Loading...
HomeMy WebLinkAbout20080684 Ver 2_Stormwater Info_200806190 D colejt & stone Land Planning L andscca c Architecture GO ?1'tiJ +'tt!"r'1ltt? Urban D'?rq;;. 200 South Tryon Street Suite 1400 Charlotte, North Carolina 28202 Tel 704. 376 t 5 5 5 Fax 704. 376, 7851 www.colP jeneststonexom _U8LO 4 vim. Northlake Business Park CJS # 3716 CALCULATIONS FOR: Storm Drainage Detention Erosion Control Water Quality DATE: 09/07/07 REV. 05/13/08 p _ SEA ?^ ?.•y l..t CY ``y... if?+1,+,u irI++0 TABLE OF CONTENTS DESCRIPTION PROJECT SUMMARY STORM DRAINAGE EROSION CONTROL WATER QUALITY ATTACHMENTS SECTION 1 2 3 4 5 Northlake Business Park La P6MU* ?: '° PROJECT NO.: 3716 BY: CB . 7.tilf's "W"? CWFJVAWftW DATE: 91712007 T.M.: DBS ufmasbc REVISED: 511312008 P.M.: DDS PROJECT SUMMARY INTRODUCTION: The Northlake Business Park is commercial development located at the north-east corner of US 21 (Statesville Rd.) and Alexanderana Rd., in the Town of Huntersville, North Carolina. The site is connected to the Long Dixon Creek by two (2) un-named creeks. The project is set on a 16.6 Acres lot which will be developped in two (2) Phases. The first Phase of the development will consist of the construction of the 40,000sf Medical Office Building and all it's appurtenances, including, raingardens and detention ponds as well as the proposed public road (Hunstad Blvd.). A small protion of Phase 2, located to the south of Hunstad Blvd., must be graded to balance the earthwork of Phase 1. The grading of phase 2 has been minimised to have a temporay tree save along US 21 for public perception. All erosion control measures will be placed to protect this minimal grading of Phase 2. The final Phase 2 of the project will be built out at a later date. The Phase 2 development will consists of four (4) buildings totalling 96,000 sf of various retail, office and restaurant space. Rain gardens and detention ponds associated with Phase 2 of this project will not be built during the first phase of the project. The rain gardens and detention ponds are designed to mitigate the increase run-off from the project and minimize the impact of this development on downstream areas and meet the water quality requirements of theTown of Huntersville. Northlake Business Park LadPfom6if °, ??°°-? PROJECT NO.: 3716 BY: CB # ,?'... n DATE: T.M.: DBS _ ta*M oo* REVISED: 511412008 P.M.: DDS DETENTION CALCULATION SUMMARY DRAINAGE AREA Al Tributary area: 1.315 Ac Peak Control Volume Control Tcpre = 17.1 min Tcpost = 5.0 min 1 yl 2 yi 10 yr 50 yi CNpre = 70.0 CNpost = 94.0 Qpre (CfS) Undetained Qp0st (CfS) Detained Qpost (CfS) We?ev (ft) 0.61 3.44 0.02 801.27 1.07 4.31 0.06 801.30 2.79 6.97 2.16 801.44 4.77 11.87 11.87 801.77 1 yr - 24 hr 1 yr: Hyg - Vol pre Hyg - Vol post 0.054 Ac-ft 0.189 Ac-ft Vol. Control: 0.189 - 0.054 = 0.135 Ac-ft Rain Garden A2: Volume above mulch = 1,503 sf x 12" = 1,503 cf = 0.035 Ac-ft Volume control in detention pond A2: 0.135 - 0.035 = 0.10 Ac-ft Orifice for 2 day drawdown: 0.73" dia (0.06 ft) Weiev 1 yr volume control = 801.29 Northlake Business Park cm rpwm* .? ndw 14M PROJECT NO.: 3716 BY: CB # > rs.A.. , c--s- xtos rn OWFJ *NA DATE: T.M.: DBS S ? .r T"t U4= DS* REVISED: 511412008 P.M.: DDS DETENTION CALCULATION SUMMARY DRAINAGE AREA A2 Tributary area: 1.479 Ac Peak Control Volume Control Tcpfe = 13.56 min Tcpost = 5.0 min 1 yl 2 yi 10 yr 50 yi CNpfe = 70.0 CNpaSt = 94.0 Qpre (CfS) Undetained Qpost (CfS) Detained Qpost (CfS) Welev (ft) 0.76 4.01 0.03 799.01 1.29 5.02 0.06 799.22 3.32 8.13 2.93 799.37 5.75 11.19 14.39 799.67 1 yr - 24 hr 1 yr: Hyg - Vol pre Hyg - Vol post 0.061 Ac-ft 0.220 Ac-ft Vol. Control: 0.220 - 0.061 = 0.161 Ac-ft Rain Garden A2: Volume above mulch =2,103sfx 12"=2,103cf = 0.048 Ac-ft Volume control in detention pond A2: 0.161 - 0.048 = 0.112 Ac-ft Orifice for 2 day drawdown: 0.80" dia (0.07 ft) We,ev 1 yr volume control = 799.22 Storm Drainage Analysis C9 Vi ' m v m r M o N m V7 C N I I I tl O C N, coi, m r- M (D OI , f` m i? '-p y, "T m co a ? O o m M O, M 0 O c) ui O v1 c-i O,O Qj m l C ? N W r c0 eD [O dD w i m r- _ T J I i = i a0 aD M N M N N CF) V O O V ?I Lo oD N N M m 0 m CO CD d, A C V m r" m o oo 00 o co N o co M o oo CO o co O o oo (n o co V ol co Mom O;m c0 ? J T 2 E ' m r o o OI O M o oI o O o o oI o M C) C) r- oi o c o 0 0 H O m: V a) N m j C) O c' (O O 7 O c: 01 OH ) 1- O (o O Lo O m m >I C 2 ? ? ?? c' ? I oo co C) - O W l I I N C C O> O O o O co O O O o M r` M r- O o 0 o 0 V 0 o 0 0 cD N N m (D (D V r-- r M m tll (0 O. > 0 oo ao oo 0 a0 0 oD 0 o0 0 a0 0 00 0 M 0 00 0 oD N W E _ R d C O O_ (n O m m c (P (n f? O m m ? M V N ? m ? m M ? 0 O N> A V r M M N m d' M N m C ? m r O m O m m r O co O m m ? 0 co 0 ao 0 imi m r? p W (E6 O co LO o Ix) o o oD u) ' I ` O > Cl V m N r r- r- N M W N V m N V V m N r m N C N a- >I m I- o cc) 0 co 0 co 0 co 0 co m r- o co o co O co m D dl Wj ' I l r Ln (n N M co (D m r- r-- a y 10 B 7 C m V (O LO N U v V O O cl cl) r- r- (() V V 'q V L LL d N 4, L 0 C L 0 C L 0 C L U C L U C L U C L U C L U C L U C L U C L U C Q _ _ W _ m _ w _ m _ w _ V ((] _ (I7 _ (P m N d N i ;O O O I 'u] U) N LO (n L v a i O o O l? i0 0 6 1Z 0 0 0 0 o 0 Io 6 0 0 0, 0 0 (n-- O O O O O 0 0 0 0 0 I 0 w C w LL? ? m! (DI O m co m I v l m ? Lo N m M N N N (D M (N O (D , E w m a V oo A l ' in L r ) c0 M m r- R N O Vl ; (n O Ln L ' ' m N m N R N ((A M to Mi m M F O ? LL E m m y N 01 ('7 M N M N V M N r O O Zi p Q Q Q Q Q 'T (ryy Q c? Q Q ry Q (n 0 W LL CO U CO (n c ? CO 1 U m CO W LL m U I CO W CO ? W LL R A N (n V I M V M (N 10 V I M N Z QI Q QI iQ Q Q Q Qj Q Q a ? m U U m U U m 'U U i w C° ( n U i i B OFF-SITE DA .1 r . r ¦ ' a .¦rrw r ?wrri Out A • • • • • • • • • • • • • • • • • • • • • • • • • --?r -y y r, H T' r .M A- Le' 8x4 BOX CULV 10yr STRM 12"RIPRAP BOT Worksheet for Rectangular Channel Project Description Project File plsdskproji37161engineeringlflowmasterlcrossing.fm2 Worksheet 8x4 box culvert- buried 12inch Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Deoth Input Data Mannings Coefficient 0.045 Channel Slope 0,011600 ft/ft Bottom Width 8 00 ft Discharge 105.56 cfs Results Depth 2.70 ft Flow Area 21.59 ft2 Wetted Perimeter 13.40 ft Top Width 8,00 ft Critical Depth 1,76 ft Critical Slope 0.039735 ft/ft Velocity 4.89 ft/s Velocity Head 0.37 ft Specific Energy 3.07 ft Froude Number 0.52 Flow is subcritical. t? 5i1=4r0RowNlaster v513 10 50 05 AM Haestad :MeW..OdS !nc 3- 3r;oKiide goad Waterbury CT 06'708 L203j 755-1663663 Wage 1 of 1 • • • • • • • • • • • • • • • • • • • • • • • • • TM 5-820.4/AFM 88.5, Chap 4 12 600 500 EXAMPLE 0 ' ' 400 80c 0 = 75 css 5 .2 Va - 50s±+. 9 300 , sr "w Kw D fee, 1 75 ) 5 - 20C} :.21 'go 3.8 S) 2,05 4 t r 6 5 r w Z 4 a K r? m s c? w 2 d 700 O 00 n0 2 a 39 - - 2 s, t Z 60 O 50 d -44 ? 40 Z 30 R 5y ?, 20 . ?p0 ).0 -' - d 2_ _..._ . _ ?r 4 t.C N M!ngxoil d 4 i0 C1ort -? UJJ 9 .9 Z N w F -.8 o a .._ 7 6 3: d O O 5 HW WINGWALL w .7 SCALE . 4 0 FLARE _ 6 a ? c':1 30- eo ts' (3) J-(atansiuns 5 2 Of $,is$) .5 To oss sco4 (2) or (3, Project nnr,sontauT to idols (t), tnfn os? snogh.ne?n?a ',ns rhrougn 4 u Ind Q scoffs,*, 'twit 3% ,?iusteott7. 2 bW ).S (.0 9 7 5 - 8 4 4 35 L 35 5 .30 . X A/ box et44 VIM T tkj IF D 'RIP RA r B-8 A4DA/e, 507'7"pM (1) (2) (3) 8 - 9 - 10 - 8 7 7 El 6 7 6 5 6 5 4 5 4 4 3 3 3 s• ? U 3•o Fket i`.GOW? 4,?,=1 Sa. a t arr his' I ? y. 9de s,? 