Loading...
HomeMy WebLinkAboutSW3240704_Stormwater Report_20241029 I Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 EROSION CONTROL AND STORMWATER MANAGEMENT REPORT FOR: HIDDEN ESTATES WEDDINGTON, NC PREPARED FOR: ENCOMPASS BUILDING GROUP, LLC `,,v,i i i i i i,,,,,, .`````�N C A RO'''', ````V 111I U I I I I S i/,ry'/' ,d- �. ' 9 '3 • - THOMAS C941EA5D7897403... & HUTTON SEAL E - ENGINEERING i - la 050698 = _ CO. 10/28/2024 c', No. F-0871 =o � . ti ',,,,jj�••ENGINEER•�� �`�` -.°'-CqT£OF AU��c�.�`�,• J -#29589.0000 OCTOBER 14, 2024 Prepared by: HT THOMAS & HUTTON Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 EROSION CONTROL AND STORMWATER MANAGEMENT REPORT Project: Hidden Estates T&H Job Number: J-29589.0000 Location: Beulah Church Road Weddington, NC 28173 Date Prepared: October 14, 2024 Owner: Encompass Building Group, LLC Owner Address: 1016 Waxhaw/Indian Trail Rd. Indian Trail, NC 28104 Engineer: Thomas & Hutton Engineer Address: 1020 Euclid Avenue Charlotte, NC 28203 Phone: 980-201-5505 THOMAS & HUTTON Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 TABLE OF CONTENTS Section 1 Channel Analysis Section 2 Rip Rap Outlet Protection Section 3 HEC-22 Stormwater Analysis Section 4 Time of Concentration Calculations Appendix A NOAA Rainfall Data H THOMAS & HUTTON Page 2 I Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 EROSION CONTROL AND STORMWATER CALCULATIONS HIDDEN ESTATES SECTION 1 CHANNEL ANALYSIS 29589.0000 kr THOMAS & HUTTON Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 29589.0000- Hidden Estates Temporary Diversion Swale Calculations 10/11/2024 TDS-01 C i A ■ Q --- - (in/hr) (ac) ■ (cfs) --- Tc= 10.3 min 0.60 5.98 0.91 3.27 --- 10-yr storm ---■---- Avg. Slope from Surface: 4.57% Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Channel Report Hydraflow Express Extension for Autodesk®Civil 3D®by Autodesk, Inc. Friday, Oct 11 2024 Swale 1 - Erosion Control Blanket- S75BN Triangular Highlighted Side Slopes (z:1) = 5.00, 3.00 Depth (ft) = 0.48 Total Depth (ft) = 1.00 Q (cfs) = 3.270 Area (sqft) = 0.92 Invert Elev (ft) = 680.00 Velocity (ft/s) = 3.55 Slope (%) = 4.57 Wetted Perim (ft) = 3.97 N-Value = 0.032 Crit Depth, Yc (ft) = 0.53 Top Width (ft) = 3.84 Calculations EGL (ft) = 0.68 Compute by: Known Q Known Q (cfs) = 3.27 Elev (ft) Section Depth (ft) 682.00 2.00 681.50 1.50 • 681.00 1.00 680.50 0.50 • 680.00 0.00 • 679.50 -0.50 0 1 2 3 4 5 6 7 8 9 10 Reach (ft) Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Channel Report Hydraflow Express Extension for Autodesk®Civil 3D®by Autodesk, Inc. Friday, Oct 11 2024 Swale 1 - Vegetated Triangular Highlighted Side Slopes (z:1) = 5.00, 3.00 Depth (ft) = 0.46 Total Depth (ft) = 1.00 Q (cfs) = 3.270 Area (sqft) = 0.85 Invert Elev (ft) = 680.00 Velocity (ft/s) = 3.86 Slope (%) = 4.57 Wetted Perim (ft) = 3.80 N-Value = 0.030 Crit Depth, Yc (ft) = 0.53 Top Width (ft) = 3.68 Calculations EGL (ft) = 0.69 Compute by: Known Q Known Q (cfs) = 3.27 Elev (ft) Section Depth (ft) 682.00 2.00 681.50 1.50 • 681.00 1.00 680.50 0 0.50 • 680.00 0.00 • 679.50 -0.50 0 1 2 3 4 5 6 7 8 9 10 Reach (ft) Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 ECMDS 7.0 I V I-/I I/LY,V.LJ IVI NORTH North American Green AMERICAN 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 GREEN Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0 CHANNEL ANALYSIS >>>Swale 1 Name Swale 1 Discharge 3.3 Channel Slope 0.0457 Channel Bottom Width 0 Left Side Slope 5 Right Side Slope 3 Low Flow Liner Retardence Class C 6-12 in Vegetation Type Mix(Sod and Bunch) Vegetation Density Very Good 80-95% Soil Type Clay Loam(CL) S75 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern S75 Unvegetated Straight 3.3 cfs 3.73 ft/s 0.47 ft 0.032 1.6 lbs/ft2 1.34 lbs/ft2 1.19 STABLE D Underlying Straight 3.3 cfs 3.73 ft/s 0.47 ft 0.032 1.74 Ibs/ft2 0.65 Ibs/ft2 2.69 STABLE D Substrate Unreinforced Vegetation Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern Unreinforced Straight 3.3 cfs 2.59 ft/s 0.57 ft 0.052 4 lbs/ft2 1.61 lbs/ft2 2.48 STABLE -- Vegetation Underlying Straight 3.3 cfs 2.59 ft/s 0.57 ft 0.052 4 Ibs/ft2 0.78 Ibs/ft2 5.12 STABLE -- Substrate S75BN Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern S75BN Straight 3.3 cfs 3.73 ft/s 0.47 ft 0.032 1.6 lbs/ft2 1.34 lbs/ft2 1.19 STABLE D Unvegetated Underlying Straight 3.3 cfs 3.73 ft/s 0.47 ft 0.032 1.74 Ibs/ft2 0.65 Ibs/ft2 2.69 STABLE D Substrate DS75 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern DS75 Straight 3.3 cfs 3.73 ft/s 0.47 ft 0.032 1.6 lbs/ft2 1.34 lbs/ft2 1.19 STABLE D Unvegetated Underlying Straight 3.3 cfs 3.73 ft/s 0.47 ft 0.032 1.74 Ibs/ft2 0.65 Ibs/ft2 2.69 STABLE D Substrate https://ecmds.com/project/162496/channel-analysis/276030/show 1/2 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 ECMDS 7.0 NORTH North American Green AMERICAN 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 GREEN Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0 ANALYSIS COMPUTATIONS >>>>View Computation Inputs Channel Discharge(Q): 3.3 cfs Peak Flow Period (H): hours Channel Slope (S0): 0.0457 ft/ft Bottom Width (B): 0 ft Left Side Slope (ZL): 5 (H : V) Right Side Slope(ZR): 3 (H : V) Existing Channel Bend: No Bend Coefficient(Kb): 1 Channel Bend Radius: Retardance Class of Vegetation:C 6-12 in Vegetation Type: Mix (Sod and Bunch) Vegetation Density: Very Good 80-95% Soil Type: Clay Loam (CL) Channel Lining Options DS75 Protection Type Temporary S75BN Protection Type Temporary S75 