
+D+0.750L+0.750S+H
2.029
2.007
+D+0.70E+H
2.029
2.007
+D+0.750Lr+0.750L+0.750W+H
3.945
3.841
+D+0.750L+0.750S+0.750W+H
3.945
3.841
+D+0.750Lr+0.750L+0.5250E+H
Dsgn. L = 6.97 ft
1
0.104
0.027
25.88
+0.60D+W+H
25.88
417.00
249.70
1.66 1.00
3.94
218.16
145.44
Dsgn. L = 31.94 ft
1
0.797
0.024
71.98
25.60
71.98
150.89
90.35
1.17 1.00
3.48
218.16
145.44
Dsgn. L = 7.10 ft
1
0.103
0.026
25.60
25.60
417.00
249.70
1.63 1.00
3.84
218.16
145.44
+D+W+H
Dsgn. L = 6.97 ft
1
0.050
0.014
12.53
12.53
417.00
249.70
1.63 1.00
2.03
218.16
145.44
Dsgn. L = 31.94 It
1
0.335
0.011
28.93
12.53
28.93
144.04
86.25
1.12 1.00
1.57
218.16
145.44
Dsgn. L = 7.10 ft
1
0.050
0.014
12.58
12.58
417.00
249.70
1.60 1.00
2.01
218.16
145.44
+D+0.70E+H
Dsgn. L = 6.97 ft
1
0.050
0.014
12.53
12.53
417.00
249.70
1.63 1.00
2.03
218.16
145.44
Dsgn. L = 31.94 ft
1
0.335
0.011
28.93
12.53
28.93
144.04
86.25
1.12 1.00
1.57
218.16
145.44
Dsgn. L = 7.10 ft
1
0.050
0.014
12.58
12.58
417.00
249.70
1.60 1.00
2.01
218.16
145.44
+D+0.750Lr+0.750L+0.750W+H
Dsgn. L = 6.97 ft
1
0.104
0.027
25.88
25.88
417.00
249.70
1.66 1.00
3.94
218.16
145.44
Dsgn. L = 31.94 ft
1
0.797
0.024
71.98
25.60
71.98
150.89
90.35
1.17 1.00
3.48
218.16
145.44
Dsgn. L = 7.10 ft
1
0.103
0.026
25.60
25.60
417.00
249.70
1.63 1.00
3.84
218.16
145.44
+D+0.750L+0.750S+0.750W+H
Dsgn. L = 6.97 ft
1
0.104
0.027
25.88
25.88
417.00
249.70
1.66 1.00
3.94
218.16
145.44
Dsgn. L = 31.94 ft
1
0.797
0.024
71.98
25.60
71.98
150.89
90.35
1.17 1.00
3.48
218.16
145.44
Dsgn. L = 7.10 ft
1
0.103
0.026
25.60
25.60
417.00
249.70
1.63 1.00
3.84
218.16
145.44
+D+0.750Lr+0.750L+0.5250E+H
Dsgn. L = 6.97 ft
1
0.104
0.027
25.88
25.88
417.00
249.70
1.66 1.00
3.94
218.16
145.44
Dsgn. L = 31.94 ft
1
0.797
0.024
71.98
25.60
71.98
150.89
90.35
1.17 1.00
3.48
218.16
145.44
Dsgn. L = 7.10 ft
1
0.103
0.026
25.60
25.60
417.00
249.70
1.63 1.00
3.84
218.16
145.44
+D+0.750L+0.750S+0.5250E+H
Dsgn. L = 6.97 It
1
0.104
0.027
25.88
25.88
417.00
249.70
1.66 1.00
3.94
218.16
145.44
Dsgn. L = 31.94 ft
1
0.797
0.024
71.98
25.60
71.98
150.89
90.35
1.17 1.00
3.48
218.16
145.44
Dsgn. L = 7.10 It
1
0.103
0.026
25.60
25.60
417.00
249.70
1.63 1.00
3.84
218.16
145.44
+0.60D+W+H
Dsgn. L = 6.97 ft
1
0.030
0.008
7.52
7.52
417.00
249.70
1.63 1.00
1.22
218.16
145.44
Dsgn. L = 31.94 ft
1
0.201
0.006
17.36
7.52
17.36
144.04
86.25
1.12 1.00
0.94
218.16
145.44
Dsgn. L = 7.10 ft
1
0.030
0.008
7.55
7.55
417.00
249.70
1.60 1.00
1.20
218.16
145.44
+0.60D+0.70E+H
Dsgn. L = 6.97 ft
1
0.030
0.008
7.52
7.52
417.00
249.70
1.63 1.00
1.22
218.16
145.44
Dsgn. L = 31.94 ft
1
0.201
0.006
17.36
7.52
17.36
144.04
86.25
1.12 1.00
0.94
218.16
145.44
Dsgn. L = 7.10 ft
1
0.030
0.008
7.55
7.55
417.00
249.70
1.60 1.00
1.20
218.16
145.44
Overall Maximum Deflections
Load Combination
Span
Max. ° " Defl
Location in Span
Load Combination
Max. "+" Defl
Location in Span
+D+L+H
1
0.8050
23.000
0.0000
0.000
Vertical Reactions
Support notation : Far
left is #1
Values
in KIPS
Load Combination
Support 1
Support 2
Overall MAXimum
4.583
4.453
Overall MINimum
1.217
1.204
D Only
2.029
2.007
+D+L+H
4.583
4.453
+D+Lr+H
2.029
2.007
+D+S+H
2.029
2.007
+D+0.750Lr+0.750L+H
3.945
3.841
+D+0.750L+0.750S+H
3.945
3.841
+D+W+H
2.029
2.007
+D+0.70E+H
2.029
2.007
+D+0.750Lr+0.750L+0.750W+H
3.945
3.841
+D+0.750L+0.750S+0.750W+H
3.945
3.841
+D+0.750Lr+0.750L+0.5250E+H
3.945
3.841
+D+0.750L+0.750S+0.5250E+H
3.945
3.841
+0.60D+W+H
1.217
1.204
+0.60D+0.70E+H
1.217
1.204
D Only
2.029
2.007
Lr Only
L Only
2.554
2.446
S Only
W Only
E Only
H Only
Cubic Design Group, P.C.
