Loading...
HomeMy WebLinkAboutNC0003417_HF Lee 60% Basis of Design Report Text Only_20170220526 South Church Street Charlotte, NC 28202 Mailing Address: PO Box 1006 Mail Code EC13K Charlotte, NC 28201-1006 980 373 2779 704 382 6240 fax February 20, 2017 Mr. David May North Carolina Department of Environmental Quality Washington Regional Office 943 Washington Square Mall Washington, NC 27889 Subject: H.F. Lee Energy Complex Interim Action Plan - Basis of Design Report - Second Submittal Dear Mr. May: Enclosed is the second submittal of the Interim Action Plan Basis of Design Report for the H.F. Lee Energy Complex. This submittal incorporates the 60% design and supporting documents. If you have any questions on the enclosed information, please contact me at ryan.czop@duke- energy.com or at 980-373-2779. Respectfully submitted, Ryan Czop Engineer I Waste and Groundwater Programs Attachment: H.F. Lee Energy Complex Basis of Design Report (60% Submittal) Cc/enc: Mr. Steve Lanter, NCDEQ 1636 Mail Service Center Raleigh, NC 27699 - 1636 ecc: Mr. Will Hart, NCDEQ Mr. Kevin Kirkley, Duke Energy Mr. Mike Graham, Duke Energy Mr. Ed Sullivan, Duke Energy Mr. Jeremy Pruett, Duke Energy Mr. Don Gibbs, Duke Energy Mr. Judd Mahan, SynTerra   William Lantz, NC PE 44301 Senior Project Engineer Justin Mahan, NC LG 2026 Project Manager   BASIS OF DESIGN REPORT (60% SUBMITTAL) H.F. LEE ENERGY COMPLEX 1199 BLACK JACK CHURCH ROAD GOLDSBORO, NORTH CAROLINA 27530 FEBRUARY 2017 PREPARED FOR DUKE ENERGY PROGRESS, LLC. 410 S. WILMINGTON STREET/NC15 RALEIGH, NORTH CAROLINA 27601 Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 1 of 3 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx The Basis of Design Report (30% Submittal) for accelerated remediation at the H.F. Lee Energy Complex was submitted to the North Carolina Department of Environmental Quality (DEQ) on November 23, 2016. DEQ comments on the 30% Submittal were forwarded to Duke Energy on December 21, 2016. The table below includes the DEQ comments, a brief summary response and/or the section(s) of the current submittal containing a detailed response. DEQ Comment 1 Content for Appendix B through Appendix H is expected for the 60% BOD Report in order to facilitate review of the proposed groundwater extraction system. Response Summary Located Within Report: Appendix B through H Appendix B through H are included in this submittal. Additional components such as copies of final permits will be provided with a subsequent submittal. DEQ Comment 2 Include a discussion on whether operation of dewatering well system will impact any potential wetlands (or whether wetlands are in the area). If potential impacts are determined, the plan should include piezometers to monitor water levels in adjacent wetlands. Response Summary Located Within Report: Section 3.7 A discussion of wetlands in and near the accelerated remediation area is provided. DEQ Comment 3 Recovery wells projected to have a 300' radius of influence with 3' drawdown at the well. Hydraulic Conductivity is 136 ft/day. Nine wells are proposed with 300' spacing. Would more wells with closer spacing being pumped at a lower rate (with less drawdown and radius of influence) achieve same goal of plume control/recover and result in a lower probability of wetland degradation? Response Summary Located Within Report: Section 4-1 A discussion of groundwater extraction well spacing is provided. The proposed spacing provides a 100% overlap in coverage. Increased density of wells would result in greater than 100% overlap and would not add any additional flexibility to operations. If wetland impacts are identified from remediation efforts, pumping rates and drawdown levels can be adjusted. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 2 of 3 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx DEQ Comment 4 Recovery well design indicates wells will be 25' - 40' deep with bottom 10' screened. If so, top of screen will be well below top of surficial water table (~4' - 8' bis). Also, well logs indicate upper stratigraphy is tighter fine sand/silty clayey sands whereas deeper portions where screens would be located are coarser/gravelly sand. What is the rationale for the proposed screened interval? Response Summary Located Within Report: Section 4-1 Screen intervals are selected to maximize the flexibility for groundwater extraction from the surficial hydrogeologic unit. Installation of screens at the bottom, rather than top, of the surficial unit will help minimize fouling from oxidation. Oxidation and biofouling of the well screens will occur if water levels expose the screen to air. The design and minimal water level drawdown in each well will help keep the system operating at optimum performance. DEQ Comment 5 AQTESOLV Modelling comments for PTW-1. Why are there differences in the following aquifer properties in the different model configurations? o Step Drawdown (Attachment 2): Aquifer Model type is confined, saturated thickness is 19.75', anisotropy is 1 o Pump Test (Attachment 3): Model type is unconfined, saturated thickness is 40' anisotropy is 0.256 Response Summary Located Within Report: Additional discussion of pilot test results are provided in Section 2.3 and Appendix A AQTESOLV does not include a solution for a step drawdown test in an unconfined unit. Out of necessity, we used a confined solution for the step test. For the constant rate test a solution for an unconfined unit was used. Anisotropy is the ratio of vertical to horizontal conductivity and is often assigned a value of 1 since there is usually insufficient data to make an alternate determination. It is not a sensitive parameter (i.e., it doesn’t have a significant impact on the value of aquifer parameters). As part of the sensitivity analysis an alternate value of 0.256 was used, which did not have a significant effect on the results. In regards to aquifer thickness, monitoring well installation observations suggest that the surficial unit thickens from approximately 20 to 40 feet from north to south. Location (well) specific surficial unit thicknesses were used in determination of hydraulic conductivity values. Results from the step drawdown and pumping tests, 136 ft/day and 142 ft/day were consistent. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 3 of 3 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx DEQ Comment 6 The "groundwater remediation system" will be the same "unit" as the wastewater treatment system used to further treat water generated during the dewatering phase of the active ash basin. There doesn't appear to be a part of the BOD report that will cover the "treatment system design" and demonstrate that it will satisfy intended treatment levels for the water that will ultimately be discharged out Outfall 001. Response Summary Located Within Report: Section 8.2 and Appendix H The Draft NPDES Permit NC0003417 includes discharge criteria for groundwater extraction. As the permitting process proceeds, additional detail for groundwater treatment will be available. Discharged groundwater will be managed in order to provide compliance with the regulatory criteria. DEQ Comment 7 Revisions to the groundwater models should be provided to the Division to account for deficiencies in the original submittals. It is recommended that a brief description be provided of, at a minimum, the new model domain, new boundaries, and new boundary conditions. This information may be provided to the Division under separate cover (technical memorandum, for example) concurrently with (or prior to) the 100% BOD report. This will allow the Division to provide input prior to publishing model results within the final BOD report. Response Summary Located Within Report: Sections 3.3 and 3.5; Appendices C and D Focused groundwater flow and transport and geochemical models are provided with this submittal in order to provide a basis for DEQ approval of the accelerated remediation approach. Site-wide models which would address a broader area are anticipated to be provided at a later date. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page i P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx TABLE OF CONTENTS (Gray highlights indicate work in progress) SECTION PAGE 1.0 INTRODUCTION AND BACKGROUND .............................................................. 1-1 1.1 Project Background ................................................................................................... 1-1 1.1.1 Settlement Agreement ........................................................................................ 1-1 1.1.2 Interim Action Plan ............................................................................................. 1-2 1.1.3 Purpose of Basis of Design ................................................................................ 1-2 1.1.4 Scope and Objectives of the Interim Action .................................................... 1-3 1.2 Interim Action Alternative Evaluation .................................................................. 1-3 1.3 Report Organization ................................................................................................. 1-4 2.0 REFINED SITE CONCEPTUAL MODEL ................................................................. 2-1 2.1 Geology and Hydrogeology .................................................................................... 2-2 2.2 Summary of Baseline Site Conditions .................................................................... 2-3 2.3 Summary of Aquifer Characteristics ...................................................................... 2-3 3.0 INTERIM ACTION DESIGN CONSIDERATIONS .............................................. 3-1 3.1 Preliminary Design Criteria and Layout ............................................................... 3-1 3.2 Evaluation of Alternative Technologies ................................................................ 3-1 3.3 Groundwater Flow Modeling ................................................................................. 3-2 3.3.1 Groundwater Flow Model Conceptualization Design .................................. 3-2 3.3.2 Groundwater Flow Model Calibration ............................................................ 3-2 3.4 Groundwater Extraction System Design ............................................................... 3-3 3.4.1 Current Conditions ............................................................................................. 3-3 3.4.2 Post-Basin Closure Conditions .......................................................................... 3-3 3.5 Groundwater Fate and Transport Modeling ........................................................ 3-3 3.5.1 Groundwater Fate and Transport Model Calibration ................................... 3-3 3.5.2 Predictive Results ................................................................................................ 3-4 3.5.3 Implications of Remedy on Geochemical Conditions and Plume Stability 3-4 3.6 Groundwater Extraction System Design Limitations .......................................... 3-5 3.7 Wetland Areas ........................................................................................................... 3-5 Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page ii P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx TABLE OF CONTENTS (Gray highlights indicate work in progress) SECTION PAGE 4.0 WELL DESIGN .............................................................................................................. 4-1 4.1 Overview of Extraction Well Network .................................................................. 4-1 4.2 Well Construction ..................................................................................................... 4-1 4.3 Groundwater Extraction Rates ................................................................................ 4-3 5.0 GROUNDWATER EXTRACTION SYSTEM PIPELINE AND PUMP STATION DESIGN ........................................................................................................................... 5-1 5.1 Overall Pipeline Design Basis ................................................................................. 5-1 5.1.1 Well Pumps .......................................................................................................... 5-1 5.1.2 Well Discharge Piping ........................................................................................ 5-1 5.1.3 Well Head Configuration................................................................................... 5-2 5.2 Extraction Well Pipeline ........................................................................................... 5-2 5.2.1 Pipe Pressure ....................................................................................................... 5-2 5.2.2 Pipe Flow .............................................................................................................. 5-3 5.2.3 Pipe Insulation ..................................................................................................... 5-3 5.2.4 Pipe Expansion/Contraction .............................................................................. 5-4 5.2.5 Pipe Buoyancy/Anchoring ................................................................................. 5-4 6.0 ELECTRICAL AND INSTRUMENTATION DESIGN .......................................... 6-1 6.1 Piping and Instrumentation Diagram .................................................................... 6-1 6.2 Pump Controls .......................................................................................................... 6-1 6.3 Emergency System Shutdown ................................................................................ 6-1 7.0 DESIGN DOCUMENTS .............................................................................................. 7-1 7.1 Design Drawings ....................................................................................................... 7-1 7.2 Specifications ............................................................................................................. 7-1 8.0 GROUNDWATER EXTRACTION SYSTEM OPERATION ................................ 8-1 8.1 System Performance Metrics ................................................................................... 8-1 8.2 Permits ........................................................................................................................ 8-1 8.3 Institutional Controls ................................................................................................ 8-1 8.4 Contingency Plans .................................................................................................... 8-1 8.5 Construction and Monitoring Schedules ............................................................... 8-1 Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page iii P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx LIST OF FIGURES Figure 1-1 Site Location Map Figure 1-2 Site Layout Map Figure 1-3 Remediation System Layout Figure 3-1 Wetland Areas LIST OF TABLES Table 2-1 Benchmark Analytical Data Summary Table 4-1 Target Extraction Well Screen Intervals LIST OF APPENDICES Appendix A Pilot Test Report Appendix B Focused Evaluation of Alternative Remedial Technologies Appendix C Focused Fate and Transport Model Report Appendix D Focused Geochemical Model Report Appendix E Pipe and Pump Selection Package Appendix F Design Drawings Appendix G Technical Specifications Appendix H Permits Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page iv P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx LIST OF ACRONYMS 2L NCDEQ/DWR Title 15, Subchapter 2L. Groundwater Quality Standards bgs Below Ground Surface CAMA Coal Ash Management Act CAP 1 Corrective Action Plan Part 1 CAP 2 Corrective Action Plan Part 2 Constituent Constituent of Interest CSA Comprehensive Site Assessment CSA SUP CSA Supplemental Report DEP Duke Energy Progress, LLC. DEQ North Carolina Department of Environment Quality Eh Reduction Potential fps Feet per Second ft Feet gpm Gallons per Minute HDPE High-Density Polyethylene HMI Human Machine Interface Hp Horsepower IAP Interim Action Plan IMAC Interim Maximum Allowable Concentrations MW Monitoring Well NCAC North Carolina Administrative Code NPDES National Pollutant Discharge Elimination System O&M Operations and Maintenance Plant H. F. Lee Energy Complex psig Per Square Inch Gauge ROI Radius of Influence SCM Site Conceptual Model USACE United States Army Corps of Engineers USEPA United States Environmental Protection Agency VFD Variable Frequency Drive Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 1-1 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 1.0 INTRODUCTION AND BACKGROUND Duke Energy Progress, LLC (Duke Energy) owns and operates the H.F. Lee Energy Complex (H.F. Lee, Lee Plant or Site) located at 1199 Black Jack Church Road, Goldsboro, North Carolina. The property encompasses approximately 2,100 acres, including the ash basins (171-acre inactive ash basins and 143-acre active ash basin), cooling pond and plant operations area. A Site Location Map is included as Figure 1-1. The Neuse River (a main stem river) flows through the property. The Lee Plant began operation as a coal-fired electricity-generating facility in 1951. From 1967 through 1971 four oil-fueled combustion turbine units were added. In 2000, five simple-cycle dual fuel (oil and natural gas) units were built. The three coal-fired units were retired in September 2012, followed by the four oil-fueled combustion turbine units in October 2012. The new combined-cycle plant was brought on line in 2012. 1.1 Project Background In order to satisfy requirements of the North Carolina Coal Ash Management Act (NC CAMA), a Comprehensive Site Assessment (CSA), Corrective Action Plan (CAP) Parts 1 and 2, Interim Action Plan (IAP) and the CSA Supplemental Report (CSA SUP) were prepared and submitted to the North Carolina Department of Environmental Quality (DEQ). The most recent document, the CSA SUP, was submitted to DEQ on September 15, 2016. The CAP (Parts 1 and 2) was designed to describe means to restore groundwater quality to the level of the standards, or as close as is economically and technologically feasible in accordance with T15A NCAC 02L.0106. Exceedances of numerical values contained in Subchapter 2L and Appendix 1 Subchapter 02L (IMACs) at or beyond the compliance boundary were determined to be the basis for corrective action with the exception of parameters for which naturally occurring background concentrations are greater than the standards. 1.1.1 Settlement Agreement A Settlement Agreement between DEQ and Duke Energy signed on September 29, 2015, requires accelerated remediation to be implemented at sites that demonstrate off-site groundwater impacts. Historical and CSA assessment data indicate the potential for off-site impact east of the active ash basin at H.F. Lee. Figures 1-2 and 1-3 illustrate the general area to be addressed for accelerated remediation. Arsenic and boron have been identified as constituents which occur at levels above 2L and greater than proposed background concentrations. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 1-2 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx Arsenic and boron impact which has the potential to migrate beyond the compliance boundary will be the focus of the accelerated remediation plan. In late 2016, Duke Energy purchased additional property east of the active basin to further prevent migration off site. Duke Energy provided an Accelerated Remediation Summary to DEQ on February 17, 2016 which supplemented and updated information included with the CAP Part 2. In correspondence dated March 28, 2016, DEQ acknowledged receipt of the Remediation Summary and requested additional information. DEQ conditionally approved the IAP(s) in a letter dated July 22, 2016 with the condition (among others) that a Basis of Design Report be submitted for review. 1.1.2 Interim Action Plan The IAP, submitted to DEQ in April 2016, provided an update on planned additional assessment and remedial activities at the site. Interim action activities conducted in 2016 which pertain to the east side of the active ash basin are summarized as follows: Background monitoring wells AMW-16BC, AMW-17S and AMW-17BC were installed north of the active basin to increase the available background data set. Monitoring wells AMW-18S and AMW-18BC were installed to further delineate potential ash basin influence east of the active basin (Figure 1-2). A pilot test was conducted in the area proposed for accelerated remediation (Appendix A). The pilot test included the installation of a six inch diameter extraction well (PTW-1) and five observation wells (PTW-2 through PTW-6). Two step drawdown tests and one 36-hour constant rate pumping test were completed in July and August 2016. 1.1.3 Purpose of Basis of Design The purpose of this Basis of Design Report is to provide a system layout and sizing of system components including wells, piping, pumps, and discharge system. It also serves to provide control system capabilities and power requirements. This report also includes evaluation of groundwater flow and transport of constituents, potential changes to site geochemistry as a result of remedial efforts and evaluation of remedial alternatives. Key elements include: Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 1-3 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx Refined site conceptual model which incorporates aquifer test results Groundwater extraction system design Focused groundwater flow and constituent transport modeling with an emphasis on boron mobility Focused geochemical modeling to address constituent mobility and potential geochemical changes related to remediation 1.1.4 Scope and Objectives of the Interim Action Constituents associated with coal ash pore water migration have been identified within groundwater in the surficial flow zone at the compliance boundary east of the active ash basin. Arsenic and boron are the primary constituents greater than 2L in groundwater. Results from monitoring wells northeast of the active basin have not indicated arsenic and boron concentrations greater than 2L. This indicates that constituent migration is east from the active ash basin and then south and southeast toward the Neuse River. This is consistent with radial groundwater flow for short distances away from the basin. Groundwater monitoring wells indicating constituent concentrations above 2L adjacent to the active basin are on Duke Energy property. The primary objective of the groundwater extraction system is to limit further migration of constituents and accelerate the reduction of constituent concentrations in groundwater to below 2L at and beyond the compliance boundary. 1.2 Interim Action Alternative Evaluation The CAP Part 2 and IAP evaluated groundwater extraction by (1) a network of conventional vertical wells and, (2) an interceptor trench, as part of the remedy for the active ash basin. The IAP proposed completion of a groundwater extraction pilot test to determine expected flow rates and an effective radius of influence for extraction wells. To conduct this test, United States Army Corps of Engineers (USACE) permitting for installation of the test wells was necessary because the well locations are in potential wetland areas. Through the permitting effort, it became clear that disturbance of wetlands could be a significant issue in implementing the proposed interim actions. Ground surface disturbance was determined to be less with a conventional extraction well network than with installation of an interceptor trench. As a result, groundwater extraction along the eastern edge of the active basin is proposed to be accomplished with a network of conventional vertical wells. This approach was evaluated in the CAP and determined to be feasible and effective. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 1-4 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx In addition to less surface disturbance, this approach will also provide more operational flexibility. With a network of wells, spatial and temporal variations in the response of the aquifer can be addressed through operational cycling and pumping rate adjustment to individual wells, or by adding wells. Alternative remediation technologies were presented in Section 6 of the CAP Part 2 (SynTerra, February 2016) and Appendix B. The pilot test conducted at H.F. Lee in August 2016 confirmed the feasibility of implementation of extraction wells east of the active ash basin. 1.3 Report Organization The 60% submittal provides additional detail for the groundwater extraction design to conceptualize system components, performance, and initiate evaluation of site specific considerations. Section 2 contains on overview of site specific conditions including a refined site conceptual model, summary of the site geology and hydrogeology, summary of baseline conditions, and findings from the aquifer pumping test which determined potential extraction system yield and area of influence. Section 3 presents system design considerations including evaluation of alternative remedial technologies, flow modeling, geochemical modeling, fate and transport modeling, and potential wetland impacts. Sections 4 through 8 contain details of the extraction well system design and operation and will continue to be developed and incorporated into the design package prior to the final (100%) submittal. