Loading...
HomeMy WebLinkAbout20081087 Ver 1_Restoration Plan_20080710UT to Jumping Run Creek Stream and Wetland Restoration Plan Cumberland County, North Carolina Prepared for the NC Ecosystem Enhancement Program *V rAd - I En Fgsptem o ~ nt PROGRAM Design Report Prepared by Baker Engineering NY, Inc. Kayne Van Stell Project Manager Baker Engineering NY, Inc. 8400 Regency Parkway Suite 200 Cary, North Carolina 27518 Phone: 919.463.5488 Fax: 919.463.5490 Kevin Tweedy, PE Project Engineer EXECUTIVE SUMMARY Baker Engineering proposes to restore 7,057 linear feet (LF) of stream and 96.0 acres (AC) of riparian and non-riparian wetlands, and enhance 1,935 LF of stream and 3.4 AC of riparian wetlands along an unnamed tributary (UT) to Jumping Run Creek. The UT to Jumping Run Creek project site is located in Cumberland County, approximately three miles northeast of Pope Air Force Base within cataloging unit 03030004, and NC Division of Water Quality (NCDWQ) sub-basin 03-06-14 of the Cape Fear River Basin (Exhibit 1.1). The purpose of the project is to restore wetland functions to agriculture and cattle fields on the site and to restore stream functions to the impaired stream channel that flows through it. A recorded conservation easement consisting of 225.3 AC will protect all stream reaches and riparian buffers in perpetuity. Examination of the available hydrology and soil data indicate that there is good potential for the restoration of a productive stream and wetland ecosystem. The UT to Jumping Run Creek Restoration Project will restore a "Coastal Plain Small Stream Swamp" system, as described by Schafale and Weakley (1990). Due to the productivity and accessibility of these systems, most have experienced heavy human and cattle disturbance. Wetland restoration of the farm fields on the site will involve raising the local water table and restoring a natural flooding regime. The existing stream channel on the site will be restored to a stable condition and riverine wetland functions will be restored on the adjacent hydric soil areas. Drainage ditches within the restoration areas will be partially filled to decrease surface and subsurface drainage and raise the local water table. In addition, scarification of the fields and breaking of the local plow pan will provide increased surface storage of water and provide favorable conditions for a variety of native wetland plant species. Wetland functions on the site have been impaired as a result of agricultural conversion and cattle grazing. The stream flowing through the site was channelized many years ago to reduce flooding and provide drainage for adjacent agricultural and cattle fields. Field areas were graded and ditched to promote rapid surface drainage and spoil from channel/pond excavation was spread on floodplain areas. As a result, nearly all wetland functions were removed within the field areas. The channelized stream and drainage ditches flowing through the site no longer function as a Coastal Plain Small Stream Swamp, as displayed by overall poor in-stream habitat and channel form. The proposed project areas are shown in Exhibit 7.1 and described briefly in Table 1.0. The primary design goals of the project are to restore and enhance stream and wetland functions to the impaired areas within the Cape Fear River Basin described above. To achieve these goals the following objectives have been identified: • Restore wetland hydrology to small stream swamp wetlands • Restore stream stability and improve aquatic habitats • Restore historic flow paths and flooding processes • Improve floodplain functionality • Establish native vegetation within the permanent conservation easement • Investigate the ecological benefits of installing larger trees in smaller designated areas throughout the vegetation buffer. BAKER ENGINEERING NY, INC. UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Table 1.0 Project Overview - UT to Jumping Run Creek Site (see Exhibit 7.1) Restoration of wetland hydrology to drained Riparian Wetland Restoration 78.7 AC -10+00 thru areas of hydric soil. Drainage ditches will be - field areas along UTla and 82+39 filled, microtopography reintroduced, planting UTlb of native wetland vegetation, and overbank flooding regimes restored. Existing jurisdictional wetlands within the farm Riparian Wetland 3.4 AC -16+00 thru fields will be enhanced by raising the local water Enhancement - along UTla 60+00 table, restoring an overbank flooding regime, and UTlb (existing and planting of native wetland vegetation. jurisdictional wetland pockets) Existing drained hydric soil areas within the Non-Riparian Wetland 17.3 AC -24+00 thru farm fields will be restored by raising the local Restoration 91+00 water table and planting of native wetland vegetation. Restoration would consist of filling the Stream Restoration of 3,657 LF 10+00 thm channelized portions of stream and restoring Braided Channel (headwater 47+29 valley topography. The system would be stream) - UTla allowed to form on its own, either as a single or braided channel headwater stream within the valley. (DA stream type) Restoration would follow a Rosgen Priority Stream Restoration of Single- 3,400 LF 47+29 thm Level I approach. A new meandering channel Thread Channel (low energy 82+19 Would be constructed across the abandoned stream) - UTlb floodplain. The old stream channel and drainage ditches would be filled. Stream enhancement is proposed for the area of Stream Enhancement - UTlc 1,935 LF 82+19 thm existing forest on the eastern side of the project. 101+54 Flows from the restoration reaches would be routed into the existing channel that currently flows through this wooded area, with minimal disturbance to the existing vegetation. The existing channel is relatively stable, and restoring the historic stream flow would enhance the functions of the stream reach. BAKER ENGINEERING NY, INC. UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Table of Contents 1.0 Project Site Identification and Location ..............................................................................1-1 1.1 Directions to Project Site ................................................................... ..................................1-1 1.2 Report Overview ............................................................................... ..................................1-1 2.0 Watershed Characterization ............................................................... ..................................2-1 2.1 Drainage Area .................................................................................... ..................................2-1 2.2 Surface Water Classification / Water Quality ................................... ..................................2-1 2.3 Physiography, Geology and Soils ...................................................... ..................................2-1 2.4 Historical Land Use and Development Trends ................................. ..................................2-1 2.5 Endangered / Threatened Species ...................................................... ..................................2-2 2.6 Cultural Resources ............................................................................ ..................................2-9 2.7 Potential Constraints .......................................................................... ..................................2-9 3.0 P roject Site Streams (Existing Conditions) ....................................... ..................................3-1 3.1 Channel Classification ....................................................................... ..................................3-1 3.2 Channel Morphology and Stability Assessment ................................ ..................................3-2 3.3 Bankfull Verification ......................................................................... ..................................3-2 3.4 Vegetation ......................................................................................... ..................................3-3 4.0 Reference Streams ............................................................................... ..................................4-1 4.1 Reference Stream Analyses ............................................................... ..................................4-1 5.0 P roject Site Wetlands (Existing Conditions) ..................................... ..................................5-1 5.1 Jurisdictional Wetlands ..................................................................... ..................................5-1 5.2 Hydrological Characterization ........................................................... ..................................5-2 5.3 Soil Characterization ......................................................................... ..................................5-8 5.4 Plant Community Characterization ................................................... ..................................5-9 6.0 Reference Wetland ............................................................................... ..................................6-1 6.1 Hydrological Characterization ........................................................... ..................................6-1 6.2 Soil Characterization ......................................................................... ..................................6-2 6.3 Plant Community Characterization ................................................... ..................................6-2 7.0 P roject Site Restoration Plan .............................................................. ..................................7-1 7.1 Restoration Project Goals and Objectives ......................................... ..................................7-1 7.2 Sediment Transport ........................................................................... ..................................7-5 7.3 In-stream Structures .......................................................................... ..................................7-5 7.4 Restoration of Wetland Hydrology ................................................... ..................................7-6 7.5 Hydrologic Model Analyses .............................................................. ..................................7-8 7.6 Natural Plant Community Restoration .............................................. ................................7-10 BAKER ENGINEERING NY, INC. III UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 7.7 On-site Invasive Species Management ..............................................................................7-13 8.0 Performance Criteria ............................................................................................................8-1 8.1 Stream Monitoring and Evaluation - Reach UTIa ..............................................................8-1 8.2 Stream Monitoring and Evaluation - Reach UTIb ..............................................................8-2 8.3 Stream Monitoring and Evaluation - Reach UTIc ..............................................................8-3 8.4 Wetland Hydrologic Monitoring and Evaluation ................................................................ 8-4 8.5 Vegetation Monitoring and Evaluation ...............................................................................8-5 8.6 Reporting Requirements ......................................................................................................8-5 8.7 Maintenance Issues ..............................................................................................................8-6 9.0 References ...............................................................................................................................9-1 BAKER ENGINEERING NY, INC. IV UT TO JUMPING RUN CREEK SITE RESTORATION PLAN List of Exhibits * All Exh ibits are located at the back of the report, immediately preceding the appendices. Exhibit 1.1 Project Vicinity Map Exhibit 2.1 Project Watershed Boundaries Exhibit 3.1 Site Hydrography Map Exhibit 3.2 Cross-section Location Map Exhibit 4.1 Reference Site Location Exhibit 5.1 Site Stream & Wetland Location Map Exhibit 5.2 NRCS Site Soils Map Exhibit 5.3 Site Hydrology & Monitoring Wells Location Map Exhibit 7.1 Proposed Project Areas Exhibit 7.2 Proposed Revegetation Planting Zones List of Figures Figure 5.1 Hydrographs of the Groundwater Monitoring Wells Compared to Local Rainfall on the UT to Jumping Run Creek Site (July 2007 through April 2008). Figure 5.2 Hydrographs of Modeled and Observed Hydrographs for Autowell # 10 Figure 6.1 Water Table Depths Recorded in a Monitoring Well Installed within the Reference Site. Figure 7.1 Fifty-Seven Year Model Simulations for the Longest Period of Consecutive Days Meeting Wetland Criteria for Conditions Encountered at Restoration Site. BAKER ENGINEERING NY, INC. V UT TO JUMPING RUN CREEK SITE RESTORATION PLAN List of Tables Table 1.0 Restoration Overview Table 2.1 Watershed Land Uses Table 2.2 Species under Federal Protection in Cumberland County Table 2.3 Federal Species of Concern in Cumberland County Table 3.1 Existing Reach Descriptions and Watershed Size Table 3.2 NC Rural Coastal Plain Regional Curve Equations Table 4.1 Reference Parameters Used to Determine Design Ratios Table 5.1 Water Balance Data for Existing Conditions in the Proposed Riparian Wetland Restoration Areas Table 5.2 Water Balance Data for Existing Conditions in the Proposed Non-riparian Wetland Restoration Areas Table 5.3 Comparison of Monthly Rainfall Amounts for Project Site and Long-term Averages Table 5.4 Soil Series Present On-site as Mapped by the NRCS Soil Survey Table 7.1 Project Design Stream Types Table 7.2 Natural Channel Design Parameters for UTIb Table 7.3 Calculated Sediment Transport Data for Design Reach UTIb Table 7.4 In-stream Structure Types and Locations Table 7.5 Proposed Revegetation Species Table 7.6 Proposed Permanent Herbaceous Seed Mixture BAKER ENGINEERING NY, INC. VI UT TO JUMPING RUN CREEK SITE RESTORATION PLAN List of Appendices Appendix 1 Project Site Photographs Appendix 2 Project Site Summary Data, USACE Routine Wetland Determination Data, Forms, and Notification of JD, NCDWQ Stream Classification Forms, SCS Soil Survey Map, Hydric Soils Map and Data Forms Appendix 3 Reference Site Photographs Appendix 4 Reference Site Summary Data and USACE Routine Wetland Determination Data Appendix 5 Hydrologic Gauge Data Summary and DRAINMOD Analysis Files Appendix 6 Natural & Cultural Resources Correspondence and Recorded Conservation Easement Deeds Appendix 7 EDR Transaction Screen Map Report, Categorical Exclusion Checklist, and NCEEP Floodplain Requirements Checklist & Correspondence Appendix 8 Stream Restoration: Background Science and Methods Appendix 9 Wetland Restoration: Background Science and Methods Appendix 10 Project Site Design Tables and Sediment Transport Analysis Appendix 11 Design Plan Sheets BAKER ENGINEERING NY, INC. VII UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 1.0 PROJECT SITE IDENTIFICATION AND LOCATION 1.1 Directions to Project Site The unnamed tributary (UT) to Jumping Run Creek Stream and Wetland Restoration project is located in Cumberland County in central North Carolina, approximately three miles northeast of Pope Air Force Base and just south of the Cumberland-Harnett County line. To reach the site, travel south on US 1 from Raleigh. At the Sanford exit, take US 421 southeast through the city. Turn south on NC 87 which becomes NC 87/24 south. Turn left heading east on East Manchester Road (SR 1451) and travel approximately 2 miles. The site is accessible by turning left (north) onto Long Valley Road (Exhibit 1.1). North of the UT to Jumping Run Creek is Jumping Run Creek, which flows from northwest to southeast and eventually connects to the Lower Little River immediately east of NC 210. The UT to Jumping Run Creek project site is located within cataloging unit 03030004, and NC Division of Water Quality (NCDWQ) sub-basin 03-06-14 of the Cape Fear River Basin (Exhibit 1.1). 1.2 Report Overview This report has been arranged and formatted to maximize its utility. Readers unfamiliar with stream and wetland restoration science and Baker Engineering's methodology may wish to review the background material in Appendices 8 and 9. The following sections cover the site assessment findings, selection and application of design criteria, and site design. Section 8 summarizes post- construction monitoring and evaluation procedures. BAKER ENGINEERING NY, INC. UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 2.0 WATERSHED CHARACTERIZATION 2.1 Drainage Area The UT to Jumping Run Creek Stream and Wetland Restoration Project is located in Cumberland County, approximately six miles north of the Fayetteville city limits. The area lies within cataloging unit 03030004 and NCDWQ sub-basin 03-06-14 of the Cape Fear River Basin (Exhibit 1.1). The watershed areas for the project reaches were determined by delineating watersheds using 2-foot contour intervals generated from a LIDAR (Light Distance and Ranging) DEM (Digital Elevation Model) obtained from the NC Floodplain Mapping Program. The drainage area of the unnamed tributary at its confluence with Jumping Run Creek is estimated to be approximately 1.2 square miles. Exhibit 2.1 shows the subwatershed boundaries for the project area. 2.2 Surface Water Classification / Water Quality NCDWQ designates surface water classifications for water bodies such as streams, rivers, and lakes, which define the best uses to be protected within these waters (e.g., swimming, fishing, and drinking water supply). These classifications carry with them an associated set of water quality standards to protect those uses. All surface waters in North Carolina must at least meet the standards for Class C (fishable/swimmable) waters. The other primary classifications provide additional levels of protection for primary water contact recreation (Class B) and drinking water supplies (WS). Class C waters are protected for secondary recreation, fishing, wildlife, fish and aquatic life propagation and survival, agriculture and other uses suitable for Class C. Classifications and their associated protection rules may also be designed to protect the free flowing nature of a stream or other special characteristics. The project involves a UT to Jumping Run Creek, which eventually flows into the Lower Little River. From its source to the Little River, Jumping Run Creek is classified as "C" water, indicating that the stream and its tributaries are considered to support aquatic life and secondary recreational uses (North Carolina Department of Environment and Natural Resources [NCDENR], 2006). Restoration of the site would reduce the amount of sediment and nutrients being discharged into the system, improving the overall water quality in Jumping Run Creek and the Lower Little River. 2.3 Physiography, Geology and Soils The project site is located in northern Cumberland County within the Sandhills province of the upper Coastal Plain of North Carolina. The project site is located on a terrace of the Lower Little River, and site investigations indicate that the surficial geology of the project site consists of Quaternary alluvium deposited by the Lower Little River and an unnamed tributary to Jumping Run Creek. The subsurface geology in the project vicinity consists of the Cape Fear formation, which is comprised of sandstone and sandy mudstone (Geologic Map of North Carolina, NC Geological Survey, 1998). Soils found on site include Entisols, Inceptisols, and Ultisols formed from alluvium deposited by the Lower Little River. Detailed information about the soils present on-site is provided in Section 5.3. 2.4 Historical Land Use and Development Trends The land cover within the project area consists primarily of pasture, row crop agriculture, and forest. The watershed is mostly rural and largely forested with land uses that include historic cattle pastures, forested areas, and agricultural fields. A residential development is located northwest of the project boundary; however, no significant urbanization is expected in the near future. BAKER ENGINEERING NY, INC. 2-1 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN East Manchester Road (SR1451), a paved roadway, is located south of the project site. Unpaved farm roads cross the UT to Jumping Run Creek and culverts were previously installed at these crossings. Based on correspondence with the North Carolina Ecosystem Enhancement Program (NCEEP), The Nature Conservancy (TNC), and NCDENR's Division of Parks and Recreation, it is anticipated that the project will be adjacent to a future state park and the western road will serve as park access and the eastern road (Long Valley Rd) will provide maintenance access. Table 2.1 Watershed Land Uses ? M177 ?1? Agricultural 45 Forest 30 Residential 25 Water < 1 Wetlands < 1 2.5 Endangered / Threatened Species Some populations of plants and animals are declining because of either natural forces or their inability to compete with humans for resources. Legal protection for federally listed species with Endangered (E), Threatened (T), Proposed Endangered (PE), and Proposed Threatened (PT) status is conferred by the Endangered Species Act of 1973, as amended (16 U.S.C. 1531-1534). Federally classified species listed for Cumberland County, and any likely impacts to these species as a result of the proposed project construction, are discussed in the following sections. The North Carolina Natural Heritage Program (NHP) and US Fish and Wildlife Service (USFWS) lists of rare and protected animal and plant species contain seven federally listed species known to exist in Cumberland County as of May 2, 2007 (see Table 2.2). A brief description of the characteristics and habitat requirements of the federally protected species is included in the following section, along with a conclusion regarding potential project impacts. Federal Species of Concern (FSC) are listed in Table 2.3. For FSC species, efforts will be made to avoid any listed species during the project. Natural Heritage Program biologists Bruce Sorrie and Mike Schafale have recently surveyed The Nature Conservancy property and found no federally listed species within the NCEEP conservation easement. Letters were sent to USFWS and NC Wildlife Resources Commission (NCWRC) in May 2007 requesting each agency to comment on the proposed project. The NCWRC had no objection to the project, and NCEEP has been notified of this correspondence. No comments were received from the USFWS. BAKER ENGINEERING NY, INC. 2-2 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Table 2.2 Species under Federal Protection in Cumberland County. Vertebrates Alligatoridae Alligator American T (S/A) 6-4-1987 T No/No mississippieniss alligator Effect Picidae Picoides Red- E 10-13-1970 E No/No borealis cockaded Effect woodpecker Invertebrates Nymphalidae Neonympha Saint E 4-18-1994 SR No/No mitchellii Francis' Effect francisci satyr Vascular Plants Lauraceae Lindera Pondberry E 7-31-1986 E Yes/No melissifolia Effect Primulaceae Lysimachia Rough-leaf E 6-12-1987 E No/No asperulifolia loosestrife Effect Anacardiaceae Rhus Michaux's E 9-28-1989 E-SC Yes/No michauxii sumac Effect Scrophulariaceae Schwalbea Chaffseed E 9-29-1992 E No/No americana Effect Notes: E An Endangered species is one whose continued existence a s a viable component of the st ate's flora or fauna is determined to be in jeopardy. T Threatened S/A Threatened due to similar appearance 2.5.1 Federally Protected Species 2.5.1.1 Vertebrates American Alligator Alligators are large, lizard-like reptiles with broadly rounded snouts. Adults are 6 to 12 feet long and can reach lengths of 15 feet or more. They are blackish in appearance, but have pale crossbands on the back and vertical markings on the sides. Alligators inhabit rivers, swamps, estuaries, lakes, and marshes throughout the southeastern United States, from North Carolina to Texas. A Biological Conclusion is not required, since Threatened Due to Similarity of Appearance [T (S/A)] species are not afforded full protection under the ESA; however, the project is not expected to have any impact on this species. BAKER ENGINEERING NY, INC. 2-3 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Red-Cockaded Woodpecker The Red-cockaded woodpecker once occurred from New Jersey to southern Florida and west to eastern Texas. It occurred inland in Kentucky, Tennessee, Arkansas, Oklahoma, and Missouri. The Red-cockaded woodpecker is now found only in coastal states of its historic range and inland in southeastern Oklahoma and southern Arkansas. In North Carolina moderate populations occur in the Sandhills and southern Coastal Plain. The few populations found in the Piedmont and northern Coastal Plain are believed to be relics of former populations. The Red-cockaded woodpecker is approximately eight inches long with a wingspan of 14 inches. Plumage includes black and white horizontal stripes on its back, with white cheeks and under parts. Its flanks are streaked black. The cap and stripe on the throat and side of neck are black, with males having a small red spot on each side of the cap. Eggs are laid from April through June. Maximum clutch size is seven eggs with an average of three to five. Red-cockaded woodpeckers are found in open pine stands that are between 80 and 120 years old. Longleaf pine stands are most commonly utilized. Dense stands are avoided. A forested stand must contain at least 50 percent pine, lack a thick understory, and be contiguous with other stands to be appropriate habitat for the Red-cockaded woodpecker. These birds forage in pine and pine hardwood stands, with preference given to pine trees that are 10 inches or larger in diameter. The foraging range of the Red-cockaded woodpecker is up to 500 acres. The acreage must be contiguous with suitable nesting sites. While other woodpeckers bore out cavities in dead trees where the wood is rotten and soft, the Red-cockaded woodpecker is the only one that excavates cavities exclusively in living pine trees. The older pines favored by the red-cockaded woodpecker often suffer from a fungus called red heart disease which attacks the center of the trunk, causing the inner wood to become soft. Cavities generally take one to three years to excavate. The Red-cockaded woodpecker feeds mainly on beetles, ants, roaches, caterpillars, wood-boring insects and spiders, and occasionally fruits and berries. Biological Conclusion: No Effect There is a documented Red-cockaded woodpecker site approximately one mile north of the project site, and Red-cockaded woodpecker nesting and foraging habitat is present on the Long Valley Farm property north of Parcel Area `A' of the NCEEP conservation easement. However, no suitable foraging or nesting habitat was identified within the conservation easement boundaries during field surveys. Although there are Red- cockaded woodpeckers in the vicinity of the project area, the project will not impact woodpecker nesting or foraging sites. Therefore, the biological conclusion for Red- cockaded woodpecker is no effect. 2.5.1.2 Invertebrates Saint Francis' Satyr The Saint Francis' satyr is a small, dark brown butterfly with conspicuous eyespots on the lower wing surface of the fore and hind legs. The eyespots are round to oval shaped with a dark maroon brown center and a straw yellow border. These spots are accentuated with two bright orange bands along the posterior wings and by two darker brown bands along the central portion of each wing. The Saint Francis' satyr is known to inhabit wide, wet meadows dominated by sedges and other wetland graminoids. These wetlands are often relicts of beaver activity and are boggy areas that are acidic and ephemeral. Succession of these sites often leads to either BAKER ENGINEERING NY, INC. 2-4 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN a pocosin or swamp dominated forest. The larval host of the Saint Francis' satyr is thought to feed on grasses, sedges and rushes. Biological Conclusion: No Effect A search of the NHP database, conducted on May 17, 2007, found no occurrence of the St. Francis' Satyr within 1.0 mile of the project area. The species has not been found in the 1:24,000 USGS quadrangle that contains the project site. However, populations of St. Francis' satyr are known in the Overhills quadrangle, which is immediately east of the project site, as well as in the nearby Clifdale quadrangle, which is to the south of Overhills. Saint Francis' Satyr was not observed within the NCEEP conservation easement during field surveys, and suitable habitat for Saint Francis' Satyr is not present on site. Therefore, the biological conclusion for Saint Francis' Satyr is no effect. 2.5.1.3 Vascular Plants Pondberry Pondberry, also known as southern spicebush, is an aromatic, deciduous shrub with erect stems and shoots, growing as high as 6.5 feet. It spreads vegetatively by above ground shoots (stolons). Young stems and leaves are hairy. Leaves are alternate, drooping, and oblong, with hairy edges, a pointed tip and rounded base, 2 to 4 inches long and 0.6 to 1.4 inches wide. Pondberry is characterized by the sassafras-like odor of its crushed leaves and tendency to form thickets of clonal, unbranched stems. Small, pale, and clustered flowers appear from February through April before leaf and shoot growth begins in late April. Fruiting occurs from August to September. The fruit matures in late autumn and is fleshy, oval, bright red, and about 0.25 to 0.5 inches in diameter. Pondberry prefers habitat associated with bottomland hardwood forests in inland areas, poorly drained swampy depressions, and edges of limestone sinks and ponds closer to the coast. It occurs at the edges of swamps and ponds and depressions in forest of longleaf pine and pond pine forests. It is typically found in somewhat shaded areas, but can also grow in full sun. Biological Conclusion: No Effect Although suitable habitat is present for Pondberry on-site, the species was not observed within the NCEEP conservation easement during field surveys. Therefore, the biological conclusion for the construction of the proposed project is No Effect for the Pondberry. Rough-leaved loosestrife The slender stems of this perennial herb grow from a rhizome and reach heights of 1 to 2 feet. Whorls of 3 to 4 leaves encircle the stem at intervals beneath the showy yellow flowers. Flowering occurs from mid-May through June, with fruits present from July through October. Rough-leaved loosestrife is a species endemic to the Coastal Plain and Sandhills of North Carolina and South Carolina. It is currently known from 35 populations in North Carolina and one in South Carolina. North Carolina's extant populations are in the following counties: Brunswick (8 populations); Pender (1 population); Bladen (1 population); Carteret (8 populations); Scotland (3 populations); Cumberland (5 populations); Onslow (3 populations); Hoke (5 populations); and Pamlico (1 population). Historically, Rough-leaved loosestrife was known from 15 other sites in Brunswick, Pender, Cumberland, Onslow, Beaufort, Columbus, Pamlico, and Richmond Counties, BAKER ENGINEERING NY, INC. 2-5 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN North Carolina, and Darlington County, South Carolina. Most of the populations are small, both in area covered and in number of stems. This species generally occurs in the ecotones or edges between longleaf pine uplands and pond pine pocosins, on moist to seasonally saturated sands, and on shallow organic soils overlaying sand. Rough-leaved loosestrife has also been found on deep peat in the low shrub community of large Carolina bays. The grass-shrub ecotone, where rough-leaved loosestrife is found, is fire-maintained, as are the adjacent plant communities (longleaf pine-scrub oak, savanna, flatwoods, and pocosin). Suppression of naturally occurring fire in these ecotones results in shrubs increasing in density and height and expanding to eliminate the open edges required by this plant. Fire suppression, drainage, and, to a lesser extent, residential and industrial development have altered and eliminated habitat for this species and continue to be the most significant threats to the species' continued existence. Biological Conclusion: No Effect Although rough-leaved loosestrife is present south of East Manchester Road (SR 1451), it was not observed within the NCEEP conservation easement during field surveys, and suitable habitat for rough-leaved loosestrife is not present within the conservation easement. Therefore, it can be concluded that the project will have no effect on this species. Michaux's Sumac Michaux's sumac is a densely pubescent rhizomatus shrub that grows 0.7 to 3.3 feet in height. The narrowly winged or wingless rachis supports nine to thirteen sessile, oblong- lanceolate leaflets that are 1.6 to 3.6 inches long, 0.8 to 2 inches wide, acute, and acuminate. The bases of the leaves are rounded and their edges are simple or doubly serrate. Plants flower in June, producing a terminal, erect, dense cluster of four to five greenish-yellow to white flowers. The plant also produces fruit, a red drupe, through the months of August to October. This plant occurs in rocky or sandy open woods and roadsides. It is dependent on disturbance (mowing, clearing, fire) to maintain the openness of its habitat. It grows in open habitat where it can get full sunlight and is often found with other members of its genus as well as with poison ivy. Michaux's sumac is endemic to the inner Coastal Plain and Piedmont physiographic provinces of North Carolina. Biological Conclusion: No Effect Although suitable habitat for Michaux's sumac is present on site, the species was not observed within the NCEEP conservation easement during field surveys. Therefore, the Biological Conclusion for the construction of the proposed project is No Effect. American chaffseed American chaffseed is an erect perennial herb with unbranched stems (or stems branched only at the base) with large, purplish-yellow, tubular flowers that are borne singly on short stalks in the axils of the uppermost, reduced leaves. The leaves are alternate, lance- shaped to elliptic, stalkless, 1 to 2 inches long, and entire. The entire plant is densely, but minutely hairy throughout, including the flowers. Flowering occurs from April to June in the south, and from June to mid-July in the north. Chaffseed fruits are long, narrow capsules enclosed in a sac-like structure that provides the basis for the common name. Fruits mature from early summer in the south to October in the north. Schwalbea is a hemiparasite (partially dependent upon another plant as host). Like most of the BAKER ENGINEERING NY, INC. 2-6 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN hemiparasitic Scrophulariaceae, it is not host-specific, so its rarity is not due to its preference for a specialized host. Although another species (S. austrahs) was once recognized, the genus Schwalbea is now considered to be monotypic. Currently, 51 populations are known, including 1 in New Jersey, 1 in North Carolina, 43 in South Carolina, 4 in Georgia, and 2 in Florida. Chaffseed was never considered to be common, but populations have declined and the range has seriously contracted in recent decades. Many historic populations have been confirmed extirpated due to habitat destruction, primarily due to development. Others have been lost in the absence of habitat destruction, probably as a result of fire exclusion. American chaffseed occurs in sandy (sandy peat, sandy loam), acidic, seasonally moist to dry soils. It is generally found in open, moist pine flatwoods, fire-maintained savannas, ecotonal areas between peaty wetlands and xeric sandy soils, and other open grass-sedge systems. Chaffseed is dependent on factors such as fire, mowing, or fluctuating water tables to maintain the crucial open to partly open conditions that it requires. Historically, the species existed on savannas and pinelands throughout the coastal plain and on sandstone knobs and plains inland where frequent, naturally occurring fires maintained these sub-climax communities. Under these conditions, herbaceous plants such as Schwalbea were favored over trees and shrubs. Most of the surviving populations, and all of the most vigorous populations, are in areas that are still subject to frequent fire. These fire-maintained habitats include plantations where prescribed fire is part of a management regime for quail and other game species, army base impact zones that burn regularly because of artillery shelling, forest management areas that are burned to maintain habitat for wildlife, including the endangered Red-cockaded woodpecker, and various other private lands that are burned to maintain open fields. Fire may be important to the species in ways that are not yet understood, such as for germination of seed, or in the formation of the connection to the host plant. Biological Conclusion: No Effect American Chaffseed was not observed within the NCEEP conservation easement during field surveys. Furthermore, suitable habitat for American Chaffseed, including moist pine flatwoods, fire-maintained savannas, or ecotonal areas between peaty wetlands and xeric sandy soils, is not present within the project area. A search of the NHP database, conducted on May 17, 2007, found no occurrence of American chaffseed within 1.0 mile of the project area. It can be concluded that the project will not impact this species. 2.5.2 Federal Species of Concern and State Status FSC are not legally protected under the Endangered Species Act and are not subject to any of its provisions, including Section 7, until they are formally proposed or listed as Threatened or Endangered. Table 2.3 includes FSC species listed for Cumberland County and their state classifications. Organisms that are listed as Endangered (E), Threatened (T), or Special Concern (SC) on the NHP list of Rare Plant and Animal Species are afforded state protection under the State Endangered Species Act and the North Carolina Plant Protection and Conservation Act of 1979. However, the level of protection given to state-listed species does not apply to NCDENR-NCEEP activities. BAKER ENGINEERING NY, INC. 2-7 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Table 2.3 Federal Species of Concern in Cumberland County Aimophila aestivalis Bachman's sparrow FSC SC Dendroica vixens waynei Black-throated green warbler - Coastal Plain Population FSC SR Heterodon simus Southern hognose snake FSC SC Noturus SP. I Broadtail madtom FSC SC Pituophis melanoleucus melanoleucus Northern pine snake FSC SC Semotilus lumbee Sandhills chub FSC SC Lampsilis cariosa Yellow lampmussel FSC E Campylopus carolinae Savanna Campylopus FSC SR-T Amorpha georgiana var. georgiana Georgia indigo-bush FSC E Astragalus michauxii Sandhills milk-vetch FSC T Chelone cuthbertii Cuthbert's turtlehead FSC SR-L Danthonia epilis Bog oatgrass FSC SR-T Dionaea muscipula Venus flytrap FSC SR-L, SC Lilium pyrophilum Sandhills lily FSC E-SC Lindera subcoriacea Bog spicebush FSC T Litsea aestivalis Pondspice FSC SR-T Lobelia boykinii Boykin's lobelia FSC T Myriophyllum laxum Loose water-milfoil FSC T Parnassia carohniana Carolina grass-of-parnassus FSC E Pteroglossaspis ecristata Spiked medusa FSC E Pyxidanthera barbulata var. brevifolia Sandhills pyxie-moss FSC E Rhexia aristosa Awned meadow-beauty FSC T Solidago verna Spring-flowering goldenrod FSC T Stylisma pickeringii var. pickeringii Pickering's dawnflower FSC E Thalictrum macrostylum Small-leaved meadowme FSC SR-L BAKER ENGINEERING NY, INC. 2-8 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Table 2.3 Federal Species of Concern in Cumberland County Xyris scabrifolia Harper's yellow-eyed-grass FSC SR-T 2.6 Cultural Resources Baker Engineering sent a letter on May 2, 2007 requesting that the North Carolina State Historic Preservation Office (HPO) review and comment for the potential of cultural resources in the vicinity of the UT to Jumping Run Creek Restoration Project. On May 15, 2007, HPO sent a response which noted that the project area was included in the Long Valley Historic District. Per HPO request, an effects meeting was held on July 27, 2007 to determine if the project site had any adverse effects to the Long Valley Historic District. Based on HPO's review and conclusion of the proposed project, they are not aware of any historic resources that would be adversely affected by the restoration project. All correspondence on the Cultural Resources associated with this project are included in Appendix 6. 2.7 Potential Constraints Baker Engineering assessed the UT to Jumping Run Creek project site in regards to potential fatal flaws and site constraints. The project is located in a predominantly rural watershed, with no plans for significant land use changes in the foreseeable future. Two existing culvert crossings were considered during the design of the stream alignment for UTla and UTlb. Both road crossings must be maintained for farm operations and future park access and the 60-foot right-of-ways (ROWS) are not included in the overall project boundaries. An existing powerline has a 30-foot public utility easement maintained by Progress Energy that runs between parcel areas `B' and `C' on the recorded conservation easement plat. No vegetation planting will occur outside of the conservation easement boundary and planting signage shall be posted on-site to help avoid any disturbances to the establishment of buffer vegetation. No other foreseen constraints or fatal flaws associated with structure and/or infrastructure encroachments have been identified during project design development. 2.7.1 Property Ownership and Boundary The conservation easement plat and documents have been reviewed and approved by the State Property Office. At the publication of this report, the required signatures have been obtained from the landowner (TNC) and the easement documents were recorded at the Cumberland County Register of Deeds on April 30, 2007. Copies of the recorded conservation easement deeds are located in Appendix 6. 2.7.2 Site Access The site is located just north of East Manchester Road (SR 1451) along the North Carolina Department of Transportation (NCDOT) 60-foot ROW and may be accessed by Long Valley Road connected to SR 1451 for construction and post-restoration monitoring. BAKER ENGINEERING NY, INC. 2-9 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 2.7.3 Utilities The site has a 30-foot power line easement that runs between parcel areas `B' and `C' as shown on the recorded conservation easement plat. The utility easement is owned and maintained by Progress Energy but will not impact the design/construction and will be undisturbed. 2.7.4 FEMA / Hydrologic Trespass The lower end of the UT to Jumping Run Creek site is currently located within a Federal Emergency Management Agency (FEMA)-identified flood zone (FIRM 3720051300L Zone A) No specific base flood elevations have been determined for Zone A areas and it appears that this area is mapped due to backwater conditions from Jumping Run Creek. Baker sent a letter to the Cumberland County floodplain manager summarizing the project and based on additional correspondence the UT to Jumping Run Creek is not in a special flood hazard area nor is it considered a small stream by definition in the Cumberland County Flood Damage Prevention Ordinance. Thusly, the proposed project is not regulated by the floodplain development ordinance and no permits will be required through the Cumberland County Engineering Department. A copy of the correspondence letter and NCEEP Floodplain Requirements Checklist is included in Appendix 7. 2.7.5 Endangered / Threatened Species Rare, threatened, and endangered species occurrences were examined as part of the existing conditions survey (Section 2.5). T & E surveys were recently conducted by Natural Heritage Biologists Bruce Sorrie and Mike Schafale and they concluded that no rare, threatened, or endangered species will be affected by this restoration project. 2.7.6 Cultural Resources Based on a review of the site by HPO as described in Section 2.6, no historic resources are anticipated to be impacted by the proposed project. 2.7.7 Farm Operations The UT to Jumping Run Creek parcels are actively used for agricultural and cattle grazing purposes. Therefore, the project must not interfere with the operational needs of the farm outside the conservation easement. However, it is anticipated through correspondence with TNC, NCDENR Division of Parks & Recreation, and NCEEP that the immediate areas surrounding the project site will be transferred to NCDENR's Division of Parks and Recreation around December 2008. It is anticipated the final project design will not require stream crossings for cattle access since they are to be removed, but field access will be dependent on the landowner status at the time of construction. 2.7.8 Soils Soils have been investigated and no constraints or fatal flaws were identified (See Section 5.3). 2.7.9 Potentially Hazardous Environmental Sites Baker Engineering obtained an EDR Transaction Screen Map Report, dated May 1, 2007, that identifies and maps real or potential hazardous environmental sites within the distance required by the American Society of Testing and Materials (ASTM) Transaction Screen Process (E 1528). The overall environmental risk for this site was determined to be low. Environmental sites, including Superfund (National Priorities List [NPL]); hazardous waste treatment, storage, BAKER ENGINEERING NY, INC. 2-10 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN or disposal facilities; the Comprehensive Environmental Response, Compensation, and Liability Act Information System (CERCLIS); suspect state hazardous waste, solid waste, or landfill facilities; or leaking underground storage tanks were not identified by the report in the proposed project area. During field data collection, there was no evidence of these sites in the proposed project vicinity. The EDR Report and Environmental Risk Review were submitted with the ERTR to NCEEP on June 12, 2007. Copies of the EDR and Categorical Exclusion Checklist are included in Appendix 7. BAKER ENGINEERING NY, INC. 2-11 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 3.0 PROJECT SITE STREAMS (EXISTING CONDITIONS) 3.1 Channel Classification For analysis purposes, Baker Engineering labeled the existing unnamed tributaries UTa, UTb and UT2 respectively. The existing UT reach locations are shown on Exhibit 3.1. The main channel (UTa) begins at the westernmost project boundary and flows northeast towards Long Valley Road where it has been rerouted through a culvert crossing and disconnected from its historical flow path towards the confluence with Jumping Run Creek. UTb is a drainage ditch that begins near the powerline easement and heads east for approximately 950 linear feet (LF) where it turns north and parallels Long Valley Road until it connects with UTa near the culvert crossing. UT2 is another drainage ditch that begins west of Long Valley Road, approximately 200 feet upstream of the confluence between UTa and UTb. Based on field verification with the US Army Corps of Engineers (USACE) of intermittent or perennial status, UTa and its associated drainage ditches were determined to be perennial streams (based on a minimum score of 30 for perennial streams and/or the presence of biological indicators) using the NCDENR and NCDWQ Determination of the Origin of Perennial Streams stream assessment protocols and guidelines (see stream forms in Appendix 2 and Exhibit 3.1). The total current length of the existing stream (UTa) and its associated ditches (UTb and UT2) on the project site is 11,432 LF, which is based on the field survey conducted by Baker Engineering. The main channel (UTa) will be designated UT to Jumping Run Creek for the purposes of this report. UT to Jumping Run Creek is a small, perennial stream with a total drainage area of approximately 1.2 square miles at its confluence with Jumping Run Creek (Exhibit 2.1). Historically, the site has been used for agricultural production and cattle grazing. Cleared areas throughout the project boundaries are currently used for seasonally rotated crop production and cattle grazing. The riparian vegetation in this area is predominantly herbaceous plants that area regularly maintained by mowing and crop production. Additionally, cattle grazing and wallowing have limited any efforts for native woody vegetation to establish along the trampled stream banks, which has resulted in bank degradation and an inadequate riparian buffer throughout the majority of stream channels. The downstream portion of the site is wooded with a mature bottomland hardwood swamp forest that has some evidence of past channel disturbance. UT to Jumping Run Creek has been straightened/channelized and dredged in the past. Currently, the tributary is difficult to classify using the Rosgen stream classification (Rosgen, 1996). The past manipulation has redirected the existing stream alignment under both the western dirt road and Long Valley Road and has created a channel that is overly wide and overly deep for the given drainage area. There is little channel slope (0.0006 ft/ft) within the stream sections upstream of the Long Valley Road culvert crossing. Essentially the channel is functioning as a long, linear pond, holding backwater throughout this portion of the reach. This condition has been exacerbated by beaver activity which has created numerous dams throughout various channel sections. Within the existing field and forested areas at the upstream and downstream end of the project, the UT most likely existed prior to conversion as a multi-channel (DA) system, or a transition system between a single thread and multi-thread system. This is evidenced by the presence of historic channels and soil features in the area and described further in Sections 4.1 and 7.1. The slope steepens slightly (0.003 ft/ft) within the disconnected downstream section east of Long Valley Road before it connects to the confluence with Jumping Run Creek downstream and exhibits a more free flowing system within the forested area. The NC Coastal Regional Curve (See Table 3.2) estimates a bankfull cross-sectional area of approximately 11 square feet for a 1.2 square mile watershed. However, the existing channel has cross- sectional areas at the top-of-banks that range from 20 square feet to 100 square feet. Since Rosgen's BAKER ENGINEERING NY, INC. 3-1 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN stream classification system (Rosgen, 1996) depends on the proper identification of bankfull, the stream classification is difficult under these conditions, but the UT to Jumping Run Creek was assessed as a channelized F5 stream type channel due to low bank heights relative to base-flow conditions. Additionally, feature formation throughout the channelized reach is poor with very little habitat diversity or woody debris. Bed features are far below baseflow water levels due to backwater effects. The stream is not protected by adequate riparian vegetation with the exception of the forested areas at the downstream end of the project reach. The ditch banks within the field areas are routinely maintained by mowing and cattle grazing. The modified Wolman pebble count (Rosgen, 1994) is not appropriate for sand-bed streams; therefore, a bulk sampling procedure was used to characterize the bed material. The majority of the reach had an organic muck stream bottom due to the backwater conditions in the channel. Bed material samples were collected. The samples collected were taken back to a lab and dry sieved to obtain a sediment size distribution. The sieve data show that the UT to Jumping Run Creek has a D50 of 0.40-mm indicating that the dominant bed material in the stream channel is medium sand, silt, and muck under current conditions. The stream displays no measurable meander geometry due to its channelized condition. These conditions generally lead to lateral instability over time; however, a low-flow regime, backwater conditions, and herbaceous vegetation on the banks have served to maintain some stability along the reach. 3.2 Channel Morphology and Stability Assessment Baker Engineering performed general topographic and planimetric surveying of the project site and produced a contour map based on survey data in order to create plan set base mapping. Cross-section surveys were also performed to assess the current condition and overall stability of the stream channel and ditches. Cross-section locations are shown on Exhibit 3.2. The following report subsections summarize the survey results for the existing reaches. The watershed size was calculated at the terminus of the project and summarized in Table 3.1. Appendix 2 contains summaries of existing condition parameters, cross-section survey results, and bed material distribution graphs for the site. Table 3.1 Existing Reach Description and Watershed Size 1 1 i UTa and UTa.1 9,026 1.2 A_2 (upstream) = 33 (main UT channel) A_1 (downstream) = 41 UTb (drainage ditch) 1,859 1.0 B_1 = 35.5 UT2 (drainage ditch) 547 1.0 22 = 26 3.3 Bankfull Verification An accurate identification of bankfull stage could not be made throughout the UT to Jumping Run Creek project area due to backwater and channelized conditions. Some indicators were apparent, but the reliability of the indicators was questionable due to the altered condition of the stream channels. For this reason, bankfull stage was identified through the use of regional curve information. Regional curve equations developed from the North Carolina Rural Coastal Plain study are provided by Sweet and Geratz (2003) and Doll (2003) and are shown in Table 3.2. Due to man-made alterations and beaver activity, normal channel forming processes do not to occur at the site. BAKER ENGINEERING NY, INC. 3-2 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Table 3.2 NC Rural Coastal Plain Regional Curve Equations Qbkf = 8.79 AW 0.76 R2 =0.92 Abkf = 9.43 AW 0.74 R2 =0.96 Wbkf = 9.64 AW 0.38 R2 =0.95 Dbkf = 0.98 AW 0.36 R2 =0.92 Qbkf 16.56 Aw 0.72 R2= 0.90 Abkf = 14.52 AW 0.66 R2 =0.88 Wbkf = 10.97 AW 0.36 R2 =0.87 Dbkf = 1.29 AW 0.30 R2 =0.74 3.4 Vegetation The habitat within and adjacent to the proposed project area consists of pasture, fallow agricultural fields, disturbed pine forest, and Coastal Plain Small Stream Swamp (Blackwater subtype), as described by Schafale and Weakley (1990). The riparian areas ranged from relatively disturbed to very disturbed. Photographs of the project area are included in Appendix 1, and a general description of each community follows. 3.4.1 Coastal Plain Small Stream Swamp - Blackwater Subtype These forested areas cover approximately three percent of the project area and are near the confluence of the UT with Jumping Run Creek. The canopy in this community is dominated by Bald cypress (Taxodium distichum) and Swamp blackgum (Nyssa biflora), and the understory is comprised of Red maple (Acer rubrum), American holly (Ilex opaca), and Sweetbay (Magnolia virginiana). Shrub species include Sweet pepperbush (Clethra alnifolia) and Giant cane (Arundinaria gigantea). Herb species include but are not limited to Chain fern (Woodwardia areolata) and Smartweeds (Polygonum spp.). 3.4.2 Agricultural Fields and Pasture Areas This community is the most dominant and covers approximately 75 percent of the project area. In the recent past, pasture areas have been used for grazing and hay production, and fallow agricultural fields have been used for corn production. Vegetation within open fields and pasture areas is primarily comprised of Fescues (Festuca spp.) and Dog fennel (Eupatorium capillifolium). In wooded riparian areas within the pastures and fields, the canopy is dominated by Loblolly pine (Pinus taeda), and understory species consist of Red maple (Acer rubrum), Sweetgum (Liquidambar styraciflua), and Persimmon (Diospyros virginiana). Woody shrub and vine species include Chinese privet (Ligustrum sinense), Maleberry (Lyonia ligustrina), Tag alder (Alnus serrulata), Greenbriar (Smilax rotundifolia), and Muscadine (Vitis rotundifolia). Herbaceous species consist of Dog fennel (Eupatorium capillifolium), Soft rush (Juncus effusus), and Sedges (Carex spp.). 3.4.3 Disturbed Pine Forest These forested areas comprise approximately 20 percent of the project area. Ditches, spoil piles, ruts, and other evidence of land disturbance suggest these forested areas were once used for agriculture or pasture. The canopy is dominated by Loblolly pine (Pinus taeda) but also includes BAKER ENGINEERING NY, INC. 3-3 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Sweetgum (Liquidambar styraciflua), Yellow poplar (Liriodendron tulipifera), and Water oak (Quercus nigra). Woody shrub and vine species include Chinese privet (Ligustrum sinense), Giant cane (Arundinaria gigantea), Greenbriar (Smilax rotundifolia), Blackberry (Rubus sp.), and Muscadine (Vitis rotundifolia). Herbaceous species include Netted chainfern (Woodwardia areolata) and Cinnamon fern (Osmunda cinnamomea). 3.4.4 Invasive Species The primary invasive species present on the project site are Multiflora rose (Rosa multiflora) and Chinese privet (Ligustrum sinense) which were found interspersed primarily throughout the minimal riparian buffer areas along the streambanks. BAKER ENGINEERING NY, INC. 3-4 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 4.0 REFERENCE STREAMS 4.1 Reference Stream Analyses An extensive search was conducted of the area surrounding the project site in an attempt to locate a reference stream system within a similar valley type. Many valleys were identified with similar drainage areas, soils, and topography; however, all that were investigated had been drained and any stream and/or wetland features that may have been present had been channelized or modified. Since no appropriate reference site was identified near the project site, reference data from other Coastal Plain stream systems were evaluated to help in the development of design criteria. First, valley topography and valley slope were evaluated on the project site. The western portion of the site exhibits a flatter overall topography than the eastern portion of the site (approximately 0.0011 ft/ft for the western portion, compared to approximately 0.0013 to 0.0041 ft/ft for the eastern portion of the valley). The eastern portion of the valley is also more defined with greater topography difference between the valley bottom and the ridges. The increased valley incision and slope from west to east would be expected along a small tributary system that drains to a large creek, as is the case for the project site. On-going research conducted by Baker in the Croatan National Forest has been aimed at determining the point at which small Coastal Plain tributaries develop defined stream channels. Data collected thus far indicate that for small tributary drainages, single channels are often found when drainage areas approach one square mile and slope is 0.001 ft/ft or greater. For smaller drainages and decreased slopes, braided systems that function more like headwater wetlands are more common. While these data are preliminary, they provide a basis for evaluating the valley topography of the project site and determining the stream systems that may have been present historically. For the western half of the project site, where valley slope is lowest, a braided channel design is proposed, as described more fully in Section 7.1. For these systems, channel formation is poor, and flows are often conveyed through multiple small channels across a relatively well defined floodplain. Microtopography in these systems is quite variable, as a result of tree roots, tip mounds, and debris jams. Debris appears to be a critical component in maintaining the braided characteristics of flow, as stream energy is not sufficient to provide scour and movement of large debris. As valley slope increases along with the drainage area on the eastern portion of the site, a single thread stream design is proposed. Design parameters here are based on reference reach data collected from a number of small Coastal Plain stream systems (see Table 4. 1), and past project experience from completed designs. Collectively, the data provide valuable information regarding the range of conditions documented for similar headwater stream systems. Shear stress and stream power relationships developed for these reference sites are used in the sediment transport analysis shown in Appendix 8, Section 6, Figures 1 and 2. BAKER ENGINEERING NY, INC. 4-1 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Table 4.1 Reference Parameters Used to Determine Design Ratios u i 1. F; Drainage Area, DA (sq mi) 1.0 19.5 Stream Type (Rosgen) E5 / C5 Bankfull Discharge, Qbkf (cfs) 10.0 127.1 Bankfull Riffle XSEC Area, Abkf (sq ft) 7.8 95.9 Bankfull Mean Velocity, Vbkf (ft/s) 1.0 1.4 Width to Depth Ratio, W/D (ft/ft) 8 14 Entrenchment Ratio, Wfpa/Wbkf (ft/ft) 4 13 Riffle Max Depth Ratio, Dmax/Dbkf 1.2 2.0 Bank Height Ratio, Dtob/Dmax (ft/ft) 1.0 1.3 Meander Length Ratio, Lm/Wbkf 4 17 Re Ratio, Rc/Wbkf 1.5 3.0 Meander Width Ratio, Wblt/Wbkf 2.0 6.3 Sinuosity, K 1.22 1.77 Valley Slope, Sval (ft/ft) 0.0007 0.0029 Channel Slope, Schan (ft/ft) 0.0004 0.0022 Pool Max Depth Ratio, Dmaxpool/Dbkf 1.8 2.0 Pool Width Ratio, Wpool/Wbkf 0.8 1.4 Pool-Pool Spacing Ratio, Lps/Wbkf 100 d16 (mm) 0.3 d35 (mm) 0.4 d50 (mm) 0.5 d84 (mm) 0.9 d95 (mm) 1.2 *Notes: Composite reference reach information from Johannah Creek, Johnston County; Panther Branch, Brunswick County; Rocky Swamp, Halifax County; and Beaver Dam Branch, Jones County. 4.1.1 Reference Stream Vegetation This relatively undisturbed vegetation community is located on-site within the downstream project area (easement area `D') and is best described as a Coastal Plain Small Stream Swamp (Blackwater subtype) (Schafale and Weakley, 1990). Canopy species include Bald cypress (Taxodium distichum), Swamp tupelo (Nyssa bifora), Sweetgum (Liquidambar styracifua), Loblolly pine (Pinus taeda), BAKER ENGINEERING NY, INC. 4-2 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN American holly (Ilex opaca), Tulip poplar (Driodendron tulipifera), Red maple (Acer rubrum), Willow oak (Quercus phellos), Water oak (Quercus nigra), and Black gum (Nyssa sylvatica). Woody and vine species consist of Giant cane (Arundinaria gigantea), Grape (Vitis sp.), and Greenbriar (Smilax sp.). Herbaceous species include cinnamon fern (Osmunda cinnamomea). BAKER ENGINEERING NY, INC. 4-3 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 5.0 PROJECT SITE WETLANDS (EXISTING CONDITIONS) 5.1 Jurisdictional Wetlands The proposed project area was reviewed for the presence of wetlands and waters of the United States in accordance with the provisions of Executive Order 11990, the Clean Water Act, and subsequent federal regulations. Wetlands have been defined by the USACE as "those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas" (33 CFR 328.3(b) and 40 CFR 230.3 (t)). The areas in the project boundaries that displayed one or more wetland characteristics were reviewed to determine the presence of wetlands. The wetland characteristics included: 1. Prevalence of hydrophytic vegetation. 2. Permanent or periodic inundation or saturation. 3. Hydric soils. On June 5, 2007, the USACE and US Environmental Protection Agency (USEPA) issued joint guidance for their field offices for Clean Water Act jurisdictional determinations in response to the Supreme Court's decision in the consolidated cases of Rapanos v. United States and Carabell v. United States (USEPA and USACE, 2007). Based on this guidance, the agencies will assert jurisdiction over the following waters: • Traditional navigable waters (TNWs) • Wetlands adjacent to TNWs • Non-navigable tributaries of TNWs that are considered relatively permanent waters (RPWs). Such tributaries flow year-round or exhibit continuous flow for at least 3 months. • Wetlands that directly abut RPWs. The agencies will decide jurisdiction over the following waters based on a standardized analysis to determine whether they have a significant nexus with a traditional navigable water: • Non-navigable tributaries that are not relatively permanent waters (non-RPWs) • Wetlands adjacent to non-RPWs • Wetlands that are adjacent to but do not directly abut an RPW. The significant nexus analysis is fact-specific and assesses the flow characteristics of a tributary and the functions performed by all its adjacent wetlands to determine if they significantly affect the physical, chemical, and biological integrity of downstream TNWs. A significant nexus exists when a tributary, in combination with its adjacent wetlands, has more than a speculative or insubstantial effect on the physical, chemical, or biological integrity of a TNW. The USACE and USEPA will apply the significant nexus standard within the limits of jurisdiction specified by the Supreme Court decision in the case of Solid Waste Agency of Northern Cook County (SWANCC) v. US Army Corps of Engineers. Under the SWANCC decision, the USACE and USEPA cannot regulate isolated wetlands and waters that lack links to interstate commerce sufficient BAKER ENGINEERING NY, INC. 5-1 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN to serve as a basis for jurisdiction under the Clean Water Act. Though isolated wetlands and waters are not regulated by the USACE, within the state of North Carolina isolated wetlands and waters are considered "waters of the state" and are regulated by the NCDWQ under the isolated wetlands rules (15A NCAC 2H. 13 00). 5.1.1 Wetland Impacts Under existing conditions, the fields proposed for wetland restoration are drained by a network of ditches that allow these areas to be used for agricultural production and pasture. The majority of wetland areas once present on-site were drained and manipulated to promote these land uses. At present, former wetland areas contain hydric soils but lack wetland hydrology and hydrophytic vegetation. Over 11,000 LF of streams and ditched were channelized within the project area to improve surface and subsurface drainage and to decrease flooding. Temporary wetland impacts associated with the restoration activities are considered minimal and required for overall restoration success. These areas total 3.4 acres (AC) and are shown on Exhibit 5.1. 5.1.2 Jurisdictional Wetland Findings Baker personnel delineated jurisdictional wetlands and waters on-site based on the USACE 1987 Wetland Delineation Manual (USACE, 1987) and indicators of ordinary highwater mark (OHWM) specified in USACE Regulatory Guidance Letter No. 05-05. Jurisdictional wetlands and waters were flagged in the field and located using a combination of MagellanTM Mobile Mapper Pro GPS hardware, Real Time Kinematic (RTK) methodology, and conventional survey techniques. On February 4, 2008, Mr. Ronnie Smith of the USACE issued a jurisdictional determination (JD) for the project site (USACE Action ID SAW-2007-03276). Jurisdiction under Section 404 of the Clean Water Act is limited to UT to Jumping Run Creek and the wetlands and additional tributaries depicted on Exhibit 5.1 that total approximately 3.4 AC of wetland and 8,925 LF of stream. See Appendix 2 and Exhibit 5.1 for JD notification and delineation boundaries. 5.2 Hydrological Characterization 5.2.1 Site Hydrology The presence of hydric soils over much of the project site is evidence that the site historically supported a wetland ecosystem. As is the case in much of the Coastal Plain and Sandhills Region, local drainage patterns have been altered over the last two centuries to increase drainage and promote agricultural production. During conversion of the site, wetlands were ditched and UT to Jumping Run Creek was channelized to improve drainage. Exhibit 3.1 illustrates the extent of ditching and channelization that has been performed on UT to Jumping Run Creek. The existing hydrology of the site is controlled by this channelized stream and an adjoining ditch network. There is one man-made pond and 3.4 acres of existing wetlands within the project limits. Under existing conditions, precipitation that falls on the pasture and fields is rapidly directed to the drainage ditches and channelized stream. Ten automated groundwater wells were installed in the project area to evaluate current hydrologic conditions on-site, as shown in Exhibit 5.3. These wells provide a basis for comparing pre- and post- restoration hydrology on the site. Water table data were collected from the wells from July 2007 through June 2008 as shown in Figure 5.1. The wells were installed in existing pasture and field areas targeted for restoration. Wells were installed across a range of elevations and locations to BAKER ENGINEERING NY, INC. 5-2 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN evaluate the range of hydrologic conditions on-site. The wells were installed to a depth of 41 inches below ground surface, and the automated loggers (RDS EcotoneTM WM units) were programmed to record water table levels every 12 hours. Most well locations exhibited similar trends in water table depth throughout the monitoring period that in part reflect seasonal changes in rainfall. Due to severe drought conditions, water table levels for all wells were lowest during the period from July through October of 2007, and water tables at most well locations remained deeper than 30 inches during this time. Water table levels spiked in response to significant rainfall events during this period; however, most monitored locations exhibited a rapid drop in water table depth once rainfall ended. This provides evidence to the drained condition of the site that results from the channelized stream and ditch network. In late October 2007, the water table at the majority of well locations, including the reference wetland well, rose following a 4.5 inch rainfall event and stabilized at depths shallower than those observed from July through October 2007. In late December 2007, the water table at all monitored locations began to rise, and through April 2008 the water table at the majority of well locations remained at a shallower depth relative to water table levels observed from July through December of 2007. This trend in local water table depths reflects the combined effect of a seasonal increase in precipitation and lower evapotranspiration losses during the winter and spring of the monitoring period. Local water table depths at monitored locations are also influenced by topography, soil properties, and the local water level in UT to Jumping Run Creek. One of the wetter monitored locations on the site is Well #1, which is located in the western most field (easement area `A'). The wetter conditions of this location seem to be the result of the well being located in a slight topographic swale, and it is likely that this location receives significant seepage from the adjacent hillslope. Wells 46 and # 10 are also located in topographic lows and exhibit water table levels that appear to correlate with the water level in the adjacent UT to Jumping Run Creek. During the drought conditions of summer and fall of 2007, wells 46 and # 10 appeared to level out between rainfall events at absolute elevations of 146.5 to 147.5 feet and 148.0 to 148.5 feet, respectively, that correlate with the observed and measured seasonal water level within UT to Jumping Run Creek adjacent to the well locations. This suggests that the UT is affecting water table levels at these locations. Water tables at wells 42, 45, and 47 also appear to be influenced in a similar manner by the water level in UT to Jumping Run Creek and connected ditches. The water table at well 44 was considerably deeper than most other wells on site from November 2007 through February 2008. This observation in part reflects the difference in local water surface elevations in the UT between the well 44 location and well locations immediately upstream. Backwater effects from a beaver dam, as well as a change in the longitudinal profile of the UT, both located between existing condition survey stations 56+00 (approximate well 46 location) and 67+00 (approximate well 44 location) (see UT to Jumping Run Creek Longitudinal Profile, Appendix 2), result in a lower UT water surface elevation relative to well elevation at the well 44 location than at well locations 45 and 46. The fact that well 44 is positioned between two ditches within highly conductive, coarsely textured soils also enhances drainage at this location. Wells 48 and 49 exhibit slightly different hydrographs than the other wells on-site; these well locations have relative elevations one to two feet higher above the local UT water surface than the other wells on-site and because of this are not as sensitive to backwater effects from the UT. Well locations that appear to be influenced by water levels in UT to Jumping Run Creek are located between 130 and 230 feet from the UT. For water table levels to be directly affected at this distance, the soils would be expected to exhibit high saturated hydraulic conductivity measurements. This has been confirmed by on-site measurements and observations of on-site soil profiles. The majority of the hydric soils along the UT contain a sandy C horizon with an upper boundary at depth of approximately 3 feet. The depth of the channelized UT is approximately 4 to 5 feet deep in most BAKER ENGINEERING NY, INC. 5-3 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN locations; therefore, the UT intercepts this highly conductive sub-soil layer. This allows the UT and other deep drainage ditches on the site to have a marked effect on the local water table depth. Figure 5.1 Hydrographs of the Groundwater Monitoring Wells Compared to Local Rainfall on the UT to Jumping Run Creek Site (July 2007 through April 2008). Jumping Run Well and Rain Measurements Date m t 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 0 E 01 1 V 1 Automatic rain gauge installed on 8/16/07 _ 2 c 3 10 Auto Well 1 -Auto Well 2 Auto Well 3 Auto Well 4 Auto Well 5 Auto Well 6 --*•-Auto Well 7 -•F• Auto Well 8 Auto Well 9 Auto Well 10 JR REF i, 0 q v v 10 w - i {{, t 20 I t7 - 4 rl' li ? rl m 30 ak ? "] •??n" -rJi7nrfi "^4 d AL - ` .0 *,, ???? 4h , ?? 