cubic
P.O. Box 1989
1503 West D Street
design group Pc North Wilkesboro, NC 28659
Ph: 336-667-4241
Project Title: 100' Diameter Clarifier Addition ILI I
Engineer: Frank Taracido
Project ID: 16-040
Project Descr:Town of Wilkesboro, NC
Fax: 336-667-5660
Printed: 4 JUN 2018, 3:18PM
Steel Beam
File = P:1Projects12016116-04014.0
Project Data15.7 Calculations116-040.ec6
0.00GROUP,
Description : BM -1: Hoist Beam over Sludge Return Pump Station with 2 ton Hoist
Steel Section Properties : S20x66
Depth = 20.000 in
I xx =
1,190.00 in^4
J
= 3.580 in^4
Web Thick = 0.505 in
S xx
119.00 in13
Cw
= 2,530.00 in^6
Flange Width = 6.260 in
R xx =
7.830 in
Flange Thick = 0.795 in
Zx =
139.000 in^3
Area = 19.400 in^2
1 yy =
27.500 in^4
Weight = 66.000 plf
S yy =
8.780 in A3
Wno
= 30.000 in^2
Kdesign = 1.630 in
R yy =
1.190 in
Sw
= 37.300 in^4
K1 = 0.000 in
Zy =
15.400 in A3
Qf
= 21.900 in"3
rts = 1.490 in
Qw
= 69.100 in^3
Ycg = 10.000 in
CUBIC DESIGN ' • • • • •ition
P.O. BOX 1989 Owner: ,Town of Wilkesboro
PHONENORTH WILKESBORO, NC 28659 Job#: 16-0
FE7miRFAX 1503 West • Street Location:•• •
1• .•
.• Date:
aif■�--
� CC ���
��•iLQ:Eiioi�ia
-
MM2". , W.E
�
IMM�
o
1���
Page o:
CUBIC DESIGN GROUP, PC Project: C ari ier A ition
P.O. BOX 1989 Owner: ITown of Wilkesboro
C � b1c1503 West D Street Location: Wilkesboro, NC
design group PC NORTH WILKESBORO, NC 28659 Job #: 16-04
PHONE 336-667-4241 Designer: Franc Taracl o
FAX 336667-5660 Date: 25 -Apr -18
44AA Kit
- Y sa.-C ?
lc.
1
4
'
LY2r% 12 fAr Nv
v'VoLrr
�I v
I
s
�J
t1K a
aLl.p KFi
z
7.
d v
I�G�J�i la'-v� •�
L
2
z
y
Hydraulic Calculations
100'-0" Diameter Clarifier Addition
Wastewater Treatment Plant
700 Snyder Street
Town of Wilkesboro
Page o:
cubicCUBIC DESIGN GROUP, PC Project: Ma—rifli—er–Addition
P.O. BOX 1989 Owner: Town o Wilkesboro oro
1503 West D Street Location: Wilkesboro, N
design group PC NORTH WILKESBORO, NC 28659 Job #:16160
PHONE 336-667-4241 Designer: Franc Taraci o
FAX 336-667-5660 Date: 25-Apr-18
ry
iso
T-qiL p a�
cubic
design group PC
Page No:
CUBIC DESIGN GROUP, PC Project: ier il Itton
P.O. BOX 1989 Owner: Toww n Wilkes Coro
T
1503 West D Street Location: — es oro, N
NORTH WILKESBORO, NC 28659 Job #: 16-040
PHONE 336-667-4241 Designer: Fran TaraciO
FAX 33"67-5660 Date: 26=Apr-1
Dynamic Head Loss Calculations
Description: Scum Pump Piping
Pipe Diameter: ` 3 " inch g = 32.174 ft/sec^2
Design Flow: 300 gpm Velocity: 13.6 ft/sec
1. Elevation Head Loss Calculation
Pump Suction Invert Elevation (ft) = 939.00
Discharge Pipe Invert Elevation (ft) = 942.00
Total Elevation Head (ft) = 3.00
2. Friction Head Loss Calculation
Cameron Hydraulics
Section 3-12 to 3-47
2a. Pipe Friction Loss
Material Pipe _-Head Loss Pipe Length Total (ft)
Diameter (ft) Per 100 ft. (ft) Head Loss
DI 3 26.80 5 1.34
3 1 0.00
Cameron Hydraulics
Section 3-12 to 3-47
Total Friction Head Loss Pipes (ft) 1.34
2b. Fittings Friction Loss
Fitting Number Resistance Total
Description Fittings Coeff (K) Coeff (K)
90 L 1 0.54 0.54
3-4 Increase 1 0.26 0.26
Entrance 1 0.28 0.28
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Total Resistance Coefficient( 1.08
Total Friction Head Loss Fittings (ft) 3.10
Total Dynamic Head Loss = 7.44 (ft)
Cameron Hydraulics
Section 3-111 to 3-116
hf=K(V^2/2g)
cubic
design group P
CUBIC DESIGN GROUP, PC Page No:
Project: Carl ler A00nlon
P.O. BOX 1989 Owner: ITown Wilkesboro
1503 West D Street Location: Wilkesboro, NC
NORTH WILKESBORO, NC 28659 Job #: 16-040
PHONE 336-667-4241 Designer: Franc Taracl o _
FAX 336-667-5660 Date: 26 -Apr -18
- pr -
Dynamic
Dynamic Head
Loss Calculations
Cameron Hydraulics
Description: Scum Pump Piping
g =
32.174
7.66
Pipe Diameter: 4- inch
Design Flow: 300 gpm
1. Elevation Head Loss Calculation
ft/sec^2
Velocity:
ft/sec
Section 3-12 to 3-47
Pump Suction Invert Elevation ft = 942.00
Discharge Pipe Invert Elevation (ft) = 961.00
Total Elevation Head (ft) = 19.00
2.
