Loading...
HomeMy WebLinkAboutNC0000396_SARP_Rev 0_ Appendix C_20161219Amec Foster Wheeler Environment & Infrastructure, Inc. December 2016 Duke Energy Coal Combustion Residuals Management Program Asheville Steam Electric Generating Plant Site Analysis and Removal Plan Revision 0 Appendix C – SynTerra Corrective Action Plan Tables and Figures 161P synTerra CORRECTIVE ACTION PLAN PART 1 Site Name and Location: Asheville Steam Electric Plant 200 CP&L Drive Arden, North Carolina 28704 Groundwater Incident No.: Not Assigned NPDES Permit No.: NC0000396 Date of Report: November 20, 2015 Permittee and Current Duke Energy Progress, LLC. Property Owner: 410 South Wilmington Street Raleigh, NC 27601 (704)382-3853 Consultant Information: SynTerra 148 River Street Greenville, South Carolina (864)421-9999 Latitude and Longitude of Facility: N 35.281113 / W-82.323258 L� synTerra CORRECTIVE ACTION PLAN PART 2 Site Name and Location: Asheville Steam Electric Plant 200 CP&L Drive Arden, North Carolina 28704 Groundwater Incident No.: Not Assigned NPDES Permit No.: NC0000396 Date of Report: February 19, 2016 Permittee and Current Duke Energy Progress, LLC. Property Owner: 410 South Wilmington Street Raleigh, NC 27601 (704) 382-3853 Consultant Information: SynTerra 148 River Street Greenville, South Carolina (864) 421-9999 Latitude and Longitude of Facility: N 35.281113 / W-82.323258 , INNOVATE 148 River Street, Suite 220 Greenville, SC 29601 (864)421-9999 Fax (864)421-9909 www.synterracorp.com Soil Sorption Evaluation Asheville Steam Electric Plant UNC Charlotte Appendix — A Table 1: Site specific soil samples analyzed for Kd Sample Name Depth ft. ABMW — 07 SB 14 —16 ABMW — 05 SB 25 — 27 AB-09 SB 38-39 MW — 03 SB 28 — 30 MW — 05 SB 13 —14 MW-07 SB 16-17 MW — 08 SB 36 — 37 MW — 09 SB 12 —17 MW— 16 SB 7-9 MW— 18 SB 6-7 MW— 18 SB 20 — 22 CB — 08 SB 34 — 36 Table 2: Synthetic ground water constituents and trace metals concentrations Chemical Concentration Units CaSO4.21120 20.0 ppm M SO4 5.0 ppm Na HCO3 10.0 ppm Antimony 500 ppb Arsenic 500 ppb Beryllium 500 ppb Boron 500 ppb Cadmium 500 ppb Chromium 500 ppb Cobalt 500 ppb Nickel 500 ppb Selenium 500 ppb Thallium 500 ppb Vanadium 500 ppb 10IPage the modeled and experimental Kd values are not exactly the same, the trends describing the sorption strength of ions relative to each other are well demonstrated in these predicted Kd values and the observed trends discussed with regard to the site measurements in sections 1 and 2 above are supported. An example of the model output for several constituents of interest is shown below. The aqueous changes for redox active species are shown with the Kd data as appropriate. Table 5.1: Comparison of PHREEQC model predicted Kd values and experimentally determined Kd values assuming sorption to hydrous ferric oxide (HFO). Species Minimum Model Predicted Kd Maximum Model Predicted Kd Geometric Mean of Experimental Data Total Fe 3.8 x 10-9 4.3 x 101 Total As 2.3 x 102 4.5 x 103 1.2 x 103 Borate 7.6 x 10-5 2.2 x 10-3 2.7 Barium 2.4 x 10-10 4.7 x 10-3 Total Co 3.8 x 10-6 7.3 x 101 6.7 x 101 Lead 7.3 x 10-3 5.5 x 104 Manganese 1.2 x 10-6 2.5 x 101 Total Se 1.4 x 10-3 7.3 x 101 2.3 x 102 Total V 6.0 x 10-5 6.2 x 102 1.2 x 103 Total S 1.4 x 10-3 3.6 Zn 4.0 x 10-8 6.6 x 10-1 Table 6.2: Estimated sorption site occupancy assuming 100% sorption of a pore volume of each constituent at the NC2L standard concentration levels. Constituent NC2L Standard (u /L) Molecular weight of species Moles of constituent in 1000cm3 volume at NC2L Standard Level Solid phase concentration of constituent at 100% sorption of NC2L Standard Level (mol/k) Fraction of HFO sorption site capacity occupied at NC2L standard level assuming 100% sorption* Fraction of HAO sorption site capacity occupied at NC2L standard level assuming 100% sorption" Aluminum NE 26.98 1 121.76 1.6E-09 1.0E-09 1.5E-07 6.0E-08 -Antimony Arsenic 10 74.92 2.7E-08 1.7E-08 2.4E-06 9.7E-07 Barium NE 137.33 0.0E+00 0.0E+00 Beryllium 4 9.0122 8.9E-08 5.5E-08 8.1E-06 3.2E-06 Boron 700 10.811 1.3E-05 8.1E-06 1.2E-03 