Loading...
HomeMy WebLinkAboutWI0800148_Permit (Completion)_20240829 (3) Appendix B 144 Appendix B-1 145 `1 � �1 �I� A r• T�i _ '•�I Ilf 2006/11 /28 2006/11 /29 a Pumping 1 1 . appropriate PP Appendix B 2 148 r � r i now w } Ferox injection rig ,F"VY� \ � r,• ram.;^s�.' X� - ` `,` r ��,•�. T. Pressure monitoring in nearby monitoring wells 149 1 may. ti er ZVI injection boring with subsurface packer assembly 151 3 Appendix B 3 152 Vermeer R' 'JO • NAVIGATOR ✓�--Y-'.�.r� '� �'-' ``- - � ) - f�' �ti.f _ �. i..'7 -`ter..._.J'- I-- - _ Directional Drill Rig (Vermeer 24,000 lb rig). .1 Initiation of Drilling. 153 1 ;Ya 4 _ Entry Pit Used to Contain Drilling Fluids, Which Are Pumped To a Roll-Off. y �f Drilling Rod Breakthrough at Distal End 154 2 i ''''=�•.r. lf. �• �!�• �'_:il�i�`.=� frr r Air Sparge "Screen": 4" SDR 11 HOPE Pipe, 350 Long Slotted Section 0.020 Inch Wide Slots, 0.5% Open Area. �„ � err Sparge Well Laid Out for Installation 155 3 I� ,1 II Drill Rod Pullback and Installation of Sparge Well 156 4 Completed Proximal End Well Pad with Protective Bollards. 157 5 Appendix B-4 158 F FI r 1il• t 1/1 1 1 111 •1/ 1/ 1 1 1' 1 1• . � 1 1 v 1 d f Extended view of trench Appendix C 162 Injection Report Camp LeJeune Site #89 AG V 4 10 CH2MHILL iQ E NVIRuN1ttF N t A I i Joint Venture December 28, 2006 • ironex .COM "Bringing Chemistry and Contaminants Together" For the Consulting Community Reproduction and distribution of this document without the express written consent of V(RONEX is strictly prohibited. The methodology and approaches presented herein are proprietary to WRONEX. 163 ironex Rick Chalk/Jason Chebetar December 28, 2006 AGVIQ —C142M HILL Joint Venture 4663 Haygood Road, Suite 201 Virginia Beach, VA.23455 Dear Rick and Jason, Attached is a report of the recently completed injection project conducted by Vironex at your site in Camp Lejeune, NC. Excel spreadsheets and graphs of the appendices are available, if desired. On behalf of Vironex, 1 would like to express our appreciation for the opportunity to provide injection services. Should you have any questions regarding this report or about additional services please do not hesitate to contact me at 800-847-6639 or 301- 352-6642. Sincerely, l�� Kurt M. Scarbro Project Manager Vironex, Inc. AGVIQ-CH2M HILL -Site#89,Camp Lejeune,NC- 12/28/06 2 164 'ron kX Table of Contents ❑ Project Background and Site Conditions ❑ Vironex Mixing and Injection Process ❑ Vironex Process Flow ❑ Proposed Scope ❑ Injection Photographs ❑ Injection Summary ❑ Appendix A- Injection Logs AGVIQ-CH2M HILL -Site#89,Camp Lejeune,NC-12/28/06 3 165 s ironex Project Background and Site Conditions Background AGVIQ asked Vironex to provide services to inject an enhanced reductive dechlorination substrate (ERD) and water at your site (Site #89) at Camp Lejeune, NC. In general, the vertical treatment zones were between 10 feet to 25 feet below ground surface (bgs) with the four injection points about 25 feet apart. Geoloey/Hydroeeoloev r The site lithology is sandy clay and sand based on well logs. 1W Depth to groundwater is approximately 7-10 feet bgs throughout the base. Contaminants The intent of the remedial action is to conduct a pilot study on the use of ERD to reduce the mass of chlorinated hydrocarbon contaminants present in the upper portion of the aquifer, thereby reducing groundwater impacts over the long term. Reagents The reagents provided by AGVIQ included ERD (a vegetable oil and lactate solution)and bromide. AGVIQ-CH2M HILL —Site t189,Camp Lejeune,NC 12/28/06 4 166 'ronex .CM Vironex Mixing and Injection Process Vironex uses various Direct Push Technology W (DPT) to advance a specially designed 1.5" and 2.125" O.D. injection tool to the bottom of the r desired injection zone. Once the target depth has been achieved, an injection cap is secured to the top of the tool string. The solution is prepared to the desired concentration and is then injected using a dedicated remediation delivery system that is Custom Designed Injection Rigs capable of providing specified pressures and flow rates as well as the desired volumes based on the subsurface lithology and the manufacturer's recommendations. Pressure, flow rate, and concentration can all be adjusted as needed on our self-contained injection unit. Vironex targets one to five (1 to 5) foot injection zones through the customized injection tooling to provide for vertical distribution of reagents Integrated Pumping and Mixing throughout the injection zone. Systems Once the injection tooling has been retracted through the injection zone at one to five (1 to 5) foot intervals, it is removed from the borehole. The borehole is backfilled with appropriate backfilling material and then patched at the surface r to match existing surface material. 2.125' DPT Injection Tool AGVIQ-CH2M HILL - Site#89,Camp Lejeune,NC-12/28/06 5 167 ironex .raw Vironex Mixing and Injection Process Flow Water Source From Hydrant 600 Gallon on board Supply Tank Reagent Feed System (55 Dilution Water w/ Flow_1 Gallon Drums of Oil and Monitoring Lactate) w/ Flow Monitoring IF IF 750 Gallon Auxiliary Tank with Trash Pump to Continually Mix T_ v Diaphragm Pump Progressive Cavity Pump 5-20 GPM @ 100 PSI 7-45 GPM @ 250 PSI (Primary Pump) (Stand-by Pump) Instantaneous Flow, Total Flow, and Pressure Monitoring Injection Well(s) (Not used on this project.) Direct Push Point(s) 1 to 5 Foot Bottom-Up and Top- Down Injection Tools, 1.5" OD and 2.125" OD Truck Mounted, Track, and Limited Access DPT Rigs AGVIQ-CIi2M HILL - Site#89,Camp Lejeune,NC 12/28/06 6 168 ironex Project Scope Of Work 1 The scope of our work is broken down into the following tasks: 1. Mobilization: Vironex mobilized l heavy direct push technology (DPT) rig and I customized mixing injection rig to the site. 2. Injection Services— Vegetable Oil and Sodium Lactate(ERD) Vironex provided the following services: • Injection of reagents and chase water into 4 DPT injection points. Both 1-foot and 5-foot injection screens were used for this project. Dual diaphragm and progressive cavity pumps were used to provide injection of solution under low to moderate pressures (<100 psi) to DPT points. Approximately 750 gallons of diluted ERD substrate (oil, lactate, and water) with 1,200 gallons of chase water and 2 pounds of a bromide chaser were injected using a combination of air diaphragm and progressive cavity pumps. Pumping rates varied from 5.30 to 17.90 gallons per minute (gpm). Overall an average injection rate of about 12.79 gpm was maintained. Pressures varied from 55 to 78 pounds per square inch (psi). Overall an average injection pressure of about 70 psi was maintained. An overall total of about 3,000 gallons of the reagent was injected. An overall total of about 4,079 gallons of chase water was injected. AGVIQ-CH2M HILL - Site#89,Camp Lejeune,NC- 12/28/06 7 169 nex Injection Photographs Preparation of the injection rig. Injection set-up with mixing tank, ERD product drum,and air L,_ diaphragm pumps with pressure and flow gauges. WLA". AMA Injection set-up with mixing tank, ERD product drum, air compressor, and air diaphragm pumps. AGVIQ-CH2M HILL —Site#89,Camp Lejeune,NC—12/28/06 8 170 onex Injection Summary Injection Points Total Substrate Total Water Date Completed Injected`" Injected (gals) (gals) Monday 11/21/06 -- -- -- Tuesday 11/28/06 0.9 750 900 Wednesday 11/29/06 1 1.7 1350 1823 Thursday 11/30/06 1 1.4 900 1328 Friday 12/01/06 1 - -- 28 TOTALS1 4 1 3000 4079 Note: " Enhanced Reductive Dechlorination (ERD)substrate AGVIQ-CH2M HILL - Site#89,Camp Lejeune,NC- 12/28/06 9 171 s C C G O O pp U U L � a VI O J `U, ` O as N J t G G+ tg 3vi3in m3 �n33in3 ` 3 r d y A u � � b - C ' vOj, .t h vOi T O O o JJ G N i G O — o l G _ _ A m A m E _ � 000 0 0 0 "onoco 0 0 « aa < 1 � - C •p i1 H1 t%i R d' v+ r V N �C :G �C f� t� vi � a ULU n W Oilb a 0 t o E a •�~ o O 3 _ 172 0 v S 0 3 � � c m r7 C ^ C cy '7y CC p U c 3 v c � c� •v 3 u v c rj v 7 M L �e� O It C v e ry nod -� F-- � _ u yaei U ei _ � V 6v� u 6tz y%el C `u u` i! `c ea a H t b "' b c✓ a`3 u L rya .p eC �V J� A 4=. N i� e1 11 R N a7 W e0 L` ea p l 1r cr-. 3 �, 3u731n3 Sri Sri a: (A rn' 3rn3 n3rn' 3 _;l O M pp f m 1 x 1 x l I ,r, x l .D bD F a � r O O o c a o o CC 0 0 CC o 0 0 0 0 0 0 0 0 O 1+ O O C .7 Ov O r! C- a °1 3 cac = QNririri -i - - - - - - - --- - rip, -— as ma d a r r� �[+ r r r-r r r r� t` � r• .c�O [� �O �O �O �O b O �O�p � t` r r- r d c � O O O rl M c v v clodd _ h �� �i �cii7el- - - - r' �o .o - - - -� _ F G - E E ^ F: c s stt ci as a ss t 2 .es � s s w m o B G C DEC _ C� CCCOB � COCCOC] CC '5222 C 0 < < <! GdGd < < QGGdGG r ¢ re � c c, a ao � arnMooaar pN - pa - p pv - N N M M N ,r: x O. p� a s D\ K a O a; O� a 0 0 0 0 0 0 ^ - C — �l C _ _ L. M _ T Vt O O ^ N N rl M M V h In .. .. .. �' rl r^ Y .0 W fJD T T O, O, m T 01 m m C, m O O O O O t O O ^ s 173 N C rY U Z 5 Y C N = V U W �1 •� o O 7 N V � O •� L L L b L ! ° ? o � a ,p w e t ewi � K Yi O O a T � a - O p 0 0 0 �0/ O a — ° bp+yy V. i .0 .0 Q Q Q ♦7 O N N M 9 r_ r x oc o0 c F• o ci � ri Ni r ac ac '• oe cc n o a o C� O — w :t r 174 Appendix D 175 AIRS TECHNOLOGIES , INC . BREAKING NEW GROUND IN ENVIRONMENTAL TECHNOLOGY Field Implementation Summary Site 89 FEROX Injection Pilot Study MARINE CORPS AIR STATION CAMP LEJEUNE,JACKSONVILLE,NORTH CAROLINA Prepared for: AGVIQ LLC 4663 Haygood Road, Suite 201 Virginia Beach, VA 23455 Prepared by: ARS Technologies, Inc. 98 North Ward Street New Brunswick,New Jersey 08901 December 2006 98 NORTH WARD STREET.NEW BRUNSWICK,NEW JERSEY 08901 TEL 732.296.6620 FAX 732.296.6625 WWW.ARSTECHNOLOGIES.COM 176 TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 SITE BACKGROUND 3.0 TECHNOLOGY BACKGROUND 4.0 INJECTION WELL INSTALLATION AND LAYOUT 5.0 INJECTION PROCEDURES AND PARAMETERS 6.0 SUMMARY OF FIELD OPERATIONS 7.0 CONCLUSIONS BASED ON FIELD INJECTION PARAMETERS TABLES Table 1 ZVI-1 Injection Summary Table Table 2 ZVI-2 Injection Summary Table Table 3 ZVI-3 Injection Summary Table Table 4 ZVI-4 Injection Summary Table FIGURES Graph 1-11 Pressure vs. Time Curves for Fracturing Events GLOSSARY BGS Below Ground Surface CVOC Chlorinated Volatile Organic Compound ND Not detectable PF/LAI Pneumatic Fracturing and Liquid Atomized Injection PSI Pounds Per Square Inch ROI Radius of Influence SCFM Standard Cubic Feet per Minute ARS Technologies, Inc. 177 1.0 INTRODUCTION This report summarizes the field operations and injection parameters associated with the installation of a Ferox treatment system at the Marine Corps Air Station, Site 89, Camp Lejeune North Carolina (The Site). The installation was implemented by ARS Technologies, Inc. (ARS) on behalf of AGVIQ LLC / CH2M Hill Joint Venture as part of a corrective measure study to evaluate the effectiveness of Pneumatic Fracturing and Liquid Atomized Injection (PF/LAI) technologies for the In-Situ emplacement of Zero Valent Iron (ZVI) for the subsurface treatment of dissolved phase Chlorinated Volatile Organic Compounds (CVOCs). Target ZVI dosages for the project were as follows: 10,400 pounds of H-200 ZVI powder and 1200 pounds of HC-15 ZVI powder (ranging from 15 to 200 microns) divided over four temporary injection borings. The target mass per boring was 2600 pounds H-200 and 300 pounds HC-15. Injections were to be applied from an approximate depth of 12 ft bgs to 25 ft bgs in five discrete 2.5 foot intervals. Target dosage per interval was 520 pounds H-200 and 60 pounds HC- 15. Where appropriate, higher H-200 dosages were used to compensate for extra ZVI (625 pounds)that was shipped to the site. Field operations at the Site were performed from November 28th through December 3rd, 2006. A total of 10,160 pounds of H-200 and 1188 pounds of HC-15 were emplaced within the four proposed injection borings and two offsets. These two offset points were required to achieve the target mass of H-200 and HC-15 for ZVI-4. 2.0 SITE BACKGROUND The Marine Corps Air Station, Camp Lejeune, is an active military facility where the primary contaminants consist of CVOC's. The water table is located approximately 3 feet below ground surface (bgs) in various-sized sand layers overlain by a thin surficial layer of sandy clay. 3.0 TECHNOLOGY BACKGROUND A critical component of ARS' injection process is ensuring that the reactive media is distributed effectively within the subsurface to facilitate the desired chemical reactions. To accomplish this distribution, ARS incorporates its gas-based PF/LAI Technologies for the subsurface emplacement of reactive media barriers. PF is a patented process in which a gas is injected into the subsurface at pressures that exceed the combined overburden pressure and cohesive soil strength of the geologic matrix, and at flow rates that exceed the effective permeability of the undisturbed soil. The result is the propagation of fractures outward from the injection well to various distances depending upon the geology. Depending upon the permeability or heterogeneities within the targeted geologic zone, PF may be integrated as a precursor to LAI of a reactive media. ARS Technologies, Inc. 178 Soil fracturing mechanisms in coarse-grained soils vary considerable from fine-grained cohesive soils and consolidated rock formations. In a coarse grained soil, it is theorized that the formation will not "fracture" in the normal brittle sense but rather be cut or intruded by the pneumatic injection system. More specifically, under circumstances where geologic conditions comprise of coarse-grained particles such as sands, distribution is accomplished through the fluidization effect (Figure I — a and b) resulting in the dilation of interconnected pore space and the temporary suspension or "fluidization" of the coarse grained particles in response to the influx of gas. The LAI Technology relies upon this theory and is based on the fact that it is more effective to inject a low viscosity gas or "aerosols" into the subsurface than it is to inject an incompressible liquid into the subsurface. Figure 1 —Pneumatic Delivery Mechanisms O0000 O 0 0000000 0p0 )00 000°00 00�--oz5�o -. o Dilute Phase 0 O0�0 O,0 0 p°p° 0 0 Injection of 00,000 00000 00000�i00 —► O-O 00 00°°00� °°O 00 Gas/Solids 0 O O----—O.- O% 0°O O 0 00 oo 6---P O ,0 0000,00O 000 O ° '_ ��- O°O 00 00 0000 0 a)iron slurry travels through formation through the intergranular pore spaces Fluidized Zone 0000000 000000 00 0 0°0°0 DO0 O O O Dilute Phase 0 0 0-0 0 0 O O_Q_ _O 0000p 000� 0 0 Injection of 10 0��0 p�� 0 i 0_'-�O O Gas/Solids O�000 p OHO p°p p°0° 0 OO 0000 0 000 000 000 000 0O 0 00 000000000000000 000 b)high volumes of gas cause fluidization of formation, causing iron to mix with soil Dilute Phase ;l l -•l f / /_/ // / Injection of : : : : : : : : : : : : : : ::::: . . - Gas/Solids Completely Dispersed Saltation and Banking c)Iron powder is emplaced within the dilated fracture AIRS Technologies, Inc. 179 Field Implementation Summary Camp Lejeune,North Carolina 12/15/2006 Page 3 4.0 INJECTION WELL INSTALLATION Injection well installation was directly integrated with the injection operations. A total of six (6) temporary injection points (4 proposed and 2 offsets)were required to emplace the targeted mass of ZVI. Borings were installed with an Auger Rig utilizing 3.5 inch solid flight augers which were advanced to the maximum target depth at each location. The augers were retracted and 4.25 inch diameter casing was subsequently advanced to the maximum target depth. Once the injection tooling was lowered to depth, the casing was retracted to a point where the packers were exposed to the formation. This methodology assured that the target depths could be reached and prevented borehole collapse before the injection tooling reached the bottom of hole, as well as to prevent material from caving in on the injection tooling and locking it in place. In the case of Injection Point ZVI-2 and ZVI-4 Offset 2, 5 inch diameter casing was used. 5.0 INJECTION PROCEDURES AND PARAMETERS This section summarizes the operational procedures and parameters monitored as part of the injection process. The parameters discussed below may be used as confirmatory measures to determine whether reagents were successfully propagated within the targeted treatment intervals. The specialized equipment used for the injection process consisted of a skid mounted high pressure-high flow fracture module complete with an injection control manifold and a digital data logger that are used to monitor various operational parameters. Due to the large quantity of compressed gas needed for the liquid injections, ARS used pressurized nitrogen as the fracturing/delivery fluid. A bulk nitrogen "tube" trailer was mobilized to the site for this operation. Injection of the ZVI within the target treatment zones was accomplished utilizing a nitrogen gas stream integrated with a high-pressure, high-flow injection manifold. The reagent slurry was fed into the gas stream from a proprietary mixing trailer that maintains the reagents in suspension by continual circulation of the slurry. Once sufficiently mixed, the dual phase slurry/nitrogen blend was routed through a proprietary injector fitted with a 360' high-flow dispersion nozzle. Injections were performed in approximately 2.5-foot intervals. Injections were accomplished by starting at the deepest interval and working upward. When the target dosage for each respective treatment was emplaced into the formation, the packers were deflated, and the nozzle assembly was raised to the next injection location. During the injection process, ARS personnel monitored the quantity of iron slurry injected as well as the duration of each injection. The quantity of material was recorded after each injection. For the ZVI slurry injections, each batch was specifically mixed within the holding tank and subsequently injected, ensuring accurate mass loading rates. During the injections, pressure influence was measured at wells near the injection points using calibrated pressure (psi) gauges. Each pressure gauge is outfitted with a drag arm indicator that records the maximum pressure detected at the monitoring point during the injection. The WARS Technologies, Inc. 180 Field Implementation Summary Camp Lejeune,North Carolina 12/15/2006 Page 4 analysis of pressure response at various locations around an injection point provides supplemental evidence of reagent propagation. This data also assists in determining which directions fractures and the subsequent reagent may have propagated. In addition, the degree of pressure response can often help determine whether a monitoring point has been directly influenced (i.e. fractures propagate outward and intersect wells or boreholes), or indirectly influenced through localized groundwater displacement and/or mounding. Minimal pressure response in monitoring wells located close to the injection point may indicate that fluidization and significant gas dispersion is occurring. Ground surface heave was also monitored to determine gas propogation. The heave monitoring was conducted using a surveying transit in conjunction with a heave rod, which was placed adjacent to the injection point. The rod was observed for the maximum amount of upward motion (surface heave) and the post-injection resting position(residual heave). During the course of this project, ground surface heave has recorded for most fracture events. Surface heave and associated groundwater surfacing was visually observed with the naked eye in multiple locations for the majority of events where gas was applied. 