Loading...
HomeMy WebLinkAboutNCDEQ Presentation 01_14_2016_FINAL1 D NCDEQ Briefing on Groundwater Investigations 1/14/2016 Meeting Objectives Third Party Reviewers Site Investigations Plume Geometry Flow Direction Analysis of Offsite Wells Site Background Concentrations Duke's Response to Comments Conclusions Third -Party Review The National Ash Management Advisory Board was assembled by UNC Charlotte at the request of Duke Energy and consists of nationally and internationally recognized and published experts. Duke Energy has engaged NAMAB to complete independent reviews of the Comprehensive Site Assessments and the Corrective Action Plans. John Daniels, D. Eng., P.E. Professor and Chair, UNCC - Department of Civil and Environmental Engineering Chairman, Ash Management Advisory Board Susan E. Burns, Ph.D., P.E. Georgia Power Distinguished professor, School of Civil and Environmental Engineering, Georgia Tech Panelist, Ash Management Advisory Board, Groundwater Subcommittee Jeffrey C. Evans, Ph.D., P.E. Professor of Civil and Environmental Engineering, Bucknell University Panelist, Ash Management Advisory Board, Groundwater Subcommittee Krishna Reddy, Ph.D., P.E. Professor of Civil and Environmental Engineering, University of Illinois at Chicago Panelist Ash Management Advisory Board, Groundwater Subcommittee Joyce Tsuji, Ph.D., DABT, Fellow ATS Principal Scientist, Exponent, Inc. Panelist, Ash Management Advisory Board, Groundwater Subcommittee 3 Third -Party Review Ronald Falta, Ph.D. Professor, Clemson - Department of Environmental Engineering and Earth Sciences Modeling Lawrence Murdoch, Ph.D. , P.G. Professor, Clemson - Department of Environmental Engineering and Earth Sciences Modeling Bill Langley, Ph.D. Professor, UNC Charlotte - Geography and Earth Sciences Modeling Lisa A Bradley, Ph.D., DABT Haley and Aldrich, Boston, MA - Vice President and Senior Toxicologist Off-site drinking water wells; risk assessments 4 Third -Party Review Chunmiao Zheng, Ph.D. Professor, University of Alabama — Department of Geological Sciences Model Reviewer John Ewing, P.E. Senior Water Resources Engineer, Intera, Inc. Model Reviewer James Rumbaugh President at Environmental Simulations, Inc. Model Reviewer Bruce Hensel EPRI (Electric Power Research Institute) Directed and managed model review William Linderfelt, Ph. D. Principal Hydrogeologist, Intera, Inc. Model Reviewer 5 Groundwater Investigation Highlights Dr. John Daniels, D.Eng, P.E. Risk Classification and Corrective Action Risk Classification (Method and Timing of Pond Closure) • Range of options Low Plan by 2018 Risk• Closed by 2029 • Requires excavation Intermediate • Plan by 2017 Risk • Closed by 2024 • Requires excavation High• Plan by 2016 Risk• Closed by 2019 Corrective Action (Groundwater Remediation) • Applicable to all closure options • Supplements closure option • Adaptable to changing site conditions and receipt of new data • Must be approved by NCDEQ Excavation, fully lined and capped 4 Fully Lined Landfill or Structural Fill row, Rralnage IayP P-t-tiye soil layer VOgetak,on 40-0 synthetic bit-er Structural High Risk Impoundment � & � Intermediate Risk Environmental Low Risk Excavate, cap, or other innovative and sustainable options Fully Lined Landfill or Structural Fill Groundwal Bedrock Cap with other engineerine Rain ,I General hydrogeologic theory Flow from high energy (ponds) to low energy (surface water) Follows topography Historical pond monitoring (2005-2015) Steady State Flow Direction Plume generalities (contaminant concentration range) Comprehensive Site Assessments Plume maps ES1 Plan View Cross Sections General Principles SYSTEM 4 -_ rt [!� "I" Slope Aquifer Boundary and Topographic DiiAde Discharge Boundary - - - - - - - Compartment (C) Boundary ..............— -Water Table r : Fractures �► Groundwater Flow Direction 9 General Flow Direction and Plume Extent Groundwater Flow: General groundwater flow was as expected based on accepted hydrogeologic theory and historical monitoring Regional groundwater flow at each site is away from neighbors, except at L.V. Sutton Energy Complex and Asheville Steam Electric Plant, and towards regional water bodies in the area Plume Extent: The plume is generally confined to the property boundary, except at four sites that are being addressed with accelerated remediation as required in the Sutton Settlement No evidence of impact to outside wells except at L.V. Sutton Energy Complex and Asheville Steam Electric Plant. 10 Example Stations Stations included in the previous meeting with NCDEQ and those with pending rankings (low -intermediate) were chosen to help provide additional information needed to finalize their priority status Allen Steam Station Belews Creek Steam Station Buck Steam Station Cliffside Steam Station Marshall Steam Station Roxboro Steam Electric Plant Allen Steam Station 12 't �v LEGEND \ N uNEP aRNATe waTEr+suPPLY WELL FIELD .* D IpENTIFIEP PRIVATE WPTER SUPPLY WELL y?t PLIO— YATER SUPPLYWELL �'� •� ), 4/ 1 1 RECOR DED PR NATE WATER SU PP LY WELL 55 RFPaRrEp PR wnrER SUPPLY WELL j S GRWNPWATER ASSESSMENT MONITORING WELL ter` Yi � eoMPLIANeEcaewNDwar€R MaNRGR,ncw€u .,� L ? —UNTARY GROUNDWATER MMI—INGWELL PROPOSE—D—AL MONITORINGWELL GEOLOGIC CRGSB .RECTION MF GRO—EROYJDNNI ESAN..S _ T •i � � ASH BASIN COMPLIANCE eONNOARY V 4MTH OORE ENERGY PROPERTVBOIINONIAFI—ARVI DENT I - ASH BASIN WASTE BONNOARV Y�I 1IFs�I� I'J --:•.I �L.! 1 ���� —EENEp GVPROPERYY BAUNOARY RTR"M L+3,�1 lhf In�CJ, �3t12d� �M, a f j11 Af � r�1aiL;n^f F?cJ1YJg13� 12 WEST 616111., Ego] Ikq1■ TH1�7 COMPLIANCE BOUNDARY CCINCIDENT WITH PROPERTY BOUNDARY INACTIVE ASH BASIN FILL ASH STORAGE AREA Allen Steam Station RAB ASN RETIRED ASH LANDFILL BASIN DAM i - - - - - �- INACTIVE ASH REGOLITH BEDROCK CROSS SECTION - ALLEN INACTIVE ASH BASIN (LOOKING NORTH) NOTE: TRANSECT D -D` FROM THE CSA REPORT USED FOR CROSS-SECTION SHOWN ABOVE, DRAWING NOT TO SCALE AND IS INTENDED FOR ILLUSTRATION PURPOSES ONLY. APPROXIMATE EXTENT OF 2L EXCEEDANCES OF BORON LEGENa 0 ASH - RECOLTTH PARTIALLY WEATHERED ROCK (PWR) O BEDROCK FI LL APPROXIMATE EXTENT OF 2L EXCEEDANCES OF BORON APPROXIMATE ORCUNDWATER FLOW DIRECTION 13 } a 0 z D w Z 0 ED J w 0 9 Iz EAST w D_ J a 0 d 0 I I ATAWBA RIVER 0 ASH - RECOLTTH PARTIALLY WEATHERED ROCK (PWR) O BEDROCK FI LL APPROXIMATE EXTENT OF 2L EXCEEDANCES OF BORON APPROXIMATE ORCUNDWATER FLOW DIRECTION 13 Modeled boron concentration (ug/L) in the transition zone LEGEND 50 (BackgiGund �onc�r�1� d1i� f1'I 50 - 2DO 200-400 400-700( #arldiard) 700-15.00 1.5-21) - 2.,50 DUCE ENERGY PROPERTY aOU14DARY ASH BASIN WASTE ROUN DARY LANDFILLfASH STORAGE AREABOUNDARY A51-1 SA ISN i: -OM 8.O JAI D,ARY ASH BASIN COFNIPLIANG� aOUN DARYOCINC 11DENT STH DUKE ENFRC-Y PROPERTY EPOUNDARY MODEL DOMAIN I Allen Steam Station 14 Summary Allen Steam Station: Topographic divide west of the ash basin generally along Highway 273 Lake Wylie is a regional groundwater discharge feature Groundwater flow direction is generally from topographic high areas to the east toward Lake Wylie Groundwater at the site flows away from neighbors Boron was detected above the 2L Standard in bedrock at only one location, close to Lake Wylie and away from drinking water wells No evidence of impacts to offsite receptors No imminent hazard to human health or the environment 15 x' LEGEND: ./ c 3tit�}° r �•Yv xi' ■ tip ASH BASIN f f ' ■I ■ ■ '!■% ■r. ■ BELEWS LAKE ELEV, - 925' - �,- •. '0s d" jt %4.,. JAPPROXIMATE) ypt "'PINE HALF_ ROAD ji h l �JW ■ YV n N�1 ASH LANDFILL .� ISO S �BELEW SCREEK STATION r � Air ■ '• �. 7�[ BELEWS LAKE �/ g"_- Belews Creek Steam Station w Cir :JL `14 `14 J p J p a= aZ A CROSS SECTION - BELEWS CREEK ACTIVE ASH BASIN (LOOKING WEST) NOTE: TRANSECT A -A' FROM THE CSA REPORT USED FOR CROSS-SECTION SHOWN ADOVE. DRAWING NOT TO SCALE AND IS INTENDED FOR ILLUSTRATION PURPOSES ONLY. A LEGEND 0 ASH BASIN SURFACE WATER 0 ASH - REGOLITH PARTIALLY WEATHERED ROCK/TRANSITION - ZONE (PWR/TZ) 0 HEDROCK FILL APPROXIMATE EXTENT OF 2L 0 EXCEEDANCES OF BORON ABVD/OR TOTAL DISSOLVED SOLIDS APPROXIMATE GROUNDWATER FLOW DIRECTION 17 Belews Creek Steam Station Modeled boron concentration (ug/L) in the transition zone LEGEND Dry Cell — 50 (Background Concentration) 50 - 700 (Standard) 700-5,000 5,000 - 10,000 10,000 - 15,000 15,000 - 20,000 20,000 - 26,186 ASH BASIN COMPLIANCE BOUNDARY ASH BASIN COMPLIANCE BOUNDARY - COINCIDENT WITH DUKE ENERGY PROPERTY BOUNDARY ASH BASIN WASTE BOUNDARY DUKEENERGY PROPERTY BOUNDARY STRUCTURAL FILL, ASH LANDFILL -EDGE OF WASTE MODEL DOMAIN 2115 No Action 2015 Current 2115 Cap in Place 2115 Excavation " Summary Belews Creek Steam Station: Water flows predominantly toward the north and northwest toward the Dan River There are no water supply wells between the source areas and the Dan River Boron was detected above the 2L Standard within the ash basin compliance boundary in the shallow and deep flow layers 2L exceedances were reported north-west of the ash basin. There are no receptor wells in this area and groundwater remediation will be performed at this location. No evidence of impacts to offsite receptors No imminent hazard to human health or the environment 19 Buck Steam Station 20 SOUTH r 0 z Cr C2 Q or z� Q W M d Q w � C) n Z = CL O z U W U 0 U A Buck Steam Station LEGEND NOTE EAST CROSS SECTION - CELL 2 PRIMARY POND (LOOKING WEST) DRAWING NOT TO SCALE AND IS INTENDED FOR ILLUSTRATION PURPOSES ONLY_ YADKIN RIVER A' ASH REGOLITH PARTIALLY WEATHERED ROCK (PWR/TZ) BEDROCK FILL APPROXIMATE EXTENT OF 2L EXCEECIANCES OF BORON APPROXIMATE GROUNDWATER FLOW DIRECTION 21 Modeled boron concentration (ug/L) in the transition zone N ��� G 509 1.DOP t• «. !