716 orthtake P _ tediment IPRAP APRON SIZING 3716 BY: CS ased on Army Corps of Engineers Reports H-70-2 DATE: 02/28/08 T.M.: DBS -72-5. and NJ Standards for Soil Erosion and REVISED: 05113108 P.M.: DDS C ontrol(199% Structure Road Crossino Culvert Calculation for dual 8x4 box culvert w/ 12" burial at Ditch crossing Iftnut -1 Effective Culvert Hight, Ho 36 Inches or 3 Feet Peak Flow, Qio * 1066 CFS (Use 10-Year Discharge, See Pond Pack Calculation) Tailwater depth, Tw 0.6 Feet ( If Unknown, use 0.2 x Diameter in Feet) *Q10 = 105.56/2 = 52.78 2gWgn: Apron Length, La = Feet Long IF TW<Hc?2, La=(1.8q((Do".5))+7Do IF'fWiHd2, La=(3g1(Do^.5)) Apron Width, Wa = Feet Wide (Only if no well-defined channel downstream ) ff TIN <Ho/2, We = 3Ho + La N TW > Ho12,Wa = 3Ho+ 0.4La dso Stone Size = dso in Feet dso in Inches CLASS 2 dso = 0.016/TW x (q) A ron Thickness= Minimum 10 inches RIP RAP GRADATION PER NCDOT SPECW"TI ONS RIP RAP M144MUM MIDRANGE MAOXIML A CLASS lit A 2 4 6 B S a t1 1 S 10 15 2 9 14 23 Notes: 1) q=Unit Discharge in cfs pwer foot of width. 2) filter fabric layer is to be used on all outlets. 3) riprap apron thickness designed to be 2 times the d50 when using filter fabric (3 times without). 4) See NCDOT detail 876.02 Sheet 1 of 1 "GUIDE FOR RIP RAP AT PIPE OUTLETS" for sizing of the Riprap Apron. Data calculated above is to determine the riprap class only. This method was proposed and approved with Mike Maclntyre, Mecklenburg County-Land Use and Environmental Services Agency per email May 7th, 2008. Apron Thickness is to be a minimum of 12", see CJS plan CV4.3 for location of filter fabric. 01 `HJI3 tbS SAVMHOIH 30 NOISIAI7 NOI1VltiOdsNVR1 JD Nld3a S131inO 3dld IV deli dItJ SOd aain!O -°? VPbI7GSVO H1IlON € JO 3lViS 41? 80d ONIMVHG (18VaNVIS HSI]ON3 x'00 L,J k 4 00 t N ? N co co 'C `r - N ? e i US `?` 0 . O! ,s Q.. 4 . h c0 M M 0 T CC _. ?. z N: C} h tfi ZD M 'J O7 h i '.. N it fn c( in m W I's X, > t(7 fif ;n O M h w K1 U! r CV N M cD h CD O p in > . w 000 Lu d? •r p V car r z4n O z d < m < CL - ? a cm m 0 ai M y°" 3 O= L 1 - W Lu (4) CS 3 2 C cr w €wx Q. ? x r o Z!. ?ww F° z D 1- ILJ Q x U< J H .d W F' a.Q< LL M< O °a°; a.,aG oa n fn ?. yr m STATE OF " -"` NORTH CAROLINA DEPT. OF TRANSPORTATION DIVISION OF HIGHWAYS RALEIGH, N.C. ......_... _........... < rxwv ° ua N z s- r-- ENGLISH STANDARD DRAWING FOR ^!,N GUIDE FOR RIP RAP AT PIPE OUTLETS` U? J? co Q N ? rr ig m v Q ?uL€ 1-i 1L f uj; W " b. N :J' d?? ?. ???i, € I ICI I!I sl ?II',?I!I'? ?', "' F If .???? '' ?''? I ?', ? ? 'a ,I ?? ??i'?I I ??; p ?I ? ' ?? i??G I?'?' • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Detention Analysis RG Al & DET Al Addlink 10 DA-A1-Pre Junc 10 DA-RGA1-Fast Ad atin 20 RGA1 Det Pond Al Route aut RGA 1 Detention area Out 10 r I • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • n k a k•. k k a. A k k' k: tr. ?"?. _J. ._ M' k k i v ?. a a' A a .<< .' Y A k x a>< n v, z a} k rt tr.- v*a f'y ... ,.v .;; A t k a ... «.<. a k. .., M ., _ F? ??.: -? ... -.,- _ ... _ , ., S • • • • • • • • • _ .. 1 : _._ _W.... T.e : ,. • • • • • • • • • • • • • • • • • ;� - - - _ v; .. _ _.. . _ . .. .. _ _ � _.._ _��ti . ,_ �,----�, _ -�_ ..._ .. � __... .__ n , - - - - - - - - - - - - - aar • • • • • • • • • • • • • • • • • • • ? ., , _.. ???r: -?? --_____ ? ._. F.��. ... �. .. .,.. .._ _ ...<. ,. �� _... • • • • • • • ---------- ----- ----- ------ ea - - - - - - - - - - - - - - - - - - - - - - - - - - - .. ,1..,... ..'1 _ _? __.G_?C? .. ....,__...__ ..?.?.P....?.. '-n n'. _. R"3a2_ r, f .3 FT, ^' ? t..:d, -------------- ,r.. • • • • • • • • • • • • • • • • • • • • • • • • • • • • - - ... 7 I _ .. .. A.". . -- !: `NAP :I a ._? _ Northiake Business Park r etr.rM ?^-? PROJECT NO 3716 BY CB , DATE: 09107107 T.M.: DBS "'..fAQflil oq¦ REVISED: 05113108 P. M.: DDS 1-Year 24 Hour Drawdown - Drv Detention Basin Al Volume Control -- 1-Year 24hr storm 2-5 Day Drawdown Bottom of Pond Elevation 797.99 Bottom of Pond Area 0.00 Ac 1-Year 24hr storm 2-5 Dav Drawdown Volume Volume to be released Vol-1yr pre = 0.054 ac-ft' ' See Pond Pak detention talcs Vol-tyr post = 0.189 ac-ft' ' See PondPak detention talcs Vol to be controlled: 0.135 ac-ft Storage in RGA1 Bott. Area X 12"= 1503X1ft = 1503 cf = 0.035 ac-ft Vol.Stor in Det pond= 0.100 ac-ft This volume must be released over a period of 2-5 days 0.10 ac-ft or 4378 ftA3 As designed pond areas. Storage Volumes Cumulative Elevation Area(ac) Volume(ac-ft) 797.99 0.0000 0.00 798 0.0156 0 00 799 0.0242 0.02 800 0.0334 0.05 801 0.0433 0.09 802 0.0537 0.13 803 0.0647 019 Interpolation to find elevation at which required storage volume is reached Storage Storage Elev volume area 801 0.09 0.04 Elev 0.10 0.03 802 013 0.00 Elev= 801.29 Storage elevation = 3.30 feet above bottom of pond elevation Determination of Orifice size for 2-5 day drawdown a= 2A x sgrt(h) 'Falling head equation Ct(sgrt(2g)) a= Area of orifice a soft t= Time to drawdown 172800 sec Assume 2 day minimum A= Average pond surface area 670 sf g= Gravity constant 32.2 fUs12 h= Change in head 3.30 ft C= Orifice constant 0.6 Maximum orifice area = 0.002926618 sgft Maximum orifice Diameter= 0.73 inches (2 day drawdown) 0.06 feet ws._ --------------------- . _ ,_ � _.. a �.a. �a.. _� . ,. ,...� r.._� — ,._---�__�._.� _._ • • • • • • • • • • • • • • • • • • • • • - - - - ---- - - - - - - - - - - - - - - - - - - - - - - - - - - -_ _ ? ? ;: �_ ,�_ t — e. .._ ,.. __. .. _,. 1 .. .... _ ,. . _._ ��� — ,. 1, .. .—.. _.. -----._ t _ ._ _... o ? ?. ? .!_1 ... _ . y Northlake Business Park ? " ?'"`?"` I 4M PROJECT NO. 3716 BY: CB ` caTA 704. rr& wight S" DATE: 09/07/07 T.M.: DBS U 0#M ow r REVISED: 05113108 P.M.: DDS FLOATATION CALCULATIONS For OS-A1 CONSTRAINTS: Weight of Concrete Weight of Water Safety Factor (S.F.) Height of structure Structure thickness Outlet box width 150 lbs/ft^3 62.4 Ibs/ft"4 1.25 3.91 ft 6 in 4ft Weight of outlet structurefWs) Ws = (width + thickness x 4) x thickness x height x weight of concrete = Weight of water displaced Ww = (width + 2 x thickness x 4) x Weight of water x height = 4879.68 Ibs Size Base Wb=(S.F.xWw)-Ws= 821 Ibs Footing size Required concrete = Wb / Weight of concrete = 5 cult *Assume base is 6" wider than exterior box width and minimum thickness is 8". Thickness of base = 0.67 ft 5279 Ibs Length = 6.00 ft Width = 6.00 ft Thickness = 0.67 ft Dss Park 371s BY: CB 09/07/07 T. M.: DB: Structure HW-A1-1 !AP APRON SIZING on Army Corps of Engineers Reports H-70-2 , and N.J. Standards for Soil Erosion and Pipe Diameter, Do 36 Inches or 3 Feet Peak Flow, Qio Z16 CFS (Use 10-Year Discharge Tailwater depth, Tw 0.6 Feet ( If Unknown, use 0.2 x Diameter in Feet) Velocity, V 1.68 ftts (From StormCAD - 0 ft/s assumed for Level Spreader Overflow) Apron Length, La = 21.7 Feet Long IF 7W<Da2, La=(1.8q1(Do".5))+7Do IF 1W>Da/2, La=(3g1(Do".5)) Apron Width, Wa = 30.7 Feet Wide (Only if no well-defined channel downstream) If TIN <Do/2, Wa = 3Do + La If TIN > Do/2, Wa = 3Do+ 0.4La d5o Stone Size = 0.02 dso in Feet R d5o in Inches CLASS A dso = 0.016/TW x (q)',33 ,Apron Thickness= o Minimum 10 inches RIP RAP GRADATION PER NCDOT SPECIFICATIONS RIP RAP WNIMUM MIDRANGE MAXIMUM CLASS N. IN. IN. A 2 4 S B 5 8 11 1 5 10 15 2 9 14 23 Notes: 1) q=Unit Discharge in cfs pwer foot of width. 2) filter fabric layer is to be used on all outlets. 3) riprap apron thickness designed to be 2 times the d50 when using filter fabric (3 times without). • 3716 - HW Al - DET. POND Al OUTFLOW Worksheet for Circular Channel Project Description Project File p:\sdskproj\3716\engineering\flowmaster\3716-fes.fm2 Worksheet HW Al - DET. POND Al OUTFLOW PIPE 10YR Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.024 Channel Slope 0.002000 ft/ft Diameter 36.00 in Discharge 2.16 cfs Results Depth 0.74 ft Flow Area 1.36 ft2 Wetted Perimeter 3.12 ft Top Width 2.59 ft Critical Depth 0.46 ft Percent Full 24.70 Critical Slope 0.014275 ft/ft Velocity 1.59 fus Velocity Head 0.04 ft Specific Energy 0.78 ft Froude Number 0.39 Maximum Discharge 17.38 cfs Full Flow Capacity 16.16 cfs Full Flow Slope 0.000036 ft/ft Flow is subcritical. 