6.0 SUMMARY OF FIELD OPERATIONS This section summarizes the field operations and provides a discussion of the down-hole injection parameters specific to each injection boring and discrete interval. Mobilization for the fieldwork began on November 27th and equipment setup was performed on November 28th, 2006. A total of 5.5 days were required to complete the reagent injections. The historically heterogeneous nature of the soils at the site required fracturing as a preemptive measure to facilitate ZVI propagation and distribution within the silty clay and reasonably competent cemented sand layers within the targeted treatment zones. A fracture event was initiated at all intervals where it was feasible. As a result of the high water table in the region, surfacing of groundwater occurred in multiple locations during injections at each boring. The surfacing of the groundwater, coupled with the permeable nature of the formation resulted in groundwater surfacing through abandoned borings and natural surface fissures. These site specific conditions required limited use of gas during ZVI injections, so a "pulsed" gas approach was utilized to minimize seal loss and control to some extent groundwater surfacing. It should be noted that, under most circumstances during the injections, groundwater mounding was observed, not ZVI slurry. Examination of the Pressure vs. Time Curves generated from the fracture events, revealed the formation did not fracture. The curves themselves show a "flat-line" shape, where the initiation and maintenance pressures were essentially the same. (See Graphs 1 through 11) The lack of a discernable pressure peak is indicative of soil fluidization typically observed in predominantly unconsolidated sands. It was determined in the field that in some intervals constant gas flow of over 200 scfrn could be achieved as low as 10 psi, suggesting very receptive zones of high permeability. WARS Technologies, Inc. 181 Field Implementation Summary Camp Lejeune,North Carolina 12/15/2006 Page 5 Due to groundwater surfacing and subsequent seal-loss issues, ZVI-4 required two offset locations, and ZVI-2 required re-drilling with a larger casing to address the designated treatment zone. The re-advancement of a larger casing served to stabilize the borehole wall providing a fresh surface for the packers to seal against. Operational parameters collected during each injection event included the discrete injection interval, initiation and operational pressures recorded on the control module and wellhead, pressure influence at surrounding monitoring wells and visual field observations. Tables 1 through 4 summarize the quantities of ZVI that were emplaced within each interval specific to each borehole location. Slurry injection rates varied from approximately 10 to 30 gallons per minute. 6.1.1 Injection Point ZVI-1 On November 30th 2006, a total of 7 injections were successfully applied across the five target treatment intervals from a depth of 12.5 ft to 25 ft bgs. A total of 2,750 lbs of H-200 and 300 lbs of HC-15 were injected at an averaged injection pressure of 25 psi. As a result of groundwater mounding, surfacing of groundwater occurred during the third interval and jeopardized the packer seal against the formation. For the final two intervals, the dosages were halved and two injection events were used to complete each interval. Injection pressures, H-200 and HC-15 mass, slurry volumes, pressure influence and surface heave data were collected during the injections and are presented in Table 1. A total of seven wells were monitored for pressure influence, which are listed in Table 1. During the injections, direct influence was observed 15 feet away at MW-50 in the form of groundwater mounding indicating induced connectivity through propagation of fluidized migration pathways resulting from the injections. Pressure influence at this monitoring point peaked at 10 PSI. When vented, groundwater and pressurized gas were expelled from the monitoring packer installed in MW-50. This venting continued throughout the course of injections at ZVI-1. During the second interval slurry injection, the well cap of MW-03IW, located 60 feet away, blew off. This well was then monitored for the duration of injections at this point and registered positive pressure. 6.1.2 Injection Point ZVI-2 On December 2nd 2006, a total of 6 injections were successfully applied across five targeted treatment intervals from a depth of 12.25 to 26.25 ft bgs. A total of 2,170 lbs of H-200 and 300 lbs of HC-15 were injected at an averaged injection pressure of 30 PSI. Injection pressures, H- 200 and HC-15 mass, slurry volumes, pressure influence and surface heave data were collected during the injections and are presented in Table 2. MARS Technologies, Inc. 182 Field Implementation Summary Camp Lejeune,North Carolina 12/15/2006 Page 6 At this location, the deepest interval placed the injection nozzle in what was perceived to be a fairly competent cemented sand layer. In order to mitigate the possibility of damage to MW-02 (approximately 7 feet away) from the high flow rates associated with a pneumatic fracture event, the injection pump was used to initiate flow into the formation. At 250 PSI, water began to flow freely into the formation and the injection pressure dropped to 50 PSI. Once this occurred, gas was applied at 70 PSI and 200 SUM to confirm flow and propagate any hydraulically induced fractures. During the fracture event of the second interval, groundwater mounding led to surfacing at numerous locations around the injection point, and compromised the injection point seal. The surfacing of groundwater became severe during the injection at the fourth interval. The boring was re-drilled using a five inch diameter casing in order to address the fourth and fifth intervals. The advancement of a larger casing served to stabilize the borehole wall and create a new surface against which the packers could seal. A total of six wells were monitored for pressure influence, which are listed in Table 2. Direct pressure influence was recorded at MW-02 during the injections at the upper three intervals. The well expelled groundwater and gas during the injections. The lack of connection with well MW- 02 within the lowest two injection intervals was encouraging due to the fact that well MW-02 has a shallow well screen (14 ft bgs). The lack of influence at MW-02 during the deepest 2 intervals suggests that the gas and slurry were being distributed horizontally within the targeted deeper intervals. 6.1.3 Injection Point ZVI-3 On December Ist 2006, a total of 5 injections were successfully applied across the 5 targeted treatment intervals within Injection Point ZVI-3, from a depth of 12.50 — 25 ft bgs. A total of 2,640 lbs of H-200 and 288 lbs of HC-15 were injected at an averaged injection pressure of 30 psi. Injection pressures, H-200 and HC-15 mass, slurry volumes, pressure influence and surface heave data were collected during the injections and are presented in Table 3. A total of seven wells were monitored for pressure influence during injection within ZVI-3. MW-02 (approximately 17 feet away) showed continuous pressure influence for all injection events. Significant surfacing of groundwater and gas occurred in multiple locations around ZVI- 3, at distances of up to 30 feet away. This may have had a lessening effect on the impact of gas on the monitoring wells. ZVI slurry began to surface out of cracks in the asphalt around MW-52 (approximately 25 feet away) during the injection event at the third interval, suggesting significant propagation of the slurry within the subsurface. The surfacing of ZVI was a likely result of gas and slurry intersecting the grout column of MW-52. AIRS Technologies, Inc. 183 Field Implementation Summary Camp Lejeune,North Carolina 12/15/2006 Page 7 6.1.4 Injection Point ZVI-4 On November 29th 2006, a total of 2 injections were successfully applied, completing the deepest two of the five targeted intervals from 21.25 — 26.25 ft bgs. Loss of seal during gas injection at the third interval necessitated an offset boring, ZVI-4 Offset. On December 1st 2006, a total of 2 injections were successfully applied, completing the third interval, 18.75 —21.25 ft bgs at ZVI-4 Offset. Loss of seal at the injection point, as well as surfacing of groundwater and ZVI slurry out of previous boring ZVI-4, during gas injection of the fourth interval necessitated a second offset boring, ZVI-4 Offset 2. On December 3rd 2006, a total of 2 injections were successfully applied at ZVI-4 Offset 2, completing the upper two intervals from 12.25 — 17.25 ft bgs. A total of 2,600 pounds of H-200 and 300 pounds HC-15 were injected over the course of the three borings, at an averaged injection pressure of 25 psi. Injection pressures, H-200 and HC-15 mass, slurry volumes, pressure influence and surface heave data were collected during the injections and are presented in Table 4. A higher dosage ratio was used at ZVI-4 Offset 2 due to the likelihood of seal loss and to compensate for the extra ZVI shipped to the site. A total of seven wells were monitored for pressure influence. During injections at the ZVI-4, MW-50 (approximately 35 feet away) showed significant influence even when vented. Groundwater and gas were continuously emitted from the vented monitoring well throughout the course of injections. MW-02IW (approximately 15 feet away) also showed continuous pressure influence. These pressure influence data suggest good propagation of gas and slurry in that direction. When fracturing was initiated and gas was applied to start the third interval at ZVI-4 Offset 2 the grout seal around MW02-IW was blown out. Injections at the two offset points generated pressure influence at MW-02 (approximately 20 feet away). 7.0 CONCLUSIONS BASED ON FIELD INJECTION PARAMETERS The installation of a Feroxsm treatment system was successfully completed at Site 89. The mechanics and overall process of the injection were applicable to the site conditions. Due to the heterogeneous nature of the treatment zone, on-the-field adjustment of the injection parameters such as flow,pressure and methodology was crucial to the effectiveness of the delivery. Subsurface injections at this site presented unique challenges in the form of geologic heterogeneities coupled with a very shallow water table and high permeability sands within the majority of the target treatment zones. Consequently, these conditions were not conducive towards full-atomization (continuous nitrogen gas flow) during ZVI injections. In an effort to minimize groundwater surfacing and mitigate monitoring well blow-outs, the injections were completed using pulses of gas as opposed to continuous flow. The technique of"pulsing" limits the over-stressing of the formation with large volumes of gas, thereby minimizing the extent of groundwater mounding and subsequent surfacing. The target dosages specified in the Scope of Work were achieved for each boring and corresponding intervals resulting in the emplacement of 10,160 pounds of H-200 and 1,188 MARS Technologies, Inc. 184 Field Implementation Summary Camp Lejeune,North Carolina 12/15/2006 Page 8 pounds of HC-15 ZVI within the targeted treatment intervals from an approximate depth of 12 ft bgs to 25 ft bgs. Delivery of the ZVI was accomplished through the utilization of 6 temporary injection borings which included two offset locations. Pressure response measurements collected at surrounding monitoring points during the Feroxsm injections revealed significant radial pressure influence. More specifically, pressure influence was consistently observed at monitoring points located up to 60 ft from the injection wells. The Pressure vs. Time curves identified soil fluidization as the primary ZVI transport mechanism rather than fracture propagation. This conclusion was based on the general flat-lined pressure response observed during injections. The absence of a discernable initial peak provides evidence that fracture initiation and propagation did not occur. A flat lined pressure response is indicative of pore space dilation. This is type of response is typically observed in sandy formations and represents the point where equilibrium is established between the injected gas and the dilated pore volume of the formation. AIRS Technologies, Inc. 185 ZVI Injection Summary Table 1 Marine Corps Air Station,Jacksonville, NC Event Data Iron Batch Data Monitoring Well Readings(PSI) Surtace Heave(inches) IB et^on Date Interval(ft. Event Figure Start Time Seeonds Preasuere1oP51 Preessure(P51 Pressm- Slurry (PScdoI) Nitrogen Flowrete(SCFM)H-2gglb�ehed HC151ba Benched Water Benched5lurr(,be)ected Max/Resldual MW-50 MW-02 MW-02DW MW-021W MW-01 MW51 MW52 Wellhead MW-031W ZVI-3 ZVI-0 ZVI-0os Comments g bgs.) (Duration) 1 1 1 1 1 ) ( ) ( ) ( ) ( ) 23.75-26.25 Fracture Graph 1 9:45 10 90 90 - 350 - - - - .1/0 10 vented 0 n. 0 0 0 0 60 rm n. run run Good seal,no surfacing.Si nifcanl influence at MW-50. FEROX 9:53 700 30 pulsed 200 550 60 1700 2310 visual 0 vented 0 V+ 0 0 0 20 MW 50 was vented.Groundwater and a continousl erupt!n. 21.25-23.75 Fracture Graph 2 10:40 12 95 90 - 350 - - - - visual 9.8 vented 0 V+ 0 0 V. 80 V+ MW-031W: a and groundwater blew capoff of well.Installed MW acker. FEROX 10:49 700 30 pulsed 210 550 60 1700 2310 visual 2.5 vented V+ run V+ 0 0 0 10 V+ nnn nnn run Successful injection. 18.75-21.25 Fracture Graph 3 11:25 8 65 65 - 400 - - - - sual 4.9 vented 0 V+ 0 0 0 50 V+ Successful fracture attempt. NI-1 11/30/2006 FEROX 11:33 750 30 pulsed 225 550 60 1700 2310 sual 5.1 vented 0 run 0 0 0 V+ 15 V+ run nm nm Successfut injection. Fracture Graph 4 12:06 7 65 65 375visual 3.5 vented 0 run 0 0 0 0 40 V+ run run run Massive blowby from injection point.Seal compromised. 16.25-18.75 FEROX 12:17 360 25 pulsed 220 250 30 1400 1680 visual 2.9 vented 0 0 0 0 0 10 0 1/2 batch injected successful) with minimal roundwater surtacin. FEROX 12:29 480 30 ulsed 220 300 30 900 1230 suet 1.6 vented 0 0 0 0 0 15 0 1/2 batch injected successful) wiN minimal roundwater surtacin. 13.75-16.25 FEROX - 12:07 300 - - 20 ulsed 210 275 30 675 980 suet V+vented 0 0 0 0 0 10 0 Better seal al this interval.1/2 batch injected successfully. FEROX 13:09 360 20 ulsed 200 275 30 800 1105 visual V+vented 0 0 0 0 0 10 0 1/2 batch injected successfully,target achieved. "Pulsed"-Non continuous gas Flow. Total H-200 Total HC-15 "vented"-allowed to expel)gas and water Ibs Ibs " not monitored "V+I"-positive pressure influence below gauge threshold 2750 1 300 ZVI Injection Summary Table 2 Marine Corps Air Station,Jacksonville, NC Event Data Iron Batch Data Monitoring Well Readings(PSI) Surtace Heave(inches) Injection Date .brv;l Event Figure Start Time Seconds Presnauere1oP51 Pressure eP51 Plresmaurele(PSI Nitrogen Flowrete(SCFM)H-2gg1bffiehed HC151Batehe Waterlbetehed 5lurryb�)eeted MadResidual MWSg MW-02 MW-02DW MW-021W MW-01 MW51 MW52 Wellhead MW-031W ZVI-3 NI-0 NI-0os Comments 9 I. g ) (Duration) 1 1 1 1 ( 1 ( ) ( ) ( ) ( ) 23.75-26.25 Fracure Graph 5 11:28 4 70 70 - 300 - - - - visual 0 0 vented capped 0 0 0 50 0 0 Vented Used h dracell um to initiate fracture due to high competency of material.250 i to break. FEROX 11:44 840 45 pulsed 250 550 60 1700 2310 visual 0 0 vented ad 0 0 0 40 0 Vented Vented Succesful injection. 21.25-23.75 Fracure Graph 6 12:27 8 50 50 - 300 - - - - visual 0 0 vented capped 0 0 0 40 0 Vented Vented Vented Groundwater bubblin out of round in multiple locations. ZVI-2 12/2/2006 FEROX - 12:35 900 - - 45 pulsed 250 550 60 1700 2310 visual 0 V+vented ad 0 0 0 20 0 Vented Vented Vented Groundwater and as out of MW-02 duringinection. 18.75-21.25 FEROX 13:22 660 30 pulsed 225 550 60 1700 1350 suet 0 V+vented ed 0 0 0 15 0 Vented Vented Vented Massive DL at injection point.No fracture.Remainder of batch carried over. 15.75-18.25 FEROX - 14:25 540 - - 25 pulsed 205 - - - 950 visual 0 V+vented ed 0 0 0 10 0 Vented Vented Vented Massive DL at in action oint.Seal lost.ReEri111ed hole with larger casin. FEROX 16:15 360 20 pulsed 200 260 60 800 1110 visual 0 V+vented ad 0 0 0 10 0 Vented Vented Vented Seal reestablished and in action successful. 12.25-14.75 FEROX 16:45 380 20 pulsed 200 260 60 80 1110 visual 0 V+vented ed 0 0 0 10 0 Vented Vented Vented Good seal,inection complete. "pulsed"-Non continuous gas flow. Total H-200 Total HC-15 vented"-allowed to expell gas and water Ibs Ibs "V+I"-not monitored "-positive pressure influence below gauge threshold 2170 300 "DL"-daylighting Summary Data Tables 1 and 2 186 ZVI Injection Summary Table 3 Marine Corps Air Station, Jacksonville, NC Event Data Iron Batch Data Surtace Heave(inches) Monitoring Well Readings(PSI) Injection Date Interval Event Figure Start Time Duration Initiation Maintainance Slurry Injection Nitrogen Flowrate H-200 Batched HC75 Batched Water Slurry Max/Resitlual MW50 MW-02 MW-02DW MW-021W MW-01 MW-!1 MW-52 Wellhead MW-0.1W ZVI-3 ZVI-4 ZVlios Comments Boring (R.bgs.) (Seconds) Pressure(PSI) Pressure(PSI) Pressure(PSI) (SCFM) Qbs) (Ibs) Batched Qbs) Injected Qbs) 23.25-25.75 Fracture Graph 7 923 8 110 100 - 550 - - - - .210 0 vented V+ nm 0 0 0 01105 0 nmLIn Good seal. FEROX 9:37 1100 45 pulsed 270 550 60 1850 2460 visual 0 vented V+ nm 0 0 0 0 nm Iri ection complete. 20.75-23.25 Fracture Graph 8 10:13 9 75 75 - 300 - - - - visual 0 vented V+ nm 0 0 0 0 nm Bubblin of as from cracks in as alt near MW-52. ZVI-3 12/1/2006 FEROX 10:23 900 40 ulsed270550 60 1700 2310 visual 0 vented V+ nm 0 0 0 0 nm DL of groundwater around MW-52. 18.25-20.75 FEROX 11:27 720 30 pulsed 230 550 60 1700 2310 visual Massive DL of groundwater from around MW-52. 15.75-18.25 FEROX 11,56 800 20 ulsed 225 550 60 1700 2310 visual Massive DL of groundwater from around MW-52 and cracks in as halt in numerous locations. 13.25-15.75 FEROX 12:23 500 20 pulsed 210 550 60 1700 1850 visual Massive DL at injection point.Lost seal.Terminated injection.440 Ibs H-200 emplaced.48 lbs HC-15 emplaced.. "pulsed"-Non continuous gas Flow. Total H-200(Ibs) Total HC-15 "vented"-allowed to expell gas and water Ibs nm":not monitored 2640 288 "V+"-positive pressure influence below gauge threshold 'DU-daylighting ZVI Injection Summary Table 4 Marine Corps Air Station, Jacksonville, NC Event Data Iron Batch Data Surface Heave(inches) Monitoring Well Readings(PSI) injection Data Interval Event Figure Start Time Duration Initiation Maintainance Slurry Injection Nitrogen Flowrate H-200Batched HC75 Batched Water Slurry Max/Residual MW-50 MW-02 MW-02DW MW-021W MW-01 MW-51 MW-52 Wellhead MW-031W ZVI-3 ZVI-4 NI-4os Comments Boring ((t.bgs.) (Seconds) Pressure(PSI) Pressure(PSI) Pressure(PSI) (SCFM) (Ibs) (lb) Batched(the) Injected(lb.) 23.75-26.25 Fracture Graph 9 9:55 15 105 100 - 550 - - - - .1/0 10 0 0 7(vented) 0 V+ 3.5 85 nm nm nm nm Good seal,good gas flow. FEROX 10:23 650 10 pulsed 550 60 1700 2310 visual 6.4 0 0 V+vented 0 0 0 10 nm nm nm nm MW-021W constantly vented groundwater durng injection. ZVI-4 11/29/2006 Fracture Graph 10 11:05 10 50 50 - 350 - - - - .1 10 5.5 vented 0 0 V+vented 0 0 V+ 10 nm nm nm nm MW-50,MW-021W constantly venting groundwater and gas. 21.25-23.75 FEROX 11:20 700 30 pulsed 550 60 1700 2310 visual 11.2 vented 0 0 venetd V+vented 0 0 0 10 nm nm nm nm MW-50,MW-021W constantly venting groundwater and gas.Bubbling around well annulus of MW-02DW. 18.75-21.25 Fracture 13:51 5 visual Blew out seal at injection point.Could not re-aquire seal.ZVI-4 needs offset. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Fracture Graph 11 16:06 8 95 95 500 .4/0 0 V+ nm Blown 0 0 0 85 0 0 nm nm Blew out MW-021W rout seal.Massive DL out of ZVI-4. VI-4 Offse 12/1/2006 18.75-21.25 FEROX 16:15 750 30 ulsed 260 250 30 1510 1820 visual 0 V. nm Blown 0 0 0 25 0 0 nm nm Massive DL out of ZVI-4 location.Installed a packer.No DL out of MW-021W FEROX 16:50 800 30 pulsed 265 300 30 800 1160 visual 0 V+ nm Blown 0 0 0 30 0 0 nm nm Attempted next interval and failed to achieve a seal.Requires second offset. I-4 Offset 12/3/2006 14.75-17.25 FEROX - 10:40 1000 - - 30 pulsed 265 700 90 1900 2920 visual 0 0 nm Blown 0 0 0 25 0 0 nm nm Higher iron dosage.DL near ZVI-4 Offset 1. 