HomeMy WebLinkAboutNC0004979_Modeled Effects of Proposed Allen Plant_20071205Modeled Effects of
Proposed Allen 'Plant Bypass Flows
on Wylie Reservoir
Prepared for Duke Energy By
Reservoir Environmental Management, Inc.
Andy F. Sawyer
Richard J. Ruane
Loginetics, Inc.
Gary E. Hauser
December 592007FES VEL)
2 6-
2068
-PAIR
P
o WA rE
11VrSO1jr CR ()SAL
, j
/Ty
coir Environmental Management, Inc.
7
REMI 900-5 Vine St.' Chattanooga, TN 37403 423-265-5820
1. Introduction
Background
In October 2007, Duke Energy requested that Reservoir Environmental Management,
Inc. (REMI) assess the reservoir water quality effects of using supplemental cooling
water flows to reduce temperatures at Allen Steam Station (PA) condenser cooling water
(CCW) discharge. Duke requested that REMI investigate a range of plant operational
scenarios for the proposed. supplemental cooling, water system and compare results to the
thermal compliance standard for the PA CCW'discharges. These assessments were to be
conducted on representative low flow years using an existing reservoir model.
Modeling objectives were to explore:
• Potential impacts to temperature and dissolved oxygen (DO) conditions in the
lake,
• Effects on intake temperatures at both PA and Catawba Nuclear Station (CNS),
• Effects on temperature in the lake in the vicinity of the discharge,
• Effects on temperature and DO profiles at locations near the PA intake and
downstream (e.g., mid lake, near CNS, forebay), and
• Effects on release temperature and DO from Wylie Hydro.
Approach
The reservoir hydrodynamic and water quality model used for this study was CE -QUAL-
W2 (W2) x3.11 by Cole and Wells (2002), with modifications by Loginetics. Lake
Wylie W2 model'inputs used for this study were originally built and calibrated in 2005-
2006 for the Catawba-Wateree River hydro relicensing process using 1998 ("normal"
year) and 2002 ("low'flow" year) conditions. This model was documented by Sawyer
and. Ruane (2005) and provided to State agencies in NC and SC as well as to EPA.. The
Wylie model calibration for relicensing focused on water quality issues associated with
Wylie Hydro, with some additional attention to waste loadings. Specifically, the model
was calibrated to a level suitable for assessing effects of hydro operations on temperature
and DO in the forebay and releases, along with the following additional issues:
• Temperature and DO at other selected reservoir locations where data were
available;
• Algal levels in the forebay;
• The ability to predict the effects of phosphorus reductions in the inflows and
discharges from WWTPs to Lake Wylie on DO and algal levels in the lake and
releases from the project;
• The integrity of the model considering mass transport processes of organic matter,
nitrogen, and phosphorus using water quality data where available.
2
REMI
The calibrated model was used during the relicensing process to explore:
• Effects of reservoir operations (CHEOPS scenarios) on DO and temperature in
the forebay and releases from the project
• Effects of phosphorus inflows on DO in the lake as well as in the releases from
the lake
• Effects of phosphorus inflows on chlorophyll a in the lake
Modeling objectives for the current studinclude Ard ugly, the model sswas reof lvised to allow
len
supplemental cooling water (bypass) flows.
more effective modeling of PA operations.casdwe 1 asaadding
ng
thermal couplets for each of the Allen units and the proposed bypass,
bathymetry for the discharge canal. Details on these revisions are provided in Chapter 2
Model Revisions.
After calibration of the revised model, a range of operational scenarios
d 2007 Condit onsto assess
without
the supplemental cooling. water were ted above. Thede ass essmen using 2002
Owere presented to Duke
water quality effects.as lis
personnel in a conference call on October 9, and the results are documented in this report
in Chapter 3 Model Results.
PA and hydro operations data (i.e., PA intake and CCW data, and Mountain Island
releases) for 2007 were compared to 2002 operations data in Chapassess tertential 4 Comparirences
son of
that might affect the assessment. This analysis
2007 and 2002 Operations.
Conclusions from the modeling and analysis are provided in Chapter 5 Conclusions.
Thermal Compliance Standards
PA's compliance limit at the discharge of each unit F for the periods une Howevthrouger,
PA
has a variance that includes a thermal limit o
September. These values are calculated based on a monthly average of hourly flow -
weighted temperatures from all the units.
3
REAR
2. Model Revisions
Thermal Couplets .
In the original Wylie W2 model, Allen Steam Plant heat loads were unit duce withdrawal
ed as a W2
"tributary", with discharge flow and temperature specified for each
now (sum of the 5 unit flows) was specified as a W2 "withdrawal". Discharge
concentrations for other water quality constituents were
estimated fauns om heto water quality
at the intake based on previous runs. This requiredmultiple
te
reasonable inflow concentrations for a given run.
To overcome this difficulty, the W2 model was converted used torepresentthe Lginetics research
a plant heat
version of W2 so that the thermal couplet feature could b
loads. The water quality kinetics in the research version are identical to that in the Wylie
relicensing model: However, in the research version, the user can designate a
withdrawal -tributary combination as a "thermal couplet". In a "thermal couplet", the
withdrawal and tributary flow are identical, and the discharge water quality is set equal to
the modeled water quality at the withdrawal location. This is done for all constituents
except temperature. The discharge temperature
be addm the couplet userdefined delta-T values to the
ways: it is either calculated within the mod y g
modeled withdrawal temperatures (Le., model predicted intake temperatures for PA) at
nce the actual
each model timestep, or the measured dischargeat PAperawas av2e is used. 1002 and 2007,
available for
hourly discharge temperature for all five unit
these data were used in the model calibration to represent the discharge temperature t assumed
om
the plant. However, for scenarios that involved predicted plant operations,
delta-T'for each unit was used to calculate the discharge temperature. All other water
quality constituents were calculated using the couplets the model
dried for
bothhe the
del to
calibrations and all scenarios. Also, an additional couplet
simulate the proposed bypass flow. The delta-T values for this couplet were set to zero.
All withdrawals in W2 are performed with a selective withdrawal algorithm that
calculates the contribution of all model layers in the vicinity of the withdrawal. The
resulting withdrawal zone includes effects of flow and density stratification.
Thermal Couplet Output
There is no standard output of plant discharge temperatures in W2, as these acres renormally
considered inputs to the model. However, since the dischargeZ research model was
determined within the model with the thermal couplets,
the modified to output a file containing hourly modeled intake temperature, flow, and
discharge temperature for each thermal couplet. This tem eratures fole was used r critical months at
calculations to obtain hourly flow -weighted discharge p
4
REMI
the plant for the'various scenarios. This spreadsheet calculation is described in the next
section.
Monthly Allen Discharge Temperature Analysis
The W2 research version outputs Tin, flow, and Tou from each thermal couplet. For each
simulation, hourly couplet outputs were used to calculate a flow -weighted average of the
Tou values in a spreadsheet for the months of July, August, and September. These results
are provided along with other model results in Chapter 4 Model Results.
Allen Discharge Canal
The W2 model used for Catawba-Wateree relicensing did not explicitly include the Allen
discharge canal that delivers CCW discharge to the South Fork Catawba River arm of the
reservoir. In that model, plant discharges were assumed to enter the South Fork Catawba
arm directly at the discharged flow and temperature.
Plant staff reported knowledge of significant cooling in the canal. So that model results
would account for any cooling that may occur in the discharge canal, a 3 -segment
discharge channel was introduced in model inputs to the research version of the model.
Figure 1 shows the cross-section used to develop the canal bathymetry. This cross-
section was provided by plant staff (Craig, 2007). The canal was assumed to have this
same sectional shape throughout its 1.2 mile (2 km) length. In Figure 1, the reference
water surface was assumed to be the Wylie full pond elevation of 569.4 ft (173.55 m).
This model revision provides a more accurate depiction of cooling in the discharge canal.
w4r' EA sv'?I Ar -L
8I
Figure 1. Approximate Canal Cross -Section
Check on Model Calibration for 2002
n
The revised model (with the thermal couplet and discharge canal) was run for the 2002
calibration year inputs and results were compared to that of the original model to confirm
that the calibration of the revised model was essentially the same as the original model.
REMI
5
3. Model.Results
Base Case Conditions for 2002 and 2007
The base case used to model operational changes at Allen Steam Plant was 2002, which
was a relatively dry year when compared to the historical record. To meet dischar e 7
temperature requirements in 2002, Allen occasionally had to de -rate the plant.- he intake
and discharge temperatures used in the 2002 base case are shown in Figure 2a. As can be
seen in this figure, in the 2002 base case the increase in temperature between the intake
and the discharge fluctuated between two levels almost daily in response to generation,
and the plant apparently did not generate for four days in late -August and early -
September.
The year 2007 was also modeled considering the low flow conditions as well as the
meteorological conditions. The intake and discharge temperatures used in the 2007 base.
case are shown in Figure 2b. As can be ' seen in this figure, the plant did not generate at
peak capacity for about 6 days in August and several units were not operated for several
days in August and early September.
REMI 6
Figure 2a. 2002 Intake and Discharge Temperatures for Allen Steam Plant
46
50
a
e
48
• r •• .
46
40-11
•38
44
.a
t7 f1 �• •
.• 1 t
36.
• it
U
34
-All
oA
i {•
32
a
�
. •
36
F
30
• °
•
• ,
•
E
• Intake Temperature •
. • i�af
28
. Discharge Unit 1 • ••{
!
• Discharge Unit 2
26
. - -...,
• Discharge Unit 3
24
• Discharge Unit 4
26
. Discharge Unit 5
22
. Discharge Unit 3
711
24
7116 7131 8116 8130
9114 9129
Date
Figure 2a. 2002 Intake and Discharge Temperatures for Allen Steam Plant
Figure 2b. 2007 Intake and Discharge Temperatures for Allen Steam Plant
REMI 7
50
48
46
.
44
t7 f1 �• •
.• 1 t
• it
U
pal
r
i {•
a
•
36
•
E
. • i�af
F 32
!
30
. - -...,
. intake
28
• Discharge Unit 1
26
. Discharge Unit 2
. Discharge Unit 3
24
• Discharge Unit 4
22
• Discharge Unit 6
711
7116 7131
8115
8/30
9114 9129
Date
Figure 2b. 2007 Intake and Discharge Temperatures for Allen Steam Plant
REMI 7
Simulation Cases
Scenario 1
In Scenario 1 model simulations involved the ant o en rating atWeak capacity for the .
entire �Lof`ugust, the last two weeks of July and the firms+
The delta-T of the CCW flow for all five units was 23 OF for August and 20 OF for the last
two weeks of July and the first two weeks of September. Figures 3a and 3b illustrate this
operation by showing the intake temperature and the resulting discharge temperature of
all five units for 2002 and 2007, respectively.
Figure 3. 2002 Scenario I Intake and Discharge Temperature for Allen Steam Plant
46
46-
6444z
4a
'
44-
42 • $e �
•Intake
•
$
40 •f! _
W
•Discharge Unit 1
42
1
.
38 y
• Discharge Unit2
„ .., .. 9
• t .
Al
c,
38
• Dscharge Unit
Ilk
•
• �' • . .. °
36
,�.
34
°
CL
m 36
32
N
t
iE— •
30
34-
;0 4
�.�
28
•aQ
��
t� ..
CL
o
2
E 32-
24-
30
30-
22-1
711 7116
7131 8115 8130
9114 9/29
• Intake IPA-
Date
28--.
Discharge Unit 1
26
• Discharge Unit 2
• Discharge Unit 3
24
• Discharge Unit.
• Discharge Unit 5
22
7/1 7116
7131 8/15 8130
9/14 9/29
Date
Figure 3. 2002 Scenario I Intake and Discharge Temperature for Allen Steam Plant
Figure 3. 2007 Scenario 1 Intake and Discharge Temperature for Allen Steam Plant
REMI 8
46
4a
'
42 • $e �
•Intake
•
40 •f! _
W
•Discharge Unit 1
1
.
38 y
• Discharge Unit2
• t .
c,
• Dscharge Unit
•
• �' • . .. °
36
• Discharge Unit 4
• Discharge Unit
34
CL
32
N
t
iE— •
30
•
28
26
24-
22-1
711 7116
7131 8115 8130
9114 9/29
Date
Figure 3. 2007 Scenario 1 Intake and Discharge Temperature for Allen Steam Plant
REMI 8
Scenario 1 also was run with an additional withdrawal modeled in order to simulate the
bypass pipe that would provide the supplemental cooling flow. The intake for this pipe
was assumed to be near the five intakes that supply cooling water for the steam plant
units. The water from this additional withdrawal supplied a pipe that would bypass the
plant and dilute the heated discharges from the units. For the Scenario 1 run with bypass'
flow, the bypass flow was 535 cfs (15.14 cros; 240,000 gpm) for the entire period mid-
July to mid-September.
REMI
0
Scenario 2
Another scenario simulated with the 2002 and 2007 models was one in which heat load
was decreased for 12 hours each day to represent cut-back generation, but the CCW flow
through the plant was the same as in Scenario 1. In this scenario the delta-T for all of
August was 23 °F from l Oam to l Opm each day, and for the last two weeks of July and
the first two weeks of September the delta-T was 20 °F from lOam- 1Opm each day. The
l Opm to l Oam delta-T was 10 °F for the entire period. The intake and discharge
temperatures for Scenario 2 are shown in Figures 4a and 4b for 2002 and 2007,
respectively. This scenario also was simulated with a bypass flow of 535 cfs (15.14 cros)
from mid-July to mid-September.
Figure 4b. 2007 Scenario 2 Intake and Discharge Temperature for Plant Allen
REMI 10
as
'�
. P.pr� pPPa•r,��'1
2
42-
�
• ,.
.. as
40
4e.
38
IVA% •
.�
36
a
•Q� •
34
d
a
's•
L:� •.f
�I"
M
32-
230Intake
30-
Intake
26
• Discharge Unit 1
26
. Discharge Unit 2
• Discharge Unit 3
24
. Discharge Unit 4
. Discharge Unit 5
22
7/1 7/16
7131 8115
8130 9/14 9129
Date
Figure 4b. 2007 Scenario 2 Intake and Discharge Temperature for Plant Allen
REMI 10
Model Results for Thermal Discharges
The flow -weighted discharge temperatures from the. base case and the various scenarios
are shown in both Fahrenheit and Celsius in separate plots in Figures 5a and 5b for 2002
and 2007, respectively. Model results for discharge temperatures, along with input
conditions, are summarized in Tables 1 a and 1 b (for 2002 and 2007, respectively) for the
base case and the two higher load scenarios, each with and without the bypass flow.
Figure 5a. 2002 Flow -weighted Discharge Temperature for Allen Steam Plant.
Temperature is plotted in Fahrenheit in the Top Plot,, and in Celsius in the Bottom
Plot
REJVH 11
Flow Weighted Discharge Temperature
112
.
108
'
'
104a#-•
u 100
.� .. • •
J
•
N 95
its, it -
n 92
•'f
•t ��
'••
• Flow -weighted Average Observed t
• s
88
• Scenario 1 -no bypass flow
84
• Scenario 1 -with bypass flow
;
80
• Scenario 2 -no bypass flow. '
76-
6
711
711
7/16
7/31 8/15 8/30
9/14
9/29
Date
Flow Weighted Discharge Temperature
46-
44
42
t
.' •
'• . •
II %
a
v
0 38 •
20
_
• • • • • •
•
316
•
•
On
CL 34
E
32
•
low -weighted Observed
'•
•�
win
30
• Scenario 1 -no bypass flow •
JAW
J
28
• Scenario 1 -with bypass flow
26
• Scenario 2 -no bypass flow
,
24
7/1
7116
7/31 8/15 8/30
9114
9/29
Date
Figure 5a. 2002 Flow -weighted Discharge Temperature for Allen Steam Plant.
Temperature is plotted in Fahrenheit in the Top Plot,, and in Celsius in the Bottom
Plot
REJVH 11
Figure 5b. 2007 Flow -weighted Discharge Temperature for Allen Steam Plant.
Temperature is plotted in Fahrenheit in the Top Plot, and in Celsius in the Bottom
Plot
REMI 12
Flow Weighted Discharge Temperature
116
.
112
• .
108
t•
1 : � •
•
• �•. ••• •
eLL 104
R.
as
. : : • • b • .. I • •
��•
.3•••~i •
•
` 100
• •
• : ,• •
•,
� � iii.
