Loading...
HomeMy WebLinkAboutNC0004979_Modeled Effects of Proposed Allen Plant_20071205Modeled Effects of Proposed Allen 'Plant Bypass Flows on Wylie Reservoir Prepared for Duke Energy By Reservoir Environmental Management, Inc. Andy F. Sawyer Richard J. Ruane Loginetics, Inc. Gary E. Hauser December 592007FES VEL) 2 6- 2068 -PAIR P o WA rE 11VrSO1jr CR ()SAL , j /Ty coir Environmental Management, Inc. 7 REMI 900-5 Vine St.' Chattanooga, TN 37403 423-265-5820 1. Introduction Background In October 2007, Duke Energy requested that Reservoir Environmental Management, Inc. (REMI) assess the reservoir water quality effects of using supplemental cooling water flows to reduce temperatures at Allen Steam Station (PA) condenser cooling water (CCW) discharge. Duke requested that REMI investigate a range of plant operational scenarios for the proposed. supplemental cooling, water system and compare results to the thermal compliance standard for the PA CCW'discharges. These assessments were to be conducted on representative low flow years using an existing reservoir model. Modeling objectives were to explore: • Potential impacts to temperature and dissolved oxygen (DO) conditions in the lake, • Effects on intake temperatures at both PA and Catawba Nuclear Station (CNS), • Effects on temperature in the lake in the vicinity of the discharge, • Effects on temperature and DO profiles at locations near the PA intake and downstream (e.g., mid lake, near CNS, forebay), and • Effects on release temperature and DO from Wylie Hydro. Approach The reservoir hydrodynamic and water quality model used for this study was CE -QUAL- W2 (W2) x3.11 by Cole and Wells (2002), with modifications by Loginetics. Lake Wylie W2 model'inputs used for this study were originally built and calibrated in 2005- 2006 for the Catawba-Wateree River hydro relicensing process using 1998 ("normal" year) and 2002 ("low'flow" year) conditions. This model was documented by Sawyer and. Ruane (2005) and provided to State agencies in NC and SC as well as to EPA.. The Wylie model calibration for relicensing focused on water quality issues associated with Wylie Hydro, with some additional attention to waste loadings. Specifically, the model was calibrated to a level suitable for assessing effects of hydro operations on temperature and DO in the forebay and releases, along with the following additional issues: • Temperature and DO at other selected reservoir locations where data were available; • Algal levels in the forebay; • The ability to predict the effects of phosphorus reductions in the inflows and discharges from WWTPs to Lake Wylie on DO and algal levels in the lake and releases from the project; • The integrity of the model considering mass transport processes of organic matter, nitrogen, and phosphorus using water quality data where available. 2 REMI The calibrated model was used during the relicensing process to explore: • Effects of reservoir operations (CHEOPS scenarios) on DO and temperature in the forebay and releases from the project • Effects of phosphorus inflows on DO in the lake as well as in the releases from the lake • Effects of phosphorus inflows on chlorophyll a in the lake Modeling objectives for the current studinclude Ard ugly, the model sswas reof lvised to allow len supplemental cooling water (bypass) flows. more effective modeling of PA operations.casdwe 1 asaadding ng thermal couplets for each of the Allen units and the proposed bypass, bathymetry for the discharge canal. Details on these revisions are provided in Chapter 2 Model Revisions. After calibration of the revised model, a range of operational scenarios d 2007 Condit onsto assess without the supplemental cooling. water were ted above. Thede ass essmen using 2002 Owere presented to Duke water quality effects.as lis personnel in a conference call on October 9, and the results are documented in this report in Chapter 3 Model Results. PA and hydro operations data (i.e., PA intake and CCW data, and Mountain Island releases) for 2007 were compared to 2002 operations data in Chapassess tertential 4 Comparirences son of that might affect the assessment. This analysis 2007 and 2002 Operations. Conclusions from the modeling and analysis are provided in Chapter 5 Conclusions. Thermal Compliance Standards PA's compliance limit at the discharge of each unit F for the periods une Howevthrouger, PA has a variance that includes a thermal limit o September. These values are calculated based on a monthly average of hourly flow - weighted temperatures from all the units. 3 REAR 2. Model Revisions Thermal Couplets . In the original Wylie W2 model, Allen Steam Plant heat loads were unit duce withdrawal ed as a W2 "tributary", with discharge flow and temperature specified for each now (sum of the 5 unit flows) was specified as a W2 "withdrawal". Discharge concentrations for other water quality constituents were estimated fauns om heto water quality at the intake based on previous runs. This requiredmultiple te reasonable inflow concentrations for a given run. To overcome this difficulty, the W2 model was converted used torepresentthe Lginetics research a plant heat version of W2 so that the thermal couplet feature could b loads. The water quality kinetics in the research version are identical to that in the Wylie relicensing model: However, in the research version, the user can designate a withdrawal -tributary combination as a "thermal couplet". In a "thermal couplet", the withdrawal and tributary flow are identical, and the discharge water quality is set equal to the modeled water quality at the withdrawal location. This is done for all constituents except temperature. The discharge temperature be addm the couplet userdefined delta-T values to the ways: it is either calculated within the mod y g modeled withdrawal temperatures (Le., model predicted intake temperatures for PA) at nce the actual each model timestep, or the measured dischargeat PAperawas av2e is used. 1002 and 2007, available for hourly discharge temperature for all five unit these data were used in the model calibration to represent the discharge temperature t assumed om the plant. However, for scenarios that involved predicted plant operations, delta-T'for each unit was used to calculate the discharge temperature. All other water quality constituents were calculated using the couplets the model dried for bothhe the del to calibrations and all scenarios. Also, an additional couplet simulate the proposed bypass flow. The delta-T values for this couplet were set to zero. All withdrawals in W2 are performed with a selective withdrawal algorithm that calculates the contribution of all model layers in the vicinity of the withdrawal. The resulting withdrawal zone includes effects of flow and density stratification. Thermal Couplet Output There is no standard output of plant discharge temperatures in W2, as these acres renormally considered inputs to the model. However, since the dischargeZ research model was determined within the model with the thermal couplets, the modified to output a file containing hourly modeled intake temperature, flow, and discharge temperature for each thermal couplet. This tem eratures fole was used r critical months at calculations to obtain hourly flow -weighted discharge p 4 REMI the plant for the'various scenarios. This spreadsheet calculation is described in the next section. Monthly Allen Discharge Temperature Analysis The W2 research version outputs Tin, flow, and Tou from each thermal couplet. For each simulation, hourly couplet outputs were used to calculate a flow -weighted average of the Tou values in a spreadsheet for the months of July, August, and September. These results are provided along with other model results in Chapter 4 Model Results. Allen Discharge Canal The W2 model used for Catawba-Wateree relicensing did not explicitly include the Allen discharge canal that delivers CCW discharge to the South Fork Catawba River arm of the reservoir. In that model, plant discharges were assumed to enter the South Fork Catawba arm directly at the discharged flow and temperature. Plant staff reported knowledge of significant cooling in the canal. So that model results would account for any cooling that may occur in the discharge canal, a 3 -segment discharge channel was introduced in model inputs to the research version of the model. Figure 1 shows the cross-section used to develop the canal bathymetry. This cross- section was provided by plant staff (Craig, 2007). The canal was assumed to have this same sectional shape throughout its 1.2 mile (2 km) length. In Figure 1, the reference water surface was assumed to be the Wylie full pond elevation of 569.4 ft (173.55 m). This model revision provides a more accurate depiction of cooling in the discharge canal. w4r' EA sv'?I Ar -L 8I Figure 1. Approximate Canal Cross -Section Check on Model Calibration for 2002 n The revised model (with the thermal couplet and discharge canal) was run for the 2002 calibration year inputs and results were compared to that of the original model to confirm that the calibration of the revised model was essentially the same as the original model. REMI 5 3. Model.Results Base Case Conditions for 2002 and 2007 The base case used to model operational changes at Allen Steam Plant was 2002, which was a relatively dry year when compared to the historical record. To meet dischar e 7 temperature requirements in 2002, Allen occasionally had to de -rate the plant.- he intake and discharge temperatures used in the 2002 base case are shown in Figure 2a. As can be seen in this figure, in the 2002 base case the increase in temperature between the intake and the discharge fluctuated between two levels almost daily in response to generation, and the plant apparently did not generate for four days in late -August and early - September. The year 2007 was also modeled considering the low flow conditions as well as the meteorological conditions. The intake and discharge temperatures used in the 2007 base. case are shown in Figure 2b. As can be ' seen in this figure, the plant did not generate at peak capacity for about 6 days in August and several units were not operated for several days in August and early September. REMI 6 Figure 2a. 2002 Intake and Discharge Temperatures for Allen Steam Plant 46 50 a e 48 • r •• . 46 40-11 •38 44 .a t7 f1 �• • .• 1 t 36. • it U 34 -All oA i {• 32 a � . • 36 F 30 • ° • • , • E • Intake Temperature • . • i�af 28 . Discharge Unit 1 • ••{ ! • Discharge Unit 2 26 . - -..., • Discharge Unit 3 24 • Discharge Unit 4 26 . Discharge Unit 5 22 . Discharge Unit 3 711 24 7116 7131 8116 8130 9114 9129 Date Figure 2a. 2002 Intake and Discharge Temperatures for Allen Steam Plant Figure 2b. 2007 Intake and Discharge Temperatures for Allen Steam Plant REMI 7 50 48 46 . 44 t7 f1 �• • .• 1 t • it U pal r i {• a • 36 • E . • i�af F 32 ! 30 . - -..., . intake 28 • Discharge Unit 1 26 . Discharge Unit 2 . Discharge Unit 3 24 • Discharge Unit 4 22 • Discharge Unit 6 711 7116 7131 8115 8/30 9114 9129 Date Figure 2b. 2007 Intake and Discharge Temperatures for Allen Steam Plant REMI 7 Simulation Cases Scenario 1 In Scenario 1 model simulations involved the ant o en rating atWeak capacity for the . entire �Lof`ugust, the last two weeks of July and the firms+ The delta-T of the CCW flow for all five units was 23 OF for August and 20 OF for the last two weeks of July and the first two weeks of September. Figures 3a and 3b illustrate this operation by showing the intake temperature and the resulting discharge temperature of all five units for 2002 and 2007, respectively. Figure 3. 2002 Scenario I Intake and Discharge Temperature for Allen Steam Plant 46 46- 6444z 4a ' 44- 42 • $e � •Intake • $ 40 •f! _ W •Discharge Unit 1 42 1 . 38 y • Discharge Unit2 „ .., .. 9 • t . Al c, 38 • Dscharge Unit Ilk • • �' • . .. ° 36 ,�. 34 ° CL m 36 32 N t iE— • 30 34- ;0 4 �.� 28 •aQ �� t� .. CL o 2 E 32- 24- 30 30- 22-1 711 7116 7131 8115 8130 9114 9/29 • Intake IPA- Date 28--. Discharge Unit 1 26 • Discharge Unit 2 • Discharge Unit 3 24 • Discharge Unit. • Discharge Unit 5 22 7/1 7116 7131 8/15 8130 9/14 9/29 Date Figure 3. 2002 Scenario I Intake and Discharge Temperature for Allen Steam Plant Figure 3. 2007 Scenario 1 Intake and Discharge Temperature for Allen Steam Plant REMI 8 46 4a ' 42 • $e � •Intake • 40 •f! _ W •Discharge Unit 1 1 . 38 y • Discharge Unit2 • t . c, • Dscharge Unit • • �' • . .. ° 36 • Discharge Unit 4 • Discharge Unit 34 CL 32 N t iE— • 30 • 28 26 24- 22-1 711 7116 7131 8115 8130 9114 9/29 Date Figure 3. 