Loading...
HomeMy WebLinkAboutNCDEQ Presentation 12_13_2015 rev9_Final1 D NCDEQ Briefing on Groundwater Investigations 12/14/2015 Meeting Objectives CAMA Requirements Site Investigations Plume Geometry Flow Direction Analysis of Offsite Wells Site Background Concentrations Duke's Response to Comments Conclusions CAMA Requirements - Groundwater N.C. Gen. Stat. § 130A-309.211 — Groundwater Assessment and Corrective Action Subsection (a) Submit a Groundwater Assessment Plan that includes required elements Begin implementation of an approved Groundwater Assessment Plan no later than 10 days from approval Submit a Groundwater Assessment Report no later than 180 days from approval of Groundwater Assessment Plan Subsection (b) Submit a proposed Groundwater Corrective Action Plan that includes required elements Begin implementation of an approved Groundwater Corrective Action Plan no later than 30 days from approval IM Y Y On Schedule Deadline has not yet arrived 3 Third -Party Review The National Ash Management Advisory Board was assembled by UNC Charlotte at the request of Duke Energy and consists of nationally and internationally recognized and published experts. Duke Energy has engaged NAMAB to complete independent reviews of the Comprehensive Site Assessments and the Corrective Action Plans. John Daniels, D. Eng., P.E. Professor and Chair, UNCC - Department of Civil and Environmental Engineering Chairman, Ash Management Advisory Board Susan E. Burns, Ph.D., P.E. Georgia Power Distinguished professor, School of Civil and Environmental Engineering, Georgia Tech Panelist, Ash Management Advisory Board, Groundwater Subcommittee Jeffrey C. Evans, Ph.D., P.E. Professor of Civil and Environmental Engineering, Bucknell University Panelist, Ash Management Advisory Board, Groundwater Subcommittee Krishna Reddy, Ph.D., P.E. Professor of Civil and Environmental Engineering, University of Illinois at Chicago Panelist Ash Management Advisory Board, Groundwater Subcommittee Joyce Tsuji, Ph.D, DABT, Fellow ATS Principal Scientist, Exponent, Inc. Panelist, Ash Management Advisory Board, Groundwater Subcommittee 4 Third -Party Review Ronald Falta, Ph.D. Professor, Clemson - Department of Environmental Engineering and Earth Sciences Modeling Lawrence Murdoch, Ph.D. , P.G. Professor, Clemson - Department of Environmental Engineering and Earth Sciences Modeling Bill Langley, Ph.D. Professor, UNC Charlotte - Geography and Earth Sciences Modeling Lisa A Bradley, Ph.D., DABT Haley and Aldrich, Boston, MA - Vice President and Senior Toxicologist Off-site drinking water wells; risk assessments 5 Third -Party Review Chunmiao Zheng, Ph.D. Professor, University of Alabama — Department of Geological Sciences Model Reviewer John Ewing, P.E. Senior Water Resources Engineer, Intera, Inc. Model Reviewer James Rumbaugh President at Environmental Simulations, Inc. Model Reviewer Bruce Hensel EPRI (Electric Power Research Institute) Directed and managed model review William Linderfelt, Ph. D. Principal Hydrogeologist, Intera, Inc. Model Reviewer 6 Groundwater Investigation Highlights Dr. John Daniels, Ph.D., P.E. General hydrogeologic theory Flow from high energy (ponds) to low energy (surface water) Follows topography Historical pond monitoring (2005-2015) Steady State Flow Direction Plume generalities (contaminant concentration range) Comprehensive Site Assessments Plume maps ES1 Plan View Cross Sections General Principles SYSTEM 4 -_ rt [!� "I" Slope Aquifer Boundary and Topographic DiiAde Discharge Boundary - - - - - - - Compartment (C) Boundary ..............— -Water Table r : Fractures �► Groundwater Flow Direction 8 General Flow Direction and Plume Extent Groundwater Flow: General groundwater flow was as expected based on accepted hydrogeologic theory and historical monitoring Regional groundwater flow at each site is away from neighbors, except at L.V. Sutton Energy Complex and Asheville Steam Electric Plant, and towards regional water bodies in the area Plume Extent: The plume is generally confined to the property boundary, except at four sites that are being addressed with accelerated remediation as required in the Sutton Settlement No evidence of impact to outside wells except at L.V. Sutton Energy Complex and Asheville Steam Electric Plant. 