��'-\ ,. -- regio 2115 No Action Buck Steam Station r4: a i auu 2015 Current 2115 Cap In Place LEGEND <= 50 (Background Concentration) 50-75 75.17'9 179 - 700 (Standard) 700-1,500 1,500 •2,500 2.500-3182 DUKE ENERGY PROPERTY BOUNDARY ASH BASIN WASTE BOUNDARY ASH BASIN COMPLIANCE BOUNDARY ASH BASIN COMP"ANCE _ BOUNDARY COINCIDENT WITH DUKEENERGY PROPERTY BOUNDARY Q (MODEL DOMAIN 22 Summary Buck Steam Station: Groundwater flow is predominately in the north direction toward the Yadkin River and away from neighbors There is a component of flow to the west of cell 1 and there is localized flow in an area east between cells 2 and 3 that is under further investigation Boron was detected above the 2L Standard in bedrock at only one location close to the Yadkin River No evidence of impacts to offsite receptors No imminent hazard to human health or the environment 23 �n SOUTH Cliffside Steam Station ASH STORAGE AREA (WFSTFRN PORTION) NORTH EXCEEDANCES OF BORON AND SULFATF - -' A CROSS SECTION - CLIFFSIDE ASH STORAGE AREA. (LOOKING WEST) NOTE: DRAWING NOT TO SCALE AND IS INTENDED FOR ILLUSTRATION PURPOSES ONLY. A' LEGEND ® ASH - RESCLITH PARTIALLY WEATHERED ROCK (PWRJTZ) 0 BEDROCK FILL APPROXIMATE EY.TENT OF 2L EXCEFDANCES OF BORON AND SULFATE APPROXIMATE GROUNDWATER FLOW DIRECTION 25 Modeled boron concentration (ug/L) in the transition zone LEGEND Dry Cell <- 50 (Background Cancentrajion} 50-250 250 - 700 (Standard) 700-1,000 9,000 - 2,500 2:500 - 5,000 5000-7722 MOO DOMA%N ASH STORAGE DUDE ENERGY PROPERI-V .' _ DOUNDARY ASH BASIN WASTE BOUNDARY ASH BASIN COMPLIANCE BOUNDARY ASH BASIN COMPLIANCE e _ BOUNDARY C10INCIDENT WITH € UKE ENERGY PROPERTY BOUNDARY 2115 No Action Cliffside Steam Station 2015 Current �.. r.�- •s , +�@•�,, � ;`x.. ',auk '� ,� ,-.'`' � L A b'' 0 550 1�QO 2115 Cap In Place 2115 Excavate 26 Summary Cliffside Steam Station: The Broad River and Suck Creek serve as groundwater discharge features for the groundwater flowing from the site Groundwater under the site flows toward the north and discharges to the Broad River Groundwater flow to the west of the active ash basin and east of Unit 6 is towards Suck Creek which discharges to the Broad River No evidence of impacts to offsite receptors No imminent hazard to human health or the environment 27 Marshall Steam Station 28 Marshall Steam Station APPROXIMATE EXTENT OF 2L APPROXIMATE EXTENT OF 2L EXCEEDANCES OF BORCJN EXCEEDANCES OF BORON PWR/TZ �y ASH BASIN ASH A'ASI q BEDROCK CROSS SECTION - MARSHALL ASH BASIN (LOOKING NORTHEAST) LEGEND NOTE: TRANSECT A -A' FROM THE CSA REPORT USED FOR CROSS-SECTION SHOWN ABOVE. DRAWING NOT TO SCALE AND IS INTENDED FOR ILLUSTRATION PURPOSES ONLY. ASH BASIN DAM LAKE NORMAN ® ASH - REGOUTH - PARTIALLY WEATHERED ROCK (PWR/TZ). 0 BEDROCK - FILL ® APPROXIMATE EXTENT OF 2L EXCEEDANCES OF BORON APPROXIMATE GROUNDWATER FLOW DIRECTION 29 Modeled boron concentration (ug/L) in the transition zone Marshall Steam Station 2015 Current LEGEND <- 100 (Background Concentration) 100 - 700 (Standardy 700-5,000 5,000 - 10,000 10,000 - 15,000 15,000 - 20,000 20,000 - 28,186 DUKE ENERGY PROPERTY BOUNDARY ASH BASIN WASTE BOUNDARY _ ASH BASIN COMPLIANCE BOUNDARY ASH BASIN COMPLIANCE BOUNDARY COINCIDENT HATH DUKE ENERGY PROPERTY BOUNDARY 0.5 MILE OFFSET FROM ASH BASIN COMPLIANCE BOUNDARY _ LANDFILLISTRUCTURAL FILL BOUNDARY MODEL DOMAIN 2115 No Action 2115 Cap In Place 2115 Excavate 30 Summary Marshall Steam Station: Groundwater flows beneath the ash basin to the southeast toward Lake Norman and slightly east towards an unnamed tributary Coal ash -related contaminants appear to be contained within the ash basin compliance boundary Groundwater at the site flows away from neighbors Boron was detected above the 2L Standard in bedrock at only one location beneath the closed Dry Ash Landfill No evidence of impacts to offsite receptors No imminent hazard to human health or the environment 31 .E `4 � r�; . "®� , � , Vii • :.�Q���C� -low, fl f w � a a B 9RA 480 Oxo aeo 450 - �g499 G430 4x0 Flo a3o �A Roxboro Steam Electric Plant SECTION A—A' — BORON —N—RIH— ® IL . als:^�wrrae SECTION 6-B' - BORON FALI.MG NEST G PAPH'C SCALE 3W 0 3]C 6O0 HQRISOMAL 1'•300' ED R � 6C1 vE-CG L 1'-3] 590 "M LEGEND _ COALASH A' O REGOLITH FILLMATERIAL- ASH _ TRANSITIONZONE —SOCK 5Bb WATER LEVEL 550 © ASH BASIN WATER LEVEL ��— 530 �— —N ITIPNZONEWATERLEVEL IiOW510 510 soo OSSERVED IN ROCK CORE 9BA 4BD 4]0 HASH MARKS FOINTTC DECREASING CONCENTRATIONS Isx3AcnvE CONCENTRATIONCONTODR DASHED MERE INFERRED soe CPNCENTHATION ----------- ___---_--=_-__--=BED NCTANALYZED NO NO DATA -------------- NOT SAMPLED --------------- BEf?QC„N, 403 __ ----------------- ] .____----_ NSRWd[wln�H 9__________________________________________ o 35A SECTION A—A' — BORON —N—RIH— ® IL . als:^�wrrae SECTION 6-B' - BORON FALI.MG NEST G PAPH'C SCALE 3W 0 3]C 6O0 HQRISOMAL 1'•300' ED R � 6C1 vE-CG L 1'-3] 590 "M BORING SYMBOLS SOIL sauaLF I -L —N— "LONtEMIUTiCM inti pe'4M Ar. 33 LEGEND _ COALASH GYPSUM O REGOLITH FILLMATERIAL- ASH _ TRANSITIONZONE —SOCK _ FU MATERIAL WATER LEVEL ASHPOREWATERLEVEL © ASH BASIN WATER LEVEL ��— BEDS PCK WATERLEVEL �— —N ITIPNZONEWATERLEVEL nt FRACT REDZ IDIZEC ZONE OSSERVED IN ROCK CORE CCNCENTRAMN CONTOUR HASH MARKS FOINTTC DECREASING CONCENTRATIONS ... CONCENTRATIONCONTODR DASHED MERE INFERRED soe CPNCENTHATION NA NCTANALYZED NO NO DATA NS NOT SAMPLED BORING SYMBOLS SOIL sauaLF I -L —N— "LONtEMIUTiCM inti pe'4M Ar. 33 It MOR.TH 69A Ian ON, 1QIi MO 53n 57D 51D wD jj *5n AM iTn 41' Z Z Ain nD 1115 Roxboro Steam Electric Plant ------------- SECTION C -C' ""TH LEGEND _ COAL ASH OYRSDNI soft REGOLITH FILLMATERML 'DQ ASH TRANSMONZONE A 14I eHnROCK -14 FILL MATERIAL "N WATER LEVEL ROBE WATER LEVEL 93Q 570 © ASH BASIN WATER LEVEL 41n j— IL R=C VYATERLEVEL TNANSITIONZCNEVVFTERLEVEL F"CMREEIO%IDIP£DZONE {� 1 06 ERVED IN ROCK CORE 00 OONGENT%k7ON CCNTODR HASH MARKS P IINTTO mr din DECREASING CONCENTRATIONS .i. CONCENTRATION CONTOUR a DA&NEOVHFRFINFERRFO ZaB SAB CONCENTRATION +iR NA NOT ANALYZED ND No DATA Z7Q NS NOTSAMPLEO 80RING SYMBOLS snNwe v�ELL> T mrvcau:RAF�cw _ fM1�nm�amr asr itlnl flGnppa 4nry lnaHl 34 Modeled boron concentrations (ug/L) in the transition zone 40004 700 Roxboro Steam Electric Plant 2015 Current 2045 No Action 2045 Cap -In -Place — 7 a 1 2045 Excavate Summary Roxboro Steam Electric Plant: Regional groundwater flow is to the west/northwest toward the Hyco Reservoir A discharge canal and topographic ridge located west of the Site ash basins limits groundwater flow in that direction Localized groundwater high zones are centered around the ash basins, with radial flow in these areas Boron was detected above the 2L Standard in bedrock at three locations on site and away from drinking water wells No evidence of impacts to offsite receptors No imminent hazard to human health or the environment 36 Site Background Concentrations Provisional proposed site background concentrations were included in the CAP Part 1, alternative methods can be found in the table below These values are based off of available data and will be updated as more sampling is completed Site Background versus Regional Background: How are they different? Example of Alternative Site Background Concentrations: Weatherspoon Parameter Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Chloride Chromium Background Sample Size 3 3 3 3 3 3 3 3 1 Calculated Calculated Calculated Calculated Calculated Calculated Calculated Background Calculated Method Background Background Background Background Background Background Background Concentration Background Concentration Concentration Concentration Concentration Concentration Concentration Concentration (mg/L) Concentration (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) NC21- Standard NA 1* 10 700 4* 700 2 250 10 Maximum 66 1 1 52 1 50 1 3.30 1 75% of Maximum 50 0.750 0.750 39 0.750 37.5 0.750 2.48 0.750 50% of Maximum 33 0.500 0.500 26 0.500 25 0.500 1.65 0.500 Mean 32 1 1 49.3 1 1 50 1 3.17 1 ACI -2 82.3 1 1 55.6 1 1 50 1 3.42 1 ACLS 71.7 1 1 56.8 1 1 50 1 3.45 1 Nondetects identified as ND, as opposed to the method detection limit, were omitted from calculations. IQR (Interquartile Range) = 75th percentile - 25th percentile ACI -2 (Alternative Concentration Limit 2): median + 1.65 x IQR ACLS (Alternative Concentration Limit 3): median + 1.65 * IQR (where IQR = the interquartile range). 37 Mounding Duke's Response to Comments 38 n Recharge Area w (Flan View) L Vertical Percolation _ Mounding Concern Defined This concern refers to the extent to which ash ponds raise or variably influence the natural potentiometric surface, causing flow to leave the basin radially, and against the prevailing slope aquifer gradient. Topographical and monitoring well data establish the extent to which localized mounded hydraulic gradients emanating from a given ash basin effect groundwater direction. The net effect of localized mounded gradients are captured by the current data set. Historical operations of ash basins were managed within narrow tolerances. For example, ash basin elevations have been controlled with hydraulic structures (e.g., stop logs) to within 1/2 of foot. Ash basin mounding occurs locally within a larger slope aquifer system. As such, this system still controls overall site gradient. It is contained within and defined by hydraulic boundaries including topographical divides, drainage features (streams), and groundwater discharge locations. 39 Mounding Deep fractures Duke's Response to Comments 40 Deep Fractures Concern Defined This concern refers to the extent to which fractures and fissures serve as a conduit between off site water wells and contaminated groundwater. Coal ash contaminants are dissolved in water with no measurable increase in density, as compared to other contaminants which would tend to "sink" in the aquifer, such as dense non aqueous phase liquids (DNAPL) or saltwater. Monitoring well data indicate less contamination with depth. Equipotential data indicate that lateral flow predominates over downward flow. The nature and extent of fractured rock is such that it follows the Slope Aquifer conceptual model set forth by LeGrand. Bedrock aquifers in the piedmont are hydraulically connected to the overlying transition zone and surficial aquifers, and they all slope toward a discharge location (river or lake). In the piedmont, fractures are irregular and discontinuous, not tending to form a continuous conduit. 