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 2-1 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 2.0 REFINED SITE CONCEPTUAL MODEL The site conceptual model (SCM) is an interpretation of processes and characteristics associated with hydrogeologic conditions and constituent interactions at the Lee Plant site. The purpose of the SCM is to evaluate areal distribution and flow pattern of constituents with regard to site-specific geological/hydrogeological and geochemical properties at the site relative to the source, potential receptors and natural control mechanisms. The SCM was developed using data and analysis from the CSA (SynTerra, August 2015) and was further refined in the Corrective Action Plan Part 2 (SynTerra, February 2016). This discussion incorporates additional assessment conducted between June and August 2016. Key components of the H.F. Lee SCM are as follows: The ash basins, surficial deposits, the Black Creek and the Cape Fear deposits make up distinct hydrogeologic layers at the H.F. Lee site. Unconsolidated saprolite and/or metamorphic bedrock underlie the sedimentary deposits. Where unconsolidated saprolitic material underlies or is laterally contiguous with either Black Creek or Cape Fear deposits it is considered a component of that hydrogeologic layer. Groundwater in the surficial deposits under the ash basins flows horizontally to the east and south and discharges into the Neuse River or Halfmile Branch. Water within the active ash basin and inactive ash basin 1 is hydraulically higher (upgradient) than the surrounding land surface. Pore water drains through the underlying soil to the groundwater. Groundwater flow is toward the Neuse River (south for the active basin, east to southeast for the inactive basins). This flow direction is away from upgradient receptors. The Neuse River is the hydraulic boundary for constituent migration. Groundwater and seeps are the primary mechanisms for migration of ash-related constituents to the environment. Both flow toward the Neuse River. Boron and arsenic are constituents associated with the ash basins and generally are not found at comparable levels in background wells. Cobalt, iron, vanadium and manganese are ubiquitous in groundwater samples including background locations. Provisional background values have been used to interpret how much of each constituent is background or from basin influence. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 2-2 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx Results from sorption studies on site specific soils indicate that iron and manganese leach from naturally occurring materials. While it is known that these metals leach from coal ash, occurrences in background areas limit their use as indicators of groundwater contamination. The primary geochemical factors that affect groundwater quality in the surficial aquifer in the vicinity of the active ash basin are variations in pH and redox potential (Eh). In background areas upgradient from the active basin pH is generally low (4.2 to 4.5) and Eh is high. In contrast, pH values are higher (6.0 to 6.5) and Eh values are lower in groundwater beneath and immediately downgradient from the ash basin. Flow rates observed during the August 2016 pumping test for the surficial hydrogeologic unit at the east side of the active ash basin indicated higher hydraulic conductivity (112 to 198 ft/day) than previously estimated based on slug tests from assessment wells (geometric mean for surficial unit of 4.85 ft/day). The duration of pumping tests is longer than slug tests and affects a larger formation volume. Due to scale dependence, pumping tests often result in greater estimates of hydraulic conductivity (Butler and Healey, 1998). The difference in results illustrates the importance of pumping tests for extraction system design purposes. Slug test results are useful data for comparison purposes but may be heavily influenced by near-well conditions. Field observations from well installations indicate the surficial deposits east of the active basin are characterized by thick (15 feet or greater) layers of medium to coarse grained sand which appear to be contiguous across the area. Downward vertical migration of constituents is restricted due to the clay and silt layers beneath the ash basins that act as confining layers over the deeper aquifers in the area. 2.1 Geology and Hydrogeology Assessment activities conducted as part of the CSA in 2015 indicate that the lithology beneath the site generally consists of a layer of silty to clayey surficial deposits underlain by interbedded clay and sand of the Cape Fear and Black Creek deposits. The Cape Fear is present beneath surficial deposits in areas on the west side of the active ash basin. The Black Creek deposits are present beneath the active basin and in areas to the east. Field observations indicate that a confining clay layer at the top of the Black Creek deposits is present under the active basin and to the east. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 2-3 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx Pertinent aspects of the hydrogeology east of the active basin are summarized as follow: Boron and arsenic are present in the surficial hydrogeologic unit east of the active basin at concentrations above 2L. Monitoring results from below the underlying Black Creek confining clay do not indicate elevated boron and arsenic concentrations. Depth to groundwater varies from one to five feet in the area. Surficial deposits in the area consist primarily of medium grained sand with minor clay lenses. The surficial hydrogeologic unit thickens from the north (20 feet) to the south (40 feet) toward the Neuse River. 2.2 Summary of Baseline Site Conditions Based on groundwater monitoring results from wells east of the active basin, arsenic (AMW-18S, CMW-6 and CMW-6R) and boron (AMW-18S, CMW-6, CMW-6R and CMW-5) are present at concentrations above 2L in the surficial aquifer. Constituent concentrations at AMW-18S in July 2016 were greater than 2L standards for arsenic and boron and were similar to June 2016 results from CMW-6R for those constituents. Results from shallow monitoring wells to the north (AMW-17S and BGMW-10) and on the northeastern side of the active basin (AMW-14S and AMW-15S) have not indicated arsenic and boron exceedances. This is consistent with constituent migration towards the CMW-6R and AMW-18S areas. Monitoring well CMW-6R is located at the compliance boundary. Monitoring well AMW-18S is located southeast of CMW-6R, just outside of the compliance boundary. Preliminary groundwater fate and transport modeling included in the CAP Part 2 indicated that removing constituent mass from this area will accelerate reduction of groundwater constituents at the compliance boundary. Analytical results from background wells north of the active ash basin, as well as downgradient wells east of the active ash basin are presented in Table 2-1. This data set is intended as a benchmark range of constituent concentrations in the subject area prior to installation of a groundwater extraction system. 2.3 Summary of Aquifer Characteristics Aquifer testing east of the active basin consisted of two step-drawdown tests and a pumping test in late July and early August 2016. Approximately 10,000 gallons of water was extracted during the two step-drawdown tests. On August 2, 2016, a 36-hour constant rate pumping test was initiated at pilot test well PTW-1. The volume of water Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 2-4 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx extracted during the 36-hour pumping test was approximately 63,500 gallons. The extracted groundwater was pumped into the active ash basin. Results from step-drawdown tests and the pumping test indicate the following: Average sustainable yields (over the course of the test) were at least 30 gallons per minute. The radius of influence is approximately 300 feet from the extraction well. Hydraulic conductivity values ranged from 112 to 198 ft/day with an assumed average aquifer thickness of about 20 feet. Specific yield and hydraulic conductivity are constant throughout the target area, confirming low heterogeneity of the unconfined aquifer flow system. Hydraulic conductivity calculated from step-drawdown and pumping tests exceeded predicted hydraulic conductivities from well development logs. Using graphical calculation methods and AQTESOLV Pro.4.5, the geometric mean of the transmissivity in the surficial unit is 2,970 ft2/day. This value is representative of medium to coarse sand. Aquifer data in the vicinity of PTW-1 indicate conditions at this location would support viable extraction wells under current site conditions. There was no measurable water level drawdown of the hydrogeologic unit below the Black Creek clay unit from pumping the surficial aquifer system. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 3-1 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 3.0 INTERIM ACTION DESIGN CONSIDERATIONS This section addresses the identification and evaluation of possible corrective measures applicable to the restoration of groundwater quality in the area considered for accelerated remediation, to the east of the active basin. 3.1 Preliminary Design Criteria and Layout Groundwater extraction along the eastern edge of the active basin is proposed to be accomplished with a network of conventional extraction wells. The objective is to limit further migration of constituents and accelerate the reduction of constituent concentrations in groundwater to below 2L at and beyond the compliance boundary. Results from aquifer testing indicate that groundwater extraction is feasible given site conditions. The groundwater extraction system design is based on effective and efficient capture and conveyance of groundwater for treatment and discharge. Groundwater extraction was evaluated in the CAP Part 2 (SynTerra, February 2016) and IAP as part of the remedy for the area east of the active ash basin. The IAP proposed completion of aquifer testing to evaluate the feasibility of groundwater extraction within this area. Results of the aquifer testing indicated groundwater extraction could be a viable remedial alternative. Criteria for the design of groundwater extraction at the Lee Plant include: Installation of extraction wells with sufficient capacity to efficiently extract groundwater and constituent mass from the surficial hydrogeologic flow system; Well placement within the area of highest concentrations (east of the active ash basin) as determined by extensive groundwater sampling and assessment; and Adequate treatment of extracted groundwater to meet potential limits required by selected discharge option. Extracted groundwater is anticipated to be moved to the active ash basin and managed for discharge to a permitted National Pollutant Discharge Elimination System (NPDES) outfall, potentially with treatment prior to the outfall. A layout of the remediation system is shown on Figure 1-3. 3.2 Evaluation of Alternative Technologies Collection of groundwater can be accomplished with extraction wells or collection trenches. For this facility, groundwater will be extracted primarily from the surficial Basis of Design Report – (60% Submittal) February 2017  H.F. Lee Energy Complex SynTerra  Page 3‐2  P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx  groundwater zone.  Conventional vertical extraction wells are an effective method of  groundwater capture and will provide much more operational flexibility and less  ground disturbance than a trench.  With a series of wells, spatial and temporal  variations in the response of the aquifer can be addressed through operational cycling  and pumping rate adjustment to individual wells or by adding wells.  For the purpose  of accelerated groundwater remediation in the area east of the active basin, this is the  most viable approach for ease of design and implementation.  A focused evaluation of alternative remedial technologies is provided in Appendix B.  3.3 Groundwater Flow Modeling An initial comprehensive Groundwater Flow and Transport Modeling Report was  developed and submitted with the CAP Part 1 on November 2, 2015.  An updated Flow  and Transport Model, focused on the area of accelerated remediation, is included as  Appendix C. The updated model incorporates subsurface data from pilot test wells and  additional assessment wells installed from June to August 2016. The two main  components of the focused groundwater model are to determine sustainable extraction  well flow rates, and simulation of the remediation effects on arsenic and boron extent.    3.3.1 Groundwater Flow Model Conceptualization Design Groundwater flow modeling was conducted to evaluate potential well yield for  groundwater extraction. Two scenarios were modeled, with the first (Scenario 1)  assuming the active ash basin remains in place and the second (Scenario 2)  assuming dewatering and excavation of the active ash basin. The model  simulations indicate that potential well yields are higher (44 gpm) in Scenario 1  and lower (26 gpm) in Scenario 2.   The remediation design planned extraction well pump rate of 30 gpm (270 gpm  total for the groundwater extraction system) is based on actual pilot test results  and falls within the potential range evaluated by the groundwater modeling.  Planned pumping rates are further discussed in Section 4.0.  3.3.2 Groundwater Flow Model Calibration The updated Groundwater Flow Model was recalibrated using well and river  elevation data up to August 2016.  Hydraulic conductivity and vertical  anisotropy values were modified from the comprehensive site flow model to      Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 3-3 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx values that are reflective of conditions in the area considered for accelerated remediation. 3.4 Groundwater Extraction System Design The groundwater extraction system design is based on effective and efficient capture and conveyance of groundwater for treatment and discharge. 3.4.1 Current Conditions The step-drawdown test and extended pumping test data were used to calculate hydraulic conductivities, ranging from 112 to 198 feet per day (ft/day) with an average aquifer thickness of approximately 20 feet for the surficial aquifer east of the active basin. Aquifer data in the vicinity of PTW-1 indicate conditions at this location could support viable extraction wells under current site conditions. Radius of Influence (ROI) was calculated to be at least 300 feet. Average sustainable yields were at least 30 gallons per minute (gpm). The 30 gpm flow rate yielded a 3-foot drawdown. 3.4.2 Post-Basin Closure Conditions Source control measures are being addressed separately but are assumed to occur in addition to the groundwater corrective action alternatives discussed in this report. The closure scenario at H.F. Lee is anticipated to involve excavation and beneficial reuse of materials. The hydraulic head currently associated with the active basin is expected to be lowered in this closure scenario which will lessen or remove the component of groundwater flow to the east of the basin. 3.5 Groundwater Fate and Transport Modeling The Focused Flow and Transport Model Report focuses on the east side of the active ash basin. Arsenic and boron are present in the surficial aquifer on the east side of the basin at levels above 2L. The purpose of the model is to predict the effects of pumping from groundwater extraction wells on the horizontal extent of the constituents arsenic and boron. The Focused Flow and Transport Model Report is included as Appendix C. 3.5.1 Groundwater Fate and Transport Model Calibration The Focused Flow and Transport Model incorporates data collected since the first model was completed and included with the CAP 1 (SynTerra, 2015). The calibration of the flow component of the model is discussed in Section 3.3.2. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 3-4 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 3.5.2 Predictive Results Two scenarios were modeled, with the first assuming the active ash basin remains in place (Scenario 1) and the second assuming dewatering and removal of the active ash basin (Scenario 2). Significant reduction of the boron extent was achieved over 30 years of groundwater extraction under scenario 1. A similar reduction in boron extent was achieved after 20 years under Scenario 2. The starting concentrations for arsenic and boron used in the focused Flow and Transport model are above 2L at and beyond the compliance boundary. The model shows that extents for both constituents are affected by pumping at the extraction wells. Removal of the basin provides more efficient decrease of boron over time. Due to the less mobile characteristics of arsenic, neither scenario demonstrates the same reductions in extent as that for boron. The effect of variable pumping rates versus uniform pumping rates does not have a major impact on constituent concentration reductions over time. 3.5.3 Implications of Remedy on Geochemical Conditions and Plume Stability Geochemical modeling was undertaken to help understand the mobility of constituents and the influence of the active ash basin on downgradient areas. The goals of the geochemical modeling effort were to 1) provide a qualitative conceptual model of the behavior of several constituents at the H.F. Lee site with a focus on arsenic and boron in the accelerated remediation area, and 2) provide a qualitative assessment of the potential effects of accelerated remedial efforts at the site. These modeling efforts were compiled in the Focused Geochemical Report provided in Appendix D. The geochemical modeling incorporated an examination of the behavior of key parameters of interest from seven coal ash basin sites (referred to as the global model), and then focused on conditions and constituent bahavior as exemplified by data from wells along two flow transects selected for the active ash basin at H.F. Lee. The two flow transects were chosen to investigate the active ash basin’s influence on the subsurface environment along hydraulically signifcant flow paths (Figure 1-1 in Appendix D). The geochemical modeling efforts indicate that pH and redox potential (Eh) play a key role in constituent mobility (Powell, 2015; Appendix D). As a result, the primary emphasis of the geochemical modeling was to understand the influences of pH and Eh on the aqueous speciation, sorption, and solubility of arsenic and boron using the United States Geologic Survey (USGS) geochemical modeling program PHREEQC. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 3-5 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx A groundwater extraction well system will result in enhanced pore water removal which will increase the hydraulic gradient and bring in waters from further up the flow path at a faster rate. Assuming the newly introduced water equilibrates with the subsurface solids, and that the solids are the primary redox and pH buffer, no change in the pH or redox potential is expected. Removal of pore waters containing CCR constituents will induce a concentration gradient causing desorption of sorbed constituents and lower the solid phase concentration. One limitation in this discussion is that a re-equilibration is assumed. Based on the relative consistency of measured pH and Eh values in H.F. Lee site wells over time, the assumption of a rapid equilibration seems appropriate. Therefore it is anticipated that the extraction well system will not impact the pH and Eh of the pore waters and is unlikely to result in enhanced mobilization of constituents. This can be monitored once the groundwater extraction system is operational. Additional detail and discussion of the geochemical modeling can be found in the Focused Geochemical Modeling Report included as Appendix D. 3.6 Groundwater Extraction System Design Limitations Discussion of groundwater extraction system design limitations will be included in the final Basis of Design Report submittal. 3.7 Wetland Areas Wetlands on the east side of the active ash basin were identified and delineated as part of separate site assessment activities. Duke Energy has provided wetland delineation results to the US Army Corps of Engineers (USACE), however a jurisdictional determination has not yet been made and therefore, wetland boundaries on Figure 3-1 are preliminary. Topographic elevations for areas around the active ash basin are relatively low and range from approximately 80 ft above mean sea level (msl) north of the basin to 70 ft msl south of the basin and near the Neuse River. Locations with standing or slowly moving seasonal surface water occur from the uplands north of the ash basin to areas near the river. This shallow surface water, generally less than 1.0 ft deep, is more prevalent during periods of increased rainfall. Surface water flow is channelized in some areas and more diffuse in others but generally moves to perimeter ditches near the ash basin and then to the river. Observations at the site indicate that the wetlands are identified near and along these areas of shallow surface water. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 3-6 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx Review of groundwater water levels collected from wells on the east side of the active ash basin (CMW-6R, AMW-14S, AMW-15S, AMW-18S and BGMW-10) in August 2016 (CSA Supplement 1) and December 2015 (CAP Part 2) show that the water table ranges from one to six feet below the ground surface. Water levels are generally higher in the December timeframe. The lithologic profile for the area of accelerated remediation shows that shallow soils are expected to be less conductive than deeper sands within the surficial hydrogeologic unit. The boring logs (included in Appendix A) for PTW-01 through PTW-06 indicate that from ground surface to approximately 5 ft bgs the soil consists of clay and clayey silt. This is in contrast to the 5 to 20 ft interval which consists of medium to coarse sand. The less conductive clay material in the shallow subsurface may allow for surficial water flow from the uplands toward the river without significant mixing with groundwater. However, there are likely to be some areas where there is communication between surface and groundwater. For this reason, monitoring of soil moisture conditions before and after operation of the groundwater extraction system is proposed. For this purpose, eight Decagon GS-1 soil moisture probes (SMP-1 through SMP-8) were installed near the active basin on November 16, 2016. The probes were installed at a depth of one foot below ground surface in the locations shown on Figure 3-1. Each soil moisture probe is installed within the boundary of the preliminary wetland delineation. The soil moisture probes are intended to monitor volumetric soil moisture content in wetland areas. A Decagon Em50 data logger was installed adjacent to the probe at each location to record soil moisture data at 6 hour intervals. Data from the probes will be used to evaluate the extent to which operating groundwater extraction wells have the potential to affect the wetland areas. The groundwater extraction system detailed in this report is designed with significant flexibility. One or more wells may be brought offline and pumping rates can be adjusted. In the event that affects are recognized to wetland areas, groundwater extraction rates can be modified. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 4-1 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 4.0 WELL DESIGN The well system design is intended to provide drawdown and capture groundwater flow to the east of the active basin. 4.1 Overview of Extraction Well Network Based on this objective and results from the pumping test, design spacing between extraction wells is 300 feet along the eastern edge of the basin. This spacing provides a 100% overlap in coverage, which will create drawdown and groundwater capture across the target area and allow for flexibility to adjust drawdown levels to address site conditions and system performance. The expected width of the plume at the base of the basin is approximately 2,700 feet so nine wells are included. A site layout drawing is included in Appendix F. At 30 gpm per well, the total flow rate for the proposed extraction system would be 270 gpm. If at some point greater pumping rates and drawdown levels are desirable, for planning purposes, a maximum design flow rate of 540 gpm is used. However, following basin closure, the system flow rate may decrease due to the reduction of pore water head to the area. The nine extraction wells will be located approximately adjacent to the existing monitoring well access path to minimize disturbance of wetland areas during drilling and installation and to provide access for operations and maintenance (O&M) of the extraction system. 4.2 Well Construction The extraction wells will be installed by a North Carolina licensed well driller in accordance with North Carolina Administrative Code Title 15A, Subchapter 2C – Well Construction Standards, Rule 108 Standards of Construction: Wells Other Than Water Supply (15A NCAC 02C .0108). The wells are planned to be drilled using 12-inch hollow stem auger drilling methods to allow for a 3-inch annular space around the 6- inch casing and screen. The well casing will extend approximately one foot above ground surface. The top of the sand pack (Gravel Pack #3) will extend to two feet above the top of the well screen. Calculations for selection of the sand pack are provided in Appendix G. The bentonite well seal will be at least one foot thick. Neat cement grout with 5% bentonite will be placed to within three feet of the ground surface. Concrete grout will be placed in the top three feet of the annular space. Due to difficult access in some areas, well construction methods and specifications may be modified for site specific conditions. All materials and installations will be in accordance with 15A NCAC 02C. A well construction drawing is included in Appendix F. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 4-2 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx The wells will be drilled and installed to approximate depths between 25 and 40 feet, corresponding to the shallow aquifer thickness, to enable recovery through the entire shallow aquifer water column. The depth of each well will correspond to the shallow aquifer thickness at that location. The exact depths will be determined based on observations in the field during drilling. The expected depths, based on previous drilling data, are provided in Table 4-1. The wells will not penetrate the underlying clay layer. The extraction wells will be 6-inch diameter wells with Schedule 40 PVC casings. At a maximum depth of 40 feet, the worst case scenario collapse pressure will be 17.3 psi. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑝𝑝𝑃𝑃𝑝𝑝)=𝐷𝐷𝑃𝑃𝑝𝑝𝐷𝐷ℎ 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝑃𝑃𝑝𝑝𝐶𝐶𝐶𝐶 (𝑜𝑜𝑃𝑃𝑃𝑃𝐷𝐷) × 𝑊𝑊𝐶𝐶𝐷𝐷𝑃𝑃𝑃𝑃 𝑊𝑊𝑃𝑃𝑝𝑝𝐶𝐶ℎ𝐷𝐷 (𝑙𝑙𝑙𝑙𝑃𝑃 𝑝𝑝𝑃𝑃𝑃𝑃 𝑐𝑐𝑃𝑃𝑙𝑙𝑝𝑝𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝐷𝐷) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑝𝑝𝑃𝑃𝑝𝑝)=40 𝑜𝑜𝑃𝑃𝑃𝑃𝐷𝐷 × 62.4 𝑙𝑙𝑙𝑙𝑃𝑃𝑜𝑜𝐷𝐷3 × 1 𝑜𝑜𝐷𝐷2144 𝑝𝑝𝐶𝐶2 =17.3 𝑝𝑝𝑃𝑃𝑝𝑝 The collapse pressure for 6-inch Schedule 40 PVC is 77 psi. Six-inch diameter PVC casing installations are allowed to depths of 130 feet in accordance with 15A NCAC 02C. The well screens will be installed near the bottom of the permeable formation to provide for maximum flexibility in varying drawdown while still facilitating groundwater capture throughout the water column. The submerged screen placement will also reduce premature oxidation of iron during extraction which could cause extraction and pumping system fouling and loss of efficiency. Wound wire screens will be used to reduce loss of efficiency over time and to facilitate rehabilitation if necessary. The well screens will be 0.010-inch (10-slot) Johnson Screen® Free-Flow® 304 stainless steel wound wedge (or comparable) wire screens. These screens have a collapse pressure of 87 psi. The well screens will be 10 feet long which will provide for a minimum flow capacity of 108 gpm which is significantly greater than the maximum design flow of 60 gpm. 𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝑐𝑐𝑝𝑝𝐷𝐷𝑎𝑎 (𝐶𝐶𝑝𝑝𝑔𝑔)=𝑂𝑂𝑝𝑝𝑃𝑃𝐶𝐶 𝐴𝐴𝑃𝑃𝑃𝑃𝐶𝐶 × 0.31 @ 0.1 𝑜𝑜𝐷𝐷/𝑃𝑃𝑃𝑃𝑐𝑐 × 𝑆𝑆𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶 𝐿𝐿𝑃𝑃𝐶𝐶𝐶𝐶𝐷𝐷ℎ (𝑜𝑜𝑃𝑃𝑃𝑃𝐷𝐷) 𝑄𝑄=35 × 0.31 × 10 =108.5 𝐶𝐶𝑝𝑝𝑔𝑔 Technical specifications for the well screens are provided in Appendix G. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 4-3 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 4.3 Groundwater Extraction Rates Results of the pilot test activities in July and August 2016 indicate hydraulic conductivity values which range from 112 to 198 ft/day with an assumed aquifer thickness of about 20 feet for the surficial aquifer east of the active basin. Radius of influence (ROI) was calculated to be at least 300 feet. Average sustainable yields were at least 30 gallons per minute (gpm). The 30 gpm flow rate yielded a 3-foot drawdown. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 5-1 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 5.0 GROUNDWATER EXTRACTION SYSTEM PIPELINE AND PUMP STATION DESIGN 5.1 Overall Pipeline Design Basis The anticipated flow rate for the system is 270 gpm. The pipeline design basis is 540 gpm to allow for increased pumping rates if that becomes necessary. The piping system will be constructed aboveground with insulated high density polyethylene (HDPE). 5.1.1 Well Pumps The extraction wells will be equipped with a Grundfos 62S75-14 (or equal) submersible electric pumps. Each pump will be equipped with variable frequency drive (VFD) motor control and electrical and thermal motor protection. Pump specifications are provided in Appendix E. The pumps provide 285 feet of nominal head, operate on 230 or 460 volt 3-phase power and have a 7.5 horsepower (Hp) motor. The pump diameter is four inches with a 2-inch discharge. At 30 gpm, the pump provides 375 feet of head and operates at 55% efficiency. At 60 gpm, the pump provides 305 feet of head and operates at 70% efficiency. The minimum 305 feet of head is sufficient to provide the necessary flow rates for the system. The expected head requirement assumes 45 feet from the well water column, 115 feet for piping losses, and an estimated 85 feet for elevation differences and treatment system headworks losses for a total of 245 feet (Appendix E). This pump provides the greatest efficiency over the design flow rate range. Use of a VFD will provide the capability to operate the pump at lower flow rates, if necessary, while not significantly sacrificing efficiency or subjecting the pump to unnecessary working pressure. The control system will include water level and flow monitoring and feedback to the VFD and will allow for efficient, timely and effective operation of the pumps. 5.1.2 Well Discharge Piping It is anticipated that the well pumps will discharge through a 2-inch diameter discharge pipe to the surface. The pipe will be secured in the center of the well with Simmons (or equal) top guides. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 5-2 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 5.1.3 Well Head Configuration Well boxes will be finished above grade and insulated to simplify O&M. Well box piping and fittings will be 304 stainless steel to reduce risk of damage due to O&M. The piping will transition to HDPE fusion-welded pipe outside of the well box. The well seal will be Simmons Model 316 (or equal) cast solid plate, 4-bolt seal with threaded openings for the pump power cable, level monitor and well vent. The piping will be fitted with a Simmons Model 516SS (or equal) check valve and an air/vacuum relief valve. Flow monitoring at the well head will be accomplished with a Sparling Tigermag EP FM656 (or equal) electromagnetic flow meter with direct read and transmitter. Well water level will be monitored with a Solinist Levelogger (or equal) transducer. This feature will allow level control of the pumping system. The piping will be fitted with a one-half inch sampling port ball valve. The well head piping train will include a ball valve for isolation of the well head from the header and pipe unions for maintenance access. The well head will be enclosed within a Virtual Polymer Compounds (or equal) 6-foot by 3-foot by 30-inch high insulated fiberglass aboveground vault with full top access and locking cover. The vault will be attached to a poured-in-place concrete foundation. Well head equipment specifications and drawings are included in Appendices E and F, respectively. 5.2 Extraction Well Pipeline The extraction well collection piping will connect all of the well discharges to the treatment system. It will be constructed of polyurethane pre-insulated DR-11 PE4710 HDPE. 5.2.1 Pipe Pressure The maximum pressure of the system will be less than 175 psi which is based on the maximum pressure the pump can produce. Manufacturers’ pressure rating for DR-11 PE4710 HDPE pipe is 200 psi. DR-11 pipe also meets long term pressure performance criteria. Pipe performance data and calculations are provided in Appendix G. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 5-3 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 5.2.2 Pipe Flow Flow velocities for the extraction well and header piping were estimated using the Hazen Williams formula. Piping from the well boxes to the header will be 2-inch diameter. At the expected well line operating flow rate of 30 gpm, the water velocity in the pipe will be 3.32 fps and the head loss will be 0.025 ft/ft. At the design flow rate of 60 gpm the velocity will be 6.65 fps and the head loss will be 0.089 ft/ft. The 4-inch sections of the header piping will carry up to 90 gpm at expected operating conditions and 180 gpm at maximum design flow rates. At 90 gpm, the water velocity in the pipe will be 2.79 fps and the head loss will be 0.009 ft/ft. At the design flow rate of 180 gpm the velocity will be 5.58 fps and the head loss will be 0.031 ft/ft. For the 4-inch header section immediately downstream of PTW-1 flow velocity will be between 1.86 fps and 3.72 fps at 60 gpm and 120 gpm, respectively. Corresponding head loss values are 0.004 ft/ft and 0.015 ft/ft. The 6-inch sections of the header piping will carry between 90 gpm and 270 gpm under normal operating conditions and 180 gpm and 540 gpm under design conditions. This results in a flow velocity range of 1.29 fps to 7.71 fps, and head loss values from 0.001 ft/ft and 0.036 ft/ft. These fluid velocities and head losses are within acceptable ranges given the fluid and piping material characteristics. Installation of the pipe will be completed with heat fused joints and insulating collars will be installed over the joints after welding and pressure testing. Flow and head loss formulas and calculations are provided in Appendix E. 5.2.3 Pipe Insulation To prevent freezing, the header and well extraction piping will be factory- insulated with 1-1/2 inches thick polyurethane foam and polyurethane polymer coating. Temperature loss over the length of the header piping under average conditions is estimated to be 0.03 oF. This assumes a groundwater extraction temperature of 60.8 oF and the historical lowest monthly average low ambient air temperature of 34 oF. The temperature drop using the more extreme temperature conditions and assuming only one well is running at 30 gpm is 0.89 oF. This is also low heat loss. Freezing should not occur under these conditions. Calculations are presented in Appendix E. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 5-4 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 5.2.4 Pipe Expansion/Contraction HDPE pipe has a thermal expansion coefficient of 67.0 × 10−6 in/in ℉. Using the extreme ambient temperatures of 105 oF and -1 oF, the linear dimension changes can be calculated, as shown here, to be 8.5 inches per 100 feet. Given that the pipe is insulated and, under normal conditions will carry water at temperatures in the middle of this range, this is a very conservative approach. ∆𝑇𝑇=105 − −1 =106 ℉ ∆𝐿𝐿=100 𝑜𝑜𝐷𝐷 × 12 𝑝𝑝𝐶𝐶𝑜𝑜𝐷𝐷× 67.0 × 10−6 in℉ in × 106 ℉.=8.5 𝑝𝑝𝐶𝐶 The longest 2-inch piping section of 300 feet would result in a dimension change of 16.2 inches. With a 20-foot length of pipe between this section and the well, the angle of the well pipes movement would be approximately four percent. This is well within the flexibility range of the hdpe pipe. The longest section of 4-inch header piping is 1100 feet and would experience about 8 feet of dimension change along its length. The endpoints of this section do not have the ability to significantly float. However, the pipe can float laterally along its course. A maximum deflection of approximately x feet could occur under extreme conditions and will be accounted for during piping layout and installation. The linear deflection along the 6-inch piping sections would be less than 4 inches and can be accommodated by float and flex in the pipe. 5.2.5 Pipe Buoyancy/Anchoring To protect the piping from floating due to buoyancy during flood events, the piping will be anchored with percussion driven or drilled helical anchors installed 5 to 10 feet deep, spaced approximately 50 feet apart, and adjacent to connection points between the header pipe and individual well discharge pipes as shown in the drawings The buoyancy force will be equal to the weight of the volume of water displaced by the piping minus the weight of the pipe material. The 6-inch pipe has a 9.75- inch OD and weighs 6.01 lbs/foot. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 5-5 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx Buoyant Force = Water Weight – Pipe Weight 𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃 𝑉𝑉𝑜𝑜𝑙𝑙𝑃𝑃𝑔𝑔𝑃𝑃=𝜋𝜋𝑃𝑃2𝐿𝐿= 𝜋𝜋�9.75 𝑝𝑝𝐶𝐶2 �2 × 50 𝑜𝑜𝐷𝐷 × 1144 𝑜𝑜𝐷𝐷2𝑝𝑝𝐶𝐶2 =25.9 𝑜𝑜𝐷𝐷3 𝑊𝑊𝐶𝐶𝐷𝐷𝑃𝑃𝑃𝑃 𝑊𝑊𝑃𝑃𝑝𝑝𝐶𝐶ℎ𝐷𝐷= 25.9 𝑜𝑜𝐷𝐷3 × 62.43 𝑙𝑙𝑙𝑙𝑃𝑃𝑜𝑜𝐷𝐷3 =1618 𝑙𝑙𝑙𝑙𝑃𝑃 𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃 𝑊𝑊𝑃𝑃𝑝𝑝𝐶𝐶ℎ𝐷𝐷= 50 𝑜𝑜𝐷𝐷 × 6.01 𝑙𝑙𝑙𝑙𝑃𝑃𝑜𝑜𝐷𝐷=301 𝑙𝑙𝑙𝑙𝑃𝑃 𝐵𝐵𝑃𝑃𝑜𝑜𝑎𝑎𝐶𝐶𝐶𝐶𝐷𝐷 𝐹𝐹𝑜𝑜𝑃𝑃𝑐𝑐𝑃𝑃= 1618 𝑙𝑙𝑙𝑙𝑃𝑃− 301 𝑙𝑙𝑙𝑙𝑃𝑃=1317 𝑙𝑙𝑙𝑙𝑃𝑃 𝑜𝑜𝑜𝑜𝑃𝑃 50 𝑜𝑜𝑃𝑃𝑃𝑃𝐷𝐷 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃 The anchors will be installed to at least a factor of safety of two, or in excess of 2,600 lbs at each location. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 6-1 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 6.0 ELECTRICAL AND INSTRUMENTATION DESIGN It is anticipated that three-phase, 460-Volt, 200-Amp electrical service will be provided to the system from a power drop located near the system outfall. The control panel for the system will be located at the top of the basin berm near the location of the piping system termination point as shown in the Site Plan (Appendix F). Power to the well pumps, through the VFDs, as well as the pumping system controls will be provided from this panel. The final location of the system components will depend upon, and be coordinated with, basin closure activities. 6.1 Piping and Instrumentation Diagram The Piping and Instrumentation Diagram (P&ID) will be completed as part of the final design package. 6.2 Pump Controls The pumps will be controlled with individual Grundfos CUE (or equal) VFDs which adjust the power frequency to vary the motor speed to control the pumping rate. The pumping rate can be adjusted manually or based on set points for flow rate or water level in the well from flow or level sensor signals. The VFDs allow for soft starts of the motor and allow the motors to operate efficiently by only drawing the necessary amperage to provide the desired pumping rate. It is assumed that control of the system will be accomplished through a Human Machine Interface (HMI) screen for ease of operation. 6.3 Emergency System Shutdown The pump motors have internal shutdown systems if the motors start to draw excessive power indicative of pump problems. The motors also have internal shutdown systems for motor overheating. In addition to these safeguards, high pressure conditions or other treatment system malfunctions will also trigger complete system shutdown. These safeguards will be programmed into the pumping control system once the treatment system design is completed. The control system will also be equipped with an auto-dialer to notify operations staff immediately of a system shutdown condition. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 7-1 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 7.0 DESIGN DOCUMENTS This 60% design package includes site layout drawings and details for the piping, wells and well head configurations. Additional details and all specifications will be provided and finalized for 100% design package. 7.1 Design Drawings The complete design package will include site layout plans and profiles, process flow diagrams, P&ID, construction details, electrical and control drawings, and indices and notes. Completed design drawings are provided in Appendix F. 7.2 Specifications Partial equipment, materials and construction specifications are incorporated into this 60% design. Complete specifications will be included in the final design package. Supporting equipment performance data, calculations, and significant equipment and materials cut-sheets will also be included. The P&ID will be completed as part of the final design package. Completed specifications are included in Appendix E and Appendix G. Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra Page 8-1 P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx 8.0 GROUNDWATER EXTRACTION SYSTEM OPERATION The groundwater extraction system will be operated to address the objectives of this accelerated remediation effort. The system is designed to handle significantly lower or higher pumping rates in order to respond to varying conditions. 8.1 System Performance Metrics Existing monitoring wells on the east side of the active ash basin will be sampled to monitor constituent concentrations and measured for groundwater parameters such as DO, pH and Eh. The surficial unit monitoring wells include CMW-5, CMW-6, CMW-6R, BGMW-10, AMW-14S, AMW-15S, and AMW-18S. The deeper, Black Creek unit wells at these locations (DMW-2, CTMW-1, AMW-6RBC, AMW-14BC and AMW-15BC) will also be monitored for potential change in conditions. The existing pilot test observation wells (PTW-02 through PTW-06) will be used as piezometers and gauged for water levels during monitoring events. Additional system performance metrics will be provided in the 100% design report to incorporate predictions from the focused flow and transport and geochemical models provided herein. 8.2 Permits The Draft NPDES Permit NC0003417 includes discharge criteria for groundwater extraction (Appendix H). Extracted groundwater will be discharged to the active basin (Figure 1-3) and managed in order to provide compliance with the regulatory criteria. Additional permits will be required for erosion and sediment control, groundwater extraction well installation and work in wetlands. 8.3 Institutional Controls 8.4 Contingency Plans 8.5 Construction and Monitoring Schedules Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx Figures SOURCE: v j ! �/ p USGS TOPOGRAPHIC MAP OBTAINED FROM THE USGS STORE AT / �- http://store v/b2c_usgs/b2c/start/%%%28xcm=r3standardpitrex_prd%%%29/.do OFF SITE ACCESS - J 76L) 75 RAILROAD TRACK �- o LAYDOWN AREA 1 5 Is r / PROPERTY BOUNDARY — —75 1 ANDS �N OLD-SMITHFIELDIRD a REMEDIATION SYSTEM C) ACTIVE ASH BASIN \ 75/�(t���\OG j —75 \ --- r 4C'f(h,U 0 r P COOLING POND = STEVENS MI mouse 1Ziuer- o BJ IDR Cs 75 Q O 7S \J 0 � Neuse=R-i•u r �` a �p � 0 0 IPA 5 - 1 C\ FIGURE 1-1 D SITE LOCATION MAP cREENseoao H.F. LEE ENERGY COMPLEX •RALEIGH 1199 BLACK JACK CHURCH ROAD l p) 'GREE"""`E GOLDSBORO, NORTH CAROLINA a "! a ynTen SOUTHWEST AND NORTHWEST GOLDSBORO, NC H.F. LEE ENERGY COMPLEX QUADRANGLES 148 RIVER STREET, SUITE 220 WILMINGTON rWN BY: J. CHASTAIN DATE: 02/15/2017 GREENVILLE, SOUTH CAROLINA GRAPHIC SCALE PHONE 864 421-9999 JECT MANAGER: JUDD MAHAN CONTOUR INTERVAL: 5 FEET 1000 0 1000 2000 PHONEwww.syn 64-4 1-99 m OUT: FIG 1-1(SITE LOCATION MAP) MAP DATE: 2013 1- N FEET &<&< &< &< &< &< &< &<&< &< &< &< &< &< &< &< &< &< &< &< &< &< &< &<&< &< &<&< &< &< &< &< &< &< &< &< &< &< AMW-9BC AMW-16BC DMW-1 AMW-14BCAMW-14S CTMW-1CMW-5 BGMW-9 MW-1 AMW-18BCAMW-18S AMW-6RBCCMW-6RCMW-6 MW-3 ABMW-1S MW-2 L-2 AMW-4BC AMW-11SAMW-11BC AMW-12BCAMW-12S AMW-13BCAMW-13S AMW-15BCAMW-15S AMW-17BCAMW-17S DMW-2BGMW-10 CCR-100S-BG CMW-7 CMW-8 CMW-10 LLMW-2S LLMW-1S NEUSE R IV ER NEUSERIVER ActiveAsh Bas in La y o fLand Are a NOTES: AERIAL PHOTOGRAPHY OBTAINED FROM NRCS VIA USDAGEOSPATIAL DATA GATEWAY, DATED 10/18/2014. DRAWING HAS BEEN SET WITH A PROJECTION OF NORTH CAROLINASTATE PLANE COORDINATE SYSTEM FIPS 3200 (NAD83/2011). FIGURE 1 -2SITE L AYOUT MAPH.F. LE E E NERGY COM PL EX - ACT IVEGOLDSBORO, NORTH CAROLINADRAWN BY: A. FEIGLPROJECT MANAGER: J. MAHA NCHECKED BY: C. PONCE DATE: 02/14/2017 148 RIVER STREET, S UITE 220GREENVILLE, S OUTH C AROLINA 29601PHONE 864-421-9999www.synterracorp.com P:\Duke Energy Progress.1026\00 GIS BASE DATA\HF Lee\Map_Docs \AppendixB\Fig01_02_SiteLayout_Ac tive.mx d 450 0 450 900225 IN FEET GRAPHIC SCALE LEGEN D &<MONITORING WEL L CCR SURFA CE IMP OUNDMENTCOMPLIANCE B OUNDARY DUKE ENER GY P ROGRESS H. F. LEE PLANT SITE BO UNDARY CCR SURFA CE IMP OUNDMENT GENERAL IZED GROUND WATER FL OW CO NTOUR AR EA C ON S IDE RE DFOR AC CE LE R ATE DREMEDIATION \\ EW-1 COLLECTION LINE A ` \\ EW-2 I\\ I \ I I I l i I I I I I , I I \ I / I / I Imo\\ \'` _ \\ \ \\ EW-3 EXISTING MAIN ROUTE \\ EW- ` COLLECTION LINE B \\ PTW-1 EXISTING GRAVEL ROAD\\ ` EXTI HEADER PIPE ` 104IM-IT" fiQ0111l►10a 26 I ,NF ` o\ oNf , 3yo \ \ \ / / / \\ EW-6 \\ APPROXIMATE LOCATION OF EFFLUENT \' CHANNEL BASED ON DRAFT NPDES PERMIT DISCHARGE POINT DIVIDER 0`SGNWGG psIN \Nj0 \ EXISTING GRAVEL ROAD LEGEND\'== � _= DUKE ENERGY PROGRESS PARCEL LINE CCR SURFACE IMPOUNDMENT WASTE BOUNDARY PRELIMINARY WETLAND (NOT USACE APPROVED) POTENTIAL EFFLUENT CHANNEL (NON JURISDICTIONAL) GRAPHIC SCALE 100 0 100 —mm LINE C 200 V7 Terra IN FEET 148 RIVER STREET, SUITE 220 GREENVILLE, SOUTH CAROLINA 29601 PHONE 864-421-9999 www. sy n t e r ra co r p. c o rn DRAWN BY NAG CHASTAIN DATE 2/15/2017 PROJECT FIG EM AN 1-3 E FM SYSTEM LA LAYOUT: FIG 13 (REM SVSTEM LAYOUT) i FIGURE 1-3 REMEDIATION SYSTEM LAYOUT H. F. LEE ENERGY COMPLEX 1199 BLACKJACK CHURCH ROAD GOLDSBORO, NORTH CAROLINA • PROPOSED EXTRACTION WELL @A @A@A @A @A @A @A @A La y o fLand Are a NEUS E R IV ER NEUSERIVER ActiveAsh Bas in SMP-1 SMP-2SMP-3 SMP-4 SMP-5 SMP-6 SMP-7 SMP-8 NOTES: WETLANDS AND STREAMS WERE DELINEATED BY AMEC FOSTERWHEELER OF CHARLOTTE, N.C. ON JUNE 1, 2014. AERIAL PHOTOGRAPHY OBTA INED FROM NRCS VIA USDAGEOSPATIAL DATA GATEWAY, DATED 10/18/2014. DRAWING HAS BEEN SET WITH A PROJECTION OF NORTH CAROLINASTATE PLANE COORDINATE SYSTEM FIPS 3200 (NAD83/2011). FIGURE 3-1WETLAND AREASH.F. L EE E NE RGY COMP LE X - ACTIV EGOLDSBORO, NORTH CAROL INADRAWN BY: A. FEIGLPROJECT MANAGER: J. MAHANCHECKED BY: C. PONCE DATE: 02/01/2017 14 8 RIVER STREET, SUITE 22 0GREENVILLE, SOUTH CAROL INA 296 01PHONE 864 -421-9 999www.synterracorp.com P:\Duke Energy Progress.1026\00 G IS BASE DATA\HF Lee\Map_Docs\AppendixB\F ig03_01_WetlandAreas _Ac tive.mx d 450 0 450 900225 IN FEET GRAPHIC SCALE LEGEN D &<WET LAND AREAS CCR SURFAC E IMPOUN DMENTCOMPLIANCE BOUN DARY DUKE ENERGY PROGR ESS H. F. LE E PLANT SITE BOUND ARY CCR SURFAC E IMPOUN DMENT GENERAL IZ ED GROUNDWAT ER FLOW CONTOUR SOIL MOISTURE PROBES@A Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx Tables TA B L E 2 - 1 BA S E L I N E S I T E C O N D I T I O N S - A R E A C O N S I D E R E D F O R A C C E L E R A T E D R E M E D I A T I O N H. F . L E E E N E R G Y C O M P L E X DU K E E N E R G Y P R O G R E S S , L L C , G O L D S B O R O , N C Al u m i n u m A l u m i n u m A l u m i n u m A n t i m o n y A n t i m o n y A n t i m o n y A r s e n i c A r s e n i c A r s e n i c B a r i u m B a r i u m B a r i u m B e r y l l i u m B e r y l l i u m B e r y l l i u m B o r o n B o r o n B o r on C a d m i u m C a d m i u m C a d m i u m DI S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T S. U . f t D e g C u m h o s / c m m g / L m V m V N T U s m g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L 6. 5 - 8 . 5 N E N E N E N E N E N E N E N E N E N E N E N E N E N E 1 * N E N E 1 0 N E N E 7 0 0 N E N E 4 * N E N E N E 7 0 0 N E N E 2 Sa m p l e I D Sa m p l e Co l l e c t i o n D a t e AM W - 0 6 R B C 0 5 / 2 6 / 2 0 1 5 7 . 9 5 . 3 3 2 1 3 4 6 0 . 4 6 - 1 4 5 6 0 8 . 8 9 1 . 5 8 3 2 3 N A 1 4 0 < 1 N A < 1 < 1 N A < 1 7 0 N A 8 3 < 1 N A < 1 8 3 1 5 2 N A 1 7 6 < 1 N A < 1 AM W - 0 6 R B C 0 6 / 0 9 / 2 0 1 5 8. 6 5. 9 8 1 9 3 6 9 0 . 6 3 - 1 7 9 2 6 2 . 5 6 2 . 5 8 5 3 3 N A 5 4 < 1 N A < 1 < 1 N A < 1 9 2 N A 9 6 < 1 N A < 1 8 4 1 5 4 N A 1 5 8 < 1 N A < 1 AM W - 0 6 R B C 0 9 / 2 4 / 2 0 1 5 7 . 1 7 . 8 5 1 8 4 5 7 0 . 3 0 - 1 3 4 7 1 3 . 5 N M N A 9 1 1 6 2 < 1 < 1 < 1 < 1 < 1 < 1 7 2 7 1 7 6 < 1 < 1 < 1 N A 1 9 2 1 9 2 2 0 5 < 1 < 1 < 1 AM W - 0 6 R B C 1 2 / 0 5 / 2 0 1 5 7 . 1 4 . 4 5 1 6 2 4 0 0 . 3 1 - 1 2 2 8 4 3 . 0 3 4 . 5 8 8 < 1 0 0 N A < 1 0 0 < 2 . 5 N A < 0 . 5 < 2 . 5 N A < 0 . 5 6 7 N A 7 0 < 1 N A < 0 . 2 8 8 1 9 0 N A 1 8 0 < 0 . 4 N A < 0 . 0 8 AM W - 0 6 R B C D U P 1 2 / 0 5 / 2 0 1 5 7 . 1 4 . 4 5 1 6 2 4 0 0 . 3 1 - 1 2 2 8 4 3 . 0 3 4 . 5 8 6 . 7 < 1 0 0 N A < 1 0 0 < 0 . 5 N A < 0 . 5 < 0 . 5 N A < 0 . 5 6 7 N A 6 9 < 0 . 2 N A < 0 . 2 8 6 . 7 2 0 0 N A 1 8 0 < 0 . 0 8 N A < 0 . 0 8 AM W - 0 6 R B C 0 1 / 1 2 / 2 0 1 6 7 . 0 4 . 1 8 1 5 1 4 8 0 . 3 0 - 1 2 8 7 7 0 . 7 4 . 5 8 7 . 8 1 1 N A 2 4 < 1 N A < 1 < 1 N A < 1 6 6 N A 7 0 < 1 N A < 1 8 7 . 8 1 7 5 N A 1 8 4 < 1 N A < 1 AM W - 0 6 R B C 1 2 / 1 5 / 2 0 1 6 6 . 9 5 . 3 0 1 4 2 3 5 0 . 1 9 - 8 8 1 1 7 0 . 8 2 N M 8 2 9 N A 1 2 < 1 N A < 1 < 1 N A < 1 6 6 N A 6 7 < 1 N A < 1 8 2 1 8 4 N A 1 8 2 < 1 N A < 1 AM W - 1 4 B C 0 5 / 2 0 / 2 0 1 5 7 . 1 4 . 5 4 1 9 3 0 4 0 . 1 5 - 1 1 4 9 1 9 . 3 1 8 4 6 N A 1 0 9 < 1 N A < 1 < 1 N A < 1 5 9 N A 6 0 < 1 N A < 1 8 4 2 2 7 N A 2 2 4 < 1 N A < 1 AM W - 1 4 B C 0 6 / 1 1 / 2 0 1 5 7 . 1 5 . 6 2 2 0 3 2 9 0 . 5 3 1 1 0 3 1 5 4 . 6 3 2 9 7 1 2 0 N A 8 0 < 1 N A < 1 < 1 N A < 1 5 4 N A 5 8 < 1 N A < 1 9 6 2 2 0 N A 2 2 5 < 1 N A < 1 AM W - 1 4 B C 1 2 / 0 4 / 2 0 1 5 7 . 2 4 . 2 5 1 6 2 7 7 0 . 1 6 - 1 5 9 4 6 1 . 9 1 2 1 0 5 < 5 N A 1 7 < 1 N A < 1 < 1 N A < 1 5 0 N A 5 1 < 1 N A < 1 1 0 5 2 3 0 N A 2 2 4 < 1 N A < 1 AM W - 1 4 B C 0 1 / 1 2 / 2 0 1 6 7 . 2 3 . 9 3 1 4 2 4 3 0 . 2 3 - 1 4 6 5 9 3 . 5 2 2 . 5 1 0 5 6 N A 4 4 < 1 N A < 1 < 1 N A < 1 4 9 N A 5 4 < 1 N A < 1 1 0 5 2 2 7 N A 2 3 5 < 1 N A < 1 AM W - 1 4 B C 1 2 / 1 6 / 2 0 1 6 7 . 3 4 . 7 4 1 5 3 0 6 0 . 2 6 - 1 6 7 3 9 1 . 3 3 2 8 7 . 6 6 N A 1 2 < 1 N A < 1 < 1 N A < 1 4 7 N A 4 8 < 1 N A < 1 8 7 . 6 2 3 6 N A 2 3 8 < 1 N A < 1 AM W - 1 4 S 0 5 / 2 0 / 2 0 1 5 5. 4 4. 2 5 2 5 4 8 . 2 7 8 6 2 9 1 4 3 . 1 2 . 7 2 3 2 2 N A 4 9 0 < 1 N A < 1 1 . 4 1 N A 1 . 7 2 6 3 N A 7 4 < 1 N A < 1 2 3 < 5 0 N A < 5 0 < 1 N A < 1 AM W - 1 4 S 0 6 / 1 1 / 2 0 1 5 6. 2 5. 3 4 2 0 1 8 6 0 . 5 7 1 3 0 3 3 5 4 . 5 3 . 5 2 3 5 6 N A 7 6 < 1 N A < 1 2 . 1 N A 2 . 1 9 1 N A 9 5 < 1 N A < 1 2 3 < 5 0 N A < 5 0 < 1 N A < 1 AM W - 1 4 S 1 2 / 0 4 / 2 0 1 5 5. 9 4. 0 8 1 7 1 4 6 0 . 1 3 - 1 3 1 9 2 9 . 1 1 2 . 5 1 4 . 1 1 6 N A 1 0 5 < 1 N A < 1 2 . 1 4 N A 1 . 8 5 6 3 N A 6 4 < 1 N A < 1 1 4 . 1 < 5 0 N A < 5 0 < 1 N A < 1 AM W - 1 4 S 0 1 / 1 2 / 2 0 1 6 6. 0 4. 0 5 1 3 1 0 9 0 . 2 8 - 3 2 0 2 2 . 9 3 1 6 . 7 1 5 N A 1 7 5 < 1 N A < 1 1 . 5 3 N A 1 . 1 8 5 9 N A 5 7 < 1 N A < 1 1 6 . 7 < 5 0 N A < 5 0 < 1 N A < 1 AM W - 1 4 S 1 2 / 1 6 / 2 0 1 6 5. 6 4. 1 0 1 6 1 0 5 0 . 4 4 1 4 2 1 9 9 . 9 8 2 . 5 1 4 . 5 1 9 N A 8 3 < 1 N A < 1 2 . 7 8 N A 2 . 6 8 7 5 N A 7 4 < 1 N A < 1 1 4 . 