9 Example Stations A station was selected from Duke Energy Carolinas and Duke Energy Progress Allen Steam Station Chosen because the site is a legacy Duke site, the high number of potential receptors in close proximity to the site, and the public interest. Roxboro Steam Electric Plant Chosen because the site is a legacy Progress site, the high number of potential receptors within a half mile of the site, and due to complexity of the site. 10 Allen Steam Station LEGEND: ASSUMED PR IVAYE WATER SUPPLYWPLL FIELDIDENTIFIED PRIVATEWATER SUPPLYWELL PUBLIC WATER SUPPLYWELL RECORDED PRIVATE WATER MPPLY WELL I_ly 111 ty'L{+' f. REPQRTEO PRNATE WATER SUPPLY WELL. VOLUNTARY GROUNDWATER MONIiORYNG WELL _1 onTAcsP WELL ,> APPRQ%IMATE GROUNDWATER FLAW DIRECTION r ---_r AREAOF BORON AN D SULFATE EXCEEOANCES j OF 2L STANDARDS ASH BASIN CUMPdIANCE BOUNDARY ASH BASH COMPLIANCE BOUNDARY COINCIDENT ■■ Iff DUNE ENERGY PROPERTY BOUNDARY M 1 ASH DASN WASTE BOUNDARY - /'�� � ,y� i` e 1 ���� pflltE fNERQY PRQPERJYBQIINQARY srREAM 1 cl �f I f 7tr h, R b 11 Modeled boron concentration (ug/L) in the transition zone LEGEND] 50 Detection Limit 100 300 500 70c) 2L Standard 1,200 1,921 DUKE ENERGY PROPERTY BOUNDARY ASH BASIN WASTE BOUNDARY I -AND ILVASHSTORAGE AREA BOUNDARY ASH BASIAL COMPLIANCE BOUNDARY ASH BASIAL COMPLIANCE BOUNDARY COINCIDENT WTH DUKE ENERGY PROPERTYBOUNDARY MODEL DOMAIN Allen Steam Station I If 12 Concentrations of Boron (ug/L) in Bedrock Wells . OF '010 J6, Tt M7, rw IVA, Allen Steam Station Y3. 1. ,lux --- ------------------------ 11 13 WEST 616111., Ego] Ikq1■ TH1�7 COMPLIANCE BOUNDARY CCINCIDENT WITH PROPERTY BOUNDARY INACTIVE ASH BASIN FILL ASH STORAGE AREA Allen Steam Station RAB ASN RETIRED ASH LANDFILL BASIN DAM i - - - - - �- INACTIVE ASH REGOLITH BEDROCK CROSS SECTION - ALLEN INACTIVE ASH BASIN (LOOKING NORTH) NOTE: TRANSECT D -D` FROM THE CSA REPORT USED FOR CROSS-SECTION SHOWN ABOVE, DRAWING NOT TO SCALE AND IS INTENDED FOR ILLUSTRATION PURPOSES ONLY. APPROXIMATE EXTENT OF 2L EXCEEDANCES OF BORON LEGENa 0 ASH - RECOLTTH PARTIALLY WEATHERED ROCK (PWR) O BEDROCK FI LL APPROXIMATE EXTENT OF 2L EXCEEDANCES OF BORON APPROXIMATE ORCUNDWATER FLOW DIRECTION 14 } a 0 z D w Z 0 ED J w 0 9 Iz EAST w D_ J a 0 d 0 I I ATAWBA RIVER 0 ASH - RECOLTTH PARTIALLY WEATHERED ROCK (PWR) O BEDROCK FI LL APPROXIMATE EXTENT OF 2L EXCEEDANCES OF BORON APPROXIMATE ORCUNDWATER FLOW DIRECTION 14 Summary Allen Steam Station: Groundwater divide along Highway 273 Water flows from the topographically high area to lower elevation towards Lake Wylie Water flows away from neighbors Boron was detected above the 2L Standard in bedrock at only one location close to Lake Wylie and away from drinking water wells No evidence of impacts to offsite receptors No imminent hazard to human health or the environment 15 t C1 gip, t. , y .E `4 r . "®� , , Vii • :.� Job %e+ sr *4IA 1 V` ah�. Ak f w � 'Oft a a Modeled boron concentrations (ug/L) in the transition zone 40004 700 Roxboro Steam Electric Plant 2015 Current 2045 No Action 2045 Cap -In -Place — 7 a 1 2045 Excavate Roxboro Steam Electric Plant Concentrations of Boron (ug/L) in Bedrock Wells 1. 2310r2290j J"i rte• GYPSUM - - x PAD t � - .�_ � �. •� 5.. r- - GMW-1 G' Gh1Vd-11' � ,-.S Lf --\'3 `SQ {N51 5.7081N51 CW -01' low' IA4Y-01BR BSc INS A MW-06RR' 'ABMW47BR'I -- - - ` HYCO 60I` 50' 1966 35916741 I-+ SEMI -ACTIVE', 1.11KE '� MW -11 BR --BASIN I -05BR.' '601, 541 1 c c641 r 'ABMW,14BR' I MYV-01BRr CYtVQOi ABMW-068R I-/ 501<501 5 51(<65) < INSF 1d1 ABFIIAP'03�' 501.641 rte. I .1 71W I SO M<5fl 0' 15 _GMW ., +t`•: cn;ti i` <54I ABN4 �t-.�10j1 t7i 9&1 J 1973 ACTIVE ASH BASIN c55 NS A 11-- MW-04BR' MW-15BRy 60'l�SPI '^dl Y�OIL J' r DO15 DUr}R-' _� 16 +_ ,draw-1eea 16 voR 560 fi60 830 � 430 W 920 410 390 980 310 380 360 340 330 520 56q 560' 530' 520' 510' 500' 900 480 - 470 480 950 W — 4A0 930 920 610 - 60P - 3W - 3B0' 370' 3Bo' 350' Roxboro Steam Electric Plant ---------- W7 . _ _ _ BEDROCK-_ PEGOLITM --- _ ------------ - -- BEDROCK 1 T TI. $ __ ----------- --------------- - _______________________________________________ SECTION A -A` - BORON --R.— GRAPHIC SCALE a051 3QC BC9 HORIZONTAL i" 3W 9D 0 30 BD Xf YERTIGAL T'a BEDRO- ------------- CK _- _------------- _ - _ ________ N N _______________________ __ --------- -- _________ --------- ____ SN"' (f.0 SECTION i-8- - BORON 55fl 5ta 839 520 51© 500 bap 450 13P =Y W- -020 410 390 380 3M 360 340 330 326 O LEGEND © COALASH/® GYPSUM i HEGGUTH FILLMATERWL- n! A3H Ilrn In TRAN3ITIONZONE 7 DE -OG. F-VA—AL — WATER LEVEL Iwuxal — ASH PORE WATER LEVEL ---------- W7 . _ _ _ BEDROCK-_ PEGOLITM --- _ ------------ - -- BEDROCK 1 T TI. $ __ ----------- --------------- - _______________________________________________ SECTION A -A` - BORON --R.