Loading...
HomeMy WebLinkAboutSW3240704_Stormwater Report_20240805 EROSION CONTROL AND STORMWATER MANAGEMENT REPORT FOR: HIDDEN ESTATES WEDDINGTON, NC PREPARED FOR: ENCOMPASS BUILDING GROUP, LLC uuuRp` N I . ,, Ld ` THOMAS '� SEAL _ _ & HUTTON - 050698 = •= ENGINEERING 05 13-2024 F F•' No F-0871 •'o �� ,,�q''Hq N' R`G�```� ��,���� OF AUK```‘ nnnnna J -#29589.0000 FEBRUARY 16, 2024 Prepared by: HT THOMAS & HUTTON EROSION CONTROL AND STORMWATER MANAGEMENT REPORT Project: Hidden Estates T&H Job Number: J-29589.0000 Location: Beulah Church Road Weddington, NC 28173 Date Prepared: February 16, 2024 Owner: Encompass Building Group, LLC Owner Address: 1016 Waxhaw/Indian Trail Rd. Indian Trail, NC 28104 Engineer: Thomas & Hutton Engineer Address: 1020 Euclid Avenue Charlotte, NC 28203 Phone: 980-201-5505 THOMAS & HUTTON TABLE OF CONTENTS Section 1 Channel Analysis Section 2 Rip Rap Outlet Protection Section 3 HEC-22 Stormwater Analysis H THOMAS & HUTTON Page 2 EROSION CONTROL AND STORMWATER CALCULATIONS HIDDEN ESTATES SECTION i CHANNEL ANALYSIS 29589.0000 ITI THOMAS Sc HUTTON Channel Report Hydraflow Express Extension for Autodesk®Civil 3D®by Autodesk, Inc. Friday, Feb 16 2024 Swale 01 Triangular Highlighted Side Slopes (z:1) = 3.00, 5.00 Depth (ft) = 0.53 Total Depth (ft) = 1.00 Q (cfs) = 4.560 Area (sqft) = 1.12 Invert Elev (ft) = 689.97 Velocity (ft/s) = 4.06 Slope (%) = 4.45 Wetted Perim (ft) = 4.38 N-Value = 0.030 Crit Depth, Yc (ft) = 0.61 Top Width (ft) = 4.24 Calculations EGL (ft) = 0.79 Compute by: Known Q Known Q (cfs) = 4.56 Elev (ft) Section Depth (ft) 691.00 , 1.03 690.50 0.53 690.00 0.03 689.50 -0.47 689.00 -0.97 0 1 2 3 4 5 6 7 8 9 10 Reach (ft) 29589.0000- Hidden Estates Temporary Diversion Swale Calculations 2/16/2024 TDS-01 C i A Q TOP 689.97 (in/hr) (ac) (cfs) BOT 665.5 0.60 8.35 0.91 4.56 LENGTH 550 SLOPE 4.45% 2/16/24,9:28 AM ECMDS 7.0 NORTH North American Green AMERICAN 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 GREEN Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0 CHANNEL ANALYSIS >>>Swale 01 Name Swale 01 Discharge 4.56 Channel Slope 0.0445 Channel Bottom Width 0 Left Side Slope 3 Right Side Slope 5 Low Flow Liner Retardence Class C 6-12 in Vegetation Type Mix(Sod and Bunch) Vegetation Density Very Good 80-95% Soil Type Clay Loam(CL) S75 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern S75 Unvegetated Straight 4.56 cfs 4.04 ft/s 0.53 ft 0.031 1.6 lbs/ft2 1.47 lbs/ft2 1.09 STABLE D Underlying Straight 4.56 cfs 4.04 ft/s 0.53 ft 0.031 1.74 Ibs/ft2 0.71 Ibs/ft2 2.44 STABLE D Substrate Unreinforced Vegetation Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern Unreinforced Straight 4.56 cfs 2.85 ft/s 0.63 ft 0.05 4 Ibs/ft2 1.76 lbs/ft2 2.28 STABLE -- Vegetation Underlying Straight 4.56 cfs 2.85 ft/s 0.63 ft 0.05 4 Ibs/ft2 0.85 lbs/ft2 4.7 STABLE -- Substrate S75BN Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern S75BN Straight 4.56 cfs 4.04 ft/s 0.53 ft 0.031 1.6 lbs/ft2 1.47 lbs/ft2 1.09 STABLE D Unvegetated Underlying Straight 4.56 cfs 4.04 ft/s 0.53 ft 0.031 1.74 lbs/ft2 0.71 lbs/ft2 2.44 STABLE D Substrate DS75 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern DS75 Straight 4.56 cfs 4.04 ft/s 0.53 ft 0.031 1.6 lbs/ft2 1.47 lbs/ft2 1.09 