5 < 5 0 N A < 5 0 < 1 N A < 1 AM W - 1 5 B C 0 5 / 2 0 / 2 0 1 5 8 . 4 5 . 5 1 1 8 2 5 9 0 . 3 1 - 1 5 1 5 5 2 1 . 6 1 . 4 8 7 5 N A 2 6 4 < 1 N A < 1 < 1 N A < 1 5 5 N A 5 8 < 1 N A < 1 8 7 1 7 6 N A 1 7 7 < 1 N A < 1 AM W - 1 5 B C 0 6 / 1 1 / 2 0 1 5 7 . 5 6 . 6 0 1 9 2 5 6 0 . 4 0 1 1 8 3 2 3 9 . 2 9 0 . 5 9 3 8 1 N A 2 4 4 < 1 N A < 1 < 1 N A < 1 4 4 N A 4 8 < 1 N A < 1 9 2 1 7 0 N A 1 7 4 < 1 N A < 1 AM W - 1 5 B C D U P 0 6 / 1 1 / 2 0 1 5 7 . 5 6 . 6 0 1 9 2 5 6 0 . 4 0 1 1 8 3 2 3 9 . 2 9 0 . 5 9 2 8 5 N A 2 6 0 < 1 N A < 1 < 1 N A < 1 4 5 N A 4 7 < 1 N A < 1 9 1 1 7 2 N A 1 7 3 < 1 N A < 1 AM W - 1 5 B C 1 2 / 0 6 / 2 0 1 5 7 . 7 5 . 0 7 1 6 2 2 8 0 . 3 8 - 1 4 4 6 1 6 . 6 8 0 . 5 9 6 . 2 < 1 0 0 N A < 1 0 0 < 0 . 5 N A < 0 . 5 < 0 . 5 N A < 0 . 5 4 3 N A 3 9 < 0 . 2 N A < 0 . 2 9 6 . 2 1 8 0 N A 1 7 0 < 0 . 0 8 N A < 0 . 0 8 AM W - 1 5 B C 0 1 / 1 2 / 2 0 1 6 7 . 5 4 . 6 4 1 5 2 0 7 0 . 2 8 - 1 5 5 5 0 7 . 9 2 1 9 2 . 7 < 5 N A 2 4 1 < 1 N A < 1 < 1 N A < 1 4 4 N A 4 6 < 1 N A < 1 9 2 . 7 1 7 8 N A 1 8 5 < 1 N A < 1 AM W - 1 5 B C D U P 0 1 / 1 2 / 2 0 1 6 7 . 5 4 . 6 4 1 5 2 0 7 0 . 2 8 - 1 5 5 5 0 7 . 9 2 1 9 0 . 3 < 5 N A 1 2 9 < 1 N A < 1 < 1 N A < 1 4 3 N A 4 7 < 1 N A < 1 9 0 . 3 1 7 4 N A 1 8 5 < 1 N A < 1 AM W - 1 5 B C 1 2 / 1 6 / 2 0 1 6 7 . 1 5 . 8 2 1 2 2 1 6 0 . 2 2 - 8 4 1 2 1 5 . 9 9 1 8 3 . 6 5 N A 1 1 8 < 1 N A < 1 1 . 1 5 N A < 1 4 5 N A 4 6 < 1 N A < 1 8 3 . 6 1 7 5 N A 1 7 7 < 1 N A < 1 AM W - 1 5 S 0 5 / 2 1 / 2 0 1 5 6. 0 4. 4 3 1 8 1 2 7 0 . 3 0 3 2 0 8 7 . 2 8 3 . 2 5 1 5 2 5 N A 2 8 6 < 1 N A < 1 < 1 N A < 1 5 5 N A 5 7 < 1 N A < 1 1 5 1 4 9 N A 1 4 9 < 1 N A < 1 AM W - 1 5 S 0 6 / 1 1 / 2 0 1 5 5. 8 5. 9 0 1 8 1 3 6 0 . 4 5 1 2 0 3 2 5 2 . 8 6 2 1 8 4 5 N A 1 4 9 < 1 N A < 1 < 1 N A < 1 5 7 N A 6 2 < 1 N A < 1 1 8 1 2 6 N A 1 2 4 < 1 N A < 1 AM W - 1 5 S 1 2 / 0 6 / 2 0 1 5 5. 7 3. 7 4 1 6 1 2 3 0 . 3 0 1 3 3 3 3 8 2 . 4 6 0 . 5 7 . 8 < 1 0 0 N A < 1 0 0 < 0 . 5 N A < 0 . 5 1 N A 1 . 1 5 4 N A 5 6 < 0 . 2 N A < 0 . 2 7 . 8 1 5 0 N A 1 5 0 < 0 . 0 8 N A < 0 . 0 8 AM W - 1 5 S 0 1 / 1 2 / 2 0 1 6 5. 7 3. 4 5 1 5 1 1 5 0 . 9 4 1 3 3 3 3 8 1 . 4 1 6 . 7 2 1 N A 4 7 < 1 N A < 1 < 1 N A < 1 5 5 N A 5 8 < 1 N A < 1 6 . 7 9 4 N A 9 7 < 1 N A < 1 AM W - 1 5 S 1 2 / 1 6 / 2 0 1 6 5. 3 4. 4 4 1 4 1 4 3 0 . 6 1 - 1 2 0 4 0 . 9 4 0 7 2 2 N A 3 1 < 1 N A < 1 1 . 3 4 N A 1 . 0 9 6 5 N A 6 8 < 1 N A < 1 7 1 5 1 N A 1 4 7 < 1 N A < 1 AM W - 1 7 B C 0 8 / 1 0 / 2 0 1 6 7 . 3 5 . 3 0 2 3 4 2 9 0 . 4 8 2 0 1 4 0 6 1 6 . 8 0 1 0 5 < 5 N A 1 4 1 < 1 N A < 1 < 1 N A < 1 4 3 N A 4 4 < 1 N A < 1 1 0 5 2 6 4 N A 2 6 2 < 1 N A < 1 AM W - 1 7 B C 1 0 / 0 7 / 2 0 1 6 7 . 2 5 . 0 1 2 1 4 3 2 0 . 2 1 1 8 0 3 8 5 9 . 5 1 0 1 1 5 8 N A 8 7 < 1 N A < 1 1 . 4 6 N A 1 . 7 5 4 9 N A 4 6 < 1 N A < 1 1 1 5 2 6 6 N A 2 5 5 < 1 N A < 1 AM W - 1 7 B C 1 1 / 2 1 / 2 0 1 6 7 . 1 3 . 9 7 1 7 3 2 5 2 . 0 0 1 4 8 3 5 3 2 3 0 N M 8 2 . 7 < 5 N A 1 0 1 0 M 4 < 1 N A < 1 < 1 N A 1 . 1 7 5 7 N A 5 8 < 1 N A < 1 8 2 . 7 2 2 9 N A 2 3 2 < 1 N A < 1 AM W - 1 7 S C C R 0 7 / 0 7 / 2 0 1 6 4. 7 6. 2 1 2 1 1 3 3 1 . 7 5 S 2 3 2 4 3 7 7 . 9 N M < 5 N A N A N A N A N A < 1 N A N A < 1 N A N A 8 6 N A N A < 1 N A N A N A 5 7 N A N A < 1 AM W - 1 7 S C C R D U P 0 7 / 0 7 / 2 0 1 6 4. 7 6. 2 1 2 1 1 3 3 1 . 7 5 S 2 3 2 4 3 7 7 . 9 N M < 5 N A N A N A N A N A < 1 N A N A < 1 N A N A 8 6 N A N A < 1 N A N A N A 5 6 N A N A < 1 AM W - 1 7 S 0 7 / 2 8 / 2 0 1 6 4. 6 6. 0 1 2 3 1 3 4 1 . 9 4 4 5 0 6 5 5 2 . 3 4 N M < 5 4 5 9 N A 4 7 4 < 1 N A < 1 < 1 N A < 1 7 3 N A 7 3 < 1 N A < 1 < 5 5 7 N A 6 3 < 1 N A < 1 AM W - 1 7 S C C R 0 8 / 2 9 / 2 0 1 6 4. 6 7. 0 6 2 1 1 2 7 0 . 8 8 2 1 3 4 1 8 1 . 6 9 N M < 2 0 N A N A N A N A N A < 1 N A N A < 1 N A N A 8 6 N A N A < 1 N A N A N A 6 8 N A N A < 1 AM W - 1 7 S 1 0 / 0 7 / 2 0 1 6 4. 4 5. 0 9 2 1 1 2 9 1 . 8 4 2 4 0 4 4 5 4 . 9 7 0 < 5 4 3 4 N A 4 9 4 < 1 N A < 1 < 1 N A < 1 8 1 N A 7 8 < 1 N A < 1 < 5 6 4 N A 6 5 < 1 N A < 1 AM W - 1 7 S C C R 1 1 / 2 1 / 2 0 1 6 4. 7 4. 6 4 2 0 1 3 8 1 . 0 2 2 2 7 4 3 2 5 . 2 1 N M < 5 N A N A N A N A N A < 1 N A N A < 1 N A N A 8 9 N A N A < 1 N A N A N A 6 6 N A N A < 1 AM W - 1 7 S C C R 1 2 / 2 1 / 2 0 1 6 4. 7 4. 5 3 1 8 1 2 1 1 . 1 8 7 2 1 2 4 . 9 N M < 5 N A N A N A N A N A < 1 N A N A < 1 N A N A 8 6 N A N A < 1 N A N A N A 6 9 N A N A < 1 AM W - 1 7 S C C R D U P 1 2 / 2 1 / 2 0 1 6 4. 7 4. 5 3 1 8 1 2 1 1 . 1 8 7 2 1 2 4 . 9 N M < 5 N A N A N A N A N A < 1 N A N A < 1 N A N A 8 8 N A N A < 1 N A N A N A 6 9 N A N A < 1 AM W - 1 8 S 0 7 / 2 8 / 2 0 1 6 6. 1 10 . 6 8 2 3 4 3 3 0 . 3 1 7 6 2 8 1 8 . 8 1 N M 9 5 . 7 2 6 N A 2 1 2 < 1 N A < 1 1 5 . 6 N A 15 . 6 11 6 N A 1 1 6 < 1 N A < 1 9 5 . 7 2 2 1 0 N A 2250 <1 N A < 1 AM W - 1 8 S 1 0 / 0 6 / 2 0 1 6 6. 1 10 . 1 2 1 9 4 4 1 0 . 2 1 1 5 7 3 6 2 8 . 1 7 N M 1 0 7 2 8 N A 2 3 5 < 1 N A < 1 1 7 . 6 N A 19 . 6 13 3 N A 1 2 6 < 1 N A < 1 1 0 7 2 3 8 0 N A 2270 <1 N A < 1 BG M W - 1 0 1 0 / 1 8 / 2 0 1 2 6. 2 6. 4 0 1 7 1 2 8 0 . 9 2 - 1 5 1 9 0 1 7 N M N A N A N A N A N A N A 0 . 5 9 N A N A < 5 N A N A 6 5 . 7 N A N A N A N A N A N A 5 9 . 8 N A N A < 0 . 0 8 BG M W - 1 0 0 3 / 0 7 / 2 0 1 3 5. 7 3. 8 5 1 1 1 1 3 0 . 3 8 7 1 2 7 6 8 . 6 6 N M N A N A N A N A N A N A < 1 N A N A < 1 N A N A 5 5 N A N A N A N A N A N A < 5 0 N A N A < 1 BG M W - 1 0 0 6 / 0 5 / 2 0 1 3 5. 9 5. 9 7 1 6 1 3 7 0 . 2 6 2 9 2 3 4 4 9 . 6 N M N A N A N A N A N A N A < 1 N A N A 6 . 6 3 N A N A 6 7 N A N A N A N A N A N A < 5 0 N A N A < 1 BG M W - 1 0 1 0 / 1 0 / 2 0 1 3 5. 7 4. 7 7 1 7 1 1 1 0 . 1 6 8 3 2 8 8 3 7 . 9 N M N A N A N A N A N A N A < 1 N A N A 2 . 6 5 N A N A 6 2 N A N A N A N A N A N A < 5 0 N A N A < 1 BG M W - 1 0 0 3 / 1 0 / 2 0 1 4 4. 8 3. 4 8 1 3 1 4 9 1 . 8 2 3 1 7 5 2 2 2 . 0 8 N M N A N A N A N A N A N A < 1 N A N A < 1 N A N A 8 9 N A N A N A N A N A N A < 5 0 N A N A < 1 BG M W - 1 0 0 6 / 1 1 / 2 0 1 4 4. 8 4. 4 4 2 1 1 4 3 0 . 2 7 2 4 8 4 5 3 5 . 8 N M N A N A N A N A N A N A < 1 N A N A < 1 N A N A 1 0 1 N A N A N A N A N A N A < 5 0 N A N A < 1 BG M W - 1 0 1 0 / 1 7 / 2 0 1 4 4. 9 3. 9 0 1 8 1 0 5 0 . 2 6 2 3 5 4 4 0 4 . 9 8 N M N A N A N A N A N A N A < 1 N A N A < 1 N A N A 9 1 N A N A N A N A N A N A < 5 0 N A N A < 1 BG M W - 1 0 0 3 / 0 3 / 2 0 1 5 4. 9 3. 4 4 9 1 2 2 0 . 7 8 3 5 7 5 6 2 3 . 4 4 N M N A N A N A N A N A N A < 1 N A N A < 1 N A N A 8 0 N A N A N A N A N A N A < 5 0 N A N A < 1 BG M W - 1 0 0 6 / 0 8 / 2 0 1 5 4. 8 5. 2 0 1 9 1 1 8 0 . 3 2 1 9 4 3 9 9 4 . 2 5 0 . 5 5 . 2 N A N A 1 2 2 N A N A < 1 N A N A < 1 N A N A 9 4 N A N A < 1 5 . 2 N A N A < 5 0 N A N A < 1 BG M W - 1 0 1 0 / 0 6 / 2 0 1 5 5. 2 3. 9 0 1 9 1 2 3 0 . 4 4 1 1 8 3 2 3 3 . 4 7 N M 1 2 . 1 M 1 N A N A 5 9 N A N A < 1 N A N A < 1 N A N A 7 5 N A N A < 1 1 2 . 1 N A N A < 5 0 N A N A < 1 BG M W - 1 0 1 2 / 0 4 / 2 0 1 5 5. 7 3. 7 6 1 5 1 1 2 0 . 7 0 1 5 1 3 5 6 4 . 8 2 < 5 4 4 N A 1 2 1 < 1 N A < 1 < 1 N A < 1 8 7 N A 9 6 < 1 N A < 1 < 5 < 5 0 N A < 5 0 < 1 N A < 1 BG M W - 1 0 0 1 / 1 2 / 2 0 1 6 4. 8 3. 6 3 1 5 1 3 0 0 . 5 0 2 0 3 4 0 8 8 . 9 5 0 < 5 9 5 N A 5 0 6 < 1 N A < 1 < 1 N A < 1 1 1 0 N A 1 2 0 < 1 N A < 1 < 5 < 5 0 N A < 5 0 < 1 N A < 1 BG M W - 1 0 0 3 / 0 3 / 2 0 1 6 4. 8 3. 7 2 1 2 1 8 5 0 . 4 2 3 1 9 5 2 4 4 . 8 0 . 5 < 5 N A N A 3 0 1 N A N A < 1 N A N A < 1 N A N A 1 6 7 N A N A < 1 < 5 N A N A < 5 0 N A N A < 1 BG M W - 1 0 0 6 / 0 6 / 2 0 1 6 4. 8 4. 2 6 1 8 1 2 4 0 . 4 6 2 2 4 4 2 9 1 . 8 4 N M < 5 N A N A 2 5 1 N A N A < 1 N A N A < 1 N A N A 1 3 3 N A N A < 1 < 5 N A N A < 5 0 N A N A < 1 BG M W - 1 0 1 0 / 0 4 / 2 0 1 6 5. 3 4. 0 1 2 0 1 4 3 0 . 1 4 2 3 2 4 3 7 8 . 7 2 N M 1 0 . 5 N A N A 1 0 5 N A N A < 1 N A N A < 1 N A N A 1 0 4 N A N A < 1 1 0 . 5 N A N A < 5 0 N A N A < 1 BG M W - 1 0 C A M A 1 0 / 0 4 / 2 0 1 6 5. 3 4. 0 1 2 0 1 4 3 0 . 1 4 2 3 2 4 3 7 8 . 7 5 1 . 5 1 1 . 5 3 6 N A 8 6 < 1 N A < 1 < 1 N A < 1 9 6 N A 1 0 4 < 1 N A < 1 1 1 . 5 < 5 0 N A < 5 0 < 1 N A < 1 BG M W - 1 0 D U P 1 0 / 0 4 / 2 0 1 6 5. 3 4. 0 1 2 0 1 4 3 0 . 1 4 2 3 2 4 3 7 8 . 7 2 N M 1 1 . 8 N A N A 2 3 6 N A N A < 1 N A N A < 1 N A N A 1 0 5 N A N A < 1 1 1 . 8 N A N A < 5 0 N A N A < 1 CC R - 1 0 0 S 0 7 / 0 6 / 2 0 1 6 4. 8 26 . 4 0 2 3 1 7 9 5 . 6 0 2 9 4 4 9 9 7 . 5 3 N M < 5 N A N A N A N A N A < 1 N A N A < 1 N A N A 5 1 1 N A N A < 1 N A N A N A < 5 0 N A N A < 1 CC R - 1 0 0 S C A M A 0 7 / 2 0 / 2 0 1 6 4. 6 26 . 3 2 2 0 1 6 9 5 . 8 9 4 4 6 6 5 1 8 . 5 3 N M < 5 2 2 5 N A 3 2 0 < 1 N A < 1 < 1 N A < 1 5 1 2 N A 5 2 8 < 1 N A < 1 < 5 < 5 0 N A < 5 0 < 1 N A < 1 CC R - 1 0 0 S 0 8 / 3 0 / 2 0 1 6 4. 7 26 . 7 3 2 0 1 6 5 6 . 0 5 2 6 2 4 6 7 9 . 6 7 N M < 5 N A N A N A N A N A < 1 N A N A < 1 N A N A 5 6 5 N A N A < 1 N A N A N A < 5 0 N A N A < 1 CC R - 1 0 0 S C A M A 1 0 / 0 6 / 2 0 1 6 4. 4 26 . 7 2 1 8 1 6 7 6 . 3 3 3 5 4 5 5 9 9 . 0 4 0 < 5 2 5 0 N A 2 8 2 < 1 N A < 1 < 1 N A < 1 5 7 6 N A 5 4 3 < 1 N A < 1 < 5 < 5 0 N A < 5 0 < 1 N A < 1 CC R - 1 0 0 S 1 1 / 1 7 / 2 0 1 6 4. 5 25 . 9 5 1 7 1 7 1 6 . 8 2 2 3 8 4 4 3 1 . 6 1 N M < 2 0 N A N A N A N A N A < 1 N A N A < 1 N A N A 5 3 9 N A N A < 1 N A N A N A < 5 0 N A N A < 1 CC R - 1 0 0 S 1 2 / 1 5 / 2 0 1 6 4. 6 26 . 2 5 1 6 1 7 4 6 . 2 0 2 2 3 4 2 8 2 . 3 3 N M < 5 N A N A N A N A N A < 1 N A N A < 1 N A N A 6 0 0 N A N A < 1 N A N A N A < 5 0 N A N A < 1 CC R - 1 0 0 S C A M A 1 2 / 1 5 / 2 0 1 6 4. 6 26 . 2 5 1 6 1 7 4 6 . 2 0 2 2 3 4 2 8 2 . 3 3 N M < 5 2 4 5 N A 2 2 9 < 1 N A < 1 < 1 N A < 1 5 7 9 N A 5 6 4 < 1 N A 1 . 1 9 < 5 < 5 0 N A < 5 0 < 1 N A < 1 NC 2 L S t a n d a r d Re p o r t i n g U n i t s An a l y t i c a l P a r a m e t e r Bicarbonate Alkalinity Fi e l d P a r a m e t e r s Al k a l i n i t y Fe r r o u s Ir o n Tu r b i d i t y Eh Ox i d a t i o n Re d u c t i o n Po t e n t i a l Di s s o l v e d Ox y g e n Sp e c i f i c Co n d u c t a n c e Te m p e r a t u r e Wa t e r Le v e l pH Analytical Results P: \ D u k e E n e r g y P r o g r e s s . 1 0 2 6 \ 0 4 . L E E P L A N T \ 2 2 . B a s i s o f D e s i g n R e p o r t \ D e s i g n R p t ( 6 0 ) \ T a b l e s \ T a b l e 2 - 1 B a s e l i n e S i t e C o n d i t i o n s . x ls x Page 1 of 12 TA B L E 2 - 1 BA S E L I N E S I T E C O N D I T I O N S - A R E A C O N S I D E R E D F O R A C C E L E R A T E D R E M E D I A T I O N H. F . L E E E N E R G Y C O M P L E X DU K E E N E R G Y P R O G R E S S , L L C , G O L D S B O R O , N C Al u m i n u m A l u m i n u m A l u m i n u m A n t i m o n y A n t i m o n y A n t i m o n y A r s e n i c A r s e n i c A r s e n i c B a r i u m B a r i u m B a r i u m B e r y l l i u m B e r y l l i u m B e r y l l i u m B o r o n B o r o n B o r on C a d m i u m C a d m i u m C a d m i u m DI S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T S. U . f t D e g C u m h o s / c m m g / L m V m V N T U s m g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L Re p o r t i n g U n i t s An a l y t i c a l P a r a m e t e r Bicarbonate Alkalinity Al k a l i n i t y Fe r r o u s Ir o n Tu r b i d i t y Eh Ox i d a t i o n Re d u c t i o n Po t e n t i a l Di s s o l v e d Ox y g e n Sp e c i f i c Co n d u c t a n c e Te m p e r a t u r e Wa t e r Le v e l pH CM W - 0 5 1 2 / 1 3 / 2 0 1 0 6 . 6 1 2 . 3 0 1 6 4 1 8 N M N M N M 8 . 2 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 9 6 N A N A N A N A N A N A 3090 NA N A < 0 . 0 8 CM W - 0 5 0 3 / 0 3 / 2 0 1 1 6. 5 10 . 7 6 1 4 5 0 8 0 . 8 1 1 4 2 3 4 7 0 . 7 8 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 6 7 . 5 b N A N A N A N A N A N A 2520 NA N A < 0 . 0 8 CM W - 0 5 0 6 / 0 8 / 2 0 1 1 6. 4 12 . 5 1 2 1 4 9 7 0 . 9 3 - 8 7 1 1 8 1 . 9 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 1 0 4 N A N A N A N A N A N A 3110 NA N A < 0 . 0 8 CM W - 0 5 1 0 / 0 5 / 2 0 1 1 6. 3 12 . 7 6 2 1 5 8 7 0 . 4 7 - 7 4 1 3 1 6 . 1 5 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 1 3 1 N A N A N A N A N A N A 3710 NA N A < 0 . 0 8 CM W - 0 5 0 3 / 1 5 / 2 0 1 2 6. 3 11 . 6 2 1 6 4 8 6 1 . 6 0 - 8 3 1 2 3 1 . 9 4 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 9 2 . 7 N A N A N A N A N A N A 3140 NA N A < 0 . 0 8 CM W - 0 5 0 6 / 1 3 / 2 0 1 2 6. 3 12 . 6 9 2 0 5 4 4 1 . 2 2 - 6 2 1 4 3 9 . 8 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 1 0 4 N A N A N A N A N A N A 3180 NA N A < 0 . 0 8 CM W - 0 5 1 0 / 1 7 / 2 0 1 2 6 . 8 1 2 . 7 2 2 0 6 6 5 0 . 7 0 - 4 2 0 1 4 . 1 4 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 1 1 2 N A N A N A N A N A N A 3940 NA N A < 0 . 0 8 CM W - 0 5 0 3 / 0 7 / 2 0 1 3 6. 0 8. 4 5 1 2 4 1 3 3 . 6 8 1 1 3 3 1 8 7 . 1 9 N M N A N A N A N A N A N A < 1 N A N A 1 . 1 2 N A N A 4 9 N A N A N A N A N A N A 2140 NA N A < 1 CM W - 0 5 0 6 / 0 5 / 2 0 1 3 5. 9 12 . 4 1 1 6 5 0 4 0 . 7 6 1 4 0 3 4 5 4 . 4 5 N M N A N A N A N A N A N A < 1 N A N A 1 . 3 4 N A N A 8 7 N A N A N A N A N A N A 3060 NA N A < 1 CM W - 0 5 1 0 / 1 1 / 2 0 1 3 6 . 5 1 2 . 0 0 1 9 6 1 9 0 . 5 1 7 0 2 7 5 7 . 6 2 N M N A N A N A N A N A N A < 1 N A N A 3 . 1 5 N A N A 1 1 2 N A N A N A N A N A N A 3560 NA N A 1 . 1 5 CM W - 0 5 0 3 / 1 0 / 2 0 1 4 6. 1 3. 4 5 1 4 2 6 5 4 . 0 5 1 5 1 3 5 6 9 . 8 9 N M N A N A N A N A N A N A < 1 N A N A 2 . 7 7 N A N A 4 7 N A N A N A N A N A N A 1120 NA N A < 1 CM W - 0 5 D U P 0 3 / 1 0 / 2 0 1 4 6. 1 3. 4 5 1 4 2 6 5 4 . 0 5 1 5 1 3 5 6 9 . 8 9 N M N A N A N A N A N A N A < 1 N A N A 2 . 6 3 N A N A 4 8 N A N A N A N A N A N A 1140 NA N A < 1 CM W - 0 5 0 6 / 1 1 / 2 0 1 4 6. 3 11 . 2 3 1 9 3 1 1 0 . 3 6 1 0 8 3 1 3 5 . 1 N M N A N A N A N A N A N A < 1 N A N A 1 . 3 5 N A N A 6 3 N A N A N A N A N A N A 1770 NA N A < 1 CM W - 0 5 1 0 / 1 7 / 2 0 1 4 6 . 7 7 . 1 6 1 9 4 5 6 0 . 1 1 1 0 2 1 5 8 . 4 7 N M N A N A N A N A N A N A < 1 N A N A 2 . 0 5 N A N A 8 9 N A N A N A N A N A N A 2710 NA N A < 1 CM W - 0 5 D U P 1 0 / 1 7 / 2 0 1 4 6 . 7 7 . 1 6 1 9 4 5 6 0 . 1 1 1 0 2 1 5 8 . 4 7 N M N A N A N A N A N A N A < 1 N A N A 2 . 0 2 N A N A 8 9 N A N A N A N A N A N A 2780 NA N A < 1 CM W - 0 5 0 3 / 0 3 / 2 0 1 5 6. 2 3. 1 7 8 2 1 2 4 . 3 2 2 2 7 4 3 2 1 7 . 1 N M N A N A N A N A N A N A < 1 N A N A 2 . 3 1 N A N A 5 3 N A N A N A N A N A N A 773 NA N A < 1 CM W - 0 5 0 6 / 0 8 / 2 0 1 5 5. 9 18 . 9 9 1 9 2 8 0 0 . 7 2 1 3 5 3 4 0 8 . 7 8 < 0 . 5 8 5 . 4 N A N A 1 7 1 N A N A < 1 N A N A 1 . 0 1 N A N A 7 0 N A N A < 1 8 5 . 4 N A N A 1380 NA N A < 1 CM W - 0 5 1 0 / 0 6 / 2 0 1 5 5. 8 4. 6 2 2 0 2 3 2 2 . 7 0 1 8 0 3 8 5 2 6 . 9 N M 2 4 . 8 N A N A 1 0 5 0 N A N A < 1 N A N A 1 . 7 5 N A N A 5 4 N A N A < 1 2 4 . 8 N A N A 6 9 4 N A N A < 1 CM W - 0 5 D U P 1 0 / 0 6 / 2 0 1 5 5. 8 4. 6 2 2 0 2 3 2 2 . 7 0 1 8 0 3 8 5 2 6 . 9 N M 2 6 N A N A 1 2 2 0 N A N A < 1 N A N A 1 . 6 9 N A N A 5 4 N A N A < 1 2 6 N A N A 6 9 3 N A N A < 1 CM W - 0 5 1 2 / 0 5 / 2 0 1 5 6. 0 7. 8 4 1 6 4 4 0 0 . 3 0 1 0 0 3 0 5 1 . 8 5 0 9 9 . 6 < 1 0 0 N A < 1 0 0 < 2 . 5 N A < 0 . 5 < 2 . 5 N A 0 . 8 2 1 1 0 N A 1 2 0 < 1 N A < 0 . 2 9 9 . 6 2 1 0 0 N A 2000 <0.4 N A < 0 . 0 8 CM W - 0 5 0 2 / 0 1 / 2 0 1 6 6 . 7 6 . 7 1 1 5 5 8 2 0 . 4 2 8 4 1 9 9 5 . 6 1 2 8 8 . 6 1 6 1 < 5 N A 2 3 < 1 N A < 1 < 1 N A 1 . 1 2 1 1 7 N A 1 2 4 < 1 N A < 1 1 6 1 2 4 5 0 N A 2510 <1 N A < 1 CM W - 0 5 0 3 / 0 3 / 2 0 1 6 7 . 5 3 . 8 8 1 5 5 8 0 0 . 2 1 - 2 8 1 7 7 1 . 4 0 . 5 1 7 9 N A N A 2 6 N A N A < 1 N A N A < 1 N A N A 1 0 2 N A N A < 1 1 7 9 N A N A 2660 NA N A < 1 CM W - 0 5 D U P 0 3 / 0 3 / 2 0 1 6 7 . 5 3 . 8 8 1 5 5 8 0 0 . 2 1 - 2 8 1 7 7 1 . 4 0 . 5 1 6 4 N A N A 3 1 N A N A < 1 N A N A < 1 N A N A 1 0 2 N A N A < 1 1 6 4 N A N A 2670 NA N A < 1 CM W - 0 5 0 6 / 0 6 / 2 0 1 6 6 . 5 1 0 . 2 2 2 0 5 2 1 1 . 1 3 5 2 2 5 7 8 . 6 1 N M 1 9 0 N A N A 8 6 N A N A < 1 N A N A 1 . 6 3 N A N A 1 0 4 N A N A < 1 1 9 0 N A N A 2840 NA N A < 1 CM W - 0 5 1 0 / 0 5 / 2 0 1 6 6 . 5 8 . 7 4 2 2 5 7 0 0 . 3 5 2 4 7 4 5 2 8 . 1 3 N M 2 1 9 M 1 N A N A 2 9 N A N A < 1 N A N A 1 . 1 N A N A 1 1 3 N A N A < 1 2 1 9 N A N A 2680 NA N A < 1 CM W - 0 5 C A M A 1 0 / 0 5 / 2 0 1 6 6 . 5 8 . 7 4 2 2 5 7 0 0 . 3 5 2 4 7 4 5 2 8 . 1 3 0 2 1 7 < 5 N A 1 9 < 1 N A < 1 < 1 N A 1 . 0 1 1 0 3 N A 1 0 7 < 1 N A < 1 2 1 7 2 5 2 0 N A 2530 <1 N A < 1 CM W - 0 6 1 2 / 1 4 / 2 0 1 0 6 . 9 4 . 6 7 1 4 5 6 0 N M N M N M 1 . 4 8 N M N A N A N A N A N A N A < 0 . 5 N A N A 28 4 NA N A 1 6 9 N A N A N A N A N A N A 4320 NA N A < 0 . 0 8 CM W - 0 6 0 3 / 0 3 / 2 0 1 1 6 . 7 4 . 6 2 1 4 8 0 8 0 . 3 5 - 1 1 1 9 4 8 . 9 4 N M N A N A N A N A N A N A < 0 . 5 N A N A 53 3 NA N A 1 8 7 N A N A N A N A N A N A 4630 NA N A < 0 . 0 8 CM W - 0 6 0 6 / 0 8 / 2 0 1 1 6 . 7 5 . 7 3 2 1 8 0 7 0 . 3 2 - 1 4 7 5 8 0 . 9 2 N M N A N A N A N A N A N A < 0 . 5 N A N A 66 5 NA N A 2 0 8 N A N A N A N A N A N A 4940 NA N A < 0 . 0 8 CM W - 0 6 D U P 0 6 / 0 8 / 2 0 1 1 6 . 7 5 . 7 3 2 1 8 0 7 0 . 3 2 - 1 4 7 5 8 0 . 9 2 N M N A N A N A N A N A N A < 0 . 5 N A N A 67 0 NA N A 2 0 9 N A N A N A N A N A N A 4930 NA N A < 0 . 0 8 CM W - 0 6 1 0 / 0 5 / 2 0 1 1 6 . 7 5 . 1 5 2 0 7 8 0 0 . 2 7 - 1 8 9 1 6 0 . 8 N M N A N A N A N A N A N A < 0 . 5 N A N A 63 3 NA N A 1 9 0 N A N A N A N A N A N A 4660 NA N A < 0 . 0 8 CM W - 0 6 0 3 / 1 4 / 2 0 1 2 6 . 7 4 . 5 8 1 7 7 0 8 0 . 2 8 - 1 7 5 3 0 5 . 0 4 N M N A N A N A N A N A N A < 0 . 5 N A N A 64 0 NA N A 2 1 4 N A N A N A N A N A N A 4460 NA N A < 0 . 0 8 CM W - 0 6 0 6 / 1 3 / 2 0 1 2 6 . 7 5 . 3 3 1 9 8 3 1 0 . 8 3 - 1 5 5 5 0 1 . 3 4 N M N A N A N A N A N A N A < 0 . 5 N A N A 59 2 NA N A 2 0 9 N A N A N A N A N A N A 4250 NA N A < 0 . 0 8 CM W - 0 6 0 9 / 2 5 / 2 0 1 5 6 . 7 6 . 6 3 2 0 8 7 6 0 . 2 0 - 1 0 9 9 6 8 . 8 3 N M N A 2 1 2 2 6 8 0 < 1 < 1 < 1 1 9 1 1 8 1 20 3 25 8 2 6 0 2 6 9 < 1 < 1 < 1 N A 3 4 7 0 3 5 2 0 3620 <1 < 1 < 1 CM W - 0 6 C C R 0 7 / 1 4 / 2 0 1 6 6 . 6 5 . 5 3 2 3 8 9 7 0 . 3 2 S - 3 7 1 6 8 9 . 6 8 N M 4 0 0 N A N A N A N A N A < 1 N A N A 18 5 NA N A 2 6 9 N A N A < 1 N A N A N A 3380 NA N A < 1 CM W - 0 6 C C R 0 8 / 3 1 / 2 0 1 6 6 . 8 6 . 2 9 2 2 9 0 1 0 . 4 7 - 2 0 2 3 1 . 4 8 N M 4 3 0 N A N A N A N A N A < 1 N A N A 18 1 NA N A 2 7 0 N A N A < 1 N A N A N A 3300 NA N A < 1 CM W - 0 6 C C R 1 1 / 1 8 / 2 0 1 6 6 . 7 5 . 5 6 1 8 9 1 2 0 . 3 9 - 8 3 1 2 2 6 . 3 4 N M 4 2 0 N A N A N A N A N A < 1 N A N A 19 3 NA N A 3 5 3 N A N A < 1 N A N A N A 3180 NA N A < 1 CM W - 0 6 C C R 1 2 / 2 1 / 2 0 1 6 6 . 8 5 . 3 9 1 6 8 3 5 0 . 1 9 - 3 5 1 7 0 6 . 3 1 N M 4 3 0 N A N A N A N A N A < 1 N A N A 19 4 NA N A 4 1 5 N A N A < 1 N A N A N A 3330 NA N A < 1 CM W - 0 6 R 1 0 / 1 8 / 2 0 1 2 6. 4 5. 9 8 1 6 6 4 7 1 . 5 9 - 8 9 1 1 6 4 . 7 6 N M N A N A N A N A N A N A < 0 . 5 N A N A 30 . 2 NA N A 2 3 0 N A N A N A N A N A N A 3480 NA N A < 0 . 0 8 CM W - 0 6 R 0 3 / 0 7 / 2 0 1 3 5. 7 4. 7 6 1 1 2 9 1 0 . 3 0 - 4 7 1 5 8 6 . 0 8 N M N A N A N A N A N A N A < 1 N A N A 10 . 2 NA N A 1 3 1 N A N A N A N A N A N A 1360 NA N A < 1 CM W - 0 6 R D U P 0 3 / 0 7 / 2 0 1 3 5. 7 4. 7 6 1 1 2 9 1 0 . 3 0 - 4 7 1 5 8 6 . 0 8 N M N A N A N A N A N A N A < 1 N A N A 10 . 9 NA N A 1 3 6 N A N A N A N A N A N A 1420 NA N A < 1 CM W - 0 6 R 0 6 / 0 5 / 2 0 1 3 6. 4 6. 2 0 1 6 7 0 7 0 . 3 3 - 2 2 1 8 3 1 . 2 9 N M N A N A N A N A N A N A < 1 N A N A 52 . 4 NA N A 2 1 9 N A N A N A N A N A N A 3440 NA N A < 1 CM W - 0 6 R 1 0 / 1 1 / 2 0 1 3 6 . 5 6 . 1 9 1 8 6 6 8 0 . 3 2 - 4 6 1 5 9 3 . 2 2 N M N A N A N A N A N A N A < 1 N A N A 51 . 3 NA N A 2 2 3 N A N A N A N A N A N A 3400 NA N A < 1 CM W - 0 6 R 0 3 / 1 0 / 2 0 1 4 5. 5 4. 2 5 1 2 1 8 8 0 . 2 5 3 0 2 3 5 5 . 1 6 N M N A N A N A N A N A N A < 1 N A N A 3 . 0 9 N A N A 7 4 N A N A N A N A N A N A 4 5 2 N A N A < 1 CM W - 0 6 R 0 6 / 1 1 / 2 0 1 4 6. 3 5. 9 9 1 7 6 0 8 0 . 3 0 - 5 3 1 5 2 2 . 7 N M N A N A N A N A N A N A < 1 N A N A 36 NA N A 2 0 2 N A N A N A N A N A N A 3160 NA N A < 1 CM W - 0 6 R D U P 0 6 / 1 1 / 2 0 1 4 6. 3 5. 9 9 1 7 6 0 8 0 . 3 0 - 5 3 1 5 2 2 . 7 N M N A N A N A N A N A N A < 1 N A N A 34 . 5 NA N A 2 0 1 N A N A N A N A N A N A 3110 NA N A < 1 CM W - 0 6 R 1 0 / 1 7 / 2 0 1 4 6. 4 5. 4 9 1 8 5 7 8 0 . 2 0 - 3 0 1 7 5 6 . 5 7 N M N A N A N A N A N A N A < 1 N A N A 46 . 1 NA N A 2 1 0 N A N A N A N A N A N A 3000 NA N A < 1 CM W - 0 6 R 0 3 / 0 3 / 2 0 1 5 5. 8 4. 2 5 9 2 0 3 0 . 1 4 - 2 2 0 3 2 0 . 2 N M N A N A N A N A N A N A < 1 N A N A 6 . 9 5 N A N A 6 7 N A N A N A N A N A N A 4 9 4 N A N A < 1 CM W - 0 6 R D U P 0 3 / 0 3 / 2 0 1 5 5. 8 4. 2 5 9 2 0 3 0 . 1 4 - 2 2 0 3 2 0 . 2 N M N A N A N A N A N A N A < 1 N A N A 7 . 1 1 N A N A 6 7 N A N A N A N A N A N A 4 9 4 N A N A < 1 CM W - 0 6 R 0 6 / 0 9 / 2 0 1 5 7 . 4 6 . 1 2 1 7 5 8 4 0 . 3 8 - 7 8 1 2 7 4 . 9 6 . 5 1 4 8 N A N A 2 7 8 N A N A < 1 N A N A 32 . 4 NA N A 1 9 5 N A N A < 1 1 4 8 N A N A 2800 NA N A < 1 CM W - 0 6 R 1 0 / 0 6 / 2 0 1 5 5. 5 5. 2 2 2 0 2 9 6 0 . 2 3 3 1 2 3 6 9 . 6 8 N M 1 2 . 2 N A N A 5 6 7 N A N A < 1 N A N A 6 . 1 N A N A 1 2 7 N A N A < 1 1 2 . 2 N A N A 848 NA N A < 1 CM W - 0 6 R 1 2 / 0 5 / 2 0 1 5 5. 6 4. 9 4 1 6 2 3 5 0 . 1 4 - 1 2 0 4 9 . 1 1 1 2 8 . 4 < 1 0 0 N A 3 3 0 < 0 . 5 N A < 0 . 5 4 . 3 N A 4 . 6 1 1 0 N A 1 1 0 < 0 . 2 N A < 0 . 2 2 8 . 4 8 6 0 N A 840 <0.08 N A < 0 . 0 8 CM W - 0 6 R 0 1 / 1 2 / 2 0 1 6 5. 6 4. 7 0 1 5 1 2 7 0 . 2 0 - 4 5 1 6 0 7 . 4 5 . 5 1 4 . 6 8 3 N A 9 7 5 < 1 N A < 1 2 . 2 8 N A 2 . 9 1 8 3 N A 9 1 < 1 N A < 1 1 4 . 6 5 0 3 N A 5 1 7 < 1 N A < 1 CM W - 0 6 R 0 3 / 0 3 / 2 0 1 6 6. 4 4. 7 8 1 2 1 9 1 0 . 2 5 2 7 2 3 2 3 . 4 3 5 . 6 N A N A 4 0 6 N A N A < 1 N A N A 1 . 5 5 N A N A 1 0 0 N A N A < 1 5 . 6 N A N A 5 8 0 N A N A < 1 CM W - 0 6 R 0 6 / 0 6 / 2 0 1 6 6. 4 5. 9 2 1 8 5 5 2 0 . 2 2 - 9 2 1 1 3 0 . 3 6 N M 1 4 1 N A N A 4 0 N A N A < 1 N A N A 34 NA N A 1 8 2 N A N A < 1 1 4 1 N A N A 2600 NA N A < 1 CM W - 0 6 R D U P 0 6 / 0 6 / 2 0 1 6 6. 4 5. 9 2 1 8 5 5 2 0 . 2 2 - 9 2 1 1 3 0 . 3 6 N M 1 4 3 N A N A 4 6 N A N A < 1 N A N A 33 . 8 NA N A 1 8 6 N A N A < 1 1 4 3 N A N A 2650 NA N A < 1 CM W - 0 6 R 1 0 / 0 4 / 2 0 1 6 6. 2 5. 7 2 2 0 4 4 4 0 . 2 7 7 7 2 8 2 7 . 3 9 N M 1 0 2 N A N A 2 6 2 N A N A < 1 N A N A 31 . 9 NA N A 1 5 6 N A N A < 1 1 0 2 N A N A 1980 NA N A < 1 CM W - 0 6 R C A M A 1 0 / 0 4 / 2 0 1 6 6. 2 5. 7 2 2 0 4 4 4 0 . 2 7 7 7 2 8 2 7 . 3 9 5 9 9 4 2 N A 4 1 8 < 1 N A < 1 3 2 N A 35 14 9 N A 1 5 6 < 1 N A < 1 9 9 1 9 2 0 N A 2010 <1 N A < 1 CT M W - 0 1 1 2 / 1 3 / 2 0 1 0 6. 4 2. 4 1 1 3 1 0 4 N M N M N M 1 . 2 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 3 1 . 1 N A N A N A N A N A N A 1 2 9 N A N A < 0 . 0 8 CT M W - 0 1 0 3 / 0 3 / 2 0 1 1 6. 4 2. 2 3 1 4 1 5 4 5 . 1 0 1 2 2 3 2 7 4 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 2 6 . 7 b N A N A N A N A N A N A 1 4 2 N A N A < 0 . 0 8 CT M W - 0 1 0 6 / 0 8 / 2 0 1 1 6. 2 2. 8 5 2 1 1 6 5 1 . 2 9 - 8 9 1 1 7 7 . 9 4 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 3 4 . 3 N A N A N A N A N A N A 1 3 3 N A N A < 0 . 0 8 CT M W - 0 1 1 0 / 0 5 / 2 0 1 1 6. 2 2. 9 4 2 0 1 7 3 0 . 3 6 - 5 1 1 5 4 3 . 1 2 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 3 6 N A N A N A N A N A N A 1 7 0 N A N A < 0 . 0 8 CT M W - 0 1 0 3 / 1 5 / 2 0 1 2 6. 3 2. 5 0 1 8 1 8 6 2 . 5 0 - 8 7 1 1 8 9 . 3 3 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 3 4 . 6 N A N A N A N A N A N A 1 3 9 N A N A < 0 . 0 8 CT M W - 0 1 0 6 / 1 3 / 2 0 1 2 6. 1 2. 7 7 2 1 1 9 0 1 . 3 4 - 1 1 1 9 4 9 . 3 2 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 3 6 . 1 N A N A N A N A N A N A 1 3 5 N A N A < 0 . 0 8 CT M W - 0 1 1 0 / 1 7 / 2 0 1 2 6. 2 2. 8 5 1 9 1 9 2 0 . 6 3 - 1 2 0 5 6 . 1 9 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 3 7 N A N A N A N A N A N A 1 3 6 N A N A < 0 . 0 8 CT M W - 0 1 D U P 1 0 / 1 7 / 2 0 1 2 6. 2 2. 8 5 1 9 1 9 2 0 . 6 3 - 1 2 0 5 6 . 1 9 N M N A N A N A N A N A N A < 0 . 5 N A N A < 5 N A N A 3 7 . 4 N A N A N A N A N A N A 1 3 7 N A N A < 0 . 0 8 CT M W - 0 1 0 3 / 0 7 / 2 0 1 3 6. 2 1. 6 5 1 3 1 8 9 0 . 6 1 8 2 1 3 9 . 6 2 N M N A N A N A N A N A N A < 1 N A N A < 1 N A N A 3 5 N A N A N A N A N A N A 1 1 9 N A N A < 1 CT M W - 0 1 0 6 / 0 5 / 2 0 1 3 6. 1 3. 4 4 1 9 2 0 1 0 . 2 6 3 6 2 4 1 4 0 . 6 N M N A N A N A N A N A N A < 1 N A N A < 1 N A N A 4 2 N A N A N A N A N A N A 1 3 3 N A N A < 1 CT M W - 0 1 1 0 / 1 1 / 2 0 1 3 6. 2 3. 9 2 1 9 1 9 8 0 . 3 8 2 9 2 3 4 6 . 9 8 N M N A N A N A N A N A N A < 1 N A N A < 1 N A N A 4 3 N A N A N A N A N A N A 1 2 9 N A N A < 1 CT M W - 0 1 0 3 / 1 0 / 2 0 1 4 6. 2 0. 4 1 1 8 2 0 2 1 . 4 8 1 2 2 3 2 7 5 . 8 3 N M N A N A N A N A N A N A < 1 N A N A < 1 N A N A 3 9 N A N A N A N A N A N A 1 3 3 N A N A < 1 CT M W - 0 1 0 6 / 1 1 / 2 0 1 4 6. 2 3. 0 9 2 2 2 0 1 0 . 2 5 9 2 1 4 9 . 7 N M N A N A N A N A N A N A < 1 N A N A < 1 N A N A 4 1 N A N A N A N A N A N A 1 3 8 N A N A < 1 P: \ D u k e E n e r g y P r o g r e s s . 1 0 2 6 \ 0 4 . L E E P L A N T \ 2 2 . B a s i s o f D e s i g n R e p o r t \ D e s i g n R p t ( 6 0 ) \ T a b l e s \ T a b l e 2 - 1 B a s e l i n e S i t e C o n d i t i o n s . x ls x Page 2 of 12 TA B L E 2 - 1 BA S E L I N E S I T E C O N D I T I O N S - A R E A C O N S I D E R E D F O R A C C E L E R A T E D R E M E D I A T I O N H. F . L E E E N E R G Y C O M P L E X DU K E E N E R G Y P R O G R E S S , L L C , G O L D S B O R O , N C Al u m i n u m A l u m i n u m A l u m i n u m A n t i m o n y A n t i m o n y A n t i m o n y A r s e n i c A r s e n i c A r s e n i c B a r i u m B a r i u m B a r i u m B e r y l l i u m B e r y l l i u m B e r y l l i u m B o r o n B o r o n B o r on C a d m i u m C a d m i u m C a d m i u m DI S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T S. U . f t D e g C u m h o s / c m m g / L m V m V N T U s m g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L Re p o r t i n g U n i t s An a l y t i c a l P a r a m e t e r Bicarbonate Alkalinity Al k a l i n i t y Fe r r o u s Ir o n Tu r b i d i t y Eh Ox i d a t i o n Re d u c t i o n Po t e n t i a l Di s s o l v e d Ox y g e n Sp e c i f i c Co n d u c t a n c e Te m p e r a t u r e Wa t e r Le v e l pH CT M W - 0 1 1 0 / 1 7 / 2 0 1 4 6. 2 2. 0 4 1 9 1 4 6 0 . 2 8 4 8 2 5 3 4 0 . 6 N M N A N A N A N A N A N A < 1 N A N A 1 . 1 7 N A N A 5 1 N A N A N A N A N A N A 8 7 N A N A < 1 CT M W - 0 1 0 3 / 0 3 / 2 0 1 5 6. 2 0. 