— GRAPHIC SCALE a051 3QC BC9 HORIZONTAL i" 3W 9D 0 30 BD Xf YERTIGAL T'a BEDRO- ------------- CK _- _------------- _ - _ ________ N N _______________________ __ --------- -- _________ --------- ____ SN"' (f.0 SECTION i-8- - BORON 55fl 5ta 839 520 51© 500 bap 450 13P =Y W- -020 410 390 380 3M 360 340 330 326 O ASH BASIN WATER LEVEL DOOR OCK WATERLEVEL i TRANSITION ZONE WATER LEVEL n! ZONE .ESER D IN ROCK C OESERVEb IN ROCK CORE CONCENTI—DN CC -OUR 7 HASH MARKS POINTTO DECREASING CONC ENTRATIONS CONCENTRATION CONTOUR DASHED MERE INFERRED 50e CONCENRtATK)N NA NOTANALYZED ND NO DATA NS NOT SAMPLED BORING SYMBOLS ���/cLL fid1EEN 5WTH :oNLEN1MHCN -ii":rrynrve pu IAdj .+�,mm mle n pHf 19 Roxboro Steam Electric Plant 20 LEGEND COALASH ®./ OVFSUM O REGOLITH FILLMATERIAL NORTH SOUTH ® ASH -RANsnON ZONE 590 560 580 5B0 BEDROCK 570 MW.1dBR.. 570 FILL MATERIAL 5� 5 580 WATER LEVEL � NMWbe: � � a5H PPRE WATER LEVET © ASH MEN WATER LEVEL 53P LAND ILL r'OG! 530 BEDROCK WATER LEVEL THAN5MONZONE WATER LEVEL 510 _______ ______________ 510 FRACNREDIOXIOREDZONE SW ANSI ON ZONE __ -- - <0 -------------- 5m m OBSERVED IN ROCK CORE 490 - - - - - - - __ _ _ _ �� _-_ _ --'-_-- Ti CONCENTRATfDN CONTOUR yW - - - - - - _ - - - - - - - - -- I��rr_ _ --- - - -- -- - . - _ _ - _- -- _ -_ - -�1t _ - -_ - -. .4950- __ �` -_ --_ - --- _ __ �_- - _ - 870 mr HASH MARKS KIINTTO DECREASING CONCENTRATIONS NE RAMAL.: --_ _ _ _ _ _ _BEDROCK _ _ _- -_ _ - _ ____ 460 WNCENTRATIONCONT R DASHED WHERE INFERRED 450 44U -_ _ _ _ __ _ _ _ _ _ _ _ _ _ _ ________ __ __ ____ ____________ _____________ ____ _�� --_ _ _-_'_ _ _ _'_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ �_ 450 440 5,UN OONCENiR.ATION NA NOT ANALYZED 430 1590: ----------------�� ��J 430 NP NQ DATA dM ��yr+���~ 420 NS NOT SAMPLED 410 s�����..���+••����,.r� ■ 410 BORING SYMBOLS Std1100 d91L _ �u —Y£1L 673EEN NRH D]NCENYRAYION SECTION C -C' {mi[n'greml pErlM4 —NGEASS 20 Summary Roxboro Steam Electric Plant: Regional groundwater flow is to the west/northwest toward the Hyco Reservoir A discharge canal and topographic ridge located west of the Site ash basins limits groundwater flow in that direction Localized groundwater high zones are centered around the ash basins, with radial flow in these areas Boron was detected above the 2L Standard in bedrock at three locations on site and away from drinking water wells No evidence of impacts to offsite receptors No imminent hazard to human health or the environment 21 Site Background Concentrations Provisional proposed site background concentrations were included in the CAP Part 1 These values are based off of available data and will be updated as more sampling is completed Alternative ways to compute site background concentrations are shown below Example of Alternative Site Background Concentrations: Weatherspoon Parameter Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Chloride Chromium Background Sample Size 3 3 3 3 3 3 3 3 1 Calculated Calculated Calculated Calculated Calculated Calculated Calculated Background Calculated Method Background Background Background Background Background Background Background Concentration Background Concentration Concentration Concentration Concentration Concentration Concentration Concentration (mg/L) Concentration (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) NC21- Standard NA 1* 10 700 4* 700 2 250 10 Maximum 66 1 1 52 1 50 1 3.30 1 75% of Maximum 50 0.750 0.750 39 0.750 37.5 0.750 2.48 0.750 50% of Maximum 33 0.500 0.500 26 0.500 25 0.500 1.65 0.500 Mean 32 1 1 49.3 1 1 50 1 3.17 1 ACI -2 82.3 1 1 55.6 1 1 50 1 3.42 1 ACLS 71.7 1 1 56.8 1 1 50 1 3.45 1 Nondetects identified as ND, as opposed to the method detection limit, were omitted from calculations. IQR (Interquartile Range) = 75th percentile - 25th percentile ACI -2 (Alternative Concentration Limit 2): median + 1.65 x IQR ACLS (Alternative Concentration Limit 3): median + 1.65 * IQR (where IQR = the interquartile range). 22 Duke's Response to Comments Mounding Deep fractures Pumping Depth of CSA wells versus receptor wells Geochemical effects Saturated Ash Constituent Modeling See tables on next slide 23 Modeling Constituents Constituents selected for the fate and transport models were those: a) determined to be source -related by professional judgment of the university led modeling team, b) with analytical results that exceeded applicable regulatory criteria, and c) with a distribution that was not suggestive of naturally occurring conditions Certain Constituents were not selected for modeling based on one or more of the following reasons: a = Not modeled using MODFLOW/MT3DMS. These constituents will be included in the geochemical modeling. b = Only isolated exceedances and/or appear to be related to background or non -source related. c = No 2L Standard exceedances in non-porewater monitoring wells samples. d = No 2L Standard or IMAC exceedances; not identified as a COL e = Found in ash and/or but not found in groundwater - ash being dewatered and removed from site. f = Constituent is not present in ash pore water monitoring wells above the 2L or IMAC Standards g = Constituent is not present above the 2L Standard or IMAC outside of the compliance boundary h = There is not a discernable plume of the constituent downgradient from the ash basin(s) 24 i = The constituent is strongly adsorbed (Kd>20 mL/g; R>100) and has very low mobility Model Constituents: Duke Energy Carolinas X = COI XX = C O I included in CAP Part 1 Modeling. added to CAP Part 2 Modeling. W Duke Energy Constituents of Interest (COls) Selected for Groundwater Fate and Transport Modeling DRAFT COI Allen Belews Creek Buck Station Cliffside Dan River Marshall Riverbend Aluminum d c d d d d b Antimony X c X X XX X X Arsenic X X c X X X XX Barium X c c XX d X b Beryllium c X d XX d X b Boron X X X X X X XX Cadmium c b d d d d b Chromium (VI) X X X X X X XX Chromium (Total) X X X X X X X Chloride d X d d d X d Cobalt X X X X X X XX Copper d c d d d d b Iron a a a a a a a Lead c c d X d d b Manganese a a a a a a a Mercury c c d c d d b Molybdenum d d d d d d b Nickel c c e X d d b Nitrate d c d d d d b pH a a a a a a a Selenium X b d d XX X e Strontium d d d d d d b Sulfate X b X X X X X TDS a a a a a a a Thallium c X c X X X XX Vanadium X b X X X X XX Zinc c c d d d d b X = COI XX = C O I included in CAP Part 1 Modeling. added to CAP Part 2 Modeling. W Model Constituents: Duke Energy Progress Duke Energy Constituents of Interest (COls) Selected for Groundwater Fate and Transport Modeling DRAFT COI Asheville Cape Fear H.F. Lee Mayo Roxboro Sutton Weatherspoo n Aluminum a, d, f, g a, d, f, g a, d, f, g a, d, f, g a, d, f, g, h a, f, g a, d, f, g, h Antimony g, h g, c g b, h h, b b, f d, f, g Arsenic a, h, i h, i, a X X X X X Barium c, d, f, g b, f g, h b, g, h b, f, g c, g c, g, h, Beryllium f, g, h g d, f, g d, f, g c, g, h d, f, g f, g, h Boron X X X X X X X Cadmium f, h, b d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g Chromium (VI) a a a a a a a Chromium (Total) a, g, h a a a, d, f, g a, b, f, h a a Chloride X f, g f, g d, f, g f, g f, h f, g Cobalt X a, h, i h, i a, h, i a, h, i a, f, h, i h, a Copper c, d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g Iron a,h a,h X a,h a,h a,h a,h Lead c, d, f, g d, f, g d, f, g d, f, g d, f, g f, b g, h Manganese a, h a, h X c, h a, h a, h h Mercury c, d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g Molybdenum c, d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g d, f, g Nickel f, g, h g d, f, g d, f, g g, h d, f, g f, g, h Nitrate f,g,h, f, h d, f, g d, f, g d, f, g b, f d, f, g pH a a a a a a a Selenium a, f, g a, b c a, f, g, d a, f, g a, b, f, g a Strontium c, d, f, g d, f, g d, f, g d, f, g d, f, g f, g, d d, f, g Sulfate X X f, g d, f, g X f, g f, h TDS X h h h h h h Thallium h, i X g, h, i h, i h, i f, h h Vanadium a, h, i a, h, i a, h, i a, b, h, i a, h, i X h Zinc c, d, f, g c, h d, f, g d, f, g c, d, f, g d, f, g M General Conclusions from the Investigations for All Stations Recent groundwater assessment results are consistent with previous results from historical and routine compliance boundary monitoring well data No imminent hazard to human health or the environment has been identified as a result of groundwater migration from the ash basins No evidence of off-site impacts to private or public water supply wells (except at Sutton and Asheville plants where residents will be provided a water line, some are receiving bottled water) 27 General Conclusions from the Investigations for All Stations Minimal difference and benefit is seen for excavation over cap -in- place in the modeling scenarios These investigations and conclusions are conservative — no adjustment was made for background concentrations Addition of data gap wells will add resolution to the CSA results 28 Private Well Analysis Dr. Lisa Bradley, Ph.D., DABT 29 Private Well Analysis Detailed per well screening results for the following datasets was performed: • DEQ Private Well Data • DEQ Background Private Well Data • Duke Energy (Duke) Background Private Well Data Constituent concentrations in water for each well for each data set were compared to the following: • 2L Standards: North Carolina Groundwater Standard (2L) • Federal Drinking Water Standards: USEPA Maximum Contaminant Levels (MCLs) and Secondary Maximum Contaminant Levels (SMCLs) • DHHS Screening Levels: North Carolina Department of Health and Human Services Screening Levels • USEPA Risk -Based Screening Levels (RSLs): November 2015 30 Summary Of NC DEQ And Duke Private Well And Background Sample And Well Counts Station Sample/Well Counts DEQ Private