11 -40 50 - 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date 5.2.2 Hydrologic Modeling and Site Water Budget To further investigate the current hydrologic status of the site and provide a means for evaluating proposed restoration plans, hydrologic models were developed to simulate site hydrology. DRAINMOD (version 5.1) was used to develop hydrologic simulation models to represent conditions across the proposed restoration area. DRAINMOD was identified as an approved hydrologic tool for assessing wetland hydrology by the NRCS (1997). For more information on DRAINMOD and its application to high water table soils, review Skaggs (1980) and Appendix 5. Model parameters were selected based on field measurements and professional judgment about site conditions. Rainfall and air temperature information were collected from the nearest automated weather station where long-term data were available (Fayetteville, NC, COOP: 313017 and Dunn, NC, COOP 312500). Measured field parameters were entered into the models, and initial model BAKER ENGINEERING NY, INC. 5-4 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN simulations were compared with data collected from the monitoring wells. To calibrate the model, parameters not measured in the field were adjusted within the limits typically encountered under similar soil and geomorphic conditions until model simulations most closely matched observed well data. In order to capture the full range in hydrologic, soil, and topographic conditions within the area targeted for restoration, multiple well locations from across the site were used to calibrate preliminary models to predict observed conditions on-site. Among these, the well 410 location best approximates conditions that are typical for the site. The final calibration used to predict observed conditions at the well # 10 location is shown in Figure 5.2. Trends in the observed data were represented favorably by the model simulations; however, it should be noted that a limited amount of observed data were available for comparison (see Figure 5.2). It is important to note that DRAINMOD uses simplifying assumptions in the estimation of water table depths. When applied to a site such as the UT to Jumping Run Creek Site, with complex hydrologic processes, the model can be used to assess overall trends and relationships but is unlikely to offer exact predictions of water table hydrology. See Appendix 5 for DRAINMOD Analysis Files & Restoration Site Water Table Data. DRAINMOD computes daily water balance information and produces summaries that describe the loss pathways for rainfall over the model simulation period. Tables 5.1 and 5.2 summarize the average annual amount of rainfall, infiltration, drainage, runoff, and evapotranspiration estimated for the existing condition of the proposed riparian and non-riparian wetland restoration areas, respectively, based on 58-year simulations. The average amounts for the simulated areas are presented in the table. Infiltration represents the amount of water that percolates into the soil and is lost via drainage or runoff. Drainage is the loss of infiltrated water that travels through the soil profile and is discharged to drainage ditches or underlying aquifers. Runoff is water that flows over land and reaches drainage ditches before infiltration. Evapotranspiration is water that is lost through direct evaporation of water from the soil or through the transpiration of plants. From the data provided, it is clear that a significant amount of the rainfall on the site is lost to evapotranspiration, which is typical for farm fields in the Coastal Plain and Sandhills Region of North Carolina. Drainage is also a significant loss pathway for water under the existing drained farm conditions, as would be expected from the monitoring well data (see discussion in Section 5.2.1). Restoration of the site will involve restoring a floodplain area, filling the network of drainage ditches, raising the bottom elevation of the stream, and increasing the amount of surface storage available to pond water. In this way, the respective amounts of drainage and runoff are decreased, and the excess water allows the water table to remain higher throughout the year, thus restoring wetland hydrology. BAKER ENGINEERING NY, INC. 5-5 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Figure 5.2 Modeled and Observed* Hydrographs for Autowell # 10. Observed and Modeled Hydrographs for Automated Well #10 0 -10 V! N t V -20 Z C. -30 - 4L + Modeled Water Table Depth Observed Water Table Depth -40 W V 00 (0 N W A 'O N \ 71 71 71 \ N N N N N N N N O O O O N N N O O O O O O O O O O O O O O O V V V V O O O 00 00 00 00 V V V Date *Due to autowell malfunctions, erroneous data were recorded at various times from January through April 2008. These data were not incorporated into DRAINMOD and are represented by gaps in the plot of observed data below. Table 5.1 Water Balance Data for Existing Conditions of Proposed Riparian Wetland Restoration Areas Precipitation 45.8 100 Drainage 19.2 41.9 Runoff 0.5 1.1 Evapotranspiration 26.1 57.0 Table 5.2 Water Balance Data for Existing Conditions in the Proposed Non-riparian Wetland Restoration Areas ,u. .,... ?.<. .., s,..4Y 1`9.;,.., eP.v..caa?.iriftr" Precipitation 45.8 100 Drainage 17.6 38.4 Runoff 0.23 0.5 Evapotranspiration 28.0 61.1 BAKER ENGINEERING NY, INC. 5-6 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 5.2.3 Climatic Conditions The average growing season (defined as the period in which air temperatures are maintained above 28 degrees Fahrenheit at a frequency of 5 years in 10) for the project locale is 260 days, beginning on March 8 and ending November 22 (Cumberland County WETS Table 37051, Pope Air Force Base, NC: COOP 316891). Pope Air Force Base, located approximately 3 miles southwest of the project site, experiences an average annual rainfall of 45.26 inches (Pope Air Force Base, NC: COOP 316891). In much of the Coastal Plain of North Carolina, approximately 36 inches of water are lost to evapotranspiration during an average year (Evans and Skaggs, 1985). Since average rainfall exceeds average evapotranspiration losses, the Coastal Plain experiences a moisture excess during most years. Excess water leaves a site by groundwater flow, runoff, channelized surface flow, or deep seepage. Annual losses due to deep seepage, or percolation of water to confined aquifer systems, are typically less than one inch of water for most Coastal Plain areas and are not a significant loss pathway for excess water. Although groundwater flow can be significant in some systems, most excess water is lost via surface and shallow subsurface flow. Monthly precipitation amounts observed on-site from September through November 2007 are compared with Cumberland County WETS table average monthly rainfall in Table 5.3. Rainfall in September 2007 was 3.87 inches lower than average, rainfall in October 2007 was 1.73 inches above average, and rainfall in November was 2.12 inches below average. On-site precipitation data are not available prior to September 2007 or during December 2007. Data from the closest automated weather station to the project site were used for these months and indicate that the project vicinity has experienced severe drought conditions during 2007 (Pope Air Force Base, NC: COOP 316891). Table 5.3 Comparison of Monthly Rainfall Amounts for Project Site and Long-term Averages 116A;w ®I I I w ° I A I @ l a w Deviation 1 Jan-07 2.53 3.94 -1.41 Feb-07 1.66 3.55 -1.89 Mar-07 2.46 3.99 -1.53 Apr-07 2.80 3.3 8 -0.58 May-07 1.21 3.28 -2.07 Jun-07 5.17 4.65 0.52 Jul-07 2.23 5.70 -3.47 Aug-07 0.7 4.48 -3.78 Sep-07 0.36 4.23 -3.87 Oct-07 4.9 3.17 1.73 Nov-07 1.02 3.13 -2.12 Dec-07 4.16 2.75 1.41 Sum 29.2 46.25 -17.05 * Data from January through August 2007 and December 2007 provided by weather station at Pope Air Force Base, NC: COOP 316891. Data for October and 2007 recorded by onsite rainfall gauge that was installed during early October 2007. BAKER ENGINEERING NY, INC. 5-7 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 5.3 Soil Characterization Soils on site were evaluated by a Licensed Soil Scientist using hand auger borings and Natural Resources Conservation Service (MRCS) Soil Survey data for Cumberland and Hoke Counties (US Department of Agriculture [USDA] 1984). Exhibit 5.2 shows the boundaries of each soil series as mapped by the NRCS Soil Survey. The majority of the project site is mapped as Deloss loam and Pactolus loamy sand. The Deloss series is a hydric soil that is poorly drained and formed from loamy alluvial sediments. The Pactolus series is not hydric and consists of moderately well drained soils formed in sandy alluvial sediments. Smaller areas of the Altavista, Johnston, Roanoke, Tarboro, and Wickham series are also mapped on site and are described in Table 5.4. Table 5.4 Soil Series Present On-site as Mapped by the NRCS Soil Survey (from Cumberland County Soil Survey, USDA-SCS, 1984) Altavista Fluvial terraces No Moderately well drained soils formed in alluvial sediments. Slope ranges from 0 to 3 %. Permeability is moderate. Deloss Fluvial terraces Yes Very poorly drained soils that formed in loamy al sediments. Slope is <2 %. Permeability is moderate. Johnston Floodplains Yes Very poorly drained soils formed in loamy, stratified fluvial sediments. Permeability is moderately rapid. Pactolus Fluvial terraces No Moderately well to somewhat poorly drained soils formed in loamy and sandy alluvial sediments. Permeability is rapid. Roanoke Fluvial terraces Yes Poorly drained soils that formed in clayey, stratified alluvial sediments. Permeability is slow. Tarboro Fluvial terraces No Somewhat excessively drained soils that formed in sandy alluvial sediments. Permeability is rapid. Wickham Fluvial terraces No Well drained soils formed in loamy alluvial sediments. Permeability is moderate. Hydric soils on the project site were identified according to criteria specified by USDA NRCS (2006), and areas of hydric soils were flagged in the field and located using a combination of MagellanTM Mobile Mapper Pro GPS hardware and RTK methodology. The boundary of hydric soils on-site is depicted in Exhibit 5.1 and Appendix 2. Hydric soils present within the proposed restoration areas are dominated by, but not limited to, the Deloss, Osier, Roanoke, and Torhunta series. Descriptions of representative pedons are provided in Appendix 2. While investigations indicated considerable spatial variation in soil profile characteristics across the site, areas proposed for restoration were found to exhibit one or more hydric soil indicator(s). For soils with USDA textures of loamy fine sand and coarser (sandy soils), typical hydric indicators include "Depleted Below Dark Surface" (indicator A11), "Thick Dark Surface" (indicator A12), and "Dark Surface" (indicator S7) (USDA NRCS, 2006). For soils with USDA textures of loamy very fine sand and finer (loamy and clayey soils), typical hydric soil indicators include "Depleted Matrix" (indicator F3), "Umbric Surface" (indicator F13), "Depleted below Dark Surface" (indicator A11), and "Thick Dark Surface" (indicator A12) (USDA NRCS, 2006). The above soil properties indicate that these soils were formed under reducing conditions and that the site once functioned as a wetland system. BAKER ENGINEERING NY, INC. 5-8 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Though considerable spatial variation in soil profile characteristics is found across the site, the majority of soils in the proposed restoration area have one or more C horizons at depth that contain loamy sand, sand, or gravelly sand. The depth of the upper boundary of these C horizons typically ranges from 30 to more than 42 inches below the soil surface. 5.4 Plant Community Characterization The majority of the proposed restoration area is comprised of pasture and fallow fields. In the past, pasture areas have been used for grazing and hay production, and fallow agricultural fields have been used for corn production. Vegetation within open fields and pasture areas is primarily comprised of Fescues (Festuca spp.) and Dog fennel (Eupatorium capillifolium). In wooded riparian areas within the pastures and fields, the canopy is dominated by Loblolly pine (Pinus taeda), and understory species consist of Red maple (Acer rubrum), Sweetgum (Liquidambar styraciflua), and Persimmon (Diospyros virginiana). Woody shrub and vine species include Chinese privet (Ligustrum sinense), Maleberry (Lyonia ligustrina), Tag alder (Alnus serrulata), Greenbriar (Smilax rotundifolia), and Muscadine (Vitis rotundifolia). Herbaceous species consist of Dog fennel (Eupatorium capillifolium), Soft rush (Juncus effusus), and Sedges (Carex spp.). Multiple existing degraded jurisdictional wetlands are bounded by the proposed wetland restoration area (Exhibit 5.1). The majority of these wetlands are dominated by herbaceous species, including, but not limited to, Soft rush (Juncus effusus), Smartweeds (Polygonum sp.), Shallow sedge (Carex lurida), Meadow-beauty (Rhexia sp.), and Sushy seedbox (Ludwigia alternifolia). BAKER ENGINEERING NY, INC. 5-9 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 6.0 REFERENCE WETLAND 6.1 Hydrological Characterization The reference wetland site for the project is located on-site within the existing forested area, in the eastern portion of the project boundary (easement area `D') adjacent to downstream section of enhancement reach UTIc. The site is located within approximately 100 feet south of UTIc, and is located in a depressional area of hydric soils that appears to support wetland hydrology. The location and surrounding areas have been field evaluated and were determined to be a jurisdictional wetland based on the presence of wetland vegetation, hydric soils, and indicators of wetland hydrology. The reference area has experienced some disturbance in the past, including past timber harvest and some surficial ditching within 100 to 200 feet of the monitored site. The canopy of the reference site is dominated by successional species indicative of past timbered areas. The site was chosen to serve as an on-site reference wetland primarily for the comparison of hydrologic data during unusually wet or dry years. The plant community of the site has been disturbed in the past; therefore, the site will not be used as an ecological reference site. In addition to the reference area mentioned above, hydrology data from the on-site wetland enhancement areas and a local wetland restoration project will be considered when comparing water budgets and overall site conditions. The supporting data are shown in Appendix 4. 6.1.1 Gauge Data Summary An automated recording well was installed within the reference site during August 2007. The well was programmed to record groundwater levels every 12 hrs to a maximum depth of 40 inches. From July through October 2007, during a period of extreme drought, groundwater levels consistently remained between 20 and 30 inches deep (Figure 6.1). A significant rainfall event on October 25 caused the levels to rise above a depth of 12 inches for a period of approximately 9 days (3.5 percent of the growing season), but the water table did not rise above the 12-inch depth for a consecutive 5.0 percent during the monitored portion of the 2007 growing season. The relatively deep water table observed within the reference wetland from July through November is attributed to extreme drought conditions that are more fully described in Section 5.2.3. During 2008, the water table has been above 12 inches for at least 32 consecutive days, or 12 percent of the growing season, from the beginning of the growing season (March 22) through the end of available monitoring data (April 22). BAKER ENGINEERING NY, INC. 6-1 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Figure 6.1 Water Table Depths Recorded in a Monitoring Well Installed within the Reference Site. Jumping Run On-site Reference Well 20.0 10 0 . 0 0 . c m a -10 0 i . J L d -20 0 . 30 0 - . -40.0 7/27/2007 9/25/2007 11/24/2007 1/23/2008 3/23/2008 5/22/2008 Date 6.2 Soil Characterization Although soils located in the vicinity of the reference wetland are mapped as the Deloss series (fine- loamy, mixed, semiactive, thermic, Typic Umbraquults) (USDA SCS, 1984), field investigations indicate they are most like the Chastain series (fine, mixed, semiactive, acid, thermic Fluvaquentic Endoaquepts) (USDA NRCS, 2007a). Soils at the reference wetland location are not the Deloss series because they lack an argillic (Btg) horizon. Chastain soils are typically associated with floodplains in Coastal Plain river valleys (USDA NRCS, 2007a). The Chastain series consists of poorly drained soils that formed in alluvium and have negligible runoff and slow permeability and occur on slopes of less than two percent (USDA NRCS, 2007a). Chastain soils typically exhibit A - Bg - Cg horizon sequences and have loamy textured surface horizons and clayey textured subsurface horizons that are typically underlain by sand (USDA NRCS, 2007a). The Chastain series is considered a hydric soil (USDA NRCS, 2007b). A profile description for the soil at the reference wetland site is provided in Appendix 4. 6.3 Plant Community Characterization The canopy at the reference wetland location is dominated by Loblolly pine (Pinus taeda), Sweetgum (Liquidambar styraciflua), Yellow poplar (Liriodendron tulipifera), Water oak (Quercus nigra), American holly (Ilex opaca) and Red maple (Acer rubrum). Woody shrub and vine species consist of Giant cane (Arundinaria gigantea), Greenbriar (Smilax rotundifolia), and Muscadine (Vitis rotundifolia). Herbaceous species include Cinnamon fern (Osmunda cinnamomea). As mentioned above in Section 6. 1, the reference site plant community has been disturbed in the past, therefore a combination of vegetation communities will be cited for the wetland reference vegetation, as described by Schafale and Weakley (1990). BAKER ENGINEERING NY, INC. 6-2 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 7.0 PROJECT SITE RESTORATION PLAN 7.1 Restoration Project Goals and Objectives After examining the assessment data collected at the site and exploring the potential for restoration, an approach to the site was developed that would address restoration of both stream and wetland functions within the field areas. The approach also needed to address the existing forested wetland system at the downstream end of the site, which had been impacted in the past by channelization. Topography and soils on the site indicate that the project area most likely functioned in the past as a tributary stream system with associated wetlands, feeding into the larger Jumping Run Creek system. Therefore, a design approach was formulated to restore this type of system. First, an appropriate stream type for the valley type, slope, and desired wetland functions was selected and designed to connect to the westernmost portion of the project boundary (See Exhibit 7.2, easement area `A'). Then a grading plan was developed to restore the adjacent wetland areas which had been converted to agricultural fields. Finally, an enhancement approach was developed for the downstream forested area, to restore historic flow patterns within the wooded area. Special consideration was given to minimizing disturbance to existing wetland and wooded areas. 7.1.1 Channel Design Criteria Selection For design purposes, Baker Engineering divided the UT to Jumping Run Creek into three reaches labeled UTla, UTlb, and UTIc. The reach locations are shown in Exhibit 7.1. Selection of a general restoration approach was the first step in selecting design criteria for reaches UTla, UTlb and UTIc. The approach was based on the potential for restoration as determined during the site assessment. After selection of the general restoration approach, the specific design criteria were developed so that plan view layout, cross-section dimensions, and profile could be described for the purpose of developing construction documents. Selection of channel design criteria is based on a combination of approaches, including review of reference reach data, regime equations, evaluation of results from past projects, and best professional judgment as discussed in Appendix 8, Section 5. The design philosophy at the UT to Jumping Run Creek site is to use these design parameters as conservative values for the selected stream types and to allow natural variability in stream dimension, facet slope, and bed features to form over long periods of time under the processes of flooding, re-colonization of vegetation, and watershed influences. The proposed stream types for the project are summarized in Table 7.1. Table 7.1 Channel Design Stream Types (see Exhibit 7.1) Restoration will focus on restoring a multi-thread system within existing hydric UTla field areas. Due to its low slope and small drainage area, it is likely that this (braided DA portion of the site functioned more as a braided headwater historically. channel- Restoration activities would consist of filling the channelized portions of stream upstream and restoring valley topography. The final topography of the valley will be end) roughened to restore the microtopographic variability common in these systems. Shallow flow paths will be graded and woody debris introduced, and the system would be allowed to form on its own, either as a single or braided channel BAKER ENGINEERING NY, INC. 7-1 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Table 7.1 Channel Design Stream Types (see Exhibit 7.1) headwater stream. (DA stream type). This approach will allow for restoration of historic flow patterns, with very little disturbance to the existing wetland systems. Riparian buffers at least 50 feet wide will be established along the stream reach and all buffer areas will be protected by a perpetual conservation easement. Reference reach studies indicate that low slope sand-bed systems typically form UTlb C type channels, with high width-to-depth ratios. A higher width-to-depth ratio (single C channel will also support the restored adjacent wetland hydrology. Rosgen thread Priority Level 1 and 2 approaches will be used and the existing ditches will be channel) filled in. A constructed channel approach is proposed for this reach because reference site studies have indicated that streams of similar drainage areas and slope exhibit single channel morphologies. Riparian buffers at least 50 feet wide will be established along the stream reach and all buffer areas will be protected b a perpetual conservation easement. Enhancement is proposed for the area of existing forest on the eastern side of UTlc the project site (easement area `D'). Flows from the restoration reaches would (downstream E/C/DA be routed into the existing system that flows through this wooded area, with forested mimmal disturbance to the existing wooded/wetland areas. The existing area) channel is relatively stable, and restoring the historic stream flow would enhance the functions of the stream reach. The existing riparian buffer system will be protected by a perpetual conservation easement. 7.1.2 UTla Channel Restoration As discussed in Section 3, UTIa has been channelized through an existing riparian headwater system. The channelization and piling of spoil along the banks has disrupted the historic flow and flooding patterns of the site. Restoration of this reach will seek to restore historic flow and flooding processes. Based on valley slope and drainage area, it is our belief that this area most likely functioned prior to disturbance as a headwater swamp, or braided stream system. Restoration will focus on filling in the drainage ditches and channel, and restoring the pre- disturbed topography of the valley. The valley bottom will then be roughened to restore the natural microtopographic variability that is common within braided headwater systems. In some locations, the valley will be graded slightly deeper than the average grade, to allow the formation of deeper, more swamp-like sections within the valley. Shallow flow paths will be connected through the microtopography to allow initial flow of water toward reach UTIb. The system will be allowed to form braided channels and flow patterns on its own over time. The restoration of UTIa through the existing farm fields will end at approximate Station 47+29. At this location, the UTIa channel will connect with the proposed single-thread channel which will form the beginning to UTIb. The transition to a single thread channel will involve grading the shallow flow paths through the existing field gradually into a broad swale that will connect to the constructed design bankfull width and depth. In this fashion, the low flows through UTIa will be allowed to follow historic flow patterns and spread out through channel depressions, restoring a more natural function. BAKER ENGINEERING NY, INC. 7-2 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 7.1.3 UTlb Channel Restoration A stable cross-section will be achieved by restoring a single thread meandering channel across the abandoned floodplain (currently agricultural/cattle field areas), increasing the width/depth ratio, and raising the streambed (Rosgen Priority Level I) to restore a channel that is appropriately sized for its drainage area. Due to the existing culverts crossings and the need to not increase flooding conditions of the roads, minor floodplain grading will be performed to allow for increased capacity during large storm events. Grading activities will also be aimed at restored historic flow patterns and adjacent wetland hydrology by removing past channel spoil and other agricultural land manipulations. The channel will be restored to a C stream type, and the sinuosity will be increased by adding meanders to lengthen the channel and restore bed- form diversity. Minimal grade control will be required for the project, due to the low channel slope and low potential for channel incision. In-stream wooden structures, such as log vanes, rootwads, and cover logs will be included in the channel design to provide improved aquatic habitat. Table 7.2 presents the stream restoration dimensions and design criteria for the UTIb channel. Table 7.2 Natural Channel Design Parameters for Reach UTlb Drainage Area, DA (sq mi) 1.0 -- Design Stream Length (feet) 3,400 -- Stream Type (Rosgen) C5c E5/C5 Note 1 Bankfull (bkf) Discharge, Qbkf (cfs) 9.4 -- Note 2 Bankfull Mean Velocity, Vbkf (ft/s) 0.78 -- V=Q/A Bankfull Riffle XSEC Area, Abkf (sq ft) 12.0 9.6-15.0 Note 7 Bankfull Riffle Width, Wbkf (ft) 13.4 -- Abkf' *W /D Bankfull Riffle Mean Depth, Dbkf (ft) 0.9 -- d=A/W Width to Depth Ratio, W/D (ft/ft) 15.0 10 - 16 Note 3 Width Floodprone Area, Wfpa (ft) >100 -- Entrenchment Ratio, Wfpa/Wbkf (ft/ft) 8-12 5.5 - >10 Note 4 Riffle Max Depth @ bkf, Dmax (ft) 1.1 -- Riffle Max Depth Ratio, Dmax/Dbkf 1.2 1.2-1.6 Note 5 Bank Height Ratio, Dtob/Dmax (ft/ft) 1.0 1.0 Note 6 Meander Length, Lm (ft) 70 - 170 -- Meander Length Ratio, Lm/Wbkf * 8.0-12.0 8.0-12.5 Note 7 Radius of Curvature, Re (ft) 30 - 50 -- Rc Ratio, Rc/Wbkf * 2.0-3.5 2.0-3.5 Note 7 Belt Width, Wblt (ft) 38 - 120 -- Meander Width Ratio, Wblt/Wbkf * 3.5-8.0 3.0-8.0 Note 7 Sinuosity, K 1.2 1.2-1.8 TW length/ Valley length Valley Slope, Sval (ft/ft) 0.0011 -- Channel Slope, Schan (ft/ft) 0.0016 -- Sval / K Slope Riffle, Srif (ft/ft) 0.001- 0.005 -- BAKER ENGINEERING NY, INC. 7-3 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Table 7.2 Natural Channel Design Parameters for Reach UTlb Riffle Slope Ratio, Srif/Schan Note 8 Slope Pool, Spool (ft/ft) 0.0001- 0.0007 -- Pool Slope Ratio, Spool/Schan 0.0-0.2 -- Note 8 Pool Max Depth, Dmaxpool (ft) 1.9 -- Pool Max Depth Ratio, Dmaxpool/Dbkf 2.0-3.0 2.0-3.0 Note 7 Pool Width, Wpool (ft) 17.0 -- Pool Width Ratio, Wpool/Wbkf 1.3- 1.5 1.2-1.5 Note 9 Pool-Pool Spacing, Lps (ft) 35 - 85 -- Pool-Pool Spacing Ratio, Lps/Wbkf 2.5-6.0 4.0-6.0 Note 7 d16 - mm 0.10 -- d35 - mm 0.30 -- d5o - mm 0.40 -- d84 - mm 4.40 -- d95 - mm 7.30 -- Notes: 1 A C5c stream type is appropriate for a very low-slope, wide, alluvial valley with a sand streambed. The choice of a C5c channel dimension was based on relationships of W/D ratio to slope in NC Coastal Plain reference reach streams, as well as sediment transport analyses and past project evaluation. z Bankfull discharge was estimated using Manning's equation (n=0.04). 3 A final W/D ratio was selected based on relationships of W/D ratio to slope in NC Coastal Plain reference reach streams, as well as sediment transport analyses and past project evaluation. 4 Required for stream classification. 5 This ratio was based on past project evaluation of similar C5 design channels. 6 A bank height ratio near 1.0 ensures that all flows greater than bankfull will spread onto a floodplain. This minimizes shear stress in the channel and maximizes floodplain functionality, resulting in lower risk of channel instability. Values were chosen based on sand-bed reference reach data, and past project evaluation. 8 Due to the extremely low channel slopes, facet slopes were not calculated for the proposed design. Past project experience has shown that these minor changes in slope between features form naturally within the constructed channel, provided that the overall design channel slope is maintained during construction. 9 Values were chosen based on reference reach database analysis and past project evaluation. It is more conservative to design a pool wider than the riffle. Over time, the pool width may narrow, which is considered to be a positive evolutionary step. 7.1.4 UT1c Channel Enhancement The enhancement of reach UTIc through the existing forested area will end near Station 101+54. At this location, the UTIc channel will connect to the confluence with Jumping Run Creek. The flow within the existing channelized stream area has been greatly reduced from historical conditions due to the construction of the dirt road on the eastern side of the property BAKER ENGINEERING NY, INC. 7-4 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN (Long Valley Road) and the rerouting of the UT through the site. The historical drainage area and hydrology will be reconnected such that the proposed stream restoration reaches of the project flow into the downstream enhancement reach. The existing channel through the woods appears to be stable and is not incised along much of its length. Therefore, water will be turned into this existing channel with no disturbance to the existing wooded riparian buffers. This restoration of historic flows should also provide additional water inputs to the wetland systems that exist within the wooded areas. 7.2 Sediment Transport The purpose of sediment transport analysis is to ensure that the stream restoration design creates a stable sand-bed channel that does not aggrade or degrade overtime. The overriding assumption is that the project reach should be transporting all the sediment delivered from upstream sources, thereby being a "transport" reach and classified as a Rosgen "C" or "E" type channel. Empirical relationships from stable sand-bed channels in North Carolina are used in this analysis, as described in Appendix 8, Section 6. Shear stress, stream power, and W/D values for the UTlb design reach are plotted against stable reference stream data in Appendix 10. The values were calculated based on design conditions of the reach, and a summary of the data are provided in Appendix 10. The design shear stress and stream power values plot within the scatter of data points collected from reference reaches. This analysis provides evidence that the stresses predicted for the design channels are well within the range of stable values calculated for the reference reaches. Therefore, scour of design channels is not expected. Sediment transport analyses as described above and in Appendix 8 were not applied to design reach UTla. The design for that reach involves the restoration of a broad/shallow flow paths (swale) along the low areas of the field to allow the system to form as a single or multi-thread or braided channel; in essence, the restoration of a headwater stream/wetland system. These systems are aggradational by nature, due to very low flow velocities and scour stresses. Under normal conditions, sediment deposits in these systems. However, sediment supply is typically limited, such that over time, these systems remain stable and deposited sediment becomes part of the natural processes of soil formation. Observations from the project site confirm that sediment supply from upstream sources are limited, therefore sediment transport relationships are predicted to function normally in the restored reaches of UTla & UTlb. Table 7.3 Calculated Sediment Transport Data for Design Reach UTlb I M11 M i I 1{ ' I a u UTlb to Jumping Run Creek 12 9.4 0.78 0.030 0.026 7.3 In-stream Structures A variety of in-stream structures are proposed for the project reaches. Structures such as root wads, log weirs, log vanes, and cover logs will be used to stabilize the newly-restored stream and improve aquatic habitat functions. Table 7.4 summarizes the use of in-stream structures at the site. BAKER ENGINEERING NY, INC. 7-5 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Table 7.4 In-stream Structure Types and Locations s i Root wads Throughout project Log vanes Throughout project Log weirs Only in locations where grade control is a concern (limited due to channel slope) Cover logs Throughout project 7.3.1 Root Wads Root wads are placed at the toe of the stream bank along the outside of meander bends for the creation of habitat and for stream bank protection. Root wads include the root mass or root ball of a tree plus a portion of the trunk. They are used to armor a stream bank by deflecting stream flows away from the bank. In addition to stream bank protection, they provide structural support to the stream bank and habitat for fish and other aquatic animals. They also serve as a food source for aquatic insects. Root wads will be placed throughout the project reaches primarily to improve aquatic habitat and provide cover. 7.3.2 Log Vanes A log vane is used to provide cover for aquatic organisms in the downstream scour pool and with a potential secondary benefit of protecting stream banks by reducing near-bank stress and redirecting flow away from the bank. The length of a single vane structure can span one-half to two-thirds the bankfull channel width. Vanes are located just downstream of the point where the stream flow intersects the bank at an acute angle in a meander bend. 7.3.3 Log Weir Log weirs are used to provide grade control as well as provide a secondary habitat benefit for aquatic organisms. A log weir consists of two logs stacked (a header log and a footer log) and installed perpendicular to the direction of flow. This center structure sets the invert elevation of the stream bed. 7.3.4 Cover Logs A cover log is placed along the outside of a meander bend to provide habitat in the pool area. It is most often installed in conjunction with root wads. The log is buried into the outside bank of the meander bend; the opposite end extends through the deepest part of the pool and may be buried in the inside of the meander bend, in the bottom of the point bar. The placement of the cover log near the bottom of the bank slope on the outside of the bend encourages scour in the pool. This increased scour provides a deeper pool for bedform variability. 7.4 Restoration of Wetland Hydrology 7.4.1 Riparian Wetland Restoration The existing agricultural fields across the site are currently drained by the UT to Jumping Run Creek and lateral ditches. To restore wetland hydrology to the site, the existing stream will be fully to partially filled, depending on the amount of fill material that can be produced from minor land grading and excavation of the new stream channel. When complete filling of the BAKER ENGINEERING NY, INC. 7-6 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN stream and ditches is not possible, ditch plugs will be installed from compacted earth. Ditch plugs will also be used in locations where the restored stream channel will cross the existing stream channel. In areas where restored stream flows will contact fill material, root wads or other protective measures will be installed to provide additional protection and deflect stream energies. Due to the relatively small size of the restored channel and the low energy nature of the system, these practices will be sufficient to prevent erosion and channel avulsion. These practices have been used on numerous other projects with excellent results. Some sections of existing channel may be only partially filled depending on the amount of fill material that can be produced. These partially filled areas will be discontinuous and will mimic small floodplain pools or tree throws within the wetland areas that will add to the diversity of habitat on the project site. Grading activities will focus on restoring pre-disturbance valley topography by removing any field crowns, surface drains, or swales that were imposed during conversion of the land for agriculture. In general, grading activities will be minor, with the primary goal of filling the drainage features on the site back to natural ground elevations. The topography of the restored site will be patterned after natural floodplain wetland reference sites, and will include the restoration of minor depressions and tip mounds (microtopography) that promote diversity of hydrologic conditions and habitats common to natural wetland areas. These techniques will be instrumental to the restoration of site hydrology by promoting surface ponding and infiltration, decreasing drainage capacity, and imposing higher water table conditions across the restoration site. In order to improve drainage and increase agricultural production, farmed wetland soils are often graded to a smooth surface and crowned to enhance runoff (Lilly, 1981). Microtopography contributes to the properties of forest soils and to the diversity and patterns of plant communities (Lutz, 1940; Stephens, 1956; Bratton, 1976; Ehmfeld, 1995). Microtopography will be established after floodplain areas have been established to design grades, using the procedures described in Appendix 9, Section 8. The restoration design for the wetland is based on a targeted "Coastal Plain small stream swamp" riparian wetland type, as identified by Schafale and Weakley (1990). Hydrology of this system will be palustrine, "intermittently, temporarily, or seasonally flooded", as the restored channel is designed to carry the bankfull flow, and to flood (flow out of its banks) at discharges greater than bankfull. The revegetation plan for the overall riparian system will consider the combination of existing onsite native vegetation and riparian communities identified by Schafale and Weakley (1990) that include "Coastal Plain Small Stream Swamp", "Coastal Plain Bottomland Hardwood", "Streamhead Pocosin", and "Streamhead Atlantic White Cedar Forest. The planting areas will be designated by zones to represent site conditions that include headwater riparian, riparian, transitional, and non-riparian/upland. These boundary zones are shown on Exhibit 7.2. 7.4.2 Riparian Wetland Enhancement Numerous small pockets of existing jurisdictional wetlands have been delineated within the open field areas of the project site. These wetlands have formed as a result of depressional topography and poor drainage, areas of off-site water inputs, and beaver activity. These existing wetlands will be incorporated into the design as wetland enhancement areas (see Exhibit 7.1). Through the stream and wetland restoration practices described above, these areas will experience a more natural hydrology and flooding regime once the project is completed. Since most of the existing wetlands are dominated by herbaceous wetland species, the areas will also be planted with native wetland tree species that are tolerant of flooded conditions. BAKER ENGINEERING NY, INC. 7-7 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 7.4.3 Non-Riparian Wetland Restoration As mentioned above, the intent of the riparian wetland restoration practices is to restore a "Coastal Plain Small Stream Swamp" wetland system along the historic stream floodplain. Other areas of drained hydric soils are disconnected from streamflow events, with the exception of large flood events, and the UT to Jumping Run Creek floodplain will be restored as non- riparian wetlands as shown on Exhibit 7.1. Along much of their length, these non-riparian areas are disconnected from the riparian wetland areas by ridges of upland soil; however, they do ultimately drain into the riparian system near the downstream culvert crossing and are therefore a continuous part of the overall system. Whereas the hydrology of the riparian wetland restoration areas is influenced primarily by streamflows and groundwater discharge, the hydrology of the non-riparian areas will be driven almost entirely by rainfall. Drained hydric soils within the non-riparian open field areas of the site have been delineated in detail and are dominated by the Deloss, Torhunta, Roanoke, and Osier series and contain smaller inclusions of other hydric soils. In order to restore hydrology to these areas, drainage ditches will be filled and the natural topography of the areas restored, which will increase surface storage and raise the local water table. Restored areas will be roughened to restore a more natural topography and provide increased surface storage. Non-riparian wetland restoration areas will be planted with native wetland vegetation that is slightly to highly tolerant of flooded conditions, depending on the expected hydrology of planting areas. As mentioned in Section 7.4.1, the revegetation plan for the overall non-riparian/upland system will consider a combination of existing onsite native vegetation and non-riparian/upland communities identified by Schafale and Weakley (1990) that include "Mesic Pine Flatwood", "Wet Pine Flathill", "Pine/Scrub Oak Sandhill", and "Pine Savanna". The planting areas will be designated by zones to represent site conditions that will include headwater riparian, riparian, transitional, and non-riparian/upland. These boundary zones are shown on Exhibit 7.2. 7.5 Hydrologic Model Analyses The DRAINMOD simulations developed to evaluate the current hydrologic status of the restoration site (Section 5.5) were used to estimate the hydrologic conditions of the site under the proposed restoration practices. For riparian areas, model parameters that describe the depth of stream and topographic surface storage were changed to values representative of the described restoration practices. For example, drain depths were reduced to approximately 30 centimeters to represent the water level in the restored, meandering channel. Surface storage parameters were increased from 1 to 4 centimeters to represent surface roughing practices. Input files that describe cropping conditions were changed to represent forested conditions. For non-riparian areas, model parameters were altered to evaluate a system with essentially no ditches (5 centimeters) and increased surface storage (4 centimeters). To estimate the average hydrologic condition of the restored riparian areas, a model scenario was evaluated for an average distance from the restored channel with a surface storage of four centimeters. Since riparian wetlands are being restored from the restored stream channel out to a distance of approximately 200 feet, an average distance of 100 feet from the restored stream channel was evaluated by spacing drains at a distance of approximately 200 feet. For non-riparian wetland areas, a model was developed with very shallow drains spaced at 100 feet (approximate average width of the non-riparian areas), to simulate a system with essentially no subsurface drainage. BAKER ENGINEERING NY, INC. 7-8 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Fifty-eight year simulations were run for both the riparian and non-riparian models following the procedure described in Section 5.5. Results of the simulations are presented in Figure 7. 1, and the DRAINMOD input files are provided in Appendix 5. The simulation run for the riparian areas indicated that, on average, the water table will be less than 30 centimeters deep continuously for approximately 6 percent of the growing season. While this scenario was modeled to represent average conditions across the riparian areas, it is important to note that the model predicts conditions at a specific location and that hydrology across the site is expected to be variable, based on topography, soils, and varying water inputs. It is also important to note that DRAINMOD does not account for overbank flooding events, and therefore model simulations for floodplains should be considered conservative (i.e. actual conditions will likely be wetter than predicted). The modeled scenario provides a basis for estimating the average hydrologic condition over the restored site; however, it is important to note that the hydrology of the targeted restored wetland system (Coastal Plain small stream swamp) is highly variable across a given site, supporting the ecological and functional diversity that makes these systems so valuable. The simulations run for the non-riparian wetland areas indicated that, on average, the water table will be less than 30 centimeters deep continuously for approximately 9 percent of the growing season. The non-riparian areas of the site will have no drainage feature (such as a stream channel) and therefore are predicted by the model to have wetter conditions than the riparian areas. Precipitation will be held onsite for extended periods of time, promoting high water table conditions. BAKER ENGINEERING NY, INC. 7-9 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Figure 7.1 Fifty-eight Year Model Simulations for the Longest Period of Consecutive Days Meeting Wetland Criteria for Conditions Encountered at Restoration Site. For the riparian simulation, 50 percent of years met the hydrologic criteria for 16 days or longer. For non-riparian simulation, 50 percent of years met the hydrologic criteria for 30 days or longer. 7.6 Natural Plant Community Restoration The vegetative components of this project include streambank, floodplain, wetland, and upland planting and have been separated further into zones described as headwater riparian, riparian, transitional, and non-riparian/upland. These zones are shown on the revegetation plan sheets in Appendix 11 and Exhibit 7.2. In addition to these planting boundaries, any areas of the site that lack diversity or are disturbed or adversely impacted by the construction process will be replanted. Bare-root and containerized trees, live stakes, and permanent seedlings will be planted within designated areas of the conservation easement. A minimum 50-foot buffer will be established along the restored stream reaches UTIa and UTIb. In many areas, the buffer width will be in excess of 50 feet and will encompass adjacent wetland restoration areas. In general, bare-root vegetation will be planted at a total target density of 694 stems per acre. Planting will be conducted during the dormant season, with all trees installed between the last week of November and the third week of March. Additionally, five acres of each planting zone with exception to the upland areas will be supplemented with larger containerized plant species. These containerized planting locations are approximate and shall be based on site conditions immediately following construction. The addition of these larger plants will promote stand age heterogeneity, and allow some trees a head start on reaching maturity, with the intent of various ecosystem benefits. Selected species for hardwood revegetation are presented in Table 7.5. Tree species selected for restoration areas will be weak to tolerant of flooding. Weakly tolerant species are able to survive and grow in areas where the soil is saturated or flooded for relatively short periods of time. Moderately tolerant species are able to survive in soils that are saturated or flooded for several months during the growing season. Flood tolerant species are able to survive on sites in which the soil is saturated or flooded for extended periods during the growing season (WRP, 1997). Observations will be made during construction of the site regarding the relative wetness of areas to be planted as compared to the revegetation plan. Planting zones will be determined based on these comparisons, and planted species will be matched according to their wetness tolerance and the anticipated wetness of the planting area. Once trees are transported to the site, they will be planted within two days. Soils across the site will be sufficiently disked and loosened prior to planting. Trees will be planted by manual labor using a dibble bar, mattock, planting bar, or other approved method. Planting holes for the trees will be sufficiently deep to allow the roots to spread out and down without ".1-rooting." Soil will be loosely compacted around trees once they have been planted to prevent roots from drying out. Live stakes will be installed randomly two to six feet apart using triangular or zig-zag spacing-or at a density of 40 to 200 stakes per 1,000 square feet-along the stream banks, between the toe of the stream bank and bankfull elevation. Site variations may require slightly different spacing. Permanent seed mixtures will be applied to all disturbed areas of the project site. Table 7.6 lists the species, mixtures, and application rates that will be used. A mixture is provided that is suitable for streambank, floodplain, and wetland areas. Mixtures will also include temporary seeding (rye grain or browntop millet) to allow for application with mechanical broadcast spreaders. To provide rapid growth of herbaceous ground cover and biological habitat value, the permanent seed mixture specified will be applied to all disturbed areas outside the banks of the restored stream channel. The species provided are deep-rooted and have been shown to proliferate along restored stream channels, providing long-term stability. Temporary seeding will be applied to all disturbed areas of the site that are susceptible to erosion. These areas include constructed streambanks, access roads, side slopes, and spoil piles. If temporary seeding is applied from November through April, rye grain will be used and applied at a rate of 130 BAKER ENGINEERING NY, INC. 7-10 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN pounds per acre. If applied from May through October, temporary seeding will consist of browntop millet, applied at a rate of 40 pounds per acre. Table 7.5 Proposed Revegetation Species zent Planted 1 Wetland Tol Headwater Riparian Wetland Zone (-27 Acres) - Trees - 18'x15' Spacing - 161 stems/Acre Fraxinus enns lvanica Green ash 10% FACW Chamaec axis th oides Atlantic white cedar 20% OBL Nyssa biflora Swamp black gum 25% OBL Liriodendron tulipifera Tulip poplar 10% FAC Quercus lyrata Overcup oak 15% OBL uercus ni ra Water oak 20% FAC Headwater Riparian Understory - 10'x10' spacing - 436 plants/Acre Clethra alni olia Summersweet 10% FACW C rilla racimi ora Titi 20% FACW Itea virginica Sweetspire 10% FACW+ Leucothoe racemosa Swamp doghobble 10% FACW Lyonia lucida Fetter bush 15% FACW Magnolia vir iniana Sweet ba magnolia 20% FACW+ Persea palustris Red bay 15% FACW Riparian Wetland Zone (-34 Acres) - Trees - 10'x10' spacing - 436 plants/Acre Diospyros virginiana Persimmon 10% FAC Liriodendron tulipifera Tulip poplar 10% FAC Nyssa biflora Swamp black gum 25% OBL uercus l rata Overcu oak 15% OBL uercus ni ra Water oak 10% FAC Quercus phellos Willow oak 5% FACW- Taxodium distichum Bald cypress 25% OBL Riparian Wetland Understory - Trees - 18'x15' spacing - 161 stems/Acre Cyrilla racimiflora Titi 20% FACW Itea virginica Sweetspire 10% FACW+ Leucothoe racemosa Swam do hobble 10% FACW Lyonia lucida Fetter bush 15% FACW Magnolia virginiana Sweet bay magnolia 20% FACW+ Persea palustris Red bay 10% FACW Vaccineum corymbosum Highbush blueberry 15% FACW Riparian Containerized (-5 Acres) - Random spacing - 10 trees/Acre Nyssa biflora Swamp black gum 40% OBL BAKER ENGINEERING NY, INC. 7-11 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Table 7.5 Proposed Revegetation Species qr_ ?-ent Planted Wetland i t uercus l rata Overcu oak 30% OBL uercus ni ra Water oak 25% FAC Quercus phellos Willow oak 5% FACW- Transitional Zone (-30 Acres) - Trees - 10'x10' Spacing - 436 plants/Acre Fraxinus pennsylvanica Green ash 5% FACW Diospyros virginiana Persimmon 10% FAC Pinus palustris Long leaf pine 20% FACU+ Prunus serotina Black cheriy 10% FACU+ Quercus falcata Southern red oak 10% FACU- Quercus lauriflolia Darlington oak 15% FACW Quercus michauxii Swamp chestnut oak 5% FACW- Quercus nigra Water oak 15% FAC Ulmus americana American elm 10% FACW Transitional Understory - 18'x15' Spacing - 11 stems/Acre Ga lussacia ondosa Huckleberiy 15% FAC Ilex opaca American holly 35% FAC- Magnolia virginiana Sweet bay magnolia 25% FACW+ Sassafras albidum Sassafras 25% FACU Transitional Containerized (-5 Acres) - Random spacing - 10 trees/Acre Quercus falcata Southern red oak 30% FACU- uercus lauri olia Laurel oak 10% FACW uercus michauxii Swam chestnut oak 10% FACW- Quercus nigra Water oak 30% FAC Ulmus americana American elm 20% FACW Non-Riparian Wetland & Upland Planting Zone (-61 Acres) -Trees - 10'x10' Spacing - 436 plants/Acre Diospyros virginiana Persimmon 5% FAC Pinus palustris Long leaf pine 40% FACU+ Prunus serotina Black cheriy 15% FACU Quercus falcata Southern red oak 10% FACU- Quercus nigra Water oak 10% FAC Quercus pagoda Cherrybark oak 10% FAC+ Fraxinus enns lvanica Green ash 5% FACW Quercus stellata Post oak 5% FACU Non-Riparian & Upland Understory - 18'x 15' spacing - 161 stems/Acre Cornus orida Flowering do ood 30% FACU Ilex glabra Inkberry holly 20% FACW BAKER ENGINEERING NY, INC. 7-12 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN Table 7.5 Proposed Revegetation Species lent Planted Wetland TolW Sassafras albidum Sassafras 30% FACU Car inns carohniana Ironwood 20% FAC Non-Riparian Containerized (-5 Acres) - Random spacing - 10 trees/Acre uercus ni ra Water oak 30% FACU Quercus pagoda Cherrybark oak 30% FACU- Pinus palustris Long leaf pine 40% FACU+ Streambanks (Live Stakes) Cephalanthus occidentalis Buttonbush 10% OBL Salix nigra Black Willow 10% OBL Salix sericea Silky Willow 40% OBL Sambucus canadensis American Elderberry 40% FACW- Table 7.6 Proposed Permanent Herbaceous Seed Mixture Streambank, Riparian, Non-Riparian, and Floodplain Areas Andropogongerardii Big blue stem 5% FAC Andropogon glomeratus Bushy blue stem 5% FACW+ Aristida stricta Wiregrass 15% FAC- Carex lupulina Hop sedge 10% OBL Carex vulpinoidea Fox sedge 10% OBL Elymus virginicus Virginia wild rye 10% FAC Juncus effusus Soft rush 15% FACW+ Panicum virgatum Switchgrass 10% FAC+ Polygonum pensylvanicum Smartweed 5% FACW Schizachyrium scoparium Little blue stem 5% FACU Sorzhastrum nutans Indian2rass 10% FACU 7.7 On-site Invasive Species Management The site has minimal existing native riparian vegetation other than field grasses with the exception of the existing wetland area at the downstream end of the project. Invasive species such as Multiflora rose (Rosa multiflora) and Privet (Ligustrum sinense) are present, although in relatively small amounts. Grading operations will remove these invasive species within the restored field areas. Within the existing wetland areas, these species will be addressed through manual cutting and spot treatment with herbicides. If these or other invasive species re-establish and persist during the monitoring period, hand cutting and herbicide treatment will be used to treat problem areas. BAKER ENGINEERING NY, INC. 7-13 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 8.0 PERFORMANCE CRITERIA Channel stability, vegetation survival, and viability of wetland function will all be monitored on the project site. Post-restoration monitoring will be conducted for a minimum of five years or until the success criteria are met following the completion of construction to document project success. Different monitoring approaches are proposed for the restored stream reaches, based on the restoration approaches to be used. For reach UTIa, which involves the restoration of the historic flow pattern as a multi-thread headwater stream system to be constructed as a broad or diffuse swale with shallow flow paths, monitoring will focus primarily on visual assessments and documentation. For reach UTIb, which involves a more traditional restoration of a single-thread channel, monitoring approaches follow those recommended by the Stream Mitigation Guidelines (USACE and NCDWQ 2003). These approaches are described below. 8.1 Stream Monitoring and Evaluation - Reach UTIa Geomorphic monitoring of reach UTIa will be conducted for a minimum of five years or until the success criteria are met to evaluate the effectiveness of the restoration practices. Since restoration of the reach involves the restoration of historic flow patterns and flooding functions in a multi-thread headwater stream system, monitoring efforts will focus on visual documentation of stability and the use of water level monitoring gauges to document saturation and flooding functions. The methods used and any related success criteria are described below for each parameter. 8.1.1 Bankfull Events and Flooding Functions The occurrence of bankfull events and flooding functions within the monitoring period will be documented by the use of water level gauges and photographs. At least four monitoring gauges will be installed within the restored system to document groundwater and flooding levels. Loggers will be programmed to collect data at a minimum of every 12 hours. Installation of monitoring stations will follow the standard methods found in Stream Mitigation Guidelines (USACE and NCDWQ 2006). Two floodplain flow events must be documented within the 5-year monitoring period. A floodplain flow event is considered to be a flow event large enough to spread flow across at least 50 percent of the floodplain width. The two floodplain events must occur in separate years; otherwise, the monitoring will continue until two floodplain events have been documented in separate years. Gauges should document the occurrence of extended periods of shallow surface ponding, indicative of flow. Gauges should also document the connectivity of flooding between the restored UTIa and UTIb reaches. 8.1.2 Photo Reference Sites Photographs will be used to document restoration success visually. Reference stations will be photographed for a minimum of five years or until the success criteria are met following construction. Reference photos will be taken once a year and be taken in enough locations to document the condition of the restored system. Photographs will be taken from a height of approximately five to six feet. Permanent markers will be established to ensure that the same locations (and view directions) are documented in each monitoring period. The stream will be photographed longitudinally beginning at the upstream end of the restoration site and moving downstream to the end of the site. Photographs will be taken looking upstream at delineated locations. Reference photo locations will be marked and described for future reference. Points will be close enough together to provide an overall view BAKER ENGINEERING NY, INC. 8-1 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN of the reach. The angle of the shot will depend on what angle provides the best view and will be noted and continued in future shots. When modifications to photo position must be made due to obstructions or other reasons, the position will be noted along with any landmarks and the same position will used in the future. Additional photographs and/or video footage may be taken to document any observed evidence of flooding patterns such as debris, wrack lines, water marks, channel features, etc. 8.2 Stream Monitoring and Evaluation - Reach UTlb Geomorphic monitoring of UTIb will be conducted for a minimum of five years to evaluate the effectiveness of the restoration practices. Monitored stream parameters include stream dimension (cross-sections), pattern (longitudinal survey), profile (profile survey), and photographic documentation. The methods used and any related success criteria are described below for each parameter. 8.2.1 Bankfull Events and Flooding Functions The occurrence of bankfull events within the monitoring period will be documented by the use of a crest gauge and photographs. The crest gauge will be installed on the floodplain within 10 feet of the restored channel. The crest gauge will record the highest watermark between site visits, and the gauge will be checked at each site visit to determine if a bankfull event has occurred. Photographs will be used to document the occurrence of debris lines and sediment deposition on the floodplain during monitoring site visits. Two bankfull flow events must be documented within the 5-year monitoring period. The two bankfull events must occur in separate years; otherwise, the stream monitoring will continue until two bankfull events have been documented in separate years. 8.2.2 Cross-sections Two permanent cross-sections will be installed per 1,000 LF of stream restoration work, with one located at a riffle cross-section and one located at a pool cross-section. Each cross-section will be marked on both banks with permanent pins to establish the exact transect used. A common benchmark will be used for cross-sections and consistently used to facilitate easy comparison of year-to-year data. The annual cross-section survey will include points measured at all breaks in slope, including top of bank, bankfull, inner berm, edge of water, and thalweg, if the features are present. Riffle cross-sections will be classified using the Rosgen Stream Classification System. There should be little change in as-built cross-sections. If changes do take place they should be evaluated to determine if they represent a movement toward a more unstable condition (e.g., down-cutting or erosion) or a movement toward increased stability (e.g., settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio). Cross-sections shall be classified using the Rosgen Stream Classification System, and all monitored cross-sections should fall within the quantitative parameters defined for channels of the design stream type. 8.2.3 Pattern Annual measurements taken for the plan view of the restoration site will include sinuosity, meander width ratio, and radius of curvature. The radius of curvature measurements will be taken on newly constructed meanders for the first year of monitoring only. BAKER ENGINEERING NY, INC. 8-2 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 8.2.4 Longitudinal Profile A longitudinal profile will be completed each year of the monitoring period. The profile will be conducted for the entire length of the UTlb restored channel. Measurements will include thalweg, water surface, inner berm, bankfull, and top of low bank. Each of these measurements will be taken at the head of each feature (e.g., riffle, run, pool, glide) and the maximum pool depth. The survey will be tied to a permanent benchmark. The longitudinal profiles should show that the bedform features are remaining stable (i.e., they are not aggrading or degrading). The pools should remain deep with flat water surface slopes, and the riffles should remain steeper and shallower than the pools. Bedforms observed should be consistent with those observed for channels of the design stream type. 8.2.5 Bed Material Analyses Since the streams through the project site are dominated by sand-size particles, pebble count procedures would not show a significant change in bed material size or distribution over the monitoring period; therefore, bed material analyses are not recommended for this project. 8.2.6 Photo Reference Sites Photographs will be used to document restoration success visually. Reference stations will be photographed before construction and continued for a minimum of five years or until the success criteria are met following construction. Reference photos will be taken once a year. Photographs will be taken from a height of approximately five to six feet. Permanent markers will be established to ensure that the same locations (and view directions) on the site are documented in each monitoring period. The stream will be photographed longitudinally beginning at the upstream end of the restoration site and moving downstream to the end of the site. Photographs will be taken looking upstream at delineated locations. Reference photo locations will be marked and described for future reference. Points will be close enough to provide an overall view of the reach. The angle of the shot will depend on what angle provides the best view and will be noted and continued in future shots. When modifications to photo position must be made due to obstructions or other reasons, the position will be noted along with any landmarks and the same position will used in the future. Lateral reference photos. Reference photo transects will be taken at each permanent cross- section. Photographs will be taken of both banks at each cross-section. The survey tape will be centered in the photographs of the bank. The water line will be located in the lower edge of the frame, and as much of the bank as possible will be included in each photo. Photographers should make an effort to consistently maintain the same area in each photo over time. Structure photos. Photographs will be taken at each grade control structure along the restored stream. Photographers should make every effort to consistently maintain the same area in each photo over time. Photographs will be used to evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, and effectiveness of erosion control measures subjectively. 8.3 Stream Monitoring and Evaluation - Reach UTlc Visual monitoring of reach UTIc will be conducted for a minimum of five years or until the success criteria are met to evaluate the effectiveness of the restoration practices. Since this reach involves Level II Enhancement techniques to restore historic flow patterns and flooding functions to remnant channel segments in a single channel and multi-thread swamp system, monitoring efforts will focus BAKER ENGINEERING NY, INC. 8-3 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN on visual documentation of stability. No significant planting is proposed for UTIc since the reach is already wooded. The methods used and any related success criteria are described below for each parameter. 8.3.1 Photo Reference Sites Photographs will be used to document success visually. Reference stations will be photographed for at a minimum of five years or until the success criteria are met following construction. Reference photos will be taken once a year. Photographs will be taken from a height of approximately five to six feet. Permanent markers will be established to ensure that the same locations (and view directions) on the site are documented in each monitoring period. The stream will be photographed longitudinally beginning at the downstream end of the restoration site and moving upstream to the end of the site. Photographs will be taken looking upstream at delineated locations. Reference photo locations will be marked and described for future reference. Points will be close enough together to provide an overall view of the reach. The angle of the shot will depend on what angle provides the best view and will be noted and continued in future shots. When modifications to photo position must be made due to obstructions or other reasons, the position will be noted along with any landmarks and the same position will used in the future. 8.4 Wetland Hydrologic Monitoring and Evaluation 8.4.1 Riparian Wetlands Groundwater monitoring stations will be installed across the project area to document hydrologic conditions of the restored site. Up to ten groundwater monitoring stations will be installed in the riparian wetland areas, with at least two being located within the existing wetland enhancement areas. Groundwater monitoring stations will be installed as automated groundwater gauges and will follow the USACE standard methods found in Stream Mitigation Guidelines (USACE and NCDWQ 2006). In order to determine if the rainfall is normal for the given year, rainfall amounts will be tallied using data obtained from the Cumberland County WETS Station and an on-site rain gauge. The objective is for the monitoring data to show the site is saturated within 12 inches of the soil surface for at least 6 percent of the growing season as indicated by the DRAINMOD model in Section 7.5 and that the site exhibits an increased frequency of flooding. The restored site will be compared to the reference site, a local wetland restoration project, and the existing wetland enhancement areas where the groundwater and surface water levels (overbank events) will be monitored. In addition, the restored hydrology of the site will be compared to pre-restoration conditions both in terms of groundwater and frequency of overbank events. 8.4.2 Non-Riparian Wetlands Groundwater monitoring stations will be installed across the project area to document hydrologic conditions of the restored site. Up to three groundwater monitoring stations will be installed in the non-riparian wetland areas, with all three stations being automated groundwater gauges. Groundwater monitoring stations will follow the USACE standard methods found in Stream Mitigation Guidelines (USACE and NCDWQ 2006). In order to determine if the rainfall is normal for the given year, rainfall amounts will be tallied using data obtained from the Cumberland County WETS Station and an on-site rain gauge. The objective is for the monitoring data to show the site is saturated within 12 inches of the soil surface for at least 9 percent of the growing season as indicated by the DRAINMOD model in Section BAKER ENGINEERING NY, INC. 8-4 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 7.5 and that the site exhibits an increased frequency of flooding. The restored site will be compared to the reference site where the groundwater and surface water levels (overbank events) will be monitored. In addition, the restored hydrology of the site will be compared to pre-restoration conditions both in terms of groundwater and frequency of overbank events. 8.5 Vegetation Monitoring and Evaluation Successful restoration of the vegetation on a wetland mitigation site is dependent upon hydrologic restoration, active planting of preferred canopy species, and volunteer regeneration of the native plant community. In order to determine if the criteria are achieved, vegetation-monitoring quadrants will be installed and monitored across the restoration site in accordance with the CVS-NCEEP Protocol for Recording Vegetation, Version 4.1 (2007). At least 33 permanent monitoring quadrants will be established within the restored wetland areas (riparian and non-riparian) per Protocol Levels 1 and 2. No monitoring quadrants will be established within the floodplain areas of UTIc since these areas are already wooded. The size of individual quadrants will be 100 square meters for woody tree species, 25 square meters for shrubs, and 1 square meter for herbaceous vegetation. Vegetation monitoring will occur in the fall, prior to the loss of leaves. Individual quadrant data will be provided and will include diameter, height, density, and coverage quantities. Relative values will be calculated, and importance values will be determined. Individual seedlings will be marked such that they can be found in succeeding monitoring years. Mortality will be determined from the difference between the previous year's living, planted seedlings and the current year's living, planted seedlings. At the end of the first growing season, species composition, density, and survival will be evaluated. For each subsequent year, until the final success criteria are achieved, the restored site will be evaluated between July and November. The interim measure of vegetative success for the site will be the survival of at least 320, 3-year old, planted trees per acre at the end of year three of the monitoring period. The final vegetative success criteria will be the survival of 260 planted trees per acre at the end of year five of the monitoring period. While measuring species density is the current accepted methodology for evaluating vegetation success on restoration projects, species density alone may be inadequate for assessing plant community health due to natural variability within the riparian and non-riparian planting zones. For this reason, the vegetation monitoring plan will incorporate the evaluation of additional plant community indices to assess overall vegetative success as described in Section 7.6. Herbaceous vegetation, primarily native grasses, shall be seeded/planted throughout the site. During and immediately following construction activities, all ground cover at the project site shall be in compliance with the North Carolina Erosion and Sedimentation Control Ordinance. 8.6 Reporting Requirements A mitigation plan and as-built report documenting both stream and wetland restoration activities will be developed after the completion of site planting and the installation of wells on the restored site. The report will include all information required by NCEEP mitigation plan guidelines in accordance with NCEEP Mitigation Plan Document, Version 2.0 (2008). A monitoring program will be implemented to document system development and progress toward achieving the success criteria referenced in the previous sections. The monitoring program will be undertaken for 5 years, or until the final success criteria are achieved, whichever is longer. Monitoring reports will be prepared in the fall of each monitoring year and submitted to NCEEP in accordance with NCEEP Monitoring Report, Version 1.2 (2006). The monitoring reports will include: BAKER ENGINEERING NY, INC. 8-5 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN • A detailed narrative summarizing the project background that will include, project objectives restoration approach, project history and background • Stream assessment that includes morphometric and hydrologic success criteria, monitoring results and/or problems areas, stream photographs, and data tables • Vegetation assessment that includes vegetative success criteria, monitoring results and/or problem areas, vegetative photographs, and data tables • Overall conclusions and recommendations • Wildlife observations • References • As-built topographic maps showing locations of monitoring gauges, vegetation sampling plots, permanent photo points, and location of transects. 8.7 Maintenance Issues Maintenance requirements vary from site to site and are generally driven by the following conditions: • Projects without established woody floodplain vegetation are more susceptible to erosion from floods than those with a mature hardwood forest • Projects with sandy non-cohesive soils are more prone to short-term bank erosion than cohesive soils or soils with high gravel and cobble content • Alluvial valley channels with wide floodplains are less vulnerable than confined channels. • Wet weather during construction can make accurate channel and floodplain excavations difficult • Local wildlife can impact the rate at which the native buffer can be established • Extreme and/or frequent flooding can cause floodplain and channel erosion • Extreme hot, cold, wet, or dry weather during and after construction can limit vegetation growth, particularly temporary and permanent seed • The presence and aggressiveness of invasive species can affect the extent to which a native buffer can be established. Maintenance issues and recommended remediation measures will be detailed and documented in the as-built and monitoring reports. Factors that may have caused any maintenance needs, including any of the conditions listed above, shall be discussed. BAKER ENGINEERING NY, INC. 8-6 UT TO JUMPING RUN CREEK SITE RESTORATION PLAN 9.0 REFERENCES Bratton, S. P. 1976. Resource Division in an Understory Herb Community: Responses to Temporal and Microtopographic Gradients. The American Naturalist 110 (974):679-693. Lee, M., Peet R., Roberts, S., Wentworth, T. CVS-NCEEP Protocol for Recording Vegetation, Version 4.1, 2007. Doll, B.A. 2003. Stream Restoration Technical Guidebook and Coastal Stream Study Amendment. Division of Water Quality, 319 Program. Ehmfield, J. G., 1995. Microsite Differences in Surface Substrate Characteristics in Chamaecyparis Swamps of the New Jersey Pinelands. Wetlands 15(2):183-189. Evans, R. O. and R. W. Skaggs, 1985. Agricultural water management for Coastal Plain soils. Published by the North Carolina Agricultural Extension Service. Paper AG-355. Lilly, J. P. 1981. The blackened soils of North Carolina: Their characteristics and management for agriculture. North Carolina Agricultural Research Service Technical Bulletin No. 270. Lutz, H. J., 1940. Disturbance of Forest Soil Resulting from the Uprooting of Trees. Yale University School of Forestry Bulletin No. 45. North Carolina Department of Environment and Natural Resources. 2006. Water Quality Stream Classifications for Streams in North Carolina. Water Quality Section, November 2006. Raleigh, NC. Rosgen, D. L. 1994. A Classification of Natural Rivers. Catena 22:169-199. Rosgen, D.L., 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, Colo. Schafale, M.P. and A. S. Weakley, 1990. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, NCDEHNR, Raleigh, North Carolina. Skaggs, R. W. 1980. DRAINMOD Reference Report: Methods for Design and Evaluation of Drainage-Water Management Systems for Soils with High Water Tables. US Department of Agriculture, Soil Conservation Service. 329 pp. Stephens, E. P., 1956. The Uprooting of Trees: a Forest Process. Soil Science Society of America Proceedings 20:113-116. Sweet, W.V. and J.W. Geratz. 