Protection Type Temporary Basic Relationships A = Cross sectional area, ft2(m2)_(B*D)+(ZL/2 * D2)+(ZR/2 * D2) Where: B = Base width of channel,ft(m) D = Flow depth,ft(m) ZL= Left side bank slope (H : 1 V) ZR= Right side bank slope(H : 1 V) P = Wetted perimeter,ft(m) = B + ZL* D + ZR* D R=Hydraulic radius,ft(m)=A/P V = Flow velocity,ft/s(m/s) = Q/A Where: Q = Channel discharge, cfs(cms) Taua Average bed shear stress, psf(Pa) = 62.4* R* SO Where: SO = Gradient of channel,ft/ft(m/m) Tauo= Maximum bed shear stress, psf(Pa) = 62.4 * D * So Unvegetated Conditions Computations: n = Manning's n = a *Tauab and (iteratively solved). n = 1.486/Q *A* R(2/3)Soo'S Where: n = Manning's n https://ecmds.com/project/162496/channel-analysis/276030/calculations 1/3 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 ECMDS 7.0 a = Product specific coefficient from performance testing b = Product specific coefficient from performance testing SFR= Product factor of safety =Taur/Tauo Where: TauT= Permissible shear stress from testing, psf(Pa) Taup= In place permissible shear, psf(Pa) =TauT/alpha * (Taus+ alpha/4.3) Where: alpha = unit conversion constant, 0.14 English, 6.5 Metric Taus = Permissible shear stress of soil SFL= Factor of safety of installed liner=Taup/Taua Vegetated Computations: n = Manning's n = alpha * Cn*Taua-0.4 and (iteratively solved). n = 1.486/Q*A* R(2/3)So05 Where: alpha = Unit conversion constant, 0.213 English, 1.0 Metric Cn = Vegetation retardance coefficient SFp= Product factor of safety =Taurv/Tauo Where: Taurv= Permissible shear stress from testing, psf(Pa) Taup= In place permissible shear, psf(Pa) =Taus/(1 -CFTRM) * (n/ ns)2 Where: CFTRM= Coefficient of TRM performance derived from testing Taus= Permissible shear stress of soil ns= Manning's of soil bed if left unprotected SFL= Factor of safety of installed liner=Taup/Taua S75 Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress 575 Unvegetated 0.032 0.47 ft 0.88 ft2 3.88 ft 0.23 ft 3.73 ft/s 1.37 1.34 lbs/ft2 1.19(SFP) Underlying 0.032 0.47 ft 0.88 ft2 3.88 ft 0.23 ft 3.73 ft/s 1.37 0.65 Ibs/ft2 2.69(SFL) Substrate Unreinforced Vegetation Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress Unreinforced 0.052 0.57 ft 1.28 ft2 4.67 ft 0.27 ft 2.59 ft/s 0.88 1.61 lbs/ft2 2.48(SFL) Vegetation Underlying 0.052 0.57 ft 1.28 ft2 4.67 ft 0.27 ft 2.59 ft/s 0.88 0.78 lbs/ft2 5.12(SFL) Substrate S75BN Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress S75BN 0.032 0.47 ft 0.88 ft2 3.88 ft 0.23 ft 3.73 ft/s 1.37 1.34 lbs/ft2 1.19(SFP) Unvegetated Underlying 0.032 0.47 ft 0.88 ft2 3.88 ft 0.23 ft 3.73 ft/s 1.37 0.65 lbs/ft2 2.69(SFL) Substrate https://ecmds.com/project/162496/channel-analysis/276030/calculations 2/3 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 ECMDS 7.0 DS75 Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress DS75 0.032 0.47 ft 0.88 ft2 3.88 ft 0.23 ft 3.73 ft/s 1.37 1.34 lbs/ft2 1.19(SFP) Unvegetated Underlying 0.032 0.47 ft 0.88 ft2 3.88 ft 0.23 ft 3.73 ft/s 1.37 0.65 lbs/ft2 2.69(SFL) Substrate https://ecmds.com/project/162496/channel-analysis/276030/calculations 3/3 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 29589.0000- Hidden Estates Temporary Diversion Swale Calculations 10/11/2024 TDS-02 C i A ■ Q --- - (in/hr) (ac) ■ (cfs) --- Tc= 10.3 min 0.60 5.98 0.92 3.30 --- 10-yr storm ---■---- Avg. Slope from Surface: 19.82% Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Channel Report Hydraflow Express Extension for Autodesk®Civil 3D®by Autodesk, Inc. Friday, Oct 11 2024 Swale 2 - Vegetated Triangular Highlighted Side Slopes (z:1) = 5.00, 3.00 Depth (ft) = 0.35 Total Depth (ft) = 1.00 Q (cfs) = 3.300 Area (sqft) = 0.49 Invert Elev (ft) = 680.00 Velocity (ft/s) = 6.73 Slope (%) = 19.82 Wetted Perim (ft) = 2.89 N-Value = 0.030 Crit Depth, Yc (ft) = 0.54 Top Width (ft) = 2.80 Calculations EGL (ft) = 1.06 Compute by: Known Q Known Q (cfs) = 3.30 Elev (ft) Section Depth (ft) 682.00 2.00 681.50 1.50 • 681.00 1.00 680.50 0.50 • 680.00 0.00 • 679.50 -0.50 0 1 2 3 4 5 6 7 8 9 10 Reach (ft) Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Channel Report Hydraflow Express Extension for Autodesk®Civil 3D®by Autodesk, Inc. Friday, Oct 11 2024 Swale 2 - Reinforced Vegetation-S200 Triangular Highlighted Side Slopes (z:1) = 5.00, 3.00 Depth (ft) = 0.37 Total Depth (ft) = 1.00 Q (cfs) = 3.300 Area (sqft) = 0.55 Invert Elev (ft) = 680.00 Velocity (ft/s) = 6.03 Slope (%) = 19.82 Wetted Perim (ft) = 3.06 N-Value = 0.034 Crit Depth, Yc (ft) = 0.54 Top Width (ft) = 2.96 Calculations EGL (ft) = 0.93 Compute by: Known Q Known Q (cfs) = 3.30 Elev (ft) Section Depth (ft) 682.00 2.00 681.50 1.50 • 681.00 1.00 680.50 0.50 0 • 680.00 0.00 • 679.50 -0.50 0 1 2 3 4 5 6 7 8 9 10 Reach (ft) Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 ECMDS 7.0 kiNORTH North American Green AMERICAN 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 GREEN Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0 CHANNEL ANALYSIS >>>Swale 2 Name Swale 2 Discharge 3.3 Channel Slope 0.1982 Channel Bottom Width 0 Left Side Slope 5 Right Side Slope 3 Low Flow Liner Retardence Class C 6-12 in Vegetation Type Mix(Sod and Bunch) Vegetation Density Very Good 80-95% Soil Type Clay Loam(CL) S200 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern S200 Straight 3.3 cfs 7.51 ft/s 0.33 ft 0.026 2.3 lbs/ft2 4.07 lbs/ft2 0.56 UNSTABLE E Unvegetated Underlying Straight 3.3 cfs 7.51 ft/s 0.33 ft 0.026 2.51 Ibs/ft2 1.97 lbs/ft2 1.27 STABLE