Wells DEQ Background Duke Background Wells Available Wells Sampled Samples p Allen 142 119 182 6 16 As hevi I I e 20 8 9 0 13 Bel ews Creek 31 24 36 0 11 Buck 101 84 114 7 17 Cape Fear 2 1 1 0 18 Cliffside 26 17 29 0 9 Dan River 0 0 0 0 8 Lee 34 16 29 0 11 Marshall 47 38 57 3 29 Mayo 7 3 5 0 14 Ri verbend 1 0 0 0 11 Roxboro 14 11 18 0 26 Sutton 18 10 17 0 13 Weatherspoon 8 2 3 0 2 Total: 451 333 500 16 198 ff Summary of NC DEQ Private Well Sampling Data 32 Frequency of Frequency of Range of Detected Frequency Detected Above: Frequency of Reporting Limits Above: Frequency of Detection Detects Below All Constituents Units Detection Percent Concentrations 2L (a) DHHS (b) MCL c () RSL(d)2L a () DHHS b () MCL c () RSL(d) () Screening Levels Constituents Listed in Appendix III Detection Mon itori ng) of the CCR Rule e Boron ug/L 115 / 500 23% 1.8 690 0 0 0 0 0 0 115 Calcium ug/L 497 / 500 99% 553 246,000 -- -- -- -- -- -- -- - Chloride mg/L 491 / 499 98% 0.92 - 335 1 1 1 0 0 0 490 pH su 496 / 496 100% 2.13 9.4 256 -- 256 0 -- 0 240 Sulfate mg/L 304 / 499 61% 0.15 711 7 7 7 0 0 0 297 Total Dissolved Solids m /L 492 / 494 100% 21.3 2,040 9 -- 9 0 -- 0 -- 483 Constituents Listed in Appendix IV (Assessment Monitoring) of the CCR RuIe(f) Antimony ug/L 37 / 500 7% 0.031 - 1.87 2 2 0 0 60 60 23 23 35 Arsenic ug/L 79 / 500 16% 0.1 - 108 5 5 5 79 0 0 0 421 0 Barium ug/L 482 / 499 97% 0.46 400 0 0 0 0 0 0 0 0 482 Beryllium ug/L 20 / 500 4% 0.04 0.78 0 0 0 0 23 23 23 0 20 Cadmium ug/L 33 / 500 7% 0.063 1.4 0 0 0 0 0 0 0 0 33 Chromium ug/L 281 / 500 56% 0.176 - 22.1 7 7 0 0 11 11 0 0 274 Cobalt ug/L 79 / 500 16% 0.03 12 35 35 -- 3 59 59 -- 29 44 Lead ug/L 380 / 500 76% 0.073 75.S 8 8 8 8 0 0 0 0 372 Mercury ug/L 25 / 499 5% 0.017 0.12 0 0 0 0 0 0 0 0 25 Molybdenum ug/L 167 / 500 33% 0.064 20.2 -- 1 -- 0 -- 4 -- 0 166 Selenium ug/L 42 / 500 8% 0.1643 3.4 0 0 0 0 0 0 0 0 42 Thallium u /L 14 / 500 3% 0.057 - 0.24 1 1 0 1 118 118 5 118 13 Constituents Not Identified in the CCR Rule Vanadium ug/L 351 / 500 70% 0.197 - 26.5 344 344 -- 0 134 134 -- 0 7 Aluminum ug/L 158 / 500 32% 0.0018 5,000 -- 1 71 0 -- 0 9 0 87 Copper mg/L 424 / 500 85% 0.0002 29 4 4 3 4 0 0 0 0 420 Iron ug/L 199 / 500 40% 14.5 8,500 76 16 76 0 2 0 2 0 123 Hexa vaIentChromium ug/L 263 / 484 54% 0.033 22.3 -- 239 -- 0 -- 159 -- 0 24 Magnesium ug/L 497 / 500 99% 101 - 61,200 -- -- -- -- -- -- -- - Manganese ug/L 376 / S00 7S% 0.49 1,010 39 16 39 5 0 0 0 0 337 Nickel ug/L 179 / 500 36% 0.18 15 0 0 -- 0 0 0 -- 0 179 Potassium ug/L 499 / 500 100% 96.1 21,200 -- -- -- -- -- -- -- Sodium ug/L 500 / 500 100% 570 370,000 34 -- 0 -- 466 Strontium ug/L 495 / 500 99% 2.3 3400 1 0 -- 0 -- 0 494 Zinc mg/L 413 / 500 83% 0.0021 - S.26 11 11 1 0 1 1 1 1 402 Total Number of 14,970 Total Number of Exceedances: 805 733 476 100 408 569 63 592 5,670 Analyses: 32 Summary of NC DEQ Background Private Well Sampling Data Total Number 544 Total Number of Exceedances: 13 23 2 1 0 0 0 15 162 33 of Anal ses: Frequency Fre uen of q � Range of Detected Frequency Detected Above: Frequency of Reporting Limits Above: Frequency of Background g Detection Detects Below All Threshold Value Constituents Units of Detection percent Concentrations 2L (a) DHHS (b) MCL (c) RSL (d) 2L (a) DHHS (b) MCL (c) RSL (d) Screening Levels (BTV) (g) Constituents Listed in Append ix III (Detection Mon itori ng) of the CCR Rule (e) Boron ug/L 4/ 16 25% 5.3 12.7 0 0 0 0 0 0 4 12.56 Calcium ug/L 16 / 16 100% 1,680 - 59,900 -- -- -- - -- -- -- 69,922 Chloride mg/L 16 / 16 100% 1.8 38 0 0 0 0 0 0 16 37.02 pH su NA NA NA -- -- -- -- -- -- -- NA Sulfate mg/L 13 / 16 81% 2.8 - 39.4 0 0 0 0 0 0 13 39.45 Total Dissolved Solids m /L 16 / 16 100% 51 - 351 0 -- 0 0 -- 0 16 572.9 Constituents Listed in Appendix IV (Assessment Monitoring) of the CCR Rule (f) Antimony ug/L 0/ 16 0% NA 0 0 0 0 0 0 0 0 0 NA Arsenic ug/L 1/ 16 6% 4.4 - 4.4 0 0 0 1 0 0 0 15 0 NA Barium ug/L 16 / 16 100% 0.89 77.3 0 0 0 0 0 0 0 0 16 67.75 Beryllium ug/L 0/ 16 0% NA 0 0 0 0 0 0 0 0 0 NA Cadmium ug/L 0/ 16 0% NA 0 0 0 0 0 0 0 0 0 NA Chromium ug/L 11 / 16 69% 0.53 - 5 0 0 0 0 0 0 0 0 11 7.478 Cobalt ug/L 0/ 16 0% NA 0 0 -- 0 0 0 -- 0 0 NA Lead ug/L 11 / 16 69% 0.12 - 3.2 0 0 0 0 0 0 0 0 11 3.385 Mercury ug/L 0/ 16 0% NA 0 0 0 0 0 0 0 0 0 NA Molybdenum ug/L 4 / 16 25% 0.85 - 2.9 -- 0 -- 0 -- 0 -- 0 4 2.488 Selenium ug/L 2/ 16 13% 0.52 - 0.72 0 0 0 0 0 0 0 0 2 0.72 Thallium ug/L 0/ 16 0% NA 0 0 0 0 0 0 0 0 0 NA Constituents Not Identified in the CCR Rule Vanadium ug/L 13 / 16 81% 1 - 23.7 13 13 -- 0 0 0 -- 0 0 21.39 Aluminum ug/L 4 / 16 25% 12.1 - 213 -- 0 2 0 -- 0 0 0 2 156.1 Copper mg/L 13 / 16 81% 0.001 - 0.0116 0 0 0 0 0 0 0 0 13 0.0213 Iron ug/L 