4.7E-04 Cadmium 2 112.41 3.6E-09 2.2E-09 3.2E-07 1.3E-07 Chromium 10 51.996 3.8E-08 2.4E-08 3.5E-06 1.4E-06 Cobalt 1 58.933 3.4E-09 2.1E-09 3.1E-07 1.2E-07 Copper 1000 63.546 3.1E-06 2.0E-06 2.9E-04 1.1E-04 Iron 300 55.845 1.1E-06 6.7E-07 9.8E-05 3.9E-05 Lead 15 207.2 1.4E-08 9.0E-09 1.3E-06 5.3E-07 Manganese 50 54.938 1.8E-07 1.1E-07 1.7E-05 6.6E-06 Mercury 1 200.59 1.0E-09 6.2E-10 9.1E-08 3.6E-08 Molybdenum NE 95.94 0.0E+00 0.0E+00 Nickel 100 58.693 3.4E-07 2.1E-07 3.1E-05 1.2E-05 Selenium 20 78.96 5.1E-08 3.2E-08 4.6E-06 1.8E-06 Strontium NE 87.62 0.0E+00 0.0E+00 Thallium 0.2 204.38 2.0E-10 1.2E-10 1.8E-08 7.1E-09 Vanadium 0.3 50.942 1.2E-09 7.4E-10 1.1E-07 4.3E-08 Zinc 1000 65.39 3.1E-06 1.9E-06 2.8E-04 1.1E-04 TOTAL 0.19% 0.08% *Assumes average sorption site concentration of 6.9 x 10-3 moles;tes/kgsolid for HFO **Assumes average sorption site concentration of 1.0 x 10-2 moles;tes/kgsohd for HAO Table 6. Comparison of observed and simulated boron concentrations (ug/L) in monitoring wells. Well elevation boron measured model ABMW-02 2117.80 1780 2000.0 ABMW-02S 2102.79 770 511.6 ABMW-04 2098.91 3660 2000.0 ABMW-04BR 2072.91 nm 575.4 ABMW-04D 2087.43 1090 1230.0 ABMW-05BR 2058.18 <50 22.6 ABMW-05D 2095.01 106 152.6 ABMW-05S 2034.40 <50 0.0 ABMW-06BR 2122.00 nm 158.6 ABMW-07BR 2085.07 nm 648.2 ABMW-07S 2111.16 789 1329.0 ABMW-08 2132.90 268 200.0 AMW-113 2017.08 422 100.3 AMW-2A 2075.43 229 175.4 AMW-3A 2098.87 <50 0.0 AMW-313 2072.50 <50 0.0 APD-7 2119.26 134 400.0 APZ-30 2067.75 nm 247.2 B-1 2077.98 nm 1879.0 B-1-A 2096.22 nm 1799.0 B-2 2084.80 nm 5310.0 CB-01BR 2109.68 nm 0.0 CB-01D 2137.71 <50 0.0 CB-08BR 2042.42 175 365.5 CB-09BR 2085.61 <50 0.0 CB-09SL 2104.92 <50 0.0 CB-1 2151.41 <50 0.0 CB-2 2138.29 155 191.7 CB-3R 2101.47 720 741.4 CB-4 2044.74 604 94.3 CB-4B 2025.84 <50 172.6 CB-5 2030.99 209 272.1 CB-6 2026.48 807 800.6 CB-7 2023.22 263 874.4 CB-8 2085.69 2350 560.6 CB-9 2117.58 <50 0.0 DP-1 2123.65 409 400.0 GW-01BR 2104.99 <50 0.7 34 GW-01D 2134.82 <50 1.5 GW-1 2154.66 <50 0.1 GW-2 2047.20 1050 2772.0 G W-3 2051.60 1170 1496.0 GW-4 2057.90 994 760.0 GW-5 2105.90 nm 598.4 MW-01BR 2101.53 <50 62.3 MW-01D 2127.69 <50 67.9 MW-02BR 2088.53 64 23.0 MW-03BR 2047.81 nm 0.7 MW-03D 2099.54 541 777.0 MW-04D 2125.92 <50 93.7 MW-05BR 2040.24 464 362.3 MW-05D 2057.35 524 332.8 MW-06BR 2003.81 nm 449.1 M W-06D 2032.23 1700 545.1 MW-06S 2043.12 1090 620.5 MW-08BR 2041.39 nm 4034.0 MW-08S 2080.84 5330 2406.0 MW-09BR 2049.93 554 902.8 MW-09D 2098.09 4630 3388.0 M W-09S 2114.11 4840 3496.0 MW-10 2160.70 <50 0.0 MW-11 2024.50 <50 0.0 MW-11D 1997.72 67 0.0 MW-12BR 2053.88 nm 12.9 MW-12D 2103.89 <50 879.2 MW-13BR 2095.78 <50 0.2 MW-13D 2110.47 <50 0.3 MW-14BR 2048.37 386 4.1 MW-15A 2021.10 54 15.0 MW-15BR 1920.12 117 1.5 MW-15D 1983.91 <50 29.1 MW-16A 2022.46 358 637.2 MW-16BR 1987.52 117 860.1 MW-17A 2025.31 1650 1785.0 MW-18BR 2000.04 861 1264.0 MW-18D 2010.94 793 1264.0 MW-20A 2026.88 646 398.7 MW-21D 2027.73 79 39.9 MW-22BR 1999.48 <50 19.8 MW-22D 2020.06 <50 17.7 35 MW-23BR 2046.44 nm 7.6 MW-23DL 2077.26 <50 75.8 MW-23DU 2087.36 94 57.0 P-100 2062.15 745 1330.0 P-101 2065.21 1240 1090.0 P-102 2110.38 nm 190.9 P-103 2107.70 420 198.0 P-104 2117.66 208 439.3 P-105 2123.77 nm 301.3 PZ-16 2112.50 694 912.0 PZ-17D 2067.70 889 31.8 PZ-17S 2109.30 53 28.1 PZ-19 2078.90 969 440.9 PZ-22 2050.10 1220 612.9 PZ-23 2135.70 250 193.3 PZ-24 2130.70 <50 74.2 PZ-26 2137.80 <50 65.6 CB-3 2096.00 947 584.2 36 Table 7. Comparison of observed and simulated chloride concentrations (mg/L) in monitoring wells. Well elevation chloride measured model ABMW-02 2117.80 5.5 15.0 ABMW-02S 2102.79 14 13.3 ABMW-04 2098.91 13 15.0 ABMW-04BR 2072.91 nm 12.7 ABMW-04D 2087.43 12 14.3 ABMW-05BR 2058.18 8.7 1.7 ABMW-05D 2095.01 11 11.4 ABMW-05S 2034.40 5.2 0.0 ABMW-06BR 2122.00 nm 11.9 ABMW-07BR 2085.07 nm 12.0 ABMW-07S 2111.16 7.3 14.2 ABMW-08 2132.90 28 15.0 AMW-113 2017.08 9.3 2.2 AMW-2A 2075.43 8.2 4.2 AMW-3A 2098.87 1.1 0.0 AMW-313 2072.50 <2.5 0.0 APD-7 2119.26 10 15.0 APZ-30 2067.75 nm 3.6 B-1 2077.98 nm 16.2 B-1-A 2096.22 nm 13.9 B-2 