2003. Bankfull Hydraulic Geometry Relationships and Recurrence Intervals for North Carolina's Coastal Plain. Journal of the American Water Resources Association 39(4):861-871. US Army Corps of Engineers, Wetland Research Program (WRP), 1997. Technical Note VN-RS-4.1. US Army Corps of Engineers, WRP, July 2000. Technical Notes ERDC TN-WRAP-00-02. US Army Corps of Engineers, Environmental Laboratory, 1987. "Corps of Engineers Wetlands Delineation Manual," Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss. Exhibits N A _ 'I,- ?v Q HAR Long Valley Historic District Project Boundary T BERLAND CO. Baker Engineering NY, Inc. 8000 Regency Parkway Suite 200 Cary, North Carolina 27518 Phone: 919 463.5488 Fax. 919 463 5490 Exhibit 1.1 Project Vicinity Map UT to Jumping Run Creek 0 0.5 2 s Miles ILI Legend f_. .. Existing Stream Channel Remnant Stream Channel Conservation Easement Existing Culvert Project Watersheds INV Subwatershed (0.7 miz) Subwatershed (1.0 miz) r } _Subwatershed (1.2 miz) f =? - 'y} Sri: r All :sa i T 'Y7?{&7,"I} - * ??'? ?, ,?• ??,-..? , ? r ]431 :+}.}*_ } r •+` `? k •? `Y a ?? r,? + x? x ? r F 172 Szwag BM 7 f IM ?4*1 UAT J> I ? a1. ;' ''S-?-may 14 ?i s . ? { ?' • ? i e r ZOO f fay. i, t ' : t Baker Engineering NY, inc. Exhibit 2.1 - 8000 Regency Parkway S uite 200 0 1,000 2,000 Project Watershed ? Cary, North Carolina 27518 Feet Boundaries Phone: 919.463.5488 Fax: 919.463.5490 UT to Jumping Run Creek Legend O I/P Stream Forms Existing Ditches Existing Stream Channel ------ Remnant Stream Channel L_ County Boundary Conservation Easement III' Im' _,,, ?.{? ,.• ,? ?'_ ??,? ? v !? y,. e?,,?{.-..fir .?.s.?'ry' -. A{9'o 1r ?.. f l r iw. E 49: r' S, r Pro Baker Engineering NY, Inc. Exhibit 3.1 - 8666 Regency Parkway Suite o 0 1'000 2,000 CNr Site Hydrography Map Cary. North Carolina 27518 Feet Fax- 9 11 Phone9 963 549n UT to Jumping Run Creek . 4463 .5490 E T C O. Li gton ??a Dun Y? HARNET CO. 17 _ -- I -J n On-site Wetland Reference Site ^? 1 a, a alcon ° 01 eFe?t Air Force Bas paP j Springkee 01 13ragg 71 13 01 ?. 1 M E LAND CO. .l Stedman Autryville?, .. ti -0 K o Hope Mills v , Parkton Baker Engineering NV, Inc. Exhibit 4.1 - 8000 Regency Parkway 0 L ^ 4 s ita200 Reference Site Location Cary. North Carolina 27518 Miles F915466 UT to Jumping Run Creek F.,ax: 919.463 .54490 �n i 5 t'� Baker Engineering NY, Inc. - 8000 Regency Parkway 0 r 0 Ah Suite 200 Cary, North Carolina 27518 Phone: 919.463.5488 Fax: 919.463.5490 a, a s` • • � A Vti ed Culvert Crossing ed Stream Restoration (UT1 B - Sing le Channel) (3,400 feet) Fry ed Stream Enhancement (UT1C) (1,935 feet) ed Stream Restoration (UT1A -Braided Channel) (3,657 feet) sed Riparian Wetland Restoration (78.7 acres) sed Riparian Wetland Enhancement (3.4 acres) sed Non-Riparian Wetland Restoration (17.3 acres) rvation Easement (225 acres) alley Historic District Boundary I 4OW t 1 r? ? ?''FI. - _ ? prp ' E .? T? F I ?'???a.?r ?) ? . ???Y ? ? ^,.r E7 i - ti,?.?''` ''"? ,? •.- .: _ fit, 7?f? }, R• ^T f4 ,?. 7,.• ? .. r. *...? , ?, . 4 f ? ei ?t ^+ YF,6r'?" ?; ? y?'??r?'Si1{? ??eJ ..?'I?p*.. Syr ,?? ?'??' .y ? ?? ?'1"rep a ,?y . yo-. t ?a?n 4? ?"iy b 4-e ?,1• Baker Engineering NY, Inc- Exhibit 7•1 f m s°ige moo `xPa`kwaY 0 1,000 2,000 Proposed Cary. NoMi Caed,na 27518 Feet Project Areas Phone: 919.463 5488 F;k, ,,,4636x8° UT to Jumping Run Creek JR y, ? t fc? ?.v }Ys-w •J 1 ? P i ?e 7'6 ? '/. 4?:,".:1 '*?' t ?,,., .a'. ?+ e ? ?ww"_;lr( I? fi+T+•: J? ?,r •., , 4OW ?'D 0f r1',M' T`r 7r, f? `r •A _.'_T f, , t 1 r? •.- .: _ fit, 7?f? }, R• ^T f4 ,?. 7,.• ? .. r. *...? , ?, . 4 f ? Pi yt ^+ YF,6r'?" ''1 d • r A i? a r} . yT wvii w ,?? ?'??' .y ? ?? ?'1"rep a ?y . yo-. t ?a?n 4? ?"iy b 4-e ?,1• Baker Engineering NY. Inc. Exhibit 7.2 SOGO ile xPa`kwaY 0 1,000 2,000 Proposed f MOM W Cary. NoMi Caed,na 27518 Feet Reve gav Phone: 919.463 5188 getation Planting Zones - F;k, ,,,4636x8° UT to Jumping Run Creek Appendix 1 Project Site Photographs Project Site Photographs - UT to Jumping Run Creek x 4 i 41',r- Y' ?y? Fir k ? - 7 ?> Looking upstream at ditch near confluence with existing UT 14141 ffis t r Looking downstream at ditch confluence with UT Looking upstream at culvert crossing near existing a? 1., Looking at cattle watering area from left bank of UT near XSC 8. ? { h ' + • vv. Looking at backwater effects from beaver activity along existing UT near 30' powerline easement Looking downstream near beginning of existing UT at southwest easement area `A' Project Site Photographs - UT to Jumping Run Creek a UT showing cattle access to streambank near XSC 9 / Sta. 60+75 . 4 JEW,; ?A 4 ,4?c 1iN?sAd1 Va" UT showing hydric soils area and distance to farm buildings neat XSC 8 / Sta. 64+24 w . .i ? At 1 10, r channel near XSC 9 UT showing minimal riparian buffer vegetation UT showing beaver dam activity near XSC 9 UT showing existing culvert and overly widened UT upstream of culvert crossing under Long Valley Road near XSC 2 Project Site Photographs - UT to Jumping Run Creek 1 44, =b1?V, T t tJ ry4' x u x'nRy,1' k .? r+ J _ GivAn A. .iii }y{ „ , M Irr r V+[??t S,"dam, - ?f h 14 41 °I h. x N J-s rte, f' „' _ "rip 'OW-11 Looking at existing UT from right bank Looking upstream at ditch section near XSC 5 near XSC 2 / Sta. 74+41 Looking downstream at ditch section near XSC 5 Looking at spoil pile and pasture with cattle access on left bank near XSC 6 ON M ..mb 74-IN; 1 xw= Looking at ditch section cattle access and spoil pile Looking downstream at ditch section near XSC 6 from channelization near XSC 7 Project Site Photographs - UT to Jumping Run Creek r y 4 UT showing cattle access to streambank t k4l *m I 4V .. `6 I it r!F P' !IF Looking at hydric soils layering along ditch section near XSC 7 erosion ? F q r SP rt ... ?"?QIS•' t r"t . eRC ?, tr t i? _? Existing pond inflow along southern easement boundary within parcel area B' Existing pond outflow UT showing beaver dam activity and culvert UT showing overly widened channel with high width to depth ratio near XSC 1 Appendix 2 Project Site Summary Data, USACE Routine Wetland Determination Data, Forms & Notification of JD, NCDWQ Stream Classification Forms, SCS Soil Survey Map, Hydric Soils Map & Data Forms C O •G d N N N O U O L E E 7 N iT C C. E 7 w H t u R d ; d O CL` d w w d H L R E E 7 N w LL N O) (h O) 1- (O N O) N LO V N N (h '?-i O (h O Ln W O? N V n- 0) LO O N I- O N W LO N V N W ? W N O V I- O) N m N O N O m N m V (0 V N LL M I- 1- W V O) O) N (O N N O N Ln L w LL LO (h (O V r- O r- co W V rn ? N N O ? U i Q o Q O w s o O c o N N Q p N . E s (6 c -o m m m m Q x O L rn C U) N L _ O 3 C N O) w Y w Y w Y w Y C N Y '? .U (6 o N O C m C m 'O C m C m 'O C C m C U O N LL m m m m W m J N N d N a R C Q R R d 00 O L 7 N O N O V O V V (h I- (O LO (h 0 LO 11- 00 LO O) c c 0 . E (s a) LL a) LL a) LL a) a U) a) LL a) LL E E E E E E E E E E o a) cL LL o E a? C Q N c a? _ ' E N O N 7 00 OO 0) 7 U m a) a) p O 0 N ? U? E (0 W U> LO N E; N (h N LO Q 3 C - N V V m O 0 I- 0 LL .?.. C O . LL LO Ln O) Ln O) (O O) ' Z O (n O O O V O . C7 E -O O O O 7 O O N O O N O Ln N ? O W U - N N N N N (6 •_ i C N m Y E 3 ? N ? N (6 0 m p N C O O (6 ? > > N N p U ? '6 Q E t W ? -p O U fOA t -6 s co O I Y ?.? QN S Q y O N H 7 N Q O O- O N N E N U t E O O -6 (6 (6 t C C Q ( U O U N N - N N (n Q U Q g ac) rn N E 6 N 2 C U U p o N C N O) N J _ _ N N Q _ O = U O - p N (? N C O O,L O N N N N (6 C t U (6 w Y C w Y C N - w Y C Q U Y C C N O 0 C U C 0 O O- C C m > Q E N Z 2 O N (6 (6 p O > (6 o m C O (6 t co n o v ?n 0 t U E > L 0 N • af co co U > m LL co W U a '6 '6 '6 'O '6 (n U W Z ' 6 0 N Stream BKF BKF Max BKF Feature Type BKF Area Width Depth Depth W/D BH Ratio ER BKF Elev TOB Elev Riffle F 11.1 13.01 0.86 1.45 15.2 2.9 1.3 146.42 149.23 Cross-section X9, UT to Jumping Run Station 60+75 153 151 ? 149 o_ R 147 w ..... .... 145 143 0 20 40 60 80 100 Station (ft) - - O - - Bankfull O - - Floodprone Stream BKF BKF Max BKF Fe ature Type BKF Area Width Depth Depth W/D BH Ratio ER BKF Elev TOB Elev Riffle F 11.2 20.55 0.54 1.02 37.78 4.3 1.2 145.43 148.77 Cross-section X8, UT to Jumping Run Station 64+24 152 . 150 c 148 0 146 ----------------- - -------------- w 144 142 0 20 40 60 80 100 Station (ft) - - o - - Bankfull O - - Floodprone Stream BKF BKF Max BKF Feature Type BKF Area Width Depth Depth W/D BH Ratio ER BKF Elev TOB Elev Riffle F 11.1 18.35 0.6 0.87 30.41 4.4 1.1 145.1 148.1 Cross-section X1, UT to Jumping Run Station 67+19 153 152 151 $ 150 149 .2 148 R 147 w 146 --------------- 145 ------------- 144 143 0 20 40 60 80 100 Station (ft) 0 - - Bankfull 0 - - Floodprone Feature Stream Type BKF Area BKF Width BKF Depth Max BKF Depth W/D BH Ratio ER BKF Elev TOB Elev Riffle F 11.8 12.13 0.97 1.4 12.47 3.6 1.3 144 147.58 Cross-section X2, UT to Jumping Run Station 74+41 152 151 150 149 $ 148 ° 147 R a'i 146 w 145 ........... 144 -------- 143 142 0 20 40 60 80 100 Station (ft) o - - Bankfull O - - Floodprone F eature Stream Type BKF Area BKF Width BKF Depth Max BKF Depth W/D BH Ratio ER BKF Elev TOB Elev Riffle F 11 12.1 0.91 1.17 13.34 5.5 1.3 143.8 149.01 Cross-section X10, UT to Jumping Run Station 73+13 152 151 150 149 w 148 ° Y 147 R 146 w 145 ----------- 144 ........ 143 142 0 20 40 60 80 100 Station (ft) 0 - - Bankfull 0 - - Floodprone Stream BKF BKF Max BKF Feature Type BKF Area Width Depth Depth W/D BH Ratio ER BKF Elev TOB Elev Riffle N/A 11 9.44 1.17 1.65 8.08 2.3 1.5 145.5 147.61 Cross-section X3, Ditch Station 12+57 156 154 152 c 150 Y > 148 a --- w 146 144 142 0 20 40 60 80 100 120 140 160 180 Station (ft) - - 0 - - Bankfull 0 - - Floodprone Stream BKF BKF Max BKF F eature Type BK F Area Width Depth Depth W/D BH Ratio ER BKF Elev TOB Elev Riffle N/A 5.7 6.36 0.9 1.37 7.04 2 2.3 146.1 147.47 Cross-section X4, Ditch Station 9+73 156 154 w 152 c 150 Y > 148 w 146 144 142 0 20 40 60 80 100 120 140 160 180 Station (ft) - - 0 - - Bankfull 0 - - Floodprone Stream BKF BKF Max BKF Feature Type BKF Area Width Depth Depth W/D BH Ratio ER BKF Elev TOB Elev Riffle N/A 11 11.25 0.98 1.35 11.49 3.8 1.4 145.67 149.51 Cross-section X5, Ditch Station 20+43 156 154 152 c 150 Y > 148 a w 146 144 142 0 20 40 60 80 100 120 140 160 180 Station (ft) =0- nkfull 0 - - Floodprone Feature Stream Type BKF Area BKF Width BKF Depth Max BKF Depth W/D BH Ratio ER BKF Elev TOB Elev Riffle N/A 11.1 11.03 1 1.83 11 3.2 1.9 146.2 150.17 Cross-section X6, Ditch Station 24+59 156 154 152 c 150 Y > 148 --------- a w 146 __ 144 142 0 20 40 60 80 100 120 140 160 180 Station (ft) - - o - - Bankfull O - - Floodprone F eature Stream Type BKF Area BKF Width BKF Depth Max BKF Depth W/D BH Ratio ER BKF Elev TOB Elev Riffle N/A 11 13.46 0.82 1.47 16.46 3.8 1.4 146.28 150.38 Cross-section X7, Ditch Station 28+39 156 154 Y W 152 c 150 Y 148 _____ w 146 " ' 144 142 0 20 40 60 80 100 120 140 160 180 Station (ft) - - o Bankfull 0 - - Floodprone C>? U) m op J ry O o 0 C) C) .. o 4.0 0 C) L L O O C i O C) O O C) i C) O O O (D Nt N O co 0 ? N O LO LO LO LO Nt Nt ? (1=1) u01jena13 Pavement/Subpavement Analysis SITE OR PROJECT: UT to Jumping Run Creek REACH/LOCATION: UT1 a_Begin Reach / Ditch Confluence DATE COLLECTED: 7/10/2007 FIELD COLLECTION BY MW, KV DATA ENTERED BY JB LARGEST SUBPAVEMENT PARTICLE (mm): 15.00 SEDIMENT ANALYSIS DATA SHEET Pavement Subpavement MATERIAL PARTICLE SIZE (mm) 100 ct Bucket (g) Silt / Clay < .063 74.0 Very Fine 063-125 118.0 Fine 125-.25 346.5 S A N D Medium 25-.50 219,0 Coarse .50-1.0 133.0 Very Coarse 1.0-2.0 32,0 00O Very Fine 2.0-2.8 33.5 03 000 Very Fine 2.8-4.0 26.0 Fine 4.0-5.6 53.5 O Fine 5.6-8.0 49.5 0U Medium 8.0-11.0 34.50 GRAVEL Medium 11.0-16.0 O ?O Coarse 16 - 22.6 0 0 Coarse 22.6 - 32 Very Coarse 32 - 45 0 ? Very Coarse 45 - 64 00 ( Small 64 - 90 Small 90 - 128 COBBLE Large 128 - 180 00 Large 180 - 256 Small 256 - 362 Small 362 - 512 BOULDER Medium 512 - 1024 Large-Very Large 1024 - 2048 BEDROCK Bedrock > 2048 L 0 1120 Channel materials Pavement Subpavement D16 = #N/A 0.12 D35 = #N/A 0.19 D5o = #N/A 0.3 D64 = #N/A 2.4 D65 = #N/A 6.9 Dloo = #N/A 15.0 d cc r H N 0 N V cc a a? E a? cc Q U) a? U L LL LL D U U ¦ O O O O r O O O r O O E E N N o V N V f? a 0 I T I I I I I I I t o 0 0 0 0 0 0 0 0 0 0 O 0') co I- (O LO M N r 0 0 Y U O L M? W L MO W Z O U co co U c? U U ZU83JOd Pavement/Subpavement Analysis SITE OR PROJECT: UT to Jumping Run Creek REACH/LOCATION: UT1b CMP Blowout DATE COLLECTED: 7/10/2007 FIELD COLLECTION BY MW, KV DATA ENTERED BY JB LARGEST SUBPAVEMENT PARTICLE (mm): 30.00 SEDIMENT ANALYSIS DATA SHEET Pavement Subpavement MATERIAL PARTICLE SIZE (mm) 100 ct Bucket (g) Silt / Clay < .063 30.0 Very Fine 063-125 55.0 Fine 125-.25 274.0 S A N D Medium 25-.50 457.0 Coarse .50-1.0 308.0 Very Coarse 1.0-2.0 92,0 00 Very Fine 2.0-2.8 77.0 00 03 000 Very Fine 2.8-4.0 70.5 Fine 4.0-5.6 122.5 O Fine 5.6-8.0 113.0 J 0U Medium 8.0-11.0 73,00 GRAVEL Medium 11.0-16.0 34.50 O Coarse 16 - 22.6 0 0 Coarse 22.6 - 32 30,00 Very Coarse 32 - 45 0 ? Very Coarse 45 - 64 00 ( Small 64 - 90 Small 90 - 128 COBBLE Large 128 - 180 0C) Large 180 - 256 Small 256 - 362 Small 362 - 512 BOULDER Medium 512 - 1024 Large-Very Large 1024 - 2048 BEDROCK Bedrock > 2048 L 0 1737 Channel materials Pavement Subpavement D16 = #N/A 0.20 D35 = #N/A 0.36 D5o = #N/A 0.6 D64 = #N/A 5.2 D95 = #N/A 10.0 Dloo = #N/A 30.0 -AM N U L LL L n U U 0 0 r 0 r 9 E N N f? U d N_ co N V f? CL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD 0) co r- (O LO I-t M N r ;U83JOd Pavement/Subpavement Analysis SITE OR PROJECT: UT to Jumping Run Creek REACH/LOCATION: UT1 b CulvertOut DATE COLLECTED: 7/10/2007 FIELD COLLECTION BY MW, KV DATA ENTERED BY JB LARGEST SUBPAVEMENT PARTICLE (mm): 20.00 SEDIMENT ANALYSIS DATA SHEET Pavement Subpavement MATERIAL PARTICLE SIZE (mm) 100 ct Bucket (g) Silt / Clay < .063 38.0 Very Fine 063-125 115.5 Fine 125-.25 394.0 S A N D Medium 25-.50 486.0 Coarse .50-1.0 231.0 Very Coarse 1.0-2.0 59,0 00O Very Fine 2.0-2.8 54.5 03 000 Very Fine 2.8-4.0 54.5 Fine 4.0-5.6 106.5 O Fine 5.6-8.0 94.5 J oU Medium 8.0-11.0 57.50 GRAVEL Medium 11.0-16.0 14,00 O ?O Coarse 16 - 22.6 0 0 Coarse 22.6 - 32 Very Coarse 32 - 45 0 ? Very Coarse 45 - 64 00 ( Small 64 - 90 Small 90 - 128 COBBLE Large 128 - 180 0C) Large 180 - 256 Small 256 - 362 Small 362 - 512 BOULDER Medium 512 - 1024 Large-Very Large 1024 - 2048 BEDROCK Bedrock > 2048 L 0 1705 Channel materials Pavement Subpavement D16 = #N/A 0.15 D35 = #N/A 0.27 D5o = #N/A 0.4 D64 = #N/A 4.0 D95 = #N/A 7.6 Dloo = #N/A 20.0 a+ 7 0 N > N > 7 U F- _ U) D N V cc a r_ w E a? cc Q U) N U L LL n O O r O r E E N N U d N_ N V a 0 D U U U T' 0 0 0 0 0 0 0 0 0 0 0 CD CD O 0) co r- (O LO co N r ZU83JOd Pavement/Subpavement Analysis SITE OR PROJECT: UT to Jumping Run Creek REACH/LOCATION: UT1 b Main Channel Downstream DATE COLLECTED: 10/7/2007 FIELD COLLECTION BY MW, KV DATA ENTERED BY JB LARGEST SUBPAVEMENT PARTICLE (mm): 11.00 SEDIMENT ANALYSIS DATA SHEET Pavement Subpavement MATERIAL PARTICLE SIZE (mm) 100 ct Bucket (g) Silt / Clay < .063 108.0 Very Fine 063-125 114.5 Fine 125-.25 357.5 S A N D Medium 25-.50 372,0 Coarse .50-1.0 216.5 Very Coarse 1.0-2.0 81,0 00 Very Fine 2.0-2.8 72.5 00 03 000 Very Fine 2.8-4.0 73.0 Fine 4.0-5.6 147.5 O Fine 5.6-8.0 102.5 J oU Medium 8.0-11.0 60,50 GRAVEL Medium 11.0-16.0 O ?O Coarse 16 - 22.6 0 0 Coarse 22.6 - 32 Very Coarse 32 - 45 0 ? Very Coarse 45 - 64 00 ( Small 64 - 90 Small 90 - 128 COBBLE Large 128 - 180 0C) Large 180 - 256 Small 256 - 362 Small 362 - 512 BOULDER Medium 512 - 1024 Large-Very Large 1024 - 2048 BEDROCK Bedrock > 2048 L 0 1706 Channel materials Pavement Subpavement D16 = #N/A 0.14 D35 = #N/A 0.26 D5o = #N/A 0.4 D64 = #N/A 4.4 D65 = #N/A 7.3 Dloo = #N/A 11.0 a? U L LL L LL D(J) E U U ¦ O O O O r O O O r O O E E N N o U N_ N V f? a r O I I I I I I I I I t o O o O O O O O O O O O O co I- O LO M N r O C) Y U O L M? W L MO W O U co co U) co U ZU83JOd DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Determination Manual) Project 1 Site: UT to Jum in r Run Creek Restoration Project Date: 5 22 07 Applicant 1 Owner: NC. Ecosystem Enhancement_ Pro ram a }iP cani j_ County: !C11mberlaDd The Nature Conservana towner} State: NC _ investigator: BY ad So her Do normal circumstances exist on the site? Yes X No Community ID: Is the site significantly disturbed (Atypical situation)? yes 7X" No (It railed. nonforested " is the area a potential problem area? Yes No X headwater wetland .. (explain on reverse if needed) Transec# ID: Plot 1D: Wedand_3 2() ft. inside wetland norihe(ast U'f fia.-?W3-10. VEGETATION Domin t Plant S Pec i 5 ratans Indicator_ Dominant Plaani Species stratum Indicator 1.? junclis effy'shs H FACW+ 9. 2. Pol oratm s " 11 FACW 10. 3. Rann C-uh-is s s f FAG 11. 12. 5. 13. 6. 14. 7. 15. 1fi. Percent of Dominant Species that are OBL, FACW, or FAC excluding FAC-). 1€3()°Ir Remarks: The Pnfygonnni could not he identified to species because it was examined outside of flowering season. It is most likely one of the following; species: P. punctutairn (FACW+), 11. selaceum (FACW ), 1'- pe-n-ic aria (FACW) (Radford, Ahles, & Hell, 1983). The Ranuncarlars could not be identified to species but is assumed to have a facultative rating of FAC or welter because the majority of Ranunculus species found in the Coastal Pkiin have is ratint, of FAC: or wetter (Radford, Ahles, Bell, 1983). HYDROLOGY Recorded Data (Describe In Remarks): Wetland Hydrology Indicators Stream, Lake, or Tide Gauge Aerial Photographs Primary Indicators: Other inundated Saturated in Upper 12" X No Recorded Data Available N- Water Marks Drift Lines Field Observations: Sediment Deposits Drainage Patterns in Wetlands Depth of Surface Water: 0 (in.) Secondary Indicators: Oxidized Roots Channels in tipper 12" Depth to Free Water in Pit: X12 Win.) x Water stained Leaves J_ Local Soil Survey Data Depth to Saturated Soil: 9 (in.) FAC-Neutral Test _ other (Explain in Remarks) Remarks: SOILS Map Unit Name (Series and Phase): Deloss Drainage Mass: Very poorly drained Taxonomy (Subgroup): epic Umhr4i%j lts__ _ Confirm Mapped Type? Yes, No x Prottle Description, Depth Matrix Colors Mottle Colors Mottle Texture, Concretions, iinchesl Horizon Wunsell MoisD (Munseli MLD st) _ Abun_gancelContrasl Structure, etc. 0-5 A T IQNR 311 5-12 __B,gl 10YR 3j _ 12-18+ 13 2 7.5YR 4/2 loam clay Loam --sandy loam Hydric Soil Indicators: .? Histosnt Concretions Histic Epipedon ` High Organic Content in Surfa Sut#idic Odor Organic Streaking in Sandy Soils A"M N Aquic Moisture Regime X .Listed On Local Hydric Salts List ___ Reducing Conditions x Listed on National Hydric Sails List x Gleyed or Law-Chrome Colors _ Other (Explain in Remarks) Remarks: Pedon is mapped as the Deloss series, but it is most like the Torhunta series (Typic Humaquepts verb' poorly drained). "The Torhunta series is considered a hydric soil series (httlrl soils.usda.g_oy/uselhydric/ accessed 7/11/2007), This Fedor is not Deloss because it tacks an arg llic horizort. (htt www2.ftw.nres.usd ov/osd/da1`/D/DEL0SS.h1m1 and http_:Lwww2.ftw,nres.usda.gavfasd/dat=QRHUNTA html accessed 7/11/2007). WETLAND DETERMINATION Hydrophytic Vegetation Present? Yes X No Is the Sampling Point Wetland Hydrology Present? Yes X No Within a Wetland? Yes X No Hydric Soils Present? Yes X No ?_ Remarks: *Wetland and surrounding areas experienced historical clearing ditching and draining for use as pasture and no longer comprise any natural community type described in Classification of the Natural Communities of Norlh Carolina, Third Approximation (Schalale and Weakley, 1990),. DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Determination Manual) Project I Site: T to ]um in Run Creek Restoration Project Date: _ 5122107 Applicant I Owner: N Ecos tear Enhancement Program (applicant) County: Cumberland The Nature nseryanc owner State: NC Investigator: Brad Suther. Do normal circumstances exist on the site? Yes X No Community ID: Is the site significantly disturbed (Atypical situation)? Yes X* No ask ture* Is the area a potential problem area? Yes No X Transect ib; (explain on reverse If needed) Plot ID:Upland adjacent to wetland 3, 15 ft. beyond flag 3-5. VEGETAf ibu Plen S ? 'cues po a' LL_ Stratum Indicator Dominant Plant Snecies Stratum Indicator ,. 1 uncus g ' s H FACW+ 9. 2.E'upawriurri2apiliifoliA. H FACU 10. $.Aradro 0 oil G'r inicus 1 H FAC- . .Rutts cun'a ' ius 4 HR FAC] 12. . ?:': ?? ' j: ' ;5 13. 6 ..y 14. 7. 15. 8. 16. Percent of Dominant Species that are OBL, FACW, or FAC excluding FAC-). 25 % Remarks: HYDROLOGY Recorded Data (Describe In Remarks) Stream, Lake, or Tide Gauge Aerial Photographs Other X No Recorded Data Available Field Observations: Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil Remarks: Wetland Hydrology Indicators Primary Indicators: Inundated Saturated In Upper 12" _ Water Marks _ drift Lines Sediment Deposits Drainage Patterns in Wetlands 0 t'n•} Secondary Indicators: Oxidized Roots Channels In Upper 12" X24 [in.) Water-Stained Leaves _ Local Soil Survey Data X24 (in.} FAC-Neutral Test Other (Explain in Remarks) SOILS Map Unit Name (Series and Phase): Deloss Drainage Class: Vera poorly drained Taxonomy (Subgroup): T is l_Imbrt;c uults Confirm Mapped Type? Yes No X Profile Descriotion. Depth Matrix Colors Mottle Colors Mottle Texture, Concretions, inches Horizon (Munsell Mgim) agnstil Moist}, _ Ab ndance C rrirast Structure etc. t) - 12 A 1()Yl# 2/1 12- 16 AB 10YR 4/2 16-24+ 1310YR SIz Hydric Soil Indicators: loam. sand -sandy loam . -sanely loam Histosol Concretions Histic Epipedon _ Nigh Organic Content in Surfac Sulfidic Odor _-Organic Streaking in Sandy Soils X Aquic Moisture Regime X Listed On Local Hydric Soils List __ Reducing Conditions X Listed on National Hydric Soils List x Gleyed or Low-Chroma Colors - Other (Explain in Remarks) Remarks: Pedon is Mapped -is the. Deloss series, but it is most like the Torhunt<i series (Typic 1-lumayuepts; very poorly drained). The Torhunta series is considered a hydric soil series (lrtt ): soils.usda.ioy use lidri(-accessed 7111/2007). This Pedon is not Deloss because it lacks an argillic horizon. (hti : w w2.i'tw.nres.usda. ov osd da D F]ELQSS.htm1 and http Lww w2.ftw nres usda_ov c,sd/dalgffORH!UNTA.litml accessed 7/11/2007). WETLAND DETERMINATION HYdrophytt.c Vegetation Present? Yes No X is the Sampling Point Wetland Hydrology Present? Yes No X Wl#hin a Wetland? Yes No X Hydric Soils Present? Yes X No Remarks: *Area experienced historical clearing and ditching and draining for use as pasture and no longer comprises any natural community type described in Classification of She Natural Communities of North Carolina, Third Approximation (Schafale and Weakley, 1990). T DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Determination Manual) Project 1 Site: UT to Jumping Run Creek Restoration Project Applicant 1 Owner: NC E st m Enh ncement Pro ram (applicant) The Nature GonWn a_ncy_(owner) Investigator: Brad Suther, Dwayne Honeycutt Date: 6/12/07 County: Cumberland Stater Do normal circumstances exist on the site? Yes X No Community ID: Is the site significantly disturbed (Atypical situation)? Yes V No degraded, non-forested Is the area a potential problem area? Yes No X wet flat in posture* (explain on reverse if deeded) Transect ID: Plot ID: Wetland 8. area enclosed by flag _s W8-27 through W8--62. Data point located 30 ft. inside wetland between flags W8-61 and W8- 62. VEGETATION 0o inn P cies Stratum Indicator Dominant Plant Species Stratum Indicator _ 1. Juncus e&sus H FACW+ 9. 2. Carex lurida H OBL 10. 3. H drocv le umbellata H OBL 11. 4.5nhagnum sp. H Nl 12. 5. Rhexia sp. H FACW+ 13. 6. 14. 7. 15. 8. 16. Percent of Dominant Species that are OBL, FACW, or FAC excluding FAC-). 80% Remarks: Rhexia sp. is most likely Rhexia marlana (FACW+), HYDROLOGY Recorded Data (Describe In Remarks) Stream, Lake, or Tide Gauge Aerial Photographs Other X No Recorded Data Available Field Observations: Depth of Surface Water: 0 (in.) Depth to Free Water In Pit: X12 Win.) Depth to Saturated Soil: 6 (in.) Wetland Hydrology Indicators Primary Indicators: Inundated X Saturated in Upper 12" Water Marks _ Drift Lines - Sediment Deposits - Drainage Patterns In Wetlands Secondary Indicators: Oxidized Roots Channels in Upper 12" Water-Stained Leaves Local Soil Survey Data X FAC-Neutral Test Other (Explain in Remarks) Remarks: SOILS Map Unit Name (Series and Phase: Deloss Drainage Class: very poorl?t_clrained Taxonomy (Subgroup);?Ty icc llmbTa golrs Confirm Mapped Type? Yes- No x Profile Description,. Depth Matrix Colors Mettle Colors Mottle Texture, Concretions, inches Horizon IMunseil Moist) _„ fhtunsell Mo1§11 AbundancefCOgrasi Structure, etc. Q-12 A 2.5 N 12-24+ f3 10YA 311 Hydric Soil Indicators: Histosol Histic Epipedon Sutfidic Odor Aquic Moisture Regime - Reducing Conditions x_ Gleyed or Law-Chroma Colors toarn loam # il2bb epnGretlorl5 High Organic content in Surface Organic Streaking in Sandy Solis xListed On Local Hydric Soils List _ x Listed on National Hydric Soils List __ Other (Explain in Remarks) Remarks: Pedon is mapped as the Deloss series, hilt at is most like the Torhunia series (Typic 1)umaclnepis, very poorly drained). The 'Forhunla series is considered a hyclric soil series (lht . soilsmsda. ovluselhydric/ accessed 7/11/2007). This Peden is not Deloss because it lacks an argillic horizon. (htl1): www2.fiw.ares.usda.p-ov/osd/datLP DELOSS himl and htt : ww 2.ftw.nres.usdl ov/osdlclatlT ORHUNl'A.html accessed 7/11/2007). WETLAND DETERMINATION Hydrophylic Vegetation Present? Yes X No Is the Sampling Point Wetland Hydrology Present? Yes X No Within a Wetiand? Yes X No Hydric Soils Present? Yes X No - Remarks: *Welland and surrounding areas experienced historical c3earing and ditching and draining for use as pasture and no longer Comprise any natural community type described in Classification of the Natural Communities of North Carolina, Third Approximation (Schafale and Weak ley, 1990). N DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Determination Manual) Project/ Site: UT to Jymping Run Creek Restoration Project Date ?LJ2 _ ? Applicant 1 Owner NC Ec-o ystexn,EnhancetncrtPro ream fa €icant)- County: Ct mtrerland The.Nalure servancy {owne r. State: NC Investigator: Brad Suthe.r, Dwayne Honeycutt- - -...._. v_ Do normal circumstances exist on the site? Yes X No Community ID: Is the site significantly disturbed (Atypical situation)? yes No pastwe" Is the area a potential problem area? Yes _ No X Transect ID: (explain on reverse It needed) Plat )D: 20 Ft. outside wetland S heiw vn Fla s W8-61 anti WS-62. VEGETATION Dominant Plant Apecies Stratum In is for norninant Plana S ecies Stratam Insticatcr 1, Anctis_&yslo H FACW+ 9. 2, t npytorium eypiltrfnl-in", _ H FACU 10. 3. Ritbys aMians SHR, FACU+ 11. 4. EyIgltu viminey H FAC+ 12. 5. Andropo&yi vtrg rtim H f'AC- 13. 6. 14. 7. 15.. $. 16. Percent of Dominant Species that are OBL, FAC'W', or FAC excluding FAC+ pit?{'lr? Remarks: HYDROLOGY Recorded Data (Describe In Remarks): Wetland Hydrology Indicators Stream, Lake, or Tide Gauge Aerial Photographs Primary Indicators: Other Inundated Saturated in 'Lipper 12" X No Recorded Data Available Water Marks Drift Lines Field Observations: Sediment Deposits Drainage Patterns in Wetlands Depth of Surface Water: Q (in.) _ Secondary Indicators: Depth to Free Water in Pit: a ] 6in ) Oxidized boots Channels In Upper 12" . Water-Stained Leaves _ Local Soil Survey Data Depth to Saturated Soil: ->:18 (In.) ? FAC-Neutral Test Other (Explain in Remarks) Remarks: SOILS Map Unit Name (Series and Phase): Deloss Drainage Class: Very poor drained Taxonomy (Subgroup): Typic Umbramults . Confirm Mapped Type? Yes_No X Profile Description: Depth Matrix Colors Mottle Colors Mottle Texture, Concretions, finches) Horizon (Munsell Moist)(MLjn§ell Nlo stl ... AbundanceXontrast Structure, etc.- 0-9 A JOYR 2!1 _? - --- loam 9- 184 BtL 10YR 5/1 1()YR 4 fi level rominent silly clay r -, Ye i Hydric Soil Indicators; r ° t ` `• ---- Histosol Concretions X7266 -- Histic Epipedon - High Organic Content in Surface L' M11b a s Suifidic Odor Organic Streaking in Sandy Solis '-f ? Aquic Moisture Regime x -Listed On Local Hydric Soils List Reducing Conditions x „Listed on National Hydric Soils List x Gleyed or Low-Chroma Colors _ Other (Explain in Remarks) Remarks: - Soil is mapped as Deloss but is most like the Rminoke series (Typic Endoacitiults; poorly drained) because it tacks an umbric epipedon is in the tine textUral gamily class (littp: www2.five.nres,u5cla.g??vl?sclldatlDll]i~1.OSS.lttml an t htt a: www2.ftw.nres.usda. oV osd dat R ROANOKE.html, accessed 6115197). The Roanoke series is considered n hydric sail series (littp:flsoils.nsda.gor+luse/liyric, accessed 611512007). WETLAND DETERMINATION ip' ti Hydrophytic Vegetation Present? Yes No X Is the Sampling Point Weiland Hydrology Present? Yes No X Within a Wetland? Yes No X Hydric Soils Present? Yes X No Remarks: *This area experienced historical clearing and ditching and draining for t.tse as pasture and no longer comprises any natural community type described in Classification of the Natural Communities of North Carolina, Third Approximation (Schalale and Weakley, 1990). DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Determination Manual) Project 1 Site: UT to lumping Run Creek Restoration Project Date: 6121,107 Applicant 1 Owner: NC Ecosystem Enhancement Program (Mplicant) County: Cumberland The Nature Conservancy (owner] State: NC Investigator: Brad uther Dwayne Honeycutt Do normal circumstances exist on the site? Yes X No Community ID: Is the site significantly disturbed (Atypical situation)? Yes X' No degraded, non-forested Is the area a potential problem area? Yes No X wet flat-in pasturea (explain on reverse if needed) Transect ID: Plot ID: Welland 8. area enclosed by flags W8-1- W8-26 & W8-63 - W8-75. Data point is in wetland near W8-5. VEGETATION Dominant Plant_Snecies _ Stratum Indicator Dominant Plant Species_ _ Stratum Indicator 1. Juncus ec`usus H FACW+ 9. 2. Carex lurida. H FACW 10. 3. Polyganu.m sp. H FA W 11. 4. Leonia li?ustrinr _ H FACW 12. 5. 13. 6. 14. 7. 15. 8, 16. Percent of Dominant Species that are OBL, FACW, or FAC excluding FAC+ 100 TO Remarks: The Polygonum could not he identified to species because it was examined outside of flowering season. It is most likely one of the following species: P. punctatum (FACW+), P. setaceum (FACW), P. persicaria (FACW) (Radford, Ahles, & Bell, 1983). HYDROLOGY Recorded Data (Describe In Remarks): Wetland Hydrology Indicators Stream, Lake, or Tide Gauge Aerial Photographs Primary Indicators: Other inundated i _ Saturated In Upper 12" X No Recorded Data Available x Water Marks _ Drift Lines Field Observations: - Sediment Deposits - Drainage Patterns in Wetlands Depth of Surface Water: 0 (in.) Secondary Indicators: Oxidized Roots Channels in Upper 12" Depth to Free Water in Pit: X18 (in.) x Water-Stained Leaves Local Soil Survey Data Depth to Saturated Soil: 12 (in.) x PAC-Neutral Test Other (Explain in Remarks) Remarks: Water marks and water stained leaves resulted from backt3ooding from a series of beaver impoundments on UT to lumping Run. The heaver impoundments were breached in May 2007 to allow for restoration of UT to Jumping Run. SOILS Map Unit Name {Series and Phase): Qelo.ss Drainage Class: very poor±y drainecl Taxonomy (Subgroup): l'ypic Urnhra quults Confirm Mapped Type? Yes- No A Profile Uescrin#ion: Depth Matrix Colors {inches)_ H rid zpn (Munselt Mnisg t1- 11 __ _ A 10'YR 2/1 11 - l I3 1 QYR :3J2 Hydric Soil Indicators: Mottle Colors Mottle 7exiore, Concrebons, fMunsell Moist) Abundance/Contrast , structure a c. lolm - - sand loarn N -,!E. Histosol Concretions Histic pipedon High Organic Content in Surface Laye 'Pjy Sutfidic Odor --Organic Streaking in Sandy Soils Aquic Moisture Regime X Listed On Local Hydric Soils List Reducing Conditions X Listed on National Hydric Soils List - Gleyed or Low-Chrome Colors Other explain in Remarks) G Remarks: Pedon is mapped as the Deloss series, but it is most like the. Torhunta series (Typic Hurnaluepts; very poorly drained). The Torhunta series is considered a hydric- soi1 series (hti soils.usda.aov use li dric accessed 7/1112007). This Pedon is not Deloss because it lacks an argrllic horizon. (lift : www2.ftw.nres.usda. nv tlsdldat?lJ1I]F1OSS_ iitrril and htjLwww1lw.nres,^usda. ovosd?dal ?lQRHQNTA.htmjazccessed7/11/2007). WETLAND DETERMINATION Hydrophytic Vegetation Present? Yes Y Na Is the Sampling Point Weiland Hydrology Present? Yes X No Within a Wetland? Yes ,X No Hydric Soils Present? Yes x No W- Remarks: *Wetland experienced historical clearing for use as paStLire and no longer comprises any natural community type described in Classification of the Natural Communities of North Carolina, Third Approximation (Schalale and Weakley, 1990). DATA FORM ROUTINE WETLAND DETERMINATiOt4 0987 COE Wetlands Determination Manual] ProJeet 1 Site: UT lo Jumping Run Creek Restoration Project Date: k/21107 Applicant / Owner: NC Ec s lem Enhancement Pro ram a hcant County: Cumberland The Natur_e_Conservancy (owner) State: NC Investigator: Brad Suther. Dwayne Haneycutt _ Do normal circumstances exist on the site? Yes X No Community ID: Is the site significantly disturbed (Atypical situation)? Yes X* No Pasture* Is the area a potential problem area? Yes No X Transect ID: (explain on reverse if needed) Plot ID: Upland. 10 ft. north of flaz-WS-5. VEGETATION, D-Qmisant Ptard-Spkcles _ _ Stratum Indicator bominant Plant Species Stratum indicator 1. An&=ggn virginicus_ H FAC- 9. 2-Eupatoriuincapillifo[ium H FACT] 10. 3. Festuca W. H FAC- 11. 4..Rub s c nef ohu ? SHR FACU 12. 5.Lyonia dikustrina : '. ^ SHR FACW 13. 6. 14. 7. 15. 8. 16. Percent of Dominant Species that are OBL, FACW, or FAC excluding FAC-). 2O % Remarks: HYDROLOGY Recorded Data (Describe In Remarks): Wetland Hydrology Indicators _ Stream, Lake, or Tide Gauge Aerial Photographs Primary Indicators: Other Inundated Saturated in Upper 12" .X No Recorded Data Available _ Water Marks _ Drift Lines Field Observations: Sediment Deposits Drainage Patterns in Wetlands Depth of Surface Water: 0 (in.) Secondary Indicators: Oxidized Roots Channels in Upper 12" Depth to Free Water in Pit: a18 fin.} Water-Stained Leaves Local Soil Survey Data Depth to Saturated Soil: alb (in.) FAC-Neutral Test Other (Explain in Remarks) Remarks: SOILS Map Unit Name (Series and Phase): De1os.5 Drainage Class:, Very Poorl LQrzine Taxonomy (Subgroup):Typie Umbras uults Con#itrm Mapped Type? "Yes No X Profile Descrption: Depth Matrix Colors Mottle Colors Mottle Texture, Concretions, finches) _ Horizon tMunseil MQist]ldtunsell Moist) AbunzncelConirast Structure etc 0-5 A 1l)YR 211 ---- ..•_ loarn S -- 15 Aka I0YR 312 ----- -_ sandv loam 15-18+ Big 10YR 0/2 1 QYR 5/6 fewj2T()rninent clay Hydric Soil Indicators: rr Histosol Concretions Histic lrptpedon High Organic Content in Surface A% Sultidic Odor Organic Streaking in Sandy Soils x Aquic Moisture Regime X Listed On Local Hydric Soils List Reducing Conditions X Listed on National Hydric Sails List X Gleyed or Low-Chroma Colors Other explain in 3lernarks) Remarks: Soil is mapped as Deloss but is most like the Crape bear series (Typic, Umhnquults., very poorly drained) hecause it is in the fine textural gamily class (]tttL);Ilwww2.ftw nres.,usda.povlosldat DJDELOSS.htnil and 1_ ttp. www2.f1w.nres.usda..-ovlosdldat Ct 'ICAPE FEAR.litrnl, accessed 6/15/2007). The C apc Fear series is considered a hydric sail series ft soiis.usda. ov use h dric accessed 6/15/2(ll)7). WETLAND DETERMINATION Hydrophytic Vegetation Present? Yes No X Is the Sampiling Point Wetland Hydrology Present? Yes No X Within a Wetland? Yes No X Hydric Soils Present? Yes X No Remarks: *Area experienced historical clearing for use as pasture and no longer comprises any natural cornmt,rnity type described in Classification of the Natural Communities of North Carolina, Third Approximation (Schafale and Weakley, 1990). DATA FORM ROUTINE WETLAND DETERMINATION- (1987 COE Wetlands Determination Manual) Project 1 Site: UT-9-lumping Run Creek Restoration Project Date:_ 5113107 Applicant J Owner: NC Ecosystem Enhancement Program (applicant) County: Cumberland The Nature Conservancy (owner) State: NC Investigator: Brad uther. DDwayne Honeycutt Do normal circumstances exist on the site? Yes X No Community ID: Is the site significantly disturbed (Atypical situation)? Yes X* No degraded headwater Is the area a potential problem area? Yes No X forest wetland" (explain on reverse it needed) Transect ID: Plot ID: Wetland 15 'between flags W15-1 and W15-2. VEGETATION DOminant Plan! Species Stratum ladicator _ D2rninent Plant Species St a u Indicator 1. Woodx+ardia areolala H ?BL 9. 2. Pol ovum -'s p, H FACW 10. 3. Arundinaria gjggn?'ea SHR FACW 11. 4. Acer'rubrum TT, Sap FAC 12. S. Pinus t4eda.. T FAC 13. 6. 14. 7. 15. 8. 16. Percent of Dominant Species that are OBL, FACW, or FAC excluding FAC+ 100% Remarks: The Polygonum could not be identified to species because it was examined outside of flowering season. HYDROLOGY Recorded Data (Describe In Remarks): Wetland Hydrology Indicators Stream, Lake, or Tide Gauge Aerial Photographs Primary Indicators: Other _ inundated x -Saturated in Upper 12" _ X No Recorded Data Available Water Marks _ Drift Lines Field Observations: _ Sediment Deposits Drainage Patterns in Wetlands Depth of Surface Water: 0 (in.) Secondary Indicators: Oxidized Roots Channels in Upper 12" Depth to Free Water in Pit: X12 (in.) Water-Stained Leaves Local Soil Survey Data Depth to Saturated Soil: 0 (in.) x FAC-Neutral Test Other (Explain in Remarks) Remarks: SOILS Map Unit Name (Series and Phase): Deloss_ Drainage Class: very Poorly drained Taxonomy (Subgroup): Typic Umbraquults Confirm Mapped Type? Yes X No Profile deserh on; Depth Matrix Colors inches Horizon (Munsell Moist) -0--6 _ Al 10YR_ 211 6-16 A2 10YR 311 16 -19-F Btg 10YR 711 _ Hydric Soil Indicators: Mottle Colors Mottle Texture, Concretlons, Munsell Moi Abund nee C ntras Structure, etc, °"' ----- sand loam ----- ---- --sandy loam '°° ----- _-sandy clay loam d? 0 4 ;?: :J ?(1 . Histosol Concretions 0, Histic Epipedon High Organic Content in 5urfe Sulfidic Odor Organic Streaking in Sandy Soil x Aquic Moisture Regime XListed On Local Hydric Soils List Reducing Conditions X Listed on National Hydric Soils List x Gleyed or Low-Chrome Colors Other tExplain in Remarks) Remarks: Pedo» is most like the Deloss series. WETLAND DETERMINATION SaMpils Hydrophytic Vegetation Present? Yes X No Is the Sampling Point Wetland Hydrology Present? Yes X No Within a Wetland? Yes X No Hydric Soils Present? Yes X No `- Remarks: * Cattle currently have access to wetland and have disturbed its vegetation, hydrology, and soils through grazing and soil compaction. The hydrology of the area has also been altered by historical ditching and draining. Wetland 15 no longer comprises any natural community type described in Classification of the Natural Communities of North Carolina, Third Approximation (Schafale and Weakley, 1990). T DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Determination Manual) Project 1 Site. T to Jumping Run Creek Restoration Pro'ect Date:_ 6113107 Applicant I Owner: N-C E-ce5,ystern Enhancement Program (applicant) County: Cumberland The Nature Conservancy (owner) State: NC Investigator: Brad Suther. Dwayne Honeycutt Do normal circumstances exist on the site? Yes X No Community ID: Is the site significantly disturbed (Atypical situation)? Yes X No degraded headwater Is the area a potential problem area? Yes No X forest`` (explain on reverse if needed) Transect ID:- Plot ID: 10 ft. upslope from Welland 15 at flay W15-4. VEGETATION Dominant PlantSPecles Stratum Indicator DominarriPlarrt-$peciea _ Stratum Indicator 1. _h;sa sylyatica . T FAC 9. 2. Pinus taeda T FAC 10. 3. Araandihoria gi_gan.tea_ SHR FACW 11. 4. ReA_apaca . T. San FAC- 12. 5. Quacus nt gr-a T FAC 13. 6. 14. 7. 15. 8. 16. Percent of Dominant Species that are OBL, FACW, or FAC excluding FAC-). 801, Remarks: HYDROLOGY Recorded Data (Describe In Remarks): Wetland Hydrology Indicators Stream, Lake, or Tide Gauge Aerial Photographs Primary Indicators: Other Inundated Saturated in Upper 12" X No Recorded Data Available Water Marks _ Drift Lines Field Observations: r Sediment Deposits Drainage Patterns in Wetlands Depth of Surface Water: 0 (in.) Secondary Indicators: Oxidized Roots Channels in Upper 12" Depth to Free Water In Pit: ?1G {in.} Water-Stained Leaves Local Boil Survey Data Depth to Saturated Soil: X16 (in.) FAC-Neutral Test Other (Explain in Remarks) Remarks: SOILS Map Unit Name {Series and Phase): Delos Il3rairrar a tvtass: ver Dort drained Taxonomy (Subgroup): Ty it Urnhrat cults Confirm Mapped Type's Yes,_ No X Profile Dascrl flan: - Depth Matrix Colors Mottle Colors ma"Is Texture, Concretions, fLnchea) Horiaon IMunsell Moist) (Munsell Moist)M. entrance/Contrast Structure etc 0 - A 2.5N 110YR 2l.1_.._..? ---- - sandy loam L dl 16+ BI lt3YR 712 _ ___- __t, . Y silyc la 1 CTAM Hydric Soil Indicators: .A X... 7266 Hislosol _ Concretions Hlstic pipedon High Organic Content in Surface La ? ? Sulfidic Odor Organic Streaking in Sandy Soils X Aquic Moisture Regime -2L-Listed On Local Hydric Soils List Reducing Conditions - xA Listed on National Hydric Soils list x . Gleyed or Low-Chroma Colors -_ Other (Explain in Remarks) Remarks: Soil is mapped as Deloss but is most like the Cape L ear series (Typic Umbraquults; very poorly drained) because it is in the fine textural family class (h!E : www2.ftw.nres.usdat. ov osd dat D DELOSS.html and h€t : www2.ftw.nres.usdaf. ov osd dat Q Ct1PE FEAR.htrnl, accessed 6/15/2007). The Carpe bear series is considered az hydric soil series (htlp: soilsmsdai.wv use h dric accessed 6115/2007). WETLAND DETERMINATION Hydrophytic Vegetation Present? Yes X No Is the Sampling Point Wetland Hydrology Present? Yes No X Within a Wetland? Yes No 7S Hydric Soils Present? Yes No _ Remarks: '*Cattle currently have access to area and have disturbed its vegetation, hydrology, and sails through grazing and soil compaction. Graining and addition of spoil from historic ditching of the unnamed tributary to Jumping Faun have also altered this upland area. This area no longer comprises any natural community type described in Classification of the Natural Communities of North Carolina, Third Approximation (Schafale and Weakley, 1990), V DATA FORM ROUTINE WETLAND DETERMINATION. (1987 COE Wetlands Determination Manual) 1- R Project I Site: UT to Jumping Run Creek Restoration Project Date: 5124 & 6/20/2007 Applicant J Owner: NC Ecos stem Enhancement Pro ram A licant County: Cumberland The Nature Conservancy owner State: NC Investigator: Brad Suther Do normal circumstances exist on the site? Yes X No Community 1D: non- Is the site significantly disturbed (Atypical situation)? Yes X* No forested wetland in Is the area a potential problem area? Yes No X fallow agricultural (explain on reverse If needed) field' Transect ID: Plot ID: Wettand 18. Data pQint_ located 15 ft. inside wetland SE of flag W7 8-3. VEG?TA ION. ; ' la" a CIeS` Dom, ht P 1. JUKGUS aft sus ;f ZAndro o ?I s n 4. Ludwi is atterghi Ir 5. 6. 7. Stratum Indicator Aamirtant Plant Species %ralum Indicator H FACW+ 9. H FAC to 10. OBL Ill. H FACW+ 12. H OBL 13. 14. 15. 16. Remarks: Rhexia sp. is most likely Rhexia mariana (FACW+). Andropogon sp. was not identified to species but is believed to be one of the Andropogon species that favors wetter sites (facultative ratings range from FAC to OBL.) HYDROLOGY Recorded Data (Describe In Remarks): Wetland Hydrology Indicators Stream, Lake, or Tide Gauge Aerial Photographs Primary Indicators: _ Other Inundated xSaturated in Upper 12" X No Recorded Data Available _ Water Marks _ Drift Lines Field Observations: Sediment Deposits _ Drainage Patterns in Wetlands Depth of Surface Water: 0 (in.) Secondary Indicators: Oxidized Roots Channels in Upper 12" Depth to Free Water in Pit: X18 kiln.) Water-Stained Leaves Local Soil Survey Data Depth to Saturated Soil: 11 (in.) _ FAC-Neutral Test Other (Explain in Remarks) Remarks: Observed depth to saturated soil was 11 inches on May 24, 2007. Saturated soil was within 18 inches of the ground surface on 612012007, SOILS Map Unit Game (Series and Phase : Deloss Drainage Gass; very poorly drained .... Taxonomy (Subgroup): T is Umbra uaflls Confirm Mapped Type? Yes No. _.x ro_ a _escrip on: Depth Matrix Colors Mottle Colors Mottle Texture, Concretions, .[ir3rhesl Horizon (MYBseli Moist) Munseii Moist} AbundancelCunjrast Strucluye etc -- il 10 alp 10YR 2/1 1OYR 4/4L tgw(clistinci loam _ 1€l_-2 0 H1g1 JOYR 4/ 1OYR 4/4 common ciistincl cla loam y 2{}... 24+ _ Btg2 IOYR_5/2 _ I0YR 51:9 mLinqy?pfominenl __ Clay Hydric Soil Indicators: - Histosol Concretions NL Histic Epipedon High Organic Content in Surfa5ulfidic (]dor Organic Streaking in Sandy x Agsuic Moisture Regime x Listed On Local Hydric Soils AOMC ?• Reducing Conditions X Listed on National Hydric Soils List X Gleyed or Low-+Chroma Colors Other (Explain in Remarks) Remarks: Soil is mappe(l as Deloss but is most like the cape Fear series (Typic lJmbraEluulls; very P00rly drained) hLCause it is in the line textural family class (litt : www2.ftw.nres.usda. t)v osd flat D ?ELOSS.litml and http:ZJwww2.ftw.nres usda.govlosdldatlCICAFE FEAR html, accessed 6115/2007). The Pape pear series is considered a hydric soil series (hitp Lsoils.usdg2ovluselhydric1 accessed 6/1512007). WETLAND DETERMINATION Hydrophytic Vegetation Present? Yes x No Is the Sampling Point Wetland Hydrology Present? Yes X No Within a Welland? Yes N' No Hydric Soils Present? Yes X No _ Remarks: *Wetland and surrounding areas experienced historical clearing and ditching and draining for use as farm land and no longer comprise any natural community type described in Classification of the Natural Communities of North Carolina, Third Approximation (Schafale and Weakley„ 1990 *'`Wetland 18 is adjacent to, but does not directly abut, an RPW As such, it requires a significant nexus determination confirmed by the USACE to determine its jurisdictional status.. X d DATA FORM ROUTINE WETLAND DETERMINATION. (1987 COE Wetlands Determination Manual) Project 1 Site: UT to Jumping- Run Creek Restoration Project Date: 7!2412007 Applicant 1 Owner: _ NC Ecosystem Enhancement Pmgram (Upli_cano- County: Cumberland The Nature nservanc (owner) State: NC Investigator: Brad Suther Do normal circumstances exist on the site? Yes X No Community ID: fallow Is the site significantly disturbed (Atypical situation)? Yes X$ No war iculturai field' Is the area a potential problem area? Yes No X Transect ID: (explain on reverse if needed) Plot ID: Upland data point located 10 ft. outside Wetland 18 SE of flag W18-14. VEGETATION- Dnminent Plant Species, tra um Indicator Dominant Plant Species .. Stratum Indicator 1. Juneus.et uses H FACW4 9. . Ezipatoi'i?Y;?rr capillifolium H FACT] 10. 3. ` . ? 11. 4. 12. 5. 13. 6. 14. 7. ? 15. 8. 16. Percent of Dominant Species that are OBL, FACW, or FAC excluding FAC-). 50% Remarks: HYDROLOGY Recorded Data (Describe In Remarks): Wetland Hydrology Indicators Stream, Lake, or Tide Gauge Aerial Photographs Primary Indicators: Other Inundated Saturated in Upper 12" X No Recorded Data Available _ Water Marks _ Drift Lines Field Observations: Sediment Deposits Drainage Patterns in Wetlands Depth of Surface Water: 0 (in.) Secondary Indicators: Oxidized Roots Channels in Upper 12" Depth to Free Water in Pit: X30 {in.) Water-Stained Leaves Local Soil Survey Data Depth to Saturated Soil: >30 (in.) FAC-Neutral Test Other (Explain in Remarks) Remarks: SOILS Map Unit Name (Series and Phase): Deloss Drainage Class: very poorly drained Taxonomy (Subgroup): Typic Urnbraquults Confirm Mapped Type? Yes X No- Profile Descri tion: Depth Matrix Colors Mottle Colors Mottle Texture, Concretions, finches] Horizon (Mu sell Moist) LMunsell Moist] Abunden Contrast Structure etc , . _ 0-12 Ap 1 EYR-2 11_- , ----- --- sandy loam , 12-18 BA 10YR 311 ---- ----- sandy loam _ ., 18 - 24 Btp? 10YR 412 -- _ . ----- sandv loam 24 - 30+ Ci -- 10YR 412 ----- ----- gravelly sand CCU E Sc - -'? -Off'--? SuT Hydric Soil Indicators: - Histosol Concretions Histic Epipedon _ High Organic Content in Surf c a _ Sulfidic Odor Organic Streaking in Sandy Soils x - Aquic Moisture Regime Y, Listed On Local Hydric Soils List r26b _ Reducing Conditions Listed on National Hydric Soils List ®.?,,,.., G X Gleyed or Low-Chrorna Colors Other (Explain in Remarks) ?lrl Remarks: Pedon is most like the Deloss series. WETLAND DETERMINATION Hydrophytic Vegetation Present? Yes No x is the Sampling Point Wetiand Hydrology Present? Yes _ No 2 Within a Wetland? Yes No X Hydric Soils Present? Yes 2 No Remarks: *Area experienced historical clearing and ditching and draining for use as farm land and no longer comprises any natural community type described in Classification of the Natural Communities of North Carolina, Third Approximation (Schafale and Weak)ey, 1994). V.S. ARMY CORPS OF ENGINEERS WILMINGTON DISTRICT Action, Td, SAW-2007-03276 County: Cumberland U.S.G.S. Quad: Manchester NOTIFICATION OF JURISDICTIONAL DETERM[NATION Applicant/Property Owner: Mr. Rick Studeumund Ms. Tracy Morris The Nature Conservancy NC Ecosystem Enhancement Program Address: 140 SW Broad Street 1652 Mail Service Center Southern Pines, NC 28388 Raleigh, NC 27699 Phone Number: 910-246-0300 919-715-0476 Property description: Size (acres) Z50 Nearest Town Spring Lake Nearest Waterway UT of Jum in Run Creek River Basin Cape Fear USGS HUC 030300040511 Coordinates N 35.20507 W 78.96778 Location description: The roe is located off of East Manchester Road between Briukle Drive and North Bra Boulevard north of the Little River, south of Jum in Run Creek north of Spring Lake Cumberland Count North Carolina. Indicate Which of the Following Apply: Based on preliminary information, there may be wetlands on the above described property- We strongly suggest you have this property inspected to determine the extent of Department of the Arimy (DA) jurisdiction.- To be considered final, a jurisdictional determination must be verified by the Corps. This preliminary determination is not an appealable action under the Regulatory Program Administrative Appeal Process ( Reference 33 CFR Part 331). There are Navigable Waters of the United States within the above described property subject to the permit requirements of Section 10 of the Rivers and Harbors Act and Section 404 of the Clean Water Act. Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification. X There are waters of the U.S. including wetlands on the above described project area subject to the permit r uirements of Section 404 of the Clean Water Act CWA 33.USC 1344. Unless there is a change in the law or our published regulations, this determination way be relied upon fora period not to exceed rive ears from the date of this notification. We strongly suggest you have the waters of the U. S. on your property delineated. Due to the size of your property and/or our present workload, the Corps may not be able to accomplish this wetland delineation in a timely manner. For a more timely delineation, you may wish to obtain a consultant. To be considered final, any delineation must be verified by the Corps. The wetland on your project area have been delineated and the delineation. has -been verified by the Corps. We strongly suggest you have this delineation surveyed. Upon completion, this survey should be reviewed and verified by the Corps. Once verified, this survey will provide an accurate depiction of all areas subject to CWA jurisdiction on your property which, provided there is no change in the law or our published regulations, may be relied upon for a period not to exceed five years. X The waters of the U.S. including wetlands have been delineated and surveyed and are accurate/ depicted on the lat si ed b the Corps Re ulato Official identified below on Februa 4 2008. Unless there is a change in the la or our published re ulations this determination may be relied upon fora period not to exceed five ears from the date of this notification. _ There are no waters of the U.S., to include wetlands, present on the above described property which are subject to the permit requirements of Section 404 of the Clean Water Act (33 USC 1344). Unless there is a change in the law or our published regulations, this dete nination may be relied upon for a period not to exceed five years from the date of this notification. Page 1 of 2 Action ID: 2007µ02757 The property is located in one of the 20 Coastal Counties subject to regulation under the Coastal Area Nlauagement Act (CAMA). You should contact the Division of Coastal Management in Wilmington, NC at (910) 796-7215 to determine their requirements. Placement of dredged or fill material within waters of the US and/or wetlands without a Department of the Axmy permit may constitute a violation of Section 301 of the Clean Water Act (33 USC § 1311). If you have any questions regarding this determination and/or the Corps regulatory program, please contact Ronnie Smith at (910) 251-44829 Basis For Determination: This site exhibits wetland criteria as described in the 1987 Corps Wetland Delineation Manual and is adjacent to an unnamed tributary of.Ium in Run Creek a tributa of the Little River, which is a traditional navigable water of the US. The subject water bodies exhibit ordinary high water marks as indicated b the presence of wrack lines sediment sortin scour bent ve etation and the absence of vegetation in the stream channel. Remarks: This determination is based on information provided b Baker Engineering NY Inc. and a site visit conducted on August 7 2007 b Ronnie Smith of the U.S. Arm Cor s ofEn ineers. Appeals Information: (This information applies only to approved jurisdictional determinations as indicated in B. above) This correspondence constitutes an approved jurisdictional determination for the above described site. If you object to this determination, you may request an administrative appeal under Corps regulations at 33 CFR part 331.. Enclosed you will find a Notification of Appeal Process (NAP) fact sheet and request for appeal (Rl~A) form. If you request to appeal this determination you must submit a completed. RFA form to the following address: District Engineer, Wilmington. Regulatory Division Attn: Ronnie Smith, Project Manager, Wilrraington Regulatory Field Office I'D Box 1890 Wilmington, North Carolina 28402 In order for an RFA to be accepted by the Corps, the Corps must determine that it is complete, that it meets the criteria for appeal under 33 CFR part 331.5, and that it has been received by the District Office within 60 days of the date of the NAP. Should you decide to submit an RFA form, it must be received at the above address by April 4.200$. **It is not necessary to submit an RFA form to the District Office. if you do not object to'the determination in this correspondence." Corps Regulatory [}fa=cial: Date: Eebruaa 4,,2008, Expiration Date: F'ebrua 4 2013 Corps Regulatory Official (Initial): RDS FOR OFFICE USE ONLY:. ¦ A plat or sketch of the property and the wetland data form must be attached to the file copy of this form. • A copy of the "Notification Of Administrative Appeal Options And Process And Request For Appeal" form must be transmitted with the property owner/agent copy of this form. If the property contains isolated wetlands/waters, please indicate in "Remarks" section and attach the "Isolated Determination Information Sheet" to the file copy of this form.. Copy Furnished: Mr. Brad Suther Baker Engineering NY, Inc. 8000 Regency Parkway, Suite 200 Cary, NC 27518 Page 2 of 2 yrr a. r l $ ; Applicant: The Nature Conservancy- File Number: SAW- Date: February 4, 2008 attn: Mr. Rick Studenmund 2007-03276 NC Ecosystem Enhancement Program- attn: Ms. Tracy Morris At tached is: si ed serve See Section below INITIAL PROFFERED PERMIT Standard Permit or Letter of ernlission A PROFFERED PERMIT Standard Permit or Letter of erniission B PERMIT DENTAL C X APPROVED JURISDICTIONAL DETERMINATION D PRELIMINARY JURISDICTIONAL DETERMINATION E A: INITU L PROF'F'ERED PERMIT: YOU may accept or object to the permit. • ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit. ¦ OBJECT: If you object to the pernait (Standard or LOP) because of certain terms and conditions therein, you may request that the permit be modified accordingly. You must complete Section H of this form and return the form to the district engineer. Your objections must be received by the district engineer within 60 days of the date of this notice, or you will forfeit your right to appeal the permit in the future. Upon receipt of your letter, the district engineer will evaluate your objections and may: (a) modify the permit to address all of your concerns, (b) modify the permit to address some of your objections, or (c) not modify the permit having determined that the permit should be issued as previously written. After evaluating your objections, the district engineer will send you a proffered permit for your reconsideration, as indicated in Section B below. B: PROFFERED PERMIT: You may accept or appeal the permit • ACCEPT- Ifyou received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization- If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its teams and conditions, and approved jurisdictional determinations associated with the permit. ¦ APPEAL: If you choose to decline the proffered permit (Standard or LOP) because of certain terms and conditions therein, you may appeal the declined permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within. 60 days of the date of this notice. C: PERMIT DENTAL: You may appeal the denial of a permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice. D: APPROVED JURISDICTIONAL DETERMINATION: You may accept or appeal the approved JD or provide new information. • ACCEPT: You do not need to notify the Corps to accept au approved JD. Failure to notify the Corps within 60 days of the date of this notice, means that you accept the approved JD in its entirety, and waive all rights to appeal the approved JD. • APPEAL: If you disagree with the approved JD, you may appeal the approved JD under the Corps of Engineers Administrative Appeal Process by completing Section lI of this form and sending the form to the division engineer. This form must be received by the division engineer witbzn 60 days of the date of this notice. E: PRELIMINARY JURISDICTIONAL DETERMINATION: You do not need to respond to the Corps regarding the preliminary JD. The Preliminary JD is not appealable. If you wish, you may request an approved JD (which may be appealed), by contacting the Corps district for further instruction. Also you may provide new information for further consideration by the Corps to reevaluate the JD. k. n .,rY x f [ .r .y ? 2 I k tf? ?a= ..XX » v i *i - k -" ?Z { ? i REASONS FOR APPEAL OR OBJECTIONS: (Describe your reasons for appealing the decision or your objections to an initial proffered permit in clear concise statements. You may attach additional information to this form to clarify where your reasons or objections are addressed in the administrative record.) ADDITIONAL INFORMATION: The appeal is limited to a review of the administrative record, the Corps memorandum for the record of the appeal conference or meeting, and any supplemental information that the review officer has determined is needed to clarify the administrative record. Neither the appellant nor the Corps may add new information or analyses to the record. However, you may provide additional information to clarify the location of information that is already in the administrative record. PRIMM If you have questions regarding this decision and/or If you only have questions regarding the appeal process the appeal process you may contact: you may also contact: Ronnie Smith Mr. Mike Bell, Administrative Appeal Review Officer PO Box 1890 CESAD-ET-CO-R Wilmington, NC 28402 U.S. Army Corps of Engineers, South Atlantic Division 60 Forsyth Street, Room 9M15 Atlanta, Georgia 30303-8801 _ RIGHT OF ENTRY: Your signature below grants the right of entry to Corps of Engineers personnel, and any government consultants, to conduct investigations of the project site during the course of the appeal process. You will be provided a 15 day notice of any site investigation, and will have the opportunity to participate in all site investigations. Date: Telephone number: Signature of appellant or agent. For appeals on Initial Proffered Permits and approved Jurisdictional Determinations send this form to: District Engineer, Wilmington Regulatory Division, Attn: Ronnie Smith, Project Manager, Wilmington Regulatory Field Office, PO Bog 1890, Wilmington, North Carolina 28402 For Permit denials and Proffered Permits send this form to: Division Engineer, Commander, U.S. Army Engineer Division, South Atlantic, Attn: Mr. Mike Bell, Administrative Appeal Officer, CESAD-ET-CO-R, 60 Forsyth Street, Room 9M15, Atlanta; Georgia 30303-8841 North Carolina Division of Water Duality - Stream Identification Form; Version 3.1 Date: 519107 Project: UT to Jumping Run Latitude: Creek Evaluator: D. Huneycutt Site: Perennial stream A, Longitude: Stream Form A 1 Total Points: Other Stream is at least intermittent County: Cumberland e.g. Quad Name: Manchester, NC if a 19 or perennial if? 30 41 A. Geomorphology Subtotal = 13 Absent Weak Moderate Strong 1 °. Continuous bed and bank 0 1 2 1 2. Sinuosity 1 1 2 3 3. In-channel structure: riffle-pool sequence 0 2 3 4. Soil texture or stream substrate sorting 0 2 3 5. Activelrelic floodplain 0 1 1 3 6. Depositional bars or benches ? 2 3 7. Braided channel 1 1 2 3 8. Recent alluvial deposits 0 2 3 9 a Natural levees 1 2 3 10. Headcuts 1 2 3 11. Grade controls 0.5 1 1.5 12. Natural valley or drainageway 0 0.5 1.5 13. Second or greater order channel on existing USGS or MRCS map or other documented evidence. No = 0 Yes = ° Man-made ditches are not rated; see discussions in manual B_ Hvdroloav (Subtotal = 11.5 14. Groundwater flow/discharge 0 1 2 15. Water in channel and > 48 hrs since rain, or Water in channel -- dry or growing season 0 1 2 16. Leaflitter ® 1 0.5 0 17. Sediment on plants or debris ? 0.5 1.5 18 - Organic debris lines or piles (Wrack lines) 0 0.5 1 19. Hydric soils (redoximorphic features) present? No = 0 Yes = C:. Riolnav (Stihtotal = 16-5 ) 20e. Fibrous roots in channel 2 1 0 21 a Rooted plants in channel 2 1 0 22. Crayfish _ 0 0.5 a 1.5 23. Bivalves M 1 2 3 24. Fish 0 0.5 1 25. Amphibians 0 0.5 _ 1.5 26. Macrobenthos (note diversity and abundance) 0 0.5 1.5 27. Filamentous algae; periphyton 0 1 2 Y `T 28. Iron oxidizing bacteria/fungus. 0 0.5 1 1.5 29 b. Wetland plants in streambed FAC = 0.5; FACW = 0.75; OBL = 1.5 SAV = ; Other = 0 Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants. Notes: (use back side of this form for additional notes.) Macrobenthos included Sketch- water boatman, amphipods, riffle beetle North Carolina Division of Water Quality - Stream Identification Form; Version 3.1 Date: 7124107 Project: UT to Jumping Run Latitude: Creek Site: Perennial stream A, Evaluator: B. Suther Stream Form A 2 Longitude: Total Points: Other Stream is at least intermittent County: Cumberland if a 19 or perennial if a 30 32.5 e.g. {Juad Name: Manchester, NC A. Geomorpholo y [Subtotal = 14 } Absent Weak Moderate Strong 1 a. Continuous bed and bank 0 1 a 3 2. Sinuosity 1 2 3 3. In-channel structure: riffle-pool sequence 0 2 3 4. Soil texture or stream substrate sorting 0 Q 2 3 5. Activelrelic floodplain 0 1 3 6. Depositional bars or benches 0 1 3 7. Braided channel 1 2 3 8. Recent alluvial deposits _ 0 3 9 a Natural levees 1? 2 3 10. Headcuts _ 1 2 3 11. Grade controls 0.5 1 1.5 12. Natural valley or drainageway ?W y 0 0.5 1.5 13. Second or greater order channel on existing USGS or NRCS map or other documented evidence. No = 0 Yes = ° Man-made ditches are not rated. see discussions in manual B. Hvdroloav (Subtotal = 8 ) 14. Groundwater flowldischarge 0 1 3 15. Water in channel and > 48 hrs since rain, or Water in channel_ _ -dry or growing season 0 2 3 r 16. Leaflitter _ 1.5 0,5 0 17. Sediment on plants or debris 0 0.5 d 1. 5 18. Organic debris lines or piles (Wrack lines) 0 0.5 1 - 19. Hydric soils (redoximorphic features) present? No = 0 Yes = C. Bioloav (Subtotal = 14.5 ) 20b. Fibrous roots in channel 3 1 0 21 b. Rooted plants in channel _ 3 1 1 0 22. Crayfish -_ --- 0 1 1.5 23. Bivalves 1 1 2 3 24. Fish 0 0.5 1.5 25. Amphibians 0 0.5 1.5 25. Macrobenthos (note diversity and abundance) 0 1 1.5 - 27. Filamentous algae; periphyton 0 1 3 28. Iron oxidizing bacteria/fungus. 0.5 1 1.5 29b Wetland plants in streambed FAC = 0.5; FACW = 0.75; OBL = SAV = 2.0; Other = 0 " Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants. Notes: (use back side of this form for additional notes.) Feature is perennial. Macrobenthos observed include waterboatmen and waterstriders. Veg. includes Scirpus cyper-inus, Carex sp. and Juncus sp. Feature was historically modified by ditching. Feature has developed moderately to weakly expressed floodplain, bars and benches, and bed and bank at this location within the confines of its ditch. Sketch: North Carolina Division of Water Quality - Stream Identification Form; Version 3.1 Date: 519107 project: UT to Jumping Run Latitude: Creek Evaluator: D. Huneycutt Site: Feature B, Longitude: Stream Form B 1 Total Points: Other Stream is al least intermittnt County: Cumberland if ? 19 or perennial if? 30 35.5 e.g. Quad Name: Manchester, NC A. Geomorphology (Subtotal= 10 } Absent Weak Moderate Strong 1 a. Continuous bed and bank 0 1 2 1 2. Sinuosity 1 1 2 3 3. In-channel structure: riffle-pool sequence 0 2 3 4. Soil texture or stream substrate sorting 0 2 3 5. Active/relic Floodplain 0 2 3 6. Depositional bars or benches 0 1 1 3 7. Braided channel 3 1 2 3 8. Recent alluvial deposits 0 1 a 3 9 a Natural levees 1 2 3 10. Headcuts 1 2 3 11. Grade controls 0.5 1 1.5 12. Natural valley or drainageway 0.5 1 1.5 13. Second or greater order channel on existing USGS or NRCS map or other documented evidence. No = Yes = 3 ° Man-made ditches are not rated; see discussions in manual B. Hvdroloav (Subtotal = 10 ) 14. Groundwater flow/discharge 0 1 2 15. Water in channel and > 48 hrs since rain, or Water in channel -- d or rowing_season_ 0 1 2 16. Leaflitter 1 0.5 0 17. Sediment on plants or debris 0 _ 1 1.5 18. Organic debris lines or piles (Wrack lines) 0 ® 1 1.5 19. Hydric soils (redoximorphic features) present? No = 0 J? Yes = C. Bioloav (Subtotal = 15.5 ) 2?b. Fibrous roots in channel 2 1 0 21 b. Rooted plants in channel 2 1 0 22. Crayfish 0 0.5 1.5 23. Bivalves 1 i 2 3 24. Fish ? _ 0.5 1 25. Amphibians ? 0.5 _ 1.5 26. Macrobenthos (note diversity and abundance) ? 0.5 1.5 27. Filamentous algae; periphyton ? 1 2 28. Iron oxidizing bactedalfungus. 0.5 I 1.5 29 b. Wetland plants in streambed FAC = 0.5; FACW = 0.75; OBL = 1.5 SAV = ; Other = 0 Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants. Notes; (use back side of this form for additional notes.) Sketch: Dragonfly larvae, alnphipods, aquatic beetles North Carolina Division of Water Quality - Stream Identification Form; Version 3.1 Date: 519107 Project: UT to Jumping Run Creek Latitude: Evaluator: D. Huneycutt Site: Feature 2, Longitude: Stream Form 22 Total Points: Other Stream is at least intermittent 26 County: Cumberland e.g. Quad Name: Manchester, NC if ? 19 or erennlal if ? 30 P - see notes A. Geomorphology Subtotal = 6 Absent Weak -Moderate Strong 1 a. Continuous bed and bank 0 1 2 2. Sinuosity 1 2 3 3. In-channel structure: riffle-pool sequence 1 2 3 4. Soil texture or stream substrate sorting 0 2 3 5. Active/relic floodplain 0 2 3 6. Depositional bars or benches 4 2 3 7. Braided channel 1 2 3 8. Recent alluvial deposits 1 2 3 9a Natural levees 1 2 3 10. li eadcuts 1 2 3 11. Grade controls 0.5 1 1.5 12. Natural valley or drainageway 0.5 1 1.5 13. Second or greater order channel on existing USGS or NRCS map or other documented evidence. No = Yes = 3 - Man-made ditches are not rated; see discussions in manual B. Hvdroloav (Subtotal = T 14. Groundwater flow/discharge 0 2 3 15. Water in channel and a 48 hrs since rain, or Water in channel -- dry or growing season 0 1 2 16. Leaflitter 1 0.5 0 17. Sediment on plants or debris 0.5 1 1.5 _ 18. Organic debris lines or piles (Wrack lines) 0.5 1 1.5 19. Hydric soils (redoximorphic features) present? No = 0 Yes = C. Bialoav [Subtotal = 13 ] 20e. Fibrous roots in channel 2 1 0 21 b. Rooted plants in channel Q 2 1 0 22. Crayfish 0 1 1.5 23. Bivalves a 1 2 3 24. Fish 0 0.5 0 1.5 25. Amphibians 0 0.5 0 1.5 26. Macrobenthos (note diversity and abundance) 0 0.5 1 27. Filamentous algae; periphyton 0 H 2 3 28. Iron oxidizing bacteria/fungus. 0.5 29 e. Wetland plants in streambed FAC = 0.5; FACW = 0.75; OBL = 1.5 SAV = ; Other = 0 Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants. Notes: (use hack side of this form for additional notes,) Possible riffle beetle, possible mayfly larvae, dragonfly larvae, water boatman, leach, midge Presence of mayfly larvae gives feature "perennial" status according to NCDWD methodoloizv. Sketch. E Conservation w• ! y E .inti{ r _ t. . � .. r r , , ptl.�S��Vh `m•: F. � i45t{' '� � ft; H'lA t.a 2nd Order Stream, UT to. - i Jumping Run Creek ', .�; � r u .' Air L . �. r. 4 u i , Li 4r_ AIA VDe to '' 'L'bC� � ala tai "d 6YtrrC Tara ab, "� t �i VY't'Fl 6 f aU.''. r• t} s �'' Val �' �" �' :' �. ��,� . i.�e . [� � . , . . EUA; j''' •. t* ' ar,n � u -1 �tr om° ....... 41 S r Px � ::�s�i�a ,i ;� Cad t 6�' a �r•.;'�.. '� ...r a .�3s . !•'..�.� .. .'-Y ..'.. ..f3a8. I.a: Sheet 4, Soil Sunray of Cumberland and Hake ,wr■ker 0 1,000 2,000 pqq Counties, NC PMrYa: $tyA5:7.yAy$ ►m. b,g.3. e�..i UT to .lumping Run Creek Restoration Pro9ect Legend rx Note: ?,;k o Well Locations fi 3 EvatuatedArea Mapped hydric soils are areas dominated by hydric soils Protect Boundary that lack wetland hydrology; they do not include jurisdictional 'hr??- ?<r+ jr'r, , wetlands. wydr.c Soil area r ??. County Boundary ,r •'r Hydric soil boundaries were identified using hand auger borings and flagged in the field according to the criteria in "Field Indicators of Hydric Soils in the United States," version 6.0 (USDA MRCS, 2006). Hydric soil boundaries were located `. using a combination of Magellan Mobile Mapper Pro GPS hardware and RTK methodology. r Ad ?! r. _ 'e.•"sue . .. r 1? EM, N A Weir +OtrAK ??. 126 -?- 8ekar Eegine ". Fit', ireF _ s?.heae 200 zno 8-tlKyPukrn" 0 1,000 2,000 1 LIT toydric Soils Map Cary, NoeW CNOM 2751 t1 Jumping Rein Creek. PUa :09:d53.548a Feet Fax: 816.46&Sa9(1 ot b o c vi m o 7 5 D Q- O C Q- a T. D -TI 0 ( C O S N CD co m c o m 0) m 0 C A N Z CL o cs cr n 7 co N' C ?] 0 m ? W m o co O n N o m N 3 a o m N •? ?.' x b ? n N w a m a a Q cD [D m` m n. 0 D 7 N Q v m N C z a Ci fl Z a M n o Q o' Ol A Co N -y (h. A. W N s r W Q ?? T T l ?.• Q, i ? y ? :r'?5'8 '? V?j Q. "'. ? .¢l? C ? . a M !h 3 m CL 17) 0 b O rr ns O ? b C7 R °' rn w cam, n a m -? ( fa7 r ? ? {? y ? N C3 ? N s ? w ?t? m 7 O 4] Q .? ? CO CI7 - no 1 -T, q d• T ?! 3 p1 Q mo b a v t0 s? ?1 [f7 0 o 0 .. [o ? Vi 7 sk : '` q a1 W dA i . • CL b x K ?- - p 7 ?C r C 7 W. - D - m G C CL (a ro ? co 7 3 ' ' 3 L7 T S p C) . 0 (D O Q :2 Q0 (D W 0 En m (, toad., _ C7 gx i S v.:. `:rt y' Al to 2) Al 0 c7 U) b 'a ate` d ' fly: , j ? r ?+ m fl: * C Cb CA a m' a c VD N 3 1 r 1 J ? ? a a ? • `, a'?S?EE @ c p .. ?. m N 2 w ?' fir, •w.:• . , •nf v -n ZI p sv U) _ (o (p C: 4) U7 'c r.S ;u m ? r. C, Q. B) o- n r .,nw C l 7 Q G ,..- CD , 0 Z3 CD . 7 S. p -- ?K -, N. .. s C Cl C1 C9 C7 Ca - - 3 @ Q O CD 3 m ?' m y rt_ T TI Ti n n CV, CD 0 m m b ..Q Q U7 D 0 * _ H S+ 3 3 3 m ?-4 ? m ?. n i o v y x U) U) (A W (D o s > Y a N N r n N v v m rt p r; T, m CD 0 CD Err Q s v m W CO ? m N 0) a y gy m m, ,,T o- 0 3 C p N xa<%' x U7 b (D CD ¢ :. ip m (D 0 r' Q. CD Mme Q . [n T. °E °? fr r! V r r ?' a (sr iT a a :: . g ty. _rt C O C Q n Q ;n :;...`•,? . 167 iQ] is Z3 1 till (S'I 63 2 ? ± CD CD 0 D 0 o r •?, z C,) 0 02 m p rt 9. c ? N q CJ C7 q m' V /At (3) 171. . w. N s cri ° 2 m??nn ? , 27 .. :cr -n a p n c m y [i av X W „ a a 0 0_ M ° lu 0 g !I1 3 , .. ?„ 0 o o F v N 7 m (a r. 3_ O -n -n m ti C N 0 ' _ m p 4 M R o ? a 3 7 CL a P - 10 M --5 n co T T ' G 6 G3 p w W R 7 ? N 8 UO TT a ID cy- p 7. F {p m t'1 -n cn o N C w X c 4 .q. x °.'{ o - m o ? n cn ? m 3 0; > m Cp C) C> a _y Q .Z] 71 Z1 ."fl PQ N) t) N) ? 117 S. N n f@'1 N iv?:d a. te O n . v ] S7 (7 Q. S E, E E, u 3 m W VY w en 6 6 O i a d m N ti An "TM;n ) 6 z 3 0 o v F ro W > D CD co p m ` n 3 3 p T 'M N d iR ?' 0. 2 w ca N s 1 QUO N0Vl CL . m m .+ C C ? o w oo co co . e C csZ w NJ D s: > 7 s s s s n co z C: a cn to cn M w NNFa NN x (D d cn u t e. o ?? y 0 0 00 ? (D Q x n r a E 7 rn 7 Q Q G) G) G) G) Lo P) n) 0 M (D W w o??= Qoo - o o o Cn ? r C4 ? = CD { w 1 0 C" ? s+ nom. mn s L ? s- C) F C a7 .Q U a7 7J y !?? ilD '0 G7 < rr O e FD. m 3 m cr _ ay ? 4] 7 ? ' ? W W A 1 EL Z Q ? •: . - - - .. U) o Ti n n 1 0 y Z (I 1 1 1 0 0 9 O w w w ? ..-. CD CP in Ol ;3 3 2; O =r =7 -r,on- I S 0 1 P . J 5 m T 0 E ="'=U. . 5i' CD CD rn CD 0) A CL B) 0) u, Q' w n [] [] cL 3 rn d Cfi N N CD N N 0 fp d7 CIJ m ca ? m 0 E N C n m C M CD ET (n S C m fp fD m Q s s s k LD m m C] (A Q " 0 En CL CD p 3 N to to r F O O O O y? £? ?.? U) ~? Q C O . ?" 1Z .? . .. m cn n a D a W O r- r 000" a: r ?? jo 0 c z? n = t' m o? o` M o m Q m iZ a 0 o N ?. fD N © f? 0 C m A-' ¢f ? o b ? CL CL c 2 C D m ? CO m C CD C: O 3 co 7 61 O7 c" A w N -+ En 4, W h1 - z . a vrova (A0rn w c r? W Q- ' V ' b . N p m N 3 l n ? , N t3a [ y g a ? • r. 22 Q- a a o . . ca o o a o ? A co z0 Q ? ° QI 1 * m 0 , 3 3 a , c zf w cL X ? Q. p a U ?: q U7 (D 0 N N LA, ?. G.7 W w N ..'?? 7 91 C7 C 3. to " a -n .? co CD ? a) O a a IO "? Q _.? ? CL 03 C? 0 (n U> j M, N m 3 - to 5 n r ,. G) G) t 7 ra `? ` m k 0• 'W p 7 ?C 19 =r E 9 ?s C L 'a N o b m C? 0 7 o A? 3 O < O .9 Q 'n 0 - i o ::r n cn 1 t 3 (a p 3 0 74 [D .. O1 v p ° = LA 3 _ -y' pf CD » C1 0 0 o' - x o f as s tp oa m [n o n 0 Q °? d. w ra y Lq u . C H .? i O ? 7 I C 'r T y 91 n Q ? 10 =; (r7 C) ,.? ' O 5' flf [U w E N E 9] =7 o CL m CL N '?F 4r f'S? n 3 :[D cn ? N O v o n v n' c 3 C 7 C. to [U (a p N . D. N ? P N (D (a n Q CD [D A]' cv I r r? O L 4 CL A7 ?7 o ? ;yx H ? ry > a 7. =r CD m a) ¢7 ? ; y ?s11 m ? o k7 n rt '. O . . i f . a iD Cpl fy ?+ roor a m c o ° (o 3 M (G (D M ?c n nom' ' M. rt a (n a o o - aEni r O _ w Q w. ava,. (D Q C Gt ::T CL :3 (D 0. ryNry. 1 C) 1 y 4.) G C CD =3 (D v 1 1 1 l o 1 1 1 1 Q CL n 3 7 m CL .• c v CD 41. s 9. rr;. cr m G, N ? ?. r fi Z t 7 { 7 'R? a, - J a _ ? ms's ? c rn m ? ? ? 7 o m ? o c a n. T 3 6 03 N : m ri1 C O CD ? m y 9} c [nn 0 0 PL Q v 7 L] O 77 C ? v m cn 3 o a n C O fQ ?' 97 N c? n n a ? m a 3 v a Er N C, tDD CL ? N [] O CD n Cri 3 0 n fn C0 ? ?1] CG C9 tr3 r. D A W N- A C..Y N- x ' u- W N ip proa (A 0 (n a @ ' 3; l 3' 4 m . N ju D U) 3 to (D 0 r i0 IV 3 .as.' 4 $ C7. co F? 0 3 7• C: I ? m 7 _ ? s { r 3 a a a > o) co z q c d 0 cn o p [ * n 43 Co 0 CZ x4:1, i7 N y ?kyc W N N n 5S i]R C = to CA `? . tri O, 'c -4 = j .? CD Z 0 0 "? ro w > C) ( Cn O C) C CL 4 ,?+ m 3 F -4 -ntn G) M G) x02) o03 o a a3 3 ay S S S 7 2 I(p cn a Q y (D C •i i 1 !Ji a ?. ?'a. 23 CQ 2) ' n .. ? CD (D - n n 4p rn n 3 ? v X as a m. An = p 3 y 0.10 gy ? r ' p [ fn r x + i .. ' O m CD rL -n P c ? ? ? "? k .. .:,: C U3 3 3 ' y o -u -u D R a =t, U7 cD fD (D (D Z m CZ CL C 43 S 7 m O 0' C- CZ 0 Q a 7 D G 3 m . .-: CD , - N N m ua x x;.. 4 In o a O CD m wy 3 S n n =? 3(' ?@ j G co CD 0 ` U1 q cu H N. o 0 m cp. 3 3 zx ? N Ur N 3- 3 C Z 3 o 0 H cn w 03 w a• 7 N W m o y U ID (n 97 > y .: to N m y "D o 6 2 C (p C). a . rn w 3 =. N o [D Iv 3 [7. 0 . 'A Q1 C CD °o v j •. r7 n n 9•. -O;M Cn CD w 7. N , , . ti CLL.. C F;K ? CD + G 3 7 C?j € C d 9 1 ?- ? v -? p1 .G U) m . tip `? CD C " x 343 U, "? !7. 6;W :. `. =r 7C m CD CD r a xl f r .? A '` m cD' Q CD '? -n -n 0 0 [G3 y- .? _ r CL c Cs : = '? n o o £ r y . G O T b X - 0 m ,' CAt1 O O s C, +-,: m CD o ? C) n ?a r r - - s?? . ? N 6?} G 1 u u k (D "D 0, N .?. r5•'r.! r C) C) vR co b ? Ca c p o 3 O g.Z1a o CD a o Q 6 n p CD b C 3 GO 3 N o @ - R M a U, w GO z 3 j (n T w a c a 4 70, ? x a 6) 0 m D 7 m ro o p ?? E 3 SD N 7 C C. N 4 ri7 Q 0 m n. Q O c7 ?' 73 r CL 3 ns o. 6 Q FD 'U W CL o 7 N p O CD O ti (]} 7 a = Z n ? n? [n ? CfY CD m 0 (n 44 w m- C) 0 A w N. - m w rn C7 CO _ ; eD': a' N C C7 !