;ft .;VV
•«•:
•
E 92
Be-•
e• •
Flow -weighted Average Observed
• Scenario 1 -no bypass flow
•
84
• Scenario 1 with bypass flow
80
• Scenario 2 -no bypass flow
76
711
7116
7131 8115 8130
9114
9129
Date
Flow Weighted Discharge Temperature
46-
6
j6A
J6
az
42
s
•. •.. •
40
'
10
m
'.•Iti
•
•VIM
a34
•
�'
E lit
F 32
• Flow -weighted Observed
30
• Scenario 1 -no bypass flow
• •
28
• Scenario twith bypass flow
26
• Scenario 2 -no bypass flow
24
711
7116
7131 8115 8130
9114
9129
Date
Figure 5b. 2007 Flow -weighted Discharge Temperature for Allen Steam Plant.
Temperature is plotted in Fahrenheit in the Top Plot, and in Celsius in the Bottom
Plot
REMI 12
Table la. 2002 Monthly Flow -Weighted Average Modeled Discharge Temperature
— Allen Plant (all scenarios assume full plant flow 24 hrs/day). Values are in
Fahrenheit in theTop Table and in Celsius in the Bottom Table.
Simulation
Bypass
Flog
(cfs)
Aug AT
day/night
OF
Jul, Sep
AT
day/night
OF
July Avg
Discharge
Temperature
OF
Aug Average
Discharge
Temperature
OF
Sept Average
Discharge
Temperature
OF
Base2002
0
actual
actual
101.92
10054
95.06
Scenario 1
0
23/23
20120
103.67
10836
9753
Scenario 1 with bypass flow
535
23/23
20/20
101.04•
101.71
9493
Scenario 2
0
23/10
20/10
101.24
101.4
9492
Scenario 2 with by flog
535
23/10
20110
-0-0.21
96.72
9299
Simulation
By
Flog
(cros)
Aug AT'
day/night
OF
Jul, Sep
AT
day/night
. OF
July Avg
Discharge
Temperature
°C
Aug Average
Discharge
Temperature
°C
Sept Average
Discharge
Temperature
°C
Base2002
0
actual
actual
38.84
38.08
35.43
Scenario 1
0
12.8/12.8
11.1/11.1
39.82
42A2
3641
Scenario 1 with bypass flog
15.1
12.8112.8
11.1/11.1
3836
38.73
3496
Scenario 2
0
12.815.6
11.115.6
38.47
3856
3496
Scenario 2 with bpass Sow
15.1
12.815.6
11.115.6
3738
3596
33.85
MMI 13
Table lb. 2007 Monthly Flow -Weighted Average Modeled Discharge Temperature
— Allen Plant (all scenarios assume full plant flow 24 hrs/day). Values are in
Fahrenheit in the Top Table and in Celsius in the Bottom Table.
Simulation
Bypass
Flog
(cfs)
Aug AT
day/night
OF
Jul, Sep
AT
day/night
OF
July Arg
Discharge
Temperature
OF
Aug Average
Discharge
Temperature
OF
Sept Average
Discharge
Temperature
OF
Base2007
0
actual
actual
101.3
102.1
100.1
Scenario 1
0
23/23
20120
102.5
110.7
101.0
Scenario 1 with bypass flog
535
23/23
20/20
99.8
104.1
972
Scenario 2
0
23/10
20/10
100.1
103.8
981
Scenario 2 with bypass floe-
535
23/10
20/10F--1
79s-1
99.0
96.0
Simulation
Bypass
Flow
(cros)
Aug AT
day/night
OF
Jul, Sep
AT
day/night
OF
July Avg
Discharge
Temperature
°C
Aug Average
Discharge
Temperature
°C
Sept Average
Discharge
Temperature
°C
Base2007
0
actual
I actual
38.5
389
37S
Scenario 1
0
12.8/12.8
11.1/11.1
39.2
43.7
383
Scenario 1 with bypass flog
15.1
12.8/12.8
1 L V I 1_1
37.7
401
36.2
Scenario 2
0
12.8/5.6
11.1/5.6
37.8
399
36.7
Scenario 2 with bypass flow
15.1
12.8/5.6
11.1/5.6
36.7
372
35.5
REMI 14
Effects of Scenario ' on Temperature in Lake Wylie
South Fork Catawba Embayment
Modeled temperature at one meter depth in the segment in which the Allen Steam Plant
canal enters the South Fork Catawba branch of the model for the base case, scenario 1
and scenario 1 with bypass flow are shown for 2002 and 2007 in Figure 6. The same
plots for the model predicted temperature in all segments in the South Fork Catawba
branch downstream of the Allen discharge channel and the model segment. in Lake Wylie
at the mouth of the South Fork Catawba embayment are shown in Figures 7-10.
42
40
30
pt 36
f] 34
a 32
30
28
26
24
22
20
11
2002-BaseV1-2
2002-Ba.eW1 KM: 3.35 Depth:1 2002-Sccnario 1-15cmc bypa:oWi KM: 3.35 Depth: l
2002 -Scenario 1 -no bypav WI KM: 3.35 Depth: l
I
I
- I
-- -- �-
-------'- -- - - ---- --`- --- --- --- - -- -- - ---'- - -
1
I I I
•--__----L-------J--------J--------1--------L--------'-- -- - - --
----
60 130 200 210 220 230 240 250 260 2T0 29
Day
2001-6aseV1-2
42
4Q
U
p 38
O 3+
r 32
r U
`u 22
j 2C
H 24
22
2®
2007-Ba.eW1 KM: 3.35 Depth: l 2007- ccnario 1-15cw bypa:: flow W1 KM: 3.35 Depth: t
2007 .ccnario 1 -no bypa.. flow W1 KM: 3.35 Depth:I
V --L
---------
, " W-�- -i - I - - - - - - -
yI L-_____--___-____-_-_------L--__----_-___---J-_________
-----------------------
I I
I I I I I I I I I
I I I I I I I 1
2iO 220 230 240 250 260 210
Day
Figure 6. Modeled Temperature at One Meter Depth in the Model Segment where
the Allen Discharge Channel Enters the Model (location at 3.35 km up from mouth),
for 2002 and 2007
REMI 15
2002-13azeWI-2
2002-5astWi KM: 2.365 Depth:1 2002 -Scenario 1-15ems bypassWl KM: 2.365 Depth: l
2002-Scen5rio 1 -no bypwfW1 KM: 2.365 Depth: t
42 ----
I
40
I I I I I I
,-------
36------
I I I I
.+ 36---; f
-- --------- ---------------------------
' --- --- ---- ;-------- ------ '------- -r- ---;------- -
Y 34 tI - r---------
I ,_-- -
32 -------- -I--- --- r - ----- I I I
r 30 -- -J---------= - --J- --- - i
--- ---- ---- ------ -- - -----
e
6 28 ------------------------- - - -- -- - --------- r----------------------- -
I I I I I I I I I
F 24 -_______J__ -____--I L__--___-J_I__-____-L________J__--____-L____ --- J --------- L_____ -__J---____--
I I I I I
24--------J---------L--------J---------j--------J---------L-------
I 1 1
I I 1 I I I I I
1
______-_J--------- L________J--------- L-------- J--------- L________J_________L________J_________
22
20too 130 200 210 220 230 240 250 260 210 2
Dal
2001-13aseVI-2
2007-5asew/1 KM: 2.365 Depth: l 2007-scen5rio 1-15m: bypwc; flowWl KM: 2.365 Depth: l
2007 -scenario 1 -no bypass flowWl KM: 2.365 Depth:1
42
I I
I
- -a-----------------
Y ' r
I
p34 ---- --�-- -- J - -'- - --`---- -- -- -- - - --- --------
V
r I
` 28--------------------
tl�
1
Y 1 I 1 I I I I I
H 24 ------------------------- -------- r-------- r--------
,________-________-________r________
I
22 ---------------- _-------- _-------- _-------- _-------- _-I_____- -__
I '
2ISO 130 200 210 220 230 240 250 260 210 280
Dal
Figure 7. Modeled Temperature at One Meter Depth in the first Segment
Downstream of where the Allen Discharge Channel Enters the Model (2.365 km up
from mouth)
REMI 16
k
3t
„ 3f
p 34
Y 3's
r
• 3(
28
j 2(
1 24
26
2(
G
a
O_
V
Y
Y
2002 -Base V1-2
2002-BaceW1 KM:1.253 Depth: l 2002 -Scenario 1-15cmc bypa,-oWl KM:1.253 Depth: t
2002 -Scenario 1 -no bypacsWl KM:1.253 Depth: l
--------- --------------- -------
r
_---_-�- •,------__�-------- -------
--------•
1 1 1 _______1
1 1 1 1 1
L -_ -_J___-__ J________ _ ____L_____--_ _ _-_ ---
----------------- - - - - - - - - -------- -------- --------
i
------ - -- --- ---- ---- - - J -- -
i
260 2i0 220 230 240 250 280 270
Day
2007-BassV1-2
200T-BaceW1 KM: 1.253 Depth:I 2001-ecenario 1.15cmc bypass Flow W1 KM:1.253 Depth:I
2007 -scenario 1 -no bypa:: flowWl KM: 1.253 Depth: l
i i i i i i
321J__ ---- J-------- J--------
L______-J____
1 1 �
so_______ -L______ -J -------- J-------- 1-------- L -------- --- ___ ____ --------
-----------------------------------
i
-_-_----i-------1--------1_-------T---___--r--------i--_-_--7--__----1--____--T---__-__
a4
200
230 240
Day
270 2:
Figure 8. Modeled Temperature at One Meter Depth in the Second Segment
Downstream of where the Allen Discharge Channel Enters the Model
REMI 17
r�
2002-8aseV1-2
2002-8aseW1 KM: 0 Depth: l 2002 -Scenario 1-15cros bypass Wt KM:0 Depth:I
2002 -Scenario 1 -no bypass Wt KM:0 Depth: l
i2
I I I
I
I I I I I
O34 - --- - - -------- J -- -- -J - ----1- -----
..
` t
■ 30 L -------- _ _ _-__ __1____
AI I 1 I I I I I I
. .aa ________________________!I________sI ________LI -------- ____!_______ s __--
V II '
a -I I I I I I I I
26
Y I I I I I I I I I
20
la0 130 200 210 220 230 240 250 250 210 2'
Day
2001-64seVl-2
2007 -Base W1 KM: 0 Depth: I 2007 -scenario 1-15cros bypass flowWl KM: 0 Depth:I
2007 -scenario 1 -no bypass flowWi KM: 0 Depth:1
42
I I I I I
Ito ---------------------------- ,- r------ r -------- -
I I I I I
36 ------------------------- --------
34
------- ------'--------
V J -
1./
I
V32 _____ __L___ __ _ _ ___--__-1-__-__ _L____--___ __J_____
y I
■ 30 _- f ---1_--_ __J___ --_-_J_-______1___-_- L________�-__-_-_-J-___-_- J____ -- --------
Y I I
2E -- ____________________ ---- s___-____
Y_-____--L________I__-_____!_______________-----------------
I I
I I
6 26 I I I I I I
I
Y 1 I 1 I I 1 I 1 1
I
2a
180 130 200 210 220 230 240 250 260 210 280
Day
Figure 9. Modeled Temperature at One Meter Depth in the Third Segment
Downstream of where the Allen Discharge Channel Enters the Model, the last
segment in the S. Fork Catawba River.
REMI 18
42
40
so-
p, 36
es4
32
30
28
26
f. 24
22
42
40
38
36
12 34
a. s2
30
V 28
j 26
F 24
22
20
1
2002-BaseV1-1
2002-5a:cW1 KM: 20.23 Depth: I 2002 -Scenario- 1-15cw byp*::Wt KM: 20.23 Depth: l I
2002 -Scenario I -no bypw,-Wt KM: 20.23 Depth:1
-- ------ --- - ----- -
__,_ 1 J -------- ;--------
__J__ -_-___J______-_ ___L__-____-'1
--------- , ,
I--- --1-___-__-- -------
_ _---___
-
200 210 220 2s0 240 250 a60 azo 2s0
Day
2007-DaseV1-1
2007-5a.eW1 KM: 20.23 Depth: l 2007-ccenario 1.15cm: bypass flowWl KM: 20.23 Depth. t
2007 -scenario 1 -no bypass flowWl KM: 20.23 Depth: l
--------------------------------- *------------------------
----------
�a-------------- --- --- - --- ----------------
--�''-----------1---'-"-L"'-'---''------'I------ --'--
-----------------,-------'�--------*-----_
80 130 200 210 220 230 240 250 260 270 29
Day
Figure 10. Modeled Temperature at One Meter Depth in Lake Wylie at the Mouth
of the South Fork Catawba Embayment
REMI 19
Figure 11 shows model predicted temperature profiles from the segment where the Allen
discharge canal enters the model. The profiles are at midnight at 10 -day intervals for July
9 through October 7, for 2002 and 2007. The black line in each plot is the temperature
profile from the base case and the red line is the temperature profile from the Scenario 1
run with no bypass flow. The non-stop peak generation in Scenario 1 starts on July 16
and goes through September 14. In general, the heat load is reduced around midnight
every night in the base case and the heat load is not reduced in Scenario 1, so the profiles
are noticeably different, especially near the surface.
C:L_,zooz.U.naao tion b.*a VLVZP
20 -b—Im3m
h09 2� M!0
165 i -- - -
.
22 24 26 20 70 32 N W 36 w
C QOODSC n do Mo 66pusVI.VIP
2002-0u..1KKt335
77
Y.22�MM
R0
22 2a 26 22 30 72 3. N N 10
_12007-f cenerio Fno byaf s IIaNt V2P
zoma.f..IKnca35
iM9 2M7 MM
65; .
22 24 26 29 70 32 74 a 30 40
_,37.7-z rio 3 byp+nn
20Wb.sarIKM 335
22 21 28 N 30 32 N 36 3B a0
:ooza
2W2-b-sc.nario tiresb�upvtv2r
ae«IKn13m
CL.120024c.nWe No b6pusV WP
2002.bu..IK6k3.35
�..Iq 2M2
RO :
. .
u 21 28 ZO 30 32 N N 30 b
_12007-sa bI oby—ifb.VLV21'
200?4_W KM 3.36
"" 2002 MM
c1.aa6z-sn.n+rin tino DypufvLv2P
zo62a.f..IKne3x
as: . -
. .
ZZ N 26 20 N 7L N 36 36 40
C:112002 -Sc. wFno b,p VI.V
2002-W".I L396
T" ZW2 M
_.12007 scmuio trro baDus fl VLV2P
2007La IKM3.30
2.11322f70,11411 _
_fzooa.m.,�are l..oi
2007dw.11Qk 235
fIM72M7fw.M
_lzom-sc.o..o f,o bypus 6o.vLv2P
2007-0as.NKM 3.35
S..T7 2Y7 Mfg
22 N 26 b 30 32 N 36 70 b
Ca -1T002 -Scenario Fm DypusVI.V2P
zaoawf../K6s3x
22 21 26 n N 72 N 36 30 66
C:F_12002-Sc.nario
tin* bpassVLV2
2002.b.WIKM235
22 21 26 26 N 32 N 36 U 0
_12007- ,ioImbVw,HwV1W2P
Z007-0a..,O KAk 315
A..r 2Y7 MM
165 ,---� •-•--•--`---� --•--•--'
. .
22 26 26 29 30 72 31 36 38 10
_¢o67ac.n••w Iro b�puz ro.vlv2r
x007-bn.,rf 1 111,40
S.K! 2W 111,40
C.L1:p62.5c.n.rio Fop Deaf f V L„2P
2oozau..IK7,k 335
•..w zsn �
22 21 26 20 30 x N N N .0
C.t_12002-Scenario Im bspus V LVZP
2002-b—IKM337
0 7 211,102 �
22 21 26 n 30 72 N N 36 10
_12 7 -scenario FmbWwsflocVLV2P
2007-0u..IKNk3.35
•ww 2g710M
n' -_
. .
22 N 26 26 30 32 N 36 N s0
Figure 11. Comparison of Base Case (black) and Scenario 1 with no bypass flow at
the Model Segment in the South Fork Catawba River where the Allen Discharge
Channel Enters
REMI 20
Figure 12 shows 2002 and 2007 model predicted temperature profiles from the same
segment and time as the profiles above, but in this comparison the black line in each plot
is the temperature profile from Scenario 1 run with no bypass flow and the red line is the
temperature profile from Scenario 1 with a bypass flow of the supplemental cooling
water. The cooling effect of the supplemental flow is shown in all profiles between July
16 and September 14.