Friction Head Loss Calculation
_ _2a. Pipe Friction Loss
Material �. Pipe Head Loss Pipe Length Total (ft)
Diameter (ft) Per 100 ft. (ft) Head Loss
DI 4 6.02 135 8.13
4 0.00
Total Friction Head Loss Pipes (ft) 8.13
2b. Fittings Friction Loss
Fitting Number Resistance Total
Description Fittings Coeff (K) Coeff (K)
90 L 4 0.51 2.04
Check V 1 0.9 0.90
Gate V 1 0.14 0.14
Exit 1 1 1.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
- - - 0.00 --
Total Resistance Coefficient (K) 4.08
Total Friction Head Loss Fittings (ft) 3.72
Total Dynamic Head Loss = 30.85 (ft)
Cameron Hydraulics
Section 3-12 to 3-47
Cameron Hydraulics
Section 3-111 to 3-116
hf=K(V^2/2g)
CUBIC DESIGN GROUP, PC
Page No:
Project: Carl ler A Ibon
cubic
P.O. BOX 1989
Owner: ITown Wilkesboro
design group P
1503 West D Street
NORTH WILKESBORO, NC 28659
Location: Wilkesboro, NC
Job #: 16-040
PHONE 336-667-4241
Designer: Franc Taraci o
FAX 336-667-5660
Date:Zb-Apr-18
Dynamic Head
Loss Calculations
Description: Scum Pump Piping
g =
32.174
8.17
Cameron Hydraulics
Pipe Diameter: inch
ft/sec^2
Design Flow: gpm
Velocity:
ft/sec
Section 3-12
to 3-47
1. Elevation Head Loss Calculation
Pump Suction Invert Elevation ft) = 939.00
Discharge Pipe Invert Elevation (ft) = 942.00
Total Elevation Head (ft) = 3.00
2. Friction Head Loss Calculation
2a. Pipe Friction Loss
Material Pipe Head Loss Pipe Length
Total (ft)
Cameron Hydraulics
Diameter (ft) Per 100 ft. (ft)
Head Loss
Section 3-12 to 3-47
DI 3 j 9.81 5
0.49
3
0.00
Total Friction Head Loss Pipes (ft)
0.49
2b. Fittings Friction Loss
Fitting Number Resistance Total
Cameron Hydraulics
Description ;_,Fittings Coeff (K) Coeff (K)
Section 3-111 to 3-116
90 L 1 0.54 0.54
3-4 Increase 1 0.26 0.26
Entrance 1 0.28 0.28
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Total Resistance Coefficient (K) 1.08
-
Total Friction Head Loss Fittings (ft) 1.12
hf=K(V^2/2g)
Total Dynamic Head Loss = 4.61
(ft)
cubic
design group P
Page No:
CUBIC DESIGN GROUP, PC Project: ClarMer Ac Itlon
P.O. BOX 1989 Owner: ITown Wilkesboro
1503 West D Street Location: Wilkes oro, NC
NORTH WILKESBORO, NC 28659 Job#: 16-040:::::a
PHONE 336-667-4241 Designer: Franc Taracl o
FAX 336.667-5660 Date:Zb-Apr-18
Dynamic Head
Loss Calculations
Description:
Scum Pump Piping
4 inch
180 ;, ' gpm
32.174 ft/sec"2
4.6 ft/sec
Pipe Diameter:
g =
Design Flow:
Velocity:
Cameron Hydraulics
Section 3-12 to 3-47_
1.
Elevation Head Loss Calculation
Pump Suction Invert Elevation (ft) = Tmm 942.00
Discharge Pipe Invert Elevation (ft) = 961.00
Total Elevation Head (ft) = 19.00
2.
Friction Head Loss Calculation
_ _2a. iPipe Friction Loss
Material Pipe Head Loss Pipe Length Total (ft)
Diameter (ft) Per 100 ft. (ft) Head Loss
DI 4 2.23 135 3.01
4 0.00
Total Friction Head Loss Pipes (ft) 3.01
Cameron Hydraulics
Section 3-12 to 3-47
_
2b. Fittings Friction Loss
Fitting Number Resistance Total
Description Fittings Coeff (K) Coeff (K)
90 L 4 0.51 2.04
Check V 1 0.9 0.90
Gate V 1 0.14 0.14
Exit 1 1 1.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
TotaIR esistance Coefficient (K) 4.08
Total Friction Head Loss Fittings (ft) 1.34
I
t
Total Dynamic Head Loss = 23.35 (ft)
Cameron Hydraulics
Section 3-111
to 3-116
hf=K(V^2/2g)
pe Diameter: inch g = 32.174 ft/sec ^2
Design Flow: gpm Velocity: 13.6 ft/sec
Page No:
DESIGN GROUP, PC Project: C ari ler A C ItlOn
cubicCUBIC
P.O. BOX 1989
Owner: I own (eSGoro
design group PC
1503 West D Street
NORTH WILKESBORO, NC 28659
Location: Wilkesboro, NC
Job #: 16-040
90 L '' 5 0.54
PHONE 336-667-4241
Designer: Frank Taraciclo
0.90
FAX 336-667-5660
Date: - pr-'
Gate V 1 0.14
Dynamic Head
Scum Pump
Loss Calculations
Piping all 3"
Pump Suction Invert Elevation (ft) =
Discharge Pipe Invert Elevation (ft) =
Total Elevation Head (ft) =
Description:
pe Diameter: inch g = 32.174 ft/sec ^2
Design Flow: gpm Velocity: 13.6 ft/sec
Cameron Hydraulics
Section 3-12 to 3-47
Cameron Hydraulics
Section 3-12 to 3-47
Cameron Hydraulics
Section 3-111 to 3-116
�- 2b. Fittings Friction Loss
Fitting Number Resistance
Total
1.
Elevation Head Loss Calculation
90 L '' 5 0.54
2.70
Check V 1 0.9
0.90
Entrance 1 0.28
0.28
Gate V 1 0.14
0.14
Exit 1 1
Pump Suction Invert Elevation (ft) =
Discharge Pipe Invert Elevation (ft) =
Total Elevation Head (ft) =
939.00
961.00
22.00
0.00
0.00
0.00
0.00
0.00
0.00
2.