5 4 8 1 8 5 0 . 4 8 7 1 2 7 6 9 . 3 4 N M N A N A N A N A N A N A < 1 N A N A 1 . 9 5 N A N A 4 3 N A N A N A N A N A N A 1 2 5 N A N A < 1 CT M W - 0 1 0 6 / 0 8 / 2 0 1 5 6. 1 3. 6 2 2 0 1 9 5 0 . 3 5 2 5 2 3 0 4 . 9 7 2 3 5 . 8 N A N A 2 2 2 N A N A < 1 N A N A 1 . 8 1 N A N A 4 7 N A N A < 1 3 5 . 8 N A N A 1 3 5 N A N A < 1 CT M W - 0 1 1 0 / 0 6 / 2 0 1 5 6. 1 2. 0 2 1 8 2 0 4 0 . 3 0 2 5 2 3 0 1 . 8 N M 3 7 . 4 N A N A 4 1 N A N A < 1 N A N A < 1 N A N A 4 4 N A N A < 1 3 7 . 4 N A N A 1 3 0 N A N A < 1 CT M W - 0 1 1 2 / 0 5 / 2 0 1 5 6. 3 1. 8 9 1 6 3 8 2 0 . 4 0 1 0 2 1 5 3 . 7 6 2 . 5 3 7 . 1 < 1 0 0 N A < 1 0 0 < 0 . 5 N A < 0 . 5 0 . 6 5 N A 0 . 8 6 4 2 N A 4 4 < 0 . 2 N A < 0 . 2 3 7 . 1 1 6 0 N A 1 3 0 < 0 . 0 8 N A < 0 . 0 8 CT M W - 0 1 0 2 / 0 1 / 2 0 1 6 6. 4 1. 1 8 1 4 2 1 4 0 . 3 4 - 6 1 9 9 7 . 0 1 2 . 5 3 8 . 4 5 N A 4 4 4 < 1 N A < 1 < 1 N A < 1 4 5 N A 4 4 < 1 N A < 1 3 8 . 4 1 4 7 N A 1 3 9 < 1 N A < 1 CT M W - 0 1 0 3 / 0 3 / 2 0 1 6 7 . 2 0 . 0 0 1 3 2 0 4 0 . 2 9 4 2 0 9 1 1 . 5 3 5 . 3 N A N A 2 7 1 N A N A < 1 N A N A < 1 N A N A 4 4 N A N A < 1 3 5 . 3 N A N A 1 4 3 N A N A < 1 CT M W - 0 1 0 6 / 0 7 / 2 0 1 6 6. 2 2. 7 5 2 0 2 1 1 0 . 3 1 - 5 2 1 5 3 4 . 5 2 N M 3 7 . 1 N A N A 5 2 1 N A N A < 1 N A N A < 1 N A N A 4 5 N A N A < 1 3 7 . 1 N A N A 1 3 7 N A N A < 1 CT M W - 0 1 1 0 / 0 5 / 2 0 1 6 6. 2 2. 9 7 2 2 2 1 4 0 . 2 8 1 5 5 3 6 0 2 . 1 5 N M 3 8 . 2 N A N A 7 8 N A N A < 1 N A N A < 1 N A N A 4 4 N A N A < 1 3 8 . 2 N A N A 1 3 1 N A N A < 1 CT M W - 0 1 C A M A 1 0 / 0 5 / 2 0 1 6 6. 2 2. 9 7 2 2 2 1 4 0 . 2 8 1 5 5 3 6 0 2 . 1 5 2 3 6 . 8 7 N A 8 9 < 1 N A < 1 < 1 N A < 1 4 1 N A 4 2 < 1 N A < 1 3 6 . 8 1 4 1 N A 1 4 2 < 1 N A < 1 DM W - 0 2 0 9 / 2 7 / 2 0 1 3 10 . 1 NM 1 7 3 2 0 . 4 6 - 1 1 N M 8 0 . 7 N M 1 5 4 N A N A N A N A N A < 0 . 3 4 N A N A 2 . 4 N A N A 8 8 . 1 N A N A N A N A N A N A 2 4 9 N A N A < 0 . 2 3 DM W - 0 2 0 6 / 1 5 / 2 0 1 5 11 . 3 8. 0 5 2 3 5 9 9 0 . 7 3 2 3 0 4 3 5 1 0 . 2 0 1 2 0 3 1 N A 2 7 2 0 < 1 N A < 1 < 1 N A < 1 3 0 1 N A 3 1 2 < 1 N A < 1 2 5 2 7 9 N A 2 6 9 < 1 N A < 1 DM W - 0 2 0 9 / 2 4 / 2 0 1 5 11 . 3 9. 7 1 1 9 9 9 4 0 . 4 0 - 1 7 2 3 3 4 . 1 3 N M N A 3 2 5 6 3 1 5 < 1 < 1 < 1 < 1 < 1 < 1 2 9 2 2 9 4 3 0 9 < 1 < 1 < 1 N A 3 2 5 3 2 4 3 2 9 < 1 < 1 < 1 DM W - 0 2 1 2 / 0 4 / 2 0 1 5 11 . 9 7. 8 8 1 5 7 6 6 0 . 4 0 - 2 5 0 - 4 5 2 . 9 N D 1 3 2 3 2 N A 1 2 9 < 1 N A < 1 < 1 N A < 1 2 9 6 N A 3 8 2 < 1 N A < 1 9 2 . 1 2 8 2 N A 3 0 8 < 1 N A < 1 DM W - 0 2 0 1 / 1 2 / 2 0 1 6 12 . 0 7. 2 8 1 5 6 2 7 0 . 2 8 - 1 4 1 6 4 4 . 9 5 0 . 5 1 0 7 2 8 N A 2 4 5 < 1 N A < 1 < 1 N A < 1 2 5 5 N A 2 8 4 < 1 N A < 1 1 0 7 2 8 0 N A 3 0 0 < 1 N A < 1 DM W - 0 2 1 2 / 1 6 / 2 0 1 6 11 . 7 7. 2 5 1 2 5 1 7 0 . 2 4 - 2 5 4 - 4 9 1 7 . 2 N M 8 3 . 3 2 7 N A 6 8 2 < 1 N A < 1 3 . 0 4 N A 1 . 8 2 1 6 4 N A 1 6 2 < 1 N A < 1 2 6 1 3 7 N A 1 3 7 < 1 N A < 1 Prepared by: BER Checked by: TCP No t e s : - B o l d h i g h l i g h t e d c o n c e n t r a t i o n i n d i c a t e s e x c e e d a n c e o f t h e 1 5 A N C A C 0 2 L . 0 2 0 2 S t a n d a r d , t h e I M A C , o r t h e N C D H H S S c r e e n i n g L ev e l f o r c h r o m i u m V I . ( E f f e c t i v e d a t e f o r 1 5 A N C A C 0 2 L . 0 2 0 2 S t a n d a r d a n d I M A C i s A p r i l 1 , 2 0 1 3 ) OR P = O x i d a t i o n R e d u c t i o n P o t e n t i a l D e g C = D e g r e e C e l s i u s m g / L = m i l l i g r a m s p e r l i t e r u m h o s / c m = m i c r o m h o s p e r c e n t i m e t e r ft = F e e t N E = N o t e s t a b l i s h e d m g - N / L = m i l l i g r a m n i t r o g e n p e r l i t e r S p e c C o n d = S p e c i f i c C o n d u c t a n c e ND = N o t d e t e c t e d N T U = n e p h e l o m e t r i c t u r b i d i t y u n i t m V = m i l l i v o l t s N M = N o t m e a s u r e d Te m p = T e m p e r a t u r e S . U . = S t a n d a r d U n i t u g / L = m i c r o g r a m p e r l i t e r D U P = D u p l i c a t e DO = D i s s o l v e d O x y g e n N A = N o t a n a l y z e d E h = R e d o x P o t e n t i a l < = c o n c e n t r a t i o n n o t d e t e c t e d a t o r a b o v e t h e r e p o r t i n g l i m i t . ^ = N C D H H S H e a l t h S c r e e n i n g L e v e l . * - I n t e r i m M a x i m u m A l l o w a b l e C o n c e n t r a t i o n s ( I M A C s ) o f t h e 1 5 A N C A C 0 2 L S t a n d a r d , A p p e n d i x 1 , A p r i l , 1 , 2 0 1 3 . b = T a r g e t a n a l y t e d e t e c t e d i n m e t h o d b l a n k a t o r a b o v e t h e r e p o r t i n g l i m i t . B1 = T a r g e t a n a l y t e d e t e c t e d i n m e t h o d b l a n k a t o r a b o v e t h e r e p o r t i n g l i m i t . T a r g e t a n a l y t e c o n c e n t r a t i o n i n s a m p l e i s l e s s t ha n 1 0 X t h e c o n c e n t r a t i o n i n t h e m e t h o d b l a n k . A n a l y t e c o n c e n t r a t i o n i n s a m p l e i s n o t a f f e c t e d b y b l a n k c o n t a m i n a t i o n . B2 = T a r g e t a n a l y t e w a s d e t e c t e d i n b l a n k ( s ) a t a c o n c e n t r a t i o n g r e a t e r t h a n 1 / 2 t h e r e p o r t i n g l i m i t b u t l e s s t h a n t h e r e p o r t i n g l i m i t . A n a l y t e c o n c e n t r a t i o n i n s a m p l e i s v a l i d a n d m a y b e u s e d f o r c o m p l i a n c e p u r p o s e s . CL = T h e c o n t i n u i n g c a l i b r a t i o n f o r t h i s c o m p o u n d i s o u t s i d e o f P a c e A n a l y t i c a l a c c e p t a n c e l i m i t s . CR = T h e d i s s o l v e d m e t a l r e s u l t w a s g r e a t e r t h a n t h e t o t a l m e t a l r e s u l t f o r t h i s e l e m e n t . R e s u l t s w e r e c o n f i r m e d b y r e a n a l y s i s . D3 = S a m p l e w a s d i l u t e d d u e t o t h e p r e s e n c e o f h i g h l e v e l s o f n o n - t a r g e t a n a l y t e s o r o t h e r m a t r i x i n t e r f e r e n c e . D6 = T h e r e l a t i v e p e r c e n t d i f f e r e n c e ( R P D ) b e t w e e n t h e s a m p l e a n d s a m p l e d u p l i c a t e e x c e e d e d l a b o r a t o r y c o n t r o l l i m i t s . j = i n d i c a t e s c o n c e n t r a t i o n r e p o r t e d b e l o w P r a c t i c a l Q u a n t i t a t i o n L i m i t ( P Q L ) , b u t a b o v e M e t h o d D e t e c t i o n L i m i t ( M D L ) a n d t h e r e fo r e c o n c e n t r a t i o n i s e s t i m a t e d . L3 = A n a l y t e r e c o v e r y i n t h e l a b o r a t o r y c o n t r o l s a m p l e ( L C S ) e x c e e d e d Q C l i m i t s . A n a l y t e p r e s e n c e b e l o w r e p o r t i n g l i m i t s i n a s so c i a t e d s a m p l e s . R e s u l t s u n a f f e c t e d b y h i g h b i a s . M1 = M a t r i x s p i k e r e c o v e r y w a s h i g h : t h e a s s o c i a t e d L a b o r a t o r y C o n t r o l S p i k e ( L C S ) w a s a c c e p t a b l e . M2 = M a t r i x s p i k e r e c o v e r y w a s L o w : t h e a s s o c i a t e d L a b o r a t o r y C o n t r o l S p i k e ( L C S ) w a s a c c e p t a b l e . M3 = M a t r i x s p i k e r e c o v e r y w a s o u t s i d e l a b o r a t o r y c o n t r o l l i m i t s d u e t o m a t r i x i n t e r f e r e n c e s . M4 = T h e s p i k e r e c o v e r y v a l u e w a s u n u s a b l e s i n c e t h e a n a l y t e c o n c e n t r a t i o n i n t h e s a m p l e w a s d i s p r o p o r t i o n a t e t o t h e s p i k e l e v e l. M6 = M a t r i x s p i k e a n d M a t r i x s p i k e d u p l i c a t e r e c o v e r y n o t e v a l u a t e d a g a i n s t c o n t r o l l i m i t s d u e t o s a m p l e d i l u t i o n . N1 = T h i s s a m p l e w a s i n a d v e r t e n t l y c o l l e c t e d w i t h s a m p l e r u n n i n g t h r o u g h t h e f l o w c e l l a n d s h o u l d b e c o n s i d e r e d i n v a l i d b a s e d o n p o s s i b l e c o n t a m i n a t i o n f r o m t h e f l o w c e l l . N2 = T h e l a b d o e s n o t h o l d a c c r e d i t a t i o n f o r t h i s p a r a m e t e r . R1 = R P D v a l u e w a s o u t s i d e c o n t r o l l i m i t s . S = A s s o c i a t e d c a l i b r a t i o n c h e c k d i d n o t m e e t s p e c i f i e d c r i t e r i a . P: \ D u k e E n e r g y P r o g r e s s . 1 0 2 6 \ 0 4 . L E E P L A N T \ 2 2 . B a s i s o f D e s i g n R e p o r t \ D e s i g n R p t ( 6 0 ) \ T a b l e s \ T a b l e 2 - 1 B a s e l i n e S i t e C o n d i t i o n s . x ls x Page 3 of 12 TA B L E 2 - 1 BA S E L I N E S I T E C O N D I T I O N S - A R E A C O N S I D E R E D F O R A C C E L E R A T E D R E M E D I A T I O N H. F . L E E E N E R G Y C O M P L E X DU K E E N E R G Y P R O G R E S S , L L C , G O L D S B O R O , N C Ca l c i u m Ch r o m i u m (V I ) Ch r o m i u m C h r o m i u m C h r o m i u m C o b a l t C o b a l t C o b a l t C o p p e r C o p p e r C o p p e r I r o n I r o n I r o n L e a d L e a d L e a d M a g n e s i u m M a n g a n e s e M a n g a n e s e M a n g a n e s e M e r c u r y Mercury M e r c u r y M o l y b d e n u m M o l y b d e n u m M o l y b d e n u m TO T T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0.1u) T O T mg / L m g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L NE N E 2 5 0 0 . 0 7 ^ N E N E 1 0 N E N E 1 * N E N E 1 0 0 0 2 N E N E 3 0 0 N E N E 1 5 N E N E N E N E 5 0 N E N E 1 N E N E N E N E AM W - 0 6 R B C 0 5 / 2 6 / 2 0 1 5 1 8 < 1 0 2 5 N A < 1 N A < 1 < 1 N A < 1 3 . 6 8 N A < 1 N A 2 6 4 0 N A 36 4 0 <1 N A < 1 N A 6 . 2 7 1 9 4 N A 235 <0.05 N A < 0 . 0 5 < 1 0 1 . 8 6 N A 2 . 5 6 AM W - 0 6 R B C 0 6 / 0 9 / 2 0 1 5 2 0 . 6 < 1 0 3 8 N A < 1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 6 1 3 0 N A 63 6 0 <1 N A < 1 N A 8 . 2 3 3 3 6 N A 342 <0.05 N A < 0 . 0 5 1 3 2 . 3 1 N A 2 . 6 4 AM W - 0 6 R B C 0 9 / 2 4 / 2 0 1 5 1 4 N A N A N A < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 N A 5 9 4 0 5 7 1 0 62 3 0 <1 < 1 < 1 N A 6 . 0 4 2 3 9 2 3 7 244 <0.05 < 0 . 0 5 < 0 . 0 5 N A < 1 < 1 < 1 AM W - 0 6 R B C 1 2 / 0 5 / 2 0 1 5 1 3 . 7 < 5 1 0 < 0 . 0 3 < 2 . 5 N A < 0 . 5 < 2 . 5 N A < 0 . 5 < 5 N A < 1 N A 5 1 0 0 N A 57 0 0 <0 . 5 N A < 0 . 1 N A 5 . 7 2 2 2 0 N A 230 <0.2 N A < 0 . 2 3 0 . 5 < 2 . 5 N A < 0 . 5 AM W - 0 6 R B C D U P 1 2 / 0 5 / 2 0 1 5 1 3 . 6 < 5 9 . 8 < 0 . 0 3 < 0 . 5 N A < 0 . 5 < 0 . 5 N A < 0 . 5 < 1 N A < 1 N A 5 2 0 0 N A 55 0 0 <0 . 1 N A < 0 . 1 N A 5 . 7 2 2 2 0 N A 220 <0.2 N A < 0 . 2 2 9 . 3 < 0 . 5 N A < 0 . 5 AM W - 0 6 R B C 0 1 / 1 2 / 2 0 1 6 1 4 . 5 < 5 1 1 < 0 . 0 3 < 1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 5 3 2 0 N A 53 2 0 <1 N A < 1 N A 6 . 0 1 2 3 5 N A 245 <0.05 N A < 0 . 0 5 6 1 . 6 < 1 N A < 1 AM W - 0 6 R B C 1 2 / 1 5 / 2 0 1 6 1 4 . 1 < 5 9 . 4 < 0 . 2 5 D 3 < 1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 5 2 7 0 N A 55 1 0 <1 N A < 1 N A 6 . 0 7 2 3 0 N A 222 <0.05 N A < 0 . 0 5 1 6 . 1 < 1 N A < 1 AM W - 1 4 B C 0 5 / 2 0 / 2 0 1 5 1 7 . 5 < 1 0 1 8 N A < 1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 1 9 9 0 N A 20 9 0 <1 N A < 1 N A 5 . 4 4 1 1 9 N A 121 <0.05 N A < 0 . 0 5 7 4 2 . 3 8 N A 2 . 3 3 AM W - 1 4 B C 0 6 / 1 1 / 2 0 1 5 1 7 . 6 < 1 0 2 1 N A < 1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 1 8 4 0 N A 19 6 0 <1 N A < 1 N A 5 . 3 5 1 1 0 N A 115 <0.05 N A < 0 . 0 5 < 1 0 3 . 5 9 N A 3 . 8 AM W - 1 4 B C 1 2 / 0 4 / 2 0 1 5 1 6 < 5 1 4 < 0 . 0 3 < 1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 2 5 2 0 N A 27 2 0 <1 N A < 1 N A 5 . 1 2 1 4 4 N A 145 <0.05 N A < 0 . 0 5 1 7 4 0 < 1 N A < 1 AM W - 1 4 B C 0 1 / 1 2 / 2 0 1 6 1 6 . 6 < 5 1 6 < 0 . 0 3 < 1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 2 4 6 0 N A 24 4 0 <1 N A < 1 N A 5 . 3 2 1 4 1 N A 148 <0.05 N A < 0 . 0 5 2 2 8 0 < 1 N A < 1 AM W - 1 4 B C 1 2 / 1 6 / 2 0 1 6 1 6 . 1 < 5 1 3 0. 3 9 <1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 2 3 6 0 N A 22 9 0 <1 N A < 1 N A 5 . 2 1 3 3 N A 134 <0.05 N A < 0 . 0 5 2 7 8 0 < 1 N A < 1 AM W - 1 4 S 0 5 / 2 0 / 2 0 1 5 7 . 2 3 < 1 0 1 9 N A < 1 N A < 1 4 . 2 6 N A 4. 9 1 <1 N A < 1 N A 1 0 7 0 0 N A 12 7 0 0 <1 N A < 1 N A 3 . 4 1 3 6 N A 159 <0.05 N A < 0 . 0 5 < 1 0 < 1 N A < 1 AM W - 1 4 S 0 6 / 1 1 / 2 0 1 5 6 . 0 7 < 1 0 1 5 N A < 1 N A < 1 5 . 9 2 N A 6. 0 5 <1 N A < 1 N A 1 5 2 0 0 N A 15 8 0 0 <1 N A < 1 N A 3 . 5 7 1 5 7 N A 160 <0.05 N A < 0 . 0 5 1 6 < 1 N A < 1 AM W - 1 4 S 1 2 / 0 4 / 2 0 1 5 4 . 9 2 < 5 1 6 < 0 . 0 3 < 1 N A < 1 4 . 3 1 N A 3. 7 8 <1 N A < 1 N A 1 1 1 0 0 N A 11 3 0 0 <1 N A < 1 N A 2 . 6 5 1 1 9 N A 110 <0.05 N A < 0 . 0 5 4 2 . 2 < 1 N A < 1 AM W - 1 4 S 0 1 / 1 2 / 2 0 1 6 4 . 9 3 < 5 1 5 < 0 . 0 3 M 1 < 1 N A < 1 3 . 7 8 N A 2. 9 <1 N A < 1 N A 7 8 5 0 N A 62 0 0 <1 N A < 1 N A 2 . 4 5 8 6 N A 78 <0.05 N A < 0 . 0 5 4 5 . 9 < 1 N A < 1 AM W - 1 4 S 1 2 / 1 6 / 2 0 1 6 4 . 8 7 < 5 2 1 4. 9 <1 N A < 1 5 . 8 5 N A 5. 5 9 <1 N A < 1 N A 9 6 8 0 N A 10 6 0 0 <1 N A < 1 N A 2 . 6 4 8 5 N A 79 <0.05 N A < 0 . 0 5 < 1 0 < 1 N A < 1 AM W - 1 5 B C 0 5 / 2 0 / 2 0 1 5 1 3 . 9 < 1 0 1 1 N A < 1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 1 6 1 0 N A 18 6 0 <1 N A < 1 N A 5 . 9 4 9 7 N A 97 <0.05 N A < 0 . 0 5 < 1 0 1 . 2 7 N A 1 . 1 6 AM W - 1 5 B C 0 6 / 1 1 / 2 0 1 5 1 2 . 2 < 1 0 1 1 N A < 1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 1 3 0 0 N A 15 1 0 <1 N A < 1 N A 5 . 4 5 8 7 N A 90 <0.05 N A < 0 . 0 5 < 1 0 1 . 6 N A 1 . 6 2 AM W - 1 5 B C D U P 0 6 / 1 1 / 2 0 1 5 1 2 . 1 < 1 0 1 1 N A < 1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 1 2 7 0 N A 14 9 0 <1 N A < 1 N A 5 . 4 8 7 N A 89 <0.05 N A < 0 . 0 5 1 2 1 . 7 N A 1 . 7 9 AM W - 1 5 B C 1 2 / 0 6 / 2 0 1 5 1 2 . 1 < 5 6 . 5 < 0 . 0 3 < 0 . 5 N A < 0 . 5 < 0 . 5 N A < 0 . 5 2 . 3 N A < 1 N A 1 3 0 0 N A 13 0 0 <0 . 1 N A < 0 . 1 N A 5 . 5 6 8 7 N A 82 <0.2 N A < 0 . 2 2 5 0 . 6 8 N A 0 . 7 3 AM W - 1 5 B C 0 1 / 1 2 / 2 0 1 6 1 3 < 5 7 . 8 < 0 . 0 3 < 1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 1 5 3 0 N A 18 3 0 <1 N A < 1 N A 6 . 0 1 8 7 N A 88 <0.05 N A < 0 . 0 5 2 2 . 4 < 1 N A < 1 AM W - 1 5 B C D U P 0 1 / 1 2 / 2 0 1 6 1 3 . 1 < 5 6 . 8 < 0 . 0 3 < 1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 1 5 5 0 N A 18 0 0 <1 N A < 1 N A 6 . 1 8 6 N A 89 <0.05 N A < 0 . 0 5 1 9 . 5 < 1 N A < 1 AM W - 1 5 B C 1 2 / 1 6 / 2 0 1 6 1 3 . 1 < 5 6 . 3 0. 4 2 <1 N A < 1 < 1 N A < 1 < 1 N A < 1 N A 1 1 9 0 N A 13 5 0 <1 N A < 1 N A 6 . 0 6 9 0 N A 88 <0.05 N A < 0 . 0 5 5 2 . 9 < 1 N A < 1 AM W - 1 5 S 0 5 / 2 1 / 2 0 1 5 6 . 1 2 < 1 0 1 2 N A < 1 N A 1 . 2 1 < 1 N A < 1 < 1 N A < 1 N A 3 3 3 0 N A 34 9 0 <1 N A < 1 N A 2 . 4 3 6 4 N A 66 <0.05 N A < 0 . 0 5 1 1 < 1 N A < 1 AM W - 1 5 S 0 6 / 1 1 / 2 0 1 5 5 . 9 < 1 0 1 2 N A < 1 N A 1 . 1 5 < 1 N A < 1 < 1 N A < 1 N A 3 6 4 0 N A 39 5 0 <1 N A < 1 N A 2 . 4 8 7 2 N A 76 <0.05 N A < 0 . 0 5 1 5 < 1 N A < 1 AM W - 1 5 S 1 2 / 0 6 / 2 0 1 5 6 . 2 1 0 0 0 1 < 5 1 1 . 7 < 0 . 0 3 0 . 8 1 N A 0 . 5 2 0 . 9 5 N A 0 . 8 6 3 . 4 N A < 1 N A 9 2 0 N A 11 0 0 0. 1 N A < 0 . 1 N A 2 . 4 6 3 9 N A 4 0 < 0 . 2 N A < 0 . 2 1 0 . 5 < 0 . 5 N A < 0 . 5 AM W - 1 5 S 0 1 / 1 2 / 2 0 1 6 6 . 3 4 < 5 1 4 < 0 . 0 3 < 1 N A < 1 1 . 1 1 N A 1. 0 9 <1 N A < 1 N A 7 7 7 N A 83 6 <1 N A < 1 N A 2 . 7 2 4 4 N A 4 7 < 0 . 0 5 N A < 0 . 0 5 < 1 0 < 1 N A < 1 AM W - 1 5 S 1 2 / 1 6 / 2 0 1 6 6 . 8 1 < 5 1 7 0. 2 1 <1 N A < 1 1 . 1 8 N A 1. 1 5 <1 N A < 1 N A 9 4 3 N A 89 7 <1 N A < 1 N A 2 . 9 7 5 7 N A 53 <0.05 N A < 0 . 0 5 < 1 0 < 1 N A < 1 AM W - 1 7 B C 0 8 / 1 0 / 2 0 1 6 2 7 . 1 < 5 2 3 0. 1 6 <1 N A < 1 1 . 1 6 N A 1. 1 1 <1 N A 1 . 1 7 N A 1 5 N A 50 7 <1 N A < 1 N A 7 . 4 1 5 2 N A 52 <0.05 N A < 0 . 0 5 < 1 0 1 . 2 6 N A 1 . 0 4 AM W - 1 7 B C 1 0 / 0 7 / 2 0 1 6 3 2 < 5 2 3 < 0 . 1 5 D 3 < 1 N A < 1 1 . 0 2 N A 1. 0 9 <1 N A < 1 N A 1 4 2 N A 31 3 <1 N A < 1 N A 8 . 8 1 5 9 N A 59 <0.05 N A < 0 . 0 5 < 1 0 1 . 3 7 N A 1 . 3 7 AM W - 1 7 B C 1 1 / 2 1 / 2 0 1 6 2 2 . 8 < 5 1 8 3. 1 <1 N A 2 . 1 2 1 . 2 N A 2. 6 2 <1 N A 4 . 1 7 N A < 1 0 N A 45 6 0 <1 N A 1 . 0 4 N A 6 . 2 9 6 7 N A 68 <0.05 N A < 0 . 0 5 < 1 0 N 2 < 1 N A < 1 AM W - 1 7 S C C R 0 7 / 0 7 / 2 0 1 6 5 . 1 2 N A 8 . 5 N A N A N A < 1 N A N A 3. 0 8 NA N A N A < 0 . 1 N A N A N A N A N A < 1 < 5 2 . 6 8 N A N A N A N A N A < 0 . 0 5 N A N A N A < 1 AM W - 1 7 S C C R D U P 0 7 / 0 7 / 2 0 1 6 5 . 1 2 N A 8 . 5 N A N A N A < 1 N A N A 3. 1 6 NA N A N A < 0 . 1 N A N A N A N A N A < 1 < 5 2 . 6 7 N A N A N A N A N A < 0 . 0 5 N A N A N A < 1 AM W - 1 7 S 0 7 / 2 8 / 2 0 1 6 5 . 2 2 < 5 1 1 < 0 . 0 3 < 1 N A < 1 2 . 3 8 N A 2. 2 1 1. 4 8 N A 1 . 3 3 N A 1 6 N A 4 9 < 1 N A < 1 N A 2 . 7 3 3 9 N A 3 8 < 0 . 0 5 N A < 0 . 0 5 < 1 0 < 1 N A < 1 AM W - 1 7 S C C R 0 8 / 2 9 / 2 0 1 6 4 . 7 B 2 N A 9 . 4 N A N A N A < 1 N A N A 1. 7 2 NA N A N A < 0 . 1 N A N A N A N A N A < 1 < 5 2 . 5 7 N A N A N A N A N A < 0 . 0 5 N A N A N A < 1 AM W - 1 7 S 1 0 / 0 7 / 2 0 1 6 4 . 5 8 < 5 1 2 < 0 . 0 3 < 1 N A < 1 2 . 1 7 N A 2. 0 1 <1 N A < 1 N A 1 7 N A 4 3 < 1 N A < 1 N A 2 . 4 3 8 N A 3 8 < 0 . 0 5 N A < 0 . 0 5 < 1 0 < 1 N A < 1 AM W - 1 7 S C C R 1 1 / 2 1 / 2 0 1 6 4 . 7 6 B 2 N A 1 5 N A N A N A < 1 N A N A 1. 9 1 NA N A N A < 0 . 1 N A N A N A N A N A < 1 < 5 2 . 3 9 N A N A N A N A N A < 0 . 0 5 N A N A N A < 1 AM W - 1 7 S C C R 1 2 / 2 1 / 2 0 1 6 4 . 1 6 N A 1 1 N A N A N A < 1 N A N A 1. 4 7 NA N A N A < 0 . 1 N A N A N A N A N A < 1 < 5 2 . 2 N A N A N A N A N A < 0 . 0 5 N A N A N A < 1 AM W - 1 7 S C C R D U P 1 2 / 2 1 / 2 0 1 6 4 . 3 N A 1 1 N A N A N A < 1 N A N A 1. 5 1 NA N A N A < 0 . 1 N A N A N A N A N A < 1 < 5 2 . 2 6 N A N A N A N A N A < 0 . 0 5 N A N A N A < 1 AM W - 1 8 S 0 7 / 2 8 / 2 0 1 6 2 8 . 7 < 5 2 9 1. 7 M 6 <1 N A < 1 6 . 8 9 N A 7. 1 4 <1 N A 3 . 1 4 N A 1 4 3 0 0 N A 14 7 0 0 <1 N A < 1 N A 9 . 8 3 4 5 N A 337 <0.05 N A < 0 . 0 5 2 0 4 1 5 . 6 N A 1 5 . 9 AM W - 1 8 S 1 0 / 0 6 / 2 0 1 6 3 3 . 3 < 5 2 8 < 0 . 6 D 3 < 1 N A < 1 6 . 9 6 N A 7. 6 7 <1 N A < 1 N A 1 5 6 0 0 N A 14 8 0 0 <1 N A < 1 N A 1 1 . 1 3 8 0 N A 360 <0.05 N A < 0 . 0 5 1 8 8 1 9 . 1 N A 2 0 . 8 BG M W - 1 0 1 0 / 1 8 / 2 0 1 2 N A N A 1 0 . 2 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 65 0 0 NA N A < 5 N A N A N A N A 75.6 NA N A < 0 . 2 N A N A N A N A BG M W - 1 0 0 3 / 0 7 / 2 0 1 3 N A N A 1 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 60 5 0 NA N A < 1 N A N A N A N A 83 NA N A < 0 . 0 5 N A N A N A N A BG M W - 1 0 0 6 / 0 5 / 2 0 1 3 N A N A 9 . 9 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 13 5 0 0 NA N A < 1 N A N A N A N A 94 NA N A < 0 . 0 5 N A N A N A N A BG M W - 1 0 1 0 / 1 0 / 2 0 1 3 N A N A 1 0 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 75 6 0 NA N A < 1 N A N A N A N A 87 NA N A < 0 . 0 5 N A N A N A N A BG M W - 1 0 0 3 / 1 0 / 2 0 1 4 N A N A 2 8 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 46 5 NA N A < 1 N A N A N A N A 75 NA N A < 0 . 0 5 N A N A N A N A BG M W - 1 0 0 6 / 1 1 / 2 0 1 4 N A N A 2 0 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 91 7 NA N A < 1 N A N A N A N A 72 NA N A < 0 . 0 5 N A N A N A N A BG M W - 1 0 1 0 / 1 7 / 2 0 1 4 N A N A 1 4 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 12 8 0 NA N A < 1 N A N A N A N A 4 8 N A N A < 0 . 0 5 N A N A N A N A BG M W - 1 0 0 3 / 0 3 / 2 0 1 5 N A N A 1 6 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 36 6 NA N A < 1 N A N A N A N A 4 8 N A N A < 0 . 0 5 N A N A N A N A BG M W - 1 0 0 6 / 0 8 / 2 0 1 5 5 . 4 9 < 5 1 7 N A N A N A < 5 N A N A 1. 1 1 NA N A < 5 N A N A N A 85 7 NA N A < 1 N A 2 . 5 N A N A 57 NA N A < 0 . 0 5 N A N A N A < 1 BG M W - 1 0 1 0 / 0 6 / 2 0 1 5 4 . 7 2 B 2 < 5 1 6 N A N A N A < 5 N A N A 2. 0 7 NA N A < 5 N A N A N A 44 5 0 NA N A < 1 N A 2 . 5 2 N A N A 68 NA N A < 0 . 0 5 N A N A N A < 1 BG M W - 1 0 1 2 / 0 4 / 2 0 1 5 4 . 1 6 < 5 1 6 < 0 . 0 3 < 1 N A < 1 1 . 9 9 N A 1. 4 9 <1 N A < 1 N A 1 9 0 0 N A 14 0 0 <1 N A < 1 N A 2 . 1 4 8 3 N A 78 <0.05 N A < 0 . 0 5 < 1 0 C L < 1 N A < 1 BG M W - 1 0 0 1 / 1 2 / 2 0 1 6 5 . 5 2 < 5 2 3 < 0 . 0 3 < 1 N A < 1 1 . 4 N A 1. 2 9 <1 N A < 1 N A 6 8 0 N A 16 6 0 <1 N A < 1 N A 2 . 5 7 7 9 N A 81 <0.05 N A < 0 . 0 5 < 1 0 < 1 N A < 1 BG M W - 1 0 0 3 / 0 3 / 2 0 1 6 7 . 2 2 < 5 3 9 N A N A N A < 5 N A N A 1. 5 3 NA N A < 5 N A N A N A 72 6 NA N A < 1 N A 3 . 5 1 N A N A 72 NA N A < 0 . 0 5 N A N A N A < 1 BG M W - 1 0 0 6 / 0 6 / 2 0 1 6 5 . 6 6 < 5 1 7 N A N A N A < 5 N A N A 1. 3 2 NA N A < 5 N A N A N A 59 4 NA N A < 1 N A 2 . 5 8 N A N A 66 NA N A < 0 . 0 5 N A N A N A < 1 BG M W - 1 0 1 0 / 0 4 / 2 0 1 6 5 . 3 8 < 5 1 7 B 2 N A N A N A < 5 N A N A 1. 7 NA N A < 5 N A N A N A 27 4 0 NA N A < 1 N A 2 . 8 1 N A N A 71 NA N A < 0 . 0 5 N A N A N A < 1 BG M W - 1 0 C A M A 1 0 / 0 4 / 2 0 1 6 5 . 4 4 < 5 1 7 < 0 . 6 D 3 < 1 N A < 1 1 . 7 2 N A 1. 7 8 <1 N A < 1 N A 2 2 9 0 N A 26 5 0 <1 N A < 1 N A 2 . 8 6 6 4 N A 70 <0.05 N A < 0 . 0 5 1 0 . 8 < 1 N A < 1 BG M W - 1 0 D U P 1 0 / 0 4 / 2 0 1 6 5 . 5 9 < 5 1 7 B 2 N A N A N A < 5 N A N A 1. 7 5 NA N A < 5 N A N A N A 45 0 0 NA N A < 1 N A 2 . 9 2 N A N A 70 NA N A < 0 . 0 5 N A N A N A < 1 CC R - 1 0 0 S 0 7 / 0 6 / 2 0 1 6 1 0 . 6 N A 1 6 N A N A N A < 1 N A N A 6. 1 5 NA N A N A < 0 . 1 N A N A N A N A N A 2 . 4 7 < 5 5 . 3 N A N A N A N A N A < 0 . 0 5 N A N A N A < 1 CC R - 1 0 0 S C A M A 0 7 / 2 0 / 2 0 1 6 1 0 . 9 < 5 1 7 < 0 . 0 3 < 1 N A < 1 5 . 7 1 N A 5. 6 4 12 . 2 N A 3 . 5 2 N A < 1 0 N A 7 0 3 . 4 7 N A 2 . 6 1 N A 5 . 5 7 1 1 7 N A 119 <0.05 N A < 0 . 0 5 < 1 0 L 3 < 1 N A < 1 CC R - 1 0 0 S 0 8 / 3 0 / 2 0 1 6 1 0 . 9 B 2 N A 1 6 N A N A N A < 1 N A N A 6. 3 NA N A N A < 0 . 1 N A N A N A N A N A 3 . 7 6 < 5 5 . 5 N A N A N A N A N A < 0 . 0 5 N A N A N A < 1 CC R - 1 0 0 S C A M A 1 0 / 0 6 / 2 0 1 6 1 0 . 7 < 5 1 5 < 0 . 0 3 < 1 N A < 1 5 . 8 6 N A 5. 9 8 3. 2 5 N A 3 . 6 3 N A < 1 0 N A 5 6 3 . 5 3 N A 3 . 7 N A 5 . 4 9 1 2 6 N A 119 <0.05 N A < 0 . 0 5 < 1 0 < 1 N A < 1 CC R - 1 0 0 S 1 1 / 1 7 / 2 0 1 6 1 0 . 3 N A 1 5 N A N A N A < 1 N A N A 6. 2 8 NA N A N A < 0 . 5 N A N A N A N A N A 4 . 3 9 < 5 5 . 2 8 N A N A N A N A N A < 0 . 0 5 N A N A N A < 1 CC R - 1 0 0 S 1 2 / 1 5 / 2 0 1 6 1 1 . 4 B 1 N A 1 6 N A N A N A < 1 N A N A 6. 0 1 NA N A N A < 0 . 1 N A N A N A N A N A 4 . 2 7 < 5 5 . 8 1 N A N A N A N A N A < 0 . 0 5 N A N A N A < 1 CC R - 1 0 0 S C A M A 1 2 / 1 5 / 2 0 1 6 1 0 . 9 < 5 1 5 0 . 0 2 7 < 1 N A < 1 6 . 0 1 N A 6. 2 2 3. 7 2 N A 3 . 7 9 N A < 1 0 N A 2 0 4 . 1 3 N A 4 . 1 6 N A 5 . 5 5 1 2 4 N A 119 <0.05 N A < 0 . 0 5 < 1 0 C L < 1 N A < 1 Li t h i u m Fl u o r i d e Ca r b o n a t e Al k a l i n i t y An a l y t i c a l P a r a m e t e r Re p o r t i n g U n i t s NC 2 L S t a n d a r d An a l y t i c a l R e s u l t s Ch l o r i d e Methane P: \ D u k e E n e r g y P r o g r e s s . 1 0 2 6 \ 0 4 . L E E P L A N T \ 2 2 . B a s i s o f D e s i g n R e p o r t \ D e s i g n R p t ( 6 0 ) \ T a b l e s \ T a b l e 2 - 1 B a s e l i n e S i t e C o n d i t i o n s . x ls x Page 4 of 12 TA B L E 2 - 1 BA S E L I N E S I T E C O N D I T I O N S - A R E A C O N S I D E R E D F O R A C C E L E R A T E D R E M E D I A T I O N H. F . L E E E N E R G Y C O M P L E X DU K E E N E R G Y P R O G R E S S , L L C , G O L D S B O R O , N C Ca l c i u m Ch r o m i u m (V I ) Ch r o m i u m C h r o m i u m C h r o m i u m C o b a l t C o b a l t C o b a l t C o p p e r C o p p e r C o p p e r I r o n I r o n I r o n L e a d L e a d L e a d M a g n e s i u m M a n g a n e s e M a n g a n e s e M a n g a n e s e M e r c u r y Mercury M e r c u r y M o l y b d e n u m M o l y b d e n u m M o l y b d e n u m TO T T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0.1u) T O T mg / L m g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L Li t h i u m Fl u o r i d e Ca r b o n a t e Al k a l i n i t y An a l y t i c a l P a r a m e t e r Re p o r t i n g U n i t s Ch l o r i d e Methane CM W - 0 5 1 2 / 1 3 / 2 0 1 0 N A N A 3 3 . 8 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 11 4 0 NA N A < 5 N A N A N A N A 64.4 NA N A < 0 . 2 N A N A N A N A CM W - 0 5 0 3 / 0 3 / 2 0 1 1 N A N A 2 9 . 4 b N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 9 0 . 6 N A N A < 5 N A N A N A N A 86.9 NA N A < 0 . 2 N A N A N A N A CM W - 0 5 0 6 / 0 8 / 2 0 1 1 N A N A 2 9 . 9 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 34 2 NA N A < 5 N A N A N A N A 3 9 N A N A < 0 . 2 N A N A N A N A CM W - 0 5 1 0 / 0 5 / 2 0 1 1 N A N A 3 1 . 6 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 56 9 NA N A < 5 N A N A N A N A 163 NA N A < 0 . 2 N A N A N A N A CM W - 0 5 0 3 / 1 5 / 2 0 1 2 N A N A 3 8 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 1 9 1 N A N A < 5 N A N A N A N A 50.5 NA N A < 0 . 2 N A N A N A N A CM W - 0 5 0 6 / 1 3 / 2 0 1 2 N A N A 3 0 . 6 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 70 7 NA N A < 5 N A N A N A N A 3 5 . 2 N A N A < 0 . 2 N A N A N A N A CM W - 0 5 1 0 / 1 7 / 2 0 1 2 N A N A 3 5 . 8 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 32 7 NA N A < 5 N A N A N A N A 79.3 NA N A < 0 . 2 N A N A N A N A CM W - 0 5 0 3 / 0 7 / 2 0 1 3 N A N A 3 0 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 33 6 NA N A < 1 N A N A N A N A 1 5 N A N A < 0 . 0 5 N A N A N A N A CM W - 0 5 0 6 / 0 5 / 2 0 1 3 N A N A 3 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 31 7 NA N A < 1 N A N A N A N A 3 8 N A N A < 0 . 0 5 N A N A N A N A CM W - 0 5 1 0 / 1 1 / 2 0 1 3 N A N A 3 2 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 23 5 0 NA N A < 1 N A N A N A N A 59 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 5 0 3 / 1 0 / 2 0 1 4 N A N A 1 9 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 65 1 NA N A < 1 N A N A N A N A 1 1 N A N A < 0 . 0 5 N A N A N A N A CM W - 0 5 D U P 0 3 / 1 0 / 2 0 1 4 N A N A 2 0 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 58 9 NA N A < 1 N A N A N A N A 1 1 N A N A < 0 . 0 5 N A N A N A N A CM W - 0 5 0 6 / 1 1 / 2 0 1 4 N A N A 2 0 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 35 4 NA N A < 1 N A N A N A N A 3 5 N A N A < 0 . 