05/14/08 FlowMaster v5.13 09:44:14 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 3716 - HW Al - DIET. POND Al OUTFLOW Worksheet for Circular Channel Project Description Project File p:\sdskproj\3716\engineering\flowmaster\3716-fes.fm2 Worksheet HW Al - DET. POND Al OUTFLOW PIPE 25YR Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.024 Channel Slope 0.002000 ft/ft Diameter 36.00 in Discharge 5.99 cfs Results Depth 1.26 ft Flow Area 2.83 ftZ Wetted Perimeter 4.24 ft Top Width 2.96 ft Critical Depth 0.77 ft Percent Full 42.16 Critical Slope 0.0133 25 ft/ft Velocity 2.12 ft/s Velocity Head 0.07 ft Specific Energy 1.33 ft Froude Number 0.38 Maximum Discharge 17.38 cfs Full Flow Capacity 16.16 cfs Full Flow Slope 0.0002 75 ft/ft Flow is subcritical. 05/14/08 FlowMaster v5 13 09'45:19 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 i • • 3716 - HW Al - DET. POND Al OUTFLOW Worksheet for Circular Channel Project Description Project File p:\sdskproj\3716\engineering\flowmaster\3716-fes.fm2 Worksheet HW Al - DET. POND Al OUTFLOW PIPE 50YR Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.024 Channel Slope 0.002000 ft/ft Diameter 36.00 in Discharge 11.87 cfs Results Depth 1.91 ft Flow Area 4.75 ft2 Wetted Perimeter 5.55 ft Top Width 2.89 ft Critical Depth 1.09 ft Percent Full 63.70 Critical Slope 0.0134 09 ft/ft Velocity 2.50 ft/s Velocity Head 0.10 ft Specific Energy 2.01 ft Froude Number 0.34 Maximum Discharge 17.38 cfs Full Flow Capacity 16.16 cfs Full Flow Slope 0.001080 ft/ft Flow is subcritical. 05/14/08 FlowMaster v5.13 09:46:20 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 111 I 1.. , ,l lmnlqPlIl7 • • • • • • • • • • • • • • • • • • • • • • • i • r r • • • i • • M • i • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Detention Analysis RG A2 & DIET A2 ti Addlink 10 DA-A2-Pre Junc 10 DA-RGA2-Post A001in RG A2 Det Pbnd A2 2(1 W W Routemout RGA2 Detention Area ? e °rltb ,.,,. Out 10 __.. «.. ... .. .. .._ .... .��li� .., _.w __� _?_.. ......? -PPIE, »v.....,. M . ............... 1..... • • • • • • • • • • • • • • • • • • • .... ??_ .............?._.. 4 ... ,., ????: _ ??r ?k__ ................... ..__ • • • • • • • • • • • • • • • • • • • • • • • 4 ? __ ,_; __ .._ - ., ,. ?,_ _ ?: r- _ _ _ ., ?; ? :? _. . , _ _. _, . ?•: ': 1. ,? 1_... .__ .___ .___ x ---------- ----------- .. .. .. ... .... ... .. . . .. . ... ... ------------------- 42, - _ ... r ?_ ? _ ,.. .. .??t , M .. _ _ ._ - - - - - - - - -- - - - - - - - - - _.. -.... i _ _.. ,.. • • • • • • • • • • • • • • • • • • • • • • • • .. .. r }' _" .. _. Y?''.. "17 1 _,... _. ,f; s • • • • • • • • • • • • • • • • • • • ,_ 7 _.? ?. _. ?? ?t ?, ? ? G - - - - - - - - - - - - - - - - - . .... ... ... ... . • • • • • • • • • • • • • • • • • • • • • • ?m. - , .?, ? v .-F? ? ?.?- 3n -------------- .... . . ... .... ... ... ,. �a � .. .:... . . _ . � �'- _. ... , T .. ..._ .. .. :: satin_ i. .,!. -' `� ._. ., ....__ _._____• .. _. -- ---------- --- ------------------- • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Northiake Business Park t.ee.y =71- PROJECT NO 3718 BY: CB OO W S m DATE. 09107107 T M.. DBS W tTi?g1M ...rr.+..... REVISED. 05113108 P. M.: DDS 1-Year 24 Hour Drawdown - D Detention Basin A2 Volume control Volume Control -- 1-Year 24hr storm 2-5 Day Drawdown Bottom of Pond Elevation 795.99 Bottom of Pond Area 0.00 Ac 1-Year 24hr storm 2-5 Da y Drawdown Volume Volume to be released Vol-1 yr pre = 0.061 ac-ft' ' See Pond Pak detention talcs Vol-1yr post = 0221 ac-ft' ' See Pond Pak detention talcs Vol to be controlled. 0.160 ac-ft ( Storage in RGA1 Bott. area X 12"= 2103X1 ft = 2103 cf = 0 048 ac-ft Vol.Stor. in Det pond= 0.112 ac-ft This volume must be released over a period of 2-5 days 0.11 ac-ft or 4867 ft^3 As designed pond areas: Storage Volumes Cumulative Elevation Area(ac) Volume(ac-ft) 795.99 0.0000 0 00 796 0.0206 0 00 797 0.0289 0.02 798 0.0378 0.06 799 0.0472 0.10 800 0.0573 0.15 801 0.0677 0.21 Interpolation to find elevation at which required storage volume is reached Storage Storage Elev volume area 799 0.10 0.05 Elev 011 0.04 800 0.15 0.00 Elev= 79922 Storage elevation = 3.23 feet above bottom of pond elevation Determination of Orifice size for 2-5 day drawdown a= 2A x sgrt(h) 'Falling head equation Ct(sgrt(2g)) a= Area of orifice a soft t= Time to drawdown 172800 sec Assume 2 day minimum A= Average pond surface area 803 sf g= Gravity constant 321 ft/s^2 h= Change in head 3.23 ft C= Orifice constant 0.6 Maximum orifice area = 0.003469558 soft Maximum orifice Diameter= 0.80 inches (2 day drawdown) 0.07 feet .. - . _ r?t .. . ..,. - ? t r ...__ x".,. :'; • • • • • • • • • • • • • • • • • • • • • • ?°, _ °a _ _ts . ..? .. .,.., ___. , _.?.. _. _. :„1 :.'' ... . . .. _ .. -? • • • • • • • • • • • • • • • • • • • • • • • F L, S -------------------- _.._ .. - z _ : _ � _.._ ------- ----- ... 1. -:. ., ? it_??a ... . , ._ • • IOW P(te) ?. , "'" W Northlake Business Park -6- IS202 at x.176_ C AMMAtm PROJECT NO. 3716 BY: CB l 1 1 ? MWO 555 DATE: 09/07/07 T.M.: DBS uOs D,4p REVISED: 05113108 P.M.: DDS FLOATATION CALCULATIONS For OS-A2 CONSTRAINTS: Weight of Concrete Weight of Water Safety Factor (S.F.) Height of structure Structure thickness Outlet box width 150 Ibs/ft^3 62.4 Ibs/ft^4 1.25 3.91 ft 6 in 4ft Weight of outlet structure(Ws) Ws = (width + thickness x 4) x thickness x height x weight of concrete = Weight of water displaced Ww = (width + 2 x thickness x 4) x Weight of water x height = 4879.68 Ibs Size Base Wb=(S.F.xWw)-Ws= 821 Ibs Footing size Required concrete = Wb / Weight of concrete = 5 cult "Assume base is 6" wider than exterior box width and minimum thickness is 8". Thickness of base = 0.67 ft Length = 6.00 ft Width = 6.00 ft Thickness = 0.67 ft 5279 Ibs Northiake Business Park RIPRAP APRON SIZING PROJECT NO. 37161 BY: CB ased on Army Corps of Engineers Reports H-70-2 DATE: 09/07/07 T.M.: DBS -72-5, and N.J. Standards for Soil Erosion and REVISED: 05113/08 P.M.: DDS Control (19%) Structure FES-A2-2 Pipe Diameter, Do 36 Inches or 3 Feet Peak Flow, Clio 2.93 CFS (Use 10-Year Discharge Tailwater depth, Tw 0.6 Feet ( If Unknown, use 0.2 x Diameter in Feet) Velocity, V 1.76 ft/s (From StormCAD - 0 ft/s assumed for Level Spreader Overflow) i Apron Length, La = 22.0 Feet Long IF 7W<Do/2, La:,-(1.8q/(Do^.5))+7Do IF 7W>Dd2, La=(3cy(Do".5)) Apron Width, Wa = 31.0 Feet Wide (Only if no well-defined channel downstream) If TW <Dod2, Wa = 3Do + La If TW > Da?2; Wa = 3Do+ 0.4La dso Stone Size = 0.03 dso in Feet 6.3 dso in Inches CLASS A dso = 0.01617W x (q)' .33 Apron Thickness= 10 Minimum 10 inches RIP RAP GRADATION PER NCDOT SPECIFICATIONS RIP RAP MINIMUM MIDRANGE MAXIMUM CLASS N. IN. N. A 2 4 6 B 5 a 11 1 5 10 15 2 9 14 23 Notes: 1) q=Unit Discharge in cfs pwer foot of width. 2) filter fabric layer is to be used on all outlets. 3) riprap apron thickness designed to be 2 times the d50 when using filter fabric (3 times without). • • 3716 - FES A2-2 - DIET. POND A2 OUTFLOW Worksheet for Circular Channel Project Description Project File p:\sdskproj\3716\engineering\flowmaster\3716-fes.fm2 Worksheet FES A2 - DIET. POND A2 OUTFLOW PIPE 10YR Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.024 Channel Slope 0.002000 ft/ft Diameter 36.00 in Discharge 2.93 cfs Results Depth 0.87 ft Flow Area 1.69 ftz Wetted Perimeter 3.40 ft Top Width 2.72 ft Critical Depth 0.53 ft Percent Full 28.84 Critical Slope 0.013894 ft/ft Velocity 1.74 ft/s Velocity Head 0.05 ft Specific Energy 0.91 ft Froude Number 0.39 Maximum Discharge 17.38 cfs Full Flow Capacity 16.16 cfs Full Flow Slope 0.000066 ft/ft Flow is subcritical. 