Loading...
HomeMy WebLinkAboutSW6240903_Soils/Geotechnical Report_20241002 Erik D. Severson, Ph.D., LSS 2714 Blaydon Dr. Raleigh, NC 27606 SEVERSON SOIL CONSULTING, PLLC 919-623-6175 seversonsoil@gmail.com Soil Permeability and SHWT Determinations for Stormwater BMP Design HWY 42 Storage Project Holly Springs, NC Harnett County PIN # 0646-10 - 0367 0646-10 -5632 Prepared for: Drew Stephenson, F&S Land Development LLC Prepared by: Erik Severson, Severson Soil Consulting, PLLC Report Date: 12/28/2023 SYNOPSIS This report shows the findings of a permeability study and seasonal high water table determinations (SHWT) for the referenced parcel in Harnett County, NC. Eight infiltration tests and eight SHWT determinations were performed. Rapid infiltration rates (1.15 to 6.7 inches/hour) corresponded with the sandy material. Low infiltration rates corresponded to the dense and firm sandy clay loam material (0.87 inches/hour). The SHWT was 36 to 72 inches below existing grade. Drew, this is a summary of my findings: Severson Soil Consulting, PLLC performed a permeability and seasonal high water table (SHTW) evaluation in the proposed stormwater BMP device at the referenced parcel (see figure 1 below). The site plan and field staked locations provided indicated the location and depth of soil borings. At the indicated locations, a representative soil morphology profile description was performed and the apparent water table and SHWT were observed. The purpose of this evaluation is to provide information for designing stormwater management devices. The following is a brief report of the methods utilized and the results obtained. 066 y`:. s ' M ' K 246 a-:{ ..il ��, ir°1:. 1 185 b ' 010 �* 15' ''''.�� ryF 713 ` ''' ram' 0 �' 44 vJN* --"�� E ,e, 183 ,4. 12903 jk o 2519 12685 -4,—' k4r . .- ll 12470 12500 12526 Q 2 274 q E;111. 12558Q nI: h 124561;i 4 24720 t • 2598 e I: j `' I ri► Ai A. _ Figure 1. Property Location. Harnett Co, GIS. Methods Site Description The 15-acre tract in Duncan, NC was near the Wake County line. The site was in an open farmed field that was adjacent to a railroad bed. Testing locations were in and adjacent to staked out areas near the entrance (figure 2). ; "71°,441.17 9 o it; 00, 9 • x 8. - © R01 IINSON • • t . Figure 2. Testing Locations (red dots) and numbers (yellow), OnX Hunt Application. Hand auger borings were used to evaluate soil conditions (texture, structure, depth, wetness condition, etc.) relative to the proposed stormwater device. Soil description techniques and estimated hydraulic conductivities were based on the NRCS Field Book for Describing and Sampling Soils, V 3.0 (2012). In-Situ testing was performed with the Johnson Permeameter following standard practices outlines in the instruction manual (Johnson Permeameter, LLC. 2012). The field saturated hydraulic conductivity (Kfs) value measured in the field represents a value for a specific time and location within the tested soil. Soil saturation and weather conditions were within acceptable parameters. Results Soil Descriptions Eight soil borings were advanced on the parcel. The soils at the testing site were derived from sandy Coastal Plain deposits and corresponded with the Fuquay and Pocalla soil series. In general, the soil profiles contained a loamy sand to sand surface and a sandy loam subsurface with an abrupt boundary to a limiting layer at varying depths. This sandy clay loam textured limiting layer was firm, dense in place, and contained prominent redoximorphic features. This layer was present at some depth in all of the profiles. The abrupt permeability contrast is the cause of water perching on this layer, which creates redoximorphic features. The observation of redoximorphic features were used as SHWT indicators. A soil profile description representative of site conditions is listed in table 1 below. Table 1. Representative Soil Profile Description Horizon Depth Color Texture Grade Structure Consistency Notes (in) (Matrix) Ap 0-8 10YR 5/2 sand Wk gr v. friable Plow layer E 8-25 2.5Y 6/4 sand wk gr v. friable Bt1 25-39 10YR 6/6 Loamy sand Wk gr v. friable Bt2 39-45 10YR 5/6 Sandy loam Wk sbk v. friable Btv 45-62 7.5YR 5/6 Sandy clay Wk sbk Firm, sticky SHWT 10YR 6/2 loam redox 2.5YR 4/8 plinthite Wk= weak; gr=granular, sbk= subangular blocky; sg= single grained; vfr= very friable, fr= friable Figure 3 on the next page shows a picture of horizons and their relative depths of the Fuquay soils. • �. t, 4 '- % 4. -, ' 0" yr .,, , „., , ,L- , _ i,5 r�l: i ; yg� M ., Sri' e ` '.~ t x;R ` 'ly i .T 1,. .:,,,,,,i, / .: , .tl t f,'� ` / \. `: r .: /..fir ,L. ,. ,._. ," . .• •_ j '''1. ....Stt • �- -,- `y� ,, �. w .' .i-•' ,. `y ry -.. ,- „ jf• fit `��, 9h :.•cT r•. • �'� F �.s lei 1. x. •s :f {{ r,/���'_ b �r f "�: .•�'�.' ,yp l� °V N. T' •<`J• s I• (�,Y7+.1'�; 4 -i .• • /�f� ^ ;AI *'•-• t.,..e..7oIl.k.. '.-?''...'.\1,Y... i...t4 r 1 rX .:„fc....;.. -4P'.-.- :.4„.3.._,'.,A.1"0 .,.t..'._;4•-:•;"-?‘;...... ,'.