4/ 16 25% 57.5 - 244 0 0 0 0 0 0 0 0 4 189.2 Hexavalent Chromium ug/L 8 / 16 50% 0.14 - 4.5 -- 8 -- 0 -- 0 -- 0 0 3.533 Magnesium ug/L 16 / 16 100% 808 - 28,800 -- -- -- -- -- -- -- -- -- 28,204 Manganese ug/L 8/ 16 50% 0.73 43.3 0 0 0 0 0 0 0 0 8 31.23 Nickel ug/L 3/ 16 19% 0.53 1 0 0 -- 0 0 0 -- 0 3 0.942 Potassium ug/L 16 / 16 100% 265 - 3,360 -- -- -- -- 3,908 Sodium ug/L 16 / 16 100% 4,610 - 23,000 2 0 14 23,000 Strontium ug/L 16 / 16 100% 12.2 - 760 0 -- 0 -- 0 -- 0 16 908 Zinc ug/L 9/ 16 56% 6.5 147 0 0 0 0 0 0 0 0 9 149 Alkalinity mg/L 16 / 16 100% 7.4 - 226 -- -- -- -- -- -- -- -- -- 324.3 Bicarbonate mg/L 16 / 16 100% 7.4 - 226 324.3 Carbonate mg/L 0 / 16 0% NA NA Total Suspended Solids mg/L 2 / 16 13% 4.2 - 11.6 11.6 Turbidity NTU 2 / 16 13% 2 - 3.2 3.2 Temperature °C NA NA NA NA Specific Conductance umhos/c NA NA NANA -- -- -- -- -- -- -- - m-- Dissolved Oxygen mg/L NA NA NA NA Oxidation Reduction Potentia mV NA NA NA NA Total Number 544 Total Number of Exceedances: 13 23 2 1 0 0 0 15 162 33 of Anal ses: Summary of Duke Energy Background Private Well Sampling Data Total Number of 4,995 Total Number of Exceedances: 271 293 123 48 42 55 0 160 1,514 34 Analyses: Frequenty Frequency of q ty Range of Detected Frequency Detected Above: Frequency of Reporting Limits Above: Frequency of Background � Detection Detects Below All Threshold Value Constituents Units of Detection Percent Concentrations 2L (a) DHHS (b) MCL (c) RSL (d) 2L (a) DHHS (b) MCL (c) RSL (d) Screening Levels (BTV) (g) Constituents Listed in Appendix III (Detection Monitoring) of the CCR Rule (e) Boron ug/L 27 / 185 15% 5.1 113 0 0 0 0 0 0 27 113 Calcium ug/L 185 / 185 100% 14 195,000 -- -- -- 150,923 Chloride mg/L 54 / 54 100% 0.62 40 0 0 0 0 0 0 54 47.01 pH su 52 / 52 100% 4.88 11.7 5 -- 5 0 -- 0 47 11.7 Sulfate mg/L 52 / 54 96% 0.26 170 0 0 0 0 0 0 52 275.3 Total Dissolved Solids mg/L 40 / 40 100% 42 520 1 -- 1 0 -- 0 39 584.9 Constituents Listed in Appendix IV (Assessment Monitori ng) of the CCR Rule (f) Antimony ug/L 94 / 185 51% 0.5 1.5 48 48 0 0 0 0 0 0 46 1.5 Arsenic ug/L 25 / 185 14% 0.52 14.1 1 1 1 25 0 0 0 160 0 3.968 Barium ug/L 164 / 185 89% 1.5 486 0 0 0 0 0 0 0 0 164 486 Beryllium ug/L 6/ 185 3% 0.31 0.5 0 0 0 0 0 0 0 0 6 0.385 Cadmium ug/L 7/ 185 4% 0.01 1.17 0 0 0 0 0 0 0 0 7 0.345 Chromium ug/L 31 / 185 17% 0.5 157 3 3 2 0 0 0 0 0 28 157 Cobalt ug/L 20 / 185 11% 0.58 25.9 15 15 -- 2 0 0 -- 0 5 25.9 Lead ug/L 104 / 185 56% 0.12 73.2 5 5 5 5 0 0 0 0 99 73.2 Mercury ug/L 1/ 185 1% 0.27 0.27 0 0 0 0 0 0 0 0 1 NA Molybdenum ug/L 48 / 185 26% 0.52 10.8 -- 0 -- 0 -- 0 -- 0 48 14.16 Selenium ug/L 10 / 185 5% 0.59 1.7 0 0 0 0 0 0 0 0 10 1.135 Thallium ug/L 2/ 185 1% 0.354 0.554 2 2 0 2 0 0 0 0 0 0.554 Constituents Not Identified in the CCR Rule Vanadium ug/L 106 / 185 57% 0.318 112 106 106 -- 1 42 42 -- 0 0 127.8 Aluminum ug/L 93 / 185 50% 5 32,200 -- 3 30 2 -- 0 0 0 63 32,200 Copper mg/L 121 / 185 65% 0.0011 0.992 0 0 0 1 0 0 0 0 120 1.443 Iron ug/L 119 / 185 64% 10 45,000 42 13 42 2 0 0 0 0 77 45,000 Hexavalent Chromium ug/L 72 / 115 63% 0.033 73.5 -- 61 -- 1 -- 13 -- 0 11 73.5 Magnesium ug/L 184 / 185 99% 128 46,300 -- -- -- -- 88,964 Manganese ug/L 119 / 185 64% 0.56 4,820 37 13 37 7 0 0 0 0 82 5,915 Nickel ug/L 37 / 185 20% 0.53 380 1 1 -- 0 0 0 -- 0 36 380 Potassium ug/L 185 / 185 100% 123 8,060 -- -- 9,555 Sodium ug/L 185 / 185 100% 763 151,000 16 0 169 151,000 Strontium ug/L 180 / 181 99% 1.3 2,210 1 -- 0 -- 0 -- 0 179 3,561 Zinc ug/L 149 / 185 81% 5 2,990 5 5 0 0 0 0 0 0 144 2,990 Total Number of 4,995 Total Number of Exceedances: 271 293 123 48 42 55 0 160 1,514 34 Analyses: 10,00©, 000 Boron - Background Data Comparison 10 DEQ Private Wells USGS Data Duke Background DEQ Background AWWA (1992 - 2003) Private Wells Primate Wells 35 1040 100 Vanadium - Background Data Comparison Vanadium Background Concentrations Detecte:; 351 ND, 149 MATS 75th Percentile 5,7th Percentile 25th Percentile 1 0.1 DEQ Prfvate We IIs USGS Data Duke Background DEQ Background (1992 - 2403) Private We IIs Private 'Wells 36 Vanadium in Groundwater Vanadium in Groundwater u .LUU ❑ .50 0 1 Grid Cell Interpolated Thematic Grid Cell =1.5 miles Source: a as loci miles http://portal.ncdenr.org/image/image_gallery?uuid=eb8495e2-b440-4dOa-9998-3d95e6ce5Oab&groupld=38334&t=1391110519151 37 100 10 1 0.1 0,01 Hexavalent Chromium - Background Data Comparison Hexavalent Chromium Background Concentrations MAX Detected: 252 ND: 222 cted: 52 2 75th Percentile 54th Percentile 25th Percentile 161IN V 0.001 u_ DEQ Private Wells Duke Background DEQ Background AWWA UCMR3 Private Wells Private Wells Porth Carolina 38 Summary of Background Levels from AWWA