0 5 N A N A N A N A CM W - 0 5 1 0 / 1 7 / 2 0 1 4 N A N A 2 5 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 12 2 0 NA N A < 1 N A N A N A N A 80 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 5 D U P 1 0 / 1 7 / 2 0 1 4 N A N A 2 6 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 11 0 0 NA N A < 1 N A N A N A N A 81 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 5 0 3 / 0 3 / 2 0 1 5 N A N A 1 5 N A N A N A < 5 N A N A N A N A N A 5 N A N A N A 61 9 NA N A < 1 N A N A N A N A 8 N A N A < 0 . 0 5 N A N A N A N A CM W - 0 5 0 6 / 0 8 / 2 0 1 5 3 0 . 5 < 5 1 8 N A N A N A < 5 N A N A < 1 N A N A < 5 N A N A N A 38 3 NA N A < 1 N A 6 . 4 N A N A 1 8 N A N A < 0 . 0 5 N A N A N A 4 6 . 2 CM W - 0 5 1 0 / 0 6 / 2 0 1 5 1 8 . 7 B 2 < 5 1 5 N A N A N A < 5 N A N A < 1 N A N A < 5 N A N A N A 89 7 NA N A 1 . 2 1 N A 4 . 7 9 N A N A 2 1 N A N A < 0 . 0 5 N A N A N A 7 . 3 6 CM W - 0 5 D U P 1 0 / 0 6 / 2 0 1 5 1 8 . 7 B 2 < 5 1 5 N A N A N A < 5 N A N A < 1 N A N A < 5 N A N A N A 94 4 NA N A 1 . 0 8 N A 4 . 8 1 N A N A 2 1 N A N A < 0 . 0 5 N A N A N A 7 . 4 2 CM W - 0 5 1 2 / 0 5 / 2 0 1 5 4 6 . 8 < 5 2 1 . 3 < 0 . 0 3 < 2 . 5 N A < 0 . 5 < 2 . 5 N A < 0 . 5 < 5 N A < 1 N A < 5 0 N A 1 7 0 < 0 . 5 N A < 0 . 1 N A 1 0 . 7 5 0 N A 5 0 < 0 . 2 N A < 0 . 2 2 2 . 4 3 3 . 6 N A 4 2 CM W - 0 5 0 2 / 0 1 / 2 0 1 6 6 3 . 3 < 5 2 6 0. 0 9 2 <1 N A < 1 < 1 N A 1 < 1 N A < 1 N A 9 3 N A 37 2 <1 N A < 1 N A 1 4 1 2 7 N A 131 <0.05 N A < 0 . 0 5 3 0 . 7 6 1 . 9 N A 6 5 . 9 CM W - 0 5 0 3 / 0 3 / 2 0 1 6 6 8 . 1 < 5 3 0 N A N A N A < 5 N A N A < 1 N A N A < 5 N A N A N A 66 0 NA N A < 1 N A 1 5 N A N A 126 NA N A < 0 . 0 5 N A N A N A 7 4 CM W - 0 5 D U P 0 3 / 0 3 / 2 0 1 6 6 8 . 8 < 5 3 0 N A N A N A < 5 N A N A < 1 N A N A < 5 N A N A N A 67 9 NA N A < 1 N A 1 5 N A N A 127 NA N A < 0 . 0 5 N A N A N A 7 1 . 5 CM W - 0 5 0 6 / 0 6 / 2 0 1 6 5 9 . 5 < 5 2 8 N A N A N A 6 N A N A < 1 N A N A < 5 N A N A N A 34 8 0 NA N A < 1 N A 1 4 . 1 N A N A 127 NA N A < 0 . 0 5 N A N A N A 2 8 . 7 CM W - 0 5 1 0 / 0 5 / 2 0 1 6 6 9 . 6 B 2 < 5 2 3 N A N A N A < 5 N A N A < 1 N A N A < 5 N A N A N A 96 5 NA N A < 1 N A 1 5 . 3 N A N A 107 NA N A < 0 . 0 5 N A N A N A 4 8 . 1 CM W - 0 5 C A M A 1 0 / 0 5 / 2 0 1 6 6 6 . 5 < 5 2 3 < 0 . 0 3 < 1 N A < 1 < 1 N A < 1 < 1 N A 1 . 2 1 N A 1 1 6 N A 46 6 <1 N A < 1 N A 1 4 . 5 9 6 N A 101 <0.05 N A < 0 . 0 5 9 0 1 4 5 . 7 N A 4 8 . 4 CM W - 0 6 1 2 / 1 4 / 2 0 1 0 N A N A 3 6 . 3 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 35 1 0 NA N A < 5 N A N A N A N A 508 NA N A < 0 . 2 N A N A N A N A CM W - 0 6 0 3 / 0 3 / 2 0 1 1 N A N A 3 3 . 4 b N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 51 9 0 NA N A < 5 N A N A N A N A 650 NA N A < 0 . 2 N A N A N A N A CM W - 0 6 0 6 / 0 8 / 2 0 1 1 N A N A 3 2 . 6 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 45 3 0 NA N A < 5 N A N A N A N A 768 NA N A < 0 . 2 N A N A N A N A CM W - 0 6 D U P 0 6 / 0 8 / 2 0 1 1 N A N A 3 1 . 7 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 45 5 0 NA N A < 5 N A N A N A N A 763 NA N A < 0 . 2 N A N A N A N A CM W - 0 6 1 0 / 0 5 / 2 0 1 1 N A N A 3 0 . 6 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 45 0 0 NA N A < 5 N A N A N A N A 746 NA N A < 0 . 2 N A N A N A N A CM W - 0 6 0 3 / 1 4 / 2 0 1 2 N A N A 3 1 . 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 62 3 0 NA N A < 5 N A N A N A N A 896 NA N A < 0 . 2 N A N A N A N A CM W - 0 6 0 6 / 1 3 / 2 0 1 2 N A N A 3 2 . 5 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 67 9 0 NA N A < 5 N A N A N A N A 936 NA N A < 0 . 2 N A N A N A N A CM W - 0 6 0 9 / 2 5 / 2 0 1 5 1 0 6 N A N A N A < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 2 . 0 4 N A 1 3 5 0 0 1 3 2 0 0 14 8 0 0 <1 < 1 < 1 N A 2 2 . 5 8 8 4 8 9 7 893 <0.05 < 0 . 0 5 < 0 . 0 5 N A 5 . 1 6 5 . 6 8 1 2 . 7 CM W - 0 6 C C R 0 7 / 1 4 / 2 0 1 6 1 1 5 B 2 N A 3 5 N A N A N A < 1 N A N A < 1 N A N A N A 0 . 6 1 N A N A N A N A N A < 1 1 9 3 2 2 . 3 N A N A N A N A N A < 0 . 0 5 N A N A N A 2 . 8 8 CM W - 0 6 C C R 0 8 / 3 1 / 2 0 1 6 1 1 1 B 2 N A 3 3 N A N A N A 4 . 4 4 N A N A < 1 N A N A N A 0 . 6 3 N A N A N A N A N A < 1 1 8 8 2 2 . 3 N A N A N A N A N A < 0 . 0 5 N A N A N A 1 . 6 2 CM W - 0 6 C C R 1 1 / 1 8 / 2 0 1 6 1 1 1 N A 3 3 N A N A N A < 1 N A N A < 1 N A N A N A 0 . 6 1 N A N A N A N A N A < 1 1 8 1 2 2 . 4 N A N A N A N A N A < 0 . 0 5 M 2 N A N A N A 5 . 8 CM W - 0 6 C C R 1 2 / 2 1 / 2 0 1 6 1 1 3 N A 3 5 N A N A N A < 1 N A N A < 1 N A N A N A 0 . 6 2 N A N A N A N A N A < 1 1 9 0 2 2 . 4 N A N A N A N A N A < 0 . 0 5 M 2 N A N A N A 1 0 . 7 CM W - 0 6 R 1 0 / 1 8 / 2 0 1 2 N A N A 3 2 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 11 0 0 0 NA N A < 5 N A N A N A N A 455 NA N A < 0 . 2 N A N A N A N A CM W - 0 6 R 0 3 / 0 7 / 2 0 1 3 N A N A 2 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 11 2 0 0 NA N A < 1 N A N A N A N A 183 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 6 R D U P 0 3 / 0 7 / 2 0 1 3 N A N A 2 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 11 7 0 0 NA N A < 1 N A N A N A N A 193 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 6 R 0 6 / 0 5 / 2 0 1 3 N A N A 2 9 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 12 9 0 0 NA N A < 1 N A N A N A N A 536 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 6 R 1 0 / 1 1 / 2 0 1 3 N A N A 2 9 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 12 8 0 0 NA N A < 1 N A N A N A N A 519 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 6 R 0 3 / 1 0 / 2 0 1 4 N A N A 1 5 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 66 6 0 NA N A < 1 N A N A N A N A 124 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 6 R 0 6 / 1 1 / 2 0 1 4 N A N A 3 0 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 13 4 0 0 NA N A < 1 N A N A N A N A 482 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 6 R D U P 0 6 / 1 1 / 2 0 1 4 N A N A 3 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 13 3 0 0 NA N A < 1 N A N A N A N A 475 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 6 R 1 0 / 1 7 / 2 0 1 4 N A N A 3 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 13 6 0 0 NA N A < 1 N A N A N A N A 495 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 6 R 0 3 / 0 3 / 2 0 1 5 N A N A 1 4 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 74 2 0 NA N A < 1 N A N A N A N A 134 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 6 R D U P 0 3 / 0 3 / 2 0 1 5 N A N A 1 4 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 73 6 0 NA N A < 1 N A N A N A N A 133 NA N A < 0 . 0 5 N A N A N A N A CM W - 0 6 R 0 6 / 0 9 / 2 0 1 5 5 7 . 9 < 5 3 1 N A N A N A < 5 N A N A 3. 6 4 NA N A < 5 N A N A N A 13 0 0 0 NA N A < 1 N A 1 4 . 5 N A N A 443 NA N A < 0 . 0 5 N A N A N A 5 6 . 6 CM W - 0 6 R 1 0 / 0 6 / 2 0 1 5 2 4 . 1 B 2 < 5 1 6 N A N A N A < 5 N A N A 7. 8 2 NA N A < 5 N A N A N A 96 8 0 NA N A < 1 N A 6 . 1 1 N A N A 240 NA N A < 0 . 0 5 N A N A N A 5 . 5 7 CM W - 0 6 R 1 2 / 0 5 / 2 0 1 5 1 2 . 7 < 5 1 6 . 7 < 0 . 0 3 1 . 1 N A 1 . 2 4 . 4 N A 4. 2 <1 N A < 1 N A 9 0 0 0 N A 96 0 0 0. 2 9 N A 0 . 1 4 N A 4 . 2 9 1 6 0 N A 160 <0.2 N A < 0 . 2 1 6 4 4 N A 4 . 6 CM W - 0 6 R 0 1 / 1 2 / 2 0 1 6 1 1 . 5 < 5 1 5 < 0 . 0 3 1 . 5 7 N A 2 . 3 5 4 . 8 9 N A 5. 0 4 <1 N A < 1 N A 7 1 8 0 N A 75 8 0 <1 N A < 1 N A 3 . 5 5 1 3 1 N A 135 <0.05 N A < 0 . 0 5 4 3 . 5 1 . 6 3 N A 2 . 3 1 CM W - 0 6 R 0 3 / 0 3 / 2 0 1 6 9 . 3 3 < 5 1 7 N A N A N A < 5 N A N A 4. 6 8 NA N A < 5 N A N A N A 82 9 0 NA N A < 1 N A 3 . 4 9 N A N A 135 NA N A < 0 . 0 5 N A N A N A 1 . 0 1 CM W - 0 6 R 0 6 / 0 6 / 2 0 1 6 5 0 . 8 < 5 3 3 N A N A N A < 5 N A N A 3. 0 8 NA N A < 5 N A N A N A 11 1 0 0 NA N A < 1 N A 1 2 . 8 N A N A 416 NA N A < 0 . 0 5 N A N A N A 5 2 . 4 CM W - 0 6 R D U P 0 6 / 0 6 / 2 0 1 6 5 1 . 6 < 5 3 3 N A N A N A < 5 N A N A 2. 9 7 NA N A < 5 N A N A N A 11 4 0 0 NA N A < 1 N A 1 3 . 1 N A N A 422 NA N A < 0 . 0 5 N A N A N A 5 3 CM W - 0 6 R 1 0 / 0 4 / 2 0 1 6 3 4 . 8 M 4 < 5 2 8 B 2 N A N A N A < 5 N A N A 2. 8 6 NA N A < 5 N A N A N A 97 5 0 NA N A < 1 N A 9 . 3 8 N A N A 302 NA N A < 0 . 0 5 N A N A N A 3 8 . 5 CM W - 0 6 R C A M A 1 0 / 0 4 / 2 0 1 6 3 5 . 4 < 5 2 8 < 0 . 6 D 3 < 1 N A < 1 2 . 7 1 N A 3. 0 8 <1 N A < 1 N A 9 4 5 0 N A 98 0 0 <1 N A < 1 N A 9 . 4 8 2 9 5 N A 309 <0.05 N A < 0 . 0 5 1 8 6 3 8 N A 4 4 . 2 CT M W - 0 1 1 2 / 1 3 / 2 0 1 0 N A N A 9 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 15 6 0 NA N A < 5 N A N A N A N A 86.1 NA N A < 0 . 2 N A N A N A N A CT M W - 0 1 0 3 / 0 3 / 2 0 1 1 N A N A 8 . 4 b N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 1 4 5 N A N A < 5 N A N A N A N A 6 . 9 N A N A < 0 . 2 N A N A N A N A CT M W - 0 1 0 6 / 0 8 / 2 0 1 1 N A N A 8 . 9 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 22 3 0 NA N A < 5 N A N A N A N A 100 NA N A 0 . 2 6 N A N A N A N A CT M W - 0 1 1 0 / 0 5 / 2 0 1 1 N A N A 9 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 36 2 0 NA N A < 5 N A N A N A N A 102 NA N A < 0 . 2 N A N A N A N A CT M W - 0 1 0 3 / 1 5 / 2 0 1 2 N A N A 1 0 . 4 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 21 7 0 NA N A < 5 N A N A N A N A 86.6 NA N A < 0 . 2 N A N A N A N A CT M W - 0 1 0 6 / 1 3 / 2 0 1 2 N A N A 1 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 36 9 0 NA N A < 5 N A N A N A N A 93.5 NA N A < 0 . 2 N A N A N A N A CT M W - 0 1 1 0 / 1 7 / 2 0 1 2 N A N A 1 0 . 9 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 21 6 0 NA N A < 5 N A N A N A N A 96.9 NA N A < 0 . 2 N A N A N A N A CT M W - 0 1 D U P 1 0 / 1 7 / 2 0 1 2 N A N A 1 1 . 2 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 22 1 0 NA N A < 5 N A N A N A N A 97.7 NA N A < 0 . 2 N A N A N A N A CT M W - 0 1 0 3 / 0 7 / 2 0 1 3 N A N A 1 0 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 25 8 0 NA N A < 1 N A N A N A N A 94 NA N A < 0 . 0 5 N A N A N A N A CT M W - 0 1 0 6 / 0 5 / 2 0 1 3 N A N A 1 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 66 6 0 NA N A < 1 N A N A N A N A 111 NA N A < 0 . 0 5 N A N A N A N A CT M W - 0 1 1 0 / 1 1 / 2 0 1 3 N A N A 1 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 20 4 0 NA N A < 1 N A N A N A N A 109 NA N A < 0 . 0 5 N A N A N A N A CT M W - 0 1 0 3 / 1 0 / 2 0 1 4 N A N A 1 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 20 4 0 NA N A < 1 N A N A N A N A 102 NA N A < 0 . 0 5 N A N A N A N A CT M W - 0 1 0 6 / 1 1 / 2 0 1 4 N A N A 1 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 34 9 0 NA N A < 1 N A N A N A N A 112 NA N A < 0 . 0 5 N A N A N A N A P: \ D u k e E n e r g y P r o g r e s s . 1 0 2 6 \ 0 4 . L E E P L A N T \ 2 2 . B a s i s o f D e s i g n R e p o r t \ D e s i g n R p t ( 6 0 ) \ T a b l e s \ T a b l e 2 - 1 B a s e l i n e S i t e C o n d i t i o n s . x ls x Page 5 of 12 TA B L E 2 - 1 BA S E L I N E S I T E C O N D I T I O N S - A R E A C O N S I D E R E D F O R A C C E L E R A T E D R E M E D I A T I O N H. F . L E E E N E R G Y C O M P L E X DU K E E N E R G Y P R O G R E S S , L L C , G O L D S B O R O , N C Ca l c i u m Ch r o m i u m (V I ) Ch r o m i u m C h r o m i u m C h r o m i u m C o b a l t C o b a l t C o b a l t C o p p e r C o p p e r C o p p e r I r o n I r o n I r o n L e a d L e a d L e a d M a g n e s i u m M a n g a n e s e M a n g a n e s e M a n g a n e s e M e r c u r y Mercury M e r c u r y M o l y b d e n u m M o l y b d e n u m M o l y b d e n u m TO T T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0.1u) T O T mg / L m g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L u g / L Li t h i u m Fl u o r i d e Ca r b o n a t e Al k a l i n i t y An a l y t i c a l P a r a m e t e r Re p o r t i n g U n i t s Ch l o r i d e Methane CT M W - 0 1 1 0 / 1 7 / 2 0 1 4 N A N A 8 . 8 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 26 2 0 NA N A < 1 N A N A N A N A 112 NA N A < 0 . 0 5 N A N A N A N A CT M W - 0 1 0 3 / 0 3 / 2 0 1 5 N A N A 1 1 N A N A N A < 5 N A N A N A N A N A < 5 N A N A N A 11 9 0 NA N A < 1 N A N A N A N A 100 NA N A < 0 . 0 5 N A N A N A N A CT M W - 0 1 0 6 / 0 8 / 2 0 1 5 1 2 . 5 < 5 1 1 N A N A N A < 5 N A N A 5. 6 2 NA N A < 5 N A N A N A 25 9 0 NA N A < 1 N A 4 . 4 3 N A N A 126 NA N A < 0 . 0 5 N A N A N A < 1 CT M W - 0 1 1 0 / 0 6 / 2 0 1 5 1 2 . 8 B 2 < 5 1 1 N A N A N A < 5 N A N A 4. 1 1 NA N A < 5 N A N A N A 20 4 0 NA N A < 1 N A 4 . 6 6 N A N A 117 NA N A < 0 . 0 5 N A N A N A < 1 CT M W - 0 1 1 2 / 0 5 / 2 0 1 5 1 2 . 6 < 5 1 0 . 7 < 0 . 0 3 < 0 . 5 N A < 0 . 5 2 . 9 N A 3. 8 <1 N A < 1 N A 2 0 0 0 N A 22 0 0 <0 . 1 N A 0 . 1 3 N A 4 . 5 4 1 1 0 N A 110 <0.2 N A < 0 . 2 1 8 . 1 < 0 . 5 N A < 0 . 5 CT M W - 0 1 0 2 / 0 1 / 2 0 1 6 1 2 . 2 < 5 1 1 < 0 . 0 3 M 1 < 1 N A < 1 1 . 2 4 N A 1. 4 7 <1 N A < 1 N A 2 3 8 0 N A 31 7 0 <1 N A < 1 N A 4 . 5 3 1 2 2 N A 129 <0.05 N A < 0 . 0 5 1 9 . 3 < 1 N A < 1 CT M W - 0 1 0 3 / 0 3 / 2 0 1 6 1 3 < 5 1 3 N A N A N A < 5 N A N A 1. 6 NA N A < 5 N A N A N A 23 9 0 NA N A < 1 N A 4 . 8 2 N A N A 116 NA N A < 0 . 0 5 N A N A N A < 1 CT M W - 0 1 0 6 / 0 7 / 2 0 1 6 1 3 < 5 1 3 N A N A N A < 5 N A N A 1. 4 1 NA N A < 5 N A N A N A 34 1 0 NA N A < 1 N A 4 . 7 8 N A N A 133 NA N A < 0 . 0 5 N A N A N A < 1 CT M W - 0 1 1 0 / 0 5 / 2 0 1 6 1 4 . 5 B 2 < 5 1 3 N A N A N A < 5 N A N A 1. 2 2 NA N A < 5 N A N A N A 23 5 0 NA N A < 1 N A 5 . 2 N A N A 117 NA N A < 0 . 0 5 N A N A N A < 1 CT M W - 0 1 C A M A 1 0 / 0 5 / 2 0 1 6 1 3 . 6 < 5 1 3 < 0 . 1 5 D 3 < 1 N A < 1 1 . 0 8 N A 1. 2 3 <1 N A < 1 N A 2 0 6 0 N A 22 5 0 <1 N A < 1 N A 4 . 8 2 1 1 1 N A 113 <0.05 N A < 0 . 0 5 4 5 . 6 < 1 N A < 1 DM W - 0 2 0 9 / 2 7 / 2 0 1 3 1 8 . 7 N A 1 1 . 6 N A N A N A 4 j N A N A N A N A N A 3 . 6 j N A N A N A 16 0 0 NA N A 0 . 5 1 j N A 4 . 1 8 N A N A 59.9 NA N A < 0 . 0 6 N A N A N A N A DM W - 0 2 0 6 / 1 5 / 2 0 1 5 2 9 . 3 8 0 1 3 N A < 1 N A 7 . 5 2 < 1 N A < 1 1 . 5 9 N A 1 . 5 4 N A < 1 0 N A 46 3 <1 N A < 1 N A 0 . 2 9 5 < 5 N A < 5 < 0 . 0 5 N A < 0 . 0 5 1 3 0 0 6 . 9 8 N A 6 . 8 9 DM W - 0 2 0 9 / 2 4 / 2 0 1 5 3 1 . 7 N A N A N A < 1 < 1 3 . 1 2 < 1 < 1 < 1 < 1 < 1 < 1 N A < 1 0 < 1 0 7 1 < 1 < 1 < 1 N A 0 . 3 2 9 < 5 < 5 < 5 < 0 . 0 5 < 0 . 0 5 < 0 . 0 5 N A 9 . 4 3 8 . 9 5 9 . 6 6 DM W - 0 2 1 2 / 0 4 / 2 0 1 5 4 2 . 4 3 9 . 5 1 4 0. 1 5 <1 N A 3 . 1 4 < 1 N A < 1 < 1 N A < 1 N A < 1 0 N A 5 6 < 1 N A < 1 N A 0 . 1 8 8 < 5 N A < 5 < 0 . 0 5 N A < 0 . 0 5 5 8 5 C L 7 . 2 5 N A 7 . 5 2 DM W - 0 2 0 1 / 1 2 / 2 0 1 6 3 0 . 7 < 5 1 4 0. 1 4 <1 N A 3 . 4 7 < 1 N A < 1 < 1 N A < 1 N A < 1 0 N A 5 9 < 1 N A < 1 N A 0 . 1 9 9 < 5 N A < 5 < 0 . 0 5 N A < 0 . 0 5 5 2 8 6 . 6 2 N A 6 . 7 8 DM W - 0 2 1 2 / 1 6 / 2 0 1 6 2 5 . 6 5 7 . 3 5 . 6 0. 5 7 <1 N A 2 . 8 < 1 N A < 1 < 1 N A 1 . 9 N A 2 0 N A 2 0 5 < 1 N A < 1 N A 0 . 5 5 < 5 N A < 5 < 0 . 0 5 N A < 0 . 0 5 2 0 9 2 . 0 9 N A 2 . 2 9 Prepared by: BER Checked by: TCP No t e s : - B o l d h i g h l i g h t e d c o n c e n t r a t i o n i n d i c a t e s e x c e e d a n c e o f t h e 1 5 A N C A C 0 2 L . 0 2 0 2 S t a n d a r d , t h e I M A C , o r t h e N C D H H S S c r e e n i n g L ev e l f o r c h r o m i u m V I . ( E f f e c t i v e d a t e f o r 1 5 A N C A C 0 2 L . 0 2 0 2 S t a n d a r d a n d I M A C i s A p r i l 1 , 2 0 1 3 ) OR P = O x i d a t i o n R e d u c t i o n P o t e n t i a l D e g C = D e g r e e C e l s i u s m g / L = m i l l i g r a m s p e r l i t e r u m h o s / c m = m i c r o m h o s p e r c e n t i m e t e r ft = F e e t N E = N o t e s t a b l i s h e d m g - N / L = m i l l i g r a m n i t r o g e n p e r l i t e r S p e c C o n d = S p e c i f i c C o n d u c t a n c e ND = N o t d e t e c t e d N T U = n e p h e l o m e t r i c t u r b i d i t y u n i t m V = m i l l i v o l t s N M = N o t m e a s u r e d Te m p = T e m p e r a t u r e S . U . = S t a n d a r d U n i t u g / L = m i c r o g r a m p e r l i t e r D U P = D u p l i c a t e DO = D i s s o l v e d O x y g e n N A = N o t a n a l y z e d Eh = R e d o x P o t e n t i a l < = c o n c e n t r a t i o n n o t d e t e c t e d a t o r a b o v e t h e r e p o r t i n g l i m i t . ^ = N C D H H S H e a l t h S c r e e n i n g L e v e l . * - I n t e r i m M a x i m u m A l l o w a b l e C o n c e n t r a t i o n s ( I M A C s ) o f t h e 1 5 A N C A C 0 2 L S t a n d a r d , A p p e n d i x 1 , A p r i l , 1 , 2 0 1 3 . b = T a r g e t a n a l y t e d e t e c t e d i n m e t h o d b l a n k a t o r a b o v e t h e r e p o r t i n g l i m i t . B1 = T a r g e t a n a l y t e d e t e c t e d i n m e t h o d b l a n k a t o r a b o v e t h e r e p o r t i n g l i m i t . T a r g e t a n a l y t e c o n c e n t r a t i o n i n s a m p l e i s l e s s t ha n 1 0 X t h e c o n c e n t r a t i o n i n t h e m e t h o d b l a n k . A n a l y t e c o n c e n t r a t i o n i n s a m p l e i s n o t a f f e c t e d b y b l a n k c o n t a m i n a t i o n . B2 = T a r g e t a n a l y t e w a s d e t e c t e d i n b l a n k ( s ) a t a c o n c e n t r a t i o n g r e a t e r t h a n 1 / 2 t h e r e p o r t i n g l i m i t b u t l e s s t h a n t h e r e p o r t i n g l i m i t . A n a l y t e c o n c e n t r a t i o n i n s a m p l e i s v a l i d a n d m a y b e u s e d f o r c o m p l i a n c e p u r p o s e s . CL = T h e c o n t i n u i n g c a l i b r a t i o n f o r t h i s c o m p o u n d i s o u t s i d e o f P a c e A n a l y t i c a l a c c e p t a n c e l i m i t s . CR = T h e d i s s o l v e d m e t a l r e s u l t w a s g r e a t e r t h a n t h e t o t a l m e t a l r e s u l t f o r t h i s e l e m e n t . R e s u l t s w e r e c o n f i r m e d b y r e a n a l y s i s . D3 = S a m p l e w a s d i l u t e d d u e t o t h e p r e s e n c e o f h i g h l e v e l s o f n o n - t a r g e t a n a l y t e s o r o t h e r m a t r i x i n t e r f e r e n c e . D6 = T h e r e l a t i v e p e r c e n t d i f f e r e n c e ( R P D ) b e t w e e n t h e s a m p l e a n d s a m p l e d u p l i c a t e e x c e e d e d l a b o r a t o r y c o n t r o l l i m i t s . j = i n d i c a t e s c o n c e n t r a t i o n r e p o r t e d b e l o w P r a c t i c a l Q u a n t i t a t i o n L i m i t ( P Q L ) , b u t a b o v e M e t h o d D e t e c t i o n L i m i t ( M D L ) a n d t h e r e fo r e c o n c e n t r a t i o n i s e s t i m a t e d . L3 = A n a l y t e r e c o v e r y i n t h e l a b o r a t o r y c o n t r o l s a m p l e ( L C S ) e x c e e d e d Q C l i m i t s . A n a l y t e p r e s e n c e b e l o w r e p o r t i n g l i m i t s i n a s so c i a t e d s a m p l e s . R e s u l t s u n a f f e c t e d b y h i g h b i a s . M1 = M a t r i x s p i k e r e c o v e r y w a s h i g h : t h e a s s o c i a t e d L a b o r a t o r y C o n t r o l S p i k e ( L C S ) w a s a c c e p t a b l e . M2 = M a t r i x s p i k e r e c o v e r y w a s L o w : t h e a s s o c i a t e d L a b o r a t o r y C o n t r o l S p i k e ( L C S ) w a s a c c e p t a b l e . M3 = M a t r i x s p i k e r e c o v e r y w a s o u t s i d e l a b o r a t o r y c o n t r o l l i m i t s d u e t o m a t r i x i n t e r f e r e n c e s . M4 = T h e s p i k e r e c o v e r y v a l u e w a s u n u s a b l e s i n c e t h e a n a l y t e c o n c e n t r a t i o n i n t h e s a m p l e w a s d i s p r o p o r t i o n a t e t o t h e s p i k e l e v e l. M6 = M a t r i x s p i k e a n d M a t r i x s p i k e d u p l i c a t e r e c o v e r y n o t e v a l u a t e d a g a i n s t c o n t r o l l i m i t s d u e t o s a m p l e d i l u t i o n . N1 = T h i s s a m p l e w a s i n a d v e r t e n t l y c o l l e c t e d w i t h s a m p l e r u n n i n g t h r o u g h t h e f l o w c e l l a n d s h o u l d b e c o n s i d e r e d i n v a l i d b a s e d o n p o s s i b l e c o n t a m i n a t i o n f r o m t h e f l o w c e l l . N2 = T h e l a b d o e s n o t h o l d a c c r e d i t a t i o n f o r t h i s p a r a m e t e r . R1 = R P D v a l u e w a s o u t s i d e c o n t r o l l i m i t s . S = A s s o c i a t e d c a l i b r a t i o n c h e c k d i d n o t m e e t s p e c i f i e d c r i t e r i a . P: \ D u k e E n e r g y P r o g r e s s . 1 0 2 6 \ 0 4 . L E E P L A N T \ 2 2 . B a s i s o f D e s i g n R e p o r t \ D e s i g n R p t ( 6 0 ) \ T a b l e s \ T a b l e 2 - 1 B a s e l i n e S i t e C o n d i t i o n s . x ls x Page 6 of 12 TA B L E 2 - 1 BA S E L I N E S I T E C O N D I T I O N S - A R E A C O N S I D E R E D F O R A C C E L E R A T E D R E M E D I A T I O N H. F . L E E E N E R G Y C O M P L E X DU K E E N E R G Y P R O G R E S S , L L C , G O L D S B O R O , N C Ni c k e l P o t a s s i u m S e l e n i u m S e l e n i u m S e l e n i u m S o d i u m S t r o n t i u m S t r o n t i u m S t r o n t i u m T h a l l i u m T h a l l i u m T h a l l i u m V a n a d i u m V a n a d i u m V a n a d i u m Z i n c Z i n cZinc TO T T O T D I S ( D I S 0 . 1 u ) T O T T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T ug / L m g - N / L m g - N / L m g / L m g / L u g / L u g / L u g / L m g / L u g / L u g / L u g / L m g / L m g / L u g / L u g / L u g / L m g / L m g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L p C i / L p C i / L u g / m L u g / m Lug/mLug/mL 10 0 1 0 N E 1 0 N E N E N E 2 0 N E N E N E N E 2 5 0 N E N E N E 0 . 2 * 5 0 0 N E N E N E N E 0 . 3 * N E N E 1 0 0 0 N E N E N E N E N E N E AM W - 0 6 R B C 0 5 / 2 6 / 2 0 1 5 < 1 N A 0 . 0 1 5 N A 5 . 0 9 < 1 N A < 1 3 0 . 3 1 1 2 N A 1 2 7 2 1 0 . 1 1 < 0 . 2 N A < 0 . 2 1 7 0 0 . 9 2 7 1 8 < 0 . 3 N A 0.488 16 N A 1 4 N A N A N A N A N A N A AM W - 0 6 R B C 0 6 / 0 9 / 2 0 1 5 < 1 N A 0 . 0 2 N A 6 . 3 8 < 1 N A < 1 3 3 . 6 1 4 0 N A 1 4 2 2 2 < 0 . 2 < 0 . 2 N A < 0 . 2 < 2 5 1 . 7 1 1 < 0 . 3 N A < 0 . 3 < 5 N A < 5 N A N A N A N A N A N A AM W - 0 6 R B C 0 9 / 2 4 / 2 0 1 5 < 1 N A N A N A 5 . 4 8 < 1 < 1 < 1 2 1 . 3 1 0 6 1 0 5 1 0 9 N A N A < 0 . 2 0 . 2 6 < 0 . 2 N A N A N A < 0 . 3 < 0 . 3 < 0 . 3 < 5 < 5 < 5 N A N A N A N A N A N A AM W - 0 6 R B C 1 2 / 0 5 / 2 0 1 5 < 0 . 5 N A < 0 . 0 2 N A 5 . 1 2 < 2 . 5 N A < 0 . 5 2 1 . 6 9 8 N A 1 0 0 4 . 6 0 . 1 5 2 < 0 . 5 N A < 0 . 1 1 4 0 < 1 9 . 1 < 5 N A < 1 < 1 0 N A < 1 0 N A N A N A N A N A N A AM W - 0 6 R B C D U P 1 2 / 0 5 / 2 0 1 5 < 0 . 5 N A < 0 . 0 2 N A 5 . 0 7 < 0 . 5 N A < 0 . 5 2 1 . 3 9 8 N A 1 0 0 4 . 8 0 . 1 4 7 < 0 . 1 N A < 0 . 1 1 7 4 D 6 < 1 9 . 6 D 6 < 1 N A < 1 < 1 0 N A < 1 0 N A N A N A N A N A N A AM W - 0 6 R B C 0 1 / 1 2 / 2 0 1 6 < 1 N A 0 . 0 1 9 N A 5 . 1 8 < 1 N A < 1 2 0 . 9 1 0 2 N A 1 0 5 7 . 5 < 0 . 1 < 0 . 2 N A < 0 . 2 1 4 0 0 . 4 3 8 1 0 < 0 . 3 N A < 0 . 3 1 2 N A < 5 N A N A N A N A N A N A AM W - 0 6 R B C 1 2 / 1 5 / 2 0 1 6 < 1 N A < 0 . 0 1 M 2 N A 5 . 4 6 < 1 N A < 1 2 1 9 8 N A 9 8 1 6 < 0 . 1 < 0 . 2 N A < 0 . 2 1 3 0 0 . 3 0 1 8 . 6 < 0 . 3 N A < 0 . 3 < 5 N A < 5 0 . 7 8 8 0 . 9 2 3 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 2 AM W - 1 4 B C 0 5 / 2 0 / 2 0 1 5 < 1 N A 0 . 0 1 9 N A 4 . 9 < 1 N A < 1 3 0 . 9 1 2 0 N A 1 1 7 3 1 < 0 . 2 < 0 . 2 N A 0. 4 0 2 18 0 0 . 5 3 5 1 1 < 0 . 3 N A < 0 . 3 < 5 N A < 5 N A N A N A N A N A N A AM W - 1 4 B C 0 6 / 1 1 / 2 0 1 5 < 1 N A 0 . 0 2 N A 5 . 1 3 < 1 N A < 1 3 8 . 1 1 1 4 N A 1 1 9 2 4 < 0 . 1 0 . 2 5 6 N A < 0 . 2 1 8 0 2 1 0 < 0 . 3 N A < 0 . 3 < 5 N A < 5 N A N A N A N A N A N A AM W - 1 4 B C 1 2 / 0 4 / 2 0 1 5 < 1 N A < 0 . 0 1 N A 4 . 7 2 < 1 N A < 1 2 9 . 1 1 1 3 N A 1 0 8 1 . 3 0 . 2 4 5 < 0 . 2 N A < 0 . 2 1 8 0 1 1 5 < 0 . 3 N A < 0 . 3 < 5 N A < 5 N A N A N A N A N A N A AM W - 1 4 B C 0 1 / 1 2 / 2 0 1 6 < 1 N A 0 . 0 1 4 N A 5 < 1 N A < 1 2 9 . 8 1 0 3 N A 1 1 0 1 . 5 < 0 . 1 < 0 . 2 N A < 0 . 2 1 5 0 5 . 5 6 < 0 . 3 N A < 0 . 3 < 5 N A < 5 N A N A N A N A N A N A AM W - 1 4 B C 1 2 / 1 6 / 2 0 1 6 < 1 N A < 0 . 0 1 N A 5 . 1 4 < 1 N A < 1 2 7 . 4 1 0 3 N A 1 0 4 1 7 0 . 3 4 M 1 < 0 . 2 N A < 0 . 2 1 4 0 1 < 5 0 . 3 1 1 N A < 0 . 3 < 5 N A < 5 0 . 2 6 6 < 1 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0002 AM W - 1 4 S 0 5 / 2 0 / 2 0 1 5 < 1 N A 0 . 0 2 1 N A 6 . 9 3 < 1 N A < 1 1 1 . 4 5 8 N A 6 7 2 9 < 0 . 1 < 0 . 2 N A < 0 . 2 1 0 0 2 . 4 2 2 < 0 . 3 N A 0.605 <5 N A < 5 N A N A N A N A N A N A AM W - 1 4 S 0 6 / 1 1 / 2 0 1 5 < 1 N A < 0 . 0 1 N A 8 . 0 5 < 1 N A < 1 8 . 7 3 6 6 N A 6 9 3 1 0 . 1 8 6 < 0 . 2 N A < 0 . 2 1 1 0 3 8 < 0 . 3 N A 0.373 <5 N A < 5 N A N A N A N A N A N A AM W - 1 4 S 1 2 / 0 4 / 2 0 1 5 < 1 N A < 0 . 0 1 N A 6 . 5 3 < 1 N A < 1 9 . 5 7 5 7 N A 5 2 2 4 0 . 2 1 4 < 0 . 2 N A < 0 . 2 1 2 0 1 . 8 5 < 0 . 3 N A 0.407 <5 N A < 5 N A N A N A N A N A N A AM W - 1 4 S 0 1 / 1 2 / 2 0 1 6 < 1 N A 0 . 0 1 5 N A 6 . 0 3 < 1 N A < 1 1 1 . 5 4 5 N A 4 1 2 1 < 0 . 1 < 0 . 2 N A < 0 . 2 8 9 1 5 < 0 . 3 N A 0.332 <5 N A < 5 N A N A N A N A N A N A AM W - 1 4 S 1 2 / 1 6 / 2 0 1 6 < 1 N A < 0 . 0 1 N A 7 . 1 2 < 1 N A < 1 1 3 . 8 5 1 N A 5 0 2 6 < 0 . 1 < 0 . 2 N A < 0 . 2 9 4 1 . 6 < 5 < 0 . 3 N A < 0 . 3 < 5 N A < 5 < 1 1 . 2 4 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 2 AM W - 1 5 B C 0 5 / 2 0 / 2 0 1 5 < 1 N A 0 . 0 3 2 N A 5 . 7 8 < 1 N A < 1 2 5 . 6 9 5 N A 9 7 1 8 < 1 < 0 . 2 N A < 0 . 2 1 5 0 0 . 4 8 8 2 3 < 0 . 3 N A 0.311 <5 N A < 5 N A N A N A N A N A N A AM W - 1 5 B C 0 6 / 1 1 / 2 0 1 5 < 1 N A < 0 . 0 1 N A 5 . 3 1 < 1 N A < 1 3 0 . 2 8 4 N A 8 8 1 4 < 0 . 5 < 0 . 2 N A < 0 . 2 1 4 0 1 . 5 1 5 < 0 . 3 N A < 0 . 3 < 5 N A < 5 N A N A N A N A N A N A AM W - 1 5 B C D U P 0 6 / 1 1 / 2 0 1 5 < 1 N A < 0 . 0 1 N A 5 . 2 5 < 1 N A < 1 3 0 . 3 8 4 N A 8 6 1 5 < 0 . 5 < 0 . 2 N A < 0 . 2 1 5 0 0 . 4 3 9 1 6 < 0 . 3 N A 0.363 <5 N A < 5 N A N A N A N A N A N A AM W - 1 5 B C 1 2 / 0 6 / 2 0 1 5 < 0 . 5 N A 0 . 0 3 1 N A 6 . 3 7 < 0 . 5 N A < 0 . 5 2 6 . 8 8 4 N A 7 8 1 1 . 7 < 0 . 1 < 0 . 1 N A < 0 . 1 1 0 5 < 1 3 . 9 < 1 N A < 1 < 1 0 N A < 1 0 N A N A N A N A N A N A AM W - 1 5 B C 0 1 / 1 2 / 2 0 1 6 < 1 N A 0 . 0 1 3 N A 5 . 8 6 < 1 N A < 1 2 3 . 2 9 1 N A 9 0 1 5 < 0 . 1 M 1 , R 1 < 0 . 2 N A < 0 . 2 1 3 0 0 . 2 1 1 < 5 < 0 . 3 N A < 0 . 3 < 5 N A < 5 N A N A N A N A N A N A AM W - 1 5 B C D U P 0 1 / 1 2 / 2 0 1 6 < 1 N A 0 . 0 1 N A 5 . 9 6 < 1 N A < 1 2 2 . 4 8 4 N A 9 0 1 5 < 0 . 1 < 0 . 2 N A < 0 . 2 1 3 0 0 . 