_12002.3Cena.q l%—bgp..s W2P
2002--fik, Mo bpasM MA 7.77
Abd =OPA0
660 ,__�... ....................
22 21 26 20 30 32 31 36 38 10
_2002-sanarb 1 -Ac me bpass V I. V 2P
2002-sasrlo Lr. b W.M MA 316
. .
---------
Sol -_._..._
22 21 26 26 30 32 31 36 38 10
_2007•sanano LAcros Dpsss NOVWLV2P
2007•s 4. Lm bV.. fb IKPA 335
J 2M7M
_12007.scmano }Acmz bypass Nov17IVRP
2007•romallo tarobpurilwnf MA 375
_200LScenalo LAcros bpsss V LYR
2002aasrlo Lw Dp nwA IOd 336
.MD 2M7 MM
665, _ __ _ _
22 21 26 25 30 32 ;r-36 38 w
_2002-Scenago LAcros DgpacsVI.VZP
2002-somrie trio Dpusrf 10.1315
sem. 67 x�ua T,
163,-_,. __r _-•--`""''_-•-- •--,
22 26 26 20 30 32 31 36 M w
_=7-sca— L15—bpm NownV
2007•sos 606nobpmf1.p..113.2335
gyp __ _
22 N 26 28 30 32 U 36 36 10
_200]-sew.ab LArna bpsss 8ov V LV2P
2007aansrio Frio Dp rs 60..113@ 376
_2002 -Sana rio }Acros bpass V I. V 2P
2002-snniwfswDpOsaA MA 7.36
160 ............................
22 26 26 26 30 32 31 36 38 10
_2002-Scsnaro
1-15cros bpascWI.W2P
2 172N2m Onobpss iIOA715
s..n 2ash
Ia ;
22 21 26 20 30 32 31 36 38 /0
_12007-scsnaio Mftw bypass IIWVLW2P
2D0?—,sb Ica bypass (b..l MA 336
Ja MM7MN
_12007-ccenab L15cros DpsscflovVLV2P
2007-rar1� o la,v 6lpass Ibnl MA 315
_12002 -Scenario LAcros bpsssVL
2002•rcwrgo Lw bpas M MA 376
Ascan 2Ml: aM
9-54 26 26 30 32 31 36 38 10
_2002-Scenaio I-Acros bgp 'c V2P
2002-sasulio Mo bpaa"I MA 236
Sw272M2MM
22 21 26 20 30 32 31 36 38 w
_2007-sanano LMms epass Nowt/ WP
2007-sanafo Lwbpass fk,wI MA335
fm, ...........
160.___. ......................
22 21 26 29 30 32 31 36 U w
_2007 -can LAcros bypass ND.Wi
20 W-sanaio Hca bpass flo,M MA 375
S., --fa 272M7�
163,....._'__, _. ,._�.._•..•..�
22 2/ 26 M 30 32 31 36 38 w
_s2002 -Sandia }bora DSpxcVLV1P
2002-sanaio FnoOpaasNlO.1376
A..f iMi MY
666,._'._.;__•__+_..; ..,'-'--,
22 21 26 26 30 32 N 36 30 10
_.2w2-Scenario}Mans Dgpas,Vl.W
2w2acwario Lw bWasar11M 3.36
O.W 2M2 M!6
22 21 28 20 30 32 31 36 38 w
_2007-scsnano I-15-2 bW ass Nov V L V 2P
2D07 -u OLwbypassN IIG!336
Vol ---
----------------
22
0.__ 22 N 26 20 w 72 31 36 30 10
Figure 12. Comparison of Scenario 1 with no bypass flow (black lines) and Scenario
1 with 15 cros bypass flow (red lines) at the Model Segment in the South Fork
Catawba Branch where the Allen Discharge Channel Enters
REMI 21
Main Arm of Lake Wylie
The following results present model predictions at the intakes for PA and CNS as well as
for the forebay and releases from Wylie for the base case, Scenario I with no bypass
flow, and Scenario I with bypass flow. The indicated differences in modeled
temperatures between the cases were not significant, even though they were greater at the
PA intake location than at down -reservoir locations.
34
33
32
31
30
O 29
N 28
27
CL
E 26
25
24
23
22
34
33
32
31
30
S29
28
27
ECL
26
25
24
23
22,
2002-BaseWl-1
2002 Base Elevation: 167 2002 Scenario 1 with 15 curs bypass flow Elevation: 167
2002 Scenario 1 -no bypass flow Elevation: 167
........... I ............ I ------- ------------------------- ------------ ------------- --------------------------------------
----------- I ------------ ------------ ------------ ----------- ------------------------- ------------ ----------- -----------
------------ I ----------- ------------ I ---------- —1 ------------ ----------- ------ ------------ I ------------ I ------------
------------------------ ----------- -----------
----------- ----------------- -- ------- --------
--- ----- ------------- -------------------------- L -----------
---- - ----------------- ------------- --------- ------------ : ----------- -------------------------- I -----------
----------- I ------------- ------------- I ----------- ----------- I -- ---- --------------------- — -------- I -----------
----------- ----------- ------------ ------------ ----------- ----------- ------
----------------------- ------------ ------------------------------------ ----- ...
----------- I ------------------------- -------------------------------------------------- --------------------------
----------- ---------------------- ------------ ----------- ----------- ------------ ------------ ----------- -----------
gn An 260 210 221111 230 240 250 26 270 20
Day
2007-Bas8W1-I
2007 Base Elevation: 167 2007 Scenario 1 with 15 cms bypass flow Elevation: 167
2007 Scenario 1 -no bypass flow Elevation: 167
----------- ------------ ----------- ------------
------------------------ ----------- ----------- ------------
------------ ------------ I ------------
----------- ------------ ----------- ----------- ------------
----------- ---------- ----------- ------------ -- ------ --------------------------------------------------- ------------
----------- ------------ ---------------------- ---------- - -- ------- ------------ ----------- ------------
------------ - ------- - -------- ...... -------- ------------------- — --- ----- ---
------- -- - -- - ------ ----------- ------------ ----------- I ----------- - ----------- ------------
------------ ----------- ------------ ----------- ------------ ----------- ------------ ----------- ------------
--- -------------------------- ------------------------------------------ ----------------------- . . . . . . . . -----------
----------- ------------ ----------- ------------ ----------- ------------ - --- ----------
-----------------------------------------------------------------------------------
----------- ------------
----------- ------------ ----------- ------------ -------- ------------ ----------- ------------
in 160 200 210 220 230 240 250 26 270 21
Day
Figure 13. Modeled Temperature at the Centerline of the Allen Intakes. The
increased temperatures shown for the two Scenario 1 cases were accounted for in
the modeled intake temperatures in the model runs.
0
REMI 22
c lxoez-xm.lo l.wgpusvfvzP
2002-0aaMIMl25515
Baa tux �
a 26 x 28 m 72 3< 3i 38 a0
_12001ttenane Me Oypass lbrYI.V2P
xm-w«nut2s.5m
hM6 2M7 NM
150 ,._�................ .. .....
a 26 x n 30 32 36 36 38 10
-007-ni, 4M bV—fl-V 2P
xm-bas.1f11M4xs15
/1Nx62M yVQ�Ttlq7-7
. .
a 24 x 28 M a 34.36 36 ao
Ci12002-Scenario tan ppusVtV2P
2002Daw,rIlM'l25S75
�.1r z6fa�
a 26 x 26 30 32 U 70 36 60
C.,_S .Soma,b IanbX—VW2P
2002basrAlU8x.675
a 2a x x 30 a 34 78 38 0
_{200]-sunbb Ino DSpass flSwVlV2P
id" 2 wIIMD2i575
JWi626n 61RM _
----------
2Y 2a x x 30 32 36 36 38 60
_12007 -tuna ioImbVISS60eV WP
2007Dataa1101! 25.870
C"_1x02-S—bL b5DafsV1V2P
2002bav„ IIG6:MM
..ns2M MM
1ss i -
a 26 A x 30 a 34 36 36 W
Cs_f2002.8[mrb MD b6DUSYl V2P
2002t.MICh28.675
Sw672M26r_M _
C.�1x02-Scma,io Mo Dgpus V tY7P
2002bafa„IIQ.42SS75
183; -•�-� --- - '-
. ,
a 26 x x 30 a 3a 36 36 w
2=4
-11 aoo Iwo bypassVlV1P
2oa2bo..11aax2aa7s
CLa2032-S1m Mn D7DnMV2P
26S
•..r" " IIMlztc M."N."
6
a r x x 30 32 3D 36 38 w
Ci12002-ScmaOo Mo byass V t
OaN72W M16
_12001-scaurio 1-b9pl, fbW2V2P
2007b 11M25.575
J.M 2N7 M.M
a 26 x x 30 32 38 36 a 40
_12007acmerio l+,o b]DSSt fbvVLV2P
2ro]D,s.,n1M>.xss75
f3nA 2M7 MM _ _
65: !.f_�_ ....................
U 24 x 28 M 32 34 36 38 a
_1x07fcmano taw Dlpass fbrVtV2P
2007Daswf IQ+! x5575
ftpe 2M7"
,
160
------------
,
,
t�
a 21 x x 30 32 36 36 36 t0
_1207-f.—;Di.b, [w VIVs
2007Dasm11M4253M
s"n 2w 8 r
a 26 x M 30 32 34 X 38 b
_12007 -scenario I+w D6pass BorVlV2P
A -M2w110.225.577
1WAtA76RM _
1654
. ,
415 ..... ........'. _.r..,'-....,
a A 26 x 30 32 36 36 38 60
Figure 14. Comparison of Base (black) and Scenario 1 with no bypass flow at the
Segment where the Allen Steam Plant Intakes are Located—for 2002 and 2007
REMI 23
_12W 25cenarb }Pxms D3DxsVlV2P
2W2apneia ysmbpavrf10.425AT5
ddl52M20RM
moi................ �._,.. �_.
22 N 26 20 30 32 34 36 7a a
_12002-Scenatb }gemsEpmVLV2P
xoox-x.nario}noNw.ruvn x.575
/iae7282M21ttIM
no
BS :- - -�-• _ - -
r r r .
U 21 28 28 30 32 31 38 70 •0
._12 W T-semab }gems Dp+ss IbaWl V1P
.IM12
2kW20 7 lra bypxrIbrrll0A 28.576
M7 M:M
.-e2W7-scensrb}gems bypass f WLV2P
2007ac•narb M_bpxf f—I O& 265M
._02002 -Sc 4bypsssVL2P
2002+cesrlo Nm bo'bpewll W 25A75
dos® 2B�2w� _
22 21 26 28 30 32 N 36 38 W
._12002-Scmaio }gcrostypas5VLV2P
'm02.+,en.io 61m epaart lvt 25A]d
o..1w 2TTfa+�
r r r r
II N 26 28 30 32 N 38 zo 40
_12007-scenarb Iganc bpxsFlorVLV2P
2007-scsnub Nn Ilpxs fbw11QA 21575
tlM 2f�7 N:fM
..
r r r r
r rrr r
22 21 26 20 30 32 N 36 38 b
_12W7 -scenario I-Yamsbpm Wbw W2P
2007-ran•sb •aa Dpxr fbwl KM 21575
I ?2W MN
_12W2 -See I-LSemsbypasaWl.-
2WY�M Dp=AKIA26578
160 •........:...................
r r r r r r
22 N 26 28 30 32 N 36 30 10
_12W2-Sunario
1 -Bans bypass V lV2P
2ooz•:<.n.b r�o Ilpasrrl I0•t x657s
r .
22 N 28 28 N 32 N 38 38 10
_L2W]-scenailo }ISans DlpassflowV LWP
20 W-rpmab lro Dpxs 8D•irl M 25.875
_12001-snnarla i -flans bypass flow V LW 2 P
iW7-sanab the bypm0e I 42UM
F fl 2"? M.M
165: rl...............
22 21 26 28 W 32 N 36 30 10
_.2002-Sttnaria t -gems DyP assLfLV1P
2002-ueerioMODlD+ss�L IOL! 28.875
i r r r
• r r r r i
• r r. r r r•
23 21 N 28 W 32 31 38 38 b
_12002-Scenana1-flans Dypss WLY2P
2002-rcwrab1oobp MIIG4268M
s..2221I10Y a&" _-
_1200]-scewarfo t-IScros DYDsss Ow V I. W2P
2W714MgbpxsIbwlIOC!26578
2M7--i�Me--rr�-.
r
. r
r r
22 21 26 20 30 32 31 W ;F—"
_1200T-sew,arb }gems bypxz IbvV I.V2P
z6a7-rDrn.b lan bpaa f bwl Iae zss]5
sin a� f1f�
. r
22 N 26 26 W 32 N 36 10 10
_e2092 -Scenario }Hems DpxnLY3P
2o62-acwwb Vara blpxavllM 255M
ND12ftft2 M
r r r r
22 N 26 m W 32 N 36 38 10
_12002-Sce io}15 m bypxsVL
2002ac•r tbobpxarlf 425=
CWW 2M OW"
fro
ICf
. r r
22 21 Z6 28 30 32 N W 38 10
_12007-snnario 11—Dgpass ibrVlV2P
2007.. •—bpxribwlgh218T6
'N 207 MM
E-24 N 20 30 32 N 36 38 /0
Figure 15. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1
with 15 cros bypass flow at the Segment where the Allen Steam Plant Intakes are
Located—for 2002 and 2007
REMI 24
34
33
32
31
30
O 29
28
S
`m 27
a
E 26
F-
25
24
23
22
1
34
33
32
31
cn 30
0 29
m
28
m
m 27
CL
E 26
~ 25
24
23
22
1
2002-BaseWl-1
2002 Base Elevation: 170 2002 Scenario 1 with 15 cros bypass flow Elevation: 170
2002 Scenario 1 -no bypass flow Elevation: 170
-------- - ---- 1------------
200 210 220 230 240 250 260
Day
2007-BaseWl-1
2007 Base Elevation: 170 2007 Scenario 1 with 15 cros bypass flow Elevation: 170
2007 Scenario 1 -no bypass flow Elevation: 170
----------- ------------ ---------- I- ---
--------------------------------------------
----- - - -------- -- •--- --- - ----- ------
200 210 220 230 240
Day
270
Figure 16. Modeled Temperature at the Centerline of the Catawba Nuclear Plant
Intake—for 2002 and 2007
REMI
25
C,12002 -Scenario — bypass V I V 2P
2082Lc 11"&HT
A0152M2 MM
Ci_=U.Scanub }m E5pa22-2P
20024esMlWt&HT
Adn$n @ l
G_t2002-Scenario taw bypassVl.V2P
2W2-0afaaillO+R&N7
11a{T!__ 2M^Y-M
170 ... �...... ......... . .. ....
22 21 26 28 W 32 31 J6 70 w
_12007-scanwio 1noD3pass IIarVLV2P
2W7Jtuuea110d 8.N7
t!9 26T7 M!
Ci_1200 .e_.rb }m bypass V I.V 2P
200RD IKMAMT
C-2MScenario }m bypas V I. V 2P
2002-b—S M&MT
n Vzw2M.w --
cn_lzaozsrnarb ta,e bypusvt.v2P
70LQLasw110.!&M7
ftvn2M2M—r—.T �.
IM
22 N 26 N W 32 T. S6 w
Cs_12002-SWWbHw bWp V1-V2P
2002-Wsw1M&07
_12007-fttnario }nebypass OorVLV2P
2W7bua1r110Jl AH7
JYIf 2M7 MAA
,2W.—H, 1-m Dlpass Ib VI.V2P
2W74—A l0et&H7
A" M7M _
_t2w7.scenario Mobypass Rl WP
2W7-0uMKM&H7
_02007-ccenaio taw Dgpass IIwMtV2P
20074atw110.4 AHI
May2A� Z�TMCM
22 N N 28 30 32 ]I X 30 10
_12W7., .... o—bVp FIOWIV P
2W7.Duw110169.M7
S../Al2M7 Mf0
ID
22 N 26 28 W 9 U 36 38 f0
_12007.11maao Mo bypasslbr' WP
2007-0w.1/3.49.M7
Sw772M7 Mid -_
10
22 21 M N W 32 31 36 36 w
_12007-zcmario Mo bypass flae•V LV2P
2W7-0asM IO,R&H7
9^NZ7 2M7T—T—�
so
11 21 N N 30 32 31 36 38 w
c•_12002-Seanano 1a bypafaVty
2001-0.110.!&147
dURW 6lM
Ct12002- a_ lawbypassV1V
2002-0as IM&M7
0.87 2W M:M
❑0.__...........