+' CL ?. • = w s y m N C fp A. C tD 0 y (D ? N N + C 13 7C x? , ? CD 0 ?. W ? Al L a C7 ? CT>03coZ0L S? in ?. S +n r r r r ? O. G D O C7 £3 - -[ -C , n C••5 _? h1 ?. C C C h1 N 0 Z] I] a7 7J .F (31 ( C w w ' ( D C7 , N r i n? , .: Q C rp r + N I t ;L'?Z n -? CG CA = C O T3 • ? m w oa. n (n n C7 (n [D a ? yy t0 b; n ° 3 0 CA [] rJy r F- r r r .+ i M m 3 TI N -v C? r -a ? N - 0 u1 x Fop 0 SU (D SU . I I i r r . . hq U) C a t o am (D (D L4 3 D m !! -h O =L Z;5 d =r m (D' ` m >. Z3. b -rib s 0, 0 a m n a CL ;N N S1 [/i 01 n [f i b m° I IM 3 N Q CD M (D rt 0 0 :E X CD . (D fl7 OL 'j. m .? i (n m c C: C) ' a m D v C d( CD Z 0- CL =3 T = y 7Q - .0 0 C Q N C2 C 3 9 a u) m 3 C- N . 0 0 0 Ch (n l< 0 (D J5 0 2S m m 3 3 f G ?? ° rn c o ! , , ? 3 y 7 7 CD v T W a m N rn m $:_ Ip N n ? fA D O N (D ;U 0 CD :3. n a s CL m .' c D r n N ... O Er :. :3 CL CD 0 ° io a) .•r N l o a a Ca m a ' o ro ry. - N U) ' 0 Ta 3 C 13 a m (3 £L p n M n CL C) p m E7 0 m C 4 ^ ? N _ 0...?A G5 fl :• ? Cp N _ 0) C N a s Q r A . N N) N rfl ` 3 E ct- v r? r ? ? m V C m r fl? o Cm Sf:. C O C C N n 3 ?, m ? 0 co ? o ? 7J a 0 n a ? C° a a a 6 -r Q ' 0 3 c ¢ N W cn C o CD - m 0 ? b ur E Z to a) 3 j U) N Q Z Q 6 ? 2 ? cr v 0 ca ro m r? t= u :3 rn o N Q? 3 0 m N 3 C co O ¢- trr 0 0 y 0 3 E m u c m w a 6 6 N C W a o ? 7 o m W o E 0 a Z 0. Z 0 U7 G] a a o cn ? ra a 3 ? Y 3 PA ? m {n 4-1 w" s M fn -r, W h7 ur ? ? i x b w, N :''D Ca?v NC7i?s Y `C v tp I?. a w o . s m 2) C O 3 t7. di 7 C. ? ?' °' s ? 7. N C- rr M 3 td C 0 + r M 0 cv p C7 US a 4 d _ E l i T i n K-::) d -0 v p O ? C A?CAZC C C7 3 m o o. L7 v G [ [ C 3 sir o fV .or Q o w 0 A t w Q CD 7 Co PQ N ? 1I 3 ' i i m G] G7 • (1 ? a N ? (D Q c C 0 3 iD. rn rn -' .. CL w -n ) o ? G] G] 7R y .` O ®? (] m fu Cp` 0 W [G Gr =r x k ?' C 3 ¦C - RD o ? Q _ R i .? ;.. _ [Z rlr 4 3 (/l C) yy _. ER O O ? b ti > O i k E ' r Cb CC m C ? ?n i ? o k ? . (D D7 pr • ? 'C- 0. . . r? - AS Cd •.C CD n CU it 0) ¢1 ? d l7 C '-0 '? i i A3 , : UY 3 y, O -0 Z9 IC m C w 3 c m i. (D p a >r 6 (D (n ? c3 i o N E- CL . <x T`r, m R C C. 7 ca O x 0 7? C.. ?. cn , 20 3 7 (D i ^ in 0 o 3 m o (n d (D 3 0) w n Vs c ?' c n p m 3 C] _ . 0 &n =? Q) ° N 04 7 Q. o y CT v _. n ? N r i 3 m lA 3 I GO S? C7 0 0? { N Q N ? a cn ?,v 0 <D (A (D 0 2 (D Cam] Q C] rt cs G F { n ' (D' 3 (p cn Q 7 3 r: 7 ,?? (rr im Z) -? 0 1 S r6 , I E pry 'O -• H 1. 1 in CD CD rL w 0 M. ? 3 A o 3 F T: ? n -I N? 7ti1 Al a C N 3 7 rD C of '^ z k, ti: r? ., n w _7 CD ' Cr a -0 + 03 CD w f2 ? ?° r H .5. R'tgi i i .. G. C fl1: vi ED a n e ? o m ? 3 Q (0 ? p CD a m ? a CL F T O 0 3 E o m v (A 9 a 3 z. Q 6 0 C fl} C Ci O 3 K C LO N C .? ? ? SD 27 (ID C m O [6 ? v? 0 C 3 0 ' CD rt ?, 0 Q p ? C 0 O o CD n n ?Y 6 co m_ Sl1 Q = CS (D C, [@ v ?• D rci1 p O q 4 f uci O = Z a Cam] M Z a ur m N v. C ry O A w N. 1 A W N --? V! ,Z. i i r Q 0 -0 C ? C rt S C. in w, . L IN N ? W 41 C RD rh . N (D Q. N [G. 7 '[S y C4 C.o - nm?A _ .. ?, ?. a O ? ra is w i co - J - s.. CD C? (D C. C3 >(2) mZflC- ? T c C 1 , _ C 0 7 „ X _-G m w p -4 R7, Ncn N ' -4 'a o i I 7 Z1 uo 74 [II 7 r? ,S • . (n cn (n Ur r r r r N ? ? ?C. w V7 03 5 x - 7 I T f - X 'C 0 O C. ID 0 (D ` Q Q f? I.N W O i i G ? ( ? 3 d 1 Il I I I I xC R -51 C 7D %< FD 7 'Va yJ ? , N n Q. t7 w Lo 2) . 0 (D co 71 (D r,: 0 a Q R tD y 3 co ? E 7 I E ? . N'? ati En ry n c?--0 Qv rn N 3 Z O' (D (D C (D C 9) -, p co m p © rn C L 3 o a 0 a m 3 ? - S '? c a 3 0 rn .C m rA ? (0 ? + te m ' . (D 3 7 m w•' i r y o C , co S to o m n p+ , Cp b ? --. :m d fl? ! W m s < < X Q T (D @ 3Q (D "o [3 C?': . rn O (D ?( ? K I C mss` a G m n? N r 23 D' v ? m 'n v . 1 c CL -0 +-0 ir- (n 'o ` CD w • Ink a T F Y -- 0 i j y G ty ? O 0 ? Q n Q 4 Q -1 D CD ° 3. C Q 5 [D cn m. C v_ m a 7 m n w w Z rt -0 Q o (n y ? rn G) 0 ((b N 6 C CD_ ?. 77 o 7 n1 ? D I Er 3 O C] c 3 4 CD c rr1 K! ? o n Q w ?- C a al Q O ? 7 :3 ? v o o ? -a La 7 0 = Z r-L ?' ? cn ? o n ?ZE u7 L) N - -+ W N 1 N E E ?? W rp?O3C? nLn N3 cr (D in ?• ?T: ?1 N M N .trc ?' Q m o > =7 w o co C' O- Q v p 03 Q CU V 1 1 E A (If r 0 . --1 ti ?n cn { u b ? W Z 0- 0 ° r ;, M M ,° m c°? acs -0, cc " C5 CD @ _ m CD =L CO v a -n 44 EO CD rL. {? 1 n 3' o (n f O rt + V1 TS r co 3 m ? ? v w D w E as "0 w a 0 (D 3 C o a C c p p C G 0 I SQ IN ? s1 ; a ` w 1 1 Q ' =r n -± f n ? 3 3 m s h CL ?. 7C m 3 9 ?. M Al [p d O Z7 y C? m ' t 'n "? LfJ. p i y ,p eir to 3 (D c V7 N z. c U] 1 i 1 p .. v? :,R 3 . m . ??z fl C rn .. n'Q?, , '? Sn n0?;u ?O o xi { `,• o U) d p Q ([n rn (D' LI1 EF D C O N N 0 0 0 a) 0 3 rh: ?. (D , N n° 0 rv CD Q 1 1 E N 1 CL. - T CD j T u En W rya FD 6 ?R 0 co N m O (D 0- in C E m m 3 a, 3 ?` w. m d a N A7 ? :a.? se C 0 r FD w 4 w 1• F Q. 7 =r C P.P. En 0 m E I p 1 '3" a iS r 0 - C M r cL C N ^. 0 n ?? n : o ?' ro E ? 1 a m? o s 0 C SS** ? f m v -a ° rnil A ? E E E E ? ?- U7 D c 0 m 0 O 3 U o n CL R CT CD o N N ? (Q N m C trY a 7 3 CL a N ? CD N N ro v 0 c m 3 91 r? 3 ax Cn A W N> - m col a w nx Vl = i i i i A -' 0 Q ?} n E 3 Vi [1 + o w rn a r` ? + C M (D • 0 th ?+ .? s . . p T. y t U3 C s c f 1 -- al n r w ns , . ., w a 77 1 1 1 i ' y CO - y u> p W Z 0 L m p -C - -< - c C 3 k< .. cJr 6 .7c co 3 ;s cp d _0 Q. p N o rt 0 a m _a w Z w p ((DD fV cn ? - CD =1 C1 (? w ?' h1 s ^] 4 tc. Cf] p m cn N r:m (D CL C: N a ? (p U7 N • ? • . N Q 0 SD gyp. D nl. CD .. tT S i i FT ` v x G rL r CD GICL U) N o: m A) ? d ? a? ;( o C) ` U =. w ! _., of V! 21 n. 0 n 1 ' 0 C m 93 m fp C/i .. m rt N fD 7 ? (D D CD l+r :: , cu G .' ?.... y 7 ?.. N O? 0_ " ., Z •• co Z O a? C =' U] ym 0 O N C 7 O 0- Q C. 6- w Q (d, ('p _ J co r.'. p 3 3 y. n . m m o m °m CL Q51 a ? ' _ i d R a (A o v. 70, co cn co r m c' 1 H ?7 i i H co 3 CD Q. L.] S C (D N p CD ? I I E f 91 i t k N r (D (D c d C En .. .' CD 0 t U I E 1 i i rr 3: rs p Tn v i i e i e e a io o.- ,: o. r + ? C]j N- p +i - d} 0 A W N -1 M (.n t, W M 3 r 0 T (A (A G C) o --4 w a , Cr CD C CV r L r 0 3 v w w w N - Ip t0 G ? M (D CD 0 ?4 _ _ o N D D Q [) 0 C i 0 C7 [ b c a R rr to .... [d O .' D p o . W m? n 1 Q. t a ?a a 3 '' L o =; CD £]. SU . co 0 0 0 4 o - >MC11z ? o CL [7 1 0 0 o C. c:?E U. `° 0 3 Q K D a :L m m x m x ay ; D ` X- C1 3 O r,,> cn E 2 - • ... s 1 N N ? . 74 C> =5 { F GJ ? N N w rt (D CD ?. (/? Vii i I 7 -n a ...r (C] -4 [p 7 ?[] - C, 4 m D 2. tr] rD 3 .. .,r p n CS r CJ C7 r ' i C (? ' C1 c m _> - - (r7 r r C o- 0 ? o D { i i 0W( Ri ? r m CD > > [1 0 -0 Q r ? fn 0 a w a C n rn , T 3 3 C ^ 0 D O L n =, G7 in hJ t ) ' CD 0 ? Q ? w G' _; [7 (D `' 3 r c co m t6. ? _0 Q. 'S r l 7 C1 { m [D N, 3 y rJJ Al A Q t CD 0 CL 11) ID 3s CD rt ?• t? =r Q r1 ` h#. ?.. .. rh t ... m o C] ro rn , i , w 02 S - sm; { Z F7 C N CL iO 3 N 0 n 3 W Q 3 m C '• D fl. 5 , y "I x •. ,?, t Z Z? = =!Z Ct7 O. C C ? O . C a) C. 7 CL 0) CL CL CL CD D 3 N N. [?D 0 q '° m G E2. d CD n 0 _ CD N - n TI .i Q ?C CD M O ' . CL 0 CD (D CL CD 3 m tU -? G__.' n c_ C ? 3 N m7 _+r; ._,. Z D a o . ? a 2 sr . _. A ? 73 c F i ca n ?:° :D i f ! T t ?. D CD m o D 0) m GO 3 ? Ln Cn i i T I W n , C t r? t. i i i D I Z N o (D w c n CD a [D a 3 B N a j t t M. M, x m R z v. []^ a n G I 0, CD R. rn su m . + < G N D C f- p a ?' n ' D = O C a=`: ;: 0 CD 1 0;. G CL En Q a 7 °w m °m m m _ ' m cp rt5 ' " ? n a c c Q •c n g 3 to @ ? ? o n --n 21 } m CT - to < C l< w (D :3 n- ( ]] < -b (n Ln CD 0. CD = Q) ca V T (D CD 0 o w 3 a) m -Z 0) Q a m< m m °m S 5 CL v m m cs 0°, 3 w a > a 3 a C7 C7 C7 G7 G] G? G] 0 C7: [] [Ii rIS [n (? us [A [n r C ?1 U7 C7 r r r r C Cn [) . X C X ? a" C] r r r r fn r r n N N 0 to a 7 71 C gin, r r ED _0 9: C3 u- O, 7C ro O 0 El ?p 7 N d O .0' 3 7 7 3`; C y Ct ® a 3 Ql . m 3 u,..; v a ?c m t 6] r N ,., '0 E7 -l .C tn. A W N ?.. 2Q : 7 a 3 7 7 7 7 M a s a ?R CD c . to G1 B. 6 3 N w < o rn O D °i r? ( D N w b rn N a ? ?- FJ w w 4 Q ? ? Q d O O' ? y ?` 7 7 x CL p rL ?. y fl1. N . M 13 (P (D ? = CD n n w 1 0 ffi ? a CL 0 o ? n W CD ? W, w 0 C7 (n C31' T r K (n C z M Ca b t7'. O" ?0 0 p Mm ?r1 -n a C-) 0 ; ® F =i C ? c 3 0 0. . a o 4 =1 5 ? @ O '? Q ro aowc c 6 m cp Qa a?m x a a a (? < w Q to a < m Q (b C CA ?K w ?e A o ? ou>z P G 7 G70 . a0? m m v 0 7D M m n m v m N ca as 3 m Cn u y v ro -4 Q D CL N Chi N C ( h (o Z _ , 'C 9 ] C N C v SO to ?: c ^ CD R oj 6. o ?e m x "C v 0 ? o ' o Ga i MM m X . r^ 0 m. C< O - I 3 7 . < CL (D ? W j W rL a g .-. C ' . CL C 1. 3 n CD c to c ? N (7 (p , ' 1n (D m C n T C t ra N s a 0 0 ? T 17:• O O O. O w L7 cr 3 'O '8 LS LI d Q Q Q ? 'a CL ?. D ? 0.. s 4 ? 0 - C (D ? ? ? m ? co 0 0 Q , rt F 0 (?pp m m 3 n n tai" O 0 a K , o C D w w N' V1 0 ? . LA co 0) 0 N N 0i 57 U7' 'G ?' O _ • Q 6 fl 3. 7 7 7 Q N ti Q (0 icy ° - w ?. w . a s w N b 3 N a o °' ci . m (air Cn [o :U Z C) CD Cn Co --I -V C --I W f? ? O T Fi < 3 n ? r t7; U7 CO C7 (n a] .Z] T ? C) C7 ?o G7 ;C7 T T Tl T . 3 0 r T -T, m x C m Q Ry C 0 v U C a n m T m '-I C i0 m Appendix 3 Reference Site Photographs Wetland Reference Site Photographs, On-site Area `D' 3 ?tc rit. ? .C 1' YJ? 1 i?. .u Photo of reference well, view is to the east Photo of reference well, view is to the north Photo of reference well, view is to the west Photo of reference well, view is to the south Photo of reference well, view is to the south Photo of reference well after installation Appendix 4 Reference Site Summary Data and USACE Routine Wetland Determination Data DATA FORM ROUTINE WETLAND DETERMINATION (1987 COE Wetlands Determination Manual) Project 1 Site: UT to Jumping Run Creek Restoration Project Date: 1 21 1 31200 7 Applicant 1 Owner:_ NC Ecosystem Enhancement Program (applicant) 1 The Nature County: Cumberland Conservancy (owner) State: NC Investigator: Brad Suther Do normal circumstances exist on the site? Yes X No Community ID: Is the site significantly disturbed (Atypical situation)? yes No X Headwater forest Is the area a potential problem area? Yes No X wetland (explain on reverse if needed) Transect ID:: Plot ID: Reference well location VEGETATION Dominant Plant Species Stratum Indicator Dominant Plant Species Stratum Indicator 1. Quercus nizra Tree FAC 9. Gelsemium .sempervirens I Vine FAC 2. Pinus daeda Tree FAC 10. Osmunda cinnamomeca Vine FACW+ 3. Quercu.s niyra Sat? FAC ll. 4. Pinus laeda Sap FAC 12. 5. Acer rubrum Sap FAC 13. 6. Liquidambar sivracillua Sap FAC+ 14. 7. 11ex opaca_ Shr FAC- 15. 8.? Smilax rotundi olia Shr FAC 16. Percent of Dominant Species that are OBL, FACW, or FAG excluding FAC-). 90% Remarks: HYDROLOGY X Recorded Data (Describe In Remarks): Wetland Hydrology Indicators Stream, Lake, or Tide Gauge Aerial Photographs Primary Indicators: _ Other Inundated Saturated in Upper 12" No Recorded Data Available Water Marks Drift Lines Field Observations: Sediment Deposits Drainage Patterns in Wetlands Depth of Surface Water: 0 (in.) Secondary Indicators: Oxidized Roots Channels in Upper 12" Depth to Free Water in Pit: 15 (ill.) Water-Stained Leaves Local Soil Survey Data Depth to Saturated Soil: 15 (ill.) FAC-Neutral Test Other (Explain in Remarks) Remarks: Water table was at a depth of approximately 15 inches on December 13, 2007. However, monitoring well data indicate that the water table at this location was at less than 12 inc, es depth from the ground surface from March 22 through the end of available data on April 22, 2008, a period of 3 consecutive days (-12 % of the growing season). SOILS Map Unit Name (Series and Phase): Deloss Drainage Class: very poorly drained Taxonomy (Subgroup): Tyl2ic Utnbraquults Confirm Mapped Type? Yes- No X Profile Description Depth Matrix Colors Mottle Colors Mottle Texture, Concretions, (inches) Horizon (Munsell Moist) 1Munsell Moist) Abundance/Contrast Structure, etc. 0-7 Ag I OYR 2/1 sandy loam 7- 14 Bg I OYR 4/2 & 512 - sandy clay 14 - 36 BCg_ IOYR 6/1 1OYR 6/3 many/ faint sandy clay 36+ Cg _ 1 OYR 4/2 sand Hydric Soil Indicators: _ Histosol Concretions Histic Epipedon High Organic Content in Surface Layer in Sandy Soils Sulfidic Odor Organic Streaking in Sandy Soils x Aquic Moisture Regime _x Listed On Local Hydric Soils List Reducing Conditions x Listed on National Hydric Soils List x Gleyed or Law-Chroma Colors Other (Explain in Remarks) Remarks: Soil satisfies hydric soil indicator F13, utnhric surface (USDA NRCS, 2006). Soil is not the Deloss series because it lacks an argillic horizon. Soil is most like a variant of the Chastain series (Fluvaquentic Endoaquepls). It has sandy clay textures in the Bg and BCg horizons, which are slightly coarser than allowed in the Chastain series' range of characteristics htt _//www2,ftw.nres.usda, ov/osd/datlL/CHASTAIN.html accessed 1/7/08). WETLAND DETERMINATION Hydrophytic Vegetation Present? Yes X No Wetland Hydrology Present? Yes X No Hydric Soils Present? Yes X No Is the Sampling Point Within a Wetland? Yes X No Remarks: 9CK 14 E; 1"111= ?A/vp * ? ? 46 .D &I N ? o m c? n cn ° CD < .. v > ? A $w ? W 3 4?6 . cD Z N ? ¢7 W 0 ' ¢ ' znc (D n = ? C-) , 3 '. a- ? w M c m 5• CD = a ° N < m n m'o, y ° - .12 Q3 c 7 CD m :3 n C' ° mCD C7 7 fn =37 CL A7 4 Uj C H N (D D1 oo.?o ? O F ]7?lpm G R N ?' ? ? 1P p N N 1 -C 1 Q k : N 0. 0 O N h ? ?7 TI C ] C Q R ?? Cr m n (D R ] 0 te pr • (A D N W C a N C N C N G t?? v [D m : m8 CL 0 M b ?? a v na ? 0 ca O a:n ? v ? z a ? n ? N . ? 0 1\3 ? N 0 [D ? n w ? fD ? (D - m N fq • `± 3 a 41 ca 0 r M m 0 v m N n m 0 z T 0 m m m m m m m 2 n m U7 1 m Appendix 5 Hydrologic Gauge Data Summary and DRAINMOD Analysis Files DRAINMOD GEN FILE USED TO MODEL THE EXISTING CONDITIONS AT `zUTOWELL 46 - UT TO JUMPING RUN CREEK RESTORATION PROJECT *** Job Title *** Jumping Run AW 6 *** Printout and Input Control *** 1 101 C:\Program Files\DRAINMOD\outputs *** Climate *** 1 C:\PROGRAM FILES\DRAINMOD\WEATHER\V2 RVSD FAY DUNN RAINFALL.RAI 1 C:\PROGRAM FILES\DRAINMOD\WEATHER\RVSD FAY DUNN TEMP.TEM 2007 1 2007 10 35 77 0 1.65 2.13 2.27 1.84 1.44 1.11 .92 .99 1.05 1.05 1.47 1.29 *** Drainage System Design *** 3 .00 152.00 287.90 11095.00 5.00 8.20 2.00 3.64 30.00 0 0.1 1 1 Eli 0.1 1 1 Eli 0 + ;+ + 0 + ;+ + 3+00 558.00 100.00 1100 1100 1100 11, 1100 1100 1100 11, 1100 1100 1100 11, *** Soils *** 450.0 45.00 61. 1.E 450.10.00 0. .00 0. .00 0. .00 Ti ff bility *** 433 4? 4.4 1.2 2.0 1-351-- 4.4 1.2 2.0 *** Crop .19U 3151115 30.00 3151115 17 1 1 3.00 311 11.00 321 15.00 331 15.00 429 15.00 5 2 3.00 6 3 3.00 612 3.00 628 7.00 716 7.00 8 2 25.00 819 33.00 827 35.00 9 6 36.00 920 21.00 926 6.00 1231 3.00 *** Wastewater Irrigation *** 0 1 1 10 1 6 0 0 0 0 0 0 0 0 7.00000 1.00000 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 WET *** Wetlands Information *** 1 67 326 30.0 13 COM *** Combo Drainage Weir Settings *** FIE *** Fixed Avg Daily PET for the month(cm) *** .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 MRA *** Monthly Ranking *** 0 FAC *** Daily PET Factors *** 0 AQH *** Time series of aquifer head *** STM *** Soil Temperature *** ZA ZB TKA TKB TB TLAG TSNOW TMELT CDEG LICE .000 .000 .000 .000 .0 .0 .0 .0 .0 .0 Initial Soil Temperature 0 Initial snow depth(m) & density(kg/m3) .00 .00 Freezing characteristic curve 0 00 .00 DRAINMOD GEN FILE USED TO MODEL THE EXISTING CONDITIONS AT AUTOWELL 410 - UT TO JUMPING RUN RESTORATION PROJECT *** Job Title *** Jumping Run AW 10 *** Printout and Input Control *** 1 101 C:\Program Files\DRAINMOD\outputs *** Climate *** 1 C:\PROGRAM FILES\DRAINMOD\WEATHER\V2 RVSD FAY DUNN RAINFALL.RAI 1 C:\PROGRAM FILES\DRAINMOD\WEATHER\RVSD FAY DUNN TEMP.TEM 2007 1 2007 10 35 77 0 1.65 2.13 2.27 1.84 1.44 1.11 .92 .99 1.05 1.05 1.47 1.29 *** Drainage System Design *** 3 .00 183.00 257.67 7651.00 .00 8.20 .00 4.15 30.00 0 0.1 1 1 Eli 0.1 1 1 Eli 0 + ;+ + 0 + ;+ + 3+00 610.00 100.00 1100 1100 1100 11, 1100 1100 1100 11, 1100 1100 1100 11, *** Soils *** 450.0 45.00 15. 1.E 99. .02 450.10.00 0. .00 0. .00 Ti ff bility *** 433 4? 4.4 1.2 2.0 1-351-- 4.4 1.2 2.0 *** Crop .19U 3151115 30.00 3151115 17 1 1 3.00 311 11.00 321 15.00 331 15.00 429 15.00 5 2 3.00 6 3 3.00 612 3.00 628 7.00 716 7.00 8 2 25.00 819 33.00 827 35.00 9 6 36.00 920 21.00 926 6.00 1231 3.00 *** Wastewater Irrigation *** 0 1 1 10 1 6 0 0 0 0 0 0 0 0 7.00000 1.00000 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 WET *** Wetlands Information *** 1 1 365 30.0 13 COM *** Combo Drainage Weir Settings *** FIE *** Fixed Avg Daily PET for the month(cm) *** .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 MRA *** Monthly Ranking *** 0 FAC *** Daily PET Factors *** 0 AQH *** Time series of aquifer head *** STM *** Soil Temperature *** ZA ZB TKA TKB TB TLAG TSNOW TMELT CDEG LICE .000 .000 .000 .000 .0 .0 .0 .0 .0 .0 Initial Soil Temperature 0 Initial snow depth(m) & density(kg/m3) .00 .00 Freezing characteristic curve 0 00 .00 DRAINMOD GEN FILE USED TO MODEL THE WATER BALANCE AT THE UT TO JUMPING RUN RESTORATION PROJECT SITE *** Job Title *** JR Water Balance *** Printout and Input Control *** 2 100 C:\Program Files\DRAINMOD\outputs *** Climate *** 1 C:\PROGRAM FILES\DRAINMOD\WEATHER\V3 RVSD FAY DUNN RAINFALL.RAI 1 C:\PROGRAM FILES\DRAINMOD\WEATHER\RVSD FAY DUNN TEMP.TEM 1949 1 2006 12 35 77 0 1.65 2.13 2.27 1.84 1.44 1.11 .92 .99 1.05 1.05 1.47 1.29 *** Drainage System I si** 1 .00 5.00 177. 4. 8.20 4.00 2.53 30.00 0 + 0 0. 1+ 0.1 1 1 E+00 0.000000E+00 0 1+ w O.Uuw w E+00 0.000000E+00 0.000000E+00 396.00 100.00 1100 1100 1100 11, 1100 1100 1100 1100 1100 1100 1100 1100 *** Soils *** 450.00 2.20 61. 1.C'? J50.10.00 0. .00 0. .00 0. .00 99 .C *** Ti ff bility *** 433 4_ 4.4 1.2 2.0 12351235 4.4 1.2 2.0 *** Crop .190 3151115 30.00 3151115 17 1 1 3.00 311 11.00 321 15.00 331 15.00 429 15.00 5 2 3.00 6 3 3.00 612 628 7.C 716 7.00 8 2 25.00 819 33.00 827 35.00 9 6 36.00 920 21.00 926 1231 3.C *** We r Irrigation *** 0 1 1 10 1 6 0 0 0 0 0 0 0 0 7.00000 1.00000 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 WET *** Wetlands Information *** 1 67 326 30.0 30 COM *** Combo Drainage Weir Settings *** FIE *** Fixed Avg Daily PET for the month(cm) *** .00 .00 .00 .00 .00 .00 .00 .00 .00 MRA *** Monthly Ranking *** 1 FAC *** Daily PET Factors *** 0 AQH *** Time series of aquifer head *** STM *** Soil Temperature *** ZA ZB TKA TKB .000 .000 .000 .000 Initial Soil Temperature 0 Initial snow depth(m) & density(kg/m3) .00 .00 Freezing characteristic curve 0 3.00 6.00 .40 .00 .00 .00 TB TLAG TSNOW TMELT CDEG LICE .0 .0 .0 .0 .0 .0 DRAINMOD GEN FILE USED TO MODEL THE RESTORED CONDITIONS FOR NONRIPARIAN WETLAND AREAS - UT TO JUMPING RUN CREEK RESTORATION PROJECT *** Job Title *** Jumping Run RC Nonriparian wl *** Printout and Input Control *** 2 100 C:\Program Files\DRAINMOD\outputs *** Climate *** 1 C:\PROGRAM FILES\DRAINMOD\WEATHER\V3 RVSD FAY DUNN RAINFALL.RAI 1 C:\PROGRAM FILES\DRAINMOD\WEATHER\RVSD FAY DUNN TEMP.TEM 1949 1 2007 12 35 77 0 1.65 2.13 2.27 1.84 1.44 1.11 .92 .99 1.05 1.05 1.47 1.29 *** Drainage System Design *** 3 .00 152.00 287.90 11095.00 5.00 8.20 2.00 3.64 30.00 0 0.1 1 1 Eli 0.1 1 1 Eli 0 + ;+ + 0 + ;+ + 3+00 558.00 100.00 1100 1100 1100 11, 1100 1100 1100 11, 1100 1100 1100 11, *** Soils *** 450.0 45.00 61. 1.E 450.10.00 0. .00 0. .00 0. .00 Ti ff bility *** 433 4? 4.4 1.2 2.0 1-351-- 4.4 1.2 2.0 *** Crop .19U 3151115 30.00 3151115 17 1 1 3.00 311 11.00 321 15.00 331 15.00 429 15.00 5 2 3.00 6 3 3.00 612 3.00 628 7.00 716 7.00 8 2 25.00 819 33.00 827 35.00 9 6 36.00 920 21.00 926 6.00 1231 3.00 *** Wastewater Irrigation *** 0 1 1 10 1 6 0 0 0 0 0 0 0 0 7.00000 1.00000 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 WET *** Wetlands Information *** 1 67 326 30.0 13 COM *** Combo Drainage Weir Settings *** FIE *** Fixed Avg Daily PET for the month(cm) *** 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 MRA *** Monthly Ranking *** 1 FAC *** Daily PET Factors *** 0 AQH *** Time series of aquifer head *** STM *** Soil Temperature *** ZA ZB TKA TKB TB TLAG TSNOW TMELT CDEG LICE .000 .000 .000 .000 .0 .0 .0 .0 .0 .0 Initial Soil Temperature 0 Initial snow depth(m) & density(kg/m3) .00 .00 Freezing characteristic curve 0 1.00 1.00 DRAINMOD GEN FILE USED TO MODEL THE RESTORED CONDITIONS FOR RIPARIAN WETLAND AREAS - UT TO JUMPING RUN CREEK RESTORATION PROJECT *** Job Title *** JR Riparian wl simulation 1 *** Printout and Input Control *** 2 100 C:\Program Files\DRAINMOD\outputs *** Climate *** 1 C:\PROGRAM FILES\DRAINMOD\WEATHER\V3 RVSD FAY DUNN RAINFALL.RAI 1 C:\PRnnRAM FILES\DRAINMOD\WEATHER\RVSD FAY DUNN TEMP.TEM 1950 1 1 35 77 0 1.65 z.13 2.27 1.84 1.44 1.11 .92 .99 1.05 1.05 1.47 1.29 *** Drair System Design *** 3 .00 32.00 295.41 6100.00 5.00 8.20 5.00 3.38 30.00 0 0.1 1 1 Eli 0.1 1 1 Eli 0 + ;+ + 0 + ;+ + 3+00 396.00 100.00 1100 1100 1100 11, 1100 1100 1100 11, 1100 1100 1100 11, *** Soils *** 450.0 10.00 61. 1.E 450.10.00 0. .00 0. .00 0. .00 Ti ff bility *** 433 4? 4.4 1.2 2.0 1-351-- 4.4 1.2 2.0 *** Crop .19U 3151115 30.00 3151115 17 1 1 3.00 311 11.00 321 15.00 331 15.00 429 15.00 5 2 3.00 6 3 3.00 612 3.00 628 7.00 716 7.00 8 2 25.00 819 33.00 827 35.00 9 6 36.00 920 21.00 926 6.00 1231 3.00 *** Wastewater Irrigation *** 0 1 1 10 1 6 0 0 0 0 0 0 0 0 7.00000 1.00000 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40 WET *** Wetlands Information *** 1 67 326 30.0 22 COM *** Combo Drainage Weir Settings *** FIE *** Fixed Avg Daily PET for the month(cm) *** .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 MRA *** Monthly Ranking *** 1 FAC *** Daily PET Factors *** 0 AQH *** Time series of aquifer head *** STM *** Soil Temperature *** ZA ZB TKA TKB TB TLAG TSNOW TMELT CDEG LICE .000 .000 .000 .000 .0 .0 .0 .0 .0 .0 Initial Soil Temperature 0 Initial snow depth(m) & density(kg/m3) .00 .00 Freezing characteristic curve 0 00 .00 Jumping Run Pre-Restoration Automatic Well 1 20.0 10.0 0.0 c v v -10.0 J Gl f6 -20.0 -30.0 -40.0 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date Jumping Run Pre-Restoration Automatic Well 2 20.0 10.0- 0.0- 10.0- >N -20.0 J -30.0 -40.0- 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date Jumping Run Pre-Restoration Automatic Well 3 20.0 10.0- 0.0- 10.0- >N -20.0 J -30.0 -40.0 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date Jumping Run Pre-Restoration Automatic Well 4 20.0 10.0- 0.0- 10.0- >N -20.0 J -30.0- -40.0 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date Jumping Run Pre-Restoration Automatic Well 5 20.0 10.0- 0.0- -10.0- J >N -20.0 -30.0 -40.0 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date Jumping Run Pre-Restoration Automatic Well 6 20.0 10.0- 0.0- 10.0- J >N -20.0 -30.0 -40.0 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date Jumping Run Pre-Restoration Automatic Well 7 20.0 10.0- 0.0- _10.0- 20.0 >v --30.0 -40.0 -50.0 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date Jumping Run Pre-Restoration Automatic Well 8 20.0 10.0- 0.0- _10.0- 20.0 >v -_30.0- -40.0- -50.0- 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date Jumping Run Pre-Restoration Automatic Well 9 20.0 10.0- 0.0- _10.0- 20.0 >v -_30.0- -40.0- -0 -50.0- 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date Jumping Run Pre-Restoration Automatic Well 10 20.0 10.0- 0.0- 10.0- >N -20.0 J -30.0-- -40.0- 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date Jumping Run On-site Reference Well 20.0 10 0- . 0 0- . 10 0- . N 0 > -20 . -30 0- . -40.0 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date Jumping Run On-site Automatic Rain Gauge 3 Automatic rain gauge installed on 8/16/07 N 2 ? U C w 0 6/27/2007 7/27/2007 8/26/2007 9/25/2007 10/25/2007 11/24/2007 Date Appendix 6 Natural & Cultural Resources Correspondence & Recorded Conservation Easement Deeds aker hale Suiter May 2, 2007 US Fish and Wildlife Service Raleigh Field Office P,O. Box 33726 Raleigh, NC 27636 Subject: EEP Stream & Wetland mitigation project in Harnett and Cumberland Counties. Dear Mr. Suiter, The UT to Jumping Run Creek site in the Cape Fear River Basin has been identified for the purpose of providing in-kind mitigation for unavoidable stream channel impacts.. Several sections of channel have been identified as significantly degraded. We have already obtained an updated species list for Harnett and Cumberland Counties from your web site (littp://nc-es.fws.goy/es/countyfr.html). The threatened or endangered species for this county are: the American Alligator (Alligator mississippiensis), Red- cockaded woodpecker (Picoides borealis), Saint 1~rancis' satyr butterfly (I? eonympha mitchellii francisci), American chaffseed (Schwalhea americana), Michaux's sumac, (Rhos michataxii), Pondberry (Lindera melissifolia), and Rough-leaved loosestrife (Lysimachia ras perulaefolia). We are requesting that you please provide any known information for each species in the county. There is known habitat for the Red-cockaded woodpecker approximately 1 mile of the project area, however there are no suitable pine trees within the area of disturbance for the proposed project. The Rough-leaved loosestrife has been located within the Manchester USGS Quadrangle. No other species listed as federally threatened or endangered were listed for that quadrangle according to the Natural Heritage Program database. Please provide comments on any passible issues that might emerge with respect to endangered species, migratory birds or other trust resources from the construction of a wetland and/or stream restoration project on the subject property. A vicinity map and a USGS map showing the approximate areas of potential ground disturbance are enclosed. If we have not heard from you in 30 days we will assume that our species list is correct, that you do not have any comments regarding associated laws, and that you do not have any information relevant to this project at the current time. We will contact USFW S if suitable habitat for any of the County-listed species is found within the project study area. We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning the extent of site disturbance associated with this project. Sincerely, ChallengeUs. Ken Gilland Baker Engineering NY, Inc. 8000 Regency Parkway, Suite 200 Cary, NC 27511, Phone: (919) 459-9035, Email: k illand mbakerco .corn cc: Tracy Morris 1652 Mail Service Center Raleigh, NC 27699 Chalk OUS. John Gagnon 6113/2007 Resource Sail Scientist USDA-MRCS Edenton Soil Survey Office 730 N. Granville St. Edenton, NC 27932 Subject: Prime and Important Farmland Soils RE: NCEEP On-Call Project, UT to Jumping Run Creek Stream and Wetland Restoration Site, Cumberland County, NC Dear Mr. Gagnon: Thank you for your assistance in completing a Farmland Conversion Impact Rating forth for the subject site. Enclosed please find a copy of the final form, site and locations mapping, and a soils map of the project site. I will be happy to make any changes to the form that you deem appropriate, just let me know. Our Fax number is (919) 463-5490 If you have any questions, please feel free to contact me at (919) 459-9035 or kgilland@mbakercorp.com. Again, we appreciate your assistance in this matter. Sincerely, Ken Glland Environmental Scientist Buck Engineering A Unit of Michael Baker Corporation 8000 Regency Parkway, Suite 200 Cary, NC 27511 cc: Tracy Morris 1552 Mail Service Center Raleigh, NC 27699 cmilwWUS. u.s. Depaiyllw of Aarleulture FARMLAND CONVERSION IMPACT RATI140 pART 1 (ro ba coMfored by F'ewal Aparnoy) nor. nr land anvoz?aaon f uver 107 Pro*3 UT To Jumping Run Ct**k Floposed Land Uae Skosm Roatvretlon Caul DIM OAR 11 70 tr19 co by ARM bogie the a" conti in Orlms, U10W? atteWid l I I,? Ql Q (it rrq Me FPPA dyed not epp1Y 'or . raps C 'k jv rwmaao ? , In aavz, f) - IVan? 9ka Mama a Land L1y*x Ian B)wM A0. ?WA AI$0R'4 --.-Lis - IV;b NG PART III (To be oaa? by Fed" AWcy) A_ Tnt'dl A s To Be Converted Oregfttr B. Total Acme To Ba Comorted IfWNQQW _ C Total Aaree In AM saART IV [ro be camyaldCd4 C9)' f:e?ld visitel7sffon lnrolrn tlctl ' A.:?ote1 Acres pi?e;Mai lJr,lgkM ?arlglaxld _ .. , 4°MY lr"W FHWA ' 44" Gumberisnd, NC wenFracolvecl ?+ law ' ? r ? ? 4 ? ' , • 4? Yim - • No ' Ael" fifty • Aviri" Farm Size rl]c ®. ? d • r laic Anwrrrt Ot Farmlana As oa6ned in FRPA, . Amv= -.11611.647 % ?.? 3y?laiffl nal..Land Ern tzlaeimed D/ 06 1.!$ 7 Igh.,... 0.4 0.0 _ •r^ C. Percent inland IrrCotr a Laosl Qgvt Ufld 7? . '09 ?• ?Pereern d F !n OoN. ;lilliShcalfAf M ?r HI ar. fi YAiIiIB PART V (To he C4 1011 AW4RC9],- -Lado.11L u n (~Oooan . . stwd a ref 0.ro l HaTa*6 value Farmland Ta Be st. da PART V! (To be oom "od by FadlerelAgafty) MwMun Albs Ao wgment C* wk 0AWS 01+7e1br an aagpdahwrlirr T f R89e,9?M PoInIF -__7 Aram in Ivorairban'Use U 2. Parimezer In Nonu en Use 3, Percent Of Site Agin Farmed _ ` d. Protemba ProMptil State And Local Government Z47 IL 01summ From LWW 8 tup Area ?B, 6-w-9 Ce To Lkbnsa su $e vi 7. Size 01 Pn m,r Farm Unit Cam ed To Ave a to S. Or0lltlon Of Nonfermable Farmhrnd 9. Avallab Of Form Supp?d cos 10, 011•FSYM I"Getmersrs i f , Effeota Of Canvarsinn On Farm SUPOW Icas _ 18. C iblil With e4odno Agricultural Lisa TOTAL SITE AGOWSMENT POINTS t PAW VII ITa be com Waned by ForatwWAgewy) - i*}a W Vefue Of Farmland (Fran Part 411 7100 ? Sft ent (Fhw aft orakcal lee TOTAL POINTS (7b18)a1AWVe if finial Hsu 000 Of Selection Site Selected: A Wasson Far Ballagan: 511,Altol gee, fV(dFrl, C.brf,1or 0 0 0 a o Q WQS A Largf 5?h liase> ffoot Used? ?? v No ?Y •...? Po?nr AO?teDO ?1? 134+ Nrah w0znmran mvwaa WO) ,Ala pw?ryunrpr?elo?ar wea?1 r+oduown a.?. SraN U.S. 04p8eurl6nt Of AgrtaulWre FARMLAND CONVERSION IMPACT RATING PART I (ro be wmpleted by Feaer al Agewy) Data Of Land evatuatlon F lowest 512107 Nam Of Project UT To Jumping Run Creak Federal Agency lnv&W FHWA Proposed Land Uari SkQQM Relftradon County And Stake Cumbeftrid, NC DART It (To ba c?anplated by NRCSY Ot#aj Rdwesi•Racetved ®y NAC$ -r-7 _ 4 077' -A Does the Wife cprttdiri prlrrie, unique slatei 1de or local ll?ant ?irrnlefnd? Yes - - . No (1f rro, the FPPA does slot apply -- a} nor c?amplate Add (,parts; of•fhf* tcarttr) . ®. _ ? trrtgatad. Avarrga Fenn Size ?e ^? r ?? Mvr Cropts) Farm" 40 In'Liov. Aftsaw IlMWnt CH Farmland As D048d in FRPA -.S Z Acres: t q . 6?.7 % sZ_ 4 NeMa ?! lgnd ?+reliuaHwr k?ySlOrn Ua Nww Of WO Sim Aasesnmer+l•SAGM Date Land EWaa awkn RewMed Sy MES • N:t3 /6 '07 .1 - Site Paina PART III (7ro W compleW by Federal A goncY) v s Site C sna n A. ToI;LI Acres To Be Converted MO B. Total Acme To Be Converted Ind 0. Total Acme In 51te 0.0 0.0 0.0 PART IV (robe COrrrpl?W+ayltpFiQS)' rI 41'64 A" It116?mAtldn A. J*1e1 AOree Ptlrne:Artd Farmland . 97Toota1 Acres Statewide And Loral Important Farmland C, Percent FWmWnd In-County Or Locat GoO, Unit Tv ge COAVCrt6d . , C D. Persern OI Farrln?utd In Govt. ;lurisdldttin WIlh ;3t+ir? D? H( ar• AelaGi?e Vttl+ie PART V (To he conrtel#d by. (VRCB)•- -Lariid•>Evolu 9n G'ritarlon 21 Farmland To Be Curarart cl $ffala of o.to IW Aorrr - f?e?ibrs Value '? :A + 0 n q PAAT VI (To be completed by FaderelAgafty) 5ita Asow ment Crkeria {rhme Criteria are wrplalrwdia7CFR6".5(14 Mmimu rn Polrllq S. Area In Nonurban•U9e 2. Parimeter In Nanurban Uaa 3. Percent Of Site Bain Farmed `- d. Protection Provided State And Local Government zv 5. UsWnw From Urban BLriltup Aras Dlftnte To Urban 5U $arvlces 7. Size Qt Present Form Unit Compared To AvOra e O e. Croatlon Of Nonfarmable Farmland 9. Avetilablh ?f Form Snap art Smim _ 10. On•Fwp Ir+veBtmenia 11, Eflacts of ConvarWon On Farm Su Servlcea iblit With Ui Ang Agricultural Uso 12. Con" TOTAL SITE ASSUSIMENT POINTS 1 7 z 0 0 0. I'PART Vx (To ber completed by Fdldaml Agency) Rglat" Value Of rarrmland (From Part N1 100 0 0 0 Total Site Ammsment (FMM Parr V1 sbmw ara local 00 da11894rrrRR1 160 p 0 0 TOTAL POINTS (rotalofabove 21fnftJ 260 0 17 0 was w uooa+ toe r?aeaemem usea•r cr? Sit-- 5alaged: Oats Of Selection Y6s (3 No Fiasson For 3eWtion_ I f ? '?rrnltti f?rdfr6? ? ?r-?r 1?'r (Set H'rahwtimm our reverae OW) Perm Ail-1006 (10- -ms Own we# 6140wiaedly pro0ow:by Nr r1w rim"" S+rlwa $140 Oaker Mr. John M. Ray, Jr. May 2, 2007 District Conservationist Charlie Rase Agri-Expo Center 301 East Mountain Drive Fayetteville, NC 28306-3422 Subject: Prime and Important Farmland Soils RE: NCEEP On-Call Project, UT to Jumping Run Stream and Wetland Restoration Site, Cumberland County, NC Dear Mr. Ray: The purpose of this letter is to request your assistance in completing a. Farmland Conversion Impact Rating form for the subject site. Enclosed please find a copy of the form, site and locations mapping, and a soils map of the UT to Jumping Run site. For this stream and wetland restoration site, the total disturbed area is estimated at 146.8 acres. Of that total, 73.2 acres are Deloss loam; 48.5 acres are Pactolus loamy sand; 17.3 acres are Roanoke and Wahee sands; 2.1 acres are Altavista fine sandy loam soils, 0 to 3 percent slopes; 0.6 acres of Tarboro loamy sand, 0 to 6 percent slopes; 0.1 acres of Wickham fine sandy loam soils, 1 to 6 percent slopes, and less than 0."l acres of Candor sand, I to 8 percent slopes. Based on our review, the Deloss loam is Prime farmland if drained (as is the case with this site); and other Prime Farmland soils include The Altavista fine sandy loam, and the Wickham fine sandy loam.. The Roanoke and Wahee sands are Farmland of Statewide Importance. Therefore, the total acreage of Prime and Important Farmland directly converted was determined to be 97.7 acres. We know that you have greater familiarity with farmland issues in this area than we do, and we will be happy to mare any changes to the form that you deem appropriate. Please return to form to us with your determinations and we will fill out the rest of the form if needed. Our Fax number is (919) 463-5490. If you have any questions, please feel free to contact me at kgilland@mbakercorp.com or by phone at (919) 459-9035. Thank you for your assistance in this matter. Sincerely, Ken Gilland Environmental Scientist Buck Engineering A Unit of Michael Baker Corporation 8000 Regency Parkway, Suite 200 Cary, NC 27511 ChalhmjeUs. cc: Tracy Morris 1652 Mail Service Center Raleigh, NC 27699 Charm„ "Us. U.S. Department of Agriculture FARMLAND CONVERSION IMPACT RATING PART I (To be completed by Federal Agency) Dale Of Land Evaluation Request 512107 Name Or Project UT To Jumping Run Creek Federal Agency Involved FHWA Proposed Land Use Stream Restoration County And State Curnbedand, NC PART II (To be completed by MRCS) Date Request Received By NRCS Does the site contain prime, unique, statewide or local important farmland? Yes No (if no, the FPPA does not apply -- do not complete additional parts of this form). ? ? Acres Irrigated Average Farm Size Major Crop(s) Farmable Land In Govt. Jurisdiction Acres: % Amount Of Farmland As Defined in FPPA Acres: % Name Of Land Evaluation System Used Name Of Local Site Assessment System Date Land Evaluation Returned By NRCS Alternative Site Rating PART III (To be completed by Federal Agency) Site A Site B site C Site D A. Total Acres To Be Converted Directly 1. Z B. Total Acres To Be Converted Indirectly C. Total Acres In Site 0.0 0.0 0.0 0.0 PART IV (To be completed by NRCS) Land Evaluation Information A. Total Acres Prime And Unique Farmland B. Total Acres Statewide And Local Important Farmland C. Percentage Of Farmland In County Or Local Govt. Unit To Be Converted D. Percentage Of Farmland In Govt. Jurisdiction With Same Or Higher Relative Value PART V (To be completed by NRCS) Land Evaluation Criterion Relative Value Of Farmland To Be Converted (Scale of 0 to 100 Points) 0 0 0 0 PART VI (To be completed by Federal Agency) Site Assessment Criteria (These criteria are explained in 7 CFR 658.5(b) Maximum Points 1. Area In Nonurban Use 2. Perimeter In Nonurban Use 3. Peroent Of Site Being Farmed 4. Protection Provided By State And Local Government S. Distance From Urban Builtup Area 6. Distance To Urban Support Services 7. Size Of Present Farm Unit Compared To Average 8. Creation Of Nonfarmable Farmland 9. Availability Of Farm Support Services 10. On-Farm Investments it. Effects Of Conversion On Farm Support Services 12. Compatibility With Existing Agricultural Use TOTAL SITE ASSESSMENT POINTS 160 0 0 0 ? PART Vli (To be completed by Federal Agency) Relative Value Of Farmland (From Part V) 100 0 0 ? Total Site Assessment (From Part VI above or a focal site assessment) 16D ? 0 0 0 TOTAL POINTS (Total of above 2lines) 260 0 0 o 0 Site Selected: Date Of Selection Was A Local Site Assessment Used? Yes El No d Reason For Selection: (See IrratrucNons an reverse side) Form AD-1006 (10-53) TWs form was eleclroN"Iy produced by Natlonal Produnlon Services SW ??ker Shannon Deaton May 1, 2007 North Carolina Wildlife Resource Commission Division of Inland Fisheries 1721 Mail Service Center Raleigh, NC 27699 Subject: EEP stream & wetland mitigation project in Cumberland County. Dear Ms. Deaton, The purpose of this letter is to request review and comment on any possible issues that might emerge with respect to fish and wildlife issues associated with a potential stream restoration project on the attached site (vicinity map and USGS site neap with approximate areas of potential ground disturbance are enclosed). The UT to Jumping Run site in the Cape Fear River Basin has been identified for the purpose of providing in-kind mitigation for unavoidable stream channel impacts. Several sections of channel have been identified as significantly degraded. We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning the extent of site disturbance associated with this project. Sincerely, '_A Ken Gilland Baker Engineering NY, Inc. 8000 Regency Parkway, Suite 200 Cary, NC 27511, Phone: (919) 459-9035, Email: kizilland(& bakercorp cam cc: Tracy Morris 1652 Mail Service Center Raleigh, NC 27699 Cft1h"WUS_ Oaker Renee Gledhill-Earley State Historic Preservation Office 4617 Mail Service Center Raleigh, NC 27699-4617 Subject: EEP stream mitigation project in Cumberland County. Dear Ms. Gledhill-Earley, May 1, 2007 The Ecosystem Enhancement Program (EEP) requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with a potential stream restoration project on the attached site (a vicinity map, DSGS site map with areas of potential ground disturbance, and a soils map are enclosed). The Unnamed Tributary to Jumping Run site has been identified for the purpose of providing in-kind mitigation for unavoidable stream channel and wetland impacts. The project will involve the restoration of an unnamed tributary and prior converted wetlands in the Cape Fear River Basin, which include sections of channel that are identified as significantly degraded. Project goals include the restoration of approximately 3,000 linear feet of stream channel and 70 acres of wetlands for the purpose of obtaining stream and wetland mitigation credit in the Cape Fear River Basin. It is assumed that Priority 1 restoration activities will be undertaken for the project's streams and wetlands. Portions of the site may be associated with the Long Valley Farm Historic District (District No. 94000032). No map of the district is available in the KRIS database, but the description appears to place the district near the project area. While there are no structures in the potential area of site disturbance, landowner interviews indicate that prehistoric artifacts including projectile points have been found in the project area. The majority of the site has been disturbed by agricultural practices such as tilling. The tributary appears to have been straightened for agricultural purposes during the last few hundred years. As the enclosed aerial photograph shows, the majority of the area within the construction limits of the site consists of floodplain, farmland, or straightened stream channel. As the enclosed topographic map shows, the channel and floodplain through the project area are flat, with an average slope of approximately 0.2 percent. We ask that you review this site based on the attached information to determine the presence of any historic properties. Thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning the extent of site disturbance associated with this project. Sincere en illand Baker Engineering NY, Inc. 8000 Regency Parkway, Suite 200 Q. North Carolina Department of Cultural Resources State Historic Preservation Office Peter B. Sandbtck, Administrator Michael F. Easley, Governor Lisbeth C. Evans, Secretary leffrcy J. Crow, Deputy Secretary May 15, 2007 Ken Gilland Baker Engineering NY, inc. 8000 Regency Parkway, Suite 200 Cary, NC 27511 Office of Archives and History Division of Historical Resources David Brook, Ditector Re: Ecosystem Enhancement Program, Stream Mitigation, Jumping Run Site, Cumberland County, ER 07-0963 Dear Mr. Gilland: Thank you for your letter of May 1, 2007, concerning the above project. We have conducted a search of our reaps and files for this project. As your letter indicates, the project is located. within the Tong Valley Historic District, listed in the National Register of Historic Places. We recommend that you arrange an Effects Meeting with our office to discuss the potential impacts this project may have upon the Long Valley Historic District. Please provide preliminary project plans at the meeting. We are providing you a copy of the National Register Long Valley Historic District site map of the property for your reference. The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106 codified at 36 CFR Part 800. Thank you for your cooperation and consideration, If you have questions concerning the above comment, contact Renee Gledhill-Earley, environmental review coordinator, at 91.9--733-4763, ext. 246. In all future communication concerning this project, please cite the above referenced tracking number. Sincerely, L? %". - &.or, ter Sandbeck Enclosure cc: Role Ayers/FHWA Location Mailing Address Telephone/rax ADMINISTRATION 507 N. Blount Strect, Raleigh NC: 4617 Mail Setvicc Center, Raleigh NC 27699-4617 {919)733.4763/733-$653 RESTORATION 515 N, 131ount Sircet, Raleigh NC 4617 Mail Service (:enter, Raleigh N( 27699.4617 (919)733-6547/715-4801 SURVEY & PLANNING 515 N. Blount Sirect, Raleigh, NC: 4617 MaiI Service Center, 13alcigh NC: 27699-4617 {919)733.6545/7154801 r.? O??.c.lr?? s ?s rarer J1y JJ.4uP'O Fo•.42 d ,/o O'D .3o Se?r?ix.aL- r2, "943 tl O Y daV N: Y l S ,?a `e ?el AregL5 a6r ba#+r lulu ? I cIi r? S1 YV [?y 6n5r - Comb Oft,?ANL 40VN7-Y rhx MA Ps ?5"oy-o? 6501-On QSd 3-G. dS?]--off 0513-03 !M Wl? ecx rNc ?o???N ?P i FfC FA?@M SNP Cun19GRtiR?D CO?N? Cary, NC 27511, Phone, (919) 459-9035, Email: kQilland@mbakercorp.com cc: Tracy Morris 1652 Mail Service Center Raleigh, NC 27699 cnairerwus. Fcclc iwl _=1id r TJP ,r'1=P Counev: Cumberland CONCURRENCE FORM FOR ASSF-YS%, -T -N-T OF EFFLCl S Pr-f b c i bes°c.°ript on: Stream restoration ol-Iuarrping'Run C'rcck, Long Valley ]arm (NR), Spring t_}ta,Iail Z. 2007 , represent,aives rftTtc 3KI Nardi C irohna Dcpartment of Transportation (NCDOT) Fcdmil Ilighway Administration (T-11 4 ) North Carolina Stag Histtaric_ I'resorvation OfFice (IIPO) Oilier Re+:°imed tlu? :subacct iv ic,°t;t zmtl agreed There are area cffixis on ahc National Register-listed larraPtr1y.'prupcrtiss located within the project's area raf' [1011 ;utial t.IMci and listed on the reverse, Thcre: are no effects on the National .c?:-I- tr r Lible property,'pt°nTxertitw f0ctticcl within the project's area of potential effect and lis((:d un the reverse. 'l hcrc is an cfl'cct on the National Rpgisttr-liswd pruptrtyipropenies located W itlain the pro,*1 's ari:;t a}I'po;,ential effect_ The propert ."'propumics Land the effect(s) are Iistetl agar. the r vcT-sc, There .i ,ai is Tecl on ahc National RCgiste.r-e]igIhIe prarfrcr V.0'P[opa'riiCs locatedWithir3 tlac p?-oiect' s area Of lXAelrtiall t:lfLXI. Fhc. propcrtV.I'propertit5 antl cf acct(s) art; listed on the S),rrtCtl: P-2-7- - cic?2?- 7 R.cprt:scnuttiv.., NCDOT - Date ° c FHW'A, for the iviaiot Adn3inis °E(or, or (rtJrcr l etlc.ral A?),e ncv Late Rcprcwe:tltative,, UP D,,i1, e Z-,? aa J- - Suitt: ] listm is Pre5se r- atinrt t }F it2er - .I>- Date F Properties within (lie iarca of putenlial effect or %V111Ch there. is flu efteet, ludicme if property i.,,- National Etc gisu rdlsrxd (N-, )ter determined eliglbk; (M). Properi s, tir ithiil that aTCEI (rl'powntial effect for whWh there, is an effect- 113diCiLI : property status: ONR or DE) and deserI1)e the c Rct. Reason(s) why thy: effect is not. adver c (if rIpplic ale)- Initialed: NCDO'I' ' _ r L North Carolina Wildlife Resources Commission Richard B. Hamilton, Executive Director MEMORANDUM To: Ken Gilland Baker Engineering NY, Inc. 800 Regency Pkwy., Ste. 200 Cary, NC 27511 kgillandAmbakercorp. com From: Steven H. Everhart, PhD ASoutheastern Permit Coordinator 127 Cardinal Drive Wilmington, NC 28405 Date: May 21, 2007 RE: Un-named Tributary to Jumping Run Creek EEP Wetland and Stream Mitigation Project in Cumberland County Biologists with the North Carolina Wildlife Resources Commission (NCWRC) have reviewed the subject project for impacts to wildlife and fishery resources. Our comments are provided in accordance with provisions of the Fish and Wildlife Coordination Act (48 Stat. 401, as amended; 16 U.S.C. 661 et. seq.), and Sections 401 and 404 of the Clean Water Act (as amended). The project is located northwest of Manchester Rd. (SR 1451), between NC 24/87 to the west and NC 210 to the east. A letter and vicinity map was submitted for review of fish and wildlife issues associated with the project. The applicant proposes to restore approximately 2 miles of natural form stream on which several sections have been identified as significantly degraded. The stream(s) is an un-named tributary to Jumping Run Creek. The mitigation site will satisfy needs for the NC Ecosystem Enhancement Program (EEP). There do not appear to be any threatened or endangered species that would be impacted by the project. However, there are many red-cockaded woodpecker [(Picoides borealis) federal and state endangered] cluster sites in the general vicinity of the project. The Wildlife Resources Commission does not object to this project as proposed. Thank you for the opportunity to review and comment on this project. If you have any questions or require additional information regarding these comments, please call me at (910) 796-7217. Mailing Address: Division of Inland Fisheries • 1721 Mail Service Center • Raleigh, NC 27699-1721 Telephone: (919) 707-0220 • Fax: (919) 707-0028 _..._...-- - _..M._-...__ _.... __. - - --- -. - --......._...... - --.-.... -- ._...-. - ._ [9/5/2007) Ken Gilland - RE: Jumping Run Page 1 From: "Ryan Elting" rrelting@TNC.ORG> To: "Kayne Vanstell" <Kvanstell@mbakercorp.com> Date: 6/11/2007 8:38 AM Subject: RE: Jumping Run Kayne, I've been out of town for a few days and apologize for not getting back to you sooner about the Long Valley Farm T&E survey. I got your voicemail just shortly before my phone went into a lake. I need to find sometime today to replace it! Natural Heritage has been out to the Farm on several occasions, and thouroughally inventoried the property. There are no T&E element occurances within or near the EEP easement, so you don't need to worry about affecting and T&E species. I'm really looking forward to seeing this restoration process, and hope to be out there quite a bit to check it out. Please email me any further questions and I'll do my best to answer them. My best, Ryan Elting Conservation Planner The Nature Conservancy Sandhills Office 140 SW Broad Street Southern Pines, NC 28388 910-246-0300 -----Original Message----- From: Kayne Vanstell [maiIto: Kvanstell@mbakercorp.comj Sent: Friday, June 08, 2007 10:45 AM To: Ryan Elting Cc: Tracy Morris Subject. RE: Jumping Run Ryan, I just realized my email addressed you as Rick instead of Ryan and I apologize for the contusion. I left you a voicemail on your mobile phone regarding the Long Valley Farm/ Jumping Run restoration project T&E survey. I wanted to follow up with you to confirm what has been surveyed or inventoried collectively by TNC and Natural Heritage so we can incorporate those results into our finalized technical report. From our onsite investigations thus far we have determined no adverse effects for the listed species but wanted to verify with what you have as well. Please let us know at your earliest convenience and I look forward to hearing from you... Thanks again for your help, Kayne _..-._.- - - - ..-.w...-.. -- -- - - - - --- - -.-.-....-----...... .... (9/5/2007) Ken Gilland - Fwd: RE: Jumping Run Page 1 From: Kayne Vanstell To: Ken Gilland Date: 8/31/2007 3:56 PM Subject: Fwd: RE: Jumping Run Attachments: RE: Jumping Run Hi Kayne, The element occurrences on the map are definitely not exhaustive of what has been noted in the area. Nonetheless, the birds in the northwest portion of the map are Red-cockaded woodpeckers and Bachman's sparrow, and the mammal is Eastern fox squirrel. The community type shown at the bottom of the map is pine/Scrub oak sandhill (about as rare as a house sparrow), but having spoken with Bruce Sorrie and Mike Schafale, both Natural Heritage field biologists who have visited the site, I know that parts of the restoration area itself would have been a community known as the Little River Flatwoods which is actually fairly rare. Let me know if I can be of any help. My best, Ryan Elting Conservation Planner The Nature Conservancy Sandhills Office 140 SW Broad Street Southern Pines, NC 28388 910-246-0300 AFFIDAVIT OF PUBLICATION NORTH CAROLINA Cumberland County WMCA CO. 'IN UP]!f31Z71]Nff1'. I"V, AP11Nf?t]7L}SAT30NA1:. 1AM LIC MISTWO ON THEMIRC1 WE ANWIVUSEOF PROPERTY FOR .. STREAM RE4' I ATION Cu bfflwdC-ty 7ht North G'vulioe Ecomya - wm. Enhe txa n[ Program maidy n5 aeies. of lend lo- aated eP? 1y 3 nMa ngirds" of :l. Au ?'mq? Saae In CuTnhpd Corurly.. The project will ?inwI" ,e e nter U,,n of an ,,m,d Iriwu mq to fro .0kB RM as weU at the mtomhon of g; tmvertad n'zcSarids. 'The PRFc! T3lacs -eecdons of chmncl tint me 1{kldifl6d n yx1??Nlk • dc?yadead. Pao} etl duels : rn?,ndc TAG [[dWa' aw. su mhwcxwnl of np- 9"'=y 7,OIXI Ilnear feet JM0 1 ntd 70 wm% of wniWHk fur do wp?e of odtia' l own and+rnland nutia urd.- IN in Ike Cajr.w Fm Rivor Na- du. in adll d& Tike pia • p*-d W°f°u wild alro s- oo,np[Ish ergniiliul eealaai - al iaky,oveumni heb[ml rielcrdDonuod . 14- QVW in. nw,pudal rower pollsnlmr. gvyuna d.oldo rf nt an in- fo.maGaua[ yO*Q.. m-orkg LS hadd for thk ?r9p9".. ec- doo . m y make sirch a re• queet' mgeured /alien w s am Tracy -Purkwuy. Suitc 200. Cary-Kmb Can - liia 2'??18, lregtxsl must be ands 6v M:tx 30. 2007. ]F a<lditinn m .krna4nnis ra- qq??drxd, pkusr am6ai Kan. C3y{L:n d z,t yISW 54?WS5.: hCEE-P raaomm the riahi to dewed a if o public meet - itia.w131Ie Wd. 4rt9 8?-0L05 Sworn or affirmed to, and subscribed before me, this 30 day lof April, A.D., 2007. In Testimony Whereof, I have hereunto set my hand and affixed my official seal, the day and year aforesaid. Notary Public before the undersignea, a Notary Fuimc of saia L;ouniy ano wale, auiy commissioned and authorized to administer oaths, affirmations, etc., personally appeared. CINDY L. OROZCO Who, being duly sworn or affirmed, according to law, cloth depose and say that he/she is LEGAL SECRETARY of THE FAYETTEVILLE PUBLISHING COMPANY, a corporation organized and doing business under the Laws of the State of North Carolina, and publishing a newspaper known as the FAYETTEVILLE OBSERVER, in the City of Fayetteville, County and State aforesaid, and that as such he/she makes this affidavit; that he/she is familiar with the books, files and business of said Corporation and by reference to the files of said publication the attached advertisement of CL Legal Line STREAM RESTORATION of BAKER ENGINEERING NY, inc. was inserted in the aforesaid newspaper in space, and on dates as follows. 4/29/2007 and at the time of such publication The Fayetteville Observer was a newspaper meeting all the requirements and qualifications prescribed by Sec. No. 1-597 G.S. of N.C. The above is correctly copied from the books and files of the aforesaid corporation and publication. Title My commission expires 9th day of March, 2009. ti MAIL TO- BAKER ENGINEERING NY, Inc. 8000 REGENCY PARKWAY, SUITE 200 CARY, NC 27518 0000870105 LEGAL SECRETARY k w ? s ? _ ,? Boa a _ ? a z a H = g e `la,° ? e wg ohm 5 mow.-pz< ? z N p ° 00 `> w a ?I° Fy ~6wJ x ~?>?''a °U? ? ^°= 1111 k?:°?o k'g¢0 1 I 0 a ~ w°° ? C ka 1 1 4? a II O w? ? ° ? III F Wb? g °? ?'L® g $a ?? 1111 E ?¢m a ?? ? - ? Lv I 1 E 1 .-1 PEW W I ?n p ?3Cdd y"^° kj w"S^ `o: E E?°iaa a,.a j ?¢ 1 3I? 1 114+1 as ?? % deg la R3 ? _ ? A I ?_ I & _ 8 IR'I °g K j` - ?/ I ax.scss s o M - ?? ??/ `? zk ?kE ?y w e I a I reel ? `? g? j Who RW7 €°m q ?Eo a"'e. ? ? ??a IQ rcp Op ^° ?'? ;,yg \F\• 111 WN s:?S:_ ;s? ?'o II fl " \ 1 o?I EE?. k ? p aa' 1 ? aoo ; ? ha=s°w E°cN? ?' 3 F"O0? o ? ? ? t 6' k¢¢ I ysw ®A° 2 g€ (f l 1*?'/, w.Q a I Y° s w°° I I€ar 3 UON , r=\ F 1 J .3? IY I 1 N~ ZaCS o \? ? ? I I 1 \ \ g IR =Cg \\_ ? I I A x:: ng?' w \\ o j 19y '3ag' or =e \ \ \ ?z BF I' d ......•,,. ?? g e>?,o gss.? °ao o3 ? .?.? ? yo., a \ III ?€ 8em !'aP _ gg d@ E 4kE % \ \\ II €88g..8 ?Q y? 6: g§ a. gw g€a °E m p S°a.'?k ?bw:m Cn ° e Ili > :•. €g„ Qz9wo <". f_„6 °? 11= i Qm$$ 3gi BYbo`s ' ?? a g Ph c?F yj=?¢@=?g=m- \ R ? ? Wd I I? =aa?€zq z?W a?¢„£z t so ?' 'sR:W"=s §?'s W ° k ? 1, gs><°?€?p`gs'.??=Bo ? - ? ?°?`?k?as€`?wWO ?? as W z?s=s? `gym ?'++w ® ;'ep? ? ?p= ? / a ?a???fa=`°aam??£a=?' ?,J $? °•z'=gs e€w owo ??t ® ??'^ w $ $ 5??:,aF-€zFw°°?szs §§ff ogE 8Ww' a a. $? € a g g s a W a? o?°,da°`.s°a"?,r$o ea a ° o?sa NP?? g;a?s? ,^ € .. ?o n08Z g=gg Ye°O£°C?g?$E?Y a:"8°cmw'?I '\ ?' ® a rgW W°' ^Empp??d??mae`?€?f E m^ a LY'"3YnwY `g'.= 'j rx?a€a:ee=€e€€ea€°? yao°ooo®? 11/, rse €a: ?s awesaag??gas 4 e affi -- °eggsa ? / / _sassgkW?traaa????ga ? f 10 .,9 e ?„p ble c 4; .. TI _ e^__ £A $ ^`4 p- A ? ?. ???a?? a t I t tE k? f? rrpp.F? _ r ?4 w ST I a f e .::36 1 be f a a.o I C11 ?, GO 037 V_ 1 ° x , c ?- F A 3 ? t' L? ., a i tv. _ T 9 cl r .- s Via, x E. x'43 ,9_ ?? . ,?, ? ? ? t t 4 5 1 0 s ^ , . i rya M ie 3 R 7 { Appendix 7 EDR Transaction Screen Map Report, Categorical Exclusion Checklist, and EEP Floodplain Requirements Checklist & Correspondence RO Environmental Data Resources Inc EDR LoanCheck® Basic with Geocheck® UT to Jumping Run 1901 Long Valley Rd Spring Lake, NC 28390 Inquiry Number: 1916646.3s May 01, 2007 Environmental Risk Information The Standard in 440 Wheelers Farms Road Milford, Connecticut 06461 Nationwide Customer Service Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com FORM-NULL-ERN TABLE OF CONTENTS SECTION PAGE Executive Summary ES1 Overview Map 2 Detail Map 3 Map Findings Summary 4 Map Findings 6 Orphan Summary 7 Government Records Searched/Data Currency Tracking GRA GEOCHECK ADDENDUM Physical Setting Source Addendum A-1 Physical Setting Source Summary A-2 Physical Setting Source Map A-8 Physical Setting Source Map Findings A-9 Physical Setting Source Records Searched A-27 Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments. Disclaimer - Copyright and Trademark Notice This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice. Copyright 2007 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission. EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners. TC1916646.3s Page 1 Q W H U W X W F 0 w U c 0 O 0 m m 0 m c 0 E c O c w 0 U Z) c O U O m -a O U N C N .. E o C - O O > L C i N N U) ? O m O (6 !E o 0 o U) L 7 0 U) O N O Q H H CO w_ p U O (L w a' in d' w ¢ dJW b43 a a sn NVI4Nl 00 ? O U ism NVI4Nl w nb3S3b NVI4Nl S34dN S4-13LMAOb8 Sb3Md3-10A. JG dOn -10b1NOO 1SN1 co lsv pay lsn O w lsnbl ism J ism a 3n 1SIH U Flo z z 114pUe-l @We s a w SASH ON aWl co a4seM 'ZeH @We S sivvd j SaNl3 S3NIW Sl-i W Saba 03NI(MJ X40 S113 1SIH S1o1 Sd0104 s1om sirs S113 `osi Slbl IGO v?jim ao?j 1N3SNOO S4-13UNMOb8 sn san-i 404 -10b1NOO 1SN1 sn S-10b1NOO ON3 sn SUAH SNb3 ,uaO ,uenO ,wS dbob ,uaO ,uenO ,6-j dbob aSl `dbob CO siov?Rjoo ddb3N-Ob30 O U w SI-lob3o J SN31-1 -ldN -ldN paP1a4 o -ldN pasodoad w LL -ldN ? N N O U U .? C C ? (6 (6 N N CO p p D w (O p p ? O Q ? ? } Z 00 W U } CO w Of U --jj z E w J O = a>YLnz O N W ?(D< LO LU a W J ?0 (7 o s W U (D Z '- E J _ ~ 0 > Of w Q H p N H Z:) (n W W CO (n N C N O C N N O c c 7 7 CO E E Z) CO 0 U a> X w U) co IT co co rn U OVERVIEW MAP -1916646.3s ill,111,11,111; -?-/ I i Target Property Sites at elevations higher than or equal to the target property • Sites at elevations lower than the target property 1 Manufactured Gas Plants National Priority List Sites Dept. Defense Sites 0 1/4 1/2 1 Mlles Indian Reservations BIA Hazardous Substance County Boundary Disposal Sites Oil & Gas pipelines 0 100-year flood zone 0 500-year flood zone 0 National Wetland Inventory 0 State Wetlands SITE NAME: UT to Jumping Run CLIENT: Baker Engineering ADDRESS: 1901 Long Valley Rd CONTACT: Ken Gilland Spring Lake INC 28390 INQUIRY#: 1916646.3s LAT/LONG: 35.2039 / 78.9684 DATE: May 01, 2007 5:34 pm 00pyrlaht ® 2007 EDR, Inc. ® 2007 Tole Atlas Ral. 07/2006. DETAIL MAP -1916646.3s Target Property Sites at elevations higher than or equal to the target property • Sites at elevations lower than the target property 1 Manufactured Gas Plants r Sensitive Receptors National Priority List Sites Dept. Defense Sites 0 1116 1/6 1/411Alleo Indian Reservations BIA Hazardous Substance Oil & Gas pipelines Disposal Sites 0 100-year flood zone 0 500-year flood zone 0 National Wetland Inventory 0 State Wetlands SITE NAME: UT to Jumping Run CLIENT: Baker Engineering ADDRESS: 1901 Long Valley Rd CONTACT: Ken Gilland Spring Lake INC 28390 INQUIRY#: 1916646.3s LAT/LONG: 35.2039 / 78.9684 DATE: May 01, 2007 5:34 pm 00pyrlaht ® 2007 EDR, Inc. ® 2007 Tole Atlas Ral. 07/2006. MAP FINDINGS SUMMARY Search Target Distance Total Database Property (Miles) < 1/8 1/8 - 1/4 1/4 - 1/2 1/2 - 1 > 1 Plotted FEDERAL RECORDS NPL 1.000 0 0 0 0 NR 0 Proposed NPL 1.000 0 0 0 0 NR 0 Delisted NPL 1.000 0 0 0 0 NR 0 NPL LIENS TP NR NR NR NR NR 0 CERCLIS 0.500 0 0 0 NR NR 0 CERC-NFRAP 0.500 0 0 0 NR NR 0 CORRACTS 1.000 0 0 0 0 NR 0 RCRA TSD 0.500 0 0 0 NR NR 0 RCRA Lg. Quan. Gen. 0.250 0 0 NR NR NR 0 RCRA Sm. Quan. Gen. 0.250 0 0 NR NR NR 0 ERNS TP NR NR NR NR NR 0 HMIRS TP NR NR NR NR NR 0 US ENG CONTROLS 0.500 0 0 0 NR NR 0 US INST CONTROL 0.500 0 0 0 NR NR 0 DOD 1.000 0 0 0 0 NR 0 FUDS 1.000 0 0 0 0 NR 0 US BROWNFIELDS 0.500 0 0 0 NR NR 0 CONSENT 1.000 0 0 0 0 NR 0 ROD 1.000 0 0 0 0 NR 0 UMTRA 0.500 0 0 0 NR NR 0 ODI 0.500 0 0 0 NR NR 0 TRIS TP NR NR NR NR NR 0 TSCA TP NR NR NR NR NR 0 FTTS TP NR NR NR NR NR 0 SSTS TP NR NR NR NR NR 0 LUCIS 0.500 0 0 0 NR NR 0 DOT OPS TP NR NR NR NR NR 0 ICIS TP NR NR NR NR NR 0 HIST FTTS TP NR NR NR NR NR 0 CDL TP NR NR NR NR NR 0 RADINFO TP NR NR NR NR NR 0 PADS TP NR NR NR NR NR 0 MLTS TP NR NR NR NR NR 0 MINES 0.250 0 0 NR NR NR 0 FINDS TP NR NR NR NR NR 0 RAATS TP NR NR NR NR NR 0 STATE AND LOCAL RECORDS State Haz. Waste 1.000 0 0 0 0 NR 0 IMD 0.500 0 0 0 NR NR 0 NC HSDS 1.000 0 0 0 0 NR 0 State Landfill 0.500 0 0 0 NR NR 0 OLI 0.500 0 0 0 NR NR 0 HIST LF 0.500 0 0 0 NR NR 0 LUST 0.500 0 0 0 NR NR 0 LUST TRUST 0.500 0 0 0 NR NR 0 UST 0.250 0 0 NR NR NR 0 TC1916646.3s Page 4 MAP FINDINGS SUMMARY Database AST INST CONTROL VCP DRYCLEANERS BROWNFIELDS NPDES TRIBAL RECORDS Search Target Distance Total Property (Miles) < 1/8 1/8 - 1/4 1/4 - 1/2 1/2 - 1 > 1 Plotted 0.250 0 0 NR NR NR 0 0.500 0 0 0 NR NR 0 0.500 0 0 0 NR NR 0 0.250 0 0 NR NR NR 0 0.500 0 0 0 NR NR 0 TP NR NR NR NR NR 0 INDIAN RESERV 1.000 0 0 0 0 NR 0 INDIAN LUST 0.500 0 0 0 NR NR 0 INDIAN UST 0.250 0 0 NR NR NR 0 EDR PROPRIETARY RECORDS Manufactured Gas Plants 1.000 0 0 0 0 NR 0 NOTES: TP = Target Property NR = Not Requested at this Search Distance Sites may be listed in more than one database TC1916646.3s Page 5 Map ID MAP FINDINGS Direction Distance Distance (ft.) EDR ID Number Elevation Site Database(s) EPA ID Number NO SITES FOUND TC1916646.3s Page 6 } w' Q 7 Z Q 2 a w' O w m (4 ~ U) ~ 0 0 j Z Z L H H p C7 p C7 p p U) U) U) U w ' U) F- ' J < Q F-H F-H U) H W U) H H W U) U) U) Z) Z) O Z) Z JZ) J Z) Z) J J J O O O O O O O O O O O O O O O Q co co co co co co co co co M M M M M M co co co co O O O O O O O O O O O N N N N N N N N N N N N N N N N N a Q U) E z a) U) co N W Y = j ? = O z z O W O ono Q Q M U U N O 000 (n 0 N w' O w. 2 w' Q V LL Cl) w' LU W N S O X O N X } O O Z cn O O X m z m z - Q O> N co J S op U X _ m W O W V V }y O m }y N N O> m 00 > O Q 0 0 C.4 LU Z) C'4 L6 75; (0 o w' w (n w (n (n S S M 01 w S (o m to W Y Q J _ O W a } U 00 w D Q w w rO1i v w U w w U w W M c - o O Y J W Q 0 2 0} C'4 -J Cl) W M UnSJQ?U)F i U)0w3!cn} Oz> ww0 cn O w z w> U w w o 0 x L U w z Hw -j o H of Nw n (moo N M w 0 0 w I- V o0 V M N w N N In (O O O M V0 N 0[ m O V I- co N V V V N[- (o V (o V 0 V M 00 00 CO d) m V,r ro O V V 0) I- N It d) I- r r r W L2 I- 0 0 ? 0 0 ? 0 0 ? 0 0 0 - - W Z) Z) U) Z) Z) U) Z) OR U) Z, Z f) f) f) _T U W W W W W W W W W W W W W W W Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y J J J J J J J J J J J J J J J O O O O O O O O O O O O O O O Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z w w w w w w w w w w w w w w w a a a a a a a a a a a a a a a N m N IL N m V m m U EDR LoanChecV Basic: Environmental Risk Review Property Name 440 Wheelers Farms Road Milford, CT 06460 UT TO JUMPING RUN Phone:800-352-0050 1901 LONG VALLEY RD Fax:800-231-6802 SPRING LAKE, NC 28390 Web:www.edrnet.com May 1, 2007 CEDIR' Environmental Data Resources Inc ENVIRONMENTAL RISK LEVEL To help evaluate environmental risk, the EDR Loan Checktasic provides an Environmental Risk Level, based on a search of current government records requested to be searched by Baker Engineering. ELEVATED RISK Based on the records found in this report, the environmental risk level for this property is elevated. I-XILOW RISK Based on the records found in this report, the environmental risk level for this property is minimal. User Instructions For more information regarding this Environmental Risk Level, please refer to page 2 and other supporting reports. User Comments Reports and Databases The following reports an/or databases were requested by customer and were included in the Environmental Risk Level where available: • EDR Radius Map Report Disclaimer - Copyright and Trademark Notice This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice. Copyright 2007 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission. EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners. 1916646.3s Page 1 EDR LoanChecV Basic: Environmental Risk Review FINDINGS CONTRIBUTING TO THE ENVIRONMENTAL RISK LEVEL The environmental LOW RISK is based upon the findings listed below. Refer to the supporting report(s) for additional detail. TARGET PROPERTY Current Govt. Records No records identified (if any) were determined to be of elevated risk. EDR Proprietary Records No records identified (if any) were determined to be of elevated risk. SURROUNDING PROPERTIES Current Govt. Records No records identified (if any) were determined to be of elevated risk. EDR Proprietary Records No records identified (if any) were determined to be of elevated risk. 1916646.3s Page 2 11-13-'07 09:28 rR0M7DENR EEP 9197152001 T-817 P02 U-544 Categorical Exclusion Form for Ecosystem Enhancement Proaram Preiects Part 1: General Project Information FCro eat Name: UT to Jum in Run Creek Restoration Rromect Dun Name: Cumberland Count E'P Number: D07053 Pro'ect onsor: Michael Baker NY Inc. ro ect ontact Name: Ka ne an tell Pro ect Contact Address: 8000 Re enc Parkway, Suite 200 Car NC 27518 Pro a Contact E-mai : kvanstell@mbakercorp.com EEP Project Manager: Tracy Morris Project Description Faker Engineering NY, Inc., proposes to conduct stream and wetland restoration activities in Cumberland County, approximately three miles northeast of Pope Air Force Base within cataloging unit 03030044 and NC Division of Water Quality (NCDWQ) sub-basin 18-23-20 of the Cape Fear River Basin. Project goals are to restore or enhance a minimum of 3,000 linear feet of stream channel and 70 acres of wetlands, . Official Use Only Reviewed By: q '1210 7- C ?Y Date EEP Proje t Man ger Conditional Approved By: Date For Division Administrator FHWA ? Check this box if there are outstanding issues Final Approval By: Date For Division Administrator FHWA T, cowstem PROGRAM EEP Floodplain Requirements Checklist This form was developed by the National Flood Insurance program, NC Floodplain Mapping program and Ecosystem Enhancement Program to be filled for all EEP projects. The form is intended to summarize the floodplain requirements during the design phase of the projects. The form should be submitted to the Local Floodplain Administrator with three copies submitted to NFIP (attn. Edward Curtis), NC Floodplain Mapping Unit (attn. John Gerber) and NC Ecosystem Enhancement Program. Project Location Name of project: UT to Jumping Run Creek Name if stream or feature: UT to Jumping Run Creek County: Cumberland Name of river basin: Cape Fear Is project urban or rural? Rural Name of Jurisdictional municipality/county : Cumberland County DFIRM panel number for entire site: 3710598800J Consultant name: Kayne Van Stell, Baker Engineering NY, Inc. Phone number: (919) 459-9030 Address: 8000 Regency Parkway, Suite 200 Cary, NC 27518 Design Information Provide a general description of project (one paragraph). Include project limits on a reference orthophotograph at a scale of 1" = 500". Baker Engineering proposes to restore 7,336 linear feet (LF) of stream and 94.3 acres (AC) of riparian and non-riparian wetlands, and enhance 1,935 LF of stream and 3.3 acres of wetlands along an unnamed tributary (UT) to Jumping Run Creek. The UT to Jumping Run Creek project site is located in FEMA Comphance_Jump_runldoc Page I of 4 Cumberland County, approximately three miles northeast of Pope Air Force Base within cataloging unit 03030004, and NC Division of Water Quality (NCDWQ) sub-basin 18-23-20 of the Cape Fear River Basin (Figure 1). The purpose of the project is to restore wetland functions to prior-converted agriculture and cattle fields on the site and to restore stream functions to the impaired stream channel that flows through it. Summarize stream reaches or wetland areas according to their restoration priority. Restoration Type Amount Priority Riparian Wetland Restoration 81.4 acres Restoration of Coastal Plain Small Stream Swamp - PC field areas along UTIa and UTIb Riparian Wetland 3.3 acres Enhancement enhancement of Coastal Plain Small Stream Swamp - along UT I a and UT Ib (existing jurisdictional wetland pockets) Non-Riparian Wetland 12.9 acres Restoration Restoration Stream Restoration of Braided 3,338 ft Priority I Restoration Channel (headwater stream) - UTIa Stream Restoration of Single- 3,998 ft Priority I Restoration Thread Channel (low energy stream) - UTIb Stream Enhancement - UTIc 1,935 ft Enhancement Total 9,271 ft of stream 97.6 acres of wetlands Floodplain Information Is project located in a Special Flood Hazard Area (SFHA)? F_ Yes Fv- No If project is located in a SFHA, check how it was determined: F- Redelineation F- Detailed Study F- Limited Detail Study F- Approximate Study F_ Don't know List flood zone designation: The lower end of the UT to Jumping Run Creek site is located within a Federal Emergency Management Agency (FEMA) -identified flood zone (Zone AE), which is designated as a special flood hazard area inundated by the 100-year flood. However, no construction or restoration activities are planned to take lace within the AE zone (see enclosed figures for restoration areas). Check if applies: I- AE Zone FEMA Compliance_Jump_run1doc Page 2 of 4 F Floodway F- Non-Encroachment F None F A Zone • Local Setbacks Required • No Local Setbacks Required If local setbacks are required, list how many feet: Does proposed channel boundary encroach outside floodway/non-encroachment/setbacks? F Yes W No Land Acquisition (Check) * State owned (fee simple) * Conservation easment (Design Bid Build) * Conservation Easement (Full Delivery Project) Note: if the project property is state-owned, then all requirements should be addressed to the Department of Administration, State Construction Office (attn: Herbert Neil y, (919) 807-4101) Is community/county participating in the NFIP program? Wo Yes F No Note: if community is not participating, then all requirements should be addressed to NFIP (attn: Edward Curtis, (919) 715-8000 x369) Name of Local Floodplain Administrator: Bob Stanger Phone Number: 910-678-7636 Floodplain Requirements This section to be filled by designer/applicant following verification with the LFPA F,/- No Action F No Rise F Letter of Map Revision Conditional Letter of Map Revision F Other Requirements List other requirements: Comments: FEMA Compliance_Jump_run1doc Page 3 of 4 Name: Title: Signature: Date: Criteria for Flooding Requirements Grading less than 5ac: Notify LFPA Not Regulated, No Community ?Grading more - No Impact Study Set-backs than 5 ac: - LOMR if Site BFE not< Establish Ott < Rise < 1 ft Defined W/Community BFE data. - CLOMR & LOMR if Set-backs Rise > I ft Regulated (SFHA) No Floodway (1 ft No Rise) BFE defined Floodway defined - No Impact Study (0 ft No-Rise) - CLOMR, LOMR if Rise not met - LOMR, if Rise < 0.1 ft Non-Encroachment Area (Oft, No-Rise) Summary of Scenarios Zone SFHA BFE Floodway Comm. Floodplain Criteria (map) Or Non- Set-back Encroachment X,B,C No No No No a. Notify Floodplain Administration FP Dev. Permit maybe required A Yes No No No a. If grading < 5 ac, notify LFPA. A Yes No No Yes a. If No-Rise = 0 ft, LOMR not required If Rise > 0 ft, LOMR is Required c. If Rise > 1 ft, CLOMR is required AE, es es No n/ a a. No-Rise Study Al-A30 . CLOMR if > 1ft c. LOMR AEFW es es es /a a. No-Rise Study Al-A30 . CLOMR if > 0 ft c. LOMR FEMA Compliance_Jump_run1doc Page 4 of 4 October 24, 2007 Wayne Dudley, CFM and Robert M. Stanger Cumberland County Engineering Department Old Courthouse 130 Gillespie Street, Room 214 Fayetteville, NC 28301 Subject: EEP Floodplain Requirements Checklist Stream and Wetland Restoration Project in Cumberland County, North Carolina. Cape Fear River Basin 03, UT to Jumping Run Creek Restoration Site, EEP # D07053 S, Baker # 111274 Dear Mr. Dudley and Mr. Stanger: Please find enclosed one revised copy of the EEP Floodplain Requirements Checklist for the UT to Jumping Run Creek Stream and Wetland Restoration site in Cumberland County, North Carolina, Ecosystem Enhancement Program (EEP) Number D07053 S. Subsequent to our initial draft, additional discussions with you allowed us to revise our understanding of the needs of the project. At this time, we have determined, and you have concurred, that no additional work will be required to meet FEMA requirements. Therefore, a no-rise certification will not be required for this project. Sincerely, Ken Gilland Enclosures Cc: Mr. Edward Curtis, NC Floodplain Mapping Program Tracy Morris, North Carolina Ecosystem Enhancement Program John Gerber, NC Floodplain Mapping Unit ClhallerW Is. Appendix 8 Stream Restoration: Background Science and Methods STREAM RESTORATION: BACKGROUND SCIENCE AND METHODS 1.0 APPLICATION OF FLUVIAL PROCESSES TO STREAM RESTORATION A stream and its floodplain comprise a dynamic environment where the floodplain, channel, and bedform evolve through natural processes. Weather and hydraulic processes erode, transport, sort, and deposit alluvial materials throughout the riparian system. The size and flow of a stream are directly related to its watershed area. Other factors that affect channel size and stream flow are geology, land use, soil types, topography, and climate. The morphology, or size and shape, of the channel reflect all of these factors (Leopold et al., 1992; Knighton, 1988). The result is a dynamic equilibrium where the stream maintains its dimension, pattern, and profile over time, and neither degrades nor aggrades. Land use changes in the watershed, including increases in imperviousness and removal of riparian vegetation, can upset this balance. A new equilibrium may eventually result, but not before large adjustments in channel form can occur, such as extreme bank erosion or incision (Lane, 1955; Schumm, 1960). By understanding and applying natural stream processes to stream restoration projects, a self-sustaining stream can be designed and constructed that maximizes stream and biological potential (Leopold et al., 1992; Leopold, 1994; Rosgen, 1996). In addition to transporting water and sediment, natural streams provide the habitat for many aquatic organisms including fish, amphibians, insects, mollusks, and plants. Trees and shrubs along the banks provide a food source and regulate water temperatures. Channel features such as pools, riffles, steps, and undercut banks provide diversity of habitat, oxygenation, and cover (Dunne and Leopold, 1978). Stream restoration projects can repair these features in concert with the return of a stable dimension, pattern, and profile. The following sections provide an overview of the primary channel forming process and typical stream morphology. 1.1 Channel Forming Discharge The channel forming discharge, also referred to as bankfull discharge, effective discharge, or dominant discharge, creates a natural and predictable channel size and shape (Leopold et al., 1992; Leopold, 1994). Channel forming discharge theory states that there is a unique flow that over a long period of time would yield the same channel morphology that is shaped by the natural sequence of flows. At this discharge, equilibrium is most closely approached and the tendency to change is minimized (Inglis, 1947). Uses of the channel forming discharge include channel stability assessment, river management using hydraulic geometry relationships, and natural channel design (Soar and Thorne, 2001). Proper determination of bankfull stage in the field is vital to stream classification and the natural channel design process. The bankfull discharge is the point at which flooding occurs on the floodplain (Leopold, 1994). This flood stage may or may not be the top of the stream bank. On average, bankfull discharge occurs every 1.5 years (Leopold, 1994; Harman et al., 1999; McCandless, 2003). If the stream has become incised due to changes in the watershed or streamside vegetation, the bankfull stage may be a small depositional bench or scour line on the stream bank (Harman et al., 1999). In this case, the top of the bank, which was formerly the floodplain, is called a terrace. A stream with terraces at the top of its banks is considered to be incised. 1.2 Bedform Diversity and Channel Substrate The profile of a stream bed and its bed materials are largely dependent on valley slope and geology. In simple terms, steep, straight streams are found in steep, colluvial valleys, while flat, meandering streams are found in flat, alluvial valleys. Colluvial valleys have slopes between two percent and four percent, while alluvial channels have slopes less than two percent. A colluvial valley forms through hillslope processes. Sediment supply in colluvial valleys is controlled by hillslope erosion and mass wasting, i.e., the sediments in the stream bed originated from the hillslopes. Sediments reaching the channel in a colluvial valley are typically poorly sorted mixtures of fine and coarse grained materials ranging in size from sand to boulders. In contrast, an alluvial valley forms through stream and floodplain processes. Sediments in alluvial valleys include some coarse gravel and cobble transported from steeper upland areas, but are predominantly fine-grained particles such as gravel and sand. Grain size generally decreases with valley slope (Leopold et al., 1992). 1.2.1 Step/Pool Streams A step/pool bed profile is characteristic of steep streams formed within colluvial valleys. Steep mountain streams demonstrate step/pool morphology as a result of episodic sediment transport mechanisms. Because of the high energy associated with the steep channel slope, the substrate in step/pool streams contains significantly larger particles than streams in flatter, alluvial valleys. Steps form from accumulations of boulders and cobbles that span the channel, resulting in a backwater pool upstream and plunge pool downstream. Smaller particles collect in the interstices of steps creating stable, interlocking structures (Knighton, 1988). In contrast to meandering streams that dissipate energy through meander bends, step/pool streams dissipate energy through drops and turbulence. Step/pool streams have relatively low sinuosity. Pattern variations are commonly the result of debris jams, topographic features, and bedrock outcrops. 