1 8 6 < 5 < 0 . 3 N A < 0 . 3 < 5 N A < 5 N A N A N A N A N A N A AM W - 1 5 B C 1 2 / 1 6 / 2 0 1 6 < 1 N A < 0 . 0 1 N A 6 . 1 9 < 1 N A < 1 2 0 . 1 8 9 N A 9 1 1 5 < 0 . 1 < 0 . 2 N A < 0 . 2 1 3 0 0 . 5 8 8 < 5 < 0 . 3 N A < 0 . 3 < 5 N A < 5 0 . 2 9 8 < 1 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 02 AM W - 1 5 S 0 5 / 2 1 / 2 0 1 5 < 1 N A 0 . 0 1 4 N A 3 . 9 9 < 1 N A < 1 7 . 7 8 7 2 N A 7 3 2 2 0 . 1 0 5 < 0 . 2 N A < 0 . 2 7 7 2 . 9 < 5 1 . 2 3 N A 1.75 <5 N A < 5 N A N A N A N A N A N A AM W - 1 5 S 0 6 / 1 1 / 2 0 1 5 < 1 N A < 0 . 0 1 N A 4 . 0 2 < 1 N A < 1 8 . 2 5 7 4 N A 7 6 2 0 0 . 5 5 2 < 0 . 2 N A < 0 . 2 7 3 3 . 4 < 5 1 . 7 1 N A 1.92 <5 N A 5 N A N A N A N A N A N A AM W - 1 5 S 1 2 / 0 6 / 2 0 1 5 < 0 . 5 N A < 0 . 0 2 N A < 5 < 0 . 5 N A < 0 . 5 7 . 8 4 7 6 N A 7 8 2 3 . 9 < 0 . 1 < 0 . 1 N A < 0 . 1 B 5 3 2 . 9 < 2 . 7 1 . 3 N A 1.2 <10 N A < 1 0 N A N A N A N A N A N A AM W - 1 5 S 0 1 / 1 2 / 2 0 1 6 < 1 N A 0 . 0 9 2 N A 4 . 4 6 < 1 N A < 1 8 . 4 1 7 8 N A 8 3 2 7 < 0 . 1 < 0 . 2 N A < 0 . 2 6 1 3 < 5 1 . 4 N A 1.67 7 N A 6 N A N A N A N A N A N A AM W - 1 5 S 1 2 / 1 6 / 2 0 1 6 < 1 N A < 0 . 0 1 N A 4 . 8 5 < 1 N A < 1 9 . 9 2 9 0 N A 9 1 2 4 < 0 . 1 < 0 . 2 N A < 0 . 2 7 5 2 . 2 < 5 1 . 6 9 N A 1.68 5 N A 6 0 . 8 2 7 < 1 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 2 AM W - 1 7 B C 0 8 / 1 0 / 2 0 1 6 2 . 9 5 N A 0 . 0 1 4 N A 6 < 1 N A < 1 4 0 . 1 1 5 5 N A 1 5 3 6 5 < 0 . 1 < 0 . 2 N A < 0 . 2 2 2 0 0 . 4 1 7 1 2 0 . 6 3 5 N A 1.15 <5 N A < 5 1 . 0 5 < 1 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 0 . 0 0 0 6 2 2 AM W - 1 7 B C 1 0 / 0 7 / 2 0 1 6 2 . 0 5 N A 0 . 0 3 6 N A 6 . 6 9 < 1 N A < 1 4 4 . 3 1 6 7 N A 1 6 2 6 0 < 0 . 1 < 0 . 2 N A < 0 . 2 2 5 0 0 . 4 5 4 < 5 0 . 4 3 6 B 2 N A 0.494 <5 N A < 5 1 . 2 0 . 4 8 1 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 0 . 0 0 0 4 6 1 AM W - 1 7 B C 1 1 / 2 1 / 2 0 1 6 4 . 6 5 N A 0 . 0 4 2 N A 5 . 4 2 < 1 N A < 1 3 0 . 9 1 4 4 N A 1 4 1 5 1 < 0 . 1 < 0 . 2 N A < 0 . 2 2 3 0 0 . 9 2 8 0 0 . 8 4 7 N A 4.6 6 N A 7 2 . 1 8 1 . 0 8 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 0 . 0 0 0 8 6 5 AM W - 1 7 S C C R 0 7 / 0 7 / 2 0 1 6 N A N A N A N A 3 . 0 6 N A N A < 1 9 . 0 6 N A N A N A 4 2 N A N A N A < 0 . 2 8 0 N A N A N A N A N A N A N A N A < 1 1 . 4 5 N A N A N A N A AM W - 1 7 S C C R D U P 0 7 / 0 7 / 2 0 1 6 N A N A N A N A 3 . 0 6 N A N A < 1 8 . 9 9 N A N A N A 4 4 N A N A N A < 0 . 2 7 1 N A N A N A N A N A N A N A N A 0 . 7 1 4 1 . 3 4 N A N A N A N A AM W - 1 7 S 0 7 / 2 8 / 2 0 1 6 1 . 1 2 N A 2 . 8 N A 3 . 7 6 < 1 N A < 1 9 . 5 7 5 0 N A 4 9 3 5 < 0 . 1 < 0 . 2 N A < 0 . 2 8 0 1 . 1 < 5 < 0 . 3 N A < 0 . 3 1 1 N A 1 4 0 . 7 6 5 0 . 9 9 6 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 2 AM W - 1 7 S C C R 0 8 / 2 9 / 2 0 1 6 N A N A N A N A 3 . 6 2 N A N A < 1 9 . 5 4 N A N A N A 3 3 N A N A N A < 0 . 2 7 8 N A N A N A N A N A N A N A N A 1 . 3 5 2 . 2 1 N A N A N A N A AM W - 1 7 S 1 0 / 0 7 / 2 0 1 6 < 1 N A 2 . 4 N A 4 . 3 7 < 1 N A < 1 9 . 9 4 7 N A 4 6 2 3 < 0 . 1 < 0 . 2 N A < 0 . 2 7 0 1 < 5 < 0 . 3 B 2 N A < 0 . 3 9 N A 1 0 0 . 7 4 3 1 . 3 7 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 2 AM W - 1 7 S C C R 1 1 / 2 1 / 2 0 1 6 N A N A N A N A 4 . 5 1 N A N A < 1 1 0 . 7 N A N A N A 2 7 N A N A N A < 0 . 2 7 3 N A N A N A N A N A N A N A N A < 1 1 . 8 7 N A N A N A N A AM W - 1 7 S C C R 1 2 / 2 1 / 2 0 1 6 N A N A N A N A 3 . 8 2 N A N A < 1 8 . 8 9 N A N A N A 2 1 N A N A N A < 0 . 2 8 0 N A N A N A N A N A N A N A N A < 1 2 . 3 N A N A N A N A AM W - 1 7 S C C R D U P 1 2 / 2 1 / 2 0 1 6 N A N A N A N A 3 . 9 1 N A N A < 1 9 . 1 1 N A N A N A 2 1 N A N A N A < 0 . 2 7 8 N A N A N A N A N A N A N A N A 1 . 8 2 . 7 1 N A N A N A N A AM W - 1 8 S 0 7 / 2 8 / 2 0 1 6 1 . 5 8 N A < 0 . 0 1 N A 4 . 7 < 1 N A < 1 2 1 . 7 5 0 9 N A 5 1 7 6 3 < 0 . 1 < 0 . 2 N A < 0 . 2 2 4 0 3 . 8 5 . 2 0 . 6 8 7 N A 0.933 <5 N A 6 < 1 0 . 7 0 8 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 0 . 0 0 0 0 7 8 7 j AM W - 1 8 S 1 0 / 0 6 / 2 0 1 6 1 . 3 N A < 0 . 0 1 N A 5 . 4 9 < 1 N A < 1 2 4 . 6 5 6 9 N A 5 5 9 6 0 < 0 . 1 < 0 . 2 N A < 0 . 2 2 7 0 3 . 8 1 2 0 . 5 7 6 N A 0.993 <5 N A < 5 0 . 2 4 6 1 . 0 6 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 2 BG M W - 1 0 1 0 / 1 8 / 2 0 1 2 < 5 N A N A < 0 . 0 2 N A N A N A < 1 0 N A N A N A N A 8 . 5 N A N A N A < 0 . 1 7 3 N A N A N A N A N A N A N A 1 1 . 2 N A N A N A N A N A N A BG M W - 1 0 0 3 / 0 7 / 2 0 1 3 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 8 . 4 N A N A N A < 0 . 2 6 2 N A N A N A N A N A N A N A 6 N A N A N A N A N A N A BG M W - 1 0 0 6 / 0 5 / 2 0 1 3 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 7 . 4 N A N A N A < 0 . 2 7 8 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A BG M W - 1 0 1 0 / 1 0 / 2 0 1 3 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 9 N A N A N A < 0 . 2 7 5 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A BG M W - 1 0 0 3 / 1 0 / 2 0 1 4 < 5 N A N A 0 . 0 9 N A N A N A < 1 N A N A N A N A 1 4 N A N A N A < 0 . 2 7 9 N A N A N A N A N A N A N A 8 N A N A N A N A N A N A BG M W - 1 0 0 6 / 1 1 / 2 0 1 4 < 5 N A N A 2 . 6 N A N A N A < 1 N A N A N A N A 1 1 N A N A N A < 0 . 2 1 0 0 N A N A N A N A N A N A N A 7 N A N A N A N A N A N A BG M W - 1 0 1 0 / 1 7 / 2 0 1 4 < 5 N A N A 0 . 0 5 N A N A N A < 1 N A N A N A N A 1 4 N A N A N A < 0 . 2 5 9 N A N A N A N A N A N A N A 8 N A N A N A N A N A N A BG M W - 1 0 0 3 / 0 3 / 2 0 1 5 < 5 0 . 0 7 N A N A N A N A N A < 1 N A N A N A N A 2 0 N A N A N A < 0 . 2 7 2 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A BG M W - 1 0 0 6 / 0 8 / 2 0 1 5 < 5 0 . 3 6 N A 1 . 6 4 . 2 4 N A N A < 1 7 . 2 5 N A N A N A 1 6 N A N A N A < 0 . 2 8 3 N A < 5 N A N A N A N A N A < 5 N A N A N A N A N A N A BG M W - 1 0 1 0 / 0 6 / 2 0 1 5 < 5 < 0 . 0 2 3 N A < 0 . 1 6 . 2 N A N A < 1 8 . 9 5 N A N A 6 5 2 2 N A N A N A < 0 . 2 7 7 N A < 5 N A N A < 0 . 3 N A N A < 5 N A N A N A N A N A N A BG M W - 1 0 1 2 / 0 4 / 2 0 1 5 < 1 N A < 0 . 0 1 N A 4 . 5 < 1 N A < 1 7 . 1 2 7 8 N A 7 8 1 7 < 0 . 1 < 0 . 2 N A < 0 . 2 6 9 2 . 7 5 < 0 . 3 N A < 0 . 3 < 5 N A < 5 N A N A N A N A N A N A BG M W - 1 0 0 1 / 1 2 / 2 0 1 6 < 1 N A 0 . 0 5 2 N A 4 . 8 5 < 1 N A < 1 1 0 . 1 9 9 N A 9 9 1 7 < 0 . 1 < 0 . 2 N A < 0 . 2 8 1 3 . 2 < 5 < 0 . 3 N A 0.675 <5 N A < 5 N A N A N A N A N A N A BG M W - 1 0 0 3 / 0 3 / 2 0 1 6 < 5 0 . 0 2 N A 0 . 1 5 . 0 2 N A N A < 1 1 4 . 9 N A N A 1 4 1 1 7 N A N A N A < 0 . 2 1 2 0 N A < 5 N A N A 0.351 NA N A < 5 N A N A N A N A N A N A BG M W - 1 0 0 6 / 0 6 / 2 0 1 6 < 5 0 . 7 9 N A 3 . 5 5 . 1 5 N A N A < 1 8 . 6 1 N A N A 9 6 2 2 N A N A N A < 0 . 2 7 2 N A < 5 N A N A 0.438 NA N A < 5 N A N A N A N A N A N A BG M W - 1 0 1 0 / 0 4 / 2 0 1 6 < 5 < 0 . 0 2 3 N A < 0 . 1 6 . 2 8 N A N A < 1 1 0 N A N A 8 0 2 6 N A N A N A < 0 . 2 1 0 0 N A < 5 N A N A 0.328 NA N A < 5 N A N A N A N A N A N A BG M W - 1 0 C A M A 1 0 / 0 4 / 2 0 1 6 < 1 N A < 0 . 0 1 N A 6 . 4 1 < 1 N A < 1 9 . 7 5 7 8 N A 8 2 2 8 < 0 . 1 < 0 . 2 N A < 0 . 2 9 7 2 . 2 1 4 < 0 . 3 B 2 N A < 0 . 3 5 N A < 5 0 . 6 7 3 1 . 3 1 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 <0.0002 BG M W - 1 0 D U P 1 0 / 0 4 / 2 0 1 6 < 5 < 0 . 0 2 3 N A < 0 . 1 6 . 5 4 N A N A < 1 9 . 9 4 N A N A 8 1 2 6 N A N A N A < 0 . 2 9 3 N A < 5 N A N A 0.77 NA N A < 5 N A N A N A N A N A N A CC R - 1 0 0 S 0 7 / 0 6 / 2 0 1 6 N A N A N A N A 4 . 4 7 N A N A < 1 3 . 6 7 N A N A N A 4 . 1 N A N A N A < 0 . 2 1 3 0 N A N A N A N A N A N A N A N A 0 . 4 3 7 1 . 3 9 N A N A N A N A CC R - 1 0 0 S C A M A 0 7 / 2 0 / 2 0 1 6 3 . 1 6 N A 1 0 N A 4 . 6 6 < 1 N A < 1 3 . 7 4 9 1 N A 9 2 4 . 9 < 0 . 1 M 3 < 0 . 2 N A < 0 . 2 1 1 0 0 . 5 6 4 5 < 0 . 3 N A 0.462 15 N A 6 1 . 5 5 2 . 2 9 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 0 . 0 0 0 1 1 9 J CC R - 1 0 0 S 0 8 / 3 0 / 2 0 1 6 N A N A N A N A 4 . 6 4 N A N A < 1 3 . 3 9 N A N A N A 4 . 7 N A N A N A < 0 . 2 1 1 0 N A N A N A N A N A N A N A N A 1 . 4 8 < 1 N A N A N A N A CC R - 1 0 0 S C A M A 1 0 / 0 6 / 2 0 1 6 4 . 1 5 N A 1 1 N A 4 . 7 2 < 1 N A < 1 3 . 3 2 9 9 N A 9 2 2 . 5 < 0 . 1 < 0 . 2 N A < 0 . 2 9 6 0 . 4 1 5 < 5 < 0 . 3 N A 0.624 <5 N A 5 1 . 6 5 1 . 5 6 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 0 . 0 0 0 1 2 2 j CC R - 1 0 0 S 1 1 / 1 7 / 2 0 1 6 N A N A N A N A 4 . 4 6 N A N A < 1 2 . 8 9 N A N A N A 2 . 8 N A N A N A < 0 . 2 1 3 0 N A N A N A N A N A N A N A N A 0 . 9 9 1 2 . 2 3 N A N A N A N A CC R - 1 0 0 S 1 2 / 1 5 / 2 0 1 6 N A N A N A N A 5 . 0 3 N A N A < 1 3 . 1 5 N A N A N A 1 1 N A N A N A < 0 . 2 1 2 0 N A N A N A N A N A N A N A N A 1 . 7 4 2 . 0 5 N A N A N A N A CC R - 1 0 0 S C A M A 1 2 / 1 5 / 2 0 1 6 3 . 3 5 N A 1 1 N A 4 . 9 5 < 1 N A < 1 3 . 1 9 4 N A 9 2 2 . 8 < 0 . 1 < 0 . 2 N A < 0 . 2 1 2 0 0 . 4 8 7 < 5 < 0 . 3 N A < 0 . 3 5 N A < 5 2 . 2 7 2 . 1 2 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 0 .000145 j To t a l Su s p e n d e d So l i d s To t a l Or g a n i c Ca r b o n To t a l Di s s o l v e d So l i d s Su l f i d e Uranium-233 Radium-228Radium-226 Uranium-238 Ni t r a t e (a s N ) An a l y t i c a l R e s u l t s Uranium-236Uranium-234 An a l y t i c a l P a r a m e t e r Re p o r t i n g U n i t s NC 2 L S t a n d a r d Su l f a t e Ni t r a t e Ni t r a t e + Ni t r i t e P: \ D u k e E n e r g y P r o g r e s s . 1 0 2 6 \ 0 4 . L E E P L A N T \ 2 2 . B a s i s o f D e s i g n R e p o r t \ D e s i g n R p t ( 6 0 ) \ T a b l e s \ T a b l e 2 - 1 B a s e l i n e S i t e C o n d i t i o n s . x ls x Page 7 of 12 TA B L E 2 - 1 BA S E L I N E S I T E C O N D I T I O N S - A R E A C O N S I D E R E D F O R A C C E L E R A T E D R E M E D I A T I O N H. F . L E E E N E R G Y C O M P L E X DU K E E N E R G Y P R O G R E S S , L L C , G O L D S B O R O , N C Ni c k e l P o t a s s i u m S e l e n i u m S e l e n i u m S e l e n i u m S o d i u m S t r o n t i u m S t r o n t i u m S t r o n t i u m T h a l l i u m T h a l l i u m T h a l l i u m V a n a d i u m V a n a d i u m V a n a d i u m Z i n c Z i n cZinc TO T T O T D I S ( D I S 0 . 1 u ) T O T T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T ug / L m g - N / L m g - N / L m g / L m g / L u g / L u g / L u g / L m g / L u g / L u g / L u g / L m g / L m g / L u g / L u g / L u g / L m g / L m g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L p C i / L p C i / L u g / m L u g / m Lug/mLug/mL To t a l Su s p e n d e d So l i d s To t a l Or g a n i c Ca r b o n To t a l Di s s o l v e d So l i d s Su l f i d e Uranium-233 Radium-228Radium-226 Uranium-238 Ni t r a t e (a s N ) Uranium-236Uranium-234 An a l y t i c a l P a r a m e t e r Re p o r t i n g U n i t s Su l f a t e Ni t r a t e Ni t r a t e + Ni t r i t e CM W - 0 5 1 2 / 1 3 / 2 0 1 0 < 5 N A N A < 0 . 1 N A N A N A < 1 0 N A N A N A N A 9 2 . 2 N A N A N A < 0 . 1 3 4 3 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 5 0 3 / 0 3 / 2 0 1 1 < 5 N A N A < 0 . 1 N A N A N A < 1 0 N A N A N A N A 7 6 . 7 N A N A N A < 0 . 1 3 1 6 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 5 0 6 / 0 8 / 2 0 1 1 < 5 N A N A < 0 . 1 N A N A N A < 1 0 N A N A N A N A 1 5 . 5 N A N A N A < 0 . 1 3 0 6 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 5 1 0 / 0 5 / 2 0 1 1 < 5 N A N A < 0 . 2 N A N A N A < 1 0 N A N A N A N A 9 8 . 4 N A N A N A < 0 . 1 4 0 6 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 5 0 3 / 1 5 / 2 0 1 2 < 5 N A N A < 0 . 2 N A N A N A < 1 0 N A N A N A N A 1 3 2 N A N A N A < 0 . 1 4 0 6 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 5 0 6 / 1 3 / 2 0 1 2 < 5 N A N A 0 . 0 2 7 b N A N A N A < 1 0 N A N A N A N A 9 7 . 7 N A N A N A < 0 . 1 3 3 8 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 5 1 0 / 1 7 / 2 0 1 2 < 5 N A N A 0 . 2 b N A N A N A < 1 0 N A N A N A N A 9 9 . 4 N A N A N A < 0 . 1 4 2 1 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 5 0 3 / 0 7 / 2 0 1 3 < 5 N A N A 0 . 7 3 N A N A N A < 1 N A N A N A N A 8 5 N A N A N A < 0 . 2 2 6 0 N A N A N A N A N A N A N A 6 N A N A N A N A N A N A CM W - 0 5 0 6 / 0 5 / 2 0 1 3 < 5 N A N A 0 . 0 6 N A N A N A < 1 N A N A N A N A 8 4 N A N A N A < 0 . 2 3 3 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 5 1 0 / 1 1 / 2 0 1 3 < 5 N A N A 0 . 0 6 N A N A N A < 1 N A N A N A N A 6 2 N A N A N A < 0 . 2 3 9 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 5 0 3 / 1 0 / 2 0 1 4 < 5 N A N A 0 . 6 8 N A N A N A < 1 N A N A N A N A 3 7 N A N A N A < 0 . 2 1 6 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 5 D U P 0 3 / 1 0 / 2 0 1 4 < 5 N A N A 0 . 6 8 N A N A N A < 1 N A N A N A N A 3 7 N A N A N A < 0 . 2 1 6 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 5 0 6 / 1 1 / 2 0 1 4 < 5 N A N A 0 . 1 N A N A N A < 1 N A N A N A N A 4 9 N A N A N A < 0 . 2 2 1 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 5 1 0 / 1 7 / 2 0 1 4 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 4 3 N A N A N A < 0 . 2 2 9 0 N A N A N A N A N A N A N A 5 N A N A N A N A N A N A CM W - 0 5 D U P 1 0 / 1 7 / 2 0 1 4 < 5 N A N A 0 . 0 2 N A N A N A < 1 N A N A N A N A 4 3 N A N A N A < 0 . 2 2 9 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 5 0 3 / 0 3 / 2 0 1 5 < 5 0 . 8 N A N A N A N A N A < 1 N A N A N A N A 2 5 N A N A N A < 0 . 2 1 3 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 5 0 6 / 0 8 / 2 0 1 5 < 5 0 . 0 3 N A 0 . 1 5 3 . 8 7 N A N A < 1 1 6 . 4 N A N A N A 3 0 N A N A N A < 0 . 2 1 8 0 N A < 5 N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 5 1 0 / 0 6 / 2 0 1 5 < 5 0 . 9 6 N A 4 . 3 3 . 0 9 N A N A < 1 1 6 . 3 N A N A 4 0 1 4 9 N A N A N A < 0 . 2 1 9 0 N A 1 3 N A N A 3.53 NA N A 5 N A N A N A N A N A N A CM W - 0 5 D U P 1 0 / 0 6 / 2 0 1 5 < 5 0 . 9 7 N A 4 . 3 3 . 1 1 N A N A < 1 1 6 . 4 N A N A 4 0 4 4 8 N A N A N A < 0 . 2 2 0 0 N A 1 4 N A N A 3.52 NA N A < 5 N A N A N A N A N A N A CM W - 0 5 1 2 / 0 5 / 2 0 1 5 1 . 2 N A 0 . 2 N A < 5 < 2 . 5 N A < 0 . 5 2 1 . 7 9 2 0 N A 9 2 0 7 3 . 2 < 0 . 1 < 0 . 5 N A < 0 . 1 2 8 6 2 . 8 < 3 < 5 N A 4.6 <10 N A < 1 0 N A N A N A N A N A N A CM W - 0 5 0 2 / 0 1 / 2 0 1 6 1 . 4 6 N A < 0 . 0 1 N A 7 . 4 1 < 1 N A < 1 2 5 . 7 1 4 9 0 N A 1 6 6 0 7 8 < 0 . 1 < 0 . 2 N A < 0 . 2 3 6 0 3 . 6 < 5 2 . 1 9 N A 3.2 <5 N A < 5 N A N A N A N A N A N A CM W - 0 5 0 3 / 0 3 / 2 0 1 6 < 5 < 0 . 0 2 3 N A < 0 . 1 8 . 7 N A N A < 1 2 6 N A N A 1 6 6 0 8 1 N A N A N A < 0 . 2 3 7 0 N A < 5 N A N A 2.15 NA N A < 5 N A N A N A N A N A N A CM W - 0 5 D U P 0 3 / 0 3 / 2 0 1 6 < 5 < 0 . 0 2 3 N A < 0 . 1 8 . 7 3 N A N A < 1 2 6 . 1 N A N A 1 6 6 0 8 1 N A N A N A < 0 . 2 3 6 0 N A < 5 N A N A 2.02 NA N A < 5 N A N A N A N A N A N A CM W - 0 5 0 6 / 0 6 / 2 0 1 6 < 5 0 . 0 6 N A 0 . 2 7 3 . 4 9 N A N A < 1 2 7 . 8 N A N A 1 1 1 0 4 6 N A N A N A < 0 . 2 3 0 0 N A < 5 N A N A 7.98 NA N A < 5 N A N A N A N A N A N A CM W - 0 5 1 0 / 0 5 / 2 0 1 6 < 5 0 . 0 9 N A 0 . 4 2 8 N A N A < 1 2 6 . 3 N A N A 1 5 5 0 4 0 N A N A N A < 0 . 2 3 5 0 N A 5 4 N A N A 8.17 NA N A < 5 N A N A N A N A N A N A CM W - 0 5 C A M A 1 0 / 0 5 / 2 0 1 6 < 1 N A 0 . 3 7 4 N A 7 . 6 1 < 1 N A < 1 2 5 1 4 8 0 N A 1 5 4 0 4 0 < 0 . 1 < 0 . 2 N A < 0 . 2 B 2 3 5 0 4 . 2 < 5 4 . 7 7 N A 6.72 <5 N A < 5 0 . 7 0 9 1 . 5 9 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 0 . 0 0 1 8 6 CM W - 0 6 1 2 / 1 4 / 2 0 1 0 < 5 N A N A < 0 . 1 N A N A N A < 1 0 N A N A N A N A 9 5 . 7 N A N A N A < 0 . 1 4 5 5 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 6 0 3 / 0 3 / 2 0 1 1 < 5 N A N A < 0 . 1 N A N A N A < 1 0 N A N A N A N A 9 3 . 6 N A N A N A < 0 . 1 4 9 2 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 6 0 6 / 0 8 / 2 0 1 1 < 5 N A N A < 0 . 1 N A N A N A < 1 0 N A N A N A N A 7 . 2 N A N A N A < 0 . 1 4 6 1 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 6 D U P 0 6 / 0 8 / 2 0 1 1 < 5 N A N A < 0 . 1 N A N A N A < 1 0 N A N A N A N A 1 3 . 7 N A N A N A < 0 . 1 4 8 2 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 6 1 0 / 0 5 / 2 0 1 1 < 5 N A N A < 0 . 2 N A N A N A < 1 0 N A N A N A N A 6 3 N A N A N A < 0 . 1 4 4 9 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 6 0 3 / 1 4 / 2 0 1 2 < 5 N A N A < 0 . 2 N A N A N A < 1 0 N A N A N A N A 4 5 . 4 N A N A N A < 0 . 1 4 9 8 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 6 0 6 / 1 3 / 2 0 1 2 < 5 N A N A < 0 . 0 2 N A N A N A < 1 0 N A N A N A N A 5 4 . 3 N A N A N A < 0 . 1 4 7 9 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 6 0 9 / 2 5 / 2 0 1 5 1 . 1 3 N A N A N A 9 . 0 4 < 1 < 1 < 1 3 1 . 1 3 6 2 0 3 6 7 0 3 7 2 0 N A N A < 0 . 2 < 0 . 2 < 0 . 2 N A N A N A 1 . 0 5 0 . 8 9 2.22 <5 < 5 < 5 N A N A N A N A N A N A CM W - 0 6 C C R 0 7 / 1 4 / 2 0 1 6 N A N A N A N A 9 . 3 7 N A N A < 1 3 2 N A N A N A 8 . 1 N A N A N A < 0 . 2 4 8 0 N A N A N A N A N A N A N A N A 1 . 7 3 0 . 8 8 N A N A N A N A CM W - 0 6 C C R 0 8 / 3 1 / 2 0 1 6 N A N A N A N A 9 . 3 4 N A N A < 1 3 0 . 6 N A N A N A 5 . 8 N A N A N A < 0 . 2 4 9 0 N A N A N A N A N A N A N A N A 1 . 3 7 1 . 5 1 N A N A N A N A CM W - 0 6 C C R 1 1 / 1 8 / 2 0 1 6 N A N A N A N A 9 . 2 7 N A N A < 1 3 0 . 6 N A N A N A 0 . 6 2 N A N A N A < 0 . 2 5 0 0 N A N A N A N A N A N A N A N A 0 . 8 1 5 1 . 3 N A N A N A N A CM W - 0 6 C C R 1 2 / 2 1 / 2 0 1 6 N A N A N A N A 9 . 8 6 N A N A < 1 3 3 . 7 N A N A N A 0 . 6 1 N A N A N A < 0 . 2 5 0 0 N A N A N A N A N A N A N A N A 1 1 . 9 2 N A N A N A N A CM W - 0 6 R 1 0 / 1 8 / 2 0 1 2 < 5 N A N A < 0 . 0 2 N A N A N A < 1 0 N A N A N A N A 9 5 N A N A N A < 0 . 1 3 8 6 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CM W - 0 6 R 0 3 / 0 7 / 2 0 1 3 < 5 N A N A 0 . 0 3 N A N A N A < 1 N A N A N A N A 5 2 N A N A N A < 0 . 2 1 9 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 6 R D U P 0 3 / 0 7 / 2 0 1 3 < 5 N A N A 0 . 0 3 N A N A N A < 1 N A N A N A N A 5 2 N A N A N A < 0 . 2 1 9 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 6 R 0 6 / 0 5 / 2 0 1 3 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 6 1 N A N A N A < 0 . 2 4 0 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 6 R 1 0 / 1 1 / 2 0 1 3 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 6 6 N A N A N A < 0 . 2 4 0 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 6 R 0 3 / 1 0 / 2 0 1 4 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 4 1 N A N A N A < 0 . 2 1 2 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 6 R 0 6 / 1 1 / 2 0 1 4 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 6 9 N A N A N A < 0 . 2 3 8 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 6 R D U P 0 6 / 1 1 / 2 0 1 4 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 6 9 N A N A N A < 0 . 2 3 8 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 6 R 1 0 / 1 7 / 2 0 1 4 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 7 1 N A N A N A < 0 . 2 3 7 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 6 R 0 3 / 0 3 / 2 0 1 5 < 5 < 0 . 0 2 3 N A N A N A N A N A < 1 N A N A N A N A 3 9 N A N A N A < 0 . 2 1 1 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 6 R D U P 0 3 / 0 3 / 2 0 1 5 < 5 < 0 . 0 2 3 N A N A N A N A N A < 1 N A N A N A N A 3 9 N A N A N A < 0 . 2 1 2 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 6 R 0 6 / 0 9 / 2 0 1 5 6 < 0 . 0 2 3 N A < 0 . 1 7 . 1 3 N A N A < 1 2 9 N A N A N A 7 3 N A N A N A < 0 . 2 3 2 0 N A 2 5 N A N A N A N A N A < 5 N A N A N A N A N A N A CM W - 0 6 R 1 0 / 0 6 / 2 0 1 5 6 < 0 . 0 2 3 N A < 0 . 1 4 . 1 N A N A < 1 1 6 . 4 N A N A 5 3 6 9 6 N A N A N A < 0 . 2 1 7 0 N A 2 3 N A N A 2.34 NA N A < 5 N A N A N A N A N A N A CM W - 0 6 R 1 2 / 0 5 / 2 0 1 5 1 . 9 N A < 0 . 0 2 N A < 5 < 0 . 5 N A < 0 . 5 1 6 . 6 2 7 0 N A 2 7 0 4 8 . 6 0 . 2 6 3 < 0 . 1 N A < 0 . 1 1 7 0 5 . 4 4 . 3 2 N A 2.8 <10 N A < 1 0 N A N A N A N A N A N A CM W - 0 6 R 0 1 / 1 2 / 2 0 1 6 2 . 8 N A 0 . 0 2 5 N A 2 . 2 6 < 1 N A < 1 1 2 2 2 2 N A 2 2 2 4 8 < 0 . 1 < 0 . 2 N A < 0 . 2 1 4 0 4 . 8 < 5 1 . 7 4 N A 2.71 <5 N A < 5 N A N A N A N A N A N A CM W - 0 6 R 0 3 / 0 3 / 2 0 1 6 < 5 < 0 . 0 2 3 N A < 0 . 1 1 . 9 N A N A < 1 1 3 . 5 N A N A 1 8 4 4 5 N A N A N A < 0 . 2 1 2 0 N A < 5 N A N A 2.37 NA N A < 5 N A N A N A N A N A N A CM W - 0 6 R 0 6 / 0 6 / 2 0 1 6 < 5 < 0 . 0 2 3 N A < 0 . 1 6 . 8 7 N A N A < 1 2 8 . 6 N A N A 1 3 0 0 7 7 N A N A N A < 0 . 2 3 2 0 N A < 5 N A N A 1.56 NA N A < 5 N A N A N A N A N A N A CM W - 0 6 R D U P 0 6 / 0 6 / 2 0 1 6 < 5 < 0 . 0 2 3 N A < 0 . 1 6 . 9 8 N A N A < 1 2 9 . 1 N A N A 1 2 7 0 7 8 N A N A N A < 0 . 2 3 2 0 N A < 5 N A N A 1.74 NA N A < 5 N A N A N A N A N A N A CM W - 0 6 R 1 0 / 0 4 / 2 0 1 6 < 5 < 0 . 0 2 3 N A < 0 . 1 5 . 7 5 N A N A < 1 2 4 . 1 N A N A 9 0 3 6 3 N A N A N A < 0 . 2 2 7 0 N A 6 . 6 N A N A 2.32 NA N A 6 N A N A N A N A N A N A CM W - 0 6 R C A M A 1 0 / 0 4 / 2 0 1 6 1 . 0 7 N A < 0 . 0 1 N A 5 . 8 2 < 1 N A < 1 2 3 . 9 8 6 1 N A 9 3 7 6 4 < 0 . 1 < 0 . 2 N A < 0 . 2 2 6 0 4 . 9 6 . 2 1 . 9 8 B 2 N A 2.36 <5 N A < 5 0 . 3 7 9 0 . 7 8 9 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 0 . 0 0 0 0 6 9 9 j CT M W - 0 1 1 2 / 1 3 / 2 0 1 0 < 5 N A N A < 0 . 1 N A N A N A < 1 0 N A N A N A N A 2 0 . 1 N A N A N A < 0 . 1 1 0 4 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CT M W - 0 1 0 3 / 0 3 / 2 0 1 1 < 5 N A N A < 0 . 1 N A N A N A < 1 0 N A N A N A N A 2 4 b N A N A N A < 0 . 1 1 3 0 b N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CT M W - 0 1 0 6 / 0 8 / 2 0 1 1 < 5 N A N A < 0 . 1 N A N A N A < 1 0 N A N A N A N A 1 8 . 2 N A N A N A < 0 . 1 1 0 3 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CT M W - 0 1 1 0 / 0 5 / 2 0 1 1 < 5 N A N A < 0 . 2 N A N A N A < 1 0 N A N A N A N A 2 4 . 2 N A N A N A < 0 . 1 1 1 7 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CT M W - 0 1 0 3 / 1 5 / 2 0 1 2 < 5 N A N A < 0 . 2 N A N A N A < 1 0 N A N A N A N A 2 6 . 7 N A N A N A < 0 . 1 1 3 3 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CT M W - 0 1 0 6 / 1 3 / 2 0 1 2 < 5 N A N A < 0 . 0 2 N A N A N A < 1 0 N A N A N A N A 3 0 . 6 N A N A N A < 0 . 1 1 0 9 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CT M W - 0 1 1 0 / 1 7 / 2 0 1 2 < 5 N A N A < 0 . 0 2 N A N A N A < 1 0 N A N A N A N A 3 2 . 3 N A N A N A < 0 . 1 1 2 6 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CT M W - 0 1 D U P 1 0 / 1 7 / 2 0 1 2 < 5 N A N A < 0 . 0 2 N A N A N A < 1 0 N A N A N A N A 3 6 . 9 N A N A N A < 0 . 1 1 2 2 N A N A N A N A N A N A N A < 1 0 N A N A N A N A N A N A CT M W - 0 1 0 3 / 0 7 / 2 0 1 3 < 5 N A N A 0 . 0 4 N A N A N A < 1 N A N A N A N A 3 3 N A N A N A < 0 . 2 1 2 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CT M W - 0 1 0 6 / 0 5 / 2 0 1 3 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 3 2 N A N A N A < 0 . 2 1 3 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CT M W - 0 1 1 0 / 1 1 / 2 0 1 3 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 3 3 N A N A N A < 0 . 2 1 4 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CT M W - 0 1 0 3 / 1 0 / 2 0 1 4 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 3 4 N A N A N A < 0 . 2 1 2 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CT M W - 0 1 0 6 / 1 1 / 2 0 1 4 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 3 4 N A N A N A < 0 . 2 1 4 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A P: \ D u k e E n e r g y P r o g r e s s . 1 0 2 6 \ 0 4 . L E E P L A N T \ 2 2 . B a s i s o f D e s i g n R e p o r t \ D e s i g n R p t ( 6 0 ) \ T a b l e s \ T a b l e 2 - 1 B a s e l i n e S i t e C o n d i t i o n s . x ls x Page 8 of 12 TA B L E 2 - 1 BA S E L I N E S I T E C O N D I T I O N S - A R E A C O N S I D E R E D F O R A C C E L E R A T E D R E M E D I A T I O N H. F . L E E E N E R G Y C O M P L E X DU K E E N E R G Y P R O G R E S S , L L C , G O L D S B O R O , N C Ni c k e l P o t a s s i u m S e l e n i u m S e l e n i u m S e l e n i u m S o d i u m S t r o n t i u m S t r o n t i u m S t r o n t i u m T h a l l i u m T h a l l i u m T h a l l i u m V a n a d i u m V a n a d i u m V a n a d i u m Z i n c Z i n cZinc TO T T O T D I S ( D I S 0 . 1 u ) T O T T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T D I S ( D I S 0 . 1 u ) T O T ug / L m g - N / L m g - N / L m g / L m g / L u g / L u g / L u g / L m g / L u g / L u g / L u g / L m g / L m g / L u g / L u g / L u g / L m g / L m g / L m g / L u g / L u g / L u g / L u g / L u g / L u g / L p C i / L p C i / L u g / m L u g / m Lug/mLug/mL To t a l Su s p e n d e d So l i d s To t a l Or g a n i c Ca r b o n To t a l Di s s o l v e d So l i d s Su l f i d e Uranium-233 Radium-228Radium-226 Uranium-238 Ni t r a t e (a s N ) Uranium-236Uranium-234 An a l y t i c a l P a r a m e t e r Re p o r t i n g U n i t s Su l f a t e Ni t r a t e Ni t r a t e + Ni t r i t e CT M W - 0 1 1 0 / 1 7 / 2 0 1 4 < 5 N A N A < 0 . 0 2 3 N A N A N A < 1 N A N A N A N A 2 1 N A N A N A < 0 . 2 1 1 0 N A N A N A N A N A N A N A 9 N A N A N A N A N A N A CT M W - 0 1 0 3 / 0 3 / 2 0 1 5 6 0 . 0 5 N A N A N A N A N A < 1 N A N A N A N A 3 1 N A N A N A < 0 . 2 1 2 0 N A N A N A N A N A N A N A < 5 N A N A N A N A N A N A CT M W - 0 1 0 6 / 0 8 / 2 0 1 5 7 < 0 . 0 2 3 N A < 0 . 1 4 . 3 N A N A < 1 1 4 . 7 N A N A N A 3 1 N A N A N A < 0 . 2 1 2 0 N A 8 N A N A N A N A N A 9 N A N A N A N A N A N A CT M W - 0 1 1 0 / 0 6 / 2 0 1 5 < 5 < 0 . 0 2 3 N A < 0 . 1 4 . 2 4 N A N A < 1 1 4 . 7 N A N A 9 1 3 5 N A N A N A < 0 . 2 1 1 0 N A < 5 N A N A 0.341 NA N A < 5 N A N A N A N A N A N A CT M W - 0 1 1 2 / 0 5 / 2 0 1 5 2 . 9 N A < 0 . 0 2 N A < 5 < 0 . 5 N A < 0 . 5 1 5 . 1 9 0 N A 9 3 2 9 . 4 < 0 . 1 < 0 . 1 N A < 0 . 1 1 5 9 1 . 3 < 3 < 1 N A < 1 < 1 0 N A < 1 0 N A N A N A N A N A N A CT M W - 0 1 0 2 / 0 1 / 2 0 1 6 1 . 0 4 N A < 0 . 0 1 N A 4 . 2 2 < 1 N A < 1 1 4 . 9 9 9 N A 9 4 3 3 < 0 . 1 < 0 . 2 N A < 0 . 2 1 4 0 1 1 5 0 . 4 N A 1.15 <5 N A < 5 N A N A N A N A N A N A CT M W - 0 1 0 3 / 0 3 / 2 0 1 6 < 5 < 0 . 0 2 3 N A < 0 . 1 4 . 3 6 N A N A < 1 1 5 . 