22 N N N W >Z N 36 3;_0
_12007-9cana1b}mb9pusIb WWZP
2W7-basaAM8.14T
I 2M7 w
22 N N 28 30 32 31 36 26 w
Figure 17. Comparison of Base (black) and Scenario 1 with no bypass now at the
Segment where the Catawba Nuclear Plant Intake is Located—for 2002 and 2007
REMI 26
_42003-Scenane t -bans Dgp.ssNLV2P
2002-sewlsM Mo Dgpus.l lM B.NT
JN828O2 OlAl
160 ...... .......................
isms
u N 26 28 30 32 36 38 30 w
_12002Scenaii.}bansb,pd W1WZP
2w2-semailo MoBpasss KN&W7
NOl2l 2M2IFI0
Im
22 24 26 28 30 32 34 is 38 w
_12007_u =n 1 -baro bpass flanVLW2P
2007•somrblawbpazsft MKM8.N7
2MB M.0 M
n 24 26 28 30 '32 3a
..12007-scenab 4bcros 68pazs eovV LV2P
2007seanane ine bpasa Oewi K7.t aN7
11w2O YO07 NA
_12002-Scxuno tl5cros bpassWLV2P
2ooz•6n.namaoobpMa.llat aN7
_12002-Ssarwb 1.15crosbpazsVLV2P
2002•�cr.wblan bpsismlKM B.N7
._12002-San.rio al5cros bpassWLV2P
62002.722 fm byss tIQ,t aM7
8a1I7Yw2OlM
iw-------------------
155+___; ..r__+._�. __;._•__�_.s
22 28 26 28 30 72 36 36 38 w
_12w7-scmalio F0._ bp.. 0-V t V2P
2007aanulo Mobil 0 IKNbaN7
JM/02OO78►M
22 24 26 28 M 32 38 36 38 w
_1200T-scmab 4bans DgpMs HwWLV1P
2w7-seanarb lnobpass lbwlKM B.N7
OaM72RTMM
22
2. 26 28 30 It 36 36 38 w
_12002-S—io 1 -IS— bgpassVtV2P
2008sanrfo Ianbpa _JKMB.N7
S"V am ql
_007 -ss .;OLOkmsbgpazsR 1.V2P
2w 7-icwrb aro bpMa florel KM B.NT
M" 2087 OOAO
_1200T-scenrio t-15cros b8pazs Ow V t V 2P
2007• 10MobpMs�KMa%7
IwT72M7OO" -
_12002-Sc.—io 1.ficros WwsVl
2002•spnariol b,—IKMaN7
170 _ _
22 24 26 28 30 32 36 36 38 40
,2002-s—.6.1-15—bp asWtv2p
002•sDwmbN
2bpMsatkM8.N7
6OO27 2082 O _
i
. .
22 24 26 28 30 32 34 36 38 IO
_.12w7-swnarb FIftm bpass H_vLW2P
200T•spw b Mo bpaza0ovrelKM aN7
A 93 2OO7 MAO
...........
2F
22 24 26 28 30 32 34 36 30 w
_13007.scenario 415cros bYPM 6a.+V tW2
200?-, MO Dpazs 0oaa1 KM 0.N7
S-21 M7ODl0 _
. . , .
22 24 26 20 30 32 34 38 38 w
_1200bS4en.rl114bo SV1.V2P
2002•sml.tlb Mo bIDMM KM QMT
_12002-Scenarb I -bans bpazsV LVZP
2002- Mobil -1l AM7
OMIT 28102 B _
. .
2Y_2_4 26 ie 30 32 38 36 >e t0
_12007--d."bans bp.ss �V WP
2007•scanOioM bpazaIb IKMaNT
R W 2OO7 B
170•""""" "-'-""--'"-..
22 24 26 28 30 U 3a R 38 w
Figure 18. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1
with 15 cros bypass flow at the Segment where the Catawba Nuclear Plant Intake is
Located—for 2002 and 2007
REMI 27
c 2aoz-so.nrb l.,o eslussVLvzP
zaaza.e«Ilw.o
La999 2992 ff:M
--------------
so
2z 21 20 20 00 32 31 36 30 w
Cit2002.5c it M blpass WP
2002J>astilgNO
Ct2CO2Stanrb lm D3pus V lV2P
zoozawuMo
LAf a99 sss
150 ._.�..................�..
7x xt 26 Z. 30 32 31 36 38 10
2DD24e-S MO InoDassVIV2P
200LDuw11M0
CLA2002-SIIn+f10—bl —VLWP
2002-0.s.VIKKO
s.sVm2MJf _
Ct2002-Scmrio Ino epass W l V 2P
2op2a.+wnr7.to
walff z99z faff
22 21 26 ZB 30 M 3/ 36 30 w
CA_2002-Scmrb Mo bp—VlV
2002-b—I M0
Cti2002.6oanreN Elpas vtL
2QR-MwI1V,to
•..>.2ffz 99Af
160 ...:.. ...................:
22 21 26 20 30 32 31 36 39 10
Ci_12002- —,o—bspassVIV2P
200bb.s MO
_2007-sanrio Lno 4—fl LV2
2f107Asw110A O
[I.12f 2997fs:w
2i 21 is n 70 32 3• 30 36 10
_2007-seenrio lsro Was, flwVLVZP
2W7-0u..iKM:O
Lro 2p799fs
150 . :........... ... ..........
2z x1 zs za 30 >r r x 3s w
_2 W T -scenario Lro y p+s [ Ibv V lYW
2oo7aw.nlMo
8.997 tssi 99w
_A2007-scerWoH bwosO VMP
2007-0ssw1040
Lauf 2997 f
_.2007-sce M b7pass lb VfWP
2007 IKPAO
_.2007-Sw,eo Ino bgpess Po.VLV2P
2007L 11@&0
99 992997=
_200T•scenrio la.o byu[ 0wV LV2P
zop7awmaeo
s.ft72997ffis
._Izoor.so«.rb Lno e,pa:s oo.vtvzP
200T.Iaw11M0
Figure 19. Comparison of Base (black) and Scenario 1 with no bypass flow in the
Forebay of Lake Wylie—for 2002 and 2007
REMI 28
_42w2-Scaneb }1bpms D.I VL1/2P
2002._r 4np 69pusrl KM1R 0
ma 2�u wM
169 ...... . ..... .. ........ .. ...
i
150 .._.._....................:
22 24 28 28 30 32 34 36 38 w
_120025cenrr 1.15anf bpusVLY1P
2002aanW MpD9p IKMQ
Mfd02}102004)0
160,__:_.. _.x ..... ........�_.:
22 24 26 a 30 M 34 36 a w
..1200]-11111no }bans bpassir W tW
2002 -saner Mo Dens Ibwl KM 0
J.N3nor
4t►t0 _--
.
-------------
i
,
22 21 21 30 32 34 36 38 w
...Rw]•sanario }15anf bpasiir.VLV2P
200]-soma00 }no bpas9 fbwrl KKR 0
•.,,to 2N3 was
Ro,._:__a_. __,_...__a_y_.:
. ,
..... ...........
150 ...:.. ........ ... ... .....
22 21 26 28 30 32 31 36 78 W
_y20OM5 .r'Zk sbypusVtV
2002acawo4 bpas9ar1KM0
aen zMz 4Kae
_12002-6can b}I9crosbpasSW1WP
2000-9ewiar Mo bVa sft1INR 0
A 2MMM
_120025c1ner 1-Picros bypa f s V L V2P
2002aawb tro Epn9r1IO+R 0
SfMi2Mz04M
_12002-Sanr6o MM by assW L V 2P
2002.9emaiofd bgW"10M0
R 17awY0Aa
_.42002-Sanrio M2 blpasfVLViP
2W2 --c bMobpusa•IIM!0
•af4® 2M2 R41
170'--' --- x.. -
160 ..... ...... ................
22 21 26 20 30 32 34 36 38 40
_420025—arlo }I&ms bp ... V LW2P
1002•se4neb Leobypns.l OA 0
._12007-sanrr I.aS sbypass H-VI.W2P
200]•s<m grip Ho ppur ylwrl KM 0
d ze07 OR4I0 --
_42007•scmria 1.I5cros bypass Oo.V LW2P
2007-sanrin—byassIr IMO
J.Rs 7 OOJO
_12W]-scanrio 1.1 Mbypass yrWI.V2P
200]-faneio im Deas Bonr1 KM 0
e.r32078 s
_ITLO]-scxiaio }I9cros Dypa9s IIanWLW2P
200]-scfr.Dpn91trw1101R0
s«n2=7 M7lI�.9
J200]-scenrr }i5crosbgpus OovVLV2P
tom-:c.ner 1aM bpas, xo..l KM o
91.2 z4u2 4foA0
.............
169,-...-- •--...,--'.--...,__-•
. .
as
22 24 26 28 30 32 34 J6 39 40
_1200] -scenario }I9cros Dpuf fIOWLW2P
zoo] -caner Mpepas9xo.�nlcMa
_12002.6cmrr}M9 bpassVl.
2002-sesvio} bpaSMMO
•aw102M"M
22 2, 26 28 30 32 34 36 30 w
_lzom-spanrr } 199pK bpnsvtvm
2(02-9an40o M04p of V I q.F 0
O.N721R 000 _
pro........... ...............:
22 24 26 28 30 32 34 M 38 w
_12007-scmrr f-. U—bpass M.WLV2P
2wi•sanafrM bp9ss WaeMO
Aarw zw4
Figure 20. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1
with 15 ems bypass in the Forebay of Lake Wylie—for 2002 and 2007
REMI 29
2002-OnseWl-I
2002-BaseW1 Dom releases 2002 -Scenario 1-1 Eems bypassVVI Dam releases
2002 -Scenario 1 -no bypassWI Dam releases
30-
29 - ------------- ------------- ---------------- ----- ---------------------------------------------------------
--- ---------- ------------- : ----------
j1 �4't-------------- ------------- --------- -----------------
28 --------------------------- -
27 ------------- I ------------- - -------------------------------------------------------- ------ ------
V'V
-------------------
--------------------------- ---------------
26 --------- ------ -- ------------
CL.
J------------- ------------- -------- -------------- ------- -------------
25 ------------- ------ -------------
------------------------------------------------- ------ r -------------
24 -- ------------------------ I --------------- ----------
23
100 190 260 210 220 230 240 250 260 270 200
Day
2007-BaseWl-I
2007-BaseW1 Dam releases 2007 -scenario 1-1 5cms bypass flowVVI Dam releases
2007 -scenario 1 -no bypass flowWl Dam releases
30
29 -------------- ---------- ------------ - --------------- C ------------- ----- ------------
-
I ------------ -- -------------- I -------------
28 -------------------------------------------- -------------- ---------
-- --------- -------------------
cri
-------------
27 - ------------- ------------- --------- -------------- I --------------
26 - ---------------------------- - --------- ------------------------------------------------------------------------------- ---------------------
E --
CL
F----- L -------------
24. ---------
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - -
23
IOF — ------- 1-90 260 210 220 230 240 250 26 270 280
Day
Figure 21. Modeled Release Temperature from Wylie Hydro. 2002 Results are only
Plotted when Generation Releases are Greater than 1000 cfs. In 2007 all
Generation Releases are Plotted
REMI 30
Effects of Scenario 2 on Temperature in Lake Wylie
The time -series of plots of temperature near the surface of the lake in the South Fork
Catawba embayment comparing the base case and Scenario 2 with no bypass flow are
shown in Figures 22-26.. Plotted results are not presented for the case Scenario 2 with
bypass flow since compliance was attained without the supplemental bypass flow in 2002
and compliance was nearly attained in 2007 (see Tables la and lb.) Figures 22-31
present the results for the S. Fork Catawba arm as well as the main body of Lake Wylie.
and show that Scenario 2 causes little difference in temperature at all locations.
REMI 31
South Fork Catawba Embayment
U
2002-BaseW1-2
2002-BaseWl KM: 3.35 Depth:1
2002 -Scenario 2 -no bypassWI KM: 3.35 Depth:1
12
i ,
i6 ------ '
N,
12
21 80 190 200 210 220 230 240 250 260 270 2e
42
40
38
36
cp Q
34
m 32
$ 30
`m
E 20
CD
F-
26
24
22
20
Uay
2007-BaseWl-2
2007-BaseWl KM: 3.35 Depth:1
2007 -scenario 2 -no bypass flowWl KM: 3.35 Depth:1
-----------
,
n
------------
Hn 190 200 210 220 230 240 250 260 270 281
Day
Figure 22. Modeled Temperature at One Meter Depth in the Model Segment where
the Allen Discharge Channel Enters the Model
REMI 32
42
40
38
36
34
P-
32
30
CL
E 20
26
24
22
20
1
42
40
3
3
C
d 3
30
a)
CL
E 20
F-
26
24
22*
20
1
2002-BaseVVI-2
2002-BaseW1 KM: 2.365 Depth: I
2002 -Scenario 2 -no bypessW1 KM: 2.365 Depth: I
----------- ------------ ------------ ------------ ------------ ------------ ----------- ------------ ------------ ------------
---------------- --------- ------------- -------------------- -------------------------------------- ----------- ------------
- ----- --------- - -------------- ......... ----------
- ---- - ---- - --------- ------ --- ...... ------------ ----------- ----------- - --- -------------------
------------- ------------ I ------------- ------------------------- ----- ---- --- ---- -----
------------ ------------ ------------ ------------ ------------------------- - - ------ .... --------- -- - - -------
------------ --------- ---------------- --- --- 4 ------------------------ ------------
------------ ------------ ------------
------------- -------- ---------------- ------------ ------------ ------------ ----- ---- ------- ------------ ------------
------------------------- ------------ ------------ ---------- ------------ ------ ------------ ---------- --------
------------ ------------ ------------ ------------ ------------ ------------ ----------- ------------ ------------ ------------
in 14n 21111 21 . n 220 230 240 290 260 270 20
Day
2007-BuseWl-2
2007-BaseWl KR 2.366 Depth: I
2007 -scenario 2 -no bypass flowWl KR 2.365 Depth: 1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - -
------------ ------------
----------- r -------- -----------
--- ------- ------------------- ------------ I ------------- I ------------- I ---------- - ----- --- ------------
-----------
------------
------------- ------------ I ------------ ------------ -------------------------- L ----
------------- ------------ --------------- ------------
------------ ------------ ------------ ------------ ----------- ----------
------------ ------------ ------------ ------------ -------------------------------------- j -------------------------- -------------
- - - - - - - - - - - - - - - - - - - I - - - - --- - - - - - - - - - - - T --------------------------- .......