#,..,,','..',.'., ',.-0,•,,,1.4,,.-,.,v''l'4-i',.,'' ' ,I•,','''--t4i'—,••,-'' 4''—'s1,- - • t .ia` �• 1• .I J 1' r •.may 1' .,',., yf .*_/, 't / ..� ' 3 'ji.', +; 7 r-" t.4:R! .`� )f.,` L. C� ems •+ ? �'t "•T f 't 4 NIPIr t'r • ....•.'•.7,g.....,,.:,' ?1 {r.yam. a' ! J 1\ ,-...s fj t ' ,:ii i _ 1 `• - , _ ;i"__ b,_ ......_ .,,,'.4, . - t t 01: 7t,; . 4 K -' ~_i., 4r. + ` t .gyp :. , • 7'�.'��,... �•iy \ .� �i' i � ` ;✓' ,� •H fir. 4 l � •y ti' •}it fir'¢ av , j ` , .. `y' '1 r ,} s .R, ♦ s \- `. .� '. ,7. t Y t t. f •C 'ice' - A�•,.•. \ , ,L4ittobi?„ -'� ' :�'Af may_ u ' tI 1' � 1*4'�,j , y' ,f Yrt 4.. � •,�... �R• ....�Y '1 .r `', 1li. 1, f. . •a _ V ..4.- fir- 7, el . `+ ..f Figure 3. Representative soil profile of the Fuquay Soil Series. Seasonal High Water Table Depths The depth to seasonal high water tables (SHWT) were indicated by the redoximorphic features. Their depths ranged from (36-72 inches) within the testing area (Figure 4). The SHWT depth corresponded with the elevation at the site. The greater the elevation the deeper the depth to the SHWT. Additionally, the actual water table (free water) was encountered 50" and 56" below the existing land surface in holes 2 and 3, respectively. X 9 . 9 . „.._ __, 9 ,„ . 9 9 9 ,. _ 3• 44. .. L X =6 55 �1 ~ ` ` ✓ .: / 'r •i `,}' s . `. Figure 4. Testing Locations (red dots) and SHWT depths (yellow), 0nX Hunt Application. The estimated permeability of this loamy sand and sandy loam material was rapid. It was estimated to be slow in the confining layer (Btv). The following are the results of the hydraulic testing. The tests were performed 24" above the SHWT depths. Permeability and Infiltration Tests Test 1 Test depth: 31 inches SHWT depth: 55 inches Test duration: 24 minutes Texture: Loamy Sand Permeability: 6.7 inches per hour The raw data is presented in the field sheet below (Figure 5). Constant-Head Borehole Permeameter Test Solution:R.E.Glover(Deep WT or Impermeable Layer) File Name_.; GloverRE-deep-WT Project Name........: Hwy42 Storage Boring No • El Solution and Terminology(R.E.Glover solution)* Project No Duncan Investigators......: EDS IC,,,-Q[sinh'(H/r)-(r'/H'+1)s+r/H)/(2nH)[Basic Glover solution] Project Location...: Harnett Co Date • 12/20/23 IC,,,e=QV[sinh'(H/r)-(r'/H'+1)s.r/1-1)/(2nH')[Imp.-corrected] Boring Depth.........: 31(specify units) WCU Base Ht.h: 15.0 an."'" IC.,..:Saturated Hydraulic Conductivity @ base Tmp.Tr"C: 20 Boring Diameter..: 7.2 cm WCU Susp.Ht.5: 0.0 an Q:Rate of flow of water from the borehole Boring Radius r • 3.60 an Const.Wtr.Ht.H: 15.0 an H:Constant height of water in the borehole Soil/Water Tmp.T: 20'C H/r" 42 r:Radius of the cylindrical borehole Dyn.Visc.@ T • 0.001003 kg/ms Dyn.Vise.@ Te.: 0.001003 kg/ms V:Dynamic viscosity of water @ T"C/Dyn.Viso of water @ Ts"C VOLUME Volume Out TIME Interval Elapsed Time Flow Rate Q K,,,r Equivalent Values (m1) (ml) (h:mmas A/P) (hr:minsec) I (min) (ml/min) (Pm/sec) I (cm/sec) I (cm/day) I (in/lw) I (ff/day) 1,6401 9:43:00 AM 1,250 3901 9:44O0 AM 00100E 1.001 390.00' 61.9: 6.19E-03: 534.7 8.77 17.54 1,0001 2501_________9:45:00 AM 0:01:001 1.00 250.00 39.7: 3.97E-03. 342.7 5.62 1L24 �!.-._.-._._.-._.-..-.-360': 9:46O0 AM-._.-._.-._.__._00100': 1.OD1...-..-.-..-._.-._.-..-.-.360.00 57.1'......-..5.71E-03 493.6 8.10 16.19 300 340E 9:47O0 AM 00100E 1.001340.00 54.0 5.40E-03 466.1 7.65 15.29 0 300E 9:48O0 AM 0:01:001 1.001 300.00 47.6 4.76E-03 411.3 6.75 13.49 1,720 -1,7201 9:48:15 AM 0:00:15..............0.251.......................-6,880.00 -1091.7 -1.09E-01 -9,432.4 -154.73 -309.46 -._.-._.-._._.-._.-._.-..-._.........................._.-.....-.........-.....,._.-..-._.-._.-..-._.-._.-..-.....-..A J 1,320 400E 9:49O0 AM 0:00:45E 0.751 533.33 64.6 8.46E-03 731.2 11.99 23.99 900 4201 95000 AM 0513X0 L00! 420.00 66.6 6.66E-03 575.8 9.45 18.89 430 470E 953O0 AM 00100E 1.00 470.00 74.6 7.46E-03 644.4 1057 21.14 0: 4301 952:00 AM 0:0100 1.001 430.00 68.2 6.82E-03 589.5 9.67 19.34 .,.1,700' -1,700! 953:00 AM 0:01:001 1.001 -1,700.00 -269.8 -2.70E-02 -2,330.7 -38.23 -76.47 r.-..-.-..-._.-._...................................................................................._.-..-.-..-.....-..-...-.-..-..-.-..-._.-._.-..-.-..-._-..-.-..-.-..-..-.-..-.. 1430: 270E 954:00 AM 0O1O0 1.001 270.00 42.8 4.28E-03 3702 6.07 1214 1 106: 325E 955O0 AM 0:01:001 L00! 325.00 51.6 5.16E-03 445.6 7.31 14.62 920: 185E 956:00 AM 0:01:00 1.00 185.00 29.4 2.94E-03 253.6 4.16 8.32 750: 1701 957O0 AM 0:01:0011.00':. 170.00 27.0 2.70E-03 233.1 3.82 7.65 350, 4001 95800 AM 0:01:001_______1.00i 400.00 .............63:5.........._6.35E-03..-.-..-._.-..-.-._5'8.4..-._.-._.-..-._.-._.-._9. -..-.-..-.__17.99 -._.-._.-._._.-._.-._.-..-._.-..-.-.0..-._.-..-._.-._.-..-.- E_-.-..-._.-._.-..-.-959O0 AM 0:01:001 1.00 .-..-.-..-._.-._.-..-.-350.00.....-. 55.5 5.55E-03 479.8 7.87 15.74 1 1,700 -1,700E 30O0O0 AM 00100E 1.00! -1,700.00 -269.8 -2.70E-02 -2,330.7 -38.23 -76.47 1,400 300E 10O1O0 AM 00100E 1.00 300.00 47.6 4.76E-03 411.3 6.75 13.49 1,115 285 30O2O0 AM OO1O01 1.00! 