41 Mounding Deep fractures Pumping Duke's Response to Comments 42 66 Unsaturated zone Water table AV Core of „ depression tA Off-site pumping Concern Defined This concern refers to the extent to which off site wells influence the prevailing groundwater flow direction, potentially drawing coal ash contaminants toward residences The net effect of any pumping by offsite wells on hydraulic gradient is captured by the existing network of monitoring wells and the model. Off site well quality data do not reveal any impacts by boron or other EPAAppendix III constituents. Off site wells pump at depths much greater than the depth of ash basins or the impact of the ash basins. 43 Allen Steam Station Well Capture Zone Ash Basin Boundary Groundwater Flow Direction �\ Model Boundary M Concentrations of Boron (ug/L) in Bedrock Wells . OF '010 J6, Tt M7, rw IVA, Allen Steam Station Y3. 1. ,lux --- ------------------------ 11 45 Belews Creek Steam Station ! •. r M o �' Off-site wells S� _tel. ,�►Aj p IL 5 - Off-site well Well Capture Zone Ash Basin Boundary Groundwater Flow Direction �\ Model Boundary �v Groundwater flow direction S� _tel. ,�►Aj p IL 5 - Off-site well Well Capture Zone Ash Basin Boundary Groundwater Flow Direction �\ Model Boundary Belews Creek Steam Station Concentrations of Boron (ug/L) in Bedrock Wells ? ? - 1, ,s-ic - 1 yt 1 r • _ a 1 f�� �F- r+A' � k X31 • I r /��.yy� nne3�+n 1 1 1 r r'. i� 1 - i 47 Belews Creek Steam Station Concentrations of TDS (ug/L) in Bedrock Wells Al V s 6 z w r Y r k r r Y r e � o e e s_ f r � r 1 7 r •� Y _ t y 48 Buck Steam Station Well Capture Zone Ash Basin Boundary Groundwater Flow Direction �\ Model Boundary Concentrations of Boron (uci/L) in Bedrock Wells 0 Buck Steam Station 50 Cliffside Steam Station Off-site wells .. is Well Capture Zone Ash Basin Boundary Groundwater Flow Direction �\ Model Boundary �o Cliffside Steam Station Concentrations of Boron (ug/L) in Bedrock Wells 52 Cliffside Steam Station Concentrations of Sulfate (ug/L) in Bedrock Wells -------------- tZi� �. r• 11f 1 t`r J 5 :' ssLf�r 1 L t \ - .. / - ,:"tip .��., .. • ,..:,Y I '.'_:. t a'-'�. .._ \ Nr) J _ i w.a. . __ I BP l• � ' II111� - - - Y • rl , It tea e �" ! r 4� .✓'te!> x 1,.�J ... + i ,y f ti . L / wl t t i 1 1 53 Marshall Steam Station Well Capture Zone Ash Basin Boundary Groundwater Flow Direction �\ Model Boundary Off-site well *Non -potable water well located on Marshall Steam Station property has been omitted 54 �r 0 .. any ' �„ - ;�'�"'•�+-•--rr-t.:;,t�� - r �. '+� " � -•� ;:,5 -�.(PH I GSE L 1.. y� - � .,. DEMbtiITICJN - 'ILI6PILL� BG-26R . <50 Lr (,50111 ES ASN BASIN- - NDFIL � - ' if A0-15 ,MJ9 .r .L,�2. . PV STRUCTURAL IOd FILL r.i . MW-14BR % 25J f42J) AB!5BR <50-11i,50U Y - DRY"ASN' ' '. LANDFILL A3-68R' (PHASE I) RSH AB-16R _ - BASIN 120(121)'- - ' BZBR FGD RESIDUE 50U 1,50U7, LANDFILL { r j'V, VVA i Roxboro Steam Electric Plant Well Capture Zone Ash Basin Boundary Groundwater Flow Direction M Roxboro Steam Electric Plant Concentrations of Boron (ug/L) in Bedrock Wells raw -0313W 1&- ^=y 2310 (22901 GYPSUM PAG Lr '¢''� ~ i GMw45' - <50{N51 �71�081N5) Gw-01' A Mw -096R ' ABMw-07BR'I- <59I<50; 1989 559 (9741 ',+1 MVV.11BR' SEMI-ACTIVE `,BASIN / I i<50j 1973 ACTIVE ASH BASIN 11-- Mw-04BR' MW-156Ry� J' r DO15 DUr}R-' -� ,draw-1eea +_ --. 57 -'ABMw.04BR' I AgRr f.11i.OQ6459 _ AHM41P03BFa ABM (< 591 501. 501 50 11 GMW-07- _ ___ _____ __J I<591 A13N4yy-p1BR� n_ -t7� 1 M850 [N6[ �UMIVY-09� W _. ► 79p [sE n- _ 1973 ACTIVE ASH BASIN 11-- Mw-04BR' MW-156Ry� J' r DO15 DUr}R-' -� ,draw-1eea +_ --. 57 Duke's Response to Comments Mounding Deep fractures Pumping Depth of CSA wells versus receptor wells 58 Depth of CSA wells versus receptor wells Concern Defined The concern is that off site wells are typically installed at depths much greater than those installed on site. The purpose of the CSA was to characterize the vertical and horizontal extent of impacts of ash basin management. These impacts do not extend deeper. The installed monitoring wells are located between the ash basin source and any potential receptor, including off site wells. If there was an impact at greater depth, then the bedrock wells would have captured this influence. In the piedmont, the bedrock aquifer is hydraulically connected to overlying transitional/surficial aquifers. Coal ash constituents are not driven by density (i.e., they do not sink like DNAPL) but rather move by lateral advection and dispersion 59 Duke's Response to Comments Mounding Deep fractures Pumping Depth of CSA wells versus receptor wells Geochemical effects 60 1.4 1.2 1 0.8 0.6 0.4 0.2 w 0 -0.2 -0.4 -0.6 -0.8 _1 H2CrO4 02 / H2O HCrOy 3+ Cr Cr(OHI2+ Cr042" Cr(OH)2+ Cr(OH)3 Gr(OH)Z HZO / HZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pH Geochemical effects Concern Defined The concern is that changes in Eh/pH, because of operational activity (capping, dewatering, etc.), will result in greater/different releases of soluble constituents from ash or from soil. In the case of soil, the concern is that while the constituents may be naturally occurring, they are being released because of site activity. Actual site pH/Eh conditions are relatively stable. Data indicate that sites are generally acidic and oxidizing. Potential corrective action scenarios do not create the basis for dramatic changes in geochemistry as controlled by Eh and pH. The magnitude of such changes is such that it would not materially affect the CSA conclusions. For example, the direction of travel remains away from off site wells. Asheville's peat bogs notwithstanding, these sites do not have hydrocarbons which would give rise to significant oxidation/reduction reactions. 61 Duke's Response to Comments Mounding Deep fractures Pumping Depth of CSA wells versus receptor wells Geochemical effects Saturated Ash 62 ASH STORAGE FILL RAB ASH RETIRED ASH LANDIFILL BASIN DAM 1 `L —INACTIVE ASH :C - ---V--- BEDROCK APPROXIMATE EXTENT Of 2L EXCEEDANCES OF BDRDN Ash below groundwater table 0 J Z m wLj EAST Concern Defined a� � o a c3 A The concern is ash cannot be allowed to remain �F'VFRA submerged within groundwater, since the ash is a source of contamination. Once dewatering begins, much of this concern goes away. The presence of ash in water does not automatically represent a concern. The submerged ash must leach and those leached constituents must migrate. If this occurs, it is observed in monitoring well data. Also, while the models conservatively presume a constant source concentration, in reality all leachable material is exhaustible. This is analogous to tea leaves or coffee grounds. Direction of flow remains the same; modeling incorporates the source location and projects its impact. 63 Duke's Response to Comments Mounding Deep fractures Pumping Depth of CSA wells versus receptor wells Geochemical effects Saturated Ash Constituent Modeling See tables on next slide 64 Modeling Constituents Constituents selected for the fate and transport models were those: a) determined to be source -related by professional judgment of the university led modeling team, b) with analytical results that exceeded applicable regulatory criteria, and c) with a distribution that was not suggestive of naturally occurring conditions Certain Constituents were not selected for modeling based on one or more of the following reasons: a = Not modeled using MODFLOW/MT3DMS. These constituents will be included in the geochemical modeling. b = Only isolated exceedances and/or appear to be related to background or non -source related. c = No 2L Standard exceedances in non-porewater monitoring wells samples. d = No 2L Standard or IMAC exceedances; not identified as a COL e = Found in ash and/or but not found in groundwater - ash being dewatered and removed from site. f = Constituent is not present in ash pore water monitoring wells above the 2L or IMAC Standards g = Constituent is not present above the 2L Standard or IMAC outside of the compliance boundary h = There is not a discernable plume of the constituent downgradient from the ash basin(s) 65 i = The constituent is strongly adsorbed (Kd>20 mL/g; R>100) and has very low mobility Model Constituents: Duke Energy Carolinas X = COI XX = C O I included in CAP Part 1 Modeling. added to CAP Part 2 Modeling. 66 Duke Energy Constituents of Interest (COls) Selected for Groundwater Fate and Transport Modeling DRAFT COI Allen Belews Creek Buck Station Cliffside Dan River Marshall Riverbend Aluminum d c d d d d b Antimony X c X X XX X X Arsenic X X c X X X XX Barium X c c XX d X b Beryllium c X d XX d X b Boron X X X X X X XX Cadmium c b d d d d b Chromium (VI) X X X X X X XX Chromium (Total) X X X X X X X Chloride d X d d d X d Cobalt X X X X X X XX Copper d c d d d d b Iron a a a a a a a Lead c c d X d d b Manganese a a a a a a a Mercury c c d c d d b Molybdenum d d d d d d b Nickel c c e X d d b Nitrate d c d d d d b pH a a a a a a a Selenium X b d d XX X e Strontium d d d d d d b Sulfate X b X X X X X TDS a a a a a a a Thallium c X c X X X XX Vanadium X b X X X X XX Zinc c c d d d d b X = COI XX = C O I included in CAP Part 1 Modeling. added to CAP Part 2 Modeling. 