2007 Scenario 1 Intake and Discharge Temperature for Allen Steam Plant REMI 8 Scenario 1 also was run with an additional withdrawal modeled in order to simulate the bypass pipe that would provide the supplemental cooling flow. The intake for this pipe was assumed to be near the five intakes that supply cooling water for the steam plant units. The water from this additional withdrawal supplied a pipe that would bypass the plant and dilute the heated discharges from the units. For the Scenario 1 run with bypass' flow, the bypass flow was 535 cfs (15.14 cros; 240,000 gpm) for the entire period mid- July to mid-September. REMI 0 Scenario 2 Another scenario simulated with the 2002 and 2007 models was one in which heat load was decreased for 12 hours each day to represent cut-back generation, but the CCW flow through the plant was the same as in Scenario 1. In this scenario the delta-T for all of August was 23 °F from l Oam to l Opm each day, and for the last two weeks of July and the first two weeks of September the delta-T was 20 °F from lOam- 1Opm each day. The l Opm to l Oam delta-T was 10 °F for the entire period. The intake and discharge temperatures for Scenario 2 are shown in Figures 4a and 4b for 2002 and 2007, respectively. This scenario also was simulated with a bypass flow of 535 cfs (15.14 cros) from mid-July to mid-September. Figure 4b. 2007 Scenario 2 Intake and Discharge Temperature for Plant Allen REMI 10 as '� . P.pr� pPPa•r,��'1 2 42- � • ,. .. as 40 4e. 38 IVA% • .� 36 a •Q� • 34 d a 's• L:� •.f �I" M 32- 230Intake 30- Intake 26 • Discharge Unit 1 26 . Discharge Unit 2 • Discharge Unit 3 24 . Discharge Unit 4 . Discharge Unit 5 22 7/1 7/16 7131 8115 8130 9/14 9129 Date Figure 4b. 2007 Scenario 2 Intake and Discharge Temperature for Plant Allen REMI 10 Model Results for Thermal Discharges The flow -weighted discharge temperatures from the. base case and the various scenarios are shown in both Fahrenheit and Celsius in separate plots in Figures 5a and 5b for 2002 and 2007, respectively. Model results for discharge temperatures, along with input conditions, are summarized in Tables 1 a and 1 b (for 2002 and 2007, respectively) for the base case and the two higher load scenarios, each with and without the bypass flow. Figure 5a. 2002 Flow -weighted Discharge Temperature for Allen Steam Plant. Temperature is plotted in Fahrenheit in the Top Plot,, and in Celsius in the Bottom Plot REJVH 11 Flow Weighted Discharge Temperature 112 . 108 ' ' 104a#-• u 100 .� .. • • J • N 95 its, it - n 92 •'f •t �� '•• • Flow -weighted Average Observed t • s 88 • Scenario 1 -no bypass flow 84 • Scenario 1 -with bypass flow ; 80 • Scenario 2 -no bypass flow. ' 76- 6 711 711 7/16 7/31 8/15 8/30 9/14 9/29 Date Flow Weighted Discharge Temperature 46- 44 42 t .' • '• . • II % a v 0 38 • 20 _ • • • • • • • 316 • • On CL 34 E 32 • low -weighted Observed '• •� win 30 • Scenario 1 -no bypass flow • JAW J 28 • Scenario 1 -with bypass flow 26 • Scenario 2 -no bypass flow , 24 7/1 7116 7/31 8/15 8/30 9114 9/29 Date Figure 5a. 2002 Flow -weighted Discharge Temperature for Allen Steam Plant. Temperature is plotted in Fahrenheit in the Top Plot,, and in Celsius in the Bottom Plot REJVH 11 Figure 5b. 2007 Flow -weighted Discharge Temperature for Allen Steam Plant. Temperature is plotted in Fahrenheit in the Top Plot, and in Celsius in the Bottom Plot REMI 12 Flow Weighted Discharge Temperature 116 . 112 • . 108 t• 1 : � • • • �•. ••• • eLL 104 R. as . : : • • b • .. I • • ��• .3•••~i • • ` 100 • • • : ,• • •, � � iii. ;ft .;VV •«•: • E 92 Be-• e• • Flow -weighted Average Observed • Scenario 1 -no bypass flow • 84 • Scenario 1 with bypass flow 80 • Scenario 2 -no bypass flow 76 711 7116 7131 8115 8130 9114 9129 Date Flow Weighted Discharge Temperature 46- 6 j6A J6 az 42 s •. •.. • 40 ' 10 m '.•Iti • •VIM a34 • �' E lit F 32 • Flow -weighted Observed 30 • Scenario 1 -no bypass flow • • 28 • Scenario twith bypass flow 26 • Scenario 2 -no bypass flow 24 711 7116 7131 8115 8130 9114 9129 Date Figure 5b. 2007 Flow -weighted Discharge Temperature for Allen Steam Plant. Temperature is plotted in Fahrenheit in the Top Plot, and in Celsius in the Bottom Plot REMI 12 Table la. 2002 Monthly Flow -Weighted Average Modeled Discharge Temperature — Allen Plant (all scenarios assume full plant flow 24 hrs/day). Values are in Fahrenheit in theTop Table and in Celsius in the Bottom Table. Simulation Bypass Flog (cfs) Aug AT day/night OF Jul, Sep AT day/night OF July Avg Discharge Temperature OF Aug Average Discharge Temperature OF Sept Average Discharge Temperature OF Base2002 0 actual actual 101.92 10054 95.06 Scenario 1 0 23/23 20120 103.67 10836 9753 Scenario 1 with bypass flow 535 23/23 20/20 101.04• 101.71 9493 Scenario 2 0 23/10 20/10 101.24 101.4 9492 Scenario 2 with by flog 535 23/10 20110 -0-0.21 96.72 9299 Simulation By Flog (cros) Aug AT' day/night OF Jul, Sep AT day/night . OF July Avg Discharge Temperature °C Aug Average Discharge Temperature °C Sept Average Discharge Temperature °C Base2002 0 actual actual 38.84 38.08 35.43 Scenario 1 0 12.8/12.8 11.1/11.1 39.82 42A2 3641 Scenario 1 with bypass flog 15.1 12.8112.8 11.1/11.1 3836 38.73 3496 Scenario 2 0 12.815.6 11.115.6 38.47 3856 3496 Scenario 2 with bpass Sow 15.1 12.815.6 11.115.6 3738 3596 33.85 MMI 13 Table lb. 2007 Monthly Flow -Weighted Average Modeled Discharge Temperature — Allen Plant (all scenarios assume full plant flow 24 hrs/day). Values are in Fahrenheit in the Top Table and in Celsius in the Bottom Table. Simulation Bypass Flog (cfs) Aug AT day/night OF Jul, Sep AT day/night OF July Arg Discharge Temperature OF Aug Average Discharge Temperature OF Sept Average Discharge Temperature OF Base2007 0 actual actual 101.3 102.1 100.1 Scenario 1 0 23/23 20120 102.5 110.7 101.0 Scenario 1 with bypass flog 535 23/23 20/20 99.8 104.1 972 Scenario 2 0 23/10 20/10 100.1 103.8 981 Scenario 2 with bypass floe- 535 23/10 20/10F--1 79s-1 99.0 96.0 Simulation Bypass Flow (cros) Aug AT day/night OF Jul, Sep AT day/night OF July Avg Discharge Temperature °C Aug Average Discharge Temperature °C Sept Average Discharge Temperature °C Base2007 0 actual I actual 38.5 389 37S Scenario 1 0 12.8/12.8 11.1/11.1 39.2 43.7 383 Scenario 1 with bypass flog 15.1 12.8/12.8 1 L V I 1_1 37.7 401 36.2 Scenario 2 0 12.8/5.6 11.1/5.6 37.8 399 36.7 Scenario 2 with bypass flow 15.1 12.8/5.6 11.1/5.6 36.7 372 35.5 REMI 14 Effects of Scenario ' on Temperature in Lake Wylie South Fork Catawba Embayment Modeled temperature at one meter depth in the segment in which the Allen Steam Plant canal enters the South Fork Catawba branch of the model for the base case, scenario 1 and scenario 1 with bypass flow are shown for 2002 and 2007 in Figure 6. The same plots for the model predicted temperature in all segments in the South Fork Catawba branch downstream of the Allen discharge channel and the model segment. in Lake Wylie at the mouth of the South Fork Catawba embayment are shown in Figures 7-10. 42 40 30 pt 36 f] 34 a 32 30 28 26 24 22 20 11 2002-BaseV1-2 2002-Ba.eW1 KM: 3.35 Depth:1 2002-Sccnario 1-15cmc bypa:oWi KM: 3.35 Depth: l 2002 -Scenario 1 -no bypav WI KM: 3.35 Depth: l I I - I -- -- �- -------'- -- - - ---- --`- --- --- --- - -- -- - ---'- - - 1 I I I •--__----L-------J--------J--------1--------L--------'-- -- - - -- ---- 60 130 200 210 220 230 240 250 260 2T0 29 Day 2001-6aseV1-2 42 4Q U p 38 O 3+ r 32 r U `u 22 j 2C H 24 22 2® 2007-Ba.eW1 KM: 3.35 Depth: l 2007- ccnario 1-15cw bypa:: flow W1 KM: 3.35 Depth: t 2007 .ccnario 1 -no bypa.. flow W1 KM: 3.35 Depth:I V --L --------- , " W-�- -i - I - - - - - - - yI L-_____--___-____-_-_------L--__----_-___---J-_________ ----------------------- I I I I I I I I I I I I I I I I I I 1 2iO 220 230 240 250 260 210 Day Figure 6. Modeled Temperature at One Meter Depth in the Model Segment where the Allen Discharge Channel Enters the Model (location at 3.35 km up from mouth), for 2002 and 2007 REMI 15 2002-13azeWI-2 2002-5astWi KM: 2.365 Depth:1 2002 -Scenario 1-15ems bypassWl KM: 2.365 Depth: l 2002-Scen5rio 1 -no bypwfW1 KM: 2.365 Depth: t 42 ---- I 40 I I I I I I ,------- 36------ I I I I .+ 36---; f -- --------- --------------------------- ' --- --- ---- ;-------- ------ '------- -r- ---;------- - Y 34 tI - r--------- I ,_-- - 32 -------- -I--- --- r - ----- I I I r 30 -- -J---------= - --J- --- - i --- ---- ---- ------ -- - ----- e 6 28 ------------------------- - - -- -- - --------- r----------------------- - I I I I I I I I I F 24 -_______J__ -____--I L__--___-J_I__-____-L________J__--____-L____ --- J --------- L_____ -__J---____-- I I I I I 24--------J---------L--------J---------j--------J---------L------- I 1 1 I I 1 I I I I I 1 ______-_J--------- L________J--------- L-------- J--------- L________J_________L________J_________ 22 20too 130 200 210 220 230 240 250 260 210 2 Dal 2001-13aseVI-2 2007-5asew/1 KM: 2.365 Depth: l 2007-scen5rio 1-15m: bypwc; flowWl KM: 2.365 Depth: l 2007 -scenario 1 -no bypass flowWl KM: 2.365 Depth:1 42 I I I - -a----------------- Y ' r I p34 ---- --�-- -- J - -'- - --`---- -- -- -- - - --- -------- V r I ` 28-------------------- tl� 1 Y 1 I 1 I I I I I H 24 ------------------------- -------- r-------- r-------- ,________-________-________r________ I 22 ---------------- _-------- _-------- _-------- _-------- _-I_____- -__ I ' 2ISO 130 200 210 220 230 240 250 260 210 280 Dal Figure 7. Modeled Temperature at One Meter Depth in the first Segment Downstream of where the Allen Discharge Channel Enters the Model (2.365 km up from mouth) REMI 16 k 3t „ 3f p 34 Y 3's r • 3( 28 j 2( 1 24 26 2( G a O_ V Y Y 2002 -Base V1-2 2002-BaceW1 KM:1.253 Depth: l 2002 -Scenario 1-15cmc bypa,-oWl KM:1.253 Depth: t 2002 -Scenario 1 -no bypacsWl KM:1.253 Depth: l --------- --------------- ------- r _---_-�- •,------__�-------- ------- --------• 1 1 1 _______1 1 1 1 1 1 L -_ -_J___-__ J________ _ ____L_____--_ _ _-_ --- ----------------- - - - - - - - - -------- -------- -------- i ------ - -- --- ---- ---- - - J -- - i 260 2i0 220 230 240 250 280 270 Day 2007-BassV1-2 200T-BaceW1 KM: 1.253 Depth:I 2001-ecenario 1.15cmc bypass Flow W1 KM:1.253 Depth:I 2007 -scenario 1 -no bypa:: flowWl KM: 1.253 Depth: l i i i i i i 321J__ ---- J-------- J-------- L______-J____ 1 1 � so_______ -L______ -J -------- J-------- 1-------- L -------- --- ___ ____ -------- ----------------------------------- i -_-_----i-------1--------1_-------T---___--r--------i--_-_--7--__----1--____--T---__-__ a4 200 230 240 Day 270 2: Figure 8. Modeled Temperature at One Meter Depth in the Second Segment Downstream of where the Allen Discharge Channel Enters the Model REMI 17 r� 2002-8aseV1-2 2002-8aseW1 KM: 0 Depth: l 2002 -Scenario 1-15cros bypass Wt KM:0 Depth:I 2002 -Scenario 1 -no bypass Wt KM:0 Depth: l i2 I I I I I I I I I O34 - --- - - -------- J -- -- -J - ----1- ----- .. ` t ■ 30 L -------- _ _ _-__ __1____ AI I 1 I I I I I I . .aa ________________________!I________sI ________LI -------- ____!_______ s __-- V II ' a -I I I I I I I I 26 Y I I I I I I I I I 20 la0 130 200 210 220 230 240 250 250 210 2' Day 2001-64seVl-2 2007 -Base W1 KM: 0 Depth: I 2007 -scenario 1-15cros bypass flowWl KM: 0 Depth:I 2007 -scenario 1 -no bypass flowWi KM: 0 Depth:1 42 I I I I I Ito ---------------------------- ,- r------ r -------- - I I I I I 36 ------------------------- -------- 34 ------- ------'-------- V J - 1./ I V32 _____ __L___ __ _ _ ___--__-1-__-__ _L____--___ __J_____ y I ■ 30 _- f ---1_--_ __J___ --_-_J_-______1___-_- L________�-__-_-_-J-___-_- J____ -- -------- Y I I 2E -- ____________________ ---- s___-____ Y_-____--L________I__-_____!_______________----------------- I I I I 6 26 I I I I I I I Y 1 I 1 I I 1 I 1 1 I 2a 180 130 200 210 220 230 240 250 260 210 280 Day Figure 9. Modeled Temperature at One Meter Depth in the Third Segment Downstream of where the Allen Discharge Channel Enters the Model, the last segment in the S. Fork Catawba River. REMI 18 42 40 so- p, 36 es4 32 30 28 26 f. 24 22 42 40 38 36 12 34 a. s2 30 V 28 j 26 F 24 22 20 1 2002-BaseV1-1 2002-5a:cW1 KM: 20.23 Depth: I 2002 -Scenario- 1-15cw byp*::Wt KM: 20.23 Depth: l I 2002 -Scenario I -no bypw,-Wt KM: 20.23 Depth:1 -- ------ --- - ----- - __,_ 1 J -------- ;-------- __J__ -_-___J______-_ ___L__-____-'1 --------- , , I--- --1-___-__-- ------- _ _---___ - 200 210 220 2s0 240 250 a60 azo 2s0 Day 2007-DaseV1-1 2007-5a.eW1 KM: 20.23 Depth: l 2007-ccenario 1.15cm: bypass flowWl KM: 20.23 Depth. t 2007 -scenario 1 -no bypass flowWl KM: 20.23 Depth: l --------------------------------- *------------------------ ---------- �a-------------- --- --- - --- ---------------- --�''-----------1---'-"-L"'-'---''------'I------ --'-- -----------------,-------'�--------*-----_ 80 130 200 210 220 230 240 250 260 270 29 Day Figure 10. Modeled Temperature at One Meter Depth in Lake Wylie at the Mouth of the South Fork Catawba Embayment REMI 19 Figure 11 shows model predicted temperature profiles from the segment where the Allen discharge canal enters the model. The profiles are at midnight at 10 -day intervals for July 9 through October 7, for 2002 and 2007. The black line in each plot is the temperature profile from the base case and the red line is the temperature profile from the Scenario 1 run with no bypass flow. The non-stop peak generation in Scenario 1 starts on July 16 and goes through September 14. In general, the heat load is reduced around midnight every night in the base case and the heat load is not reduced in Scenario 1, so the profiles are noticeably different, especially near the surface. C:L_,zooz.U.naao tion b.