285.00 452 4.52E-03 390.7 6.41 12.82 -'-'-r'' ._.-._......................._.-._._.-._.-._._-._.-.....-..-.-..-._...-._.-._.-..-.-..-.-..-..-...-._.-._.-..-._.-._.-..-.-..-....-..-.-..-.................... 825; 290E 30O3O0 AM OOlODE 1.O01 290.00 46.0 4.60E-03 397.E 652 13.04 5101 3151 10:04:00 AM 00100E L00! 315.00 50.0 5.00E-03 4319 7.08 14.17 Natural MoisNe»..»..: moist Consistency Totalv.friable To Time Enter K..Value:; 6.7 n/Hr USDA TXt./USCS Class: Loamy Sand _Water Table Depth...: 55 (min) Struct./%Pass.4200..: gr Init.Saturation lime.: 9:4000 AM 21.00 'Glover,R.E.1953.Flow from a test-hole located above groundwater level.pp.69-71.in:Theory and Problems of Water Percolation.(C.N.Zanger.ed.).USBR.The condition for thissolution existswhen the distance from the bottom of the borehole to the water table or an impermeable layer is a2X the depth of the water in the borehole."H/r e5 to 510."'JP-Ml:h=15cm,JP-M2:h=10cm.Johnson Perm.,LLC.Rey.7/07/2015 Figure 5. Copy of Johnsonmeter Field Sheet for Test Location 1. Test 2 Test depth: 21 inches SHWT depth: 45 inches Test duration: 35 minutes Texture: Loamy Sand Permeability: 3.1 inches per hour The raw data is presented in the field sheet below (Figure 6). Constant-Head Borehole Permeameter Test Solution:R.E.Glover(Deep WT or Impermeable Layer) !File Name.....: GloverRE-deep-WT Project Name......_: Hwy 42 Storage Boring No • K2 Solution and Terminology(R.E.Glover solution). Project No Duncan Investigators.....: EDS Ko,-Q[Binh'(H/r)-(rt/H'+1)'+r/H]/(2ttH')[Basic Glover solution] Project Location...: Harnett Co Date • 12/20/23 K,,,.=QV[Binht(H/r)-(r'/H'+1)'+r/H]/(2nH')[Tmp.-corrected] Boring Depth.........: 21(Specify units) WCU Base lit.h: 15.0 an... Ka,.:Saturated Hydraulic Conductivity @ base Tmp.T."C: 20 Boring Diameter..: 7.2 an WCU Susp.Ht.S: 0.0 an Q:Rate of flow of water from the borehole Boring Radius r..._: 3.60 an Const.Wtr.lit.H: 15.0 an H:Constant height of water in the borehole Soil/Water Tmp.T: 20"C H/r••..............._.: 4.2 r:Radius of the cylindrical borehole Dyn.Visc.ti,T • 0.001003 kg/ms Dyn.Visc.CA To.: 0.001003 kg/ors V:Dynamic viscosity of water old T"C/Dyn.Visc.of water G.T."C VOLUME Volume Out TIME Interval Elapsed Time Flow Rate Q K„io,Equivalent Values (ml) (ml) (h:mmss A/P) (hrmin:sec) I (min) (ml/min) (Nm/sec) I (cm/sec) I (cm/day) I ([n/hr) I (H/day) 1,750 10:44:00 AM 1,630! 1201 10:45:00 AM 001:00 1.00 120.00 _____19.0___1.90E-031 164.5___________2.70 5.40 1, ..-._.-..-._.-..-.-..-..i .-.-..-._.-..-._.-.10:4600 AM..-._.-..-._.-..-._.OU1.UD;.-._.-..-._.-..-1.00~.-._.-..-._.-..-._.-..-.130.00) 20.6) 2.06E-031._...............1782 2.92) 5.85 1,360i 140. 10:47O0 AM! OO1O01 1.001 140.00i 22.2i 2.22E-03i 1919 3.15! 6.30 1,2151 145 10:48OO AM! 0-0100 1.00) 145.001 23.01 2.30E-03 198.8 3.26 652 1,060i 155i 10:49:00 AM OOlO0i 1.00i 155.00I 24.61 2.46E-03i 2123 3.491_____6.97 9001-._.-._._.-._._.-._.-..-._.-..-. ..-._.-..-._.-..-.-..-.i ;.-..-._.-._._.-.105000AM..-._._.-._.-..-._.OUl.'OD;.-._._.-._.-..-1.ODp..-._.-..-._._.-._.-..-..160.00i._.-._.-..-_25.41 254E-031 219.4 .-..-._.-._._.-._.-..-3.601 7.20 7401 160i 1051O0 AM 0-0100' 1.001 160.00i 25.41 254E-031 219.4 3.601 7.20 5601 180).. 1052:00 AM! 0:01:00. 1.00 180.001 28.6i 2.86E-031 246.8 4.051 8.10 400i 160i 1053O0 AM OOlO0i 1.00'; 160.00i 25.4i 2.54E-031 219.4 3.60! 7.20 -._.-._._.-._._.-._.-..-._.-..-.Z .............ire...-..-._.-._._.-.105400 AM..-._._.-._.-..-._.001.OD!.-._._.-.-..-.....l.0Di.-._._.-._.-..-._.-..-.160.00i.-..-.....-.......25.4!-.....-2.54E-03 .-..-._._.-._.-219.4 .-..-._.-._._.-._.-..-3.60i.-..-.-..-._.720 401 01 240i 1055O0 AM OO1:O0 1.00 240.001 38.1i 3.81E-03i 329.0 5.40i 10.80 1,7001 -1,7001 1056OO AM! 0-0100 1.001 -1,700.00i -269.8j -2.70E-02i -2,330.7 -36.231 -76.47 600! 1,100i 11:00:00 AM 0:04:001 4.001 275.001 43.6! 4.36E-03i 377.0 6.18! 1237 -._.-._._.-._._.-._.-..-._.-._. ..-._.-..-._.-..-._.-.i .-.-..-._.-._._.-.110100 AM .-._._.-._.-..-._.O91.00,-._.-..-._.-..-1.00 .-._.-..-._.-..-._.-..-.160.00._.-._.-..-_25.4) 254E-031 219.4 .-._._.-._.-..-._.-..-3.60i.-..-._.-._.7.20 28O1 160 11O2O0 AM 05100 1.00i 160.00j 25.41 254E-03i 219.4 3.60i 7.20 1201 160 11:03:00 AM! 0O1:00i 1.00 160.00 25.4 2.54E-03i 219.4 3.60i 7.20 17501 -1,630 11:04O0 AM 0O1:001 1.00! -1,630.00 -258.61 -2.59E-021 -2,234.7 -36.661 -73.32 1,615! 135, 11-05O0 AM! OO1.O01 1.001 135.001. 2141 2.14E-031 185.1 3.04i 6.07 1,4951 120. 11O6-00 AM i 0-0100 1.00 120.00? 19.01 1.90E-03? 1645 2.70i 5.40 1,3551 140 11O7O0 AMi 0-0100 1.00 140.001 2221 2.22E-03i 1919 3.15i 6.30 560i 795. 11:12O0 AM OOSOOi 5.00) 159.00i 25.2! 2.52E-03iI 218.0 3581 7.15 _ 01 5601 11:16O0 AM! 03000) 4.00! 140.00j 2221 222E-031 19L9 3.151 6.30 Natural Moisture........: moist Consistency...............: v.friable Total Time Enter lc,.Value:) i 1 13.1 in/hr USDA Txt./USCS Class: Loamy Sand _Water Table Depth...: 45 (min) Stmct./%Pass.a200..: gr Init.Saturation Time.: 10:4000 AM 32.00 'Glover,R.E.1953.Flow from a test-hole located above groundwater level.pp.69-71.in:Theory and Problems of Water Percolation.