2084.80 nm 855.5 CB-01BR 2109.68 nm 0.0 CB-01 D 2137.71 1.1 0.0 CB-08BR 2042.42 26 8.0 CB-09 B R 2085.61 6.4 0.0 CB-09SL 2104.92 6.6 0.0 CB-1 2151.41 1.7 0.0 CB-2 2138.29 2.7 14.4 CB-3 R 2101.47 10 8.3 CB-4 2044.74 7.6 1.3 CB-413 2025.84 6.2 2.3 CB-5 2030.99 27 4.4 CB-6 2026.48 150 6.4 CB-7 2023.22 36 7.0 CB-8 2085.69 220 51.5 CB-9 2117.58 6.7 0.0 DP-1 2123.65 2.3 15.0 37 GW-01BR 2104.99 1.5 0.1 GW-01D 2134.82 5.3 0.1 GW-1 2154.66 6.6 0.0 GW-2 2047.20 230 294.8 GW-3 2051.60 39 11.9 GW-4 2057.90 10 10.0 GW-5 2105.90 nm 6.2 MW-01BR 2101.53 1.2 4.7 MW-01D 2127.69 2.9 5.1 MW-02BR 2088.53 5.4 1.7 MW-03BR 2047.81 nm 0.0 MW-03D 2099.54 11 8.3 MW-04D 2125.92 3.1 7.0 MW-05BR 2040.24 8.4 4.4 MW-05D 2057.35 9.2 4.0 MW-06BR 2003.81 nm 13.4 M W-06D 2032.23 11 14.0 MW-06S 2043.12 12 14.0 MW-08BR 2041.39 nm 524.0 MW-08S 2080.84 450 121.1 MW-09BR 2049.93 200 18.4 MW-09D 2098.09 470 374.5 M W-09S 2114.11 570 504.9 MW-10 2160.70 8.9 0.0 MW-11 2024.50 73 0.0 MW-11D 1997.72 130 0.0 MW-12BR 2053.88 nm 0.3 MW-12D 2103.89 9.9 47.2 MW-13BR 2095.78 4.4 0.0 MW-13D 2110.47 4.4 0.0 MW-14BR 2048.37 6.3 0.1 MW-15A 2021.10 34 0.3 MW-15BR 1920.12 nm 0.0 MW-15D 1983.91 7.7 0.5 MW-16A 2022.46 97 24.5 MW-16BR 1987.52 120 35.6 MW-17A 2025.31 390 180.5 MW-18BR 2000.04 96 10.2 MW-18D 2010.94 94 10.2 MW-20A 2026.88 23 4.5 MW-21D 2027.73 21 0.9 MW-22BR 1999.48 38 0.7 RK MW-22D 2020.06 24 0.7 MW-23BR 2046.44 nm 0.6 MW-23DL 2077.26 4 5.3 MW-23DU 2087.36 7.3 4.0 P-100 2062.15 12 13.7 P-101 2065.21 12 14.8 P-102 2110.38 nm 13.1 P-103 2107.70 11 14.7 P-104 2117.66 7.1 14.9 P-105 2123.77 nm 8.1 PZ-16 2112.50 4.9 8.1 PZ-17D 2067.70 9.4 0.3 PZ-17S 2109.30 1.9 0.2 PZ-19 2078.90 9.8 4.1 PZ-22 2050.10 8.3 13.6 PZ-23 2135.70 4.4 14.5 PZ-24 2130.70 6.8 5.6 PZ-26 2137.80 2.8 4.9 CB-3 2096.00 8.8 6.1 39 Table 8. Comparison of observed and simulated cobalt concentrations (ug/L) in monitoring wells. Well elevation cobalt measured model ABMW-02 2117.80 6.46 25.0 ABMW-02S 2102.79 578 10.7 ABMW-04 2098.91 <1 25.0 ABMW-04BR 2072.91 nm 2.2 ABMW-04D 2087.43 55.7 16.5 ABMW-05BR 2058.18 4.21 0.0 ABMW-05D 2095.01 <1 5.3 ABMW-05S 2034.40 16.7 0.0 ABMW-06BR 2122.00 nm 20.3 ABMW-07BR 2085.07 nm 2.8 ABMW-07S 2111.16 IS 4.6 ABMW-08 2132.90 3.24 25.0 AMW-113 2017.08 <1 0.0 AMW-2A 2075.43 21.8 0.0 AMW-3A 2098.87 <1 0.0 AMW-313 2072.50 <1 0.0 APD-7 2119.26 <1 25.0 APZ-30 2067.75 nm 0.0 B-1 2077.98 nm 4.4 B-1-A 2096.22 nm 6.2 B-2 2084.80 nm 17.8 CB-01BR 2109.68 nm 0.0 CB-01 D 2137.71 1.66 0.0 CB-08BR 2042.42 <1 0.0 CB-09BR 2085.61 <1 0.0 CB-09SL 2104.92 <1 0.0 CB-1 2151.41 2.02 0.0 CB-2 2138.29 4.17 19.0 CB-3R 2101.47 30.4 0.2 CB-4 2044.74 5.41 0.0 CB-4B 2025.84 <1 0.0 CB-5 2030.99 <1 0.0 CB-6 2026.48 2.24 0.0 CB-7 2023.22 <1 0.0 CB-8 2085.69 2.89 0.2 CB-9 2117.58 <1 0.0 DP-1 2123.65 20.7 25.0 GW-01BR 2104.99 <1 0.0 40 GW-01D 2134.82 4.02 0.0 GW-1 2154.66 4.76 0.0 G W-2 2047.20 12.7 7.4 GW-3 2051.60 17.2 4.7 GW-4 2057.90 <1 1.4 GW-5 2105.90 nm 0.1 MW-01BR 2101.53 <1 0.0 MW-01D 2127.69 9.45 3.8 MW-02BR 2088.53 <1 0.0 MW-03BR 2047.81 nm 0.0 MW-03D 2099.54 <1 0.2 MW-04D 2125.92 6.24 2.9 MW-05BR 2040.24 <1 0.0 MW-05D 2057.35 39.1 0.0 MW-06BR 2003.81 nm 4.0 MW-06D 2032.23 4.17 9.1 MW-06S 2043.12 6.66 9.6 MW-08BR 2041.39 nm 0.9 MW-08S 2080.84 3.09 0.1 MW-09BR 2049.93 <1 0.0 M W-09D 2098.09 17.8 1.7 M W-09S 2114.11 5.9 9.3 MW-10 2160.70 4.69 0.0 MW-11 2024.50 2.14 0.0 MW-11D 1997.72 1.11 0.0 MW-12BR 2053.88 nm 0.0 MW-12D 2103.89 2.34 14.5 MW-13BR 2095.78 <1 0.0 MW-13D 2110.47 7.01 0.0 MW-14BR 2048.37 <1 0.0 MW-15A 2021.10 <1 0.0 MW-15BR 1920.12 nm 0.0 MW-15D 1983.91 <1 0.0 MW-16A 2022.46 1.35 0.0 MW-16BR 1987.52 1.61 0.0 MW-17A 2025.31 29.8 0.0 MW-18BR 2000.04 1.05 0.0 MW-18D 2010.94 4.61 0.0 MW-20A 2026.88 16.4 0.0 M W-21D 2027.73 1.66 0.0 MW-22BR 1999.48 <1 0.0 MW-22D 2020.06 2.5 0.0 41 MW-23BR 2046.44 nm 0.0 MW-23DL 2077.26 <1 0.0 MW-23DU 2087.36 36.9 0.0 P-100 2062.15 35.9 1.1 P-101 2065.21 14.6 11.5 P-102 2110.38 nm 1.6 P-103 2107.70 23.7 5.1 P-104 2117.66 26.8 21.2 P-105 2123.77 nm 8.0 PZ-16 2112.50 1.31 6.1 PZ-17D 2067.70 <1 0.0 PZ-17S 2109.30 <1 0.0 PZ-19 2078.90 <1 0.8 PZ-22 