05/14/08 FlowMaster v5.13 09:49:53 AM Haestad Methods, Inc 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 0 0 0 0 0 0 0 0 0 0 0 0 0 • 3716 - FES A2-2 - DET. POND A2 OUTFLOW Worksheet for Circular Channel Project Description Project File p:\sdskproj\3716\engineering\flowmaster\3716-fes.fm2 Worksheet FES A2 - DET. POND A2 OUTFLOW PIPE 25YR Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.024 Channel Slope 0.002000 ft/ft Diameter 36.00 in Discharge 7.36 cfs Results Depth 1.42 ft Flow Area 3.30 ftZ Wetted Perimeter 4.55 ft Top Width 3.00 ft Critical Depth 0.85 ft Percent Full 47.36 Critical Slope 0.013269 ft/ft Velocity 2.23 ft/s Velocity Head 0.08 ft Specific Energy 1.50 ft Froude Number 0.38 Maximum Discharge 17.38 cfs Full Flow Capacity 16.16 cfs Full Flow Slope 0.000415 ft/ft Flow is subcritical. 05/14/08 09:48:01 AM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 • • 3716 - FES A2-2 - DET. POND A2 OUTFLOW Worksheet for Circular Channel Project Description Project File p:\sdskproj\3716\engineering\flowmaster\3716-fes.fm2 Worksheet FES A2 - DET. POND A2 OUTFLOW PIPE 50YR Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.024 Channel Slope 0.002000 ft/ft Diameter 36.00 in Discharge 14.39 cfs Results Depth 2.21 ft Flow Area 5.57 ftZ Wetted Perimeter 6.18 ft Top Width 2.65 ft Critical Depth 1.21 ft Percent Full 73.53 Critical Slope 0.0136 12 ft/ft Velocity 2.58 ft/s Velocity Head 0.10 ft Specific Energy 2.31 ft Froude Number 0.31 Maximum Discharge 17.38 cfs Full Flow Capacity 16.16 cfs Full Flow Slope 0.001587 ft/ft Flow is subcritical. 05/14/08 FlowMaster v5.13 09.52.58 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Northlake Business Park RIPRAP APRON SIZING PROJECT NO. 3716 BY: CB Based on Army Corps of Engineers Reports H-70-2 DATE. 09107107 T.M.: DBS -72-5, and N.J. Standards for Soil Erosion and REVISED 05113108 P.M.: DDS Sediment Control (1999) Structure FES-A2-1 Pipe Diameter, Do 15 Inches or 1.25 Feet Peak Flow, Q1o 152 CFS (Use 10-Year Discharge Tailwater depth, Tw .2$ Feet ( If Unknown, use 0.2 x Diameter in Feet) Velocity, V 3.74 ftis (From StormCAD - 0 ft/s assumed for Level Spreader Overflow) Apron Length, La = 13.3 Feet Long IF TW<Do12, La=(1.8g1(Do".5))+7Do IF T1,11 , La=(3q/(Do".5)) Apron Width, Wa = 17.0 Feet Wide (Only if no well-defined channel downstream ) If TW <Do/2, Wa = 3Do + La If TW > Do12,Wa = 3Do+ 0.4La d5o Stone Size = 0.25 dsoin Feet 3.1 d5o in Inches B d50 = 0.016/TW x (q)'- " Apron Thickness= 10 Minimum 10 inches RIP RAP GRADATION PER NCDOT SPECIFICATIONS RIP RAP MINIMUM MIDRANGE MAXIMUM CLASS IN. IN. N. A 2 4 6 B 5 8 11 1 5 10 15 2 9 14 23 Notes: 1) q=Unit Discharge in cfs lower foot of width. 2) filter fabric layer is to be used on all outlets. 3) riprap apron thickness designed to be 2 times the d50 when using filter fabric (3 times without). Northlake Business Park RIPRAP APRON SIZING PROJECT NO.: 3716 BY: CB Based on Army Corps of Engineers Reports H-70-2 DATE: 09107/07 T.M.: DB$ -72-5, and N.J. Standards for Soil Erosion and REVISED: 05113108 P.M.: DDS Sediment Controi (1999) 4? 1 Structure FES-A3-1 Pipe Diameter, Do 15 Inches or 1.25 Feet Peak Flow, Qio 1.54 ] CFS (Use 10-Year Discharge- StormCAD) Tailwater depth, Tw 0.25 Feet ( If Unknown, use 0.2 x Diameter in Feet) Velocity, V 1,45 ftls * (From StormCAD - 0 fUs assumed for Level Spreader Overflow) * From Flowmaster Design, Apron Length, La = 10.7 Feet Long IF TW<Do12, La=(1.8q((Do".5))+7Do IF IW>Dad2, La=(3g1(Do".5)) Apron Width, Wa = 14.5 Feet Wide (Only if no well-defined channel downstream ) ff TIN <Do?2, Wa = 3Do + La ff TW > Do12, Wa = 3Do+ 0.4La dso Stone Size = 0.08 dso in Feet 1.0 dso in inches CLASS A dso = 0.016ITW x (q)"" Apron Thickness= 10 Minimum 10 inches RIP RAP GRADATION PER NCDOT SPECIFICATIONS RIP RAP MINIMUM MIDRANGE MAXIMUM CLASS IN. IN. tAi A 2 4 6 B 5 8 11 1 5 10 15 2 9 14 23 Notes: 1) q=Unit Discharge in cfs pwer foot of width. 2) filter fabric layer is to be used on all outlets. 3) riprap apron thickness designed to be 2 times the d50 when using filter fabric (3 times without). Northlake Business Park RIPRAP APRON SIZING _ PROJECT NO.: 3716 ~ BY: CB aced on Army Corps of Engineers Reports H-70-2 4 DATE: 09/07/07 T.M.: DBS -72-5, and N.J. Standards for Soft Erosion and ? REVISED: 05/13/08 P.M.: DDS Control (1999) Structure FES-A4-1 Pipe Diameter, Do 24 Inches or 2 Feet Peak Flow, Q1o 2.81 CFS (Use 10-Year Discharge- StormCAD) Tailwater depth, Tw 0.4 - Feet ( If Unknown, use 0.2 x Diameter in Feet) Velocity, V 1.77 ftls (From StormCAD - 0 ftis assumed for Level Spreader Overflow) I; n: Apron Length, La = 15.9 Feet Long IF TW<Da12, La=(1.8q/(Do^.5))+7Do IF TM-D&2, La=(3g1(Do^.5)) Apron Width, Wa = 21.9 Feet Wide (Only if no well-defined channel downstream) N TW <Do/2, Wa = 3Do + La /f TW > Do/2, Wa = 3Do+ 0.4La dso Stone Size = U.07 dso in Feet 1 0.8 dso in Inches GLASS A dso = 0.016r W x (q)1.33 Apron Thickness= 10 Minimum 10 inches RIP RAP GRADATION PER NCDOT SPECIFICATIONS RIP RAP MINIMUM MIDRANGE MAXIMUM CLASS IN. IN. N. A 2 4 6 B 5 8 11 1 5 10 15 2 4 14 23 Notes: 1) q=Unit Discharge in cfs pwer foot of width. 2) filter fabric layer is to be used on all outlets. 3) riprap apron thickness designed to be 2 times the d50 when using filter fabric (3 times without). • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i • • • Detention Analysis DET A3 FOR REFERENCE ONLY Addllnk 10 DA-A3-Pre Addlink 20 DAA3-Post Pond A3 Junc 10 A Out 10 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • s • • • • • • • • • • • • < z r.< e R r t ? x T rt e r z r ?f v x e t t k e K fi fi r r -< Y s s • • • • • • • • • • • • • • • • • i • • • • • • 1f.1 ,. .. -.. • I � 3 1 _ . _t � . 5�:.:. y l • • • • • • • • • • • • • • • • S ----------------- ..<._ Y { ... _� .. .... i • • • • • • • • • • • • • • • • • • • ?_. ??? . ,_ .r=-- _� — x_.c ..�. �_ "?.f: - ... ?._ .. ,,. ?. :i? ? ., _ .i Y ., _ ? ?- - - - ... -.. ? ... ., _ t _, r _. ., s .. ., ., • • • • • • • • • • • • • • • • • • • =? _. _ .. a r� .-, .. ,_ _. 1 __.� ..- _4:��� a, .. _... . ._ - .. '{ ?. _ ... .... , ..., ?: - .. ., ? s ?. .?? - ->? ?.. ..._ -. . - ..?:1 , _?? .. _ ?. :. Northlake Business Park lediment IPRAP APRON SIZING PROJECT NO.: 3716 BY: CB ased on Army Corps of Engineers Reports H-70-2 DATE: 09/07107 T.M.: DBS -72-5, and N.J. Standards for Soil Erosion and REVISED P.M.: DDS Control (1999) 1 4> 1 Structure FES-D-61 JER "' -1 Pipe Diameter, Do 36 Inches or 3- Feet Peak Flow, Qio 9.51 CFS (Use 10-Year Discharge Tailwater depth, Tw 04 Feet ( If Unknown, use 0.2 x Diameter in Feet) Velocity, V 6.05 ft/s (From StormCAD - 0 ft/s assumed for Level Spreader Overflow) RgWgn? Apron Length, La = 24.3 Feet Long IF TW<Dol2, La=(1.89((Do^.5))+7Do IF iW5,Do/2, La=(3g1(Do".5)) Apron Width, Wa = 33.3 Feet Wide (Only if no well-defined channel downstream ) ff TW <Do12, Wa = 3Do + La ff TW > Do?2, Wa = 3Do+ 0.4La d5o Stone Size = 0.12 dso in Feet 1.5 dso in Inches CLASS A dso = 0.0161TW x (q) .33 Apron Thickness= 10 Minimum 10 inches RIP RAP GRADATION PER NCDOT SPECIFICATIONS RIP RAP MINIMUM MIDRANGE MAXIMUM CLASS IN_ IN. IN.) A 2 4 6 B 5 8 11 1 5 10 15 2 9 14 23 Notes: 1) q=Unit Discharge in cfs pwer foot of width. 