(C.N.Zanger.ed.).USSR.The condition for this solution exists when the distancefrom the bottom of the borehole to the water table or an impermiable layer is 221(the depth of the water in the borehole...H/raSto510."'1P411:h=15cm,JP-M2:h=10cm.Johnson Perm.,LLC.Rey.7/07/2015 Figure 6. Copy of Johnsonmeter Field Sheet for Test Location 2. Test 3 Test depth: 25 inches SHWT depth: 49 inches Test duration: 38 minutes Texture: Loamy Sand Permeability: 2.25 inches per hour The raw data is presented in the field sheet below (Figure 7). Constant-Head Borehole Permeameter Test Solution:R.E.Glover(Deep WT or Impermeable Layer) File Name_..: GloverRE-deep-WT Project Name • Hwy42 Storage Boring No • K3 Solution and Terminology(R.E.Glover solution)" Project No Duncan Investigators.....: EDS K,,,=Q[Binh'(H/r)-(r'/H'+1)s+r/H)/(2nH')[Basic Glover solution] Project Location...: Harnett Co Date • 12/20/23 K,,,r=QV[sinh'(H/r)-(r'/H'.1)s.r/H]/(23tH)[1'mp.-corrected] Boring Depth.........: 21(Specify units) WCU Base Ht.h: 15.0 cm."'" K,,e:Saturated Hydraulic Conductivity @ base Tmp.T."C: 20 Boring Diameter..: 7.2 art WCU Stop.Ht.5: 0.0 an Q:Rate of flow of water from the borehole Boring Radius r • 3.60 an Const.Wtr.Ht.H: 15.0 an H:Constant height of water in the borehole Soil/Water Tmp.T: 20•C H/r••..................: 4.2 r:Radius of the cylindrical borehole Dyn.Visc.@ T • 0.001003 kg/ms Dyn.Visc.@ T..: 0.001003 kg/ms V:Dynamic viscosity of water @ T'•C/Dyn.Visc.of water @ T."C VOLUME Volume Out TIME Interval Elapsed Time Flow Rate Q K,„,Equivalent Values (ml) (m0 (h:mmssA/P) (hr:minsec) I (min) (ml/min) (Pm/sec) 1 (cm/set) I Icm/day) I (il/llr) 1 Ift/day) 1,725 1127:00 AM 1,650 75' 1118:00 AM 0O100 1.00175.00 11.9: 1.19E-03 102.8 1.69 3.37 1,580 70 1129O0 AM 00100 1.00170.00 11.1; 1.11E-03 96.0 1.57, 3.15 1,510 70. 11:30:00 AM 0:01O0 1.00). 70.00 11.1 1.11E-03 96.0 1.57. 3.15 1,440 70: 11:31O0 AM 00100 1.00E 70.00 1L1 1.11E-03 96.0 1.57: 3.15 1,370 70: 11:32O0 AM 00100 1.00170.00 1L1 1.11E-03 96.0 1.57 3.15 1,300 70; 11:33O0 AM 001001 1.001 70.00 11.1 1.11E-03 96.0 1.57 3.15 1,210 90' 11:34O0 AM 0O1O0____ 1.03190.00 14.3 1.43E-03 123.4 2.02 4.05 1,130.._.._._._._._._._._.__ ._._.._._._._._..-'11:3500 AM 001001: 1.00'.._.._._.._._._._._.._._._80.00 12.7 1.27E-03.._._._._._._._..109.7.._._._._._.._._._._._..-1.�_.._._._._._..3.60 80 960 170. 11:36O0 AM 001001 1.00E 170.00 27.0 2.70E-03 233.1 3.82 7.65 870 90: 11:3700 AM 00100 1.001 90.00 14.3 1.43E-03 123.4 2.02 4.05 780 90: 1138O0 AM OOlO0i 1.OD 90.00 14.3 1.43E-03 123.4 2.02 4.05 685 95 11:3900 AM 001:001 1.00 95.00 15.1 1.51E-03 130.2 2.14 4.27 580 105- 11:40O0 AM 00100 LODE 105.00 16.7 1.67E-03 144.0 2.36 4.72 480 100 11:41O0 AM 001001 LOOT 100.00 15.9 1.59E-03 137.1 225 4.50 380 100 11:42O0 AM 00100 LOOTF. 100.00 15.9 1.59E-03 137.1 2.25 4.50 280 100 11:43O0 AM 00100 1.O01 100.00 15.9 1.59E-03 137.1 225 450 ._._.._r._._._.._._._._._.._._._._._.._._..._._._._._._................................._..._._._._._.._._.._._._.._..._._.._.._._.._._._._._.._._.._.__.._._.._._._.._._.._.. 180 100 11:4400 AM 00100 1.001 100.00 15.9 159E-03 137.1 225 450 .._80..............................100........._.....-.-.-.._11:45O0 AM.-.-.-.-.._.............._00100..-.-..-.-.._......-1.001...-........._.-..-..-.-..-.-..100.00......................-15.9-.-..__159E-03..-.....-................137.1.................-..-.-..-..-.-._225...................-_450 -.-..-._.-..-.-..-._..............1,700 -1,620 11:46O0 AM OOlOD 1.001 -1620.00 -257.1 -257E-02 -2,221.0 -36.43 -72.87 1,415 285 11:49O0 AM 00300 3.00 95.00 15.1 151E-03 130.2 2.14 427 1,115 300 1152:00 AM 0:0300 3.001 100.00 15.9 159E-03 137.1 215 450 r._._._.._._._._....................._.._._._._._._._._._._._._.._._.._._.._.._..._._.._._._.._._.._....._.._..._._._._._.._._._._._.._._._.__._._._._._._._.._.. 0 1,115 120300 PM 0:11001 11.00E 101.36 16.1 L61E-03 139.0 228 4.56 Natural Moisture__._ moist Consistency • v.friable Total rime Enter IL,,,..Value:1 2.25 il/hr USDA Tot./USCS Class: Loamy Sand Water Table Depth...: 49 (min) Struct./%Pass.X200_: gr Init.Saturation Time.: 11:25O0 AM 36.00 'Glover,R.E.1953.Flow from a test-hole located above groundwater level.pp.69-71.in:Theory and Problems of Water Percolation.(C.N.Zanger.,d.).USBR.The condition for this solution exists when the distance from the bottom of the borehole to the water table or an im perm iable layer is 22X the depth of the water in the borehole...N/r 25 to 510."'1P.M1:h=15cm,JP-M2:h=10cm.Johnson Perm.,LLC.Rev.7/07/2015 Figure 7. Copy of Johnsonmeter Field Sheet for Test Location 3. Test 4 Test depth: 32 inches SHWT depth: 56 inches Test duration: 30 minutes Texture: Loamy Sand Permeability: 5.75 inches per hour The raw data is presented in the field sheet below (Figure 8). Constant-Head Borehole Permeameter Test Solution:R.E.Glover(Deep WT or Impermeable Layer) I File Name.....: GloverRE-deep-WT Project Name......