2050.10 7.27 7.5 PZ-23 2135.70 22.4 17.2 PZ-24 2130.70 4.35 1.7 PZ-26 2137.80 2.23 3.1 CB-3 2096.00 1.88 0.0 42 Table 9. Comparison of observed and simulated sulfate concentrations (mg/L) in monitoring wells. Well elevation sulfate measured model ABMW-02 2117.80 250 400.0 ABMW-02S 2102.79 730 119.1 ABMW-04 2098.91 270 400.0 ABMW-04BR 2072.91 nm 141.6 ABMW-04D 2087.43 110 260.9 ABMW-05BR 2058.18 19 11.3 ABMW-05D 2095.01 16 76.3 ABMW-05S 2034.40 20 0.0 ABMW-06BR 2122.00 nm 79.3 ABMW-07BR 2085.07 nm 117.2 ABMW-07S 2111.16 120 182.4 ABMW-08 2132.90 <1 100.0 AMW-113 2017.08 120 19.9 AMW-2A 2075.43 65 37.0 AMW-3A 2098.87 0.34 0.0 AMW-313 2072.50 3.3 0.0 APD-7 2119.26 27 100.0 APZ-30 2067.75 nm 39.5 B-1 2077.98 nm 373.4 B-1-A 2096.22 nm 359.1 B-2 2084.80 nm 374.5 CB-01BR 2109.68 nm 0.0 CB-01 D 2137.71 2.2 0.0 CB-08BR 2042.42 31 60.8 CB-09 B R 2085.61 1.8 0.0 CB-09SL 2104.92 0.57 0.0 CB-1 2151.41 0.61 0.0 CB-2 2138.29 62 95.8 CB-3 R 2101.47 180 103.8 CB-4 2044.74 130 14.4 CB-4B 2025.84 70 26.3 CB-5 2030.99 8.9 46.0 CB-6 2026.48 110 161.2 CB-7 2023.22 56 175.6 CB-8 2085.69 140 72.1 CB-9 2117.58 0.11 0.0 DP-1 2123.65 96 100.0 GW-01BR 2104.99 8.3 0.3 43 GW-01D 2134.82 2.9 0.8 GW-1 2154.66 35 0.0 GW-2 2047.20 85 319.6 G W-3 2051.60 170 300.8 GW-4 2057.90 150 116.8 GW-5 2105.90 nm 81.1 MW-01BR 2101.53 8.2 31.2 MW-01D 2127.69 5.3 33.9 MW-02BR 2088.53 56 11.5 MW-03BR 2047.81 nm 0.1 MW-03D 2099.54 140 106.4 MW-04D 2125.92 1.5 46.8 MW-05BR 2040.24 140 52.7 MW-05D 2057.35 190 48.0 MW-06BR 2003.81 nm 110.3 M W-06D 2032.23 150 120.8 MW-06S 2043.12 130 126.6 MW-08BR 2041.39 nm 347.9 MW-08S 2080.84 290 279.8 MW-09BR 2049.93 87 130.1 MW-09D 2098.09 270 313.0 MW-09S 2114.11 270 271.3 MW-10 2160.70 0.3 0.0 MW-11 2024.50 25 0.0 MW-11D 1997.72 18 0.0 MW-12BR 2053.88 nm 2.9 MW-12D 2103.89 7.3 160.2 MW-13BR 2095.78 1.6 0.0 MW-13D 2110.47 1.9 0.1 MW-14BR 2048.37 170 0.9 MW-15A 2021.10 5.3 3.0 MW-15BR 1920.12 nm 0.3 MW-15D 1983.91 0.29 5.8 MW-16A 2022.46 33 86.5 MW-16BR 1987.52 36 116.4 MW-17A 2025.31 160 175.8 MW-18BR 2000.04 290 253.9 MW-18D 2010.94 280 253.9 MW-20A 2026.88 220 66.1 MW-21D 2027.73 31 8.4 MW-22BR 1999.48 25 5.6 MW-22D 2020.06 11 5.2 44 MW-23BR 2046.44 nm 3.7 MW-23DL 2077.26 22 35.9 MW-23DU 2087.36 26 27.0 P-100 2062.15 140 179.3 P-101 2065.21 160 167.1 P-102 2110.38 nm 87.4 P-103 2107.70 50 97.8 P-104 2117.66 41 106.5 P-105 2123.77 nm 68.1 PZ-16 2112.50 110 177.9 PZ-17D 2067.70 140 6.4 PZ-17S 2109.30 19 5.6 PZ-19 2078.90 170 78.6 PZ-22 2050.10 200 123.8 PZ-23 2135.70 62 96.6 PZ-24 2130.70 <1 37.1 PZ-26 2137.80 0.13 32.8 CB-3 2096.00 150 79.5 45 Table 10. Comparison of observed and simulated TDS concentrations (mg/L) in monitoring wells. Well elevation TDS measured model ABMW-02 2117.80 770 800.0 ABMW-02S 2102.79 670 242.7 ABMW-04 2098.91 850 800.0 ABMW-04BR 2072.91 nm 333.5 ABMW-04D 2087.43 250 547.0 ABMW-05BR 2058.18 180 39.5 ABMW-05D 2095.01 170 267.0 ABMW-05S 2034.40 130 0.1 ABMW-06BR 2122.00 nm 277.6 ABMW-07BR 2085.07 nm 278.8 ABMW-07S 2111.16 200 331.5 ABMW-08 2132.90 350 350.0 AMW-113 2017.08 280 50.5 AMW-2A 2075.43 190 96.9 AMW-3A 2098.87 500 0.0 AMW-313 2072.50 72 0.0 APD-7 2119.26 96 200.0 APZ-30 2067.75 nm 84.6 B-1 2077.98 nm 750.5 B-1-A 2096.22 nm 718.9 B-2 2084.80 nm 2200.0 CB-01BR 2109.68 nm 0.0 CB-01D 2137.71 37 0.0 CB-08BR 2042.42 210 129.1 CB-09 B R 2085.61 96 0.0 CB-09SL 2104.92 43 0.0 CB-1 2151.41 <25 0.0 CB-2 2138.29 93 335.3 CB-3R 2101.47 420 193.3 CB-4 2044.74 230 29.7 CB-4B 2025.84 170 53.8 CB-5 2030.99 150 103.2 CB-6 2026.48 520 324.2 CB-7 2023.22 190 351.4 CB-8 2085.69 840 225.3 CB-9 2117.58 25 0.0 DP-1 2123.65 370 200.0 GW-01BR 2104.99 110 1.2 46 GW-01D 2134.82 41 2.7 GW-1 2154.66 78 0.2 GW-2 2047.20 720 1127.0 GW-3 2051.60 440 603.6 GW-4 2057.90 260 238.0 GW-5 2105.90 nm 144.8 MW-01BR 2101.53 110 109.0 MW-01D 2127.69 41 118.7 MW-02BR 2088.53 180 40.2 MW-03BR 2047.81 nm 0.2 MW-03D 2099.54 270 192.7 MW-04D 2125.92 33 163.9 MW-05BR 2040.24 260 102.4 MW-05D 2057.35 250 92.7 MW-06BR 2003.81 nm 313.3 MW-06D 2032.23 260 326.1 MW-06S 2043.12 220 326.2 MW-08BR 2041.39 nm 1576.0 M W-08S 2080.84 1900 750.3 