12.75-15.25 FEROX 11:22 650 20 ulsed 220 250 30 800 1110 visual 0 V+ nm Blown 0 0 0 10 0 0 nm nm DL around ZVI-4 Offset 1. "pulsed"-Non continuous gas Flow. Total H-200(Ibs) Total HC-15 "vented"-allowed to expell gas and water Ibs "nm"-not monitored 2600 300 "V+"-positive pressure influence below gauge threshold 'DU-daylighting Summary Data Tables 3 and 4 187 Marine Corp Air Station, Site 89 Jacksonville, North Carolina Injection Point ZVI-1 23.75 - 26.25 ft. bgs. Pneumatic Fracturing Event 120 100 80 a 60 a 40 20 0 0 2 4 6 8 10 12 14 16 18 Time (sec) Graph 1 188 Marine Corp Air Station, Site 89 Jacksonville, North Carolina Injection Point ZVI-1 21.25 - 23.75 ft. bgs. Pneumatic Fracturing Event 120 — — 100 80 a 60 a 40 20 0 0 2 4 6 8 10 12 14 16 18 20 Time (sec) Graph 2 189 Marine Corp Air Station, Site 89 Jacksonville, North Carolina Injection Point ZVI-1 18.75 - 21.25 ft. bgs. Pneumatic Fracturing Event 80 70 60 _ 50 a 40 a 30 20 10 0 0 2 4 6 8 10 12 Time (sec) Graph 3 190 Marine Corp Air Station, Site 89 Jacksonville, North Carolina Injection Point ZVI-1 16.25 - 18.75 ft. bgs. Pneumatic Fracturing Event 80 70 60 _ 50 a 40 a 30 20 10 0 0 2 4 6 8 10 12 Time (sec) Graph 4 191 Marine Corp Air Station, Site 89 Jacksonville, North Carolina Injection Point ZVI-2 23.75 - 26.25 ft. bgs. Pneumatic Fracturing Event 80 — 70 60 _ 50 a 40 a 30 20 10 0 0 2 4 6 8 10 12 14 Time (sec) Graph 5 192 Marine Corp Air Station, Site 89 Jacksonville, North Carolina Injection Point ZVI-2 21.25 - 23.75 ft. bgs. Pneumatic Fracturing Event 70 60 50 a 40 m 30 a 20 10 0 0 2 4 6 8 10 12 14 16 18 20 Time (sec) Graph 6 193 Marine Corp Air Station, Site 89 Jacksonville, North Carolina Injection Point ZVI-3 23.25 - 25.75 ft. bgs. Pneumatic Fracturing Event 140 — — 120 100 a 80 m 60 a 40 20 0 0 2 4 6 8 10 12 14 16 18 20 Time (sec) Graph 7 194 Marine Corp Air Station, Site 89 Jacksonville, North Carolina Injection Point ZVI-3 20.75 - 23.25 ft. bgs. Pneumatic Fracturing Event 90 80 70 f111V 60 a 50 m L 40 L a 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20 Time (sec) Graph 8 195 Marine Corp Air Station, Site 89 Jacksonville, North Carolina Injection Point ZVI-4 23.75 - 26.25 ft. bgs. Pneumatic Fracturing Event 120 100 80 a 60 a 40 20 0 0 5 10 15 20 25 Time (sec) Graph 9 196 Marine Corp Air Station, Site 89 Jacksonville, North Carolina Injection Point ZVI-4 21.25 - 23.75 ft. bgs. Pneumatic Fracturing Event 60 50 40 a 30 a 20 10 0 0 2 4 6 8 10 12 14 16 18 20 Time (sec) Graph 10 197 Marine Corp Air Station, Site 89 Jacksonville, North Carolina Injection Point ZVI-4 Offset 18.75 - 21.25 ft. bgs. Pneumatic Fracturing Event 120 — — 100 80 a 60 a 40 20 0 0 2 4 6 8 10 12 14 16 18 20 Time (sec) Graph 11 198 Appendix E 199 PROJECT NUMBER WELL NUMBER Is346548 1 SV01 SHEET l or , CH2MHILL WELL COMPLETION DIAGRAM PROJECT: Site 89 LOCATION: MCB Camp Lejeune Jacksonville NC Site 89 DRILLING CONTRACTOR: Probe Tech Concord NC DRILLING METHOD AND EQUIPMENT USED: 6620DT Geoprobe WATER LEVELS: START• 11/16/2006 END: LOGGER:K.Riggs/E Must 3 3b\\`\ / 2 1 1-Ground elevation at well 2-Top of casing elevation 3a 3-Wellhead protection cover type Flushmount a)drain tube? NA b)concrete pad dimensions 2'x 2' 8----- 4- Dia./type of well casing 1'Schedule 40 PVC 3.5' I 4' 5-Type/slot size of screen 0.010"slotted PVC 7- 5. 5' 6-Type screen filter 42 filter sand 4 a)Quantity used 1.5 bags 7-Type of seal Benlonite Hole Plug a)Quantity used 15 bag 5 8-Grout a)Grout mix used 95%Type 1 Portland cement/5%Bentonitc b)Method of placement Pour c)Vol.of well casing grout Development method NA r 6 Development time NA Estimated purge volume NA Comments: Soil Vapor Well WellComplebon0iagram_SVO1.xls xxxxxx.xX.xx 200 PROJECT NUMBER WELL NUMBER 346548 SV02 SHEET 1 of I CH2MHILL WELL COMPLETION DIAGRAM PROJECT: Site 89 LOCATION: MCB Camp Lejeune Jacksonville NC Site 89 DRILLING CONTRACTOR: Probe Tech Concord NC DRILLING METHOD AND EQUIPMENT USED: 6620DT Geoprobe WATER LEVELS: START: 1 1/1 612006 END: LOGGER:K.Riggs/E.Must 3\ 3b \ /2 1�\ 1-Ground elevation at well 2-Top of casing elevation 3a— 3-Wellhead protection cover type Flushmount / a)drain tube? NA b)concrete pad dimensions 2'x 2' 4- Dia./type of well casing 1"Schedule 40 PVC 3.5' 4' 5-Type/slot size of screen 0.010"slotted PVC 7 5.75' 6-Type screen filter 42 filter sand 4— a)Quantity used 1.5 bags 7-Type of seal Bentonile Hole Plug a)Quantity used 1.5 bag 5 8-Grout a)Grout mix used 95%Type 1 Portland cement/5%Bentonite b)Method of placement Pour c)Vol.of well casing grout Development method NA 1' 6 Development time NA I Estimated purge volume NA Comments: Soil Vapor Well WellCompletionDiagram_SV02.xls xxxxxxxxxx 201 PROJECT NUMBER WELL NUMBER 346548 SV03 SHEET 1 of , CH2MHILL WELL COMPLETION DIAGRAM PROJECT: Site 89 LOCATION: MCB Camp Lejeune Jacksonville NC Site 89 DRIWNG CONTRACTOR: Probe Tech Concord NC DRIWNG METHOD AND EQUIPMENT USED: 6620DT Geoprobe WATER LEVELS: START: END: LOGGER:K.Riggs/E.Must 3 3b \ j- 2 1 1-Ground elevation at well 2-Top of casing elevation 184 3-Wellhead protection cover type Flushmount a)drain tube? NA b)concrete pad dimensions 2'x 2' 4-DiaJtype of well casing 1`ID Schedule 40 PVC 3.5' 4' 5-Type/slot size of screen 0.010"slotted screen 6-Type screen filter #2 filter sand a)Quantity used 2 bags 7-Type of seal Bentonite Hole Plug a)Quantity used 1 bag 5 8-Grout a)Grout mix used 95%Type 1 Portland cement/5%Bentonite b)Method of placement Pour c)Vol.of well casing grout Development method NA 1' 6 Development time NA Estimated purge volume NA Comments: Soil Vapor Well WellCompletion0lagram SVOIxls xxxxxx.xx,xx 202 Appendix F 203 FIELD IMPLEMENTATION SUMMARY Pneumatic Fracturing— Site 89 MARINE CORPS AIR STATION CAMP LEJEUNE, JACKSONVILLE, NORTH CAROLINA Prepared for: AGVIQ LLC 4663 Haygood Road, Suite 201 Virginia Beach, VA 23455 Prepared by: ARS Technologies, Inc. 98 North Ward Street New Brunswick, New Jersey 08901 April 2007 204 TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 TECHNOLOGY BACKGROUND 3.0 FRACTURE BOREHOLE INSTALLATION 4.0 INJECTION PROCEDURES AND PARAMETERS 5.0 FIELD IMPLEMENTATION SUMMARY 5.1 Pneumatic Fracturing Boring PF-1 5.2 Pneumatic Fracturing Boring PF-2 5.3 Pneumatic Fracturing Boring PF-3 5.4 Pneumatic Fracturing Boring PF-4 6.0 CONCLUSION ARS Technologies, Inc. 205 TABLES Table 1 Pneumatic Fracturing Injection Summary Table FIGURES Graph 1-16 Pressure/Flow vs. Time Curves for Fracturing Events GLOSSARY BGS Below Ground Surface CVOC Chlorinated Volatile Organic Compound ND Not detectable PF Pneumatic Fracturing PSI Pounds Per Square Inch ROI Radius of Influence SCFM Standard Cubic Feet per Minute ARS Technologies, Inc. 206 1.0 INTRODUCTION This report summarizes the field operations and presents the injection data parameters associated with a Pneumatic Fracturing (PP) application implemented by ARS Technologies on behalf of AGVIQ LLC/CH2M FULL Joint Venture at the Marine Corps Air Station, Site 89 located at Camp Lejeune, North Carolina (The Site). The scope of services entailed the Pneumatic Fracturing of four (4) boreholes from a depth of 12.5 — 25.0 feet bgs to increase soil permeability and augment the remedial performance of an air sparge horizontal well system currently operating at the site. 2.0 TECHNOLOGY BACKGROUND PF can best be described as a process whereby a gas is injected into the subsurface at pressures exceeding the natural in-situ pressures present in the soil/rock interface (Le. overburden pressure, cohesive stresses, etc.) and at flow volumes exceeding the natural permeability of the subsurface. The result of this action is the propagation of fractures outward from the injection point. Unconsolidated materials such as silts and clays typically exhibit fracture propagation distances of 20 - 40 feet. In most geologic formations the propagation is relatively uniform around the injection well. The traditional PF technology creates fractures in cohesive soils such as clay and also in rocks (shale, sandstone, etc.). Such geologic formations exhibit "self propping" behavior, which means that the asperities present on the fracture surface are appreciable, and fluid flow is maintained through the openings. 3.0 FRACTURE BOREHOLE INSTALLATION Fracture well installation was directly integrated with ARS' injection operations_ A total of four (4) temporary injection points installed with a conventional Auger Rig utilizing a 5 inch solid drill casing which was advanced to the maximum target depth at each location. Once the injection tooling was lowered to depth, the casing was retracted to a point where the packers were exposed to the formation. This methodology assured that the target depths could be reached and prevented borehole collapse before the injection tooling reached the bottom of hole, as well as to prevent material from caving in on the injection tooling and locking it in place. 4.0 INJECTION PROCEDURES AND PARAMETERS This section summarizes the operational procedures and parameters monitored as part of the pneumatic fracturing process. The parameters discussed below may be used as confirmatory measures to determine whether fractures were initiated and successfully propagated within the targeted treatment intervals. ARS Technologies, Inc. 207 The specialized equipment used for the injection process consists of a skid mounted high pressure-High flow fracture module complete with an injection control manifold and a digital data logger that are used to monitor various operational parameters. Injection pressures are regulated with a high-pressure, high-flow injection manifold The manifold system provides precise control of injection pressures combined with sufficient flows, which enabled the creation and/or enhancement of fractures within the subsurface. The duration of the PF injections typically ranged between 10 to 15 seconds. Fracture Initiation and Maintenance Pressures: During each PF injection, pressures in the discrete fracture interval were recorded by a pressure transducer located in-line within the conduit leading to the injection nozzle. These pressures are recorded by a data logging system located on the injection module and accessed using a lap top computer. By comparing the magnitude and shape of the pressure-history curve to previously collected curves in similar geology, an assessment can be made on whether fracture initiation and propagation occurred. This information allows the evaluation of two critical measurements; the fracture initiation pressure and the fracture maintenance pressure. A typical PF event can be subdivided into three distinct stages consisting of: -Breakdown of formation -Fracture Initiation -Fracture Maintenance These independent stages are illustrated in Figure I. It should be noted that the shape of the pressure-time history curve dep-.nds on a number of factors including insitu stress fields and geologic characteristics of the medium being fractured. The following section describes each stage as it relates to the PF mechanism as illustrated in Figure 1. During the first stage idenlifed as "breakdown", the pressure rapidly builds up as gas is injected into the discrete sealed interval of the borehole. "Phis stage is I dentified as curve segment A-B. The formation of these initial elevated pressures result from the fact that the formation is not yet fractured and still has low permeability. This stage is relatively short and typically last 1-2 seconds. Once the pressure exceeds the insitu stress conditions and media strength prevailing within the sealed pressurized interval, the formation yields and fracture initiation instantaneously occurs_ The pressure at this instant is identified as the initiation pressure identified as Stage B in Figure 1. Following the instantaneous fracture initiation stage, the pressure decreases rapidly in the sealed interval and eventually stabilizes at a pressure plateau as the injection continues. During this time period, high volumes of gas rush out of the pressurized interval and fractures propagate radially into the formation. This accounts for the rapid decline in the borehole pressure as represented by curve segment B-C. The pressure plateau C-D represents a period of the fracture maintenance and dilation, which is nearly constant for the remainder of the injection period. This pressure indicates that an equilibrium state has been attained for that particular injection flow rate. During this period, the flow rate into the fractured formation exactly equals the leak-off into the formation from the ARS Technologies, Inc. 208 fracture surfaces and tips As the injection pressure is terminated, the maintenance pressure declines rapidly from D-E. FIGURE I — Example of a Pressure Versus Time Curve Camp Lejeune Site 89 Jacksonville,North Carolina Injection Boring PF-1. 40U 350 B 300 _250 C D a 200 N d A 150 100 E 50 0 0 2 4 6 8 10 12 14 16 18 20 Time(sec) �—Pressure Pressure Influence at Arljacent Monitoring Wells: During the fracturing events, pressure gauges were placed at select monitoring wells to monitor pressure influence. Each pressure gauge was fitted with a maximum drag-arm indicator, which enables the user to monitor the maximum pressure influence at that location during each event. During the injections, pressure influence is measured at wells near the injection points using calibrated pressure (psi) gauges. Each pressure gauge is outfitted with a drag arm indicator that records the maximum pressure detected at the monitoring point during the injection. This data also assists in determining which directions fractures may have propagated. In addition, the degree of pressure response can often help determine whether a monitoring point has been directly influenced (i.e. fractures propagate outward and intersect wells or boreholes, or indirectly influenced through localized groundwater displacement and/or mounding. Minimal pressure response in monitoring wells located close to the injection point may indicate that fluidization and significant gas dispersion is occurring. ARS Technologies, Inc. 209 .Surface Heave: Ground surface heave is used as one of the primary methods to detect fracture initiation and propagation. Since soil is a deformable medium, the observed surface heave represents the lower limit of fracture aperture and radius. Ground surface heave measurements were recorded during each fracturing event using a surveying level in conjunction with a heave rod. A heave rod was placed at a predeternuned radial distance from the fracture well. During each injection event, the rod was observed for the maximum amount of upward motion (surface heave) and residual or permanent heave. 5.0 FIELD IMPLEMENTATION SUMMARY This section summarizes the field operations and provides a discussion of the down-hole injection parameters specific to each injection boring and discrete interval_ Field operations at the Site were performed from April 4 through April 6, 2007. Operational parameters collected during each injection event included the discrete injection interval, initiation and operational pressures recorded on the control module and wellhead, pressure influence at surrounding monitoring wells, surface heave and visual field observations. Table I presents the data collected within each interval specific to each borehole location. PF injections were accomplished by starting at the deepest interval and working upward. Following the completion of a discrete fracturing interval, the packers were deflated, and the nozzle assembly was raised to the next injection location. 5.1 Pneumatic Fracturing Boring PF-1 Injection operations at boring PF-1 were performed on April 4, 2007 The fracturing injection intervals at borehole PF-1 were as follows: 1) 22.25 - 25.5 ft bgs 2) 19.0 - 22.5 ft bgs 3) 15.75 19.0 ft bgs 4) 12.5 15.75 ft bgs Fracture boring PF-1 was located to the north of Building TC864. The PF injections at this location resulted in the short-circuiting of gas around the down-hole injection tooling. More notably and in all cases, short-circuiting occurred towards the end of the injection event. It is important to note that this occurrence did not render the fracturing ineffective since, at a minimum, each discrete interval was fractured for a sufficient time (>10 seconds) and at flowrates (averaging = 2000 SCFM) to adequately initiate and propagate fractures. ARS Technologies, Inc. 210 Data parameters recorded for PF-1 are presented in Table 1 of this report. The fracture initiation and maintenance pressures ranged from 80 to 300 psi and 50 to 200 psi, respectively. More notably, fracturing initiation pressures were highest within the deepest intervals suggesting the presence of a more competent low-permeable material. Pressure/Flow vs. Time curves generated from Fracture Events 1, 2, 3 and 4 are presented in the attached Figures The curves pertaining to events 1, 2 and 3 illustrate prominent fracture curves with distinct peak pressures confirming fracture initiation and propagation within the respective interval The smoothed rounding appearance for Fracture Event 4 is indicative of dilation of fractures and/or leak-off into more permeable Portions or seams of the isolated interval through the duration of the fracture event. Surface heave measurements recorded during the PF injections are presented in Table 1. One location adjacent to the injection well was monitored for heave during the fracturing injections. Heave measurements during the fracturing phase of the operations ranged between 0.1 and 0.3 inches. During the PF injections pressure influence was observed at wells MW-43 and MW-4313 which were located approximately 40 feet west of boring PF-1. A detailed summary of pressure influence at surrounding points during injections at PF-1 is provided in Table 1. 5.2 Pneumatic Fracturing Boring PF-2 Injection operations at boring PF-2 were performed on April 5, 2006. The fracturing intervals at borehole PF-2 were as follows 1) 22.25 — 25.5 11 bgs 2) 19.0 — 22.5 11 bgs 3) 15.75 — 19.0 ft bgs 4) 12.5 - 15.75 ft bgs Fracture boring PF-2 was located to the south of building TC864. Data parameters recorded for PF-2 are presented in Table 1 of this report. The fracture initiation and maintenance pressures ranged from 85 to 400 psi and 70 — 110 psi, respectively. More notably, fracturing initiation pressures were highest within the deepest intervals suggesting the presence of a more competent low-permeable material. Pressure vs. Time curves generated from Events 1, 2 and 3 reveal three prominent fracture curves with distinct pressures peaks indicating fracture initiation and propagation. The smoothed mounding appearance of the curves likely resulted from dilation of previously formed fractures and/or gas leak-off into more permeable portions or seams within the isolated interval during the early stages of the fracture initiation process. ARS Technologies, Inc. 211 Surface heave measurements recorded during the PF-2 injections are presented in Table 1. One location was monitored for heave during the fracturing injections as identified in Table 1. The monitoring point was located adjacent to the injection well (approximately feet). Heave measurements during fracturing ranged between 0.1 and 0.3 inches. During the injections at PF-2, pressure influence was observed at wells MW-48A and MW-4813 in the form of positive pressure when the valve to the well was opened. A detailed summary of pressure influence at surrounding points during PF injections at PF- 2 is provided in Table 1. 