_: Hwy 42 Storage Boring No • K4 Solution and Terminology(R.E.Gbver solution). Project No Duncan Investigators.....: EDS Ker-Q[Binh'(H/r)-(r=/H'+1)'+r/H]/(2tt&)[Basic Glover solution] Project Location...: Harnett Co Date • 12/20/23 K,,,.=QV[sinht(H/r)-Ir'/H'.1)'+r/H]/(2itH')[Tmp.-corrected] Boring Depth.........: 21(Specify units) WCU Base Ht.h: 15.0 cm... Ka,.:Saturated Hydraulic Conductivity 0)base Tmp.T."C: 20 Boring Diameter..: 7.2 an WCU Susp.Ht.S: 0.0 an Q:Rate of flow of water from the borehole Boring Radius r..._: 3.60 an Const.Wtr.Ht.H: 15.0 cm H:Constant height of water in the borehole Soil/Water Tmp.T: 20 Y H/r••..............._.: 4.2 r:Radius of the cylindrical borehole Dyn.Visc.CD T • 0.001003 kg/ms Dyn.Visc.@ To.: 0.001003 mz V:Dynamic viscosity of water old T"C/Dyn.Visc.of water @ T."C VOLUME Volume Out TIME Interval Elapsed Time Flow Rate Q K„..Equivalent Values----- (ml) (ml) (h:mmasA/P) (hrmin:sec) I (min) (ml/min) (Pm/sec) I (cm/sec) I (cm/day) I (in/hr) I (ft/day) 1,700 12:23:00 PM; 1,400 300 1224:00 PM 0:01:00 1.001__________300.001 47.6; 4.76E-03; 411.3 6.75; 13.49 1,1 -..-._.-..-._.-..-.-..-..300~.-..-._.-..-._.-_1225UO PM E..-..-.-..-._.-..-._.O01.0D1.-._.-..-._.-..-1.00I- 300.00) 47.6i 4.76E-031._.-..-.-..-._.-411.3 .-..-._.-._._.-._.-..-6.75:.............13.49 00 1 800 300; 122600 PM; 00100; 1.00; 300.00; 47.6i 4.76E-03; 411.3 6.75; 13.49 500 300 122700 PMi 0:01:00 1.00 300.00; 47.6i 4.76E-03 411.3 6.75 13.49 200 300; 122800 PM; O01O0) 1.00'; 300.00i 47.6; 4.76E-03;_____ 411.3__________ 6.75; 13.49 -._.-._._.-._._.-._.-..-.-..-.1,670 -1,470~.-..-._.-._._.-.122900 PM...-._._.-._.-..-._.OUl.'ODi..-._._.-._.-..-1.ODp..-._.-..-._._.-._.-_.1,470.00;.-..-._.-..-233.3i -2.33E-02; -2,015.3 -33.06;.-..-.-..-.-66.12 1. 1. 1,400 270; 1210:00 PM; 00100; 1.00; 270.00i 428; 428E-03. 3702 6.07. 1214 1,100 300i 12:31:00 PM; 00100; 1.00 300.001 47.6; 4.76E-03; 411.3 6.75; 13.49 860 240; 12:3200 PM; 0O100i 1.00; 240.001 38.1; 3.81E-03; 329.0 5.40; 10.80 ...............5 _.-._.-._._.-..-.....-..Z ;.-..-._.-._._.-_12:3300 PM;.-._._.-._.-..-._.O01.0D1.-._._.-.-..-.....100 .-._._.-._.-..-.-..-......270.00;..-..-.....-..-...42.8I 426E-03;._.-._._.-..-.-370.2-..-..-._.-._._.-._.-..-6.07;..-..-.-..-....12.14 90 70 320 270; 12:3400 PM; 00100 1.00; 270.00i 428; 428E-031 370.2 6.07. 12.14 SO 270; 12:3500 PM; 00100 1.00; 270.001 42.81 4.28E-031 370.2 6.07; 12.14 -._.-._._.-._._.-._.-..-._.-.1,730-..-._.-..-._.-._._-1,68,-.-..-._.-._._.-_12:3600 PM; 0O1:00i 1.001 -1,680.00 -266.6; -2.67E-02; --2,303.3 -37.78; -7557 _ ~ _ _ _690 tool 32:4000 PM 00400' 4.00 260.00 41_31 4.13E-03 i 3565 5.85.-..-.-..-._11.69 O 690; 12:42:45 PMi 002:45 2.75; 250911 39.8; 3.98E-03, 344.0 5.64. 1L29 1,750 -1,750 12:43O0 PM; 00015. 0.251 -7,000.001 -1110.81 -1.11E-011 -9,596.9 -157.431 -314.86 1,590 160; 12:4T00 PM; 00100; 1.00) 160.00; 25.4; 2.54E-03; 219.4 3.60; 7.20 O 15991. 1250:0 PMi 011600. 6.00 265.00! •42.O. 420E-03. 363.3 5:96. 11.92 Natural Moisture........: moist Consistency v.friable Total Time Enter Value:; ; ; 15.7Si USDA Txt./USCS Class: Loamy Sand _Water Table Depth...: 56 (ma) Stnct./%Pass.4200..: gr Init.Saturation Time.: 12:2000 PM 27.00 'Glover,R.5.1953.Flow from a test-hole located above groundwater level.pp.69-71.in:Theory and Problems of Water Percolation.(C.N.Zanger.ed.).U58R.The condition for this solution exists when the distancefrom the bottom of the borehole to the water table or an impermiable layer is 221(the depth of the water in the borehole...H/raS tos10."'1P-.11:h=15cm,JP-M2:h=10cm.Johnson Perm.,LLC.Rev.7/07/2015 Figure 8. Copy of Johnsonmeter Field Sheet for Test Location 4. Test 5 Test depth: 48 inches SHWT depth: 72 inches Test duration: 132 minutes Texture: Sandy Clay Loam Permeability: 0.87 inches per hour The raw data is presented in the field sheet below (Figure 9). Constant-Head Borehole Permeameter Test Solution:R.E.Glover(Deep WT or Impermeable Layer) !File Name--: GloverRE-deep-WT Project Name Hwy 42 Storage Boring No • K5 Solution and Terminology(R.E.Glover solution)* Project No Duncan Investigators • EDS 1C,=Q[Binh'(H/r)-(r'/H'+1)'*r/H]/(2nH')[Basic Glover solution] Project Location...: Harnett Co Date • 12/20/23 Katrt QV(sinh'(H/r)-(r'/H'+1)' /H]/(2nH')[Imp.-corrected] Boring Depth • 48(Specify units) WCU Base Ht.h: 15.0 cm*** Ka,a:Saturated Hydraulic Conductivity 0+base Tmp.T.°C: 20 Boring Diameter...: 7.2 cm WCU Susp.lit.5: 0.0 cm Q:Rate of flow of water from the borehole Boring Radius r • 3.60 cm Const.Wtr.lit.H: 15.0 cm H:Constant height of water in the borehole Soil/Water Tmp.T: 20'C H/r" 4.2 r:Radius of the cylindrical borehole Dyn.Visc.@ T......: 0.001003 kg/ms Dyn.Visc.@ Ta.: 0.001003 kg/m-s V:Dynamic viscosity of water @ T"C/Dyn.Visc.of water @ T.