MW-09BR 2049.93 860 282.0 M W-09D 2098.09 1700 1251.0 MW-09S 2114.11 1700 1396.0 MW-10 2160.70 44 0.0 MW-11 2024.50 220 0.0 MW-11D 1997.72 380 0.0 MW-12BR 2053.88 nm 5.7 MW-12D 2103.89 50 379.5 MW-13BR 2095.78 34 0.1 MW-13D 2110.47 93 0.2 MW-14BR 2048.37 390 1.9 MW-15A 2021.10 99 6.0 MW-15BR 1920.12 nm 0.6 MW-15D 1983.91 72 11.6 MW-16A 2022.46 350 208.3 MW-16BR 1987.52 310 284.9 MW-17A 2025.31 1200 651.4 MW-18BR 2000.04 660 508.2 MW-18D 2010.94 650 508.2 MW-20A 2026.88 480 132.0 M W-21D 2027.73 170 21.9 MW-22BR 1999.48 170 17.0 MW-22D 2020.06 90 15.9 47 MW-23BR 2046.44 nm 12.9 MW-23DL 2077.26 160 124.4 MW-23DU 2087.36 84 93.5 P-100 2062.15 230 318.6 P-101 2065.21 260 344.3 P-102 2110.38 nm 294.0 P-103 2107.70 120 340.7 P-104 2117.66 140 213.5 P-105 2123.77 nm 137.5 PZ-16 2112.50 210 359.3 PZ-17D 2067.70 320 12.8 PZ-17S 2109.30 44 11.2 PZ-19 2078.90 nm 154.3 PZ-22 2050.10 290 317.0 PZ-23 2135.70 120 338.1 PZ-24 2130.70 260 129.9 PZ-26 2137.80 <25 114.7 CB-3 2096.00 240 142.8 E; TABLE 9-1 EFFECTIVENESS MONITORING PARAMETERS ASHEVILLE STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ARDEN, NC PARAMETER RL UNITS METHOD FIELD PARAMETERS p NA S Field Water uality eter Sped is Conductance NA µS cm Field Water uality eter em erature NA C Field Water uality eter Dissolved xy en NA mg Field Water uality eter xidation Reduction Potential NA m Field Water uality eter urbidity NA N Field Water uality eter INORGANICS Aluminum 5 9 EPA 200.7 or 6010C Aluminum 5 µg EPA 200.7 or 6010C Antimony 1 9 EPA 200.8 or 6020A Arsenic 1 µg EPA 200.8 or 602OA Barium 5 µg EPA 200.7 or 6010C Beryllium 1 9 EPA 200.8 or 6020A Boron 50 9 EPA 200.7 or 6010C Cadmium 1 9 EPA 200.7 or 6010C Chromium 1 µg EPA 200.7 or 6010C Cobalt 1 µg EPA 200.8 or 602OA Copper 5 µg EPA 200.7 or 6010C ron 10 9 EPA 200.7 or 6010C ead 1 µg EPA 200.8 or 602OA anganese 5 9 EPA 200.8 or602OA ercury low level 0.012 9 EPA 245.7 or 1631 of bdenum 1 µg EPA 200.8 or 602OA Nickel 1 µg EPA 200.7 or 6010C Selenium 1 µg EPA 200.8 or 602OA Strontium 1 µg EPA 200.8 or 602OA hallium low level 0.2 µg EPA 200.8 or 602OA anadium 0.3 µg EPA 200.8 or 602OA inc 5 µg EPA 200.7 or 6010C RADIONUCLIDES Radium 226 11 pci EPA 903.1 odi ied Radium 228 13 pci EPA 904.0 SW846 9320 odi ied ranium 233, 234, 236, 238 aries by isotope µg SW846 3010A 6020A ANIONS/CATIONS Alkalinity as CaC 3 20 S 2320B Bicarbonate -Mg 20 mg S 2320 Calcium 0.01 mg EPA 200.7 Carbonate 20 mg S 2320 Chloride 0.1 mg EPA 300.0 or 9056A ardness NA mg as CaC 3 EPA 130.1 Nitrate as N 0.023 mg N EPA 300.0 or 9056A Potassium 0.1 mg EPA 200.7 Sodium 0.05 mg EPA 200.7 Sul ate 0.1 mg EPA 300.0 or 9056A otal Dissolved Solids 25 1mg S 2540C otal Suspended Solids 12 jrnq IS 2450D Prepared by: BDW Checked by: DP Notes• 1. Select constituents will be analy ed or total and dissolved concentrations. 2. NA indicates not applicable. P:\Duke Energy Progress.1026\102. Asheville Ash Basin GW Assessment Plan\20.EG_CAP\CAP Part 2\Tables\Table 9-1 Asheville Effectiveness Monitoring Parameters.xlsx Page 1 of 1 TABLE 9-2 PROPOSED EFFECTIVENESS MONITORING WELL LOCATIONS ASHEVILLE STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ARDEN, NC Monitoring Well ID Geologic Unit Monitored Rationale Running Count A W 3B Bedrock Determine background concentrations upland o basins 1 CB 01D ransition one Determine background concentrations upland o basins 2 CB 09S Saprolite Determine background concentrations upland o basins 3 CB 09BR Bedrock Determine background concentrations upland o basins 4 W 10 Alluvium Determine background concentrations upland o basins 5 W 24S Saprolite Determine background concentrations upland o basins 6 CB 08BR Bedrock onitor contaminant migration northwest o basins 7 GW 01D ransition one Determine concentrations north o basins 8 GW 01BR Bedrock Determine concentrations north o basins 9 GW 2 Bedrock Ad acent to 1964 basin, intersecting low path to French Broad 10 W 01D ransition one onitor conditions immediately north o 1982 basin 11 W 01BR Bedrock onitor conditions immediately north o 1982 basin 12 W 03D ransition one