E Substrate S200 Reinforced Straight 3.3 cfs 6.12 ft/s 0.37 ft 0.034 10 lbs/ft2 4.54 lbs/ft2 2.2 STABLE E Vegetation Underlying Straight 3.3 cfs 6.12 ft/s 0.37 ft 0.034 3.91 lbs/ft2 2.2 lbs/ft2 1.78 STABLE E Substrate SC250 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern Underlying Straight 3.3 cfs 6.12 ft/s 0.37 ft 0.034 3.91 lbs/ft2 2.2 lbs/ft2 1.78 STABLE E Substrate SC250 Straight 3.3 cfs 6.88 ft/s 0.35 ft 0.029 3 lbs/ft2 4.28 lbs/ft2 0.7 UNSTABLE E Unvegetated Underlying Straight 3.3 cfs 6.88 ft/s 0.35 ft 0.029 3.27 lbs/ft2 2.07 lbs/ft2 1.58 STABLE E Substrate SC250 Straight 3.3 cfs 6.12 ft/s 0.37 ft 0.034 10 lbs/ft2 4.54 lbs/ft2 2.2 STABLE E Reinforced Vegetation C350 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Remarks Depth Mannings N Shear Stress Shear Stress Factor Pattern - C350 Straight 3.3 cfs 6.64 ft/s 0.35 ft 0.031 3.2 lbs/ft2 4.36 lbs/ft2 0.73 UNSTABLE E Unvegetated Underlying Straight 3.3 cfs 6.64 ft/s 0.35 ft 0.031 3.49 lbs/ft2 2.11 lbs/ft2 1.65 STABLE E Substrate C350 Reinforced Straight 3.3 cfs 6.12 ft/s 0.37 ft 0.034 12 lbs/ft2 4.54 lbs/ft2 2.64 STABLE E Vegetation Underlying Straight 3.3 cfs 6.12 ft/s 0.37 ft 0.034 6 lbs/ft2 2.2 lbs/ft2 2.73 STABLE E Substrate Unreinforced Vegetation https://ecmds.com/project/162496/channel-analysis/276029/show 1/2 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9.�,I I/LY,V.Ll)I-IVI ECMDS 7.0 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern Unreinforced Straight 3.3 cfs 6.12 ft/s 0.37 ft 0.034 4 Ibs/ft2 4.54 Ibs/ft2 0.88 UNSTABLE -- Vegetation Underlying Straight 3.3 cfs 6.12 ft/s 0.37 ft 0.034 2.61 lbs/ft2 2.2 Ibs/ft2 1.19 STABLE -- Substrate DS75 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern DS75 Straight 3.3 cfs 7.24 ft/s 0.34 ft 0.027 1.6 lbs/ft2 4.18 lbs/ft2 0.38 UNSTABLE D Unvegetated Underlying Straight 3.3 cfs 7.24 ft/s 0.34 ft 0.027 1.74 lbs/ft2 2.02 Ibs/ft2 0.86 UNSTABLE D Substrate https://ecmds.com/project/162496/channel-analysis/276029/show 2/2 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 ECMDS 7.0 kiNORTH North American Green AMERICAN 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 GREEN Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0 ANALYSIS COMPUTATIONS >>>>View Computation Inputs Channel Discharge(Q): 3.3 cfs Peak Flow Period (H): hours Channel Slope (S0): 0.1982 ft/ft Bottom Width (B): 0 ft Left Side Slope (ZL): 5 (H : V) Right Side Slope(ZR): 3 (H : V) Existing Channel Bend: No Bend Coefficient(Kb): 1 Channel Bend Radius: Retardance Class of Vegetation:C 6-12 in Vegetation Type: Mix (Sod and Bunch) Vegetation Density: Very Good 80-95% Soil Type: Clay Loam (CL) Channel Lining Options DS75 Protection Type Temporary C350 Protection Type Permanent SC250 Protection Type Permanent S200 Protection Type Permanent Basic Relationships A = Cross sectional area, ft2(m2)_(B*D)+(ZL/2 * D2)+(ZR/2 * D2) Where: B = Base width of channel, ft(m) D = Flow depth,ft(m) ZL= Left side bank slope(H : 1 V) ZR= Right side bank slope(H : 1 V) P = Wetted perimeter,ft(m) = B + ZL* D + ZR* D R=Hydraulic radius,ft(m)=A/P V = Flow velocity,ft/s(m/s) = Q/A Where: Q = Channel discharge, cfs(cms) Taua Average bed shear stress, psf(Pa) = 62.4* R* SO Where: SO = Gradient of channel,ft/ft(m/m) Tauo= Maximum bed shear stress, psf(Pa) = 62.4 * D * So Unvegetated Conditions Computations: n = Manning's n = a *Tauab and (iteratively solved). n = 1.486/Q *A* R(2/3)So05 Where: https://ecmds.com/project/162496/channel-analysis/276029/calculations 1/3 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 ECMDS 7.0 n = Manning's n a = Product specific coefficient from performance testing b = Product specific coefficient from performance testing SFP= Product factor of safety =Taur/Tauo Where: TauT= Permissible shear stress from testing, psf(Pa) Taup= In place permissible shear, psf(Pa) =TauT/alpha * (Taus+ alpha/4.3) Where: alpha = unit conversion constant, 0.14 English, 6.5 Metric Taus = Permissible shear stress of soil SFL= Factor of safety of installed liner=Taup/Taua Vegetated Computations: n = Manning's n = alpha * Cn*Taua-0.4 and (iteratively solved). n = 1.486/Q*A* R(2/3)Soo'5 Where: alpha = Unit conversion constant, 0.213 English, 1.0 Metric Cn = Vegetation retardance coefficient SFR= Product factor of safety =Taurv/Tauo Where: TauTv= Permissible shear stress from testing, psf(Pa) Taup= In place permissible shear, psf(Pa) =Taus/(1 -CFTRM) * (n/ ns)2 Where: CFTRM= Coefficient of TRM performance derived from testing Taus= Permissible shear stress of soil ns= Manning's of soil bed if left unprotected SFL= Factor of safety of installed liner=Taup/Taua S200 Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress S200 0.026 0.33 ft 0.43 ft2 2.72 ft 0.16 ft 7.51 ft/s 3.31 4.07 lbs/ft2 0.56(SFP) Unvegetated Underlying 0.026 0.33 ft 0.43 ft2 2.72 ft 0.16 ft 7.51 ft/s 3.31 1.97 lbs/ft2 1.27(SFL) Substrate S200 Reinforced 0.034 0.37 ft 0.54 ft2 3.03 ft 0.18 ft 6.12 ft/s 2.54 4.54 lbs/ft2 2.2(SFP) Vegetation Underlying 0.034 0.37 ft 0.54 ft2 3.03 ft 0.18 ft 6.12 ft/s 2.54 2.2 lbs/ft2 1.78(SFL) Substrate SC250 Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress Underlying 0.034 0.37 ft 0.54 ft2 3.03 ft 0.18 ft 6.12 ft/s 2.54 2.2 lbs/ft2 1.78(SFP) Substrate SC250 0.029 0.35 ft 0.48 ft2 2.86 ft 0.17 ft 6.88 ft/s 2.94 4.28 lbs/ft2 0.7(SFL) Unvegetated Underlying 0.029 0.35 ft 0.48 ft2 2.86 ft 0.17 ft 6.88 ft/s 2.94 2.07 lbs/ft2 1.58(SFP) Substrate SC250 0.034 0.37 ft 0.54 ft2 3.03 ft 0.18 ft 6.12 ft/s 2.54 