1.2.2 Gravel Bed Streams Meandering gravel bed streams in alluvial valleys have sequences of riffles and pools that maintain channel slope and bed stability. The riffle is a bed feature composed of gravel or larger size particles. During low flow periods, the water depth at a riffle is relatively shallow and the slope is steeper than the average slope of the channel. At low flows, water moves faster over riffles, and the resulting turbulence provide oxygen to the stream. Riffles control the stream bed elevation and are usually found entering and exiting meander bends. The inside of the meander bend is a depositional feature called a point bar, which also helps maintain channel form (Knighton, 1988). Pools are typically located on the outside bends of meanders between riffles. Pools have a flat slope and are much deeper than the average depth of the channel. At low flows, pools are depositional features and riffles are scour features. At high flows, the water surface becomes more uniform: the water surface slope at the riffles decreases and the water surface slope at the pools increases. The increase in pool slope coupled with the greater water depth at the pools causes an increase in shear stress at the bed elevation. The opposite is true at riffles. With a relative increase in shear stress, pools scour. The relative decrease in shear stress at riffles causes bed material deposits at these features during the falling limb of the hydrograph. 1.2.3 Sand Bed Streams While gravel bed streams have riffle/pool sequences, with riffles composed of gravel-size particles, sand bed channels are characterized by median bed material sizes less than 2 millimeters in diameter (Bunte and Abt, 2001). Bed material features called ripples, dunes, planebeds, and antidunes characterize the sand bedform. Although sand bed streams technically do not have riffles, the term is often used to describe the crossover reach between pools. We use "riffle" in this report as equivalent to the crossover section. The size, stage, and variation of sand bedforms are formed by changes in unit stream power as described below. These bedforms are symptomatic of local variations in the sediment transport rate and cause minor to major variations in aggradation and degradation (Gomez, 1991). Sand bedforms can be divided between low flow regimes and high flow regimes with a transitional zone between the two. Ripples occur at low flows where the unit stream power is just high enough to entrain sand size particles. This entrainment creates small wavelets from random sediment accumulations that are triangular in profile with gentle upstream and steep downstream slopes. The ripple dimensions are independent of flow depth and heights are less than 0.02 meters. As unit stream power increases, dunes eventually replace ripples. Dunes are the most common type of sand bedform and have a larger height and wavelength than ripples. Unlike ripples, dune height and wavelength are proportional to flow depth. The movement of dunes is the major cause of variability in bed-load transport rates in sand bed streams. Dunes are eventually washed out to leave an upper-flow plane bed characterized by intense bedload transport. This plane bed prevents the patterns of erosion and deposition required for dune development. This stage of bedform development is called the transitional flow regime between the low flow features and the high flow regime features (Knighton, 1998). As flow continues to increase, standing waves develop at the water surface and the bed develops a train of sediment waves (antidunes), which mirror the surface forms. Antidunes migrate upstream by way of scour on the downstream face and deposition on the upstream face, a process that is opposite of ripples and dunes. Antidunes can also move downstream or remain stationary for short periods (Knighton, 1988). 1.3 Stream Classification The Rosgen stream classification system categorizes essentially all types of channels based on measured morphological features (Rosgen, 1994, 1996). The system presents several stream types based on a hierarchical system. The classification system is illustrated on Exhibit 1.1. The first level of classification distinguishes between single and multiple thread channels. Streams are then separated based on degrees of entrenchment, width/depth ratio, and sinuosity. Slope range and channel materials are also evaluated to subdivide the streams. Stream types are further described according to average riparian vegetation, organic debris, blockages, flow regimes, stream size, depositional features, and meander pattern. Bankfull stage is the basis for measuring the width/depth and entrenchment ratios, two of the most important delineative criteria. Therefore, it is critical to correctly identify bankfull stage when classifying streams and designing stream restoration measures. A detailed discussion of bankfull stage was provided in Section 2.1.1. 1.4 Stream Stability A naturally stable stream must be able to transport the sediment load supplied by its watershed while maintaining dimension, pattern, and profile over time so that it does not degrade or aggrade (Rosgen, 1994). Stable streams migrate across alluvial landscapes slowly over long periods of time while maintaining their form and function. Instability occurs when scouring causes the channel to incise (degrade) or excessive deposition causes the channel bed to rise (aggrade). A generalized relationship of stream stability proposed by Lane (1955) is shown as a schematic drawing in Exhibit 1.2. The drawing shows that the product of sediment load and sediment size is proportional to the product of stream slope and discharge or stream power. A change in any one of these variables causes a rapid physical adjustment in the stream channel. 1.5 Channel Evolution A common sequence of physical adjustments has been observed in many streams following disturbance. This adjustment process is often referred to as channel evolution. Disturbance can result from channelization, increase in runoff due to build-out in the watershed, removal of streamside vegetation, and other changes that negatively affect stream stability. All of these disturbances occur in both urban and rural environments. Several models have been used to describe this process of physical adjustment for a stream. The Simon (1989) channel evolution model characterizes evolution in six steps, including: 1. sinuous, pre-modified, II. channelized, III. degradation, IV. degradation and widening, V. aggradation and widening, and VI. quasi-equilibrium. Exhibit 1.3 illustrates the six steps of the Simon channel evolution model. The channel evolution process is initiated once a stable, well-vegetated stream that interacts frequently with its floodplain is disturbed. Disturbance commonly results in an increase in stream power that causes degradation, often referred to as channel incision (Lane, 1955). According to research summarized by the Federal Interagency Stream Restoration Working Group (FISRWG), incision eventually leads to over-steepening of the banks and, when critical bank heights are exceeded, the banks begin to fail and mass wasting of soil and rock leads to channel widening. Incision and widening continue moving upstream in the form of a head-cut. Eventually the mass wasting slows and the stream begins to aggrade. A new low-flow channel begins to form in the sediment deposits. By the end of the evolutionary process, a stable stream with dimension, pattern, and profile similar to those of undisturbed channels forms in the deposited alluvium. The new channel is at a lower elevation than its original form with a new floodplain constructed of alluvial material (FISRWG, 1998). 1.6 Priority Levels of Restoring Incised Rivers Though incised streams can occur naturally in certain landforms, they are often the product of disturbance. High, steep stream banks, poor or absent in-stream or riparian habitat, increased erosion and sedimentation, and low sinuosity are all characteristics of incised streams. Complete restoration of the stream, where the incised grade of the channel is raised so that an abandoned floodplain terrace is reclaimed, is ideally the overriding project objective. There may be scenarios, however, where such an objective is impractical due to encroachment into the abandoned floodplain terrace by homes, roadways, utilities, etc. A priority system for the restoration of incised streams, developed and used by Rosgen (1997), considers a range of options to provide the best level of stream restoration possible for the given setting. Exhibit 1.4 illustrates various restoration/stabilization options for incised channels within the framework of the Rosgen's priority system. Generally: Priority 1- Re-establishes the channel on a previous floodplain (i.e., raises channel elevation); meanders a new channel to achieve the dimension, pattern, and profile characteristic of a stable stream for the particular valley type; and fills or isolates existing incised channel. This option requires that the upstream start point of the project not be incised. Priority 2 - Establishes a new floodplain at the existing bankfull elevation (i.e., excavates a new floodplain); meanders channel to achieve the dimension, pattern, and profile characteristic of a stable stream for the particular valley type; and fills or isolates existing incised. Priority 3 - Converts a straight channel to a different stream type while leaving the existing channel in place by excavating bankfull benches at the existing bankfull elevation. Effectively, the valley for the stream is made more bowl-shaped. This approach uses in-stream structures to dissipate energy through a step/pool channel type. Priority 4 - Stabilizes the channel in place using in-stream structures and bioengineering to decrease erosion of the stream bed and stream bank. This approach is typically used in highly constrained environments. 2.0 NATURAL CHANNEL DESIGN OVERVIEW Restoration design of degraded stream reaches first involves accurately diagnosing their current condition. Understanding valley type, stream type, channel stability, bedform diversity, and potential for restoration is essential to developing adequate restoration measures (Rosgen, 1996). This combination of assessment and design is often referred to as natural channel design. The first step in a stream restoration design is to assess the reach, its valley, and its watershed to understand the relationship between the stream and its drainage basin and to evaluate the causes of stream impairment. Bankfull discharge is estimated for the watershed. After sources of stream impairment are identified and channel geometry is assessed, a plan for restoration can be formulated. Design commences at the completion of the assessment stage. A series of iterative calculations are performed using data from reference reaches, pertinent literature, and evaluation of past projects to develop an appropriate stable cross-section, profile, and plan form dimensions for the design reach. A thorough discussion of design parameter selection is provided in Section 2.5. The alignment should avoid an entirely symmetrical layout to mimic natural variability, create a diversity of aquatic habitats, and improve aesthetics. Once a dimension, pattern, and profile have been developed for the project reach, the design is tested to ensure that the new channel will not aggrade or degrade. A discussion of sediment transport methodology is provided in Section 2.6. After the sediment transport assessment, additional structural elements are then added to the design to provide grade control, protect stream banks, and enhance habitat. Section 2.7 describes these in- stream structures in detail. Once the design is finalized, detailed drawings are prepared showing dimension, pattern, profile, and location of additional structures. These drawings are used in the construction of the project. Following the implementation of the design, a monitoring plan is established to: • Ensure that stabilization structures are functioning properly • Monitor channel response in dimension, pattern and profile, channel stability (aggradation/degradation) particle size distribution of channel materials, and sediment transport and stream bank erosion rates • Determine biological response (food chains, standing crop, species diversity, etc.) • Determine the extent to which the restoration objectives have been met. 3.0 GEOMORPHIC CHARACTERIZATION METHODOLOGY Geomorphic characterization of stream features includes the bankfull identification, bed material characterization and analysis, and stream classification. 3.1 Bankfull Identification Correct identification of bankfull is important to the determination of geomorphic criteria such as stream type, bank height ratios, width to depth ratios, and entrenchment ratios. Baker Engineering's field techniques for bankfull identification are as follows: • Identify the most consistent bankfull indicators along the reach that were obviously formed by the stream, such as a point bar or lateral bar. Bankfull is usually the back of this feature, unless sediment supply is high. In that case, the bar may flatten and bankfull will be the front of the feature at the break in slope. The indicator is rarely the top of the bank or lowest scour mark. • Measure the difference in height between the water surface and the bankfull indicator. For example, the indicator may be 2.2 feet above water surface. Bankfull stage corresponds to a flow depth. It should not vary by more than a few tenths of a foot throughout the reach, unless a tributary enters the reach and increases the size of the watershed. • Go to a stable riffle. If a bankfull indicator is not present at this riffle, use the height measured in the previous step to establish the indicator. For example, measure 2.2 feet above water surface and place a flag in both the right and left bank. • Measure the distance from the left bank to the right bank between the indicators. Calculate the cross-sectional area. • Obtain the appropriate regional curve (e.g., rural Piedmont, urban Piedmont, Mountain, or Coastal Plain) and determine the cross-sectional area associated with the drainage area of the reach. • Compare the measured cross-sectional area to that predicted by the regional curve. If the measured cross-sectional area is not a close fit, look for other bankfull indicators and test them. If there are no other indicators, look for reasons to explain the difference between the two cross-sectional areas. For example, if the cross-sectional area of the stable riffle is lower than the regional curve area, look for upstream impoundments, wetlands, or a mature forested watershed. If the cross-sectional area is higher than the regional curve area, look for stormwater drains, parking lots, or signs of channelization. It is important to perform the bankfull verification at a stable riffle using indicators from depositional features. The cross-sectional area will change with decreasing stability. In some streams, bankfull indicators will not be present due to incision or maintenance. In such cases, it is important to verify bankfull through other means such as a gauge station survey or reference bankfull information that is specific to the geographic location. The gauge information can be used, along with regional curve information, to estimate bankfull elevation in a project reach that lacks bankfull indicators. 3.2 Bed Material Characterization Baker Engineering typically performs bed material characterization using a modified Wolman procedure (Wolman, 1954; Rosgen, 1996). A 100-count pebble count is performed in transects across the streambed, with the number of riffle and pool transects being proportional to the percentage of riffles and pools within the longitudinal distance of a given stream type. As stream type changes, a separate pebble count is performed. The median particle size of the modified Wolman procedure is known as the d5o. The d5o describes the bed material classification for that reach. The bed material classification ranges from a classification of 1 for a channel d5o of bedrock to a classification of 6 for a channel d5o in the silt/clay particle size range. The modified Wolman pebble count is not appropriate for sand bed streams. When working in sandbed systems, a bulk sampling procedure is used to characterize the bed material. Cores (two to three inches deep) are sampled from the bed along the entire reach. These cores are taken back to a lab and dry sieved to obtain a sediment size distribution. This information is used to classify the stream and to complete the sediment transport analysis. 3.3 Stream Classification Cross-sections are surveyed along stable riffles for the purpose of stream classification. Values for entrenchment ratio and width/depth ratio, along with sinuosity and slope, are used to classify the stream. The entrenchment ratio (ER) is calculated by dividing the flood-prone width (width measured at twice the maximum bankfull depth) by the bankfull width. The width/depth ratio (w/d ratio) is calculated by dividing bankfull width by mean bankfull depth). Exhibit 1.5 shows examples of the channel dimension measurements used in the Rosgen stream classification system. Finally, the numbers associated with each bed material classification used are used to further classify the stream type. For example, a Rosgen E3 stream type is a narrow and deep, cobble- dominated channel with access to a floodplain that is greater than two times its bankfull width. 4.0 CHANNEL STABILITY ASSESSMENT METHODOLOGY Baker Engineering uses a modified version of stream channel stability assessment methodology developed by Rosgen (2001a). The Rosgen method is a field assessment of the following stream channel characteristics: • Stream Channel Condition • Vertical Stability • Lateral Stability • Channel Pattern • River Profile and Bed Features • Channel Dimension Relations • Channel Evolution. This field exercise is followed by the evaluation of various channel dimension relationships. The evaluation of the above characteristics leads to a determination of a channel's current state, potential for restoration, and appropriate restoration activities. A description of each category is provided in the following sections. 4.1 Stream Channel Condition Observations Stream channel conditions are observed during initial field inspection (stream walk). Baker Engineering notes the follow characteristics: • Riparian vegetation - concentration, composition, and rooting depth and density • Sediment depositional patterns - such as mid-channel bars and other depositional features that indicate aggradation and can lead to negative geomorphic channel adjustments • Debris occurrence - presence or absence of woody debris • Meander patterns - general observations with regard to the type of adjustments a stream will make to reach equilibrium • Altered states due to direct disturbance - such as channelization, berm construction, and floodplain alterations. These qualitative observations are useful in the assessment of channel stability. They provide a consistent method of documenting stream conditions that allows comparison across different sets of conditions. The observations also help explain the quantitative measurements described below. 4.2 Vertical Stability - Degradation/Aggradation The bank height and entrenchment ratios are measured in the field to assess vertical stability. The bank height ratio is measured as the ratio of the lowest bank height divided by a maximum bankfull depth. Table 1 shows the relationship between bank height ratio (BHR) and vertical stability developed by Rosgen (2001a). Table 1 Conversion of Bank Height Ratio (Degree of Incision) to Adjective Rankings of Stability (Rosgen, 2001a) Stable (low risk of degradation) 1.0-1.05 Moderately unstable 1.06-1.3 Unstable (high risk of degradation) 1.3- 1.5 Highly unstable > 1.5 The entrenchment ratio is measured as the width of the floodplain at twice the maximum bankfull depth. If the entrenchment ratio is less than 1.4 (+/- 0.2), the stream is considered entrenched (Rosgen, 1996). 4.3 Lateral Stability The degree of lateral containment (confinement) and potential lateral erosion are assessed in the field by measuring the meander width ratio (MWR) and the Bank Erosion Hazard Index (BEHI) (Rosgen, 200 la). The MWR is the meander belt width divided by the bankfull channel width, and provides insight into lateral channel adjustment processes depending on stream type and degree of confinement. For example, a MWR of 3.0 often corresponds with a sinuosity of 1.2, which is the minimum value for a stream to be classified as meandering. If the MWR is less than 3.0, lateral adjustment is probable. BEHI ratings along with near bank shear stress estimates can be compared to data from monitored sites and used to estimate the annual lateral stream bank erosion rate. 4.4 Channel Pattern Channel pattern is assessed in the field by measuring the stream's plan features including radius of curvature, meander wavelength, meander belt width, stream length, and valley length. Results are used to compute the meander width ratio (described above), ratio of radius of curvature to bankfull width, sinuosity, and meander wavelength ratio (meander wavelength divided by bankfull width). These dimensionless ratios are compared to reference reach data for the same valley and stream type to assess whether channel pattern has been impacted. 4.5 River Profile and Bed Features A longitudinal profile is created by measuring and plotting elevations of the channel bed, water surface, bankfull, and low bank height. Profile points are surveyed at prescribed intervals and at significant breaks in slope such as the head of a riffle or the head of a pool. This profile can be used to assess changes in river slope compared to valley slope, which affect sediment transport, stream competence, and the balance of energy. For example, the removal of large woody debris may increase the step/pool spacing and result in excess energy and subsequent channel degradation. Facet (e.g., riffle, run, pool) slopes of each individual feature are important for stability assessment and design. 4.6 Channel Dimension Relations The bankfull width/depth ratio provides an indication of departure from reference reach conditions and relates to channel stability. A greater width/depth ratio compared to reference conditions may indicate accelerated stream bank erosion, excessive sediment deposition, stream flow changes, and alteration of channel shape (e.g., from channelization). A smaller width/depth ratio compared to reference conditions may indicate channel incision and downcutting. Both increases and decreases in width/depth ratio can indicate evolutionary shifts in stream type (i.e., transition of one stream type to another). Table 2 shows the relationship between the degree of width/depth ratio increase and channel stability developed by Rosgen (2001a). Table 2 Conversion of Width/Depth Ratios to Adjective Ranking of Stability (Rosgen, 2001a) Very stable 1.0 Stable 1.0-1.2 Moderately unstable 1.21-1.4 Unstable > 1.4 While an increase in width/depth ratio is associated with channel widening, a decrease in width/depth ratio is associated with channel incision. For incised channels, the ratio of channel width/depth ratio to reference reach width/depth ratio will be less than 1.0. The reduction in width/depth ratio indicates excess shear stress and movement of the channel toward an unstable condition. 4.7 Channel Evolution Simon's channel evolution model (introduced in Section 2.1.5) relies on a qualitative, visual assessment of the existing stream channel characteristics (bank height, evidence of degradation/aggradation, presence of bank slumping, direction of bed and bank movement, etc.). Establishing the evolutionary stage of the channel helps ascertain whether the system is moving towards greater stability or instability. The model also provides a better understanding of the cause and effect of channel change. This information, combined with Rosgen's (1994) priority levels of restoration aids in determining the restoration potential of unstable reaches. 5.0 DESIGN PARAMETER SELECTION METHODOLOGY Baker Engineering uses a combination of approaches to develop design criteria for channel dimension, pattern, and profile. These approaches are described in the following sections. A flow chart for selecting design criteria is shown in Exhibit 1.6. 5.1 Upstream Reference Reaches The best option for developing design criteria is to locate a reference reach upstream of the project site. A reference reach is a channel segment that is stable-neither aggrading nor degrading- and is of the same morphological type as the channel under consideration for restoration. The reference reach should also have a similar valley slope as the project reach. The reference reach is then used as the blueprint for the channel design (Rosgen, 1998). To account for differences in drainage area and discharge between a reference site and a project site, data on channel characteristics (dimension, pattern, and profile), in the form of dimensionless ratios, are developed for the reference reach. If the reach upstream of the project does not have sufficient pattern, but does have a stable riffle cross-section, only dimension ratios are calculated. It is ideal to measure a reference bankfull dimension that was formed under the same environmental influences as the project reach. 5.2 Reference Reach Searches If a reference reach cannot be located upstream of the project reach, a review of a reference reach database is performed. A database search is conducted to locate known reference reaches in close proximity to the project site. The search includes streams with the same valley as the project reach and stream type as the design. If references are found meeting these criteria, the reference reach is field-surveyed for validation and comparison with the database values which may have been originally collected and provided by a third party. If a search of the database reveals no references which meet the appropriate criteria, a field search is performed locally to identify a reference reach which has not yet been surveyed. Potential reference reaches are identified by first evaluating U.S. Geological Survey (USGS) topographic quadrangles and aerial photography for an area. In general, the search is limited to subwatersheds within or adjacent to the project watershed. In certain cases, a reference reach may be identified farther away that matches the same valley and stream type as the proposed design of the project site. In such a case, care is taken to ensure that the potential reference reach lies within the same physiographic region as the project reach. Potential reference sites identified on maps are then field-evaluated to determine if they are stable systems of the appropriate stream and valley type. If appropriate, reference reach surveys are conducted. When potential sites are located on private property, landowner permission is acquired prior to any survey work being conducted. 5.3 Reference Reach Databases If a reference reach is not found in close proximity to the project site, a reference reach database is consulted and summary ratios are acquired for all streams with the same valley and stream type within the project's physiographic region. These ratios are then compared to literature values and regime equations along with ratios developed through the evaluation of successful projects. 5.4 Regime Equations Baker Engineering uses a variety of published journals, books, and design manuals to cross- reference North Carolina database values with peer-reviewed regime equations. Examples include Fluvial Forms and Processes by Knighton (1988), Mountain Rivers by Wohl (2000), and the Hydraulic Design of Stream Restoration Projects (Copeland et al., 2001) by the US Army Corps of Engineers (USACE). The most common regime equations used in our designs are for pattern. For example, most reference reach surveys in the eastern United States show radius of curvature divided by bankfull width ratios much less than 1.5. However, the USACE manual recommends a ratio greater than 2.0 to maintain stability in free-forming systems. Since most stream restoration projects are constructed on floodplains denude of woody vegetation, we often use the USACE-recommended value rather than reference reach data. Meander wavelength and pool-to-pool spacing ratios are examples of other parameters that are sometimes designed with higher ratios than those observed on reference reaches, for similar reasons as described for radius of curvature. 5.5 Comparison to Past Projects All of the above techniques for developing ratios and/or regime equations are compared to past projects built with similar conditions. Ultimately, these sites provide the best pattern and profile ratios because they reflect post-construction site conditions. While most reference reaches are in mature forests, restoration sites are in floodplains with little or no mature woody vegetation. This lack of mature woody vegetation severely alters floodplain processes and stream bank conditions. If past ratios did not provide adequate stability or bedform diversity, they are not used. Conversely, if past project ratios created stable channels with optimal bedform diversity; they will be incorporated into the design. Ultimately, the design criteria are selections of ratios and equations made upon a thorough evaluation of the above tasks. Combinations of approaches may be used to optimize the design. The final selection of design criteria for the restoration site is discussed in Section 7.0. 6.0 SEDIMENT TRANSPORT COMPETENCY AND CAPACITY METHODOLOGY The purpose of sediment transport analysis is to ensure that the stream restoration design creates a stable channel that does not aggrade or degrade over time. The overriding assumption is that the project reach should be transporting all the sediment delivered from upstream sources, thereby being a "transport" reach and classified as a Rosgen "C" or "E" type channel. For sand-bed channels, empirical relationships from stable sand-bed channels in North Carolina are used for this analysis. Sediment transport is typically assessed by computing channel competency, capacity, or both. Sediment transport competency is a measure of force (lbs/ft2) that refers to the stream's ability to move a given grain size. Quantitative assessments include shear stress, tractive force, and critical dimensionless shear stress. Since these assessments help determine a size class that is mobile under certain flow conditions, they are most important in gravel bed studies in which the bed material ranges in size from sand to cobble (of which only a fraction are mobile during bankfull conditions). In sand-bed systems, all particle sizes are mobile during bankfull flows; therefore, there is no need to determine the maximum particle size that the stream can transport. Comparing the design shear stress values for a project reach to those computed for sand-bed reference reaches does provide a useful comparison to determine if the stresses predicted for the design channels are within the range of those found in stable systems. Shear stress placed on sediment particles within a stream channel may be estimated by the following equation: i = yRS, where Equation (1) i = shear stress (lb/ft) y = specific gravity of water (62.4 lb/ft3) R = hydraulic radius (ft) S = average channel slope (ft/ft) Shear stress values are calculated for each design reach and plotted against values from sand-bed reference stream data from the Coastal Plain, as shown in Figure 1. If the predicted design shear stress values fall within the range of values documented for stable reference channels, it is assumed that shear stresses within the design reaches will be appropriate to maintain a stable channel. Figure 1 Bankfull Shear Stress Versus Channel Slope for Coastal Plain Reference Reaches. 0.300 NC Sand Bed Reference Reaches .. 0.250 N --- 95% Confidence Interval 0.200 0.150 0.100 y=37.547x+0.026 2 W 0 050 R =0.96 . 0 000 . 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 Slope (ft/ft) For sand-bed streams, sediment transport capacity is a much more important analysis tool than competency. Sediment transport capacity refers to the stream's ability to move a mass of sediment past a cross-section per unit of time, expressed in pounds/second or tons/year. Sediment transport capacity can be assessed directly, using actual monitored data from bankfull events, if a sediment transport rating curve has been developed for the project site. Since this is extremely difficult, other empirical relationships are used to assess sediment transport capacity. The most common capacity equation is stream power. While stream power can be calculated a number of ways, geomorphologists most commonly use: co = yQS/W, where Equation (2) (= mean stream power in W/mz y = specific weight of water (9,810 N/m3); y = pg where p is the density of the water- sediment mixture (1,000 kg/m3) and g is the acceleration due to gravity (9.81 m/s2) Q = bankfull discharge in m3/s S = design channel slope (dimensionless) W = bankfull channel width in meters Note: 1 ft-lb/sec/ft2 = 14.56 W/mz Equation 2 does not provide a sediment transport rating curve; however, it does describe the stream's ability to accomplish work (i.e. move sediment). For this analysis, stream power values are calculated and plotted against the range of stream power values documented for stable reference streams, as shown in Figure 2. If the design values fall within the range of values given for stable reference streams, then the analysis provides confidence that the design stream will be able to transport its sediment load. Figure 2 Stream Power and Channel Slope for Coastal Plain Reference Reaches. 12.000 -- 10.000 NC Sand Bed Reference Reaches - - - 95% Confidence Interval 8.000 _ s- 6.000 o S 4.000 i y=1941.8x-0.9181 L1 Rz=0.9011 N 2.000 0.000 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 Slope (ft/ft) As an additional check of stream design stability, the design width-to-depth ratios (W/D) are plotted against slope and compared with data from sand-bed reference reaches in the Coastal Plain. Data collected on sand-bed systems in the Coastal Plain of North Carolina indicate a strong correlation between W/D and slope, with W/D decreasing as channel slope increases. The design W/D ratios are compared with reference reach data in Figure 3, which shows bankfull W/D ratio versus channel slope. If the design points for the design reaches fall within the range of W/D values shown for reference reaches under similar slope conditions, it is even more likely that the design dimensions of the restored channels will remain stable. Figure 3 Width-to-depth Ratio (W/D) and Channel Slope for Coastal Plain Reference Reaches. 20 18 ------------------------- ? ? NC Sand Bed Reference Reaches 16 ----- - 14 - ? - - - - - - - - - - - 95% Confidence Interval - 12 ???? --- _ - 10 - ? - 4 Y = -1280x + 13.667 _ _ _ _ ' - , - ? _ _ R2 - 0.57 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 Slope (ft/ft) 7.0 IN-STREAM STRUCTURES There are a variety of in-stream structural elements used in restoration. Exhibit 1.7 illustrates a few typical structures. These elements are comprised of natural materials such as stone, wood, and live vegetation. Their shape and location works with the flow dynamics to reinforce, stabilize, and enhance the function of the stream channel. In-stream structures provide three primary functions: grade control, stream bank protection, and habitat enhancement. 7.1 Grade Control Grade control pertains mainly to the design bed profile. A newly excavated gravel stream bed with a slope greater than 0.5 percent is seldom able to maintain the desired slopes and bed features (riffles, runs, pools and glides) until a pavement/sub-pavement layer has been established. Stone and/or log structures installed at the bed elevation and at critical locations in the plan view help to set up the new stream bed for long-term vertical stability. Over time, as the new channel adjusts to its sediment transport regime and vegetative root mass establishes on the banks, the need for grade control diminishes. 7.2 Bank Protection Bank protection is critical during and after construction as bank and floodplain vegetation is establishing a reinforcing root mass. This vegetation establishment lasts for several years, but vegetation is typically providing meaningful bank protection after two to four growing seasons. Bank protection structures generally provide both reinforcement to the stream banks and re- direction of flow away from the banks and toward the center of the channel. 7.3 Habitat Enhancement Habitat enhancement can take several forms and is often a secondary function of grade control and bank protection structures. The flow of water over vanes and wing deflectors creates scour pools, which provide diversity of in-stream habitat. Boulder clusters form eddies that provide resting places for aquatic species. Constructed riffles and vane structures encourage oxygenation of the water. Root wads provide cover and shade, and encourage the formation of deep pools at the outside of meander bends. 7.4 Selection of Structure Types Table 3 summarizes the names and functions of several in-stream structures. Table 3 Functions of In-Stream Structures (Rosgen, 2001b) Cross Vane 1 1 2 Single Arm Vane 1 2 J-Hook Vane 1 2 Constructed Riffle 1 1 2 Log Weir 1 2 Wing Deflector 2 1 1 Boulder Cluster I Root Wad 1 I Brush Mattress 1 2 Cover Log 1 The selection of structure types and locations typically follows dimension, pattern, and profile design. In some situations, structure installation comprises the main, or possibly only, effort required to restore a stream. More often, structures are used in conjunction with grading, realignment, and planting in an effort to improve channel stability and aquatic habitat. 8.0 VEGETATION The planting of additional and/or more desirable vegetation is an important aspect of the restoration plan. Vegetation helps stabilize stream banks, creates habitat and a food source for wildlife, lowers water temperature by stream shading, improves water quality by filtering overland flows, and improves the aesthetics of the site. The reforestation component of a restoration project typically includes live dormant staking of the stream banks, riparian buffer plantings, invasive species removal, and seeding for erosion control. The stream banks and the riparian area are typically planted with both woody and herbaceous vegetation to establish a diverse streamside buffer. Establishing vegetation along the stream banks is a very desirable means of erosion control because of the dynamic, adaptive, and self-repairing qualities of vegetation. Vegetative root systems stabilize channel banks by holding soil together, increasing porosity and infiltration, and reducing soil saturation through transpiration. During high flows, plants lie flat and stems and leaves shield and protect the soil surface from erosion. In most settings, vegetation is more aesthetically appropriate than engineered stabilization structures. Stream banks are delineated into four zones when considering a planting scheme: 1. Channel bottom - extending up to the low flow stage. Emergent, aquatic plants dominate bank range, extending from the low flow stage to the bankfull stage 2. Lower bank - frequently flooded, extending from the low flow stage to the bankfull stage. A mix of herbaceous and woody plants including sedges, grasses, shrubs and trees 3. Upper bank - occasionally flooded, but most often above water. Dominated by shrubs and small trees. 4. Riparian area - infrequently flooded, terrestrial, and naturally forested with canopy-forming trees. The most appropriate source of plant material for any project is the site itself. Desirable plants that need to be removed in the course of construction should be salvaged and transplanted as part of the restoration plan. The next best alternative is to obtain permission to collect and transplant native plants from nearby areas. This transplant process ensures that the plants are native and adapted to the locale. Finally, plants may need to be purchased. They should be obtained from a nearby reputable nursery that guarantees that the plants are native and appropriate for the locale and climate of the project site. 8.1 Live Staking Live staking is a method of revegetation that utilizes live, dormant cuttings from appropriate species to cheaply, and effectively establish vegetation. The installation of live stakes on stream banks serves to protect the banks from erosion and at the same time provide habitat, shade and improved aesthetics. Live staking must take place during the dormant season (November to March in the southeast US). Live stakes can be gathered locally or purchased from a reputable commercial supplier. Stakes should be at least '/2 inches in diameter and no more than 2 inches in diameter, between 2 and 3 feet in length, and living based on the presence of young buds and green bark. Stakes are cut at an angle on the bottom end and driven into the ground with a rubber mallet. 8.2 Riparian Buffer Re-Vegetation Riparian buffers are areas of perennial vegetation adjacent to rivers and streams and are associated with a number of benefits. Buffers are important in nutrient and pollutant removal in overland flow and may provide for additional subsurface water quality improvement in the shallow groundwater flow. Buffers provide habitat and travel corridors for wildlife populations and are an important recreational resource. It is also important to note that riparian buffer areas help to moderate the quantity and timing of runoff from the upland landscape and contribute to the groundwater recharge process. Buffers are most valuable and effective when comprised of a combination of trees, shrubs, and herbaceous plants. Although width generally increases the capacity of riparian buffers to improve water quality and provide greater habitat value, even buffers less than 85 feet wide have been shown to improve water quality and habitat (Budd et al., 1987). An estimated minimum width of 30 feet is required for creating beneficial forest structure and riparian habitat. In stream and wetland restoration, where buffer width is often limited, the following design principles apply: • Design for sheet flow into and across the riparian buffer area. • If possible, the width of the riparian buffer area should be proportional to the watershed area, the slope of the terrain, and the velocity of the flow through the buffer. • Forest structure should include understory and canopy species. Canopy species are particularly important adjacent to waterways to moderate stream temperatures and to create habitat. • Use native plants that are adapted to the site conditions (e.g., climate, soils, and hydrology). In suburban and urban settings riparian forested buffers do not need to resemble natural ecosystems to improve water quality and habitat. 9.0 RISK RECOGNITION It is important to recognize the risks inherent in the assessment, design, and construction of environmental restoration projects. Such endeavors involve the interpretation of existing conditions to deduce appropriate design criteria, the application of those criteria to design, and, most importantly, the execution of the construction phase. There are many factors that ultimately determine the success of these projects and many of the factors are beyond the influence of a designer. To compile all of the factors is beyond the scope of this report. Further, it is impossible to consider and to design for all of them. However, it is important to acknowledge those factors such as daily temperatures, the amount and frequency of rainfall during and following construction, subsurface conditions, and changes in watershed characteristics, that are beyond the control of the designer. Many restoration sites will require some post-construction maintenance, primarily because newly planted vegetation plays a large role in channel and floodplain stability. Stream restoration projects are most vulnerable to adjustment and erosion immediately after construction, before vegetation has had a chance to become fully established. Risk of instability diminishes with each growing season. Streams and floodplains usually become self-maintaining after the second year of growth. However, unusually heavy floods often cause erosion, deposition and/or loss of vegetation in even the most stable channels and forested floodplains. Maintenance issues and recommended remediation measures will be detailed and documented in the as-built and monitoring reports. Factors that may have caused any maintenance needs, including any of the conditions listed above, shall be discussed. 10.0 REFERENCES Budd, W.W, P.L. Cohen, P.R. Saunders and F.R. Steiner, 1987. Stream corridor management in the Pacific Northwest: L Determination of stream corridor widths. Environmental Management. Bunte, K. and S. Abt, 2001. Sampling surface and subsurface particle-size distributions in wadable gravel- and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. Gen. Tech. Rep. RMRS-GTR-74. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 428 p. Fort Collins, CO Copeland, R.R, D.N. McComas, C.R. Thorne, P.J. Soar, M.M. Jones, and J.B. Fripp, 2001. United States Army Corps of Engineers. Hydraulic Design of Stream Restoration Projects. Washington, DC. Dunne, T. and L. B. Leopold, 1978. Water in Environmental Planning. W. H. Freeman and Company. New York, NY: Federal Interagency Stream Restoration Working Group (FISRWG), 1998. Stream Corridor Restoration: Principles, Processes and Practices. National Technical Information Service, Springfield, VA. Gomez, B., 1991. Bedload Transport. Earth-Science Reviews 31, 89-132., Amsterdam, Holland. Harman, W.A., G.D. Jennings, J.M. Patterson, D.R. Clinton, L.O. Slate, A.G. Jessup, J.R. Everhart, and R.E. Smith, 1999. Bankfull hydraulic geometry relationships for North Carolina streams. Wildland Hydrology. AWRA Symposium Proceedings. Edited by: D. S. Olsen and J. P. Potyondy. American Water Resources Association. June 30-July 2, 1999. Bozeman, MT. Inglis, C.C. 1947. Meanders and their bearing on river training. Institution of Civil Engineers, Maritime and Waterways Engineering Division, Paper No. 7, 54 pp. Knighton, David, 1988. Fluvial Forms and Processes. Rutledge, Chapman, and Hall, Inc. New York, NY. Lane, E. W., 1955. Design of stable channels. Transactions of the American Society of Civil Engineers. Paper No. 2776. pp. 1234-1279. Leopold, L. B., M. G. Wolman and J. P. Miller, 1992. Fluvial Processes in Geomorphology. Dover Publications, Inc. New York, NY. Leopold, L.B., 1994. A View of the River. Harvard University Press, Cambridge, Mass. McCandless, T. L., 2003. Maryland Stream Survey: Bank-full Discharge and Channel Characteristics of Streams in the Allegheny Plateau and the Valley and Ridge Hydrologic Regions. US Fish and Wildlife Service, Annapolis, MD. Rosgen, D. L. 1994. A Classification of Natural Rivers. Catena 22:169-199. Pagosa Springs, Colo. Rosgen, D.L., 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, Colo. Rosgen, D.L., 1997. A geomorphological approach to restoration of incised rivers. In: Wang, S.S.Y, E.J. Langendoen, and F.D. Shields, Jr. (Eds.). Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision. pp. 12-22. Rosgen, D.L., 1998. The reference reach - a blueprint for natural channel design. Draft Presented at ASCE Conference on River Restoration in Denver Colorado - March, 1998. ASCE. Reston, VA. Rosgen, D.L., 2001a. A stream channel stability assessment methodology. Proceedings of the Federal Interagency Sediment Conference, Reno, NV, March, 2001. Rosgen, D. L., 200 lb. The Cross-Vane, W-Weir and J-Hook Vane Structures... Their Description, Design and Application for Stream Stabilization and River Restoration. Published By: ASCE conference, Reno, NV, August, 2001. Schumm, S.A., 1960. The shape of alluvial channels in relation to sediment type. US Geological Survey Professional Paper 352-B. U.S. Geological Survey, Washington, DC. Simon, A., 1989. A model of channel response in disturbed alluvial channels. Earth Surface Processes and Landforms 14(1):11-26. Soar and Thorne, 2001. Channel restoration design for meandering rivers. US Army Corps of Engineers, Engineering Research and Development Center. Coastal and Hydraulics Laboratory, ERDC\CHL CR-O1-1. September, 2001. Wohl, E.E. 2000. Mountain Rivers. American Geophysical Union. Union Press, 320 pp. Wolman, M. G. 1954. A method of sampling coarse river-bed material. American Geophysical Union Transactions 35:951-956. EXHIBITS Z'— 3� 0 0 r � I v D d d p7 Y c E "m a a O M d � L —► O 4na v u U L) U v s a "d c=ny a l a ice, w w w w �V ps N M ® a d T m 1 0 o m In m m m m p r 'O G r N l o W N rh v irmi cL A �� ^ o o m m m m m m � � 4 Rl qa N fl V I1 6 r 7 O II N n — O� LL LL LL LL � N - a � p C r _R. 1 cu rJ C7 CN7 rm7 4�7 C�7 4�7 w a 7N. �Ai 'oma a O'- y C s _ Q L O p lC � C L N L �" III {m v z G! R ul~ cad a m c s o a u°i¢ bra to to m m° chi a J w .o U L K U) W m U E m CO c 0) 0 0 of -do 1 i J co 0 N U L 0 U) N >+ r L Cl) WX E ? N i Cl) C. U C N 7 C - v ` o u ? m qr ' _ LL Lf7 03 Fe 0 v CL O m a l 4-1 J CD 0 h, t L4 V) E t? _E c LO LO ? ca - rn K N - co l r J L N Q Class I. Sinuous, Premodified he = critical bank height h<hc - direction of bank or h bed movement Class II. Channelized Class III. Degradation Class IV. Degradation and Widening h<hc h<hc h>hc floodplain terrace t slumped material Class V. Aggradation and Widening Class VI. Quasi Equilibrium h>hc h<hc Affik- A terrace terrace h 21h slumped material aggraded material Class I Class III precursor plunge nickpoint pool oversteepened reach Class IV toP bank 1---lba n kfu I I? aggraded material Class V Class VI secondary -s- nickpoint aegradation zone aggraded material Source: Simon, 1989; US Army Corps of Engineers, 1990. Fig. 7.14 -- Channel evolution model.. In Stream Corridor Restoration: Principles, Processes, and Practices, 10/98. Interagency Stream Restoration Working Group (FISRWG)(15 Federal agencies of the US). Exhibit 1.3 Simon Channel Evolution Model Source: Simon, 1989 + 41 `s + \9\ r y / / O %?/\??? J 1 r 0 v m r? V m N C O LL U7 ? r U eri ? c ?, O'a• / r 1 r\? \ '' l CO i I It iy ° II II ti - ? 1 I ? U1 ° . Q E I LL_ > 0 V 0 V s V ? C O •' L L LL 7D LL C() . r a 4 _ o ?} O LL ? LL. m U + + ?! Cy ? ? ? + q?r U) ? c6 X U W 7o •U O L- 0 U) O O O O U) Ld_ iu ? o N ? N (Y Ei o C s CO U CO CO O Q O Q N U ? U ? d1 o 0 0 ,o °- U .N O O U E o m 0 co Q ?U J N >+ N .p -p U > o ? N co N > Q O tY -. 4 N CO N N U i U a 0 O (p (n O J 9ui'00 L -0?)1lLV90QZ00Z90M Channel Dimension Measurements Stable Channel Bankfull Elevation is associated with the channel forming discharge. It is the point where channel processes and flood plain processes begin. Bankfull width: the distance between the - left bank bankfull elevation and the right bank bankfull elevation Bankfull mean depth: the average depth from bankfull elevation to the bottom of the stream channel Max depth idmaxl: the deepest point within the cross-section measured to the bankfull BANKFULL WIDTH elevation ---- °----.-- ....--.---- Width to Depth Ratio : Bankfull width Bankfull mean depth Bank Height Ratio: Bank height (measured from top of bank to the bottom of the stream channel) a the max depth of the Incised Channel bankfull elevation (dmax) Flood Acme Width. Width measured at the elevation oft" times (2x) the maximum depth at bankfull (dmax) FLOOD PRONE WIDTH ..........---------- .__..--------- __. Entrenchment Ratio, Floodpronewidth r bankfull width o : BANKFULL WIDTH ----------------------------- ,X 'o Exhibit 1.5 Channel Dimension Measurements co c � .o = U +� O (n as O •o .., o nq cd O o K LV co L +� cd m � W •an � � D � v � ed , l � � W v 1A v � 23 hG ecS � N U ❑ w �i co U Cd pop C• U ay cq �• U 4J � U cd > U Ld y 3 ILI o � U U � ed CC • " °� v v i y 6p ? Ar 9;; ",r ,firr {{{{ ,?,+s. r L ? U 'L^ x VJ W E co L y-+ 0 a? E X W ¦ N XX y, _ wl Appendix 9 Wetland Restoration: Background Science and Methods WETLAND RESTORATION: BACKGROUND SCIENCE AND METHODS 1.0 THE IMPORTANCE OF WETLANDS Wetlands are unique landscape features that can provide numerous benefits to ecosystems. They are usually delineated based on three components: hydric soils, wetland hydrology, and hydrophytic vegetation. Natural wetlands are generally formed when the geology and hydrology of an area allow for surface or groundwater to accumulate near the soil surface. Wetlands offer unique habitats for flora and fauna, remove nutrients and other contaminants, allow for surface water storage, and recharge groundwater aquifers. Wetlands help to reduce the impacts of floods, improve water quality, and provide aesthetic and recreational benefits (Mitsch and Gosselink, 2000; King et al, 2000). The functions performed by wetlands are site-specific, depending on the location in the ecosystem and environmental conditions. Many natural processes or anthropogenic activities can impact wetlands. Wetland restoration seeks to restore wetland functions to areas that currently possess hydric soils but no longer support wetland hydrology or vegetation. Wetland restoration design must take into consideration each of the three components of wetlands (soils, hydrology, and vegetation). The following sections will provide an overview of the restoration process used by Baker Engineering. 2.0 HYDRIC SOILS Hydric soils are defined as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper horizons (Federal Register, July 13, 1994). Soil development is directly affected by the hydrology of an area, as well as by its climate, parent material, time, soil organisms, and topography. Anaerobic conditions result in specific soil biogeochemical processes, such as the retention of organic matter, the chemical reduction of nitrogen (NOA iron (Fe), manganese (Mn), sulfur (S), and carbon (Q. When a soil is saturated, aerobic microorganisms deplete the remaining oxygen in the system. As oxygen becomes more and more limiting, anaerobic organisms begin to utilize oxidized soil components that are further reduced (Mausbach et al, 1994). The first reaction that occurs under anaerobic conditions is the reduction of nitrate. As the oxidation-reduction (redox) potential continues to decrease, manganese is reduced, then iron, and finally, sulfur and carbon. The soil pH, temperature, and mineral content are all important factors in the rates of transformation (Mitsch and Gosselink, 2000). These reduction processes result in characteristic hydric soil indicators, such as the retention of organic matter, gleyed soils, soils with low-matrix chromas, sulfur odor, etc. There are two main types of hydric soils: organic soils and mineral soils. Organic soils, or Histosols, are soils that have more than 30 percent organic matter to a depth of 40 centimeters and that develop under nearly continuous saturation or inundation (Buol et al, 1989). These soils are also called peat or mucks. All organic soils are considered to be hydric except for Folists, which occur on dry slopes. Hydric soils with less than 30 percent organic matter are classified as mineral soils. When saturated or inundated for extended periods of time, mineral soils develop characteristic indicators, which are a result of depletion of oxygen within the soil (Mitsch and Gosselink, 2000; US Department of Agriculture (USDA), 1996a). The reduction of nitrogen, iron, and manganese forms hydric soil indicators that are referred to as redoximorphic features (Vepraskas, 1996). Redoximorphic features include, but are not limited to: gleyed soils, soils with low-matrix chroma, redox concentrations, oxidized rhyzospheres, and iron and manganese concretions. Wetlands are commonly referred to as the kidneys of the landscape (Mitsch and Gosselink, 2000). The analogy is applicable because wetlands filter the water that flows through them, trapping sediment and sequestering nutrients, including carbon, nitrogen, and phosphorous (Craft, 2000). Wetland soils may be factors in changing the global cycles of nitrogen, sulfur, methane, and carbon dioxide. Wetland soils help to return excess nitrogen to the atmosphere through denitrification. The use of fossil fuels has greatly increased the amount of atmospheric sulfate. When these sulfates are washed out of the atmosphere into wetlands, they can be reduced and even removed permanently from the sulfur cycle (Mitsch and Gosselink, 2000). Carbon can be sequestered into wetland soils, helping to reduce carbon dioxide concentrations. When hydric soils are converted to agriculture, changes to the soils' chemistry and structure often occur. Once drained, wetland areas are typically graded smooth to improve surface drainage, a process that removes much of the sites' natural topographic variability. The organic content of the soils often decreases due to the oxidation caused by aeration. Concentrations of major and micro- nutrients are often increased due to the application of fertilizers. "Loose" soil structures of many wetland soils are typically converted to more blocky and massive structures, due to years of mechanized equipment traffic. Plow pans, or layers of highly compacted soil, are often present approximately 12 to 18 inches below the surface. Assessment of on-site hydric soils begins with collected soil survey data from the Natural Resources Conservation Service (NRCS). Since soil survey data are collected on a regional scale, on-site investigations begin by evaluating the accuracy of NRCS mapping. Soil borings are conducted across the restoration site to confirm the presence of hydric soil series and the boundaries. Soil profiles are recorded for each location. For hydrologic analysis purposes, measurements of in-situ saturated hydraulic conductivity are also conducted. Under high water table conditions, the auger hole method, as described by van Beers (1970), is used. Under lower water table conditions, a constant head permeameter (amoozemeter) is used. Measurements are made at representative locations across the site to determine the variability in hydraulic conductivity across the site. 3.0 WETLAND VEGETATION Wetland hydrology and hydric soils create what can be considered a harsh environment for many biotic organisms. Since many wetlands are only periodically inundated or saturated, water levels may not be consistently high or low. Many aquatic plants are not able to flourish when wetlands temporarily dry, and many xeric species are not able to adapt to conditions that are periodically wet. Wetland plants have adapted to life in this unpredictable environment. Wetland plants, also referred to as hydrophytic vegetation, possess a range of adaptations that enable them to tolerate or avoid water stress. The three major types of adaptations are morphological, physiological, and reproductive. Morphological adaptations enable plants to increase the oxygen supply, either by growing into aerobic environments or by allowing oxygen to penetrate the anoxic zone (Mitsch and Gosselink, 2000). Various morphological adaptations that vascular plants may exhibit are buttressed tree trunks, adventitious roots, shallow root systems, floating leaves, hypertrophied lenticels, and/or multi-trunks. Physiological adaptations to wetland environments include oxidized rhizospheres, changes in water uptake, nutrient absorption, and respiration. Some species are capable of transferring oxygen from the root system into the adjacent soil, producing oxidized rhizospheres surrounding the root. Under saturated conditions, many hydric plants have no change in their nutrient uptake, whereas flood- intolerant species lose the ability to control nutrient absorption (Mitsch and Gosselink, 2000). Reproductive adaptations allow wetland vegetation to establish and grow within inundated soil conditions. Some of these adaptations include prolonged seed viability (including production of a large seed bank), timing of seed production in the non-saturated season, production of buoyant seeds, flood-tolerant species, and germination of seeds while fruit is attached to the tree. These reproductive, morphological, and hydrophytic adaptations allow wetland plants to flourish in relatively harsh environments and create communities of plants adapted to wetland conditions. Plant communities generally exist along a topographic gradient. Hill tops or southwest-facing slopes tend to have the most xeric vegetation, whereas bottomlands tend to have the most mesic species. These topographic gradients tend to have plant communities directly associated with them. It should be noted that some species will be found in both xeric and mesic community types. Plant communities are based on species assemblages and not on individual species. Hydrophytic vegetation is defined by the USACE Wetland Delineation Manual as "the sum total of macrophytic plant life that occurs in areas where the frequency and duration of inundation or soil saturation produce permanently or periodically saturated soils of sufficient duration to exert a controlling influence on the plant species present" (USACE, 1987). According to the manual, species that have an indicator status of Obligate Wetland Plants (OBL), Facultative Wetland Plants (FACW), or Facultative Plants (FAQ are considered to be typically adapted for life in wetlands or anaerobic soil conditions. Typically, a wetland plant community contains more than 50 percent of the dominant species as OBL, FACW, or FAC species. When restoring wetlands, Baker Engineering utilizes native plants to approximate the community that would naturally live within that physiographic community type. Species selection is based on reference wetland vegetation analyses, professional knowledge of availability and viability of specific plants, and expected post-restoration hydrologic conditions. Special emphasis is placed on re- creating a community type that is adapted to the conditions of the restoration site. The re-creation is accomplished by planting hard mast tress, lightly-seeded trees, and various understory or mid-canopy, woody species. The utilization of hard mast species creates additional wildlife food sources and allows for late, successional species to become established. The utilization of lightly-seeding species allows for the faster development of wildlife cover and habitat. The planting of understory species helps to ensure a more diverse plant community that will provide long-term benefits to wildlife. 4.0 WETLAND HYDROLOGY Wetland hydrology is often sited as the primary driving force influencing wetland development, function, and persistence (Gosselink and Turner, 1978; Shantz et al., 1990) and also one of the hardest variables to assess and predict accurately. Hydrology drives the development of hydric soil characteristics, water and soil chemistry, and hydrophytic plant communities. Most functions commonly attributed to wetlands (water filtering, nutrient cycling, sediment trapping, ecosystem diversity, etc.) are a direct result of the hydrologic characteristics of wetland systems. For these reasons, Baker Engineering places significant emphasis on the correct assessment of wetland hydrologic conditions, under both pre- and post-restoration conditions. Assessment of wetland hydrology begins by touring the project site to observe hydrologic conditions. When possible, site tours are conducted during dry times (several weeks following the last rainfall event) and wet times (immediately following large rainfall events). Evaluation of site conditions during dry periods provides valuable evidence about existing site function and indicates the hydrologic variability across the site. Wetland hydrology assessments during dry periods focus on the following key questions: I . Are there areas that are currently exhibiting wetland hydrology? These areas require special attention and will likely be subject to regulatory permit conditions. 2. Where are the areas of the site that appear especially dry? These areas will likely require the greatest attention to restore wetland hydrology. 3. What are the sources of water on the site that can be manipulated during restoration? Sources may include groundwater discharge, run-off, surface water flows, and stream flows. Various design techniques are available for storing more water within the restoration site to increase wetness. The primary source of water available will directly affect the type of design that will be most effective at restoring wetland hydrology. Evaluation during wet periods allows for observations regarding runoff patterns, areas of ponding and water storage, flow routing, and surface flow interactions. Wetland hydrology assessments during wet periods focus on the following key questions: 1. How is runoff currently being routed across the site? Most degraded sites have been topographically manipulated to direct runoff to a drainage outlet as quickly as possible. Restoration must reduce the loss of water from the site and restore water storage functions of natural wetland sites. 2. Are there any surface water sources that could be used in the restoration design? Sources may include ephemeral and intermittent ditches, drainage swales, and overland flow. 3. If steam flow or overbank flow is believed to have once contributed to wetland hydrology, can these sources be restored? Evaluation of stream channels primarily involves the evaluation of bankfull stage in relation to existing bank heights, whether streambed elevations can be altered, and hydrologic trespass. When necessary for accurate assessment of existing hydrologic conditions, monitoring wells are installed to document local water table conditions. Wells are installed to a depth of approximately 40 inches, following the procedures outlined under USACE's Wetland Research Program (WRP) Technical Note ERDC TN-WRAP-00-02 (July, 2000). Monitoring wells are typically installed as combinations of automated and manually-read wells. Automated wells are installed in areas where precise measurement of hydrologic conditions is necessary. Such areas may include areas near drainage features, where the prediction of the drainage effect is needed, areas where the hydrologic functioning is difficult to predict through visual assessments, and areas where the hydrologic status of an area is questionable (i.e., does wetland hydrology exist?). Manually-read wells are typically read on a monthly basis and are used to supplement the data collected with automated wells. Manual wells are typically installed in areas where the hydrologic status is predictable based on visual assessments, but measured data will allow for more conclusive evaluation of pre- and post-restoration conditions. Manual wells, installed as piezometers, can also be installed in nests to determine the direction of groundwater movement. Accurate site mapping is essential to the evaluation of site hydrology and restoration design. Topographic maps of the site are produced using either ground or aerial survey methods. Digital elevation models (DEMs) are developed that include topographic contours (typically 1.0 foot contours or less), locations of all drainage features and outlets, structures, existing wetland areas, and monitoring well locations. DEMs are used to visually depict the hydrologic features of the site, develop hydrologic model inputs, and evaluate proposed restoration practices. 5.0 WETLAND HYDROLOGIC ANALYSES Hydrology data collected at the proposed restoration site is essential for documenting the hydrologic conditions of the site at the time of collection; however, data collected over several months to a year are limited for evaluating the site's long-term performance under varying rainfall and climatic conditions. Existing condition data alone also provides little insight into how the site will perform once restoration activities are completed. For these reasons, hydrologic modeling is often used to further evaluate the potential restoration site. The most common hydrologic model used by Baker Engineering to evaluate wetland hydrology is DRAINMOD (version 5.1). DRAINMOD has been identified as an approved hydrologic tool for assessing wetland hydrology by the NRCS (1997). DRAINMOD was developed by NC State University for the study and design of water management systems on poorly-drained, shallow water table soils. A combination of methods is used in the model to simulate infiltration, drainage, surface runoff, evapotranspiration, and seepage processes on an hour-by-hour, day-by-day basis. DRAINMOD was modified by Skaggs et al., (1991) for application to wetland determinations by the addition of a counter that calculates the number of times the water table rises above a specified depth and remains there for a given period during the growing season. For more information on DRAINMOD and its application to high water table soils, review Skaggs (1980). DRAINMOD is used to develop hydrologic simulation models to represent conditions at a variety of locations across the proposed restoration area. Model parameters are selected based on field measurements and professional judgment about site conditions. Rainfall and air temperature information are collected from the nearest automated weather station. If automated weather stations are too far away, automated rain gauges may be installed on site. Soil parameters are determined from on-site evaluations of soil stratification and in-situ-measured hydraulic conductivity. Measured field parameters are entered into the model, and initial model simulations are compared with observed data collected from monitoring wells. To calibrate the model, parameters not measured in the field are adjusted within the limits typically encountered under similar soil and geomorphic conditions, until model simulations most closely match observed well data. It is important to note that DRAINMOD uses simplifying assumptions to estimate water table depths. When applied to a site with complex hydrologic processes, the model can be used to assess overall trends and relationships but is unlikely to offer exact predictions of water table hydrology. Calibration of the model is aimed at matching the relative response of water table drawdown and the overall depth that the water table reaches at different times during the year. Once these objectives are met, the model is assumed to adequately reflect the hydrologic response of the site to varying precipitation and climatic events. Once model simulations are developed that reflect the existing conditions of the site, other simulations may be developed to represent the hydrology of the site after restoration practices have been implemented. Inputs that describe the drainage features of the site are altered to represent the restoration conditions. Inputs typically include: drainage feature spacing (increased due to the removal of ditches), drainage feature depth (typically decreased when restoring an associated stream and raising the streambed or filling and plugging drainage ditches), surface storage (increased through scarification practices), and crop inputs (conversion to trees instead of row crops). Model simulations are used to predict the changes in water table hydrology as a result of the proposed restoration practices. DRAINMOD computes daily water balance information and develops summaries that describe the loss pathways for rainfall over the model simulation period. To compare long-term results, the amounts of rainfall, infiltration, drainage, runoff, and evapotranspiration estimated for the existing condition can be compared with simulations run for the proposed restoration practices. Infiltration represents the amount of water that percolates into the soil and is lost via drainage or runoff. Drainage is the loss of infiltrated water that travels through the soil profile and is discharged to the drainage ditches or to underlying aquifers. Runoff is water that flows overland and reaches the drainage ditches before infiltration. Evapotranspiration is water that is lost by the direct evaporation of water from the soil or through the transpiration of plants. Comparisons may include average annual amounts, annual maximums and minimums, and even day-to-day comparisons of hourly water table hydrographs. 6.0 ASSESSMENT OF EXISTING WETLAND AREAS Conditions across a potential restoration site will often vary dramatically. While much of the site may be targeted for restoration due to lack of wetland hydrology and functions, there may be areas of the site that still support wetland hydrology and wetland functions to some degree. These areas require special consideration as part of a proposed restoration design. The proposed project area is reviewed for the presence of wetlands and waters of the United States in accordance with the provisions of Executive Order 11990, the Clean Water Act, and subsequent federal regulations. Wetlands have been defined by the USACE as "those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas" [33 CFR 328.3(b) and 40 CFR 230.3 (t)]. Within the project area, locations that display one or more wetland components are reviewed to determine the presence of wetlands using hydrophytic vegetation, permanent or periodic inundation or saturation, and hydric soils. Following an in-office review of the National Wetland Inventory (NWI) maps, NRCS Soil Surveys, and USGS Quadrangle maps, a pedestrian survey of the project area is made to investigate suspect areas and to delineate all wetlands and waters of the U.S. The project area is examined utilizing the jurisdictional definition detailed in the USACE Wetlands Delineation Manual. Supplementary information to further support wetland determinations is found in the National List of Plant Species that Occur in Wetlands: Southeast (Region 2) (Reed, 1988). Baker Engineering collects data on the three wetland components and completes USACE wetland determination field sheets for each identified wetland area. These sheets document the wetland conditions that were observed on-site, including the presence of hydrophytic (wetland) vegetation, hydric soils, and wetland hydrology. The wetland systems are also classified using the Classification of the Natural Communities ofNorth Carolina, Third Approximation, by Schafale and Weakley (1990). This classification system includes descriptions of all the natural community types in North Carolina (112 types and subtypes), including vegetation, soils, physical environment, dynamics, distinguishing features, examples, and associated rare plants. Wetlands are also classified using the Hydrogeomorphic Classification of Wetlands (HGM) by Brinson (1993). Since HGM subtypes are still being developed for North Carolina, HGM principles are used to describe the geomorphic setting, water sources, hydrodynamics, and functioning of identified wetland systems. Where jurisdictional wetlands are identified, the wetland boundary is flagged with marking tape, at intervals of 25 to 50 feet. Baker Engineering follows the USACE Wilmington District procedures for survey and recordation of wetland boundaries. Surveys of wetland boundaries are conducted with either sub-meter accuracy Global Positioning System (GPS) equipment or total station survey equipment. A professional land surveyor (PLS) oversees any detailed land surveys. Wetland drawings are prepared using Geographic Information Systems (GIS) and/or computer aided design and drafting (CADD) applications and submitted to USACE and the NCDWQ for jurisdictional determination and verification when required. 