Downslope o ash basin in southwest direction 13 W 05D ransition one Downslope o ash basin in southwest direction 14 W 05BR Bedrock Downslope o ash basin in southwest direction 15 W 08S Saprolite Ad acent to 1964 basin, intersecting low path to French Broad 16 W 11 Alluvium Downslope o ash basin, ad acent to French Broad 17 W 11D ransition one Downslope o ash basin, ad acent to French Broad 18 W 13D ransition one onitor contaminant migration northwest o basins 19 W 13BR Bedrock onitor contaminant migration northwest o basins 20 W 14BR Bedrock onitor contaminant migration northwest o basins 21 W 15A Alluvium Downslope o ash basin, ad acent to French Broad 22 W 15D ransition one Downslope o ash basin, ad acent to French Broad 23 W 16A Alluvium Downslope o ash basin, ad acent to French Broad 24 W 16BR ransition one Downslope o ash basin, ad acent to French Broad 25 W 17A Alluvium Downslope o ash basin, ad acent to French Broad 26 W 18D ransition one Downslope o ash basin, ad acent to French Broad 27 W 18BR Bedrock Downslope o ash basin, ad acent to French Broad 28 W 20A Alluvium Downslope o ash basin, ad scent to French Broad 29 W 21D ransition one Downslope o ash basin in southwest direction 30 W 22D ransition one Downslope o ash basin in southwest direction 31 W 22BR Bedrock Downslope o ash basin in southwest direction 32 W 23D ransition one onitor contaminant migration south o ash basin 33 W 23D ransition one onitor contaminant migration south o ash basin 34 Prepared by: BDW Checked by: DP File: P:\Duke Energy Progress. 1 026\1 02. Asheville Ash Basin GW Assessment Plan\20.EG_CAP\CAP Part 2\Tables\Table 9-2 Proposed Effectiveness Monitoring Locations.xlsx Page 1 of 1 TABLE 9-3 PROPOSED SURFACE WATER AND SEEP MONITORING LOCATIONS ASHEVILLE STEAM ELECTRIC PLANT DUKE ENERGY PROGRESS, LLC, ARDEN, NC Location ID N 01 F 03 64E 1 64E 2 64E 3 82E 1 82E 2 SW 06 SW 07 repared by: BDW Checked by: DP P:\Duke Energy Progress.1026\102. Asheville Ash Basin GW Assessment Plan\20.EG_CAP\CAP Part 2\Tables\Table 9- 3 Proposed Surface Water Monit Loc.xlsx Page 1 of 1 �r MW-u 2028.00 O 2058± o� o � ®MW-14BR 2oe0t' 1 O O ,...- GUARD HDUSE Ir,P7 7f ,.. CB-09SL 2145.57 MW-15D CB-09BR 02945.72 + rare ®MW-158R r° ,\\\\,, 202804 ➢�,� MW-13D0MW-13BR \ \� 2124.73 -jig4. ♦ 1 CB-08D CB-08BR DRY I. x \ ` P-105 T 2130.15 - �- ^� MW 09BR SETTLING POND I` _ I'. MW-09D P-104 G L 2i36.9+ / 1 MW-09S 2'130.08 , 02116.46 2116.46 Ar-D-7 _ r III ® 'Q 2132.07 �@ MW-08BR / v. Fm ♦ �' \21108 3® DP-1 2133.12 A -,•/ o EE/B-2 GW-1 2096.56 ABMW-02S 8- 1 A 2125 27 , CHARA DEWATERING PUMP #1 _ < \\V�V/- 2105. ' (NOT IN USE) GW 01BR MW-17A GW 2 0 B-1 OABMW-02 I - - GW-01D 12029.581111 2051,35 - 2124.60 _ " J CHARA DEWATERING BASIN WATER LEVEL VARIES PZ-26 2 ✓ 2110± IF NOT PUMPING AND 2141.77 MW-01BR i I - - 2106±TYPICAL DRAW DOWN CHARA DEWATERING PUMP #2 MW-01D P-103 LEGEND P ASSESSMENT WELL WELL _ 2115.98 ELEVATION IN FEET (msl.) rz 60.8o DOWINGRA O(msl.jANCE WELL EELLEVATIONDIN FE TIENT CB-1 BACKGROUND COMPLIANCE WELL alb 0 2163.90 ELEVATION IN FEET (msl.) I FG-W-2---1 MONITORING WELL 2060.72 ELEVATION IN FEET (msl.) WATER LEVEL CONTOUR IN FEET (msl.) - - - - INFERRED WATER LEVEL CONTOUR (msl.) - - - - GROUNDWATER DIVIDE SURFICIAL GROUNDWATER FLOW DIRECTION STREAM WITH FLOW DIRECTION AREA OF CONSTRUCTION AND DEWATERING - - - DUKE ENERGY PROGRESS ` 500 ft COMPLIANCE BOUNDARY WASTE BOUNDARY ♦ ----- PARCEL LINE (APPROXIMATE) WATER LEVELS: 1.) WATER LEVELS WERE COLLECTED BY SYNTERRA ON DECEMBER 17 AND 18, 2015. SOURCES: l 1.) OCTOBER 16, 2015 AERIAL PHOTOGRAPH WAS OBTAINED FROM GOGGLE EARTH 2) DRAWING HAS BEEN SET WITH A PROJECTION OF NORTH CAROLINA STATE PLANE COORDINATE SYSTEM HIPS 3200 (NAD 83). 3) PARCEL BOUNDARY WAS OBTAINED FROM BUNCOMBE COUNTY GIB DATA. 4) NEW WELLS WERE SURVEYED BY MCKIM& CREED THE HORIZONTAL DATUM IS SET .