4.54 lbs/ft2 2.2(SFL) Reinforced Vegetation https://ecmds.com/project/162496/channel-analysis/276029/calculations 2/3 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 ECMDS 7.0 C350 Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress C350 0.031 0.35 ft 0.5 ft2 2.91 ft 0.17 ft 6.64 ft/s 2.84 4.36 lbs/ft2 0.73(SFP) Unvegetated Underlying 0.031 0.35 ft 0.5 ft2 2.91 ft 0.17 ft 6.64 ft/s 2.84 2.11 lbs/ft2 1.65 (SFL) Substrate C350 Reinforced 0.034 0.37 ft 0.54 ft2 3.03 ft 0.18 ft 6.12 ft/s 2.54 4.54 lbs/ft2 2.64(SFP) Vegetation Underlying 0.034 0.37 ft 0.54 ft2 3.03 ft 0.18 ft 6.12 ft/s 2.54 2.2 lbs/ft2 2.73 (SFL) Substrate Unreinforced Vegetation Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress Unreinforced 0.034 0.37 ft 0.54 ft2 3.03 ft 0.18 ft 6.12 ft/s 2.54 4.54 lbs/ft2 0.88(SFL) Vegetation Underlying 0.034 0.37 ft 0.54 ft2 3.03 ft 0.18 ft 6.12 ft/s 2.54 2.2 lbs/ft2 1.19(SFL) Substrate DS75 Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress DS75 0.027 0.34 ft 0.46 ft2 2.79 ft 0.16 ft 7.24 ft/s 3.19 4.18 lbs/ft2 0.38(SFP) Unvegetated Underlying 0.027 0.34 ft 0.46 ft2 2.79 ft 0.16 ft 7.24 ft/s 3.19 2.02 lbs/ft2 0.86(SFL) Substrate https://ecmds.com/project/162496/channel-analysis/276029/calculations 3/3 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 29589.0000- Hidden Estates Temporary Diversion Swale Calculations 10/11/2024 TDS-03 C i A Q TOP 689.97 (in/hr) (ac) (cfs) BOT 670.36 Tc= 11 min 0.60 5.85 0.35 1.23 LENGTH 405.1 10-yr storm SLOPE 4.84% Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Channel Report Hydraflow Express Extension for Autodesk®Civil 3D®by Autodesk, Inc. Friday, Oct 11 2024 Swale 3 - Erosion Control Blanket - S75BN Triangular Highlighted Side Slopes (z:1) = 5.00, 3.00 Depth (ft) = 0.33 Total Depth (ft) = 1.00 Q (cfs) = 1.230 Area (sqft) = 0.44 Invert Elev (ft) = 680.00 Velocity (ft/s) = 2.82 Slope (%) = 4.84 Wetted Perim (ft) = 2.73 N-Value = 0.032 Crit Depth, Yc (ft) = 0.36 Top Width (ft) = 2.64 Calculations EGL (ft) = 0.45 Compute by: Known Q Known Q (cfs) = 1.23 Elev (ft) Section Depth (ft) 682.00 2.00 681.50 1.50 • 681.00 1.00 680.50 0.50 • 680.00 0.00 • 679.50 -0.50 0 1 2 3 4 5 6 7 8 9 10 Reach (ft) Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Channel Report Hydraflow Express Extension for Autodesk®Civil 3D®by Autodesk, Inc. Friday,Oct 11 2024 Swale 3 - Vegetated Triangular Highlighted Side Slopes (z:1) = 5.00, 3.00 Depth (ft) = 0.32 Total Depth (ft) = 1.00 Q (cfs) = 1.230 Area (sqft) = 0.41 Invert Elev (ft) = 680.00 Velocity (ft/s) = 3.00 Slope (%) = 4.84 Wetted Perim (ft) = 2.64 N-Value = 0.030 Crit Depth, Yc (ft) = 0.36 Top Width (ft) = 2.56 Calculations EGL (ft) = 0.46 Compute by: Known Q Known Q (cfs) = 1.23 Elev (ft) Section Depth (ft) 682.00 - 2.00 681.50 - 1.50 681.00 1.00 680.50 0.50 680.00 0.00 679.50 -0.50 0 1 2 3 4 5 6 7 8 9 10 Reach (ft) Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 ECMDS 7.0 I V I-/I I/LY,V.JJ IVI NORTH North American Green AMERICAN 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 GREEN Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0 CHANNEL ANALYSIS >>>Swale 3 Name Swale 3 Discharge 1.23 Channel Slope 0.0484 Channel Bottom Width 0 Left Side Slope 5 Right Side Slope 3 Low Flow Liner Retardence Class C 6-12 in Vegetation Type Mix(Sod and Bunch) Vegetation Density Very Good 80-95% Soil Type Clay Loam(CL) S75 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern S75 Unvegetated Straight 1.23 cfs 2.89 ft/s 0.33 ft 0.033 1.6 lbs/ft2 0.99 lbs/ft2 1.62 STABLE D Underlying Straight 1.23 cfs 2.89 ft/s 0.33 ft 0.033 1.74 Ibs/ft2 0.48 Ibs/ft2 3.66 STABLE D Substrate Unreinforced Vegetation Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern Unreinforced Straight 1.23 cfs 1.9 ft/s 0.4 ft 0.058 4 lbs/ft2 1.22 Ibs/ft2 3.29 STABLE -- Vegetation Underlying Straight 1.23 cfs 1.9 ft/s 0.4 ft 0.058 4 Ibs/ft2 0.59 lbs/ft2 6.79 STABLE -- Substrate S75BN Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern S75BN Straight 1.23 cfs 2.89 ft/s 0.33 ft 0.033 1.6 lbs/ft2 0.99 lbs/ft2 1.62 STABLE D Unvegetated Underlying Straight 1.23 cfs 2.89 ft/s 0.33 ft 0.033 1.74 lbs/ft2 0.48 lbs/ft2 3.66 STABLE D Substrate DS75 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern DS75 Straight 1.23 cfs 2.89 ft/s 0.33 ft 0.033 1.6 lbs/ft2 0.99 lbs/ft2 1.62 STABLE D Unvegetated Underlying Straight 1.23 cfs 2.89 ft/s 0.33 ft 0.033 1.74 lbs/ft2 0.48 lbs/ft2 3.66 STABLE D Substrate https://ecmds.com/project/162496/channel-analysis/276031/show 1/2 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 ECMDS 7.0 I V/I I/LY,V.JY r IVI NORTH North American Green AMERICAN 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 GREEN Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0 ANALYSIS COMPUTATIONS >>>>View Computation Inputs Channel Discharge(Q): 1.23 cfs Peak Flow Period (H): hours Channel Slope (S0): 0.0484 ft/ft Bottom Width (B): 0 ft Left Side Slope (ZL): 5 (H : V) Right Side Slope(ZR): 3 (H : V) Existing Channel Bend: No Bend Coefficient(Kb): 1 Channel Bend Radius: Retardance Class of Vegetation:C 6-12 in Vegetation Type: Mix (Sod and Bunch) Vegetation Density: Very Good 80-95% Soil Type: Clay Loam (CL) Channel Lining Options DS75 Protection Type Temporary S75BN Protection Type Temporary S75 Protection Type Temporary Basic Relationships A = Cross sectional area, ft2(m2)_(B*D)+(ZL/2 * D2)+(ZR/2 * D2) Where: B = Base width of channel,ft(m) D = Flow depth,ft(m) ZL= Left side bank slope (H : 1 V) ZR= Right