Friction Head Loss Calculation
Total Resistance Coefficient (K)
5.02
Total Friction Head Loss Fittings (ft)
14.43
Total Dynamic Head Loss =
73.95 (ft)
2a. !Pipe Friction Loss
Material Pipe Head Loss Pipe Length
Diameter (ft) Per 100 ft. (ft)
DI 3 26.80 140
3
Total Friction Head Loss Pipes (ft)
Total (ft)
Head Loss
37.52
0.00
37.52
Cameron Hydraulics
Section 3-12 to 3-47
Cameron Hydraulics
Section 3-12 to 3-47
Cameron Hydraulics
Section 3-111 to 3-116
�- 2b. Fittings Friction Loss
Fitting Number Resistance
Total
Description Fittings Coeff (K)
Coeff (K)
90 L '' 5 0.54
2.70
Check V 1 0.9
0.90
Entrance 1 0.28
0.28
Gate V 1 0.14
0.14
Exit 1 1
1.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Total Resistance Coefficient (K)
5.02
Total Friction Head Loss Fittings (ft)
14.43
Total Dynamic Head Loss =
73.95 (ft)
Cameron Hydraulics
Section 3-12 to 3-47
Cameron Hydraulics
Section 3-12 to 3-47
Cameron Hydraulics
Section 3-111 to 3-116
6" Gravity Scum Pipe
Project Description
Friction Method Manning Formula
Solve For Discharge
Input Data
Roughness Coefficient
0.012
Channel Slope
0.01000 ft/ft
Normal Depth
0.50 ft
Diameter
0.50 ft
Results
Discharge
0.61
W/s
Flow Area
0.20
ftz
Wetted Perimeter
1.57
ft
Hydraulic Radius
0.13
ft
Top Width
0.00
ft
Critical Depth
0.40
ft
Percent Full
100.0
%
Critical Slope
0.01066
ft/ft
Velocity
3.10
ft/s
Velocity Head
0.15
ft
Specific Energy
0.65
ft
Froude Number
0.00
Maximum Discharge
0.65
ft3/s
Discharge Full
0.61
ft3/s
Slope Full
0.01000
ft/ft
Flow Type
SubCritical
GVF Input Data
Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth
0.00
ft
Profile Description
Profile Headloss
0.00
ft
Average End Depth Over Rise
0.00
%
Normal Depth Over Rise
100.00
%
Downstream Velocity
Infinity
fUs
213.7 &TM
Bentley Systems, Inc. Bentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
4/25/2018 10:41:46 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2
31
6" Gravity Scum Pipe
GVF Output Data
Upstream Velocity
Infinity
ft/s
Normal Depth
0.50
ft
Critical Depth
0.40
ft
Channel Slope
0.01000
Tuft
Critical Slope
0.01066
ft/ft
Bentley Systems, Inc. Bentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
4/25/2018 10:41:46 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2
u71111atched '-Reliabilityzhoer
pp
IMPELLER
DIAMETER
���han
1740
10.30" 262 mm
B 15
1745
10.00" 254 mm
acs
9►
C 15
PERFORMANCE CURVE
9.70" 246 mm
D 15
1745
9.50" 241 mm
E 15
1745
9.20" 234 mm
Models:
F 10
1755
9.00" 229 mm
G 10
SE3P
8.50" 216 mm
H 7.5
1730
8.20" (208 mm)
7.5
1730
8.00" 203 mm
S3P
Back -Pull -Out Casing
3 -Blade Impeller
3" Discharge
DO NOT OPERATE PUMP IN DOTTED PORTION OF CURVES. PUMPS MAY EXCEED HP SHOWN IF OPERATED IN DOTTED
PORTION OF CURVE. CURVES ARE SUBJECT TO CHANGE WITHOUT NOTICE.
EFFICIENCIES SHOWN ARE NOMINAL BOWL.
GUARANTEED MINIMUM EFFICIENCIES PER H.I.
LEVEL A 'EXCEEDS 15 HP AFTER 500 GPM.
CAPACITY
(CUBIC METERS PER HOUR)
120 0 10 20 30 40
50
60 70 80
90 100
110 120
MEE
110
M
M,
035
100
30
90
MR1111-
80
LLJ
w
25
w
r
0 70
u�]NOR
=
¢�¢
60I'Mhe
20
W
v
Mh
mp
g
z
z01001
0 50
z
z
15
r
-i
F
J
O 40
H
�
Ow
F
30
10
t,
20
OR
10
5
0
0 50 100 150 200 250
-- 0
300 350 400 450 500 550
CAPACITY (U.S. GALLONS PER MINUTE) Form V370-S3P-1750 04118
CURVE POWER
HP
SPEED
RPM
IMPELLER
DIAMETER
A 20*
1740
10.30" 262 mm
B 15
1745
10.00" 254 mm
C 15
1745
9.70" 246 mm
D 15
1745
9.50" 241 mm
E 15
1745
9.20" 234 mm
F 10
1755
9.00" 229 mm
G 10
1755
8.50" 216 mm
H 7.5
1730
8.20" (208 mm)
7.5
1730
8.00" 203 mm
'
\_ F2 N I \
Ll I
a a ooo ^ a U
rco m o >
w� w
Iz o
w �
W z • i w
U e U U
o
� o
I-
I
_ —
ti
uJ
mY
O b
�p v
�I
-
a -
e
Fjobb"—�I
I � sL rcx
Ll
�a
=m
I � o
I I
I I m
I ^�
I
o r
U U n
O p U < w
t K Z a - __j$2O raj ¢
l�g a ' N �'� •
ow
� V N
j O
O �
t3
e3
o
�
J
YN
O
O
G
mY
O b
�p v
�I
-
a -
e
Fjobb"—�I
I � sL rcx
Ll
�a
=m
I � o
I I
I I m
I ^�
I
o r
U U n
O p U < w
t K Z a - __j$2O raj ¢
l�g a ' N �'� •
ow
� V N
j O
O �
t3
e3
V)
of
N N
za
wm maw
rc� o I
C3 V)
�or F ZWo
J— O W
--- -�
L J2-7
— m �_ OWN
J_ --r y
O
w lZ{ p
.11i gp
d d s K � I:n� ` if,
mini o � x w >� w a ygPp�IPq�• NA�
o f a ry 0 o yuyp� W5 Zg2 uZg2 a (gY9E9:byLl `i'
w w arc 3 prc rcu�i V C'b Iii
z rc
.o ooz r „„
u w u u a ry n a n a w a u R
u VJ4 ��• � i'S'
R� 8 4i
a
0
o
I "s
o � _
o
x32
�3� m
�z
+ um
K yy
W <�
ID
lo
co
--z a
J
W
I I x
I I
I
Go I az w
ga I m o n
0
ry G
•^ J IPP -
3 �u
O
6
Erosion Control Calculations
100'-0" Diameter Clarifier Addition
Wastewater Treatment Plant
700 Snyder Street
Town of Wilkesboro
Page o:
cubicCUBIC DESIGN GROUP, PC Project: Clarifier Addition
P.O. BOX 1989 Owner: Town of Wilkesboro
1503 West D Street Location: Wilkesboro, NC
design group PC NORTH WILKESBORO, NC 28659 Job #: 16-04
PHONE 336-667-4241 Designer: Frank Taracio
FAX 336-667-5660 Date: Z3-Apr-18
W
.O G
�.-
x�-
v•k a a 1
d
- o. ►. a. e
-
io
alow - GL
I.