- - - - - - - - - - - - - - - - - - - - - - - - ------------ ------------ - - - - - - - - - - - - - - - - - - - - - - - - ----------- I ------------- - - - - - - - - - - - - -------------
Inton 2fin gin 22n gin 240 290 290 270 21
Day
Figure 23. Modeled Temperature at One Meter Depth in the first Segment
Downstream of where the Allen Discharge Channel Enters the Model
REMI
33
36
tm 34
m 32
30
CL
E 28
Fa -
26
24
22
20
42
40
38
36
L)
cm 34
O
® 34
i
30
CL
E 28
26
24
22
20
2002-BaseWl-2
2002-Base\M KM: 1.253 Depth: 1
2002 -Scenario 2 -no bypassW1 KM: 1.253 Depth: 1
------------ ------------ ------- ---------------- ------------ ------------ ----------- ------------ ------------ -----------
------------------------------- ------------------------ * ------------------------------------------------------ ------------
----------- I --- ---- --------------- -------- I ------------- ---- ----- ----------- ------------ ------------ ------------
-----------
----------- - --------- ------------
------------ - ----- -----------
-------------- ----------- - ------ ------------ ---------
------ - -------
----------- ------------ ------------- L ----------- 11 ------------ ------------
- ------ - ----------
----------- ------------ ------------ ----------- ------------ ------------ --- --- --- I ------------ - I
----------- ------------ --------- --------- ----------- ------------ ----- ----- ------- ------------ ------------
........... -------------------- ----------- ------------ ------------ I ------------ ------------ --------- ------------
----------- ----------- ------------ ------------ ------------
------ ----- ------------ ------------
-----------
Rn 190 200 210 220 230 210 260 260 270 21
Day
2007-BaseWl-2
2007-BaseW1 KM: 1.253 Depth: 1
2007 -scenario 2 -no bypass flowVV1 KM: 1.253 Depth: 1
------------ ------------------------- ----------- ------------ ------------ ----------- ------------ ------------ ------------
----------- ------------------------------------- -------------------------- -------------------------------------- ------------
-- -------- I - -------- ------------ ------------
---------- ---- ------- ------------- L ---
------------ ----------
I -------- -- ------------
----------- ---------------------------- -- ---------
----------- ------------ ------------ ----------- ------------t------------,`-----------',----------- ----- ------ ------------
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - L - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - ------------------------ - - - - - - - - - - - - ------------- r ----------- I -------------- r - - - - - - - - - - - - -------------
- - - - - - - - - - -
AO ISO 260 210 220 230 240 260 260 270 21
Day
Figure 24. Modeled Temperature at One Meter Depth in the Second Segment
Downstream of where the Allen Discharge Channel Enters the Model
0
DEMI 34
42
40
30
36
tm 34
m 32
30
CL
E 28
Fa -
26
24
22
20
42
40
38
36
L)
cm 34
O
® 34
i
30
CL
E 28
26
24
22
20
2002-BaseWl-2
2002-Base\M KM: 1.253 Depth: 1
2002 -Scenario 2 -no bypassW1 KM: 1.253 Depth: 1
------------ ------------ ------- ---------------- ------------ ------------ ----------- ------------ ------------ -----------
------------------------------- ------------------------ * ------------------------------------------------------ ------------
----------- I --- ---- --------------- -------- I ------------- ---- ----- ----------- ------------ ------------ ------------
-----------
----------- - --------- ------------
------------ - ----- -----------
-------------- ----------- - ------ ------------ ---------
------ - -------
----------- ------------ ------------- L ----------- 11 ------------ ------------
- ------ - ----------
----------- ------------ ------------ ----------- ------------ ------------ --- --- --- I ------------ - I
----------- ------------ --------- --------- ----------- ------------ ----- ----- ------- ------------ ------------
........... -------------------- ----------- ------------ ------------ I ------------ ------------ --------- ------------
----------- ----------- ------------ ------------ ------------
------ ----- ------------ ------------
-----------
Rn 190 200 210 220 230 210 260 260 270 21
Day
2007-BaseWl-2
2007-BaseW1 KM: 1.253 Depth: 1
2007 -scenario 2 -no bypass flowVV1 KM: 1.253 Depth: 1
------------ ------------------------- ----------- ------------ ------------ ----------- ------------ ------------ ------------
----------- ------------------------------------- -------------------------- -------------------------------------- ------------
-- -------- I - -------- ------------ ------------
---------- ---- ------- ------------- L ---
------------ ----------
I -------- -- ------------
----------- ---------------------------- -- ---------
----------- ------------ ------------ ----------- ------------t------------,`-----------',----------- ----- ------ ------------
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - L - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - ------------------------ - - - - - - - - - - - - ------------- r ----------- I -------------- r - - - - - - - - - - - - -------------
- - - - - - - - - - -
AO ISO 260 210 220 230 240 260 260 270 21
Day
Figure 24. Modeled Temperature at One Meter Depth in the Second Segment
Downstream of where the Allen Discharge Channel Enters the Model
0
DEMI 34
42
40
38
36
34
32
30
CL
E 28
26
24
22
20
42
40
38
36
cp 34
O
CD
32
S 30
8
CL
E 28
W
26
24
22
20
2002-BaseWl-2
2002-BaseWl KM: 0 Depth: 1
2002 -Scenario 2 -no bypessW1 KM: 0 Depth: 1
----------- ------------ ------------ ----------- ------------ ---------- ----------- ------------ -------------------------
------------- ------------ ------------
----------- ------------------------- ----------- --------------------------------------
------------ ---------- ------------ ------------------------- ----------- ----------- -------------- I ------------
-- - --------- ---------- -------------------------------------------------
------ - - - - - - ------------ ----------- - - - - - - - - - - - - - - - - ---------- ------------------ ------- - - - - - - - - - - -
----------- ------------ ------------ ----------- ------------------------- -------- --- -------
. . . . . . . . . . . . . ... . . .
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - r - - - - - - - - - - - - - - - - - -
--------------------------------------------------- ------------------------ ------ ----------------- ------------ ------------
-
In 190 260 210 220 230 240 250 260 270 281
Day
2007-BeksaWl-2
2007-BaseWl KM: 0 Depth: 1
2007 -scenario 2 -no bypass floAW1 KM: 0 Depth: 1
----------- ------ ------------- ------ ------------------------------- ----------- ------------ --------------------------
------------ ------------------------- ----------- ------------ ------------ ----------- ------------ ------------ ------------
------------ ------------------------- ----- ------ ------------- --- ------------------------------------------- ------------
-------- -- --- -------- ...... -------------
- --------- ----------
--------- --- -- - --------- --- ----------
------------ ---------- ----------- ------------ ------------ ----------- ----- ------- ---- ------------
------------ ------------ ------------ ----------- ------------ ------------ ----------- ------------- ------- -------------
-------------------------------------- ----------- --------------------- ----------- ------------ --------------------------
----------- ------------ ------------ ----------- I ------------- ------------ ----------- I ------------- ------------ ------------
------------ ------------ ............ ........... ------------ ------------ ----------- ------------- I ------------ -------------
RR ion 2fin 210 220 230 240 290 26 270 2f
Day
Figure 25. Modeled Temperature at One Meter Depth in the Third Segment
Downstream of where the Allen Discharge Channel Enters the Model
n
REMI 35
36
34
32
30
CL
28
Fn -
26
24
22
20
42
40
30
36
34
O
32
30
CL
E 26
26
24
22
20
2002-BaseWl-1 I
2002-BaseM KM: 20.23 Depth: 1
2002 -Scenario 2 -no bypassW1 KM: 20.23 Depth: 1
--------------------------------------- ------------ ------------
------------ ---------------------------------------------------
------------
------------ -------------------------- — ---------- -------------------------------------- I ------------
--------------
-
-------------
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
------------------------- --------- --
----------- ------------------------- ----------------
- - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - -
- - -- - - - - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - - - - -- - - - - - - - - - - - 4
- - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
Bo 190 200 210 220 230 240 250 260 270 21
Uny
2007-BuseWl-I
2007-B marl KM: 20.23 Depth: 1
2007 -scenario 2 -no bypass flowAM KM: 20.23 Depth: 1
- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
------------------
--- -- ----------
- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - -
----------
----- ------
-----
- - - - - - - - -
- - - -
- - - - - - -------------------------------
- - - - - - - - - - - - -
- - - - - --- - - - - - -
- : ------
-- --------
- - - - - - - - - - - -
42
- - - - -
--
- - - - - -
40
- - - - - - -
- - - - - - - - - - - -
--------------------------
----------
----------------------
- - - - - - - - - - - - -
38
36
34
32
30
CL
28
Fn -
26
24
22
20
42
40
30
36
34
O
32
30
CL
E 26
26
24
22
20
2002-BaseWl-1 I
2002-BaseM KM: 20.23 Depth: 1
2002 -Scenario 2 -no bypassW1 KM: 20.23 Depth: 1
--------------------------------------- ------------ ------------
------------ ---------------------------------------------------
------------
------------ -------------------------- — ---------- -------------------------------------- I ------------
--------------
-
-------------
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
------------------------- --------- --
----------- ------------------------- ----------------
- - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - -
- - -- - - - - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - - - - -- - - - - - - - - - - - 4
- - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
Bo 190 200 210 220 230 240 250 260 270 21
Uny
2007-BuseWl-I
2007-B marl KM: 20.23 Depth: 1
2007 -scenario 2 -no bypass flowAM KM: 20.23 Depth: 1
- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
------------------
--- -- ----------
- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - -
----------
----- ------
-----
- - - - - - - - -
- - - -
- - - - - - -------------------------------
- - - - - - - - - - - - -
- - - - - --- - - - - - -
- : ------
-- --------
- - - - - - - - - - - -
- - - - - --- - - -
- - - - - -- -------------------------
--------
---- ; -------
- - - - - - - - -
- - - - -
--
- - - - - -
- - - - - - - - -
-------
- - - - - - - - -
- - - - - - -
- - - - - - - - - - - -
--------------------------
----------
----------------------
- - - - - - - - - - - - -
- - - - - --- - - - - - -
- - - - - - -
--- ----------------------
- - - - - - - - - - -
- - - - - - r - - - - - -
- - - - - - - - - - -
r - - - - - -
------------
-----
- - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - -- - - - - - - - - - - -
------------
------------
- ----------
- - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - --- - - - - -
-------------------------------------
- - - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - - -
- - - - - - - - - - - -
-------------------------------------
- - - - - - - -
- - - - - - - - -
- - - - - -
- - - - - -
- - - - - - - - - -
- - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
I--------------------------
- - - - - -- - - - - -
- - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
------------
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
-------------
no 190
200
210
220
230
240
250
260
270 21
0
Uny
Figure 26. Modeled Temperature at One Meter Depth in Lake Wylie at the Mouth
of the South Fork Catawba Embayment
REMI
W,
Main Arm of Lake Wylie
34
33
32
31
0 30
Cn
a
29
28
27
CL
E
26
25
24
23
22
34
33
32
31
630
O_ 29
28
o. 27
E
26
25
24
23
22
2002-BasaWl-I
2002 Base Elevation: 167
2002 Scenario 2 -no bypass flow Elevation: 167
------------ ----------- ------------ ----------- ------ --------- I ------ ------ ------------ -------------- I -----
------------ ----------- ------------ ------------ ------------------------------------ ------------- I ------------ I -----------
------------------------ ------------ ------------ I ---------- -------------------------- ------------ I ------------ I -------------
------------ ----------- ------ - --- ------- ------------------- --------------- ------------------------- -----------
--- ----- ------------ ------------ ----------- -----------
------- --- ------- - -- ------------- - ------ -- ----- -
--------------- ----------- ------------ I ------------ ------
------------------------ - -------
----------- ------------ ------------- r ------------------------- ---------- ------------------------ -----------
-- -------- ------ --
-
---------- I --------- ------ ---------
- - - - - - - - - - - - I - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- I - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
--- - - - - - - - - - - --- T
iin 200 210 220 230 249 250 290 270 2
Day
2007-baseWl-1
2007-baseWl KM: 26.575 Elevation: 167
2007 -scenario 2 -no bypass f1owWl KM: 25.575 Elevation: 167
------------ ------------------------- ------------ ------------ ------------ ------------ ------------ 4 --------------------------
------------- ------ I -------------- I ------------ I --- -------- I -------------------------- -----------------------
----------------
-------------- ------------ ------------ I ---- ------- - -- -------- I ------------------------- ------------- I ------------ I -------------
------------ ------------
-------------- ------------ ------------ --- ------ ------ - I ------------- ------------
-- ------------ - ------- - --------- ------- --- ----- ----- I -------------- L ------------ - ---- ----- ------------ ------------
------------ ------------ ------------ --------- -------------- L ------------
---- ------
-------------------- -----------
---- -- -------------------------------- ------------------------- I --------
-----------
-------------------- I ------------ --------------- -------- I -------------- r ------------ ----------- I ---------
- ------------------------ 4 ------------ ------------ I ------------ ------------ ------------ ------------ -- --- ---- ------------
- ------------ ------------ ------------ ------------ ------------ ------------- I ------------ ------------ ------------- I ------------
------------ I ............ ............. I ------------ I ------------- ------------ --------------- ------
00 lic 200 210 220 230 240 250 260 270 28
Day
Figure 27. Modeled Temperature at the Centerline of the Allen Intakes
I
REMI 37
C_1300LSc,nxb 2 -no yp, ss V tV1P
2002DnM10k 26.676
JT 2912 99!•
22 N 26 28 30 32 N 36 36 a
C_si00.- —rio 2 -no bop s$VL
200zOuM10.k26.676
11"29 2992 99M
Ts
160... —_....._...............•
156....;
II 2t 26 28 30 32 N 36 36 V7
C12002.Sc 2+ b5passVlV2P
2002-b-1NM26b76
9af972�29lM
,
�i _
22 24 26 26 30 32 N 30 36 00
Ca200D6cxwb ,MDSpassVl.V2P
NM-0afw126NDR
J1926 2192 99M
22 24 26 26 30 32 N 36 36 b
C_12002.6anxlo2 bypassVtV2P
2o02iasw110d MM
C:_.120025cenxb 2-ro Dfp,ff V I.V2P
2002�rasr110.S 26.676
0:..12002-^.S—b 2-ro bypass V L
2002aaw11PR26.616
M!
z2 N 26 26 30 32 34 36 5-40
C_s2002So«urio 2m bW-s V I
2002 -b -1=25,M
1 .29929M9
22 N 26 20 30 32 N 36 36 a0
c:_Izwz-semaao 2,n amu f vlv2P
M47200472M10fl25576
299299A9 _
ffo
65_
2Z 24 20 26 30 22 N 36 38 b
Figure 28. Comparison of Base (black) and Scenario 2 with no bypass flow at the
Segment Where the Allen Steam Plant Intakes are Located
REMI 38
34
33
32
31
630
S29
28
27
CL
E 26
9
25
24
23
22
1
34
33
32
31
30
rr
29
CO
28
27
E
W 26
25
PZ1
23
22
2002-BaseWl-1
2002 Base Elevation: 170
2002 Scenario 2 -no bypass flow Elevation: 170
------------
-------------- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - -
----------- ----------- ------------ ----------- ----------- ------------ ------------ ----------- ----------
----------- I ............ I -------------- I ----------- ----------- I ------------- ------------- I ----------- I ------------------------
- --------- j-- - - ----- ----------------- ------------------- ----------- j - - - - - - - - - - - -
- --------- ------------ - - - - - - - - - - - --------- -- --------------------------------- ------------
------------ -------- ------------ ------------------------------------ - --------- I ------------------------ -------------
------------ ----------- I -------------- I ----------- I ----------- I ------------ ---- -- - - - --------- ----------- ....... ....
---------------------- ------------ I ----------- ----------- ------------ ---- ------- I --- -- -------- - ------------
------------ ----------- I ---------- ----------- ------------ I ------------ ---------- ----------- -----------
------------ ------------------------ I ----------- ------------------------ - - - - - - - - - - - - I - - - - - - - - - - - ----------- ------------
----------------- --------------------------------------------------------------------
10 190 260 210 220 230 240 290 260 270 21
Day
2007-basaWl-1
2007-baseWl KM: 8.147 Elevation: 170
2007 -scenario 2 -no bypass flowW KM: 8.147 Elevation: 170
------------ ------------ 1 -------------- r ------------ --------------------------- r ------------ ---------------------------------------
------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ -----------
---------- : -----------
----------- -------- I ------------
-----------
-------------------- --------------------------
----------- ---------
---------------
- ------------
-----------
------------ ------------ ------ -------------- I
------------ ------------ ----- - ------ -------- -----------
Aw,,A
------------ -- -------------- ------------ -----------
--------- --- --- ---- ------ - - --------- ------------- I ---- ------ --------
------------- ------------ ------------ ------------ --------------------------- ------------ -------------- -------- --------------
------------------------- ------------ ------------ --------------------------- r ------- — --------------- ---- ---- ---------------
------------ ------------ ------------ ------------ -----------
----------- ------------ ------------- I ------------ ----------
------------ ------------ ------------ ------------ ----------- ------------ ------------ ------------ I ------------- -----------
------------- ------------ ------------- I ......... —, ------------
----------- ------------ I -------------------------- ----------
in An 260 210 220 230 2i0 An 260 270 2
Day
Figure 29. Modeled Temperature at the Centerline of the Catawba Nuclear Plant
Intake
REMI 39
C_,M -S. nano2—bw—VLv2P
2oozau.all3ttex7
ru sa �
165,-"-� ........... ..........