7.0 REFERENCE WETLANDS Reference wetlands are natural wetland systems that are similar in function and geomorphic setting to the proposed restoration site. Reference wetlands can be used as templates for the proposed restoration design. Data collected from reference wetland sites, including vegetation communities, hydrologic characteristics, and topographic features, can provide valuable information for the evaluation of proposed restoration practices. Analysis of the vegetation communities within the reference site is used as a tool for developing the planting plan for the restoration site. Reference wetlands can also be used for comparison purposes to determine whether the restored wetland site is on a trajectory for success during the required monitoring period. The reference wetland site should be located as close to the proposed restoration site as possible. The reference wetland should be of the same hydrogeomorphic classification as the proposed restoration site, and generally located within the same climatic, physiographic, and ecological region. Soil characteristics should closely match those of the proposed restoration site. Fully functioning wetland systems appropriate for reference sites may be difficult to locate in some areas; as a result, reference sites are often located some distance from the restoration site. Once a potential reference site is located, Baker Engineering secures landowner permission to further evaluate the area as a potential reference site. On-site evaluations are similar to those previously described for jurisdictional wetland areas on restoration sites and include the documentation of vegetation communities, soil series, and visual observations regarding wetland hydrology. USACE wetland determination field sheets are completed for the reference wetland. If the reference site is found to be appropriate for the restoration project, several groundwater wells are installed across the reference site to capture the range of hydrologic conditions. Automated and manual wells are generally installed in combination, with automated wells installed at the wettest and driest extremes of conditions and manual wells installed in more average conditions. This approach allows for accurate documentation of the hydrologic range of conditions across the site. Well data are downloaded monthly throughout the required monitoring period. 8.0 WETLAND RESTORATION TECHNIQUES Restoration techniques will vary by the type of wetland to be restored and the goals of the restoration. The purpose of this section is to describe some of the techniques that Baker Engineering commonly uses to restore lost functions and values on wetland restoration sites. 8.1 Restoration Techniques for Wetland Hydrology The restoration of appropriate hydrology is the cornerstone of any wetland restoration project. Without the appropriate hydrology, all other wetland functions will be compromised. Several commonly used techniques are described below. Restoration of Stream Channels - Many wetland restoration sites will contain stream channels that have been channelized and straightened. Channelization of streams lowers the baseflow water elevation in the channel, lowers the adjacent water table, increases the loss of water from the site through both increased surface and subsurface drainage, and decreases the frequency and severity of flooding events on adjacent lands. The restoration of stream channels to restore wetland hydrology involves raising the streambed elevation such that the stream is reconnected to the abandoned hydric floodplain (i.e., agricultural fields). This process raises the local water table by raising the elevation of the drainage outlet, and restores a natural flooding regime to the site. For more information on stream restoration practices, see Sections 2.1, 2.2, and 2.5. Filling and Blocking of Drainage Features - Drainage features may include ditches, channels, swales, and subsurface drains. Ditches are the most common drainage feature encountered on agricultural sites. Ditches are generally constructed on parallel spacings that are based on the drainage characteristics of the soils. Ditches and subsurface drains provide an outlet for subsurface drainage that is often several feet lower than the surrounding ground elevation. The effect is that groundwater moves toward the ditches where it is discharged, thus lowering the water table elevation. Filling and blocking of drainage features removes the drainage effect they provide. The choice between partially blocking and completely filling the drainage features is primarily driven by the amount of soil that must be disposed of during construction. When there is an excess of soil to be disposed of, ditches and swales are completely filled. When the quantity of soil for disposal is limited, ditches and swales are blocked by partially filling, or plugging, the features at specific locations. Plugs are at least 50 to 100 feet in length, and soil material placed for the plugs is compacted with heavy equipment, used on site during construction. The actual length of the plugs will be based on the predicted hydraulic conductivity of the compacted fill material. The spacing between plugs will vary, depending on the slope of the site and the amount of soil for disposal. Once ditches have been filled in or plugged, additional fill material will be piled over the filled ditch to a height of no more than six inches, to allow for subsidence and settling of the fill over time. Without additional material, settling of the fill could cause the drainage feature to partially reform over time and affect the hydrology of the site. Subsurface drains, such as tiles and plastic pipe, are located and excavated so that they no longer function. Once drains have been removed, excavated soil material is placed back in the excavated trench and compacted. Run-off Diversions - In some areas, it is beneficial to construct shallow diversions and swales to direct surface water run-off into the site. This practice is commonly used when restoration areas are adjacent to long hill slopes, where significant amounts of run-off may be produced during large rain events. The diversions are used to direct the run-off to areas of the restoration site where the additional water inputs are most needed. Shallow Depressions and Floodplain Pools - To increase the diversity of hydrologic conditions across the site, shallow depressions and floodplain pools can be excavated or created by leaving sections of ditches only partially filled in certain areas. The depressions are constructed to mimic the function of natural sloughs and pools commonly found across many wetland ecosystems. These areas provide increased surface storage of precipitation and floodwaters, improve biotic diversity, and provide breeding areas for a number of amphibian and reptile species. Depressions and pools are generally constructed to be less than one foot deep. The size of depressions can vary, depending on the site; however, depressions 200 feet by 100 feet are typical of many sites. The depressions are designed to hold water for extended periods, ranging from several weeks to many months. For many amphibian species, it is crucial that the pools dry up completely during the late summer months. These ephemeral pools are typically constructed in higher elevation areas away from the active stream channel. For other species, pools that retain some degree of ponded water throughout the year are most beneficial. These features, which represent backwater sloughs, oxbow ponds, and floodplain pools, are typically constructed near the active stream channel, where the high water table conditions and frequent flooding will maintain water levels in the pools. Restoration of Microtopography - In order to improve drainage and increase agricultural production, farmed wetland soils are often graded to a smooth surface and crowned to enhance run-off. Microtopography contributes to the properties of forest soils and to the diversity and patterns of plant communities (Lutz, 1940; Stephens, 1956; Bratton, 1976; Ehmfeld, 1995). The introduction of microtopography also increases surface storage on the site, reducing run-off and erosion and enhancing infiltration. Microtopography is established on the restored site after design grades have been achieved, using the procedures described by Scherrer (2000). The equipment should leave a furrow approximately seven feet wide and six inches deep, and a corresponding mound approximately seven feet wide and six inches high. The equipment should be run in parallel lines approximately 25 feet apart, and then over the same area in "figure 8" patterns to create a random pattern of interconnected and isolated furrows and ridges, as shown in Figure 1. The actual distance between furrows and mounds and the height of the mounds can be adjusted depending on the targeted amount of surface storage to be restored. Figure 1 Typical Pattern of Restored Wetland Microtopography (Scherrer, 2000). -1 10 8.2 Restoration Techniques for Wetland Soils Soil Scarification and Tillage - Disking and tillage practices commonly used in agriculture can be used to break the plow pan and reduce compaction of the soil caused by years of agricultural production. Tillage practices will also be used to remove any field crowns, restoring a more natural topography to the site. When necessary, rippers will be used to till to depths of 12 to 18 inches to break any compacted pan layers. Soil Amendments - Samples of top soil from the site can be collected and tested to determine soil fertility and chemical properties. If necessary, soil amendments (fertilizer, lime, etc.) will be applied at rates appropriate for the target vegetation. For land which has been in agricultural production for a number of years, it is likely that soil fertility will be high and amendments will not be necessary. 8.3 Restoration Techniques for Wetland Vegetation Tree Planting Techniques - Under typical conditions, bare-root tree species will be planted within all areas of the site conservation easement. Bare-root vegetation is typically planted at a target density of 680 stems per acre, or an 8 by 8 foot grid. Experience has shown this density to be favorable for overall survival of at least 320 planted stems at the end of 5 years, which is a common success criterion for mitigation sites. Planting of bare-root trees is conducted during the dormant season, which lasts from late November to early March for most of the state. Species selection is based on reference wetland vegetation analyses, professional knowledge of availability and viability of specific plants, and expected post-restoration hydrologic conditions. Species selection for revegetation of the site will generally follow those suggested by Schafale and Weakley (1990) and tolerances cited in WRP Technical Note VN-RS-4.1 (1997). Tree species selected for restoration will generally range from weakly tolerant to tolerant of flooding. Weakly tolerant species are able to survive and grow in areas where the soil is saturated or flooded for relatively short periods of time. Moderately tolerant species are able to survive on soils that are saturated or flooded for several months during the growing season. Flood tolerant species are able to survive on sites in which the soil is saturated or flooded for extended periods during the growing season (WRP, 1997). Observations are made during construction of the site regarding the relative wetness of areas to be planted. Planting zones are determined based on these assessments, and planted species will be matched according to their wetness tolerance and the anticipated wetness of the planting area. When feasible, trees are transported to the site from the nursery and stored on-site in a refrigerated cooler prior to planting. If on-site refrigeration is not available, trees are planted within two days of being transported to the site. Soils across the site are sufficiently disked and loosened prior to planting. Trees are planted by manual labor, using a dibble bar, mattock, planting bar, or other similar method. Planting holes for the trees are made sufficiently deep to allow the roots to spread out and down without "J-rooting." Soil is loosely compacted around trees once they have been planted to prevent them from drying out. Permanent Seed Mixtures - Permanent seed mixtures are applied to all disturbed areas of the project site. Different mixtures may be specified for different areas of the site, depending on the wetness and degree of stabilization required at the site. Mixtures will also include temporary seeding to allow for application with mechanical broadcast spreaders and rapid ground cover following application. Temporary seeding is applied to all disturbed areas of the site that are susceptible to erosion, including constructed streambanks, access roads, side- slopes, spoil piles, etc. 9.0 APPLICATION OF FLUVIAL PROCESSES TO STREAM AND WETLAND RESTORATION A stream and its wetland floodplain (referred to here as the riparian area) comprise a dynamic environment where the floodplain, wetland areas, channel, and bedform evolve through natural processes. Weather and hydraulic processes erode, transport, sort, and deposit alluvial materials throughout the riparian system. The size and flow of a stream are directly related to its watershed area. Other factors that affect channel size and stream flow are geology, land use, soil types, topography, and climate. The morphology, or size and shape, of the channel reflects all of these factors (Leopold et al., 1992; Knighton, 1988). The size and flow of the stream channel also influence the size and functioning of wetland areas adjacent to the channel. The result is a dynamic equilibrium in which the stream maintains its dimension, pattern, and profile overtime, and adjacent wetland areas evolve with the meandering of the stream across its floodplain. Land use changes in the watershed, including increases in imperviousness, removal of riparian vegetation, and drainage of adjacent wetlands can upset this balance. A new equilibrium may eventually result, but not before large adjustments in channel form can occur, such as extreme bank erosion or incision (Lane, 1955; Schumm, 1960). These adjustments in channel form often have negative effects on associated wetland areas, as processes of channel incision increase drainage of adjacent areas. By understanding and applying the processes of riparian form and function to stream and wetland restoration projects, a self-sustaining riparian system can be designed and constructed that maximizes ecosystem function and potential. In riparian systems, wetland functions cannot be restored without also addressing the restoration of stream functions; therefore, it is crucial that the degraded stream system be restored to the appropriate dimension, pattern, and profile while allowing the stream access to the abandoned floodplain and associated wetland areas. In this way, the stream becomes one of the primary sources of water and nutrient inputs to the wetland system. As such, the development of stream and wetland design components becomes an iterative process. 10.0 REFERENCES Bratton, S. P. 1976. Resource division in an understory herb community: Responses to temporal and microtopographic Gradients. The American Naturalist 110 (974):679-693. Brinson, M.M., 1993. A hydrogeomorphic classification for wetlands. U. S. Army Corps of Engineers, Waterways Experimental Station, Technical Report WRP-DE-4, Washington, D. C. 79 pp. +app. Buol, S.W., F.D. Hole and R.J. McCracken, 1989. Soil Genesis and Classification. Iowa State University Press, 446 pp. Craft, C.B., W.P. Casey, 2000. Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands, Vol. 20, No. 2, June 2000, pp 323-332. Gosselink, J. G., and R. E. Turner, 1978. The role of hydrology in freshwater wetland ecosystems. In Freshwater Wetlands, 63-78. R. E. Good, D. F. Whigham, and R. L. Simpson, eds. Academic Press. Burlington, MA King, R. 2000. Effects of single burn events on degraded oak savanna. Ecological Restoration 18:228-233. Lutz, H. J., 1940. Disturbance of forest soil resulting from the uprooting of trees. Yale University School of Forestry Bulletin No. 45. Camden, NJ. Mausbach, M.J., J.L. Richardson, 1994. Biogeochemical processes in hydric soil formation. Current Topics in Wetland Biogeochemistry, Vol. 1, 1994, pp 68-124. McCandless, T. L., 2003. Maryland Stream Survey: Bankfull discharge and channel characteristics of streams in the Allegheny Plateau and the Valley and Ridge hydrologic regions. US Fish and Wildlife Service, Annapolis, MD. Reed, Jr., Porter B. 1988. National list of plant species that occur in wetlands: National summary. US Fish & Wildlife Service. Biol. Report 88 (24). 244 pp. Schafale, M.P. and A.S. Weakley, 1990. Classification of the natural communities of North Carolina, third approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, NCDEHNR, Raleigh, NC. Scherrer, E., 2000. Using microtopography to restore wetland plant communities in Eastern North Carolina. MS Thesis, Forestry Department, North Carolina State University. Raleigh, NC. Shantz, R. R., R. L. Schneider, and L. C. Lee. 1990. Composition and regeneration of a disturbed river floodplain forest in South Carolina. In Ecological Processes and Cumulative Impacts: Illustrated by Bottomland Hardwood Wetland Ecosystems, 195-218. J. G. Gosselink, L. C. Lee, and T. A. Muir, eds. Lewis Publishers. Boca Raton, FL. Skaggs, R. W. 1980. DRAINMOD Reference report: methods for design and evaluation of drainage- water management systems for soils with high water tables. US Department of Agriculture, Soil Conservation Service. 329 pp. Skaggs, R. W., D. Amatya, R. O. Evans, and J. E. Parsons, 1991. Methods for evaluating wetland hydrology. American Society of Agricultural Engineers, Paper No. 91-2590. St. Joseph, MI. Stephens, E. P., 1956. The uprooting of trees: a forest process. Soil Science Society ofAmerica Proceedings 20:113-116. Madison, WI. US Army Corps of Engineers, Wetland Research Program (WRP), 1997. Technical Note VN-RS-4.1. US Army Corps of Engineers, WRP, July 2000. Technical Notes ERDC TN-WRAP-00-02. US Army Corps of Engineers, Environmental Laboratory, 1987. "Corps of Engineers Wetlands Delineation Manual," Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. US Department of Agriculture, Natural Resources Conservation Service (MRCS), 1996a. Field indicators of hydnc soils in the United States. G.W. Hurt, Whited, P.M., and Pringle, R.F. (eds). USDA, NRSCS, Forth Worth, TX. van Beers, W. F. J., 1970. The Auger-Hole Method: a field measurement of hydraulic conductivity of soil below the water table. Rev. ed. ILRI Bulletin 1, Wageningen, the Netherlands 32 pp. Vepraskas, M.J. 1996. Redoximorphic features for identifying aquic conditions. North Carolina Agricultural Research Service, Raleigh, NC. Appendix 10 Project Site Design Tables and Sediment Transport Analysis Table 7.2 Natural Channel Design Parameters for Reach UTlb Drainage Area, DA (sq mi) 1.0 -- Design Stream Length (feet) 3,400 -- Stream Type (Rosgen) C5c E5/C5 Note 1 Bankfull (bkf) Discharge, Qbkf (cfs) 9.4 -- Note 2 Bankfull Mean Velocity, Vbkf (ft/s) 0.78 -- V=Q/A Bankfull Riffle XSEC Area, Abkf (sq ft) 12.0 9.6-15.0 Note 7 Bankfull Riffle Width, Wbkf (ft) 13.4 -- Abkf' *W /D Bankfull Riffle Mean Depth, Dbkf (ft) 0.9 -- d=A/W Width to Depth Ratio, W/D (ft/ft) 15.0 10 - 16 Note 3 Width Floodprone Area, Wfpa (ft) >100 -- Entrenchment Ratio, Wfpa/Wbkf (ft/ft) 8-12 5.5 - >10 Note 4 Riffle Max Depth @ bkf, Dmax (ft) 1.1 -- Riffle Max Depth Ratio, Dmax/Dbkf 1.2 1.2-1.6 Note 5 Bank Height Ratio, Dtob/Dmax (ft/ft) 1.0 1.0 Note 6 Meander Length, Lm (ft) 70 - 170 -- Meander Length Ratio, Lm/Wbkf * 8.0-12.0 8.0-12.5 Note 7 Radius of Curvature, Re (ft) 30 - 50 -- Rc Ratio, Rc/Wbkf * 2.0-3.5 2.0-3.5 Note 7 Belt Width, Wblt (ft) 38 - 120 -- Meander Width Ratio, Wblt/Wbkf * 3.5-8.0 3.0-8.0 Note 7 Sinuosity, K 1.2 1.2-1.8 TW length/ Valley length Valley Slope, Sval (ft/ft) 0.0011 -- Channel Slope, Schan (ft/ft) 0.0016 -- Sval / K Slope Riffle, Srif (ft/ft) 0.001- 0.005 -- Riffle Slope Ratio, Srif/Schan 1.2-1.8 -- Note 8 Slope Pool, Spool (ft/ft) 0.0001- 0.0007 -- Pool Slope Ratio, Spool/Schan 0.0-0.2 -- Note 8 Pool Max Depth, Dmaxpool (ft) 1.9 -- Pool Max Depth Ratio, Dmaxpool/Dbkf 2.0-3.0 2.0-3.0 Note 7 Pool Width, Wpool (ft) 17.0 -- Pool Width Ratio, Wpool/Wbkf 1.3- 1.5 1.2-1.5 Note 9 Pool-Pool Spacing, Lps (ft) 35 - 85 -- Pool-Pool Spacing Ratio, Lps/Wbkf 2.5-6.0 4.0-6.0 Note 7 d16 - mm 0.10 -- d35 - mm 0.30 -- d50 - mm 0.40 -- d84 - mm 4.40 -- d95 - mm 7.30 -- Notes: 'A C5c stream type is appropriate for a very low-slope, wide, alluvial valley with a sand streambed. The choice of a C5c channel dimension was based on relationships of W/D ratio to slope in NC Coastal Plain reference reach streams, as well as sediment transport analyses and past project evaluation. z Bankfull discharge was estimated using Manning's equation (n=0.04). s A final W/D ratio was selected based on relationships of W/D ratio to slope in NC Coastal Plain reference reach streams, as well as sediment transport analyses and past project evaluation. 4 Required for stream classification. s This ratio was based on past project evaluation of similar C5 design channels. 6 A bank height ratio near 1.0 ensures that all flows greater than bankfull will spread onto a floodplain. This minimizes shear stress in the channel and maximizes floodplain functionality, resulting in lower risk of channel instability. ' Values were chosen based on sand-bed reference reach data, and past project evaluation. 'Due to the extremely low channel slopes, facet slopes were not calculated for the proposed design. Past project experience has shown that these minor changes in slope between features form naturally within the constructed channel, provided that the overall design channel slope is maintained during construction. 9 Values were chosen based on reference reach database analysis and past project evaluation. It is more conservative to design a pool wider than the riffle. Over time, the pool width may narrow, which is a positive evolutionary step. 00 v N O N O n V o 00 U ? v ry Q C a H v N O N V 0 M O N V 0 M O 0 0 0 0 0 7 7 7 7 7 N N I I O Y I I rK N N N Q I I II N Q D N O0 II O II O N N C (6 L Q -0 m Cn N N N II CO p Z) = = 0 s o O , o o -6 O n o m° ?m a) U' U) moo ?m =o V 00 0 0 0 00 o O I I I I I I I 0 I I I I I I o C? 0 _; 1 o A 1 0 U N I I I \? 1 I I I I I I N ? I / I ? \\ I I I I \ \ I I I I ? N U I ? \ \ \ I I I \ O d co o I 0 0 0) C) I U o \\ \1 I Z 0 rn I 1 \ \ \ 11 I I I LO 0 0 L,) / C? 0 \ \ \ li C? 0 I I I I I I' I I I \\ I I \\ _ I I I I I O G1 \ \ I I \\ \ 0 O O N a I I I I o Q c \1 I O - o I I I I I I I I I , A l\\ 1 1 1 1 1 1 1 M \\ ° \\\ +rn M O I w 0 C? o x o C? 0 \1 I I I I I I I ? N \\\ _ ? \1? d 1 v N O N O d w \ of C \ 0 O 1 0 \ co \v I , ? of o Vv m m U 11 \ I I I I I +? I? I °m ° ? '? o ' 11 A vv Z rn 11 A AV O I I n I a 00 1\ \ ? • 1 \ O • I I M\ \ I I r ? I O O O O O O O O O O LO O LO O LO O M N N O O O 00 (O V N O 00 (O V N O O O O O O O O Q/M (Z„}}/ql) ssaa}S aea4S 00 O 0 0 o \ o 0 C) 0 C) LO C) 0 o o O y ° o ro o Q C o Cl) O O p N N 0-1 (6 N Q N U A O O N U N \ (10 U) rn U o o U Z D o i \ O N? M , O O O O O O CD. O O O O O O O O O O O O O O O N O aO (O V N O (Z\,w/M) JOMOd wean;S O O O U N X, I 0 ? N N ca cn L CL V U ! O ` M L O ? ? a N C O ? M N L M •? E O D 0 C: of Mn E ? - W a) 11 T C: 0 U- 0 N U Q C: ca '? cu O L ° ? a D FD S 4-- CU E :3 -CZ FD U 11 a U ^ 0 CU -0 y p 0 - p? C: U //gy LL c C N L.1. cc G ) ? x O (D ? N co (D ? N O O O O O O O O O O O O O O O O O O O O O (11/11) adolS AallaA Appendix 11 Design Plan Sheets KC ECOSYSTEM ENHANCEMENT PROGRAM CUMBERLAND COUNTY INDEX OF SHEETS 1 .......................... TITLE SHEET 1-A ...................... STREAM CONVENTIONAL SYMBOLS GENERAL NOTES, STANDARD SPECIFICATIONS, AND VEGETATION SELECTION 1-B ..................... CONVENTIONAL SYMBOLS 2-20L ...................STRUCTURE DETAILS 3 ......................... CONSTRUCTION SEQUENCE AND QUANTITIES (NOT INCLUDED) 4-11 ................... PLAN VIEWS 12-14 ................. LONGITUDINAL PROFILES O 15-18 ................. WETLAND GRADING PLAN TIZEET 19 .22 ................. REVEGETATION PLAN 23-26 ................. WETLAND BOUNDARY PLAN 27 ...................... EROSION CONTROL TITLE SHEET (NOT INCLUDED) 28-29 ................. EROSION CONTROL DETAILS (NOT INCLUDED) 30-33 ................. EROSION PLAN (NOT INCLUDED) N SHEET 15, 19, AND 23 N U W L LOCATION. APPROX. 3 MILES NORTHEAST OF POPE AIR FORCE BASE OFF OF SR 1451 TYPE OF WORK STREAM AND WETLAND RESTORATION STA 82+18.77 L/SHE4 5 SHEET 6 ;SHEET 7 1 1 1 1 SHEET 16120, AND 24 E. MANCHESTER (SR 1451) END CONSTRUCTION REACH UT1A BEGIN CONSTRUCTION REACH UTiB STA 47+28.69 LAT. 78° 58'9" W LONG. 35° 12'12" N 8TA78 RAR8R F%GIZCr RRP mmcz NQ urxer "?' Na m NC 111274 1 1 31 18, 22, ANA STA 101+53.92 EXISTING JUMPING RUN CREEK A T10? SH T11 GRAPHIC SCALES 100 25 0 50 100 EXISTING UT STREAM LENGTH (TOTAL) = 9,026 FEET PROPOSED DESIGN STREAM RESTORATION = 7,057 FEET STREAM LENGTH (TOTAL) PREPARED FOR THE OFFICE OF: v PREPARED IN THE OFFICE OF Baker Engineering NY, Inc. 8000 Regency Parkway Suite 200 PROJECT ENGINEER PROPOSED RESTORATION LENGTH (UT1A) = 3,657 FEET NCDENR - ECOSYSTEM ENHANCEMENT PROGRAM Cary, NORTH CAROLINA 27518 PLANS 2728 CAPITAL BLVD, SUITE 1H 103 Phone: 919.483.5488 PROPOSED RESTORATION LENGTH (UT1B) = 3,400 FEET RALEIGH, NC 27604 Fax: 919.483.5490 PRELIMINARY PLANS 50 25 0 50 100 PROPOSED STREAM ENHANCEMENT = 1,935 FEET ., 0o xar use wx coNSraucnoN LENGTH (UT1C) OSyStem KAYNE VAN STELL PROFILE (HORIZONTAL) PROPOSED WETLAND RESTORATION AREA (TOTAL) PROJECT MANAGER 5 2.5 0 5 10 (78.7 AC RIPARIAN /17.3 AC NON-RIPARIAN) = 96.0 ACRES PROPOSED WETLAND ENHANCEMENT = 3.4 ACRES NCEEP CONTACT: TRACY MORRIS KEVIN TWEEDY, PE PROFILE (VERTICAL) AREA (TOTAL) PROJECT MANAGER PROJECT ENGMEER SIGNATURE. PX. STREAM CONVENTIONAL SYM[BO]LS SUPERCEdDES SHEET 11$ 0 - LOG J-HOOK ® LOG VANE ® LOG WEIR n LOG CROSS VANE CONSTRUCTED RIFFLE ?o o BOULDER CLUSTER ROCK STEP POOL f3 TREE PROTECTION TRANSPLANTS Off' 00 ROCK J-HOOK -®- SAFETY FENCE arrrn ROCKVANE -TF- TAPE FENCE CM OUTLET PROTECTION -FP- 100 YEAR FLOOD PLAIN d ? ROCK CROSS VANE cE CONSERVATION EASEMENT DOUBLE DROP ROCK CROSS VANE - XXX- - EXISTING MAJOR CONTOUR SINGLE WING DEFLECTOR - - - - - EXISTING MINOR CONTOUR DOUBLE WING DEFLECTOR FOOT BRIDGE TEMPORARY SILT CHECK J TEMPORARY STREAM CROSSING ROOT WAD Iu-I PERMANENT STREAM CROSSING TREE REMOVAL ® TRANSPLANTED VEGETATION **NOTE: ALL ITEMS ABOVE MAY NOT BE USED ON THIS PROJECT GENERAL NOTES 1. THE CONTRACTOR IS REQUIRED TO INSTALL INSTREAM STRUCTURES USING A TRACK HOE WITH A HYDRAULIC THUMB OF SUFFICIENT SIZE TO MOVE BOULDERS 2FT X 2FTX 3FT (APPROXIMATELY 0.7 TONS). 2. CONSTRUCTION IS SCHEDULED TO BEGIN SPRING 2009. STANDARD SPECIFICATIONS N C. EROSION AND SEDIMENT CONTROL PLANNING AND DESIGN MANUAL JUNE2006 6.60 TEMPORARY SEDIMENT TRAP 6.06 CONSTRUCTION ACCESS 6.62 SILT FENCE 6.63 TEMPORARY ROCK DAM 6.70 TEMPORARY (FORD) STREAM CROSSING VEGETATION SELECTION Permanent herbaceous seed mixtures for the restoration site shall be planted throughout the floodplain, riparian and non-riparian buffer areas. Permanent herbaceous seed mixtures shall be applied with temporary seed, as defined in the construction specifications. Botanical Name Common Name Percent Planted By Species Wetland Tolerance Andrrgpogong/ornerat- Bushy blue stem 5% FACW+ Aristida stdcta Wimgass 159A FAG Carexltpdina Hop sedge 100/0 OBL Care K11Pf dab Fox sedge 100/0 OBL Elymrs Nrginicus Virginia wild rye 10% FAC Jur=x e%rsus Soft rush 15% FACW+ ParNCUM w um Switchg rasa 10% FAC+ Polygonurn pens vanicun Smadneed 5% FACW Schmaclrynun scoparyum Little blue stem 159A FACU Soighestrum nutais Indiargrass 5% FACU Total 100% The following table lists the temporary seed mix for the project site. All disturbed areas will be stabilized using mulch and temporary seed. Common Name Rate Dates ANNUAL RYE (COOL SEASON) 130 LBSIACRE SEPTEMBER TO MARCH MILLET (WARM SEASON) 40 LBSIACRE APRIL TO AUGUST Live staking will be applied to all restored streambanks following the details in this plan set and according to the construction specifications. Common Name Scientific Name Percent Planted By Species Wetland Tolerance Restored Streambanks Bultonbush Cephalanthus occidentalre 10% OBL Black Willow Salix nigra 10% OBL Silky Willow Salrrserirea 40% OBL Elderberry Sambucus canadensis 40% FACW- m d x ut ci a w w v n N i C E n a m PROJECT ENGINEER PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION S.i. 2N (Baker The following table lists the woody vegetation selection for the project site. Total planting area is approximately 153.8 acres. Exact placement of species will be determined prior to site planting and based on apparent wetness of planting locations and per the vegetation specialist. Refer to the Revegetation plan sheets for planting zone locations and requirements. Headwater Riparian wetland Zone 27 Acres Trees -18'x15' acin -161 stems/Acre Botanical Name Common Name Percent Planted B Species Wetland Tolerance Fraxinus pens vanica Green Ash 10% FACW Chamaec adsthoides Atlantic While Cedar 20% OBL Nssa bigora Swamp Black Gum 25% OBL LiHodendron to/pifera Tulip Poplar 10% FAC Quercua rata Overcup Oak 15% OBL Quercus n' ra Water Oak 20% FAC Sub-total 100% Headwater Riparian Understory -10'x10' spacing - 436 plants/Acre Botanical Name Common Name Percent Planted B Species Wetland Tolerance Clethra a/nifolia Summersweet 10% FACW Cydlla racimiflora Titi 20% FACW Ilea virginica Sweetspire 10% FACW+ Leucothoe racemosa Swam Do hobble 10% FACW L onia lucide Fetterbush 15% FACW Magnolia vi iniana Sweet Bay Magnolia 20% FACW+ Parsee a/ustris Red bay 15% FACW Sub-total 100% Total Bare-roots Headwater Riparian Containerized (5 Acres) - Random spacing -10trees/Acre Botanical Name Common Name Percent Planted B Species Wetland Tolerance Nssa bigore Swam Black Gum 40% OBL Quercus rata Overcup Oak 30% OBL Quercus n' ra Water Oak 30% FAC Total Containerized 100% Riparian Wetland Zone (34 Acres) Trees -10'x10' spacing - 436 plants/Acre Botanical Name Common Name Percent Planted B Species Diospyros virginiena Persimmon 10% FAC Lidodendron tulipilera Tulip Poplar 10% FAC Nyssabiflora Swamp Black Gum 25% OBL Quercus/rata Ovemu Oak 15% OBL Quercus n' ra Water Oak 10% FAC Quercus hellos Willow Oak 5% FACW- Taxodium drsfichum Bald Cypress 25% OBL Sub-total 100% Riparian Wetland Underslory -18'x 15' spacing -161 stems/Acre Botanical Name Common Name Percent Planted B Species Wetland Tolerance C nlla racimigora Titi 20% FACW Itea vi inica Sweets ire 10% FACW+ Leucothoe racemosa Swam Do hobble 10% FACW L onia lucida Federbush 15% FACW Magnolia viiniana SweetBa Ma nolia 20% FACW+ Parses pa/ustris Red bay 10% FACW Vaccinsum co mbosum Hi hbush Blueberry 15% FACW Sub-total 100% Total Bare-roots Riparian Containerized (5 Acres) - Random spacing - 10 trees/Acre Botanical Name Common Name Percent Planted B Species Wetland Tolerance Nyasa biflora Swamp Black Gum 40% OBL Quercus/rata Ovemu Oak 30% OBL Quercus n' ra Water Oak 25% FAC Quercus hellos Willow Oak 5% FACW- Total Containerized 100% Transitional Zone 30 Acres Trees -10'x10'spacing -436 plants/Acre Botanical Name Common Name Percent Planted B Species Wetland Tolerance Fraxinus pensfvanica Green Ash 5% FACW Diosp ros wiginiana Persimmon 10% FAC Pinus palustds Lon leaf pine 20% FACU+ Prunus serotina Black Cher 10% FACU+ Quercus falcate Southern Red Oak 10% FACU- Quercus IaudHoGa Darlington Oak 15% FACW Ouerousmichauxii Swamp Chestnut Oak 5% FACW- Quercus nigra Water Oak 15% FAC Uhnus amen cans American Elm 10% FACW Sub-total 100% Transitional Understory -18'x 15' spacing -161 stems/Acre Botanical Name Common Name Percent Planted B Species Wetland Tolerance Ga /ussacia rrondosa Huckleberry 15% FAC liexo aca American Hall 35% FAC- Ma nolia vi iniana Sweet Bay Magnolia 25% FACW+ Sassafras albidum Sassafras 25% FACU Sub-total 100% Total Bare-roots Non-Riparian I Upland Planting Zone 61 Acres Trees -10'x10'spacing -438 plants/Acre Botanical Name Common Name Percent Planted B Species Wetland Tolerance Dios rosw iniana Persimmon 5% FAC Pinus lustds Lon leaf pine 40% IFACU+ Prunus serotina Black Cher 15% FACU QuerousTakata Southern Red Oak 10% FACU- Quercus ni ra Water Oak 10% FAC Querouspagoda Cher bark Oak 10% FAC+ Fraxinus pennslvanica Green Ash 5% FACW Quercus steNata Post Oak 5% FACU Sub-total 100% Nan-Riparian and Upland Understory -18'x 15' spacing -161 stems/Acre Botanical Name Common Name Percent Planted B Species Wetland Tolerance Comus lforida Flowering Dogwood 35% FACU Ilex labra Inkber Holly 15% FACW Magnolia vi iniana Sweet Be Magnolia 15% FACW+ Sassafras albidum Sassafras 35% FACU Sub-total 100% Total Nan-Riparian Containerized (5 Acres) - Random spacing -10 trees/Acre Botanical Name Common Name Percent Planted B Species Wetland Tolerance Querousnira Water Oak 30% FACU Querouspagoda Cher bark Oak 30% FACU- Pinuspalustds Lon leaf pine 40% FACU+ Total Containerized 100% *S.U.E = SUBSURFACE UTILITY ENGINEER ROADS & RELATED ITEMS Edge of Pavement ....................... ...... Curb - ---- ---- ----- ---- ---- ----- --- - ---- Prop. Slope Stakes Cut .................. ...... C Prop. Slope Stakes Fill F Prop. Woven Wire Fence ............... ....... e e Prop. Chain Link Fence ............... ...... E3 E Prop. Barbed Wire Fence ................ ..... 0 0 Prop. Wheelchair Ramp ---------------- ------- Curb Cut for Future Wheelchair Ramp - ---- -- cF Exist. Guardrail ------------------------- ------ Prop. Guardrail -- ---- ----- ---- ---- -- ------ Equality Symbol ----- ---- ---- ----- --- ------ Pavement Removal ....................... ...... RIGHT OF WAY Baseline Control Point ................... ..... Existing Right of Way Marker ........... ....... Q Exist. Right of Way Line w/Marker ....... ...... Prop. Right of Way Line with Proposed R/W Marker (Iron Pin & Cap) ........ ...... Prop. Right of Way Line with Proposed (Concrete or Granite) RW Marker -...- ...... Exist. Control of Access Line ....... .... .. ...... Prop. Control of Access Line ....... .... .. ...... Exist. Easement Line ..................... ...... _E___- Prop. Temp. Construction Easement Line ...... E Prop. Temp. Drainage Easement Line ......... TDE Prop. Perm. Drainage Easement Line ......... -FOE m a a w w m HYDROLOGY Stream or Body of Water ............... ..... River Basin Buffer ......................... ..... RBB Flow Arrow -------- ---- ---- ----- ----- ----- _..._.? Disappearing Stream ...................... ..... ?. _ Spring ---- ---- ----- ---- ---- ----- ---- ----- o-.? Swamp Marsh ------- ----- ---- ---- ---- ----- & Shoreline ---------- ---- ----- ---- ------- ---------- Falls, Rapids --------- ---- ---- ----- --- - -- - - r- - Prop Lateral, Tail, Head Ditches .......... ..... fl0 STRUCTURES MAJOR Bridge, Tunnel, or Box Culvert --------------- cowc Bridge Wing Wall, Head Wall and End Wall ............................. )CONC wwC STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS CONVENTIONAL SYMBOLS MINOR Head & End Wall ................... co? Pipe Culvert ---- ----- ---- ---- ----- ---- --- ?== _ Footbridge ------ ----- ---- ---- ----- ---- --- > - ------ < Drainage Boxes-------------------------------- EICs Paved Ditch Gutter UTILITIES Exist. Pole ---- ---- ----- ---- ---- ----------- Exist. Power Pole ............................... + Prop. Power Pole ---- ---- ----- ---- ---- ----- b Exist. Telephone Pole ......... .... ............ . + Prop. Telephone Pole .......................... -a- Exist. Joint Use Pole ............................ Prop. Joint Use Pole ............................ Telephone Pedestal ............................ ID LPG Telephone Cable Hand Hold ----------- "D Cable TV Pedestal ............................. f] LPG TV Cable Hand Hold .................... "H WG Power Cable Hand Hold ... .... .......... „H Hydrant-- ----- ---- ---- ----- ---- ----------- d Satellite Dish ................................... Exist. Water Valve .............................. Sewer Clean Out .............................. Power Manhole -------- ----- ---- ----------- Telephone Booth ............................... Cellular Telephone Tower ...................... Water Manhole ---------- ---- ---- ----------- Light Pole ---- ---- ----- ---- ---- ---------- - iz H-Frame Pole ------- ---- ----- ---- ---- ---- a--0 Power Line Tower .............................. 19 Pale with Base ................................. 0 Gas Valve ---- ---- ----- ---- ---- ---------- V Gas Meter ---- ---- ----- ---- ---- ------- d Telephone Manhole ............................ Power Transformer .... ............ .... ......... 0 Sanitary Sewer Manhole ....................... Storm Sewer Manhole ........................ Os Tank; Water, Gas, Oil -------------------------- Water Tank With Legs ......................... 0 Traffic Signal Junction Box ..................... Fiber Optic Splice Box ......................... Television or Radio Tower ..................... Utility Power Line Connects to Traffic Signal Lines Cut Into the Pavement--.-----.-- ;S ;S Recorded Water Line Designated Water Line (S.U.E.*) .............. - .w-w-. Sanitary Sewer -------------------------------- -ss---- ss- Recorded Sanitary Sewer Force Main ------ ASS-FSS- Designated Sanitary Sewer Force Main(S.U.E.*) -FSS-FSS- Recorded Gas Line ??- Designated Gas Line (S.U.E.*) ................ Storm Sewer ---------- ---- ---- ----- ------- -s-S- Recorded Power Line ......................... F F- Designated Power Line (S.U.E.*) ............. _ + -p_ _ Recorded Telephone Cable .................. -T-F- Designated Telephone Cable (S.U.E.*) ------- --;- -;- - Recorded U)G Telephone Conduit ------- -TC-TC- Designated U/G Telephone Conduit (S.U.E.*) _ _;C__TC_ _ Unknown Utility (S.U.E.*) ------------------ -jyrE-EOTL- Recorded Television Cable ------------------ -Fr-;V- Designated Television Cable (S.U.E.*) ....... __FY--1Y-- Recorded Fiber Optics Cable --------------- -FO-FO- Designated Fiber Optics Cable (S.U.E.*) ..... __FO--FO-- Exist.Water Meter ---------------------------- 0 LPG Test Hole (S.U.E.*) ----------------------- m Abandoned According to UAG Record ........ ATTUi End of Information ............................ EA1. BOUNDARIES & PROPERTIES State Line -- ----- ---- ---- ----- ---- ---- - ------ County Line ------- ---- ---- ----- ---- ---- - Township Line --- ---- ---- ----- ---- ---- --- ----- - City Line ----- ---- ----- ---- ---- ----- ---- - ----- Reservation Line ................................ - -_---_ Property Line ------ ---- ---- ----- ---- ---- - Property Line Symbol .......................... R Exist. Iron Pin ---------------------------------- ES Property Comer --------- ---- ----- --------- + Property Monument ............................ Property Number ------------------------------ 123 Parcel Number ................................. 6 Fence Line -- ----- ---- ---- ----- ---- ---- - -x-x-x- Existing Wetland Boundaries ................. . ww & Isaw --WEB- _ High Quality Wetland Boundary .............. -NO WEB- Medium Quality Wetland Boundaries..-...-. -NO WEB- Low Quality Wetland Boundaries ............. -LO WEB- Proposed Wetland Boundaries ................ -wLB- Existing Endangered Animal Boundaries.....- - _ EAB- _ Existing Endangered Plant Boundaries -------- - _EFB- - BUILDINGS & OTHER CULTURE Buildings ....................................... Foundations ................................ .... rJ Area Outline - ---- ----- ---- ---- ------ ---- Gate -- ---- ---- ----- ---- ---- ----- --- ----- Gas Pump Vent or LPG Tank Cap ------- o ----- Church -- ---- ----- ---- ---- ----- ---- - It , --- C? School -- ---- ----- ---- ---- ----- ------ --- - Park ---- ---- ---- ----- ---- ---- ----- -- --- ` ] - Cemetery --- ----- ---- ---- ----- ---- ---- ---- I- _ ] Dam Sign --------- ---- ---- ----- ---- ---- ------- o Well ---------- ---- ----- ---- ---- ----------- o W Small Mine -- ---- ----- ---- ---- ---------- - tt Swimming Pool ---------- ---- ----- --------- TOPOGRAPHY Loose Surface ---- ---- ----- ---- ----------- ------- Hard Surface --------------------------------- Change in Road Surface ..................... . ............. Curb - ---- ----- ---- ---- ----- ---- --------- Right of Way Symbol ......................... R/w Guard Post --- ----- ---- ---- ----- ---------- (E) GP Paved Walk Bridge Box Culvert or Tunnel - - - - - - Ferry ------ ---- ---- ----- ---- ---- -- - ------- Culvert --- ---- ----- ---- ---- ----- -------- ,............., Footbridge -------- ----- ---- ---- ------------ -------------- Trail, Footpath ---- ----- ---- ---- ---------- ?--,_ --I Light House . . . . . VEGETATION Single Tree -- ---- ---- ----- ---- ---- ----- - i2? Single Shrub ----- ---- ----- ---- ---- ----- - o Hedge ---- ----- ---- ---- ----- ---- --------- Woods Line ----- ----- ---- ---- ----- -------- ri Orchard ---- ----- ---- ---- ----- ---- ------- €€4444 Vineyard ...................................... VINEYARD 1 RAILROADS Standard Gauge 6F TPAW iA RR Signal Milepost .................... o mumsr Js Switch -- ---- ----- ---- ---- ----- --------- - o BAKER PROJECT REFERENCE NO. SHEET NO. TYPICAL STRUCTURE PLACEMENT 111274 PROJECT ENGINEER ROOT WADS WITHOUT TRANSPLANTS NTS BERM 0,5'MRX. HT. BERM 5 NOT TO PRELIMINARY PLANS EXTEND BEYOND LIMITS OF ROOT WADS. ROOT WADS STRUCTURE NOTES: NOTES: DO NOT USE FOR CONSTRUCTION COIR FIBER 1. GENERALLY LOG WEIRS, ROOT WADS, 1. COIR FIBER MATTING TO BE INSTALLED ON FLOOD MATTING LOG VANES AND COIR FIBER MATTING ALL RESTORED STREAMBANKS. PLAIN WILL BE INSTALLED IN THE LOCATION '2^ 0 AND SEQUENCE AS SHOWN. 2. IF ROOT WADS 00 NOT COVER ENTIRE SLOPE ON OUTSIDE TOP OF . OF MEANDER BENDS, COIR FIBER MATTING IS NEEDED. BANK 2 STRUCTURE STRUCTURES TO ST LOCATIONS MAY BE MADE BANKFULL STAGE - - OPTIONAL BY THE DESIGN ENGINEER DURING CONSTRUCTION. Baker En91n0011"9 NY, Inc. MOD rve aN R00 COVER LOG ,NOR ROLI ¦ cxy xoaTx cAaouxARrsle ® - BASEFLOW Phwe B1D/83.518 8 Fix 919.463.5490 1130F ROOT?MASS HEIGHTIS LOG VANE '.`.:BELOW. STREAM SIM ANCHOR COVER LOG MAT BANKS WITH COIR FIBER MATTING (SEE SPECS) FOOTER LOG > 12" DIAMETER INSTALLED BELOW STREAMBED UNDER FOOTER LOGS (OPTIONAL PER DIRECTION OF ENGINEER) 10.15 FEET LONG OR NTH A BOULDER. / >10" DIAMETER MAT BANKS W (SEE SPECS) ITH COIR FIBER MATTING / CROSS SECTION VIEW ROOT WAD LO G WEIR / TRANSPLANTS OR / / ROOT WADS WITH TRANSPLANTS BOULDERS / MAT BANKS NTH COIR FIBER MATTING (SEE SPECS) NTS FOOTER LOG FOR TRENCHING METHOD ONLY / / 0, w TRANSPLANT BERM 05 MAX. HT. BERMS NOT TO EXTEND BEYOND LIMITS OF ROOT WADS PLAN VIEW \ 0 O ?e> 0 I / D . FLOO 1 0 1 al PLAIN ^ / TOP OF NOTES: ?? ` \ BANK TRENCHING METHOD: IF THE ROOT WAD CANNOT BE DRIVEN INTO THE BANK OR THE \ p p Q 00 p , \ / BANKFULL STAGE - BANK NEEDS TO BE RECONSTRUCTED, THE TRENCHING METHOD v \ - SHOULD BE USED THIS METHOD REQUIRES THAT A TRENCH BE EXCAVATED FOR THE LOG PORTION OF THE ROOT WAD. IN THIS CASE,A FOOTER LOG SHOULD BE INSTALLED UNDERNEATH v / THE ROOT WAD IN A TRENCH EXCAVATED PARALLEL TO THE p Q? ' 1f OF R MA S HEI HT'IS O BANK AND WELL BELOW THE STRFAMBED ONE-THIRD OF THE ROOT WAD SHOULD REMAIN BELOW NORMAL BASE FLOW CONDITIONS. 1 $ MAT BANKS WITH COIR FIBER MATTING .. Q T S Q 3 (SEE SPECS) BELOW STREAM BEO /Fp ROOT WADS (NUMBERAND NOTES' ?F SIZE TO BE FOOTER LOG > 12" DIAMETER INSTALLED BELOW STREAMBEO , DRIVE POINT METHOD: Oh ?O4, DETERMINED (OPTIONAL PER DIRECTION OF ENGINEER) HN NTH IVING' END OF CHAINSAW THE T BEFORE N OG IN THE FIELD) T T BANK ORIEN T WA DS UPSTREAM S THR O 6 FEET LONG TRUNK STREAM FLOW MEETS THE ROOT WAD AT A 90-DEGREE ANGLE, >12" DIAMETER DEFLECTING THE WATER AWAY FROM THE BANK. A TRANSPLANT OR BOULDER SHOULD BE PLACED ON THE DOWNSTREAM SIDE OF TOP OF BANK THE ROOT WAD IF A BACK EDDY IS FORMED BY THE ROOT WAD. THE BOULDER SHALL BE APPROXIMATELY 4'X 3'X 2'. MAT BANKS WITH COIR FIBER MATTING CROSS SECTION NEW (SEE SPECS) TYPICAL RIFFLE, POOL, AND BANKFULL BENCH CROSS SECTIONS Wbkf TOP OF TERRACE (fVARIES f(? W4kfVARIE3ry 7771 DA ^ ryg. j L 6Mac M1 Wt RIFFLE RIFFLE WITH BANKFULL BENCH Wbkf TOP OF TERRACE VARIES w. WaM ?VARIES o#9ax ?, ? ? 5;1 D-Max POOL POOL WTH BANKFULL BENCH UT1B NOTES RIFFLE POOL 1. DURING CONSTRUCTION CORNERS OF DESIGN CHANNEL WILL BE ROUNDED 13.4 17.0 WIDTH OF RANKFUIL(W5k0 1 1 1 9 MAXIMUM DEPTH D M x AND A THALWEG WILL BE SHAPED PER DIRECTION OF ENGINEER. . . ( - ) a 2. POOLS SHOWN ABOVE ARE LEFT POOLS ONLY. 15.0 14.1 WIDTH TO DEPTH RATIO0A6kf/D) 3. REACH UTIAWILL BE GRADED IN THE FIELD ASA BROAD SWALE PER DIRECTION 12.0 20.6 BANKFULL AREA (Abkl) OF ENGINEER. 7.7 4.7 BOTTOM WIDTH (M) C [n N x a a w w n N N C C m N 0 ma N? BAKER PROJECT REFERENCE NO. SHEET NO. 111274 A CONSTRUCTED RIFFLE PLANTING SPECIFICATIONS PROJECT ENGINEER PLANTINGS PRELIMINARY PLANS TOP A DU NOT USE FOR CONSTRUCTION TOE OF BANK NOTES: o 1. PLANT BARE ROOT SHRUBS AND TREES TO THE WIDTH OF THE ? LL BUFFERAS SHOWN ON THE PLANS. TOP OF STREAMBANK 2. ALLOW FOR 610 FEET BETWEEN PLANTINGS, DEPENDING ON SIZE. 3. LOOSEN COMPACTED SOIL. u ?u n?u 4. PLANT IN HOLES MADE BYA MATTOCK, DIBBLE, PLANTING BAR, OR C EROSION CONTROL OTHER APPROVED MEANS. 5. PLANT IN HOLES DEEP AND WIDE ENOUGH TO ALLOW THE ROOTS C. C MATTING TO SPREAD OUT AND DOWN WITHOUT J-ROOTING. S KEEP ROOTS n TO PLANT BANKFULL BFksr E"BIawHDR NY, Inc. . BY MEANS OF WET CANVAS, BURLAP, OR STRAW. 7. PHEELN LANT PLANTS IN MOIST SOIL OIF NOT PROMPTLY ® BOO, NORTH ROLL Smh]OO PLANTED ED UPON ARRIVAL TO O PROJECT SITE. ¦ a xaaTx cAaauxnn513 0 C MIX OF CLASS A AND CLASS B STONE y, F.: W+W 919d5a55 Be.3.590 ." 0, EROSION CONTROL MATTING SHOULD ? On( 0 ?}?o BE PLACED BENEATH ROCKS 0 Q ? TOE BOTTOM OF CHANNEL 6" NOM. THICKNESS WELL GRADED MIX 0 OF ON-SITE ALLUVIUM OR SPECIFIED RIP RAP CROSS SECTION VIEW OF BARE ROOT PLANTING SECTION C - C' L L PLANTING NOTES: 1. WHEN PREPARING THE HOLE FOR A POTTED PLANT OR SHRUB DIG THE HOLE 8-12INCHES LARGER THAN THE DIAMETER OF THE POT AND THE SAME DEPTH THEPOT PLAN VIEW 2 R REE MOVE E . LAY THE PLANT ON PLANT FROM THE C ESSARYTO ITS SIDE SIDE IF IF NECESSARY TO REMOVE REMOVE THE POT. 3. IF THE PLANT IS ROOTBOUND fR00T5 GROWING IN A L TOP OF STREAMBANK SPIRAL AROUND THE ROOT BA L), MAKE VERTICAL CUTS WITH A KNIFE OR SPADE JUST DEEP ENOUGH TO CUT THE NET OF ROOTS ALSO MAKEA CRISS-CROSS CUT ACROSS THE BOTTOM OF THE BALL. HEAD OF RIFFLE 4. PLACE THE PLANT IN THE HOLE. 5. FILL HALF OF THE HOLE WITH SOIL (SAME SOIL REMOVED FOR BACKFILL . B. WATER THE SOIL TO REMOVE AIR POCKETS AND FILL NOTES' GLIDE MIX OF CLASS AAND CLASS B STONE THE REST OF THE HOLE WITH THE REMAINING SOIL RIFF 1. DIGATRENCH BELOW THE BED FOR THE INVERT INSTALLATION. 2. PLACE CLASS A AND CLASS B STONE INTO TRENCH APPROXIMATELY ^RQ 2-4 INCHES BELOW CHANNEL INVERT ELEVATION. ` J ? Qn BOTTOM OF CHANNEL 3. FILL IN THE UPSTREAM SIDE OF THE STRUCTURE WITH ON-SITE ??V1 0 POOL ALLUVIUM (IF AVAILABLE) OTHERWISE USE WELL GRADED MIX OF CLASS A. CLASS B, AND #57 STONE TO THE INVERT ELEVATION OF THE CHANNEL. 4. UNDERCUT 6 FEET DOWNSTREAM OF TAIL OF RIFFLE. BACK FILL ALL UNDERCUT AREAS PROFILER-A' WITH AN B -10 INCH MIX OF ON-SITE ALLUVIUM. CROSS SECTION VIEW OF CONTAINER PLANTING LIVE STAKING SPECIFICATION NOTES: TRANSPLANTED VEGETATION LOG BURIED LOG VANE BELOWSTREAMBED NOTES: 1. EXCAVATE A HOLE IN THE BANK TO BE STABILIZED THAT WILL 1. STAKES SHOULD BE CUT AND ACCOMMODATE THE SIZE OF TRANSPLANT TO BE PLACED. BEGIN EXCAVATION AT THE TOE OF THE BANK, 213 INSTALLED ON THE SAME DAY. 2. EXCAVATE TRANSPLANT USING A FRONT END LOADER. BOTTOM 2. DO NOT INSTALL STAKES THAT EXCAVATE THE ENTIRE ROOT MASS AND AS MUCH ADDITIONAL WIDTH HAVE BEEN SPLIT. SOIL MATERIAL AS POSSIBLE. IF ENTIRE ROOT MASS CAN NOT BE TOP OF STREAMBANK 3. STAKES MUST BE INSTALLED WITH EXCAVATE IN ONE BUCKET LOAD, THE TRANSPLANT IS TOO LARGE BUDS POINTING UPWARDS. AND ANOTHER SHOULD BE SELECTED. 4. STAKES SHOULD BE INSTALLED PERPENDICULAR TO BANK 3. PLACE TRANSPLANT IN THE BANK TO BE STABILIZED SO THAT 113 5. STAKES$HOULD BE 112 TO 2 INCHES VEGETATION IS ORIENTATED VERTICALLY. 4, FILL IN ANY HOLES AROUND THE TRANSPLANT AND COMPACT. BOTTOM BACKFILL WITH ON-SITE STREAM ALLUVIUM IN DIAMETERAND 2 TO 3 FT LONG. STAKES SHOULD BE INSTALLED LEAVING 6 5. ANY LOOSE SOIL LEFT IN THE STREAM SHOULD BE REMOVED. A' WIDTH (IFAVAILABLE(, OTHERWISE USEAWELL TOE OF SLOPE . 1150E STAKE ABOVE GROUND. 6. PLACE MULTIPLE TRANSPLANTS CLOSE TOGETHER SUCH THAT THEY TOUCH GRADED MIXOF CLASSA, CLASS B, ANDI57 STONE . TRANSPLANTED VEGETATION, ROOTMASS, AND SOIL MATERIAL \ TRANSPLANTED VEGE TATION, ROOTMASS, AND SOIL MATERIAL A 20.30= BOTTOM OF CHANNEL O rFILTER FABRIC O TOP OF STREAMBANK ^, ..: i.. ` ?' `\? '• HEADER LOG 0 CROSS SECTION VIEW 1 I POOLTEI / I FOOTER LOG FILTER FABRIC 1 TRANSPLANTED VEGETATION, ROOTMASS, AND SOIL MATERIAL SECTIONA - A' TOE OF BANK / \ \ 3 ROOTWAD \ a BOTTOM OF CHANNEL Of LOG BURIED - T _ _ / IN STREAMBANK . AT LEAST 5' PLAN VIEW 6'-B' SPACING ROOTOVAD CROSS SECTION VIEW TOP OF STREAMBANK 2'3' SPACING FLOW TRANSPLANTED VEG ETATION AND ROOTMASS /?. $TREAMBEO f? 5 PLAN VIEW elo.b %. SQUARE CUT TOP ^--'-- ? BUDS FACING UPWARD TOP OF TOP OF BANK TOP OF STREAMBANK LIVE CURING MIN, 112" DIA 2'-3'IENGTH , .? \ m/ -I( nw TOP OF BANK ts-+?? ?? R .?,/`.G ti `FOOTER LOG PIA IT STAKES FROM TOP OF BANK f I HEADER LOG . TO T OR Z OE OF BANK IN A STAGGERED IG-ZAG PATTERN ® ® j l ® TOE OF BANK PROFILE VIEW TOE OF SLOPE 0-4 DEGREES NOTES: 5 1. LOGS SHOULD BEAT LEAST 10" IN DIAMETER, RELATIVELY STRAIGHT, HARDWOOD, AND RECENTLY HARVESTED. LIVE STAKE DETAIL 2. SOIL SHOULD BE COMPACTED WELL AROUND BURIED PORTIONS OF LOG. PLAN VIEW PLAN VIEW 3 INTO HE BANOULDBEPLACEDENETHTHEHEADER LOGANDPLACED SOTHAT ITLOCKS THEHEADER LOG 4. FILTER FABRIC SHOULD BE NAILED TO THE LOG BELOWTHE BACKFILL. [ D, N S a a w w v N N i N m a i m 0 ma N; Im LOG WEIR PROJECT ENGINEER TRANSPLANTS TRANSPLANTS I_ 0 1CHANNELWIDTH 1.5 X CHANNEL WIDTH SCOUR \ POOL / LOG WEIR A 9? PLAN VIEW TOP OF STREAMBANK FLOW STREAMBED . ?NRP? HEADER LOG BACKFILL WITH ON-SITE ALLUVIUM IF AVAILABLE. OTHERWISE, USEA WELL GRADED MIX OF CLASS A, CLASS B, AND R57 STONE. FILTER.FABRICFOR DRAINAGE FOOTER LOG .. (SEE SPECSF ,' MINIMUM SECTION A-A' NOTES: .-COM SHOULD BEAT LEAST 12 INCHES IN DIAMETER, RELATIVELY STRAIGHT, HARDWOOD, AND RECENTLY HARVESTED. HEADER LOG 2. LOGS >24 INCHES IN DIAMETER MAY BE USED ALONE WITHOUT AN ADDITIONAL LOG. FILTER FABRIC SHOULD STILL BE USED TO SEAL AROUND LOG. 3. PLACE FOOTER LOGS FIRST AND THEN HEADER (TOP) LOG. SET HEADER LOG FOOTERLOG ATAMAXIMUM OF 3 INCHES ABOVE THE INVERT ELEVATION, 4. CUT A NOTCH IN THE HEADER LOG APPROXIMATLEY 30% OF THE CHANNEL BOTTOM WIDTH AND EXTENDING DOWN TO THE INVERT ELEVATION. NOTCH SHALL NOT EXCEED 3INCHES. 5. USE FILTER FABRIC FOR DRAINAGE TO SEAL GAPS BETWEEN LOGS. 6. PLACE TRANSPLANTS FROM TOE OF STREAMBANK TO TOP OF STREAMBANK. DITCH PLUG NOTE: COMPACT BACKFILL USING ON-SITE HEAVY EQUIPMENT IN 10 INCH LIFTS. IPRELIMINARY PLANS 00 NM USE FOR CONPCRUCIYON suift 200 (Baker PUe? 9'9'53" CROSS SECTION VIEW ruiiv nr_vv BRAIDED CHANNEL DETAIL (APPLIES TO REACH 1A1 PROJECT ENGINEER PRELIMINARY PLANS 00 NOT USE FOR CONSTRUCTION BRAIDED CHANNELS- WIDTH = 2 TO 4 FT DEPTH =APPROX. 0.5 FT PLAN VIEW OF MICROTOPOGRAPHIC PATTERN NOTES: 1. REACH UT1A WILL BE CONSTRUCTED BY FIRST RESTORING VALLEY TOPOGRAPHY AS SHOWN ON THE GRADING PLAN SHEETS. 2. THE RESTORED VALLEY BOTTOM WILL THEN BE ROUGHENED, USING THE TECHNIQUES DESCRIBED IN THE CONSTRUCTION SPECIFICATIONS FOR RESTORATION OF WETLAND MICROTOPOGRAPHY. 3. PER DIRECTION OF ENGINEER, FLOW PATHS WILL BE CONSTRUCTED BY GRADING SHALLOW SWALES ALONG THE VALLEY (APPROX 6" DEEP). 4. FINAL GRADES WILL BE DETERMINED IN THE FIELD BY ENGINEER AND SHALL COINCIDE WITH WELAND GRADING PLAN. 5. BRAIDED CHANNEL ALIGNMENT WILL BE DETERMINED BY ENGINEER FOLLOWED COMPLETION OF THE MOCROTOPOGRAPHIC ROUGHING. 8. BRAIDED CHANNELS WILL BE SHAPED TO FORM SMOOTH TRANSITIONS INTO A SINGLE THREAD CHANNEL (UT1 B) NEAR STATION 47-49. 7. UPON COMPLETION OF BRAIDED CHANNEL FEATURES, APPLY MULCH TEMPORARY SEED, AND PERMANENT SEED TO THE CONSTRUCTED VALLEY ACCORDING TO SEDIMENT AND EROSION CONTROL SPECIFICATIONS. c rn u N S UI a a w w v n N c C C m OTE 6 CHANNEL ALIGNMENT TO BE DETERMINED BY THE ENGINEER IN THE FELD VALLEY BOTTOM VADTH (APPROX. 30' - 60) BRAIDED r CHANNELS APPROX.6 INCHES SECTION A - A' Suift 200 (Baker Pho,e: 919.453."U VALLEY SIDE SLOPE a (BASED ON GRADING PLAN) GRADED VALLEY ELEVATION PRIOR TO ROUGHING VALLEY WIDTH VARIES (BASED ON GRADING PLAN) VALLEY BOTTOM WIDTH(APPROX. 30'-60') DOUBLE BOX CULVERT WITH WING WALLS (NCDOT STANDARD DETAIL # CB12) PROJECT ENGINEER PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION WING SLOPE FOR 2:1 FILL ROADWAY WIDTH VARIABLE WIDTH 4 •5 C1 Q 3"CTS. It ROADWAY FILL SLOPE 2:1 lel- i' 1" in ROADWAY FILL SLOPE 2:1 0000 a w m WING SLOPE 10 FOR 2:1 FILL 11 6' o CONST.JT. F-4B2ARS- FILL FACE az w' GRADE .001 % a fcwi°w a vi virc m LL w •4 B3 BARS EACH I V3?m u°?Q FACE STAGGERED B1 BARS- STREAM FACE °x[L N a m : Qwy, v wao ELEV.=151.7 0 4 O ? ?r0 _ CONSi. JT. ? -[F- 3'0 WEEP HOLES IQ 10'- 0'= CTS. EXTERIOR WALL INTERIOR WALL CULVERT SECTION NORMAL TO ROADWAY LENGTH OF CULVERT= VARIABLE END ELEVATION " Al Q CTS.CORNER BARS EACH • A2 W CTS.CORNER BARS EACH WING FOOTING EXTERIOR WALL (SEE BARREL SECTION) EXTERIOR WALL (SEE BARREL SECTIONI - • FLOOR SLAB 4 B2 BARS Q CTS. FILL FACE BI BARS Q CTS. STREAM FACE I Fa ww _ z NO wz N r I O (9 o: w Q_ H co NU a Ul I o ° j m w CONST.JT. msm w ow wrc of wFw ° o< a Pa •m a ° rc m m w • ? N I SYMM. ABOUT E CULVERT FLOOR SLAB CULVERT ? - WING FOOTING ----- __? DETAIL 4-•5 G1 Q 3'CTS. STA23t42 CONNECTION OF WING FOOTING IN HEADWALL • , 4 B3 Q TS.EACH FACE STAGGERED IN AND FLOOR SLAB WHEN SLAB INTERIOR WALL IS THICKER THAN FOOTING A100 BARS Q CTS.- BOTTOM OF ROOF SLAB A200 BARS Q CTS: TOP OF FLOOR SLAB A300 BARS Q CTS.- TOP OF ROOF SLAB A400 BARS Q CTS.- BOTTOM OF FLOOR SLAB PART PLAN-ROOF SLAB PART PLAN-FLOOR SLAB VERTICAL LEG c 6'R. rn ? 1ry N S ? UI a a W BAR TYPE BAR DIMENSIONS ARE OUT TO OUT N N C a c m Suift 200 (Baker Pho,e: 919.453."U NOTES ASSUMED LIVE LOAD ----------HS20-44 OR ALTERNATE LOADING. FOR OTHER DESIGN DATA AND NOTES SEE STANDARD NOTE SHEET. 3'0 WEEP HOLES INDICATED TO BE IN ACCORDANCE WITH THE SPECIFICATIONS. CONCRETE IN CULVERTS TO BE POURED IN THE FOLLOWING ORDER: 1. WING FOOTINGS AND FLOOR SLAB INCLUDING 4" OF ALL VERTICAL WALLS. 2. THE REMAINING PORTIONS OF THE WALLS AND WINGS FULL HEIGHT FOLLOWED BY ROOF SLAB AND HEADWALLS. THE RESIDENT ENGINEER SHALL CHECK THE LENGTH OF CULVERT BEFORE STAKING IT OUT TO MAKE CERTAIN THAT IT WILL PROPERLY TAKE CARE OF THE FILL. THIS BARREL STANDARD TO BE USED ONLY ON CULVERT ON 90° SKEW AND TO BE USED WITH STANDARD WING SHEET WITH THE SAME SKEW AND VERTICAL CLEARANCE. DIMENSIONS FOR WING LAYOUT AS WELL AS ADDITIONAL REINFORCING STEEL EMBEDDED IN BARREL ARE SHOWN ON WING SHEET. TRANSVERSE CONSTRUCTION JOINTS SHALL BE USED IN THE BARREL.SPACED TO LIMIT THE POURS TO A MAXIMUM OF 70 FT.LOCATION OF JOINTS SHALL BE SUBJECT TO APPROVAL OF THE ENGINEER. STEEL IN THE BOTTOM SLAB MAY BE SPLICED AT THE PERMITTED CONSTRUCTION JOINT AT THE CONTRACTOR'S OPTION.EXTRA WEIGHT OF STEEL DUE TO THE SPLICES SHALL BE PAID FOR BY THE CONTRACTOR. AT THE CONTRACTOR'S OPTION,HE MAY SPLICE THE VERTICAL REINFORCING STEEL IN THE INTERIOR FACE OF EXTERIOR WALL AND BOTH FACES OF INTERIOR WALLS ABOVE LOWER WALL CONSTRUCTION JOINT. THE SPLICE LENGTH SHALL BE AS PROVIDED IN THE SPLICE LENGTH CHART SHOWN ON THE PLANS.EXTRA WEIGHT OF STEEL DUE TO THE SPLICES SHALL BE PAID FOR BY THE CONTRACTOR. AT THE CONTRACTOR'S OPTION HE MAY SUBMIT, TO THE ENGINEER FOR APPROVAL, DESIGN AND DETAIL DRAWINGS FOR A PRECAST REINFORCED CONCRETE BOX CULVERT IN LIEU OF THE CAST-IN-PLACE CULVERT SHOWN ON THE PLANS. THE DESIGN SHALL PROVIDE THE SAME SIZE AND NUMBER OF BARRELS AS USED ON THE CAST-IN-PLACE DESIGN.FOR OPTIONAL PRECAST REINFORCED CONCRETE BOX CULVERT,SEE SPECIAL PROVISIONS. 5S— — — — TIE EXISTING DITCH INTO \ FIELD TO HYDRATE WETLAND .. .. .. .. .. .. .. .. .. . .. .. .. . . .. .. .. . ., .. .. .. .. .. .. .. / \ I AREA PER DIRECTION OF ENGINEER. I - / m y� N % BCP# 53 NS ®X=2006340 Y=627078.8 / Z=753.40 O \ 1 FILL EXISTING CHANNEL PER / /j n O DIRECTION OF ENGINEER. FILL gr00 x Lu / AMOUNT MAY VARY BASED ON MATERIAL AVAILABILITY. x BAKER PROJECT REFERENCE NO. SHEET NO. V w 7 I 18.00 18+ lllZf4 4 GG v 14+00 16+DO 17+00 I6+00 30 PROJECT ENGINEER 30 /x/ m I -- 30 30 13+00 / j STA 10+00.00 Ix 12+00 EXISTING DIRT ROAD �5T / 1 / 60, / ! / x PRELIMINARY PLANS Cj4 UTIA NOTES: / W NOT USE FOR CONSTRUCTION 1. REACH UTIA WILL BE CONSTRUCTED BY FIRST RESTORING / VALLEY TOPOGRAPHY AS SHOWN ON GRADING PLAN SHEETS. ((' = — REMOVE EXISTING SPOIL PILE AM USE MATERIAL TO FILL CHA� \ FILL EXISTING CHANNEL2. 0 m / / HARVEST ROOTWADS AND -TRANSPLANTS PER DIRECTION046INEER. USING THE TECHNIQUES DESCRIBED IN THE CONSTRUCTION R UN CREEK / / SPECIFICATIONS FOR RESTORATION OF WETLAND MICROTOPOGRAPHY. EXISTING DIRT ROAD WITH 60' ROW. / PLAN VIEW 0 OF ENGINEER, FLOW PATHS WILL BE CONSTRUCTED � LIJ _ — — — _ —� �� _ — — — ��� / 3. PER DIRECTION Q BY GRADING SHALLOW SWALES ALONG THE VALLEY (APPROX. 6" DEEP). - 25 0 550 100 w CC C / / j . Baker E"01 -11"q NY, Inc. 500 0 RaO W Parkway • Su ft2W SCALE (FT) / Cay, NORTH CAROLINA 27518 / Phone: 818.983.6488 F-912. 8 .5480 _ .. .. .. .. 5S— — — — TIE EXISTING DITCH INTO \ FIELD TO HYDRATE WETLAND .. .. .. .. .. .. .. .. .. . .. .. .. . . .. .. .. . ., .. .. .. .. .. .. .. / \ I AREA PER DIRECTION OF ENGINEER. I - / m y� N % BCP# 53 NS ®X=2006340 Y=627078.8 / Z=753.40 O \ 1 FILL EXISTING CHANNEL PER / /j n O DIRECTION OF ENGINEER. FILL gr00 x Lu / AMOUNT MAY VARY BASED ON MATERIAL AVAILABILITY. x V w 7 I 18.00 18+ v 14+00 16+DO 17+00 I6+00 30 ------__ — — 30 /x/ m I -- 30 30 13+00 / j STA 10+00.00 Ix 12+00 / 1 / 60, / x / N UTIA NOTES: 1. REACH UTIA WILL BE CONSTRUCTED BY FIRST RESTORING VALLEY TOPOGRAPHY AS SHOWN ON GRADING PLAN SHEETS. ((' = — REMOVE EXISTING SPOIL PILE AM USE MATERIAL TO FILL CHA� \ FILL EXISTING CHANNEL2. 0 m / / HARVEST ROOTWADS AND -TRANSPLANTS PER DIRECTION046INEER. USING THE TECHNIQUES DESCRIBED IN THE CONSTRUCTION R UN CREEK I / SPECIFICATIONS FOR RESTORATION OF WETLAND MICROTOPOGRAPHY. EXISTING DIRT ROAD WITH 60' ROW. / PLAN VIEW 0 OF ENGINEER, FLOW PATHS WILL BE CONSTRUCTED � LIJ _ — — — _ —� �� _ — — — ��� BCP# 48 RS X=2006968 - 3. PER DIRECTION BY GRADING SHALLOW SWALES ALONG THE VALLEY (APPROX. 6" DEEP). - 25 0 550 100 w 4. LOG STRUCTURE PLACEMENT WILL BE DETERMINED BY THE ENGINEER j x 30 ------__ — — c 30 /x/ m BEGIN CONSTRUCTION REACH UT1A -- 30 30 m a STA 10+00.00 W / N UTIA NOTES: 1. REACH UTIA WILL BE CONSTRUCTED BY FIRST RESTORING VALLEY TOPOGRAPHY AS SHOWN ON GRADING PLAN SHEETS. a FILL EXISTING CHANNEL2. THE RESTORED VALLEY BOTTOM WILL THEN BE ROUGHENED, UT TO JUMPING c USING THE TECHNIQUES DESCRIBED IN THE CONSTRUCTION R UN CREEK rn SPECIFICATIONS FOR RESTORATION OF WETLAND MICROTOPOGRAPHY. EXISTING DIRT ROAD WITH 60' ROW. / PLAN VIEW 0 OF ENGINEER, FLOW PATHS WILL BE CONSTRUCTED FUTURE PARK ACCESS BY OTHERS. DITCH PLUG 3. PER DIRECTION BY GRADING SHALLOW SWALES ALONG THE VALLEY (APPROX. 6" DEEP). 50 25 0 550 100 w 4. LOG STRUCTURE PLACEMENT WILL BE DETERMINED BY THE ENGINEER j DURING CONSTRUCTION WITHIN REACH UTIA. SCALE (FT) m a a w V N i N C a i m v / EXISTING DIRT ROAD PROJECT ENGINEER CE J/? CE PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION CF t" EXISTING DIRT ROAD WITH 60PROW FUTURE PARK ACCESS BY OTHERS. G Belu7 E"01-11ny NY, Inc. CC . 8MO Ra erc ft, y F,Ha m5 • CBry,NCRTHCAROLINA27543 PY,o,e 949.W54N A r Fu'. 810.483.5480 CE CE CE I j ? ?w a I _ FILL EXISTING CHANNEL PER G? - - -? _ _ - DIRECTION OF ENGINEER. FILL 1 AMOUNT MAY VARY BASED ON O MATERIAL AVAILABILITY. + ff I >` HARVEST ROOT WADS AND TRANSPLANTS - y? r - - - - - - _ O M Q ? I J PER DIRECTION OF ENGINEER. N rr ??? _= O IQ 3a-00 e.- M h 24.oo co W I 25 31+00 L co -160 0, to Z 28+00 co f? REMOVE EXISTING 36" CONCRETE PIPE INSTALL (2) 2'X5'X5O' BOX CULVERTS WITH ,. J WING WALLS. (SEE DETAIL SHEET2-D) INV. IN = 150.6 / INV. OUT = 150.76 (INVERT ELEVATIONS ALLOW FOR CULVERT TO BE BURIED ONE FOOT) FENCING SHALL BE REMOVED BY THE J NATURE CONSERVANCY (TNC) BEFORE .[+ n!^ CONSTRUCTION BEGINS. 3S? UT1A NOTES: 1. REACH UT1AVIALL BE CONSTRUCTED BY FIRST RESTORING v ~'' \ VALLEY TOPOGRAPHY AS SHOWN ON GRADING PLAN SHEETS. / ? UT TO JUMPING 2. THE RESTORED VALLEY BOTTOM WILL THEN BE ROUGHENED, RUN CREEK USING THE TECHNIQUES DESCRIBED IN THE CONSTRUCTION - ® FILL EXISTING CHANNEL SPECIFICATIONS FOR RESTORATION OF WETLAND MICROTOPOGRAPHY. PLAN VIEW 3. PER DIRECTION OF ENGINEER, FLOW PATHS WILL BE CONSTRUCTED 50 25 0 50 100 BY GRADING SHALLOW SWALES ALONG THE VALLEY (APPROX. 6" DEEP). ® DITCH PLUG 4. LOG STRUCTURE PLACEMENT WILL BE DETERMINED BY THE ENGINEER DURING CONSTRUCTION WITHIN REACH UTIA. SCALE (FT) BAKER PROJECT REFERENCE NO. SHEET NO. 111274 PROJECT ENGINEER PRELIMINARY PLANS CE DO NOT USE FOR CONSTRUCTION EXISTING DIRT ROAD GE ?? Blkll GE / / '•?^,._. `'C 8NOR-Wft Ny NY, Inc. .. C IBOO ReBenN'PC?lavey . .. ., 9ude 2W ..?% /?'i /V.- ?"'?'?e."` ¦ c.n. r+oarx uaouru nsae fir" f w° 7>. Phone 819.W5488 C ...,.. = . F.: 810.489.6180 m x a a w V n i N m a i m BCPB 56 RS rd GE BC V1 55 RS X=2008297 / X=2008121 ® Y=529338.8 CE Y=529181.8 Z=152.89 Z=153.30 BCPA 57 RS _ X=2008574 Y=529506.4 Z=152.07 BCP# 54 RS FILL EXISTING CHANNEL PER DIRECTION OF X4007925 ENGINEER FILL AMOUNT MAY VARY BASED ON Y=528882.9 ® MATERIAL AVAILABILITY. HARVEST ROOT WADS Z=151.77 AND TRANSPLANTS PER DIRECTION OF ENGINEER. t = I? ` - - - -- - END CONSTRUCTION REACH UTlA BEGIN CONSTRUCTION REACH UT113 BCP#58RS v STA 47+49.07 Xi=ss9?53's Q Z=150.81 O wnw \ O co .:.:..... - cl) 39+00 ? 40+00 45+00 Ill / 35+00 woo - - - - - - W 41'00 46 00 2 37.00 43 00 '^ 42+p0 " V / W Z ''*-- GRADE GRADUAL TRANSITION BETWEEN `G 0 U TIA AND UT113 PER DIRECTION OF ENGINEER. (SEE DETAIL SHEET 2-C) RIM; FENCING SHALL BE REMOVED BY THE NATURE CONSERVANCY (TNC) BEFORE CONSTRUCTION BEGINS. UTIA NOTES', 1. REACH UTIA WILL BE CONSTRUCTED BY FIRST RESTORING VALLEY TOPOGRAPHY AS SHOWN ON GRADING PLAN SHEETS. JUMPING FILL EXISTING CHANNEL 2. THE RESTORED VALLEY BOTTOM WILL THEN BE ROUGHENED, UT [ TO USING THE TECHNIQUES DESCRIBED IN THE CONSTRUCTION RUN CREEK SPECIFICATIONS FOR RESTORATION OF WETLAND MICROTOPOGRAPHY. PLAN VIEW ® DITCH PLUG 3. PER DIRECTION OF ENGINEER FLOW PATHS WILL BE CONSTRUCTED `L.f1J11 YY BY GRADING SHALLOW SWALES ALONG THE VALLEY(APPROX. 6" DEEP). 50 25 0 50 100 4. LOG STRUCTURE PLACEMENT WILL BE DETERMINED BY THE ENGINEER DURING CONSTRUCTION WITHIN REACH UTIA. SCALE (FT) EXISTING DIRT ROAD WITH 25'ROW PROJECT ENGINEER PRELIMINARY PLANS ,? DO NOT USE FOR CONSTRUCTION ur Engineering NY, Inc. I Ra -W Pe,krey m5 ieNORTH CAROLINA 27518 1 818.W 6188 810.183.5180 C N U f\ B a a w w V n N N C R a c m UT TO [PING R UN CREEK PLAN VIEW 50 25 0 so loo SCALE (FT) PROJECT ENGINEER PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION e{ ?k 41 ^ Baler Engineering NY, Inc. 2QT . 8NO RN -W PN,Ie4y S,ft NO • Ceq,, NORTH CAROLINA 2751& EXISTING DIRT ROAD J FP.: ele.a .5458 WITH 20 ROW Sa:. ela4 .54. EXISTING 38" CMP TO REMAIN INV. IN = 141.14 C m co m x a a w w V n N N C R a C m UT TO JUMPING R UN CREEK PLAN VIEW 510 25 0 50 100 SCALE (T) OO JOO� FENCING SHALL BE T REMOVED Y THE D -X- NATURE NATURE CO SERVANCYBEFORE CONSTRUCTION BEGINS. Cb '' •J� \ \ \ \ -X-x-x-x-x-x-x-x- m x cn 77+00 BCP# 6 RS x x -x_ 2 Y=531153 3 m \\ Z=150.9 -I m ..�\ ..........� ��----q _ �� ___ - T 5 _ // 83+ CD 83500 87 cn \ O+ END CONSTRUCTION REAGH UT1 B i BEGIN ENHANCEMEJVT REACH UT1C — STA 82+18.77 \ / \ / FILL EXISTING CHANNEL / / \ / DITCH PLUG PROJECT ENGINEER PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION I Baker E"01 -11"q Wfty NY, Inc. I . S000 ReBenq Parkway SUSe 300 � • Cay, NORTH CAROLINA Y, I Phone: 919.953.5955 Faz: 919.953.5980 UT TO JUMPING R UN CREEK PLAN VIEW 50 25 0 50 100 SCALE (FT) PROJECT ENGINEER PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION =Baker E"01 -11"q NYS Inc. I 5000 Reger Parkway Suite 200 Cay, NORTH CAROLINA 2]515 Phone: 818.953.5988 F.: 818.953.5980 TO JUMPING iUN CREEK PLAN VIEW 0 25 50 SCALE (FT) T ENGINEER ARY PLANS 'OR CONSTRUCTION IBakerE"01 Parkwayp fte y NY, Inc. I 5000 R ge Suite 200 Cay, NORTH CAROLINA 2]515 Phone: 518.953.5955 F.: 818.953.5980 ., . JUMPING I R UN CREEK PLAN VIEW 50 25 0 50 100 SCALE (FT) ...............■■■■■■■■■■■■■■................■■■■■■■■■■■■■■................■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■.......................................................................................................................■ -................■■■■■■■■■■■■■..................................................................................■■■■I...■:....'Q7......................................................................................................■■■■■■■...NONE■ ...............■■■■■■■■■■■■■■............................................................■!■■!!!!■■.!■■!!!!■■.!■■!!1!!.. 1■■.1r==1.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■!■l............................... ............... ■MMMM MMMMM MMMMl.■■!!!!■■!.■■!! lMEME MEMEM MEMEl.■■!!!!■■!.■■!!!NONE MENEM MENEM MENEM MENEM MENEM MENEM MENEM L-jm Too■ I "M .N MENEM MENEM MENEM MENEM SSSS...... ■................... ■................... ■................... ■.... M■■.............MENE ■ ...........................................................................■....................................................M■.......................■..■..■...■..■..■...■..■..■...■..■..■...■..■................................. ................ -......................... ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■.....■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■ ...............■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ M■■RE M■■RE M■■RE M■■RE M■■RE M■■RE ................■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ MOORE MOORE MOORE MOORE MOORE MOORE .........■ 1 0..;1..4 IIII A I■ ■IJ..1 TI LJI 111.11■ G I:.. L ... ........, 1.01!.1■ ■1111...11...■..■... ■..■..■... ■...............■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■...............■..■...■................................. -■..■..■...1'!1.1�`•JII\.I■■_7J�51\:I.-JIT 1100•\_•.._._\_I_\.■_■_\_\-71\_10`•.11.■.101•J■■111i0■■■■■■■■■■■■■■■■■■■..............■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■..............■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ .......... o���o ............... .......... .......... .......... ....a 0■..M n..MMM..'0 nn'0 nn. nn'0 nn. nn'0 nn. nn'0 nn. nn'0 nn. nn'0 nn. nn'0 nn. nn'0 nn. nn'0 nn. nn'0 nn. nn'0 nn. nn'0 nn. nn'0 nn. nn'0 nn............................... .■■■■.■■■■ O'VMl Ammc[. 1A IF arm■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ n.:■■■■■■■■■■■■■■■■ .........■ C! ■ R..■NJ 1i.l'1''. 77.0^J■ SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■■........ MOOR■ moil■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM SSSS■ ■SEEM n:a ■SEEM SSSS■ SSSS■ ■..■..■... ■..■. ■■loo.■■ ■■loo.■■ ■■loo.■■ ■■lo ■■■■■ ■■loo.■■ ■■loo.■■ ■■■■■ ■■■■■ ■■■■■ ■■.■■ ■■■■■ ■OMEN ■■■■■ ■OMEN ■■■■■ ■OMEN ■■■■■ ■OMEN ■■■■■ ■OMEN ■■■■■ ■OMEN ■■■■■ ■OMEN ■■■■■ ■OMEN ■■■■■ ■OMEN ■■■■■ ■OMEN ■■■■■ ■OMEN ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■O ■ ■■■■■ MORE■ ■■■■■ ................................■■■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ ■■■■..............■■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ 0..l....! 0.0....■ 0..■....■ ............... SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ ■.... SSSS■ SSSS■ ■■■■.................■■.. 1111■ ■■■■■■■■■■............................................................................■■■■ SSSS■ SSSS■ SSSS■ ■-9111■ SSSS■ ■■■■■!■■■.!■■■■ ■■■■.!■■■! ■■■■■ .■ i 7!■■■. ■■■■0101■■■■ • ,■..■..■...■..■..■...■..■..■...■..■..■...■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■.■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■11■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■..■■■■■■■■■■■■■■■■ -0...00.0...00...c�•.0...0...00. ra.wo 00.0...00.0...00.0...00.0..0 7....0...00■ 0...00■.0r.7..0■ 0...00■ 0...00■ 0...00■ 0....leo 0....1...0...00■ 0...00■ 0...00■ 0...00■ 00.00■ 00.00. Soo 00■ 00.00. ............... ■■■■■ ■■411 a■■■■ ■■■■■ ■■■■■ Gilii"1■■'0.■■1..............................[ ]C71■.'0■■1"1■■.'0■■1"1■■.'0■■F9 E71■■.'0■■1"1■■.'0■■1"1■■.'0■■1"1■■.'0■■1'0■ril:7......IJ■.'0■■1"1■■.'0■■1"1■■.'0■■1"1■■.'0■■1"1■■.'0■1■"1■■■'0■1■"1■■'0 !■101d'01■■.'0■1■"1■■'0 .......................illr!■■!.■■!!!!■■lE7Y.!!!■■!.■■!!!!■■!.■■!!!!■■!.■■!!!!■■!.■■![7Yr■.!■■!!!!■■.!■■!!!!■■.!■■r.1.r.......................................1910•]......1I.................................................................:f................ ...........■■!! !!■■!.■■1iI1 N!■■!.■■!! !!■■l GY Imin MOORE ■OMEN mom■■ ■■■■..■.................[ 7U'1■. !■■!! !!■■. !■■!! !!■■. !■■L`J UJ■■. !■■!! !!■■. !■■!! !!■■. !■■!! !!■■. !■■!! ■[i G7 !■■■! ■i■■. !■■■! !!■■. !■■!!!!■■...........................................III................ ■..■..■... ■..■..■... ■..�"II +J■... ■..■..■... l.l�f. ■■... ■..■..■... ■..■..■... ■..■..■...■..■■..JI.■...■..■..■...■..■..■....� LY..■...■..■..■...■..■..■...■..■.........■a I. ■■■.■ n.■■■ ■■■.■ ■.■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■...■..■..■...■... -....l....l....l....l..ru u..0....l....! ca u0....l....l....■....■....■....l....l....e an0.0..l.....0..l..... l..r� 0...0..l.....0..l.....0..l.....0..!!ly..0..r...................................................................� ................. .■■0101 !!■■!.■■!! 0101■R1.■■wll :I!■■!.■■!! 0101■■! W �.'i! !!■■!.■■!! !!..l.■■!! !!■■!.■■!! !!■■!.■■!■ 1cJ■. !■■0101 0101■■. !■■0101 0101■■. !■■■1 GA■■. !■■0101 0101■■. !■■0101 0101■■..................1.!7......00■■ 0000■ 0000■ 0000■ 00omm oommo mommm ommo■ ■ommo mommm ommom momma Som■! .■l.! ommom momma mmom! .........■ommo■■ow'Adomovil�ommoommommommof:7Li................ MEMOMMEMEMEM..............L'7.........................F.yL'J.......................................F.0.L'7....I�..........................................................o■ME■EM EMJME ME■EM MESEM ME■EM SSSS■ SSSS■ SSSS■ ■N■!1 ■L\lll ■illi ■■■m■ ■m■■■ ■. ■.. ■■■.. ■■■.. ■■■■■ ■■■■■ ■■■■■ ■■■.. ■■■.. ■■■.. SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ ■■.I.. SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ ■.uL. SSSS■ SSSS■ SSSS■ -■..■..■... ■..■. Goo. ■..Moll.■... ■.VENN■...00..00 00..00 00..00 00..00 ■..■.■...■...■..■..■...■..■..■...■..■..■ Soo Soo Soo Soo Soo ■■■■■...■..■■.■...11■ Soo Soo Soo Soo Soo Soo Soo Soo Soo ■■■■■.■..■..■...■... ■.7...■..■..■...■... ........................1•................................■.........................................................................................................i...................................................................................... Baker ..............\.........11.1.................................■■■■■■■■■■■■■■■..............................................■■■■■■■■■■■■■■...■■........................,......■■■■■■■■■■....................................................._-................ ..............7■111■■111111111■■111■■111■■■■■■■.■■■.■■.■■ME■.......■■■■■E■E■■ENE■■ENE■■ENN■■111■■■■■■■111■■111■■111■■111■■ENE■■ENE■■ENE■■ENE■■■■■■■■■■■■■■■■.......r/■■■■■■.......■■m■■■ME■■E■E■■E■E■■E■E■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 1■•.•■■■■■■■■■■■■■■■. 0...00. 01 ■ 00. 0..0 0 -o...... 00. 0 0..00 00..00 00..00 00..00 0... ■0.. 0...00■ 0...00■ 0...00■ 0...00■ 0...00■ 0...00■ 0... 0u■ .u0 00■ 00.00■ ..... 00■ 0...00■ 0...00■ 00.00■ .0.. -._-- 0--. oo■ 00.00■ .0101.!!.!!!.101!■■■■■■■■■11■■■■■■■!.■...■. 716=_�[___■_!'lG!dL...■...rrIII■■■■L■■■!r■■■r..r....■■.!r■■■.!■■■■■■...:L1.JL_d■.■■!r!Nren.::m...m o:rr■.r!_..!V..iG!! JL==■2==0.G==.===.===IC=_.l•..■..■■.!■■E■!.■■..!!-•%11-!'II..■.■■■■■■■■■■■■■■■■■■■■■■■■■■■00.00■00.00■.VENN .............Y!!!■■■.■E!..................... o... _......... _...`...--.---_.._--.---_..� •..!■ ■■■■■ ■■■■■ ■■E■. •------------------- ..■■■ ■■.■■ ■■■■m mm■■■ ■r■mr m■■.■ ■■■■. !■!■■ ■■■m. NONE■..... .■■!!!!■■!.■■71!!!■■! E!.■!!!■■!.■■!!!!■■!.■■!!!!■■!.■■!!!!■■!.■■1010000■ 0000■ 0000■ ■■■!!!!t■.!Els __ - -- ..■ ■■�i:::::::::::::::m mommo mommm ommon om::::::mm ommo� NNN■■ ■■000000 0000i....r....________ _____ mmmmm • oo0 .. ■■o■ ■■■ ■■ 0000■■■ 0000■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■ .■■1"1■■'0.■Ii'0'0■■mr...■■'0'0■■■'0 ■■■"'0■■■'0 ■■■■n ■■■■■ ■■■■■ ■■■■■.■■1\'01■■'0.■■1"1■■'0.■■■■ ■■■■■ ■■■1"1■■1.��:::■■.'0■■1"1■■.'0■■1"1■■.'0■■1"1■■.'0■■1"1■■.'0■■1"1■■.'0■■1"1■■.'0■■1"1■■ ...........................��i� i�... ��::::::.........nn"1■■.'0■1■............................... ■o SSSS■ SSSS■ ■■..■■ ■■.�. SSSS■ SSSS■ ■■■ ■■ SSSS■ ■■■■■ ■■■■■ ■■■■■ ■■■.. ■■■■o ■■■.. ■■■.■ ■■■■■ ■■■■■ ■■■■■ ■■■.. ■m■.. ■■■.. SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ ■■ ■. ■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ ■■■.. ■. -SSSS■ SSSS■ ■■u■■ .�.■■ SSSS■ SSSS■ ■■■ ■■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ SSSS■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■l.■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ IEEE■ SSSS■ .........! N■M!, r■■■■ ■■■■■ ■■■■■ ■■■ ■■ ■■■■■ ■■■■m mommo ■■■■'0'0■■■■ ■■■■■.I■■■■ ■■■■m mmmmm ■■■■m mmmmm ■■■■■ ■■■■■ ■0,0,0,0, mmmmm ■■■■■■■■■■................................................................................................................■....................................■ MENEM M■■■■ .■■!!!!■■L II ��■ ■■■■■ ■■■■■ ■■■■■ ■■■ ■■ ■■■■■ ■■■!!!!■■!.■■!!!!■■!.■■!! r!■■!.■■!!!!■■!.■■l ...........................■■■■■■■■■...............................................................................................................■................................................ .■■mono ■■momma ;,■■■ ■■■■■ ■■■■■ ■■■■■ ■■■ ■■ ■NEEM ■■■■■ ■■■■■ ■■■■■ ■■■■■ 0.0.0.0.■ Lf■■■ ■■■■■ ■■■■■ 0.0.0.0.■ 0.0.0.0.■ ■■■■■ ■■■■■ 0.0.0.0.■ 0.0.0.0.■ ■......... ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ !■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■.J ■■■■■ ■■■■■ ■■■■■ 0011■■ 0011■■ 0011■■ 0011■■ 0011■■ 0011■■ ■..■..■..■ ■..■..■... ■..■. Soo Irl....■... ■..■..■... ■..■..■... ■..■. ■1.... ■..■..■... ■..■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ..■...■..■ ..■...■... ■.;-..■..■ ..■...■..■ Soo Soo Soo .■..■ ..■...■..■ - -.........■ ■■■■■ ■■■■■ ■■■■■.......J .Y..... ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■L'■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■............mom momma mmoom momma mmoom momma mommm ■ommo mommm ■ommo mommm ommMO MMOMM OOMMO MMO■. !!.!!!.!!. !!.!!!.!!! .!............................................... ...............................I"\A!!■■!.■■!!!!■■!.■■!!!!■■!.■■!!!!M■!.■■!!!!■■!.■■!! 0101■■.!■■0101 0101■LL E1■!! 0101■■.!■■0101 0101■■.!■■0101 0101■■.!■■0101 0101■■.!■■0101 0101■■.!■■0101 0101■■.!■■0101 0101■■.!■■0101 0101■■.!■■0101 0101■■.!■■0101 0101■■.!■■0101!!■L•J C1mom mom■■ ■111■ ■111■ ■1■■■ ■111■ ■111■ ■1110 MOORE MOORE MOORE ■111■ ■111■ ■1110 ................illi llill ■lilt ■am H4 ■■■■■ mmmmm mmmml.■■!! ■illi llill ■luno!.■■!!!!■■!.■■!! llill ■ll■l lll.L F0.■■■ ■■■■■ ■■■■■ ■■■■■ ■illi llill ■ll■l ■ammo mmoom moo...........■!■■!!!!■■.!■■!!!!■■.!■■!!!!■■M OOMMO MMOMM OMMOM MOML"J E0.!■!!!■■. !■!■!!!■■!.■!■!!!■■.!■!■!!!■■............................... ...............................1•J[`J................................................................;'1 Plmmm mmmmm mmmmm mmmmm m■mm■ mm■mm ■mm■■ ■mm■■ ■mm■m m■■............................................................[_J Ell.....m■m MENEM MENEM VENOM MOORE MOORE■.................................. 00.00.00.00■ 0..■ 00■ ■.o. ■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 001.■ 0..■ 00■ 0..■ 00■ 0..■ oar mea■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ oar neo■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ - -■..■..■... ■..■. ■■mmm.......... ■ru r:l ■■... ■..■..■... ■..■..■... ■.VENN■.0■ ■..■..■... ■..■..■..■...■..■.C�i Gi.■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■ 0000■ ■EEL ] GJMMM 0000■ 0000■ 0000■ MENEM MENEM MENE..■..■..■...■..■..■...■..■..■...■..■ non non non non.■■■....n.L'�JLi non non n.n.■■■■ n.n non'01■■7.■■C7 7cn►_-r n■c7! rrrer 7►_a■■ ■■■L1i LM■■■ non non non non non non non noon non non non non noon non non non non non non non'01■LN LM1■'0 non non'0■■■. Moon non non ■■■■. n.n ■■■■. n.n ■■■■. n.n ■■■■. .■■0101 Mon..■■!! Mon..■■!! Mon..■■!! Mon..■■!! Mon..■■!! Mon..■■!! Morar ..0110 .N11..7 C I■■..':d INTI d f7!! 0101■!9 011■!! 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■■ !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■!9 01101■!Mon. Mon. Mon. Mon■ Mon■ Mon. Mon. Mon. Mon. Mon. Mon. Mon. Mon. ............................................. 0000■ 0000■ 0000■ 0000■ ■■■■■ ■■■■■ !■■■■ ■......■.. ■■■0101 !!■L'J NN■■■ 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 !!■■. !■■l............................... ■!■■. !■■0101 0101■■. !■■0101 0101■L"J ■r!■! 0101■■. !■!■! 0101■■! .■!■! 0101■■. !■!■!!!■■............................... 