G� G
�l = JM
cl c/
v
i
2,0
t'
Yd - �
voom
0cu0
-o
X3
�
v+
r4p.
3
o
°,
y
n
3
o
<
c
v
°
r°
3
CD
�
CA
N
CD
cl)
o
a
5'
3.
m0_
c
3
_m
0
o•
m
S•
n
-n
cn
W
(D
N�
fl.
TI TI TI
(D (D (D
(D (D (D
O
r
c
9
m
Cl
0
O O N
o o 3
(D (D 3
0 x m
v- v
3(n
c'
(D
Z3 M D
0 0 o
Z Z Ir
(u m
In U
Practice Standards and Specifications
6.61 SEDIMENT BASIN
0
Definition An earthen embankment suitably located to capture sediment with a primary
spillway system consisting of a riser and barrel pipe.
Purpose To retain sediment on the construction site, and prevent sedimentation in off-site
streams, lakes, and drainageways.
Conditions Where Special limitation — This practice applies only to the design and installation of
Practice Applies sediment basins where failure of the structure would not result in the loss of life,
damage to homes or buildings, or interrupt the use of public roads or utilities.
All high hazard potential dams and structures taller than 25 feet, and that also
have a maximum storage capacity of 50 acre-feet or more are subject to the
N.C. Dam Safety Law of 1967.
Sediment basins are needed where drainage areas exceed design criteria of other
measures. Specific criteria for installation of a sediment basin are as follows:
• Keep the drainage area less than 100 acres;
• Ensure that basin location provides a convenient concentration point for
sediment -laden flows from the area served;
• Ensure that basin location allows access for sediment removal and
proper disposal under all weather conditions; and
• Keep the basin life limited to 3 years, unless it is designed as a
permanent structure;
Do not locate sediment basins in intermittent or perennial streams.
Planning Select key locations for sediment basins during initial site evaluation. Install
Considerations basins before any land -disturbance takes place within the drainage area.
Select basin sites to capture sediment from all areas that are not treated
adequately by other sediment controls. Always consider access for cleanout and
disposal of the trapped sediment. Locations where a pond can be formed by
constructing a low dam across a natural swale are generally preferred to sites that
require excavation. Where practical, divert sediment -free runoff away from the
basin.
Sediment trapping efficiency is primarily a function of sediment particle size and
the ratio of basin surface area to inflow rate. Therefore, design the basin to have
a large surface area for its volume. Figure 6.61a shows the relationship between
the ratio of surface area to peak inflow rate and trap efficiency observed by
Barfield and Clar (1986).
Sediment basins with an expected life greater than 3 years should be designed as
permanent structures. Often sediment basins are converted to stormwater ponds.
In these cases, the structure should be designed by a qualified professional
engineer experienced in the design of dams. Permanent ponds and artificial lakes
are beyond the scope of this practice standard. USDA Soil Conservation
Services Practice Standard Ponds Code No. 378 provides criteria for design of
permanent ponds.
Rev. 5/13 6.61.1
Practice Standards and Specifications
Basin locations- Select areas that:
• Provide capacity for sediment storage from as much of the planned
disturbed area as practical;
• Exclude runoff from undisturbed areas where practical;
• Provide access for sediment removal throughout the life of the project and;
• Interfere minimally with construction activities.
Basin shape- Ensure that the flow length to basin width ratio is at least 2:1 to
improve trapping efficiency. This basin shape may be attained by site selection
or excavation. Length is measured at the elevation of the principal spillway.
Storage volume- Ensure that the sediment storage volume of the basin, as
measured to the elevation of the crest of the principal spillway, is at least 1,800
ft3/acre for the disturbed area draining into the basin (1,800 ft3 is equivalent to a
'/2 inch of sediment per acre of basin drainage area).
Remove sediment from the basin when approximately one-half of the storage
volume has been filled.
Spillway capacity- The spillway system must carry the peak runoff from the 10 -
year storm with a minimum 1 foot freeboard in the emergency spillway.
Base runoff computations on the disturbed soil cover conditions expected
during the effective life of the structure.
Principal spillway- Construct the principal spillway with a vertical riser
connected to a horizontal barrel that extends through the embankment and outlets
beyond the downstream toe of the dam, or an equivalent design.
• Capacity- The primary spillway system must carry the peak runoff from
the 2 -year storm, with the water surface at the emergency spillway crest
elevation.
Sediment cleanout elevation- Show the distance from the top of the riser to the
pool level when the basin is 50 percent full. This elevation should also be
marked in the field with a permanent stake set at this ground elevation (not the
top of the stake).
Crest elevation- Keep the crest elevation of the riser a minimum of 1 foot below
the crest elevation of the emergency spillway.
Riser and Barrel- Keep the minimum barrel size at 15 inches for corrugated
metal pipe or 12 inches for smooth wall pipe to facilitate installation and reduce
potential for failure from blockage. Ensure that the pipe is capable of
withstanding the maximum external loading without yielding, buckling or
cracking. To improve the efficiency of the principal spillway system, make the
cross-sectional area of the riser at least 1.5 times that of the barrel. The riser
should be sized to minimize the range of stages when orifice flow will occur.
Pipe Connections- Ensure that all conduit connections are watertight. Rod and
lug type connector bands with gaskets are preferred for corrugated metal pipe to
assure watertightness under maximum loading and internal pressure. Do not use
dimple (universal) connectors under any circumstances.
• Trash guard- It is important that a suitable trash guard be installed to
prevent the riser and barrel pipes from becoming clogged. Install a trash
guard on the top of the riser to prevent trash and other debris from
Rev. 5/13 6.61.3
Practice Standards and Specifications
Flashboard Riser- A different approach is to use a flashboard riser, which
forces the basin to fill to a given level before the water tops the riser. In
this way it is similar to a solid riser, but with the option of being able to
lower the water level in the basin when accumulated sediment must be
removed. Flashboard risers are usually fabricated as a box or as a riser
pipe cut in half. The open face has slots on each side into which boards
or "stop logs" are placed, forcing the water up and over them. This
device should be sized the same way as a typical riser.