66 Model Constituents: Duke Energy Progress Duke Energy Constituents of Interest (COls) Selected for Groundwater Fate and Transport Modeling DRAFT COI Asheville Cape Fear H.F. Lee Mayo Roxboro Sutton Weatherspoo n Aluminum a, d, f, g a, d, f, g a, d, f, g a, d, f, g a, d, f, g, h a, f, g a, d, f, g, h Antimony g, h g, c g b, h h, b b, f d, f, g Arsenic a, h, i h, i, a X X X X X Barium c, d, f, g b, f g, h b, g, h b, f, g c, g c, g, h, Beryllium f, g, h g d, f, g d, f, g c, g, h d, f, g f, g, h Boron X X X X X X X Cadmium f, h, b d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g Chromium (VI) a a a a a a a Chromium (Total) a, g, h a a a, d, f, g a, b, f, h a a Chloride X f, g f, g d, f, g f, g f, h f, g Cobalt X a, h, i h, i a, h, i a, h, i a, f, h, i h, a Copper c, d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g Iron a,h a,h X a,h a,h a,h a,h Lead c, d, f, g d, f, g d, f, g d, f, g d, f, g f, b g, h Manganese a, h a, h X c, h a, h a, h h Mercury c, d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g Molybdenum c, d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g Nickel f, g, h g d, f, g d, f, g g, h d, f, g f, g, h Nitrate f,g,h, f, h d, f, g d, f, g d, f, g b, f d, f, g pH a a a a a a a Selenium a, f, g a, b c a, f, g, d a, f, g a, b, f, g a Strontium c, d, f, g d, f, g d, f, g d, f, g d, f, g f, g, d d, f, g Sulfate X X f, g d, f, g X f, g f, h TDS X h h h h h h Thallium h, i X g, h, i h, i h, i f, h h Vanadium a, h, i a, h, i a, h, i a, b, h, i a, h, i X h Zinc c, d, f, g c, h d, f, g d, f, g c, d, f, g d, f, g I1i General Conclusions from the Investigations for All Stations Recent groundwater assessment results are consistent with previous results from historical and routine compliance boundary monitoring well data No imminent hazard to human health or the environment has been identified as a result of groundwater migration from the ash basins No evidence of off-site impacts to private or public water supply wells (except at Sutton and Asheville plants where residents will be provided a water line, some are receiving bottled water) 68 General Conclusions from the Investigations for All Stations Minimal difference and benefit is seen for excavation over cap -in- place in the modeling scenarios These investigations and conclusions are conservative — no adjustment was made for background concentrations Addition of supplemental wells will add resolution to the CSA results 69 Overall Conclusion Timing of source control action is not critical Groundwater conditions do not change drastically overtime as indicated by the groundwater models Source control produces benefit to the groundwater over time, but the method of source control does not make a fundamental difference in groundwater quality over time If a receptor was determined to be impacted by a pond, a change in source control would not be a necessity The first response to an impacted drinking water well would be drinking water replacement, followed by an investigation and groundwater remediation 70 Private Well Analysis Dr. Lisa Bradley, Ph.D., DABT 71 Introduction Detailed per well screening for the following datasets was performed: • North Carolina (NC) Department of Environmental Quality (DEQ) Background Private Well Data • Duke Energy (Duke) Background Private Well Data • DEQ Private Well Data Constituent concentrations in water for each well for each data set were compared to the following: • 2L Standards: North Carolina Groundwater 2L Standards and Interim Maximum Allowable Concentrations (IMACs). • Federal Drinking Water Standards: USEPA Maximum Contaminant Levels (MCLs) and Secondary Maximum Contaminant Levels (SMCLs). • DHHS Screening Levels: North Carolina Department of Health and Human Services Screening Levels. • USEPA Risk -Based Screening Levels (RSLs): November 2015. 72 Summary Of DEQ Private Well, DEQ Background, and Duke Background Sample And Well Counts Station Sample/Well Counts DEQ Private Wells (a) DEQ (b) Background g ound Duke (c) Background Wells Available Wells Sampled Samples Allen 142 119 182 7 16 Asheville 20 8 9 0 13 Bel ews Creek 31 24 36 0 11 Buck 101 84 114 7 17 Cape Fear 2 1 1 0 18 Cliffside 26 17 29 0 9 Dan River 0 0 0 0 8 Lee 34 16 29 0 11 Marshall 47 38 57 10 29 Mayo 7 3 5 0 14 Riverbend 1 0 0 0 11 Roxboro 14 11 18 0 26 Sutton 18 10 17 0 13 Weatherspoon 8 2 3 0 2 Total: 451 333 500 1 24 198 W. Summary of DEQ Private Well Sampling Data Frequency of Frequency of Range of Detected Frequency Detected Above: Frequency of Reporting Limits Above: Frequency of Detection Detects Below All Constituents Units Detection (g) percent Concentrations 2L (a) DHHS (b) MCL (c) RSL (d) 2L (a) DHHS (b) MCL (c) RSL (d) Screening Levels Constituents Listed in Appendix III Detection Monitoring) oftheCCR Rule(e Boron ug/L 112 / 500 22% 1.8 - 690 0 0 0 0 0 0 112 Calcium ug/L 497 / 500 99% 553 246,000 -- -- -- -- -- -- -- -- -- Chloride mg/L 491 / 499 98% 0.92 - 335 1 1 1 0 0 0 490 pH su 496 / 496 100% 2.13 - 9.4 256 -- 256 0 -- 0 240 Sulfate mg/L 304 / 499 61% 0.15 - 711 7 7 7 0 0 0 297 Total Dissolved Solids m /L 492 / 494 100% 1 21.3 - 2,040 9 -- 9 0 -- 0 -- 483 Constituents Listed inAppendix IV (Assessment Monitoring) of the CCR Rule (f) Antimony ug/L 37 / 500 7% 0.031 - 1.87 2 2 0 0 60 60 23 23 35 Arsenic ug/L 79 / 500 16% 0.1 - 108 5 5 5 79 0 0 0 421 0 Barium ug/L 482 / 499 97% 0.46 - 400 0 0 0 0 0 0 0 0 482 Beryllium ug/L 20 / 500 4% 0.04 - 0.78 0 0 0 0 23 23 23 0 20 Cadmium ug/L 33 / 500 7% 0.063 - 1.4 0 0 0 0 0 0 0 0 33 Chromium ug/L 281 / 500 56% 0.176 - 22.1 7 7 0 0 11 11 0 0 274 Cobalt ug/L 79 / 500 16% 0.03 - 12 35 35 -- 3 59 59 -- 29 44 Lead ug/L 380 / 500 76% 0.073 - 75.5 8 8 8 8 0 0 0 0 372 Mercury ug/L 25 / 499 5% 0.017 - 0.12 0 0 0 0 0 0 0 0 25 Molybdenum ug/L 167 / 500 33% 0.064 - 20.2 -- 1 -- 0 -- 4 -- 0 166 Selenium ug/L 42 / 500 8% 0.1643 - 3.4 0 0 0 0 0 0 0 0 42 Thallium u /L 14 / 500 3% 0.057 - 0.24 1 1 0 1 118 118 5 118 13 Constituents Not Identified in the CCR Rule Vanadium ug/L 351 / 500 70% 0.197 - 26.5 344 344 -- 0 134 134 -- 0 7 Aluminum ug/L 158 / 500 32% 0.0018 - 5,000 -- 1 71 0 -- 0 9 0 87 Copper mg/L 424 / 500 85% 0.0002 - 29 4 4 3 4 0 0 0 0 420 Iron ug/L 199 / 500 40% 14.5 - 8,500 76 16 76 0 2 0 2 0 123 H exa va I ent Ch ro mi u m ug/L 262 / 484 54% 0.033 - 22.3 -- 239 -- 0 -- 159 -- 0 23 Magnesium ug/L 497 / 500 99% 101 - 61,200 -- -- -- -- -- -- -- -- -- Manganese ug/L 376 / 500 75% 0.49 - 1,010 39 16 39 5 0 0 0 0 337 Nickel ug/L 179 / 500 36% 0.18 - 15 0 0 -- 0 0 0 -- 0 179 Potassium ug/L 499 / 500 100% 96.1 - 21,200 -- -- -- -- -- -- -- Sodium ug/L 500 / 500 100% 570 370,000 34 -- 0 -- 466 Strontium ug/L 495 / 500 99% 2.3 - 3400 1 -- 0 -- 0 -- 0 494 Zinc mg/L 413 / 500 83% 0.0021 - 5.26 11 11 1 0 1 1 1 1 402 Alkalinity mg/L 479 / 494 97% 1 - 376 -- -- -- -- -- -- -- -- -- Bicarbonate mg/L 451 / 471 96% 1 - 286 Carbonate mg/L 5 / 473 1% 0 - 42.6 Total Suspended Solids mg/L 62 / 474 13% 0.4 - 363 Turbidity NTU 117 / 491 24% 0.15 - 210 Temperature °C 492 / 492 100% 7.4 - 28.3 Specific Conductance umhos/cm 493 / 493 100% 4.5 - 1,770 Dissolved Oxygen mg/L 487 / 490 99% 0.01 - 13 Oxidation Reduction Potentia mV 415 / 415 100% -168.4 - 774.7 -- -- -- -- -- -- -- -- Total Number of Analyses: 19,263 Total Number of Exceedances: 805 733 476 100 408 569 63 592 5,666 Summary of DEQ Private Well Sampling Data 75 Frequency of Range of Detected Frequency Detected Above: Frequency of Detects Below All Constituents Detection (g) Concentrations 2L (a) DHHS (b) MCL (c) RSL (d) Screening Levels Constituents Listed in Appendix III Detection Monitoring) of the CCR Rule(e) Boron 112 / 500 1.8 - 690 0 0 -- 0 112 Calcium 497 / 500 553 - 246,000 -- -- -- -- -- Chloride 491 / 499 0.92 - 335 1 1 1 -- 490 pH 496 / 496 2.13 - 9.4 256 -- 256 -- 240 Sulfate 304 / 499 0.15 - 711 7 7 7 -- 297 Total Dissolved Solids 492 / 494 21.3 - 2,040 9 -- 9 -- 483 Constituents Listed in Appendix IV Assessment Monitoring) of the CCR Rule f Antimony 37 / 500 0.031 - 1.87 2 2 0 0 35 Arsenic 79 / 500 0.1 - 108 5 5 5 79 0 Barium 482 / 499 0.46 - 400 0 0 0 0 482 Beryllium 20 / 500 0.04 - 0.78 0 0 0 0 20 Cadmium 33 / 500 0.063 - 1.4 0 0 0 0 33 Chromium 281 / 500 0.176 - 22.1 7 7 0 0 274 Cobalt 79 / 500 0.03 - 12 35 35 -- 3 44 Lead 380 / 500 0.073 - 75.5 8 8 8 8 372 Mercury 25 / 499 0.017 - 0.12 0 0 0 0 25 Molybdenum 167 / 500 0.064 - 20.2 -- 1 -- 0 166 Selenium 42 / 500 0.1643 - 3.4 0 0 0 0 42 Thallium 14 / 500 0.057 - 0.24 1 1 1 0 1 13 Constituents Not Identified in the CCR Rule Vanadium 351 / 500 0.197 - 26.5 344 344 -- 0 7 Aluminum 158 / 500 0.0018 - 5,000 -- 1 71 0 87 Copper 424 / 500 0.0002 - 29 4 4 3 4 420 1 ron 199 / 500 14.5 - 8,500 76 16 76 0 123 Hexava I ent Chromi um 262 / 484 0.033 - 22.3 -- 239 -- 0 23 Magnesium 497 / 500 101 - 61,200 -- -- -- -- -- Manganese 376 / 500 0.49 - 1,010 39 16 39 5 337 Nickel 179 / 500 0.18 - 15 0 0 -- 0 179 Potassium 499 / 500 96.1 - 21,200 -- -- -- -- -- Sodium 500 / 500 570 - 370,000 -- 34 -- -- 466 Strontium 495 / 500 2.3 - 3400 -- 1 -- 0 494 Zinc 413 / 500 0.0021 - 5.26 11 11 1 0 1 402 Total Number of Exceedances: 805 733 476 100 5,666 75 Summary of DEQ Background Private Well Sampling Data Frequency of Frequency of q Y Range of Detected Frequency Detected Above: Frequency of Reporting Limits Above: Frequency of Background g Detection Detects Below All Threshold Value Constituents Units Detection (h) Percent Concentrations 21. (a) DHHS (b) MCL (c) RSL (d) 2L (a) DHHS (b) MCL (c) RSL (d) Screening Levels (BTV) (g) Constituents Listed in Ap endix 111 (Detection Monitoring) of the CCR Rule (e) Boron ug/L 6/ 24 25% 5.3 - 135 0 0 0 0 0 0 6 39.87 Calcium ug/L 24 / 24 100% 1,680 - 74,200 -- -- -- - -- -- -- 100,163 Chloride mg/L 24 / 24 100% 1.6 - 38 0 0 0 0 0 0 24 43.78 pH su 24 / 24 100% 5.15 - 7.85 12 -- 12 -- -- -- -- 8.061 Sulfate mg/L 17 / 24 71% 2.1 - 186 0 0 0 0 0 0 17 148.4 Total Dissolved Solids m /L 23 / 24 1 96% 1 51 - 373 1 0 -- 0 0 -- 0 23 1 481 Constituents Listed in App endix IV (Assessment Monitoring) of the CCR Rule (f) Antimony ug/L 0/ 24 0% NA 0 0 0 0 0 0 0 0 0 NA Arsenic ug/L 2/ 24 8% 4.4 - 4.4 0 0 0 2 0 0 0 22 0 4.4 Barium ug/L 24 / 24 100% 0.89 77.3 0 0 0 0 0 0 0 0 24 125.1 Beryllium ug/L 0/ 24 0% NA 0 0 0 0 0 0 0 0 0 NA Cadmium ug/L 0/ 24 0% NA 0 0 0 0 0 0 0 0 0 NA Chromium ug/L 18 / 24 75% 0.51 - 5 0 0 0 0 0 0 0 0 18 3.715 Cobalt ug/L 0/ 24 0% NA 0 0 -- 0 0 0 -- 0 0 NA Lead ug/L 18 / 24 75% 0.12 - 3.2 0 0 0 0 0 0 0 0 18 2.384 Mercury ug/L 0/ 24 0% NA 0 0 0 0 0 0 0 0 0 NA Molybdenum ug/L 6 / 24 25% 0.58 - 4.9 -- 0 -- 0 -- 0 -- 0 6 4.059 Selenium ug/L 2/ 24 8% 0.52 - 0.72 0 0 0 0 0 0 0 0 2 0.72 Thallium u /L 0/ 24 0% NA 0 0 0 0 0 0 0 0 0 NA Constituents Not Identified in the CCR Rule Vanadium ug/L 19 / 24 79% 1 - 23.7 19 19 -- 0 5 S -- 0 0 24.07 Aluminum ug/L 5 / 24 21% 12.1 - 213 -- 0 3 0 -- 0 0 0 2 142.3 Copper mg/L 21 / 24 88% 0.001 - 0.0161 0 0 0 0 0 0 0 0 21 0.033 Iron ug/L 6/ 24 25% 57.5 - 1,340 1 0 1 0 0 0 0 0 5 761.5 Hexavalent Chromium