°C VOLUME Volume Out TIME Interval Elapsed Time Flow Rate Q Ica.Equivalent Values (m1) (ml) (h:mmss A/P) (hr:min:sec) 1 (mil) (ml/min) (pm/sec) 1 (cm/sec) 1 (cm/day) 1 (in/hr) 1 [GAMY) 2,050 12:17:00 PM -._.-._.-._.-._.-._.-.-.-..-.1.240_.-..-.-..-. 810 12:3700 PM i 020:001 20.001. 4050 6.4 6.43E-04' 555 0.91: 1.82 900 3401 12:47:00 PM 0:10:00! 10.00 ....-...._34.00 5.4.-..-...5.40E-04-..-...................46.6._.-._.-..-.-..-.-..-._.0.76.-..-.-..-.-..-153 90 810' 1:1100 PM 02400 24.00). 33.75 5.4 5.36E-04 46.3 0.76 152 2,030 -1,940 1:1400 PM: 00300 3.00 -646.67 -102.6 -1.03E-02 -886.6 -14.54 -29.09 670 1,360 1:50-00 PM' 9-0:36:08i 36.001 37.78 6.0 5.99E-04 51.8 0.85 1.70 01 670 20700 PM I 0:17:001. 17.00j 39.411 6.3 625E-04 54.0 0.89 1.77 820 -8201 2:10:00 PM .,.-,..,.-(I030O! 3.001 -273.33 -43.4 3.34E-03 -374.7 -6.15 -1229 -.-..-._.-._.-._.-._...............120.-..-.-..-.-..-.-..-.-..-.7001..-.-..-.-..-._.-..-22600 PMi.-.....-..-.-. 0:16:00�.-..-.-..-.-..-16.00!.-..-.-..-.-..-._.-..-.-..-_43.75..-._.-..-.-..-.-.69.-..-...6.94E-04-..-.-..-..-.-..-.-..-60.0.-..-..-.-..-.-..-.-..-.-..0.98.-..-.-..-.-..-_197 0......................._1201 -.-.-.-.-.-..-...._22900 PM'...-.....-.....-..............00300«.-..-.-..-........._33.00.-.-..-.-..-.-..-.....-..........._40.00 6.3 6.35E-04-..-.....-.....-........._54:8-.....-.....-..-.-..-..........._0:90..-..-.-..-.-..-_1_80 i i . Natural Moisture__=: moist Consistency.-..-...: ,firm Total Tune Enter K,r Value:; i I i 0.d7 in/hr USDA Tnt./USCS Class: Sandy Clay Loam Water Table Depth...: 72 (min) Struct./%Pass.p200..: gr Init.Saturation Time.: 12:2000 PM 132.00 'Glover,R.E.1953.Flow from a test-hole located above groundwater level.pp.69-71.in:Theory and Problems of Water Percolation.(C.N.Zanger.ed.).USER.The condition for this solution exists when the distance from the bottom of the borehole to the water table or an impermiabia layer is 22K the depth of the water in the borehole.•'H/r25 to510."'1P-M1:h=15cm,JP-MZ:h=10cm.Johnson Perm.,LLC.Rev.7/07/2015 Figure 9. Copy of Johnsonmeter Field Sheet for Test Location 5. Test 6 Test depth: 16 inches SHWT depth: 40 inches Test duration: 25 minutes Texture: sand Permeability: 6.2 inches per hour The raw data is presented in the field sheet below (Figure 10). Constant-Head Borehole Permeameter Test Solution:R.E.Glover(Deep WT or Impermeable Layer) 'File Name--; GloverRE-deep-WT Project Name • Hwy 42 Storage Boring No • K6 Solution and Terminology(R.E.Glover solution)• Project No Duncan Investigators • EDS K,,,=Q[sinh'(H/r)-(r'/H'.1).•r/H1/(21tH)[Basic Glover solution] Project Location...: Harnett Co Date • 12/20/23 Km=QV[sinh(H/r)-(r/H'F1)'r.r/H]/(2nH')[Tmp.-corrected] Boring Depth • 16(Specify waits) WCU Base Ht.h: 15.0 cm••• Ka,a:Saturated Hydraulic Conductivity @ base Tmp.T."C: 20 Boring Diameter..: 71 cm WCU Susp.Ht.S: 0.0 cm Q Rate of flow of water from the borehole Boring Radius r • 3.60 cm Canst.Wtr.Ht.H: 15.0 cm H:Constant height of water in the borehole Soil/Water Tmp.T: 20'C H/r'•..._........__: 4.2 r:Radius of the cylindrical borehole Dyn.Visc.tb T 0.001003 kg/ms Dyn.Visc.@ Ta.: 0.001003 kg/m•s V:Dynamic viscosity of water @ T"C/Dyn.Visc.of water @ Ts"C VOLUME Volume Out TIME Interval Elapsed Time Flow Rate 0 K,,,a Equivalent Values (ml) (ml) (h:mmss A/% (hr:min:sec) I (min) (ml/min) ((im/sec) I (cm/sec) I (cm/day) I (in/br) I (ft/day) 1,700 1 1:24:00 PM 1,450 2501 12700 PM 003:00 3.001 83.33 132 1.32E-03 11411 1.87 3.75 1,100 3501 11800 PM 00100 1.001 350.00 555 5.55E-03 479.8i. 7.87 15.74 1,000 10011:29:00 PM 00100 1.00 100.00 15.9 1.59E-03 137.11 225 4.50 690 .3101 1:3000 PM 00100 1.001 310.00 49.2 4.92E-03 425.0i 6.97 13.94 __._._.-._.-._._.-._.-..-._.-..-._.-.-._.-._._.-._.-..-. t-._._.-._._.-._.............................._.-._._.-._._.-..-.-..-..........._.-._._.-..-.-..-.....-P-.....-..-._.-._.-..-..-.-..-.....-..-._-..-.-..-..-.-..-._.-..._.-..-.....-.........-....-..-..-.-..-._.-..-.....-.......-.....-..-._.-..-._.-._._.-._.-.-._.-..-.................... 400 290, 1:31O0 PM 00100 1.001 290.00 46.0 4.60E-03 397.61 6.52 13.04 60 340? 1:32O0 PM 001001 1.001 340.00 54.0 5.40E-03 466.117.65 15.29 1,740 -1,6801 1:33O0 PM 0:01:01/1, 1.001 -1,680.00 -266.6 -267E-02 -2,303.31 -37.78 -7557 1,540 2001 1:3400 PM 091001 1.001 200.00 3L7 3.17E-03 27411 4.50 9.00 __._._.-._.-._._.-._._.-._.-..-._. .-..-._.-..-. -._._.-._.-..-._.-..-._.................._.__._.-._._.-._._.-._.-...._.-._._.-._.-..-._.-4-._.-._._.-._._.-._.-..-._.-..-._-._._.-._._.-._.-..._.-..-.-..-..-.-..-._-..-._.-..-._.-..-.-..-..-._.-._._.-._.-._._.-..-.-..-._.-.-._.-..-._.-..-._.-.. 1,250 290 1:3500 PM 00100 1.001 290.00 46.0 4.60E-03 397.6 652 13.04 950 3001 1:3600 PM 0:01:001 1.00; 300.00 47.6 4.76E-03 41L3 6.75 13.49 660 290. 1:37:00 PM 0.02001 1.001 290.00 46.0 4.60E-03 397.6 652 13.04 360 3001 13600 PM 0:01:0011.001 300.00 47.6 4.76E-03 411.3 6.75 13.49 __._._.-._.-._._...................._.-.-._.-..-.-..-..-.-..-.....-..-.-P-._._.-._.-..-._.-..-.-..-.........-........-._.-._._.-..-.-..-.....-..-.....-...._.-._.-..-..-.-..