Forcing the water to exit the sediment basin from the top of the water
column has the same advantages in sediment capture as the skimmer. A
flashboard riser basin will have an adjustable, permanent pool which also
improves basin efficiency. This method is a disadvantage when the
sediment needs to be removed because the operator may need to remove
the boards down to the sediment level to drain the basin. Flashboard
risers are a good option for stilling basins for pump discharges, or when
sandy soil conditions will allow dewatering of the basin through
infiltration. They should not be selected when the basin will have to be
cleaned frequently, or when located in clay soils.
Figure 6.61c Flashboard Riser installation example.
Photo credit: NC State University
Rev. 5113 6.61.5
Practice Standards and Specifications
• Baffles- Provides a minimum of three porous baffles to evenly distribute
flow across the basin and reduces turbulence. Basins less than 20 feet in
length may use 2 baffles .
• Inlets- Locate the sediment inlets to the basin the greatest distance from
the principal spillway.
• Dewatering- Allow the maximum reasonable detention period before the
basin is completely dewatered-at least 48 hours.
• Inflow rate- Reduce the inflow velocity and divert all sediment -free
runoff.
Construction 1. Site preparations- Clear, grub, and strip topsoil from areas under the
Specifications embankment to remove trees, vegetation, roots, and other objectionable material.
Delay clearing the pool area until the dam is complete and then remove brush,
trees, and other objectionable materials to facilitate sediment cleanout. Stockpile
all topsoil or soil containing organic matter for use on the outer shell of the
embankment to facilitate vegetative establishment. Place temporary sediment
control measures below the basin as needed.
2. Cut-off trench- Excavate a cut-off trench along the center line of the earth fill
embankment. Cut the trench to stable soil material, but in no case make it less
than 2 feet deep. The cut-off trench must extend into both abutments to at least
the elevation of the riser crest. Make the minimum bottom width wide enough to
permit operation of excavation and compaction equipment, but in no case less
than 2 feet. Make side slopes of the trench no steeper than 1:1. Compaction
requirements are the same as those for the embankment. Keep the trench dry
during backfilling and compaction operations.
3. Embankment- Take fill material from the approved areas shown on the plans.
It should be clean mineral soil, free of roots, woody vegetation, rocks, and other
objectionable material. Scarify areas on which fill is to be placed before placing fill.
The fill material must contain sufficient moisture so it can be formed by hand
into a ball without crumbling. If water can be squeezed out of the ball, it is too
wet for proper compaction. Place fill material in 6 to 8 inch continuous layers
over the entire length of the fill area and compact it. Compaction may be
obtained by routing the construction hauling equipment over the fill so that the
entire surface of each layer is traversed by at least one wheel or tread track of
heavy equipment, or a compactor may be used. Construct the embankment to an
elevation 10 percent higher than the design height to allow for settling.
4. Conduit spillways- Securely attach the riser to the barrel or barrel stub to
make a watertight structural connection. Secure all connections between barrel
sections by approved watertight assemblies. Place the barrel and riser on a firm,
smooth foundation of impervious soil. Do not use pervious material such as
sand, gravel, or crushed stone as backfill around the pipe or anti -seep collars.
Place the fill material around the pipe spillway in 4 -inch layers, and compact it
under and around the pipe to at least the same density as the adjacent
embankment. Care must be taken not to raise the pipe from firm contact
with its foundation when compacting under the pipe haunches.
Rev. 5/13 6.61.7
W
v
D
cc
V)
ul
U
z
W
Wuj
K
w
I N
t0
N �
O
LL Cr
Qa
CO z
r Z
w Q
CO LO
LL W
�U
oU
UQ
ccCL
3I=
0
i
Practice Standards and Specifications
LL x d
O Z w ,!
F! w 0
U F N
Y
U
CO
O
w
z
v~i x
�
m �
- 1
Lu Cc
amOZ
x
Cr V
H
OO
at
Z
<z
Z
J
w
C Q
LW
J
Cr W
O z
00
u' z
Q
W
��
W
F
CC
rw
JN
O
w
a
V)
v
c�
V)gQ
av
I N
t0
N �
O
LL Cr
Qa
CO z
r Z
w Q
CO LO
LL W
�U
oU
UQ
ccCL
3I=
0
i
Practice Standards and Specifications
LL x d
O Z w ,!
F! w 0
U F N
Y
U
CO
O
I
Z
Q
m
O
2
r-
0
Ca
2
O
m
LD J
V1 LL LL
wo `4 Z)
O Q Z
LLJ
Z4
Z Z
�IQZDC
m w m w
oU2�
wuu,�
Y
X F -
w d Z =
Q ~ H Z
m�WW
w
U 0
Z
UJ
Z W O F-
O LLj
OU Z) LD
ULL
JQv0
cc Z Z) _
F N
0 -j
U LL w LU
0 Ca
N 1= O Z)
0 LLI F-
m
W LL Z Z
w w J
LL O O a U Q
Z)
U
m0 >
Z LL U Q
r O o x
Q2zJ
�Z)"Q
U 2 w
g Z ALOU
a a
Y
z Q N
Q J J
kA p Q Q Q
W W N N w
D V) F-
Z.-inimv
Rev. 5/13 6.61.9
w
w
z
v~i x
�
m �
Y
Ln
� X
N
ga
U"
I
Z
Q
m
O
2
r-
0
Ca
2
O
m
LD J
V1 LL LL
wo `4 Z)
O Q Z
LLJ
Z4
Z Z
�IQZDC
m w m w
oU2�
wuu,�
Y
X F -
w d Z =
Q ~ H Z
m�WW
w
U 0
Z
UJ
Z W O F-
O LLj
OU Z) LD
ULL
JQv0
cc Z Z) _
F N
0 -j
U LL w LU
0 Ca
N 1= O Z)
0 LLI F-
m
W LL Z Z
w w J
LL O O a U Q
Z)
U
m0 >
Z LL U Q
r O o x
Q2zJ
�Z)"Q
U 2 w
g Z ALOU
a a
Y
z Q N
Q J J
kA p Q Q Q
W W N N w
D V) F-
Z.-inimv
Rev. 5/13 6.61.9
w
Preliminary Clarifier Calculations
(ovwo USA)
100'-0" Diameter Clarifier Addition
Wastewater Treatment Plant
700 Snyder Street
Town of Wilkesboro
O
0.