ug/L 12 / 24 50% 0.14 - 4.5 -- 12 -- 0 -- 11 -- 0 0 3.168 Magnesium ug/L 24 / 24 100% 808 - 28,800 -- -- -- -- -- -- -- -- -- 31,525 Manganese ug/L 16 / 24 67% 0.5 - 271 0 1 0 0 0 0 0 0 15 142.9 Nickel ug/L 6 / 24 25% 0.53 1.8 0 0 -- 0 0 0 -- 0 6 1.433 Potassium ug/L 24 / 24 100% 265 - 3,450 -- -- -- -- 4,258 Sodium ug/L 24 / 24 100% 4,610 - 29,900 3 0 21 29,900 Strontium ug/L 24 / 24 100% 12.2 - 1150 0 -- 0 -- 0 -- 0 24 1,809 Zi nc mg/L 17 / 24 71% 0.0051 - 0.147 0 0 0 0 0 0 0 0 17 0.0838 Alkalinity mg/L 24 / 24 100% 7.4 - 226 -- -- -- -- -- -- -- -- -- 285.9 Bicarbonate mg/L 23 / 24 96% 7.4 - 226 308.6 Carbonate mg/L 0 / 24 0% NA NA Total Suspended Solids mg/L 4 / 24 17% 4.2 - 20.6 14.32 Turbidity NTU 4 / 24 17% 2 - 10.6 6.806 Temperature °C 24 / 24 NA 15.25 - 17.68 18.01 Specific Conductance umhos/cm 24 / 24 NA 0.053 - 0.9 1.01 Dissolved Oxygen mg/L 24 / 24 NA 0.32 - 9.86 9.396 Oxidation Reduction Potentia mV 24 / 24 NA -63 241 241 Total Number ofAnalyses:1 936 1 Total Number of Exceedances: 32 35 16 2 5 16 0 22 249 7F Summary of DEQ Background Private Well ta 77 Sampling Da Frequency of Range of Detected Frequency Detected Above: Frequency of Background Detects Below All Threshold Value Constituents Detection (h) Concentrations 2L (a) DHHS (b) MCL (c) RSL (d) Screening Levels (BN) (g) Constituents Listed in Appendix III (Detection Monitoring) of the CCR Rule (e) Boron 6 / 24 5.3 - 135 0 0 -- 0 6 39.87 Calcium 24 / 24 1,680 - 74,200 -- -- -- -- -- 100,163 Chloride 24 / 24 1.6 - 38 0 0 0 -- 24 43.78 pH 24 / 24 5.15 - 7.85 12 -- 12 -- -- 8.061 Sulfate 17 / 24 2.1 - 186 0 0 0 -- 17 148.4 Total Dissolved Solids 23 / 24 51 - 373 0 -- 0 -- 23 481 Constituents Listed in Appendix IV (Assessment Monitoring) of the CCR Rule (f) Antimony 0/ 24 NA 0 0 0 0 0 NA Arsenic 2/ 24 4.4 - 4.4 0 0 0 2 0 4.4 Barium 24 / 24 0.89 - 77.3 0 0 0 0 24 125.1 Beryllium 0/ 24 NA 0 0 0 0 0 NA Cadmium 0/ 24 NA 0 0 0 0 0 NA Chromium 18 / 24 0.51 - 5 0 0 0 0 18 3.715 Cobalt 0/ 24 NA 0 0 -- 0 0 NA Lead 18 / 24 0.12 - 3.2 0 0 0 0 18 2.384 Mercury 0/ 24 NA 0 0 0 0 0 NA Molybdenum 6 / 24 0.58 - 4.9 -- 0 -- 0 6 4.059 Selenium 2/ 24 0.52 - 0.72 0 0 0 0 2 0.72 Thallium 0/ 24 NA 0 0 0 0 0 NA Constituents Not Identified in the CCR Rule Vanadium 19 / 24 1 - 23.7 19 19 -- 0 0 24.07 Aluminum 5 / 24 12.1 - 213 -- 0 3 0 2 142.3 Copper 21 / 24 0.001 - 0.0161 0 0 0 0 21 0.033 Iron 6/ 24 57.5 - 1,340 1 0 1 0 5 761.5 HexavaIentChromium 12 / 24 0.14 - 4.5 -- 12 -- 0 0 3.168 Magnesium 24 / 24 808 - 28,800 -- -- -- -- -- 31,525 Manganese 16 / 24 0.5 - 271 0 1 0 0 15 142.9 Nickel 6 / 24 0.53 - 1.8 0 0 -- 0 6 1.433 Potassium 24 / 24 265 - 3,450 -- -- -- -- -- 4,258 Sodium 24 / 24 4,610 - 29,900 - 3 -- -- 21 29,900 Strontium 24 / 24 12.2 - 1150 -- 0 -- 0 24 1,809 Zinc 17 / 24 0.0051 - 0.147 0 0 0 0 17 0.0838 Total Number of Exceedances: 32 35 16 2 249 ta 77 Summary of Duke Energy Background Private Well Sampling Data 78 Frequency of Frequency of Range of Detected Frequency Detected Above: Frequency of Reporting Limits Above: Frequency of Background Detection Detects Below All Threshold Value Constituents Units Detection (i) Percent Concentrations 21. (a) DHHS (b) MCL (c) RSL (d) 2L (a) DHHS (b) MCL (c) RSL (d) Screening Levels (BTV) (g, h) Constituents Listed in Appendix III (Detection Monitoring) of the CCR Rule (e) Boron ug/L 27 / 185 15% 5.1 113 0 0 0 0 0 0 27 113 Calcium ug/L 185 / 185 100% 14 195,000 -- -- -- -- 150,923 Chloride mg/L 54 / 54 100% 0.62 40 0 0 0 0 0 0 54 47.01 pH s 52 / 52 100% 4.88 11.7 5 -- 5 0 -- 0 47 11.7 Sulfate mg/L 52 / 54 96% 0.26 170 0 0 0 0 0 0 52 275.3 Total Dissolved Solids mg/L 40 / 40 100% 42 520 1 -- 1 0 -- 0 39 584.9 Constituents Listed in Appendix IV (Assessment Monitoring) of the CCR Rule (f) Antimony ug/L 94 / 185 51% 0.5 1.5 48 48 0 0 0 0 0 0 46 1.5 Arsenic ug/L 25 / 185 14% 0.52 14.1 1 1 1 25 0 0 0 160 0 3.968 Barium ug/L 164 / 185 89% 1.5 486 0 0 0 0 0 0 0 0 164 486 Beryllium ug/L 6/ 185 3% 0.31 0.5 0 0 0 0 0 0 0 0 6 0.385 Cadmium ug/L 7/ 185 4% 0.01 1.17 0 0 0 0 0 0 0 0 7 0.345 Chromium ug/L 31 / 185 17% 0.5 157 3 3 2 0 0 0 0 0 28 157 Cobalt ug/L 20 / 185 11% 0.58 25.9 15 15 -- 2 0 0 -- 0 5 25.9 Lead ug/L 104 / 185 56% 0.12 73.2 5 5 5 5 0 0 0 0 99 73.2 Mercury ug/L 1/ 185 1% 0.27 0.27 0 0 0 0 0 0 0 0 1 NA Molybdenum ug/L 48 / 185 26% 0.52 10.8 -- 0 -- 0 -- 0 -- 0 48 14.16 Selenium ug/L 10 / 185 5% 0.59 1.7 0 0 0 0 0 0 0 0 10 1.135 Thallium I ug/L 2/ 185 1% 0.354 0.554 1 2 2 0 2 1 0 0 0 0 1 0 0.554 Constituents Not Identified in the CCR Rule Vanadium ug/L 106 / 185 57% 0.318 112 106 106 -- 1 42 42 -- 0 0 127.8 Aluminum ug/L 93 / 185 50% 5 32,200 -- 3 30 2 -- 0 0 0 63 32,200 Copper mg/L 121 / 185 65% 0.0011 0.992 0 0 0 1 0 0 0 0 120 1.443 Iron ug/L 119 / 185 64% 10 45,000 42 13 42 2 0 0 0 0 77 45,000 Hexava lent Chromi um ug/L 72 / 115 63% 0.033 73.5 -- 61 -- 1 -- 13 -- 0 11 73.5 Magnesium ug/L 184 / 185 99% 128 46,300 -- -- -- -- 88,964 Manganese ug/L 119 / 185 64% 0.56 4,820 37 13 37 7 0 0 0 0 82 5,915 Nickel ug/L 37 / 185 20% 0.53 380 1 1 -- 0 0 0 -- 0 36 380 Potassium ug/L 185 185 100% 123 - 8,060 -- -- -- -- -- -- 9,555 Sodium ug/L 185 / 185 100% 763 151,000 16 - 0 169 151,000 Strontium ug/L 180 / 181 99% 1.3 2,210 - 1 -- 0 -- 0 -- 0 179 3,561 Zinc ug/L 149 / 185 81% 5 2,990 5 5 0 0 0 0 0 0 144 2,990 AI ka I i n i ty mg/L NA NA NA - -- - -- -- -- -- -- NA Bicarbonate mg/L NA NA NA - - NA Carbonate mg/L NA NA NA - - - NA Tota ISus pendedSol icls mg/L 6 / 59 10% 5 - 970 - - - 46.96 Turbidity NTU NA NA NA - - - NA Temperature °C NA NA NA - - - NA Specific Conductance umhos/cm NA NA NA - - - NA Dissolved Oxygen mg/L NA NA NA - NA Oxidation Reduction Potential mV I NA NA I NA NA Total Number of Anal ses: 4,995 1 Total Number of Exceedances: 271 293 123 48 42 55 0 160 1,514 78 Summary of Duke Energy Background Private Well Sampling Data 79 Frequency of Frequency of Range of Detected Frequency Detected Above: Frequency of Background Detection Detects Below All Threshold Value Constituents Detection (i) Percent Concentrations 2L (a) DHHS (b) MCL (c) RSL (d) Screening Levels (BTV) (g, h) Constituents Listed in Appendix III (Detection Monitoring) of the CCR Rule (e) Boron 27 / 185 15% 5.1 113 0 0 0 27 113 Calcium 185 / 185 100% 14 195,000 -- -- -- -- -- 150,923 Chloride 54 / 54 100% 0.62 40 0 0 0 54 47.01 pH 52 / 52 100% 4.88 11.7 5 -- 5 47 11.7 Sulfate 52 / 54 96% 0.26 170 0 0 0 52 275.3 Total Dissolved Solids 40 / 40 100% 42 520 1 -- 1 -- 39 584.9 Constituents Listed in Appendix IV (Assessment Monitoring) of the CCR Rule (f) Antimony 94 / 185 51% 0.5 1.5 48 48 0 0 46 1.5 Arsenic 25 / 185 14% 0.52 14.1 1 1 1 25 0 3.968 Barium 164 / 185 89% 1.5 486 0 0 0 0 164 486 Beryllium 6/ 185 3% 0.31 0.5 0 0 0 0 6 0.385 Cadmium 7/ 185 4% 0.01 1.17 0 0 0 0 7 0.345 Chromium 31 / 185 17% 0.5 157 3 3 2 0 28 157 Cobalt 20 / 185 11% 0.58 25.9 15 15 -- 2 5 25.9 Lead 104 / 185 56% 0.12 73.2 5 5 5 5 99 73.2 Mercury 1/ 185 1% 0.27 0.27 0 0 0 0 1 NA Molybdenum 48 / 185 26% 0.52 10.8 -- 0 -- 0 48 14.16 Selenium 10 / 185 5% 0.59 1.7 0 0 0 0 10 1.135 Thallium 2/ 185 1% 0.354 0.554 1 2 2 0 2 1 0 0.554 Constituents Not Identified in the CCR Rule Vanadium 106 / 185 57% 0.318 112 106 106 -- 1 0 127.8 Aluminum 93 / 185 50% 5 32,200 -- 3 30 2 63 32,200 Copper 121 / 185 65% 0.0011 0.992 0 0 0 1 120 1.443 Iron 119 / 185 64% 10 45,000 42 13 42 2 77 45,000 Hexava lent Chromi um 72 / 115 63% 0.033 73.5 -- 61 -- 1 11 73.5 Magnesium 184 / 185 99% 128 46,300 -- -- -- -- -- 88,964 Manganese 119 / 185 64% 0.56 4,820 37 13 37 7 82 5,915 Nickel 37 / 185 20% 0.53 380 1 1 -- 0 36 380 Potassium 185 / 185 100% 123 8,060 -- -- -- 9,555 Sodium 185 / 185 100% 763 151,000 16 -- 169 151,000 Strontium 180 / 181 99% 1.3 2,210 - 1 -- 0 179 3,561 Zinc 149 / 185 81% 5 2,990 5 5 0 0 144 2,990 Total Number of Exceedances: 271 293 123 48 1,514 79 Summary of Duke Energy and DEQ Combined Background Private Well Sampling Data 80 Frequency of Threshold Frequency of Range of Detected Mean 10th 25th 75th 90th Detection Median [Background Value Constituents Units Detection (c) Concentrations Detect Percentile Percentile Percentile Percentile Percent (BTV) (f, g) Constituents Listed in Appendix III (Detection Monitorin of the CCR Rule (d) Boron ug/L 33 / 209 16% 5.1 135 25.27 5 5 50 50 50 135 Calcium ug/L 209 / 209 100% 14 195,000 21,237 3,332 7,960 13,700 28,000 44,180 195,000 Chloride mg/L 78 / 78 100% 0.62 40 7.62 1.67 2.325 4.45 9.8 19 31.42 pH su 76 / 76 100% 4.88 11.7 6.989 6.16 6.598 6.97 7.38 7.855 11.7 Sulfate mg/L 69 / 78 88% 0.26 186 13.01 0.534 1.75 3.8 9.975 18.5 72.27 Total Dissolved Solids m /L 63 / 64 98% 1 42 520 1 147.4 1 62.5 1 89.75 1 125 160 311.9 381.1 Constituents Listed in Appendix IV (Assessment Monitoring) of the CCR Rule (e) Antimony ug/L 94 / 209 4S% 0.5 1.S 0.985 0.5 0.69 1 1 1.1S 1.5 Arsenic ug/L 27 / 209 13% 0.52 - 14.1 2.794 0.5 0.5 1 1 1.002 4.881 Barium ug/L 188 / 209 90% 0.89 486 46.47 S 7 20.S 56 114.4 486 Beryllium ug/L 6 / 209 3% 0.31 - 0.5 0.373 0.2 0.2 1 1 1 0.363 Cadmium ug/L 7 / 209 3% 0.01 - 1.17 0.279 0.08 0.08 1 1 1 0.323 Chromium ug/L 49 / 209 23% 0.5 157 7.851 O.S 0.51 5 5 5 157 Cobalt ug/L 20 / 209 10% 0.58 25.9 3.612 O.S 0.5 0.6 1 1 25.9 Lead ug/L 122 / 209 58% 0.12 - 73.2 2.818 0.17 0.48 1 1.21 3.018 73.2 Mercury ug/L 1 / 209 0.5% 0.27 - 0.27 0.27 O.OS 0.05 0.05 0.2 0.2 NA Molybdenum ug/L 54 / 209 26% 0.52 - 10.8 2.477 0.5 0.5 1 1 2.12 14.17 Selenium ug/L 12 / 209 6% 0.52 - 1.7 1.093 0.5 0.5 1 1 1 1.108 Thallium ug/L 2 / 209 1.0% 0.354 - 0.554 0.454 0.1 0.1 0.2 0.2 0.2 0.554 Constituents Not Identified in the CCR Rule Vanadium ug/L 125 / 209 60% 0.318 112 6.041 0.3 0.579 1 3.8 9.864 23.51 Aluminum ug/L 98 / 209 47% 5 - 32,200 723.1 5 6 10 21 78.68 32,200 Copper mg/L 142 / 209 68% 0.001 - 0.992 0.0415 0.002 0.0049 0.005 0.018 0.0602 0.143 Iron ug/L 125 / 209 60% 10 45,000 1356 10 21 50 179 1486 45,000 Hexavalent Chromium ug/L 84 / 139 60% 0.033 73.5 1.589 0.03 0.0385 0.19 0.6 1.52 73.5 Magnesium ug/L 208 / 209 100% 128 46,300 5266 816 2,000 3,680 5,940 11,360 19,864 Manganese ug/L 135 / 209 65% 0.5 4820 120.6 0.818 5 5 28.2 102.8 