2) filter fabric layer is to be used on all outlets. 3) riprap apron thickness designed to be 2 times the d50 when using filter fabric (3 times without). 10 I • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i Erosion Control Analysis SEDIMENT BASIN CALCULATIONS Northlake Business Park CJS PROJECT NO.: 3716 C S?t DATE: 91712007 BY. CB REVISED: 05113108 RVW: DDS Land Wat,msq t rrisra A,crooctwf, a C"o Fr, reannr = Uun3 ite i?:? FAIRCLOTH SKIMMER TYPE BASIN DESIGN FOR SEDIMENT BASIN #A1 - STAGE 112 DRAINAGE AREAS/REQ'D STORAGE Total drainage area TDA 1.2 ac Disturbed area(DA) 1.2 ac R d volume storage 1800xDA 2214 cf BASIN CONFIGURATION Proposed volume depth 2.5 ft Depth of flow over spillway 0.5 ft Bottom elevation of basin 798.75 msl Water Storage elevation 801.25 msl Spillway crest 801.75 msl To of Berm 803.25 msl SPILLWAY DESIGN DESIGN FLOW Q=CIA Composite soil coefficient 'C'= 0.6 Area W= 1.2 ac 10 yr. storm rainfall intensity, T= 7.03 in/hr Computed flow from site, 'Q'= 5.0 cfs SPILLWAY SIZE (L=Q/(C*h Al .5) ) given C= 3.0 and Spillway length flow depth = h= 0.50 10 ft SKIMMER DESIGN (Required): 1 Skimmer Drawdown Time (hrs): 30.8 Skimmer Size: 1.5 in. Orifice Dia. Size: 1.5 in. FAIRCLOTH SKIMMER DESIGN TABLE CF drained Drawdown Factor CF drained Drawdown Factor 1.5" Skimmer 1728 1 day 960 4" Skimmer 18267 1 day 1454 3456 2 days 1920 36534 2 days 2908 5184 3 days 2880 54803 3 days 4362 6912 4 days 3840 72000 4 days 5816 12096 7 days 6720 127869 7 days 10178 2" Skimmer 3283 1 day 1123 5" Skimmer 32832 1 day 1642 6566 2 days 2246 65664 2 days 3283 9849 3 days 3369 98496 3 days 4926 13132 4 days 4492 131328 4 days 6568 22982 7 days 7861 229824 7 days 11491 2.5" Skimmer 5500 1 day 1144 6" Skimmer 51840 1 day 1814 11000 2 days 2304 103680 2 days 3628 16500 3 days 3432 155520 3 days 5442 22000 4 days 4576 307360 4 days 7256 38500 7 days 8064 362880 7 days 12701 3" Skimmer 9744 1 day 1382 8" Skimmer 97978 1 day 1987 19547 2 days 2765 195956 2 days 3974 29322 3 days 4146 293934 3 days 5961 39096 4 days 5528 391912 4 days 7948 68415 7 days 9677 658846 7 days 13909 ESTIMATED BASIN SIZE RECTANGULAR Length(ft) Width(ft) Bottom 38 17 To 56 35 PLANNED BASIN SIZE (REFER TO EROSION CONTROL PLAN Elev. Area SF Cumulative Volume CF 798.75 956 0 799.00 1052 251 800.00 1455 1505 801.00 1884 3174 801.25 1995 3659 801.50 2108 4172 802.00 2338 5283 X X #VALUE! X X #VALUE! X X #VALUE! BASIN EFFICIENCY Volume required: 2214 cf Volume provided: 3659 OKAY Surface area required: 1625 sf Surface area provided. 2108 OKAY SKIMMER DESIGN Provided : 1 Skimmer Draw down Time (hrs): 50.8 Skimmer Size: 1.5 in. Orifice Dia. Size: 1.5 in. This table contains maximum drainage volumes for a given Skimmer size and drawdown period. The orifice area is calculated by dividing the Provided storage volume by the corresponding Factor. The factors are taken from the table and were generated assuming a constant head. The diameter of the orifice is calculated by: (2*(J(Area/3.14)) SEDIMENT BASIN CALCULATIONS Northlake Business Park CJS PROJECT NO.: 3716 CoWetwst DATE: 9/7/2007 BY: CB REVISED: 05113108 RVW: DDS Land P3°rw +I mT(vwt * '. ,. FAIRCLOTH SKIMMER TYPE BASIN DESIGN FOR SEDIMENT BASIN #A2 - STAGE 112 DRAINAGEAREAS/REQ'D STORAGE Total drainage area TDA 1.2 ac Disturbed area(DA) 1.2 ac R d volume storage 1800zDA 2214 cf BASIN CONFIGURATION Proposed volume depth 2.5 ft Depth of flow over spillway 0.5 ft Bottom elevation of basin 797.00 msl Water Storage elevation 799.50 msl Spillway crest 800.00 msl To of Berm 801.50 msl SPILLWAY DESIGN DESIGN FLOW Q=CIA Composite soil coefficient 'C' = 0.6 Area W= 1.2 ac 10 yr. storm rainfall intensity, 7'= 7.03 in/hr Computed flow from site, 'Q'= 5.0 cfs SPILLWAY SIZE L=Q/ C*h^1.5 given C= 3.0 and Spillway length flow depth = h= 0.50 10 ft SKIMMER DESIGN (Required): 1 Skimmer Drawdown Time (hrs): 30.8 Skimmer Size: 1.5 in. Orifice Dia. Size: 1.5 in. ESTIMATED BASIN SIZE RECTANGULAR Length(ft) Width(ft) Bottom 38 17 To 56 35 PLANNED BASIN SIZE (REFER TO EROSION CONTROL PLAN Elev. Area SF Cumulative Volume CF 797.00 1259 0 798.00 1646 1453 799.00 2058 3305 799.50 2273 4387 800.00 2494 5579 801.00 2947 8300 X X #VALUE! X X #VALUE! X X #VALUE! X X #VALUE! BASIN EFFICIENCY Volume required: 2214 cf Volume provided: 4387 OKAY Surface area required: 1625 sf Surface area provided: 2494 OKAY SKIMMER DESIGN Provided : 1 Skimmer Drawdown Time (hrs): 60.9 Skimmer Size: 1.5 in. Orifice Dia. Size: 1.5 in. FAIRCLOTH SKIMMER DESIGN TABLE CF drained Drawdown Factor CF drained Drawdown Factor 1.5" Skimmer 1728 1 day 960 4" Skimmer 18267 1 day 1454 3456 2 days 1920 36534 2 days 2908 5184 3 days 2880 54803 3 days 4362 6912 4 days 3840 72000 4 days 5816 12096 7 days 6720 127869 7 days 10178 2" Skimmer 3283 1 day 1123 5" Skimmer 32832 1 day 1642 6566 2 days 2246 65664 2 days 3283 9849 3 days 3369 98496 3 days 4926 13132 4 days 4492 131328 4 days 6568 22982 7 days 7861 229824 7 days 11491 2.5" Skimmer 5500 1 day 1144 6" Skimmer 51840 1 day 1814 11000 2 days 2304 103680 2 days 3628 16500 3 days 3432 155520 3 days 5442 22000 4 days 4576 307360 4 days 7256 38500 7 days 8064 362880 7 days 12701 3" Skimmer 9744 1 day 1382 8" Skimmer 97978 1 day 1987 19547 2 days 2765 195956 2 days 3974 29322 3 days 4146 293934 3 days 5961 39096 4 days 5528 391912 4 days 7948 68415 7 days 9677 658846 7 days 13909 This table contains maximum drainage volumes for a given Skimmer size and drawdown period. The orifice area is calculated by dividing the Provided storage volume by the corresponding Factor. The factors are taken from the table and were generated assuming a constant head. The diameter of the orifice is calculated by: (2*(-v(Area/3.14)) SEDIMENT BASIN CALCULATIONS Northlake Business Park CJs PROJECT NO.: 3716W?t DATE: 91712007 BY: CB REVISED: 05113108 RVW: DDS anco P`arnir ; » , ? ctm,?.7 +? e A FAIRCLOTH SKIMMER TYPE BASIN DESIGN FOR SEDIMENT BASIN #A3 - STAGE 112 DRAINAGE AREAS/REWD STORAGE Total draina a area TDA 4.5 ac Disturbed area(DA) 3.0 ac R d volume storage 1800xDA 5436 cf BASIN CONFIGURATION Proposed volume depth 2.5 It Depth of flow over spillway 0.5 ft Bottom elevation of basin 806.00 msl Water Storage elevation 808.50 msl Spillway crest 809.00 rnsl To of Berm 810.50 ms/ SPILLWAY DESIGN DESIGN FLOW Q=CIA Composite soil coefficient 'C' = 0.6 Area 'A'= 4.5 ac 10 yr. storm rainfall intensity, T= 7.03 in/hr Computed flow from site, 'Q'= 19.0 Cis SPILLWAY SIZE L=Q/ C*h^1.5 given C= 3.0 and S illwa length flow depth = h= 0.50 18 ft SKIMMER DESIGN (Required): 1 Skimmer Drawdown Time (hrs): 23.7 Skimmer Size: 2.5 in. Orifice Dia. Size: 2.5 in. ESTIMATED BASIN SIZE RECTANGULAR Length(ft) Width^ Bottom 61 28 To 79 46 PLANNED BASIN SIZE (REFER TO EROSION CONTROL PLAN Elev. Area SF Cumulative Volume CF 806.00 5968 0 807.00 6921 6445 808.00 7899 13855 808.50 8397 17929 809.00 8902 22253 810.00 9930 31669 X X #VALUE! X X #VALUE! X X #VALUE! X X #VALUE! BASIN EFFICIENCY Volume required: 5436 cf Volume provided: 17929 OKAY Surface area required: 6175 sf Surface area provided: 8902 OKAY SKIMMER DESIGN Provided : 1 Skimmer Drawdown Time (hrs): 78.2 Skimmer Size: 2.5 in. Orifice Dia. Size: 2.5 in. FAIRCLOTH SKIMMER DESIGN TABLE CF drained Drawdown Factor CF drained Drawdown Factor 1.5" Skimmer 1728 1 day 960 4" Skimmer 18267 1 day 1454 3456 2 days 1920 36534 2 days 2908 5184 3 days 2880 54803 3 days 4362 6912 4 days 3840 72000 4 days 5816 12096 7 days 6720 127869 7 days 10178 2" Skimmer 3283 1 day 1123 5" Skimmer 32832 1 day 1642 6566 2 days 2246 65664 2 days 3283 9849 3 days 3369 98496 3 days 4926 13132 4 days 4492 131328 4 days 6568 22982 7 days 7861 229824 7 days 11491 2.5" Skimmer 5500 1 day 1144 6" Skimmer 51840 1 day 1814 11000 2 days 2304 103680 2 days 3628 16500 3 days 3432 155520 3 days 5442 22000 4 days 4576 307360 4 days 7256 38500 7 days 8064 362880 7 days 12701 3" Skimmer 9744 1 day 1382 8" Skimmer 97978 1 day 1987 19547 2 days 2765 195956 2 days 3974 29322 3 days 4146 293934 3 days 5961 39096 4 days 5528 391912 4 days 7948 68415 7 days 9677 658846 7 days 13909 This table contains maximum drainage volumes for a given Skimmer size and drawdown period. The orifice area is calculated by dividing the Provided storage volume by the corresponding Factor. The factors are taken from the table and were generated assuming a constant head. The diameter of the orifice is calculated by: (2*(v(Area/3.14)) • • • • • • • • • • • • • • • • • • • • • • • • i • • • • • • • • • • • • • • • • • • Water Quality Analysis J • • • • • • • • • • • • • • • • • • • • • • O low • t! • F • • • • • • • • • • • c D :a+ Q7 E t/) d?