C
m
OX
v D
T x
z.
m N d
? D
m
O of
D m
Z
G)
O
0
m
O
Z
m
7EF D
N d
D
m
2
ni
as
m v D
�^
= N d
Gl D
00 r<0
of
n m
_s
T
W
m T
F, zj $O
Z`
G1 O
00
a 0
n-4
�°
T
N
T
$O
`
O
2
O
1
z
H
70
v
x
anz
T
v Kv
0
N S
T<
l D
N
jm
'
m
G1
Z
m
7D
D
v
O
m
CC C
r
z
D
T
m
C)f*.
O
N A
A<
O
_
7 X O -
3
m
2
3
c
0
a o- �
N
V1 N T
m
W N T
W N T_
(I
N
N A 2L
�_ N
-
0 0 5. O) 0
T
G1 0
v
A W p �L
A W Gl 0
`L
In
N iD 'n <
X N D
n
O N 00 < 0
Vi
l~n O
A ao
O
vi O
r
a0
Q 00 n
v
cr'i
oZ CD f+ O
7
m
z
m <x
_
s n D
L
vim, m
D
10
CD s
r
��<
n
o
d
00 00 O
c
o
n
w N 3 f
m t^ 3 f
m v+ 3
ov oW 3 !2
ID
o W
c
{
v
^
O
o
o
�
X
0( n
fD
�
�
m
a n
<
FD
X
m
0o
o_
a v
<
F
N
T
O
V
O
_ !D
A
Z
00
d fD
n
v
m
N
O_
00
v
ZIP
O_
00
G
{ m
W
N
W
V
A
A
N
N
N
00
l0l1 N N
w
00
N
00
ID N
00w
V1 A O O1
00
A W
W V1
to W
N
x m
O 2K
V
O
O
c
O
O
c
C
K
7D
11
.fie
.moi
.fie
.fie
V V
d
O
d
V
rD
m
rD
M
OG
x
00
F
7
N
7
N
O
?
O
?
f
f
O
O
N
n
7
rD rD
N N
O 1
rte+ O
d re
m
CL n
O c
7 O
O N
N H
X (�
a FD.
� rD
7 N ~O 00 00
c 00 O O O i
IQ
CL
D
000 O O ry
Ln N N y
A V V N
a
d
n
tD m m 3 v
N w w p
n
a
N
O
d
O
0!
N O D+ m 3 (�
N W
A O O C.)
O
�G
D D f1
rD rD 5
01 W A
x A T
m n m
c c 70
a- o. H
2
N
W d L4
�c x 2
N N cl
7' 7'
F f
11 II
O)
x
3
41
21
00
G
a
cr
O
00
O
O
00
O
F+
O
9
m
x
v
x A
O
r
T
T
r
C
'A
O
^x'
O
m
O
A
v
O
v
Z
N
00
c
A
WG
C C
G
m
m
Z S 2
00
D D
r re) rF
>
m m
z �
N
D
00 Z
mN <
2
0
O
O n
m
C
< m O
� D
x m
M
O
G1
Z
� D
< N
T
A
"
C
0
x CoC
C
n
A
W
m G
m
00
x
A
o
m 2fD'1
>
O
�
N
m
G)
m
m
z z O O
m
A
11
O O
m
- 00
v
x A
b+ 00
m O
T
T
r
'A
O
^x'
m
O
v
O
v
N
00
A
WG
C C
G
00
D D
>
m m
z �
N
D
00 Z
0
O
O n
C
< m O
M
G1
Z
< N
m
T
S_
O L'
Z
_
O
m 2fD'1
n
T
z
x
00 01
0 N
00 to W N
A
W A W h+ O1
vmi G) tmi+ G1
O O
n u
O
C
A
W
W 4+
V A
W l0
F+ N
G1 G)
W 00
W W
W F+
n n
m
v
T
T
r
'A
O
m
v
O
z
�^
m
O
A
O
0
O
C
G1
S_
_
m 2fD'1
T
z
D
z z O O
—DI
!Di
m
6) G)
v_
D
r
m
D
r
D
D
r
O
D
O
N
O
m D
m
m
m
A
m
Z 0
Z m r 2
Z
2
T
Z
m
O
O v
z
z
z
A
x
O
n
O 70 II
O
z
O
=
m
O
m
Q
m
u =
p
v
Z
O
II
O
Z
T
O
T
O
O
T
s
T
m
z
N
N p
N
N
W N
N
A
ul
W
NN
W
W
W
V1 O
l0 tD O O
00 ll1 V1 N
ll'1 01
Ol W N
t0
N
N N
A O 01
W
L"
F+
V1 01
t0 N VI
_
x0 m
SO 2 m
i
SO m
z
Z
Z O
0
3
O
O
m Z
m 0
Z
N O
Z
N O
=
O
C
G)
2
D
r
W 00
W W
W F+
n n
o A
D r
r
m C
Z
O
Aw A !J
II 11 II r
N F+ O C
00 O
A A A A
1 x D <
-
1
1 N 1--, F, O
N W O In
00 O
N
A
0 0 0
v v O r"
7c D D D
A
v -
u G) G) G)
11 II II
m m m
Z C
w w a
>
o 00)0
AAAA A
00 m m m
'''
+ + +
<<<<
G) (.) G) G) O
o
o c n
m
O ,�„ c N w O O
m_
(D^ Q ID
ID O m O
I
x O O�
� F a
fD.
N
A G
3
v
d
O r r r O O 3
ID
WO O N- In 7
O O O v+ ID O t;
1 x 7c 7c
1
v v O r"
x u
v -
� 11 II II
11 II II
A
Z C
w w a
>
v
,n r
1
of
v
D i
V a
0 0 0
o o 0
N
1
1
A O O N ID 0
II II
0 0
D
Z
I
A0 LnkDD O
O O O
Gl C
m
go �n w
� C
_
D
V W A
I V w
m
Z -
• Y M
m W N
C
m.