5.3 Pneumatic Fracturing Boring PF-3 Injection operations at boring PF-3 were performed on April 6, 2006. The fracturing intervals at borehole PF-3 were as follows: 1) 22.25 — 25.5 ft bgs 2) 19.0 — 22.5 ft bgs 3) 15.75 - 19.Oftbgs 4) 12.5 — 15.75 ft bgs Fracture boring PF-3 represented the furthest south injection location. Data parameters recorded for PF-3 are presented in Table 1 of this report. The rTacture initiation and maintenance pressures ranged from 145 to 340 psi and 100 — 225 psi, respectively. More notably, fracturing initiation pressures were highest within the deepest intervals suggesting the presence of a more competent low-permeable material. Pressure/Flow vs. Time curves generated from Events 1 and 2 reveal prominent fracture curves with distinct initiation pressures indicating fracture initiation and propagation. The smoothed mounding appearance of the curves representing Events 3 and 4, likely resulted from gas leak-off into more permeable portions or seams within the isolated interval during the early stages of the fracture initiation process. Surface heave measurements recorded during the PF-3 injections are presented in Table 1. One location was monitored for heave during the fracturing injections as identified in Table 1. The monitoring point was located adjacent to the injection well (approximately 3 feet) Heave measurements during fracturing ranged between 0.1 and 0.5 inches During the injections at PF-3, pressure influence was observed at wells MW-49A and MW-49B in the form of registered pressure influence on the gauge and positive pressure when the valve to the well was opened. Direct pressure influence was also observed at boring PF-4 during the PF-3 injections. A detailed summary of pressure influence at surrounding points during PF injections at PF-3 is provided in Table 1. ARS Technologies, Inc. 212 5.4 Pneumatic Fracturing Boring PF-4 Injection operations at boring PF-4 were performed on April 6, 2006. The fracturing intervals at borehole PF-4 were as follows: 1) 22.25 25.5 ft bgs 2) 19.0 — 22.5 ft bgs 3) 15.75 — 19.0 ft bgs 4) 12.5 - 15.75 ft bgs Fracture boring PF-4 was located between borings PF-2 and PF-3. Data parameters recorded for PF-4 are presented in Table 1 of this report. The fracture initiation and maintenance pressures ranged from 140 to 320 psi and 80 — 190 psi, respectively. More notably, fracturing initiation pressures were highest within the deepest intervals suggesting the presence of a more competent low-permeable material. Pressure vs. Time curves generated from Events 2, 3 and 4 reveal prominent fracture curves with distinct initiation pressures indicating fracture initiation and propagation_ The smoothed mounding appearance of the curves illustrated in Event 1, likely resulted from gas leak-off into more permeable portions or seams within the isolated interval during the early stages of the fracture initiation process. Surface heave measurements recorded during the PF-4 injections are presented in Table 1. One location was monitored for heave during the fracturing injections as identified in Table 1. The monitoring point was located adjacent to the injection well (approximately 3 feet). Heave measurements during fracturing ranged between 0.1 and 0.4 inches. Influence was not observed at any of the monitored wells. Lack of pressure influence at monitoring well cluster MW-49A and 49B which were greater than 40 feet away. 6.0 CONCLUSION A pneumatic fracturing application was recently completed at Marine Corps Air Station, Site 89 Camp Lejeune North Carolina. A total of four (4) boreholes were fractured from a depth of 12.5 to 25.5 feet bgs. Data parameters collected as part of the PF process, such as surface heave measurements, pressure response measurements in surrounding monitoring wells and boreholes, and the pressure-history curves, indicates that fractures were successfully initiated and propagated within the targeted areas. The pressure- history curves indicate that the soils fractured numerous times during the field effort. Initial pressure peaks indicate that fractures were created with at pressures ranging from 80 to 400 psig. Fracturing initiation pressures were highest within the deepest intervals ARS Technologies, Inc. 213 suggesting the presence of a more competent low-permeable material. During a few applications, the pressure curves indicate a "mounded" pattern that is indicative pore space dilation of existing fractures and/or more permeable soils. During PF operations, pressure responses were observed in monitoring wells and in one instance (PF-3) at distances up to 40 feet from the injection borings indicating successful propagation of fractures and subsequent permeability enhancements within the targeted treatment intervals. AIRS Technologies, Inc. 214 i E U 7 V C m N '0 C C C O o m - � y a0i � � c _m d ti m N N 0) t 72 C C C O V N O E c v E _0 d o `m a a U m> L L S c a C C N J m O N 6 C CL C o E 0 3 o m 10 m °1 N -O U C � 7 V N a 3 0 0 0 0 z z z z z z z z z z z z = Z Z Z Z Z Z z z Z Z Z Z m m 3 Z Z Z Z 0 0 0 O O O O O O O O o g C7 m d Z Z Z Z 0 0 0 0 o 0 0 0 0 0 a m ■ A A Z z z z Z z z Z r 3 � rn a 00 0 00 0 00 0 0 zzzzzzzz c o Z m 3 0 0 0 0 0 0 0 z z z z z z z M .w •a i 0 - 000000Mzzzzzz V, 3 zzzzzzzz O N > d Y qL � x C O O O O O O O O O O O O O O O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c? r ru Nvf r4 � +n civ -T C.) t b X V 00 LL fA o E o 0 0 0 0 0 0 0 0 0 v' our nn n no n � cn 0ou0 0 g 0 o 0u, LL V co O m n +n tom N c+f In r7 VI N N N a m E J " N tl1 G! a 0 0 0 0 n O O N O O uD 0 +1) O 0 O 61 Qt OOr1l n W N O) N O V n N UL 03 d V A � IL j N N a` � � ouoino � o +noc"'vuoi �iorn � oo Ra c rs d N W d U O O O 0 0 +f1 O +n 1n In O +n 0 0 O O O O O O O v r o) v N n O v C a +"l (4 N v N N O C D Ry r Ol n U7 O N 7 N 1p to ^ L E r v O N r O N O N v O N a cY R O pNi N M D t2 to r r N f7 7 V IN u7 OO f0 00 Q� r m O N f7 N Cl) O r fJ 7) N fV fJ tV M A A M 44 4 O LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL �j a a a a a a a a am a a a a a a o +n o N N o +n +n o +n N o +n n u? n 'n n U? n u? n C7 ul Oi N T Ln 01 +n O+ O N N Y N N n N N n N N n m A > � o N 0 N 0 � r 0 T, In N N n r4 n tf} C fJ m U7 N N W � W p O O O N O S O O C d D_ Y 1Ij co to O Cl T ? v ? > o y d Im ? O Q c N C W m mr fY M C tC C C m O) ° a a a a a N u - d c Z b 7 215 (wj3s) a;ej M01=1 0 0 0 0 0 0 LO CD LO CD cat) N N LO O O N O - - co 00 L- LM LPL dT U 0- 3 N :0) � �° c o '� > I o w C N E j J ,CL , o � v F- E o 41 N LL n- m 0 N I c� — co v - - N H o Z O O ClO CD CDCl CD O O �[� M N w (isd) amssaJd r LL a 216 (W13s) ejej molj 0 0 0 0 Loi o LO o 0 N N LO O - — — -- - O N GD - (o C p e— N :D oo m 41 M UL fA N to ,_ CD -c a d t: = > c O W m I p o0 = Z o a; CON m ai r N E _l = O v F= w C > i+ O N E O LL fl U v co ca --- co - N N H -= O Z O O O O Cl O W N N � 0 O > W (!sd)OJnsssJd LL a 217 (w;Ds)a;ei M01=1 0 0 0 0 to o LO o 0 N CV LO O O CV -- — OO - - r _ (D r sf r Rj CM S AC) � � +LL 0 M• 00 to .� m LL C O L. C I dZm � LU 0 :� r .� r � .� 0 E o m to U- a m co - - (D v CV M - p - o Z LU LD O L O 10 O , N CV •' r W (led)aanssGJd L LL IL 218 (w13s) a;ej M01=1 0 o O O o o O O O O O CD 0) 000 Or- coCD � Om N O O N O i - T cc C oo .O — - - N � T- M' aMZ 3 ME Cl) s (M � = LL c O .L.- > I LI = Z C to O d L = to E J — O N m N * v I U v co ea m - v - N - O Z O O O O O O O O O O O W O O 0o !l- (D LO m N T T W (isd) ainssaJd LL a 219 (wjas) a;ej M01=1 0 0 0 0 0 0 o to o In o 0 cn N cv .— In O O - N (D C 00 � N CN M LL N : Ua a) LL O > d I � ZM o 41 d C , E J .> LO E O d tV U. a co W 'C N I U v ---- - co cD v N O Z 0 c 0 0 0 0 o w 0 Co 0 0 0 0 > (D In M N s- W (isd) ainssaJd N LL a 220 (w;as) a;ei M01:1 0 0 0 0 oO CD (Do Ln CD 0 04 0 0 0 - N Go co V- 04 CIO � N - + LL a' VCL 3 Cl) L 0 O LL m .` $ > m I � Z 0LOLLI o a m N � - J = O N E o ^ r' U. a` CID ca CID - v N N H Cl Z 0 0 0 0 0 0 w Lo o �n o > N N W (ssd) ajnssaJd c4 LL a 221 (wi3s) a;ej mol.1 0 0 0 0 0 0 0 0 0 0 Cl co (O '7 N O O O O O _ O N co CO _ 00 � N W ja CM 3 a� _ �° c o o_ > a I � z Mow = t _ J _ G O 7 Ln V � N E O m LD U- G U v - ao - co N !h - O Z O O O O O O O O O O O w O Oo 0 � N O w tp d N CIA .- .- •- •- • W (isd) ajnssaJd N U. a 222 Mos)alai MOIL 0 0 N O O GO t�0 N O O N aD C 00 0 N — N l�4 LL UCL mLL �' O C C O _ > LI lea Z O n o L r" dl C w S J = O , v F- .> , E O 0 NI U- d m � Ico co N — O W N O Co tD N .- W (isd) ainssOJd c4 LL d 223 (w13s) a;ej MOI-4 o O o 0 0 0 0 0 lecn M N N V) O O N O - (O T le T m coL� T - - - - T IT U a Cl) t IM , c o 'c o > � Ue W p' a�iZmin m a C N CDTo J 0 V F- E O d N LL d m N '— N U v co - ca v - N e- -- - - - o Z O O O O O O O O O W O O O to O O O to > co co N N r T W (!sd) ainssaJd A LL a. 224 (Wps) a;ej M01=1 0 0 0 0 oin o CD o CD CV 04 to O O - - N — - - co CD C O O M N m LL V 0- L 3 c o 'c � � � z Ou, W I o w m 0 C N = m J - O ' V 1- N a > + O m N E O � u °° LI rco N N H o z 0 0 0 0 0 0 uj CD Le Ln LO N N W (!sd) ainssaJd A LL a 225 (w;os) a;ei M01=1 0 0 0 0 Ln o of o 0 CV N 1A O p N c0 co C co lh N Cl) LL CL t O LL = O = j v I Z m 0) G1 CD v a r E J - O > . E O d Ki lL d M U) U - OD CD N c) H - o Z 0 0 0 0 0 0 uj o o Ln Ln �n N C4 r W (isd) ejnssOJd A LL a 226 (Wps) a-jei MOI-4 O O O O O O CD CD CD CD CD O OD (D V ON O O O O O (V r r r r r pp (D (V O ►n N Co N m C 00 LML VJ — Lo N n. IM 3 Cl) t 0) _ LL Wiz° ° � m � I — O U) u f- N m to •� T I U le c H o Z O O O O O O O O O O O O OD (D V CV C) 00 (D Q N CN r r r r r LV (isd) ainssaJd c i LL. a 227 (w}as) a;ej MOIZI 0 Cl 0 0 o O 0 CD Cf) N N Lo O O N - - QO (D e- C ()0 &- I T- LL cn s :0 � _ ° a� ` �. c o o w N � • = N : E J = o v F- E o N Ico — N N —- — O W Co l O OO O to ClM N N w (Isd) ainssaJd 4 LL a 228 (W13s) a;ei M01:1 O O o 0 � o oO o 0 N N O _ O N 00 v- co of RS C � O d N c o $ > I d Z m CD v N O J - O W)CL > �+ E O W LO LL a- U V -- - - --- ao - v N M -- - O W tn O CD O L O N W (isd) ainssaJd 4 LL a 229 (wj3s) ajej M01=1 0 0 0 0 cClo o 0 0 0 0 0 00 (O 10- N 0 O i N r co r r d LL NCl) CM LL r C OS $ > w � LU Z Oh 0IEO 72 C T m J = o V N i+ ca cD -- N 'tT -- - - - O Z CD ITv oN o OD (0 Iq N o L1J i (isd) ainssaJd 4 LL a 230 Appendix G 231 Appendix G-1 232 Appendix G-1 ERD Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW08 IR89-MW44 IR89-MW53 IR89-MW54 IR89-MW55 Sample ID IR89-GW08-06D IR89-GW08-07A IR89-GW08-07A2 IR89-GW08-07B IR89-GW44-06D IR89-GW44-07A IR89-GW44-07A2 IR89-GW44-07B IR89-GW53-06D IR89-GW53-07A IR89-GW53-07A2 IR89-GW53-07B IR89-GW54-06D IR89-GW54-07A IR89-GW54-07A2 IR89-GW54-07B IR89-GW55-06D IR89-GW55-07A IR89-GW55-07A2 IR89-GW55-07B Sample Date 11/17/06 01/03/07 03/15/07 06/07/07 11/18/06 01/02/07 03/15/07 06/07/07 11/18/06 1 01/03/07 03/15/07 06/07/07 11/18/06 01/03/07 03/15/07 06/07/07 11/18/06 01/03/07 03/15/07 06/07/07 Chemical Name Volatile Organic Compounds(UG_L) 1,1,1,2-Tetrachloroethane t U 1 U NA NA 1 U 1 U NA NA 1 U 500 U NA NA t U 1 U NA NA t U 1 u NA NA 1,1,1-Trichloroethane 1 U 1 U 1 U 1 U 1 0 1 U 5 U 1 U 1 U 500 U 200 U 400 U 1 U 1 u 1 0 1 U 1 0 1 U 1 U 1 U 1,1,2,2-Tetrachloroethane 130 210 120 110 1 U 5 U 1 U 34 J 500 U 200 U 1 U 1 U 1 u 1,1,2-Trichloro-1,2,2-trifluoroethene(Freon-I13) NA NA 1 U 1 U NA NA 5 U 1 U NA NA 200 U 400 U NA NA t U 1 U NA NA 1 U t o 1,1,2-Trichloroethane 2.2 3 J 2.4 2.8 1 U 1 U 5 U 1 U 76 J 500 U 180 J 400 U t U 1 U 1 U 1 U 1 U i u 1 U 1 u 1,1-Dichloroethane t U 1 U t U 1 U 1 0 1 U 5 U 1 U 1 U 500 U 200 U 400 U 1 0 1 U 1 U 1 U 1 U 1 U 1 U t U 1,1-Dichloroethene 1.2 0.82 J 0.49 J 2.4 4.3 J 2.8 6.7 J 500 U 200 U 400 U 2.7 3.6 0.76 J 2.7 2.8 1 U 1,1-Dichloropropene t U 1 U NA NA t U 1 U NA NA t U 500 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1,2,3-Trichlorobenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 500 U NA NA t U 1 U NA NA t U 1 U NA NA 1,2,3-Tichloropropane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 500 U NA NA 1 U 1 U NA NA t U i u NA NA 1,2,4-Trichlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U 5 U 1 U 1 U 500 U 200 U 400 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1,2,4-Trimethylbenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 500 U NA NA 1 U 1 U NA NA 1 U i u NA NA 1,2-Dibromo-3-chloropropane 1 U 1 U 2 U 2 U 1 U 1 U 10 U 2 U 1 U 500 U 400 U 800 U 1 U 1 U 2 U 2 U 1 U 1 U 2 U 2 U 1,2-Dibromoethane 1 U 1 U 1 U 1 U 1 U 1 U 5 U 1 U 1 U 500 U 200 U 400 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1,2-Dichlorobenzene 1 U 1 U 1 0 1 U 1 U 1 U 5 U 1 U 1 U 500 U 200 U 400 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1,2-Dichloroethane 1 U 1 U 0.34 J 0 1 U 1 U 5 U 1 U 1 U 500 U 200 U 400 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1,2-Dichloropropane 1 U 1 U 1 U 1 U 1 U 1 U 5 U 1 U 1 U 500 U 200 U 400 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1,3,5-Trimethylbenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 500 U NA NA 1 U 1 U NA NA 1 U i u NA NA 1,3-Dichlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U 5 U 1 U 1 U 500 U 200 U 400 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1,3-Dichloropropane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 500 U NA NA 1 U 1 U NA NA 1 U i u NA NA 1,4-Dichlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U 5 U 1 U 1 U 500 U 200 U 400 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U ,2-Dichloropropane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 500 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA -Butanone 5 U 5 U 10 U 10 U S U42 50 U 10 U 5 U 2,500 U 2,000 U 4,000 U 5 U 10 U 10 U 5 U 5 U 41 10 U -Hexanone NA NA 5 U 5 U NA NA 25 U 5 U NA NA 11000 U 2,000 U NA NA 5 U 5 u NA NA 3.9 J 5 U -Methyl-2-pentanone NA NA 5 U 5 U NA NA 25 U 5 U NA NA 11000 U 2,000 U NA NA 5 U 5 u NA NA 1.4 J 5 U Acetone 25 U 25 U 10 U 10 U 25 U 25 U 29 J 10 U 25 U 12,000 U 2,000 U 4,000 U 25 U 25 U 10 U 10 U 25 U 25 U 15 10 U Benzene 1 U 1 U 0.89 J 0.78 J 1 U 1 U 5 U 1 U 500 U 200 U 400 U 1 U 1 U 0.18 J 1 U 1 U 1 U 0.18 J 1 U Bromobenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 500 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA Bromochloromethane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 500 U NA NA 1 U 1 U NA NA 1 U i u NA NA Bromodichloromethane 1 U 1 U 1 U 1 U 1 U 1 U 5 U 1 U 1 U 500 U 200 U 400 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U Bromoform 1 0 1 0 1 0 1 0 1 0 1 0 5 U 1 0 1 0 500 U 200 0 400 0 1 0 1 u 1 0 1 U 1 0 1 U 1 0 1 0 Bromomethane 1 0 1 0 2 U 2 U 1 0 1 0 10 0 2 U 1 0 500 U 400 U 800 u 1 U 1 u 2 U 2 U 1 0 1 U 2 U 2 U Carbon disulfide NA NA 1 0 1 0 NA NA 5 U 1 0 NA NA 200 U 400 U NA NA 1 0 1 u NA NA 1 0 1 U Carbon tetrachloride 1 0 1 0 1 0 1 0 1 0 1 0 5 0 1 U 1 0 500 U 200 U 400 U 1 U 1 u 1 U 1 U 1 U 1 U 1 0 1 0 Chlorobenzene 1 0 1 0 1 0 1 0 1 0 1 0 5 0 1 U 1 0 500 0 200 0 400 0 1 U 1 u 1 U 1 U 1 U 1 U 1 0 1 0 Chloroethane 1 0 1 0 2 U 2 U 1 0 1 0 10 0 2 U 1 0 500 U 400 U 800 u 1 U 1 u 2 U 2 U 1 U 1 U 2 U 2 U Chloroform 1 0 1 0 1 0 1 0 1 0 1 0 5 0 1 0 1 0 500 U 200 0 400 0 1 0 1 u 1 U 1 U 1 U 1 0 1 U 1 0 Chloromethane 1 0 1 0 2 U 2 U 1 0 1 0 10 0 2 U 1 0 500 U 400 U 800 U 1 U 1 u 2 U 2 U 1 U 1 0 2 U 2 U Cyclohexane NA NA 2 U 2 U NA NA 10 0 2 U NA NA 400 U 800 U NA NA 2 U 2 U NA NA 2 U 2 U Dibromochloromethane 1 0 1 0 1 0 1 0 1 0 1 0 5 0 1 U 1 0 500 U 200 U 400 U 1 U 1 U 1 U 1 0 1 U 1 0 1 U 1 0 Dibromomethane 1 0 1 U NA NA 1 0 1 U NA NA 1 0 500 U NA NA 1 0 1 U NA NA 1 0 1 u NA NA Dichlorodifluoromethane(Freon-12) 1 0 1 U 2 U 2 U 1 0 1 U 10 0 2 U 1 0 500 U 400 U 800 u 1 U 1 U 2 U 2 U 1 U 1 0 2 U 2 U Ethylbenzene 1 0 1 U 1 0 1 U 1 U 1 0 5 U 1 U 1 U 500 U 200 0 400 0 1 U 1 u 1 U 1 0 1 U 1 0 1 U 1 0 Hexachlorobutadiene 1 0 1 U NA NA 1 0 1 0 NA NA 1 U 500 U NA NA 1 U 1 U NA NA 1 U 1 u NA NA Isopropyl ether 1 0 1 U NA NA 1 0 1 U NA NA 1 0 500 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA Isopropylbenzene 1 0 1 U 1 0 0.18 J 1 0 1 0 5 U 1 U 1 U 500 U 200 U 400 U 1 U 1 u 1 U 1 U 1 U 1 0 1 U 1 0 Methyl acetate NA NA 1 0 1 U NA NA 5 0 1 0 NA NA 200 U 400 U NA NA 1 U 1 u NA NA 1 U 1 u Methyl-tert-butyl ether(MTBE) 1 0 1 U 1 0 1 U 1 0 1 0 5 U 1 U 1 U 500 U 200 U 400 U 1 U 1 u 1 U 1 U 1 U 1 0 1 U 1 0 Methylcyclohexane NA NA 1 0 1 U NA NA 5 U 1 0 NA NA 200 U 400 U NA NA 1 U 1 u NA NA 1 U 1 0 Methylene chloride 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 11000 U 800 u 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U Naphthalene 1 U 1.2 J NA NA 1 0 1 U NA NA 1 U 500 U NA NA 1 U 1 U NA NA 1 U 1 u NA NA Styrene 1 U 1 U 1 0 1 U 1 U 1 U 5U 1 U 1 U 500 U 2000 4000 1 U 1 u 1 U 1 U 1 U 1 0 1 U 1 0 etrachloroethene MMMMMMr3.6 6.1 J 2.8 4.1 9.1 5 U 1 U 74 J 500 U 230 270 J 1 U 0.25 J 1 U 1 u 1 U 1 0 Toluene 1 U 1 U 1 U 1 U 1 0 1 U 50 1 U 1.2J 500 U 200 U 400 U 1 U 1 U 1 U 1 U 1 0 1 U 1 U 1 0 richloroethene 110 110 J 66 78 360 670 29 20 11,000 J 52,000 36,000 30,000 320 3 140 3.8 320 5.8 0.33 J 1.9 richlorofluoromethane(Freon-11) 1 U 1 U 2 U 2 U 1 0 1 U 10 0 2 U 1 U 500 U 400 U 800 U 1 U 1 U 2 U 2 U 1 U 1 U 2 U 2 U Vinyl chloride 27 27 J 31 40 3 34 540 170 34 J 500 U 450 310 J 4.1 4.7 61 50 3.5 5.2 2.6 20 ylene,total NA NA 1 U 1 U NA NA 5 U 1 U NA NA 200 U 400 U NA NA 1 U 1 U NA NA 1 U 1 U cis-1,2-Dichloroethene 140 160 J 100 120 270 800 750 95 1,100 J 4,700 3,500 3,300 260 600 130 24 230 610 1.3 7.8 cis-1,3-Dichloropropene NA NA 1 U 1 U NA NA 5 U 1 U NA NA 200 U 400 U NA NA 1 U 1 U NA NA 1 U 1 u m-and p-Xylene 2 U 2 U NA NA 2 U 2 U NA NA 2 U 11000 U NA NA 2 U 2 U NA NA 2 U 2 U NA NA n-Butylbenzene 1 0 1 U NA NA 1 0 1 U NA NA 1 0 500 U NA NA 1 0 1 U NA NA 1 0 1 U NA NA n-Propylbenzene 1 0 1 U NA NA 1 0 1 U NA NA 1 0 500 U NA NA 1 0 1 U NA NA 1 0 1 u NA NA Chlorotoluene 1 0 1 U NA NA 1 0 1 U NA NA 1 0 500 U NA NA 1 0 1 U NA NA 1 0 1 u NA NA o-Xylene 1 0 1 0 NA NA 1 0 1 0 NA NA 1 0 500 U NA NA 1 0 1 U NA NA 1 0 1 U NA NA p-Chlorotoluene 1 0 1 U NA NA 1 0 1 0 NA NA 1 U 500 U NA NA 1 U 1 U NA NA 1 0 1 u NA NA p-Isapropyltoluene 1 0 1 U NA NA 1 0 1 0 NA NA 1 U 500 U NA NA 1 U NA NA 1 0 1 u NA NA sec-Butylbenzene 1 U 1 U NA NA 1 0 1 0 NA NA 1 U 500 U NA NA 1 U 1 U NA NA 1 0 1 u NA NA ert-Butylbenzene 1 U 1 U NA NA 1 0 1 0 NA NA 1 U 500 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA Page 1 of 2 233 Appendix G-1 ERD Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MWO8 IR89-MW44 IR89-MW53 IR89-MW54 IR89-MW55 Sample ID IR89-GW08-06D IR89-GW08-07A IR89-GW08-07A2 IR89-GW08-07B IR89-GW44-06D IR89-GW44-07A IR89-GW44-07A2 IR89-GW44-07B IR89-GW53-06D IR89-GW53-07A IR89-GW53-07A2 IR89-GW53-07B IR89-GW54-06D IR89-GW54-07A IR89-GW54-07A2 IR89-GW54-07B IR89-GW55-06D IR89-GW55-07A IR89-GW55-07A2 IR89-GW55-07B Sample Date 11/17/06 01/03/07 03/15/07 06/07/07 11/18/06 01/02/07 03/15/07 06/07/07 1 11/18/06 1 01/03/07 03/15/07 06/07/07 1 11/18/06 1 01/03/07 03/15/07 06/07/07 11/18/06 01/03/07 03/15/07 06/07/07 Chemical Name vans-1,2-Dichloroethene 81 2,500 ,200jMMj-L11:O:O::::: 1.6 1 U cans-1,3-Dichloropropene NA NA 1 U 1 U NA NA 5 U 1 U NA NA 200 U 400 U NA NA 1 U 1 U NA NA 1 U 1 U Wet Chemistry(MG_L) Alkalinity 5 U 6 6.7 24 2,000 1,220 369 28 300 210 263 420 236 307 25 434 431 Chloride 39 41 30.9 332 14 20 15.9 15.7 28 42 25.8 28.4 15 17 12 12 14 11.7 11.8 Dissolved organic carbon NA NA 2.5 3 NA NA 13.2 9.4 NA NA 0.99 J 1 J NA NA 1.4 J 7.2 NA NA 41.6 2.2 Ethane NA NA 0.0019 0.0024 NA NA 4.00E-05 6.00E-04 J NA NA 4.30E-04 1.00E-03 U NA NA 0.0011 0.0017 NA NA 0.012 0.005 Ethane NA NA 8.10E-04 0.0014 NA NA 0.076 0.2 NA NA 0.0024 0.0013 NA NA 0.035 0.072 NA NA 0.015 0.0011 Methane NA NA 0.31 0.77 NA NA 0.66 1.2 NA NA 0.21 0.063 NA NA 0.078 0.31 NA NA 7 1.1 Nitrate NA NA 0.1 U 0.1 U NA NA 0.1 U NMI, 0.43 NA NA 0.1 U 0.1 U NA NA 0.1 U 0.1 U NA NA 0.1 U 0.076 J Nitrite NA NA 0.25 U 0.25 U NA NA 0.25 U 0.25 U NA NA 0.25 U 0.25 U NA NA 0.25 U 0.25 U NA NA 0.25 U 0.25 U Nitrogen 0.1 U 0.1 U NA NA 0.1 U NA NA 0.1 U 0.1 U NA NA 0.1 U 0.1 U NA NA 0.17 0.1 U NA NA Phosphorus 0.1 U 0.1 U 0.06 U 0.06 U 0.128 1.63 .6 0.36 0.1 U 0.1 U 0.058 J 0.024 J 0.1 U 0.188 0.14 0.18 0.102 0.151 0.19 0.17 Sulfate 7 51.8 36 5 U 1.6 1.1 6.4 14.8 38 5 U 18.4 4 39 5 U 0.18 J 2.1 Total organic carbon(TOC) 5.2 3 2.4 2.9 2.1 250 14 9.4 3.6 0.8 J 0.81 J 3.2 34 1.3 J 6.9 2 44 21 41.9 2.2 Notes: U-Analyte not detected J-Reported value is estimated NA-Not Analyzed Shading represents detection Page 2 of 2 234 Appendix G-2 235 Appendix G-2 Chemical Reduction Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW01 IR89-MW02 IR89-MW50 IR89-MW51 IR89-MW52 Sample ID IR89-GW01-06D IR89-GW01-07A IR89-GW01-07A2 IR89-GW01-07B IR89-GW02-06D IR89-GW02-07A IR89-GW02-07A2 IR89-GW02-07B IR89-GW50-06D IR89-GW50-07A IR89-GW50-07A2 IR89-GW50-07B IR89-GW51-06D IR89-GW51-07A IR89-GW51-07A2 IR89-GW51-07B IR89-GW52-06D IR89-GW52-07A IR89-GW52-07A2 IR89-GW52-07B Sample Date 11/19/06 01/04/07 03/14/07 06/05/07 11/20/06 01/04/07 03/14/07 06/05/07 11/20/06 01/04/07 03/14/07 06/05/07 11/19/06 01/04/07 03/14/07 06/05/07 11/19/06 01/04/07 03/14/07 06/05/07 Chemical Name Volatile Organic Compounds(UG_L) 1,1,1,2-Tetrachloroethane i u 1 U NA NA 1 u 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA t U 1 U NA NA 