3 N A N A 9 7 3 7 N A N A N A < 0 . 2 1 3 0 N A 7 N A N A 0.856 NA N A < 5 N A N A N A N A N A N A CT M W - 0 1 0 6 / 0 7 / 2 0 1 6 < 5 0 . 0 3 N A 0 . 1 2 B 2 4 . 3 5 N A N A < 1 1 5 . 1 N A N A 9 7 3 7 N A N A N A < 0 . 2 1 2 0 N A 1 2 N A N A 0.787 NA N A < 5 N A N A N A N A N A N A CT M W - 0 1 1 0 / 0 5 / 2 0 1 6 < 5 < 0 . 0 2 3 N A < 0 . 1 4 . 5 6 N A N A < 1 1 6 . 6 N A N A 1 0 4 3 8 N A N A N A < 0 . 2 1 4 0 N A < 5 N A N A 0.353 NA N A < 5 N A N A N A N A N A N A CT M W - 0 1 C A M A 1 0 / 0 5 / 2 0 1 6 < 1 N A 0 . 0 2 5 N A 4 . 3 2 < 1 N A < 1 1 5 . 6 9 7 N A 1 0 2 3 8 < 0 . 1 < 0 . 2 N A < 0 . 2 B 2 2 0 0 0 . 9 5 7 < 5 < 0 . 3 N A 0.443 <5 N A < 5 2 1 0 . 7 5 4 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 0 . 0 0 0 3 9 3 DM W - 0 2 0 9 / 2 7 / 2 0 1 3 < 1 . 5 < 0 . 2 5 N A N A 4 0 . 5 N A N A < 0 . 5 4 1 . 1 N A N A N A 3 4 . 7 N A N A N A < 0 . 1 5 3 1 5 N A N A N A N A N A N A N A 4 . 4 j N A N A N A N A N A N A DM W - 0 2 0 6 / 1 5 / 2 0 1 5 2 . 1 6 N A < 0 . 0 1 N A 1 4 . 7 < 1 N A < 1 2 3 . 7 2 2 6 0 N A 2 2 4 0 0 . 3 1 0 . 9 6 3 < 0 . 2 N A < 0 . 2 1 7 0 6 1 2 0 . 4 0 6 N A 2.01 <5 N A < 5 N A N A N A N A N A N A DM W - 0 2 0 9 / 2 4 / 2 0 1 5 2 . 4 2 N A N A N A 9 . 6 9 < 1 < 1 < 1 1 6 2 2 1 0 2 2 3 0 2 3 1 0 N A N A < 0 . 2 < 0 . 2 < 0 . 2 N A N A N A < 0 . 3 0 . 3 4 3 0.5 <5 < 5 < 5 N A N A N A N A N A N A DM W - 0 2 1 2 / 0 4 / 2 0 1 5 1 . 9 4 N A < 0 . 0 1 N A 9 . 6 < 1 N A < 1 1 4 . 8 2 0 9 0 N A 2 7 5 0 0 . 3 2 1 . 1 5 < 0 . 2 N A < 0 . 2 1 8 0 5 . 7 < 5 < 0 . 3 N A < 0 . 3 < 5 N A < 5 N A N A N A N A N A N A DM W - 0 2 0 1 / 1 2 / 2 0 1 6 1 . 6 9 N A < 0 . 0 1 N A 9 . 5 < 1 N A < 1 1 5 . 5 1 7 9 0 N A 1 9 0 0 0 . 5 1 1 < 0 . 2 N A < 0 . 2 1 5 0 4 . 1 6 < 0 . 3 N A 0.339 <5 N A < 5 N A N A N A N A N A N A DM W - 0 2 1 2 / 1 6 / 2 0 1 6 1 . 2 9 N A < 0 . 0 1 N A 6 . 7 4 < 1 N A < 1 1 0 . 2 1 1 1 0 N A 1 0 6 0 8 0 . 6 4 < 0 . 2 N A < 0 . 2 1 3 0 6 . 4 < 5 0 . 9 8 6 N A 5.31 <5 N A < 5 0 . 5 0 . 7 5 3 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 < 0 . 0 0 0 0 5 0 . 0 0 0 9 0 8 Prepared by: BER Checked by: TCP No t e s : - B o l d h i g h l i g h t e d c o n c e n t r a t i o n i n d i c a t e s e x c e e d a n c e o f t h e 1 5 A N C A C 0 2 L . 0 2 0 2 S t a n d a r d , t h e I M A C , o r t h e N C D H H S S c r e e n i n g L ev e l f o r c h r o m i u m V I . ( E f f e c t i v e d a t e f o r 1 5 A N C A C 0 2 L . 0 2 0 2 S t a n d a r d a n d I M A C i s A p r i l 1 , 2 0 1 3 ) OR P = O x i d a t i o n R e d u c t i o n P o t e n t i a l D e g C = D e g r e e C e l s i u s m g / L = m i l l i g r a m s p e r l i t e r u m h o s / c m = m i c r o m h o s p e r c e n t i m e t e r ft = F e e t N E = N o t e s t a b l i s h e d m g - N / L = m i l l i g r a m n i t r o g e n p e r l i t e r S p e c C o n d = S p e c i f i c C o n d u c t a n c e ND = N o t d e t e c t e d N T U = n e p h e l o m e t r i c t u r b i d i t y u n i t m V = m i l l i v o l t s N M = N o t m e a s u r e d Te m p = T e m p e r a t u r e S . U . = S t a n d a r d U n i t u g / L = m i c r o g r a m p e r l i t e r D U P = D u p l i c a t e DO = D i s s o l v e d O x y g e n N A = N o t a n a l y z e d E h = R e d o x P o t e n t i a l < = c o n c e n t r a t i o n n o t d e t e c t e d a t o r a b o v e t h e r e p o r t i n g l i m i t . ^ = N C D H H S H e a l t h S c r e e n i n g L e v e l . * - I n t e r i m M a x i m u m A l l o w a b l e C o n c e n t r a t i o n s ( I M A C s ) o f t h e 1 5 A N C A C 0 2 L S t a n d a r d , A p p e n d i x 1 , A p r i l , 1 , 2 0 1 3 . b = T a r g e t a n a l y t e d e t e c t e d i n m e t h o d b l a n k a t o r a b o v e t h e r e p o r t i n g l i m i t . B1 = T a r g e t a n a l y t e d e t e c t e d i n m e t h o d b l a n k a t o r a b o v e t h e r e p o r t i n g l i m i t . T a r g e t a n a l y t e c o n c e n t r a t i o n i n s a m p l e i s l e s s t ha n 1 0 X t h e c o n c e n t r a t i o n i n t h e m e t h o d b l a n k . A n a l y t e c o n c e n t r a t i o n i n s a m p l e i s n o t a f f e c t e d b y b l a n k c o n t a m i n a t i o n . B2 = T a r g e t a n a l y t e w a s d e t e c t e d i n b l a n k ( s ) a t a c o n c e n t r a t i o n g r e a t e r t h a n 1 / 2 t h e r e p o r t i n g l i m i t b u t l e s s t h a n t h e r e p o r t i n g l i m i t . A n a l y t e c o n c e n t r a t i o n i n s a m p l e i s v a l i d a n d m a y b e u s e d f o r c o m p l i a n c e p u r p o s e s . CL = T h e c o n t i n u i n g c a l i b r a t i o n f o r t h i s c o m p o u n d i s o u t s i d e o f P a c e A n a l y t i c a l a c c e p t a n c e l i m i t s . CR = T h e d i s s o l v e d m e t a l r e s u l t w a s g r e a t e r t h a n t h e t o t a l m e t a l r e s u l t f o r t h i s e l e m e n t . R e s u l t s w e r e c o n f i r m e d b y r e a n a l y s i s . D3 = S a m p l e w a s d i l u t e d d u e t o t h e p r e s e n c e o f h i g h l e v e l s o f n o n - t a r g e t a n a l y t e s o r o t h e r m a t r i x i n t e r f e r e n c e . D6 = T h e r e l a t i v e p e r c e n t d i f f e r e n c e ( R P D ) b e t w e e n t h e s a m p l e a n d s a m p l e d u p l i c a t e e x c e e d e d l a b o r a t o r y c o n t r o l l i m i t s . j = i n d i c a t e s c o n c e n t r a t i o n r e p o r t e d b e l o w P r a c t i c a l Q u a n t i t a t i o n L i m i t ( P Q L ) , b u t a b o v e M e t h o d D e t e c t i o n L i m i t ( M D L ) a n d t h e r e fo r e c o n c e n t r a t i o n i s e s t i m a t e d . L3 = A n a l y t e r e c o v e r y i n t h e l a b o r a t o r y c o n t r o l s a m p l e ( L C S ) e x c e e d e d Q C l i m i t s . A n a l y t e p r e s e n c e b e l o w r e p o r t i n g l i m i t s i n a s so c i a t e d s a m p l e s . R e s u l t s u n a f f e c t e d b y h i g h b i a s . M1 = M a t r i x s p i k e r e c o v e r y w a s h i g h : t h e a s s o c i a t e d L a b o r a t o r y C o n t r o l S p i k e ( L C S ) w a s a c c e p t a b l e . M2 = M a t r i x s p i k e r e c o v e r y w a s L o w : t h e a s s o c i a t e d L a b o r a t o r y C o n t r o l S p i k e ( L C S ) w a s a c c e p t a b l e . M3 = M a t r i x s p i k e r e c o v e r y w a s o u t s i d e l a b o r a t o r y c o n t r o l l i m i t s d u e t o m a t r i x i n t e r f e r e n c e s . M4 = T h e s p i k e r e c o v e r y v a l u e w a s u n u s a b l e s i n c e t h e a n a l y t e c o n c e n t r a t i o n i n t h e s a m p l e w a s d i s p r o p o r t i o n a t e t o t h e s p i k e l e v e l. M6 = M a t r i x s p i k e a n d M a t r i x s p i k e d u p l i c a t e r e c o v e r y n o t e v a l u a t e d a g a i n s t c o n t r o l l i m i t s d u e t o s a m p l e d i l u t i o n . N1 = T h i s s a m p l e w a s i n a d v e r t e n t l y c o l l e c t e d w i t h s a m p l e r u n n i n g t h r o u g h t h e f l o w c e l l a n d s h o u l d b e c o n s i d e r e d i n v a l i d b a s e d o n p o s s i b l e c o n t a m i n a t i o n f r o m t h e f l o w c e l l . N2 = T h e l a b d o e s n o t h o l d a c c r e d i t a t i o n f o r t h i s p a r a m e t e r . R1 = R P D v a l u e w a s o u t s i d e c o n t r o l l i m i t s . S = A s s o c i a t e d c a l i b r a t i o n c h e c k d i d n o t m e e t s p e c i f i e d c r i t e r i a . P: \ D u k e E n e r g y P r o g r e s s . 1 0 2 6 \ 0 4 . L E E P L A N T \ 2 2 . B a s i s o f D e s i g n R e p o r t \ D e s i g n R p t ( 6 0 ) \ T a b l e s \ T a b l e 2 - 1 B a s e l i n e S i t e C o n d i t i o n s . x ls x Page 9 of 12 TA B L E 2 - 1 BA S E L I N E S I T E C O N D I T I O N S - A R E A C O N S I D E R E D F O R A C C E L E R A T E D R E M E D I A T I O N H. F . L E E E N E R G Y C O M P L E X DU K E E N E R G Y P R O G R E S S , L L C , G O L D S B O R O , N C ug / L u g / L u g / L u g / L u g / L u g / L NE N E N E N E N E N E AM W - 0 6 R B C 0 5 / 2 6 / 2 0 1 5 N A N A N A N A N A N A AM W - 0 6 R B C 0 6 / 0 9 / 2 0 1 5 < 0 . 0 5 3 < 0 . 0 8 3 4 3 4 0 2 1 8 0 3 3 7 < 0 . 1 3 AM W - 0 6 R B C 0 9 / 2 4 / 2 0 1 5 N A N A N A N A N A N A AM W - 0 6 R B C 1 2 / 0 5 / 2 0 1 5 N A N A N A N A N A N A AM W - 0 6 R B C D U P 1 2 / 0 5 / 2 0 1 5 N A N A N A N A N A N A AM W - 0 6 R B C 0 1 / 1 2 / 2 0 1 6 N A N A N A N A N A N A AM W - 0 6 R B C 1 2 / 1 5 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 4 B C 0 5 / 2 0 / 2 0 1 5 N A N A N A N A N A N A AM W - 1 4 B C 0 6 / 1 1 / 2 0 1 5 < 0 . 0 5 3 < 0 . 0 8 3 1 8 9 0 < 2 5 0 1 0 3 0 . 7 1 3 AM W - 1 4 B C 1 2 / 0 4 / 2 0 1 5 N A N A N A N A N A N A AM W - 1 4 B C 0 1 / 1 2 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 4 B C 1 2 / 1 6 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 4 S 0 5 / 2 0 / 2 0 1 5 N A N A N A N A N A N A AM W - 1 4 S 0 6 / 1 1 / 2 0 1 5 < 0 . 0 5 3 < 0 . 0 8 3 1 3 7 0 0 1 4 0 0 1 5 7 1 6 . 2 AM W - 1 4 S 1 2 / 0 4 / 2 0 1 5 N A N A N A N A N A N A AM W - 1 4 S 0 1 / 1 2 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 4 S 1 2 / 1 6 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 5 B C 0 5 / 2 0 / 2 0 1 5 N A N A N A N A N A N A AM W - 1 5 B C 0 6 / 1 1 / 2 0 1 5 0 . 0 6 1 < 0 . 0 8 3 8 3 7 < 3 . 6 8 3 . 4 1 . 7 5 AM W - 1 5 B C D U P 0 6 / 1 1 / 2 0 1 5 N A N A N A N A N A N A AM W - 1 5 B C 1 2 / 0 6 / 2 0 1 5 N A N A N A N A N A N A AM W - 1 5 B C 0 1 / 1 2 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 5 B C D U P 0 1 / 1 2 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 5 B C 1 2 / 1 6 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 5 S 0 5 / 2 1 / 2 0 1 5 N A N A N A N A N A N A AM W - 1 5 S 0 6 / 1 1 / 2 0 1 5 < 0 . 0 5 3 < 0 . 0 8 3 4 1 2 0 < 2 5 0 7 5 . 4 2 . 1 8 AM W - 1 5 S 1 2 / 0 6 / 2 0 1 5 N A N A N A N A N A N A AM W - 1 5 S 0 1 / 1 2 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 5 S 1 2 / 1 6 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 7 B C 0 8 / 1 0 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 7 B C 1 0 / 0 7 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 7 B C 1 1 / 2 1 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 7 S C C R 0 7 / 0 7 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 7 S C C R D U P 0 7 / 0 7 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 7 S 0 7 / 2 8 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 7 S C C R 0 8 / 2 9 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 7 S 1 0 / 0 7 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 7 S C C R 1 1 / 2 1 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 7 S C C R 1 2 / 2 1 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 7 S C C R D U P 1 2 / 2 1 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 8 S 0 7 / 2 8 / 2 0 1 6 N A N A N A N A N A N A AM W - 1 8 S 1 0 / 0 6 / 2 0 1 6 N A N A N A N A N A N A BG M W - 1 0 1 0 / 1 8 / 2 0 1 2 N A N A N A N A N A N A BG M W - 1 0 0 3 / 0 7 / 2 0 1 3 N A N A N A N A N A N A BG M W - 1 0 0 6 / 0 5 / 2 0 1 3 N A N A N A N A N A N A BG M W - 1 0 1 0 / 1 0 / 2 0 1 3 N A N A N A N A N A N A BG M W - 1 0 0 3 / 1 0 / 2 0 1 4 N A N A N A N A N A N A BG M W - 1 0 0 6 / 1 1 / 2 0 1 4 N A N A N A N A N A N A BG M W - 1 0 1 0 / 1 7 / 2 0 1 4 N A N A N A N A N A N A BG M W - 1 0 0 3 / 0 3 / 2 0 1 5 N A N A N A N A N A N A BG M W - 1 0 0 6 / 0 8 / 2 0 1 5 N A N A N A N A N A N A BG M W - 1 0 1 0 / 0 6 / 2 0 1 5 N A N A N A N A N A N A BG M W - 1 0 1 2 / 0 4 / 2 0 1 5 N A N A N A N A N A N A BG M W - 1 0 0 1 / 1 2 / 2 0 1 6 N A N A N A N A N A N A BG M W - 1 0 0 3 / 0 3 / 2 0 1 6 N A N A N A N A N A N A BG M W - 1 0 0 6 / 0 6 / 2 0 1 6 N A N A N A N A N A N A BG M W - 1 0 1 0 / 0 4 / 2 0 1 6 N A N A N A N A N A N A BG M W - 1 0 C A M A 1 0 / 0 4 / 2 0 1 6 N A N A N A N A N A N A BG M W - 1 0 D U P 1 0 / 0 4 / 2 0 1 6 N A N A N A N A N A N A CC R - 1 0 0 S 0 7 / 0 6 / 2 0 1 6 N A N A N A N A N A N A CC R - 1 0 0 S C A M A 0 7 / 2 0 / 2 0 1 6 N A N A N A N A N A N A CC R - 1 0 0 S 0 8 / 3 0 / 2 0 1 6 N A N A N A N A N A N A CC R - 1 0 0 S C A M A 1 0 / 0 6 / 2 0 1 6 N A N A N A N A N A N A CC R - 1 0 0 S 1 1 / 1 7 / 2 0 1 6 N A N A N A N A N A N A CC R - 1 0 0 S 1 2 / 1 5 / 2 0 1 6 N A N A N A N A N A N A CC R - 1 0 0 S C A M A 1 2 / 1 5 / 2 0 1 6 N A N A N A N A N A N A Mn ( I V ) Mn ( I I ) Fe ( I I I ) Fe ( I I ) DM A s MM A s An a l y t i c a l R e s u l t s An a l y t i c a l P a r a m e t e r Re p o r t i n g U n i t s NC 2 L S t a n d a r d P: \ D u k e E n e r g y P r o g r e s s . 1 0 2 6 \ 0 4 . L E E P L A N T \ 2 2 . B a s i s o f D e s i g n R e p o r t \ D e s i g n R p t ( 6 0 ) \ T a b l e s \ T a b l e 2 - 1 B a s e l i n e S i t e C o n d i t i o n s . x ls x Page 10 of 12 TA B L E 2 - 1 BA S E L I N E S I T E C O N D I T I O N S - A R E A C O N S I D E R E D F O R A C C E L E R A T E D R E M E D I A T I O N H. F . L E E E N E R G Y C O M P L E X DU K E E N E R G Y P R O G R E S S , L L C , G O L D S B O R O , N C ug / L u g / L u g / L u g / L u g / L u g / L Mn ( I V ) Mn ( I I ) Fe ( I I I ) Fe ( I I ) DM A s MM A s An a l y t i c a l P a r a m e t e r Re p o r t i n g U n i t s CM W - 0 5 1 2 / 1 3 / 2 0 1 0 N A N A N A N A N A N A CM W - 0 5 0 3 / 0 3 / 2 0 1 1 N A N A N A N A N A N A CM W - 0 5 0 6 / 0 8 / 2 0 1 1 N A N A N A N A N A N A CM W - 0 5 1 0 / 0 5 / 2 0 1 1 N A N A N A N A N A N A CM W - 0 5 0 3 / 1 5 / 2 0 1 2 N A N A N A N A N A N A CM W - 0 5 0 6 / 1 3 / 2 0 1 2 N A N A N A N A N A N A CM W - 0 5 1 0 / 1 7 / 2 0 1 2 N A N A N A N A N A N A CM W - 0 5 0 3 / 0 7 / 2 0 1 3 N A N A N A N A N A N A CM W - 0 5 0 6 / 0 5 / 2 0 1 3 N A N A N A N A N A N A CM W - 0 5 1 0 / 1 1 / 2 0 1 3 N A N A N A N A N A N A CM W - 0 5 0 3 / 1 0 / 2 0 1 4 N A N A N A N A N A N A CM W - 0 5 D U P 0 3 / 1 0 / 2 0 1 4 N A N A N A N A N A N A CM W - 0 5 0 6 / 1 1 / 2 0 1 4 N A N A N A N A N A N A CM W - 0 5 1 0 / 1 7 / 2 0 1 4 N A N A N A N A N A N A CM W - 0 5 D U P 1 0 / 1 7 / 2 0 1 4 N A N A N A N A N A N A CM W - 0 5 0 3 / 0 3 / 2 0 1 5 N A N A N A N A N A N A CM W - 0 5 0 6 / 0 8 / 2 0 1 5 N A N A N A N A N A N A CM W - 0 5 1 0 / 0 6 / 2 0 1 5 N A N A N A N A N A N A CM W - 0 5 D U P 1 0 / 0 6 / 2 0 1 5 N A N A N A N A N A N A CM W - 0 5 1 2 / 0 5 / 2 0 1 5 N A N A N A N A N A N A CM W - 0 5 0 2 / 0 1 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 5 0 3 / 0 3 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 5 D U P 0 3 / 0 3 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 5 0 6 / 0 6 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 5 1 0 / 0 5 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 5 C A M A 1 0 / 0 5 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 6 1 2 / 1 4 / 2 0 1 0 N A N A N A N A N A N A CM W - 0 6 0 3 / 0 3 / 2 0 1 1 N A N A N A N A N A N A CM W - 0 6 0 6 / 0 8 / 2 0 1 1 N A N A N A N A N A N A CM W - 0 6 D U P 0 6 / 0 8 / 2 0 1 1 N A N A N A N A N A N A CM W - 0 6 1 0 / 0 5 / 2 0 1 1 N A N A N A N A N A N A CM W - 0 6 0 3 / 1 4 / 2 0 1 2 N A N A N A N A N A N A CM W - 0 6 0 6 / 1 3 / 2 0 1 2 N A N A N A N A N A N A CM W - 0 6 0 9 / 2 5 / 2 0 1 5 N A N A N A N A N A N A CM W - 0 6 C C R 0 7 / 1 4 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 6 C C R 0 8 / 3 1 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 6 C C R 1 1 / 1 8 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 6 C C R 1 2 / 2 1 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 6 R 1 0 / 1 8 / 2 0 1 2 N A N A N A N A N A N A CM W - 0 6 R 0 3 / 0 7 / 2 0 1 3 N A N A N A N A N A N A CM W - 0 6 R D U P 0 3 / 0 7 / 2 0 1 3 N A N A N A N A N A N A CM W - 0 6 R 0 6 / 0 5 / 2 0 1 3 N A N A N A N A N A N A CM W - 0 6 R 1 0 / 1 1 / 2 0 1 3 N A N A N A N A N A N A CM W - 0 6 R 0 3 / 1 0 / 2 0 1 4 N A N A N A N A N A N A CM W - 0 6 R 0 6 / 1 1 / 2 0 1 4 N A N A N A N A N A N A CM W - 0 6 R D U P 0 6 / 1 1 / 2 0 1 4 N A N A N A N A N A N A CM W - 0 6 R 1 0 / 1 7 / 2 0 1 4 N A N A N A N A N A N A CM W - 0 6 R 0 3 / 0 3 / 2 0 1 5 N A N A N A N A N A N A CM W - 0 6 R D U P 0 3 / 0 3 / 2 0 1 5 N A N A N A N A N A N A CM W - 0 6 R 0 6 / 0 9 / 2 0 1 5 < 0 . 0 5 3 < 0 . 0 8 3 8 4 4 0 4 9 5 0 4 8 1 1 9 . 9 CM W - 0 6 R 1 0 / 0 6 / 2 0 1 5 N A N A N A N A N A N A CM W - 0 6 R 1 2 / 0 5 / 2 0 1 5 N A N A N A N A N A N A CM W - 0 6 R 0 1 / 1 2 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 6 R 0 3 / 0 3 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 6 R 0 6 / 0 6 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 6 R D U P 0 6 / 0 6 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 6 R 1 0 / 0 4 / 2 0 1 6 N A N A N A N A N A N A CM W - 0 6 R C A M A 1 0 / 0 4 / 2 0 1 6 N A N A N A N A N A N A CT M W - 0 1 1 2 / 1 3 / 2 0 1 0 N A N A N A N A N A N A CT M W - 0 1 0 3 / 0 3 / 2 0 1 1 N A N A N A N A N A N A CT M W - 0 1 0 6 / 0 8 / 2 0 1 1 N A N A N A N A N A N A CT M W - 0 1 1 0 / 0 5 / 2 0 1 1 N A N A N A N A N A N A CT M W - 0 1 0 3 / 1 5 / 2 0 1 2 N A N A N A N A N A N A CT M W - 0 1 0 6 / 1 3 / 2 0 1 2 N A N A N A N A N A N A CT M W - 0 1 1 0 / 1 7 / 2 0 1 2 N A N A N A N A N A N A CT M W - 0 1 D U P 1 0 / 1 7 / 2 0 1 2 N A N A N A N A N A N A CT M W - 0 1 0 3 / 0 7 / 2 0 1 3 N A N A N A N A N A N A CT M W - 0 1 0 6 / 0 5 / 2 0 1 3 N A N A N A N A N A N A CT M W - 0 1 1 0 / 1 1 / 2 0 1 3 N A N A N A N A N A N A CT M W - 0 1 0 3 / 1 0 / 2 0 1 4 N A N A N A N A N A N A CT M W - 0 1 0 6 / 1 1 / 2 0 1 4 N A N A N A N A N A N A P: \ D u k e E n e r g y P r o g r e s s . 1 0 2 6 \ 0 4 . L E E P L A N T \ 2 2 . B a s i s o f D e s i g n R e p o r t \ D e s i g n R p t ( 6 0 ) \ T a b l e s \ T a b l e 2 - 1 B a s e l i n e S i t e C o n d i t i o n s . x ls x Page 11 of 12 TA B L E 2 - 1 BA S E L I N E S I T E C O N D I T I O N S - A R E A C O N S I D E R E D F O R A C C E L E R A T E D R E M E D I A T I O N H. F . L E E E N E R G Y C O M P L E X DU K E E N E R G Y P R O G R E S S , L L C , G O L D S B O R O , N C ug / L u g / L u g / L u g / L u g / L u g / L Mn ( I V ) Mn ( I I ) Fe ( I I I ) Fe ( I I ) DM A s MM A s An a l y t i c a l P a r a m e t e r Re p o r t i n g U n i t s CT M W - 0 1 1 0 / 1 7 / 2 0 1 4 N A N A N A N A N A N A CT M W - 0 1 0 3 / 0 3 / 2 0 1 5 N A N A N A N A N A N A CT M W - 0 1 0 6 / 0 8 / 2 0 1 5 N A N A N A N A N A N A CT M W - 0 1 1 0 / 0 6 / 2 0 1 5 N A N A N A N A N A N A CT M W - 0 1 1 2 / 0 5 / 2 0 1 5 N A N A N A N A N A N A CT M W - 0 1 0 2 / 0 1 / 2 0 1 6 N A N A N A N A N A N A CT M W - 0 1 0 3 / 0 3 / 2 0 1 6 N A N A N A N A N A N A CT M W - 0 1 0 6 / 0 7 / 2 0 1 6 N A N A N A N A N A N A CT M W - 0 1 1 0 / 0 5 / 2 0 1 6 N A N A N A N A N A N A CT M W - 0 1 C A M A 1 0 / 0 5 / 2 0 1 6 N A N A N A N A N A N A DM W - 0 2 0 9 / 2 7 / 2 0 1 3 N A N A N A N A N A N A DM W - 0 2 0 6 / 1 5 / 2 0 1 5 N A N A N A N A N A N A DM W - 0 2 0 9 / 2 4 / 2 0 1 5 N A N A N A N A N A N A DM W - 0 2 1 2 / 0 4 / 2 0 1 5 N A N A N A N A N A N A DM W - 0 2 0 1 / 1 2 / 2 0 1 6 N A N A N A N A N A N A DM W - 0 2 1 2 / 1 6 / 2 0 1 6 N A N A N A N A N A N A Pr e p a r e d b y : B E R C h e c k e d b y : T C P No t e s : - B o l d h i g h l i g h t e d c o n c e n t r a t i o n i n d i c a t e s e x c e e d a n c e o f t h e 1 5 A N C A C 0 2 L . 0 2 0 2 S t a n d a r d , t h e I M A C , o r t h e N C D H H S S c r e e n i n g L ev e l f o r c h r o m i u m V I . ( E f f e c t i v e d a t e f o r 1 5 A N C A C 0 2 L . 0 2 0 2 S t a n d a r d a n d I M A C i s A p r i l 1 , 2 0 1 3 ) OR P = O x i d a t i o n R e d u c t i o n P o t e n t i a l D e g C = D e g r e e C e l s i u s mg / L = m i l l i g r a m s p e r l i t e r u m h o s / c m = m i c r o m h o s p e r c e n t i m e t e r ft = F e e t N E = N o t e s t a b l i s h e d mg - N / L = m i l l i g r a m n i t r o g e n p e r l i t e r S p e c C o n d = S p e c i f i c C o n d u c t a n c e ND = N o t d e t e c t e d N T U = n e p h e l o m e t r i c t u r b i d i t y u n i t mV = m i l l i v o l t s N M = N o t m e a s u r e d Te m p = T e m p e r a t u r e S . U . = S t a n d a r d U n i t ug / L = m i c r o g r a m p e r l i t e r D U P = D u p l i c a t e DO = D i s s o l v e d O x y g e n N A = N o t a n a l y z e d Eh = R e d o x P o t e n t i a l < = c o n c e n t r a t i o n n o t d e t e c t e d a t o r a b o v e t h e r e p o r t i n g l i m i t . ^ = N C D H H S H e a l t h S c r e e n i n g L e v e l . * - I n t e r i m M a x i m u m A l l o w a b l e C o n c e n t r a t i o n s ( I M A C s ) o f t h e 1 5 A N C A C 0 2 L S t a n d a r d , A p p e n d i x 1 , A p r i l , 1 , 2 0 1 3 . b = T a r g e t a n a l y t e d e t e c t e d i n m e t h o d b l a n k a t o r a b o v e t h e r e p o r t i n g l i m i t . B1 = T a r g e t a n a l y t e d e t e c t e d i n m e t h o d b l a n k a t o r a b o v e t h e r e p o r t i n g l i m i t . T a r g e t a n a l y t e c o n c e n t r a t i o n i n s a m p l e i s l e s s t ha n 1 0 X t h e c o n c e n t r a t i o n i n t h e m e t h o d b l a n k . A n a l y t e c o n c e n t r a t i o n i n s a m p l e i s n o t a f f e c t e d b y b l a n k c o n t a m i n a t i o n . B2 = T a r g e t a n a l y t e w a s d e t e c t e d i n b l a n k ( s ) a t a c o n c e n t r a t i o n g r e a t e r t h a n 1 / 2 t h e r e p o r t i n g l i m i t b u t l e s s t h a n t h e r e p o r t i n g l i m i t . A n a l y t e c o n c e n t r a t i o n i n s a m p l e i s v a l i d a n d m a y b e u s e d f o r c o m p l i a n c e p u r p o s e s . CL = T h e c o n t i n u i n g c a l i b r a t i o n f o r t h i s c o m p o u n d i s o u t s i d e o f P a c e A n a l y t i c a l a c c e p t a n c e l i m i t s . CR = T h e d i s s o l v e d m e t a l r e s u l t w a s g r e a t e r t h a n t h e t o t a l m e t a l r e s u l t f o r t h i s e l e m e n t . R e s u l t s w e r e c o n f i r m e d b y r e a n a l y s i s . D3 = S a m p l e w a s d i l u t e d d u e t o t h e p r e s e n c e o f h i g h l e v e l s o f n o n - t a r g e t a n a l y t e s o r o t h e r m a t r i x i n t e r f e r e n c e . D6 = T h e r e l a t i v e p e r c e n t d i f f e r e n c e ( R P D ) b e t w e e n t h e s a m p l e a n d s a m p l e d u p l i c a t e e x c e e d e d l a b o r a t o r y c o n t r o l l i m i t s . j = i n d i c a t e s c o n c e n t r a t i o n r e p o r t e d b e l o w P r a c t i c a l Q u a n t i t a t i o n L i m i t ( P Q L ) , b u t a b o v e M e t h o d D e t e c t i o n L i m i t ( M D L ) a n d t h e r e fo r e c o n c e n t r a t i o n i s e s t i m a t e d . L3 = A n a l y t e r e c o v e r y i n t h e l a b o r a t o r y c o n t r o l s a m p l e ( L C S ) e x c e e d e d Q C l i m i t s . A n a l y t e p r e s e n c e b e l o w r e p o r t i n g l i m i t s i n a s so c i a t e d s a m p l e s . R e s u l t s u n a f f e c t e d b y h i g h b i a s . M1 = M a t r i x s p i k e r e c o v e r y w a s h i g h : t h e a s s o c i a t e d L a b o r a t o r y C o n t r o l S p i k e ( L C S ) w a s a c c e p t a b l e . M2 = M a t r i x s p i k e r e c o v e r y w a s L o w : t h e a s s o c i a t e d L a b o r a t o r y C o n t r o l S p i k e ( L C S ) w a s a c c e p t a b l e . M3 = M a t r i x s p i k e r e c o v e r y w a s o u t s i d e l a b o r a t o r y c o n t r o l l i m i t s d u e t o m a t r i x i n t e r f e r e n c e s . M4 = T h e s p i k e r e c o v e r y v a l u e w a s u n u s a b l e s i n c e t h e a n a l y t e c o n c e n t r a t i o n i n t h e s a m p l e w a s d i s p r o p o r t i o n a t e t o t h e s p i k e l e v e l. M6 = M a t r i x s p i k e a n d M a t r i x s p i k e d u p l i c a t e r e c o v e r y n o t e v a l u a t e d a g a i n s t c o n t r o l l i m i t s d u e t o s a m p l e d i l u t i o n . N1 = T h i s s a m p l e w a s i n a d v e r t e n t l y c o l l e c t e d w i t h s a m p l e r u n n i n g t h r o u g h t h e f l o w c e l l a n d s h o u l d b e c o n s i d e r e d i n v a l i d b a s e d o n p o s s i b l e c o n t a m i n a t i o n f r o m t h e f l o w c e l l . N2 = T h e l a b d o e s n o t h o l d a c c r e d i t a t i o n f o r t h i s p a r a m e t e r . R1 = R P D v a l u e w a s o u t s i d e c o n t r o l l i m i t s . S = A s s o c i a t e d c a l i b r a t i o n c h e c k d i d n o t m e e t s p e c i f i e d c r i t e r i a . P: \ D u k e E n e r g y P r o g r e s s . 1 0 2 6 \ 0 4 . L E E P L A N T \ 2 2 . B a s i s o f D e s i g n R e p o r t \ D e s i g n R p t ( 6 0 ) \ T a b l e s \ T a b l e 2 - 1 B a s e l i n e S i t e C o n d i t i o n s . x ls x Page 12 of 12 TABLE 4-1 TARGET EXTRACTION WELL SCREEN INTERVALS H.F. LEE ENERGY COMPLEX DUKE ENERGY PROGRESS, LLC, GOLDSBORO, NC Well ID Depth to Clay Unit2 (feet)Depth to Water2 Target Screen Interval (feet) EW-1 22 1.50 13 - 23 EW-2 22 1.50 13 - 23 EW-3 22 2.00 13 - 23 EW-4 20 4.00 11 - 21 PTW-011 20 4.00 11 - 21 EW-6 38 5.00 29 - 39 EW-7 42 6.00 33 - 43 EW-8 42 4.00 33 - 43 EW-9 42 4.00 33 - 43 Prepared by: JDM Checked by: TCP 1 PTW-01 was installed on July 14, 2016 as part of the pilot test and will be used in the extraction well network. 2 Estimated based on observations from 2015 - 2016 groundwater assessment data P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\Tables\Table 4-1Target Extraction Well Screen Intervals 2-9-17.xlsx Page 1 of 1 Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx APPENDIX A Pilot Test Report Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx APPENDIX B EVALUATION OF ALTERNATIVE REMEDIAL TECHNOLOGIES Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx APPENDIX C FOCUSED GROUNDWATER FLOW MODEL REPORT Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx APPENDIX D FOCUSED GEOCHEMICAL MODEL REPORT Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx APPENDIX E PIPE AND PUMP SELECTION PACKAGE Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx APPENDIX F DESIGN DRAWINGS Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx APPENDIX G TECHNICAL SPECIFICATIONS Basis of Design Report – (60% Submittal) February 2017 H.F. Lee Energy Complex SynTerra P:\Duke Energy Progress.1026\04.LEE PLANT\22.Basis of Design Report\Design Rpt (60)\HF Lee 60% Basis of Design Report Feb 2017.docx APPENDIX H PERMITS