Loading...
HomeMy WebLinkAboutNC0089451_Fact Sheet_20240903FACT SHEET COMPLEX EXPEDITED - PERMIT RENEWAL DEQ / DWR / NPDES Permit NCO089451 Joe R. Corporon, P.G., Compliance and Expedited Permitting - 03Sep2024 Table 1-- Facility Information Applicant/Facility Name Addis Gates Company, Inc. GW-REM [former Cates Brinery] Applicant Address P.O. Box 146, Parkton 28371-0146 Facility Address 2640 McIver Road, Parkton, 28371 Contact: John B. Cates, President 'ohn addiscates.com ; 910-237-5111 Permitted Flow (MGD) 0.025 Type of Waste Sodium Chloride(NaCl)plus metals Facility Class Physical/Chemical, Class 1 GW-REM for Chloride County Robeson Permit Status Renewal Regional Office FRO Receiving -Stream Characteristics Receiving Stream Dunn's Marsh (Hughes Mill Pond) Stream Classification C; SW Stream SegLnent 14-22-1-3-2 Drainage basin Lumber Summer 7Q10 (cfs) 0.0 Subbasin / HUC 03-07-53 / 0304020306 Winter 7Q10 (cfs) 0.0 Use Support Yes 30Q2 (cfs) 0.0 303(d) Listed Yes [Lumber River Mercury fish advisory] Average Flow (cfs) 0.0 State Grid H22NE IWC (%) 100 (?) USGS Topo Quad Parkton, NC Facility History / GW-REM Treatment Objectives. Addis Cates Company, Inc. (Cates or the Permittee) operated a cucumber brinery from —1960 to —1990. Directed by the NC Division of Environmental Management Cates implemented a groundwater remediation (GW-REM) certified May 22, 1986, to address an aquifer impacted with sodium chloride exceeding groundwater standards (NaCI to levels — 4,000 mg/L). Cate's application for surface discharge prompted a need to address groundwater contamination spreading offsite. The Applicant's EAA proposed to dilute contaminated groundwater with clean groundwater. Although subsurface injection is not permitted in North Carolina, the Division agreed on the viability of that the proposed discharge alternatives. Discharge/treatment alternatives included 20-year present -value cost estimates. The EAA concluded that the more economically viable options (#6 and #7) show estimated costs within 5%. Summary of Engineering Alternatives Analysis (EAA) — Seven (7) Alternatives 1. Discharge to Sanitary Sewer 2. Land Application 3. Reuse and Brine Reject Evaporated Onsite 4. Reuse with Brine Reject Disposal Offsite 5. Reuse with Brine Reject Treated Onsite by Thermo -Ionic Process 6. Direct Discharge Diluted with Surface Water 7. Direct Discharge Diluted with Groundwater The target aquatic life action level for NaCl is 230 mg/L. Cates proposed to pump and treat local, fresh groundwater at a rate of 0.025 MGD. A dilution ratio of 20 to 1 was deemed satisfactory to meet surface water -quality standards (SWQS). Fact Sheet New Permit -- NPDES Permit NCO089451 Page 1 Parameters of Concern (POCs). Treatment addresses POCs detected in wells at levels above respective SWQS (Table 2). Monitoring of the effluent during the previous permit cycle included the parameters Total Chloride and the metals Total mercury, Total Selenium, and Total Silver (see Table 2). For renewal, based on the applied reasonable potential analyses (RPA), the Division will require monitoring of and limits for Total Copper, Total Chloride, Total Mercury and Total Silver, based on their potential to exceed surface water quality standards (SWQS). This effluent does not contain oxygen -consuming wastes or suspended solids. The Division will discontinue monitoring for Turbidity as the receiving stream is not impaired for Turbidity. Whole Effluent Toxicity (WET) Testing — This permit continues to require Acute, WET testing (Quarterly) using Fathead Minnow (Pimephalespromelas), 24-hr definitive, LC-50>100% [method TAE6C]. No changes recommended. COMPLIANCE HISTORY BIMS SHOWS NO VIOLATIONS. PROPOSED SCHEDULE FOR PERMIT ISSUANCE Draft Permit to Public Notice: Submit for final signature [estimated]: Permit Issue [estimated]: Effective Date [estimated]: NPDES DIVISION CONTACT