-.....-P-._.-..-._.-._.-..-..-.-..-..-.-..-._-..-._.-._._.-._.-..._.-..-.....-..-.-..-..--..-._.-..-._.-..-.-..-..-.-.-._.-..-._.-..-._.-..-._.-._._-._.-..-.....-.........-.. 80 280 1:3900 PM 001001 1.001 280.00 44.4 4.44E-03 383.9 6.30 12.59 1,700 -1,6201 1:40:00 PM 001001 1.001 -1,620.00 -257.1 -2.57E-02 -2,221.0 -36.43 -72.87 1,400 300i 1:41:00 PM 001001 1.00 300.00 47.6 4.76E-03 411.3 6.75 13.49 1,115 2851 1:4200 PM 0U1O01 1.001 285.00 45.2 4.52E-03 390.7 6.41 12.82 1 -..-..-.-..-._.-..-.....-..-.-.-._.-..-._.-..-._.-..-.....-........-.....-..-.....-..-......... 995 120 1:43O0 PM 00100 1.00 120.00 19.0 1.90E-03 1645 2.70 5.40 645 350 1:4400 PM 001001 1.00i 350.00 55.5 5.55E-03 479.8 7.87 15.74 345 300 1:45O0 PM 001001 1.00 300.00 47.6 4.76E-03 411.3 6.75 13.49 50 2951 1:46:00 PM 001001 1.001 295.00 46.8 4.68E-03 404.4 6.63 13.27 Natural Moisture__._: moist Consistency vfr Total Time Enter Ku,.Value:! 1 l 162 in/M 1 USDATxt,/USCS Class: sand Water Table Depth...: 40 (min) Struct./%Pass.ft200..: gr Init.Saturation Time.: 1:2000 AM 22.00 'Glover,R.E.1953.Flow from a test-hole located above groundwater level.pp.69-71.in:Theory and Problems of Water Percolation.(C.N.Zanger.ed.).USBR.The condition for this solution exists when the distance from the bottom of the borehole to the water table or an impermiable layer is 32%the depth of the water in the borehole."H/r65 to s10."'JP-M1.:h=15cm,JP-M2:h=10cm.Johnson Perm.,LLC.Rev.7/07/2015 Figure 10. Copy of Johnsonmeter Field Sheet for Test Location 6. Test 7 Test depth: 12 inches SHWT depth: 36 inches Test duration: 29 minutes Texture: sand Permeability: 4.78 inches per hour The raw data is presented in the field sheet below (Figure 11). Constant-Head Borehole Permeameter Test Solution:R.E.Glover(Deep WT or Impermeable Layer) (File Name.....: GloverRE-deep-WT Project Name • Hwy 42 Storage Boring No • K7 Solution and Terminology(R.E.Glover solution). Project No Duncan Investigators • EDS 1(,,,=Q[sinh'(H/r)-(ra/H'•1)s•r/H]/(211H)[Basic Glover solution] Project Location...: Harnett Co Date • 12/20/23 K=,.=QV[sinht(H/r)-(r/H'+1)s•r/H]/(2n1-12)[Tmp.-corrected] Boring Depth • 12(Specify units) WCU Base Ht.h: 15.0 cm'''. Kv,e:Saturated Hydraulic Conductivity @ base Tmp.T."C: 20 Boring Diameter..: 7.2 an WCU Susp.lit.S: 0.0 an Q Rate of flow of water from the borehole Boring Radius r..._: 3.60 an Const.Wtr.Ht.H: 15.0 an H:Constant height of water in the borehole Soil/Water imp.T: 20'C H/r'• 4.2 r:Radius of the cylindrical borehole Dyn.Visc.@ T......: 0.001003 kg/ms Dyn.Visc.@ T,.: 0.001003 kg/m•s V:Dynamic viscosity of water @ T"C/Dyn.Visc.of water @ Tr"C VOLUME Volume Out TIME Interval Elapsed Time Flow Rate Cl _ K...Equivalent Values (mil (ml) (h:mmss A/P) (hr:min:sec) I (min) (ml/min) (pm/sec) I (cm/set) I (cm/day) I (in/hd I (tt/day) 1,720I 15900 AM• l,500i_.._._._.._._._.._._.__�i- 2O0O0 AM' 001:00 1.001. 200.001 3L7' 3.17E-03: 274.2 450 9.00 1,2601 2401 2O1O0 AM: 00100; 1.001 240.001 38.1. 3.81E-03. 329.0 5.40 10.80 1,040i 2201 2O2O0 AM: 0O1O0: 1. 820 220 20300 AM: 00100 00, 220.00i 34.9: 3.49E-03: 301.6 4.95 9.90 ..............._._.._....................... .........._.._._._.._._.._.._. .._._._.._._.._..... .._.._._.._..... .._....._.._............1.00....................._.._.............220.00......................34.9:..........3.49E-03:.........._._.._........301.fi...._.._._._.._._.._.._._..-4.95.._.._.............9.90 6201 2001 20400 AM OO1.O0 1.00 200.00) 3L7 3.17E-03 2742 450 9.00 410i 210i 2O5O0 AM 0O1O0i 1.00i 210.00i 33.3 3.33E-03 287.9 4.72 9.45 300) 110i 2O6O0 AM 001001 1.00i 110.00i 175 1.75E-03 150.8 2.47 4.95 Oi 3001 2O7O0 AM 00100) 1.00) 300.00j 47.6 4.76E-03 411.3 6.75 13.49 _._._._._._._._._._._._._._._._._._�._._._.._._._.._._._._._.._r._.._._._._._._._._.._._.................._._.._._._.._._._.._._._.._..._._._.._._._.._._._._r._._._._._._.._._._.._._._._._._.�._._._._.._._._.._._._.._._.._.._._.._._._._._._._._._._._.._.._._..__._._._._._._._._._.._._._.._._._._._._.._._.._.._.. 1,7101 -1,7101 2:0800 AM 0O1:00! 1.00 1,710.00! -27L3 -2.71E-02 -2,344.4 -38.46 -76.92 • 01 1,7101 2:1600 AM 0-'08:O i. 8.001 213.75i._._._._..__33.9._.._.-3.39E-03 293.0 ._._._._._._._._._..-.4.81._._._._..--9.61 F. 1,7001 -1,70oi 2:17O0 AM 001001 L001 -1,700.001 -269.8 -2.70E-02 -2,330.7 -38.23 -76.47 0) 1,7001 2:25O0 AM 0O8O0i 8.001 21250) 33.7 3.37E-03 291.3 4.78 956 : ! : ! ! Natural Moisture_._..: moist ]Consistency • friable Total Tune Enter K,...Value:' I I 14.78 it/lw . USDATat./USCS Class: sand Water Table Depth...: 36 (min) Struct./%Pass.a200..: gr Init.Saturation Time.: 1:2000 AM 26.00 'Glover,R.E.1953.Flowfrom a test-hole located above groundwater level.pp.69-71.in:Theory and Problems of Water Percolation.