*a VLVZP 20 -b—Im3m h09 2� M!0 165 i -- - - . 22 24 26 20 70 32 N W 36 w C QOODSC n do Mo 66pusVI.VIP 2002-0u..1KKt335 77 Y.22�MM R0 22 2a 26 22 30 72 3. N N 10 _12007-f cenerio Fno byaf s IIaNt V2P zoma.f..IKnca35 iM9 2M7 MM 65; . 22 24 26 29 70 32 74 a 30 40 _,37.7-z rio 3 byp+nn 20Wb.sarIKM 335 22 21 28 N 30 32 N 36 3B a0 :ooza 2W2-b-sc.nario tiresb�upvtv2r ae«IKn13m CL.120024c.nWe No b6pusV WP 2002.bu..IK6k3.35 �..Iq 2M2 RO : . . u 21 28 ZO 30 32 N N 30 b _12007-sa bI oby—ifb.VLV21' 200?4_W KM 3.36 "" 2002 MM c1.aa6z-sn.n+rin tino DypufvLv2P zo62a.f..IKne3x as: . - . . ZZ N 26 20 N 7L N 36 36 40 C:112002 -Sc. wFno b,p VI.V 2002-W".I L396 T" ZW2 M _.12007 scmuio trro baDus fl VLV2P 2007La IKM3.30 2.11322f70,11411 _ _fzooa.m.,�are l..oi 2007dw.11Qk 235 fIM72M7fw.M _lzom-sc.o..o f,o bypus 6o.vLv2P 2007-0as.NKM 3.35 S..T7 2Y7 Mfg 22 N 26 b 30 32 N 36 70 b Ca -1T002 -Scenario Fm DypusVI.V2P zaoawf../K6s3x 22 21 26 n N 72 N 36 30 66 C:F_12002-Sc.nario tin* bpassVLV2 2002.b.WIKM235 22 21 26 26 N 32 N 36 U 0 _12007- ,ioImbVw,HwV1W2P Z007-0a..,O KAk 315 A..r 2Y7 MM 165 ,---� •-•--•--`---� --•--•--' . . 22 26 26 29 30 72 31 36 38 10 _¢o67ac.n••w Iro b�puz ro.vlv2r x007-bn.,rf 1 111,40 S.K! 2W 111,40 C.L1:p62.5c.n.rio Fop Deaf f V L„2P 2oozau..IK7,k 335 •..w zsn � 22 21 26 20 30 x N N N .0 C.t_12002-Scenario Im bspus V LVZP 2002-b—IKM337 0 7 211,102 � 22 21 26 n 30 72 N N 36 10 _12 7 -scenario FmbWwsflocVLV2P 2007-0u..IKNk3.35 •ww 2g710M n' -_ . . 22 N 26 26 30 32 N 36 N s0 Figure 11. Comparison of Base Case (black) and Scenario 1 with no bypass flow at the Model Segment in the South Fork Catawba River where the Allen Discharge Channel Enters REMI 20 Figure 12 shows 2002 and 2007 model predicted temperature profiles from the same segment and time as the profiles above, but in this comparison the black line in each plot is the temperature profile from Scenario 1 run with no bypass flow and the red line is the temperature profile from Scenario 1 with a bypass flow of the supplemental cooling water. The cooling effect of the supplemental flow is shown in all profiles between July 16 and September 14. _12002.3Cena.q l%—bgp..s W2P 2002--fik, Mo bpasM MA 7.77 Abd =OPA0 660 ,__�... .................... 22 21 26 20 30 32 31 36 38 10 _2002-sanarb 1 -Ac me bpass V I. V 2P 2002-sasrlo Lr. b W.M MA 316 . . --------- Sol -_._..._ 22 21 26 26 30 32 31 36 38 10 _2007•sanano LAcros Dpsss NOVWLV2P 2007•s 4. Lm bV.. fb IKPA 335 J 2M7M _12007.scmano }Acmz bypass Nov17IVRP 2007•romallo tarobpurilwnf MA 375 _200LScenalo LAcros bpsss V LYR 2002aasrlo Lw Dp nwA IOd 336 .MD 2M7 MM 665, _ __ _ _ 22 21 26 25 30 32 ;r-36 38 w _2002-Scenago LAcros DgpacsVI.VZP 2002-somrie trio Dpusrf 10.1315 sem. 67 x�ua T, 163,-_,. __r _-•--`""''_-•-- •--, 22 26 26 20 30 32 31 36 M w _=7-sca— L15—bpm NownV 2007•sos 606nobpmf1.p..113.2335 gyp __ _ 22 N 26 28 30 32 U 36 36 10 _200]-sew.ab LArna bpsss 8ov V LV2P 2007aansrio Frio Dp rs 60..113@ 376 _2002 -Sana rio }Acros bpass V I. V 2P 2002-snniwfswDpOsaA MA 7.36 160 ............................ 22 26 26 26 30 32 31 36 38 10 _2002-Scsnaro 1-15cros bpascWI.W2P 2 172N2m Onobpss iIOA715 s..n 2ash Ia ; 22 21 26 20 30 32 31 36 38 /0 _12007-scsnaio Mftw bypass IIWVLW2P 2D0?—,sb Ica bypass (b..l MA 336 Ja MM7MN _12007-ccenab L15cros DpsscflovVLV2P 2007-rar1� o la,v 6lpass Ibnl MA 315 _12002 -Scenario LAcros bpsssVL 2002•rcwrgo Lw bpas M MA 376 Ascan 2Ml: aM 9-54 26 26 30 32 31 36 38 10 _2002-Scenaio I-Acros bgp 'c V2P 2002-sasulio Mo bpaa"I MA 236 Sw272M2MM 22 21 26 20 30 32 31 36 38 w _2007-sanano LMms epass Nowt/ WP 2007-sanafo Lwbpass fk,wI MA335 fm, ........... 160.___. ...................... 22 21 26 29 30 32 31 36 U w _2007 -can LAcros bypass ND.Wi 20 W-sanaio Hca bpass flo,M MA 375 S., --fa 272M7� 163,....._'__, _. ,._�.._•..•..� 22 2/ 26 M 30 32 31 36 38 w _s2002 -Sandia }bora DSpxcVLV1P 2002-sanaio FnoOpaasNlO.1376 A..f iMi MY 666,._'._.;__•__+_..; ..,'-'--, 22 21 26 26 30 32 N 36 30 10 _.2w2-Scenario}Mans Dgpas,Vl.W 2w2acwario Lw bWasar11M 3.36 O.W 2M2 M!6 22 21 28 20 30 32 31 36 38 w _2007-scsnano I-15-2 bW ass Nov V L V 2P 2D07 -u OLwbypassN IIG!336 Vol --- ---------------- 22 0.__ 22 N 26 20 w 72 31 36 30 10 Figure 12. Comparison of Scenario 1 with no bypass flow (black lines) and Scenario 1 with 15 cros bypass flow (red lines) at the Model Segment in the South Fork Catawba Branch where the Allen Discharge Channel Enters REMI 21 Main Arm of Lake Wylie The following results present model predictions at the intakes for PA and CNS as well as for the forebay and releases from Wylie for the base case, Scenario I with no bypass flow, and Scenario I with bypass flow. The indicated differences in modeled temperatures between the cases were not significant, even though they were greater at the PA intake location than at down -reservoir locations. 34 33 32 31 30 O 29 N 28 27 CL E 26 25 24 23 22 34 33 32 31 30 S29 28 27 ECL 26 25 24 23 22, 2002-BaseWl-1 2002 Base Elevation: 167 2002 Scenario 1 with 15 curs bypass flow Elevation: 167 2002 Scenario 1 -no bypass flow Elevation: 167 ........... I ............ I ------- ------------------------- ------------ ------------- -------------------------------------- ----------- I ------------ ------------ ------------ ----------- ------------------------- ------------ ----------- ----------- ------------ I ----------- ------------ I ---------- —1 ------------ ----------- ------ ------------ I ------------ I ------------ ------------------------ ----------- ----------- ----------- ----------------- -- ------- -------- --- ----- ------------- -------------------------- L ----------- ---- - ----------------- ------------- --------- ------------ : ----------- -------------------------- I ----------- ----------- I ------------- ------------- I ----------- ----------- I -- ---- --------------------- — -------- I ----------- ----------- ----------- ------------ ------------ ----------- ----------- ------ ----------------------- ------------ ------------------------------------ ----- ... ----------- I ------------------------- -------------------------------------------------- -------------------------- ----------- ---------------------- ------------ ----------- ----------- ------------ ------------ ----------- ----------- gn An 260 210 221111 230 240 250 26 270 20 Day 2007-Bas8W1-I 2007 Base Elevation: 167 2007 Scenario 1 with 15 cms bypass flow Elevation: 167 2007 Scenario 1 -no bypass flow Elevation: 167 ----------- ------------ ----------- ------------ ------------------------ ----------- ----------- ------------ ------------ ------------ I ------------ ----------- ------------ ----------- ----------- ------------ ----------- ---------- ----------- ------------ -- ------ --------------------------------------------------- ------------ ----------- ------------ ---------------------- ---------- - -- ------- ------------ ----------- ------------ ------------ - ------- - -------- ...... -------- ------------------- — --- ----- --- ------- -- - -- - ------ ----------- ------------ ----------- I ----------- - ----------- ------------ ------------ ----------- ------------ ----------- ------------ ----------- ------------ ----------- ------------ --- -------------------------- ------------------------------------------ ----------------------- . . . . . . . . ----------- ----------- ------------ ----------- ------------ ----------- ------------ - --- ---------- ----------------------------------------------------------------------------------- ----------- ------------ ----------- ------------ ----------- ------------ -------- ------------ ----------- ------------ in 160 200 210 220 230 240 250 26 270 21 Day Figure 13. Modeled Temperature at the Centerline of the Allen Intakes. The increased temperatures shown for the two Scenario 1 cases were accounted for in the modeled intake temperatures in the model runs. 0 REMI 22 c lxoez-xm.lo l.wgpusvfvzP 2002-0aaMIMl25515 Baa tux � a 26 x 28 m 72 3< 3i 38 a0 _12001ttenane Me Oypass lbrYI.V2P xm-w«nut2s.5m hM6 2M7 NM 150 ,._�................ .. ..... a 26 x n 30 32 36 36 38 10 -007-n­i, 4M bV—fl-V 2P xm-bas.1f11M4xs15 /1Nx62M yVQ�Ttlq7-7 . . a 24 x 28 M a 34.36 36 ao Ci12002-Scenario tan ppusVtV2P 2002Daw,rIlM'l25S75 �.1r z6fa� a 26 x 26 30 32 U 70 36 60 C.,_S .Soma,b IanbX—VW2P 2002basrAlU8x.675 a 2a x x 30 a 34 78 38 0 _{200]-sunbb Ino DSpass flSwVlV2P id" 2 wIIMD2i575 JWi626n 61RM _ ---------- 2Y 2a x x 30 32 36 36 38 60 _12007 -tuna ioImbVISS60eV WP 2007Dataa1101! 25.870 C"_1x02-S—bL b5DafsV1V2P 2002bav„ IIG6:MM ..ns2M MM 1ss i - a 26 A x 30 a 34 36 36 W Cs_f2002.8[mrb MD b6DUSYl V2P 2002t.MICh28.675 Sw672M26r_M _ C.�1x02-Scma,io Mo Dgpus V tY7P 2002bafa„IIQ.42SS75 183; -•�-� --- - '- . , a 26 x x 30 a 3a 36 36 w 2=4 -11 aoo Iwo bypassVlV1P 2oa2bo..11aax2aa7s CLa2032-S1m Mn D7DnMV2P 26S •..r" " IIMlztc M."N." 6 a r x x 30 32 3D 36 38 w Ci12002-ScmaOo Mo byass V t OaN72W M16 _12001-scaurio 1-b9pl, fbW2V2P 2007b 11M25.575 J.M 2N7 M.M a 26 x x 30 32 38 36 a 40 _12007acmerio l+,o b]DSSt fbvVLV2P 2ro]D,s.,n1M>.xss75 f3nA 2M7 MM _ _ 65: !.f_�_ .................... U 24 x 28 M 32 34 36 38 a _1x07fcmano taw Dlpass fbrVtV2P 2007Daswf IQ+! x5575 ftpe 2M7" , 160 ------------ , , t� a 21 x x 30 32 36 36 36 t0 _1207-f.—;Di.b, [w VIVs 2007Dasm11M4253M s"n 2w 8 r a 26 x M 30 32 34 X 38 b _12007 -scenario I+w D6pass BorVlV2P A -M2w110.225.577 1WAtA76RM _ 1654 . , 415 ..... ........'. _.r..,'-...., a A 26 x 30 32 36 36 38 60 Figure 14. Comparison of Base (black) and Scenario 1 with no bypass flow at the Segment where the Allen Steam Plant Intakes are Located—for 2002 and 2007 REMI 23 _12W 25cenarb }Pxms D3DxsVlV2P 2W2apneia ysmbpavrf10.425AT5 ddl52M20RM moi................ �._,.. �_. 22 N 26 20 30 32 34 36 7a a _12002-Scenatb }gemsEpmVLV2P xoox-x.nario}noNw.ruvn x.575 /iae7282M21ttIM no BS :- - -�-• _ - - r r r . U 21 28 28 30 32 31 38 70 •0 ._12 W T-semab }gems Dp+ss IbaWl V1P .IM12 2kW20 7 lra bypxrIbrrll0A 28.576 M7 M:M .-e2W7-scensrb}gems bypass f WLV2P 2007ac•narb M_bpxf f—I O& 265M ._02002 -Sc 4bypsssVL2P 2002+cesrlo Nm bo'bpewll W 25A75 dos® 2B�2w� _ 22 21 26 28 30 32 N 36 38 W ._12002-Scmaio }gcrostypas5VLV2P 'm02.+,en.io 61m epaart lvt 25A]d o..1w 2TTfa+� r r r r II N 26 28 30 32 N 38 zo 40 _12007-scenarb Iganc bpxsFlorVLV2P 2007-scsnub Nn Ilpxs fbw11QA 21575 tlM 2f�7 N:fM .. r r r r r rrr r 22 21 26 20 30 32 N 36 38 b _12W7 -scenario I-Yamsbpm Wbw W2P 2007-ran•sb •aa Dpxr fbwl KM 21575 I ?2W MN _12W2 -See I-LSemsbypasaWl.- 2WY�M Dp=AKIA26578 160 •........:................... r r r r r r 22 N 26 28 30 32 N 36 30 10 _12W2-Sunario 1 -Bans bypass V lV2P 2ooz•:<.n.b r�o Ilpasrrl I0•t x657s r . 22 N 28 28 N 32 N 38 38 10 _L2W]-scenailo }ISans DlpassflowV LWP 20 W-rpmab lro Dpxs 8D•irl M 25.875 _12001-snnarla i -flans bypass flow V LW 2 P iW7-sanab the bypm0e I 42UM F fl 2"? M.M 165: rl............... 22 21 26 28 W 32 N 36 30 10 _.2002-Sttnaria t -gems DyP assLfLV1P 2002-ueerioMODlD+ss�L IOL! 28.875 i r r r • r r r r i • r r. r r r• 23 21 N 28 W 32 31 38 38 b _12002-Scenana1-flans Dypss WLY2P 2002-rcwrab1oobp MIIG4268M s..2221I10Y a&" _- _1200]-scewarfo t-IScros DYDsss Ow V I. W2P 2W714MgbpxsIbwlIOC!26578 2M7--i�Me--rr�-. r . r r r 22 21 26 20 30 32 31 W ;F—" _1200T-sew,arb }gems bypxz IbvV I.V2P z6a7-rDrn.b lan bpaa f bwl Iae zss]5 sin a� f1f� . r 22 N 26 26 W 32 N 36 10 10 _e2092 -Scenario }Hems DpxnLY3P 2o62-acwwb Vara blpxavllM 255M ND12ftft2 M r r r r 22 N 26 m W 32 N 36 38 10 _12002-Sce io}15 m bypxsVL 2002ac•r tbobpxarlf 425= CWW 2M OW" fro ICf . r r 22 21 Z6 28 30 32 N W 38 10 _12007-snnario 11—Dgpass ibrVlV2P 2007.. •—bpxribwlgh218T6 'N 207 MM E-24 N 20 30 32 N 36 38 /0 Figure 15. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1 with 15 cros bypass flow at the Segment where the Allen Steam Plant Intakes are Located—for 2002 and 2007 REMI 24 34 33 32 31 30 O 29 28 S `m 27 a E 26 F- 25 24 23 22 1 34 33 32 31 cn 30 0 29 m 28 m m 27 CL E 26 ~ 25 24 23 22 1 2002-BaseWl-1 2002 Base Elevation: 170 2002 Scenario 1 with 15 cros bypass flow Elevation: 170 2002 Scenario 1 -no bypass flow Elevation: 170 -------- - ---- 1------------ 200 210 220 230 240 250 260 Day 2007-BaseWl-1 2007 Base Elevation: 170 2007 Scenario 1 with 15 cros bypass flow Elevation: 170 2007 Scenario 1 -no bypass flow Elevation: 170 ----------- ------------ ---------- I- --- -------------------------------------------- ----- - - -------- -- •--- --- - ----- ------ 200 210 220 230 240 Day 270 Figure 16. Modeled Temperature at the Centerline of the Catawba Nuclear Plant Intake—for 2002 and 2007 REMI 25 C,12002 -Scenario — bypass V I V 2P 2082Lc 11"&HT A0152M2 MM Ci_=U.Scanub }m E5pa22-2P 20024esMlWt&HT Adn$n @ l G_t2002-Scenario taw bypassVl.V2P 2W2-0afaaillO+R&N7 11a{T!__ 2M^Y-M 170 ... �...... ......... . .. .... 22 21 26 28 W 32 31 J6 70 w _12007-scanwio 1noD3pass IIarVLV2P 2W7Jtuuea110d 8.N7 t!9 26T7 M! Ci_1200 .e_.rb }m bypass V I.V 2P 200RD IKMAMT C-2MScenario }m bypas V I. V 2P 2002-b—S M&MT n Vzw2M.w -- cn_lzaozsrnarb ta,e bypusvt.v2P 70LQLasw110.!&M7 ftvn2M2M—r—.T �. IM 22 N 26 N W 32 T. S6 w Cs_12002-SWWbHw bWp V1-V2P 2002-Wsw1M&07 _12007-fttnario }nebypass OorVLV2P 2W7bua1r110Jl AH7 JYIf 2M7 MAA ,2W.—H, 1-m Dlpass Ib VI.V2P 2W74—A l0et&H7 A" M7M _ _t2w7.scenario Mobypass Rl WP 2W7-0uMKM&H7 _02007-ccenaio taw Dgpass IIwMtV2P 20074atw110.4 AHI May2A� Z�TMCM 22 N N 28 30 32 ]I X 30 10 _12W7., .... o—bVp FIOWIV P 2W7.Duw110169.M7 S../Al2M7 Mf0 ID 22 N 26 28 W 9 U 36 38 f0 _12007.11maao Mo bypasslbr' WP 2007-0w.1/3.49.M7 Sw772M7 Mid -_ 10 22 21 M N W 32 31 36 36 w _12007-zcmario Mo bypass flae•V LV2P 2W7-0asM IO,R&H7 9^NZ7 2M7T—T—� so 11 21 N N 30 32 31 36 38 w c•_12002-Seanano 1a bypafaVty 2001-0.110.!&147 dURW 6lM Ct12002- a_ lawbypassV1V 2002-0as IM&M7 0.87 2W M:M ❑0.__........... 22 N N N W >Z N 36 3;_0 _12007-9cana1b}mb9pusIb WWZP 2W7-basaAM8.14T I 2M7 w 22 N N 28 30 32 31 36 26 w Figure 17. Comparison of Base (black) and Scenario 1 with no bypass now at the Segment where the Catawba Nuclear Plant Intake is Located—for 2002 and 2007 REMI 26 _42003-Scenane t -bans Dgp.ssNLV2P 2002-sewlsM Mo Dgpus.l lM B.NT JN828O2 OlAl 160 ...... ....................... isms u N 26 28 30 32 36 38 30 w _12002Scenaii.}bansb,pd W1WZP 2w2-semailo MoBpasss KN&W7 NOl2l 2M2IFI0 Im 22 24 26 28 30 32 34 is 38 w _12007_u =n 1 -baro bpass flanVLW2P 2007•somrblawbpazsft MKM8.N7 2MB M.0 M n 24 26 28 30 '32 3a ..12007-scenab 4bcros 68pazs eovV LV2P 2007seanane ine bpasa Oewi K7.t aN7 11w2O YO07 NA _12002-Scxuno tl5cros bpassWLV2P 2ooz•6n.namaoobpMa.llat aN7 _12002-Ssarwb 1.15crosbpazsVLV2P 2002•�cr.wblan bpsismlKM B.N7 ._12002-San.rio al5cros bpassWLV2P 62002.722 fm byss tIQ,t aM7 8a1I7Yw2OlM iw------------------- 155+___; ..r__+._�. __;._•__�_.s 22 28 26 28 30 72 36 36 38 w _12w7-scmalio F0._ bp.. 0-V t V2P 2007aanulo Mobil 0 IKNbaN7 JM/02OO78►M 22 24 26 28 M 32 38 36 38 w _1200T-scmab 4bans DgpMs HwWLV1P 2w7-seanarb lnobpass lbwlKM B.N7 OaM72RTMM 22 2. 26 28 30 It 36 36 38 w _12002-S—io 1 -IS— bgpassVtV2P 2008sanrfo Ianbpa _JKMB.N7 S"V am ql _007 -ss .;OLOkmsbgpazsR 1.V2P 2w 7-icwrb aro bpMa florel KM B.NT M" 2087 OOAO _1200T-scenrio t-15cros b8pazs Ow V t V 2P 2007• 10MobpMs�KMa%7 IwT72M7OO" - _12002-Sc.—io 1.ficros WwsVl 2002•spnariol b,—IKMaN7 170 _ _ 22 24 26 28 30 32 36 36 38 40 ,2002-s—.6.1-15—bp asWtv2p 002•sDwmbN 2bpMsatkM8.N7 6OO27 2082 O _ i . . 22 24 26 28 30 32 34 36 38 IO _.12w7-swnarb FIftm bpass H_vLW2P 200T•spw b Mo bpaza0ovrelKM aN7 A 93 2OO7 MAO ........... 2F 22 24 26 28 30 32 34 36 30 w _13007.scenario 415cros bYPM 6a.+V tW2 200?-, MO Dpazs 0oaa1 KM 0.N7 S-21 M7ODl0 _ . . , . 22 24 26 20 30 32 34 38 38 w _1200bS4en.rl114bo SV1.V2P 2002•sml.tlb Mo bIDMM KM QMT _12002-Scenarb I -bans bpazsV LVZP 2002- Mobil -1l AM7 OMIT 28102 B _ . . 2Y_2_4 26 ie 30 32 38 36 >e t0 _12007--d."bans bp.ss �V WP 2007•scanOioM bpazaIb IKMaNT R W 2OO7 B 170•""""" "-'-""--'"-.. 22 24 26 28 30 U 3a R 38 w Figure 18. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1 with 15 cros bypass flow at the Segment where the Catawba Nuclear Plant Intake is Located—for 2002 and 2007 REMI 27 c 2aoz-so.nrb l.,o eslussVLvzP zaaza.e«Ilw.o La999 2992 ff:M -------------- so 2z 21 20 20 00 32 31 36 30 w Cit2002.5c it M blpass WP 2002J>astilgNO Ct2CO2Stanrb lm D3pus V lV2P zoozawuMo LAf a99 sss 150 ._.�..................�.. 7x xt 26 Z. 30 32 31 36 38 10 2DD24e-S MO InoDassVIV2P 200LDuw11M0 CLA2002-SIIn+f10—bl —VLWP 2002-0.s.VIKKO s.sVm2MJf _ Ct2002-Scmrio Ino epass W l V 2P 2op2a.+wnr7.to walff z99z faff 22 21 26 ZB 30 M 3/ 36 30 w CA_2002-Scmrb Mo bp—VlV 2002-b—I M0 Cti2002.6oanreN Elpas vtL 2QR-MwI1V,to •..>.2ffz 99Af 160 ...:.. ...................: 22 21 26 20 30 32 31 36 39 10 Ci_12002- —,o—bspassVIV2P 200bb.s MO _2007-sanrio Lno 4—fl LV2 2f107Asw110A O [I.12f 2997fs:w 2i 21 is n 70 32 3• 30 36 10 _2007-seenrio lsro Was, flwVLVZP 2W7-0u..iKM:O Lro 2p799fs 150 . :........... ... .......... 2z x1 zs za 30 >r r x 3s w _2 W T -scenario Lro y p+s [ Ibv V lYW 2oo7aw.nlMo 8.997 tssi 99w _A2007-scerWoH bwosO VMP 2007-0ssw1040 Lauf 2997 f _.2007-sce M b7pass lb VfWP 2007 IKPAO _.2007-Sw,eo Ino bgpess Po.VLV2P 2007L 11@&0 99 992997= _200T•scenrio la.o byu[ 0wV LV2P zop7awmaeo s.ft72997ffis ._Izoor.so«.rb Lno e,pa:s oo.vtvzP 200T.Iaw11M0 Figure 19. Comparison of Base (black) and Scenario 1 with no bypass flow in the Forebay of Lake Wylie—for 2002 and 2007 REMI 28 _42w2-Scaneb }1bpms D.I VL1/2P 2002._r 4np 69pusrl KM1R 0 ma 2�u wM 169 ...... . ..... .. ........ .. ... i 150 .._.._....................: 22 24 28 28 30 32 34 36 38 w _120025cenrr 1.15anf bpusVLY1P 2002aanW MpD9p IKMQ Mfd02}102004)0 160,__:_.. _.x ..... ........�_.: 22 24 26 a 30 M 34 36 a w ..1200]-11111no }bans bpassir W tW 2002 -saner Mo Dens Ibwl KM 0 J.N3nor 4t►t0 _-- . ------------- i , 22 21 21 30 32 34 36 38 w ...Rw]•sanario }15anf bpasiir.VLV2P 200]-soma00 }no bpas9 fbwrl KKR 0 •.,,to 2N3 was Ro,._:__a_. __,_...__a_y_.: . , ..... ........... 150 ...:.. ........ ... ... ..... 22 21 26 28 30 32 31 36 78 W _y20OM5 .r'Zk sbypusVtV 2002acawo4 bpas9ar1KM0 aen zMz 4Kae _12002-6can b}I9crosbpasSW1WP 2000-9ewiar Mo bVa sft1INR 0 A 2MMM _120025c1ner 1-Picros bypa f s V L V2P 2002aawb tro Epn9r1IO+R 0 SfMi2Mz04M _12002-Sanr6o MM by assW L V 2P 2002.9emaiofd bgW"10M0 R 17awY0Aa _.42002-Sanrio M2 blpasfVLViP 2W2 --c bMobpusa•IIM!0 •af4® 2M2 R41 170'--' --- x.. - 160 ..... ...... ................ 22 21 26 20 30 32 34 36 38 40 _420025—arlo }I&ms bp ... V LW2P 1002•se4neb Leobypns.l OA 0 ._12007-sanrr I.aS sbypass H-VI.W2P 200]•s<m grip Ho ppur ylwrl KM 0 d ze07 OR4I0 -- _42007•scmria 1.I5cros bypass Oo.V LW2P 2007-sanrin—byassIr IMO J.Rs 7 OOJO _12W]-scanrio 1.1 Mbypass yrWI.V2P 200]-faneio im Deas Bonr1 KM 0 e.r32078 s _ITLO]-scxiaio }I9cros Dypa9s IIanWLW2P 200]-scfr.Dpn91trw1101R0 s«n2=7 M7lI�.9 J200]-scenrr }i5crosbgpus OovVLV2P tom-:c.ner 1aM bpas, xo..l KM o 91.2 z4u2 4foA0 ............. 169,-...-- •--...,--'.--...,__-• . . as 22 24 26 28 30 32 34 J6 39 40 _1200] -scenario }I9cros Dpuf fIOWLW2P zoo] -caner Mpepas9xo.�nlcMa _12002.6cmrr}M9 bpassVl. 2002-sesvio} bpaSMMO •aw102M"M 22 2, 26 28 30 32 34 36 30 w _lzom-spanrr } 199pK bpnsvtvm 2(02-9an40o M04p of V I q.F 0 O.N721R 000 _ pro........... ...............: 22 24 26 28 30 32 34 M 38 w _12007-scmrr f-. U—bpass M.WLV2P 2wi•sanafrM bp9ss WaeMO Aarw zw4 Figure 20. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1 with 15 ems bypass in the Forebay of Lake Wylie—for 2002 and 2007 REMI 29 2002-OnseWl-I 2002-BaseW1 Dom releases 2002 -Scenario 1-1 Eems bypassVVI Dam releases 2002 -Scenario 1 -no bypassWI Dam releases 30- 29 - ------------- ------------- ---------------- ----- --------------------------------------------------------- --- ---------- ------------- : ---------- j1 �4't-------------- ------------- --------- ----------------- 28 --------------------------- - 27 ------------- I ------------- - -------------------------------------------------------- ------ ------ V'V ------------------- --------------------------- --------------- 26 --------- ------ -- ------------ CL. J------------- ------------- -------- -------------- ------- ------------- 25 ------------- ------ ------------- ------------------------------------------------- ------ r ------------- 24 -- ------------------------ I --------------- ---------- 23 100 190 260 210 220 230 240 250 260 270 200 Day 2007-BaseWl-I 2007-BaseW1 Dam releases 2007 -scenario 1-1 5cms bypass flowVVI Dam releases 2007 -scenario 1 -no bypass flowWl Dam releases 30 29 -------------- ---------- ------------ - --------------- C ------------- ----- ------------ - I ------------ -- -------------- I ------------- 28 -------------------------------------------- -------------- --------- -- --------- ------------------- cri ------------- 27 - ------------- ------------- --------- -------------- I -------------- 26 - ---------------------------- - --------- ------------------------------------------------------------------------------- --------------------- E -- CL F----- L ------------- 24. --------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 23 IOF — ------- 1-90 260 210 220 230 240 250 26 270 280 Day Figure 21. Modeled Release Temperature from Wylie Hydro. 2002 Results are only Plotted when Generation Releases are Greater than 1000 cfs. In 2007 all Generation Releases are Plotted REMI 30 Effects of Scenario 2 on Temperature in Lake Wylie The time -series of plots of temperature near the surface of the lake in the South Fork Catawba embayment comparing the base case and Scenario 2 with no bypass flow are shown in Figures 22-26.. Plotted results are not presented for the case Scenario 2 with bypass flow since compliance was attained without the supplemental bypass flow in 2002 and compliance was nearly attained in 2007 (see Tables la and lb.) Figures 22-31 present the results for the S. Fork Catawba arm as well as the main body of Lake Wylie. and show that Scenario 2 causes little difference in temperature at all locations. REMI 31 South Fork Catawba Embayment U 2002-BaseW1-2 2002-BaseWl KM: 3.35 Depth:1 2002 -Scenario 2 -no bypassWI KM: 3.35 Depth:1 12 i , i6 ------ ' N, 12 21 80 190 200 210 220 230 240 250 260 270 2e 42 40 38 36 cp Q 34 m 32 $ 30 `m E 20 CD F- 26 24 22 20 Uay 2007-BaseWl-2 2007-BaseWl KM: 3.35 Depth:1 2007 -scenario 2 -no bypass flowWl KM: 3.35 Depth:1 ----------- , n ------------ Hn 190 200 210 220 230 240 250 260 270 281 Day Figure 22. Modeled Temperature at One Meter Depth in the Model Segment where the Allen Discharge Channel Enters the Model REMI 32 42 40 38 36 34 P- 32 30 CL E 20 26 24 22 20 1 42 40 3 3 C d 3 30 a) CL E 20 F- 26 24 22* 20 1 2002-BaseVVI-2 2002-BaseW1 KM: 2.365 Depth: I 2002 -Scenario 2 -no bypessW1 KM: 2.365 Depth: I ----------- ------------ ------------ ------------ ------------ ------------ ----------- ------------ ------------ ------------ ---------------- --------- ------------- -------------------- -------------------------------------- ----------- ------------ - ----- --------- - -------------- ......... ---------- - ---- - ---- - --------- ------ --- ...... ------------ ----------- ----------- - --- ------------------- ------------- ------------ I ------------- ------------------------- ----- ---- --- ---- ----- ------------ ------------ ------------ ------------ ------------------------- - - ------ .... --------- -- - - ------- ------------ --------- ---------------- --- --- 4 ------------------------ ------------ ------------ ------------ ------------ ------------- -------- ---------------- ------------ ------------ ------------ ----- ---- ------- ------------ ------------ ------------------------- ------------ ------------ ---------- ------------ ------ ------------ ---------- -------- ------------ ------------ ------------ ------------ ------------ ------------ ----------- ------------ ------------ ------------ in 14n 21111 21 . n 220 230 240 290 260 270 20 Day 2007-BuseWl-2 2007-BaseWl KR 2.366 Depth: I 2007 -scenario 2 -no bypass flowWl KR 2.365 Depth: 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - - ------------ ------------ ----------- r -------- ----------- --- ------- ------------------- ------------ I ------------- I ------------- I ---------- - ----- --- ------------ ----------- ------------ ------------- ------------ I ------------ ------------ -------------------------- L ---- ------------- ------------ --------------- ------------ ------------ ------------ ------------ ------------ ----------- ---------- ------------ ------------ ------------ ------------ -------------------------------------- j -------------------------- ------------- - - - - - - - - - - - - - - - - - - - I - - - - --- - - - - - - - - - - - T --------------------------- ....... - - - - - - - - - - - - - - - - - - - - - - - - ------------ ------------ - - - - - - - - - - - - - - - - - - - - - - - - ----------- I ------------- - - - - - - - - - - - - ------------- Inton 2fin gin 22n gin 240 290 290 270 21 Day Figure 23. Modeled Temperature at One Meter Depth in the first Segment Downstream of where the Allen Discharge Channel Enters the Model REMI 33 36 tm 34 m 32 30 CL E 28 Fa - 26 24 22 20 42 40 38 36 L) cm 34 O ® 34 i 30 CL E 28 26 24 22 20 2002-BaseWl-2 2002-Base\M KM: 1.253 Depth: 1 2002 -Scenario 2 -no bypassW1 KM: 1.253 Depth: 1 ------------ ------------ ------- ---------------- ------------ ------------ ----------- ------------ ------------ ----------- ------------------------------- ------------------------ * ------------------------------------------------------ ------------ ----------- I --- ---- --------------- -------- I ------------- ---- ----- ----------- ------------ ------------ ------------ ----------- ----------- - --------- ------------ ------------ - ----- ----------- -------------- ----------- - ------ ------------ --------- ------ - ------- ----------- ------------ ------------- L ----------- 11 ------------ ------------ - ------ - ---------- ----------- ------------ ------------ ----------- ------------ ------------ --- --- --- I ------------ - I ----------- ------------ --------- --------- ----------- ------------ ----- ----- ------- ------------ ------------ ........... -------------------- ----------- ------------ ------------ I ------------ ------------ --------- ------------ ----------- ----------- ------------ ------------ ------------ ------ ----- ------------ ------------ ----------- Rn 190 200 210 220 230 210 260 260 270 21 Day 2007-BaseWl-2 2007-BaseW1 KM: 1.253 Depth: 1 2007 -scenario 2 -no bypass flowVV1 KM: 1.253 Depth: 1 ------------ ------------------------- ----------- ------------ ------------ ----------- ------------ ------------ ------------ ----------- ------------------------------------- -------------------------- -------------------------------------- ------------ -- -------- I - -------- ------------ ------------ ---------- ---- ------- ------------- L --- ------------ ---------- I -------- -- ------------ ----------- ---------------------------- -- --------- ----------- ------------ ------------ ----------- ------------t------------,`-----------',----------- ----- ------ ------------ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------------------------ - - - - - - - - - - - - ------------- r ----------- I -------------- r - - - - - - - - - - - - ------------- - - - - - - - - - - - AO ISO 260 210 220 230 240 260 260 270 21 Day Figure 24. Modeled Temperature at One Meter Depth in the Second Segment Downstream of where the Allen Discharge Channel Enters the Model 0 DEMI 34 42 40 30 36 tm 34 m 32 30 CL E 28 Fa - 26 24 22 20 42 40 38 36 L) cm 34 O ® 34 i 30 CL E 28 26 24 22 20 2002-BaseWl-2 2002-Base\M KM: 1.253 Depth: 1 2002 -Scenario 2 -no bypassW1 KM: 1.253 Depth: 1 ------------ ------------ ------- ---------------- ------------ ------------ ----------- ------------ ------------ ----------- ------------------------------- ------------------------ * ------------------------------------------------------ ------------ ----------- I --- ---- --------------- -------- I ------------- ---- ----- ----------- ------------ ------------ ------------ ----------- ----------- - --------- ------------ ------------ - ----- ----------- -------------- ----------- - ------ ------------ --------- ------ - ------- ----------- ------------ ------------- L ----------- 11 ------------ ------------ - ------ - ---------- ----------- ------------ ------------ ----------- ------------ ------------ --- --- --- I ------------ - I ----------- ------------ --------- --------- ----------- ------------ ----- ----- ------- ------------ ------------ ........... -------------------- ----------- ------------ ------------ I ------------ ------------ --------- ------------ ----------- ----------- ------------ ------------ ------------ ------ ----- ------------ ------------ ----------- Rn 190 200 210 220 230 210 260 260 270 21 Day 2007-BaseWl-2 2007-BaseW1 KM: 1.253 Depth: 1 2007 -scenario 2 -no bypass flowVV1 KM: 1.253 Depth: 1 ------------ ------------------------- ----------- ------------ ------------ ----------- ------------ ------------ ------------ ----------- ------------------------------------- -------------------------- -------------------------------------- ------------ -- -------- I - -------- ------------ ------------ ---------- ---- ------- ------------- L --- ------------ ---------- I -------- -- ------------ ----------- ---------------------------- -- --------- ----------- ------------ ------------ ----------- ------------t------------,`-----------',----------- ----- ------ ------------ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------------------------ - - - - - - - - - - - - ------------- r ----------- I -------------- r - - - - - - - - - - - - ------------- - - - - - - - - - - - AO ISO 260 210 220 230 240 260 260 270 21 Day Figure 24. Modeled Temperature at One Meter Depth in the Second Segment Downstream of where the Allen Discharge Channel Enters the Model 0 DEMI 34 42 40 38 36 34 32 30 CL E 28 26 24 22 20 42 40 38 36 cp 34 O CD 32 S 30 8 CL E 28 W 26 24 22 20 2002-BaseWl-2 2002-BaseWl KM: 0 Depth: 1 2002 -Scenario 2 -no bypessW1 KM: 0 Depth: 1 ----------- ------------ ------------ ----------- ------------ ---------- ----------- ------------ ------------------------- ------------- ------------ ------------ ----------- ------------------------- ----------- -------------------------------------- ------------ ---------- ------------ ------------------------- ----------- ----------- -------------- I ------------ -- - --------- ---------- ------------------------------------------------- ------ - - - - - - ------------ ----------- - - - - - - - - - - - - - - - - ---------- ------------------ ------- - - - - - - - - - - - ----------- ------------ ------------ ----------- ------------------------- -------- --- ------- . . . . . . . . . . . . . ... . . . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - r - - - - - - - - - - - - - - - - - - --------------------------------------------------- ------------------------ ------ ----------------- ------------ ------------ - In 190 260 210 220 230 240 250 260 270 281 Day 2007-BeksaWl-2 2007-BaseWl KM: 0 Depth: 1 2007 -scenario 2 -no bypass floAW1 KM: 0 Depth: 1 ----------- ------ ------------- ------ ------------------------------- ----------- ------------ -------------------------- ------------ ------------------------- ----------- ------------ ------------ ----------- ------------ ------------ ------------ ------------ ------------------------- ----- ------ ------------- --- ------------------------------------------- ------------ -------- -- --- -------- ...... ------------- - --------- ---------- --------- --- -- - --------- --- ---------- ------------ ---------- ----------- ------------ ------------ ----------- ----- ------- ---- ------------ ------------ ------------ ------------ ----------- ------------ ------------ ----------- ------------- ------- ------------- -------------------------------------- ----------- --------------------- ----------- ------------ -------------------------- ----------- ------------ ------------ ----------- I ------------- ------------ ----------- I ------------- ------------ ------------ ------------ ------------ ............ ........... ------------ ------------ ----------- ------------- I ------------ ------------- RR ion 2fin 210 220 230 240 290 26 270 2f Day Figure 25. Modeled Temperature at One Meter Depth in the Third Segment Downstream of where the Allen Discharge Channel Enters the Model n REMI 35 36 34 32 30 CL 28 Fn - 26 24 22 20 42 40 30 36 34 O 32 30 CL E 26 26 24 22 20 2002-BaseWl-1 I 2002-BaseM KM: 20.23 Depth: 1 2002 -Scenario 2 -no bypassW1 KM: 20.23 Depth: 1 --------------------------------------- ------------ ------------ ------------ --------------------------------------------------- ------------ ------------ -------------------------- — ---------- -------------------------------------- I ------------ -------------- - ------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------------------------- --------- -- ----------- ------------------------- ---------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - - - - -- - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Bo 190 200 210 220 230 240 250 260 270 21 Uny 2007-BuseWl-I 2007-B marl KM: 20.23 Depth: 1 2007 -scenario 2 -no bypass flowAM KM: 20.23 Depth: 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------------------ --- -- ---------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---------- ----- ------ ----- - - - - - - - - - - - - - - - - - - - ------------------------------- - - - - - - - - - - - - - - - - - - --- - - - - - - - : ------ -- -------- - - - - - - - - - - - - 42 - - - - - -- - - - - - - 40 - - - - - - - - - - - - - - - - - - - -------------------------- ---------- ---------------------- - - - - - - - - - - - - - 38 36 34 32 30 CL 28 Fn - 26 24 22 20 42 40 30 36 34 O 32 30 CL E 26 26 24 22 20 2002-BaseWl-1 I 2002-BaseM KM: 20.23 Depth: 1 2002 -Scenario 2 -no bypassW1 KM: 20.23 Depth: 1 --------------------------------------- ------------ ------------ ------------ --------------------------------------------------- ------------ ------------ -------------------------- — ---------- -------------------------------------- I ------------ -------------- - ------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------------------------- --------- -- ----------- ------------------------- ---------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - - - - -- - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Bo 190 200 210 220 230 240 250 260 270 21 Uny 2007-BuseWl-I 2007-B marl KM: 20.23 Depth: 1 2007 -scenario 2 -no bypass flowAM KM: 20.23 Depth: 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------------------ --- -- ---------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---------- ----- ------ ----- - - - - - - - - - - - - - - - - - - - ------------------------------- - - - - - - - - - - - - - - - - - - --- - - - - - - - : ------ -- -------- - - - - - - - - - - - - - - - - - --- - - - - - - - - -- ------------------------- -------- ---- ; ------- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -------------------------- ---------- ---------------------- - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - - - - --- ---------------------- - - - - - - - - - - - - - - - - - r - - - - - - - - - - - - - - - - - r - - - - - - ------------ ----- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - ------------ ------------ - ---------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - - - ------------------------------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------------------------------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I-------------------------- - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------------ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------------- no 190 200 210 220 230 240 250 260 270 21 0 Uny Figure 26. Modeled Temperature at One Meter Depth in Lake Wylie at the Mouth of the South Fork Catawba Embayment REMI W, Main Arm of Lake Wylie 34 33 32 31 0 30 Cn a 29 28 27 CL E 26 25 24 23 22 34 33 32 31 630 O_ 29 28 o. 27 E 26 25 24 23 22 2002-BasaWl-I 2002 Base Elevation: 167 2002 Scenario 2 -no bypass flow Elevation: 167 ------------ ----------- ------------ ----------- ------ --------- I ------ ------ ------------ -------------- I ----- ------------ ----------- ------------ ------------ ------------------------------------ ------------- I ------------ I ----------- ------------------------ ------------ ------------ I ---------- -------------------------- ------------ I ------------ I ------------- ------------ ----------- ------ - --- ------- ------------------- --------------- ------------------------- ----------- --- ----- ------------ ------------ ----------- ----------- ------- --- ------- - -- ------------- - ------ -- ----- - --------------- ----------- ------------ I ------------ ------ ------------------------ - ------- ----------- ------------ ------------- r ------------------------- ---------- ------------------------ ----------- -- -------- ------ -- - ---------- I --------- ------ --------- - - - - - - - - - - - - I - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - --- T iin 200 210 220 230 249 250 290 270 2 Day 2007-baseWl-1 2007-baseWl KM: 26.575 Elevation: 167 2007 -scenario 2 -no bypass f1owWl KM: 25.575 Elevation: 167 ------------ ------------------------- ------------ ------------ ------------ ------------ ------------ 4 -------------------------- ------------- ------ I -------------- I ------------ I --- -------- I -------------------------- ----------------------- ---------------- -------------- ------------ ------------ I ---- ------- - -- -------- I ------------------------- ------------- I ------------ I ------------- ------------ ------------ -------------- ------------ ------------ --- ------ ------ - I ------------- ------------ -- ------------ - ------- - --------- ------- --- ----- ----- I -------------- L ------------ - ---- ----- ------------ ------------ ------------ ------------ ------------ --------- -------------- L ------------ ---- ------ -------------------- ----------- ---- -- -------------------------------- ------------------------- I -------- ----------- -------------------- I ------------ --------------- -------- I -------------- r ------------ ----------- I --------- - ------------------------ 4 ------------ ------------ I ------------ ------------ ------------ ------------ -- --- ---- ------------ - ------------ ------------ ------------ ------------ ------------ ------------- I ------------ ------------ ------------- I ------------ ------------ I ............ ............. I ------------ I ------------- ------------ --------------- ------ 00 lic 200 210 220 230 240 250 260 270 28 Day Figure 27. Modeled Temperature at the Centerline of the Allen Intakes I REMI 37 C_1300LSc,nxb 2 -no yp, ss V tV1P 2002DnM10k 26.676 JT 2912 99!• 22 N 26 28 30 32 N 36 36 a C_si00.- —rio 2 -no bop s$VL 200zOuM10.k26.676 11"29 2992 99M Ts 160... —_....._...............• 156....; II 2t 26 28 30 32 N 36 36 V7 C12002.Sc 2+ b5passVlV2P 2002-b-1NM26b76 9af972�29lM , �i _ 22 24 26 26 30 32 N 30 36 00 Ca200D6cxwb ,MDSpassVl.V2P NM-0afw126NDR J1926 2192 99M 22 24 26 26 30 32 N 36 36 b C_12002.6anxlo2 bypassVtV2P 2o02iasw110d MM C:_.120025cenxb 2-ro Dfp,ff V I.V2P 2002�rasr110.S 26.676 0:..12002-^.S—b 2-ro bypass V L 2002aaw11PR26.616 M! z2 N 26 26 30 32 34 36 5-40 C_s2002So«urio 2m bW-s V I 2002 -b -1=25,M 1 .29929M9 22 N 26 20 30 32 N 36 36 a0 c:_Izwz-semaao 2,n amu f vlv2P M47200472M10fl25576 299299A9 _ ffo 65_ 2Z 24 20 26 30 22 N 36 38 b Figure 28. Comparison of Base (black) and Scenario 2 with no bypass flow at the Segment Where the Allen Steam Plant Intakes are Located REMI 38 34 33 32 31 630 S29 28 27 CL E 26 9 25 24 23 22 1 34 33 32 31 30 rr 29 CO 28 27 E W 26 25 PZ1 23 22 2002-BaseWl-1 2002 Base Elevation: 170 2002 Scenario 2 -no bypass flow Elevation: 170 ------------ -------------- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - I - - - - - - - - - ----------- ----------- ------------ ----------- ----------- ------------ ------------ ----------- ---------- ----------- I ............ I -------------- I ----------- ----------- I ------------- ------------- I ----------- I ------------------------ - --------- j-- - - ----- ----------------- ------------------- ----------- j - - - - - - - - - - - - - --------- ------------ - - - - - - - - - - - --------- -- --------------------------------- ------------ ------------ -------- ------------ ------------------------------------ - --------- I ------------------------ ------------- ------------ ----------- I -------------- I ----------- I ----------- I ------------ ---- -- - - - --------- ----------- ....... .... ---------------------- ------------ I ----------- ----------- ------------ ---- ------- I --- -- -------- - ------------ ------------ ----------- I ---------- ----------- ------------ I ------------ ---------- ----------- ----------- ------------ ------------------------ I ----------- ------------------------ - - - - - - - - - - - - I - - - - - - - - - - - ----------- ------------ ----------------- -------------------------------------------------------------------- 10 190 260 210 220 230 240 290 260 270 21 Day 2007-basaWl-1 2007-baseWl KM: 8.147 Elevation: 170 2007 -scenario 2 -no bypass flowW KM: 8.147 Elevation: 170 ------------ ------------ 1 -------------- r ------------ --------------------------- r ------------ --------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ----------- ---------- : ----------- ----------- -------- I ------------ ----------- -------------------- -------------------------- ----------- --------- --------------- - ------------ ----------- ------------ ------------ ------ -------------- I ------------ ------------ ----- - ------ -------- ----------- Aw,,A ------------ -- -------------- ------------ ----------- --------- --- --- ---- ------ - - --------- ------------- I ---- ------ -------- ------------- ------------ ------------ ------------ --------------------------- ------------ -------------- -------- -------------- ------------------------- ------------ ------------ --------------------------- r ------- — --------------- ---- ---- --------------- ------------ ------------ ------------ ------------ ----------- ----------- ------------ ------------- I ------------ ---------- ------------ ------------ ------------ ------------ ----------- ------------ ------------ ------------ I ------------- ----------- ------------- ------------ ------------- I ......... —, ------------ ----------- ------------ I -------------------------- ---------- in An 260 210 220 230 2i0 An 260 270 2 Day Figure 29. Modeled Temperature at the Centerline of the Catawba Nuclear Plant Intake REMI 39 C_,M -S. nano2—bw—VLv2P 2oozau.all3ttex7 ru sa � 165,-"-� ........... .......... 22 2/ m 20 30 32 36 30 38 W C_12002-S,enalo2robp ..VLW2P 2002datw113,t 6.147 22 z. 26 20 30 32 31 36 38 10 C_,xao2-Samar 2 -nn bypasrvlVxP 20020.sa.,r1 q,0.8N7 arv3 zrx � 767,--T--• -•--,---:--•--+..-• 22 21 26 20 30 32 7• 36 38 10 C_A20025emmio 2-nobJpassVLV2P 2002•buM 1016.147 [_.,2002 -Soman 2m bppurMl V F aa7 tin •s C -12002 -Soman 2rm bppassWtV2P 2002-0_IKKO.M7 C_—Soman 2+o bgpasral V2P =-b—AMOW . . . . . , , 9-2-4 26 20 30 32 34 36 30 w C-Q002-Scma io 2m blwss V L V2P 2002-t.—I O.M7 �777; i , 22 21 26 M 30 32 31 36 38 b C_12002-scman 2+,o bgparaVLV2P 2D026.swA10.l0.M7 sl..>. z6n � . . 22 21 26 20 20 32 31 36 30 w C:._120025cenaio 2nobp ,VtvzP 20024—A MO.M7 M 21 26 20 30 32 3i 36 30 10 Figure 30. Comparison of Base (black) and Scenario 2 with no bypass flow at the Segment Where the Catawba Nuclear Plant Intake is Located c-12002sam,no z -no byp usvlvzP 2002Lasea11Qh0 alae 167,--"•' '"-•'-.-'"•--•--•__' --•'"•'"+"-"�--•--+-"-• 12 2a 26 20 M 32 31 36 n W C_12002Sc.W. 2 -no bypassVtWP 20024u.a11040 're 20.0.2 0"3 C -12002 -Soman 2+w bpparlvLV2P 2002-basw 4 22 21 26 m M 32 Y 36 3s b C_.12002-Scmab 2a bppassVLVzP 2002.b—IKP.10 7..0.7 20.02 0. C_12002-S—w 2 abgsssVL 2002das.r110dO aln xMx� Try ........... ....�.-`--''"' 22 2/ 26 n M 32 7• a » a G_12002 -S—. 2nobl ,IVLV2 2002-b—i KKO tt 17 """ C_,002-sama•io 2m Egpus V LV2P mot-ws..IlcMo 167,..-•" _•--•",--"•--•--,._, M 21 a 20 30 32 31 36 36 10 C_Im02. scenan 2.no bp.—� . . M 21 29 20 70 32 U 38 30 10 CL12032-soman 2ro bypass V i V Zts 2002basra11 &O A—W 20.0.20.0.0.0. C_1z002-Soman 2nobg—W VZP 2002 —1 MO L 0720.0.20.!p 147.. _,._., _.•_______ __________ too 107 , M 21 26 m 30 32 M 36 38 10 Figure 31. Comparison of Base (black) and Scenario 2 with no bypass now in the Forebay of Lake Wylie REMI 40 Effects of Scenario 1 on DO in Lake Wylie South Fork Catawba Embayment Modeled DO in the segment in which the Allen Steam Plant canal enters the South Fork Catawba branch of the model for the base case, scenario 1 and scenario 1 with bypass flow are shown in Figures 32 and 33. The results show that DO in the bottom 3-5 in can be lower for Scenario 1 without the bypass compared to the base case, but that the bypass flow restores much of the lower DO. However, the decreased DO observed for Scenario 1 in August and early September was not lower than occurs currently during the earlier profiles shown for July 9 and 19, 2002. _%2002-!A n io Hw bypnsVtV2P 2002.baseZM3.35 Adp YM29"a 00- - 00- _ 0 1 2 3 4 5 6 7 0 9 10 n 2 _,2002-S.._ bo bw., VLV2P 20024 aw.IKM3.35 _12007-s—io Me bypass 11. lV21` 2007-b—IIQ. m "M92M7 Ml5 _ _2007-sc.narie 1i10 bypass rlo.vbva A.ag MIQ.2115 w..25 2107 bw _,2002Sc.naiw l— bV..WLVZP 2002-b—IMM M �. _ 0 1 2 3. 5 6 7 0 9 10 n 2 _a20024cm ,fo Hoby assVLWP 2002-b—dI M3.35 5..57210210" 65 . 0 1 2 3 6 5 6 7 8 9 0 11 12 _12007-s—r I mbypassilo.V1.WP asa 2007-0.1M3M AM 2807 O&W �.... lye ........ 0 1 2 3 a 5 6 7 e 9 g n 2 _2007­an.bH sblpassllovVLv2P 2007-0acwsl KM 335 5-A 2"75535 no-• - - _ . . . . . . . . . . . . . . . . . . . . . . 0 1 2 3 4 5 6 7 0 9 0 n 2 _0002•S—e. lace b3p... VLV2P 2002-b -IKM 235 dd2920820f.10 as- 0 1 2 3 1 5 6 7 8 9 10 0 12 _12002-Scwario I+a b1P..Vl V 2P 2002-b -1 KfA S-172102 Mis _-- Ti0""' - Lyo-- O I 2 3 x 5 6 7 6 9 IO 1112 _12007 ---ice I "by"" 1W,V 2P 2007.b—.IKM 3.35 encs 21075LM 0 1 2 3. 5 6 7 8 8 0 5 2 _12007 -scenario bne bypass Fb VLVP 20072as-113.•2135 5 "2M710Y _ 165 ................._.._.__._. 0 1 2 3 4 5 9 7 0 9 0 n 2 J2002Scsnxlo Lace bppassV WP 2007-bas-1KMOZ A -U 2102 M:M T70 10 - ED W• - 0 1 2 3 6 5 6 7 8 9 10 11 12 _12002•Scen.6.H bearsVLV2P 2002-0as-IKM3.35 1s9-- - - '. 0 1 2 3• 5 6 7 9 9 0 H12 _12007 -scenario Mo bypass 6w V L V 2P 2007•basn.IlOh335 _002•Sc.na io 1 -no bypassVI.V2P =-basM11*3.25 A" 22M2 WAG r 0 1 2 3 4 5 6 7 8 9 10 n 2 _12002•Snnuio falx bypass V LV2P 2002---1;Z3.35 0,9172M210M _ 0 1 2 3 a s 6 7 8 9 10 n R ..12007 -scenario Im bypass Ib.VLV2P 200 -b—II&L275 Aaa.M 2"T so" _ ---- _{2007-uaoam Lno blpais 6o VLv2P 21107 -bas -I Mx35 Figure 32. Comparison of Base (black) and Scenario 1 with no bypass flow at the Model Segment in the South Fork Catawba Branch where the Allen Discharge Channel Enters—for 2002 and 2007 REMI 41 _Izooz-seen,ao }eems bpassvtvzP 2002-s canarb 11ao D Ws s.110`+! 9.95 Mp Zp2 p!! 160 too - 0 1 2 3 4 5 6 7 8 9 10 11 p _12002-Scena61 1.15cros bypassV LW2P 2002•reenrb Ialb bpnivl KM 3.35 sw>nzpt p.�_ UO ,s0 -- 0 1 2 3 1 5 6 7 6 9 tl 11 12 _12007—nano 113cms blpass flan WZP are t007MY pf0 0 1 2 3 4 5 6 7 0 9 01 0 t2 _12007-scanarb 1.15—bypass 0—vtw2P 2007•scmasb I--6,ws P—I KM 339 M620^ p7 pljja . . 160_. _ 1,3.. 0 1 2 3 4 5 6 7 0 910 11 Q _.12002.seenarb}15cros by NVL7 2002---io tam bpusvt 131! 3M 195-4-11-4- 0 1 2 3 1 5 6 7 6 9 10 It 12 _12002-S 660 M6cros b%WSV1.V2P 2002•lcrostlo t—bPP..iKM 335 _12007-scmario}15emsbypassI VIMP 2007-yyoab bgp—ss IKM335 . 7 280 pp _ O 12 3. 9 6 7 0 9 17 a V -.12007-z—io M5c bypas56 VI.W2P 2007-xawio tsm byasr Oonet KM 3.35 S-ff 290 NW ITD 0 1 2 3, 5 6 7 6 9 V 11-12 _1M2-Seenario }75cros bpassV LV2P 2002- iOismb5PMvI99.95 M9_ 0 1 2 3 5 6 7 0 a tl 11 12 _12002 -Scenario }15cmr bVa59WtW2P 2002-fnnarb} psa , byassvtKM9,35 s..n:ux 164- I 0 1 2 3 5 6 1 8! to 11 Q ..12007.1-1.}Rsms bypars O-VLW2P 2001-semib lm bpsr 6orv1 KM 335 �it5 2p7 MM _12 7-scenvi.}Plans bypass IImvLW2P 2007-aarwio Im blpas IiovA KM 3.35 6-" 290 ft44 _12002-Seenar6o }15cros bpssVLV2P 2002-surorlo Ino b V—t Ki,! 3 N 168__ 155. 0 1 2 3 6 5 6 7 8 9 tl 012 _R W 2-Sem,rie mu— bypass V tv2P 2002-acw mb5pwwIKM335 ISO - . 155--%- - - - 0 1 2 3 9 6 7 0 9 tl n 12 _t2007-scenaro}IScros bypasrflorVLV2P 2007-soanarb lro bpasi Ilovv7 KM 335 1a..26 sp2 a7►p 0 1 2 3♦ 5 6 7 8 9 tl 0 12 _12007-scanuio }15cros bpass 1bv V L V 7P 2007-somarb}robypass Oo IK%2.75 6n27 2p2 ptp 70-- 0 1 2 3 6 5 6 7 6 9 W n 12 ..12ooz-see n.;o }Isems gpassvLvzP tooasem.ie Ism IayasPn 10.k a35 155. 0 1 2 3 5 6 7 8 9 to n 12 ...1X102 Scenarb 415cros byp,ssV V2P 2002--a }rob%—IKM395 O 72M p:p _12007acenrio t15 m bypmsFlov WP 2007M"2ra Iam Dyass IbwlKM351 11..n 7 am Figure 33. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1 with 15 cros bypass flow at the Model Segment in the South Fork Catawba Branch Where the Allen Discharge Channel Enters—for 2002 and 2007 REMI 42 Main Arm of Lake Wylie Figures 34-40 present the model results for DO for the main arm of Lake Wylie, from the PA intake to the Wylie releases. These results show that DO is not significantly affected by the Scenario I cases. C.,Z002-s'".". D. bv.'W,-� ,­� ­� C2002-S� b5pVtV C_,WOZ.Sa.4. 4. bp..W1V2P 20024-1=575 C-__,2002-S,—e. I— b9p",vtW2P 2002-b—IM25375 C_'002.s ..... *1.,Obsp �Wp 2002 -b -10M25575 2OO2-b.MKA2U?9 2OO2.b_1KK25M A"28828858 . . . . . . . . . . . . . .. ... ..:-:_ 770 ------ -- fro ......... I ...... I — --------- . . . . . . . . . . . . . . .... ...... . . . . . . . .......... .......153 55 .......... 