1,1,1-Trichloroethane t U 1 U t U 1 U 1 U 1 U 50 U 100 U 1 U 1 U 2 U 5 U 1 U 1 U 50 U 100 U 1 U 1 U 20 U 100 U 1,1,2,2-Tetrachloroethane NOW 47 74 49 14,000 J 13,000 10,000 81500 82 38 6.3 190 11900 J 3,800 2,500 4,800 4,800 J 2,800 3,200 4,100 1,1,2-Trichloro-1,2,2-trifluoroethene(Freon-I13) NA NA i u 1 U NA NA 50 U 100 U NA NA 2 U 5 U NA NA 50 U 100 U NA NA 20 U 100 U 1,1,2-Trichloroethane 1 U 1.1 1 U 0.59 J 69 J 540 77 58 J 1.1 2.2 2 U 4.1 J 170 J 88 J 83 120 180 J 82 J 56 110 1,1-Dichloroethane i u 1 U 1 U 1 U t U 1 U 50 U 100 U 1 U 1 U 2 U 0.75 J 1 U 1 U 50 U 100 U 1 U 1 U 20 U 100 U 1,1-Dichloroethene 1 u 1 U 1 U 1 U 20 J 21 21 J 100 U 3.3 10 20 20 J 16 J 50 U 100 U 32 J 20 J 13 J 100 U 1,1-Dichloropropene 1 u 1 U NA NA t U 1 U NA NA t U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1,2,3-Trichlorobenzene 1 u 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA t U 1 U NA NA 1,2,3-Tichloropropane 1 u 1 U NA NA 1 u 1 U NA NA 1 u 1 U NA NA 1 U 1 U NA NA t U 1 U NA NA 1,2,4-Trichlorobenzene 1 u 1 U i u 1 U 1 u 1 U 50 u 100 U 1 U 1 U 2 U 5 U 1 U 1 U 50 u 100 U 1 u 1 u 20 U 100 u 1,2,4-Trimethylbenzene 1 u 1 U NA NA 1 u 1 U NA NA 1 u 1 U NA L 1.2 J NA NA 1 U 1 U NA NA 1,2-Dibromo-3-chloropropane 1 U 1 U 2 U 2 U 1 U 1 U 100 U 200 U 1 U i u 4 U 10 u 1 U i u 100 U 200 U 1 U 1 U 40 U 200 U 1,2-Dibromoethane 1 U 1 U 1 U 1 U 1 U 1 U 50 U 100 U 1 U 1 U 2 U 5 u 1 U 1 U 50 U 100 u 1 U 1 u 20 U 100 U 1,2-Dichlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U 50 U 100 U 1 U 1 U 2 U 5 u 1 U 1 U 50 U 100 U 1 U 1 U 20 U 100 U 1,2-Dichloroethane 1 U 1 U 1 U 01 50 U 100 U 1 U 1 U 2 U 5 U 50 U 100 U 3.6 J 4 J 20 U 100 U 1,2-Dichloropropane 1 U 1 U 1 U 1 U 1 U 1 U 50 U 100 U 1 U 1 U 2 U 5 u 1 U 1 U 50 U 100 U 1 U i u 20 U 100 U 1,3,5-Trimethylbenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1,3-Dichlorobenzene 1 U 1 U 1 u 1 U 1 U 1 U 50 U 100 U 1 U 1 U 2 U 5 u 1 U 1 U 50 U 100 U 1 U 1 U 20 U 100 u 1,3-Dichloropropane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U i u NA NA 1,4-Dichlorobenzene 1 U 1 U 1 u 1 U 1 U 1 U 50 U 100 U 1 U 1 U 2 U 5 u 1 U i u 50 U 100 U 1 U 1 U 20 U 100 u ,2-Dichloropropane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U i u NA NA -Butanone 5 U 5 U 10 U 10 U 5 U 500 U 11000 U 5 U 5 U 20 U 50 u 5 U 5 u 500 U 1,000 u 5 U 5 U 200 U 11000 U -Hexanone NA NA 5 U 5 U NA NA 250 U 500 U NA NA 10 U 25 U NA NA 250 U 500 u NA NA 100 U 500 U -Methyl-2-pentanone NA NA 5 U 5 U NA NA 250 U 500 U NA NA 10 U 25 U NA NA 250 U 500 u NA NA 100 U 500 U Acetone 25 U 25 U 10 U 10 U 25 U 25 U 500 U 11000 U 25 U 25 U 11 J 50 u 25 U 25 U 500 U 1,000 U 25 U 25 U 200 U 11000 U Benzene 1 U 1 U 1 U 1 U 1 U 1.4 50 U 100 U 1 U 1 U 2 U 5 U 50 U 100 u 1.9 J 1 U 20 U 100 U Bromobenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA Bromochloromethane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA Bromodichloromethane 1 U 1 U 1 U 1 U 1 U 1 U 50 U 100 U 1 U 1 U 2 U 5 u 1 U i u 50 U 100 U t U 1 u 20 U 100 U Bromoform 1U 1U 1U 1U 1U 1U 50U 100U 1U 1U 2U 5U 1U 1U 50U 100U 1U I 20U 100U Bromomethane 1 U 1 U 2 U 2 U 1 U 1 U 100 U 200 U 1 U 1 U 4 U 10 U 1 U 1 U 100 U 200 U 1 U 1 U 40 U 200 U Carbon disulfde NA NA 1 U 1 U NA NA 50 U 100 U NA NA 2 U 5 U NA NA 50 U 100 U NA NA 20 U 100 U Carbon tetrachloride 1 U 1 U 1 U 1 U 1 U 1 U 50 U 100 U 1 U 1 U 2 U 5 U 1 U 1 U 50 U 100 U 1 U 1 U 20 U 100 U Chlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U 50 U 100 U 1 U 1 U 2 U 5 U 1 U 1 U 50 U 100 U 1 U 1 U 20 U 100 U Chloroethane 1 U 1 U 2 U 2 U 1 U 1 U 100 U 200 U 1 U 1 U 4 U 10 U 1 U 1 U 100 U 200 U 1 U 1 U 40 U 200 U Chloroform 1 U 1 U 1 U 1 U 1 U 1 U 6J 100 U 1.2 1 U 2U 5 U 1 U 1 U 5.3J 100U 1 U 1 U 2.4J 100U Chloromethane 1 U 1 U 2 U 2 U 1 U 1 U 100 U 200 U 1 U 1 U 4 U 10 U 1 U 1 U 100 U 200 U 1 U 1 U 40 U 200 U Cyclohexane NA NA 2 U 2 U NA NA 100 U 200 U NA NA 4 U 10 U NA NA 100 U 200 U NA NA 40 U 200 U Dibromochloromethane 1 U 1 U 1 U 1 U 1 U 1 U 50 U 100 U 1 U 1 U 2 U 5 U 1 U 1 U 50 U 100 U 1 U 1 U 20 U 100 U Dibromomethane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA Dichlorodifluoromethane(Freon-12) 1 U 1 U 2 U 2 U 1 U 1 U 100 U 200 U 1 U 1 U 4 U 10 U 1 U 1 U 100 U 200 U 1 U 1 U 40 U 200 U Ethylbenzene 1 U 1 U 1 U 1 U 1 U 1.6 50 U 100 U 1 U 1 U 2 U 5 u 1 U 1 U 50 U 100 U 1 U 1 U 20 U 100 U Hexachlorobutadiene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 u NA NA Isopropyl ether 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA Isopropylbenzene 1 U 1 U 1 U 0.15 J 1 U 1 U 50 U 100 U 1 U 1 U 2 U 5 u 1 U 1 u 50 U 100 U 1 U 1 U 20 U 100 U Methyl acetate NA NA 1 U 1 U NA NA 50 U 100 U NA NA 2 U 5 U NA NA 50 U 100 u NA NA 20 U 100 U Methyl-tert-butyl ether(MTBE) 1 U 1 U 1 U 1 U 1 U 1 U 50 U 100 U 1 U 1 U 2 U 5 U 1.8 J 50 U 100 U 1 U 1 U 20 U 100 U Methylcyclohexane NA NA 1 U 1 U NA NA 50 U 100 U NA NA 2 U 5 U NA NA 50 U 100 u NA NA 20 U 100 U Methylene chloride 2 U 2 U 2 U 2 U 2 U 2 U 200 U 2 U 2 U 10 u 2 U 2 U 140 200 U 2 U 2 U 52 200 U Naphthalene 1 u 1 U NA NA 1 U NA NA 1 U 1 U NA NA 1 U J NA NA 1 U 1 U NA NA Page 1 of 2 236 Appendix G-2 Chemical Reduction Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW01 IR89-MW02 IR89-MW50 IR89-MW51 IR89-MW52 Sample ID IR89-GW01-06D IR89-GW01-07A IR89-GW01-07A2 IR89-GW01-07B IR89-GW02-06D IR89-GW02-07A IR89-GW02-07A2 IR89-GW02-07B IR89-GW50-06D IR89-GW50-07A IR89-GW50-07A2 IR89-GW50-07B IR89-GW51-06D IR89-GW51-07A IR89-GW51-07A2 IR89-GW51-07B IR89-GW52-06D IR89-GW52-07A IR89-GW52-07A2 IR89-GW52-07B Sample Date 11/19/06 01/04/07 03/14/07 06/05/07 11/20/06 01/04/07 03/14/07 06/05/07 1 11/20/06 1 01/04/07 03/14/07 06/05/07 11/19/06 01/04/07 03/14/07 06/05/07 1 11/19/06 1 01/04/07 03/14/07 06/05/07 Chemical Name Styrene 1 U 1 U 1 U 1 U 1 U 1.6 50 U 100 U 1 U 1 U 2 U 5 U 1 U .6 J 50 U 100 U 1 U 1 U 20 U 100 U etmchloroethene 86 MME75 J 'MOMMMMOMMOMMMMWOOMMO20 U J Toluene 1 U 1 U 1 U 1 U 1.5 J 4.2 50 U 100 U 1 U 1 U 2 U 5 U 1.2 J 1.1 J 50 U 100 U 1 U 1 U 20 U 100 U richloroethene 25 45 34 28 4,100 J 3,100 3,800 2,800 490 680 230 210 6,700 J 6,400 12,000 11,000 91900 J 4,600 91800 richloro6uoromethane(Freon-11) 1 U 1 U 2 U 2 U 1 U 1 U 100 U 200 U 1 U 1 U 4 U 10 U 1 U 1 U 100 U 200 U 1 U 1 U 40 U 200 U Vinyl chloride 1 U 1 U 0.55 J 0.68 J 670 J 860 1,600 1,200 29 120 120 120 200 J 330 370 660 660 J 310 170 810 ylene,total NA NA 1 U 1 U NA NA 50 U 100 U NA NA 2 U 5 U NA NA 50 U 100 U NA NA 20 U 100 U cis-1,2-Dichloroethene 37 21 16 8,200 J 10,000 10,000 9,400 710 1,700 2,100 910 4,900 J 9,500 7,800 12,000 13,000 J 7,000 4,400 12,000 cis-1,3-Dichloropropene NA NA 1 U 1 U NA NA 50 U 100 U NA NA 2 U 5 U NA NA 50 U 100 U NA NA 20 U 100 U m-and p-Xylene 2 U 2 U NA NA 2 U 2 U NA NA 2 U 2 U NA NA 2 U 2 U NA NA 2 U 2 U NA NA n-Butylbenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA n-Propylbenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA Chlorotoluene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA Xylene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA NA NA 1 U 1 U NA NA p-Chlorotoluene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA p-Isopropyltoluene 1 U 1 U NA NA 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA sec-Butylbenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA ert-Butylbenzene t U 1 U NA NA 1 U 1 U NA NA t U 1 1 U NA NA t U 1 U NA NA 1 U 1 U NA NA rans-1,2-Dichloroethene 9.2 J 4,00 26OMMM" 1,900 3,10 trans-1,3-Dichloropropene NA NA 1 U 1 U NA NA 50 U 100 U NA I NA 2 U 5 U NA NA 50 U 100 U NA NA 20 U 100 U Notes: U-Analyte not detected J-Reported value is estimated NA-Not Analyzed Shading represents detection Page 2 of 2 237 Appendix G-3 238 Appendix G-3 Air Sparge Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW32 IR89-MW33 IR89-MW43 Sample ID IR89-GW32-06D IR89-GW32-07A IR89-GW32-07A-2 IR89-GW32-07A3 IR89-GW32-07B IR89-GW32-07B2 IR89-GW32-07C IR89-GW33-06D IR89-GW33-07A IR89-GW33-07A-2 IR89-GW33-07A3 IR89-GW33-07B IR89-GW33-07B2 IR89-GW33-07C IR89-GW43-06D IR89-GW43-07A IR89-GW43-07A-2 IR89-GW43-07A3 IR89-GW43-07B IR89-GW43-07B2 Sample Date 11/20/06 01/18/07 02/16/07 03/28/07 05/01/07 06/05/07 07/11/07 11/20/06 01/19/07 02/19/07 03/28/07 05/02/07 1 06/06/07 07/11/07 11/20/06 01/19/07 02/16/07 03/29/07 05/02107 06/06/07 Chemical Name Volatile Organic Compounds(UG_L) 1,1,1,2-Tetrachloroethane 1 U 1 U 2 U NA NA NA NA 1 U 1 U t U NA NA NA NA 1 U t U 10 U NA NA NA 1,1,1-Trichloroethane 1 U 1 U 2 U 1 U 1 U t U 1 U t U 1 U t U 1 U t U 1 U 1 U 1 U 1 U 10 U 5 U 5 U 2 U 1,1,2,2-Tetrachloroethane 1 U 1 U 2 U 1 U t U 1 U t U 1 U t U 1 U 1 U 10 U 5 U 5 U 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-I13) NA NA NA 1 U 1 U 1 U 1 U NA NA NA 1 U t U 1 U t U NA NA NA 5 U 5 U 2 U 1,1,2-Trichloroethane 1 U 1 U 2 U 1 U 1 U 1 U 1 U t U 1 U t U 1 U t U 1 U 1 U 1 U 1 U 10 U 5 U 5 U 2 U 1,1-Dichloroethane 1 U 1 U 2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 5 U 5 U 2 U 1,1-Dichloroethene 1 U 1 U 2 U 1 U 1 U 1 U 0.21 J 1 U 1 U 1 U 11111MO:46Y 1 U 1 U 1 U 2.1 2.5 10 U 5 U 5 U 2 U 1,1-Dichloropropene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA 1,2,3-Trichlorobenzene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U t U 10 U NA NA NA 1,2,3-Trichloropropene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA 1,2,4-Trichlorobenzene 1 U 1 U 2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 5 U 5 U 2 U 1,2,4-Trimethylbenzene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA 1,2-Dibromo-3-chloropropane 1 U 1 U 2 U 2 U 2 U 2 U 2 U 1 U 1 U 1 U 2 U 2 U 2 U 2 U 1 U 1 U 10 U 10 U 10 U 4 U 1,2-Dibromoethane I 1U 2U 1U 1U 1U I 1U I 1U I 1U I 1U I 1U 10U 5U 5U 2U 1,2-Dichlorobenzene 1 U 1 U 2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 5 U 5 U 2 U 1,2-Dichloroethane I 1U 2U 1U 1U 1U I 1U 1U 1U I 1U I 1U I 1U 10U 5U 5U 2U 1,2-Dichloropropane I 1U 2U 1U 1U 1U 1U 1U I 1U I 1U I 1U I 1U 10U 5U SU 1,3,5-Trimethylbenzene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA 1,3-Dichlorobenzene I 1U 2U 1U 1U 1U 1U 1U I 1U I 1U I 1U I 1U 10U 5U 5U 2U 1,3-Dichloropropane 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA 1,4-Dichlorobenzene 1 U 1 U 2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 5 U 5 U 2 U 2,2-Dichloropropane 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA 2-Butanone 5U 5U 10U 10U 10U 10U 10U 5U 5U 5U 10U 10U 10U 10U 5U 5U 50U 50U 50U 20U 2-Hexanone NA NA NA 5 U 5 U 5 U 5 U NA NA NA 5 U 5 U 5 U 5 U NA NA NA 25 U 25 U 10 U -Methyl-2-pentanone NA NA NA 5 U 5 U 5 U 5 U NA NA NA 5 U 5 U 5 U 5 U NA NA NA 25 U 25 U 10 U Acetone 25 U 25 U 50 U 10 U 10 U 10 U 10 U 25 U 25 U 25 U 10 U 10 U 10 U 10 U 25 U 25 U 250 U 19 J 50 U 20 U Benzene 1 U 1 U 2 U 0.19J 0.2J 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10U 5 U 5U 2 U Bromobenzene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA Bromochloromethane 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA Bromodichloromethane 1 U 1 U 2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 5 U 5 U 2 U Bromoform 1U 1U 2U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1u 1U 1u 1U 10U 5U 5U 2U Bromomethane 1 U 1 U 2U 2U 2U 2U 2U 1 U 1 U 1 U 2U 2U 2U 2U 1 u 1 U 10U 10U 10U 4U Carbon disulfide NA NA NA 1 U 1 U 1 U 1 U NA NA NA 1 U 1 U 1 U 1 U NA NA NA 5 U 5 U 2 U Carbon tetrachloride 1 U 1 U 2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 u 1 U 1 u 1 U 10 U 5 U 5 U 2 U Chlorobenzene 1U 1U 2U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1u 1U I 1U 10U 5U 5U 2U Chloroethane 1 U 1 U 2U 2U 2U 2U 2U 1 U 1 U 1 U 2U 2U 2U 2U 1 u 1 U 10U 10U 10U 4U Chloroform 6.1 2.0 2U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1u 1U 1u 1U 10U 5U 5U 2U Chloromethane 1 U 1 U 2U 2U 2U 2U 2U 1 U 1 U 1 U 2U 2U 2U 2U 1 u 1 U 10U 10U 10U 4U Cyclohexane NA NA NA 2 U 2 U 2 U 2 U NA NA NA 2 U 2 U 2 U 2 U NA NA NA 10 U 10 U 4 U Dibromochloromethane 1 U 1 U 2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 u 1 U 1 U 1 U 10 U 5 U 5 U 2 U Dibromomethane 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA Dichlorodifluoromethane(Freon-12) 1 U 1 U 2 U 2 U 2 U 2 U 2 U 1 U 1 U 1 U 2 U 2 U 2 U 2 U 1 U 1 U 10 U 10 U 10 U 4 U Ethylbenzene 1U 1U 2U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1u 1U 1u 1U 10U 5U 5U 2U Hexachlorobutadiene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA Isopropyl ether 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA Isopropylbenzene 1U 1U 2U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1u 1U 1u 1U 10U 5U 5U 2U Methyl acetate NA NA NA 1 U 1 U 1 U 1 U NA NA NA 1 U 1 U 1 U 1 U NA NA NA 5 U 5 u 2 U Methyl-tert-butyl ether(MTBE) 1 U 1 U 2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 u 1 U 1 u 1 U 10 U 5 U 5 U 2 U Methylcyclohexane NA NA NA 1 U 1 U 1 U 1 U NA NA NA 1 U 1 U 1 U 1 U NA NA NA 5 U 5 U 2 U Methylene chloride 2U 2U 4U 2U 2U 2U 2U 2U 2U 2U 2U 2U 2U 2U 2U 2U 20U 4U Naphthalene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U loul NA I NA I NA Styrene 1U 1U 2U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 1U 10U 5U 5U 2U Tetrachloroethene 1 U 0.53 J 0.91 J 1 U 1 U 1 U Page 1 of 8 239 Appendix G-3 Air Sparge Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW43B IR89-MW48A Sample ID IR89-GW43-07B3 IR89-GW43-07C IR89-GW43B-06D IR89-GW43B-07A IR89-GW43B-07A-2 IR89-GW43B-07A3 IR89-GW43B-07B IR89-GW43B-07B2 IR89-GW43B-07B3 IR89-GW43B-07C IR89-GW48A-06D IR89-GW48A-07A IR89-GW48A-07A-2 IR89-GW48A-07A3 IR89-GW48A-07B IR89-GW48A-07B2 IR89-GW48A-07B3 IR89-GW48A-07C Sample Date 06/25/07 07/11/07 11/21/06 01/19/07 02/16/07 03/29/07 05/02/07 06/06/07 06/25/07 07/11/07 11/21/06 01/18/07 02/19/07 03/29/07 05/01/07 06/06/07 06/25/07 07/11/07 Chemical Name Volatile Organic Compounds(UG_L) 1,1,1,2-Tetrachloroethane NA NA 1 u 1 U 1 u NA NA NA NA NA 1 U 1 u 2 U NA NA NA NA NA 1,1,1-Trichloroethane NA 5 u 1 u 1 U 1 u 1 U 1 u 1 u NA 1 U 1 u 1 U 2 U 1 U t o 1 U NA t o 1,1,2,2-Tetrachloroethane NA 5 u 1 u 1 U 1 u 1 U 1 u NA 1 U t o 1 U 2 U 1 U t U 1 U NA t U 1,1,2-Trichloro-1,2,2-triFluoroethane(Freon-I13) NA 5 u NA NA NA 1 u 1 U 1 u NA 1 U NA NA NA 1 U t o 1 U NA t o 1,1,2-Trichloroethane NA 5 U 1 U 1 u 1 U t o 1 U t o NA 1 U t o 1 U 2 U 1 U t U 1 U NA t U 1,1-Dichloroethane NA 5 u 1 U t U 1 U t U 1 U t U NA 1 U t U 1 U 2 U 1 U t U 1 u NA t U 1,1-Dichloroethene NA 5 u 1.6 1 U 1 U 1 U 1 U 1 U NA 0.29 J 1.6 1 U 2 U 1 U 1 U 1 u NA 1 U 1,1-Dichloropropene NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1,2,3-Trichlorobenzene NA NA 1 U 1 U 1 U NA NA NA NA NA t o 1 U 2 U NA NA NA NA NA 1,2,3-Tichloropropane NA NA 1 U 1 u 1 U NA NA NA NA NA 1 u 1 U 2 U NA NA NA NA NA 1,2,4-Trichlorobenzene NA 5 u 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U i u 1 U i u NA 1 U 1,2,4-Trimethylbenzene NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1,2-Dibromo-3-chloropropane NA 10 U 1 U 1 U 1 U 2 U 2 U 2 U NA 2 U 1 U 1 U 2 U 2 U 2 U 2 U NA 2 U 1,2-Dibromoethane NA 5 U 1 U 1 U 1 U 1 U 1 U 1 U NA i u 1 U i u 2 U i u 1 U i u NA 1 U 1,2-Dichlorobenzene NA 5 U 1 U 1 U i u 1 U i u 1 U NA i u 1 U i u 2 U i u 1 U 1 U NA 1 U 1,2-Dichloroethane NA 5 U i u 1 U i u 1 U i u 1 U NA i u 1 U 1 U 2 U 1 u 1 U 1 U NA 1 U 1,2-Dichloropropane NA 5 U i u 1 U 1 U 1 U i u 1 U NA 1 U 1 U 1 U 2 U 1 U 1 U 1 U NA 1 U 1,3,5-Trimethylbenzene NA NA 1 u 1 U 1 u NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1,3-Dichlorobenzene NA 5 U 1 u 1 U 1 U 1 U i u 1 U NA 1 U 1 U 1 U 2 U 1 U 1 U 1 U NA 1 U 1,3-Dichloropropane NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1,4-Dichlorobenzene NA 5 U 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U 1 U 1 U NA 1 U ,2-Dichloropropane NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA -Butanone NA 50U 5U 11 5U 10U 10U 10U NA 10U 5U 5U 10U 10U 10U 10U NA 10U -Hexanone NA 25 U NA NA NA 5 U 5 U 5 U NA 5 U NA NA NA 5 U 5 U 5 U NA 5 U -Methyl-2-pentanone NA 25 U NA NA NA 5 U 5 U 5 U NA 5 U NA NA NA 5 U 5 U 5 U NA 5 U Acetone NA 50 U 25 U 25 U 25 U 10 U 10 U 10 U NA 10 U 25 U 25 U 50 U 10 U 10 U 10 U NA 10 U Benzene NA 5U 1U 1U 1U 1U 1U 1U NA 1U I 1U 2U 1U I 1U NA I Bromobenzene NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA Bromochloromethane NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA Bromodichloromethane NA 5 U 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U i u 1 U NA i u Bromofonn NA 5U 1U 1U 1U 1U 1U 1u NA 1U 1u 1U 2U 1U I 1U NA I Bromomethane NA 10 U 1 U 1 u 1 U 2 U 2 U 2 U NA 2 U 1 u 1 U 2 U 2 U 2 U 2 U NA 2 U Carbon disulfide NA 5 U NA NA NA 1 u 1 U 1 u NA 1 U NA NA NA 1 U 1 u 1 u NA 1 U Carbon tetrachloride NA 5 U 1 U 1 u 1 U 1 u 1 U 1 U NA 1 u 1 U 1 u 2 U 1 u 1 U 1 u NA 1 U Chlorobenzene NA 5 U 1 u 1 U 1 u 1 U 1 u 1 U NA 1 u 1 U 1 u 2 U 1 u 1 U 1 u NA 1 U Chloroethane NA 10 U 1 u 1 U 1 u 2 U 2 U 2 U NA 2 U 1 U 1 u 2 U 2 U 2 U 2 U NA 2 U Chloroform NA 5U 1u 1U 1u 1U 1u 1U NA 1u 1U 1u 2U 1u 1U 1u NA 1U Chloromethane NA 10 U 1 u 1 U 1 u 2 U 2 U 2 U NA 2 U 1 U 1 u 2 U 2 U 2 U 2 U NA 2 U Cyclohexane NA 10 U NA NA NA 2 U 2 U 2 U NA 2 U NA NA NA 2 U 2 U 2 U NA 2 U Dibromochloromethane NA 5 U 1 u 1 U 1 u 1 U 1 u 1 U NA 1 u 1 U 1 u 2 U 1 u 1 U 1 u NA 1 U Dibromomethane NA NA 1 u 1 U 1 u NA NA NA NA NA 1 U 1 u 2 U NA NA NA NA NA Dichlorodifluoromethane(Freon-12) NA 10 U 1 u 1 U 1 u 2 U 2 U 2 U NA 2 U 1 U 1 u 2 U 2 U 2 U 2 U NA 2 U Ethylbenzene NA 5 U 1 u 1 U 1 u 1 U 1 u 1 U NA 1 u 1 U 1 u 2 U 1 u 1 U 1 u NA 1 U Hexachlorobutadiene NA NA 1 u 1 U 1 u NA NA NA NA NA 1 U 1 u 2 U NA NA NA NA NA Isopropyl ether NA NA 1 u 1 U 1 u NA NA NA NA NA 1 U 1 u 2 U NA NA NA NA NA Isopropylbenzene NA 5 U 1 u 1 U 1 u 1 U 1 u 1 U NA 1 u 1 u 1 u 2 U 1 u 1 u 1 u NA 1 u Methyl acetate NA 5 U NA NA NA 1 U 1 u 1 U NA 1 u NA NA NA 1 u 1 U 1 u NA 1 u Methyl-tert-butyl ether(MTBE) NA 5 U 1 u 1 U 1 u 1 U 1 u 1 u NA 1 u 1 u 1 u 2 U 1 u 1 u 1 u NA 1 u Methylcyclohexane NA 5 U NA NA NA 1 u 1 u 1 u NA 1 u NA NA NA 1 u 1 u 1 u NA 1 u Methylene chloride NA 2 U 2 U 2 U 2 U 2 U 2 U NA 2 U 2 U 2 U 4 U 2 U 2 U 2 U NA 2 U Naphthalene NA NA 1 u 1 u 1 u NA NA NA NA NA 1 u 1 u 2 U NA NA NA NA NA Styrene NA SU 1U 1U 1U 1U 1U 1U NA 1U 1U 1U 2U 1U 1U 1U NA 1U etrachloroethene NA NA NA 0.92 J Page 2 of 8 240 Appendix G-3 Air Sparge Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW48B IR89-MW49A Semple ID IR89-GW48B-06D IR89-GW48B-07A IR89-GW48B-07A-2 IR89-GW48B-07A3 IR89-GW48B-07B IR89-GW48B-07B2 IR89-GW48B-07B3 IR89-GW48B-07C IR89-GW49A-06D IR89-GW49A-07A IR89-GW49A-07A-2 IR89-GW49A-07A3 IR89-GW49A-07B IR89-GW49A-07B2 IR89-GW49A-07B3 IR89-GW49A-07C IR89-GW49B-06D IR89-GW49B-07A Sample Date 11/21/06 01/18/07 02/19/07 03/29/07 05/01/07 06/06/07 06/25/07 07/11/07 11/21/06 Ot/18/07 02/19/07 03/29/07 05/02/07 06/06/07 06/25/07 07/11/07 11/21/06 01/18/07 Chemical Name Volatile Organic Compounds(UG_L) 1,1,1,2-Tetrachloroethane 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U 1,1,1-Trichloroethane 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U 2 U 1 U NA t U 1 U t U 1,1,2,2-Tetrachloroethane 1 U 1 U 1 U 1 U 1 U t U NA 1 U t U 1 U 2 U 1 U 2 U 1 U NA t U 1 U t U 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) NA NA NA 1 U 1 U t U NA 1 U NA NA NA 1 U 2 U 1 U NA t U NA NA 1,1,2-Trichloroethane 1 U t U 1 U 1 U 1 U t U NA 1 U t U 1 U 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U 1,1-Dichloroethane 1 U t U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U 1,1-Dichloroethene 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 14 J 2.5 2 U 1 U 2 U 1 U NA 1 U 1 U 1,1-Dichloropropene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U 1,2,3-Trichlorobenzene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U 1,2,3-Trichloropropene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U 1,2,4-Trichlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U 1,2,4-Trimethylbenzene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U 1,2-Dibromo-3-chloropropane 1 U 1 U 1 U 2 U 2 U 2 U NA 2 U 1 U 1 U 2 U 2 U 4 U 2 U NA 2 U 1 U 1 U 1,2-Dibromoethane 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U 1,2-Dichlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U 1,2-Dichloroethane 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U 1,2-Dichloropropane 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U 1,3,5-Trimethylbenzene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U 