22 2/ m 20 30 32 36 30 38 W
C_12002-S,enalo2robp ..VLW2P
2002datw113,t 6.147
22 z. 26 20 30 32 31 36 38 10
C_,xao2-Samar 2 -nn bypasrvlVxP
20020.sa.,r1 q,0.8N7
arv3 zrx �
767,--T--• -•--,---:--•--+..-•
22 21 26 20 30 32 7• 36 38 10
C_A20025emmio 2-nobJpassVLV2P
2002•buM 1016.147
[_.,2002 -Soman 2m bppurMl V F
aa7 tin •s
C -12002 -Soman 2rm bppassWtV2P
2002-0_IKKO.M7
C_—Soman 2+o bgpasral V2P
=-b—AMOW
. . . . . ,
,
9-2-4 26 20 30 32 34 36 30 w
C-Q002-Scma io 2m blwss V L V2P
2002-t.—I O.M7
�777;
i
,
22 21 26 M 30 32 31 36 38 b
C_12002-scman 2+,o bgparaVLV2P
2D026.swA10.l0.M7
sl..>. z6n �
. .
22 21 26 20 20 32 31 36 30 w
C:._120025cenaio 2nobp ,VtvzP
20024—A MO.M7
M 21 26 20 30 32 3i 36 30 10
Figure 30. Comparison of Base (black) and Scenario 2 with no bypass flow at the
Segment Where the Catawba Nuclear Plant Intake is Located
c-12002sam,no z -no byp usvlvzP
2002Lasea11Qh0
alae
167,--"•' '"-•'-.-'"•--•--•__'
--•'"•'"+"-"�--•--+-"-•
12 2a 26 20 M 32 31 36 n W
C_12002Sc.W. 2 -no bypassVtWP
20024u.a11040
're 20.0.2 0"3
C -12002 -Soman 2+w bpparlvLV2P
2002-basw 4
22 21 26 m M 32 Y 36 3s b
C_.12002-Scmab 2a bppassVLVzP
2002.b—IKP.10
7..0.7 20.02 0.
C_12002-S—w 2 abgsssVL
2002das.r110dO
aln xMx�
Try ........... ....�.-`--''"'
22 2/ 26 n M 32 7• a » a
G_12002 -S—. 2nobl ,IVLV2
2002-b—i KKO
tt 17 """
C_,002-sama•io 2m Egpus V LV2P
mot-ws..IlcMo
167,..-•" _•--•",--"•--•--,._,
M 21 a 20 30 32 31 36 36 10
C_Im02. scenan 2.no bp.—�
. .
M 21 29 20 70 32 U 38 30 10
CL12032-soman 2ro bypass V i V Zts
2002basra11 &O
A—W 20.0.20.0.0.0.
C_1z002-Soman 2nobg—W VZP
2002 —1 MO
L 0720.0.20.!p
147.. _,._., _.•_______ __________
too
107 ,
M 21 26 m 30 32 M 36 38 10
Figure 31. Comparison of Base (black) and Scenario 2 with no bypass now in the
Forebay of Lake Wylie
REMI 40
Effects of Scenario 1 on DO in Lake Wylie
South Fork Catawba Embayment
Modeled DO in the segment in which the Allen Steam Plant canal enters the South Fork
Catawba branch of the model for the base case, scenario 1 and scenario 1 with bypass
flow are shown in Figures 32 and 33. The results show that DO in the bottom 3-5 in can
be lower for Scenario 1 without the bypass compared to the base case, but that the bypass
flow restores much of the lower DO. However, the decreased DO observed for Scenario
1 in August and early September was not lower than occurs currently during the earlier
profiles shown for July 9 and 19, 2002.
_%2002-!A n io Hw bypnsVtV2P
2002.baseZM3.35
Adp YM29"a
00- -
00- _
0 1 2 3 4 5 6 7 0 9 10 n 2
_,2002-S.._ bo bw., VLV2P
20024
aw.IKM3.35
_12007-s—io Me bypass 11. lV21`
2007-b—IIQ. m
"M92M7 Ml5 _
_2007-sc.narie 1i10 bypass rlo.vbva
A.ag MIQ.2115
w..25 2107 bw
_,2002Sc.naiw l— bV..WLVZP
2002-b—IMM
M
�. _
0 1 2 3. 5 6 7 0 9 10 n 2
_a20024cm ,fo Hoby assVLWP
2002-b—dI M3.35
5..57210210"
65 .
0 1 2 3 6 5 6 7 8 9 0 11 12
_12007-s—r I mbypassilo.V1.WP
asa
2007-0.1M3M
AM 2807 O&W
�....
lye ........
0 1 2 3 a 5 6 7 e 9 g n 2
_2007an.bH sblpassllovVLv2P
2007-0acwsl KM 335
5-A 2"75535
no-• - -
_
. . . . . . . . . . .
. . . . . . . . . . .
0 1 2 3 4 5 6 7 0 9 0 n 2
_0002•S—e. lace b3p... VLV2P
2002-b -IKM 235
dd2920820f.10
as-
0 1 2 3 1 5 6 7 8 9 10 0 12
_12002-Scwario I+a b1P..Vl V 2P
2002-b -1 KfA
S-172102 Mis _--
Ti0""' -
Lyo--
O I 2 3 x 5 6 7 6 9 IO 1112
_12007 ---ice I "by"" 1W,V 2P
2007.b—.IKM 3.35
encs 21075LM
0 1 2 3. 5 6 7 8 8 0 5 2
_12007 -scenario bne bypass Fb VLVP
20072as-113.•2135
5 "2M710Y _
165 ................._.._.__._.
0 1 2 3 4 5 9 7 0 9 0 n 2
J2002Scsnxlo Lace bppassV WP
2007-bas-1KMOZ
A -U 2102 M:M
T70
10 -
ED
W• -
0 1 2 3 6 5 6 7 8 9 10 11 12
_12002•Scen.6.H bearsVLV2P
2002-0as-IKM3.35
1s9-- - -
'.
0 1 2 3• 5 6 7 9 9 0 H12
_12007 -scenario Mo bypass 6w V L V 2P
2007•basn.IlOh335
_002•Sc.na io 1 -no bypassVI.V2P
=-basM11*3.25
A" 22M2 WAG r
0 1 2 3 4 5 6 7 8 9 10 n 2
_12002•Snnuio falx bypass V LV2P
2002---1;Z3.35
0,9172M210M _
0 1 2 3 a s 6 7 8 9 10 n R
..12007 -scenario Im bypass Ib.VLV2P
200 -b—II&L275
Aaa.M 2"T so" _ ----
_{2007-uaoam Lno blpais 6o VLv2P
21107 -bas -I Mx35
Figure 32. Comparison of Base (black) and Scenario 1 with no bypass flow at the
Model Segment in the South Fork Catawba Branch where the Allen Discharge
Channel Enters—for 2002 and 2007
REMI 41
_Izooz-seen,ao }eems bpassvtvzP
2002-s canarb 11ao D Ws s.110`+! 9.95
Mp Zp2 p!!
160
too -
0 1 2 3 4 5 6 7 8 9 10 11 p
_12002-Scena61 1.15cros bypassV LW2P
2002•reenrb Ialb bpnivl KM 3.35
sw>nzpt p.�_
UO
,s0
--
0 1 2 3 1 5 6 7 6 9 tl 11 12
_12007—nano 113cms blpass flan WZP
are
t007MY pf0
0 1 2 3 4 5 6 7 0 9 01 0 t2
_12007-scanarb 1.15—bypass 0—vtw2P
2007•scmasb I--6,ws P—I KM 339
M620^ p7 pljja
. .
160_. _
1,3..
0 1 2 3 4 5 6 7 0 910 11 Q
_.12002.seenarb}15cros by NVL7
2002---io tam bpusvt 131! 3M
195-4-11-4-
0 1 2 3 1 5 6 7 6 9 10 It 12
_12002-S 660 M6cros b%WSV1.V2P
2002•lcrostlo t—bPP..iKM 335
_12007-scmario}15emsbypassI VIMP
2007-yyoab bgp—ss IKM335
. 7 280 pp _
O 12 3. 9 6 7 0 9 17 a V
-.12007-z—io M5c bypas56 VI.W2P
2007-xawio tsm byasr Oonet KM 3.35
S-ff 290 NW
ITD
0 1 2 3, 5 6 7 6 9 V 11-12
_1M2-Seenario }75cros bpassV LV2P
2002- iOismb5PMvI99.95
M9_
0 1 2 3 5 6 7 0 a tl 11 12
_12002 -Scenario }15cmr bVa59WtW2P
2002-fnnarb} psa , byassvtKM9,35
s..n:ux
164- I
0 1 2 3 5 6 1 8! to 11 Q
..12007.1-1.}Rsms bypars O-VLW2P
2001-semib lm bpsr 6orv1 KM 335
�it5 2p7 MM
_12 7-scenvi.}Plans bypass IImvLW2P
2007-aarwio Im blpas IiovA KM 3.35
6-" 290 ft44
_12002-Seenar6o }15cros bpssVLV2P
2002-surorlo Ino b V—t Ki,! 3 N
168__
155.
0 1 2 3 6 5 6 7 8 9 tl 012
_R W 2-Sem,rie mu— bypass V tv2P
2002-acw mb5pwwIKM335
ISO - .
155--%- - - -
0 1 2 3 9 6 7 0 9 tl n 12
_t2007-scenaro}IScros bypasrflorVLV2P
2007-soanarb lro bpasi Ilovv7 KM 335
1a..26 sp2 a7►p
0 1 2 3♦ 5 6 7 8 9 tl 0 12
_12007-scanuio }15cros bpass 1bv V L V 7P
2007-somarb}robypass Oo IK%2.75
6n27 2p2 ptp
70--
0 1 2 3 6 5 6 7 6 9 W n 12
..12ooz-see n.;o }Isems gpassvLvzP
tooasem.ie Ism IayasPn 10.k a35
155.
0 1 2 3 5 6 7 8 9 to n 12
...1X102 Scenarb 415cros byp,ssV V2P
2002--a }rob%—IKM395
O 72M p:p
_12007acenrio t15 m bypmsFlov WP
2007M"2ra Iam Dyass IbwlKM351
11..n 7 am
Figure 33. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1
with 15 cros bypass flow at the Model Segment in the South Fork Catawba Branch
Where the Allen Discharge Channel Enters—for 2002 and 2007
REMI 42
Main Arm of Lake Wylie
Figures 34-40 present the model results for DO for the main arm of Lake Wylie, from the
PA intake to the Wylie releases. These results show that DO is not significantly affected
by the Scenario I cases.
C.,Z002-s'".". D. bv.'W,-�
,� � C2002-S� b5pVtV
C_,WOZ.Sa.4. 4. bp..W1V2P
20024-1=575
C-__,2002-S,—e. I— b9p",vtW2P
2002-b—IM25375
C_'002.s ..... *1.,Obsp �Wp
2002 -b -10M25575
2OO2-b.MKA2U?9
2OO2.b_1KK25M
A"28828858
. .
. . . . . .
. . . . .
.. ... ..:-:_
770 ------ --
fro
......... I ...... I
— ---------
. . . . . . .
. . . . . . .
.... ......
. . .
. . . .
..........
.......153
55 ..........
'so
0 1 2 3 4 5 6 7 8 9 10 O 12
0 1 2 3 4 5 6 7 0 9 10 n 12
0 1 2 3 4 5 6 7 8 3 M n 12
0 1 2 3 4 5 6 7 0 9 ID fl 2
0 1 2 3 4 5 6 7 0 3 10 5 2
C_1UOZ S-4, Yw bpw,WI.VZP
Q_QO02.S...i. Y- bspV�
0=2-U d. L- bpWVZP
C_QOQZScW.—bqp..VtW2P
C_"2-s"bMwlep 'Swtv2p
2002"IMM75
2002-0-0135:25375
2002-b—IM 25575
2002 -b -1=55M
170--.•.. .
In_
170.
165815
. - ......
10
............
Imo.............
-----------------------
0 1 2 3 6 5 6 7 8 9 V Ti 2
0 1 2 3 4 5 s 7 a 9 io n 12
0 1 2 3 4 5 6 7 8 9 V 11 2
0 1 2 3 4 5 6 7 6 9 10 n 12
0 1 2 3 4 5 6 7 8 9 10 T1 t2
_m7-- �bpnzvtwp
007--Hbpusfl"WIVZP
007--iot—W ..n_vt�
ZOOTi.—bv..P—V1VP
.. fi-Wl�
2007.6—WAM75
2W=2075
2007-h.�W5M
2W74—AM25.575
J.J29 M7 8"M
2007b_10425j5
ANN2N7.
2"7
M7"
. . . .
. . . . . .
. . . . .
-- --- ---------- ---------
f7o --------_--
. . . . . . .
T70
ITO.-
--------- — -------------
2 3 4 5 9 7 8 3 10 n 12
0 1 2 3 4 5 6 7 8 9 W n 2
0 1 2 3 4 5 6 7 8 9 W 5 12
0 1 2 3 4 5 9 7 9 3 8 fl 2
0 1 2 3 4 5 6 7 8 9 10 n 12
2MM-1 25B75
A-" ZNY 6B."
Flo.WIVZP
290?-b~KM25JM
5-072 "As
_Q007 -scenario Nro 111AV2P
c..V 2KY
0 1 2 3 4 5 6 7 8 0 V 11 9
12007iDH blp IWMP
2007-b-71 M23375
SO
0 1 2 3 4 5 6 7 0 9 10 fl 12
Figure 34. Comparison of Base (black) and Scenario 1 with no bypass flow at the
Segment Where the Allen Steam Plant Intakes are Located—for 2002 and 2007
REMI 43
_12002-S—bYM—b, .,Wt 2P
200Dso— Inobps KM25!78
11M6 2026
0 1 2 3 6 5 6 7 9 9 6 n 2
_12002-SpOnio cros 415byp ass V t V ZP
2002 -snub Ino Dlpasml1Q1703M
Ewa a6266�6
IM
1 7-
0 1 2 3 4 5 6 7 8 9 0 9 2
_12007-scmabL5mvb,USfl W1V2P
2007•ram4
ri ,— bparnow110.225M
ja1662667M:0 _
KS--
--------------
0
_0 1 2 3/ 5 6 7 8 9 0 9 2
,2007--b}bsms bpas Boat/I.V2P
2007•rema8o Ino Op6sr0orr110+727.l76
XOEwa zw7 66!6
...........
0 1 2 3•! 6 7 8 9 0 5 2
-.12002-S—.x Lb bypsssVtV2P
2002-scwlmo} 6yan1MMM
hKl 26670# _
. .
. . . . . . . . . . .
0 1 2 3. 5 6 7 8 9 0 0 2
..12002-Scmuio 415cros bypass V L V 2P
2 WI-sewirn Mo bw..A l W b 2167!
1"67 200 M.M
p. _
b7-
0 1 2 3. 8 6 7 8 9 10 9 2
_12007 -scenario WScros bypss 8 -WP
2 W 7-soma0o Na b9pasr nbw110'Q 2MM
J 2M7M0
_120025—M sbcma byp— IV2P
2002-uworieN h D K%2!.675
awn 2M266.66
0
0 1 2 3 0 6 7 8 9 10 n II
_12002-S...i. m5—byps.VtV2P
2000smovlo I m byasaI M 25.67!
S.W 262660
0 1 2 3 6 5 6 7 0 9 1D 11 2
_{2007-sar1n 46ans bypsa 11MWtV2P
2007aemab Ino 6pattnowlq.425775
i2f 207 MM
..2007 -ac woFbcros bpasse I.V2P
2W7aandb}no be—nowMA25M
6a'
..
...........
0 1 2 3. 5 6 7 8 9 0 0 2
_2007-scenab I bans bpass nm.V tV2P
2007—vio Mo b6prr Bo7a1I3h OM
6twa 207 66:66
_2002-Scmub I•bcnm bpasVIV2P
2002-soso Bio Mn Opaas.110.t 29bili
sNM62MS Mf
------------
. . . . . . . . . . .
. . . . . . . . . . .
0 1 2 3 6 5 6 7 8 9 0 it 2
_12002-S—do I -bans bypass V LV2P
200 --a L bya KM25575
96.27 26M M�6
. . .
. . . . . . . . . . .
. . . . . . . . . . .
0 1 2 3 6 5 6 7 8 9 0 11 V
_12007---I. tAScros bypaa 9oa V L V 2P
2007-umarib Ha byptr euwl10A25775
6666 207 M0
. . . . . . . . . . .
. . . . . . . . . . .
0 1 2 3 6 9 6 7 8 9 0 8 12
_2007- udoNScrosbypasr,. I.V2P
2007-spurnOwblparlb IKPA25775
0 1 2 3 1 5 6 7 6 9 0 5 2
_12002•Scmuio 4bcma byaa V L V 2P
200baunario t+a blD.saN 13J126b78
Awf 26616656
K7-
160_......._.. „...............