(C.N.Zanger.ed.).USBR.The condition for this solution exists when the distancefrom the bottom of the borehole to the water table or an impermiable layer is 22%the depth of the water in the borehole."H/rz5 to S10."'JP-M1:h-15cm,JP-M2:h=10cm.Johnson Perm.,LLC.Rev.7/07/2015 Figure 11. Copy of Johnsonmeter Field Sheet for Test Location 7. Test 8 Test depth: 12 inches SHWT depth: 36 inches Test duration: 103 minutes Texture: sand Permeability: 1.15 inches per hour The raw data is presented in the field sheet below (Figure 12). Constant-Head Borehole Permeameter Test Solution:R.E.Glover(Deep WT or Impermeable Layer) File Name-..: GloverRE-deep-WT Project rJame........: Hwy42 Storage Boring No • K8 Solution and Termirolegy(R.E.Glover solution)* Project No Duncan Investigators...._: EDS K,,,-Q[Binh'(H/r)-(r'/H'+1)s+r/H)/(2nH)[Basic Glover solution] Project Location._: Harnett Co Date • 12/20/23 K..u=QV[sinh'(H/r)-(r'/H'.1)s.r/1-1)/(2nH')[Tmp.-corrected] Boring Depth.........: 12(Specify units) WCU Base Ht.h: 15.0 an.".* K,,,e:Saturated Hydraulic Conductivity @ base Tmp.T."C: 20 Boring Diameter..: 7.2 cm WCU Susp.Ht.S: 0.0 an Q:Rate of flow of water from the borehole Boring Radius r • 3.60 cm Const.Wtr.Hi H: 15.0 an H:Constant height of water in the borehole Soil/Water Tmp.T: 20•C H/r•• 4.2 r:Radius of the cylindrical borehole Dyn.Vise.@ T • 0.001003 kg/ms Dyn.Viso.@ Ta.: 0.001003 ms V:Dynamic viscosity of water @ T"C/Dyn.Viso of water @ Ts"C VOLUME Volume Out TIME Interval Elapsed lime Flow Rate Q K,„e Equivalent Values (ml) (ml) (h:mmss A/P) (hr:min:sec) I (min) Iml/min) (pm/sec) I (cm/sec) I (cm/day) I (in/Ml I (ff/day) 1,710 224:00 AM 1,590 120E 2:25:00 AM 0:01:00 1.001 120.00 19.0 1.90E-03 1645' 2.70 5.40 1290 3001 _229:00 AM 0:04:00 4.031 75.00 11.9 1.19E-03 102.8. 1.69 3.37 94013501 2:3500 AM 00600 6.001...-..-.-..-._.-._.-..-.-..-..58.33 9.3 9. 26E-04..-._.-._.-._.-..-_ .0 1.31 2.62 1801 760E 250:00 AM 0:1500 15.00 50.67 8.0 8.04E-04 69.5 1.14 228 1301 50 25100 AM 0:01:00 1.00 50.00 7.9 7.93E-04 68.5 1.12 2.25 80 501 252:00 AM 010136 1.00 50.00 7.9 7.93E-04 68.5 1.12 2.25 30 501 253100 AM 0:01:00 1.001 50.00 7.9 7.93E-04 685 1.12 225 1,740 -1,7101--.-..-._.-._.-..-_25600 AM 003:00 3.001 -570.00 -90.4 -9.04E-03 -7815 -12.82 -25.64 1,300 440E 30500 AM 00900 9.001 48.89 7.8 7.76E-04 67.0 1.10 2.20 540 760 3:2100 AM 0:1600 16.001 47.50 7.5 7.54E-04 65.1 1.07 2.14 110 430 3:3000 AM 00900 9.00 47.78 7.6 7.58E-04 65.5 1.07 2.15 r.-..-.-..-._.-._......................._.-._._.-._.-..-.-.-.....-..-.-..-.-..-.......-.-..-._.-..-.-..-._.-..-...-.-..-..-.-..-._.-._.-..-.-..-._-._.-..-.....-.........-.. -._.-._.-._._.-._.-._.-..-._1,6fi0............._.-._.--1,5`70..-.-..-.-..-._.-..-_3:3600AM.-.-..-._.-._.-..-._00600 6.001 261.67 -415 3.15E-03 -358.7 -5.88 -11.77 -.-..-._1,440............. ......_240................-.-.-.-.3:4100 AM 005:00 5.00i 48.00 7.6 7.62E-04 65.8 1.08 2.16 1,200 240 3:4600 AM 00500 5.00 48.00 7.6 7.62E-04 65.8 1.08 2.16 630 570 35600 AM 0:1200 12.00' 47.50 7.5 754E-04 65.1 1.07 2.14 80 550 40700 AM 9-0900 9.00 61.11 9.7 9.70E-04 83.8 1.37 2.75 T I • • 'Natural Moisture.......: moist Consistency_......._....: firm Total Time Enter K�Value:i 1.15 in/hr 1 USDA TNt./USCS Class: sand _Water Table Depth...: 36 (min) compacted trafficked area Struct./%Pass.N200..: gr Init.Saturation lime.: 1:2000 AM 103.00 'Glover,R.E 1953.Flowfrom a test-hole located above groundwater level.pp.69-71.in:Theory and Problems of Water Percolation.(C.N.Zanger.ed.).USBR.The condition for this solution eoistswhen the distance from the bottom of the borehole to the water table or an impermeable layer is a2X the depth of the water in the borehole...HA a5 to 110."IF-Mi:h=15cm,JP-M2:h=10cm.Johnson Perm.,LLC.Rev.7/07/2015 Figure 12. Copy of Johnsonmeter Field Sheet for Test Location 8. Summary The measured infiltration and permeability rates were correlated to the soil morphology. In total, the sandy material had infiltration rates that were rapid. The test hole 8 had lower test results than tests run in similar soil textures (sand and loamy sand) due to the area being in a trafficked area from farming activities. The firm dense in place sandy clay loam material had low test results. All situations corresponded with the soil morphologically. Location SHWT Infiltration Rate 1 55" 6.7 in/hr 2 45" 3.1 in/hr 3 49" 2.25 in/hr 4 56" 5.75 in/hr 5 72" 0.87 in/hr 6 40" 6.2 in/hr 7 36" 4.78 in/hr 8 36" 1.15 in/hr The SHWT was created by a perched water table due to the permeability contrast between the sandy material and the firm dense layer. The hydraulic testing utilized over 40 total gallons of water on site (see figure 13). z' d +ASo. d fie. .,I r ,K '�., , Sri , .. -s r it._ , ' 0;1.11 w ^ C1101W - _... _-_ _'d it ` -. N. ,, / 4 \\,,..„,, ,,,_, ,,_. ... . 4. Figure 13. Water reservoir used for on-site testing. Severson Soil Consulting, PLLC is pleased to be of service in this matter and we look forward to the successful completion of the project. Please contact us with any questions or concerns. Sincerely, SOIL SC f ;;O SEVERS F2,,, Eu.% Q, J , tifii\iflii,1 , 1275 Q- OFNORTHCP Erik D. Severson, Ph-D., LSS North Carolina Licensed Soil Scientist 141275