1,3-Dichlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U 1,3-Dichloropropane 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U 1,4-Dichlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U 2,2-Dichloropropane 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U 2-Butanone 5U 5U 5U 10U 10U 10U NA 10U 5U 5U 10U 10U 20U 10U NA 1.91 5U 5U 2-Hexanone NA NA NA 5 U 5 U 5 U NA 5 U NA NA NA 5 U 10 U 5 U NA 5 U NA NA -Methyl-2-pentanone NA NA NA 5 U 5 U 5 U NA 5 U NA NA NA 5 U 10 U 5 U NA 5 U NA NA Acetone 25 U 25 U 25 U 10 U 10 U 10 U NA 10 U 25 U 25 U 50 U 10 U 20 U 10 U NA 10 U 25 U 25 U Benzene 1U 1U I 1U I 1U NA I 1U I 2U I 2U I NA 1U I 1U Bromobenzene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U Bromochloromethane 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U Bromodichloromethane 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 u 2 U 1 u 2 U 1 U NA 1 U 1 u 1 U Bromoform I 1U I 1U I 1U NA I 1U 1u 2U 1U 2U 1U NA I 1U 1U Bromomethane 1 u 1 U 1 u 2 U 2 U 2 U NA 2 U 1 U 1 U 2 U 2 U 4 U 2 U NA 2 U 1 U 1 U Carbon disulfide NA NA NA 1 U 1 U 1 U NA 1 U NA NA NA 1 U 2 U 1 U NA 1 U NA NA Carbon tetrachloride 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U Chlorobenzene 1U 1U 1U 1U 1U 1U NA 1U 1U 1U 2U 1U 2U 1U NA 1u 1U 1U Chloroethane 1 U 1 U 1 U 2 U 2 U 2 U NA 2 U 1 u 1 U 2 U 2 U 4 U 2 U NA 2 U 1 U 1 U Chloroform 1U 1u 1U I 1U I NA 1U I 1U 2U 1U 2U 1U NA 1u 1U 1U Chloromethane 1 U 1 u 1 U 2 U 2 U 2 U NA 2 U 1 U 1 U 2 U 2 U 4 U 2 U NA 2 U 1 U 1 U Cyclohexane NA NA NA 2 U 2 U 2 U NA 2 U NA NA NA 2 U 4 U 2 U NA 2 U NA NA Dibromochloromethane 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 1 U 1 U 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U Dibromomethane 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U Dichlorodifluoromethane(Freon-12) 1 U 1 U 1 U 2 U 2 U 2 U NA 2 U 1 U 1 U 2 U 2 U 4 U 2 U NA 2 U 1 U 1 U Ethylbenzene 1U 1U 1U 1U 1U 1U NA 1U 1U 1u 2U 1u 2U 1u NA 1U 1u 1U Hexachlorobutadiene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 u 2 U NA NA NA NA NA 1 u 1 U Isopropyl ether 1 U 1 U 1 U NA NA NA NA NA 1 U 1 u 2 U NA NA NA NA NA 1 u 1 U Isopropylbenzene 1 U 1 U 1 u 1 U 1 u 1 U NA 1 u 1 U 1 u 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U Methyl acetate NA NA NA 1 U 1 u 1 U NA 1 U NA NA NA 1 u 2 U 1 U NA 1 U NA NA Methyl-tert-butyl ether(MTBE) 1 u 1 U 1 u 1 U 1 u 1 U NA 1 U 1 U 1 U 2 U 1 U 2 U 1 U NA 1 U 1 U 1 U Methylcyclohexane NA NA NA 1 U 1 U 1 U NA 1 U NA NA NA 1 U 2 U 1 U NA 1 U NA NA Methylene chloride 2 U 2 U 2 U 2 U 2 U 2 U NA 2 U 2 U 2 U 4 U 2 U 2 U NA 2 U 2 U 2 U Naphthalene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U Styrene 1U 1U 1U 1U 1U 1U NA 1U 1U 1U 2U 1U 2U 1U NA 1U 1U 1U Tetrachloroethene 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U 2 U 0.97 J 0.52 J NA 1 U 1 U Page 3 of 8 241 Appendix G-3 Air Sparge Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW49B Sample ID IR89-GW49B-07A-2 IR89-GW49B-07A3 IR89-GW49B-07B IR89-GW49B-07B2 IR89-GW49B-07B3 IR89-GW49B-07C Sample Date 02/19/07 03/29/07 05/02/07 06/06/07 06/25/07 07/11/07 Chemical Name Volatile Organic Compounds(UG_L) 1,1,1,2-Tetrachloroethane 1 U NA NA NA NA NA 1,1,1-Trichloroethane 1 u 1 U 1 U 1 u NA 1 U 1,1,2,2-Tetrachloroethane 1 u 1 u 1 u 1 U NA 1 u 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) NA 1 u 1 u 1 u NA 1 u 1,1,2-Trichloroethane 1 u 1 U 1 u 1 U NA 1 u 1,1-Dichloroethane 1 u 1 U 1 u 1 U NA 1 u 1,1-Dichloroethene 1 U 1 U 1 U 1 U NA 1 u 1,1-Dichloropropene 1 U NA NA NA NA NA 1,2,3-Trichlorobenzene 1 U NA NA NA NA NA 1,2,3-Tichloropropane 1 U NA NA NA NA NA 1,2,4-Trichlorobenzene 1 u 1 U 1 u 1 U NA 1 U 1,2,4-Trimethylbenzene 1 u NA NA NA NA NA 1,2-Dibromo-3-chloropropane 1 u 2 U 2 U 2 U NA 2 U 1,2-Dibromoethane 1 u 1 U 1 U 1 U NA 1 U 1,2-Dichlorobenzene 1 U 1 u 1 U 1 u NA 1 U 1,2-Dichloroethane 1 U 1 u 1 U 1 u NA 1 U 1,2-Dichloropropane 1 U 1 u 1 U 1 u NA 1 U 1,3,5-Trimethylbenzene 1 U NA NA NA NA NA 1,3-Dichlorobenzene 1 U 1 u 1 U 1 u NA 1 u 1,3-Dichloropropane 1 U NA NA NA NA NA 1,4-Dichlorobenzene 1 U 1 u 1 U 1 u NA 1 u ,2-Dichloropropane 1 U NA NA NA NA NA -Butanone 5 U 10 u 10 U 10 U NA -Hexanone NA 5 u 5 u 5 u NA 5 U -Methyl-2-pentanone NA 5 u 5 u 5 u NA 5 u Acetone 25 U 10 u 10 u 10 U NA 10 u Benzene 1 u i u 1 u i u NA 1 U Bromobenzene 1 U NA NA NA NA NA Bromochloromethane 1 U NA NA NA NA NA Bromodichloromethane 1 u 1 u 1 u i u NA 1 u Bromofonn 1 u 1 u 1 u 1 u NA 1 u Bromomethane 1 U 2 U 2 U 2 U NA 2 U Carbon disulfde NA 1 U 1 U 1 u NA 1 U Carbon tetrachloride 1 U 1 u 1 U 1 u NA 1 U Chlorobenzene 1 U 1 u 1 U i u NA 1 u Chloroethane 1 u 2 U 2 U 2 U NA 2 U Chloroform 1 u i u 1 u i u NA 1 u Chloromethane 1 u 2 U 2 U 2 U NA 2 U Cyclohexane NA 2 U 2 U 2 U NA 2 U Dibromochloromethane 1 u i u 1 u 1 U NA 1 u Dibromomethane 1 u NA NA NA NA NA Dichlorodifluoromethane(Freon-12) 1 u 2 U 2 U 2 U NA 2 U Ethylbenzene 1 u 1 U 1 u 1 u NA 1 u Hexachlorobutadiene 1 u NA NA NA NA NA Isopropyl ether 1 u NA NA NA NA NA Isopropylbenzene 1 u 1 U 1 u 1 U NA 1 u Methyl acetate NA 1 U 1 u 1 u NA 1 u Methyl-tert-butyl ether(MTBE) 1 u 1 U 1 u 1 u NA 1 u Methylcyclohexane NA 1 U 1 u 1 U NA 1 u Methylene chloride 2 U 2 U 2 U 2 U NA 2 U Naphthalene 1 u NA NA NA NA NA Styrene 1 u 1 u 1 u 1 u NA 1 u etrachloroethene 1 u 1 u 1 u 1 u NA 1 U Page 4 of 8 242 Appendix G-3 Air Sparge Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW32 IR89-MW33 IR89-MW43 Sample ID IR89-GW32-06D IR89-GW32-07A IR89-GW32-07A-2 IR89-GW32-07A3 IR89-GW32-07B IR89-GW32-07B2 IR89-GW32-07C IR89-GW33-06D IR89-GW33-07A IR89-GW33-07A-2 IR89-GW33-07A3 IR89-GW33-07B IR89-GW33-07132 IR89-GW33-07C IR89-GW43-06D IR89-GW43-07A IR89-GW43-07A-2 IR89-GW43-07A3 IR89-GW43-07B IR89-GW43-07B2 Sample Date 11/20/06 01/18/07 1 02/16/07 03/28/07 05/01/07 06/05/07 07/11/07 1 11/20/06 01/19/07 02/19/07 03/28/07 05/02/07 06/06/07 07/11/07 11/20/06 1 01/19/07 1 02/16/07 03/29/07 05/02/07 06/06/07 Chemical Name Toluene 1U 5U 2U I I I 1U 1U I t 1U I 1U I 1U tU 10U 37 5U 2U Trichloroethene 1 U t U 1 U 730 Trichlorofluoromethane(Freon-11) 1 U 1 U 2 U 2 U 2 U 2 U 2 U 1 U 1 U 2 U 2 U 2 U 2 U 1 U 1 U 10 U 10 U 10 U 4 U Vinyl chloride 1 U 1 U 2 U 1 U 1 U 1 U 1 U 1 U 1 U 0.74 J 0 56 J 1 U 1 U 1 U 1.1 10 U 1.3 J 5 U 2 U Xylene,total NA NA NA 1 U 1 U 1 U 1 U NA NA 1 U 1 U 1 U 1 U NA NA NA 5 U 5 U 2 U cis-1,2-Dichloroethene 1 U 340 93 69 1 U 1 U 3.8 7 13 26 240 390 150 96 cis-1,3-Dichloropropene NA NA NA t U 1 U 1 U 1 U NA NA NA 1 U 1 U 1 U t U NA NA NA 5 U 5 U 2 U m-and p-Xylene 2 U 2 U 4 U NA NA NA NA 2 U 2 U 2 U NA NA NA NA 2 U 2 U 20 U NA NA NA n-Butylbenzene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA n-Propylbenzene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA o-Chlorotoluene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA o-Xylene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA p-Chlorotoluene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA p-Isopropyltoluene 1 u 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA sec-Butylbenzene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA ert-Butylbenzene 1 U 1 U 2 U NA NA NA NA 1 U 1 U 1 U NA NA NA NA 1 U 1 U 10 U NA NA NA rans-1,2-Dichloroethene 1 U MEMO 27 1 U 1 U 1 U MMMff:1::7::: 2 rans-1,3-Dichloropropene NA NA NA 1 U t U 1 U 1 U NA NA NA t U 1 U t U 1 U NA NA NA 5 U 5 U 2 U Not Chemistry(MG_L) Sulfur Hexafluoride(SF6) NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.0021 NA 8.10E-05 Notes: U-Analyte not detected J-Reported value is estimated NA-Not analyzed Shading represents detection Page 5 of 8 243 Appendix G-3 Air Sparge Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW43B IR89-MW48A Sample ID IR89-GW43-07B3 IR89-GW43-07C IR89-GW43B-06D IR89-GW43B-07A IR89-GW43B-07A-2 IR89-GW43B-07A3 IR89-GW43B-07B IR89-GW43B-07B2 IR89-GW43B-07B3 IR89-GW43B-07C IR89-GW48A-061) IR89-GW48A-07A IR89-GW48A-07A-2 IR89-GW48A-07A3 IR89-GW48A-07B IR89-GW48A-07B2 IR89-GW48A-07B3 IR89-GW48A-07C Sample Date 06/25/07 07/11/07 11/21/06 01/19/07 02/16/07 03/29/07 05/02/07 06/06/07 06/25/07 07/11/07 1 11/21/06 01/18/07 02/19/07 03/29/07 05/01/07 06/06/07 06/25/07 07/11/07 Chemical Name Toluene NA 5U 1U tU I I 1U 1U NA 1U 1U 1U 2U 1U I 1U NA I richloroethene NA NA 100 NA richlorofluoromethene(Freon-11) NA 10 U 1 U 1 U 1 U 2 U 2 U 2 U NA 2 U 1 U 1 U 2 U 2 U 2 U 2 U NA 2 U Vinyl chloride NA S U 2.1 t U 1 U 0.45 J 1 U 0.4 J NA 0.58 J 1.3 1 U 2 U 0.25 J t U 1 U NA t U ylene,total NA S U NA NA NA 1 U 1 U 1 U NA 1 U NA NA NA 1 U 1 U 1 U NA 1 U cis-1,2-Dichloroethene NA 67 130 68 38 16 22 NA 25 100 30 54 15 NA cis-1,3-Dichloropropene NA 5 U NA NA NA 1 U 1 U t U NA 1 U NA NA NA 1 U 1 U 1 U NA 1 U m-and p-Xylene NA NA 2 U 2 U 2 U NA NA NA NA NA 2 U 2 U 4 U NA NA NA NA NA n-Butylbenzene NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA n-Propylbenzene NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA Chlorotoluene NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA Xylene NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA p-Chlorotoluene NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA p-Isopropyholuene NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA see-Butylbenzene NA NA 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA ert-Butylbenzene NA NA 1 U 1 U 1 U NA tNA NA NA NA 1 U 1 U 2 U NA NA NA NA NA trans-1,2-Dichloroethene NA NA 2.2 NA trans-1,3-Dichloropropene NA 5 U NA NA NA 1 U 1 U NA 1 U NA NA NA 1 U 1 U 1 U NA 1 U Wet Chemistry(MG_L) Sulfur Hexafluoride(SF6) NA NA NA NA 9.10E-04 1.50E-05 6.50E-04 NA NA NA NA .00E-03 NA 9.60E-05 Notes: U-Analyte not detected J-Reported value is estimated NA-Not analyzed Shading represents detection Page 6 of 8 244 Appendix G-3 Air Sparge Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW48B IR89-MW49A Semple ID IR89-GW48B-06D IR89-GW48B-07A IR89-GW48B-07A-2 IR89-GW48B-07A3 IR89-GW48B-07B IR89-GW48B-07B2 IR89-GW48B-07B3 IR89-GW48B-07C IR89-GW49A-061) IR89-GW49A-07A IR89-GW49A-07A-2 IR89-GW49A-07A3 IR89-GW49A-07B IR89-GW49A-07B2 IR89-GW49A-07B3 IR89-GW49A-07C IR89-GW49B-06D IR89-GW49B-07A Sample Date 11/21/06 01/18/07 02/19/07 03/29/07 05/01/07 06/06/07 06/25/07 07/11/07 11/21/06 01/18/07 02/19/07 03/29/07 05/02/07 06/06/07 06/25/07 07/11/07 11/21/06 01/18/07 Chemical Name Toluene 1U 1U 1U 1U 1U 1U NA 1U 1U 1U 2U 1U 2U 1U NA I 1UtNA Trichloroethene 1 U 1 U 1 U NA 1 U NA Trichlorofluoromethane(Freon-11) 1 U 1 U 1 U 2 U 2 U 2 U NA 2 U 1 U 1 U 2 U 2 U 4 U 2 U NA 2 U 1 U Vinyl chloride 1 U t U 1 U 1 U 1 U t U NA 1 U 23 J 4.6 2 U 0.46 J 1.5 J 0.83 J NA 1 U 20 Xylene,total NA NA NA 1 U 1 U 1 U NA 1 U NA NA NA 1 U 2 U 1 U NA 1 U NAcis-1,2-Dichlorcethene 9.2 3.9 2.6 1.4 NA 0.8 J 1,600 J 620 180 72 84 84 NA 15 1,000 cis-1,3-Dichloropropene NA NA NA 1 U 1 U 1 U NA 1 U NA NA NA 1 U 2 U 1 U NA t U NA NA m-and p-Xylene 2 U 2 U 2 U NA NA NA NA NA 2 U 2 U 4 U NA NA NA NA NA 2 U 2 U n-Butylbenzene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U n-Propylbenzene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U o-Chlorotoluene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U o-Xylene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U p-Chlorotoluene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U p-Isopropyltoluene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U sec-Butylbenzene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U tert-Butylbenzene 1 U 1 U 1 U NA NA NA NA NA 1 U 1 U 2 U NA NA NA NA NA 1 U 1 U trans-1,2-Dichloroethene 1 U 1 U 1 U 1 U 1 U 1 U NA 1 U NA 1 U trans-1,3-Dichloropropene NA NA NA 1 U 1 U 1 U NA 1 U NA NA NA 1 U 2 U 1 U NA 1 U NA NA et Chemistry(MG_L) Sulfur Hexafluonde(SF6) NA NA NA 6r 0.0013 NA 6r 8.30E-06 J 2.30E-04 NA NA NA NA 1.60E-04 NA 4.80E-05 0.0017 NA NA NA Notes: U-Analyte not detected J-Reported value is estimated NA-Not analyzed Shading represents detection Page 7 of 8 245 Appendix G-3 Air Sparge Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW49B Sample ID IR89-GW49B-07A-2 IR89-GW49B-07A3 IR89-GW49B-07B IR89-GW49B-07B2 IR89-GW49B-07B3 IR89-GW49B-07C Sample Date 02/19/07 03/29/07 05102t07 06/06/07 06/25/07 07/11/07 Chemical Name Toluene 1 U 1 U 1 U 1 U NA t U richloroethene NA richlorofluoromethene(Freon-11) t U 2 U 2 U 2 U NA 2 U Vinyl chloride t U 1 U t U 1 U NA 1 U ylene,total NA 1 U 1 U 1 U NA 1 U cis-1,2-Dichloroethene 5.2 1.8 0.75 J NA 0.99 J cis-1,3-Dichloropropene NA 1 U 1 U 1 U NA 1 U m-and p-Xylene 2 U NA NA NA NA NA n-Butylbenzene 1 U NA NA NA NA NA n-Propylbenzene 1 U NA NA NA NA NA o-Chlorotoluene 1 U NA NA NA NA NA o-Xylene 1 U NA NA NA NA NA p-Chlorotoluene 1 U NA NA NA NA NA p-Isopropyholuene 1 U NA NA NA NA NA see-Butylbenzene 1 U NA NA NA NA NA ert-Butylbenzene 1 U NA NA NA NA NA trans-1,2-Dichloroethene 1 U 1 U 1 U 1 U NA 1 U trans-1,3-Dichloropropene NA t U 1 U 1 U NA 1 U Wet Chemistry(MG_L) Sulfur Hexafluoride(SF6) NA 1.30E-04 NA 9.40E-06 J 1.40E-04 NA Notes: U-Analyte not detected J-Reported value is estimated NA-Not analyzed Shading represents detection Page 8 of 8 246 Appendix G-4 247 Appendix G4 PRB Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW09 IR89-MW28 IR89-MW30 IR89-MW45 IR89-MW56 Sample ID IR89-GW09-06D IR89-GW09-07A IR89-GW09-07A2 IR89-GW09-07B IR89-GW28-07A IR89-GW28-07A-2 IR89-GW28-07A3 IR89-GW28-07B IR89-GW30-06D IR89-GW30-07A IR89-GW30-07A2 IR89-GW30-07B IR89-GW45-06D IR89-GW45-07A IR89-GW45-07A2 IR89-GW45-07B IR89-GW56-07A IR89-GW56-07A-2 IR89-GW56-07A3 IR89-GW56-07B Sample Date 12/29/06 01/26/07 03/27/07 06/27/07 01/05/07 01/24/07 03/26/07 06/26/07 12/29/06 01/26/07 03/26/07 06/26/07 12/29/06 01/26/07 03/27/07 06/27/07 01/05/07 01/25/07 03/27/07 06/26/07 Chemical Name Volatile Organic Compounds(UG_L) 1,1,1,2-Tetrachloroethane 1 U 100 U NA NA 50 U 50 U NA NA t o 100 U NA NA t U 2 U NA NA 2 U 10 U NA NA 1,1,1-Trichloroethane 1 u 100 U 50 U 100 U 50 U 50 U 100 U 11000 U t U 100 U 50 U 200 U 1 U 2 U 1 U 1 u 2 U 10 U 10 U 25 U 1,1,2,2-Tetrachloroethane t o 100 U 50 U 100 U 50 U 50 U 100 U 11000 U t U 100 U 200 U 2 U 1 U i u 11900 2,400 1,1,2-Trichloro-1,2,2-triFluoroethane(Freon-I13) NA NA 50 U 100 U NA NA 100 U 11000 U NA NA 50 u 200 U NA NA 1 U 1 U NA NA 10 U 25 U 1,1,2-Trichloroethane 1 U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U t U 100 U 50 U 200 U 1 U 2 U 1 U 1 U 2 U 10 u 13 12 J 1,1-Dichloroethane t U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U t U 100 U 50 U 200 U 1 U 2 U 1 U 1 U 2 U 10 u 10 U 25 U 1,1-Dichloroethene 170 100 U 86 40 J 190 170 160 230 J 220 J 160 170 140 J 4.5 5.7 1.7 0.52 J 2 U 10 U 7 J 3.3 J 1,1-Dichloropropane 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA 1,2,3-Trichlorobenzene i u 100 U NA NA 50 u 50 U NA NA 1 U 100 U NA NA t U 2 U NA NA 2 U 10 U NA NA 1,2,3-Tichloropropane 1 u 100 U NA NA 50 u 50 U NA NA 1 u 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA 1,2,4-Trichlorobenzene 1 u 100 U 50 U 100 U 50 u 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U i u 2 U 10 u 10 U 25 U 1,2,4-Trimethylbenzene 1 U 100 U NA NA 50 U 50 U NA NA 1 u 100 U NA NA 1 U 2 U NA NA 10 U NA NA 1,2-Dibromo-3-chloropropane 1 U 100 U 100 U 200 U 50 U 50 U 200 U 2,000 U 1 U 100 u 100 U 400 U 1 U 2 U 2 U 2 U 2 U 10 U 20 U 50 U 1,2-Dibromoethane 1 U 100 U 50 U 100 U 50 U 50 U 100 U 1,000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U i u 2 U 10 U 10 U 25 U 1,2-Dichlorobenzene 1 U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U i u 2 U 10 u 10 U 25 U 1,2-Dichloroethane 100 U 50 U 100 U 50 U 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U 1 U 2 U 10 U 10 U 25 U 1,2-Dichloropropane 1 U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U i u 2 U 10 u 10 U 25 U 1,3,5-Trimethylbenzene 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA 1,3-Dichlorobenzene 1 U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U i u 2 U 10 u 10 U 25 U 1,3-Dichloropropane 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA 1,4-Dichlorobenzene 1 U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 u 2 U 1 U i u 2 U 10 u 10 U 25 U ,2-Dichloropropane 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA -Butanone 5 U 500 U 500 U 11000 U 250 U 250 U 11000 U 10,000 U 5 U 500 u 500 U 2,000 U 5 U 10 u 10 U 10 u 10 U 50 U 100 U 250 U -Hexanone NA NA 250 U 500 U NA NA 500 U 51000 U NA NA 250 U 11000 U NA NA 5 U 5 U NA NA 50 U 120 U -Methyl-2-pentanone NA NA 250 U 500 U NA NA 500 U 51000 U NA NA 250 U 11000 U NA NA 5 U 5 U NA NA 50 U 120 U Acetone 25 U 2,500 U 500 U 11000 U 1,200 U 1,200 U 11000 U 10,000 U 25 U 2,500 U 500 U 2,000 U 25 U 50 U 10 U 1.8 J 50 U 250 U 100 U 250 U Benzene 1 U 100 U 50 U 100 U 50 U 50 U 100 U 1,000 U 2.4 100 U 50 U 200 U 1 U 2 U 0.16 J 0.16 J 2 U 10 u 10 U 25 U Bromobenzene 1 U 100 U NA NA 50 U 50 U NA NA 1 u 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA Bromochloromethane 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA Bromodichloromethane 1 U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U i u 2 U 10 u 10 U 25 U Bromoform 1 U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U i u 2 U 10 u 10 U 25 U Bromomethane 1 U 100 U 100 U 200 U 50 U 50 U 200 U 2,000 U 1 U 100 U 100 U 400 U 1 U 2 U 2 U 2 U 2 U 10 U 20 U 50 U Carbon disulfide NA NA 50 U 100 U NA NA 100 U 1,000 U NA NA 50 U 200 U NA NA 1 U 1 u NA NA 10 U Carbon tetrachloride 1 U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U i u 2 U 10 u 10 U 25 U Chlorobenzene 1 U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U i u 2 U 10 u 10 U 25 U Chloroethane 1 U 100 U 100 U 200 U 50 U 50 U 200 U 2,000 U 1 U 100 U 100 U 400 U 1 U 2 U 2 U 2 U 2 U 10 U 20 U 50 u Chloroform 1 U 100 U 50 U 100 U 50 U 50 U 13 J 1,000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U i u 2 U 10 U 10 U 25 U Chloromethane 1 U 100 U 100 U 200 U 50 U 50 U 200 U 2,000 U 1 U 100 U 100 U 400 U 1 U 2 U 2 U 2 U 2 U 10 U 20 U 50 U Cyclohexane NA NA 100 U 200 U NA NA 200 U 2,000 U NA NA 100 U 400 U NA NA 2 U 2 U NA NA 20 U 50 U Dibromochloromethane 1 U 100 U 50 U 100 U 50 U 50 U 100 U 1,000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U 1 U 2 U 10 U 10 U 25 U Dibromomethane 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA Dichlorodifluoromethane(Freon-12) 1 U 100 U 100 U 200 U 50 U 50 U 200 U 2,000 U 1 U 100 u 100 U 400 U 1 U 2 U 2 U 2 U 2 U 10 U 20 U 50 U Ethylbenzene 1 U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U 1 U 2.6 10 U 10 U 25 U Hexachlorobutadiene 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA Isopropyl ether 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA Isopropylbenzene 1 U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U 1 u 2 U 10 U 10 U 25 U Methyl acetate NA NA 50 U 100 U NA NA 100 U 1,000 U NA NA 50 U 200 U NA NA 1 U NA NA 10 U 25 U Methyl-tert-butyl ether(MTBE) 1 U 100 U 50 U 100 U 50 U 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U 1 u 2 U 10 U 10 U 25 U Methylcyclohexane NA NA 50 U 100 U NA NA 100 U 11000 U NA NA 50 U 200 U NA NA 1 U 1 u NA NA 10 U 25 U Methylene chloride 2 U 200 U 100 u 200 U 100 U 100 U 200 U 2,000 U 2 U 200 U 100 U 400 U 2 U 4 U 2 U 2 U 4 U 20 U 20 U 50 u Naphthalene 1 u 100 U NA NA 50 u 50 U NA NA 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA Styrene 1 U 100 U 50 U 100 U 50 u 50 U 100 U 11000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U 1 u 2 U 10 u 10 U 25 U etrachloroethene 4.4 100 U 14 J 14 J 50 U 50 U 100 U 1,000 U 57 110 56 9 1 U 2 U 1 U 1 U 2 U 10 U WAJ J oluene 1 U 100 U 50 u 100 U 50 U 50 U 100 U 1,000 U 1 U 100 U 50 U 200 U 1 U 2 U 1 U 1 u 2 U 10 u 10 U 25 U chloroethene 1,100 ,400 4,100 11900 140 1 00 1,000 J 4,100 8,700 6,100 7,800 12 1 U 2,800 1,500 richlorofiuoromethane(Freon-11) 1 u 100 U 100 u 200 U 50 U 50 U 200 U 2,000 U 1 U 100 U 100 U 400 U 1 U 2 U 2 U 2 U 2 U 10 U 20 U 50 u Page 1 of 6 248 Appendix G4 PRB Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW57 IR89-MW58 IR89-MW59 IR89-MW60 IR89-MW61 Sample ID IR89-GW57-06D IR89-GW57-07A IR89-GW57-07A2 IR89-GW57-07B IR89-GW58-06D I IR89-GW58-07A IR89-GW58-07A2 IR89-GW58-07B IR89-GW59-06D IR89-GW59-07A IR89-GW59-07A2 IR89-GW59-07B IR89-GW60-07A IR89-GW60-07A-2 IR89-GW60-07A3 IR89-GW60-07B IR89-GW61-06D IR89-GW61-07A IR89-GW61-07A2 IR89-GW61-07B Sample Date 12/29/06 