'so 0 1 2 3 4 5 6 7 8 9 10 O 12 0 1 2 3 4 5 6 7 0 9 10 n 12 0 1 2 3 4 5 6 7 8 3 M n 12 0 1 2 3 4 5 6 7 0 9 ID fl 2 0 1 2 3 4 5 6 7 0 3 10 5 2 C_1UOZ S-4, Yw bpw,WI.VZP Q_QO02.S...i. Y- bsp­V� 0=2-U d. L- bp­WVZP C_QOQZScW.—bqp..VtW2P C_"2-s"­bMwlep 'Swtv2p 2002"IMM75 2002-0-0135:25375 2002-b—IM 25575 2002 -b -1=55M 170--.•.. . In_ 170. 165815 . - ...... 10 ............ Imo............. ----------------------- 0 1 2 3 6 5 6 7 8 9 V Ti 2 0 1 2 3 4 5 s 7 a 9 io n 12 0 1 2 3 4 5 6 7 8 9 V 11 2 0 1 2 3 4 5 6 7 6 9 10 n 12 0 1 2 3 4 5 6 7 8 9 10 T1 t2 _m7-- �bpnzvtwp ­007--Hbpusfl"WIVZP ­007--iot—W ..n_vt� ZOOT­i.—bv..P—V1VP .. fi-Wl� 2007.6—WAM75 2W=2075 2007-h.�W5M 2W74—AM25.575 J.J29 M7 8"M 2007b_10425j5 ANN2N7. 2"7 M7" . . . . . . . . . . . . . . . -- --- ---------- --------- f7o --------_-- . . . . . . . T70 ITO.- ---­------ — ------------- 2 3 4 5 9 7 8 3 10 n 12 0 1 2 3 4 5 6 7 8 9 W n 2 0 1 2 3 4 5 6 7 8 9 W 5 12 0 1 2 3 4 5 9 7 9 3 8 fl 2 0 1 2 3 4 5 6 7 8 9 10 n 12 2MM-1 25B75 A-" ZNY 6B." Flo.WIVZP 290?-b~KM25JM 5-072 "As _Q007 -scenario Nro 111­AV2P c..V 2KY 0 1 2 3 4 5 6 7 8 0 V 11 9 12007­iDH blp IWMP 2007-b-71 M23375 SO 0 1 2 3 4 5 6 7 0 9 10 fl 12 Figure 34. Comparison of Base (black) and Scenario 1 with no bypass flow at the Segment Where the Allen Steam Plant Intakes are Located—for 2002 and 2007 REMI 43 _12002-S—bYM—b, .,Wt 2P 200Dso— Inobps KM25!78 11M6 2026 0 1 2 3 6 5 6 7 9 9 6 n 2 _12002-SpOnio cros 415byp ass V t V ZP 2002 -snub Ino Dlpasml1Q1703M Ewa a6266�6 IM 1 7- 0 1 2 3 4 5 6 7 8 9 0 9 2 _12007-scmabL5mvb,USfl W1V2P 2007•ram4 ri ,— bparnow110.225M ja1662667M:0 _ KS-- -------------- 0 _0 1 2 3/ 5 6 7 8 9 0 9 2 ,2007--b}bsms bpas Boat/I.V2P 2007•rema8o Ino Op6sr0orr110+727.l76 XOEwa zw7 66!6 ........... 0 1 2 3•! 6 7 8 9 0 5 2 -.12002-S—.x Lb bypsssVtV2P 2002-scwlmo} 6yan1MMM hKl 26670# _ . . . . . . . . . . . . . 0 1 2 3. 5 6 7 8 9 0 0 2 ..12002-Scmuio 415cros bypass V L V 2P 2 WI-sewirn Mo bw..A l W b 2167! 1"67 200 M.M p. _ b7- 0 1 2 3. 8 6 7 8 9 10 9 2 _12007 -scenario WScros bypss 8 -WP 2 W 7-soma0o Na b9pasr nbw110'Q 2MM J 2M7M0 _120025—M sbcma byp— IV2P 2002-uworieN h D K%2!.675 awn 2M266.66 0 0 1 2 3 0 6 7 8 9 10 n II _12002-S...i. m5—byps.VtV2P 2000smovlo I m byasaI M 25.67! S.W 262660 0 1 2 3 6 5 6 7 0 9 1D 11 2 _{2007-sar1n 46ans bypsa 11MWtV2P 2007aemab Ino 6pattnowlq.425775 i2f 207 MM ..2007 -ac woFbcros bpasse I.V2P 2W7aandb}no be—nowMA25M 6a' .. ........... 0 1 2 3. 5 6 7 8 9 0 0 2 _2007-scenab I bans bpass nm.V tV2P 2007—vio Mo b6prr Bo7a1I3h OM 6twa 207 66:66 _2002-Scmub I•bcnm bpasVIV2P 2002-soso Bio Mn Opaas.110.t 29bili sNM62MS Mf ------------ . . . . . . . . . . . . . . . . . . . . . . 0 1 2 3 6 5 6 7 8 9 0 it 2 _12002-S—do I -bans bypass V LV2P 200 --a L bya KM25575 96.27 26M M�6 . . . . . . . . . . . . . . . . . . . . . . . . . 0 1 2 3 6 5 6 7 8 9 0 11 V _12007---I. tAScros bypaa 9oa V L V 2P 2007-umarib Ha byptr euwl10A25775 6666 207 M0 . . . . . . . . . . . . . . . . . . . . . . 0 1 2 3 6 9 6 7 8 9 0 8 12 _2007- udoNScrosbypasr,. I.V2P 2007-spurnOwblparlb IKPA25775 0 1 2 3 1 5 6 7 6 9 0 5 2 _12002•Scmuio 4bcma byaa V L V 2P 200baunario t+a blD.saN 13J126b78 Awf 26616656 K7- 160_......._.. „............... 0 1 2 3. 5 6 7 8 9 0 11 2 _12002 `amain I -trans bpusVLWP 2002 -samara laa byaszaI M 26A75 6007202660 16! lam.. . 0 1 2 3 1 5 6 7 8 9 0 9 12 _2007acm ab M— b". Boa V 2 V 2P 2007•0roanub In001pas fbw197•t25.778 6w2M7 M0 E5- - - 155 0 1 2 3 6 5 6 7 8 9 10 6 2 Figure 35. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1 with 15 cros bypass flow at the Segment Where the Allen Steam Plant Intakes are Located—for 2002 and 2007 REMI 44 C.-12002-s—fi.I.. bw ... VLWP C:.11002-S——byp ... VtV C-AM2.U..i. Mo bp—WZP bjp",V WP C-2002'S—w Fm bsp—WP 20024&sWKM6.147 2002-b—A10`4 &MY =-b— MM 2M2�m�M 049."7 z.IQX? aIYY 2M3 .77 ---- 4. - 1yo '77-I'T 170--;- --------- . . . . . . ----- . .. . .. -- ---- ----------- . . . . ------------- ----------- . . . . . . 0 1 2 3 4 5 6 7 8 9 10 16 U 0 1 2 3 4 5 6 T 0 9 10 fl 12 0 1 2 3 4 5 6 7 0 9 10 n 12 0 f 2 3 4 5 6 7 9 9 10 n 2 0 1 2 3. 5 6 7 0 9 10 fl U ?,ObyPHjWtV2P C>.12002-Sctnano Mo bpAssVtW2P QAOU-U .,b".bqp.,VtV2P C--Q5p— G02-� ioMobWP C",2002-S.W' t-bP—VLV2P 2002�b—1 KPA 547 2002-b~MO."? 2002�-IMI.147 Mb -1=6.97 20024.-11018:8.17? 5 72M2 SIM 6A17 MM S"" 2M ee.M OA72M2 01.40 r10 - - T .. ........... M-- . . . . . . . . . . WS ------- .......... X5------------ ........... . . . . . . . . . .-- ...... . . ............. ........ ----- 10 6 6 7 8 9 M n 12 0 1 2 3• 5 6 7 9 9 M V 2 0 1 2 3 4 5 S 1 0 0 0 tl 2 0 1 2 3 4 5 G 7 8 9 10 V 12 0 1 2 3. 6 6 7.6 9 V n U -2007—iOMOb,PMSftWV1VZP 2M -"? MO b2p"s VLVZP 2007-10 b"— Www vzp -CM.—fi. 1— bsp— 11..Vtv2P =7.b. -�.IME%7 Al 20076 nkkuy 2M7=1147 2007 2DD7 —IMM47 MM Jd0 SM7 Mfg my M" A.WM 2M7 Mfg AwpYMTM ......... T7g 170 ---- ------- .. ....... ---------- ---------------- - --------- -- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. -.. -- ................. ............... ------------ ------------ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 1 2 3• 5 6 7 8 a 10 n 2 0 i 2 3 1 5 6 *7 i 9 fo -:-!, b 1 2 3. 5 6 7 9 9 10 n 12 0 1 2 3. 5 0 7 8 9 10 fl 12 0 1 2 3 4 9 6 7 8 9 10 V U A..0 2W 6*-" RS-- -0 1 2 3 4 5 6 7 0 9 10 TV V 170 - 155 2 3 4 9 6 7 8 9 10 11 2 Figure 36. Comparison of Base (black) and Scenario I with no bypass flow at the Segment Where the Catawba Nuclear Plant Intake is Located—for 2002 and 2007 REMI 45 _12002.S-,!, 2002-sc„u GrobranM9.167 bn22142esm VO - --------------------- IN - 0 1 2 3 1 5 6 7 8 9 r 5 V _12002.Stt ioI-gems bppasVLVZP 200twm.9D Irq brawllNk 0.N7 31.f28 2142 Mi0 Rs-- 55 - 0 1 2 3 1 5 6 7 9 810 5 Q _aooi-sDmyb i-snms bgprs mvvl.v2P 2007•.annb Mo Dgpns IID.w I I0@ 8.N7 .aM 1417 Ms. 0 1 2 3. 5 6 7 8 9 10 11 tt _12007-scenub I.15tms bras R"V1.v2P 2007-.o.nMD }n. Dra. ibwl l3•b 0.147 11-22 2147 MM 110-- - 155 _ 0 1 2 3 5 6 7 9 9 10 11 _.12002•Scmub MI -1 bV sVtv2P 1002•u.sorb Loo brant IUt 5N7 _12002•Sc ,io YMMb9paWMP 2W2aowWbb bW""1MB.147 _Q=.SMAa F15cros brasVLV2P 2W2.—m6o Nm bwMs lKM 8.47 8..91 2M2 MM _12882.SnnviO4M=bgDasVLV 2P 2002.—= t— brawl KPA 8.X7 5-772M2 MA@ _12007-.c.nrb 115cros b9pxs IbvVLV2P 2007•.c.n.. N_ D/Da. ".—I IM 0.147 Jdn 2147 Mw _1x0or-:esn.rb 1-san s eras rlu+n.v2P 2007ae froDeasRDwIIPhB.N7 di292M7 14!1 _120Di-sc.nrb I -Plan, bras VLV2P 2007ae,Dnb Dsm bp0a! 11-11049.M7 B ?2M7 MM p. 0 1 2 3. 5 6 1 5 9 10 0 12 _12007-sa I.M., brasI VLV2P 200T...n.b t- bp.. s Ibwt 0& B.N7 5-17 2M7 M ..1200bSwn M5cm, ..99 x 2 br•s,VLV2P 200 U M214U fmbp.ml IOk &N7 M:M 0 1 2 3 1 5 6 7 8 9 10 5 V _12002-Swnano 415cros D6D+ VLV2P 2002_"O a bpas.l YNk 8.147 B-27 2M2 MSM no-- - 165 ........ ............'—... 0 1 2 3. 5 6 7 9 9 1D n Q _007. cenuio 4soms bgpas flo.V.447 2007•sanrb fno brass 6ow1/7d 5.N7 71.169 SM7 t►3w -- 159-- - 0 1 2 3 1 5 6 7 8 9 V 5 p _12007-, —d.4M5 byP.ss DovVLV2P 2007— M. bras RD-/ KK 0 M7 6-272"7 M:M g90.................. 0 1 2 3/ 5 6 7 8 5 10 5 t2 _s2002•Scwuib.scm, bpia,V1.V2P 2000-am.rio Mo Dras,01M2 8.N7 0 1 2 3. 5 6 7 8 9 10 1112 _QM.Sclnwo MMSbrasVLV2P 2D02-sanrb Ma brasd KM 6.147 Ca72M2M _1200)sc.nrb F6aa D1D.ss ibrV LV2P 2007ac.nrb /,N Dlp as f bwl ph QN7 11.a18 IM1 M.M 0 1 2 3. 5 6 7 8 9 10 0 2 Figure 37. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1 with 15 cros bypass flow at the Segment Where the Catawba Nuclear Plant Intake is Located—for 2002 and 2007 REMI 46 C"002-S,n - 1m b�WLWP C_12002-�nwo 1- b5Pa'.-WP C,2=-� o b�,WtWP �C�-�w. Imb�,-2P =— 2�IKKO 2M2bmaIIQAO i002besev110.l0 2002t-d1K0 =24..v/0MO . . . . . . . . . . . . . tro 170--:-:....... . �. . TM _J ..... Li .0 -4: 4 ....... . 4- ym ..... .. ......... rA X5 ...... ................. 0 1 2 3. 3 6 7 9 9 10 U 2 0 1 2 3 4 5 6 7 8 9 M n 2 6 7 8 9 v n 2 0 1 2 3 4 5 6 7 8 9 ID n 2 0 1 2 3 4 5 6 7 8 9 10 ft 12 C-2002-S--I-bV.MV2 C_120 2 -S -Wo I -w byp ... VtV2P C-M.S, io�bq-WMP C-�2�,�L,bWuMWP CMO2-��I�byp,,,NWP 2N24.M M 0 2002.bL!1JMO 2002-b—IMO 2002bauv110A0 2002b KPAO 9.7172117 -W20" 0a 7 ORAG . . . . . . . . . . . 170 IM: - � -Co o. .. ......... vo X5 IN05. 165 ----- --'----:_^---------=----0 ..........-........... is SO ------------ ------------- ...... D 1 2 3. 5 6 7 6 9 10 fl 4 0 1 2 3 4 5 6 7 8 9 0 n 2 0 1 2 3 4 5 6 1 0 9 10 h 0 0 1 2 3. 5 8 7 8 9 10 n 12 0 1 2 3 4 a a 7 a a 10 it t2 W-.b,p..MWLWP io�bqpmflwvtw� -IM7-,.� � bV.. 2007baAv1 q.40 " 2DO?4&;aO 2W- 741=0 2007b~KKO 2007.6—I0MO A!,j@ 2M7 my .77 .......... ..... ..... ... 00..:_`. .2 ------------ . . . . . . . . . . . . . . .. . . SMS• ..... ...... ........... %S ---- ------ --- ------ ------ . . . . . . . . . . . . ------------ . . . . . . . . . . . . . . . . 0 t 2 3! 5 6 7 0 9 10 n 4 0 1 2 3 4 5 6 7 0 9 10 n 9 0 1 2 3/ 5 6 7 8 0 10 P 4 0 1 2 3 4 5 6 7 8 9 10 n 12 0 1 2 3 4 5 6 7 0 9 10 fl 12 -12007—Om bjpus flwViWP 2007basasd 10.40 1177212N] 11A1 00 0 1 2 3. 5 6 7 9 9 10 1- bjp- FI-WIV2P 2007-b—IKMO 9a717 2"? W" 2ON-b—IMO S-17 2M7 11i1 ............ 1 2 3. 5 6 7 8 3 10 fl %2 -12007--wn, M bW- 2007.b~IM0 s 27 2M ftm 0 1 2 3 5 6 7 a 9 v n v Figure 38. Comparison of Base (black) and Scenario 1 with no bypass flow in the Forebay of Lake Wylie—for 2002 and 2007 REMI 47 _.12002 -Sanaa 415cros bypass V LVIP 2002scn MabyuntlaRO J.an 2u2 M� _ -MU.S rn 10 LRCm3b PWSVLVZP 2002sawlrio Ono by—I KP t 0 A.." 202 91-h _Q007.31,1110 tls m bypass BasVlV2P 20072wn sBe f ao Dyns Bwv110,R 0 J6gf xMt 1!M _OT. nlio Lbbypan IbvV6V2P 2D07-soM1t0 Mw bWaf s howl pk 0 JWn 2M7 0M _12002-9clurio 4bcros byassVLV2P 2062s1w11b Lno byass.l13s1:0 xm x�n Md� 0 1 2 3 f 5 6 7 8 9 b T Q _12002.9Yenario 1.10 bW— lV2P 20022ce bOnobyasw110.k0 S"IT 2M2 MM 165 ........ ........... ....... 0 1 2 3 6 5 6 7 0 9 10 11-12 _.Q007-s1m1:a 4bmn byazs BwVtV2P 2007-3<mlio Ono byes s BowI1M10 J6Q9 207 0,11 _0007-sc,naio 4Rcm3 Dyas s Ooe V t W2P 20072cmrb lr.o byn 6 Bowl10.! 0 se.A x070:M _ _Q002-Scrnlc 4Rcros 5yassVtV2P 2002221/10 Im byassvl lU! 0 •.5M zlaz M:M 0 1 2 3 f 5 6 7 8 9 D T Q _Q002-Scmaio 4Rcros bspass V I V2P Z..2 2002 MAIWw1I2.20 fIw272M20� _12002-S1rnu10'R —EyxsV1V2P 2002-sswia .M ayP— n.!0 31.Br arz Mia no' to at23fes7ealonQ -Q002-S1rs.ao L?Scrosayp—VLV2 2002-s ioN b,0—IMO OWN NQ pM - KS - 0 . . O 12 3 f 5 6 7 5 9 b T Q 0 1 2 3 4 5 6 7 8 9 10 T Q _Q001-scrnvn 1-15 b,—B-W-P 2007•run110 poo bean I106.A 104 0 06627 207 0:M _ Figure 39. Comparison of Scenario 1 with no bypass flow (black) and Scenario 1 with 15 cros bypass in the Forebay of Lake Wylie—for 2002 and 2007 REMI 48 2002-HaseW11-11 2002-BaseM Dom releases 2002 -Scenario 1-1 5cms bypassWl Dom releases 2002 -Scenario 1 -no bypassW1 Dam releases 18 9 -------------------------------------------- -------------- ------------ -------------- ----------- ------------------------------------------ ---------------------------- --------------- -------------- ------------- -------- -------------- -------------- ------------- ------------- Z7 ----- — -------------------- --------------- -------------- I --------------- ------------- I ------------- ------------------------- --------- C ft 6 ----------------------------------------------------------------------- ----- ------ ------- - ----------- ------------------- — ------- S---------------------------- ----------- ----------- -------- ------ -------------- ------------- T Ol l � �. r ----------- ----------------- ------------- 4 ------------- ------------- --------- --- ------------ ---------------- 0 2 3 - ----------------- ----------- ------------- ---- --- --- - -------------------- ------- - f ----------------------------- 2 - ------------ -------------- ------------- ------------- -------- -------------- -------------------- ...... I----------------------- ---- -------------- ------------- ------------- ------------- I -------------- -------------- ------------- ------------- 180 190 200 210 220 230 240 250 2160 270 260 Day Figure 40. Modeled Release DO from Wylie Hydro for 2002. Results are Plotted when Generation Releases were Greater than 1000 cfs. REMI 49 Effects of Scenario 2 on DO in Lake Wylie South Fork Catawba Embayment Modeled DO in the segment in which the Allen Steam Plant canal enters the South Fork Catawba branch of the model for the base case and scenario 2 without bypass flow are shown in Figure 41. The results show that DO in the bottom 3-5 m did not drop as seen for the Scenario 1 results. _12002 -Sri nub 2 -no byp ass V 1 V 2P 2002b—IKM2.35 11-29 2992 Mag 0 1 2 3+ 6 6 7 9 9 10 11 Q _12007-snnalio 2 -no bypass {IoWLV 2P 20074a1OKM3.3! Art 297 9109 _Q002-Sc.n 2robq.as.VLV2P 2=b sw11043.3! Ali, 2M2 9F9 /;;iii -i----- 5 4. 