+ E 1° i /?Qry1 V U W lw? a to _v 2 J 7• i. p C o b O y Q L O O N d 0. Z y ? d d H ?1 0 'C. N?.o ID C ? C d ? d ' uj v Vi 0 C 0 0 O C. a E w C N ? a co a E ' ?. O V d Y O N N a 'u a a v 0 ^ a? in r a' 0 o 0 o ? t ° O `c 0 0 0 0 0 0 0 0 0 0 0 f o ' N 0 0 0 r 0 " ? ,. O 0 6 ? ? ? ?i 6 a r 0 0 0 0 6 t 1 nj O c0 O 0 ?° Q N g 0 O 0 O 0 h m p ?- - - - - - C ? - - -- - - - - - - - y of y Q. m 'o f ?3 w 00 d d to ? o 0 o 0 o N o° O o O D o e 3° 0 0 0 o a o a° 0 0 0 G to a.. 0 6 0 10 i O 6 O 0 O 0 O 0 O 0 O O P 0 0 0 0 0 0 0 0 6 Q 0 O 0 g 0 0 0 O L o c; w M M iD N A m ? H O L'I ? 4 ? o ? A ° ? ro a ° b ?' ? tU . ? G p? o o 0. C5 ro ° E a n E in c m 4 to : : s 3 d o ? a " a c d U a a Q Q O d co d i n ? 1 © ? r N ?fl d d 1 0 ?^ N O 77 x A I 00 tp C C E , W 1 ? .. co O N N in j O LU O O f N te ; am o Y - - - - - - - - - - - - - - - w "15 N ? 0 0 4 4 0 O O O O O 0 0 0 0 0 0 0 0 0 2 . 0 0 ?- M C7 [` O O O O O H oo N O v1 ??j '? 0 0 0 i `f ?: < d :? M M w N N In r` 'V C d C i QS w } C (a 1 J N {yn? $ a w c p d a d T s ro od ti cL d ?' 0.H " i ,p t1 N U O d ` ..Q N ty ro Q a a a C "' c O IV SI ? 4r G. r ?N StS f y JJ y - p E ro E ? ;c E ? O OS ro ft 4 $ RS A d V) 5 vs Opt QOM o c U a ? ¢<t p a° i^ a A S S 3 3 3 h 1 i i. c ?Ic G} ti a 0 9 U u 0. r l j , L L L L ! ' IL L ? I it L : I L - , H , I. - j P t) f f 1 Q ? ' _ L L L L L , L g , 0 3? ! _ iY L s ' s I h i i n i r a m Q ? ' O 3 -7 I m 3 ? c a u i 8 y O Q O: Q C it m S a , 0 cr ut :X c5 > ?I ?° c3a l z N n d `z d U1 A ? U 0 W U O m ? V h .? E N ,'?p r N N J to d 7 a C v E m N N C 4 ? a ? G O p o 0. p O `o v 8 N N y h O. r ip 3 j 1C.5 ' a d N a r y ? 1? ti y Z N 630 K a a Mecklenburg County Site Evaluation Tool - Site Performance Analysis North Lake Business Park Phase Town of Huntersville #3716 Land Use Summary Total Site Area (acres) 8.4 Pre-development impervious percentage OA% Post-development impervious percentage 29.8% Annual Hydrology Summary Existing Design Design Landuse without BMPs with BMPs Annual Surface Runoff (inchesJyr) 2.66 12.95 7.25 Annual Infiltration (inchesJyr) 7.80 5.27 6.17 Storm Event Runoff Volume and Target Summary Runoff Volume (ac-ft) Existing Design BMP Storage Tang, t Meets Landuse without BMPs Volume Goal? 1-yr 24-hr storm 0.341 0.755 0.459 0.414 Yes 1 yr 24 hr? l inch 04 _ 2-yr 24-hr Storm Event o s Storm Event Not Selected ° Not Selected 01 - 00 Cap Vol Target Peak Flow and Hydrograph Summary Existing Design Design Meets Landuse Without BMPs with BMPs Source Target Goal? 2-yr 24-hr storm (cfs) 9.61 26.63 1.29 User-defined 9.61 Yes 10-yr 24-hr storm (cfs) 24.43 49.37 1.94 User-defined 24.43 Yes .... _ 3C - - 2-yr 24 hr storm - -- 5 _Posts, no SMP 20 -Existing -Post, with BMPs U _. . _ .. ..... ........... 6 00 AM 9,00 AM 12:00 PM 3 06 Phi S ri, PM 9 66 P1,11 12.06 AM 3.00 AM i0-yr 24 hr storm - - --- _ ...,,.Post. no 81APs I 40 ....... ._........ ..r"""°'" Existing 30 -Post. with 81APs 20 10 h 7,0 AM M,-, Am 12 00 P111 3 00 ?hi 6 PIC Ph? 9.66 A'l 12.60 AM. 3'00 APA • • • • _................. _._._ Mecklenburg County Site Evaluation Fool d Site Performance Analysis North Lake Business Park Phase Town of Huntersville #3716 Annual Pollutant Load and Target Surnmmary Total Total Target Evaluation Sediment Phosphorus Nitrogen (developed portion of sites (tonlyr) (ihlyr) (rbtyr) Design without BMPs 4.54 10.5 73 Design with BMPs 144 2.6 33 Target Removal 85.0% 70.0% 45.0% A„hi=cved Rz?niovaa 9013 .« 75.2'-:, 55,Vt Meets Goal? Yes Yes Yes Additional load from undeveloped 0.61 0.5 2 areas removed by BMPs Sediment Load (devel. portion of site) 5 00 4.00 3.00 2.00 1.00 000 Total Total Fecal Entire Site Annual Load Sediment Phosphorus Nitrogen Coliform (tonlyr) (iblyr) (iblyr) (#x 10elyr) Existing Landuse 1.27 3.0 19 33 Design without BMPs 5.25 12.4 85 234 Design with BMPs 0.55 4.2 44 32 40 2.0 00 Nitrogen Load +00 80 00 40 20 Areal Load in Rates Sediment Phosphorus Nitrogen Conform (tontaclyr) (Pblaclyr) (Ibla¢tyr) (# x 110'taclyr) Existing Landuse 0.151 0.36 2.29 3.9 Design without BMPs 0.625 1.40 10.15 33.8 Design with BMPs 0,065 0.50 5.27 3.9 Nitrogen Load (dove). pottion of site) Northlake Business Park =DIWW_TAW W4W PROJECT 3716 BY: BLW i"I'm AXA&KImbT `mw6l, `N "`?;m-aD2m PJ?* Qw DATE: 91512007 T. M.: DBS r Try &' Skme ?raRarypc REVISED: 11212008 P.M.: DDS RAIN GARDEN VOLUMES RG-A1 1,337 FT3 RG-A2 1,460 FT3 RG-A3 234 FT3 RG-A4 491 FT3 RG-A5 200 FT3 TOTAL 3,722 FT3 RG-Al ,v?ofxom Updated for O (?d ' yy¦a 1- ' ! Rai ? NC BMP Manual ? f n i .??i? a men as Amended l! J .... i -? --? Rv = runoff coefficient (Runoff/Rainfall) RV = 0.05 + 0.009( 11 Rv = Volumetnc Runoe Ooi ffl ent Fur. iRdlnrall) % Impe,-s ater gualay Protection Volume ("Simple Method" - Schueler, 1987) WQv= 1.0"RvA NCDENR Manual Juty 2007 pg. 33 12 Meck. Cly. aMP Manual pg. 3.2 Fill in Values: Percent Impervious of Site Acres 5 Acre Maximum Rv = 0 Answer: SCS WQv = 0.072 Ac. Ft. Method 2726 31 1 Ft.a CF Insert 1.56 CFS Peak Flow for 1"- 6 Hr. Storm t8 Length of Level Spreader for 1" @ 1 fps ?fff(?''???? K?a re Formula: Af = (WQv) (Df) Where: ((k) (Hf+Df) (TT)) Af = Surface area of Rain Garden (S.F.) From Georgia Design Manual WQv = Water Quality Volume to be Captured Section 12.16 Df = Filter Bed Depth ( 2 feet min. for grasses, 3 to 4 feet for trees) (Based on Darcy 's Law) k = permeability coefficient of filter media (use 1 Ft./Day for amended soil mix) Maryland Design Manual ' See Maryland Stornwater Design Manual, Page 3.40 Page 3.40 Hf = Average height of water above filter bed (Mulch) (use 3 to 6 inches, which isone-haft of 6" to 12" ponding depth) Tf = Design filter bed drain time in days *MAXIMUM 2 Days, lUse 1 Day 1 4 ?1i_I_I?ly ?J Rv= 0.95 WQv= 0.95 inches CNm= 99?f. Use to compute Qj- Fill in Val ues: Soil Type K (in./hr.) K (Ft/Day) W- = 1 Ft./Day` Sand 6 12 Df = 3 Feet Loamy Sand 2 4 Hf = 6 inches Sandy Loam • 0.5 - 1 1 - 2 'Use 0.5 1 Ft ;Day Tf = 2 Days° Silt Loam 0.02 0.05 Af = 13 SF Required assuming infiltration durin g rainfall 3121 SF Req. by DENR Manual (Vol./Depth) 29.4 SF Impervious Per SF of Rain Garden 3.39 % of impervious site 26 Width Approximate Size 52 Le Can Be Freeform is Shape ®Depth from top o w er s o Inve o f underdrain. Water Draw Through Rate Darcy's Equation: Q = (.0000232)'K'A'( H/L) -- Q = 0.0207 cfs Where: Q = Flow (Rate of Draw) through Bioretention Soil (cfs) K = Hydraulic Conductivity of soil (in./hr.) ( Usually 1/2"/Hour) A = Surface Area of Bio-Retention Area (SF) H = Height of Water above Drainage Pipe (Undercrain) L - Thickness of Soil Bed (Minimum 3' for Trees, 2' for Shrubs ) Assume ( H/L I - 1 Time to Drawdown water from Inundation to Saturation at Surface: Volunri 64655 Seconds 16.0 Hours to Saturation Time to lower Water Table to 2.0 feet below surface: Assume 40% Porosity Volume =Area x 2'x 0.40 1070.0 Cubic Feet 51724 Seconds = 14.4 Hours to Lower Water 2' below surface 32.3 Hours to Draw Water Through Soil Layer As a rule of thumb, the length of underdrain is based on 10% of Af Source. (NY State Stormwater Manual) L = 45 Feet in 3' wide stone bed Required Diameter 5.0 Inches Minimum 6Inches 1 Use PVC or "Double Wall" Slotted HDPE Source. (NCSU Rain Garden Design Worksheet, Bill Hunt, PHD) • • • • • • • • • • • • • • • • • • • • t • • • • • • • • • • • • • • Or More Untlerdrains required Minimum of 2 Untlerdrains Excavation $2.972.16 Stone Bedding $272.45 6., HDPE Pipe $334.37 6., Cleanout $250.00 Filter Fabric $594.43 Soil Mix $5,052.67 Mulch $817.34 Plants $1,611.97 Cost $11,9116.3 CTSt SF MCost I SF Impervious RG-A2 Updated for 2007 ( e ShN R NCDENR BMP Manual i m u . iq , as Amended M . . -j --? 