00..00 00..00 00..00 00..00 00..00 00..00 00..00 00..00 0... ■o0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00 0..■ Soo 0..■ Soo 00■ Soo ■omen ■00.00.00.00.00.00.00.00....1 - ............... ■■■■■ ■■■■■ ■■■■!.!!.!!.!!!.!!.! ■■■■■ ■■■■■ ■■■■!.!!.!!.!!!.!!.! ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ SSSS■............... ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■!. !!!.!!.!!. 0101!.■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■Mono ■■■■■■■■l............................... .............................................................................................................■ Mo..■....■ nal o... nal o... Mo..■....■ Mo..■....■ Mo..■....■ Mo..■....■ Mo..■..... n..l................................... nal o... nal o..■ ■00.00■ ■■0000■ ■00.00■ ■■0000■ ■00.00■ ■■0000■ ............... ■■■■■ ■■■■■ ■■■■!.■■!!!!■■!.■■!! ■■■■■ ■■■■■ ■■■■!.■■!!!!■■!.■■!! ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■l.............................■■ ■■■■■!■■■■ ■■■■■!■■■■ ■■■■■!■!■■ ■■■■■!■!■■ ■■■■■ ■SEEN ■■■■■!■!■■■■■■............................... ........................................................................................................................................................................................................................................................................................ - _MENEM MENEM OWNER MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM WOMEN MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM mommm MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM !BEEN ■■■■■ !SEEN ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■ ■■■!■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■■■■■!!!■■!.■■!!!!■■!.■■!!!!■■!.■■!!!!■■!.■■!!!!■■!.■■!!!!■■!.■■!!!!■■!.■■!!!!■■.!■■!a !RBBB !BBB! l�BBB 1888! ■■■■. ■BBB■!■BBB ■BBB! l�BBB ■BBB! l�BBB ■BBB! l�BBB ■BBB! l�BBB ■BBB! l�BBB ■BBB! l�BBB ■88801!RBBB !BBB! l�BBB !BBB! l�BBB !BBB! !BBB! [BBB! l�BBB 1888!!RBBB !BBB! l�BBB 1888!...........■■■. ....■..... 1888! ■BBB■....■ ■BBB■....■ ■BBB■....■ ■BBB■....■ ■BBB■....■ ■BBB■....■ ■BBB■....■....■ ■BBB.00■ 0..■ 00■ 0..■ ■00.00 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ ■00.00.00.00 -00..00 .00.00 00..00 00..00 00..00 00..00 00..00 00■ 00. 0...00■ 0...00■ 0...00■ 0...1 0 ._ �... [ ■1, v■ Soo Soo Soo Soo Soo Soo Soo Soo Soo ■o0 0...00■ 0...00■ 0...00■ 00.00■ 00.00. [00.00.00.00.00.00.00.00.00.00 .■■1'0 ■BBB[ ■BBB!'0moom momom moomm......................................................■.............................I I ■■ !E I... ! RJ17. ■BBB■ ■■■■■ ■BBB■ ■■■■■ ■BBB■ ■■■■■ ■BBB■ ■■■■■ ■BBB■ ■■■■■ ■BBB■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■BBB■ ■■■■■ ■■■■■ ■■■■■ ■BBB■ ■■■■■ ■■■...00■.'0■1■'0'01■■.'0■1■'0'01■■. ■ommo mmool oommo ■omm■ ■mm■■■om■■....................................................................................! I n .. I■■. ! I =_ 1■ !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■!■! 0101■■. !■!■! 0101■■! .■!■! 0101■■. !■!■! 0101■■. !■l...............mo mommm ommo. .BEEN ME■EM !■EE■ loomm ommom momma mommm oommo ommom momma mommm ommom momma mommm ommo■ ommo■ momma mommm omm00 00000 00000 00000 00000 L-' 80 1000 I' �■■..N MENEM MENEM MENEM MENEM ■o■o■ 0101■■. !■■0101 mo■■. !■■0101 0101■■. !■■0101 ■RBBB !■■0101 0101■■. !■■0101 ■RBBB !■!■! 0101■■. !■!■! ■RBBB .■!■! 0101■■. !■!mo mommm ommo■ ommo■ ■■■0000 00.00■■ 0000■■■ ■■■■■ ■..■..■..■ Soo.■... ■..■..■... ■..■..■... ■..■..■... ■.VENN■.n. ■..■..■... ■..■..■...■..■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■....Tw..-w■..■!..l..7...■■ Soo Soo Soo.■■■■ Soo Soo Soo.■■■■ Soo Soo Soo.■■■■ Soo Soo MEMO.. .■..■...■..■..■...■..■..■...■..■ - ■■■■■ ■■■■.0101!.! ■■■■■ ■■■■■ 00M ■OMEN 00M ■OMEN 00M ■OMEN 009.00■ 00M ■OMEN 00M ■OMEN ■■■■■ ■OMEN MINOR 00M ■■■■■ 00M ■■■■■ ■■■■■ ■■■■■ 00M ■■■■■ ■■■/ ■ ■rl..d 0111111 V ..a■LIq .OIll.1 ❑ Ian■ MOOR■ ■■■■■ 0111■■ 0111■■ 0111■■ MINI■■ 0111■■ 0111■■ 0111■■ MINI■■ 0111■■ 00M 00M ■■■■■ NONE■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■roil■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■BBB!■■M! RBBB■ ■■■■■ ■■■■■!■■!! ■!■■. ■■■■■ ■RBBB!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■!■!!!■■.!■!■! ■■■■■ ■■■■■ 0000■ 0000■ 0000■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ .■■0101 ■E9■ !■■0101 Mon■ ■■■■■ Mon■ ■■■0101 Mona.■■!! Mona.■■!!!!l.IG !■■0101 Mona.■■!! Mona.■■!! Mona Mon■ Mon■ Mon■ Mon■ Mon■ Mon■ Mon■ Mon■ Mon■ Mon■ Moan Mon■ Mon■ Mon■ Mon■ Mon■ Mona Mona!■■!! Mona!■■!! Mona!■■!! Mona Mona Mon■ Mon■ Mon■ Oral■ Mon■ Mon■ Mon■ Mon■ Mon■ Mon■ Mon■ Mon■ Mon■ .■■■■ ■l`_i! ■■■1■ ■■■■■ ■OMEN M■■■■ ■■■1■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■11:.7110' M■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■BRM'01■■■ M■■■M M■■■■ M■■■M M■■■■ M■■■M 0000■ 0000■ 0000■'0■'I■'0 0000■ 0000■ 0000■ 0000■ 0000■ 00.00■ ■1■■■ ■■■■■ ■1■■■ ■■■■■ ■1■■■ ■■■■■ ■1■■■ ■■■■■ ■■■■■ M■■■M M■■■M !!=9■ M■■■■ M■■■M M■■■■ M■■■M M■■■■ M■■■M M■■■■ M■■■M M■■■■ • 0... n.at■ 0...00.0...00.0...00.0...00.0...0cmr, 0...00.0...00.0... ■.... ■00 ■0..0...00■ 0...00■ 0...00■ 0...00■.R...00■ 0...00■ 0...00■ 0...00■ 0...00■ 0...00■ 0...00■ 00.00■ 00.00. ■aa.00■ 00.00■ 00.00■ 00. ■0.....0.00 • -......■.f■ ...■..■.a0. !..■..■... ■..■..■... ■..■..■... ■..■..■.0.l\ ■..■..■... ■..■..■...■..■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■.11.■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■..■...■..■..■...■...■I.Y..■..■..■...■..■..■...■..■..■................. ■■■■■ orcin ■■■■■'01■.�}9■1'0'01■■'0.■■1'0'01■■'0.■■1'0'01■■'0.■■1'0'01C11R.■■1'0'01■■'0.■■1'0'01■■'0.■■1'0'01■■.'0■■1'0'01■■.'0■■1'0'01■■.'0■■1'0'01■■.'0■■L'J PM■■.'0■■1'0'01■■. ■i■1'0'01■■.'0■■1'0'01■■.'0■■1[7A!■.'0■■1'0'01■■.'0■■1'0'01■■.'0■■1'0'01■■.'0■■1'0'01■■[ 7N1■'0'0Nomm ommom mommo lL■1Jo nommo moomm oommm moomm mom■n nommo moomm oommo ammo■ ■■■■■ ■I=!■ ■■■■■ ■■■[= \r■■■ MOOR■ 0000■ MOOR■ 0000■ MOOR■ 0000■ ■Sur 0■■■■ 0011■■ 0111■ 0011■■ 0111■ 0011■■ 0111■ 0011■■ 0111■ 0011■■ 0111■ 0011■■ ■■■md "11110010■■ 0011■■ L■■■■ 0111■ 0011■■ 0111■ 0011■\ aF.1■■ 0011■■ ■■mono 0011■■ 0010■■ 0011■■ 0010■■ 0011■■ ■■■■[ 90:1■! 0101■■. !■!■! 0101■■! .r�.l! 0101■■. !■!■! BBB■■ ■■■■■ ■■■■■ ■■■■■ 0101■■. !■!■! 0101■■. 00000 Rai. 08880 !!■L'd me■!! 08880 08880 08880 08880 08880 08880 ■!L''JI! 08880 0���0.moom momma mommm ommom mommm ommom mo■!! 08880 08880 08880 !■■FY !91880 08880 08880'18880 08880 08880 08880 08880 V E4■.08880 08880 08880 08880 08880 08880 08880 0101■■! 7Yi■! 08880 08880 !■■■■ ■r=J■ ME■EM ■1■■■ ■■■■o MOORE MENEM MENEM ME■EM ■1■■■ ■■■■l ■..■...71.■ ...■..■.■. F1J.■..■... ■..■..■... ■..■..■... ■..■..■I.ill� ■..■..■... ■..■..■... ■..■..■..■...■..■..■....11.111..............\"1..■...■..■..■...■..■..■...■..■..■ M.... me■l ill■l ■■1111110.■ 10.11■ 1110.■ 10.11■ 111■l■■I.l'JY....■..■..■.11.......:■..■..■..■...■..■..■...■..■..■...■..■..■...■..■ - -MMMMM MMHM■ ■■■■■ ■■!R�!.l.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!1.FIiIH.!!.!!.!!!.!!.!!.!!!.!!.!!.!!.!!!.!!.!!. !!!.!!.!!. !!!.!!.!!. !!!19 Mr!!. 0101!.! MBMMII!!!.!!.!!. !!!.!!.!!. 0101!.[ 7Gil.!!!.!!.!!. !!!.!!.!!. !!!.!!.!!. !!!.!!.!!! 7F.'J■■ ■■■■■ ■■■■........�A■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■............... 0��80lCd.08880!!■■. R:1■!l088800888008880088800888008880!lL-111 0��8008��00��8008��00��8008��00��8008��00��8008��00��8008��0!■■CN LM■■.088800808'108880088800888008880!■■!L'J!!■.0��8008��00��8008��00��8008��00��8008��[701■l08��0■■!■l08��0.LM:1l08880■■!■l08880■■!■!08880■■!■!08880■■!■!08880 08880 !r\11■ 08880 0101■[. LJ■!! 08880 08880 08880 08880 08880 08880 086710 08880 08880 08880 08880 08880 08880 08880 08880 08880 08880 08880 08880 !■■!"J 1.011■■.08880 088!0 08880 08880 08880 08880 !■■0101 iFi■.08880 08880 08880 08880 08880 08880 08880 0101■n 10:1■! 08880 ■■!■! 08880 .[ 10117! 08880 ■■!■! !l MMM MMMMM MMMMM MMMMM MMMMM MMME! 08880 .■■■■,rLa[ ■■■■■ ■■■■■ !■■■■ ■■■■■ ■■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■.f`.JI'0.■■1'0'01■■'0.■■1■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■L'7 0000■ ■■N■■ ■■■II■ ■■■■■ ■1■■■ ■■■■■ ■■■■■ ■■■■L.013101■■ ■■■1■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■[ 110'1■■ ■■■■■ ■■1■■ ■■■■■ 0190"0100 ■■■■■ MOOR■ MOOR■ MOOR■ MOOR■ MENEM ■■N■■ ■■■N■ ■■■■■ .111111.7. 1111111111 .111111111.111111111.111111111.111111.111.111111111.111111111.11111111.111111111.111111111.111111111.111111111.1111111...111111111.111111111.111111111.111111111.111111111.111111111.111111111..11111111.1111111111 ■r -J..■..■ 111111111.111111111.111111111.111111111. - -■..■..L'• 11. 1111111111 .111111111.111111111.111111111.1111111111.111111111.111111111.11111111■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■.■...■..■Ii.■ 111111111....■..■.■! ■..■.....■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■ ................1■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ 11.11 ■■ll■ .■■1'0'0Alra!'0■■1'0'01■■'0 !■■1'0'0f)=1:T FFrr'[ rri.7n nT_fGE'01■■'0.■■1'0 ■1■11■ ■■NEN ■■NEN ■■NEN ■■NEN ■■NEN ■■NEN ■■N■■ ■■N■■ ■■N■■ ■■N■■ MEMO■...........1■!: 1■:�. ■o i■.'0■■1'0'01■■.'0■■■■ ■1!0.! ■r�N■■■■■.'0■■1'0'01■■.'0■■1'0'01■■.'0■■1'0'01■■.'0■■1'0'01■■. ■■1■'0'01■■■'0■■■'0'01■■'0 0101_9N'01■■.'0■1■'0'01■■.'0■1■'0'01■■.'0■1■'0'01■■.'0■1■'0'01■■. 0001 n.Nn nolo..! "BBBlYE■! w�■IiL 1011! rrrrr....l....l..nil....l....l....m mnEE ER!*� X11 rEEn..... nolo... nolo... n..l.,... n..!lcmv nolo... BBB..!M... n1! ■.... nolo... nolo... nolo... nolo... ■..n..... nolo..! now..... nolo... nolo... nolo... nolo... .omo■ mrJ'.1m ==78m MOORE 00000 OLLOIL aLAA2 610h,UL• G. :1■MMM 00000 011002 01110 011■!.m!. .�LLiJI !'1'11031 L•L10SSY NMl•10 ■ll■■ 01110 MOORE ■OMEN MENEM o■E■i MENN■ NE■■■ mom■m G.1■■ ■■■■■ ■EE=. ■■M■.08881108880 ■omm■ ■mmom momma mmomo mommm ommom mommm omm■■ ■■■■■ ■■■MEMO 01110 MENEM 011/110 01110 00100 01110 01100 01110 011■! 08880 ■■!■! 08880 ■..■..CC.■ ...■..■... 0..1....1....1....1..x. \�... ■..f._ __ _.._ �__,■ VENN. !J.■t VENN. ■..■..■..■ ...■..■..■ ...■..■..■ ...■.......�............1.........1. ===■_ -0..1■..■ 1■■■L' 1■..■ ...■..■..■ .■■■■ .■..■ ...■..■..■ ...■..■..■EVEN..■..■ ..■...■■.. ■.....■..■ .VENN .■..■ ..■...■..■ ..■...■..■ ..■...■..■ - m.!!.! lM.f. .......■... ■..■..■....!!.! !.!!!.!!.! ■■IJ■ NOON I■ _MIu_11■ ■■■11■ ■■RCJ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■. ■■■.■ ■l. i. ■■■■■ ■■■■■ ■■■■■ MBMM. 0101!.! 01.01!. 0101!.! MRM■■ ■MSB. ■0101!. 0101!.! 01.01!. 0101!.! ■■■■■ ■■■■■ ■■■■■ ■■■■■ !■... ■l... R...■ ....! ..Nr■ .[01■ ■■■■■ ■■■■■ ■.■■■ M■■■M ■■M■■ M■■■M ■■M■■ M■■■M ■■M■■ 00000011■0.....I'................................... _____•--••-• -•--••.N■■■■.■■ommommommommommomma■o■■. 0.881.................■■■■■■■■..1.!!.!!. !!!!!1!■■.■■.■l08880■■!■!!!!L■.L=J■08880■■!■!!lmommommommommoommommoommommoommom .■■l..C�7.!■■■L !!■■!.■■!!!!■■!.■■!!!!■■!.0000 MENEM I'M IM NIEMEN E,\EIIIiMII■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■MllmmmmmmB•doom■■■■■■■■■■...--.----E---•.N■!!!m. !■■l...---_ o.■.0 ...................11.............s.0...._.-_ �-••. 1!!m!!!.0,l .Lr.JM■!■■.■■■80088800■■80088800■■80088800■■8008880 non ■►Ji! ■0000■■von non non non non.■■1'0'01■■'0.■lr:::..: �s�r nun.■■1'0 non non non Moon non M000ll n■■c.loon ■■■■.'0■■1'0'01■■.'0■■!.] o ■■.0101■■... -_C mo.■..NMN:::1'0'01■■M'0■■1'0 non Moon ■■■■II Moon non Moon II■■■■ MoI:N'0n!■ s-==--11![.7'0'01■■.'0■1■'0'01■■.'0■1■'0'01■■.'0■1■'0'01■■.'0■1■'0'01■■. 11�[.1.�....11r•v 101 n........11........11........11........1 o..■.r..■ 101......■ ■........■ ■.... ■.... ■.... ■..■u ■..L. ■.... ■.... ■.... ■.... ■..a` ■.... ■.... ■.... ■.... ■.... ■.... ■..■u 1....1.... ■....1..n11oo 100 100 100 100 100 100 100 .I_a11....1....1.... ■.... ■....1....1....1....1.... -....111.0.■.■. \■... ■..■..■... ■..■..■... ■..■..■... ■..■.l■■■■ ■■,VENN■11.. ■..■..■.■. ■..■..■..■...■..■..■...■111....1....1....1....1....101.100 100 10010...■..■...■..■..11..■...■..■...■..■..11 ..■.L ==JL. x10.....1....1....1....1.....!-•111....1....1....1....1.... ■■■■■ ■■..■..■...■..■ .■■■'0'0F-a!'0■■1'0'0J■■'0.■■1'0'01■■'0.■■1'0'01■■'0.■■1'0'01■■'0.■■1'0 E1■■'0.■111'0'0.11■■ 01.01■■ ■■NEN ■■N■■ ■■N■■ ■■N■■ ■■N■■ ■■■■11 ■■11■■ ■■N■■ ■■N■■ ■■N■■ ■■N■■ ■■N■■.■■■■ 0111■ ■■NEN ■■N■■ ■■N■■ ■■N■■'0■■■1' ■■■1■ ■■NEN 0,111■ ■■■■II ■■N■■ ■■■■■ ■■\.■ ■1110, ■■■■N ■■NEN ■■■■N ■■NEN [[-7■ ■■NEN ■■■■N'0111■ ■■■■N ■■NEN MENEM I■■■.......1■■. ■■■■■ ■! 1■. !■■0101 !I■■!.■■!! !!■■!.■■!! !!■■!.■■!! !!■■!.■■!! II!■■■.■Ll! !!11■!.■■!! !!■■!.■■!! 0101■■. !■■0101 !■■■■ ■■■■11 ■r!■■ ■■■■■ ■■■■■ ■■■0101 !■■■■ ■■■■■ 11■■■■ ■■■■■ ■■■■■ ■■■■! 0101■■. !■■0101 0101■■. !■11!! 0101■■. !■■!■ ■■■■II ■■■■■ ■■■■■ ■■■■■ 0101■■. !■!■! 0101■■. !moon ■■■■■ ■!' •9 ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■. ■■■■■ ■■■■. ■■■■■■Yvi■■!■■■■Lv■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■1■■■■■....■Mol■■■■BIN NIBB■■■■■■■■■■■■■■■■■■■■■■■■n1 BL■■■■■■■■■■■■■■■■■■■■■■■■■■■■L..■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■..■■u■■■■■■■■■■lN NIBnINBBIN NIBBI NBBIN N■■■■■■■■■■■■■■■■IBE NIBBN r "I NIBBI NBIBN NIBBI NBIBN NIBBI NBIBN NIBBI NBIBN NIBB! ■..■. ■10 ■■ ....1.■.... L=.■■ ....1....1....1....1....1....1 .......101.■11.. ■..■..■... ■..■..■..■ ...■..■..■ ...■11.■..■ ...■■ VENN■ ...■■ VENN■ ...■■ .�...■ ...■..■..■ ...■..■..■ ...■..■..■ l■.■..■..■ ...■■ ■■■■11 ...■..■..■ ...■..■..■ ..■...■■.■ ..■...■... ■10..10 VENN■ ..■...■..■ ..■...■..■ ..■...■..■ ..■...■..■ - -.!!.! !nNl. 0101!.■ ■■Laro...C- n!!■■ ■.■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■!. ■SANT ..rr..■■�_ -.01.01 01.01■■ ■■■■■ ■■■■■ ■■■0; ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■L1■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ Lf■.! 01.01!. 0101!.! !.!_II ■0101.! 01.01!. 0101!.! 01.01!. 0101.!! 01.01!. 0101.!! 01.01!! .I •w! 01.01!. 0101.!! 01.01!. 0101.!! 01.01!. 0101.!! 01.01!. 0101.!! 01.01!. ■■■■■■Ld■■■■■■■■■■■■■■!N!!!■.■V..7[.9■..l■■0000■■■■■o■■■■■■■■■11■lIIJl.■■!!!!■■!■■r]!..■■■■■■■Eml.=9.w1!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!■1f■.!■■!!!!■!e!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!■■l•II'J■■!!!!■■.!■■!!!■1100 0011■■ 0011■■■■■■N 0000■ ELME■■■■■■■■■■■■■■■■■■■■■0.00000.000111■■■■■■0011■■ .■■!!!E!0.. !■■!!!!■■!.■■!!!!■■!.■■!!!!■■!.!.!. uiC==�l•I!!■■!.■■!■!!11■!.■■!!!!■■!.■■!!!!L■. G==MG..!■.!■BW.u!........N....I....N....I....N..N......N..n1 p7■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■:ill r■■!!!!■■.!■■!! ■■■■.!■!■! ■■■■.!■!■! ■■■■! ■[: ■■0101■■.!■!■!!!■■.!■!■!!!■■.!■!■!!!■■. ■■!■!!!■■■ ......I 1! HUM MENEM.■■1"011"110"011"110"011"110"011"011■ \MAMM MENEM MENEM MENEM MENEM MENEM MENEM MEMI'111 ENON MENEM MENEM MENEM MENEM MENEM MMwMM MENEM Mmor9 liimom MENEM MENEM MENEM MENEM MENEM MENE■'01■:0.11 :1110"011"110"■11■ nolo■■ no■■■ nolo■■ Som■no !l�a0 ■■mon MOORE MOORE MOORE MOORE MENEM MENEM n■■■■ no■■■n ....110 r■ ...■..■... ■..■..■... ■..■..■... ■..■..■... ■..■..■... ■..■.1111!.. ■..■■.■... ■..■■.■..■...■..■..■..ail!■..■...■..■..■...■..■..■...■..■.f■...■.1oL•l r•1..11....1....1....1....1....1.... ■ P...... ■.... ■....1....1....1....1.... ■...... .I: ■.... ■.... ■.... ■.... ■.... ■.... ■.... ■.... ■.... - -■..■..P%f■ ...■..■... ■..■■.■..■ ■..■■.■..■ ■..■..■... ■..■..■..■ ■..■■ \.11.. ■..■■.■..■■..■■.■..■...■■.■..■...C:II:t■..■...■■.■..■...■■.■..■...■■.■.101■...■■.■o+0. c4..1.........1.........1.........1 ..1.Cu u.............1.........1.........■....■.L��1.........1.........1.........1....■....■....■ ■■■■■ ■■■■! ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■FF.II:■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■!'all n■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■R'0 ■■■■■ ■■■F:1 n■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■.... ...■wll it■■1'0■1■■■'0■■1"1■■.'0■1■"1■■.'0■1■"1■■'0 ■111"111!'0111"1■■.'0■1■"1■■.'0■1■"1■■.'0■1■"1■■. .■■0101 0!880 088!0 0!880.■■!! 0!880.■■!! 0!880.■■!! 0!880.■■!! 0!880.■■!! 1.11 EVES!! 0!880.■■!! 0101■■.088!0 0101■■.!■EMIT Y!■■.088!0 0101■■.088!0 0101■■.088!0 0101■■a !moon MENEM 107MEM MENEM MENEM 0101■■.088!0!!0■.!■■m■ ■■■-■ ill■mo ■■■■o mommm o!■■.08!80 0101■■.08!80 0!880 08!80 0101■■.08!80 0101■■.08!80 0101■■.08!80 0101■■.08!80 0101■■. .■■0101 0101■■■ !■EE■ ME■EM !BEEN ME■EM !BEEN ME■EM !BEEN ME■EM !BEEN ME■EM !BEEN 1•SIP! !Soon MOORE MOMMI mmm■■ !■EE■ ME■EM BEAU! U■■■ !■EE■ ME■EM MENEM MENEM MENEM 0!001088!0 !!■I:y L' JI■!! 0101■■.088!0 !ammo mommm ommom momma Room■ ammo■ ■ommo mommm om■■■ ■■■■■ ■■■■■ ■■■II MENEM ■EEE! 01100 00■1■ 0111■ 00■1■ 0111■ nommo■ MOORE ■o■■■ ■■■■. .11111111. 1111111111.111111111.111111111.111111111.111111111.11111[:1111.111111111.11111111. 111111111....10'1 1111.111111111.111111111.111111111111111111■.111111111.111111111.111111111.111111111.11..............111.111111111.1111111111 .11111111.111111111.111111111.111111111.111111111. - mommo mmom■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■ W 11111■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ I............MMM MMMMM MMMMM MM■■M m!!.! 01.01!. 0101!.! 01.01!. 0101!.! 01.01!. 0101!.! 01.01!. 0101.!! 01.01!. 0101.!! !.MIM I...N o...N o...N o...N o...N o...N o...N o...N o...N o...0 momma ommo■ ■ommo ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■BBE■■Mllrl.■■!!!!■■!.■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■. L■■!!!!■■.!■mom momma ■ommo mommm ommom momma mmom■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ill■l l■l■l ■NONE MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM .■■!!!!■■.!■■!!!!■■!.■■!!!!■■!.■■!!!!■■!.■■!!!!■■!.■■!!!!■■!.■■!!lF.IIRl.■■!!!!■■!.■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■. LMiii ■■■■■ ■■mmm mmmmm mm■mm mmmmm mommm ommoo mmol!!!■■.!■■!!!!■■.!■■!!!!■■.!■!■!!■000 mo■o■ M■Mom ■■■■■ ■1I1■ no■■■■ ■1I1■ no■■■■ ■1I1■ no■■■■ ■1I1■ no■■■■ no■■■■ !■■■no ■o■■! no■■■■ ■momm ommom moomm ommom mommo moomm ommom moomm .mmol.■■MM MrY■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■u■1■ Prl9 r1M71'0.1191 1M�!! mommo moomm ommom mommo moomm .mmol nommo nommo nommo moomm .mmol om1MM MMMMM !■1■"011!'0■1■'0 ■011!'0■1■"011!'0■1■"011!'0■1■"011! ■..■■.■..■ ...■■.■..■ ■..■■.■..■ ■..■■.■..■ ■..■■.■..■ ■..■■.■..■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■....■....■....■....■....■....■....■....1....■..-_. ■.1:1.11 1 ILll I'■11"i.1_n1•,11.I:i1G.■..■...■■.■..■...■..■..■...■..■..■...■..■..■..■...■..■..■...■...■.■...■..■..■...■..■..■...■..■..■...■..■..■...■..■ -■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■.. ■..■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■SSSS ■■■■■ ■■■■■ SSSS■ ■■■■■ ■■■■..■..■ ...■..■..■ ..■■■ .■■.■ ...■. ■■..■ ...■..■..■ ..■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■..■." ■■■■■ ■■■■■ l■■1"1■■!■■■1"1■■'0■■■1"1■■'0■■■1"1■■'0■■■1"1■■'0■■■1"1■■'0■moommommonommonommonoommommommommommommommoommoommommonommo■mmommommommommommoommoommommmmmmommom...........MENEEMEMEMEN......................................................................................■■.'0■1■"011! .■■!!!!■■. !88!!!!881.■■!!!!■■!.■■!!!!■■!.■■!!!!■■!.■■!!!!■■! MMMMM MMMMM MM■!!!!■■! LBB!!!!BBL!■■!!!!■■.!■■!!!!■■.!■■!!!!■ME MEMEM MEN■■ III■I ■!8810 !■■!!!!■■.!■MEN NEN..........■.!■■!!!lBBL l■■ll...........................................................■.............................I MENEM LBB!! 0101■■. !■■0101 0101■■! LBB!! 0101■■! LBB!! 0101■■! LBB!! 0101■■! LBB!! 0101■■! LBB!! 0101■■!.■■mo mommm ommom momma ■ommo mommm ommo■ ■ommo ■ommo ■mmom !■■0101 !!8810 !■■0101 !!8810 !■mo■ ommom mommm mommm mommm mo■■m oommo mommm ommom mommm mmoom moo■. !■■0101 !!8810 !■!■! !!8810 !■!■! 0101■■! .■!■! !!8810 !■!■! !!8810 !■!■! !!8810 !■!■! !!8810 !■!■! !!8810 0000■■■ ■■0000■ ■0000■■ ■■0000■ 0000■■■ ■■0000■ 0000■■■ ■■0000■ 0000■■■ ■■0000■ 0000■■■ ■■0000■ 0000■■■ ■■0000■ ■■MRM !.!!!.!!.! 01.01!.0101!.! 01.01!.0101!.! 01.01!.0101!.! 01.01!. !■■■■ ■■■■■ ■■■■■ ■■■■■ ■Som■ ■momm Som.! MRM.. ■...■ ■.■MN ■N..! 01.01!.0101!.! ■.... ■...■ ■...■ ■0000■■ ■■0000■ ■00.00■ ■■0000■ ■00.00■ ■■0000■ ■00.00■ ■■0000■ ■00.00■ ■■0000■ ■00.00■ ■■0000■ ■00.00■ ■■0000■ ■00.00■ ■■■■0 - ■..■..■..■ ...■..■... ■..■■.■... ■..■..■... ■..■..■... ■..■..■... ■..■..■... ■..■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■■■■■■...■..■..■...■..■..■...■..■..■...■■ ■■■.■...■..■..■...■■ ■■■■■ ■■■■■.■..■ ■■■■■ SSSS■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■SSSS ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■SSSS ■■■■■ 01.01■■ 0,010,01■ ■■■■■ ■■■■■ LBB■■ ■■■■■ LBB■■ ■■■■■ LBB■■ ■■■■■ LBB■■ ■■■■■ ■0,0,0,0, 0,0,0,0,0, 0,■■No mmoom mommm mommm oommo ■ommo ■ommo 0,0,0,0,0, 0,0,0,0,0, 0,mm■■ ■■■■■ ■■BBL ■■■■■ ■■BBL ■■■■0, 0,0,0,0,0, 0,0,0,mm mmomm.........0, MEN■N MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENE. .■■0101 0101■■. !88!! !!��l.■■!! !!■■!.■■!! !!■■!.■■!! !!■■!.■■!! !!■■!.■■!! !!■■!.■■!! 0101■■! mommm momo. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 0101■■. !■■0101 !lBBL !■■0101 0101■■..........I......!■■. mommm mommm mommm momm. ■■■0101 0101■■. !■!■! 0101■■. !8!8! !!88! .■!■! 0101■■. !■!■! !lBBL !■!■! 0101■■. !■!■! 0101■■. !■!■! 0101■■. .1I1■ no■■■! ■1I1■ no■■■■ ■1I1■ no■■■■ ■1I1■ no■■■■ ■1I1■ no■■■■ ■1I1■ no■■■■ ■1I1■ no■■1■.1I1■ ■■11■ ■OMEN MOORE mono■ n■■■■ no■■■■ no■■■■ no■■■■ no■■■■ ■1■1■ no■■■■ no■■■■ no■■■■ no■■■■ ■111■ no■■■■ no■■■■ WOMEN MOORE momom M111■ MENEM MENEM MENEM MENEM MM11■ no■■■■ no■o■■ no■■■■ no■o■■ no■■■■ no■o■■ no■■■■ no■o■■ no■■■■ no■o■■ no■■■■ no■o■■ no■■■■ no■o■■ no■■■■ ................................................................�........■.�.............................................. ........■.......................................................................................................I _■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■n■ ■ ■1■1■no■■■■no■■■■no■■■■MOORE■OMEN MOORE■111■■111■■111■■ 1■■111■■111■■■ ■■111■■111■■111■■111■■111■■111■■111■■111■■111■■111■■1110010111■■111■■111■■111■■111■■111■■11■■■111■■111■■111■ :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: kO ' • [ .0.-.-.-.0.0.-.-.-.00.0.0.0.0..0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0................. iii.............■.......m::::::ii.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0.0.-.-.-.0 -■■■■■ Soo ■1■■■ Soo ■■■■■ Soo ■■■■■ Soo ■■■■■ Soo ■■■■■ Soo ■■■■■ ■ ■ ■■..■...■..■..■...■.I ■. ■. 0..r. ■.I...■ ■..■.■■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■ Soo ■■■■■ Soo ■■■■■ ■■■■■ ■■■■■ ■■■■■ Soo ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■..■...■..■ nommommommommommommonommommommommommommommoommommoommonnommommoom■ ■ '01■ mommommommonommonl■■!. ■..I'0'JOSE MENEM mom...................................................................................................................................■MEMO■'01■■0 mommommommommommoommoommommommommo■■ommommoommommommommommo■ommo■■ ■ lMEMEMEMEMM!■■■■■■!■I n .■■■1011==\■moommmom.......................................................................................................................■■■■■!■■!!■■■■■!■■!!■■■ ■■■!! ■!■■■ !■■!! ■!■■!.■■!! ■!■■!.■■!! ■■■■■ ■■■!■!!■■■ ■■■!■!!■■■...... ■■M ■ M!■■■ ■■■!■!!■■■ ■■■!■ l ' I■ ■■■ 1' ■■.1■ ■■■!! ■!■■.!■■!! ■!■■.!■■!! ■!■■.!■■!! ■!■■.!■■!! ■!■■.!■■!! ■!■■.!■■!! ■!■■.!■■!! ■!■■.!■!■! ■!■■.!■!■! ■!■■! .■!■! ■!■■.!■!■! ■!■■■ ■■!■■!!■■■ ■■!■■!!■■■ ■■!■■!!■■■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■■■■■ ■■■■■ ■.!!!......n.....■.! ■■■0101 SEEN! SSSS■ l...E ■■■■■ ■■■■■ ■■mom momma mm■mm ommmo mommm omMEN EM■■■ SSSS........■1■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ ■111■ no■■■■ ■111■ ■111■ ■111■ ■SSSS ■■■0101 SSSS■ l......... - ■■I■l ■■■■I ■ll■■ ■■I■l l■ll■ ■■■I■ ll■■■ ■I■ll ■■■ll...........■... ■..■..II... ■..■■ ■■l■■ ■■I■l l■I.1 ■■11■ ll■■■ ■I■ll ■■■■I ■ll■■ ■■ll■ ■■■I■ ll■■■ ■Ill■ ■I■■■ ■■■■.........11 ■■ll■ ■■ll■ ■■ll■ ■■ll■ ■■ll■ ■■ll■ ■■ll■ ■■ll■ ■■ll■ IIIII ■■ll■ ■■ll■ ■■ll■ ■■ll■ ■■ll■ I■ll■ ■■ll■.■I............ ■■■■■ ■■■■■ mmmmm m......... mommm ommo■ ommo■ ommo■ ■ommo mommm ommom momma mmoom momma mommm ommoo mmom.........o■ MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM ■■MEN MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM mommm MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENE. ■■■1'0'01■■! ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1..........on....'0 ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■M ENEEM EMEME NEE1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■1■■'01■■■ ■■1■■'01■■■ ■■1■■'01■■..........M ENEM'0'0MEME MEMEM MEMEM ■■1■■'01■■■ ■■■■no■■■■■no■■■■■■■■■■■■■■■■■■■no■■■no■■■■■■■■■no■■■■■■■■■■■■■■■■■■■■AMMO■MOMM000000■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■no■■■■■■■■■■ommommmmmmmmmmmmmm■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■I■1111111IMMMMMM■omommoommmoomm■■■■■■■■■o • 1 •,.........■■■■■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■■.■...■..■..■...■..■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...................■...■..■..■...■..■..■...■..■..■...■..■..■..■...■..■..■...■...■.■...■..■..■...■..■..■...■..■..■...■..■..■...■..■® -.........■ ...■..■... ■..■..■... ■..■..■... ■..■..■... ■..■..■... ■..■II.■... ■..■..■... ■..■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■■ ■■■■■ ■■I■l l■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ..■...■..■ ..■...■... ■.■...■..■ ..■...■..■ ..■...■..■ .VENN ............... ■■■■■ ■■■■! ■■■■■ ■■■■■ ■■■L7 A■■■'0.■■1'0'01■■'0.■■107 Ao■■'0.■■1'0'01■■'0.■■11■:'■■■.■■■.......■■■...........'0■■■.......■■■.'0■■!7 ■1■■. ■■■■■ ■■■■. ■■■■■ ■■■■. ■■■■■ ■■■■. ■■■■■ ■■■■■ ■■N■■ ■■■■■ ■■■■■ ■■■■■■■■1'0'01■■.'0■■1'0'01■■.'0■■1'0'01■■.'0■1■............■■■....mo m1■■.'0■1■'0'01■■.'0■1■'0'01■■.'0■1■■ NEEM■ ■■■■■ E■■■■ ■■■■■0101■■.■■■■■SSSS■.■■La FM■■!SSSS■■■■■■.■■L'JLV■■!SSSS■SSSS■.■■.J■:=RJ!■■■■■■■■■■■■■■■■■■■■!■Era E11■■■■■■■■■.■■EraE7■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■■MM1wq■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■0101■L]DR■!!■■■■■■■■■■■■■■■[1111■■■■■■.■!■!■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ .SEEN ■■!E■ !SEEN ■moon ■■■n. Ym■■■ ■■■■■ ■■■■■ ■..rt, ME■■■ ■■■■■ ■■■■■ ■■■/1■ rum■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■r9 L'J■■. ■■■■■ ■■■■■ !■■r9 L'J■■. ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ !■MI Gil ■■■■■ ■■■■■ ■■■■■ ■■■■! ■■■■■ ■■■■■ ■■■10:1 Fi■!! ■■■■■ ■■■■■ 0101■■. E91ii! ■■■■■ .■!■! ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ illi■ ■illi ■■■■■ MENEM MR.I7■ ■■■■! !!!!!.!!NY NAI!!l...........!!ra N1MMM MMMMM MM!!!.lRI! l-Ifa�l.!l....... MENEM MENEM NONrLI G..■■ MENE■ MENE■ ■■■rel Gi!!.0101!!! 0101!!! 0101!!! 0101!!! 0101!!! 0101!!! 0101!!! !!!!!..r'Ir.l 0101!!! 0101!!! !.!!E MEMEM EMEME MEMS! !!!LJ Yll.! 0101!!! 0101!!! 0101!!! 0710.0! 0101!!! 0101!!! 0101!!! 0101!!! !.NOM INE!! 0101!!! 0101!!! 0101!!! 0101!!! 0101!!! - -■..■..r=.l■ ...■■ ■■■■■ ■■■L n..................r7 Gi... ■..■..■... ■.II■..�!11'J. ■..■..■... ■..■..■..■...lr FY..■...■..■..■...l. FY..■...■..■..■...■..■..■...■..................17110'L.■..■...■..■..■...■..■..■...■. ■■Err h1■■■ ■■■■■ ■■■■■ VENN■ l'JL'J..■...■'.....■..■..■...■..■..■...■..■..■...■..■..■...■..■ ■■■0101 1.=JO MMMOM MOMMO MMMLIJ LM■■■ ■■■0101 0101■■■ ■■■La 11■■■ ■■■0101 0101■■■ ■■II!! ■CII71! ■■■0101 0101■■■ ■■■0101 ■ommo ■o■F.:0. r■■■■ ■■■0101 0101■■■ ■■■F7 r■■■■ ■■■0101 0101■■■ ■■■0101 0101■■■ ■■■0101 0101■■■ ■■■0101 0101■■■ ■■x11■ 0101■■■ ■■■0101 0101■■m ommom momma ■ommo mmol? G7mom momma ommom momma lNFJI! 0101■■■ .��■■ 0101■■■ ■■!■■ 0101■■■ ■■!■■ 0101■■■ ■■!■■ 0101■■■ ■■!■■ 0101■■■ ■■■1'0 Mo.V! ■■■1'0'01■■'0 ■■■!y F0.!■■'0 ■■■1'0'01■■'0 ■■■!4 F.!■■'0 ■■■1'0'01■■'0.I'01'0'0Wu:�'0 ■■■1'0'01■■'0 ■■■1'0'01■■■ ■■■M7l7■■■ ■■■1'0'01■■■ ■■■!7 !7■■■ ■■■1'0'0 .............. ■■■1'0'01■■■ ■■■1'0'01■■■ ■■ihMN'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0 MMnil L.■1'0'01■■■ ■■1■'0 mom■■ G"MEN MENEM V•! om MENEM MENEM momom MOORE MOORE MOORE MOORE MOORE MOORE .EMEM n.'JE MEMEM MEMEM EMEL9!SSSS ■■■S■ ■M■■0 M..L•J 2,1111■ ■111■ ■■■■■.11■■■ ■511{.■ ■■■■■ ■■■ ...............F. L'lmmm MENEM MENEM MEM.:. L'Jlmom MENEM 0101■■■ ■■■0101 0101■■■ ■■■No mommm ommo■ ommom m■01111 mommm ommo■ ommom mommm mmom■ ■■■■■ mmos I Film■■ ■■■■■ ■■■■■ o!■■■ 1!013! 0101■■■ .EN■■ 0101■■■ ■■!■■ 0101■■■ ■■!■■ 0101■■■ ■■!■■ 0101■■■ ■■!■■ 0101■■■ ■..■..I�.l■ .■.■..■... ■..■..■... ■..■..■... ■..■..■... ■..■..■... l..■. 1.11!1 ■..■..■...■..■.........■...................■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ ...■..■..■ .■.I...■..■ ...■..■..■ ...■..■..■ ...■..■..'. Y..■..■..■ ..■...■..■ Rf L' J■ VENN. ■'.1...■..■ ..■...■..■ ..■...■..■ ..■...■..■ ..■...■..■ - -■..■..■..■.■.■..■...■..■..■...■..■..■...■..■..■...■..■..■...n!!!l.■11..■..■..■...■..■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■...■..■..■......■..■...■..■..■...■..■..■...■..■..■...■..■..■..■...■..■.. M...■...■ ...■..■..■...■..■..■...■..■..■...■..■..■...■..■ mmmmm mm; am mmmmm mmmmm mmmom momm'0 ■■■1'0'01■■'0 ■■■1'0'01■■'0 ■■■1'0'01■■'0 II■■1'0'0111■'0 ■■■1'0'01■■'0 ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■momm.mmol.mmol oommm mmmom mommm.mmol o1■■■ ■■■I!'0'01■■■ ■■■1'0'01■■0 MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM Eaton MENEM nolon MENEM MENEM MENEM MENEM ME■EN M■NEN MEN■N ■■■0101 ■0111 ■■■0101 mommm mommm mommm .............................. L......II...................................................I MEMEM MEMEM MEMEM MEMEM ■■■!!!!■■. ■■■0101 ■..mom ■■■1■■ ■..mono ■■■■■ ■..mom momma mm■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■. ■■■■■!!■■■ .c 7o■ ■omom m.!■■!!■■. ■■!■■!!■■. ■■!■■!!■■. ■■!■■!!■■. ■■■0101 !!i V m ommo■ ■ommo mommm oommo mommm ommom momma mmoom momma mmo■I. ■■■0101 ■011■■ ■■■0101 0101■■■ ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■11! 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■!■■ 0101■■. SSSS■ 0101■■■ .'In■■ p■■. ■■!■■ 0101■■. ■■!■■ 0101■■. ■■!■■ 0101■■. ■■!■■ 0101■■. mmmmm mm UIIM mmmmm mmmmm oommo mommm oommo ommom mommm mmmmm mmmmm mmmm ; mmmmo mmllom mom!! MENEM.........■...........................Il.0101!!! l.... !!l......0 NEENE EMENE ENNEE ■■■■■ ■■■1■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■0101.0101!!! 01.01!.0101!!! 01.01!.0101!!!!!!!■ ■■■■■ ■■■■■ ■..G■■ ■■■■■ ■■■■■ ■■■■■ ■ammo mmmmo ommom ommom momma ommom - ■..■■.■.■■___1C �L-�--fC�-.r---■---m•....\!..-__■___71G__JI_-.........■■................G_-_1___■.--.L..J■-._■_ 1n ]r_.___.G__JL.-_._._.G..JG__.■_-.■G��J,�m�7..-_lG.__1G.-JI_._.-...L�=Yn-..■■■■■■■■■■■Mmmmmmmmmmmm.■......■...0,n.............■..■..■...■..■..■...■..■..■...■..■ mommm o!= ,d■ ■■m■■ ■0000_ 0m■N...... ■.VENN■..1 ■101010_0■ ■■0!! 0101■■■.m■■■ ■_llll■ ■■■No mmomo mmm.m m.mmm mmoo■ !mom. I■■0111mm■ ■oma■_ 0101■_■. ■_■MEM MEMEM MEMEM MEMEM MEMEM MEMEM E■mom lMENN EN■11! 0101■■. ■■■0101 0101■■. ■■I■■ ■!■■. ■■■!. L..d ..-0.G .-7[_ ._■_..0.G-- ][--. ■_-_7 ■■r■■ 0101■■. ■■!■■ 0101■■. ■■!■■ 0101■■. ■■!■■ 0101■■. ■■!■■ 0101■■. ■■■1'0'01013!■■■.E...-__ ..■■■!■■l.................•.mmmm_m■■■mmE.-__--.---_.._--.----..----.-____•MEMENEE'01■■■...-___________________-__---_ '•••---•■.N..■■■m1E'01■■■MENEM■■ollM.■■■O■■IMElr00 MENEM MENEM MENEM MENEM MENEM.................... ....... _=1 _--.. ■.■Nl.::!!!!■■! ■■■!!!!■■! ■■■!!!!■■M Els- --- _a■!!!■■! ■■■!!!!■■! ■■■!!!!■■. ■■■0101 111.-=-•.• -__-.101■t!!!■■. ■■■!!!!mom momma ■omm■ l■m■■ iii■N NNNNN Nmmmi Nl.mmm mmmmm mmmm!!!■■. ■■!.!!.!!■...■..■... o- -..l. ■■!■! ml.v _---..-_-. 1V 7I Io■■E MENET Io■■E I■o■I Io■■E I ................... ■..■..2,1.■ Erol loo o..■ Soo o..■ Soo o..■ ■■■■■ ■■.■l ■..o o■■■ 10.11■ ■■■■..■...■..■..■..■...■..■..■.M■...■..■...■..■..■...■..■..■...■..■..■...■..■..■......■..■ ■0.o no.■...■. ■SEEM ■■■■■ 0111■■ 1111■ ■■■■■..■■■ ■■.-_ _ -•- -..■ ■■■■■ SSSS■ ■•-■■ ■■..■..■...■■■■ ■■■■■ USES■ ■.■...■..■..■...■..■ -■..■..L•YI■ ■1■■■ Soo ■■■■■ Soo SSSS■ Soo ■..■.loo ■..■..■■.. ■..■.loo ■..■.loo ■..■.loo loo loo loo loo loo loo loo loo loo loo loo loo lou loo ■..■■ loo loo.■..■...■..■..■...■..■..■...■■ 1......■...■..■ loo loo ■.w..loo loo loo loo loo loo loo loo loo ■■■1'0'01MMI MMMMM MMMMM MMMM'0'01■■'0 ■■■1'0'01■■'0 ■■■1'0'01■■'0 ■■■1'0'01■■'0 ■■■1'0'01■■'0 ■■■1'0'01■■'0 ■■■1'0'01■■■ ■■■1'0'01■■■ SEEN'0'01■■■■■■1'0'0..............................................11..........................................'01■■■ ■■1"'01■■■ ■■1■'0'01■■'0 ■ I.■'0'01■■■ ■■1■'0'01■■■ ■■1■'0'01■■■ ■■1■'0'01■■■ ■■1■'0'01■■■ .■■0101 0101 111E !■■0101 !!■■!.■■!! !!■■!.■■!! !!■■!.■■!! !!■■!.■■!! !!.■!.■■!! !!■■!.■■!! !!■■!.■■!! 0101■■. !■■0101 0101■■. !■■.■ ■NEEM ■NEEM ■■■■. ■■■■■ ■■■■. ■■■■■ ■■■■. ■■■■■ ■■■■. ■■■■■ ■■■■. ■■.■■ ■■■■. ■■■■■ ■■■■. ■■■■■ ■■■■. ■■■■■ ■■■■. !■■0101 0101■■. !■0101! 0101■■. !■!■! 0101■■! .2,Y■! 0101■■. !■!■! 0101■■. !■!■! 0101■■. !■!■! 0101■■. !■!■! 0101■■. ■■■■■ ■Ld■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■n ■■■■■■■■■!!!■■.!■■!!!!■■.!■■!!!!■■.!■■!!!!■■.!■■■■!!■■.!■■11■!!■■.!■■!!!!■■.!■■!!!!■■. ■■■■■ ■■■■■ illi■ illi■ ■illi ■■■■■ ■■■■■ illi■ ■72,■■ 1111■ 1111■ 1111■ ■■■■■ ■illi ■■■■■ ■illi ■■■■■ ■■■■■ .0101.! 10.13. 0101!!! !!!!!.!!.! !!!!!.!!.! !!!!!.!!.! !!!!!.!!.! !..!!.!!.! !!!!!.!!.! !!!!!.!!.! 01.01!. 0101!!! 01.01!. !!!.l.......... no■■■■ ■■■■■ no■■■■ ■■■■■ ■■■■■ ■■■■■ no■■■■ ■■■■■ ■■■■■ ■■m0■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ momo. 0101!!! 01.01!. 0101!!! 01.01!. 0101!!! 01.01!. 0101!!! 0101!!! ■ •'0101 01.01!. 0101!!! 01.01!. 0101!!! 01.01!. !!.!l ............... - -■■■■■ ■2,.J■ ■1■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■I■l ■■■■I ■ll■■ ■■I■l l■ll■ ■■■I■ ll■■■ ■I■ll ■■■■l l■!a■.■..■...■\.................... ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■.-.■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■..■..■..■...■..■ momma ■r.nm mmmmm mmmmm mmmmm mommm..........................l............................................I■ME MENEM MENEM MENEM ■OMEN MENEM MENEM MENEM MENEM MENEM MEW 110 M■0101■ ■0101■1. MENEM mommm MOORE ■OMEN MOORE ■OMEN MOORE ■OMEN MOORE mom o■ MOORE MENEM MENEM M_=Mm MENEM MENEM ■o...............mmm ■■■■■ ■■■■0, 0,0,0,0,■ ■■■1'0'0!�J! ■■■1'0 nommen mmmom mommm..........................1' JPN..............■..........................[7!n I.............................................19E.........L.0000 00000 00000 00000 0ommo moomm ommom mommo mmoom mo■nn om........ MENNE N��................M ENNEN MEMEM OMMEM MENEM MENEM NONE■ ■■■0101 I6-i�1 I■■oI Io■■I E■■oI Io■■I E■■oI Io■■I E■■oI Io■■I E■■oI Irdrl E■■oI Io■■I E■■oI Io■■I E■■oI Io■■E I■■oI Io■■E ILN FA Io■■E I■■oI Io■■E I■■.............................FJf.7o■■E I■■oI \o■■E I■■oI Io■■E I■■oI Io■■E I■■oI Io■■E I■■oI Io■■E IEY E9Io■■E I■o■I Io■■I 1•• ■I Io■■E I■o■I Io■■E I■o■I Io■■E I■o■I MEMEM MEMEM MEMS■ IIIA .r".JI VIII VIII VIII VIII VIII VIII VIII VIII VIII .0.x07 VIII VIII VIII VIII VIII VIII VIII VIII .1'.013 Ytl VIII VIII VIII VIII VIII VIII VIII VIII VIII ..■x10'1■..■ VIII 1.■..■ VIII VIII VIII VIII VIII VIII VIII VIII ..l Y.7 VIII VIII IIII.............■.. VIII VIII���i■■■■■■............III- -■..■..1..1■ (IIII (IIII VIII (IIII VIII (IIII VIII (IIII VIII .l9nrl VIII (IIII VIII (IIII VIII (IIII ■■■■■ ■■■■■ ■Lrnl ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ lIi'-1I VIII (IIII \IIII (IIII (IIII (IIII (IIII (IIII (IIII (IIII (IIII II+J nY VIII (IIII (IIII I••Il (IIII IIII■............III (IIII (IIII (IIII !TEES MENNE N.�I! ■■■1'0'01■■'0 ■■■1'0'01■■'0 ■■■1'0'01■■'0 ■■■1'0'01■■'0 ■■■1'0'0[.06.0 ■■■1'0'01■■'0 ■■■1'0'01■■'0 ■■■1'0'01■■■ ■■■1'0'01■■■ 0R1G7 mmol■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■FEE 71■■■ ■■■1'0 01\1■■ ■■N1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ ■■7 [7'01■■■ ■■1■'0'01■■'0 1070■'0'01■■■ ■■1■'0'01■■■ ■■1■'0 ■Mo■■ ■■1■'0'01■■■ ■■1■'0'01■■■ MENEM o■�•J.■■■01010101■■!■■■01010101■■!■■■01010101■■!■■■01010101■■!■■■0101lLYLNommommommamommmommo■ommommomma■ommomommmoK4LII0101■■0■0000■■■0000■no■0000■■■0000■no■0000■■■0000■no■0000■■■0000■no■■F.7!7!■■.■■■��!l!�•J l 11I_VV NLE1 MEI II�'.I..■t„10._/0.N■■■01010101■■.■■■01010101■■.![PJ Li MENEM MOORE MOORE 011 ■M MOORE MOORE MENEM MENEM........MMMMMMMMMMMMMMMMM MMMMM MLmwo ■■mo■ ommom momma mommm ommom momma mommm ommo■ ommo■ or"JIi11 mommm ommom momma ■ommo mommm ommom momma mommm om4 Fin 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■10.0.0! ■■MMM MMMMM MM■■O L'JL'iA ►JrMM iiWY� YY�iJ ■■■0101 0101■■. ■■■0101 !!■■.IiI LN 0101■■. ■■mom MOORE 011■■ MOORE MOORE MOORS ■■!■! 0101■■. ■■!mo mommm oommo mommm .0101.! !R:l. 0101!!! !!!!!.!!.! ■■■■■ ■■■■■ ■■■■!.!!.! !!!!!.!!.! ■LLJ■■ ■■■■■ ■■■■■ ■0101.! !!!!!.!!.! !!!■■ ■■■■■ ■■■■■ ■L9Li 01.01!. 0101!!! 01.01!. 0101!!! !!■■■ ■■■.■ ■■■■■ ■■■■■ ■.■■■ 11.10■ ■.■■. ■■■.■ 0111■ ■■■.! 01.01!. 0101!!! 01.01!. 0101!!! 01.01!. 0101!!! 01.01!. !!J nn ■■■■■ ■■■■■ ■■■■■ ■J■!! 01.01!. 0101!!! 01.01!. !!■■■ 110..E MEMS■ 110..E ■■■■■ ■■■■■ - 0....re=■ 0...00.0...00.0...00.0..■ 00■ 0...00.0...00.0..■ 00■ 0..■ 00■ 0...00■ 0...00■ 0...00■ 0...00■ 0...00■ 0...00■ 0...00■ 0.......■ 0..■ 0..■.....00■.........■.........■..�.. 00■ 00.00. ■ :�... 00■ 0...00■.........■ 00■ 00■ 00■ 00■ ■■■0101 !l.7. ■■■0101 0101■■! ■■■0101 0101■■! ■■■0101 0101■■! ■■■0101 0101■■! ■■■0101 0101■■! ■■■0101 0101■■! ■■■0101 0101■■! ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■MM MMMMM MMMMM MMMMM MMMMM MMMMM 0101■■. ■■■0101 0101■■. ■■!■! 0101■■. ■■!■! 0101■■! ..�■! 0101■■. ■■!■! 0101■■. ■■!■! l.... ■■!■! 0101■■. ■■!■! 0101■■. ■■■1'0'0.:111 00000 00000 ommom mommo moomm ommom moomm ommom mommo moomm ommoo moomm ommom moomm ommom moomm............... nommen mmmom momma ■■■1'0'01■■■ ■■■1'0'01■■■ ■■■1'0'01■■■ 111.............moon ■OMEN MOORE ■OMEN MOORE ■OMEN MENEM MENEM MENEM MOORE MENEM MENEM nomon l.�Mm MOORE MOORE ■OMEN MENEM I.... MMMMM MMMMM MMMMM MMMMM 0000000■■■ommommommommommommo■ommommommommommommommoommommommommommommommoommomommoomm000m.............................o■■■!!!!■■.■■■!!!!■■.■■■!!!!■■.■■■!!!!■■.■■■!!!!■■.■■■!!!!■■.■■■!!!!■■.■■■!!!!■■.■■■!!!!■■.■■!■!!!■■.■■!■!!!■■!■._■!!!■■.■■!■!!!■■.■■!■!!!■■.■■!■■ommommommoommom 1 0... loo loo 100 0...100 0...100 0...100 0...100 0...100 0...100 0... loo loo loo loo loo loo loo loo loo loo 0..■ 00.00■ ..... 00■ loo loo loo loo loo loo loo loo 100 ....■ 00.00■ ..... 00. 00. loo loo loo loo loo loo ....■ 00.00■ -00.00■ loo 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ 00■ 0..■ loo loo loo loo loo loo loo 100 00■ 0..■ 0..■ ..... loo loo loo loo loo loo loo loo loo loo loo 100 ....■ 00.00■ ..... 00■ 00■ 00■ 00■ 00■ ..... Soo loo loo loo loo nommo mmool oommo nommen mmmom mommm........................................................................... nommo mmoom mommo nommo nommo moomm .mmol .mmol ommom mommo mmoom mommo nommo nommo nommo mmoom mommm mmmom mommo nommo ommom mommo moomm .mmol noomm omomm ommom mommo moomm ommoo moomm oommo moomm .mmol ommo. ■■■!!!!■■. ■■■!!lmoom mommm moomm......................................................■..........................I■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■I.........m oommo mommm ommom mommm ■■■!!!!■■. ■■■!!!!■■. ■■!■!!!■■. ■■!■! MOORE MOORE MOORE mmoo■ MOORE MOORE ■o■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ Viii■ ■■■■■ ■■■■■ lmmmm mmmmm mmmmm mmmmm mmoom momo■ 0■000 000■0 0■000 000■0 0■mom moo■o ■■omm omm■■ o■mom moo■o ■■moo mmo■o ■■moo mm........ ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. no■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ommom moll! ■!■■l !■■!■ !■ill !■!■M ME■EM ■■■ll MOORE MOORE MENEM MENEM MENEM MM■MMM■MMM MMMMM MMMMM MMMMM MMMMM mmmm■ ■mmm■ ■■■■■ ■■■■■ ■■■■■ ■...■....■ ■...■....■ ■...■....■ ■...■....■ ■...■....■ ■...■....■ ■.... ■...■ ■.... ■...■ ■.... ■I!.! ■.... ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■M■ NEMER 0101!!! 01.01!. 0101!!! 01.01!. 0101!!! 01.01!. 0101!!! 01.01!. 0101!!! 01.01!. 0101!!! 01.01!. 0101!!! 0101!!! .l.M■ ■EMEM ■EME■ ■EMEM ■OMM■ ■.0101. 0101!!! 01.01!. 0101!!! 01.01!. - .........■ loo 100 0...00■ 0..■ 00■ 0..l l00 0..■ ll" 0..l00■ 0..■ 00■ 0..■ loo loo loo loo loo loo loo loo loo loo loo loo loo 100....■ 00.00■ 00.00■....■ 00■ 0..■ 00■ 0..■ 00■ 00■ 00■ 00■ 00■ 00■ 00■ loo loo loo loo loo loo loo loo momma ■ommo ■ommo mmoo■..... Emmmm ommom momma mommm oommo mommm ommom momma mommm ommoo mmoom mommm ommom momma ■ommo ommoo mmoom momma mmoom mommm mommm omm■■ ■ommo mommm ommom mommm oommo mommm ommom INNER 0■000 INNER 0■000 INNER 0■000 INNER 0■000 ■o■o■ 0■000 ■o■o■ MENEM ■o■o■ MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENE. ■■■0101 0101■■. ■■■0101 0101■■! ■■■0101 0101■■! ■■■0101 0101■■! ■■■0101 0101■■! ■■■0101 0101■■! ■■■0101 0101■■! ■■■0101 0101■■! ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. ■■■0101 0101■■. MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM ■■!■! ■omom mommm mommm oommo ■ommo mommm ommom .................................................. x..................................................................................................................................................................................................................................... _.......................................................................................................................................................................................................................iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii .■■■■..■....■■■..■■■..■■■..■■■..■■■..■■■..■■■..■■■..■■■..■■■..■■■..■■■..■■■..■■■..■■■■■■■■..■■■■■■■■..■■■■■■■■..■■■■■■■■..■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■l■■■ ■■■■■ ■■■■■ ■!■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■■....................................................................!................................................... ...................................................................................................................................................................................................................................................... �� -1111-11.1■1111-11.1-1111-11.1-1111-11.1-1111-11.1-1111-11.1-1111-11.1-1111-11.1-1111-11..■1111-11..■1111-11..■1111-:11■. �... ■■r,x■■.111■.1.1■.111■.1.1■.111■.1.1■.111■.1.11111-11.1■1111-11.1■11■r-.»�-.r•■c. ■7nae ■nn1111.1■11.1-11.1-11.1-11.1■11.1-■ .....................................................................................l.,,. 0,,,.0!0,.0,,. 0,,,.0!0,.0,,. !,Roll .. ...011.!'II',.l,,.!l.,,.l,,.!l.,,.l,,.!l.,,............................... iii..l:2'.l['C\1.1.7„7\1.7,.■1111................................■ ................moon ■■■■■ ■■■■■.."0,■!. -■1,-.-!■ r\,e� 778"01 x MI -.-■■"0"0 "0-J1•!i. 7x7■■ ■t97 "0■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■.I 00 .. ■■. ! I==7■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■" ■■!■!!.!!. !!■.!!.■■. ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■.■■. ■■.■■ ■ .■■■■■■■■■■■■■■■ommommomm■mmmm ME=11\11.■■li?FILMII\L�n._J.II.Y 111110111■■1'..1:700\1■='�1■■n.IIY.'.\■■■■Moo.,.1111.,. ,..1111.,.1111.,. ,..1111.,.1111.,.►�'M■ I■■■.',■■.1■■■■■■■■■■■■■■■■■■■■■■mo■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■11■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■..■■■■.■■■..■■■.■■■■..■■■.■l:•LL L'�■■L �L�LI►tel■J.]�J�I U11- LL■■u►L'3Iu�Jlu■.=11.■l■J■E--E■■■-■■E--E■■■-■■E--E■■■...............................■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E...............'!...............................■■■..■■■.■■■■..■■■■■■ll■■ ■■■■■■■■■.0,0000.0,0,■00000,■0000■0,■■■■■..-r_l-nnr■■r9..n�r.-S-r■.-t•-n..nn■■_1-]n■-n■■■11x....-■..■■■■■■■■■...No...No...No...No...No...No...No...No...No...No...No...No...No...No...No...No...No...■■■■.■■0000.No...No...No...No...No...No...No...on...No...No...00. mommommommommommoommoommonommomm=.,=!1011111 mo11r'11101LVI1■-J■Ii am Ell 011illon_J:3,uMI�=not ln0■EI=0■17MME MOMM■■omm■■omm■■omm■■omm■■omm■■omm■■omm■■omm■■omm■■omm■■omm■momom■omm■■omm■■omm■■omm■■omm■■omm■■■■rl■■omm■■omm■Momm■Momm■MM■■M Momm■MM■■M Mommo ommon Momm■MM■■M Mommo .!!.! !.!!. !!!.! !.!!! 0000■ 0000■ ■!=l': L=LT► ■0LJ\ JL.TLJ LL!]: III ZJJ1J■ III ■]� W ONLr,M MLLE! lLlomm omm.! !.!!.0,00.0! !.!!.0,00.0! !.!!.0,00.0! !.!!.0,00.0! !.!!.0,00.0! !.!!.0,00.0! !.!!.0,00.0! !.!!.0,00.0! !.!!.0,00.0! !.0!110 !mom! !.!!. !!00! !.!!. !!00! !.!!. !!00! !.!!! .00,00! !.!!. !!00! !moon M .................mommon..MMMMMMPr�r\.......\�..7�.....................................\....................................................................................................'/............................................................. ■■■E--E■■■.■■E--........--E■■.■■�.III,\■■'..I••Yr1■'=\.■■■E-■E■■-■■■E-■E■■-■■■E-■E■■-■■■E-■■11■■-■■E-■E■■■-■■E-■E■■■-■■E-■E■■■-■■E-■E■■■-■■E-■E■■■-■■E-■E■■■-■■E-■E■■■-■■E-■E■■■-■■E-■E■■■-■■E-■E■■■-■■E-■E■■■-■■E-■E■■■-■E■-■E■■■.■E■--E■■.■■E■--E■■■.■E■--E■■. -■■■E-■E■■■-■■E-..........■■■■■■1�.J1T■■LG■YTa �r\'.L:■■■■■■■■.........■■-■■■E-■E■■-■■■E-■EL■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■II■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ..Immommooloommo.10ono.1MENE.1NEEM.........................................................17..................................................................................................ll.............................................................. .!!.!lnG:\■!!!.!!.!!!.!!.!!.!!!■■■■■r■■■■■■■■■n■■■■■■■■■■■!!!.!!.!n■.■■■■■■■■■■■n....n0,.lL1.!!!.!!.!!.■■■■■■■■■■■■■.■■....■...■■....■...■■....■...■■....■...■■....■...■■....■...■■....■...■■■'!..■...■■....■...■■....■...■■....1...11...1.■.:■■....■...■■■■■■ .■■■■ R❑r■ ■■■■■ ■■■■■ ■■■■■ ■■■■■.....7P7■■ ■■■■! !.!!!.!!.! !.■■■ ■r1.n ■■■■■ ■■■■! !■!!!.■■mono ■■■.l ■■■■r 717.■■ ■■■■■ ■■■■■ ■■■■! ■.0111111.0! !.!!. !!!.! !.!!. !!!.! !.!!. !!!.! !.!!. !!!.! !.!!. !!!.! !.!!. !!!.! n!!. !!!.! !.!!. !!!.! !.!!. !!.!! !.!!. !!.!! !.!!! .00,00! !.!!. !!.!! !.!!! 1111..`I..1111.11111111. moo 1111E ahitt ■■■E- -E■■- ■■■E- -■■■■ ■!•761-E■■- ■■■■■ 1.111110..0.11 -■■EC ,.00.111■ .1111.00,,.11 -■■.- -E■■■ -■■■■ moo moo moo moo moo moo moo moo moo moo moo moo ■.1■■■ moo moo moo moo moo moo moo moo ■EO ■ moo moo moo -■■■■■■■■9■■■■■■■■■■■■■■■■■■■■■■■■■.:ir1000,.0000.0,0,.00000,.0000.0,0,.00000,.r1Y.0,.00000,.0000.0,0,.00000,.0000.0,0,.00001■■■■E]Ir.■■■■■■■■aHF]■■■5.9............■:.w�........9:........eaR......-■......00!90,0000.0,0,.00■x0,0000.0,■110000..............................■MENEM MENEM■■■aM MENEM■00.00■■■0000■ moomm ori■10 00000 00000 00000 00000 ■!!o at••71n.11.n n.11n.11.n n.11n.L91:J 001110 momon ■■■■■ ■■■■■ 00111■ loom\ 111111. n11.n nl:I C•A,.0,0,1,0,! t1.11. 00.19117,..110. 715100 ■■■■■ 0011117■ 0011100 G:LRIMM 0011■r 1111100 001114 \11100 0011!"1) 0071100!!■■■ 1011100 00111. ]1.100 0011100 00111 r 1111■ ■■■EM 1.011,. .10101,.,..011.0 n1.1n,..LIME .!!.!!h-7. !!!.! lmomm oommo mmomm.!!.L iGi!!.!!.!!.!!!.!!.! n.11n..11=9 n.11n.11.n n.11a ■■■■■ ■■■■■ Lq■■! i i.1■■ 0011100 00x,"310011.11 X111■ ■.:1 x010, ■111■ I MI 00000 hili 00000 Cr7 Y0,.■ ■■■■ _ Lr1.n n.1.� L]1.n,..010,E F'71.n..11. LII`:.,.,..011.0 JIK7.n,..011.0001.1_ IIYJ11. 001..► 7.'2111,. .01x1,..011.0 n1.1n,..LIME !Immo !L'�J, non non non non non 1,0,! non non non 0,.0,,0,.,.'7.! non non non non non O7,.r 71W,,. l,,.! !!r F� !„\711 J.,,. !,1 113 l.,,. t',11: �.! l.,,ME1illN! l.,,. C;J Fl! 0,.,,:s [.J,.! 0,.,r= 1,17,.! 0,.0,x:1 rY,.! Il.,,.:llx.! 0,.,n 9 007.! l.,,. l,., ILII,,. l,ME= Ld„! „!!! l.,,. l,.,! l.,,! ..■1111,... 1111-11.1-1111-11.1-1111e e1r.111111-11.1-1111■ ...1■ ..ueu 1111.11.1.1111.11.1.1111■ n. . hm11■ 11...11. ■111._.1.11.1.1 ■L:J Lr 11.1■ :,.,.1111.1■ ■::[7-11.1■ !.!111111.. 111■ 11111 r711-11■!1 c a11- n.1.1 e1r..111111■ Y t ..11111■ 11.11: 1.a.1■ 11.11 1:J.1- 11:....11■ 11.1.1111. -1111■11Vr■..111..1111111...1111111Ea.1111111-11.1-1111-11.1-■mTa11.1-1111- 110111111■■.1.11111,.."0011■1111-111e.11■n, o.1.111..n...1■nur11..1.1..,n■....1.1ear..■.1■r.:11-11x,.,.111-11■\.xv11..1.1>1r1111.1■nca1111.1011.1aIr7.1■11vsed■11 ■11:-11.1011.1-11.1- .,,.!!l`Y'7, l,,.! 0,.0,,0,.0,,.! 0,.0,,0,.0,,.! 0,,,,0,.0,,.0! 0,.0,,0,.0,,.! 0,.0,,0,.0,,,! 0,.0,,0,.0,,.! 0,.0,,0,.0,,.! l.,,. 0,,11.0! 11 ,,. l,,.! l.�Y L'J!„all J.!!!!017 nn!.MEM �71n,! l.,,. 0,1!00,.!!!.MEN LJI r'J.....6;................... x1111. 11.1.'11W.! 0,111! 112110, 0,1110, 0,110 11,1110, ■111: 11100 !!► 1..111..111...... .11.00 lr.7■ 00.1.00 1.1100.11.00 1.1100.11.00 0011100.11.00 1.1100.11.00 1.1100.11100 1.1100.11.00 00.1100.11.00 00.11. !!L.! 10,0,x!0,.00011.00 00.00 00. !!0,1,11 !.!!. !0,r 0000 00.11..MI!■■ M■■MO.•_•I W! !.!!. f7 L' J! 00.11.1 L'J!.! 00.16 L'9!.! 00.1,.7 R7l.r 00.11. -Ilm.! 00.11!'J 0011.! 00.11. !!.!W IFi:I!!. !!.!w 8:11.00 .17:00 00.11.001.100 00.1100 .11.001.►l. 00.1.00!.1100.11.001.1100.11.00 0011100.11.00!.1100.11.00!.1100.111001.1100.11.00 00.1100.11.00 00.11.001.10011.11.0011.001.100.0011.1100.11■ E!m om MENEM ■:loon MENEM mol.on MENEM ME ■EM MENEM MENEM NONE,. nommo mmoL7 0011■1100■■■■ --Il.mm mmmml9rroo mmomm omon� ILrl1111.n•� LJ!!! .00,1100.11.001.100 00.1100 ■■■E- -Ew9■ .■■E- -E■■. ■■■E- -E■■. ■■■E- ■■■■. ■■■E- -E■■. ■■■E- -E■■. ■■■■- -E■■. ■■■E- -E■■. ■■■E- -E■■■ .■■1\.Ill■■■ .■■0,..l■.■ .■■ll1.l■■■ .■■...1■■■ .11■l..l■■■ .■I■0,..l■■■ .■ ■0,..l■■■ ■■■0,..l■■■ .■■0,..l■■■ .■■0,'I .l■■■ .11■l..l■■■ ..■0,..l■■■ .■l■.Ill■■■ .■l■. ■l■11 ■■0,...l■■■ .■l■..l■■. ®.0000.0,0,\_'.. 0,.■....0000..0000....0000..0000...000000..0000....0000..0000....0000..000000...0000..0000....0000..0000.0,0,.0000.0,00001. 11.0000..0000....00...0000.11..0000..0000.. mmmmmmllmmmmmmmmmml.m■mm■■■m■mm■mm■mm.m■mm■mm■■m■mm■■mm■mm■mmm■mmm..11..Em.0000.0,■■....0000..■.000,1..0000..■.■...00.0,.00"10,0,.0000.■■.■...0000. ■■■■■ ■n■.■ ==-a[ --7.. -9.---00"0•.00!.■■ ■■■.1.11.11.111....■ 1■■■■ ■!■■■ ■■■■! ■■■■! ■■■■■ ■■■■■ ■■■■■ ■■■■111■■■■ ■■■ll ■■■■■ ■■■ml! ■1"0l --.r ■0,!.00,0,. 111l.!!.!l. 111.11.11. !.1.11.11. M!!.!!.!l. 111.11.11. !!!a■ ■■■■■ ■II■■■ ■.11.11.11.11.11.111.11.11.11 .■111117■!!.!■■ ■■■■■ ■■■■■ .!!.! lL00.■ ■!■■■ ■M■■M ■■■.11.111.!!.0, ■■■■! 11.0x,. 11rla..G ..rr..G7n===1=== 7[===.___.:==711:=7r::.l.. :'7c:9 ]1.7s....d r■■.111.11.111 ■■.0,.x11711 =!C"017..1.■■ 1■■■■ moon 00.00 ■■11■ M■■■■ ■■11■ ■11■■ ■■11■ ■■■11■ ■■■■■ ■II■■■ ■■■■■ III ■■11■ ■■■■■ 11■■■■ 11.11 0011■ ■■J■!!.!l. 11.111.111 .,,.!!"I/1.l,==---------------------.l1!!.!!.!!!!!!.!!.l00000,!1.ill.,,.!l.,,l.,,.!l.,,.l,,.[IIO,111YYx trio.JYYIJUY[n nJ1111oo�r[Ilff7lmnnr rrlrr.MOFF-f"0.■r0l.1l.!!.lnn..!!.,!!!!!I!IiI!IIlnn.n1.n00.000..nu..nn.nn.n.rJ.■!.!!!!!.!!!.!!! 1111-■x.11111x1,. x01,..0,. 1..11 ..1111111....--_ ...1111111....•--c ________-- ■0,1■.1■1111-111■11.11...1.1..1....1.1.111...1.1..1..1..11,.,.11111.rr..NY_=-a-•�,..011EL..1.lnnn nnrr■-x717,.,.::117.1 ■wow!1111,.::::11........ 11..7 in 11.1-11.1- -1111--n.n■ 1111-11■111111...1111111...1111111...--_ -....■1170....1. u... 11■111111...1.1 ■■.o s_ -.1111■.-_---____ ..1.. ■.. __ _-----.,v- ■.1.111,... ■■.....11-11.1■ ■. ....1.1..111 ■no■.1:11:1..1 ■11■1111..o r-�-.■..■.11111..1! ao- nor ■■.,....1.1.1111..111 ......Irrll In ommom momma mmomm ommon ommom momma nommo 0,.,,l ,,,.! 0,.,,l 11MMMM MMME.....! 0,.,,l.,,.! l.,,. l,,.! l.,.. C• = ............ •............... •....•......■■■■ ■. •..... _ --__- _____-.....Li.---------^..,..117Lr....■.■ ■■-----aY-11................ ••................ Bake r ......G77.!!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!r!!.!!.!!!.!!.!l........................!!No.............MIL■■■1■■■........!.�_.................-_..■■■■■■■■■■■r--•.•.-.mmmmmm■■Emr-71._.11..-:..1.111...---..s•ME■lli.---.--_-■ MENEM MENEM mom on .11.11,. 7■,.1.11.111.11.11.111.11.11.111.11.11.111,.1.11.111.11.11.111.11.11.111.11.11.11.111.11.11.,.1.11.11. 111.11.ln1.111.11.11.111.11111.111.11.11.111.1111.111.11.11.111.,...1x.111.11.11.111.,..w1.!!!.!!.!!.!!.!!l.l.='.x.0!!.0!!0, nr.•11.11. 11.111.1■. ......e-7■ 1111...1111111...1111111...1111111...111 1111-11.1-,.x1111■111111...1111111...1.1..11111.1■ ..11- ■.1.11111-11..1■ 1111-11.1■ 1111-11.1■ 1111-11.1■ 11■1111.1■ ..1.. 11.1■ 11.11-..1.1..11-11.1■ 1111- -u.1■ 1111■ ...1■ ...1-11.1■ ■1111.1.1. ■■--...1.1.1111..1.1 -.0000.0, 0,.■L■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 111.1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111m 1111■ 1111m m111■ 1111m 1111■ 1111.:111111111■ 1111■ 1111■ 1111■ !■.000, 0,.00000,.■.. ■ 111.11..:111........11■ -■E■- -E■■■ -■E■- .11.00lh-7n NON.! 00.1100.11.00 00.1100.11.00 00.1100.11.00 00.1100 .11.00 00.1100.117.00 00.1100.11.00 00.1100.11.00 00.11.0011.00 00.11.00001.00 00.11.0011.00 00.1.1.0011.00 00.11.0011.00 00111.0011.00 00.11. !!!mo mmomm oommo mmol. 0011.00 00.111.0011.00 00.11. 0011.00 lIn!!.lmomm ommom moomm o.!!. n!.!! 00.1100 .l--! 00.11.001.100 00.11.001.100 00.11.001.100 001■■■ 01.01■1 ■ MENEM ■EI Ion MENEM Mommo momon moomm momon moomm momon moomm moomm nomon ■OLIMM nomon momon moomm momon ■■■!■ OMEN■ ■■■!■ on Mon ■■■!■ OMEN■ moonl0 mom.0 0.11. !!!.n ommom momma no!l. 0011.00 00.11.0011.00 00.11.0011.00 00.1\1.0011.00 00.11.0011.00 001.11.0011.00 00.11.001.100 00.11..1.100 00.1100 .100100 00.11.001.100 00.11.001.100 00.11.001.100 00.11.001.100 ■ MENEM 06'.41 MENEM MENEM MENEM MENEM MENEM MENEM MENEM noME!MENEM MENEMSEOU■MENE■ MENEM MENEM MENEM MENEM MENEM MENEM on mom............MOInM...■ MENEM MENEM no mom MENEM MENEM MENEM 0 moon mom.■MENEM MENEM MOOR!MENEM MENEM■ENEM 11 moon MENEM MENEM MENEM MENEM MENEM MENEM 1.nn....1.1MMENEMME 1.1MMENEMME 1.1MMENEMME 1.1MMEN.1... 1111.n1■'n■.111■.1111111■■.1111111■■.1111111..111: h911-11.1-11nx 11■111111...1111111...1.1..11111.1■..11-11.1■11■1111..1■11■1111..■..■1111.1011■1111.1.11.11■11.111.11 ■.1.1 1111-11.1,.1111-11..■1111--:...■1111-11.1■■1111..1.1■1111..11111 v■11.1011.1011.1011.1011.1011.1011.1011.1011 -1111. mo■ 1111-11.1-1111-11.1-1111-11.1-1111-1111 Lu11■ ■.11111■,.■ ■.1111111■ ■.1111111■ 11.1■ 1111■ 11.1■ xa a11 ■.1.1 1111-11Eau 1111-11.1■ 1111-!.1.1 1111-11.1■ 11■1111.1■ ..11111.1■ 11■1111.1x 1111-11.1■ 1111- -u.1■ 1111-11.1■ 11.1-11.1■ ■1111..111 ■111111.1■ 11.1-11.1■ 11.1-11.1■ 11.1-11.1■ 11.1-11.1■ nommo of r■im mmmmm mmmmm mmmmm mmMEl.,,.! 0,.0,,0,.0,,.! 0,.,r= PON non MEMO! non non non non non non non xdH1! l.,,. l,,.! l.L:111� l,,.! l.,,. l,,.!'.017x1.0 l,,.! l.,,. l,,.{ 1117,. l,,.! l.,,.!„x'100„a l,,.! l.,,.!„n 111.,,. l,,.! l.,,. l,.,! l.,,! .,.,! l.,,! „■d l.,,. l,.,! l.,,...o...o.....o...o.....o.. ono... .!!.! !.'.r. 0011.00 00.1100.!!.! !.!!0, .................!!7 x7!.00 00.1100 .!l.LI MENS■ MENEE MEN...................... x4 x7! !.!!. !!!.! l.Gll■ 0011.■ !.!!. !!!.! !9L' J.0011.■ !.!!. !!!.! a "1!. !!!.! !.!!. !111:1 C!J!l. 0011.00 00.11.0011.00".11. 0011.00 00.11. !!.!! l.11x F■.100 00.1100 .1!.00 00.11.001.100 00.11.001.100 00.11.001.100 00.11.001.100 00.11. .11.00■r.9.0011.0000.1100.11.0000.1100.11.0000.1100.11.0000.1'+11!.!l.......Ml00.11.!■.w..wl11...w.A1,.!.0011.0000.11.!7G7!00.11.0011.00!.r■IK 0011.0000.11.0011.00CilE7oommommommammom.�!9l.0011.0000.11.!!!l�x.11.1111.0000.11.0011.00x11,7!.0011■!00.11. 001.100 !.!!Y ,.in 00.1100 .lr!00.11. 001.10000.11. 001■10000.11.001.10000.11.001.100■-!!. ■■■E- -L-i■ .■■E- -E■■. ■■■E- -E■■. ■■■E- -E■■. ■■■E- -E■■tl ■n■E- -E■■. ■■■E- •��fl l 19.11! 1,11■■ ■ :1.11■'I. I'.9l7■ .■■E- -E■■■ L! Gi- -E■■■ .■■E--E..IC• .■■E- -E■■■ .■■E- iira■ .■■E- -E■■■ .■■E■ Y iim 111.1 l■■■■ ■mold L'•J■■■ 11■■E- -E■■■ .■■E- ^1,.:111111.1 ■E■■■ .■.111.11.•1 !NEE■- -E■■. ■■; -■ -E■■■ .■E■- -E■■■ .■E■- -E■■■ .■E■- -E■■■ .■E■- -E■■■ - m■mm■ mr-7m mmmmm mmmmm mOMMO MMOOM MOMMO MMOMM ■MMM■ OMMO� 1VMMM MMM000,.0000.0, m■m00. rrrr. x,.00.0, rErr. rrrM■...........'.xE0,:.0000.0,0000.0, 0,.G.ILL 0,0000.0,:.0000.0,0000.0, F!J■..0,0000.0,:.0000.:0000.. �Lr■.0,0000.0,:.0000.0,0000!-J "Mmm:.000.0, :.0000.0,0000.0,111 L'J■.0,0000.0,:.0000. ■■.000,:.0000:! [:1.000, 0,.00000, .00�-0,:.0000. ■■.000,:.0000. ■■.000,:.0000. ■■.000,:.0000. ■■.000,:.0000. momma n.!!o nlomm ommom momma nommo ommon ommom momma mmorr.moom momma mmomm ommon omomm ommom momma mmomm ommom moot. G1m11! 00.11. 0011.00 l.L11^s 0011.00 00.11.0011.00.01,."07.0011.00 00.11.0011.. NLA!. 0011.00 00.1Em omori7.lmoo n,7■■■ ■■■■■ ■■■■■ N\1,■■ ■■■■■ ■■■■■ ■■■■■ ■■■!X 1r■■■ OMMOM MO.!! 00.11.001.100 00.1100 ■00■00■ ■■000000 ■00■00■ ■■000000 ■00■00■ ■■00000 .!!.00 00.11. 0011.00 00.1100.11.00 00.1100.11.00 00.1100.11.00 00.1100.11.00 00.1100.11.00 00.1100.11.00 00.1100.11.00 00.11. !!!.! !.!!. \'7.1,■ !.!!. !!!.! 0,.87E 0011.00 00.11.0011.00 F.rL' 1.0011.00 00.11. !!!.0!'0,"x0,!. 0011.00 00.11.0011.1 r:111.00111.00 00.11.0011.00 111.111. 0011.00 00.11.001.100 00.11'rfi MEN.100 00.1100 .1.100 00.11.001.100 00.11.001.100 00.11.001.100 00.11.001.100 00.11. ...o..o......o..........................................................................................■ l.,,. l,,.! MEI,. l,,.! l.,,. l,,.! rr,,. l,,.! l.,,. 0,,,.a 70,.,. l,,.! l.,,. !„rll L'i,,. ■a',.! l.,,. l,,.! :Ix7J,. !!!.! !.!!! !!.!! l.,,� nil.,! l.,,! ,,.,! l.,,. l,.,! l.,,■ l,.,! l.,,. l,.,! !.!!! !Immo !.!!! -■■,E■ -■■■■ ■ll" ■■■.. ■■■.- ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■.. ■■■.. ■■■.. ■■■■l ■■■■■ ■ll■■ ■■■■l ■Ell■ ■■■■■ ll■■■ ■■■ll ■■,■l l■■■■ ■Ell■ ■,Loll ■ll■■ ■■■l- ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. !Immo ■.!!! !Immo!.!!!!!!.! nommo mm.o..ommm EM.0.................................................o............ommo mm.o..ommo no..! ■ommo mm..!!.!!!!!lo..0..11....!!.!!!!Immo ■ommo mm..!!.!!! ooklmo ■.!!!!!lo..o.......! ■o.....o...o......!! ■o......!! ■o.....o...o.....o....!!!!!.!! ■o.....o....!!. 11111. 11111111111111■ ■■■■■ 11■..■■■.■■.■ ■.■■■.■■.■ ■.■■■.■■.■ ■.■■■.■■.■ ■.■■■ ■■■■■!.!l.11111.11111.11111.11111.11111■!!!.!!.!!.!!!.!!.!!. !!!.!!.!!. !!!7!!.!!. !■■■■ ■■■■■ ■■■■■ ■.!l.11111.11111111111.11111.11111.11111.11111. .11■■ ■■11 ■11■■ ■■11■ ■11■■ ■■11■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ 00-00■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■11■ ■11■■ ■■11■ ■11■■ ■■11■ ■11■■ ■■11■ ■11■■ ■■11■ ■11■■ ■■11■ ■■■17■ 00.00■■ ■■■■■ ■■■■■ ■■■.■ ■■■■■ 11.11 ■■11■ 11.11 ■■11■ 1.100 ■■11■ 11.11 ■■11■ 11.11 ■■11■ 11.11 ■■11■ 11.11 ■■11■ ■■■.. ■■■.■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■MOMM ■■MOM MORE■ ■■MOM MORE■ ■■MOM MENEM MENEM MENEM ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■L11 -1=l! ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■la, ■■la, - -......... 0,.■.0, 0,.00000,.0000.0, 0,.00000,.0000.0, 0,.00000,.0000.0, 0,.00000,.0000.0, 0,.00000,.0000.0, 0,.00000,.0000.0, 0,.00000,.0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,000019 99.9' IILa■ L 11!0000! IPJYdI. d 111100.0,00.000, 0,.0000.0,00.000, 0,.00000,.■.000, 0,.0000.0,00.000, 0,.0000.0,00.000, 0,.0000.0,00.000, 0,.00............ momma nomm■ ■■!mo mmomm momom moomm...........moon moomm momon moomm momon moomm Immon Mommo momon Mommm Momm■ Mommm Momm■ Mommm Momm■ Mommm Momm■ Mommm Momm■ Mommm Momm■ Mommm Momm■ Mommm Momm■ Mommm ommon Mommm Momm■ Mom" 110"7 Ammon LIY�aJ ■iJmm no■on o■000 no -on E■EEN no■on o■000 no■on o■000 no -on MENEM MENEM MENEM MENEM MENE. .11.00 00.11..■... moomm momom moomm...........!!.! 00.1100 .11.00 lO.Om moomm momom momma mmomm ommom moomm ommon nommo mmomm ommom momma nommo nmomm ommom momma mmomm ommon nommo nommo nommo mmomm ommom momma mmoom momma nom!. 010. a 1. No. a!!.! a.l00 Mommo Momm■ Mommo moomm ommon Momm■ Mommo Momm■ OMMEM 00.11.001.100 00.11.001.100 00.11. .!!.! !.!!n moomm MOO.. moomm MOO.. MENEM MENEM n!!.! !.!!! !!!.! !.MEN MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM nom!! III limo! III 000000 MOO.. MOORE MENEM MENEM MENEM MENEM MENEM nomon MOO.. 0.000000 !!.!! !.!!! !!.!! !.!!! 11..........................................................11........11................11........11........11........11........11........11........11........11........11........11........11........11........11........11............................11........11........11.......... _MENEM MENEM moomm MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM moomm MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM momEm MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM !11100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 ■■■mons ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ mmmmm mmmm■ ■!■■! !.!!!.!!.! !.!!!.!!.! !.!!!.!!.! !.!!!.!!.! !.!!!.!!.! !!!!! !!!!! !!!!! !!!!! !!!!! !!!!! l.,,. l,,.! l.,,. 0,,,.l..!!!.!!.. l.,,. l,,.! l.,,. l,,.! l.,,. l,,.! l.,,. l,,.! l.,,. l,,.! l.,,. l,,.! l.,,. l,,.! l.,,. l,,.! l.,,. l,.,! l.,,. l,.,! l.,,! ,,.,! l.,,. l,.,! l.,,. l,.,! l.,,. 0,,.,l ............... .....11... 1111E ■■■11 ■■■.1 ■■■11 ■■■.1 ■■■11 ■■■.1 ■■■11 ■■■.1 ■■■11 ■■■.1 ■■■11 ■■■.1 ■■■11 ■■■.1 ■■■11 ■■■o ■.1.111.11 ■.1.111.1111.1■ 1111■ 11.1■ 11.11 ■.1.111.11 ■.1.111.11 ■.1.111.11 ■.1.111.11 ■.1.111.11 ■.1.111.11 ■.1.111.11 ■.1.1 11.1■ ■.1.1 11.1■ ■.111 11.1■ ■.1.1 11.1■ ■.1.1 11.1■ ■.1.111■■■ ............... -■■mm■ mm■■l ■■mm■ ■■mmm mmm■m m■mmm...■..■......■..■......■..■......■..■......■..■......■..■......■..■......■..■......■. I .. 1 V ..aAl 1... \! !!!.! !.!!! !!!.!!■......■..■......■..■......■..■......■..■......■..■......■..■.....■...■.....■...■.....■...■.....■...■.....■.! !.!!! !!.!! !.!!! -MENO MONE■ .,,.! l.,,, l,,.! lmoom momom moomm..................................................................................... ! .I Ir I ....r 1 ■ •-A............... l.,,. l,,.! l.,,. l,,.! l.,,. l,,.! l.,,. l,,.! l.,,. l,,.! l.,,. l,,.! l.,,. l,.,! l.,,. l,.,! l.,,! ,,.,! l.,,. l,.,! l.,,. 0,,.,l............... 0,.,! l.,,. .BEEN !■E!■ BEEN ■moon momon Mommo MENEM MENEM MENEM MENEM mo■■■ ■M■11■!■■!■■■1 nroon MENEM NONE! t■■m! 00■00 !!■!0 M!!00 00000 000001 r- 01 000 10-1,1...............................................................................................................................■mom mo■■■ ■■■■■ ■■■■■ ■■■■■ 111!111. n1l111l111l111l111l111l111l111l11rnaarollr.717n��7nn1l111l111l111.n11111.n1l111.n1!■--J.11.1■ --i.n1l111.n1l111.n1l111.n1l111.n1l111.n1l111.n1l111.n1l111.n1l111.n1l111! norl111.n1l111.n1l111.n1l111.n1l111. ■■■E--E■■■-■■E--E■■-■■■E--E■■-■■■E--E■■-■■■E--E■■...■.1 (.l LrII'.■1.1.:11'11\.1.1■I............. IVI Y1\Iia■r�...1,r111I IIIhlE--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■E■--E■■■-■E■--E■■-■■E■--E■■■-■E■--E■■■-■E■--E■■■-■E■--E■■■-■E■--E■■■- m■mm■■mm00.0,0000■!!.00000,.0000■!!.00000,.0000■!!.00000,.0000■!!.1110,.0000■!!.00000, a0000■0,!.o mmmmmmmml/mmmx3 a"YYarxmoiaai6l YVam■mm■mm■■mm■mm■■m■■mm■mmm■mm■■mm■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■omom■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■■■mm■ momon moomm moomm MENEM MENEM moomm momon moomm MENEM nomllm MENEM MENEM momon moomm momon moomm momon nomom mlom! M.!!. mlomm moomm moomm moomm Momm■ Mommm moo -O moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moom. 111!lam-11n1l111■111■111■111■111■11mommom 1l111l111l111l111!ly.1111!111.n1l111.n1l111.n1l111.n1l111■11■nommon 111.n1l111.n1l111.n1l111.n1l111.n1l111.n1l111.n1l111.n1l111l.r.al111.n1l111.n1l111.n1l111.n1l111. .!!moron II I!■!!.!■mmol!!!.!■OORE MENEM MENEMMMMrlI.I,!!!!.!■.!!!!!!.!■.!!!!!!.!■.I/!!!!!.!■.!!!■!!.!■.!!!■!!.!■.!!!■!!.!■.!!!■!!.!■ENEM MENEMMENEM I!!.!■.!!!■!!.!■.!!!!!!.!!.!!!!!!.!!.!!!!!!.!!.!!!!!!.!!.!!!!!!.!!.!!!!!.!! 1.MMM!!.!!!.!!!!!='•l boom IMrMl IrMMM!!.!!!.!!!!!.!!!.!!!!!.!!!.!!! •1 • I■■■E--f..l■-■■E--E■■-■■■E--E■■-■■■E--E■■-■■■E--EII■-■■■E--E■■-■■■E--E■■-■■■E--E'I■-■■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■■E--E■■■-■E■--E■■■-■E■--E■■-■l�'J--E■■■-■E■--E■■■-■E■--E■■■-■E■................® -■■■E- -■.7■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■II■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■1.r■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■.... -■E■- -E■■■ MMMmm lrzin !Immo!.!!! MMMom!.!!! MMM.!..... MMM.!!.':!! MMM.!!.!!! MMM.!!.!!! MMM.!......MMM.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!.!!!.!!.!!.!!!.!!!!a.'J!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!! MINI!!.!!. 111!!c❑n 001! 111■ 111■ 111■....■ 11..■....■ n..■....■ 11..■....■ 11..■....■..........■ 11.......■ 11.......■ 11.......■ 11.......■ 11.......■ 11.......■ 11.......■ 11.......■ 11.......■ 11.......■ 11.......■ 11.......■ 11.......■ 11.....1! 111! nG:1! 111.....■ 11.......■ 111.001! 111.001! 111. .■■■■llxl■ !■■■■!moon ■■■■■ ■■■■■ 00.0..0■ 0.0.0.0.■ 0.0.0.0.■ ■II■■■ M■■■■ ■■■■■ M■■■■ ■■■■■ M■■■■!I■■■ M■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ ■■■■M ■■■■■ Mill■ n:.J■ Mill■ ■■■■■ ■■■■M ■■■■■ mill■ Mill■ Mill■ Mill■ Mill■ 110■ moo ■■■■■ ■■■■■ ■■■E -Moo ■■■E -Moo ■■■E- -11■■- ■■■E -Moo ■■■E -Moo ■■■E -.,mom ■■■E -Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo Moo ■■::a -Moo Moo Moo Moo Moo Moo ■.1.. ■■■■■ ■.1.. - -.0000.0, 0,.J■.0,0000.0, aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa 0,'J00000, aaaaa aaaaa aaaaa aaaaa aaaaa 11.00000, aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa .0x,.10, aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa ■■■■■ ■■■■■ ■■■■■ M■■■■■L, imm■■■■. MEN r0,■■■■■■■■■R1,■■■107■.!!.!.!!9!.!!.!11,!!!.0!!.0!.0.0!!!.0!!.0!11,x,.0,.!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!!.!!.!!.!!.!!!.!!.!!.!!!.!!!.LGJ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■!.!!. !!.!!!.!!. .!!.! 00.7■ !!!.. �E'. i■■ ■EIIGI ■■■■■ ■■r71r ■■,.117• M■■■■ II■■cn 7!!.! 0011!!.!!.! H:iP. 7■.!!.. 0,.0\90.!!.! ■.0001!!!!!.! 1,7770,.0 !!!.!l�1.!!lnV ..!!. !!0,8.01 0,.0!!.11^■!!.!!. 0,001 ..!!. l000l..!!.!!!.!!.!!. !!!.!!.!!. !!!.!!.!!. !!!.!!.!!. MMMMM MMMMM MMMMM ■■I■■ ■M■■N MENEM Ef{111!!.!!. !!.!!!.!!. !!.!!!.!!. !!.!!lmomm oommo mmomm ME.n n:n ME.n 7 Lan III 000001 x91\!.,11713 MENEM IINIQ r7ENON F.ICon MEN.! raral non 0,.0x-0', 1,,.! 0,.011!/50,,,.! L'AIE00 non lrUW.!„LV L•7,,.!„Gx u.,,. !, .1117!.,,. ■,,.! DRi,. l,,.! f!R:1,. l,,.! lMEF9r �...! 1...[ ]�..! 1....0,caw! !.,,.0,,,.r 1.,,. 0,,.,!!9„■ l,.,! l.,,! „El! 0,.,,.l,.,! l.,,. l,.,! l.,,. l,.,! l.,,. l,.,! l.,,. ■■■E--1,.7■Moo❑L•J■-■6•]IL1-E■■-11emn -EG.I ■■■E-.E■a11 :l■■E-Y. 11!11 -■■■E-00..7 r!.-■■■ELI-EEA!1■■E--E-1..MooGulrl■-■■E-0,111,.!MornYE■■■-■■6.11x1,■■■..rutMooMoo.11-:■■MooArlo moo-1,11181■■E--E■■L 119E-Moo■LuI:-Moo-■■Er•Redo■00.7001■■■■■■■■■■■■..J■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■Immo■■■■■■■■■■■- -■■■E- -L^ 1■■ ■■■■■ a 1,■■ ■w11h■ ■■■■■ ■■x.11111!..:11000 ■■■GII u■■■■ E.IL■■ ■■■■■ La ram ■■■I- ■■!7L a■■■■ ■■.M-1: ■■■■■ YY Ir.■ ■0....1131. ■■■Ya F.......Iwil z1,■■■-■aILJ• -E■■■ -■■E- SIE•]....... 5119■■ ■■■■■ ■■■:.111 r■■■■ ■■■■l V x1,■■ ■■■■■ ■.1.. ■■■■■ ■■■■r 7 G.■■ ■■■■■ EI Eu■ ■■■■■ ■■■■■ ...1■ -■■■■ -■E■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ....! 0,A..! 0,...!'.1 f.,l.R.111A! l.,,l.,h' SIH l.Ii:11H.,,.r l.,i?II.,,.! ti"IIM,l....! It911l.,,II! !."911 immon mm,-I,M nomon r71Ga. 0,..n !7:119.0011 t•!!!! !!lh.11-0-0-0-0- 00%11141 !10,10, 0,111! 1Aluon MENEM =1[3on MENEM mEO:JIL MENEM NONE*'Mraon MENEM oY7l�l l.,,. 0,...L 7111MEN NONE! [11 GMM MMMMM MEMEM EN -70 00000 00000 00000 000om mommo mmomm ommon ommon ommo. .!!.! !I.■E. 0,000! 11.10! ...IG !000!.1119 ■■x11!.!!.11 !.00,:0,0, .1000! M1 W!!.!!.! x'.0.00, .!!II! ■.LN■,.000! 0,.:811! 0,000! L'.11LL1M !!!.! 0,:x0,,.1. !!!Q7 LL.!!. !!!MILL.!!. lnGI.A !.!!. 0,000! i=IMl. 0,000! ellnl. 0,000! !.l�I1 i!!.! !.!!r 7Gi■! !.!!. lnl Gl !.!!. !!!.!. t•.EE MM■■- 0,y FLM 0,00-■ ■.!!! .L!\! !.!!. !!.!! !.!!. !!.!! !.!!. !!.!! !.!!. !!.!! !.!!. .0000 Ingo Momm.1 LJmn mr. ■1\'100000 00h■IL" 0,.05.1_' 0000'1 ■■■:ill JENNE Falnon MENEM C7 man mm./n nol9h E■ENE 00JFi 00000 !'71.ri7M MENEM M•11 t;.1■ ENEMA =:loom MEMILII =.!!. !!xllJ !.!!. !!!.! ,.010,!x!. !!!.! 01,.0,0,,.!. !!!.! !.!'.JIM A!!.! !.!!L 7LA.! !.!!.lL91.a !.!!. !!!.0 7 R!!. !!.!! rt711. !!.!! !Err! ,.'Inn !.!!. !!.!! !.!!. !!.!! !.!!. !!.!! !.!!. !!.!! !.!!. ■■■E- -L"Ca■ Moo ■MOM ■..IE- -■■■■ ■■Y -I■ 0.1x.0!- ■■■■■ -■■.11 ■■■■■ Li l■■■ ■■■■■ 1.a ■■■ ■■-E■ ■■L'9■ .■■■■ ■■m' .. ■■■■■ ...INE.. ■■■■■ ■ •.1.J■ ■■■x■ L' 7■■■ ■■.,.0,.:.E■■■-■�IL'J Moo Moo 010,0,,. ■■ Moo �Ifm■■ -■■E- Mm!"Jlr -■■E- -.... AFi.E- -E■■■ MRA CA Mm...................1...I.....M -E■■- ■■..- -E■■■ -■E■- -E■■■ -■E■- -E■■■ -■E■- -E■■■ -......... - .0000.0, 0011■ 001■ ■ 0,00000, ■■!I■0,..... NEL. 11.11■ ■■■r0,■ ■■■■11 n1a ■!I■■■ ■■■■■ ■■■■■ ■■11.0, 0,.0000■.0000.0, 0,.■1.0,0000.0, 00.110,0000.0, 0,.1100.0,0000.0, 0,.0000. ,.111 ■■■■■ ■■■1!■ 001■ n1■.u1■ 001■ rn1■ 001■ ■■.'L ■■■■■ ■...L'....0, 0,.0000.0,\'9 r- 0,.0000.0,0000.".G'0,■.0,00.000, f1L'9.0,00.000, 0,.00000, trona 0,.0000.0,00.000, 0,.0000.0,00.000, 0,.0000.0,00.000, 0,.0000.0,00.000, 0,.0000. .!!.! !I. ■.. 0,000! ■!!!! ■!n0,■! 0,000! .!!n0,! !0011! .!!11! !00011 .!!.! !0,100! .!!.! !.!!! ■■'/■■ a...n o...m ommllo omomm o■I■■■ ■■■■■ ■■:loo mmom■ ■■■■■ ■■o■!1 ■mmom momin■ momma nommo ■!lmmm mmmon ■1!■mm mmmmm mmmllM 0,000! 0,000E,.000! ■ERRE !■!.! 0,000E 0,000! ! 000E 0,000! !. ■!. 0,000! 0,000! .L_J! 0,000E 0,000! 0,000E 0,000! 0,000E 0,000! 0,000E !■■■■ ■III. .!!.! R-7. !000!!!00! ■!n0,■!l000!.!!n0,!!.lMIl.!!r1!!.!lII.!!.!!nl!!!.!!.!!.!!! n l_■!!_0_0_0,. .0!!.0!!.!11. !!!.!!.I!!. ■000!l.110E !!!.!!.!!. !!0,.011!.!!. !!!In! 0000E !!!.!!11!!. !!!.!!11!!. !!!.! ■00011!■ No..............l. ■!!.!!.!!. !!!NE I.!!. !000!!0!!. !l. on 00000 ox.J■ moomm !■■■M ■■■!■!■■■M ■■■!■!■■■M ■■■!■ MENEM MENEM .!!.! ■►�rl !...! ■ moon mom Ion MOORE no!!1! l.I.1! 11.110,11111....0,!lloll ll11■ 0,"0--7 r_-70,--slG:19l--gEII!'Emil! l0,1.0E.'Emil! LEIII'm'EmlmM 0,m...0,m..110,iii.'Emil!l 0,m... 0,...0,!! IEEE MENEM 11IEEE nom.! l.l..!lmon MOORE ■moon nomml 0,.0,.0, l.!!!!!!mm IOMEN MENEM no MEN MENEM MENEM E[�70 MENEM MENEM MENE. 0,...0, 0,....0,...0, 0,.... 0,...0, l.,,. ■■■E- ■"0-7■ -■■■- ■MOM ■■.I...■"0...��al- -E■■I- ■■..- -E■■11 ■■■■.-!Ia-..■..- -■ ■■- ■■■E -Mom. ■■■E--Eln..■G-7-I■■...■-_ _1[_--10,-.. Moo ■OMI: Moo Moro Moo -■■E- -11■■■ -■■E- -1.■■■ -■■E- -E■■I■Moo -E■■■ ■■■E -Moo -■--- ■■■■■ ■■■E-. E■■■ Moo -E-■■ Moo Moo ■Lsa■ Moo Moo Moo Moo Moo Moo Moo Moo Moo ■■■■■ ■■.■■ -:-.. ■ Err■ .l-IYY LYYYL ■■aa:: aYT111 LL.■a aJJTIJ Tull■ ■JI. -Z uucca ■■ ll] Juuxr [r■110,0,0,!1,. null■ ■7781 rllnr..m.7..wunr !.■■7 7.111 C.-...' .-•1.- •--'.00 ...■■ -■■E- -11■■■ -■■E- -1.■■■ -■■E--E■■I■..■E- -E■■. ■■■E■ ■■■■■ -■--- ■■■■■ ■■■■■ . ■■■■ ■■■■■ ■■-■■ Moo Moo ■!-• 1 -Moo Moo Moo Moo Moo Moo Moo Moo Moo ......F.iE'ERR.'E! Room moolon MENEM 11111! Mill !MENEM mmmmll m,..!!!1!!0,.,,.!0,.0,,0,.0,,.!!.!!!!!!.!!.III.l,,.!1,I..!�ur.rllr.�11,.011���Yrr011l.JYY YYLILa l.Jir rrLG�:=LLC_-]xnnr L.•..1=__'L�:.�rG u7'�n�11���WIM7:"7'Com:]{:1112•-7"0x•7RaxME..•ROMq l,.,■0,.,,!,r-7■l.,,■l,.,■l.,,"RNR■l.,,"RNR■l.,,"RNR■l.,,. Eoommo■!Mons.-nnii7R■Rr�---------_ .!r[_____ ------- mmmr-•-----------1,■■■■■■■■,w-....--..,1■■,■■■■,..1111.■..............MEMEMENII0000E 1!llll ll!■■■m_oll_■_!!m■mmomommllm■m■llmn■■■_mllmmmmmmmMENNE00l 1000E t.l.l11rr■Yrrrl n.rrY YYYW!!laa arrrL rl�l�.!"7!!.!!.!!.!!■000E!!.!!!.!!. !!.!!!.!!. !!.!!!.!!. .!!.! !x01!1,. ■000! !■L. -.x0,.! !.!!!.!!.r �.Al.!!�M !.!!! .�.w� A!!!.!!.! !■l.. -.r■. -..x■ ■ \■.0,110 •1,!1..x.1. 11... 11.-■ ■l.•� . . -.!!. !w!__ _____ _____ __'..■ !!!.! ."--s nsssn .. .A.!!.! !.!l........■■■ -■0,1! !.!!. ■00011.... ■..11 ll ■!. !!.!! !.!!! .rat! !.!!. !!.!! ■000E !!.!! !.!!. !!.!! !.!!. !!.!! !.!!. -------- ■■■E--1.■I.-.■E--E■■11■■■E--E■■-■■■E-■1-■■-■■■E--E■■-■■.x--E■■-■■■E--E■■-■.-�.-E■■-■L0,■E--E■■■rte--E■■■-■■E--E■■.-i.--E■■■-■■E--.� ...............■.�..----■■■■■■■■■■■■■.-�..■-■.-�...........rn- ..■■■-■■.-_--_________.-■.........1.'I--E■■■-■E■--E■■■-■E■--E■■■-■E■--E■■■-■E■--E■■■ =■■■■0,■r1r00. ■100.0,0,■000011■0000■0,0,■00000,■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■NONE:m■■■■■■■■■■17■■■■■■■■■.I■■■...........00■...■.■0,.0000. aaaaa 0,o■..aaaaa aaaaa aaaaa aaaaa r1.■.0,0,.0000. aaaaa aaaaa 0,00■.r.x100■■■■■■■■■■■■■■0,■.r_-".-.■■■■■■■■■■■■■0000■.-_-.•-- .■.-V0, aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa 0,...a.......... momma ol.dm mmmmm m■■■!1 ■■■■■ ■■■■■ ■■■■■ ■I■■■■ ■■■■■ ■■■■■ iii■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■I MMLIMM MMMMM MMIIMM MMMMM MEN.! 0,000E !.mom mo■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■000■ ■■■■■ ■1!■■■ ■■■■■ ■■■■■ ■■■■■ ■■mom momm. Mommo nmmmo n■!.a !.!-II 1000! Emo■■ N■■■■ ■111■ ■■■.. ■,011, .01.01! 0,000E 0,000! 0,000E 0,000! 0,000E 0,000! 0,000E 0,000! 0,000E .!!.!!.:J. !000!0,00011.!!.!!000!.!!.!!1.!!!.!!.!!000! .0!!.!!000! .0!!.!!000! ■!. ■!0,000! ■■L■! 0,000E 1011■!l......!II I!!!!!.!.! 0,000E !000!!.!.■!000! 0,000E 0,000! 0,000E !1100! 0,000E 0,000! 0,000E 0,000! 0,000E 0,000! 0,000E !000!!00011 0,000! ■■■mm mmmmm mmmmm mm.lM 0,000! ■[: I■!0000!000! 0,000E 0,000! 0,000E 0,000! 0,000E 0,000! 0,000E mmmmm mr�7! NRR.! 0,.,,11 .,,.! 0,.,,l.,,.! ll,,,l.,,.! 0,.,,l.,,.! 0,.,,l.,,.! 0,.,,l.,..! l.,,l.,,l! l.,,.lolio! MENEM MENEM MENEM Simon MOORE moomm MOORE moomm MOORE moomm MOORE mllmo!!.!!!!!mo!!.!!!!!mo!!.!!!!!mo!!.!!! Immo! nomml! moomm MOORE MOORE MENEM nMMEN „!!! 0.1-40, nomin MOORE MENEM MENEM moo!! Ion moolon MOO,! !.Ion ■■■■■ora■■■■■■■E■■11■■■■■■■■■■■■■■■■IMO■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■O!0■■■■■■■■L1■Moo■■.0,0■■■■■■■■E-Moo■■■E-MooMoo-E■■■MooMooMoo-E■■■-11■E-MooMooMooMooMooMooMooMoo-E■■11MooMooMooMooMom.Moo.A_,I MooMooMooMooMooMooMooMooMoo- -■■■E- -r%.. -■■E- -E■■11 ■■■E- -E■■- ■■■E- -I■■■- ■■■E- -E■■- ■■■ ■- -E■■- ■■■E- -E■■- ■■■E- -E■■- ■■■a- -E■■■ 117111111! 1111■ ■■■■■ 011■ ■■■■■ 1111■ ■■■■■ 1111■ ■■■■■ 1111■ ■■11..11.11 ■■■■■ 1111■ ■■■■■ 1111■ ■■■■■ 1111■ ■■■■■ 1111■ ■■■,.11111■ ■■■■■ 1111■ ■■■■■ 1111..■■■■ ■L��-1111! -■E■-1111! -■E■-1111! -■E■-1111! -■E■-1111! .0,,.0!!.11, 11,111111110,0,0,.!l.IEm!!!.!l1I0,0,0, 0,0,0,.0,0,.Em!!!!!!!.!!!!!!.!l.Em!!!!.!!.!!!!!l.1l.Nm.lRll.!!.!!!!lmmm mommm mlmon n.,,. NRR.! 0,.R.. NRR.!!.,,. NRR.!l.,,.lII,.!l.,,. NRR.!!.,,. NRR.!!.,,. NRR.!!.,,. NRR.!l.,,II NRR.!!.,,. !,.,!!moon nMMEN MENEM l,.,!l.,,.l,.,!l.,,. 0,,.0,!0,.0,,. 1,.,!!1!!0,!!.!0,!.!!! nommo mmool oommo mmo::,ll x!!.! !!!!!.!!.! 71!!!!.!!.! !!!!! 1,[7 w■ !!!!!.!!.! !!!!0,.0x9.! !!!!!.!!.L !.!!. 0,81.0! !.!!. !!!!! !.!!. !.0!.0! 0,.0 ................................. !110,.0! !.!!. !!!!! !.!!. !!!!! !.!!. !!!!! !.!!. !!!!! !.!!II !!!!! !.!!. !!!!! !.!!. !!.!M !!!!! .!.!! !.!!. !!!!! !.!!. !!!!! !.!!. !!!!! !.!!. !!!!! !.!!. .BEEN !■E!■ !BEEN ■■■ill 13■■■■ Hill BEEN :Il FISH BEEN !■ill nr LJ Hill BEEN !■ill ■007 L•03 !■ill ■EEE■ !illi ■R\1ls! ■1111■l 11110 00000 �1 C■MM 00000 MENEM noxi O.ENEM MENEM MENEM MENEM n1Ir.0 MENEM MENEM MENEM Mo■!9 MENEM MENEM MENEM MENEM mom1,1! Milli Milli M■ll■ MENEM MENEM MENEM ■■1100 0011100 0011100 0011100 0011100 0011100 0011100 ■Room moomm moomm ■■■E- -E■■■ -■■E- -E■CII x■■E- -E■■- ■■■E- �IYr■- ■■■E- -E■■- ■l i] Ya -E■■- ■■■E- -E■■- ■l9Lu -E■■- ■■■E- \E■■■ -x71 r ...............■ x 0,.01,- -E■■■ -■■E- -EEJx .■■E- -E■■■ -■■E- -E■■■ �l [1;1,- -E■■■ -■■E- -E■■■ -■■0,:1 h.:1.....................211.■■E- -E■■■ -.....■■■■ ■■ors] 71,■■- ■■E■- -E■■■ -■E■- -E■■■ -■E■- -E■■■ -■E■- -E■■■ -■E■- -E■■■ = ■0000■0, 001■ 001■ 00.[±x'10000 001■ 001■ YIN.■■ 001■ 001■ ■.Ewa 001■ 001■ 001■ ■0,11.1001■ 001■ \'0000 ■CII..! 0000■ 0000■ 00.00 90.■■ 0000■ 0000■ 0,■!Aw x1110,.0000.0,0000.0, ■■■■■:11..0, ■■■■■ ■■■■0, 0000■ ■■■r9 \'90000.0,0000.0, 0,.0000.0,0000.0, 0,.■.1110000.0, 0,.0000.0,00.000, 0,.0000.0,00.LI'A x.00000,.■.000, 0,.0000.0,00.000, 0,.0000.0,00.000, 0,.0000.0,00.000, 0,.0000.0,00.000, 0,.0000. .!!.! !.!!. !!!.! !.lFJI 7!!.! !.!!!.!!.!�I[7!!.!!.! !.0!!0,.,.:!91 !.!!!.!!.! !.!!!.001x7 !.!!!.!!.! !,7!!1, 0,110,!:! !i!!1, !!!.! !.!!. ! 111.! !i!!1, !!!.! l.xar a!!.! !i!!1, !!!.! !01!0,1, =1.011■ ■■■■■ ■■■■■ ■■■■■ ■■■r:l x90■■ ■■■■■ ■■■■■ ■■■■■ ■■■ =-.II 9■■■■ ■■■■■ ■■■!! !i!!1, !l.G7 -!!!! .!.!! !i!!1, !!.!! !i!!1, !!.!! !i!!1, !!.!! !i!!1, !!.!! !i!!1, 001!!.!!.001!!.l:.t11111001!001!010,0,,.!!001!001!.1.1001!001■0000!..:1,.!0010,.!!.!■L1!!.lR71M!001E001!!.!!!:11".!001■001!1.C"ra!!.!001E001!001E91ltl.!001E001!001E!!!.1100700E!!!.!!■■l.001!!■■dl l 9■!.!001■om 001E■■.11�!!!!001!001E001!001E001!001E001!001E00-0 o 0 .ommo mmomm ommo!!.,'_"11 M,,.! l.,,l.,,.l ylCixl.,Mon MOORE moll r:0, MENEM MENEM M.!!!!!1C'J MENEM MENEM EILEEN Mx11W! l.,,. 0,,,.l l.,,* N ON.0,I.,,■ MOMMOM OOL'ai,!!.!!.lOM ■NEom 1.,,.:1101.!!.,,. 0,,,.l 1.,,. 1,,.!J r.,1001,,.l lmm,. l,,mmon OE 11 ilm,.l 0,.,,n mo.,l l.,,. Mo.H �mmmm ,moon MOORE MOORE MOORE MENEM MENEM MENEM MENEM MEM,! I.,,n � 1111■ .■■■■ 1111■ ■■■Ln ,.11111111■ 1111■ 1.1x■■ ■■■■- -■■■- ■-�AL'J -E■■- ■■■E- -E■■- ■F. -L' u -E■■- ■■■E- -EA■■ -FL n ■ ■■■■■ 1111■ ■■■■■ = nn11.■■■■ 1111■ .■..a .1111.■■■■ 1111■ 1111! wxJ111111! 1111■ 1111! 11011 Mn■■■ 1111■ .■■■■ 1111■ .■■1:11 x1111.■■■■ ■■■■-1111! -■Er] WE■■- ■■E■ -1111! -■E■-1111! -■E■-1111! -■E■-1111! -■E■-1111! -1111- -1111 -1111-11111111- -11111111- -11111111- -11111111- -11111111- -11111111- -11111111■ ■■.111 oro- -1111-1111-1111.11111.1■ 1111-11L�■ -1111-1111-1111-1111 ,.1,.11..11■ ....-..11■ 1111., c9.1■ -111111.1■ 1111-11■au ,.1111-1111-1111 ■1111 ■111.1 ,■.1■ ■1111 ■1111 ■1111 ■1111 ■1111 ■1111 ■1111 ■1111 ■1111-1111 nommo mmool oommo nommo nommo mmomm ommon ommon ommom momma mmomm ommon ommom momma mmomm ommom momma mmolo ommon ommon ommom mommo mmomm oommo noomm ommom momma nommo nommo ommon 0,,N.! l.,,. l,,.! l.,,. 0,,,.a l.,,. l,,.! l.,,. l,,.! l.,�. l,,.! l.,,. l,.,! l.,,.0,,.001 SME,! ,,.,! l.,,. l,.,! l.,,. l,.,! l.,,. l,.,! l.,,. l,.,! l.,,. 