and USEPA UCIVIR3 Background Levels for Boron and Hexavalent Chromium from American Water Works Association (AWWA) Background Levels for Hexavalent Chromium from USEPA Third Unregulated Contaminant Monitoring Rule (UCMR3) AWWA AWWA AWWA Constituents Units Average Median Maximum Boron (b) ug/L 167.9 40 3321.3 ,Hexavalent Chromium (c) ug/L 1.1 0 (d) 52.6 Background Levels for Hexavalent Chromium from USEPA Third Unregulated Contaminant Monitoring Rule (UCMR3) 39 Avg Conc Min Max State/Region Samples Detects (ug/L) (ug/L) (ug/L) North Carolina 1519 1019 0.13 0.015 9.1 U.S. 49079 36934 0.58 0.015 97.38 39 WACTIVE aaa e aa111 }Ln,y 4-aH STOR uil ru I JL I aoL r 6,41 . INACTIVE AM .oft �■ aTi6RAlk 1 ALIIA AMSAM 1,� °r. SLI■�° ,°, 19 ■jo 140, �yi'�RL14P ° ` ISI _.MM3 jl 7. x3r rL3i� M Y w rlLP ALS i'.r 117 kii'°I Iwo ■, °' aa�117 PMMAR,Y ,imp . Y -�f 1A} .' �■ ■ fi PRIMARY PRIM hRf �: Ya `;"" . II71.fA yi3M lN".mm # }�;.. A . 3■. I-M.GI�7iU ALLM ■ �Jr�+l 9 POND I rND:3 ■p I Y M Y �4 1p PI+rL CIS it,I.ia�."r+°r J1 '773-17R .o Sr _7, .ALA ■ ° Adl? ,^ o dm i'm-Am r7: W w{ Irl iIL01-t ACTiti£ AFI B,6BIH yE=0 - 'kLUZair� RJ 3 g rle � M "_ 1"1�1� j - �•q vPT"' M1,AJl7 A 1221 dLL,i77.]5 'i AIR 3' v✓ 1,-3„ 51 r uJ V I'''- ' w> Y 911 131 �IA .31111, ':� } w r< .9 9 1'+' 131 Y. 1M Z11 fir` L ol iLlris .e�ill + q .1W irx q s Y Yalu ,� iL't3 213 Allen Correlation Charts - Boron Boron vs. Sulfate Boron vs. Arsenic 400 4 O 0 m 6 c 3.5 350 5 V 300 3 920 0 E 0 2.5 0 250 0 c 2 d c u° 1.5 W ♦♦ 200 u 1 0 u E v 150 m 0.5 0 20 40 60 80 100 120 140 Boron Concentration ([WL) 0 100 0 20 40 60 80 100 120 140 Boron Concentration (µg/L) 50 ♦ 0 ��— 0 20 40 60 80 100 120 140 Boron Concentration (Ng/L) Boron vs. Hexavalent Chromium Boron vs. Arsenic Boron vs. Vanadium 4 30 0 m 6 c 3.5 5 V E 3 920 0 z Y 0 2.5 0 ♦ c 2 d c u° 1.5 W ♦♦ N ♦ 1 E ♦ 0.5 0 20 40 60 80 100 120 140 Boron Concentration ([WL) 0 s ♦ 0 20 40 60 80 100 120 140 Boron Concentration (µg/L) Boron vs. Hexavalent Chromium Boron vs. Vanadium 8 30 0 m 6 c 25 5 V E ♦ 920 0 z Y 3 2 15 L ♦♦ v E 0 0 20 40 60 80 100 120 140 Boron Concentration ([WL) m 10 5 j 0 0 20 40 60 80 100 120 140 Boron Concentration (WJL) Boron vs. Hexavalent Chromium 9 8 2 c 0 m 6 c v c 5 V E E 4 0 z Y 3 2 x2 x ♦♦ 1 0 0 20 40 60 80 100 120 140 Boron Concentration ([WL) Allen Correlation Chart —Boron and Calcium 1 &1-1 DO 0 140DOO 120DOO 100DOO .2 L. 4-P SDDOO 60000 40DOO 2aDOO 0 Boron vs. Calcium 0 20 40 0 go 100 1,20 140 Boron Concentration (pg/L) 42 Allen Correlation Charts - Calcium Calcium vs. Sulfate 400 350 M 300 c 0 250 O c 200 u ♦ c m V C a 150 m m 15 N ♦ c o♦ 100 E ♦ 10 i 0 s` 50 ♦♦ 5 40 ♦ ♦ ♦♦ 0 0 20000 40000 60000 80000 100000 120000 140000 160000 Calcium Concentration (µg/L) Calcium vs. Vanadium 30 8 M 25 c 0 20 c 0 ♦ c m C ♦ m 15 ♦ c o♦ E ♦ 10 i 0 s` ♦♦ 5 40 ♦ ♦ ♦♦ 0 20000 40000 60000 80000 100000 120000 140000 160000 Calcium Concentration (µg/L) Calcium vs. Hexavalent Chromium 9 8 M 2 c 0 m 6 c m c 5 0 v E E4 0 s` v 3 c x 2 v x 1 0 0 20000 40000 60000 80000 100000 120000 140000 160000 Calcium Concentration (µg/L) M ire" • Roxboro Correlation Charts - Boron Boron vs. Sulfate Boron vs. Vanadium 90 80 12 70 10 60 8 c 50 c c 40 0 6 a ° 30 N 20 4 > 10 0 0 10 20 30 40 50 60 70 80 90 100 Boron Concentration (pg/L) 0.25 0.2 e 0.15 m Boron vs. Arsenic 0.05 0 +--+-+- 0 10 20 30 40 50 60 70 80 90 100 Boron Concentration (µg/L) 3 2.5 c 0 2 0 v E 1.5 E 0 Y 1 c a v = 0.5 Boron vs. Hexavalent Chromium 00 0 0 10 20 30 40 50 60 70 80 90 100 Boron Concentration (µg/L) Boron vs. Vanadium 12 10 i c 0 8 c $ c 6 u° E m A 4 > 2 0 0 10 20 30 40 50 60 70 80 90 1 Boron Concentration (µg/L) 3 2.5 c 0 2 0 v E 1.5 E 0 Y 1 c a v = 0.5 Boron vs. Hexavalent Chromium 00 0 0 10 20 30 40 50 60 70 80 90 100 Boron Concentration (µg/L) Roxboro C Chart — Boron a n d Calcium 1 000 140000 120000 � k 100000 g # 80000 � 0 U 2 £0000 : _ � 20000 0 Boron vs. Calcium O 10 20 30 40 50 §O 70 aO 90 100 Boron Concentration (µ L 46 . � � m O 10 20 30 40 50 §O 70 aO 90 100 Boron Concentration (µ L 46 Roxboro Correlation Charts - Calcium Calcium vs. Sulfate 90 80 70 £ 60 c 50 c a c 40 V a w° 30 VI 20 10 0 20000 40000 60000 80000 100000 120000 140000 160000 Calcium Concentration (µg/L) Calcium vs. Arsenic ♦ 0.25 A 0.2 ♦ c 0.15 L a c O U ♦ 0.1 c d ♦ Q ♦ 0.05 ♦ 0 ♦ Calcium Concentration (Ng/L) ♦ Calcium vs. Arsenic ♦ 0.25 0.2 ♦ c 0.15 L a c O U ♦ 0.1 c d ♦ Q ♦ 0.05 ♦ 0 0 20000 40000 60000 80000 100000 120000 140000 160000 Calcium Concentration (Ng/L) Calcium vs. Vanadium 12 10 s c 0 c v 6 c v° E m 4 N 2 0 0 20000 40000 60000 80000 100000 120000 140000 160000 Calcium Concentration (µg/L) Calcium vs. Hexavalent Chromium 3 ,.., 2.5 c m 2 c v c O