side bank slope(H : 1 V) P = Wetted perimeter,ft(m) = B + ZL* D + ZR* D R=Hydraulic radius,ft(m)=A/P V = Flow velocity,ft/s(m/s) = Q/A Where: Q = Channel discharge, cfs(cms) Taua Average bed shear stress, psf(Pa) = 62.4* R* SO Where: SO = Gradient of channel,ft/ft(m/m) Tauo= Maximum bed shear stress, psf(Pa) = 62.4 * D * So Unvegetated Conditions Computations: n = Manning's n = a *Tauab and (iteratively solved). n = 1.486/Q *A* R(2/3)So°5 Where: n = Manning's n https://ecmds.com/project/162496/channel-analysis/276031/calculations 1/3 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 ECMDS 7.0 I V/I I/LY, IVI V.JY r a = Product specific coefficient from performance testing b = Product specific coefficient from performance testing SFR= Product factor of safety =Taur/Tauo Where: TauT= Permissible shear stress from testing, psf(Pa) Taup= In place permissible shear, psf(Pa) =TauT/alpha * (Taus+ alpha/4.3) Where: alpha = unit conversion constant, 0.14 English, 6.5 Metric Taus = Permissible shear stress of soil SFL= Factor of safety of installed liner=Taup/Taua Vegetated Computations: n = Manning's n = alpha * Cn*Taua-0.4 and (iteratively solved). n = 1.486/Q*A* R(2/3)So05 Where: alpha = Unit conversion constant, 0.213 English, 1.0 Metric Cn = Vegetation retardance coefficient SFR= Product factor of safety =Taurv/Tauo Where: Taurv= Permissible shear stress from testing, psf(Pa) Taup= In place permissible shear, psf(Pa) =Taus/(1 -CFTRM) * (n/ ns)2 Where: CFTRM= Coefficient of TRM performance derived from testing Taus= Permissible shear stress of soil ns= Manning's of soil bed if left unprotected SFL= Factor of safety of installed liner=Taup/Taua S75 Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress 575 Unvegetated 0.033 0.33 ft 0.43 ft2 2.69 ft 0.16 ft 2.89 ft/s 1.27 0.99 lbs/ft2 1.62(SFP) Underlying 0.033 0.33 ft 0.43 ft2 2.69 ft 0.16 ft 2.89 ft/s 1.27 0.48 Ibs/ft2 3.66(SFL) Substrate Unreinforced Vegetation Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress Unreinforced 0.058 0.4 ft 0.65 ft2 3.33 ft 0.19 ft 1.9 ft/s 0.77 1.22 lbs/ft2 3.29(SFL) Vegetation Underlying 0.058 0.4 ft 0.65 ft2 3.33 ft 0.19 ft 1.9 ft/s 0.77 0.59 lbs/ft2 6.79(SFL) Substrate S75BN Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress S75BN 0.033 0.33 ft 0.43 ft2 2.69 ft 0.16 ft 2.89 ft/s 1.27 0.99 lbs/ft2 1.62(SFP) Unvegetated Underlying 0.033 0.33 ft 0.43 ft2 2.69 ft 0.16 ft 2.89 ft/s 1.27 0.48 lbs/ft2 3.66(SFL) Substrate https://ecmds.com/project/162496/channel-analysis/276031/calculations 2/3 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 ECMDS 7.0 I V Y/I I/LY,V.V I-IVI DS75 Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress DS75 0.033 0.33 ft 0.43 ft2 2.69 ft 0.16 ft 2.89 ft/s 1.27 0.99 lbs/ft2 1.62(SFP) Unvegetated Underlying 0.033 0.33 ft 0.43 ft2 2.69 ft 0.16 ft 2.89 ft/s 1.27 0.48 lbs/ft2 3.66(SFL) Substrate https://ecmds.com/project/162496/channel-analysis/276031/calculations 3/3 I Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 EROSION CONTROL AND STORMWATER CALCULATIONS HIDDEN ESTATES SECTION 2 RIP RAP OUTLET PROTECTION 29589.0000 kr THOMAS & HUTTON Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Rip Rap Apron Design Project Name: 29589.0000 -Hidden Estates FES 1 Drainage Specialist: SHD Date: October 11,2024 Checked By: NW Date: October 11,2024 Step 1. Determine the tailwater depth from the channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter, it is classifies as minimum tailwater conditions. If the tailwater is greater than half the pipe diameter, it is classified as maximum tailwater conditions. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Rational Method for Flow Total Drainage Area(Acres): 1.4 Outlet pipe diameter,Do(in.) 18 Tailwater depth(Feet) 0.5 Tailwater Method To Be Used Min TW(Fig.8.06a) Discharge(cfs) 6.8 Velocity(ft./s) 16.0 Step 2. Based on the tailwater conditions determined in Step 1, enter Figure 8.06a or Figure 8.06b and determine the d50 rip rap size and minimum apron length(La). The d50 size is the median stone size in a well-graded rip rap apron. Step 3. Determine the apron width at the pipe outlet,the apron shape, and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Riprap d50, (ft.) 0.5 Minimum apron length, La(ft.) ** 10 Apron width at pipe outlet(ft.) 5 Apron shape W=Do+La Apron width at outlet end(ft.) 12 **-Minimum Apron Length Is 10 Feet per CLDS 20.23 Step 4. Determine the maximum Stone Diameter. D.= 1.5 X d50 Determine the Apron Thickness,Ta= 1.5 X d,nax Minimum TW Maximum TW Max Stone Diameter, dmax(Inches): 9 71= Apron Thickness (Inches): 14 **-Minimum Apron Thickness Is 10 Inches per CLDS 20.23 Step 5. Fit the rip rap apron to the site by making it level for the minimum length La. Extend the apron farther downstream and along the channel banks until stability is assured. Keep apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of the rip rap where protection of the channel side slopes is necessary. Where overfalls exist at pipe outlets or flows are excessive, a plunge pool should be considered. Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 i .y ... ., .,.,w. ....�.�.. . �•...• M. •... •. .. .. ... .. ..,.. nd pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) 3(.7..._ Outlet - W = Do + La •a. •I j pipe - diameter (Do) --` . r,•, ,. La --(NI AO t -- Alf I - • .- - . ' ',/ '.,'• 60 ■ I IIII �e % N11"I' siM■I = _: e '' '' , 1 inn IN v(� n� ■I f1�.',.,1� � i,"._. .._ - nil • `1r' 1 .111111 111111111111 ... -' 1 Well 11111 _A _ 1! : •A ' A A 41 _ : . / ,f...._.. I Alt. . ' ..7 ry - . ' i 1 • 30 .. I Il 1 I\a • •%/..