September 03, 2024 October 10, 2024 October 25, 2024 December 1, 2024 If you have questions about any of the above information, or about the attached permit, please email Joe R. Corporon, P.G. boe.corporon@deq.nc.gov]. NAME DATE: 03SEP2024 Fact Sheet Permit Renewal 2024 -- NPDES NCO089451 Page 2 NPDES Implementation of Instream Dissolved Metals Standards - Freshwater Standards The NC 2007-2015 Water Quality Standard (WQS) Triennial Review was approved by the NC Environmental Management Commission (EMC) on November 13, 2014. The US EPA subsequently approved the WQS revisions on April 6, 2016, with some exceptions. Therefore, metal limits in draft permits out to public notice after April6, 2016 must be calculated to protect the new standards - as approved. Table 1. NC Dissolved Metals Water Quality Standards/Aquatic Life Protection Parameter Acute FW, µg/l (Dissolved) Chronic FW, µg/l (Dissolved) Acute SW, µg/1 (Dissolved) Chronic SW, µg/1 (Dissolved) Arsenic 340 150 69 36 Beryllium 65 6.5 --- --- Cadmium Calculation Calculation 40 8.8 Chromium III Calculation Calculation --- --- Chromium VI 16 11 1100 50 Copper Calculation Calculation 4.8 3.1 Lead Calculation Calculation 210 8.1 Nickel Calculation Calculation 74 8.2 Silver Calculation 0.06 1.9 0.1 Zinc Calculation Calculation 90 81 Table 1 Notes: 1. FW= Freshwater, SW= Saltwater 2. Calculatiol = Hardness dependent standard 3. Only the aquatic life standards listed above are expressed in dissolved form. Aquatic life standards for Mercury and selenium are still expressed as Total Recoverable Metals due to bioaccumulative concerns (as are all human health standards for all metals). It is still necessary to evaluate total recoverable aquatic life and human health standards listed in 15A NCAC 213.0200 (e.g., arsenic at 10 µg/l for human health protection; cyanide at 5 µg/L and fluoride at 1.8 mg/L for aquatic life protection). Table 2. Dissolved Freshwater Standards for Hardness -Dependent Metals The Water Effects Ratio (WER) is equal to one unless determined otherwise under 15A NCAC 02B .0211 Subparagraph (11)(d) Metal NC Dissolved Standard, 1 Cadmium, Acute WER*{1.136672-[ln hardness](0.041838)} • e^{0.9151 [In hardness]-3.1485} Cadmium, Acute Trout waters WER* {1.136672-[ln hardness](0.041838)} • e^{0.9151 [ln hardness]-3.6236} Cadmium, Chronic WER*{1.101672-[ln hardness](0.041838)} • e^{0.7998[ln hardness]-4.4451} Chromium III, Acute WER*0.316 e"{0.8190[ln hardness]+3.7256} Chromium III, Chronic WER*0.860 e"{0.8190[ln hardness]+0.6848} Copper, Acute WER*0.960 e^{0.9422[ln hardness]-1.700} Copper, Chronic WER*0.960 e^{0.8545[ln hardness]-1.7021 Lead, Acute WER*{1.46203-[1n hardness](0.145712)1 • e^{1.273[ln hardness]-1.460} Lead, Chronic WER*{1.46203-[1n hardness](0.145712)1 • e^{1.273[ln hardness]-4.705} Nickel, Acute WER*0.998 e^{0.8460[ln hardness]+2.255} Nickel, Chronic WER*0.997 e^{0.8460[ln hardness]+0.0584} Silver, Acute WER*0.85 • e^{1.72[ln hardness]-6.59} Silver, Chronic Not applicable Zinc, Acute WER*0.978 • e^{0.8473[In hardness]+0.8841 Fact Sheet Permit Renewal 2024 -- NPDES NC0089451 Page 3 Zinc, Chronic WER*0.986 • e^{0.8473[ln hardness]+0.884) General Information on the Reasonable Potential Analysis (RPA) The RPA process itself did not change as the result of the new metals standards. However, application of the dissolved and hardness -dependent standards requires additional consideration in order to establish the numeric standard for each metal of concern of each individual discharge. The hardness -based standards require some knowledge of the effluent and instream (upstream) hardness and so must be calculated case -by -case for each discharge. Metals limits must be expressed as `total recoverable' metals in accordance with 40 CFR 122.45(c). The discharge -specific standards must be converted to the equivalent total values for use in the RPA calculations. We