V E 1.5 J E 0 t V c 1 d N N d 0.5 0 0 20000 40000 60000 80000 100000 120000 140000 160000 Calcium Concentration (µg/L) ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ Calcium vs. Hexavalent Chromium 3 ,.., 2.5 c m 2 c v c O V E 1.5 J E 0 t V c 1 d N N d 0.5 0 0 20000 40000 60000 80000 100000 120000 140000 160000 Calcium Concentration (µg/L) ♦ ♦ ♦ ♦ ♦ Sutton Well Map 48 MLAI� MIN HEW A;E A k tee. eA E:IF:,k Sutton Well Map 48 Sutton Correlation Charts - Boron 2.5 8 u° 1 L a Q 0.5 Boron vs. Arsenic 0 100 200 300 400 500 600 700 800 Boron Concentration (µg/L) Boron vs. Vanadium 1.4 1.2 1 0 0 0.8 c v — c O U 0.6 E a c >- 0.4 0.6 c s 0 u E 0.5 0.2 E -_- ° 0.4 L u 0 0 100 200 300 400 500 600 700 800 Boron Concentration (Ng/L) Boron vs. Hexavalent Chromium 1 0.9 0.8 0 0.7 0.6 c 0 u E 0.5 ° 0.4 L u nv 0.3 m a 0.2 x 0.1 0 0 100 200 300 400 500 600 700 800 Boron Concentration (Ng/L) 49 Sutton Correlation Charts —Boron and Calcium 700 DO 600 DO 50000 400 DO 30000 20000 .10000 a Boron vs. Calcium 0 100 200 WO 400 500 600 700 800 Boron Concentration (pg/L} 50 Sutton Correlation Charts - Calcium Calcium vs. Arsenic 2.s 1.2 2 1 i ° 0.8 a 1.5 .2 d 0 0 u c c u° m c 1 E > 0.4 a a` s o.s ♦ 0.3 0 0 10000 20000 30000 40000 50000 60000 70( Calcium Concentration (pg/L) = 0.2 0 0 10000 20000 30000 40000 50000 60000 70000 Calcium Concentration (pg/L) Calcium vs. Vanadium 1.4 1.2 0.9 1 0 ° 0.8 c 0 0.7 d 0 0 u 0.6 E 'v m c U E 0.5 > 0.4 E ° s 0.2 0.3 0 0 10000 20000 30000 40000 50000 60000 70( Calcium Concentration (pg/L) Calcium vs. Hexavalent Chromium 1 0.9 0.8 c 0 0.7 0.6 0 U E 0.5 E ° 0.4 L v w 0.3 x = 0.2 0.1 0 0 10000 20000 30000 40000 50000 60000 70000 Calcium Concentration (pg/L) Summary The DEQ private well data set is very similar in results to the DEQ background data set and to the Duke background data set: Of the 14,970 DEQ private well analyses, approximately 7% are above a NC screening level Of the 544 DEQ background well analyses, approximately 4% are above a NC screening level Of the 4995 Duke background well analyses, approximately 7% are above a NC screening level The main drivers for the NC screening levels are vanadium and hexavalent chromium Comparison of the DEQ private well results for both constituents to background levels from various sources (local, state, national) indicate that the results are consistent with these background data sets Correlation evaluations for a subset of the facilities demonstrate that other than Sutton, there is no demonstrated signature of coal ash -derived constituent impacts on the private wells in the vicinity of the Duke facilities Overall conclusion — the private well results are consistent with background and do not exhibit a coal ash signature 52 LAMA Requirements GAPs met CAMA groundwater assessment requirements Contained required elements: Description of receptors and significant exposure pathways Assessment of the horizontal and vertical extent of contamination Description of all significant factors affecting movement and transport Description of features influencing the chemical and physical character Approved by the Department Effectively implemented Department has valid information to prioritize the basins No reason to disregard information now available Opportunities to collect information for increased resolution of the CSA results 53 Conclusion Site investigation concludes groundwater flow is away from receptors No imminent hazard to human health or the environment No offsite migration to receptors No appreciable benefit between excavation and cap -in-place Duke Energy believes this supports a low risk determination for the groundwater factors in the CAMA analysis 54 Conclusion Correlation evaluations for a subset of the facilities demonstrate that other than Sutton, there is no demonstrated signature of coal ash -derived constituent impacts on the private wells in the vicinity of the Duke facilities Overall conclusion — the private well results are consistent with background and do not exhibit a coal ash signature NCDEQ's duty is a proposed classification on 12/31/2015 based on the evidence before it CAMA by design contemplates additional data, including public review, should continue to be developed and considered before DEQ issues it's proposed classifications to the Commission on May 20, 2016 Duke agrees to continue to refine the analysis, including installation of data gap wells and completion of the CAP Part 2 to further validate those conclusions Duke stands ready to provide additional data and analysis as requested by NCDEQ throughout the evaluation process contemplated by CAMA to occur over the next six months at a minimum 55 � DUKE ENERGY 56