0 1 2 3. 5 6 7 8 9 0 11 2
_12002 `amain I -trans bpusVLWP
2002 -samara laa byaszaI M 26A75
6007202660
16!
lam.. .
0 1 2 3 1 5 6 7 8 9 0 9 12
_2007acm ab M— b". Boa V 2 V 2P
2007•0roanub In001pas fbw197•t25.778
6w2M7 M0
E5- - -
155
0 1 2 3 6 5 6 7 8 9 10 6 2
Figure 35. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1
with 15 cros bypass flow at the Segment Where the Allen Steam Plant Intakes are
Located—for 2002 and 2007
REMI 44
C.-12002-s—fi.I.. bw ... VLWP C:.11002-S——byp ... VtV C-AM2.U..i. Mo bp—WZP bjp",V WP C-2002'S—w Fm bsp—WP
20024&sWKM6.147 2002-b—A10`4 &MY =-b—
MM 2M2�m�M
049."7 z.IQX?
aIYY 2M3 .77
---- 4. - 1yo '77-I'T 170--;- --------- . . . . . .
-----
. .. . .. -- ----
-----------
. . . . -------------
----------- . . . . . .
0 1 2 3 4 5 6 7 8 9 10 16 U 0 1 2 3 4 5 6 T 0 9 10 fl 12 0 1 2 3 4 5 6 7 0 9 10 n 12 0 f 2 3 4 5 6 7 9 9 10 n 2 0 1 2 3. 5 6 7 0 9 10 fl U
?,ObyPHjWtV2P C>.12002-Sctnano Mo bpAssVtW2P QAOU-U .,b".bqp.,VtV2P C--Q5p—
G02-� ioMobWP C",2002-S.W' t-bP—VLV2P
2002�b—1 KPA 547 2002-b~MO."? 2002�-IMI.147 Mb -1=6.97 20024.-11018:8.17?
5 72M2 SIM 6A17 MM S"" 2M ee.M OA72M2 01.40
r10 - - T .. ...........
M--
. . . . . . . . . . WS ------- ..........
X5------------ ...........
. . . . . . . . . .--
......
. . ............. ........ -----
10
6 6 7 8 9 M n 12 0 1 2 3• 5 6 7 9 9 M V 2 0 1 2 3 4 5 S 1 0 0 0 tl 2 0 1 2 3 4 5 G 7 8 9 10 V 12 0 1 2 3. 6 6 7.6 9 V n U
-2007—iOMOb,PMSftWV1VZP 2M -"? MO b2p"s VLVZP 2007-10 b"— Www vzp -CM.—fi. 1— bsp— 11..Vtv2P
=7.b. -�.IME%7 Al
20076 nkkuy 2M7=1147 2007 2DD7 —IMM47
MM Jd0 SM7 Mfg my M" A.WM 2M7 Mfg AwpYMTM
......... T7g
170
---- ------- .. .......
---------- ---------------- - --------- -- . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
............. -.. -- ................. ............... ------------
------------ . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 1 2 3• 5 6 7 8 a 10 n 2 0 i 2 3 1 5 6 *7 i 9 fo -:-!, b 1 2 3. 5 6 7 9 9 10 n 12 0 1 2 3. 5 0 7 8 9 10 fl 12 0 1 2 3 4 9 6 7 8 9 10 V U
A..0 2W 6*-"
RS-- -0 1 2 3 4 5 6 7 0 9 10 TV V
170 -
155
2 3 4 9 6 7 8 9 10 11 2
Figure 36. Comparison of Base (black) and Scenario I with no bypass flow at the
Segment Where the Catawba Nuclear Plant Intake is Located—for 2002 and 2007
REMI 45
_12002.S-,!,
2002-sc„u GrobranM9.167
bn22142esm
VO -
---------------------
IN -
0 1 2 3 1 5 6 7 8 9 r 5 V
_12002.Stt ioI-gems bppasVLVZP
200twm.9D Irq brawllNk 0.N7
31.f28 2142 Mi0
Rs--
55 -
0 1 2 3 1 5 6 7 9 810 5 Q
_aooi-sDmyb i-snms bgprs mvvl.v2P
2007•.annb Mo Dgpns IID.w I I0@ 8.N7
.aM 1417 Ms.
0 1 2 3. 5 6 7 8 9 10 11 tt
_12007-scenub I.15tms bras R"V1.v2P
2007-.o.nMD }n. Dra. ibwl l3•b 0.147
11-22 2147 MM
110-- -
155 _
0 1 2 3 5 6 7 9 9 10 11
_.12002•Scmub MI -1 bV sVtv2P
1002•u.sorb Loo brant IUt 5N7
_12002•Sc ,io YMMb9paWMP
2W2aowWbb bW""1MB.147
_Q=.SMAa F15cros brasVLV2P
2W2.—m6o Nm bwMs lKM 8.47
8..91 2M2 MM
_12882.SnnviO4M=bgDasVLV 2P
2002.—= t— brawl KPA 8.X7
5-772M2 MA@
_12007-.c.nrb 115cros b9pxs IbvVLV2P
2007•.c.n.. N_ D/Da. ".—I IM 0.147
Jdn 2147 Mw
_1x0or-:esn.rb 1-san s eras rlu+n.v2P
2007ae froDeasRDwIIPhB.N7
di292M7 14!1
_120Di-sc.nrb I -Plan, bras VLV2P
2007ae,Dnb Dsm bp0a! 11-11049.M7
B ?2M7 MM
p.
0 1 2 3. 5 6 1 5 9 10 0 12
_12007-sa I.M., brasI VLV2P
200T...n.b t- bp.. s Ibwt 0& B.N7
5-17 2M7 M
..1200bSwn M5cm,
..99
x 2 br•s,VLV2P
200 U M214U fmbp.ml IOk &N7
M:M
0 1 2 3 1 5 6 7 8 9 10 5 V
_12002-Swnano 415cros D6D+ VLV2P
2002_"O a bpas.l YNk 8.147
B-27 2M2 MSM
no-- -
165 ........ ............'—...
0 1 2 3. 5 6 7 9 9 1D n Q
_007. cenuio 4soms bgpas flo.V.447
2007•sanrb fno brass 6ow1/7d 5.N7
71.169 SM7 t►3w
--
159-- -
0 1 2 3 1 5 6 7 8 9 V 5 p
_12007-, —d.4M5 byP.ss DovVLV2P
2007— M. bras RD-/ KK 0 M7
6-272"7 M:M
g90..................
0 1 2 3/ 5 6 7 8 5 10 5 t2
_s2002•Scwuib.scm, bpia,V1.V2P
2000-am.rio Mo Dras,01M2 8.N7
0 1 2 3. 5 6 7 8 9 10 1112
_QM.Sclnwo MMSbrasVLV2P
2D02-sanrb Ma brasd KM 6.147
Ca72M2M
_1200)sc.nrb F6aa D1D.ss ibrV LV2P
2007ac.nrb /,N Dlp as f bwl ph QN7
11.a18 IM1 M.M
0 1 2 3. 5 6 7 8 9 10 0 2
Figure 37. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1
with 15 cros bypass flow at the Segment Where the Catawba Nuclear Plant Intake is
Located—for 2002 and 2007
REMI 46
C"002-S,n - 1m b�WLWP C_12002-�nwo 1- b5Pa'.-WP C,2=-� o b�,WtWP �C�-�w. Imb�,-2P
=—
2�IKKO 2M2bmaIIQAO i002besev110.l0 2002t-d1K0 =24..v/0MO
. . . . . . . . . . . . .
tro 170--:-:....... . �. . TM _J ..... Li .0 -4:
4 ....... . 4- ym
..... ..
.........
rA X5 ......
.................
0 1 2 3. 3 6 7 9 9 10 U 2 0 1 2 3 4 5 6 7 8 9 M n 2 6 7 8 9 v n 2 0 1 2 3 4 5 6 7 8 9 ID n 2 0 1 2 3 4 5 6 7 8 9 10 ft 12
C-2002-S--I-bV.MV2 C_120 2 -S -Wo I -w byp ... VtV2P C-M.S, io�bq-WMP C-�2�,�L,bWuMWP CMO2-��I�byp,,,NWP
2N24.M M 0 2002.bL!1JMO 2002-b—IMO 2002bauv110A0 2002b KPAO
9.7172117
-W20" 0a 7 ORAG
. . . . . . . . . . .
170 IM: - � -Co
o.
.. .........
vo
X5
IN05.
165 -----
--'----:_^---------=----0
..........-........... is SO ------------ ------------- ......
D 1 2 3. 5 6 7 6 9 10 fl 4 0 1 2 3 4 5 6 7 8 9 0 n 2 0 1 2 3 4 5 6 1 0 9 10 h 0 0 1 2 3. 5 8 7 8 9 10 n 12 0 1 2 3 4 a a 7 a a 10 it t2
W-.b,p..MWLWP io�bqpmflwvtw� -IM7-,.� � bV..
2007baAv1 q.40 "
2DO?4&;aO 2W-
741=0 2007b~KKO 2007.6—I0MO
A!,j@ 2M7
my
.77
..........
..... ..... ...
00..:_`. .2
------------ . . . . . .
. . . . . . . . .. . .
SMS• ..... ...... ........... %S ---- ------
--- ------ ------
. . . . . . . . . . . .
------------
. . . . . . . . . . . . . . . .
0 t 2 3! 5 6 7 0 9 10 n 4 0 1 2 3 4 5 6 7 0 9 10 n 9 0 1 2 3/ 5 6 7 8 0 10 P 4 0 1 2 3 4 5 6 7 8 9 10 n 12 0 1 2 3 4 5 6 7 0 9 10 fl 12
-12007—Om bjpus flwViWP
2007basasd 10.40
1177212N] 11A1
00
0 1 2 3. 5 6 7 9 9 10
1- bjp- FI-WIV2P
2007-b—IKMO
9a717 2"? W"
2ON-b—IMO
S-17 2M7 11i1
............
1 2 3. 5 6 7 8 3 10 fl %2
-12007--wn, M bW-
2007.b~IM0
s 27 2M ftm
0 1 2 3 5 6 7 a 9 v n v
Figure 38. Comparison of Base (black) and Scenario 1 with no bypass flow in the
Forebay of Lake Wylie—for 2002 and 2007
REMI 47
_.12002 -Sanaa 415cros bypass V LVIP
2002scn MabyuntlaRO
J.an 2u2 M� _
-MU.S rn 10 LRCm3b PWSVLVZP
2002sawlrio Ono by—I KP t 0
A.." 202 91-h
_Q007.31,1110 tls m bypass BasVlV2P
20072wn sBe f ao Dyns Bwv110,R 0
J6gf xMt 1!M
_OT. nlio Lbbypan IbvV6V2P
2D07-soM1t0 Mw bWaf s howl pk 0
JWn 2M7 0M
_12002-9clurio 4bcros byassVLV2P
2062s1w11b Lno byass.l13s1:0
xm x�n Md�
0 1 2 3 f 5 6 7 8 9 b T Q
_12002.9Yenario 1.10 bW— lV2P
20022ce bOnobyasw110.k0
S"IT 2M2 MM
165 ........ ........... .......
0 1 2 3 6 5 6 7 0 9 10 11-12
_.Q007-s1m1:a 4bmn byazs BwVtV2P
2007-3<mlio Ono byes s BowI1M10
J6Q9 207 0,11
_0007-sc,naio 4Rcm3 Dyas s Ooe V t W2P
20072cmrb lr.o byn 6 Bowl10.! 0
se.A x070:M _
_Q002-Scrnlc 4Rcros 5yassVtV2P
2002221/10 Im byassvl lU! 0
•.5M zlaz M:M
0 1 2 3 f 5 6 7 8 9 D T Q
_Q002-Scmaio 4Rcros bspass V I V2P
Z..2 2002 MAIWw1I2.20
fIw272M20�
_12002-S1rnu10'R —EyxsV1V2P
2002-sswia .M ayP— n.!0
31.Br arz Mia
no'
to
at23fes7ealonQ
-Q002-S1rs.ao L?Scrosayp—VLV2
2002-s ioN b,0—IMO
OWN NQ pM
-
KS -
0
. .
O 12 3 f 5 6 7 5 9 b T Q 0 1 2 3 4 5 6 7 8 9 10 T Q
_Q001-scrnvn
1-15 b,—B-W-P
2007•run110 poo bean I106.A 104 0
06627 207 0:M _
Figure 39. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1
with 15 cros bypass in the Forebay of Lake Wylie—for 2002 and 2007
REMI 48
2002-HaseW11-11
2002-BaseM Dom releases 2002 -Scenario 1-1 5cms bypassWl Dom releases
2002 -Scenario 1 -no bypassW1 Dam releases
18
9 -------------------------------------------- -------------- ------------ -------------- ----------- ------------------------------------------
---------------------------- --------------- -------------- ------------- -------- -------------- -------------- ------------- -------------
Z7 ----- — -------------------- --------------- -------------- I --------------- ------------- I ------------- ------------------------- ---------
C
ft
6 ----------------------------------------------------------------------- ----- ------ ------- - ----------- ------------------- — -------
S---------------------------- ----------- ----------- -------- ------ -------------- -------------
T
Ol l � �. r
----------- ----------------- -------------
4 ------------- ------------- --------- --- ------------ ----------------
0
2 3 - ----------------- ----------- -------------
---- --- --- - -------------------- ------- - f -----------------------------
2 - ------------ -------------- ------------- ------------- -------- -------------- -------------------- ......
I----------------------- ---- -------------- ------------- ------------- ------------- I -------------- -------------- ------------- -------------
180 190 200 210 220 230 240 250 2160 270 260
Day
Figure 40. Modeled Release DO from Wylie Hydro for 2002. Results are Plotted
when Generation Releases were Greater than 1000 cfs.
REMI 49
Effects of Scenario 2 on DO in Lake Wylie
South Fork Catawba Embayment
Modeled DO in the segment in which the Allen Steam Plant canal enters the South Fork
Catawba branch of the model for the base case and scenario 2 without bypass flow are
shown in Figure 41. The results show that DO in the bottom 3-5 m did not drop as seen
for the Scenario 1 results.
_12002 -Sri nub 2 -no byp ass V 1 V 2P
2002b—IKM2.35
11-29 2992 Mag
0 1 2 3+ 6 6 7 9 9 10 11 Q
_12007-snnalio 2 -no bypass {IoWLV 2P
20074a1OKM3.3!
Art 297 9109
_Q002-Sc.n 2robq.as.VLV2P
2=b sw11043.3!
Ali, 2M2 9F9
/;;iii -i-----
5 4. 4- 4.
O 12 J+ 0 6 7 8 0 m n Q
Q002.So C.Inobypas.VLV2P
20024aw1a3.7!
§MN7 zM2 M!9
IW - .
155--
0 1 2 3+ 6 6 7 0 9 10 11 Q
_00074—n 2n bypassbonVLV2P
20074sw1KM3M
AIR 297 MM
_Q002-Scwario2rob7p"S 1.V
200Mb.-A M3.37
..12pp2.5c.nario 2t typ85sVLV2P
2002-b—IM3.35
_12002-Scenaeio2roD3Das.VLV2P
2002b.s. IM3.3!
A-12 2M2 9:M
_12002-Swano 2ro Dypus V L V 2P
2=.b. IKM3.90
9 172929&9
0123+l67esmnu
_12007.sa io 2ro"Pus11wWWP
20D74sw1KM390
AQ9 297 9M
_12007- —io trio bypass --WP
20074swIKM3J!
A— n 297 9:9
_QN7a cwxb trio bypass lbw V L V 2P
2007-0aw110.23.37
_12007 -scenario 2ro DyPasseovVl.V2P
n..n 2979s,
..42002-Sconzm 2i bypassVLV2P
2002b IKM3.35
g.,272M2,H2
0 1 2 J 1 7 s 7 8 9 to n Q
�ZOOl scwalb 2 --bypass OovIVLV2P
20D?4 -11 MJ3!
Ib�99YM79l9
no.