111r 1 r. r, Rv = runoff coefficient (Runoff/Rainfall) Rv = 0.05 + 0.009( 11 Rv = Volumetric Runde Coeficlent (Ruroff,Rainfall) "I" = % Impervious ate, Quality Protection V,17 ("Simple Method" - Schueler, 1987) WQv = 1.0"RvA NCDENR Manual July 2007 xi 3.3 12 Mack. Cly. BMP Manual pg. 3.2 Fill in Values: "I" = 100 Percent Impervious of Site "A'. = 0 b7b Acres 5 Acre Maximum Rv = 960 Answer: SCS WQv = 0.07b Ac. Ft. Method 2976 3406 Ft.' CF Insert 1.69 CFS Peak Flow for 1"- 6 Hr. Stone 20 Length of Level Spreader for 11 fps Item Alen Formula: Af = tWQvl (Dfl Where: ((k) (Hf+Df) (Tf)) Af = Surface area of Rain Garden (S.F.) From Georgia Design Manual WQv = Water Quality Volume to be Captured Section 3.2.3.6 Df = Fitter Bed Depth ( 2 feet min. for grasses, 3 to 4 feet for trees) (Based on Darcy', Law) k = permeability coefficient of filter media (use 1 Ft./Day for amended soil mix) Maryland Design Manual ' See Maryland Sto-water Design Manual, Page 3.40 Page 3.40 Hf = Average height of water above filter bed (Mulch) (use 3 to 6 inches, which isone-halt of 6" to 12" ponding depth) Tf = Design filter bed drain time in days *MAXIMUM 2 Days, (Use 1 Day 1 Fill in Val ues: "k" = Ft./Day" Df = Feet Hf = ?1 inches Tf = 1[hli Af = Water Draw Through Rate: Darcy's Equation: Q = (.0000232)'K-A'( H/L ) Where: Q = Flow (Rate of Draw) through Bioretention Soil (cfs) K = Hydraulic Conductivity of soil (in./hr.) ( Usually 1/2"[Hour) A = Surface Area of Bio-Retention Area (SF) H = Height of Water above Drainage Pipe (Underdrain) L = Thickness of Soil Bed (Minimum 3' for Trees, 2' for Shrubs ) Assume ( H/L) - 1 Q = 0.0226 cfs Time to Drawdown water from Inundation to Saturation at Surface: Volume/Q: 64655 Seconds 18.0 Hours to Saturation Time to lower Water Table to 2.0 feet below surface Assume 40% Porosity Volume = Area x 2'x 0.40 Rv= 0.95 WQv= 0.95 inches CNm= 99,6 Use to compute Q1. Us,, 0.5 1,, 1 Ft 1).y I 3.39 % of impervious site 1167.9 Cubic Feet 51724 Seconds 14.4 Hours to Lower Water 2' below surface 32.3 Hours to Draw Water Through Soil Layer II?fj,l _tl1 ?, -+j As a rule of thumb, the length of underdrain is based on 10% of Af Source: (NV State Stomrnater Manual) L = 49 Feet in 3' wide stone bed Required Diameter 5.1 Inches (Minimum 6Inches 1 Use PVC or "Double Wall" Slotted HDPE Source: (NCSU Rain Garden Design Worksheet, Bill Hunt, PHD) Soil Type K (in./hr.) K (Ft/Day) Santl Loamy Sand 6 2 2 4 Sandy Loam ' 0.5 - 1 1 - 2 Silt Loam 0.02 0.05 _IMSF Required assuming infiltration during rainfall 340 SF Req. by DENR Manual (Vol./Depth) X29.4 SF Impervious Per SF of Rain Garden 27 Width Aooroximate Site 54 Length Can Be Freeform is Shape ?$, Depth from top o water surface to invert of undenlrain. Or More Underdrains required Minimum of 2 Underdrains xNU cueoew, ao-rtc^,ctrrtt? >uw 1 4 o, Excavation $3,244.09 Stone Bedding $297.37 6" HDPE Pipe $364.96 6" Cleanout $250.00 Filter Fabric $648.82 Soil Mix $5,514.95 Mulch $892.12 Plants $1,759.45 Cost $12971.7 CosVSF $8.89 Cost / SF Impervious • • • • • • • • • • • • • • • • • • • • • s • • • • • • • • • • • • • • • • • • • • • Lit UU?? M N C w fx U O 00 CA W a y n w I I ? U C ? V (0 to (O ? - OD E O O O L U) O O O (6 = co L O N ca O O n o U) c U l CD E F .T- a) x Q O m ? o (D (0 C7 O CD c a a a'- o o II c N Nai o O o> a 0 7 L C FU `Y) "c m o - ? O ? ? c d M O Q ? N CL 6 U C N O m II U) W In U a) O E E m" N in 2 O II II a) N U) i LLUQ a O 05 < W ) LLJ LU 0 0 Q W Z; a O Of x O a) 3 N r L 3 a) U x o o m a? o ? 7 a to a) U O O O a) C o a U C a) ca a? ca N N oc U o 3 OC) °) o a a O II (6 L a a ? ? II N 2 c3 3 0 Lq N U N ( O 2 N 7 O (D a m m 2 L O RG-A3 1lnbnos7 Updated to r O r M w / l S NCDENR BMP Manual ( I i1filt as Amended -j ?-'-' Rv = runoff coefficient (Runoff/Rainfall) Rv = 0.05 , 0.009(l) Rv = Volumetric Runoff Coefiraent (Runoff/Rainfall) % Impervious aler Dualtly Protection Volume ("Simple Method" - Schueler, 1987) WON = 1.0"RYA NCDENR Manual July 2007 pg. 33 12 Meck. Cty. BMP Manual pg. 3.2 Fill in Values: "I" = 100 Percent Impervious of Site "A" = 1 Acres 5 Acre Maximum Rv - 50 Answer: SCS Wav = 0.013 Ac. Ft. Methotl 512 9 5 6 Ft.' CF Insert 0.29 CFS Peak Flow for 1". 6 Hr. Storm Length of Level Spreader for 1" 1 fps t(?? 8(?? A ?f?y Formula: Af= (WQv)(Dfl Where: ((k) (Hf+Df) (Tf)) At = Surface area of Rain Garden (S.F.) From Georgia Design Manual WQv = Water Quality Volume to be Captured Section 3.2.3.6 Or = Fitter Bed Depth ( 2 feet min. for grasses, 3 to 4 feet for trees) (Based on Darcy's Law) k = permeability coefficient of filter media (use 1 FL/Day for amended soil mix) Maryland Design Manual " See Maryland Stormwater Design Manual, Page 3.40 Page 3.40 Hf = Average height of water above filter bed (Mulch) (use 3 to 6 inches, which isone-hare of 6- to 12" pending depth) Tf = Design filter bed drain time in days *MAXIMUM 2 Days, (Use 1 Day) Rv= 0.95 WQv= 0.96 inches CNm=®Use to compute a(. Fill in Values: Soil Type K (in./hr.) K (Ft/Day) "k" = 1 Ft. /Day' Sand 6 12 Of = 2 Feet Loamy Sand 2 4 Hf= 6inches Sandy Loam 0.5-1 1-2 Vtse 0.5"Hr,1-'t,Day Tf = Z Days` Silt Loam 0.02 0.05 ?:?(?lldCt,tJf - ? Af = SF Required assuming infiltration during rainfall 68 SF Req. by DENR Manual (Vol./Depth) 06 SF Impervious Per SF of Rain Garden 3.17 % of impervious site 11 Width A92roximate Size 22 Le In Can Be Freeform is Shape Depth from top o w l r u ce R.9 of underdrain. Water Drew Through Rate Darcy's Equation: Q = (.0000232)'K'A'( HIL) Q = 0.0041 cfs Where: Q = Flow (Rate of Draw) through Bioretention Soil (cfs) K = Hydraulic Conductivity of soil (in./hr.) ( Usually 112"/Hour) A = Surface Area of Bio-Retention Area (SF) H = Height of Water above Drainage Pipe (Underdrain) L = Thickness of Soil Bed (Minimum T for Trees, T for Shrubs ) Assume ( H/L ) - 1 Time to Drawdown water from Inundation to Saturation at Surface: Volume/Q: 57471 Seconds 16.0 Hours to Saturation Time to lower Water Table to 2.0 feet below surface Assume 40% Porosity Volume = Area x 2'x 0.40 187.6 Cubic Feet 45977 Seconds 12.8 Hours to Lower Water 2' below surface 28.7 Hours to Draw Water Through Soil Layer 11-!f i As a rule of thumb, the length of underdrain is based on 10% of At Source: (NV State Stormwater Manual) L = 8 Feet in 3' wide stone bed Required Diameter 2.7 Inches (Minimum 6Inches 1 Use PVC or "Double Wall" Slotted HOPE Source- (NCSU Rain Garden Design Worksheet, Bill Hunt, PHD) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Or More Underdrains required Minimum of 2 Underdrains RN.