01/25/07 03/26/07 06/26/07 12/29/06 Ot/24/07 03/26/07 06/27/07 12/29/06 01/25/07 03/27/07 06/26/07 01/12/07 01/25/07 03/26/07 06/26/07 12/29/06 01/25/07 03/26/07 06/27/07 Chemical Name Volatile Organic Compounds(UG_L) 1,1,1,2-Tetrachloroethane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1,1,1-Trichloroethane 1 U 1 U 1 U 1 U t U 1 U 1 U 1 U 1 u 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U 1,1,2,2-Tetrachloroethane 1 U 1 U 1 U 1 U 1 U 1 U 110 10 U 1 U 1 U 50 U 50 U 250 U 81 100 U 50 U 100 U 1,1,2-Trichloro-1,2,2-triFluoroethane(Freon-I13) NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 250 U 500 U NA NA 50 U 100 U 1,1,2-Trichloroethane 1 U 1 U 1 u 1 U 1 U 1 U 1 U 1 U 12 10 U 4 J 1 U 50 U 50 U 250 U 500 U 22 100 U 50 U 100 U 1,1-Dichloroethane 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U 1,1-Dichloroethene 1 U 1 U 1 U 0.22 1 U 1 U 1 U 1 U 1110:2222: 60 1 u 1 U 290 270 160 J 3 J 100 U 42 J 100 U 1,1-Dichloropropene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1,2,3-Trichlorobenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1,2,3-Tichloropropane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1,2,4-Trichlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U 1,2,4-Trimethylbenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1,2-Dibromo-3-chloropropane 1 U 1 U 2 U 2 U 1 U 1 U 2 U 2 U 1 U 10 U 2 U 2 U 50 U 50 U 500 U 11000 u 1 U 100 u 100 U 200 U 1,2-Dibromoethane 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U 1,2-Dichlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U t U 100 U 50 U 100 U 1,2-Dichloroethane 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 50 U 50 U 250 U 500 U 100 U 100 U 1,2-Dichloropropane 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U 1,3,5-Trimethylbenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1,3-Dichlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U 1,3-Dichloropropane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 u NA NA 1,4-Dichlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 u ,2-Dichloropropane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 u NA NA 1 U 100 U NA NA -Butanone 5 U 5 u 10 U 10 u 5 U 5 u 10 U 10 U89 79 100 12 250 U 250 U 2,500 U 5,000 U 5 U 500 U 500 U 1,000 U -Hexanone NA NA 5 U 5 U NA NA 5 U 5 u NA NA 5 U 5 U NA NA 1,200 U 2,500 U NA NA 250 U 500 U -Methyl-2-pentanone NA NA 5 U 5 U NA NA 5 U 5 U NA NA 5 U 0.55 J NA NA 1,200 U 2,500 U NA NA 250 U 500 U Acetone 25 U 25 U 10 U 2 J 25 U 25 U 10 U 10 U 110 250 U 260 17 1,200 U 1,200 U 2,500 U 5,000 U 25 U 2,500 U 120 J 210 J Benzene 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 0.63 J 0.52 J 50 U 50 u 250 U 500 U 11111C 1.8 100 U 50 U 100 U Bromobenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 u NA NA 1 U 100 U NA NA Bromochloromethane 1 U 1 U NA NA 1 U i u NA NA 1 U 10 u NA NA 50 U 50 U NA NA 1 U 100 U NA NA Bromodichloromethane 1 U i u 1 U i u 1 U i u 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U Bromoform 1 U 1 u 1 U 1 u 1 U 1 u 1 U 1 u 1 U 10 u 1 U 1 u 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U Bromomethane 1 U 1 U 2 U 2 U 1 U 1 U 2 U 2 U 1 U 10 U 2 U 2 U 50 U 50 U 500 U 11000 U 1 U 100 U 100 U 200 U Carbon disulfide NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 250 U 500 U NA NA 50 U 100 U Carbon tetrachloride 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U Chlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U Chloroethane 1 U 1 U 2 U 2 U 1 U 1 U 2 U 2 U 1 U 10 U 50 U 50 U 500 U 11000 U 1 U 100 U 100 U 200 U Chloroform 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 6.8 J 100 U Chloromethane 1 U 1 U 2 U 2 U 1 U 1 U 2 U 2 U 1 U 10 U 2 U 2 U 50 U 50 U 500 U 11000 U 1 U 100 U 100 U 200 U Cyclohexane NA NA 2 U 2 U NA NA 2 U 2 U NA NA 2 U 2 U NA NA 500 U 11000 U NA NA 100 U 200 U Dibromochloromethane 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U Dibromomethane 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA Dichlorodifluoromethane(Freon-12) 1 U 1 U 2 U 2 U 1 U 1 U 2 U 2 U 1 U 10 U 2 U 2 U 50 U 50 U 500 U 11000 U 1 U 100 U 100 U 200 U Ethylbenzene 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U Hexachlorobutadiene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA Isopropyl ether 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 u NA NA 1 U 100 U NA NA Isopropylbenzene 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 u 250 U 500 U 1 U 100 u 50 U 100 U Methyl acetate NA NA 1 U 1 U NA NA 1 U 1 U NA NA NA NA 250 U 500 u NA NA 50 U 100 u Methyl-tert-butyl ether(MTBE) 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 u Methylcyclohexane NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 250 U 500 U NA NA 50 U 100 U Methylene chloride 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 20 U 2 U 2 U 100 U 100 U 500 U 1,000 U 2 U 200 U 100 U 200 U Naphthalene 1 U 1 U NA NA r 22 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 100 U NA NA Styrene 1 ul 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 1 U 1 U 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 u etrachloroethene 4.9 2.7 2.2 2.4 120 86 40 21 10 U 1 U 1 U 120 250 U 500 U 470 J 100 u 50 U 100 u ooluene 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 10 U 3.7 50 U 50 U 250 U 500 U 1 U 100 U 50 U 100 U chloroethene 280 53 26 12 140 67 26 9.4 720 10 U 1 U 1 U 19,000 8,500 ,300 21,000 2,500 82 richlorofiuoromethane(Freon-11) t77 , U 1 U 2 U 2 U 1 U 1 U 2 U 2 U 1 U 10 U 2 U 2 U 50 U 50 U 500 U 1,000 U 1 U 100 U 100 U 200 U Page 2 of 6 249 Appendix G4 PRB Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW62 Sample ID IR89-GW62-06D IR89-GW62-07A IR89-GW62-07A2 IR89-GW62-07B Sample Date 12/29/06 01/25/07 03/27/07 06/27/07 Chemical Name Volatile Organic Compounds(UG_L) 1,1,1,2-Tetrachloroethane 1 U 5 U NA NA 1,1,1-Trichloroethane 1 U 5 U 1 U 1 U 1,1,2,2-Tetrachloroethane 96 5 U 1 U 1 U 1,1,2-Trichloro-1,2,2-trifluoroethane(Freon-113) NA NA 1 U 1 U 1,1,2-Trichloroethane 2.2 5 U 1 U t U 1,1-Dichloroethane 1 U 5 U 1 U 1 U 1,1-Dichloroethene 5.9 5.4 1 U 0.25 J 1,1-Dichloropropene 1 U 5 U NA NA 1,2,3-Trichlorobenzene 1 U 5 U NA NA 1,2,3-Trichloropropane 1 U 5 U NA NA 1,2,4-Trichlorobenzene 1 U 5 U 1 U 1 U 1,2,4-Trimethylbenzene 1 U 5 U NA NA 1,2-Dibromo-3-chloropropane 1 U 5 U 2 U 2 U 1,2-Dibromoethane 1 U 5 U 1 U 1 U 1,2-Dichlorobenzene 1 U 5 U 1 U 1 U 1,2-Dichloroethane 1 U 5 U 1,2-Dichloropropane 1 U 5 U 1 U 1 U 1,3,5-Trimethylbenzene 1 U 5 U NA NA 1,3-Dichlorobenzene 1 U 5 U 1 U 1 U 1,3-Dichloropropane 1 U 5 U NA NA 1,4-Dichlorobenzene 1 U 5 U 1 U 1 U 2,2-Dichloropropane 1 U 5 U NA NA 2-Butanone 5 U 25 U 27 24 2-Hexanone NA NA 5 U 5 U -Methyl-2-pentanone NA NA 5 U 0.42 J Acetone 25 U 120 U 100 44 Benzene 1 U 5 U 3.1 0.3 J Bromobenzene 1 U 5 U NA NA Bromochloromethane 1 U 5 U NA NA Bromodichloromethane 1 U 5 U 1 U 1 U Bromoform 1 U 5 U 1 U 1 U Bromomethane 1 U 5 U 2 U 2 U Carbon disulfide NA NA 1 U 1 U Carbon tetrachloride 1 U 5 U 1 U 1 U Chlorobenzene 1 U 5 U 1 U 1 U Chloroethane 1 U 5 U 2 U 2 U Chloroform 5 U 1 U 1 U Chloromethane 1 U 5 U 2 U 2 U Cyclohexane NA NA 2 U 2 U Dibromochloromethane 1 U 5 U 1 U 1 U Dibromomethane 1 U 5 U NA NA Dichlorodifluoromethane(Freon-12) 1 U 5 U 2 U 2 U Ethylbenzene 1 U 5 U 1 U 1 U Hexachlorobutadiene 1 U 5 U NA NA Isopropyl ether 1 U 5 U NA NA Isopropylbenzene 1 U 5 U 1 U 1 1 U Methyl acetate NA NA Methyl-tert-butyl ether(MTBE) 1 U 5 U 1 U 1 U Methylcyclohexane NA NA 1 U 1 U Methylene chloride 2 U 10 U 2 U 2 U Naphthalene 1 U 5 U NA NA Styrene 1 U 5 U 1 U 1 U Tetrachloroethene 3.2 5 U 1 U 1 U Toluene 1 U 5 U 1.8 7.4 Trichloroethene 370 5 U 1 U 0.25 J Trichlorofluoromethane(Freon-11) 1 U 5 U 2 U 2 U Page 3 of 6 250 Appendix G4 PRB Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW09 IR89-MW28 IR89-MW30 IR89-MW45 IR89-MW56 Sample ID IR89-GW09-06D IR89-GW09-07A IR89-GW09-07A2 IR89-GW09-07B IR89-GW28-07A IR89-GW28-07A-2 IR89-GW28-07A3 IR89-GW28-07B IR89-GW30-06D IR89-GW30-07A IR89-GW30-07A2 IR89-GW30-07B IR89-GW45-06D IR89-GW45-07A IR89-GW45-07A2 IR89-GW45-07B IR89-GW56-07A IR89-GW56-07A-2 IR89-GW56-07A3 IR89-GW56-07B Sample Date 12/29/06 1 01/26/07 03/27/07 06/27/07 01/05/07 01/24/07 03/26/07 06/26/07 12/29/06 1 01/26/07 03/26/07 06/26/07 1 12/29/06 1 01/26/07 03/27/07 06/27/07 1 01/05/07 01/25/07 03/27/07 06/26/07 Chemical Name Vinyl chloride 610 340 IMMEW6:0:J:: 1,400 3,000 2,900 jjjjF:1:0:00:0D::: 28,000 ,000 3,300 5,000 4,600MEMO 3 130 W2jMjF 48 jMME:4:I:::§MMMV1 51 INIF 39 ylene,total NA NA 50 U 100 U NA NA 100 U 1,000 U NA NA 50 U 200 U NA NA 1 U 1 U NA NA 10 U 25 U cis-1,2-Dichloroethene 49,000 20,000 14,000 8,900 39,000 36,000 38,000 J 53,000 15,000 17,000 9,700 10,000 430 350 120 21 280 580 940 980 cis-1,3-Dichloropropene NA NA 50 U 100 U NA NA 100 U 1,000 U NA NA 50 U 200 U NA NA 1 U 1 U NA NA 10 U 25 U m-and p-Xylene 2 U 200 U NA NA 100 U 100 U NA NA 2 U 200 U NA NA 2 U 4 U NA NA MMMMMMMnb&M 20 U NA NA n-Butylbenzene 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA n-Propylbenzene 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA -Chlorotoluene 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA -Xylene 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA p-Chlorotoluene 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA Asopropyltoluene 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA ec-Butylbenzene 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA ert-Butylbenzene 1 U 100 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA 1 U 2 U NA NA 2 U 10 U NA NA Tans-1,2-Dichloroethene 1,500 590 460 250 2,500 2,600 2,100 3,100 210 J 280 160 180 8.6 0.49 J 89 330 290 vans-1,3-Dichloropropene NA NA 50 U 100 U NA NA 100 U 11000 U NA NA 50 U 200 U NA NA 1 U 1 U NA NA 10 U 25 U Net Chemistry(MG_L) Dissolved organic carbon NA NA 3 4.4 NA NA 12.2 11.4 NA NA 4.6 4.3 NA NA 8.2 1.4 J NA NA 1.4 J 1.1 J otal organic carbon(TOC) 2.5 4.2 .4 8.4 11 4.1 4.2 7.8 1.3 J 0.96 J 1.1 J Notes: U-Analyte not detected J-Reported value is estimated NA-Not Analyzed Shading represents detection Page 4 of 6 251 Appendix G4 PRB Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW57 IR89-MW58 IR89-MW59 IR89-MW60 IR89-MW61 Sample ID IR89-GW57-06D IR89-GW57-07A IR89-GW57-07A2 IR89-GW57-07B IR89-GW58-06D IR89-GW58-07A IR89-GW58-07A2 IR89-GW58-07B IR89-GW59-06D IR89-GW59-07A IR89-GW59-07A2 IR89-GW59-07B IR89-GW60-07A IR89-GW60-07A-2 IR89-GW60-07A3 IR89-GW60-07B IR89-GW61-06D IR89-GW61-07A IR89-GW61-07A2 IR89-GW61-07B Sample Date 12/29/06 01/25/07 03/26/07 06/26/07 12/29/06 01/24/07 03/26/07 06/27/07 12/29/06 01/25/07 03/27/07 06/26/07 1 01/12/07 01/25/07 03/26/07 06/26/07 1 12/29/06 01/25/07 03/26/07 06/27/07 Chemical Name Vinyl chloride 1 1 U .4 :-1111158 J 1 U 1 U 3 J .7 70 ,300 30 0 670 2,800 8,300 10 J 3,100 18,000 12,000 ylene,total NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 250 U 500 U NA NA 50 U 100 U cis-1,2-Dichloroethene 110 21 24 9.4 25 6.2 15 970 2,900 6.2 17 110,000 88,000 62,000 27,000 14,000 40,000 12,000 920 cis-1,3-Dichloropropene NA NA t U 1 U NA NA t U 1 U NA NA t U 1 U NA NA 250 U 500 U NA NA 50 U 100 U m-and p-Xylene 2 U 2 U NA NA 2 U 2 U NA NA 2 U 20 U NA NA 100 U 100 U NA NA 2 U 200 U NA NA n-Butylbenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA t U 100 U NA NA n-Propylbenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA Chlorotoluene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA Xylene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA p-Chlorotoluene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA p-Isopropyltoluene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA sec-Butylbenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA ert-Butylbenzene 1 U 1 U NA NA 1 U 1 U NA NA 1 U 10 U NA NA 50 U 50 U NA NA 1 U 100 U NA NA trans-1,2-Dichloroethene 12 0.8 J 0.53 J 1.8 1 UMMOV 0.56 J J 280 460 9.9 0.77 J 5,200 2,400 11100 11100 11800 500 140 trans-1,3-Dichloropropene NA NA 1 U 1 U NA NA 1 U 1 U NA NA 1 U 1 U NA NA 250 U 500 U NA NA 50 U 100 U Wet Chemistry(MG_L) Dissolved organic carbon NA NA 4 2.3 NA NA 3 2.4 NA NA 102 38 NA NA 45.9 44.5 NA NA 247 204 Total organic carbon(TOC) .3 2.3 2.3 2.4 126 38.5 45 44.4 245 203 Notes: U-Analyte not detected J-Reported value is estimated NA-Not Analyzed Shading represents detection Page 5 of 6 252 Appendix G4 PRB Analytical Results Site 89 Treatability Studies Report MCB Camp Lejeune,North Carolina Station ID IR89-MW62 Sample ID IR89-GW62-06D IR89-GW62-07A IR89-GW62-07A2 IR89-GW62-07B Sample Date 12/29/06 01/25/07 03/27/07 06/27/07 Chemical Name Vinyl chloride 29 120 8 Xylene,total NA NA 1 U 1 U cis-1,2-Dichloroethene 540 790 68 35 cis-1,3-Dichloropropene NA NA 1 U 1 U m-and p-Xylene 2 U 10 U NA NA n-Butylbenzene 1 U 5 U NA NA n-Propylbenzene 1 U 5 U NA NA o-Chlorotoluene 1 U 5 U NA NA o-Xylene 1 U 5 U NA NA p-Chlorotoluene 1 U 5 U NA NA p-Isopropyltoluene 1 U 5 U NA NA sec-Butylbenzene 1 U 5 U NA NA tert-Butylbenzene 1 U 5 U NA NA trans-1,2-Dichloroethene 68 6 trans-1,3-Dichloropropene NA NA 1 U 1 U Wet Chemistry(Ill Dissolved organic carbon NA NA 67.5 34.1 Total organic carbon(TOC) 66.3 33.1 Notes: U-Analyte not detected J-Reported value is estimated NA-Not Analyzed Shading represents detection Page 6 of 6 253 Appendix H 254 2340 Stock Creek Blvd. �I Rockford TN 3 73-81 044 Phone:(865)573-8188 M crobia/insights Fax:l:inf 5 info@microbe.com Email:info@microbe.com Analysis Report Client: Ryan VanOosten Phone: (757)671-8311 CH2M HILL 5700 Cleveland Street Suite 101 Virginia Beach,VA 23462 Fax: (757)497-6885 MI Identifier: 014EC Date Rec: 03/08/2007 Report Date: 03/15/2007 Client Project#: 3465448.TS.ER.MN Client Project Name: Site 89,TO-071 Purchase Order#: 920504 Analysis Requested: CENSUS (final) Comments: All samples within this data package were analyzed under U.S.EPA Good Laboratory Practice Standards:Toxic Substances Control Act(40 CFR part 790). All samples were processed according to standard operating procedures. Test results submitted in this data package meet the quality assurance requirements established by Microbial Insights,Inc. Reported By: Reviewed By: ajutk' kv& /n NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error,please notify Microbial Insights,Inc. immediately. The data and other information in this report represent only the sample(s)analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights,Inc. Thank you for your cooperation. Pag@St of 4 MICROBIAL INSIGHTS, INC. 2340 Stock Creek Blvd. Rockford,TN 37853-3044 Tel: (865)573-8188; Fax: (865)573-8133 Q Potential (DNA) Client: CH21VI HILL MI Project Number: 014EC Project: Site 89, TO-071 Date Received: 03/08/2007 Sample Information Client Sample ID: IR89-GW44-07A IR89-GW54-07A IR89-GW33-0 IR89-GW34.07 2-M 2-M 7A2-M A2-M Sample Date: 03/07/2007 03/07/2007 03/08/2007 03/08/2007 Units: cells/mL cells/mL cells/mL cells/mL Dechlorinating Bacteria Dehalococcoides spp(1) DHC 4.7E+01 5.03E+04 1.81E+01 7.09E+01 Desulfuromonasspp. DSM 1.54E+04 2.31E+02 <5E-01 <5E-01 Dehalobacter spp. DHB 7.74E+03 2.55E+02 5.06E+02 1.95E+02 Functional Genes Toluene Dioxygenase TOD 7.6E+06 1.8E+05 3.93E+04 2.35E+06 Phylogenetic Group Methanotrophs(total) MOB 1.48E+08 1.38E+06 3.43E+06 3.62E+06 Type I MOB MOBI 4.52E+07 4.71E+05 8.4E+05 1.46E+06 Type 11 MOB MOBII 1.02E+08 9.07E+05 2.59E+06 2.16E+06 Legend: NA=Not Analyzed NS=Not Sampled J=Estimated gene copies below PQL but above LQL I=Inhibited <=Result not detected Notes: 1 Bio-Dechlor Census technology was developed by Dr. Loeffler and colleagues at Georgia Institute of Technology and was licensed for use through Regenesis. 256 Page 2 of 4 iaUl0 c :ia410 t y n) a r :i0410 ' a 3 N C HOdb PP o : . —0E -HOdb'pp O I v Ia ) m m (1) :HOdb pp y Z ;N 70 c C cc (Lj o (oigojae aualegldeN)HVNb - L w W (Oigmaeuy aua(X(uanlo )SSb@) a a � O o Q 0 .L _ CD O a0 C U O ¢ lOigaae sHVd aleipauua)ul)1V0b co NCie a�i 3 `•�" - (Olgmae sHVd IROO 001b I 4 0 (D Q m M co N LL {Oigoiae 391W)40 l '� O C (6uizipixo eiuowwe)90V6 •� : 4 0 0 (6ul,4u)uao)dNob � LL (sgdmloueglaw)g0wb , V Y a w E m o (sua6oueglaw)NOWb f� 0) M a M (n d 98U98S Z, � c a�i (Aluo s98S)HS06 0 llo)0V9b E O (U �•/ J O U L _ is g' (wnuapegolylnsaU)9SUb m t V V O L T (seuowom)lnsa0)wgOb 'C6 Q Q p - c a o- a (ialOegole4a(3)9Hob I1 a y >V ase0-H OA tAV9b IV o L E R a> U o aseU-H 3Ulb ut°.. v o o d (saploaooaole O)OHOb I z I o (VNH)uolssajdx3.O ) ¢2 a o o v l4 v Z o 'J eo (VNO)Ml-lod-O �;., o ff I a Z O m Z �= O = m > 4) c+� O p f0 O )_ t 1p 7 7co 313JA LL U Z U Q 0) 0. LL a CA �p p ddn N s C y Vdld m to 2 a � c � U O xu)eW °% Q L 0 - w 0 N > paldweS awi1 -T w ,w G a cm N l N _ o 13 d 0 1�0 n � � capa(dwes a;ep � '� o 0 I -- 9 ❑ U; c ff w 1 v m r -3 w cu ( a _a a R E a — II t ' Q` ❑ o Q 3 0 0 0 ` w 257 F N U 0 vCo � r C o '� Wj kl C'ccc,ul i ny �h a3Yp 54c� to ch—�O a divisinn uf-Liberty na Y - A,V65 -S 3 Client/Reporting Client/Reporting Information Project Infon Company Name Project Name o;- c L T O 4 Address ' Sampling ocation 7-c City State Zip Turnaround time U� v3 Q v. - Project Co tact Batch QC or Project Specific'?If Speci Phone# Are aqueous samples field filtered for � 31 Sampler's Na Are hiloh.. concentrations expected"Y c ti � 1 Collection C— Nu CompuChem No #01 (Lab Use) Field ID Date Time Matrix J6@0 etr x ID �• — G N— 3�Pk7 d 'f�� ► A o M A Lab Use On Sample Unpacked By: Cyanide samples checked to Sample Order Ent By: 625&Phenol samples check Samples Received in Good Condition? Y or N 1608 samples checked for pH If no,explain: Relinquished b Date/Time: Relinquished by:' Date/Time: Subcontact? Y or N If yes,where? Samples stored 60 days after date report mailed A9 extra charge. 2340 Stock Creek Blvd. �I Rockford TN 3 73-81 044 Phone:(865)573-8188 M crobia/insights Fax:l:inf 5 info@microbe.com Email:info@microbe.com DNA Analysis Report Client: Ryan VanOosten Phone: (757)671-8311 CH2M HILL 5700 Cleveland Street Suite 101 Virginia Beach,VA 23462 Fax: (757)497-6885 MI Identifier: 027EF Date Rec: 06/08/2007 Report Date: 06/13/2007 Client Project#: 346548.TS.ER.MN Client Project Name: T071.GRD Pilot Study Area Purchase Order#: 920504 Analysis Requested: CENSUS Comments: All samples within this data package were analyzed under U.S.EPA Good Laboratory Practice Standards:Toxic Substances Control Act(40 CFR part 790). All samples were processed according to standard operating procedures. Test results submitted in this data package meet the quality assurance requirements established by Microbial Insights,Inc. Reported By: Reviewed By: ajutk' kv& /n NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error,please notify Microbial Insights,Inc. immediately. The data and other information in this report represent only the sample(s)analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights,Inc. Thank you for your cooperation. Pag@3b of 3 MICROBIAL INSIGHTS, INC. 2340 Stock Creek Blvd. Rockford,TN 37853-3044 Tel: (865)573-8188; Fax: (865)573-8133 Q Potential (DNA) Client: CH21VI HILL MI Project Number: 027EF Project: T071.GRD Pilot Study Area Date Received: 06/08/2007 Sample Information Client Sample ID: IR89-GW54-07B IR89-GW44-07B Sample Date: 06/07/2007 06/07/2007 Units: cells/mL cells/mL Dechlorinating Bacteria Dehalococcoides spp(1) DHC 4.56E+06 6.32E+04 Desulfuromonas spp. DSM 2.77E+02 7.14E+04 Dehalobacter spp. DHB 6.86E+00 3.16E+04 Functional Genes Toluene Dioxygenase TOD <1 E+00 2.02E+06 Phylogenetic Group Methanotrophs(total) MOB 1.55E+04 4.37E+05 Type I MOB MOBI 5.85E+03 1.55E+05 Type II MOB MOBII 9.7E+03 2.82E+05 Legend: NA=Not Analyzed NS=Not Sampled J=Estimated gene copies below PQL but above LQL I=Inhibited <=Result not detected Notes: 1 Bio-Dechlor Census technology was developed by Dr. Loeffler and colleagues at Georgia Institute of Technology and was licensed for use through Regenesis. 