will generally rely on default translator values developed for each metal (more on that below), but it is also possible to consider case -specific translators developed in accordance with established methodology. RPA Permitting Guidance/WOBELs for Hardness -Dependent Metals - Freshwater The RPA is designed to predict the maximum likely effluent concentrations for each metal of concern, based on recent effluent data, and calculate the allowable effluent concentrations, based on applicable standards and the critical low -flow values for the receiving stream. If the maximum predicted value is greater than the maximum allowed value (chronic or acute), the discharge has reasonable potential to exceed the standard, which warrants a permit limit in most cases. If monitoring for a particular pollutant indicates that the pollutant is not present (i.e. consistently below detection level), then the Division may remove the monitoring requirement in the reissued permit. 1. To perform a RPA on the Freshwater hardness -dependent metals the Permit Writer compiles the following information: • Critical low flow of the receiving stream, 7Q10 (the spreadsheet automatically calculates the 1 Q 10 using the formula 1 Q 10 = 0.843 (s7Q 10, cfs) 0.993 • Effluent hardness and upstream hardness, site -specific data is preferred • Permitted flow • Receiving stream classification 2. In order to establish the numeric standard for each hardness -dependent metal of concern and for each individual discharge, the Permit Writer must first determine what effluent and instream (upstream) hardness values to use in the equations. The permit writer reviews DMR's, Effluent Pollutant Scans, and Toxicity Test results for any hardness data and contacts the Permittee to see if any additional data is available for instream hardness values, upstream of the discharge. If no hardness data is available, the permit writer may choose to do an initial evaluation using a default hardness of 25 mg/L (CaCO3 or (Ca + Mg)). Minimum and maximum limits on the hardness value used for water quality calculations are 25 mg/L and 400 mg/L, respectively. Fact Sheet Permit Renewal 2024 -- NPDES NCO089451 Page 4 If the use of a default hardness value results in a hardness -dependent metal showing reasonable potential, the permit writer contacts the Permittee and requests 5 site -specific effluent and upstream hardness samples over a period of one week. The RPA is rerun using the new data. The overall hardness value used in the water quality calculations is calculated as follows: Combined Hardness (chronic) = (Permitted Flow, cfs *Avg. Effluent Hardness, mg/L) x (s7Q 10, cfs *Avg. Upstream Hardness, mg/L) (Permitted Flow, cfs + s7Q10, cfs) The Combined Hardness for acute is the same but the calculation uses the 1 Q10 flow. 3. The permit writer converts the numeric standard for each metal of concern to a total recoverable metal, using the EPA Default Partition Coefficients (DPCs) or site -specific translators, if any have been developed using federally approved methodology. EPA default partition coefficients or the "Fraction Dissolved" converts the value for dissolved metal at laboratory conditions to total recoverable metal at in -stream ambient conditions. This factor is calculated using the linear partition coefficients found in The Metals Translator. Guidance for Calculating a Total Recoverable Permit Limit from a Dissolved Criterion (EPA 823-B-96-007, June 1996) and the equation: Caiss — 1 Ctotal 1 + ( [Kpo] [sS(1+a)] [10-6] } Where: ss = in -stream suspended solids concentration [mg/1], minimum of 10 mg/L used, and Kpo and a = constants that express the equilibrium relationship between dissolved and adsorbed forms of metals. A list of constants used for each hardness -dependent metal can also be found in the RPA program under a sheet labeled DPCs. 4. The numeric standard