0 1 2 3+! 6 7 6 9 10 n Q
_.12007-sc aria ib 2ro bypass O . V l V 2P
20074sw1gk 3.75
,.9272979!9
1+9--'-x--'-'-'- -
sl--' -
co-- -
0 1 2 3+! 6 7 0 9 10 n 12
_12002 -Seen V l0 2ro bypass V L V 2P
2002b-1043.35
OMN 292 "M
_Q007-scen 2-mgpxs1 VLV2P
2007basw1KM 3.35
s—r 297 elm -
15. _
0 1 2 3+! 6 7 8 9 tl n Q
Figure 41. Comparison of Base (black) and Scenario 2 with no bypass flow at the
Model Segment in the South Fork Catawba Branch Where the Allen Discharge
Channel Enters—for 2002 and 2007
REMI
50
Main Arm of Lake Wylie
Figures 42-44 present the model results for DO for the main arm of Lake Wylie, from the
PA intake to the Wylie releases. These results show that DO is not significantly affected
by the Scenario 2 case without bypass flow.
C_12002Semvu 2+ b9px VtV
2002b, 41KM25575
J'0' 2M2 Mil
163 --•---"'-'--'"-•""""-^_^
per_...._.._.. ^. .......... ....
0 1 2 3 4 5 6 7 8 9 10 n 2
C_12002.S.-6. Zoo btpa VLV2P
2002bwsr1KM 29575
------------
M¢12M2 Mi8
I _ _
0 1 2 3 4 5 6 7 8 9 10 1 2
..12007-scmrio
2— bypass ft tV2P
200M4s-1KM25.675
165-- - -
0 1 2 3 4 5 6 7 9 9 10 II 2
_12007-sc4r 2a 4"', 6—V1V2P
2007-0x-1134 25 5 7 5
•g28 2M7 MY
170--
155__._.._._.__• ...............
0 1 2 3 4 5 6 7 6 9 10 tl Y
C_I 002-Scmrio 2n0 b9pas WMP
20024x-1KM25.075
.Idn 292 MM
C002Sn (. 2m b9Pa VLV2P
20021x-IKM25.5M
QO__
165__
150 ...........................
0 1 2 3 4 9 6 7 8 9 N 1 2
_12007-scenrb 2 no b9pess Ib.VI WP
2007-DusW KM 25.575
160 -"'-'—'-•-"'""•-'-"'-'-"'_.
0 1 2 3 4 5 6 1 8 9 W n R
_12007-scenrlo2a b9pxsFb.V1V2P
2007bxwig423575
SM2 2M7 M.M
-"
0 1 2 3 4 5 6 1 0 9 10 11 2
C_12002 -Sc a4 2—bPU9VtV2P
2002b4s.OM25375
J41282M2 Mie _
160""•-'-"•-^"^"•"•--._.._._.
------------
0 1 2 3 4 5 6 7 8 9 11 11 2
C_12002.S-4, 2no bp..V 2P
2002bx-10&25576
5-17 2M2 Mil _
R0__;_;.
165.. _
60__ __ _
0 1 2 3 4 9 6 1 8 9 10 1 2
..12007-scenario2igbypxsF .V WP
2007basertKM2e57e
i 2M] WAS
_12007-ecenrio2+ b7pxsfio. WP
2007b-
xIKM 27575
S V 2M7 Mp
C_12002 Sce o2—b9pn VLV2P
2002-0x-113425575
A. M 2812 06-40
0 1 2 3 4 5 6 7 0 9 10 1 2
�Imoz•spmrb z -no b9v4ssvlvaP
2002bx-iKM 25575
4e R7 2M2 M!1
• . . •
-
K6- 1
0 1 2 3 4 5 6 7 0 9 11 n 2
,2007-scewrio 2-m b9 Ps ss Flo.V L V 2P
2007-0xer1.25575
It.Ke 2M7 MM
Ro-
0 1 2 3 4 5 6 7 8 3 10 n 2
_12W7-xm 2-m b9p4sse VLV2P
2007-0x-113425576
30272&74.
6.12002-$O 1121 bypxs V i V ZP
20024x-IKM25e75
A.M 2882 MJ1
165 -
160 ...........
0 1 2 3 4 5 6 7 8 9 10 n t2
[:12002-Scmrna 2 -no byps[tV lV2P
2002-0xMgh 25375
_12007-sa 2- b9pxsIb VtV2P
2007-b a 4K h 25.53
Figure 42. Comparison of Base (black) and Scenario 2 with no bypass flow at the
Segment Where the Allen Steam Plant Intakes are Located—for 2002 and 2007
REMI 51
C_12W2-Scmrb 2-ro bppassV WP
2002-0b_l10h0.N7
C_.120025croseio 2no bgpassVLV7P
�-0aaw11O•t 0.N7
Jrp 2882 M.r
170--'-•" _.. n0 - -
...... .................... .. 199__._._ _._.. _._.._...__...
0 1 2 3 4 5 6 7 9 9 71 0 4 0 1 2 3 4 5 6 7 9 9 N n12
C_t2002-Soenuio 2ro bppa.sV LV 2P
2002Lawr17M 0.N7
A..ra xw2 u+o
Iss
0 1 2 3 6 5 6 7 9 9 10 5 4
_%M7.1nn22 rob9pus IwVMP
2DOM—I1M9.11]
d.M I'? raj _
_12007 -scenario 2- bpass Vo VLV2P
20071asw1XKB.H7
71y212rr rib
WO --
r-- -
0 1 2 3 4 5 6 7 8 9 10 M 4
C_uM.Scomrio 2— bp,SzVLWZP
2002.b .I M0.N7
s..r 2x2 r:r
vo-
vs
..........
0 1 2 3 4 5 6 7 0 9 10 II 2
_4 10 7-semarb 2-ro bypus no W V L V 2P
2007-0u IKd0.147
J.M my W:r
2D02 -b 5IM 8. ? bYD<sVLW2P
2062-0uw110.! 0.NT
C_12 W 2� ScmmiD 2-ro bpDas s V L V 2P
2002Jawr1/M 0.H7
. ............
. . .
.16! . .
..... ......
. . . . . . .
. . . .
0 1 2 J♦ 5 8 7 8 9 bl 8 4 0 1 2 3 a 5 8 7 8 9 ID 5 4
C_ M.Semrio2mbVW5WLVZP
20022 IKM8.H7
8w0 2x2 MU
_12007-scm n220 bypu. II NLV2P
2007-0uw10Me.N7
M" 2x7 rN
. . . .
----------- .............. �._._._.. _._�.._.._...... _.
0 1 2 3 4 5 6 7 8 9 0 0 4 0 1 2 3. 5 6 7 8 9 10 7 4
_2W7 -scenario 2-m bypass W.WP
2007-0asMI M8.%7
0 1 2 3 4 5 6 7 8 9 10 5 2
_1200T-scmrio 2-ro bypass IIwV1.V2P
2W7-0asw'=..N7
G 172x7rr
...........
M-------1----
0
- -0 1 2 3 4 5 6 7 8 9 10 7 2
C_402.Semrio 2-ro b9pu.VLVZP
2002-0u..110.t 0.H7
ewi72r2 Y.r
lss-- - --
0 1 2 3 4 5 6 7 8 9 IDP 4
_%=7-snnario 2- bp- FlanVLVZP
2007-0uwlgh 0.lR
MN8 2x7 rf8
n0._,
19-
0 1 2 3 4 5 6 7 8 9 10 0 4
_n007-sunaio2—bpassI VLV2P
2W]-0aw7IOh0.M
Se2Z72887 M:r
-
as -
0 1 2 3 6 5 8 7 8 9 10 11 4
C_OM.Scmaro 2—bpas.VLV2P
Mb—MAO."?
C_1 M-Scm 2-Dobpas W2
M.basw, m0.N7
080.7 2982 GOM
n9--
0 1 2 3 4 5 6 7 0 9 10 0 4
_x2007-scmario2.wbopusf) .VtV
2007 b—IM 0.N7
A-0 2x7 r..
1
. .
0 1 2 3. 5 6 7 9 9 10 0 4
Figure 43. Comparison of Base (black) and Scenario 2 with no bypass flow at the
Segment Where the Catawba Nuclear Plant Intake is Located—for 2002 and 2007
REMI 52
C_12002-S...m taw bV.. LV2P
2002-b—II0h0
31..z� zw2 ai6
no-
.
0 f 2 3 1 S 6 7 9 9 g T II
_12007-s—A.2-mbp ssfb.VLV2P
20D7b—", KMO
"M "a "As
0 1 2 3 1 5 6 7 9 8 10 T II
-.12007-scmlib 2-noDp— fb.V LWP
2007-0uwll 0
3L..H 297 0�
C_¢0028 n.io 2—DpusVLV2P
2.902-bMPMO
a® M -
C -%=D msno 2-m DlpusVLV2P
2=b~KVAO
ans72929.M
no-- -
WS-.
To -
0 1 2 3 1 5 8 7 8 9 10 T¢
_12007 cm+rio2-m Dlpusib.VLV2P
2007buw1KKO
Jan 29" MW
0 1 2 3 1 5 8 7 8 9 ID 11 ¢
_12007 -ace 2-M DIP— II.WLVZP
Isw113.t
2007-00
9.M7 "a M.9
o1z3+ssresgnII o1x3+s6vesgnII
C_12002-S—viO2a0 bVU5VLVZP
2DO24—IKP C
s.N7292WN
-
to-
0 1 2 3 1 5 8 7 8 9 g n II
_1200]-umxio 2+00 bpu r 8p W L V 2P
2007-Ws1.I10h0
alb 2971M
..92W.Sosn.b 2 -no D9pus Bo.VLV2P
201DM M O
8rm772979M
195
0 1 2 3 6 S 6 7 8 s ID n 12
C..¢002-Scfnuio2t D/pusYLWP
2002b.Mg40
asrs� sav 9s
0 1 2 3 1 5 6 7 8 9 g n 12
C_¢002-Sctwio 2mo D9pUS V L V 2P
2002bm IKKO
Bn27 292 MM
0 1 2 3 1 5 6 7 8 9 10 T II
_12007--ic 2 -no typos Ib. V L V 2P
2087-0Isw110tr.0
wMM 2897 Mie
170-- _
163
0 1 2 3 4 5 6 7 8 9 10 n¢
_12007-scrosib 2 -no bpass floc V L V 2P
'2007buwlgkO
61..27 2M7 M:�
100-- -- -- - -
0 1 2 3 1 5 6 7 8 9 10 n II
C_12w.5.m 2m DpurVLV2P
2002D.s1.1040
ao 2wz ales
to
0 1 2 3. 5 6 7 5 9 10 T¢
C_12002-Scmrw2m DpusVLV
2000-0arwrllWl O
170-• -
.
0 1 2 3 1 5 6 7 8 9 10 n II
-12007-—i.2—D9pur fb.VtWP
2007b. w *&O
21.en 2979.a
0 1 2 3 1 5 6 7 6 9 10 V II
Figure 44. Comparison of Base (black) and Scenario 2 with no bypass flow in the
Forebay of Lake Wylie—for 2002 and 2007
REMI 53
4. Comparing 2007 and 2002 Operations
Inflow Comparison
The cumulative inflow coming from Mountain Island for 1998, 2002, 2007 is plotted in
Figures 45 and 4.6. The cumulative inflow from Mountain Island for 1998 is included-
because
ncludedbecause it was a more typical hydrologic year, and shows how relatively low the flows
were in 2002 and 2007. As can be seen in Figure 45, the January through April inflow in
2007 was considerably higher than in 2002. However, Figure 46 shows that the
cumulative inflow was generally the same for the May through September time period in
2002 and 2007. As can be seen in Figure 47, which is a plot of the daily flow in the
South Fork Catawba River; local inflow followed the same pattern as the inflow from
Mountain Island.
Lake Wylie Cumulative Inflow Based on Hourly Releases from
Mountain Island Dam
25,000,000
—1998
20,000,000 —2002
3 —2007
0
a 15,000,000
m
�a
E 10,000,000
0
U
5,000,000-
0-
111 2/1 314 414 516 616 718 818 919 10110 11111 12/12
Date
Figure 45. Cumulative Inflow to Lake Wylie from Mountain Island Starting on
January 1 for 1998, 2002 and 2007
REMI
54
Lake Wylie Cumulative Inflow Based on Hourly Releases from
Mountain Island Dam
10000000-
9000000- —1988
8000000 —2002
g
7000000-- 2007
0
a
6000000-
5000000-
E
0000005000000E 4000000-
3000000--
21000000
00000030000002000000
1000000-
0-
511
0000000511 611 713 813 914 1015 1116 1217
Date
Figure 46. Cumulative Inflow to Lake Wylie from Mountain Island Starting on
May 1 for 1998, 2002 and 2007
South Fork Catawba River at Lowell Daily Flow at the USGS Gage
will M
�i�l■ 1111110111111
LILT ►l �L,.l l� Illh�l,
Figure 47. Comparison of 1998, 2002 and 2007 Daily Flow in the South Fork
Catawba River
REMI
55
ff
r
Allen Steam Plant Operations Comparison
The average intake temperatures for Allen Steam Plant for 2002 and 2007 are shown in
Figure 48. This plot shows that the intake temperature during most of August 2007
exceeded 86 °F, but the intake temperature in August 2002 dipped below 86° F for about
half of the month: The- flow -weighted discharge temperature is shown in Figure 49,
indicating that August and September 2007. was warmer.
Allen Average Intake Temperature
94:
120
92
—2002
90
—2007
115
88
110
LL
-V
LL
0
0
g6
LAA A
milli
Uk2
E4-
d
CL.
d
CL
E 90
E 82
a
E-
80
78-
80
76
75-
570711
74-
711 7/16 7/31 8/15 8/30 9/14 9/29
Date
Figure 48. Allen Intake Temperature
Allen Flow -Weighted Discharge Temperature
120
—2002
115
—2007
110
105
LL
0
a 100
E 95
d
CL.
E 90
85
80
75-
570711
70-
7117/16 7/31 8195 8/30 9114 9/29
Date
Figure 49. Allen Discharge Temperature
REMI 56
5. Conclusions
Based on model simulations for 2002 and 2007 conditions, these conclusions are made
regarding the effects of Allen supplemental flows using the proposed bypass system:
Model predictions for 2002 showed that the supplemental cooling water provided
by the bypass system allowed the temperature limits for the PA CCW discharge to
be attained even though the plant generated at full capacity for 24 hours per day,
for the period July 18 through September 14. For the month of August, the,
average temperature in the CCW discharge unde fullload condition m s- �
decreased from 108.4 to 101.7 OF by using the bypass system. When generation
was cut back for 1 ours each day, the temperature limits for the PA CCW
discharge was attained without using the bypass system.
Model predictions for 2007 showed that the supplemental cooling water provided
for they
by the bypass system allowed the August average discharge temperature
-61
PA CCW discharge to be reduced from 110.7 t 04.1 for the case where t e
t generated at full capacity for 24 hours per ay or the period July 18' through
plang p ty p
�-
j
September 14. For the month of July, the average temperature in the CCW
discharge under full load conditions was decreased from 102.5 to 99.8 OF by using
the bypass system, and the temperature limit for PA CCW was attained. When
generation was cut back for 12 hours each day, the temperature limits for the PA
CCW discharge was attained without using the bypass system except in August
when use of the bypass system reduced the CCW discharge temperature from
103.8 to 99.0 OF. These results show that the bypass system can allow
substantially greater amounts of generation than'currently allowed under the
CCW temperature limits even in years like 2007 when full attainment may not be
possible, i.e., the bypass system would allow more generation of MW -hr than that
attainable under current conditions, even in years when peak generation may not
be feasible 24 hours per day for the entire month.
• The lake effects of operating the plant at full load and using the bypass system
were generally limited to temperature in the S. Fork Catawba, although the intake
temperature at PA was increased 1-2 OF for about 10 days each of the modeled
years._ The lake effects of operating the plant with generation cut back 12 hours
each day were minimal.
• The model predicted minimal temperature and DO effects in the main arm of
Lake Wylie, including the intake at Catawba Nuclear Station and the Wylie dam
releases.
REMI
57
r '
Vk
6. References
Cole, T. M., and S. A. Wells (2002); "CE -QUAL -W2: A Two -Dimensional, Laterally
Averaged, Hydrodynamic and Water Quality Model, Version 3.1' ; Instruction Report
EL -2002-1; US Army Engineering and Research Development Center; Vicksburg, MS.
Craig, Perry (2007); Duke Energy — Allen Plant; personal communication on plant
thermal limits, discharge canal cross-section, anticipated bypass characteristics, and -
guidance on simulation scenarios.
Sawyer, A. F. and R. J. Ruane (2005); "Appendix I. Calibration of the CE -QUAL -W2
Model for Lake Wylie; prepared for Duke Power by Reservoir Environmental
Management; October.
REMI
58