260 Page 2 of 3 C pro 0 m N O o E dodb['F N m Q E o m • o (Q aJdb 4'G' N a M � � ai � N C •' ca m m cm o E c a c 171Qalce CILIO .,�aeNI HVNI' a6 o n = 8 O E rn c U z @) a m w a!ama-v aualh,e. W1I ssq' U o ao c c� O p ,u _ ncmae sHVd�erCcwu�rat)Ly'�n iri ao E ,pz 1z aEi a 1� •� - o i,uin;ae sNVd Kw: iY_�1.n cm '�J�QUrt7e N c (h,nnpm mcK"urse)90y� a .n ccn o a`a) m a (UU,A,uluall pi,1� O p j cc o eC tsuaff +Mewl N, c c m � � 9aIBaSb 0 0 � _� 161uo sass as'.1 0 a E V � L fl 11eto1):1V91', c13 It � m twnuaKnFgo,ypraQ}8"9b � N m � � fs„:.w:ui�I:sa:U VlSiiu o m R otxL E CrO U a m y Z O > v; a, vE O v N C: • a G a o E do lVNd)I�^w �, � u1Oi v a mcc a � ¢ N ao y 2 LV y m a: CIP h ic A O V L N 3 UJ m 373gN d ,o _ U Q VJA 0 N � ELL m ro N T xulevj 3 3 z N o 8 o N O d y T d 6 o N m Pal awil w a c v E L f`co t o a c � c _ E _8 o N Nalduweg ale(] c o co n 0 � ❑ in C �' `� d v O c CC a R N l a) Q• � U N p G CL z 147N -0 v _ N n O O N E U C `7 In tca E n o Q !� \ ❑ o 11 a 3 c m al U O Q c E m e _ m o c 3 _ C N Z z F O ti Li O 3 N u u C d & a o 3 6 0 M c d m m o N c W 0 m m o v E L w o 0 o m aD E E tY X Z U ¢. m L ti a` a` a w 261 Appendix I 262 TECHNICAL MEMORANDUM CH2MHILL Proposed Monitoring Approach for Potential Vapor Intrusion Pathways, Site 89 To: Camp Lejeune Partnering Team FROM CH2M HILL DATE: October 4, 2007 This Technical Memorandum provides an update to a previous memorandum (June 8,2007) which presented a preliminary evaluation of vapor soil data soil collected during an air sparging treatability study and the proposed approach for monitoring potential vapor intrusion pathways in buildings at Site 89 at Marine Corps Base (MCB) Camp Lejeune, North Carolina. The preliminary evaluation of vapor intrusion was based on data from four rounds of sampling that were collected during the treatability study;this memorandum evaluates the soil gas vapor data collected during the entire study (i.e., six rounds). Presented in this memorandum is an overview of the site setting, an evaluation of analytical data from the completed air sparging treatability study,proposed monitoring approaches, and a recommended monitoring approach. Background Air sparging (AS) was one of four treatability studies conducted at MCB Camp Lejeune Site 89 to evaluate the performance and effectiveness for remediation of trichloroethene (TCE), tetrachloroethene (PCE),and associated dissolved chlorinated solvent contamination. The treatability studies were not intended to be a final remedy for the site but were intended to evaluate the performance and design criteria of four remedial technologies. Air sparging was tested in an area with a relatively small,elliptical plume,conducive to treatment through a well that has been installed using Horizontal Directional Drilling (HDD) methods. Areas of very groundwater high contamination(in the percent levels) were avoided during installation of the horizontal well. The HDD sparge well was constructed with a 240-foot long screen, and was positioned at approximately 40 feet below ground surface near building TC864. The total lineal distance of the well was approximately 600 feet. The air sparge system was activated on December 8,2006 and operated continuously for approximately six months.The compressor"up time" was approximately 89%. Operation of the system was concluded in July 2007. Groundwater monitoring was performed during the treatability study including a baseline sampling event,followed by six monthly sampling events. Due to the presence of buildings around the sparge area,three soil vapor monitoring wells (SVMW) were installed and monitored for volatile organic compound (VOCs) in conjunction with the groundwater monitoring. The analytical results from the soil vapor monitoring wells are presented in Table 1. The location of the treatability study area and the SVMWs are shown in Figure 1. Two SVMWs (IR89-SV01 and IR89-SV02) are located adjacent to building TC860. One SVMW (IR-SV03) is located adjacent to building TC864. VAPORNVMMRNONEND FNAL_100407.DOC 1 263 PROPOSED NUNUORMAPPROPCH FOR PMENTIALVAPORNML)SIONPATHWAYS,SrTE 89 Purpose and Objectives An approach was developed for evaluating potential vapor intrusion pathways in the nearby buildings prior to full-scale implementation of AS at Site 89. The purpose for evaluating potential vapor intrusion pathways is to be able to identify when potential pathways might create indoor air impacts,so that mitigation measures can be implemented in a timely manner. Since air sparging involves injection of air to remove or biodegrade subsurface contaminants,there is the possibility of creating pressure fields that might result in some degree of transport of volatile contaminants. A preliminary evaluation of the soil gas sampling data was conducted in June 2007 to evaluate the potential for vapor intrusion pathways in buildings located near the area where AS is being conducted. These preliminary results were compared with the generic default screening levels in soil gas presented in U.S. Environmental Protection Agency's (EPA) draft vapor intrusion guidance (EPA,2002). Eight of 21 VOCs detected in soil gas were detected at concentrations higher than the generic screening levels. TCE and PCE were detected at concentrations greater than 50 times the generic screening levels. In accordance with EPA's vapor intrusion guidance, site-specific screening levels were calculated for TCE and PCE using the Johnson and Ettinger model. The assumptions associated with these screening levels are described in Table 2. As seen in Table 1,concentrations of TCE in some samples approached,but did not exceed,the site-specific screening level. Concentrations of PCE were lower than the site-specific screening level. Based on the preliminary evaluation, different approaches were developed for monitoring potential vapor intrusion pathways near the buildings: Alternative 1: Continue to monitor soil gas in these wells,and use the data in the site- specific Johnson and Ettinger model to evaluate potential exposures. During full-scale AS implementation,periodically monitor soil gas from these wells to determine if a build up in soil gas concentrations is occurring. Soil gas sampling and analysis would be conducted using Summa canisters with the sampling analyzed using EPA Method TO-15. Other monitoring methods, such as detector tubes (Drager tubes) or photoionization detectors (PID) probably would not provide usable data for modeling. However,a PID might be usable to monitor trends in total VOC concentration,which can be used to increase or reduce the frequency as needed of sampling using the Summa canisters. Alternative 2: Conduct a building survey to determine if that building is resistant to vapor intrusion. That involves surveying the building for cracks in the floor (or sumps, or drains), that could be conduits for soil gas,and determining if the building is depressurized -is it pulling air from the subsurface indoors-by making measurements with a micromanometer. If the building is pressurized and vapor-resistant,that result combined with the soil gas sampling data may be useful in documenting that no further vapor intrusion evaluation is needed. This approach would address the potential vapor intrusion pathway without the need for intrusive indoor air and subslab sampling. Alternative 3: Engage the base industrial hygienists,and addressing the potential exposure pathway as an occupational exposure situation. As appropriate,Navy industrial hygienists perform indoor air sampling using industrial hygiene methods,and comparing the results with appropriate occupational exposure limits. If the levels in air do not represent a workplace exposure,then no further action would be needed (beyond any soil gas VAPOR NDNLTORMMEND FINAL 100407.DOC 2 264 PROPOSED NUNUORM APPROACH FOR PMENTIALVAPORNMLNIONPATHWAYS,SrM 89 monitoring we would do normally as part of the full-scale implementation of the AS system). Soil gas monitoring could continue periodically, as described above. Alternative 4: Perform a vapor intrusion investigation,with subslab and indoor air samples, as described in EPA's draft 2002 guidance. Updated Data Evaluation Soil vapor samples were collected during a baseline sampling event,followed by six monthly sampling events (Table 1). The final soil vapor samples associated with the study were collected on July 11 and July 12,2007. Twenty-two VOCs were detected in soil gas. Soil vapor monitoring wells 89-SV01 and 89-SV02 show an increasing trend in concentrations in soil gas through out the study,though concentrations in 89-SV02 decrease in the last sampling event. In general, soil vapor monitoring well 89-SV03 shows a spike in contaminant concentrations one month after system start-up,followed by a decrease in concentrations;PCE and TCE concentrations increase in the July sampling event. Ten VOCs were detected at concentrations greater than the generic screening criteria in at least one soil vapor sample collected during the course of the treatability study: PCE;TCE; cis-1,2-Dichloroethene;vinyl chloride; 1,1,2,2-tetrachloroethane (PCA);methylene chloride; chloroform;benzene;1,2,4-trimethylbenzene; and 1,3,5-trimethylbenzene. PCA,PCE, and TCE were detected at concentrations greater than 50 times the generic screening levels; therefore, site-specific screening criteria were calculated for these compounds. Concentrations of these three VOCs were lower than the site-specific screening level. Recommendations for Further Investigation Although the soil vapor concentrations collected during the treatability study did not exceed site-specific screening criteria, the sampling data indicate an increasing trend in soil gas concentrations. At this time,it is not apparent that the air sparging treatability study has created potential vapor intrusion pathway. However, the soil vapor monitoring data collected suggests that longer-term air sparging could produce higher concentrations in soil vapor than observed during the treatability study. This could create an increased potential for vapor intrusion pathways in buildings near the air sparge well. In addition, areas of Site 89 have higher groundwater concentrations than those in the treatability study area. Air sparging in these areas with higher concentrations in groundwater also suggest there is the potential for higher soil vapor concentrations to be observed,if air sparging is selected as the final remediation technology for Site 89. All though a combination of the four proposed alternatives may need to be implemented, the initial recommended approaches for vapor intrusion evaluation are Alternative 1 (soil gas sampling and modeling) and Alternative 2 (building surveys). Routine soil vapor monitoring (using a combination of real-time monitoring and soil vapor sampling) would be conducted in the vicinity of all buildings in the area in which air sparging is being conducted. Installation of additional soil vapor monitoring wells may be needed to monitor soil vapor concentrations in the vicinity of other buildings that may be near the sparge line. If the sampling data and modeling indicate an increasing trend in soil gas concentrations, and an increasing potential for vapor intrusion pathways in a building,then a subsequent step would be to implement Alternative 2,which would involve performing a building VAPORNMRORM END FNAL_100407.DOC 3 265 PROPOSED NUNUORM APPROACH FOR PMENTIALVAPORNMLNIONPATHWAYS,SiIE 89 survey. The results from that survey could be used to refine the modeling, or could be used to identify mitigation measures that would reduce potential exposures through vapor intrusion. The need for further investigation (industrial hygiene survey, or interior vapor intrusion investigation) would be based on the results from these modeling and survey activities. VAPORNMUORM END FINAL 100407.DOC 4 266 Table 1 Concentration Trends in Soil Gas Within the Air Sparge Treatability Study Area-Site 89 MCB Camp Lejeune,North Carolina Generic Screening Site-Specific Sample ID Level' Screening Levelz IR89SV01 IR89-SV02 IR89-SV03 Sample Date (ppbv) (ppbv) 12/5106 1/19107 1 2/16/07 1 3/29107 1 5/1107 616/07 7/12/07 1215106 1/19107 2/16/07 1 2/16107 1 3129107 1 5/1/07 6/6107 7/12107 12/5/06 12/5106 1/19/07 1 2/16107 1 3/29107 1 5/1/07 6/6/07 7/12/07 Chemical Name DUP DUP Volatile Organic Compounds(ppbv) 1,1-DCE 500 2 U 1.43 J 4.91 5.92 J 58.9 U 6.76 J 22.1 J 1.89 U 0.323 J 4.69 4.94 11.5 J 52.3 U 100 U 103 U 2.22 U 2.22 U 75.7 J 96 J 107 U 86.7 U 51.8 U 50.5 U 1,2,4-Trichlorobenzene 270 2 U 11.9 U 2.22 U 14.8 U 58.9 U 45.1 U 105 U 1.89 U 0.263 J 2.05 U 2.05 U 2.79 J 52.3 U 100 U 103 U 2.22 U 2.22 U 842 U 101 U 107 U 14.7 J 51.8 U 50.5 U 1,2,4-Trimethylbenzene 12 0.54 J 0.643 J 02 J 14.8 U 58.9 U 45.1 U 0.548 J 0.606 J 0.246 J 0.164 J 16.4 U 52.3 U 100 U 103 U 0.799 J 0.755 J 168 U .4 J 107 U 86.7 U 51.8 U 50.5 U 1,3,5-Trimethylbenzene 12 2 U 2.38 U 2.22 U 14.8 U 58.9 U 45.1 U 17.9 J 1.89 U 2.02 U 2.05 U 2.05 U 16.4 U 52.3 U 100 u 103 U 0.799 J 2.22 U 168 U 37.4 J 107 U 86.7 U 51.8 U 50.5 U 1,1,2,2-Tetrachloroethane 0.61 495 2 U 2.38 U 2.22 U 14.8 U 58.9 U 45.1 U 105 U 1.89 U 2.02 U 2.05 U 2.05 U 16.4 U 52.3 U 74 103 U 2.22 U 2.22 U 168 U 101 U 107 U 86.7 U 0.4 J 50.5 U 1,4-DCB 1300 0.42 J 2.38 U 2.22 U 14.8 U 58.9 U 45.1 U 105 U 0.246 J 0.222 J 2.05 U 2.05 U 16.4 U 52.3 U 100 U 103 U 0.932 J 0.888 J 168 U 101 U 107 U 86.7 U 51.8 U 50.5 U Benzene 9.8 024 J 0.309 U 2.22 U 14.8 U 58.9 U 45.1 U 1 0.246 J 0.364 J 2.05 U 2.05 U 16.4 U 52.3 U 100 U 103 U 2.22 U 2.22 U 168 U 101 U 107 U 86.7 U 51.8 U Chlorobenzene 130 2 U 2.38 U 2.22 U 14.8 U 58.9 U 45.1 U 105 U 1.89 U 2.02 U 2.05 U 2.05 U 16.4 U 52.3 U 100 U 103 U 2.22 U 2.22 U 168 u 40.4 J 107 U 86.7 U 51.8 U 50.5 U Chloroform 2.2 0.46 J 0.619 J 0.311 J 14.8 U 58.9 U 45.1 U 105 U 0.473 J 1.09 J 0.779 J 0.779 J 16.4 U 52.3 U 100 U 103 U 20.2 J 61.6 J 107 U 86.7 U 51.8 U 50.5 U Chloromethane 120 2 U 1.67 J 2.22 U 14.8 U 58.9 U 45.1 U 105 u 8.18 1.01 J 2.05 U 0.472 J 16.4 U 52.3 U 100 U 103 U 0.955 J 1.09 J 168 u 101 U 107 U 86.7 U 51.8 U 50.5 u cis-1,2-DCE 88 2 U 2.38 U 2.02 J 29.7 164 167 48 1.89 U 2.02 U 1.17 J 1.21 J 5.42 J 40.2 J 226 2.22 U 2.22 U 4,190 2,130 1,300 1310 DichlorodiFluoromethane 400 0.38 J 0.571 J 0.4 J 14.8 U 58.9 U 45.1 u 105 U 0.454 J 0.545 J 0.472 J 0.533 J 16.4 U 52.3 U 100 U 103 U 0.377 J 0.422 J 168 U 91.9 J 107 U 86.7 U 51.8 U 50.5 U Ethylbenzene 51 0.54 J 0.643 J 0.355 J 14.8 U 58.9 U 45.1 U 10.5 J 0.567 J 0.505 J 0.226 J 0.205 J 16.4 U 52.3 U 100 U 103 U 0.577 J 0.577 J 168 U 39.4 J 107 U 86.7 U 51.8 U 50.5 U m,p-Xylene 16000 1.78 J 2.45 J 1.13 J 29.6 U 118 U 90.1 U 41 J 1.8 J 1.86 J 0.718 J 0.636 J 32.8 U 105 U 200 U 205 U 2.24 J 2.22 J 337 U 87.9 J 213 173 U 104 U 10.1 J Methylene Chloride 150 1.78 J 4.86 1.51 J 43.5 48.9 J 32.4 J 155 1.47 J 3.8 1.31 J 1.7 J 34.2 46 J 98 J 139 1.49 J 1.82 J 27 364 88.5 J 246 52.8 57.1 o-Xylene 16000 0.64 J 0.904 J 0.4 J 14.8 U 58.9 U 45.1 U 20 J 0.605 J 0.687 J 0.267 J 0.246 J 16.4 U 52.3 U 100 U 103 U 0.777 J 0.71 J 168 U 44.4 J 107 U 86.7 U 51.8 U 5.05 J Styrene 2300 2 U 0.214 J 2.22 U 14.8 U 58.9 U 45.1 U 105 U 1.89 U 0.162 J 2.05 u 2.05 J 16.4 U 52.3 U 100 u 103 U 2.22 U 2.22 U 168 u 34.3 J 107 U 86.7 U 51.8 U 50.5 U CE 0.41 17,200 2 U 19.2 149 1,030 3,860 837 1.89 U 1.45 J 132 332 613 2,370 7,230 4540 0.755 J 0.644 J 13,800 9,290 6,510 3,520 2,360LU50.5 etrachloroethylene 12 4,910 2 U 3.14 13.1 54.4 128 158 2 1.89 U 1.07 J 20.1 20.3 70.3 212 602 371 11.1 11 406 267 158 47.7 J 45.5 oluene 1100 2 9.07 1.95 J 14.8 U 58.9 U 45.1 U 39.9 J 1.23 J 1.19 J 0.533 J 0.533 J 2.46 J 52.3 U 100 U 228 1.2 J 1.2 J 168 u 43.4 J 107 U 86.7 U 51.8 Urichloro8uoromethane 1200 2 U 2.38 U 2.22 U 14.8 UU 45.1 U 105 U 1.89 U 2.02 U 2.05 U 2.05 U16.4 U 52.3 U 100 U 103 U 0.377 J 0.422 J 168 U 101 U 107 U 86.7 U 51.8 U 11 2 U 2.38 U 2.09 J 14.8 U 58.9 U 45.1 U 105 U 0.851 J 2.02 U 3.46 3.65 16.4 U 52.3 U 100 U 103 U 2.22 U 2.22 U 126 J 117 107 U 86.7 U 51.8 U Notes: 'Risk=1 x 10s,based on residential land use,using a default attenuation factor of 0.1(EPA,2002) 2 Risk-1 x 10-6,calculated with the Johnson and Ettinger model using site-specific assumptions,based on industrial land use assumptions. U-Analyte not detected J-Reported value is estimated Shading indicates exceedance of Generic Screening Lem Bold and outlined indicates exceedance of Site Specific Screening Level NA-Not analyzed Page 1 of 1 267 Work in Progress For Discussion Purposes Only Do Not Cite or Quote TABLE 2 Vapor Intrusion Modeling Parameters Used in the Johnson and Ettinger(1991)Model Site 89 Air Sparge Evaluation Camp Lejeune,North Carolina Symbol Parameter Description Selected Value Units Sources Average Soil/Groundwater Based on data for North Carolina Ts Temperature 16.7 °C (USEPA,2004) Depth Below Grade to Bottom of This is the depth from soil surface to the LF Enclosed Space Floor bottom of the floor in contact with soil 15 cm Assumes slab-on-grade construction Assumed depth to groundwater at combined on-and offsite locations, LWT Depth Below Grade to Water Table 152.4 cm approximately 5 feet. hA Thickness of Soil Stratum A 107 cm hB Thickness of Soil Stratum B 45.4 cm Not Used he Thickness of Soil Stratum C NA cm Not Used Soil Stratum A SCS Soil Type Used to estimate soil vapor permeability Not Used unitless User-defined value used. A parameter associated with convective transport of vapors within the zone of User-defined Soil Vapor influence of a building.It is related to the Value is consistent with a sand k Permeability size and shape of connected soil pores 1.00E-07 Cm2 (USEPA,2004). Based on soil boring logs for site 89; PbA Stratum A Soil Dry Bulk Density 1.63 g/cm3 value is consistent with a Sandy Clay Used with water-filled porosity to calculate Based on soil boring logs for site 89; nA Stratum A Total Soil Porosity air-filled porosity(see below) 0.385 unitless value is consistent with a Sandy Clay Used with total porosity to calculate air- Based on soil boring logs for site 89; 0wA Stratum A Soil Water-filled porosity filled porosity(see below) 0.197 cm3/cm3 value is consistent with a Sandy Clay Based on soil boring logs for site 89; PbB Stratum B Soil Dry Bulk Density 1.62 g/cm3 value is consistent with a Loamy Sand Used with water-filled porosity to calculate Based on soil boring logs for site 89; nB Stratum B Total Soil Porosity air-filled porosity(see below) 0.39 unitless value is consistent with a Loamy Sand Used with total porosity to calculate air- Based on soil boring logs for site 89; BwB Stratum B Soil Water-filled porosity filled porosity(see below) 0.0076 cm3/cm3 value is consistent with a Loamy Sand Pb Stratum C Soil Dry Bulk Density NA g/cm Not Used Used with water-filled porosity to calculate nc Stratum C Total Soil Porosity air-filled porosity(see below) NA unitless Not Used Used with total porosity to calculate air- 0w\c Stratum C Soil Water-filled porosity filled porosity(see below) NA cm3/cm3 Not Used Based on assumed 6 inch slab Lcmck Enclosed Space Floor Thickness 15 cm thickness Default indoor/subslab pressure Ap Soil-Building Pressure Differential 40 g/cm-s2 difference(USEPA,2004) Corresponds to a 5,000 square foot LB Enclosed Space Floor Length 2155 cm floor area WB Enclosed Space Floor Width 2155 cm HB Enclosed Space Height 305 Cm Corresponds to a 10 foot ceiling height Represents a gap assumed to exist at the junction between the floor and the foundation perimeter.This gap is due to building design or concrete shrinkage.It represents the only route for soil gas w Floor-Wall Seam Crack Width intrusion into a building 0.5 cm Assumed floor-wall seam width Building ventilation rate,expressed in units Design outside air exchange rate for ER Indoor air exchange rate of air changes per hour(ACH) 0.84 (1/h) an office building. ATc Averaging Time for Carcinogens 70 yrs ATNC Averaging Time for Noncarcinogens 25 yrs ED Exposure Duration 25 yrs EF Exposure Frequency 250 days/yr Used to calculate risk-based groundwater TR Target Risk for Carcinogens concentration 1.00E-05 I unitless 268 Work in Progress For Discussion Purposes Only Do Not Cite or Quote TABLE 2 Vapor Intrusion Modeling Parameters Used in the Johnson and Ettinger(1991)Model Site 89 Air Sparge Evaluation Camp Lejeune,North Carolina Symbol I Parameter Description Selected Value Units Sources Target Hazard Quotient for Used to calculate risk-based groundwater THQ Noncarcinogens concentration 1 1 dayslyr 269