for each metal of concern is divided by the default partition coefficient (or site -specific translator) to obtain a Total Recoverable Metal at ambient conditions. In some cases, where an EPA default partition coefficient translator does not exist (ie. silver), the dissolved numeric standard for each metal of concern is divided by the EPA conversion factor to obtain a Total Recoverable Metal at ambient conditions. This method presumes that the metal is dissolved to the same extent as it was during EPA's criteria development for metals. For more information on conversion factors see the June, 1996 EPA Translator Guidance Document. 5. The RPA spreadsheet uses a mass balance equation to determine the total allowable concentration (permit limits) for each pollutant using the following equation: Ca = (s7Q 10 + Qw) (Cwgs) — (s7Q 10) (Cb) Qw Where: Ca = allowable effluent concentration (µg/L or mg/L) Cwqs = NC Water Quality Standard or federal criteria (µg/L or mg/L) Cb = background concentration: assume zero for all toxicants except NH 3 * (µg/L or mg/L) Qw =permitted effluent flow (cfs, match s7Q10) Fact Sheet Permit Renewal 2024 -- NPDES NCO089451 Page 5 s7Q10 = summer low flow used to protect aquatic life from chronic toxicity and human health through the consumption of water, fish, and shellfish from noncarcinogens (cfs) * Discussions are on -going with EPA on how best to address background concentrations Flows other than s7Q10 may be incorporated as applicable: 1Q10 = used in the equation to protect aquatic life from acute toxicity QA = used in the equation to protect human health through the consumption of water, fish, and shellfish from carcinogens 30Q2 = used in the equation to protect aesthetic quality 6. The permit writer enters the most recent 2-3 years of effluent data for each pollutant of concern. Data entered must have been taken within four and one-half years prior to the date of the permit application (40 CFR 122.21). The RPA spreadsheet estimates the 95th percentile upper concentration of each pollutant. The Predicted Max concentrations are compared to the Total allowable concentrations to determine if a permit limit is necessary. If the predicted max exceeds the acute or chronic Total allowable concentrations, the discharge is considered to show reasonable potential to violate the water quality standard, and a permit limit (Total allowable concentration) is included in the permit in accordance with the U.S. EPA Technical Support Document for Water Quality -Based Toxics Control published in 1991. 7. When appropriate, permit writers develop facility specific compliance schedules in accordance with the EPA Headquarters Memo dated May 10, 2007 from James Hanlon to Alexis Strauss on 40 CFR 122.47 Compliance Schedule Requirements. 8. The Total Chromium NC WQS was removed and replaced with trivalent chromium and hexavalent chromium Water Quality Standards. As a cost savings measure, total chromium data results may be used as a conservative surrogate in cases where there are no analytical results based on chromium III or VI. In these cases, the projected maximum concentration (95th %) for total chromium will be compared against water quality standards for chromium III and chromium VI. 9. Effluent hardness sampling and instream hardness sampling, upstream of the discharge, are inserted into all permits with facilities monitoring for hardness -dependent metals to ensure the accuracy of the permit limits and to build a more robust hardness dataset. 10. Hardness and flow values used in the Reasonable Potential Analysis for this permit included: Parameter Value Comments Data Source Average Effluent Hardness (mg/L) [Total as, CaCO3 or (Ca+Mg)] 25 Average Upstream Hardness (mg/L) Total as, CaCO3 or Ca+M 25 7Q 10 summer cfs 0.0 1 10 cfs 0.0 Permitted Flow GD 0.025 Fact Sheet Permit Renewal 2024 -- NPDES NC0089451 Page 6