\' GIRDLM < INtiRtTlHil(XI AAf'.?. Excavation $390.81 Stone Bedding $47.77 6" HDPE Pipe $58.62 6" Cleanout $250.00 Filter Fabric $104.22 Soil Mix $590.56 Mulch $143.30 Plants $282.61 Cost $1,867. CosVSF $7.97 Cost / SF Impervious • • • • • • • • • • • • • • • • • • • 0 a (n c w 3 U - M O I I a L 3 a? U X "- O O co A C N ? O Q II U _ ? C P N 00 O m O 00 M ). L > m N > N L O cD o O O (0 = m 0) L O (D C 3 ` is s v - ? v m m U II c a) p N c . E 2 L ? m Q O Q ns a ? N C E a o a) v cfl U o l 3 C c O C -2 C ) m m 0 O': o I I O CL a ai X a m ai c r> ) o iv 0 o Q L a c s II m m II U W ~ E U O E U O O ? 11 11 En O w N y O w m O II a> N LL 1L U Q 0 o C/) Q O S a D O LL O U O N 7 O V RG-A4 Updated for 2007 " 1 MP Manual NCDENR a ( R t Gat d on 3 A as Amended . , ? i 9?>ta? Ar Rv = runoff coefficient (Runoff/Rainfall) Rv=0.05+0.009(1) Rv - Volumetric RunoHC-Lent (R-H/Ramlall) Impervious ater 0-Ifty Protecb- Volume ("Simple Method" - Schueler, 1987) WQv = 1.0"RVA NCDENR Manual July 2007 pg. }3 12 Meck. Cty. BMP Manual pg. 3.2 Fill in Values: "I" = 100 Percent Impervious of Site Acres 5 Acre Maximum Rv = 0.950 Answer: SCS WQv = 0.028 Ac. Ft. I Method 1072 1 28 FLa CF Insert 0.61 CFS Peak Flow for 1"- 6 Hr. Stone 7 Length of Level Spreader for 1" @1 fps Formula: Af = IWQv11Df) Where: ((k) (Hf-Df) (Tf)) Af = Surface area of Rain Garden (S.F.) From Georgia Design Manual WQv = Water Quality Volume to be Captured Section 3.2.3.6 Df = Filter Bed Depth ( 2 feet min. for grasses, 3 to 4 feet for trees) (Based on Darcy's Law) k = permeability coefficient of filter media (use 1 FtJDay for amended soil mix) Maryland Design Manual ' See Maryland Stormwater Design Manual, Page 3.40 Page 3.40 Hf = Average height of water above filter bed (Mulch) (use 3 to 6 inches, which isone-half of 6" to 12" ponding depth) Tf = Design filter bed drain time in days • MAXIMUM 2 Days,lUSe 1 Day 1 Fill in Values: "k" - 1 Ft./Day' Df = 2 Feet Hf = 6inches Tf = 2 Days' Soil Type K (in./hr.) K (Ft/Day) Sand Loamy Sand 6 2 12 4 Sandy Loam -75-1 1-2 Silt Loam 0.02 0.05 Rv- 0.95 WQv= 0.95 inches CNnl Use to compute Qt- lA Se 0.5 "rh{r, 1 Fk :Day 81,1111411,41 ?I )? At = 49 SF Required assuming infiltration during rainfall 122 SF Req. by DENR Manual (Vol./Depth) 31.5 SF Impervious Per SF of Rain Garden 3.17 % of impervious site 16 Width Approximate Size 31 Length Can Be Freeform is Shape Depth from top o water surface to invert of underdrain. Water Draw Through Rate Darcy's Equation: Q = (.0000212)'K'A-( H/L) Q = 0.0086 cfa Where: Q = Flow (Rate of Draw) through Bionetention Soil (cfs) K = Hydraulic Conductivity of soil (in./hr.) ( Usually 1/2"[Hour) A=S ` rface Area of Bio-Retention Area (SF) H = Height of Water above Drainage Pipe (Underdram) L = Thickness of Soil Bed (Minimum 1' for Trees, 2- for Shrubs ) Assume I H/L) - 1 Time to Drawdown water from Inundation to Saturation at Surface: Volume/Q: 57471 Seconds 16.0 Hours to Saturation Time to lower Water Table to 2.0 feet below surface: Assume 40% Porosity Volume = Area x 2'x 0.40 = 392.8 Cubic Feet 45977 Seconds 12.8 Hours to Lower Water 2' below surface 25.7 Hours to Draw Water Through Soil Layer rlr As a rule of thumb, the length of underc rain is based on 10% of Af Source: (NY State Stomnvater M16. L = 18 Feet in 3' Required Diameter 3.6 Inches (Minimum 6 Inches 1 Use PVC or "Double Wall" Slotted HDPE Source: (NCSU Rain Garden Design Worksheet, Bill Hunt, PHD) Or More Underdrains required Minimum of 2 Underdrains yf ? ?a VF i sue!.' .++P$ ,:?L. r- -??`C- Excavation $818.41 Stone Bedding $100.03 6" HDPE Pipe $122.76 6" Cleanout $250.00 Fitter Fabnc $218.24 Soil Mix $1,236.71 Mulch $300.08 Plants $591.83 cost $3,638. CosUSF $7.41 Cost I SF Impervious ?g; M ?f m Sim W Q. CO ca IZ m ? 0 m ` H a a = i co M N ? N m N U Diu 'C L ui Lij Z a p w U 0) M N I I A C I I ? C O ? a ? O o (l) L ? cD 0 0 m= L ?p m o E T N N ? mCO?o c ? ? N ce) 4 Q ? m I I ? U E 0 II II Ii LL U Q U 0) M N 11 x m E O 0 0 X N a N C N O L v v Q 0 u C? C 0 R 6 W U O x 0 [0 N a N E O a? -o m c 0 U i O N N i? U O 0 0 c U a? O L m (0 LO 6 x 0 a rn c N W) N r L_ 3 a? U w m o 0 f ? o a C/) tD t0 _ N U Q ? ? O Y ? = N Q 3 O cD 4 U v C9 0 c I I C I I L E v a ? I I Q 0 2 C3 a c m N m d 3 N a .a 0 cu Go N to Z) m m = L a? 0 O '1 ?. tl, ?l E 1 IIV-6 HR Storm Analysis RG-A1-V-6hr r? ©t.10 RG-A2-1 "-6hr 0 RG-A3-1 "-6HR RG-A 4-1 "-6HR crQ?? Out 20 Out 30 Out 40 71 Y: ... _u . -- , Page 1.01 . Total 21c=-_ Rai 17 __- _.. ?n N T ------------ ------ --- ------------ _ Rainfall a„ -o-. acg- °.? e,:3-on; i _ i33 =canor. .. . _, _xR i Max --------- -------- --------- 1A. 30 1. 13 156. 1.40 .., rw As. : 3 .82 1.4._", .29 01 1.63 MAO 1.42 131. Oa . I C", 15C. A 62 13c:3 .21.-1 .. m _ 3 7: _... -35 P,:. .," H 1 " .a_....a_,,, ....r . Tzrig '`'M.,,.,, 1 ------------------- - -------------- ------------------------------------- L-Ita Type, «i.lr. 1D = Mm" Depth C". v.'e _., ain all 7 C 1?I .. w. '?..L07, X11 .t 1?_ :. .,. __ • g Du: a -a - .010 ra.ara r...w ._ g tart me 0 min 3 t- p= 5 . 0C, .ruin F.rcl.? ?.,._..'0 m.n aw_.W 3.J_. ........... y m-=t . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - To--al Tc: 5.00 min Tt _ . ,.. - 'x._12 ... .. ?..+ ?. rv - - - - - - - - - - - - - - - - - -- --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 94 I si.,_., -1E- c5F _._^s & ET-zHTE' . µ1V u .pia.... tt. L__ .__.. a. ?z . ,_ _. ? ?_ a rw_._u ------------- -------------------- ----- --------- --- ----- - - - - - - -p e n f f _ . .. x a _1. .. __... s ora M.. u _re_ -------------------- ---- --------- - ----- ------ a 1" `_ i _ -a i : u -3 c "N ------------------- --------- -- --------- ------ . 10 51 ;6 .._ ,. . =' s t .x ?. _ p . .. .,. _, ..i :.1S r fa 1'^,,. ac r ?c F .....i ------ an i s - w "` .'oTn _ r _. >.::.3 ,z. _.._ 's' x r.:..3 4 ?a _^:a r? \: n • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Attachments (fw Y f' r /f t? l? r Q5 ? U5 ) V) Ql 3 Z. C O ?Y) LL F CV . W ? cv U) ? x CL r') h 7 N fl1 CLl tYD l CT3 ? n N as N -- c'Q a) cv ce ca C K R A ? } n ° p ra . s _ c c- d ( 1 ! ! ? c a) OD ± _ ? a v a? c: v ! ( L t C3 cm iV as r a L I f V { a LSJ # ra rz5 zs ca z _11 3 ( i 0 4j L > nit W T? 5 V ? Q1 H ill Q M CSR O 2 u w a a L.L Q t-t9t: 1_?I `Gztuxl?irl?;i'W?i ?a<. c! 's Poy''hna„ 1r?:e lti41£S<?tlt.;li:HSii`ii: .? 0000000000000000000000000000000000000000000 N H J U) T U3 J a ° (y/ z W 0 Z m cif ,?G d ?e CL '< uo?. ...1 d ov?i _ LU ' Lu . 4 L3 a i ^ Lij O F is i.3 } ce LL Vf 0 / ,?} y .i w W Q. 4 _ E i '^ a .. er- 2 4 0 f.i Il..iif tl M S C! ?, S t, i, t t SSS + K 4 ?F t jet t W - - , r w ?. ac w w [G" Uj ; cnt--? 1 J ?QD S vi °" f!; can a° zwc?2? ) i j i- e .r ca 0 ?t9 G ? ?¢¢ M mm x V,4 a rd V--BOO. y O Y? ,x ZK, z}n NA;._l_usSn; 34 ID < t - 1 . 'G k T. l ![5b ':':S `pe<.t6tiFtue7 Nl fi>p; lRjdR?f?t "m'i I In YCi )MOUE 9f!E L i(VWPOUA,,v( 1- R? ? C CLC ? Is Y V p C p UJI U y W C Z F- z XvY ce Cl) w <- 0 zm0-::x w u ce. Q % a N e €L"0C 4 1 ?r X m 4 ?X 4 I 1 1 tt, "i d? a --------------------- e .. M.i Y.W.IR YI....+R.. ?•..S?. M.fM} r q w a Q 17 w1?......... ?..s, ? ..?... f ? # a 1 1 4i i pp? 3(i i 1 tl m ' i I a? tl -1. I ?,S K"stl •} 7 43 ? $ G yr+, y M E s+?4 ! YY p O x? ?.1 :J a (ji „J Z -? 0- t tL < ) _ t!1 a a ._t tla z IJJ z q????II y???{ bi V ? iS Q m q=yyI?>y }Q?yy G 6d?f 6wL r S y Q.' LU CD L11 - c r < a- ? •S . ><i7 ?? A 1 Q tl. LL? J < Vll? "T, <11J < LL < - ECY} W _ r Y r ? LU tLt Cry _> Q ? C5 Gk. 0 CL a Z tii 0 Ld a n ,. c <e> W a] x rr'p >si 0000000000000000000000000000000000000000000