460.9 Nickel ug/L 43 / 209 21% 0.53 380 12.82 0.5 0.5 5 5 5 380 Potassium ug/L 209 / 209 100% 123 8,060 1934 536 1,130 1,740 2,500 3,482 9,451 Sodium ug/L 209 / 209 100% 763 151,000 10,948 4,500 6,240 8,310 11,400 17,840 151,000 Strontium ug/L 204 / 205 100% 1.3 2210 176.9 27 60 107 185 343 706 Zi nc mg/L 166 / 209 79% 0.005 2.99 0.134 0.005 0.006 0.016 0.06 0.225 2.99 Alkalinity mg/L 24 / 24 100% 7.4 226 79.86 34.19 48.03 66.1 90 166.2 285.9 Bicarbonate mg/L 23 / 24 96% 7.4 226 81.04 25.03 46.63 66.1 90 166.2 308.6 Carbonate mg/L 0 / 24 0% NA NA 5 5 5 5 5 NA Total Suspended Solids mg/L 10 / 83 12% 4.2 970 111 2.5 4.6 5 5 5 38.18 Turbidity NTU 4 / 24 17% 2 10.6 4.675 1 1 1 1 2.63 6.806 Temperature °C 24 / 24 100% 15.25 17.68 16.59 16.01 16.37 16.51 16.86 17.18 18.01 Specific Conductance umhos/cm 24 / 24 100% 0.053 0.9 0.26 0.0912 0.116 0.188 0.295 0.563 1.01 Dissolved Oxygen mg/L 24 / 24 100% 0.32 9.86 3.291 0.604 1.553 3.025 4.335 5.488 9.396 Oxidation Reduction Potentia mV 24 / 24 100% -63 241 134.6 46 110.5 146.5 177 198.3 241 Total Number of Analyses: 5931 80 Summary of Duke Energy and DEQ Combined Background Private Well Sampling Data Ali Background Frequency of Range of Detected Mean 10th 25th 75th 90th Median Threshold Value Constituents Detection (c) Concentrations Detect Percentile Percentile Percentile Percentile (BN) (f, g) Constituents Listed in App endix III (Detection Monitoring) of the CCR Rule (d) Boron 33 / 209 5.1 - 135 25.27 5 5 50 50 50 135 Calcium 209 / 209 14 - 195,000 21,237 3,332 7,960 13,700 28,000 44,180 195,000 Chloride 78 / 78 0.62 - 40 7.62 1.67 2.325 4.45 9.8 19 31.42 pH 76 / 76 4.88 - 11.7 6.989 6.16 6.598 6.97 7.38 7.855 11.7 Sulfate 69 / 78 0.26 - 186 13.01 0.534 1.75 3.8 9.975 18.5 72.27 Total Dissolved Solids 63 / 64 42 - 520 1 147.4 62.5 1 89.75 1 125 1 160 1 311.9 1 381.1 Constituents Listed in Appendix IV (Assessment Monitoring) of the CCR Rule (e) Antimony 94 / 209 0.5 - 1.5 0.985 0.5 0.69 1 1 1.15 1.5 Arsenic 27 / 209 0.52 - 14.1 2.794 0.5 0.5 1 1 1.002 4.881 Barium 188 / 209 0.89 - 486 46.47 5 7 20.5 56 114.4 486 Beryllium 6 / 209 0.31 - 0.5 0.373 0.2 0.2 1 1 1 0.363 Cadmium 7 / 209 0.01 - 1.17 0.279 0.08 0.08 1 1 1 0.323 Chromium 49 / 209 0.5 - 157 7.851 0.5 0.51 5 5 5 157 Cobalt 20 / 209 0.58 - 25.9 3.612 0.5 0.5 0.6 1 1 25.9 Lead 122 / 209 0.12 - 73.2 2.818 0.17 0.48 1 1.21 3.018 73.2 Mercury 1 / 209 0.27 - 0.27 0.27 0.05 0.05 0.05 0.2 0.2 NA Molybdenum 54 / 209 0.52 - 10.8 2.477 0.5 0.5 1 1 2.12 14.17 Selenium 12 / 209 0.52 - 1.7 1.093 0.5 0.5 1 1 1 1.108 Thallium 2 / 209 0.354 - 0.554 1 0.454 0.1 1 0.1 1 0.2 1 0.2 1 0.2 1 0.554 Constituents Not Identified in the CCR Rule Vanadium 125 / 209 0.318 - 112 6.041 0.3 0.579 1 3.8 9.864 23.51 Aluminum 98 / 209 5 - 32,200 723.1 5 6 10 21 78.68 32,200 Copper 142 / 209 0.001 - 0.992 0.0415 0.002 0.0049 0.005 0.018 0.0602 0.143 Iron 125 / 209 10 - 45,000 1356 10 21 50 179 1486 45,000 Hexavalent Chromium 84 / 139 0.033 - 73.5 1.589 0.03 0.0385 0.19 0.6 1.52 73.5 Magnesium 208 / 209 128 - 46,300 5266 816 2,000 3,680 5,940 11,360 19,864 Manganese 135 / 209 0.5 - 4820 120.6 0.818 5 5 28.2 102.8 460.9 Nickel 43 / 209 0.53 - 380 12.82 0.5 0.5 5 5 5 380 Potassium 209 / 209 123 - 8,060 1934 536 1,130 1,740 2,500 3,482 9,451 Sodium 209 / 209 763 - 151,000 10,948 4,500 6,240 8,310 11,400 17,840 151,000 Strontium 204 / 205 1.3 - 2210 176.9 27 60 107 185 343 706 Zinc 166 / 209 0.005 - 2.99 0.134 0.005 0.006 0.016 0.06 0.225 2.99 Ali Comparison of Duke Energy, DEQ and Combined Background BTVs to USGS NURE BTVs 82 Duke Background DEQ Background Duke and DEQ USGS NURE North Background Background Combined Background Carolina Background Threshold Value Threshold Value Background Threshold Threshold Value (BTV) Constituents Units (BTV) (b, c) (BTV) (b) Value (BTV) (f) (a) Constituents Listed in Appendix III (Detection Monitoring) of the CCR Rule (d) Boron ug/L 113 39.87 13S NA Calcium ug/L 150,923 100,163 195,000 NA Chloride mg/L 47.01 43.78 31.42 629.4 pH su 11.7 8.061 11.7 NA Sulfate mg/L 275.3 148.4 72.27 NA Total Dissolved Solids m /L 584.9 481 381.1 NA Constituents Listed in Appendix IV (Assessment Monitoring) of the CCR Rule (e) Anti mony ug/L 1.5 NA 1.S NA Arsenic ug/L 3.968 4.4 4.881 NA Barium ug/L 486 125.1 486 NA Beryllium ug/L 0.385 NA 0.363 NA Cadmium ug/L 0.345 NA 0.323 NA Chromium ug/L 157 3.715 157 NA Cobalt ug/L 25.9 NA 25.9 NA Lead ug/L 73.2 2.384 73.2 NA Mercury ug/L NA NA NA NA Molybdenum ug/L 14.16 4.059 14.17 NA Selenium ug/L 1.135 0.72 1.108 NA Thallium ug/L 0.554 NA 0.554 NA 82 Comparison of Duke Energy, DEQ and Combined Background BTVs to USGS NURE BTVs Constituents Units Duke Background Background Threshold Value (BTV) (b, c) DEQ Background Background Threshold Value (BTV) (b) Duke and DEQ Combined Background Background Threshold Value (BTV) (f) USGS NURE North Carolina Background Threshold Value (BTV) (a) Constituents Not Identified in the CCR Rule Vanadium ug/L 127.8 24.07 23.51 42.9 Aluminum ug/L 32,200 142.3 32,200 13,000 Copper mg/L 1.443 0.033 0.143 NA I ron ug/L 45,000 761.5 45000 NA Hexava I ent Chromi um ug/L 73.5 3.168 73.5 NA Magnesium ug/L 88,964 31,525 19,864 79,800 Manganese ug/L 5,915 142.9 460.9 3,758 Nickel ug/L 380 1.433 380 NA Potassium ug/L 9,555 4,258 9,451 NA Sodium ug/L 151,000 29,900 151,000 1,079,000 Strontium ug/L 3,561 1,809 706 NA Zi nc mg/L 2.99 0.0838 2.99 NA Al ka I i n i ty mg/L NA 285.9 285.9 NA Bi ca rbonate mg/L NA 308.6 308.6 NA Carbonate mg/L NA NA NA NA Total Suspended Solids mg/L 46.96 14.32 38.18 NA Turbidity NTU NA 6.806 6.806 NA Temperature °C NA 18.01 18.01 NA Specific Conductance umhos/cm NA 1.01 1.01 NA Dissolved Oxygen mg/L NA 9.396 9.396 NA Oxidation Reduction Potential mV NA 241 241 NA W., Summary of Background Levels from AWWA and USEPA UCIVIR3 Background Levels for Boron and Hexavalent Chromium from American Water Works Association (AWWA) Background Levels for Hexavalent Chromium from USEPA Third Unregulated Contaminant Monitoring Rule (UCMR3) AWWA AWWA AWWA Constituents Units Average Median Maximum Boron (b) ug/L 167.9 40 3321.3 ,Hexavalent Chromium (c) ug/L 1.1 0 (d) 52.6 Background Levels for Hexavalent Chromium from USEPA Third Unregulated Contaminant Monitoring Rule (UCMR3) M Avg Conc Min Max State/Region Samples Detects (ug/L) (ug/L) (ug/L) North Carolina 1519 1019 0.13 0.015 9.1 U.S. 49079 36934 0.58 0.015 97.38 M J tw 0 10000 1000 Boron - Background Data Comparison Boron Background Concentrations MAX I MEAN I 10 1 DEQ Private Wells USGS Data Duke Background DEQ Background Duke and DEQ AWWA (1992 - 2003) Private Wells Private Wells Combined Background Private Wells 35 85 1000 100 Vanadium - Background Data Comparison Vanadium Background Concentrations W-IVA MEAN 0.1 0.01 DEQ Private Wells USGS Data Duke Background DEQ Background Duke and DEQ NURE North Carolina (1992 - 2003) Private Wells Private Wells Combined Background 86 Private Wells Vanadium in Groundwater Vanadium in Groundwater u .LUU ❑ .50 0 1 Grid Cell Interpolated Thematic Grid Cell =1.5 miles Source: a as loci miles http://portal.ncdenr.org/image/image_gallery?uuid=eb8495e2-b440-4dOa-9998-3d95e6ce5Oab&groupld=38334&t=1391110519151 87 Vanadium and Duke Facilities Operating plant sites Dan River Mayo Retired plant sites (Eden, NC) Roxboro (Roxboro, NC) Belews Creek (Semora, NC) (Belews Creek, NC) Buck (Salisbury, NC) Marshall (Terrell, NC), Asheville a •� 1 (Asheville, NC) t_ •• `---- -'- -�_ _ _24 ' 3 Cliffside (Ble mant, NC) � (Mooresboro, NC) Riverbend (Mount Holly, NC) Weatherspoon (Lumberton, NC) J Cape Fear (Moncure. NC) I.F. Lee (Goldsboro. NC) Sutton (Wilmington, NC) MIJQ15 Plants Outside the Vanadium Belt [fan River Asheville Cliffside Cape Fear Lee Sutton I eatherspoon Plants Within the Vanadium Belt M a': o Roxboro Be.ews Creek Buck Marsha R verbend 88 A en Detected Vanadium Results Ordered High to Low Maximum California US -Based Private _ pg/L pg Detected Vanadium Well Owner ID Plantu L Detected Well Vanadium AL89 Allen 11 Detected "'"" Value Drinking EPA Risk Detected "'"" Observed in Water Notification Screening Detected11 Wells: 26.5 Level: 50 Level Value: 86 Detected Vanadium u L pg/L 1.66 1.6 1.5 1.5 1.5 1.5 /L 1.4 1.35 AL94 Allen 25.5 B5 654 Buck 25.6 AL94R Allen 24.9 B33 Buck 11 BC8 Bel ews Creek 23.5 C4 Cliffside 11 AL31 Allen 22.6 AL7 Allen 10.9 B101 Buck 22.4 B92Buck 10.8 C4 Cliffside 22 B44 Buck 10.7 AL59 Allen 19.1 AL11SR Allen 10.6 AL59R Allen 17.1 AL127 Allen 10.6 R014 Roxboro 5.6 B79 Buck 4 814 Buck 2.7 BC27 lelews Cree 1.3 AL48 Allen 16 R011 Roxboro .10.6 AL17 Allen 5.58 B41 Buck 3.9 B77R Buck 2.7 B13R Buck 1.3 B48R Buck 15.6 AL114 Allen 10.5 AL50 Allen 5.5 MR43 Marshall 3.9 MR8 Marshall 2.65 MR6 Marshall 1.29 AL68 Allen 15.4 AL111R Allen 10.4 AL90R Allen 5.5 AL19 Allen 3.84 B66 Buck 2.6 B71 Buck 1.2 B57 Buck 15 AL20 Allen 10.3 B74 Buck 5.5 AL50 Allen 3.7 MR17 Marshall 2.6 MR46 Marshall 1.2 B60 Buck 15 AL34R Allen 10.1 B82 Buck 5.5 AL15 Allen 3.68 MR17R Marshall 2.6 518 Sutton 1.2 B28 Buck 14.4 B84 Buck 10.1 MR2 Marshall 5.5 AL42R Allen 3.6 MR23R Marshall 2.6 B71R Buck 1.1 B59 Buck 14.3 AL58 Allen 10 AL117R Allen 5.4 B83 Buck 3.6 AL95 Allen 2.5 L2 Lee 1.1 B75 Buck 14.1 AL90 Allen 10 AL139 Allen 5.4 AL39 Allen 3.54 813 Buck 2.5 MR14R Marshall 1.1 AL5 Allen 14 AL100 Allen 10 AD Allen 5.38 AL41 Allen 3.5 B34R Buck 2.5 BC18 lelews Cree 1 AL75 Allen 14 B33R Buck 30 AL25R Allen 5.3 AL56R Allen 3.5 B50 Buck 2.5 B16R Buck 1 B2 Buck 14 AL2 Allen 9.9 AL45R Allen 5.3 B79R Buck 3.5 B61R Buck 2.5 B17R Buck 1 B48 Buck 14 MR18 Marshall 9.9 AL66 Allen 5.3 B90 Buck 3.5 MY7 Maya 2.5 MR11 Marshall 1 B55 Buck 14 MR21 Marshall 9.8 AL115 Allen 5.3 AL40R Allen 3.4 AL12 Allen 2.4 BC4 lel ews Cree 0.58 MR20 Marshall 14 AL93R Allen 9.7 AL11R Allen 5.2 AL52R Allen 3.4 AL51R Allen 2.4 W6 eatherspo 0.5 AL75R Allen 13.8 AL73 Allen 9.6 R08R Roxboro 5.2 B67 Buck 3.4 BC4R Bel ews Creek 2.4 BC2 ielews Cree0.4 AL61 Allen 13.6 AL85 Allen 9.6 AL72 Allen 5.1 B81 Buck 3.4 B2R Buck 2.4 S2 Sutton 0.386 AL23R Allen 13.4 AL93 Allen 9.6 AL92R Allen 5.1 B93 Buck 3.4 B26R Buck 2.4 MR16 Marshall 0.36 