�.:" ♦ TO NAD83 AND THE VERTICAL DATUM IS SET NGVD88 5.) COMPLIANCE MONITORING WELL LOCATIONS AND WASTE BOUNDARY FROM FCA OF INC, SURVEY DATED MARCH 2O09. COMPLIANCE WELLS CB-3R, CB-9 AND SG-1 SURVEYED BY FCA OF INC, SURVEY DATED 2012-11-28. ULIAN % 6.) ADDITIONAL MONITORING WELL AND PIEZOMETER LOCATIONS WERE BASED ON - DATA PROVIDED BY PROGRESS ENERGY. APID2115.13 0 - \ 2060.22 211 964 I ` �z. = S CB-7 ® AMW-07BR ABMW-04D'1 I. r MW-18D 2028.25 _ ® GW_3 2119.41 J P-102 N ti w c ♦, I - f' MW-18BR o 205899 2112.87- 1 4 ti eCB - ®2162 53 . �'- { • o ` Wit'. PZ-17D� F -16 ;,�-. - ♦ 2119.28 PZ-17S W CB 6 2121.70 - - - MW-19BR (� 2032.17 a.2C�' P-101 ` ♦ / PZ-19 ',)so 0 2076.29 2079.11 " P-100 2086.29 ♦ ���' GW_4 MW-06D CB-2 Apw 2138.72 2060.08 2057.92 / ♦ ♦ > \ _ MW-06BR MW-06S - GW-5 ' -- ♦/ 2 `! 2058.69 2106.20 �o 2059.58 CB-34� MW-03D a _ ••M 3202 0 4k o - MW 036R 10441 CB-3R le'D POCK 1 ''`oi�& _ MW-05BR Qi MW-ODD �� 1 moo" -i 2068.50 ♦ - - DCUGLAS F)R DR CB-46 CB-4 204865 / I AMW-2A 2086.18' MW23BR - AMN3A 2165. � � / MW-23DU 216�.14 2165.39 ,,.:.-.. CB 5 AMW-1B 0 >- 2098.37 O MW-23DL W-3� r x ANI B - r 2036.98 - \� '- MW-1.5 - �,., GRAPHIC SCALE R" 2041.59 �Ga ` { 20621+ 250 0 250 500 FIGURE 2-1 POND` ` - SURFICIAL WATER LEVEL MAP \ 20401+ IN FEET POND 2098.1± 148 / - ' r GREERIVERLE, SOUTH CAR LIN DECEMBER 2015 M 45.85 PHONE 64- SOUTH CAROLINA29601 2045.85® MW-22BR ♦ PHONE864-421-9999 ASH BASINS www.synterracorp.com ASHEVILLE STEAM ELECTRIC PLANT Terra DRAWN TM MANAGER* DATE01/04/2016 ARDEN, NORTH CAROLINA •` _ / PROJECT MANAGER: TODD PLATING LAYOUT: FIG 2-1(WL MAP SURFICIAL) r fl-A-1 fi in- AM mo nt Plan\?n Fn fAP-AP P- P\Fianrcc\DF AGHFVII I F RAP WI MAP rlwe IEW NPDES lUTFALL 001 _ - PowE�V CREEK.. _. LEGEND w MW-18BR ASSESSMENT WELL - ` LAKE�uuAN 2o2a.3s ELEVATION IN FEET (msl.) RAW WATER BEDROCK H'1�Ey "-_ ,k INTAKE POINT \,=y rp , JaJ_ Mw�1 D ®Mw 11 2042 20 EELOWINGRADIENT EVATION IN FEET O(msl.�ANCE WELL zo2'43 BACKGROUND COMPLIANCE WELL 0 GB-1 ELEVATION IN FEET (msl.) p7lMw 14BR73 an. _ , 2Ll 1)63 667 ELOEVATIION NMNITORING VFEET (msl.) 1ELL ® 2063.78 m WATER INTAKE POOL ! n D 0HOLE HAD GUARDHOOSE WATER LEVEL CONTOUR IN FEE EDROCK WATERINTAKE RYT02 A VERY LOW OR NO WATER YIELD T (msl.) P z ceoSL cB9- s^ t. 1 ----- INFERRED WATER LEVELCONTOUR(msl.) \\\,�. -1 MAIN C F . MW-15D MW-158R ® -��' zoz8. ,, 11 21 2.46 - - - - GROUNDWATER DIVIDE MW-15A -+• 213246 ff 7 ! a Dm MW-13D ®Mw-138R !' T _ ;� I BEDROCK GROUNDWATER FLOW DIRECTION _ 1 STREAM WITH FLOW DIRECTION \ ` k DEWATERING _ AREA OF CONSTRUCTION AND % CB-2.49 DRY 08BR CB 08D 209) \♦ - - - DUKE ENERGY PROGRESS \ - _ r _ - 500 ft COMPLIANCE BOUNDARY % 1 o 0 0 WASTE BOUNDARY ®2114.2 R lea'sf ` \ o MW-09D 2114.23 SETTLING POND � ----- PARCEL LINE (APPROXIMATE) WATER LEVELS: M W-09S 1 MW-16A ` ' 1.) WATER LEVELS WERE COLLECTED BY SYNTERRA ON DECEMBER 17, 2015. `: APD 7 ` ,Q rr, - MW-16BR \ MW 08BR K ! 1 SOURCES: 2027.75 } 2114.39 / �- F> - - ° ( 1.) OCTOBER 16, 2015 AERIAL PHOTOGRAPH WAS OBTAINED FROM GOOGLE EARTH DP-1 \ I2.) DRAWING HAS BEEN SET WITH A PROJECTION OF NORTH CAROLINA STATE PLANE M W-08S a .-_ �t : y _ COORDINATE SYSTEM FIRS 3200 (NAD 83) 3.) PARCEL BOUNDARY WAS OBTAINED FROM BUNCOMBE COUNTY GIS DATA 4.) NEW WELLS WERE SURVEYED BY McKIM& CREED. THE HORIZONTAL DATUM IS SET \ a \�` ��"� \\�0 � J -�" -• I - 7 4 \�^s TO NAD83 AND THE VERTICAL DATUM IS SET NGVD88 e! x� -_ iys _ 5.) COMPLIANCE MONITORING WELL LOCATIONS AND WASTE BOUNDARY FROM FCA OF "�-' � •- NC, SURVEY DATED MARCH 2O09. COMPLIANCE WELLS CB-3R, CB-9 AND SG-1 - LAKE JULIAN ''� SURVEYED BY FCA OF NC SURVEY DATED 2012 11 28 �`•` B-1-A ABMW-02S aEDRocKHOLE - ,..,� �. 4 GW 1 `R! DRY 702051+ - - i - - CHARA DEWATERING �� - GW-01BR - - ` k ,,�w�' 6.) ADDITIONAL MONITORING WELL AND PIEZOMETER LOCATIONS WERE BASED ON - PUMP #1 (NOT IN USE) 2158.9a -- GW-' � 4. DATA PROVIDED BY PROGRESS ENERGY. ,\ \ B 1 ABMW-02 �1 vat( MW 17A Q� GW 2 _ � LEDROCKHOLe - MW-01BRme . DRY TO 1978, CHARA DEWATERING BASIN PZ-26 2146.79 WATER LEVEL VARIES - 1 ._ -.CHARA DEWATERING PUMP #2 2110± IF NOT PUMPING AND p 2106t TYPICAL DRAW DOWN l T APD-1 ABMW-04 ABMW-11SR _ \1 '• ®ABMW-04BR EST WL2062+JQ_ o MW-18D ABMW-04D CB7 2119.55 J - _ MW-076R MW-18BR � 2033.83 2028.38 PZ-17D I 2110_ CB-01BRL 2158.10! 