F
N
O"
�
I
C
O
1
= 7
m
I
I
O
r
T i
r
W N N
O
O r
1
O O O O
N
O
m m m
Z
Z
A A A
m m A to W N F
D D D w n- 0
V1 N VI -I N tP V
II II II
0
7 7 7
n n n
A a
>
d fp �
A
x 7
w w a
>
v
3
I:r
of
v
V a
0 0 0
o o 0
N
N N W
A O O N ID 0
II II
0 0
O O O
LnII
A0 LnkDD O
O O O
A A A
m m A to W N F
D D D w n- 0
V1 N VI -I N tP V
II II II
N
A
7 7 7
n n n
A a
>
d fp �
A
w w a
>
3 3 3
3
I:r
y
v
V a
w
O
Gi
II
O O
II II
0 0
7 M
LnII
A0 LnkDD O
N
A A A
m m A to W N F
D D D w n- 0
V1 N VI -I N tP V
II II II
m it
m
W W N
m O A
N
A
7 7 7
n n n
� II II
>
d fp �
w w a
>
3 3 3
3
I:r
y
m
V a
>
a N
Gi
d
7 M
3
m
go �n w
D
V W A
I V w
m W N
C
m.
F
N
O"
O
O
W
_
Q N 2
K K K
r
f+
O
O O O
O
m it
m
W W N
m O A
r
7 7 7
n n n
� II II
S S S
d fp �
w w a
3 0 v
3 3 3
m0
o m m
y
m
V a
>
a N
m m m
N j N
G1
7 M
Am
A
N
0
OD
R.
H
Q
O
O
00O
O
O
C
D
D D D pm 5
m
O
O
Z T_
n
D
7D
N
m
N
m
O
z
D
Z
6D
a m Z
a
O
w
O
N
� G
D
Gl
O
0
C)
O r
C
�
O
3
O
o A
o A
G)
G)
Z
o
v
v
0
v
v
v f+
0
0
co
x
d
0
O
O
x ry
Z
0
N
A
A
G)
=
N
00 N W
N
00 N W
N
N W A
N W A
N W A
11 I I
Ol W N
0 0
Ol W N
OI W N
O
G1 G1
N
T
T
T v v
O
m
m v
3
VN
00
D
N
o
D
x
V
m
N
O
N
o
D
N N
A A
N
A
N
v
N
V
v t0
N
m
v
N
A
N
V
N
V
w
W
D
u
It
nn
C
A
O
O
O O
M
w 00 L+
O
w m v,
w 00 W
OI
r
w
T T
— —
m m
'"' r o
0 w
Z
oA
- A A
" A A
" A A
m
M
T T
N
N
m m
A D
A D
r
r
0
0
Gl
N
N
O
O
Gl
m
V V V
A A A
W W W
O O O
w w lD
r r r
w lD w
�
lD w lD
N N N
m
A
A
A
N
r
r
OA C
N
r
W
a,
00 C
10
tD
r
w
w
-O
A
o
1O
'
4
A
m
N
w
Ol
'D
Ol
3
H
00
V
w
r
oo
o1Do
3
A
O
7O
w
00 r V
N v
V Ol r
io
N 0) V
cn
(
C
CO)
m
n
n
D
D
N
m
N
m
Z
Z
A
A y
O
w
O
N
� G
Gl
0
�
3
s
o A
o A
0
d
3
=
N
00 N W
00 N W
00 N W
N W A
N W A
N W A
11 I I
Ol W N
Ol W N
OI W N
O
N
T
O
A
3
X
m
v
A
N A
D
u
It
C
O O
M
w 00 L+
w m v,
w 00 W
r
w
w Ao
'"' r o
0 w
Z
oA
- A A
" A A
" A A
m
T T
N
N
m m
A D
A D
^
m
m
V V V
A A A
W W W
O O O
w w lD
r r r
w lD w
lD w lD
N N N
A
A
r
00
A
00
H
� m
00 r V
N v
V Ol r
N 0) V
cn
O1 A
O A
A O
W
W
Ol
O
G
G
>
M N
>
A
>
p N
>
f
G)
d
Gl
d
O O O
N
O O O
N
O O O
00 O
N N O
r O O
r A r
A
N r O
00 O A
N r tD
W 01 r
A A 00
V W 00
O lD Ot
r A N
N
m
0 0 0
=
0 0 0_
ni 0 0
N OO w
r
A r o»
V 00 V
00 Ol kD
r N 00
O1 W N
V ID O
N < A
A W
W
T
N
D
F+ W A m >
w v w >
w
W N -I W N
G
N bo D
' X
N In
V
O
V
0) O)
rn
D n n
T = _
O D
D D cn
mv
D c
� m
a
Z
G)
m
A
7
m m
A N
A 00
0 0
O
N Z w n n
v
a z
a n m
n
A
�n
>
n� O D� a 2
c
N vDi
N 2 M
r
D
D
z
m X n
O O O c m
ci
m y
T T T a
m
W
a
T
z
m
D
z
cmi.
>
D
.. Z m A
O
p
'O
a
z
m m
m
z
D
2 m O v
to
G1
in
it
v
zc
O a O
m a
A
z
a 2
A A a
:
N
m
a n
D
u
n n �'
p
f
O
T
O
m
m
Gr
n
"'
<
O
S
n
_
z
GD
I
(A
x
r
4
o
o I
X
D r
N
(n
A
m i
C
T r
r
W
A D
oo
W W O
N W W N
to w
. w N
w
D
Imo-
<O
ID Vf
W A W A t+
v
In W
m m O m
m v N
pl
Q
<
z z z z
z
2
m
D
G
c
=
I
I I C
W;oO
j
O
I I
It
N
I
II
z
O
3
C
0
0
m
i
j
r
N
x
p
m
N
z
0-_
O
w
m Ln
m
N V1 r
�-+
A
O
�-
N O m
v
-
m
j
A
r
r
=
G
o j
~
O
� I
m
O
t+ W w
O V
to
m m N 0
N W A
i
O m
N n
0 0 0
r 1
7
Dpi
V.I
j
v
z
T n T
I
m
D
11
rn
Cl)
rn
cn
fJ
O
D
O
N < A
A W
W
T
N
D
F+ W A m >
w v w >
w
W N -I W N
G
N bo D
' X
N In
V
O
V
0) O)
rn
D n n
T = _
O D
D D cn
mv
D c
� m
a
Z
G)
m
A
7
m m
A N
A 00
0 0
0 > r
O T O A p
p m p n u
C Z
r T
D T
D
O r)
7° O
z
w
0
0 0
0
0
0 0
0 w O
F+ A
T
�
N
00
0
W
N
� O O
O l0 V
T
r
N
F. -
(D !D
6
O
O
O
00
O
N
O
O
000
7
v