1,000000■ ■000000■ ■000000■ ■000000■ 00000000■ ■000000■ 00000000■ ■000000■ 00000000■ ■000000■ 00000000■ ■000000■ 00000000■ ■000000■ 00000000■ ■000000■ 00000000■ ■00001700 ■0000■■ ■■■■■ ■■■Moon Mono■■■ ■■0000■ ■00000000 ■000000■ ■00000000 ■000000■ ■00000000 ■000000■ ■00000000 ■000000■ ■00000000 ■000000■ ■00000000 ■000000■ ■00000000 moomm momom moomm omo■o ommom momma mmomm ommom moomm ■mmol ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ 0011100 .!!.! !.!!. !!!.! !.!!!.!!.! !.!!!.!!.! !.!!!.!!.! !.!!!.!!.! !.!!!.!!.! !.!!!.!!.! !.!!!.!!.! !.!L■ !!!.0, ■■1,■w.!"0AI.IIwwwA■!.! !i!!1, !!!.! !i!!1, !!!.! !i!!1, !!!.! !i!!1, !!!.! !i!!1, !!!.! !i!!1, !!!.! !i!!1, ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ 00.00 0.000 ■■■■! !i!!1, aaaaa ■■■■■ aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa.0000................. ..a 0,1 ]JI I ll, I Ion l : 'I I IIIV l: 3 cumin aaaaa 0,0000.0, aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa 0,.00....... aaaaa aaaaa aaaaa .■.000, aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa - 1111■■... :11111111■■11111111■■.1111111.11..■1111.11..■1111.11.1■1111■...1■..11■..■ ■■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■111111.1011.1■...1■...1■11..■11.1.11.1■11.1■11,,' .1■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■.■■.■■.■■■.■■.■■.■■■.■■.■■.■■■.■■.■■.■■■.■■.■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■.■■.■■.■■■.■■.■■.■■■.■■.■■.■■■.■■.■■.■■■.■■.■■.■■■.■■.■■■■■■.■■.■■.■■.■■■.■■.■■.■■■.■■■.■.■■■.■■.■■.■■■.■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■. .!!.!!.!!.!!!.!!■■■■■■■■■■■■■■.■■.■■.■■■.■■.■■.■■■.■■.■■.■■■.■■.!!.!!!.!!.!!.!!!.!!.!!.■.!!■!!!.!■.!!■!!!.!■.!!■!!!.!■.■■■■■■■■■■■■■■■■.■■.■■.■■■.■■.■■.■■■.■■.■■.■■■.■■.■■.■■■.■■.■■.■■■.■■.■■■■■■.■■.■■.■■.■■■.■■.■■.■■■.■■■.■.■■■.■■.■■.■■■.■■■■■.■!!.!!. !!.!!!.!!. !!.!!!.!!. MENEMMENEMMENEMMENEMMENEMMENEMMENEMMENEMMENEMMENEMMENEMMENEMMENEMm ■■,0,0,010010,01,00,■. ■■■■■■0101.001010,01010,010,01010,01010,010,1001010101010,01010,0101010101010,01010,iii■■■ ■■■01010101010,01,00,■. ■■■iii 010,01010,010,01010,010,01010,01,00,010,010,01010,010,01010,010,01010,01,00,010,010,0■■■0■■■■■m■■0101010101010,01010,01,00,010,010,01010,010,01010,010,01010,01,00,010,010,01010,010,010110 .,,.ll.,,,l,,.ll.,,l.,,.ll.,,l.,,.!l.,,l.,,.!l.,,l.,,.!l.,,l.,,.!■ ■l.,,l.,,.!!.1.,,.1,,.11.,,.1,,.l1.,,.1,,.l1.,,.1,,.l1.,,.1,,.!■ .11.,,.l,,.!!.■1.,,.1,,.11.,,.1,,.11.,,.1,,.11.,,.1,.,11.,,.1,.,ll.,,l,,.,ll.,,.l,.,ll.,,.l,.,ll.,,.l,.,ll.,,.l,.,ll.,,. 1111■1100■1111■1100■1111■1100■1111■■00111111■1100■1111■1100■1111■11 .11111,1111E 11M■111.n1l111.n1l111■11■111.n1l111.n1!■ 1111.,.1!11 ■111.n1l111.n1l111.n1l111.n1l111.n1l111ln1l111.n1l111.n1l111.n1l111.n1l111. 1111E 111. ■■■■■ ■■■■■ 1111E ■■■■■ 1111E ■■■■■ 1111E ■■■■■ 1111E ■■■■■ 1111E ■■■■■ 1111E 11.11111.1■ 1111-11.1■ 1111-11.1■ 1111-11.1■ 1111- -.1.1 1111-11.1■ 1111-11.1■ 1111-11.1■ 1111-11.1■ ■111111.1■ ■111111.1- ■111111.1■ ■111111.1■ ■111111.1■ ■111111.1■ ■111111.1■ 110■ ■■■■■ 110■ ■.10110■ ■.10110■ ■.10110■ ■.10110■ ■.10110■ ■.10110■ ■.10110■ -E■■■ -■■E- -E■■■ -■■E- -E■■■ -■■E- I ■■ 1 V .oar 1 ■ .. \■ moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo ■■■■■ ■■■■■ ■E■■■ nommo mmool oommo nommen mmmom mommm........................................................................................ IMI ,Ir 1, •-A.........! i,,.! l........!!.!!!!!!.! !.....moon MOORE MOMM! MOORE mmoon MOORE MOMM! MOORE MOORE MOORE MOORE MOORE MOORE MOORE MOORE MOORE MOORE MOORE MENEM MENEM MENEM II I,. .!!.! irrri irrri lmoom momom moomm........................................................................tri irrri irrri 1 r■ 0,i I !!. 1. M.. 1........... irrri irrri irrri MENEM MENEM MENEM moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm moomm n.!!. irrri irrri irrri irrri .■■■■ ■■■■■ ■■■■■■.........................................................t. l.....■!..■.......l...................... r 7-J■ 1 ... 1. '-.I. !!!.! !.!!. MMMMM IIIII IIIII MMMMM !!!.! !.!!. !!!.! !.!!. !!!.! !.!!. !!!.! !.!!. !!!.! !.!!. !!.!! !.!!. !!.!! !.!!! .!.!! !.!!. !!.!! !.!!. !!.!! !.mom mo■■■ ■■■■■ ■■■■■ ■■■■■ • , 111■ 0,.0000. 0,0000.■ 0,.00000,.0000.0, 0,.00000,.0000.0, 0,.00000,.0000.0, 0,.00000,.0000.0, 0,.00000,.0000.0, 0,.0000. =zx^C ]Inl2=■ l.r1::x1,.10,00...0000.11.■■ 0000.11.■■ 0000■ 111■ 0000■ 111■ 0000■ 111■ 0000■ 111■ 0000■ 111■ 0000■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■m..mmm mm■r■.mmm■ ■11001100■ 0000■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ • , -.........■ ■■■■■ ■■■■■ ■■■■■ ■■■■, ■■■■■ ■■,■■ ■■■■, ■■■,■ ■■■■■................ .0 0,..J . L:..; L`9rl'•J 1111.■ ■■la, ■■la,...........■■■■ ■■......■...............■ ■■la, ■■la, ■■la, ■■la, ■■la, ■■la, ■■la, ■■la, ■■■■■ ■■la, ---alI 1'i��11L ('1.1::1'_111' 1:..7: III ■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■- ■■■■■ ■■■1 ■■■■■ ■moon..... ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■.............. i................... ■■nl■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ 111■ 11■ 11ur rrrr rr11■ rrrr! rrrr.001! 111! 001! 111.001! 111............................... !!!.!!.!!! !!!.! mommm.....0,...i.,,.! l.,,! iii.i..iii.,,.! 0,.,,l.,,.! 0,...i....! 0,...i.,,.! l.,,.!„i,l.!!!!!!.!!.!!!!!!.!!.!!!!!!.!!.!!!!!!.!!.!!!!!!.!!.!!!!!!.!!.!!!!ENEM MENEM MENEM MENEM MENEM MENEM MENEM l.!!!!ENEM MOORE MOORE MOORE MENEM MENEM!!.!!!.!!!!!.!!!.!!!!!.!!!.!!!!!.!!!.!!!!!.!!!.!!! ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ 11.111.111.111.111.111.111.11■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ 111,111■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ 111.111■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■memo ■■■!. !!!.011111.111.111.111.111.111■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■. 11 ................■■ ■1111■■ ■lm■- ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■.■...11......................................................■ 111.11.............■ ■■■■■ ■■■■■ ■001■■.■■■■ ■■1M'I ■.■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■......... ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ - -.........■ ■■■■■ ■■■■■ ■■■■■ ...■■ ■■■E- -E■■■ .................■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■EL -E■■■ ■■■E- -E■■■ ■■■E- -E■■■ ■■■E- -E■■■ ■■■E- -E■■■ ■■■E- -E■■■ ■■■E- -E■■■ ■■■E- -E■■■ ■■■E- -E■■■ ■Lam■ -E■■■ ■■■I- ■E■■■ ■■■E- -E■■■ ■■E■■ -E■■■ ■■E■■ -E■■■ ■■E■■ -E■■■ ■■E■■ -E■■■ ■■E■■ -E■■■ ■■E■■ -E■■■ ■■E■■ -E■■■ nommo mmool oommo nommen mmmom momma nommo nommo mmoom momma mmomm ommom momma mmomm oommo mmoom momma mmomm ommon 7ommo ommom mommo mmomm ommon noomm ommom momma mmomm ommom ommom momma nommo mmomm ommon ommon ommEm EWJ.i n.,,. !„II! l.,,. l,,.! l.,,. l,.,! l.,,. l,.,! l.,,! ,,.,! l.,,. l,.,! l.,,. 0,,.,.....a .................... .0!!.0!!.0!!.0 !!!.!lmoom momom moomm..... Mmmmm mmmmm mmmmm mmmmm ommom momma mmomm ommom momma mmomm ommoo mmomm 11.....................................................................................Yr.!!.!!.!!0,11.................................... 0,........M ENEEM ENEEN EENE.......................... 1111■1111■1111■1111.1111.1111■1111■1111.1111.1111.1111■1111.1111■1111.1111■1111.1111■1111.1111■\11111111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■ 111101111■ 111101111■ 11110,.lra■■■■■0011.,.1■1111■1111■1111■1111■ 1111■1111■1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ a to to 1111.1111■ 111101101■■-w;n 1111■.0000.W■111■111■1111■■:s.1,■1111■■r1■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111■1111!111■1111!111■1111!111■1111!111■1111!111■1111!111■1111!111■0,.0000.:Jra.0,0,.0000.0,00.10,1111!111■1111!111■1111!111■1111■111■1111! 1111■1111■1111■1111■1111■1111■1111■1111■= -■■■E- -■..l■ ■-1L'L■ 1111■ ■■■Er IIS■■- ■■■E-1111■ ■YUVI-1111■ ■LIIJt-1111■ ■■■E- -E■dn 7■■E- -E■■2.11■■E-1111■ -■210,.0 ,.x11 ■ori !11111111■ ■■R■■ ■■■■■ .11111111■ 11:111111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ ■■■■■ .1C'J■■ ■■■■■ ■■"■■ ■■■■■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ ■■..l■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ .!!.! 0,i=J0, ■ _II.9! !.!!!.!!.N Ili!!!.!!.! !.!!! ■�IIY! !.!!!■f:llr..............f'117.......11 II:�..........:rUd.11......lix �..........lS.R7...... w.:1...................L' la......::1....................117r.1.........11........"0_...................1........ 11-_................................................ .,,.! ME"0V1 l:llf47! l.,,l.,,.H IIT„! aaaai iaaai.M IM 00000 OGlISM 00000 00000 000: NEI MENEM 0011'. IMMEN 00000 ECIC -1 OLSON Mom'll TOME. iaaai 1. _IL:I MENEM 91I's]ME N.......I ,[........III ......r1. ................! l.,,l.Gr.! !.,,.............1:11:.. aaaa-! AI.!! aaaaa L Jr71 aaaaa HE.......... a.1.1.1a................................... .0.0.0.0.R-J..a1..!!.!!!.!l.c, Ilx...............'.119.......1!111`_'..............GII J!!.!!.!lC:IL:il.!!.!!.!lxlt:]l.,7l.!!0,'011!'-.!!. !!!.!l.:ilLJ..... �1[�!.!!!.!1.cIIR!!!.!l./.41.000000'Ill9MMMI:1:'. �.:77h1:f1r?......0,7Gi0,..................x11"_.0.0.0.0.FII:i........ 0111 F.:1......0,.MU.............................................. ■■■E- -I�.l■ ■In1.n- -E■■■ ■■■EL: 11 W ■■■ ■■■E- -E■■■ ■'x'1.0.0- -E■■- ■M.11111- -E■■■ ■■■E- -E■YII .■■E- -E■■_Ifs■E- -E■■■ -!: I[7 OM1\■■ ■■■.'11 �E■■■ ■■■E- -E�i1J ■■■E- G11IJ-- ----- ---7111 ■■■E--Et'..I� ■■■E- -011!!_1■ ■■..7 !•J--7 ■.■E- -E■■! y.ILo moo -■,■E-moo -Moll : ■ -■■■. IIT...■ ■.111 E.J l.■ -■■■- ■■..1■ ■E■■■ ■11.11■ ■■1111■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ - ■-■E--Mor■■iILJ--E---■-■EC 11■---■-■E--E---■10,01,.!--E---■x11=--E---■-■E-■omen!!,.-■E--E-■i: I.YI■E--E--■-■:x0,■U-EL'-■--■e•11WE--■--■E-■■:.I■n--■E- IIn-■--■E--EN-IM--■E--EG.11.--■E--AILS■--11.11.\'a7YEa--■E--E--■JL.E--E--■-11■E--E--■-Gllu--E-■L IIuE---E--■■:JL.........�........................M--■--M---M--■■■■■■■■■■■ .,,.!!.G i. ■.I..! l.,,l.,,.L' II.,,l.,,.! l.,,l.�I\r! l.,,l.f•111�! 0,.0,,0,.0,,.!!.Rill J,,.! l.,,, Hm..O....O....O....wIF�..O■7.!„W11=.,,■!„.!■OUI!'J......O..IAIlIJ..O......O....ONLIx......O....OYiiIW......O....RIINO....11llll'I IIII....O......O....O....R 7070....O....O..rI..O....O....0..1�11M....O....L II,nO......O....O Oo Gi....O.......O=J....O....O....O......O....O....O......O....O....O......O....O....O......O....O MENEM orrlm mollon MENEM MENEM 11■1100 0011100 0011100 00,1110 MENEM Emil■o MENEM MENEM mmmrll MENEM nommi 11.1100 0011100 ■.•_•IIx 001■1100 00111.111:11100 0011100 001121\'3 0011100 a11J1■ moomm noF.11r MENEM E■Cnn MENEM a. hili M■li A.lrx 990,.0! !.!00 lnl.! !.!!. r!!.! !.!!.lYII W M ENEMY IIWNON E.■.. x17 LA! !.!!! 0,.:'a! !.!!. !!.!! !.!l ............................... .!!.! lrryo omllmo mmoom momma 11■■■■ ■■■■■ ■■■■■ ■■11,,,,,,,,,11,,,,,,■ ERR■E ■■ENI: ■MMMM MMMMM IIMMMM MMMMM MElIMM EMELIM MEN.110,.!!.!!!.!!.■IM. !!!.l .11!0,. ,,,,, ,,til, ,,,,, 0,.L"71. !!!.a a_I1ra moL'l77 lrlrJ JJo7.■■■■ ■0700..11■ "1110. ■111■ OF11Ja....0 IIn... MENEM r'J' hxln MENEM ■0f:\,,,,,,,,,,,,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, l,,,0, 0,!(1x0, 0,001..0, 0,,,,0,1,,,0,11,,,0,1,,,0, 0,,,,0,1,11,0, 0,,,,0,1,11,0, 0,,,,0,1,,,0, 0,,,,:I l...0, 0,,,,0,11,,,0, 0,.0000.0,00■I.■ mm■l. mm■m!1 ■mm■■ ■■■.0, a.■I.. 0,,,,0, 0,11„10,,,,0, ■„0,110,,,,0, ■.■.I. 0,,,,0, 0,.I.■.0,0000.0, 0,,,,10,,,,10,,,,10,,.1,0, 0,,,,111,,,0, 0,.0000. 0,1\1.0, 0,,,,L' 11,,,0, 0,,,,l L"J !r0, 0,,,,0, 0,l_`Jm ■mm■m m■mm■ ■m„10,,,,0, 0,,,,10,,,,N EENNE ENNEE NEENE -■■■■ll■■a,■■:■■■■■■l■■■■■■11■■■■■■■■■■■..■111:■■■■■■■■■11■■■■■■..........11.....■■■■■II■■■■■■■■■■■.I■...-■'l--■EII-E--■--■E-■E■II■.-■E--11..■--■E--E-■I■--■E--E■.I■--■E--EI■-■--■E--E--■--■1,1'-E--■■"01■■■■■■■■■■■■■■■mmm■11.......11.......m■■.■■■■■■■■■■ 1............E-■■■■■■■■■■■■■■■---E--■-■E---E--■ ,,,,, !lsx. !lIM.l ,,,,, ,,,,, IL!!!.!!.! !.0!!!.0!11.! ,,,,, .00,11.! ,,,,, ,,,,, !.!lII.l1.! ■■■,.11r"0..�w.. ■0,.01.0 ■"0..\L..■11 !.!!1 !!!.! l.1,Il..Glr=_ -11..■ 1tr.! !.00,,.0,.0 !!!.l ,,001, !!!.! !■Ill. !■■.l ,,,,, ,,,■a ■■■■■ ■Yx■■ !.!l. ,,,,, ,,,,, !0,11.0! ,,,,, IIl.!l,,,,, ,,,,, ,,,,, ■r.!! !.!!. !!.!■ !.!l. ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, nomon III ^_!'711 --UH 02FITH >1C�: 7L: �: 7��.R x011,....7171711 „,.1110.11....■.. -=;1 G:.rE 11..1.1 II.I.IO.......O......II....O....O......,1111.....ssiG:Al1O......O....11....,.0,..x L� •'O 11110, ■1111• •-J1==:i1... Ali MENEM M....1..7„..0..,..,�..O..l.-......O....0....0....110....0....0II..O......O....O....O......O...... 11!7....0....0....0..................O....O......O....O....O......O....O ,,,,, ,,=70,!NIM.l,,,,,,,,,,II.!!l,,,,,■.!!!■NII■!!.■ra:211:2M...xYYLILLL111KI JJODL xl[n!Ill7nn nnrrn r17'MA 7RR0,R 1,7111,11,1111,■,r 011110,00111000011■100■■■■,0.l110.■EEM moollm Mom■ll.IMl. ,,,,, r.7l.lf�xx,1.■l...lA Gi6r 70,--•,..■11.11■!.■■■■11..........■■■!,,■■■011!!.!!.!!.!!!.!!, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, 110■ ■177■ 011-- ----- ---....110110■ ■.111 ■.1.0 ■.1011..0 ■.10110- -E■■II 110- -.101..10 -E■■■ -■■I■- -1,..r L...1..rrrr x11■- -axuY YTLL- ■JIJJu JULL..■■.Il .unnr r..111-7nnn API,.!■ ■77..11x1111.. ■.. 1'.--- ••••• ■■■■11 ■■■■■ ■...a V.. H !Msim ::=-1.00 ..1111■ ■■ ■■■ ■loon ■■ -,- ■■■■■ ■11.11■ ■■■■■ -■E■- -E■■■ -■E■- -E■■■ -■E■- -E■■■ - =1111■..•J.no..-1111-11..-11.---11_.1_11............. nn.� ...1111..■-w--L'__________,....1-E■■■-■.u......1111x1111■-■■E-11-11.11..--111■-■■E■-E■.■-■■E--E■.I■-■■E--EI■■■-■■E--E■■■-■■E..■YYr rr1E■■rrYY YYLL--IJJT YYIJLaI■1JJ auux[[rf■.A�7:.-,r.nr..■..11 ..11■.... -..11■.... -..11■.... -..11■.... -..11■ .,,.! l.,,, l,,.! 0,.,,l.,,.! 0,.,,l... -_.AMM.,,.! l.,,l.,,.M l.� -...-=.A,0, MM,.! l.,,! 0,.r-• rll■• -a11 x11..11.. -... 0,,,.l .s_ _____ __•1,1 l,,.! 0,.v n nss.. .•17!,,.!!.:.01111- ■1,171,11,,...,1.,■ ■.,.! l.11l l,,.! l.,,. 0,,11.! l.,,.II,.,! l.,,. !,.,!!11!119/111..00000 00omm ommom momma mmomm ommom m.!!!!!.!! 0,.0,0,! Mom■on! h11■■!■■■■m Mon Mom on Mom M■Moo■■ MEMO a MEMO a MEMO a MEMO NONEIM■.1■■■■11■.00.0.0.■■111■■,■■■.-sAM■■■■.i■■■■■m■■■■■1.=---amm■111ll111■O.r--a.-:.mmm MEMOa Mooa._711. �xE■■ 1111■.11n■........ __________=_,70,,,,,Nr.sssn....-lommom■■■-E■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■o 111!ME_�.001!1111,1111,1111■1111■1111■1111■1111■1111■1111,1111,1111,1111,1111,1111,1111,ME \1111001!111.n1l11111,1111,1111,11.01,.!111011■111.0,r.a111.001!11r..n1,..0011i:i'�lii1111:111111MMMME v-,.1111■lou11..�.111.rnn■111.001!111.001!111.001!111.001!111. m■■mm ■r.J■ ■.■■■ 0,.00000,.0000.0, 0,.00000,.000000■ 0,.00000, ■■ENE ■■■EE NEENE ■Em■m m■mm■ mm■mm ■■mm■ ■■mm■ mm■m■ ■■ m■■ ■■■■■ ■17■■■ ■■■■■ ■■■■■ ■1!■■■ ■■■■■ ■■■■■ ■■■■■ ■■llmm ■■■■m mmmmm mmmmm ■mmmm ■mm■m m■mm■ mm■r. 10000.0, 0,!......I.. •..0000.0,0000.0, 0,.0000. ■Imo■ L..x00a 0,00.000, 0,.00■1 ■■IN7 L._ _..l".J0, 0,.0000.0,00.000, 0,.0000.0,00.000, 0,.0000.0,00.000, 0,.0000.0,00.000, 0,.0000. - -aaaa- -0,.r■ --aa- -a--- ■-aa- -a--- ■---- -a--- ■-aa- -a--- ■-aa- -a--- --aa- -a--- ■--E ..................... .L7--■ --aa- -a--■ -11aa- -a--■ --aa- -a--■ -a.lE- -a--■ --aa- -a--■ ----- -a--■ --aa- -a--11'0,-aa- -a--■ I-.Ia- -�\--■ --aa- -a--■ --aa- -II--■ -aa-- -a--■ -aa-- -E■-- ■0,-J- -a--■ -aa-- -a--■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ ,,,,, ,,..n0, !!!.! lmoom momom mooml.!!!! !.!!!.!!.l ..... ..... .................... nommo mmomm om mom momma nnumm ommom momma nllmon !.!!o !!!.! !.!!. !0,11.0! !.!l. ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, !.!!L /!!.l ,,,,, tlnl.! lrlq 7t.1r 7,,,, !!!.! !11!0,.0 ,,,,, ,,,,, ,,,,, ,,,,, 0,,_7,,,,,,,,,,,,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, .,,.!!l -J, l,,.! lMENE EMENE EMENE..................................! ■.,,l.,,.! ■.,,l.,,.!!! „■!„.! ■tq!■ l,,.! l.,,. 0,11,.0! l.,,. l,,.! l.,,. 1,110.....,,■!„.! ■.,,■ l,,,! l.,,. l,,.! l.,,. l,,.! l.,,. .,.I.!!.!!O rl1iJJ MENEM MENEM EII.........................G:Glm mmmmm mmmmm mmm,■.............................. ,11100 00,.201:1■ 0011100 ■mmon momon moomm MENEM MENEM MENEM MENEM MENEM MENEM MENN■ ■■■■■ ■■■l■ ■■■■■ ■■■l■ ■■ ■■■ ■■■■■ ■■17■ ■■■■■ ■l■■■ ■11■■■ 0011100 0011100 0011100 00111000 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 L■r\■ 00111■ 711:1.1,3 it?1x:111111■1,11■M! 11■111■11111■111■111 ■1-•. 1■111 „mon omm■■ nommo mmomm oommo mmomm ommon ommom ■-aa- -a"�■ --aa- -a---■--E................................M--- --aa- -a--- ■-aa- -a--- ■-aa- ----■ --aa- -E-,\■ --aa- -a--■ -11aa- -a--■ --aa- -a--■ -a.1a- -a--■ --aa- -a--■ ----- -a--■ --aa- -a--■ --aa- -a--■ I--■� -a--■ -a-a- -a--■ --aa- -n--■ -aa-- -a--■ -aa-- -a■-- --_�- -a--■ ■!........ -aa---E■...................... = ■■■E- -IJ11■ ■■■■■ ■.10110- -.1011\ V h loo ■■■E- -E■■- ■■■E- -E■■. rn.■■ ■.10110■ ■.10110■ 00. ■■■ ■■■■■ ■■■11■ ■■■■■ ■■■■■ -1100 ■■■■■ ■■■■■ ■■■■■ ■oxo ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■G I■■rl .■■■■ ■■■■■ ■■■■■ -■■E- -.1■■■ -■E■- -E■■■ -■E■- -E■■- 11•'1- -E■■■ -■E■- ■■■■■ -■E■- -E■■■ -■E■- -E■■■ -■E■- -E■■■ .0,,.0!0,1=J,!!!.!l.,,l.,,.!l.,,l.,lSC I.,,l.,,.!l.,,l.,00!l.,,id- nommommommommommommNEhtil,7onommonomi.mmommommon.IrI1MMMMMMMMMMMM...,,■■P]I.!■.,,■!„.!■.,,■lw7,!l.,,. 0,,,.0!0,.0,,. l,,.!l.,G LiJ,r7 Grl„■!„.!■.,,■■,,.!0,11,,.0,,.0,!0,.0,,. 0,,.,!l..,!■1,71.....,,■l,.,!■.,,■0,,.,!l.,,. 0,,.0,!0,.0,,. 0,,.0,!0,.0,,. ,,,,, ,, ,,, ,,,,, ,,,,, ,,,,, ,,,,,.00,,.7E 1,,,, ,,,,, ,,,,, ,,,,, !.!!1'.M V.! nommo mmomm ommon ommon !9 .20 00000 00001100000 00oom d".iom momma nommo !.!!. ■\'1111! !.!!. !!!.! !.!!. !\'767 !.!l. ,,,,, ,,,,, ,,,,, ,,,,� Lblr:1 x1,!0,.0 ,,,,, ,,,,, ,,,,, ^'.lir,, ,,,,, ,,,,, ,,,,,,1,11„ tL� I! !.!!. !!.!! !.!l. ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,,,\,.10,,,,,,,,,,,,,,,,,,,,,,,,0,r■,,,,,,,,,,,,,,,,,,,,,,,l yll.l,,,,,.!l.mommonommon E•7["7.,,,,,l.!!L!!!.l,,,,,51!x,,,,,,,,,,,,l.!!.lGI]Irl,,,,, ,,,,, ,,,,, ml9L•1 MENEM MENEM nomm■■III■■11o11LINLJL7mom MENEM moomm no■■■�11►10000111000011100001110000h.JF'.A 0,1■1,00■■■■■00111000011100,■■■M MENEM MENEM■1110000111000011100 -------i 0,. m■■mm ■mm■m m■mm■ mm■mm ■■."Jx ■.00000,.0000.0, 0,.00000,.0000.0, 0,.00001 •JCa.0, 0,.00000,.0000.0, 0,.00000,.0000.0, Lir-■ 0,0000.0, 0,.0000. !0000.0, 0,.0000. AI!'1.0, 0,.0000.0,0000.0, 0,.0000.0,60,120, 0,.0000.0,0000.0, 0,.0000. 0,!7610,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000w !40011 0010000.0,0000.0, 0,.0000.0,0000.0, :lla■.0,00.000, 0,.0000.0,00.000, 0,!V Cl .l M.0, 0,.0000.0,00.000, 0,.0000.0,00.■..........a m...m ■mm■■ mm■■m -■-■E- -■-9■ --■E- -E--- ■-■E- -E--- ■-■7! NEE--- ■-■E- -E--- ■-■E- ■E■■L'Jr■E- -E--- ■--E-.......... h:1 R-■ --■E- -E--■ ,\-■E- -E--■-II..E- -E--■ --■E- -E--■ -C_f I _'- -E--■ --■E- -E--■ -.r FA -E--■ --■E- -E--■ --■E- -E--� III■x. x0,..............■■■-::.1�-■ -■E-- -E--■ -■E-- -1.0,61 ■x01.0- -E--■ -■E-- -E--■ -■E-- -E--■ -■E-- -E--■ -■E-- -E--■ ,,,,,,,170, ,,,,, ,,,,, ,,,,, ,,,,, ,0,00.1E 7,,,, ,,,,, ,,,,, ,,,,, ,,,,! •J00a.l ,,,,, ,,,,, ,,,,, ,,,,, f 1 "01 !!!.n ommoo L'!!.l ,,,,, I'nI1W.l ,,,,, ,,,,, !.!!. !rf Im„11111111,1111„00,.■r 1111,1111,1111,1111,1111: !a!l199!!. !!!.! !.!!. !!!.! §0,I•_'!. !!.!! !.!!. !!■■■ ■ori 11.a■ ■.!!. !!.!! !.!l. ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, .,,.! li1r, l,,.! 0,.,,l.,,.! l.,,l.,rr! 0,.,,l.,,.! 0,.,,l.,,.! 0,.,,L' 9Yr.! 0,.,,l.,,.! 0,.,,l.,,.! F.iL"'l. l,,.! l.,,. ■1,.! l.,,.:U111.! l.,,. l,,.! 0,.,,.lLII:! ■.,,■!„.! ■.,,■!!."01 l.,,. l,,.! l.,,. l,,.! 0,.,,a L'J,r7 L'J,,. l,,.! l.,,. l,,.! :fI.I,. l,.,! l.,,. !,ONE EFYYE lm M.N... nommo mmomm o,.,! 0,.,,.l,.,! 0,.,,.l,.,! l.,,. ,,,,,!.!!.!!!.0!!.0!!!.0!0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,!-■l. ,,,,, !.!!.!\10,.00, ,,,,,-■000■!000,.0!!!.!!000,.0lfl.�0!.!!on!!.!!.!! 0■" 7001110000111M MENEM MENEM NONE■ MENEM MENEM MENEM■111000011100111=10000111000011100■■mon III ■[.7■,,,,,,,,,,,,,,, mooml,,,,, ,,,,, ,,,,, ,,,,, ,,,,, ■-aa- -a--■ --aa- -a--- ■-aa- -a--- ■-aa- -a--- ■-aa- -a--- ■-aa- -a--- ■-aa- -a---■................■......................■......................■.......-aa- -a--■ -rrE- -a--■ --aa- -a--■ --aa- -a--■ --aa- -a--■ --aa- -a--■ --a1,- :0,r=-■ -aa-- -a--■ -aa-- -0001! I,1 ■aa-- -a--■ -aa-- -a--■ -aa-- -a--■ -aa-- -a--■ .......... - =.........■ -■■■■ -■■■■ ■■■■■ -■■■■ ■■■■■ -■■■■ ■■■■■ -■■■■ ■■■■■ -■■■■ ■■■■■ -■■■■ ■■■ .............................u...................... -■■■■ -■a■■ -ll-■ ■■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■,.a ...........................--■ -aa-- -a--■--E■..r......■....-■ -aa-- -a--■ -■■■■ -■■■■ -■■■■ ■a■■■ ■ansa■ -■la, nommo mmool oommo nomm! nmm.n nomin..............■............III............... nommo mmomm oommo nommo nmmmm mm\mm mmmmm mmmmm mmomm ommom moomm ommon ommoo mmmom momm! nlmm! nommo mmomm ommon ommoo mmoom momma nommen mmomm oommo ommon lommm mmomm mommm mm.................0, 0,0,.0,0,!.!!! mmoom mommm mmomm mommo nommo ommo. ,,,,, ,,,,, !!!.!lmoom momom moomm.................................IM EMMEM MEMS,,,,,,,,,,■!.!!. !!!.!!.!!.l117!!.!!.!!!.l ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, !!!.M ENEEM ENEEN..... !!!.!!.!!. !!!.!!.!l. ,,,,, ,,,,, ,,,,, ,,,,, ,,,,, 1. mom moomm momom mo................l. ,,,,, ,,,,, !!.!M ENEEM ENEEN EENE..Mmmm mmmmm 1111■1111■1111■1111■1111■1111■1111■1111■1111■ to to o ME NEM 1111■ 1111■ 1111■ 1111■ 1111■ 1111■ 1111■■■■\ Ri r1 -1,i hal !rA 9I 01,/,/1-Na!l.1111,1111,1111,1111,1111,1111,1111,1111,1111,1111,1111,1111,1111,1111,1111,1111,1111,1111,1111,1111■■■■■■■■■!.!!.!!!.!!. !!.!!!.!!. !!.!!!.!!.!■■■■■■■■■ mmmmm mmmm■ ■■■■■ 0,.00000,.0000.0, .................... ■■■■■ ■■■■■ ■■■m0,.0000.0, 0,.00000,.0000.0, 0,.00000,.0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.\'J= L'1\JL 0,.JJT 1171111=►'J0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,0000.0, 0,.0000.0,00.000, 0,E........■.......................10,NEN0,..............m ■mm■■ mm■■m - ■-aa- -a--■ --aa- -■■■■ ■■■■- -a--- ■-aa--aaa..................■■■ ■■■■■ -■■■■ ■■■■■ -■■■■ ■■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■a -■■a■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■■■ -■■-- -■.....E-- -a--- ■aa-- -a--■ -aa-- -a--■ -----.......... -■■■■ -■a■■ ■ll■■ ■■■■■ ■■■■n ommmo mmomm..... ■■■mm ■■■■■ ■■■■■ momma mmomm ommoo mmomm ommon nommo mmomm oommo mmomm ommom momon mmmmm mmmmm mmmmm ■■■■0 00000, 0,00,■■ nomom moomm momom..................................................................................■■0, 01.01■■ 0,■■■■ ■■■■■ ■Em■■ ■■■■E ommom momom moo.. Emmmm mmmmm ommo. .,,.!l.,,, l,,.!lMENE..... Emmmm..... Mmmmm mmmmm mmmmm mmmmm ommom momma mmomm ommom moomm oommo nommo ■mmoo ■.,,■0,,,.!l.,,. 0,,,.0!0,.0,,. l,,.!l.,ME NEEME NNEEN................................................................................................................... nommm mmo.. Emm............ ,■■mono ■■■■■ ■■■■■ ■momm ommon noomm ommom momma mmomm omomm ommom momma mmomm ommom momma mmomm ommoo mmomm ommon n■■■■ ■■■■■ ■■■■■ ■■■mono ■■■■■ ■■■■■ ■■■mm ommom momma nommo mmomm omomm ommom momma nommo nommo ommom momma nommo mmomm ommom moomm ommom moomm ommom mommy,,,, .. ................................■ MENNE N......... .................................................. 0..................................................................................................................................................................................................................................... ®:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: .■■■■..■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■no■■■■no■■■■no■■■■no■■■■■111■no■■■■■ • 1 ■■■■■ ■■■■■ ■.■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■■m■...................................................................................................................... ...................................................................................................................................................................................................................................................... ................■■■■■■■■■■■■■■.....................................................................................1..1■1.11.1111--.1■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■.........................■■■■..■.moon■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■........................................................................1.■1■10000.1.1■.1l .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000!.■.■................................ - .........::::::iiiii iiiii..........................................................................................ii:::...iioiiiiiiiiiiiiiiiimlmliw:iiini:iilm.:ii�iwiiii�i:-----------•-------------•-------------------•----------iI............::::■ 117■._!-..r-wr■■ww-7wr■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■■■■■■■■■■■■■■■■■■ -............... ■■■■■■■■■............................................................................ ■■■■■ ■■■■■ ■■■■■ ■.....NONE ■■■■■ ■■■■■ ■■■■■ ■■■■I: a PI1 ■11 ■■.. ■ 111910 11:711 O .1..001 ■'I U ■■. Gl =I 911.1:: ■■1111■ ■111::1■ ■■0000. ■0000■■ ■■0000. ■■■■■■............................... mommommomm■mmoommommmmmo■mommommomm■mmon■mmolmommommomm■mmon■mmon■mmolmommommoo■mommommomm■mmonnommommoon nommonommommomm■mmon■■0000■■0000■■■■0000■■0000■1;1:!lei■■Zi:.I1JZiiYLL.I.In✓1=1.i.L.isLL\JYL■■LJL■YL'J........................................................ l0000....0000.■0000....0000.■0000....0000.■0000....0000.■0000....0000.■0000....0000.■0000....0000.■0000....0000.■0000....0000!■0000....0000!■0000....0000!■0000....0000!■0000....0000!■0000....0000!■mmre._7-_.r.f.r_wrnrl.wne�_47n_97rt-.f■e�e �r■^.■7■r.e_.l-_v■■■.0000....0000! .■.■...0000! .■.■...0000..■.■...0000! .■...■ENE■ .11.000011■■0011■■nommon moommdoom■mo■■no0011■■0011■■0011■■0011■■0011■■0011■■ 0011■■ 0011■■ 0011■■ 0011■■ 0011■■■■mon nommen E■MEN MENEM MENEM MENEM MENEM MENEM MENEM MENEM nom'JI::A-- lY11■■1:111 I::1111i111M:71111:70111I mml:'i:Plm,=m■■m mI11.■,111000011■■0,10,1■0,10,1■0,10,1■0,10,1■0,10,1■.■■■■ 0,10,1■ 0000■ MENEM .........■■■■■................................................................................................................................I,■L:a-]=JL\■■L:YI!:._Jf1J\]-]LY]]JJIJ..IILL'3.11..i.J..�■Jf..H.....................................................■ -.1......■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■...■.11 S".1( .■,.-." T11a-J ■ 11■I■■■ ■1...........o..... ■..■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■o ■.......... a-'J9■■►.1■.wr7r'1-'.0........o........o........o ........o ........o ........o ...o ...o ........o ...o M..o!■o...l..o!■o..lM..o!■o..lM..o!■o..l M.■■■■■■■■■■■90 MMM.L'iii:.YJ.L'LLLYY.�Ll'7■■■■■■..o..■l..o!■o..■l..o!■o..■l..o!■o..■ MENEEMENEEMEMEMENEEN■wME4411Ic'■ml::1n.3i!1.:1■.I1.mm■■■■0,■■■■■■■■0,■0,■■■■0,■■■■■■.o!lo..M l..o!!o■■M■111■■111■■■■■■doom■■moon moomm doom■■■■■■ .0000..■r=\■■00x.is■moonmrnmmmmmmm....I........■l x..............00. ■0000....0000■■0000■...00................................■momm■mmo■moomm■omm■mmomm■omm■m1/■.►LYYH .LLQ..Y\Ji.Ym....mm..mm....■■■■■■■■..........................m.m...mm..m.m...mm..m ::...mm..m.m...mm. ■moonMill0M■CJ11i.■■■■m[9G9■■■■..mm.�L7mm..mmr7 t'7mm..mm1A MJE'.7..mm.!F.wmm..mmR7S.mm..mmw...mm..mm....mm..mm....mm..mm....mm..mm....mm..mm....mm..Im...■■■■■■■■■■■■mm■mm■■■mm■mm■■m...mm..mm....mm..mm....mm..mm...■■m.■■■■■■■000000■■■■■■■0000■■■ii■■■000000■■■■■■■0000■ ����.■I1.il■■■t:•.IY■■■■■■wlua■........^lJ......wFlCI......'...9n,1.....1[lY......lfJ'.'J......V.1....1J1.........r.....................................I�.................■................■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■..■■........................................ ®■■■.....7. ■00Y.IF'■■0000■■Y•J4J.■■■■■■■.flLNONE..G7Cl■■■■■..■H:llll■■■■:,.":■■■■■Yl YJ■■■■■■-l".,:■■■.Idlcal........Cnc.....:IF.11.......Fl......rw....R....r..................................■■■■■■■■■■■■■■■..................................................■■■■■■■■■■■ ■■o■ EMU n■r,lr...mm..lewi..mm..mmr 14■■1 ■■■■i Li0000..00I1.. lJFJ. ■0000.3 [30000. l0000YJ F110000. l0000�11 i7.0000l .■Il9...0000..001�11�..■n, Q7....0000l SJI::....■xL1 G7YSIC ..0000!.0000■■ ■.0000! ■0000....0000! ■0000....0000! ■0000....0000! ■0000....0000! ■0000....0000■.0000....0000!.■.■...0000!.■.■...0000..00 ii...0000l .■.■...0000. ■ENEM ■r=.■ ■■rllH ■■NEM mx9fM..0000. l0000l� 180000. l0000Hr H.0000. !0011.. H:J Nr. l0000xL 1x0000. l0000wS re0000. !00001111 J.0000l .,1[:5...0000..■[]1.1..00001:1 [."J....0000! �lli....00x9 G:1,aIR...000011 .0000....0000..0000....0000..0000....0000..0000....0000..0000■■ MENEM ■ENEM moomm doom■ moomm doom■ moomm doom■ doom■ ■■rA moomm doom■ doom■ 1 m.....1:.9■■■YIfIC!■■■■MwYC3no■■■■■■om l9..lM..w1Ce■■■■■'I■■L■ax■■■■an IWIMMM Moor!Y.■■■■■■inn■■■■[nIe17■■■■■■■■F_i11�lo..MSclo!lo..M 811�10!!o.[a EIL•71F lo..Jl..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■■■■■■■o■■■■■o■■■o■■■■■o■■■o■■■■■!!■■o■■■■■o■■■o■■■ 1111■ onv oy.% oo■■r...........oI L�....■■cri111........ cane■moon.................... n......I..........r.:um.....r...........1�......�►arela....,........................................................................................... .■ww................ -oo■ o.v oo. moo ou..00 oo..00 oo..00 v1■o.ro. oar oo■ o■I.1 goo o■�u ❑oo e�m.n oo... ono rano oor�ulwo ■ory H■rnl, ■ora■ moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo ■■..o moo moo moo M..o!lLt.3.l...!lo..lM...!lo..lM..ol 1o..lM..o!lo..l MlLo...m..m.........m......... m...0 .■■■m.:7l.r■■■■■m■mlmI No aP,o!lo..M ulhe!lo.M .9C:SIIR loIlM l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..Ml..o!lo..Ml.o.!lo..M ............ L=!lo..M .......... l0000...u�!■■0000.1...0000.■000000...0000.■0000..1.0000. ■0000....0000. 001■....■00. ■0000....0000.■0000....0000. ■0000.11..0000! .■11....0000!■000011...0000nr.■....0000li`11�....■xr C9lu.1T■.nm..m■■■■■m■■■■m■■■.■■..■■....■■..■■....■■..■■....■■..■■....■■..■■....■■..■.■...■■..■.■...■■..m::...■■..■.■...■■. .0000.. ■Yar...00.1...0000.■000000...0000. ■00m■■1.0000.■0000....0000.f0000.■..!■. !■■....0000..0000m...0000. !0000.11..0000■■■I■■■■■NEMmmm11■■■■■■■■■■■■■■■■■11■..■■Err■■C.IE nJ■■■0000■..■111111....0000!■0000....0000!■0000....0000!■0000....0000!■0000....0000■.0000....0000!.■.■...0000!.■.■...0000..■..r...0000l .■.■...0000. .■■■■■00.7■■■■■■■■■■■.■r.-:....■.-]r.■■■.■■■■■■■■■II■■■■■■■■■.■■■. .7\.. r.__ -SSSS. llou.o....uo■■■■.■■■II■■■■■.■■■■■■■■■.■.I■■■■■■■.■■■lIG■I1■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■■■■■.■■■■■.■■■■■■■■■■ -■■■■■■L_I\■■.IIMIM RPMr_ire■R MEN■■■■■■■.■.r■1NUNN MENEM AME■■■■■■.-;a.■■■NEMMEN■■■■■■EG1■■II■■NEMME■■■■■--]G.011■■■■EM..aw.■o.-■11■■■■■NEMMON■I■■11■■■■ENEMMENEMMEN■■■■NEM0..■■■■..No..■■■■..No..■■■■..No..■■■■..No..■■■■..No..■■■■0000■■■■■■■■NEM no .■■■NEM MEN■■■■NEM MOMMOMu■■. odlL...n■laiiY iYYL. a.aiJ IYYYL LL.._aJYYY YL[n O�Ju011[[.[!l777RRw!lw.00■■■.111..0000!■0011r_.r■o!■000011...0000...■..=7.00.11■.■ mmmmmmmmllmlmmmm nomonnooMMENEEN nommommomm■mmolmommonommommomm■mmolmomm■mmoom■omm■mmommommonnoom!■■.■...0000..001....0000..■.00...00■. !0000...Y00■..0000,1...0000..000000.■■NOMONE.. .._00_00_._._00_00_._._...7..■■■■■'.■■.■0000.■■■0000..0000. 1....00��iYY1.'Y[[[..7'1�1R RRro .00.11...0000...■....0000. C11■....0000..0000.1.11.0000.■■mm■mm■■mm■mm■..0000..0000....0000..0000....0000..0000....0000..0000....0000..0000.■■mm■mm■mm■■■mm............■J....0000..■.■.■.... 1111■■! 1x1/]5■ ......o_. ___1I .■■■■ Mm.-� _____ _____ -■■11! M..o! 1�--- 00- •.■■00 m■■on ..l■■■ ME■EN,moon molmo■ MEN.! LMMdld JYYY[ [ [l11111MIRr 11!lwen MENEM MEM■I■ MENEM MENEM MENE■...o! ■■..M nomo! ■o..■ !■■o! ■o..■ !■■o! ■o..■ !■■o! lo..M !moo! lo..M leo.! lo..M leo.! lo..! ..'J�! lo..M leo.! lo..! SSSS..\a:i■r■■■■■■■■■.■■■■.��-.��................_'-.w_--.■■■■■■■■■■��-..._--._-��_---'.1.....I......■■.■■■II■...■...........■L'....iJJY....II...............■■■■■■.....■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■..........111111111111111■111111111111uL■■■■■.■■■■■■■■■■ -oo..www..00.00 oo..00 oo■ moo oo■ ■oa■..7o oo■ oo■ oo.!ill■ oo■ no■ �,-1.-,all■ v.-.. ,00 ----- •_.. .no■ moo ■or : moo moo moo moo moo moo moo moo moo moo moo moo moo ■oo.00.00.00.00.00 ..,•r..00.00.00 SSSS..111111....................1M..o!lo..l M..o!l0..1 a.CIlo..lM..o!lo..lM..o!lo..lM..o!!■..ii..o!lo.d.......•.:.........:....,..•----•....,.--=.===,C=:7[===0===l===7C=�1M1--e..■..M mmmmmmmmmmmmmm■■■■■■■00■■■1q.v Mr■■...L■■■■■■■■■■■■■.•-■■■■■■■■■■■■■■■■ Ba ke r .0000.. ■G9.■0000....0000.■0000....00001■0000....0000. ■0000..■■■m■■mm■.■■■m..0000....0000.■0000....0000.■0000....0011!■0000....■a■■0000...\1100!■0000....0000!■■\7� si■l.0000.■■.0000■.0000....00■■■■■■■■....... C.,:■■■ r■m■■.o.r.r.�==._===..iY ori.■■■■■■.0000!Sono. !■r.! o�aL==7P_.00=�...0000l .■.■...0000. .m■■■■r�,■■.m■■■■■■■■mm■■■■m.l■mm■■■■m■■■■■■...mm. ■0000.11..■■■■■■■■■.■■■■■■■■■■■■■■■■■■■.mR■■■■■■■■■■,1■■■■■.■R■■■■■■■■■■■■■■■Y■..mm..mm....mm..mm■■■■mm■■■■■■■■■■..■■....mm..mm....mm..mm....mm..■■....■■..■■....mm..m.m...mm..m.m...mm. n•.•...mm..m.m...mm. .lo..e-9. oo..00 .lo..o..11o..00 .■■■■■■■■■■■■■l■oo .lo..00.■■■■■■■■■.■■■■■■■L.■■■■■■■■■H■■■■■■■L■.■■■■■■■■■.■■■II■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■■■■--■■■■■■moo ■■■■. ®oo■ ■■1I n moo ■■o■ oo■ ■■o. .................... ■vo.00 von v10 oo■ ■■o■ oo■ ■■■I.■ ■■o■ ■■o■ ■■■■■ ■■u■■ ■■■■■ ■■■■■ ■■nn ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■................■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■..u...............von oo. oo■ ■■■■■ moo momma nr-H■ ■■■■■ ■■■■■ ■■■mm ommo l ■ommo ommo■ ■■■■■ ■■■■■ ■■■■m 1.■■■no ■■■■■ ■■■■■ ■mm■m moomm momom mo0011! ■0000....0000.10000....1.■..0000....0000..000011...0000■.0000....0000! .0000....0000! .0000...momm ■ommo mmomm om■11111111■■■ ■■■11111111■■■ ■■■11111111■■■ 1111■■■ 0011100 0011100 001100..■.■...0000...--. ■00000000 ■000000■ ■00000000 ■000000■ ■00000000 ■000000■ ■■0000..■.■. ■ .0000....1100..0000....0000..0000....00001.0000....0000..0000....0000..0000..11.0000..0000....0000..0000....0000..0000....■11..0000....0000.110000.. mollom moomm mo■■■ ■■■11■ ■■■■■ ■■■■■ ■■■■■ no■■■■ ■■■■■ ■■■■no ■ommo ■ommo mmoom m0000....0000..0000....0000..0000....0000..0000....0000..■.■...0000..■.■...0000..00. o...0000..■.■...0000..■.■...0000..■.■...0000..■.■. ■ 1 nommonr.rl■■■■■■■■■■■■■■■■■lCIlw..o!■o..lM..o!lo..[]w.olne..lM..o!!o.1,M..o!■o..lM..o!■o.11Ml..o!■o..one■o!■1111.■l..o!■o..■l..11!■0..■l..o!■o..■l..o!■o..■l..o!■o..■l..o!■o..■MENEM MENEM MENE■ MENEM MENEM MENEM MENEM MENEM MENEM nommn doom■doom■ nownm MENEM MENEM MENEM MENEM MENEM MENEM moomm doom■!. .■■■■■ll.a■moo moo ■■■■■■■L.119■■■■■■■■■.■■■■■■■■[Jni■■■1.■■■.■■■■■■■LYY.1■■■■■■■■.■■■■■■.L.■■■■■■■■■.■1.■■■■■L■.■■■■■■■■■.■■■II■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■■.. O■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■......00 .. -.■■■■■w.■■■■■■■■■■■■.■■■■■■L&.7■■■■■■■■■.■■■■■■■■lall■■■L1■■■.■■■■■■■xryL"J■■■■■■■■.■■■■■■ulcr■■■■■■■■■.■L'■■■■J.o moo ■■■■■■■■II■■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo moo■■1.■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■. MENEM ■11.1■ MENEM MENEM MENEM mmavl! SEMEN MENEM MENEM N■NEL'J1:,on NL'■M■ MENEM moo[a [amort MENEM MENEM ■021LN MENEM MENEM M■,\■..:.. ................I- ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■.■.■ ■■..■ ■.■.■ ■■..■ ...■■ ■■..■ ■.■.■ ■■..■ ■■...............■■■ ■■■■■ 0,0,0,0,■ l0000...rC�i..0000....0000. !0000....['7 [ammo■ ■■■m■ ■■■■■..00001:1x7....,■.!0000....■■7 \■■....0000. l0000...n:Ina ■ENEM ■■NEM ■n,■. Fir...■■....■■..■IiI1`L.0000! ■0000....0000! ■0000....0000! ■0000....0000! ■0000....0000! ■0000....0000! ■0000....0000! ■0000....0000■.0000....0000!.■.■...0000!.■.■...0000..00!5...0000! ■00.00...0000■.■.■...0000!.■.■...0000!.■.■...0000! !0000...\.7. ■0000....0000..0000....L.71l0000....0000. l0000....0000f7xx....1\00.lmmmmmmmr'il H.00....0000. l0000...lHI!•+J .0000....0000..■L...:illri!■0000....0000..001Si1r ..0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..■.■...0000..■.■...0000..00\J..mmmmmmmmmmmmm■■■■■■■■■■■■■■■■■■■■■■■■■■■■■! m■mm■ ml-Jm mmmmm mmmmm m■■■■ ■■.4 R i.■■■■ ■■■■■ .■■■■ ■■■■■ JG..■■ ■■.1■■ .■■■■ ■■■■n .w■■■ ■■■■■ .■■■■ !■+11.4. ■■■1■ ■1■■■ ■■11.■ ■"_'11I.J■ ■■■1■ ■1■■■ ■■,011P! ■1■■■ ■■■1■ ■1■■■ ■■■1■ ■1■■■ ■■■1■ ■1■■■ ■■■1■ ■1■■■ ■■■1■ ■1■■■ ■■■1■ ■1■■■ ■■■1■ ■1■■■ ■■■1■ ■1■■■ ■■1■■ ■1■■■ ■■1■■ ■1■■■ ■■; -! 1■ ............. ■■■■■ ■■■■■ ■■■■■ ■.............. - -......r�1. ■■■■■ ■■0000■.0000■■ ■■LJ. ■0000■■ ■■0000■.0000■■ ■■0000..\i■■ ■■■l■.0000■■ ■■■xr L'J■■.............WIRD ■...■ ■...■ MOOLIM x_ I.J. ■0000■■ ■■0000. ■00Gila1 ■■0000. ■0000■■ ■■0000. ■0000■■ ■■0000. ■0000■■ ■■0000. ■0000■■ ■■0000. ■0000■■ ■■0000. ■0000■■ ■■0000.............................■■ MENEM MENEM ME-�M MENEM MENEM MENE............................... .0000....0000...■....0000..0000....0000..0000....0000...... 111111111111■IIM MENEE NEE.I !0000....0000. !0000.. Ow.l\"D ME■EN ME■EN moon, 0.1III 0011100 0011100 ■■P•l IW ■NIMM 0011100 ■NIMM 0011100 ■NIMM 0011100 ■NIMM 0011100 ■NIMM 0011100 ■NIMM 0011100 ■NIMM 0011100 ■NIMM 0011100 ■■■■■ 0011100 ■■■MM MENE...0000. mono...0000..■.00...0000m ommon ommom momma n■■■00 00■■■■ ■■■■o l0000...NE■..0000....0000..0000....0000..0000....0000..0000....0000..0000....■l1■ ■0000....0000..0000....0000..0000....0000l .0000....0000! .0000.11 a�til! ■0000....0000..00C'nn ..0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..■.■...0000..00.o...0000..■.■...0000..■.00...0000! .momm ommom momon nommo mmomm ommom M..o! lo... l..o! lo..! M..o! lo..! M..o! lo..! M..o! lo..! M..o! lo.L1 M..o! lo..! M..o! lo..! M..o! lo..M l..o! lo..M l..oL lo..M l..o! lo..M l.... lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! lo..M leo.! lo..M !.mon ommon ■ommo mmomm ommom momma mmomm ommom momma ommom momma mmomm oo■ moo moo moo oo■ moo oo■ moo oo■ moo oo■ oo,. oo■ oo■ oo■ oo■ oo■ oo. oo■ oo. oo■ von oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo■ Soo oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. - -.■■■■ ■■■■■ ■■■■■ ■■■■■ .■■■■ ■■■■■ .■■■■ ■■■■■ .■■■■ moo .■■■■ ■.=1.111::::::...■■ ......r..■ moo moo moo ■■■■■ 11■■■■ moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo MENEM N■NN■ MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM --7.: , 11.11 .` 11[■. [1:'.001111 " 1111■ MENEM MENEM MENEM MENEM Lemon MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM ■omen MENEM MENEM MENEM MENEM MENEM MENEM nommen mmomm mommm l0000....0000. ■0000.. ■moo■ ■omo■ doom■ ■0000....0000■!0000....0000. !0000....0000■!0000\. lY.n\ r■r...YY.■ in.i...0000! ■0000....0000! ■0000.. ■1,0000! ■0000....0000! ■0000....0000! ■0000....0000! ■0000....0000! ■0000....0000! ■0000....0000! ■0000....0000! ■0000....0000! ■0000....0000■.0000....0000! .■.■...0000! .■.■...0000..■.00...0000! ■00.00...0000■.■.■...0000! .■.■...0000! .■.■...0000! .0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000...L10000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..■.■...0000..■.■...0000..■.■...0000..■.■...0000..■.■...mom ■■■mono ■■■■■ ■■■mono ■■■■m .■■■■moo■■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■moo.■■■■moo■■■■■moo■■■■■moo■■■■■■■■■■moo■■■■■moo■.1■■■ OUR\=rw■PPrrr nnmammoo■■■■■moo■■■■■moo■■■■■moo■■■■■moo■■■■■moo■■■■■moo■■■■■moo■■■■■moo■■■■■moomoomoo■■■■■moo■■■■■moo■■■■■moo■■■■■moo■■■■■- ®.......... ■.■■■ ■■■:: ■■■■■ ■■■:: ■■■■■ ■■■:: ■MENE M...■ ■...■ ■...M ■■mm■ mm■■m m■mm■ mm■mm ■■mm■ mm■mm ■■mm■ ■mm■m m■OMM ■MENS EL -1'-J: Y:Y11M LLL'al'!iL'7: mmmmm mmm■. ■0000■■ ■■0000. ■0000■■ ■■0000. ■0000■■ ■■0000. ■0000■■ ■■0000. ■0000■■ ■■0000. ■0000■■ ■■0000. ■0000■■ ■■0000. ■■■■■ ■■0000. ■■■■■ ■■0000■ .■■■■ ■■0000. ■■■■■ ■■0000 ............................... MENEM MENEM ■■■!on MENEM MENEM MENEM MENEM MENEM MENEM doom■ ME■EN doom■ momo■ doom■ momon doom■ momon moomm doom■ moomm doom■ MENEM ■EMEN m■omm MENEM nomm■ MENEM MENEM 0011100 ■NIMM 0011100 ■■■■■ 0011100 ■NIMM 0011100 ■NIMM 0011100 ■NIMM 0011100 ■NIMM 0011100 ■NIMM 0011100 ■NIMM 0011100 0011100 0011100 ■N■MM 0011100 ■■■■■ 0011100 ■■■OM MENEM MENEM MENEM ■■0000■ l0000....0000..■N.. moomm momo...0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..■.■...0000..■.■...0000..■.■...0000..■.■...0000..■.00...00■■ moomm momom moomm ommom 1 ■■■■■no■■■■nomo■doom■moomm■■11■■■■■■no■■■■■■■■■no■■■■■■■■■no■■■■■■■■■no■■■■■■■■■no■■■■■■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■■111■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■■111■no■■■■no■■■■no■■■■no■■■■no■o■■no■■■■no■o■■no■■■■no■o■■no■■■■no■o■■no■■■■no■o■■■o■on doom■ moomm MENEM MENEM .......................IN ............www.......IN.........MINIM............www................. MIN.......... IN-www........ww-......1....w.........www...... oww......................www. o.....ww.........ww ...........www.......www........................................................ = ®MENEM MENEM■WNE■ MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM doom■ MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM momEm MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM .1110000111000011100001110000111000011100001110000111000011100001110000111000011100001110000111000011100001110000111000011100 no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■■111■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■no■■■■ • 1 .0000....0000...■....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000..1...■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ .0000■■■■0000.■0000■■■■0000■■0000■■■■0000■■0000■■■■0000■■0000■■■■0000■■0000■■■■0000■■0000■■■■0000■■0000■■■■0000■■0000■■■■0000.■0000■.■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■ ........■■ ■■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ 1 1■■ .. 1_v ■ r..v oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ M..o!■o...l..o!■moommomommoomm....................................................................................■II■■1■ I■L.■I.■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ nommommooloommo■omm■nmm■n■om■n■■■■■■■■■■■■■........................................................................I'.. 1! 10000..1.0011..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..■.■...0000..■.■. 001110000111000011100 nommon momon doom■ MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM■■0000■■0000■■L-'.MM 100001■L7-JN■0000■■■■0000■■0000■■ MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM -momon doom■doom■doom■momon doom■momon doom■momon doom■momon doom■momon doom■momon doom■momon moomm doom■moomm doom■moomm doom■moomm doom■moomm doom■moomm doom■moomm doom■moomm doom■momom doom■moomm doom■moomm doom■ moomm doom■ moomm doom■ moomm doom■ !000000■■►9■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■ M..o!■l`_i.l..o!■o..MIM..o!■o..MIM..o!■o..MIM..o!■o..MIM..o!■o..MIM..o!■o..MIM..o!■o..MIM..o!■o..■l..o!■o..■l..o!■o..■l..o!■o..■l..o!■o..■l..o!■o..■l..o!■o..■l..o!■o..■l..o!■o..■l..o!lo..Ml..o!lo..Ml..o!lo..M l..o!lo..M l.o.!lo..M leo.! oo■ n..J■ dao dao oo■ dao oo■ dao oo■ dao oo■ dao oo■ dao oo■ dao oo■ dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao dao oo■ oo■ moo moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo ■■■■■■r.=,■■■■■■■■■■■■■■■■■■■■■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■■...■ l0000....=■.■0000...■■■■■■■■■■■■■■■■■....■■.■■■....■■.■■■....■■.■■■....■■.■■■....■■.■■■....■■■.■■....■■■.■■....■■■.■■....■■■.■■....■■■.■■....■■■.■■....■■■.■■....■■■.■■....■■■.■■....■■■.■■....■■■.■■....■■..■■....■■..■.■...■■..■.■■ ■11.00■l..J■■■■■■■■■■■■E■■■■■■■■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEMMENE■■ENEM ME■E■■E■■■■■■E■■E■E■■■■E■■E■E■ �von n.io ■www■■www■.www■■www■.www■■www■.www■■www■.www■■www■.www■■www■.www■■www■.www■■www.■www■■www.■www■■www.■www■■www.■www■■www.■www■■www.■www■■www.■www■■www.■www■■www. ■www■■www. ■www■■ov von vv. von vv. von vv.■www■ ■■■■■■11=0200■www■■www■■■■■■■www■■■■■■■www■■■■■■■www■■■■■■■www■■■■■■■www■■■■■■■www■■■■■■■■■■■■www■■■■■■■www■■■■■■■www■■■■■■■www■■■■■■■www■■■■■■■www■■■■■■■www■■■■■■0011■■■■00■■■■■■■■■00■■■■■■■■■00■■■www■■■00■■■■■■■■■00■■■■■■■■■00■■■■■■■ !■■■■■r .,■■0000■■■■NEM MEN■■■■NEM Mo nMENE■■ENEM MENEM Mo nMENE■■ENEM MENEM Mo nMENE■■ENEM MENEM No.■■■NEM MEN■■■■NEM ORI■■■■NEM MEN■■■■NEM OM■■■■NEM MEN■■■■NEM OM■■■■NEM MEN■■■■NEM OM■■■■NEM MEN■■■■NEM OM■■■■NEM MEN■■■■NEM OM■■■■0000■.■.■. M..o!■Lr■.l..o!lo..MIM..o!lo..MIM..o!lo..MIM..o!lo..MIM..o!lo..MIM..o!lo..MIM..o!lo..MIM..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..Ml..o!lo..Ml..o!lo..M l..o!lo..M l.o.!lo..M leo.! ■■■■■■L"1■m■mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm■mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm ■■■■■■n.■■■.■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■■■I.,■■■.■■■■■■■■■■■■■■■■■.■0000....0000.■0000....0000.■0000....0000.■0000....0000.■0000....0000.■0000....0000!■0000....0000!■0000....0000!■0000....0000!■0000....0000!■0000....0000!■0000....0000!■0000....0000!■0000....0000!■0000....0000!■0000....0000!■0000.■..0000! .0000....0000! .■.■...0000! Sono. uu■ m51■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ vu■ Doom vu■ vv■ vu■ vv■ vu■ vv■ vu■ vv■ vu■ vv■ vu■ vv■ vu■ vv■ von vv■ vu■ vv■ vu■ vv■ vu■ vv■ vu■ vv■ vu■ vv■ vu■ vv■ vu■ vv■ vu■ vv■ von vv■ von vv■ vu■ vv■ vu■ vv■ vu■ vv■ vu■ ■■■■■■L■ln■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■dooms mom■■■■■■■■■■■■■■■■■ !■■■■■C1Inn■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ M..o!■►:e.l..o!lo..MIM..o!lo..MIM..o!lo..MIM..o!lo..MIM..o!lo..MIM..o!lo..MIM..o!lo..MIM..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..Ml..o!lo..Ml..o!lo..Ml..o!lo..Ml.o.!lo..Ml.o.! -.■■■■ ■■■ ■■moo moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■ ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo ■■■■■moo M■■■■■F-e■■.■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ .■■■■ ■. n■ ---.. uu■ muu uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ ou■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ uu■ .■■...Yvon...■..■.rL..=.MiM=_'Jr_••r..■.■EE....EE._._E_E._._._.EE_._.EE_._._.._E_E_.._E_E_..._._EE._._EE._._._.EE_._.EE_._._.._E_E_.._E_E_..._._EE._._E_E.._._.E■_■_■E■_■_■.■■■..EE....EE..EE....EE..EE....■■..■E....■■■■__■■o-ml..■■■..■■..■■...■EE..EE....EE..E.E...EE..E.E. ■...■■11.1■■■■■■■■■■■.■■■■■■■■■.■■■■■■■.■...iiY._.MIL-��.���]C��]1���■���]��_1C__]L__:.___1C__]C___l___.___�[__]■___.C__MIC__]L__�1--�7r��.■..■.■■...■■...■■...■■...■■...■■.....�-_..■...■■.i�;....■■...■■...■■...■■...■■...■■...■■...■ �■■■■■■Ar00.■■■■■■■0000■.0000■■■■0000■.0000■■■■0000■■■■■LJ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■mom MO■■■mom mom■■■■■■■■0000■■■■MINES O■■■■■■■■0000■■■■0000.■0000■■■rr..r■._.■G--][__=■...■■■■■■■■■■■■■■■■■■■...■G==][111....■.■■0000.■■■■■■■0000.■■■■■ mommool.d■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■MOON&■■0000■■0000■■■■0000■ mommommommoommommommoommommommoommommommommommommonommonommommommommommommommommommommomo..0000....0000..0000....0000..■..EmmmmmmmmmmmEm■..0000.■..0000! ..00lr or\=.=w=:'.1--,w■■. l0000.■.r!7■■0000.■..0000. !0000....0000. !0000....0000. !0000.. ,.0000.■0000....0000.■0000....0000.■0000....0000.■0000....0000!■0000....0000!■0000....0000!■0000....0000!■0000....0000!■0000..■■■■■■■■■■■■■■■■■■■■■■0000■■0000■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■!.■.■...0000! ..■■r M..o!!\e.l...ll...MIM..o!lo..MIM■■■■■■■■MIM..olno..MIM..o!!■■.!M■■■■■■■■■M■■■■■■■■■■■■■■■o■■■■■■■■■■■■■■■■o■■o■■■■■■■■■■■■■l..o!!■■■■■■■■■lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o!lo..■l..o■lo..M■■■■■■■■■■■■■■■■■■■■■■■■■ .■■■■■P%.■■■■■■■■■■■ oo■.■.■■.■.■■.■.■■.■■■■■l■■■.■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■.■..■.■■.■.■..■.■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■. ■■■■■■■■■■■■■■■■■■■■■■■■■ momon doom■doom■doom■momon doom■momon doom■ Momon OLIMOM Momon n.0000. l0000....0000. !0000....0000. !0000....0000! .0000....0000..00 mommomommoommmommommoommommonommommommommonommommommommommommonnoommoommonommoommommoommommonnommo.0000....0000!■■.00...0000!■■.00. EEEEEEEommommommommommommommoommoommommommommoammommommom■■■■■■■m■■■■■■■■■nom■■■■■■■■mno■■■■■■■■m■■■■■■■mo...0000..0000.■..0000..0000.■..0000..0000.■..0000..0000.■..0000..0000.■..0000..0000.■..0000! .0000....0000! .0000....0000! .0000....0000! .■■■mm■■■■■■■■mm■■■■■■■■■ -m■mm■mm■mm■■mm■mm■mm■EMM■MMOO■MOMMOMMOMMOMMMOMMII■mmmmmmmmmmmmmmm■MMOMM■EMM■MMm■■m■mm■■mm■■m■mm■■mm■■m■■m■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000. ■MOMMOMMOM■OMM■MMOOM■OM■m MommommommommommoommoommommommommonnommommoommoL7ommommommommommommommommoommommommommommommommmommmmomon nommommommommommommonommommommommommommommoommommommommommonnommonommonommommoommommonommommommommonommommommommommommon !0000....0000..0000....0000.■0000....0000.■0000....0000. ■0000....\,■■0000....0000.■0000.■..0000. !0000....0000. l0000....0000! .0000... moommoommommommommommommommonnommonommommommoommommommommommommonommommommommoommommommonnommonommonommonommono0000■■■.00...0000!■00.on M000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■000000■■■no 11■no000000■■000000■no000000■■000000■no000000■■000000■no000000■■000000■■■■■■■ommommoo■mommommomm■mmon■mmon■mmolmommommommoommonoomm■mmoommomm■mmolmommommomm■omm■noommommom■omm■mmommommo■mm■..000000000000■■■■■■omm .■■■■■■■■■■■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■.1■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■...............■ -oo■ oo■ oo■ oo■ oo■ oo■ oo■ oo■ oo■ ono arc mx�y Fla■, ro .a■ nrr_ o oo■ oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ oo. oo■ nommommool■ommonommmmmmommommm ..................M■■mm """ILJ Am.1►0'1!n'L■nommm■mmomm■mmon■mmommommonomm■mmomm■mmon■mmon■mmommommommomm■ommonoomm■mmommomm■mmomm■mmolmmomm■mmon■mmoommomm■mmon■mmon■mmommomm■mmomm■mmon■mmon■mmon .0000....0000..0000...moommomommoomm ..................moomm....0000..0000■...0000MENEEMENOMM■MMO■MOMMOommommommonommommommomommommommommommommommoommoommoommomommoommommommommonnommommommommommommonommonommommommoommommommommommommoommon .0000....0000..0000....0000..0000........0000....0000.. mommommommommon■0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..■.■...0000..■.■. mmmm■■mmm■■■■■■■■0000■■0000■■■■0000■....■■...■■m■m■■mm■■m■mm■■m■■■m■mm■■m■m■■m■■■■...■...■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000■■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■■■■■■■0000. ■EEE■ oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo 0,0,0,0,0,0,0,0,■mmmmmmmmmmmmmmmm■■■■■0,0,0,0,0,0,0,0,■n■■■■■■■■■■■■■■■■■■Em■■■■■■■■■■Emmmmmmmmmmmmomm.00■■■■■■■■■■■■Em■■■■■■■■■■■■■■■■■■nO■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 1 .0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000... mommommonommommoommmoommmomom ..0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..0000....0000..■.■...0000..■.■. iiiiii................NO.........MMMiiii iiia!lo..l.■■■ollo..l iii■■ W.lmmmmm■...■■N..!■o..Mi.=w..o!!o■iiiiiiii........mm..........NO..........mmm.io!!o■.M !mmol !11111iii!!o■■Mi=w..ol lo.......MM..........ON.........ON..........iR.- ..-5....�.o. vu ■ommommommommo■nommonommommommoommommomm . 1 nmm■ nomm mm� mom■ nom■ nom nmn nom ■■■■■■■■■.■■■■■■■■■.■■■■■■ .............. ■■■■■■■■■.■■■■■■■■■. ■■■■■■.............. ■■1■■■1■■■1111■ nomommoommmoommoommonmmom ■■■■■■■■■.■■■■■....■■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■■■■■0000.■■■■■■■0000.■■■■■■■0000. moo moo moo moo moo moo moo moo ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■■■■■::::::■■■■...■■■■■■■... ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 1 ■■■■■■■■■■■■■■■■■■■■■■■■■■■0000■■■■■■■■0000■ ■■■■■■■■■■■■■■■■o■■■■■■■■■■■■■■■■■■■o■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ moo moo moo moo moo moo moo moo ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ .00.00...0000■.■.■...0000■■■■■...0000! .■.■...0000! moo moo moo moo moo moo moo moo ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■0000. ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■■■■o■■■■■■■■■■■■■■■■■■■o■■■ moo moo moo moo moo moo moo moo ..■...■..■..■...■..■..■...■..■.......... n■mm■ mm■mm mom■ nom■ oo■ ■■000 010■ 0-000 oo■ mm■■m mom■ nom■ n■mm■ oma mom■ oom ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ . 1 .00.00...0000■.■.■...0000! .■.■...0000! .■.■...0000! ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■l■■■■■■ll■■■■■■ll■ll■■■■■■ll■■■■■■l■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ Sono...0000..■.■...0000..■.■...0000..■.■...0000. ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■1.......... ■00■Ell■0000.■00■Ell■0000.■00■Ell■0000........... .00.00...0000■.■.■...mommo■m■n■mom■omm■mmoom nmm■ nomm mm� mom■ nom■ nom nmn nom ■■■■■■■■■.■■■■■■■■■.■■■■■■■■■. ■......... ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ nommommommommonnommonommonommon■.■...0000. nommommommommonnommonommoommom■■■■1111■■■■ moo moo moo moo moo moo moo moo nomm■mmomm■mmommommonomm■mmomm■mmommoomm 1 vu. vv. vu. vv. vu. vv. vu. vv. MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM MENEM■ on■■0000■M1010110.■ ■■IIIII010000,E. ■■0,010, 010,01010, 010,01010, 010,01010, 01,00,010, 01010,010, 0101010101 010,01010, 01,00,010, 010,10■■■ 1..010,010,010,010,01■. ■■■0,010, 010,01010, 010,01010, 010,01010, 01,00,010, 010,01010, 010,01010, 010,01010, 01,00,010, 010,10■. m■ 0101010101 010,01010, 010,01010, 010,010110 010,01010, 010,01010, 010,01010, 010,010110 010,01011 M■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ mmmmmmmmmmmm■ ■lo..l M..o!!o■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■..■■..■■■.■■■.■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■!■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 11111 11111 11111 11111 11111 11111 11111 11111 111111 iii 11111 11111 ii ii 11111 11111 iii 111111 11111 11111 11111 11111 11111 11111 11111 11111 11111 i■ iii 11111 11111 ii■ ■i 11111 11111 11111 11111 11111 11111 11111 11111 11111 111111 iii 11111 11111 11111 11111 11111 11111 11111 11111 11111 -oo■m0000■m0000■moo oo■m0000■m0000■moo.. m0000■m0000■moomoo moomoomoomoo Io.. 1_r-■r..vmDomDomoomDomDomDomDomDomoomoomDomDomDomDomDomDomDomDomDomoomoo■moomoomoomoomoomoomoomoomoo ■■■■■■■■■■ommmonommmmmmommomml M..o!lo..MI M..o!lo..MIM..o!lo..MIM..o!lo..lM..o!lo..lM..o!lo..Ml..o!lo..M l..o!lo..M l..olllo. MIM I.L.■111.■Ml..o!lo..Ml..o!lo..M Emmon■■■■■■■■■■■■...l..o!lo..Ml..o!lo..Ml..o!lo..Ml..o!lo..Mleo.!lo..Mleo.!lo..M�o.!lo..Mleo.!lo..M leo.!lmmmmmmmmmmmmmmm■■■■ 0,11■M l0000....0000..0000...moom momom moomm....................................................................................■ I'■■ 1■ I■■■ ■ 1 .■1■ ■■■.. ■■■■■ ■■■■■ ■■■■■ Emmom momma nommo mmomm o■■■■ ■■■■no ■■■■■ 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 0011100 X1100 0011100 0011100 0011100 0011100 ..0000! .■.■...0000! .■.■...0000! !■■11111111■■1111■■■■1.........■■■ 1, 7r.=r 11'=w■.71..ff nR.00. 10000....0000. l0000....0000.!0000....0000.!0000....0000!.00■off■■M■MMOMMOMMOM■OMMOL;'.lo I■■■ML Z'mm■111■■111000011100001110000111000011100■■■■■ 0011100001110000111000011100001110000111000011100001110000111000011100001110000111000011100 X11000011100■mmon MENEM MENEM M■ll!■■■■11■■■■■■■■11■■■■ mmmmmmmmm■■■■■■■■■■■■■00w■■■■!L1D.A.cJ�1..•1"1.'1-.ll-i■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■MOMMOMMOMMOOMMOOMM■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■................- ®.........■ ■■■■■ ■■■■■ ■■■II■...■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■■■■ ■■■■■ ■MMMM MMM■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■ENEM MENEM MEN■■■■NEM Emm11...0000. !0000....0000. l0000....0000. l0000....0000. !0000....0000. !0000....0000. !0000■. Haar :run:■ora\nmr■,I'M.,, ,,rid ,L:■■=7,,1:1►int■ mrG;a!Ir�■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 2■■■■■■■■■■■■■■NNEN MENEM MENEM MENE■0,10,10,0,10,10,0,11■■ 1 M..o!lo...l..o!lo..lMOJ!■■■E■■■■■■■■■■■■■.■■■■■■■■■■o■■o■■■■■■o■■o■■■■■■o■■o■■■■■■■■■■EMlrualn■.I..I1.1111CL.7■ILV 1110■■■■'MELLIr11.■■IIID■IIL1r.M■E■■■■■■■M■E■■■■■■■M■E■■■■■■■M■E■■■■■■■M■■■■E■■■■M■E■■■■■■■M■E■■■■■■■M■E■E■■■■E■■E■E■■■■E■�.EE E.EE■EE.EEE.EEE l.o.!lo..■l.o.!lo..M l.o.!lo..■ 1 !calf..0000..0000....0000.!■L....0000. !calf ..0000. !calf ..0000. !calf ..... ■■■■■ ■■■■■ ■■■■■..■■.■■■....■■......!!....1•.!.!±.!.......iii........................ M■ ■■NOM■EE....■■■.■■....■■■.■■....■■■.■■....■■■.■■....■■■.■■....■■■.■.■...■■■.■.■...■■■ m■■■ ■■■■■.■■■■ ■■■■■ ■■■■■ ■■■■■.■■■■ ■■■■■ ■■■■■ ■■■■■ oo■ moo moo moo orlo moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ Nov : orl ❑nr.. r nor■ or■I.r r_ ■OS moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo■ moo moo moo moo moo moo moo moo moo -■■■■■ ■■■■■ ■■■■■ ■■ll■ ■■'a■■ ■■■■■ ■■■■■ 0101■■11■■■■ 0101■■■ 0101■■■ ■1■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■IIx � ■ ■'L.. I L II.. ,, `I■■■.. ■ a - 1\ ■1:1 a■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ =■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■■■■■■■■■■■■moon■w.o!lo..!M..o!lo..■M..o!lo..!M..o!!■■■■■■■■E■■EEEM■■■■■■EE■E■■■E■■■''A r.1.■Y■r IN■E■.Er..■L.■1r\1■■■M■■■■■■■■■M■■■o!lo..Ml..o!lo..Ml..o!lo..Ml..o!lo..Ml..o!lo..Ml..o!lo..Ml..o!lo..Ml..o!lo..Ml.o.!lo..Ml.o.!lo..M�o.!lo..Ml.o.!lo..M l.o.!lo..M l.o.!lo..M l.o.!lo..M !calf ..0000..0000....0000. !II■....0000.!calf..0000.!calf ..0000. !calf ..0000. !calf ..0000. !calf■■NEM■ENEM■■ry :rif, uRFlf■ NUNN,NMI wl1iG=lino■w Flurry MW �■■n:Fluru■■..ITE17x➢ar.■■....■■■.■■..■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 0■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ l0000....■■..0000....0000.111■....0000. !0000....0000. l0000....0000. !0000....0000. !0000....0000. !0000....0000. !0000....11■l' IL1wl \ 1 x1111 ■ 1 d 11` l' II r■! 1,1` 1 ■ ■ n loll 111111x11 rl l \` I..'lool..` I II II I.` I! x1111.,. d d..0000....0000l .0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.■.■...0000!.■.■...0000! �.■...0000!.■.■...0000!.■.■...0000!.■.■...0000!.■.■...0000! ■■■■■■rot■■■■■■■■■■■■l■■■■■0000■.0000■■■■0000■.0000■■■■0000■.0000■■■■0000■.0000■■■■0000■.0000■■■■■■■■■■■■■.I■■.Err■:--.- \.rrE rr.■. rrr■■1Y0000M rr■i\■Yir\i0000YL rirr. Dirt .r.ra0000■■■■0000.■00■■■■■■■■■■■■■■■0000.■0000■■■■0000.■0000■■■■0000.■0000■■■■0000.■■■■■■■0000.■■■■■■■0000.■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ - =.■■■■■r�.n■moo■■■■■r■■■■moo■■■■■moo■■■■■moo■■■■■moo■■■■■moo■■■■■moo.■■■■■IJ■..I1.d■..INCILMI..■'.moomoomoomDomDomDomDomDomDomDomDomoomoomDomoomoomoomoomoomoomoomoomoomoomoo ■■■moomoomoomoomoomoomoomoomoo l0000...n=J■■0000■■■■0000■110000■■■■00ommommammommommonnommoommommommammommommommoommommoommomo.1100001 dl! 411.=711 \17110'."'I'd !.0000.on.0000l.0000.on.0000l.0000.on.0000l.0000.on.0000■.0000.on.0000l .0000.o ..0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.■.■...0000!.■.■...0000!x.■...0000!.■.■...0000!.■.■...0000!.■.■...0000!.■.■...0000! ■■■■■■.1V■■■■o■■o■■■L■■■■■■■■■■■■o■■o■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■o■■o■■■■■■■■■'I■■r ■OMEN IN■■■■■!i■■■■■■■■■o■■■■■■■■■o■■■■■■■■■■■■■■■■o■■o■■■■■■■■■■■■■■■■■■■■■■■■■■o■■■EEE■EE■■■■■■M■■■■■■■■■■■■■■■■o■■■■■■■■■■■■■■■■■■■o■■■�o.!lo..■■.o.!lo..■■.o.!lo..■■.o.!lo..■■.o.!lo..■ !calf R1'J..0000.■..0000f ■0000.■..0000. ■0000.■..0000. ■0000.■..0000. ■0000.■..0000. ■0000.■..0000. ■0000.■..0000. ■0000.■ 1,.00001 .0000.■..0000! .0000.■..0000! .0000.■..0000! .0000.■..0000! .0000.■..0000! .0000.■..0000! .0000.■..0000! .0000.■..0000! .■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ m■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ oo■ vro■ moo ■ono oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ II■o■ moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo oo■ moo moo moo moo moo moo moo moo moo - -oo■ oLi■moo Dora oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ Soo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo =o■ moo moo moo moo moo moo moo moo moo mmmmm mm= am mmmmm mmmwm momma mmomm ommon ommon ommom momma mmomm ommon ommon ommoo mmoom momom m000l lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! lo..M l..o! toEEE .............................E moo.! lo..M leo.! 111.............MENE lo..M leo.! lo..M !000000■ ■w^..l■ ■000000■ ■0000I1M 00000000■ ■00000000 0000000000 ■000000■ 00000000■ ■000000■ 00000000■ ■000000■ 00000000■ ■000000■ 00000000■ ■00000000 00000000110000000000 0000000000 0000000000 ■000000■ ■00000000 ■000000■ ■00000000 ■000000■ ■00000000 ■000000■ ■00000000 ■000000■ ■00000000 ■000000■ ■00000000 ■000000■ ■00000000 ■000000■ ■00000000 .00mm momom momom momom .............................. 0■■■ ■■■■■ ■■■■■ ■...E mm■mm m■mmm mm■mon■mom mo■mon■mom !0000.. ■1+J■ .0000....0011. !0000....0000. l0000....0000. l0000....0000. l0000....0000. l0000....0000. l0000....0000. l0000.1..0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000! .moom momom momon nommo mmomm ommom momma nommm ommon MENEM mom momom moomm ommom momom momma mmomm oommo noon ommom m■mm■ mm..l. ■■■■■ ■■■J■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■00x,■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■.......... ■mm■m doom■ ■mm■m m■m■m ■mm■m m■m■m MENEM M■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ MENEE MENEE NEENE - ®.■■■■ ■■�.■ ■■■■■ ■■I,■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■moon■■II■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■............... l0000...wsr■ ■■■■■ ■■1100. !0000....0000. l0000...■0000. !0000....0000. !0000....0000. !0000.. fo000.!0000....0000. lOM'JN ..0000!.mom...0000l .0000■...0000!.0000■...0000!.0000■...0000!.0000■...0000!.0000■...0000!.0000■...0000!.0000■...0000!.0000■...0000!.0000....0000!.0000....0000!.0000....0000!.■.■...0000!.■■off■0000■ m■■no ■■■■■ ■■■■■ mom■!.■.■...0000!.■.■...0000!.■.■...0000! 1 M..ol EwrJE ■.mo!!w'1.MI M..o!lo..MI M..o! OMNImo■■■■■■■■MI M..o!lo..MIM..o■■o■■■M■■o■■■■■■■■w,,■■■■■■■■■■o■■■■■■■■■o■■■■■■■■■o■■■■■■■■■o■■■■■■■■■o■■■■■■■■■o■■■■■■■■■o■■■■■■■■■o■■■■■■■■■o■■■■■■■■■o■■■■■M■E■■■■■■■M■E■■■■■■E■■E■E■■■■n Moo ■■on �.EEE.EEw l.o.!lo..M l.o.!lo..M l.o.!lo..M l.o.!lo..M � 1 !calf ..=711 .■..L' -■ l■. ■0000.■..0000. ■0000.■..0000. ■0000.■..0000. ■0000.■..0000.!0000....0000. !0000....0000. !0011....0000! .0000.■..0000! .0000.■..0000! .0000.■..0000! .0000.■..0000! .0000.■..0000! .0000.■..0000! .0000.■..0000! .0000.■..0000! .0000.■..0000! .0000.■ ■■■■■ ■■■■■ ■■■■■.0000.■..0000! .■.00...0000! .■.00...0000! �100...0000l .■.00...0000■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ .■■■■ ■■.7■ ■■■■■ ■.MM.i ■■■■■ ■■iii iii■■ ■■iii iii■■ ■■iii iii■■ ■■iii iii■■ ■■iii iii■l l■lll 1.'0.110.11■ 1110.■ 10.11■ ll■■■ ■■iii iii■■ ■■iii iii■■ ■■iii iii■■ ■■iii iii■■ ■■iii iii■■ ■■iii iii■■ ■■iii iii■■ ■■iii iii■■ ................■■■! ■1■■■ ■■1■■ ■1■■■ ■■1■■ ■1■■■ �1■■ MENEM MENEM MENEM ■m■■■ MENEM MENEM MENEM MENEM MENEM =.■■■■ ■.•Irl■ ■■■■■ ■■■■■ .■■_-■1-• SSSS■ ■■■■■ .■■■■ ■■■■■ .■■■■ ■■■■■ .■■■■ ■■■■■ .■■■■ ■■■■■ .I.■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon ■■■■■ ■moon■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■1■. ■■■■■ ■moon nomm000.e.l..o!■■EEE M..o!!■..■■mm■: cnin�=.11-,w■le.o!■■SEEM..o!■■SEEM..o!■■EEEw11.o!■■EEOEEEo!■■EEOEEEo!■■EEOEEEo!■■EEOEEEo!■■EEOEEEo!■■EEOEEEo!■■EEOEEEo!■■EEOEEEo!■■EEOEEEo!■■EEOEEEo!■■EEOEEEo!■■EEOEEEo!■■EEO!.oEEE■EEOl.oEEEo..M�o.!■■EEOl.oEEE■EEO 1.■EEE■EEO 1.■EEE■EEO 1.■EEEo..M !0000....0010 ommom momma nommo n.0000. !0000....0000. !0000....0000■....L.=71::!10-. ■M::M MM■.. M■l■.. I■....0000! n0000....0000l .0000....0000! n0000....0000l .0000....0000! n0000....0000l .0000....0000! n0000....0000l .0000....0000! n0000....0000l .0000....0000! n0000....0000l .0000....0000! no.■...0000!.............. no■■■■ ■■■■■ no■■■no mmoom moan!.■.■...0000!.■.■...0000! mommommuJon■ommommonommon■■■■■■■■■■■■■■■lmmmmmmmmmmmmmmmmmmmm0000.. ■!.o iL==�l11-..,a■....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.■.■...0000!.■.■...0000!x.■...0000!.■ mommomommoommmom■l■ll■ll■ll■l■ll■ll■l■ m■■mm ■nrJ■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■.............. mm■■■ mmmmm mmmmm mm■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■000000 II■00no no■000000 no■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ - -.■■■■■0..r■■■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■■■■.■■■■■■.....■■■■■■■■. �■■■■■■..........o ■■■o ■■■o ■■■o ............... ■calf .n. in nommo mmoom momom mommm ...........................mom momma mmomm ommom momom momma mmoom moomm moomm no........................................................................................................................man ommom �.ME NOMON E■.■.flan! Sono. flan! Sono. flan!.■.■.flan! ■■■■■ ■w_J■ ■■■o■ ■o■■■ ■■■o■ ■o■■■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■! lo..! M..o! lo..M E■E■■ E■E■■ E■■.■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■■E■■ ■■■■M ■■■■■ ■o■■■ doom■ ■■■■M =■E■ ■■■■M E■■■■ ■o■■■ doom■ ■■■■M ■EEE■ ■■■■M doom■ ■o■■■ ■■■■■ ■n.-1xM doom■ doom■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ 1111E ElaaE 1111E ElaaE 1111E Elaa! EaalE Elaa! EaalE Elaa! EaalE Elaa! EaalE Elaa! EaalE Elaa! EaalE Elaa! EaalE Elaa! EaalE Elaa! EaalE Elaa! EaalE Elaa! EaalE E■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■aE Elaa! �laE Elaa! EalaE Elaa! EalaE ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■e-'1■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■.. ■■■.. ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■!■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■mmo ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■1■■■ �1■■ ■1■■■ ■■1■■ ■1■■■ doom■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ - =oo■ vi.n moo moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo oo■ moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo moo loll moo moo moo moo moo moo moo moo moo moo moo moo■ moo moo moo moo moo moo moo moo moo �EEo! ■a�21 0000■ 0000■ 0000■ nommo mmoom momma nommo nommo mmomm ommon ommon ommom mmmom moEME NEENE.................... nommo mmomm ommon nommo nommo mmomm ommon ommon ommom momma mmomm omomm ommom momma nommo mmmon nommo mmomm omoon MENEM MENEM MENEM MENEM MENEM MENEM moon moomm doom■ moomm MENEM MENEM MENEM ■DEED 1. No! ■o..M moomm on 1111 ■momm ommon ommo...0000. !0000....0000. l0000....0000. !0000....0000. !0000....0000. l0000on nommm momon.................... ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■................ nommo nommo nommo .0000....0000! .■.■...mom moomm momom momm ommom momma mmo■!.■.■...0000! .■.■...0000! .■.■...0000! l0000...L.w...■....0000. !0000.. ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■mm mmmmm mmmm...0000l .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000! .0000....0000■.0000....0000! .0000. M ENEEM ENEEM ENEEN E■■■■ illi■ ■illi ■■0000! .■■■...0000! �.on ..0000! .■.on Ellam■ ll■ll ■l■ll illi■ ■■■■■ ■■■■■ ■■■■■ ■0000■■ ■w: ■■ ■■■■■ ■■■■■ ■■■■■ mm■■m m■mm■ mm■■■ ■0000■■ ■■0000■ ■0000■■ ■■0000■ ■0000■■ ■■0000■.0000ME NEEME NEENN ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■0000■ ■0000■■ ■■0000■ ■0000■■ ■■0000■ ■0000■■ ■■0000■ ■0000■■ ■■0000■ ■0000 ME NNEEM ENNEE NNEEM ■MO■■ ■■■■■ ■■■■■ ■■0000■ ■0000■■ ■■0000■ ■0000■■ ■■0000■ ■■■■■ ■M1100 ■■m■■ 0011100 c■■m 0011100 no■■■m 0010000■ ■■■■■ ■■0000■ ■■■■■ MENEE MENEE NEENE - ®.■■■, ■r-1■ ■■■■■ ■■■■■ ■■■■■ ■■■■,.........■.■■■■ ■■■■■.■■■■ ■■■■■ ■■■■■ ■■■■■.■■■■ ■■■■■.■■■■ ■■■■■ ■■■■■ ■■■■l l■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■■■■...............................■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■.............. �................■■ ■■■■■ ■■■■■ ■■■■■............... momma mm.7o ommom mommo mmomm ommoo mmoom mommo mmo■n nommm mmmom mommm ............................mo mmomm ommom moomm ommoo mmomm ommom momom momom mom..............................on MENEM MENEM MENEM MENEM mooMo doom■ MENEM MENEM MENEM MENEM MENEM MENEM MENEM moon moomm doom■ moomm doom■ moomm MENEM MENEM MENEM MENEM 1 M..o!la=11■■■■■■■■■■■■■■o■■o■■■■..■■■■..■■..o!■o■■■■■■o■■o■■■■..■■■■..■■..■■■■..■■..■■■■..■■..■■■■..■■..■■■■..■■..■■■■..■■E■■■■■■■■■■■■■■■..■■..■■■■..■■.■o!lo..Ml..o!!■E■■E■E■EE■E■■■■■■■■■■■■■■■o■■o■■■■■■■■■■■■■■■o■■■o■■■■■■■EE■E■■mo■■■o■■■■■o■■■■■■■■■o■■■■■■■■■o■■■o■■■■■o■■lo..■ 1 ■■■■■Elan■■■■■■■■■■■■■■■■■■■■■.........■........■.........■■■■■■■■■■■■■■■■■■■■■■■■■■■■■!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.0000....0000!.■.■...0000!.■.■...0000!x.■...0000!.■.■...0000!.■.■...0000!.■.■...0000!.■.■...0000! ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■.. ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■.. ■■■.. ■■■.. ■.■!! ■■1■■ ■1■■■ �1■■ ■1■■■ ■■1■■ ■1■■■ ■■1■■ ■1■■■ MENE■ ■■■.. ■■■.. ■■■.. ■■■■■ ■■■■■ ■■■■■ ■o■■■ ■■■o■ ■o■■■ ■..■■ ■■..■ ■■■o■ ■o■■■ ■■■■■ ■o■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■o■ ■o■■■ ■■■o■ ■o■■■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■■E■■ ■■..■ ■..■■ ■■■■■ ■■■o■ ■■■■■ ■■■o■ ■o■■■ ■■■■■ ■■■■■ ■■■■■ ■o■■■ ■E■■■ E■■■■ E■E■E E■■■■ ■■■■■ ■o■■■ ■■■■■ ■■■■M moo.! lo..M leo.! lo..M leo.! lo..M leo.! lo..M leo.! lo..M !0000.. Elan .0000...■■■■ ■■■■■ ■■■■■ ■......... ■......0000. l0000....0000. !0000....0000. !0000....0000. !0000....0000■ E■■■■ E■■■■■..............................MENN ■.0000!.0000....0000!.0000....0000! ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■0000....0000!.0000....0000!.■.■...0000!.■.■...0000! �.■...0000!.■.■...0000!.■.■...0000!.■.■...0000!.■.■...0000! !■■1111 Elan 11..11■ ■.... ■......... ■......... ■......■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ moll■ ■■■l■ ■l■■■ ■■■l■ ■l■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■0000■■ 1111■■■ 11..11■ 1111■■■ 11.11■■ 1111■■■ 11.11■■ 1111■■■ =■■■ 1111■■■ 11.11■■ 1111■■■ 11.11■■ 1111■■■ 11.11■■ 1111■■■ 11.11■■ 1111■■■ _■■■..■■■■■■■■■■■■■■■■■■■■■■■■,"",■■■■■.■■■,■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■..■■■..■■■.■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■�■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■..■■■..■■■.. ■■■■■ Elan ■■■■■ ■moon ■■■.. E■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■....■■. ■■■....■■■.■■....■■■.■■.■ ■■■■■ ■■■■■ ■■■■■ ■.............. ■■............. ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■0000■■ 0.000 ■0000■■ 0.000 moo -O 0.000 ■0000■■ 0.000 ■■■■■ 0.000 ■■■■■ 0.000 �■■...0000!.■.■..■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■■ ■■■■! M..o! lo... l..o! E■E■E ■..■■ E■■■E M..o! lo..! M..o! lo..! M..o! !o■■■ ■E■■■ E■EE■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■■..■ ■..■■ ■o■■■ ■■■■■ ■■■■■ ■..■■ ■■..■ ■..■■ ■■■Ew l..o! lo..M l..o! ■■■■M ■E■■■ ■■■■M ■E■■■ ■■■■M ■E■■■ ■■■■M ■E■■■ ■■■■M ■E■■■ ■■■■M ■EEE■ ■■■■M ■EEE■ ■■■■M M■■■ ■■■■■ ■■■moon ■■EEw leo.! lo..M leo.! lo..M leo.! lo..M !11.00 Elan 0011■■ ■■■■■ ■00■■■ doom■ ■■■.. ■■■■■ ■■■■■ ■■■■■ ■■■■■..■■. ■.... ■■NEM ■ENEM ■■NEM ■ENEM ■■NEM ■ENEM ■■NEM ■ENEM ■■NEM ■ENEM ■■NEM ■ENEM ■■NEM ■ENEM ■■NEM 0011■■ 0011■■ 0011■■ ■■NEM ■ENEM ■■NEM ■ENEM ■■NEM ■ENEM ■■NEM ■ENEM ■■NEM ■ENEM ■■NEM ■■■■■ ■■NEM ■■■■■ ■■NEM m■■■ ■■NEM ■■■■■ ■■■■■ 0011■■ 0011■■ 0011■■ 0011■■ 0011■■ ■■■■■ ..................................................]...................................................................................................................................................................................................................................._ /1 /A r r \ .t I `. I `\ I `\ E 3.E 0E 1 \ 541/ 1 \ PROPOSED GRADING LIMITS 1 1 ICY -... ?. ? ` ? /1 12.00 I.- ? \i \ i\ An. ?_ \ GRADE SPOIL PILES TO PROPOSED DESIGN GRADE c 0 2 N 9- L V N i m a m NN i v N I 4 5 / 4'? ---/ 15?/ "*0a '.00 19+p0 153, I le k NOTE: ONCE DESIGN GRADES ARE ACHIEVED, WETLAND RESTORATION AND FLOODPLAIN AREAS WILL BE ROUGHENED TO RESTORE MICROTOPOGRAPHY AS DESCRIBED IN CONSTRUCTION SPECIFICATIONS. v GRADE SPOIL PILES TO PROPOSED DESIGN GRADE P 1` PROJECT ENGINEER PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION (Baker 15. 9 -81 io W 0 ?O 0O ,7` C-/ 154 \ 153 \ 154 3 WETLAND GRADING 80 40 0 80 160 SCALE (FT) N BAKER PROJECT REFERENCE NO. SHEET NO. `Vi 111274 16 PROJECT ENGINEER PRELIMINARY PLANS PROPOSED GRADING LIMITS DO NOT USE FOR CONSTRUCTION i -0 / / - -' Baker Engineering NY, Inc. Sub 200 ® P,o NORTH PPS Cry, NORTH CAROLINA 27518 / JSSi 1 -,sl- hso9 919.4B954ES F-819.4895180 45,00 46 „1p 5 sI _ µp0 47 pB 0 y b 40X00 43+(A ??tr ?'d?`?' w 41.00 ' r % -- ! 9p 1 W 36+00 5 15 50 ......... . lye 5 ?? ? m Cn 'IF m 00 00 0 - - Z CID 5i' O 4- --J / C? r O rss- - _ 151 154 153 m 15 1 , -q 2 t 155 151 V V n N N / \ PROPOSED GRADING LIMITS N 6. ?j 1 NOTE: - - -p, WETLAND GRADING PLAN v ONCE DESIGN GRADES ARE ACHIEVED, WETLAND ------------------------------------------- ------------------------------ RESTORATION AND FLOODPLAIN AREAS WILL BE 80 40 0 80 160 ROUGHENED TO RESTORE MICROTOPOGRAPHY 3 30 30 3 3 30 b a a a? AS DESCRIBED IN CONSTRUCTION SPECIFICATIONS. SCALE (FT) BAKER PROJECT REFERENCE NO. SHEET NO. 111274 J PROJECT ENGINEER ~31=ss�\\ \\ .fes �,eo� / �ox 3� i \fief 5 PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION v— \ -"`� ►— — "_ / PkQPOSED-64RADIN LIMIpTSl 1 m 1 �� / — — — - - 1r/ — — — — — — — — — — — — — — — _ — — — — Baker Engineering NY, Inc. Re9enq a.neaay W.2. ORHNA 2]51e Phow:949A83.M88 Fu 919.989.590 � -I VII pis— —454— � � — fil— IN, ��'` () V• "P4LES GRADE SPOIL TO I 100 �ROPOSED GN GRADE \�_ r-�f �� BD.M �� e/- 7 �� l -59 r/ ':. .� 56+00 _ / m 150 \ xQ i \ — 49 / 150 $ , 4� � p I ` m Lo It m Z— GRADE SPOIL PILES TO I I O / I I f PROPOSED DESIGN GRADErn / l / CO / 01 LU ` O Lu J \ J _\ 9 51 / / \—> / J � u \ /� _ ✓ — a j —n --`C 1 ol PROPOSED GIkADING LIMITS O Ol ~ / 6/ n J oll WETLAND GRADING PLAN NOTE: ONCE DESIGN GRADES ARE ACHIEVED, WETLAND RESTORATION AND FLOODPLAIN X594_ AREAS WILL BE ROUGHENED TO RESTORE MICROTOPOGRAPHY AS DESCRIBED 80 40 0 80 160 w 3O 3O IN CONSTRUCTION SPECIFICATIONS. SCALE (FT) PROJECT ENGINEER C m 10 2 a tr 7 v N N C O / PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION (Baker 2 s z a W 0 0 0 0 z 0 Q co z WETLAND GRADING n i (P N?A 2 NOTE: ONCE DESIGN GRADES ARE ACHIEVED, WETLAND RESTORATION AND FLOODPLAIN AREAS WILL BE ROUGHENED TO RESTORE MICROTOPOGRAPHY AS DESCRIBED IN CONSTRUCTION SPECIFICATIONS. 80 40 0 80 160 SCALE (FT) PROJECT ENGINEER PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION Bring NY, Inc. ROLINA 2]878 488 7 C m a 2 N a o: 7 n N N r PROPOSED xxx C NOTES: 1. TOTAL PLANTING AREA = 153.8 AC. 2. TOTAL CONSERVATION EASEMENT AREA = 225.3 AC. 3. SEE VEGETATION SELECTION TABLES ON SHEET 1-A. - I PLAN VDAR 80 40 0 80 160 SCALE (FT) It PROJECT REFERENCE NO. SHEET N0. Ill 4 PROJECT ENGINEER PRELIMINARY PLANS 00 NOT USE FOR CONSTRUCTION EIaRR! Engineering . y NY, Inc. 8000 RBge'w BenBY PBHwry Sk 205 C." NORTH CAROLINA 21518 Phone: BiB.4E954&B FazBiB.4ES.54B0 21 I PROPOSED PLANTING ZONES PARIAN HEADWATER RIPARIAN UPLAND I NON-RIPARIAN TRANSITIONAL m N a ? RIPARIAN 7 N MINIMAL DISTURBANCE I PLANTING C a m PLANTING NOTES: v 1. TOTAL PLANTING AREA = 153.8 AC. 2. TOTAL CONSERVATION EASEMENT AREA = 225.3 AC. 3. SEE VEGETATION SELECTION TABLES ON SHEET 1-A. it I I I I ?VEGETATION BOUNDAR PLAN 80 40 0 80 160 SCALE (FT) ELF " CONTAINERIZED PLANTING AREA p'y. SEE SHEET 1-A PROPOSED PLANTING ZONES HEADWATER RIPARIAN UPLAND / NON-RIPARIAN TRANSITIONAL c N a ? RIPARIAN 7 MINIMAL DISTURBANCE l PLANTING E a PLANTING NOTES: v ° 1. TOTAL PLANTING AREA = 153.8 AC. 2. TOTAL CONSERVATION EASEMENT AREA = 225.3 AC. 3. SEE VEGETATION SELECTION TABLES ON SHEET 1-A. PROJECT ENGINEER PRELIMINARY PLANS UU NOT USE FOR CONSTRUCTION 10+00 80Ilike, 00P "wft w cu F, NY, Inc. S'i 2W Ca . Q¢. y. PW NOan .CAROL MBB n 27518 Yb jT y Phone 819.18G.5188 9 • A ? `/ Fax'. B18.M5.5180 "Y 66"00 80.p6 61+00 Q ' 56.+00 fp tp . 2 58+06 .n ,y sj CONTAINERIZED PLANTING AREA SEE SHEET 1-A no r9m F- i r c ?VEGETATION BOUNDAR PLAN 80 40 0 80 160 SCALE (FT) PROJECT ENGINEER PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION Aker c N N 2 a tr 7 v n N N r RIPARIAN ® MINIMAL DISTURBANCE I PLANTING PLANTING NOTES: 1. TOTAL PLANTING AREA = 153.8 AC. 2. TOTAL CONSERVATION EASEMENT AREA = 225.3 AC. 3. SEE VEGETATION SELECTION TABLES ON SHEET 1-A. TION BOUNDAR PLAN 80 40 0 80 160 SCALE (FT) PROJECT ENGINEER ng NYC Inc. LINA 2]518 C U1 U m N 2 N 9- m 7 v n N N r RY 80 40 0 80 160 1 1 -.9990 1 SCALE (FT) PRELIMINARY PLANS a? DO NM USE FOR CONSTRUCTION ro? i G 1 1? PROJECT ENGINEER PRELIMINARY PLANS 1 1 00 NOT USE FOR WNYCR ktN Baker Engineering NY, Inc.l 8000 Regency P.n .y Suih 200 Cery, NORTH CAROLINA 27518 Phone: gig.a .Mae F-g19. 8..MW VO G2 0 U V r RIPARIAN WETLAND AREA (78.7 AC) a INCLUDES WETLAND ENHANCEMENT AREA (3.4 AC) UPLAND AREA (63.9 AC) a y i i it ° NON-RIPARIAN WETLAND AREA (17.3 AC) tiu EXISTING POND WETLAND BOUNDARY PLAN 80 40 0 80 160 SCALE (FT) (N=rarer "ti'.A - -J=/ /- /^?,? / ^6 I er ' a 4- ?? ? =? i Ica ? f Beker Engineering NY, Inc . m oo ae0eay F+4+m Suim zm Gn, aoa>H CAROL Nn 2751e Fhonn.819.1 Fax'. 818.m3.mgo E N 2 a 7 N C r V-91' ?Q / _, ???. !WETLAND BOUNDARY / PLAN PROJECT ENGINEER PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION i? r7l RIPARIAN WETLAND AREA (78.7 AC) ,/r / INCLUDES WETLAND ENHANCEMENT AREA (3.4 AC) m / UPLAND AREA (63.9 AC) ? NON RIPARIAN WETLAND AREA (17 3 AC) 1 SCALE (FT) PROJECT ENGINEER PRELIMINARY PLANS DO NOT USE FOR CONSTRUCTION lBaker ID N 2 a tr 7 N N r 5 ?% RIPA INCLI UPLP NON-RIPARIAN WETLAND AREA (17.3 AC) TLAND BOUNDARY PLAN 80 40 0 8,0 160 SCALE (FT)