4- 4. O 12 J+ 0 6 7 8 0 m n Q Q002.So C.Inobypas.VLV2P 20024aw1a3.7! §MN7 zM2 M!9 IW - . 155-- 0 1 2 3+ 6 6 7 0 9 10 11 Q _00074—n 2n bypassbonVLV2P 20074sw1KM3M AIR 297 MM _Q002-Scwario2rob7p"S 1.V 200Mb.-A M3.37 ..12pp2.5c.nario 2t typ85sVLV2P 2002-b—IM3.35 _12002-Scenaeio2roD3Das.VLV2P 2002b.s. IM3.3! A-12 2M2 9:M _12002-Swano 2ro Dypus V L V 2P 2=.b. IKM3.90 9 172929&9 0123+l67esmnu _12007.sa io 2ro"Pus11wWWP 20D74sw1KM390 AQ9 297 9M _12007- —io trio bypass --WP 20074swIKM3J! A— n 297 9:9 _QN7a cwxb trio bypass lbw V L V 2P 2007-0aw110.23.37 _12007 -scenario 2ro DyPasseovVl.V2P n..n 2979s, ..42002-Sconzm 2i bypassVLV2P 2002b IKM3.35 g.,272M2,H2 0 1 2 J 1 7 s 7 8 9 to n Q �ZOOl scwalb 2 --bypass OovIVLV2P 20D?4 -11 MJ3! Ib�99YM79l9 no. 0 1 2 3+! 6 7 6 9 10 n Q _.12007-sc aria ib 2ro bypass O . V l V 2P 20074sw1gk 3.75 ,.9272979!9 1+9--'-x--'-'-'- - sl--' - co-- - 0 1 2 3+! 6 7 0 9 10 n 12 _12002 -Seen V l0 2ro bypass V L V 2P 2002b-1043.35 OMN 292 "M _Q007-scen 2-mgpxs1 VLV2P 2007basw1KM 3.35 s—r 297 elm - 15. _ 0 1 2 3+! 6 7 8 9 tl n Q Figure 41. Comparison of Base (black) and Scenario 2 with no bypass flow at the Model Segment in the South Fork Catawba Branch Where the Allen Discharge Channel Enters—for 2002 and 2007 REMI 50 Main Arm of Lake Wylie Figures 42-44 present the model results for DO for the main arm of Lake Wylie, from the PA intake to the Wylie releases. These results show that DO is not significantly affected by the Scenario 2 case without bypass flow. C_12002Semvu 2+ b9px VtV 2002b, 41KM25575 J'0' 2M2 Mil 163 --•---"'-'--'"-•""""-^_^ per_...._.._.. ^. .......... .... 0 1 2 3 4 5 6 7 8 9 10 n 2 C_12002.S.-6. Zoo btpa VLV2P 2002bwsr1KM 29575 ------------ M¢12M2 Mi8 I _ _ 0 1 2 3 4 5 6 7 8 9 10 1 2 ..12007-scmrio 2— bypass ft tV2P 200M4s-1KM25.675 165-- - - 0 1 2 3 4 5 6 7 9 9 10 II 2 _12007-sc4r 2a 4"', 6—V1V2P 2007-0x-1134 25 5 7 5 •g28 2M7 MY 170-- 155__._.._._.__• ............... 0 1 2 3 4 5 6 7 6 9 10 tl Y C_I 002-Scmrio 2n0 b9pas WMP 20024x-1KM25.075 .Idn 292 MM C002Sn (. 2m b9Pa VLV2P 20021x-IKM25.5M QO__ 165__ 150 ........................... 0 1 2 3 4 9 6 7 8 9 N 1 2 _12007-scenrb 2 no b9pess Ib.VI WP 2007-DusW KM 25.575 160 -"'-'—'-•-"'""•-'-"'-'-"'_. 0 1 2 3 4 5 6 1 8 9 W n R _12007-scenrlo2a b9pxsFb.V1V2P 2007bxwig423575 SM2 2M7 M.M -" 0 1 2 3 4 5 6 1 0 9 10 11 2 C_12002 -Sc a4 2—bPU9VtV2P 2002b4s.OM25375 J41282M2 Mie _ 160""•-'-"•-^"^"•"•--._.._._. ------------ 0 1 2 3 4 5 6 7 8 9 11 11 2 C_12002.S-4, 2no bp..V 2P 2002bx-10&25576 5-17 2M2 Mil _ R0__;_;. 165.. _ 60__ __ _ 0 1 2 3 4 9 6 1 8 9 10 1 2 ..12007-scenario2igbypxsF .V WP 2007basertKM2e57e i 2M] WAS _12007-ecenrio2+ b7pxsfio. WP 2007b- xIKM 27575 S V 2M7 Mp C_12002 Sce o2—b9pn VLV2P 2002-0x-113425575 A. M 2812 06-40 0 1 2 3 4 5 6 7 0 9 10 1 2 �Imoz•spmrb z -no b9v4ssvlvaP 2002bx-iKM 25575 4e R7 2M2 M!1 • . . • - K6- 1 0 1 2 3 4 5 6 7 0 9 11 n 2 ,2007-scewrio 2-m b9 Ps ss Flo.V L V 2P 2007-0xer1.25575 It.Ke 2M7 MM Ro- 0 1 2 3 4 5 6 7 8 3 10 n 2 _12W7-xm 2-m b9p4sse VLV2P 2007-0x-113425576 30272&74. 6.12002-$O 1121 bypxs V i V ZP 20024x-IKM25e75 A.M 2882 MJ1 165 - 160 ........... 0 1 2 3 4 5 6 7 8 9 10 n t2 [:12002-Scmrna 2 -no byps[tV lV2P 2002-0xMgh 25375 _12007-sa 2- b9pxsIb VtV2P 2007-b a 4K h 25.53 Figure 42. Comparison of Base (black) and Scenario 2 with no bypass flow at the Segment Where the Allen Steam Plant Intakes are Located—for 2002 and 2007 REMI 51 C_12W2-Scmrb 2-ro bppassV WP 2002-0b_l10h0.N7 C_.120025croseio 2no bgpassVLV7P �-0aaw11O•t 0.N7 Jrp 2882 M.r 170--'-•" _.. n0 - - ...... .................... .. 199__._._ _._.. _._.._...__... 0 1 2 3 4 5 6 7 9 9 71 0 4 0 1 2 3 4 5 6 7 9 9 N n12 C_t2002-Soenuio 2ro bppa.sV LV 2P 2002Lawr17M 0.N7 A..ra xw2 u+o Iss 0 1 2 3 6 5 6 7 9 9 10 5 4 _%M7.1nn22 rob9pus IwVMP 2DOM—I1M9.11] d.M I'? raj _ _12007 -scenario 2- bpass Vo VLV2P 20071asw1XKB.H7 71y212rr rib WO -- r-- - 0 1 2 3 4 5 6 7 8 9 10 M 4 C_uM.Scomrio 2— bp,SzVLWZP 2002.b .I M0.N7 s..r 2x2 r:r vo- vs .......... 0 1 2 3 4 5 6 7 0 9 10 II 2 _4 10 7-semarb 2-ro bypus no W V L V 2P 2007-0u IKd0.147 J.M my W:r 2D02 -b 5IM 8. ? bYD<sVLW2P 2062-0uw110.! 0.NT C_12 W 2� ScmmiD 2-ro bpDas s V L V 2P 2002Jawr1/M 0.H7 . ............ . . . .16! . . ..... ...... . . . . . . . . . . . 0 1 2 J♦ 5 8 7 8 9 bl 8 4 0 1 2 3 a 5 8 7 8 9 ID 5 4 C_ M.Semrio2mbVW5WLVZP 20022 IKM8.H7 8w0 2x2 MU _12007-scm n220 bypu. II NLV2P 2007-0uw10Me.N7 M" 2x7 rN . . . . ----------- .............. �._._._.. _._�.._.._...... _. 0 1 2 3 4 5 6 7 8 9 0 0 4 0 1 2 3. 5 6 7 8 9 10 7 4 _2W7 -scenario 2-m bypass W.WP 2007-0asMI M8.%7 0 1 2 3 4 5 6 7 8 9 10 5 2 _1200T-scmrio 2-ro bypass IIwV1.V2P 2W7-0asw'=..N7 G 172x7rr ........... M-------1---- 0 - -0 1 2 3 4 5 6 7 8 9 10 7 2 C_402.Semrio 2-ro b9pu.VLVZP 2002-0u..110.t 0.H7 ewi72r2 Y.r lss-- - -- 0 1 2 3 4 5 6 7 8 9 IDP 4 _%=7-snnario 2- bp- FlanVLVZP 2007-0uwlgh 0.lR MN8 2x7 rf8 n0._, 19- 0 1 2 3 4 5 6 7 8 9 10 0 4 _n007-sunaio2—bpassI VLV2P 2W]-0aw7IOh0.M Se2Z72887 M:r - as - 0 1 2 3 6 5 8 7 8 9 10 11 4 C_OM.Scmaro 2—bpas.VLV2P Mb—MAO."? C_1 M-Scm 2-Dobpas W2 M.basw, m0.N7 080.7 2982 GOM n9-- 0 1 2 3 4 5 6 7 0 9 10 0 4 _x2007-scmario2.wbopusf) .VtV 2007 b—IM 0.N7 A-0 2x7 r.. 1 . . 0 1 2 3. 5 6 7 9 9 10 0 4 Figure 43. Comparison of Base (black) and Scenario 2 with no bypass flow at the Segment Where the Catawba Nuclear Plant Intake is Located—for 2002 and 2007 REMI 52 C_12002-S...m taw bV.. LV2P 2002-b—II0h0 31..z� zw2 ai6 no- . 0 f 2 3 1 S 6 7 9 9 g T II _12007-s—A.2-mbp ssfb.VLV2P 20D7b—", KMO "M "a "As 0 1 2 3 1 5 6 7 9 8 10 T II -.12007-scmlib 2-noDp— fb.V LWP 2007-0uwll 0 3L..H 297 0� C_¢0028 n.io 2—DpusVLV2P 2.902-bMPMO a® M - C -%=D msno 2-m DlpusVLV2P 2=b~KVAO ans72929.M no-- - WS-. To - 0 1 2 3 1 5 8 7 8 9 10 T¢ _12007 cm+rio2-m Dlpusib.VLV2P 2007buw1KKO Jan 29" MW 0 1 2 3 1 5 8 7 8 9 ID 11 ¢ _12007 -ace 2-M DIP— II.WLVZP Isw113.t 2007-00 9.M7 "a M.9 o1z3+ssresgnII o1x3+s6vesgnII C_12002-S—viO2a0 bVU5VLVZP 2DO24—IKP C s.N7292WN - to- 0 1 2 3 1 5 8 7 8 9 g n II _1200]-umxio 2+00 bpu r 8p W L V 2P 2007-Ws1.I10h0 alb 2971M ..92W.Sosn.b 2 -no D9pus Bo.VLV2P 201DM M O 8rm772979M 195 0 1 2 3 6 S 6 7 8 s ID n 12 C..¢002-Scfnuio2t D/pusYLWP 2002b.Mg40 asrs� sav 9s 0 1 2 3 1 5 6 7 8 9 g n 12 C_¢002-Sctwio 2mo D9pUS V L V 2P 2002bm IKKO Bn27 292 MM 0 1 2 3 1 5 6 7 8 9 10 T II _12007--ic 2 -no typos Ib. V L V 2P 2087-0Isw110tr.0 wMM 2897 Mie 170-- _ 163 0 1 2 3 4 5 6 7 8 9 10 n¢ _12007-scrosib 2 -no bpass floc V L V 2P '2007buwlgkO 61..27 2M7 M:� 100-- -- -- - - 0 1 2 3 1 5 6 7 8 9 10 n II C_12w.5.m 2m DpurVLV2P 2002D.s1.1040 ao 2wz ales to 0 1 2 3. 5 6 7 5 9 10 T¢ C_12002-Scmrw2m DpusVLV 2000-0arwrllWl O 170-• - . 0 1 2 3 1 5 6 7 8 9 10 n II -12007-—i.2—D9pur fb.VtWP 2007b. w *&O 21.en 2979.a 0 1 2 3 1 5 6 7 6 9 10 V II Figure 44. Comparison of Base (black) and Scenario 2 with no bypass flow in the Forebay of Lake Wylie—for 2002 and 2007 REMI 53 4. Comparing 2007 and 2002 Operations Inflow Comparison The cumulative inflow coming from Mountain Island for 1998, 2002, 2007 is plotted in Figures 45 and 4.6. The cumulative inflow from Mountain Island for 1998 is included- because ncludedbecause it was a more typical hydrologic year, and shows how relatively low the flows were in 2002 and 2007. As can be seen in Figure 45, the January through April inflow in 2007 was considerably higher than in 2002. However, Figure 46 shows that the cumulative inflow was generally the same for the May through September time period in 2002 and 2007. As can be seen in Figure 47, which is a plot of the daily flow in the South Fork Catawba River; local inflow followed the same pattern as the inflow from Mountain Island. Lake Wylie Cumulative Inflow Based on Hourly Releases from Mountain Island Dam 25,000,000 —1998 20,000,000 —2002 3 —2007 0 a 15,000,000 m �a E 10,000,000 0 U 5,000,000- 0- 111 2/1 314 414 516 616 718 818 919 10110 11111 12/12 Date Figure 45. Cumulative Inflow to Lake Wylie from Mountain Island Starting on January 1 for 1998, 2002 and 2007 REMI 54 Lake Wylie Cumulative Inflow Based on Hourly Releases from Mountain Island Dam 10000000- 9000000- —1988 8000000 —2002 g 7000000-- 2007 0 a 6000000- 5000000- E 0000005000000E 4000000- 3000000-- 21000000 00000030000002000000 1000000- 0- 511 0000000511 611 713 813 914 1015 1116 1217 Date Figure 46. Cumulative Inflow to Lake Wylie from Mountain Island Starting on May 1 for 1998, 2002 and 2007 South Fork Catawba River at Lowell Daily Flow at the USGS Gage will M �i�l■ 1111110111111 LILT ►l �L,.l l� Illh�l, Figure 47. Comparison of 1998, 2002 and 2007 Daily Flow in the South Fork Catawba River REMI 55 ff r Allen Steam Plant Operations Comparison The average intake temperatures for Allen Steam Plant for 2002 and 2007 are shown in Figure 48. This plot shows that the intake temperature during most of August 2007 exceeded 86 °F, but the intake temperature in August 2002 dipped below 86° F for about half of the month: The- flow -weighted discharge temperature is shown in Figure 49, indicating that August and September 2007. was warmer. Allen Average Intake Temperature 94: 120 92 —2002 90 —2007 115 88 110 LL -V LL 0 0 g6 LAA A milli Uk2 E4- d CL. d CL E 90 E 82 a E- 80 78- 80 76 75- 570711 74- 711 7/16 7/31 8/15 8/30 9/14 9/29 Date Figure 48. Allen Intake Temperature Allen Flow -Weighted Discharge Temperature 120 —2002 115 —2007 110 105 LL 0 a 100 E 95 d CL. E 90 85 80 75- 570711 70- 7117/16 7/31 8195 8/30 9114 9/29 Date Figure 49. Allen Discharge Temperature REMI 56 5. Conclusions Based on model simulations for 2002 and 2007 conditions, these conclusions are made regarding the effects of Allen supplemental flows using the proposed bypass system: Model predictions for 2002 showed that the supplemental cooling water provided by the bypass system allowed the temperature limits for the PA CCW discharge to be attained even though the plant generated at full capacity for 24 hours per day, for the period July 18 through September 14. For the month of August, the, average temperature in the CCW discharge unde fullload condition m s- � decreased from 108.4 to 101.7 OF by using the bypass system. When generation was cut back for 1 ours each day, the temperature limits for the PA CCW discharge was attained without using the bypass system. Model predictions for 2007 showed that the supplemental cooling water provided for they by the bypass system allowed the August average discharge temperature -61 PA CCW discharge to be reduced from 110.7 t 04.1 for the case where t e t generated at full capacity for 24 hours per ay or the period July 18' through plang p ty p �- j September 14. For the month of July, the average temperature in the CCW discharge under full load conditions was decreased from 102.5 to 99.8 OF by using the bypass system, and the temperature limit for PA CCW was attained. When generation was cut back for 12 hours each day, the temperature limits for the PA CCW discharge was attained without using the bypass system except in August when use of the bypass system reduced the CCW discharge temperature from 103.8 to 99.0 OF. These results show that the bypass system can allow substantially greater amounts of generation than'currently allowed under the CCW temperature limits even in years like 2007 when full attainment may not be possible, i.e., the bypass system would allow more generation of MW -hr than that attainable under current conditions, even in years when peak generation may not be feasible 24 hours per day for the entire month. • The lake effects of operating the plant at full load and using the bypass system were generally limited to temperature in the S. Fork Catawba, although the intake temperature at PA was increased 1-2 OF for about 10 days each of the modeled years._ The lake effects of operating the plant with generation cut back 12 hours each day were minimal. • The model predicted minimal temperature and DO effects in the main arm of Lake Wylie, including the intake at Catawba Nuclear Station and the Wylie dam releases. REMI 57 r ' Vk 6. References Cole, T. M., and S. A. Wells (2002); "CE -QUAL -W2: A Two -Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.1' ; Instruction Report EL -2002-1; US Army Engineering and Research Development Center; Vicksburg, MS. Craig, Perry (2007); Duke Energy — Allen Plant; personal communication on plant thermal limits, discharge canal cross-section, anticipated bypass characteristics, and - guidance on simulation scenarios. Sawyer, A. F. and R. J. Ruane (2005); "Appendix I. Calibration of the CE -QUAL -W2 Model for Lake Wylie; prepared for Duke Power by Reservoir Environmental Management; October. REMI 58