AL67R Allen 13.3 ALill Allen 9.5 AL117 Allen 5.1 B77 Buck 3.3 L25 Lee 2.4 S4 Sutton 0.352 B76 Buck 13.3 AL70R Allen 9.4 B35 Buck 5.1 AL52 Allen 3.2 MRBR Marshall 2.4 S1 Sutton 0.3 AL39 Allen 13.1 AL73R Allen 9.3 MR44 Marshall 5.1 B49 Buck 3.2 643 Buck 2.3 AL97 Allen 0.28 AL121 Allen 13.1 AL124 Allen 9.3 AL30 Allen 5.07 B78 Buck 3.2 MR30 Marshall 2.24 S8 Sutton 0.271 AL23 Allen 13 AL71 Allen 9.2 AL1 Allen 5 B19 Buck 3.19 AL81 Allen 2.2 S2 Sutton 0.256 AL28 Allen 13 B95 Buck 9.2 AL92 Allen 5 AL40 Allen 3.15 B38 Buck 2.2 AL98 Allen 0.25 AL10OR Allen 12.8 AL103 Allen 9.1 B51 Buck 5 AL119 Allen 3.1 B55R Buck 2.2 S8 Sutton 0.236 AL141 Allen 12.8 AL60 Allen 9 AL142 Allen 4.9 B89 Buck 3.1 MR32R Marshall 2.2 S3 Sutton 0.197 AL39R Allen 12.7 AL83 Allen 9 ALSSR Allen 4.8 R013 Roxboro 3.1 AL78 Allen 2.1 = Station Outside Vanadium "Belt" AL21R Allen 12.6 AL102 Allen 9 BC13 lelews Cree 4.8 MY3 Mayo 3.03 B6 Buck 2.1 AL49 Allen 12.6 AL22 Allen 8.9 AL82 Allen 4.7 B42 Buck 3.02 AL14 Allen 2 AL24R Allen 12.5 B22 Buck 8.8 AL140 Allen 4.7 AL16 Allen 3 AL51 Allen 2 ALSSR Allen 12.2 AL77 Allen 8.6 B19R Buck 4.7 AL54 Allen 3 BC4 Bel ews Creek 2 AL91 Allen 12.2 ALSR Allen 8.5 B21R Buck 4.7 B15 Buck 3 B12 Buck 2 AL20R Allen 12 B69 Buck 8.5 B86 Buck 4.7 B88 Buck 3 B12R Buck 2 AL24 Allen 12 AL34 Allen 8.43 MR31 Marshall 4.7 B94 Buck 3 B27 Buck 2 AL67 Allen 12 AL69 Allen 8.4 B62 Buck 4.6 C8 Cliffside 3 MR25R Marshall 2 AL89R Allen 12 AL122 Allen 8.4 B99 Buck 4.6 MR23 Marshall 3 MR35 Marshall 2 AL126 Allen 12 B73 Buck 8.4 AL19R Allen 4.5 MR26 Marshall 3 R03 Roxboro 2 B40 Buck 12 B97 Buck 6.3 AL136 Allen 4.5 AL31R Allen 2.9 MR13 Marshall 1.97 B58 Buck 12 AL48R Allen 6.1 R08 Roxboro 4.5 AL39R Allen 2.9 MR28 Marshall 1.9 MR12 Marshall 12 B39 Buck 6.1 AL6 Allen 4.49 AL42 Allen 2.9 B11R Buck 1.8 AL21 Allen 11.7 B60R Buck 6.1 AL54R Allen 4.4 B100 Buck 2.9 MR18R Marshall 1.8 B29 Buck 115 AL26 Allen 6.08 AL79 Allen 4.4 MR26R Marshall 2.9 MR25 Marshall 1.8 B92 Buck 11.5 AL65 Allen 6 AL11 Allen 4.35 MR29 Marshall 2.9 BC27 Bel ews Creek 1.7 AL113 Allen 11.4 AL99 Allen 6 AL25 Allen 4.3 R01 Roxboro 2.84 B4 Buck 1.7 B96 Buck 11.4 AL118 Allen 6 AL53 Allen 4.3 AL64 Allen 2.8 B4R Buck 1.7 AL110 Allen 11.3 AL96R Allen 5.9 B24 Buck 4.3 B3 Buck 2.8 MR33 Marshall 1.7 AL62 Allen 11.2 B32 Buck 5.9 640R Buck 4.3 B10 Buck 2.8 MR47 Marshall 1.7 100 10 Hexavalent Chromium - Background Data Comparison 0.01 0.001 DEQ Private Wells Duke Background DEQ Background Duke and DEQ AWWA UCMR3 Private Wells Private Wells Combined Background North Carolina 90 Private Wells Combined Background Well Correlation Charts - Boron &M 700 600 Boron vs. Sulfate 200 100 O 0 100 200 300 400 500 600 700 800 Boron Conamntra ion (pdL) 800 700 600 1, 0 400 �300 200 100 0 0 Calcium vs. Sulfate 50000 100000 1.50000 200000 250000 300000 Calciun Conwntration (ug/L) Shading indicates values consistent with the identified Background Threshold Values_ Boron vs. Calcium 300000 , 250000 200000 0 s 150" `o- u E v 100000 u � � 5=0 .> o - 0 100 200 300 400 500 600 700 800 Boron Commntration WL) Shading indicates values consistent with the identified Background Threshold Values. ■ Correlation Charts: ■ The axis for each constituent is the same on all charts — comparability ■ The green boxes represent the BTV range for the two constituents being compared ■ Results within the green box are within background for both constituents ■ Results outside of the green box warrant additional attention 91 Private Well Charts All PW Combined Belews Creek Buck Cliffside Marshall Sutton 92 800 700 600 = 500 0 0 c 400 `o u 300 N 200 100 0 0 DEQ Private Well Correlation Charts - Boron Boron vs. Sulfate 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) Boron vs. Arsenic 75 S 60 120 0 100 U E 80 0 E ° 30 L u c v 60 o v ♦ 40 Q 0 100 200 300 400 500 600 700 Soo Boron Concentration (pg/L) 20 - 0 w+--..--�� 0 100 200 300 400 500 600 700 800 Boron Concentration (pg/L) 30 Boron vs. Vanadium 25 —220 - 0 c 8 15 0 u E ♦♦ 9 10 A ♦ 5 0 0 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) Boron vs. Hexavalent Chromium 75 S 60 0 a 45 0 U E E ° 30 L u c m 15 x ♦ 0 0 100 200 300 400 500 600 700 Soo Boron Concentration (pg/L) 93 Shading indicates values consistent with the identified Background Threshold Values. Shading indicates values consistent with the identified Background Threshold Values. DEQ Private Well Correlation Chart - Boron and Calcium 300000 250000 J 200000 i O f0 L 150000 v O U E v 100000 U 50000 Boron vs. Calcium Shading indicates values consistent with the identified Background Threshold Values. 94 800 700 600 = 500 0 E 400 uo u 300 14 200 100 DEQ Private Well Correlation Charts - Calcium Calcium vs. Sulfate 0 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (µg/L) 120 100 80 0 w 60 o u 'c % 40 Q 20 0 0 Calcium vs. Arsenic 50000 100000 150000 200000 250000 300000 Calcium Concentration (Ng/L) 30 25 20 c 0 `m 15 `o E 2 10 C A 5 0 75 60 0 a 45 0 E E 2 30 u v w 15 x 0 0 Calcium vs. Vanadium 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (µg/L) Calcium vs. Hexavalent Chromium 50000 100000 150000 200000 250000 300000 Calcium Concentration (pg/L) Shading indicates values consistent with the identified Background Threshold Values. Shading indicates values consistent with the identified Background Threshold Values. 95 Charted DEQ Private Well Results Above BTVs 96 Sample Concentration BN (b) Station Location (a) Constituent (mg/L) (mg/L) Allen AL94 Vanadium 24.9 23.51 AL94R Vanadium 26.5 23.51 AL115 Sulfate 373 72.27 Asheville AS11 Sulfate 340 72.27 AS11R Sulfate 286 72.27 AS13 Sulfate 356 72.27 AS14 Boron 325 135 Belews Creek BC13 Arsenic 6.8 4.881 BC17 Arsenic 14.1 4.881 BC19 Arsenic 6.1 4.881 BC20 Arsenic 10.8 4.881 BC24 Arsenic 12.1 4.881 BC30 Arsenic 108 4.881 BC32 Arsenic 22.5 4.881 Buck B61 Sulfate 566 72.27 B61R Sulfate 711 72.27 B61R Sulfate 436 72.27 B54 Vanadium 25.6 23.51 B61 Calcium 226000 195000 B61R Calcium 246000 195000 Cape Fear -- -- -- -- Cliffside -- -- -- -- Lee -- -- -- -- Marshall -- -- - -- Mayo -- -- -- -- Riverbend -- -- -- -- Roxboro RO3R Sulfate 77.6 72.27 Sutton S2 Boron 690 135 S2 Boron 160 135 S2 Sulfate 160 72.27 S3 Boron 600 135 S3 Sulfate 76 72.27 S4 Boron 180 135 S8 Boron 250 135 S811 Boron 210 135 Weatherspoon -- - -- -- 96 m r"7 � DPW IiALL NCIAZ AV, LOADn 800 700 600 9500 c 0 c 400 0 U a 300 N 200 100 0 0 Belews Creek Correlation Charts - Boron Boron vs. Sulfate 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) Boron vs. Arsenic 120 100 80 `o v 45 0 w 60 0 u° C N 40 Q C A 20 0 0 100 200 300 400 500 600 700 800 Boron Concentration (itg/L) 0 0 100 200 300 400 500 600 700 800 Boron Concentration ({Ig/L) 30 25 20 0 $ 15 0 u E ° 10 C M Boron vs. Vanadium 0 +- 0 100 200 300 400 500 600 700 800 Boron Concentration (Ng/L) Boron vs. Hexavalent Chromium 75 60 `o v 45 0 U E E ° 30 L V C A = 15 0 0 100 200 300 400 500 600 700 800 Boron Concentration (itg/L) 98 Shading indicates values consistent with the identified Background Threshold Values. Shading indicates values consistent with the identified Background Threshold Values. Belews Creek Correlation Chart — Boron and Calcium 300000 250000 J 200000 Boron vs. Calcium M01111111f,, U 50000 U 0 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) Shading indicates values consistent with the identified Background Threshold Values. 99 800 700 600 9500 `o 5 400 v 300 200 100 Belews Creek Correlation Charts - Calcium Calcium vs. Sulfate 0 0 50000 100000 150000 200000 250000 300000 Calcium concentration (pg/L) Calcium vs. Arsenic 75 60 120 `0 v 45 0 100 u E i SO 0 30 u 60 '- o v + 0 0 50000 100000 150000 200000 250000 300000 40 Q + 20 +2 0 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (pg/L) 30 25 u� ? 20 o 15 o u 10 5 Calcium vs. Vanadium Calcium vs. Hexavalent Chromium 75 60 `0 v 45 0 u E 30 u v a 15 x + 0 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (pg/L) 100 Shading indicates values consistentwith the identified Background Threshold Values. Shading indicates values consistentwith the identified Background Threshold Values. ow 8$a{ -F EOKC O q 1 mmmmw:::� Miles J m aAs" c til vf_-T 64®Wjp7CELL M-444 ''W. LUMCAPT CELL 4 1, ■ M F i r ! ap a } VkhOJIVCFLL A,L IL y 'STC+fLirsE of N:! �r4 � r r+ N� ,• , , - , .� n� r .mss ,.i�.r r. � *■ �"� r r+ n o r PA wld"ILI' r. 'a'. Nln Lr r Ir��4Si NAL �'. ■If�LlLf�, �Y-`. � � ,� 'ql e'y .vB • r� y +1 1, ■ M 800 700 600 = 500 c O c 400 d O u a 300 N 200 100 0 0 Buck Correlation Charts - Boron Boron vs. Sulfate 120 100 80 a w 60 o u N 40 20 0 0 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) Boron vs. Arsenic 100 200 300 400 500 600 700 800 Boron Concentration (Hg/L) Shading indicates values consistentwith the identified Background Threshold Values. 30 25 20 0 .q C $ 15 0 U E 0 m 10 c m 5 0 0 Boron vs. Vanadium 75 m 60 i co v 45 0 E E 30 100 200 300 400 500 600 700 800 Boron Concentration (Hg/L) Boron vs. Hexavalent Chromium 0 Mqp 0 100 200 300 400 500 600 700 800 Boron Concentration (Ng/L) Shading indicates values consistent with the identified Background Threshold Values. 102 Buck Correlation Chart - Boron and Calcium 300000 250000 J 2f 200000 Boron vs. Calcium 'x[111111111, ro U 50000 U 0 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) Shading indicates values consistent with the identified Background Threshold Values. 103 Buck Correlation Charts - Calcium 120 100 �e 80 0 V60 c $ 40 20 0 0 Calcium vs. Arsenic 50000 100000 150000 200000 250000 300000 Calcium Concentration (µg/L) Shading indicates values consistent with the identified Background Threshold Values. 30 25 20 0 Calcium vs. Vanadium 5 0 75 60 c 0 45 0 U M 30 u 15 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (µg/L) Calcium vs. Hexavalent Chromium 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (µg/L) Shading indicates values consistent with the identified Background Threshold Values. 104 Calcium vs. Sulfate 800 700 600 ♦ e� 9500 c o_ c 400 0 V 300 H 200 100 0 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (µg/L) 120 100 �e 80 0 V60 c $ 40 20 0 0 Calcium vs. Arsenic 50000 100000 150000 200000 250000 300000 Calcium Concentration (µg/L) Shading indicates values consistent with the identified Background Threshold Values. 