1 2094.14"- A Q5 PZ-16 PZ-17S � `too MW 19BR 2031.98 CB 6 Og0-P-101 BEDROCK HOLE - ` \ - DRY TO 20742 ` \ P-100 \ � ®� GW 4 MW-0-06BR MW 06D 2060.72 MWMW-06S GW_5 PZ22 CB-3 0MW � MW-20A e ` MW-05BR Cl 2085.92 R CB-3R A t ` --= 2069.09 MW-05D OOU GLAS H afiIfr c 4B APZ 30 FIR OR 2042.20 7o9"1 89 CB 4 AMW-2A �077.60 L AMW 3A AMW 1B MW-23DU y; n^ MW 10 CB-5 0 - MW-23DL .i , - AMW33 ;. `• ' _ 0204249 _ _ - ,. 2163.67 - : 7 \\/_ eEyRaisa°;F 9 POND i 250 GROAPHIC SCALE 500 FIGURE 2-2 2oao PONT) -J-MW-21D 2062.1± POND �� IN FEET BEDROCK WATER LEVEL MAP � - 2098.1±',! / 148 RIVER STREET, SUITE 220 DECEMBER 2015 GREENVILLE, SOUTH CAROLINA 29601 MW-22D® 2036R / PHONE864-421-9999 ASH BASINS 036.10t www.synterracorp.com DRAWN BY: ANTWAN ROBINSON DATE: 01/04/2016 ASHEVILLE STEAM ELECTRIC PLANT PROJECT MANAGER: TODD PLATING ARDEN, NORTH CAROLINA ' y _h ��� LAYOUT: FIG 2-2 (WL MAP BEDROCK) \® M W 1111D POV MW 1 1 ow L 0 MW-14BR I ' MW-15A MW-15D CB-08BR I C T!1 DC INICTAI I Cr, CE-� CB-09BR MW-13D 0 � ELEcrrnnocnLrti MW-13BR s�esv _ WELL ABANDONMENT WAS PERFORMED BY CASCADE WITH OVERSIGHT PROVIDED BY SYNTERRA ON OCTOBER 23, 2015. 1.) ABMW-05S, ABMW-05D, ABMW-05BR, ABMW-06BR, ABMW-07, AND ABMW-07S. WELL ABANDONMENT WAS PERFORMED BY CASCADE WITH OVERSIGHT PROVIDED BY I SYNTERRA ON JULY 18, 2015. 1.) PZ-23, PZ-24, ABMW-08, MW-02BR, MW-04D, PZ-23, AND PZ-24. / PIEZOMETER UPGRADES AND ABANDONMENTS WERE PERFORMED BY PROBE TECHNOLOGIES WITH OVERSIGHT PROVIDED BY SYNTERRA ON MARCH 5 AND 6, 2013. I 1.) PIEZOMETERS PZ-16, PZ-23, PZ-24 AND PZ-26 WERE UPGRADED WITH NEW CONCRETE PADS AND PROTECTIVE CASINGS. ADP-7 AND DP-1 WERE UPGRADED WITH NEW CONCRETE PADS AND / PROTECTIVE CASINGS. 2.) PIEZOMETERS PZ-1D, PZ-IS, PZ-5, PZ-6 AND PZ-12 WERE PROPERLY ABANDONED. t Ar r COAL STOCN PILE ABOVE OROUND TANK 1982 ASH BASIN Y 82E0-1&2 0 MW-01D MW-016R 0 MW-03D 05 D 0 Pg 05BR D CCR WELLS TO BE INSTALLED I qk synTerra GRAPHIC SCALE 300 0 300 600 IN FEET 148 RIVER STREET, SUITE 220 GREENVILLE, SOUTH CAROLINA 29601 PHONE 864-421-9999 www.synterracorp.com DRAWN BY: ANTWAN ROBINSON DATE: 02/04/2016 PROJECT MANAGER: TODD PLATING LAYOUT: FIG 9-1 (SITE LAYOUT) a m LEGEND Mw-oss ASSESSMENT WELL Q 5 CB-9 DOWNGRADIENT COMPLIANCE WELL Q5 FCB--11 BACKGROUND COMPLIANCE WELL Q5 FG—W-21 PIEZOMETER OR MONITORING WELL ■ swo SURFACE WATER LOCATION o K-02 AREA OF WETNESS — 4 STREAM WITH FLOW DIRECTION • NPDESOUTFALLoo1 NPDES OUTFALL DUKE ENERGY PROGRESS 500 ft COMPLIANCE BOUNDARY WASTE BOUNDARY 0 AREA OF CONSTRUCTION AND DEWATERING SOURCES: 1.) 2014 AERIAL PHOTOGRAPH WAS OBTAINED FROM USDA GEOSPATIAL DIGITAL GATEW 2.) DRAWING HAS BEEN SET WITH A PROJECTION OF NORTH CAROLINA STATE PLANE COORDINATE SYSTEM FIRS 3200 (NAD 83). 3.) PARCEL BOUNDARY WAS OBTAINED FROM BUNCOMBE COUNTY GIS DATA. _ 4.) NEW WELLS WERE SURVEYED BY McKI M& CREED. THE HORIZONTAL DATUM IS SET TO NAD83 AND THE VERTICAL DATUM IS SET NGVD88. 5.) COMPLIANCE MONITORING WELL LOCATIONS AND WASTE BOUNDARY FROM FCA OF NC, SURVEY DATED MARCH 2O09. COMPLIANCE WELLS CB-3R, CB-9 AND SG-1 SURVEYED BY FCA OF NC, SURVEY DATED 2012-11-28. 6.) ADDITIONAL MONITORING WELL AND PIEZOMETER LOCATIONS WERE BASED ON DATA PROVIDED BY PROGRESS ENERGY. FIGURE 9-1 EFFECTIVENESS MONITORING MAP ASH BASINS ASHEVILLE STEAM ELECTRIC PLANT ARDEN, NORTH CAROLINA k 1'� wf ._ -* I A, Under drains located at the base of excavation Excavated areas to be backfilled to elevations of 2110 ft (1964 basin) and 2120 ft (1982 basin) �--X \ � Figure 29. Map showing proposed ash basin closure for the CAP2 scenario. 78 boron - P112030 12:00:00 AM 4000.0 2000.0 Figure 39. Simulated 2030 boron concentrations (ug/L) in the top model layer of the transition zone or alluvium (layer 8) for CAP2. q M.- Figure 40. Simulated 2030 boron concentrations (ug/L) in the second model layer of the fractured bedrock (layer 11) for CAP2. EM, Figure 41. Simulated 2045 boron concentrations (ug/L) in the top model layer of the transition zone or alluvium (layer 8) for CAP2. all Figure 42. Simulated 2045 boron concentrations (ug/L) in the second model layer of the fractured bedrock (layer 11) for CAP2. 91