• /7'. . 05 ,.. ".. : : : : - . - ..ii„........ 20 ::: • ::. �1 .. s .15 �, • �1• ... . ' . • . . { . � 3 IIIsZs / ./ ��- 1 1 , • .�..�...... �'�•>trII-74 ifiy)10241 e,, o.' ... 10 -• ....._: � • .._... �, . . , -- ••- , - � - • ---------'.. ....._. .__.. Q.p.-� ram• • 0 . -F - H l ,..�.... :: .. . , '� i1lrl�lllN' PIM• • mu 2 Cl) ..l .1 1.4 1 . �_ t- �illral AiK /iii-• . INN -. -. 1 } + ... ■ 1 1Air11M ':' M,l1i�r'1.i �N ill 1 :: .' • 1.11.961 1rA1 .:: : I 1 ' • All �ieg1�diillr�Ni;IeA■1IIIi I11N i ■ r. y ..1. . ..I ,.1 ... . Will � 1 ...,,V � 4014111110111 �•!P illy - a,. .- I , , { .., ti 1 . ;�s�s� � 1 I I{{{{i. ..1 I 14.. I . . 4 , - V20 .rr ! 111 11 881� 1113 c 43 .14 V =10 -- 1—�.-:. 1 :..i• • V s ,k r . •' o � I 3 5 10 20 50 100 200 500 1000 Discharge(ft3/sec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full,minimum tailwater condition(Tw<0.5 diameter). Rev.1V93 8.06.3 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Rip Rap Apron Design Project Name: 29589.0000 -Hidden Estates FES 2 Drainage Specialist: SHD Date: October 11,2024 Checked By: NW Date: October 11,2024 Step 1. Determine the tailwater depth from the channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter, it is classifies as minimum tailwater conditions. If the tailwater is greater than half the pipe diameter, it is classified as maximum tailwater conditions. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Rational Method for Flow Total Drainage Area(Acres): 1.7 Outlet pipe diameter,Do(in.) 18 Tailwater depth(Feet) 0.5 Tailwater Method To Be Used Min TW(Fig.8.06a) Discharge(cfs) 7.1 Velocity(ft./s) 4.8 Step 2. Based on the tailwater conditions determined in Step 1, enter Figure 8.06a or Figure 8.06b and determine the d50 rip rap size and minimum apron length(La). The d50 size is the median stone size in a well-graded rip rap apron. Step 3. Determine the apron width at the pipe outlet,the apron shape, and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Riprap d50, (ft.) 0.5 Minimum apron length, La(ft.) ** 10 Apron width at pipe outlet(ft.) 5 Apron shape W=Do+La Apron width at outlet end(ft.) 12 **-Minimum Apron Length Is 10 Feet per CLDS 20.23 Step 4. Determine the maximum Stone Diameter. D.= 1.5 X d50 Determine the Apron Thickness,Ta= 1.5 X d,nax Minimum TW Maximum TW Max Stone Diameter, dmax(Inches): 9 71= Apron Thickness (Inches): 14 **-Minimum Apron Thickness Is 10 Inches per CLDS 20.23 Step 5. Fit the rip rap apron to the site by making it level for the minimum length La. Extend the apron farther downstream and along the channel banks until stability is assured. Keep apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of the rip rap where protection of the channel side slopes is necessary. Where overfalls exist at pipe outlets or flows are excessive, a plunge pool should be considered. Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 i .y ... ., .,.,w. ....,.w.. . . ....• M. .... .. .. .. ... .. ..,.anu pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) 3(.c.•__ Outlet W = Do + La a. •' - j pipe - diameter (Lb) --` . r, Da _et 30 t -- ' r, I . • : ..... i ' ../ '„'• p�°� !I i . . Ii' � a P nar �nI 1IIB ''.e is 60 I IIN �. i , •� � _ _ •. .0 'V'Alarms IIInn11 v�` ■I Iriimil I11 I"':_. .._ �i� -' �, ev'• dil irii s ....:' IF: ' ' . , • \? r 101111111111,17 • i 41 • II • _ . •. / /..._.. sp" A1t . • • 30 .. •�'.. /... . • 1115 20. . __..�.. i.. �.I1 ll.'. . . . _ :15..: r. :. -t • _ I_-__ .• iit /1 g� 3 . III s 2� / •. .. ��. 1 i , . . . ........., v�t'�.� 1 • Air 0601446 10 wL r,;:?;��rii �' ::... ...:....: ... . ' .,p.. ..., - 1111 t : : : : . � - v 110011110W . i 0/i,a _ al nl }i}} 111 Y I +I�' .1N III'A�;. .. m oil . ,, „ „ •• . ... 1 ithi Fe-, ' r a1:eriftsriu11 d1' rrr. mi. 2 U) II'I • ■���� ' + P ;ir ,r:dl�dli :WAIN' '' r ``dii NNIIIIN - ' III ■alb �1 1 r :A1!.51 err,iiii II:, NOS 11111111IlII111I1I1N�MI a .+ 111 _ ...►-. 'III ... . •E -• I ....,V " �1=,!Isl! I:N►:,Iliril III t ( I liF It , ,"�" I ." : : I� : _ - „- - ' ..Ii 4 40'' '`'�1 i iilfilliliiiiiiiiiill e 43 v - is _ ./1 :.. v = 5 _ r I . ' 0 3 5 10 20 50 100 200 500 1000 Discharge(ft3/sec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full,minimum tailwater condition(Ty,<0.5 diameter). Rev.1V93 8.06.3 Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Rip Rap Apron Design Project Name: 29589.0000 - Hidden Estates Swale #2 Ou1 Drainage Specialist: SHD Date: October 11, 2024 Checked By: NW Date: October 11, 2024 Step 1. Determine the tailwater depth from the channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter, it is classifies as minimum tailwater conditions. If the tailwater is greater than half the pipe diameter, it is classified as maximum tailwater conditions. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Rational Method for Flow Total Drainage Area(Acres): 0.9 Outlet pipe diameter,Do(in.) 18 Tailwater depth(Feet) 0.5 Tailwater Method To Be Used Min TW (Fig. 8.06a) Discharge (cfs) 3.3 Velocity(ft./s) 6.0 Step 2. Based on the tailwater conditions determined in Step 1, enter Figure 8.06a or Figure 8.06b and determine the d50 rip rap size and minimum apron length(La). The d50 size is the median stone size in a well-graded rip rap apron. Step 3. Determine the apron width at the pipe outlet,the apron shape, and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Riprap d50, (ft.) 0.5 Minimum apron length, La(ft.) ** 10 Apron width at pipe outlet(ft.) 5 Apron shape W=Do+La Apron width at outlet end(ft.) 12 IM **-Minimum Apron Length Is 10 Feet per CLDS 20.23 Step 4. Determine the maximum Stone Diameter. Dmax= 1.5 X d50 Determine the Apron Thickness,Ta= 1.5 X dmax Minimum TW Maximum TW Max Stone Diameter, dmax (Inches): 9 laMI- 1 Apron Thickness (Inches): 14 **-Minimum Apron Thickness Is 10 Inches per CLDS 20.23 Step 5. Fit the rip rap apron to the site by making it level for the minimum length La. Extend the apron farther downstream and along the channel banks until stability is assured. Keep apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of the rip rap where protection of the channel side slopes is necessary. Where overfalls exist at pipe outlets or flows are excessive, a plunge pool should be considered. Ih Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 i .W..6. .0.1,.0 • 1W.1 .,. 104116.11,..,....,...,.. 1..,... w .., and pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) Outlet f W • Do Ld 93 l pipe I •� N/ diameter (Do) % ;.;4 La -61 • Iri.j . /1' j _ I •7" L ! , Ham._ r° 1; i ,oitifyi %,, - 1 14.. Eli .. NIHI!k; * I ‘,00% _ 911111 1 1 1 . . . . • II UM 11/M1111 1 4 ' ! M I ,� 4 1 " i1.. : H 1Iifl1II ._ 1111 1 iu r ", ,,� .0.F F 3 I • In 1 n �.;, r� IIIIIIM I . ' ' { t r ;' -,1 ;,i ir� �1ii : : : �1 In v: : e . .. . - ���, � 20 nuuuu 1 1 1�j� ��11� u1 ■■■■ 11 1 AI filliiiiiipri •_fir' i' uI I 3 1 2 �� 1 i : 11 IIII1111 `. 1'� �/ I 1 . . .. V� II R I �r� - II� ........ '��• :_ Oil•' ileAOLler nplil.. • -06$1,,‘ . _ D i 11�1 1IIIIIIINI N U ' r .. . i. . .. . .. .: . :01 - • 4 i +, 11*C111, . • rid! 1111 1 II_ . .., {{ III1 ,, 1'' rili�r'''�I' �n11r2 cn: .�... • 1 � h� ,f . �' �1 I �MIMiMITIt1 '�II�ii 1 II �}/y 1;N�1�1NIIII � ,'!� ti g1.1 �rudIIII I •;_ ;;;:,lll:,11,11.1 A IIIIINIIIIMi . o .II z5 . fir' ��° , r' i�si=��lll� ��'l��Ial111 !i=s11l1�1I1r8111�� jf . . . v _' _ �r.8!' 1 NI 11i111111 i� ii IIIII v r..w:/s•-si I1® ..iiii ii ._II•1 m_ 1 D 3 5 10 20 51 100 200 500 1000 Discharge (ft3/sec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full,minimum tailwater condition(Tw<0.5 diameter). Rev.12 93 8.06.3 I Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 EROSION CONTROL AND STORMWATER CALCULATIONS HIDDEN ESTATES SECTION 3 HEC-22 STORMWATER ANALYSIS 29589.0000 ITI THOMAS & HUTTON Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 25-YR CAPAC I TY Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 HEC-22 Storm Drain Computations Structure ID Length Drainage Runoff Tc Rain"I" Runoff Known Q Total Q Pipe Full Q Velocity Velocity Invert Elevation Slope (ft) Area Coeff"C" (min) (in/hr) "Q" (cfs) (cfs) Dia. (cfs) Full Design From To (ac) (cfs) (in) (ft/s) (ft/s) U/S D/S 6 2 90 0.35 0.50 11 8.15 7.1 7.1 18 7.4 4.21 4.78 665.20 664.75 0.50% 1 16 15 i 1.38 0.50 5 9.871 6.8 6.8 18 37.0 20.96 15.99 667.00 665.20 12.41% FTI THOMAS&HUTTON Z:i29589i29589.00001Engineering\Calculations and RepartslStarm Water\HEC-22\HEC-22 Reporting.xlsm Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 HEC-22 Energy Grade Line Computations Struct. Q EGLo HGLo Total Pipe EGLi HGLi Ea EGLa Surface Elev. ID (cfs) (ft) (ft) Loss (ft) (ft) (ft) (ft) (ft) (ft) 2 664.75 664.75 666.46 6 7.1 666.28 665.92 _ _ 0.45 666.73 666.37 1.8 667.02 670.31 1 6.8 667.11 666.88 671.41 667.44 4.4 671.41 668.71 Ti THOMAS& HUTTON Z:129589129589.0000\Engineering\Calculations and Reports\Storm Water\HEC-22\HEC-22 Reporting.xlsm I Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 EROSION CONTROL AND STORMWATER CALCULATIONS HIDDEN ESTATES SECTION 4 TIME OF CONCENTRATION CALCULATIONS 29589.0000 kr THOMAS & HUTTON Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Time of Concentration Calculations (SCS Method) Hidden Estates Weddington, NC Time of Concentration - SW 1 2-year, 24 hour rainfall (in.)= 3.53 Time of Concentration - SW 1 Flow Average Vel.(V) Mannings Travel Time I,Path Length Type of Flow Slope (ft) (ft/ft) (ft/s) n (minutes) Segment AB 70.43 Sheet(unpaved) 0.105 0.15 0.4 8.0 Segment BC 520.22 Channel Flow 0.046 3.99 0.031 2.2 Total I 590.65 I I I I Tc=I 10.2 Flow Types A Sheet Flow Tt= [0.007 (nL)°81/[(P2)°5* (S)1341 B Shallow Concentrated Flow paved Tt= L/(60V) V=20.3282(S)112 unpaved Tt= L/(60V) V= 16.1345 (S)112 C Pipe Flow Tt= L/(60V) V= ((s)112(d)213)/8.9n D Channel Flow Tt= L/(60V) V= (1.49 (r)"' (s)"`)/n Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Time of Concentration Calculations (SCS Method) Hidden Estates Weddington, NC Time of Concentration - SW 2 2-year, 24 hour rainfall (in.)= 3.53 Time of Concentration - SW 2 Flow Average Vel.(V) Mannings Travel Time I,Path Length Type of Flow Slope (ft) (ft/ft) (ft/s) n (minutes) Segment AB 49.38 Channel Flow 0.198 8.31 0.031 0.1 Total I 49.38 I I I I Tc=I 0.1 Flow Types A Sheet Flow Tt= [0.007 (nL)0 8]/[(P2)°.5* (S)°.4] B Shallow Concentrated Flow paved Tt= L/(60V) V=20.3282(S)112 unpaved Tt= L/(60V) V= 16.1345 (S)112 C Pipe Flow Tt= L/(60V) V= ((s)1/2(d)213)/8.9n D Channel Flow Tt= L/(60V) V= (1.49 (r)"' (s)"`)/n Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Time of Concentration Calculations (SCS Method) Hidden Estates Weddington, NC Time of Concentration - SW 3 2-year, 24 hour rainfall (in.)= 3.53 Time of Concentration - SW 3 Flow Average Vel.