30 25 20 0 Calcium vs. Vanadium 5 0 75 60 c 0 45 0 U M 30 u 15 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (µg/L) Calcium vs. Hexavalent Chromium 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (µg/L) Shading indicates values consistent with the identified Background Threshold Values. 104 V ti DI MPA : :4 00% wl :4 sM 1: BuckA-sh fond 1 5 uw�le� _ r 1 t IFF__ li a Cliffside Correlation Charts - Boron Boron vs. Sulfate 800 100 700 60 0 600 E 500 c 0 114 c 0 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) 400 c U° m 300 200 100 0 0 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) Boron vs. Arsenic 120 100 i 80 0 60 0 u 40 a` 20 114 0 0 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) 30 25 20 _o c $ 15 c uo E V 10 c m 5 0 0 Boron vs. Vanadium 75 60 c 0 45 0 u E E r 30 V i 15 100 200 300 400 Soo 600 700 800 Boron Concentration (µg/L) Boron vs. Hexavalent Chromium 0 M i i 0 100 200 300 400 Soo 600 700 800 Boron Concentration (µg/L) 107 Shading indicates values consistent with the identified Background Threshold Values. Shading indicates values consistent with the identified Background Threshold Values. Cliffside Correlation Charts — Boron and Calcium s W 17171] 250000 J �f 200000 C ++ M L- 4-1 ++ v 150000 U r- 0 O U >_ 100000 U 50000 Cil Boron vs. Calcium 0 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) Shading indicates values consistent with the identified Background Threshold Values. 108 800 700 600 E 500 0 0 c 400 a o0 u u 300 N 200 100 0 0 Cliffside Correlation Charts - Calcium Calcium vs. Sulfate 50000 100000 150000 200000 250000 300000 Calcium Concentration (µg/L) Calcium vs. Arsenic 120 100 80 0 60 0 u 40 20 0 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (Ng/L) 30 25 20 0 $ 15 0 u E m 10 5 0 0 Calcium vs. Vanadium 75 j 60 03 m 45 c uo E E 0 30 15 50000 100000 150000 200000 250000 300000 Calcium Concentration (µg/L) Calcium vs. Hexavalent Chromium 0 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (Ng/L) 109 Shading indicatesvalues consistent with the identified Background Threshold Values. Shading indicates values consistent with the identified Background Threshold Values. ii Fol I I um PM i u r, bra r �,d'yy • y' — �/ ` 'ter 1, r ,�•�� ; �. �� ' l Y R KGS9 '? f IFTKG-1 r _,1 — Y i • CvIPY E��Y n�llTllfY 'l!AGtIR.LL BEAJ'KV.AR � MFOKG-11 NRSKG-.^. , laFiBKG-v1 y ° - � 800 700 600 = 500 c c 400 c 0 u m 300 3 N 200 100 0 0 Marshall Correlation Charts - Boron Boron vs. Sulfate 100 200 300 400 500 600 700 800 Boron Concentration (Ng/L) Boron vs. Arsenic 120 100 a 80 0 60 0 c 40 Q 20 0 y 0 100 200 300 400 500 600 700 800 Boron Concentration (WJL) 30 25 20 0 c m 15 0 u E 10 C A 7 5 0 0 Boron vs. Vanadium 75 60 c 45 0 u E V 30 0-111 0 100 200 300 400 500 600 700 800 Boron Concentration (Ng/L) Boron vs. Hexavalent Chromium 100 200 300 400 500 600 700 800 Boron Concentration (Ng/L) 111 Shading indicates values consistent with the identified Background Threshold Values. Shading indicates values consistent with the identified Background Threshold Values. Marshall Correlation Charts — Boron and Calcium 300000 250000 J �f 200000 C O f6 1 150000 v c O U E 3 MWIIIZIA; ca U 50000 [I] Boron vs. Calcium 0 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) Shading indicates values consistent with the identified Background Threshold Values. 112 Marshall Correlation Charts - Calcium Calcium vs. Sulfate 800 100 700 80 2 600 y 60 15 0 0 u E 500 40 0 Q E 400 fY 20 0 0 V 300 3 0 N Calcium Concentration (lAg/L) 200 100 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (WJL) 0 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (pg/L) Calcium vs. Arsenic 120 100 25 80 2 20 -. o y 60 15 0 0 u N 40 E Q 9 10OF m 20 5 - 0 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (lAg/L) Calcium vs. Vanadium 30 25 20 -. o 15 `o V E 9 10OF m 5 - 0 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (WJL) 113 Shading indicates values consistent with the identified Background Threshold Values. Shading indicates values consistent with the identified Background Threshold Values. Sutton Well Map 114 MLAI� MIN HEW A;E A k tee. eA E:IF:,k Sutton Well Map 114 800 700 600 = 500 `0 c 400 0 U a 300 200 100 0 0 Sutton Correlation Charts - Boron Boron vs. Sulfate 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) Boron vs. Arsenic 120 loo 80 c 0 — 60 c u0 $ 40 Q 0 30 L 20 S 15 0 0 100 200 300 400 500 600 700 800 Boron Concentration (WJL) 30 25 20 Boron vs. Vanadium n 10 5 Boron vs. Hexavalent Chromium 75 60 `o E 45 0 E E 0 30 L C a A S 15 0 0 100 200 300 400 500 600 700 800 Boron Concentration (WJL) Data points not available. 115 Shading indicates values consistent with the identified Background Threshold Values. Shading indicates values consistent with the identified Background Threshold Values. Sutton Correlation Charts - Boron and Calcium 0111111111; 250000 J �f 200000 Boron vs. Calcium M111111A1f to U 50000 0 Shading indicates values consistent with the identified Background Threshold Values. 116 Sutton Correlation Charts - Calcium Calcium vs. Sulfate 120 100 80 0 d 60 c u' 40 Q 20 0 000 Calcium vs. Arsenic 75 60 0 o 8 45 0 E 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (Ng/L) Shading indicates values consistent with the identified Background Threshold Values. 30 25 20 `o u 15 `o u E 10 C 5 Calcium vs. Vanadium 0 .. .. 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (lig/L) Calcium vs. Hexavalent Chromium 75 60 0 o 8 45 0 E E ° 30 L V w 15 2 0 -, 0 50000 100000 150000 200000 250000 300000 Calcium Concentration (Ng/L) Data points not available. Shading indicates values consistent with the identified Background Threshold Values. Weight of Evidence and Conclusion Groundwater Flow: With the exception of Sutton, groundwater is not flowing from these facilities to areas where private wells are located Ash Indicators: Boron and sulfate are the major indicators of a release of coal ash constituents to groundwater If there is a release, both will be present, at levels above background, their concentrations will be correlated, and there would be a definable plume With the exception of Sutton, there are no ash indicators Lack of exceedances of drinking water standards Very few MCL exceedances (most are pH and SMCL exceedances) Very few 2L exceedances (most are pH and vanadium) Very few DHHS exceedances (most are vanadium and hexavalent chromium) Very few exceedances of purely risk-based standards Strong regional database for background and for wells near the facilities — these data sets are very similar: Of the 14,970 DEQ private well analyses, approximately 7% are above a NC screening level Of the 544 DEQ background well analyses, approximately 4% are above a NC screening level Of the 4995 Duke background well analyses, approximately 7% are above a NC screening level The risk-based drivers for the NC screening levels are vanadium and hexavalent chromium Comparison of the DEQ private well results for both constituents to background levels from various sources (local, state, national) indicate that the results are consistent with these background data sets Conclusion: the private well results are consistent with background and do not exhibit a coal ash signature 118 Water Supply Well Impacts? Is there evidence of groundwater impacts to neighboring water supply wells at these sites? Groundwater flow is away from neighbors and toward adjacent water bodies Contaminant plume is away from neighbors and toward adjacent water bodies Computer modeling indicates that flow is expected to continue moving away from neighbors Water supply well results are not characteristic of coal ash sources Water supply well results reflect results from background locations sampled across the state by various agencies (e.g., NCDEQ, USGS, UNC, Duke, etc.) Constituents of concern found in water supply wells are found naturally at elevated levels in regional soils, groundwater and surface water Constituents of concern found in water supply wells are often greater at depth and in upgradient locations indicative of natural occurrence Prevalence of certain constituents of concern vary with geology (e.g. hexavalent chromium and vanadium at Piedmont sites versus Sutton) 119 Water Supply Well Impacts? Allen Belews Creek Buck Cliffside Marshall Roxboro Flow Away from ✓ ✓ ✓ ✓ ✓ ✓ Neighbors' Wells? Plume Away from ✓ ✓ ✓ ✓ ✓ ✓ Neighbors' Wells? Modeling Supports Flow and Transport ✓ ✓ ✓ ✓ ✓ ✓ Understanding? Constituents in Neighbors' Wells Not ✓ ✓ ✓ ✓ ✓ ✓ Characteristic of Source? Constituents in Neighbors' Wells ✓ ✓ ✓ ✓ ✓ ✓ Reflective of Background Locations? Conclusion Site investigation concludes groundwater flow is away from receptors No imminent hazard to human health or the environment No offsite migration to receptors No appreciable benefit between excavation and cap -in-place Duke Energy believes this supports a low risk determination for the groundwater factors in the CAMA analysis Low risk provides a range of closure options including Partial Excavation, Consolidation, Hybrid Cap and Close, Full Excavation, Sustainable and Innovative Solutions, etc. Any identified groundwater contamination can be addressed in multiple ways regardless of closure method (classification) selected Groundwater corrective action is adaptable to changing site conditions and receipt of new data Any remediation plan must be approved by NCDEQ 121 Conclusion Low risk provides a range of closure options including Partial Excavation, Consolidation, Hybrid Cap and Close, Full Excavation, Sustainable and Innovative Solutions, etc. Any identified groundwater contamination can be addressed in multiple ways regardless of closure method (classification) selected Groundwater corrective action is adaptable to changing site conditions and receipt of new data All Closure Plans must be approved by NCDEQ All groundwater Corrective Action Plans must be approved by NCDEQ 122 � DUKE ENERGY 123