(V) Mannings Travel Time Tc Path Length Type of Flow Slope (ft) (ft/ft) (ft/s) n (minutes) Segment AB 87.12 Sheet(unpaved) 0.105 0.15 0.4 9.4 Segment BC 405.13 Channel Flow 0.048 4.11 0.031 1.6 Total I 492.25 I I I I Tc=I 11.0 Flow Types A Sheet Flow Tt= [0.007 (nL)°81/[(P2)°5* (S)1341 B Shallow Concentrated Flow paved Tt= L/(60V) V=20.3282(S)112 unpaved Tt= L/(60V) V= 16.1345 (S)112 C Pipe Flow Tt= L/(60V) V= ((s)112(d)213)/8.9n D Channel Flow Tt= L/(60V) V= (1.49 (r)"' (s)"`)/n Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 EROSION CONTROL AND STORMWATER CALCULATIONS HIDDEN ESTATES APPENDIX A NOAA RAINFALL DATA 29589.0000 kr THOMAS & HUTTON Docusign Envelope ID:406FAA5D-4EE9-4B41-89F8-F8FCEE2BFED9 Precipitation Frequency Data Server NOAA Atlas 14,Volume 2,Version 3 "rt°` Location name: Matthews,North Carolina,USA* '�� ''`* ''54 Latitude:35.0208°, Longitude:-80.7218° none Elevation:669 ft**p fi *source:ESRI Maps i, e"T8°`' **source:USGS "`"'"`'� POINT PRECIPITATION FREQUENCY ESTIMATES G.M.Bonnin,D.Martin,B.Lin,T.Parzybok,M.Yekta,and D.Riley NOAA,National Weather Service,Silver Spring,Maryland PF tabular I PF graphical I Maps & aerials PF tabular PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour)1 Average recurrence interval(years) Duration - 1 2 5 10 25 50 100 200 500 1000 5-min 5.00 5.90 6.86 7.55 8.35 8.89 9.40 9.84 10.3 10.7 (4.61-5.42) (5.44-6.43) (6.30-7.46) (6.92-8.20) (7.62-9.05) (8.09-9.64) (8.50-10.2) (8.86-10.7) _(9.23-11.2) (9.48-11.7) 10-min 4.00 4.72 5.49 6.04 6.65 7.08 7.46 7.80 8.18 8.43 (3.68-4.34) (4.35-5.14) (5.05-5.98) (5.54-6.55) (6.07-7.21) (6.44-7.67) (6.75-8.08) (7.02-8.45) (7.30-8.89) (7.46-9.17) 15-min 3.33 3.96 4.63 5.09 5.62 5.98 6.29 6.56 6.87 7.06 (3.07-3.61) (3.65-4.31) (4.25-5.04) (4.67-5.53) (5.13-6.09) (5.43-6.48) (5.69-6.81) (5.90-7.11) (6.12-7.46) (6.24-7.68) 30-min 2.28 2.73 3.29 3.69 4.16 4.50 4.82 5.11 5.46 5.71 (2.10-2.48) (2.52-2.98) (3.02-3.58) (3.38-4.00) (3.80-4.51) (4.09-4.88) (4.36-5.22) (4.59-5.54) (4.87-5.93) (5.06-6.22) 60-min 1.42 1.72 2.11 2.40 2.77 3.05 3.32 3.58 3.92 4.17 (1.31-1.54) (1.58-1.87) (1.94-2.30) (2.20-2.61) (2.53-3.00) (2.77-3.30) (3.00-3.59) (3.22-3.88) (3.50-4.26) (3.69-4.54) 2-hr 0.823 0.995 1.23 1.42 1.65 1.83 2.01 2.18 2.42 2.60 (0.754-0.900) (0.912-1.09) (1.13-1.35) (1.29-1.55) (1.50-1.80) (1.65-1.99) (1.80-2.19) (1.95-2.38) (2.14-2.64)_ (2.28-2.84) 3-hr 0.582 0.702 0.876 1.01 1.19 1.34 1.48 1.63 1.84 2.00 (0.532-0.640) (0.643-0.772) (0.800-0.962) (0.921-1.11) (1.08-1.30) (1.20-1.46)_ (1.33-1.62) (1.45-1.78) (1.61-2.00) (1.73-2.18) 6-hr 0.351 0.423 0.528 0.610 0.723 0.812 0.904 0.999 1.13 1.24 (0.321-0.385) (0.387-0.464) (0.483-0.579) (0.557-0.668) (0.655-0.788) (0.732-0.885) (0.809-0.984) (0.886-1.09) (0.989-1.23) (1.07-1.34) 12-hr 0.206 0.248 0.311 0.362 0.432 0.489 0.548 0.610 0.697 0.767 (0.189-0.225) (0.228-0.273) (0.285-0.342) (0.330-0.396) (0.392-0.472) (0.440-0.533) (0.488-0.596) (0.537-0.663) (0.604-0.757) (0.656-0.834)I 24-hr 0.122 0.147 0.185 0.215 0.256 0.289 0.324 0.360 0.411 0.451 (0.113-0.132) (0.136-0.159) (0.171-0.200) (0.198-0.233) (0.235-0.277) (0.265-0.313) (0.296-0.351) (0.328-0.391) (0.371-0.446) (0.406-0.490) 2-day 0.071 0.086 0.108 0.125 0.148 ' 0.167 0.186 0.207 r 0.235 0.258 (0.066-0.077) (0.080-0.094) (0.100-0.117) (0.115-0.135) (0.136-0.160) (0.153-0.181) (0.170-0.202) (0.188-0.225) (0.212-0.256) (0.231-0.281) 3-day 0.050 0.061 0.075 0.087 0.103 0.116 0.130 0.144 0.163 0.179 (0.047-0.054) (0.056-0.066) (0.070-0.082) (0.080-0.094) (0.095-0.112) (0.107-0.126) (0.119-0.140) (0.131-0.156) (0.148-0.177) (0.161-0.195) 4-day 0.040 0.048 0.059 0.068 0.081 0.091 0.101 0.112 0.127 0.139 (0.037-0.043) (0.044-0.052) (0.055-0.064) (0.063-0.074) (0.074-0.087) (0.084-0.098) (0.093-0.109),(0.102-0.121) (0.116-0.138) (0.126-0.151) 7-day 0.026 0.031 0.038 0.044 0.052 0.058 0.064 0.071 0.080 0.087 (0.024-0.028) (0.029-0.034) (0.036-0.041) (0.041-0.047) (0.048-0.055) (0.053-0.062) (0.059-0.069) (0.065-0.076) (0.073-0.086) (0.080-0.094) 10-day 0.021 0.025 0.030 0.034 0.040 0.044 0.048 0.053 0.059 0.064 (0.020-0.022) (0.023-0.027) (0.028-0.032) (0.032-0.037) (0.037-0.042) (0.041-0.047) (0.045-0.052) (0.049-0.057) (0.054-0.064) (0.059-0.069) 20-day 0.014 0.016 0.019 0.022 0.025 0.028 0.030 0.033 0.036 0.039 (0.013-0.015) (0.015-0.017) (0.018-0.021) (0.020-0.023) (0.023-0.027) (0.026-0.030) (0.028-0.032) (0.031-0.035) (0.034-0.039) (0.036-0.042)1 30-day 0.011 0.013 0.015 0.017 0.020 0.021 0.023 0.025 0.027 0.029 (0.011-0.012) (0.012-0.014) (0.015-0.016) (0.016-0.018) (0.018-0.021) (0.020-0.023) (0.022-0.025) (0.023-0.026) (0.025-0.029) (0.027-0.031) 45-day 0.009 0.011 0.013 0.014 0.016 0.017 0.018 0.019 0.021 0.022 (0.009-0.010) (0.010-0.012) (0.012-0.013) (0.013-0.015) (0.015-0.016) (0.016-0.018) (0.017-0.019) (0.018-0.020) (0.020-0.022) (0.021-0.023) 60-day 0.008 0.010 0.011 0.012 0.013 0.014 0.015 0.016 0.018 0.018 (0.008-0.009) (0.009-0.010) (0.011-0.012) (0.011-0.013) (0.013-0.014) (0.014-0.015) (0.015-0.016) (0.015-0.017) (0.017-0.018) (0.017-0.019) 1 Precipitation frequency(PF)estimates in this table are based on frequency analysis of partial duration series(PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90%confidence interval.The probability that precipitation frequency estimates(for a given duration and average recurrence interval)will be greater than the upper bound(or less than the lower bound)is 5%.Estimates at upper bounds are not checked against probable maximum precipitation(PMP)estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Top PF graphical https://hdsc.nws.noaa.gov/pfds/pfds_printpage.html?lat=35.0208&Ion=-80.7218&data=intensity&units=english&series=pds 1/4