STABLE D Unvegetated Underlying Straight 4.56 cfs 4.04 ft/s 0.53 ft 0.031 1.74 lbs/ft2 0.71 lbs/ft2 2.44 STABLE D Substrate https://ecmds.com/project/158279/channel-analysis/253246/show 1/2 2/16/24,9:28 AM ECMDS 7.0 https://ecmds.com/project/158279/channel-analysis/253246/show 2/2 2/16/24,9:29 AM ECMDS 7.0 NORTH North American Green AMERICAN 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 GREEN Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0 ANALYSIS COMPUTATIONS >>>>View Computation Inputs Channel Discharge(Q): 4.56 cfs Peak Flow Period (H): hours Channel Slope(S0): 0.0445 ft/ft Bottom Width (B): 0 ft Left Side Slope(ZL): 3 (H : V) Right Side Slope(ZR): 5 (H : V) Existing Channel Bend: No Bend Coefficient(Kb): 1 Channel Bend Radius: Retardance Class of Vegetation:C 6-12 in Vegetation Type: Mix(Sod and Bunch) Vegetation Density: Very Good 80-95% Soil Type: Clay Loam (CL) Channel Lining Options DS75 Protection Type Temporary S75BN Protection Type Temporary S75 Protection Type Temporary Basic Relationships A= Cross sectional area, ft2(m2)=(B*D)+(ZL/ 2 * D2)+(ZR/2 * D2) Where: B = Base width of channel,ft(m) D = Flow depth,ft(m) ZL= Left side bank slope(H : 1 V) ZR= Right side bank slope(H : 1 V) P= Wetted perimeter,ft(m) = B +ZL* D +ZR* D R=Hydraulic radius,ft(m)=A/P V = Flow velocity,ft/s(m/s) = Q/A Where: Q = Channel discharge, cfs(cms) Taua Average bed shear stress, psf(Pa) = 62.4* R*SO Where: SO = Gradient of channel,ft/ft(m/m) Tauo= Maximum bed shear stress, psf(Pa) = 62.4* D*So Unvegetated Conditions Computations: n = Manning's n = a *Tauab and (iteratively solved). n = 1.486/Q*A* R(2/3)So°'S Where: n = Manning's n https://ecmds.com/project/158279/channel-analysis/253246/calculations 1/3 2/16/24,9:29 AM ECMDS 7.0 a = Product specific coefficient from performance testing b = Product specific coefficient from performance testing SFr= Product factor of safety=Taur/Tauo Where: TauT= Permissible shear stress from testing, psf(Pa) Taup= In place permissible shear, psf(Pa) =Taur/alpha * (Taus+ alpha/4.3) Where: alpha = unit conversion constant, 0.14 English, 6.5 Metric Taus= Permissible shear stress of soil SFL= Factor of safety of installed liner=Taup/Taua Vegetated Computations: n = Manning's n = alpha * Cn*Taua-0.4 and (iteratively solved). n = 1.486/Q*A* R(2/3)So°5 Where: alpha = Unit conversion constant, 0.213 English, 1.0 Metric Cn =Vegetation retardance coefficient SFr= Product factor of safety =Tauiv/Tauo Where: Tauw= Permissible shear stress from testing, psf(Pa) Taup= In place permissible shear, psf(Pa) =Taus/(1 - CFTRM) * (n/ns)2 Where: CFTRM= Coefficient of TRM performance derived from testing Taus= Permissible shear stress of soil ns= Manning's of soil bed if left unprotected SFL= Factor of safety of installed liner=Taup/Taua S75 Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress S75 Unvegetated 0.031 0.53 ft 1.13 ft2 4.39 ft 0.26 ft 4.04 ft/s 1.4 1.47 lbs/ft2 1.09(SFP) Underlying 0.031 0.53 ft 1.13 ft2 4.39 ft 0.26 ft 4.04 ft/s 1.4 0.71 lbs/ft2 2.44(SFL) Substrate Unreinforced Vegetation Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress Unreinforced 0.05 0.63 ft 1.6 ft2 5.23 ft 0.31 ft 2.85 ft/s 0.9 1.76 lbs/ft2 2.28(SFL) Vegetation Underlying 0.05 0.63 ft 1.6 ft2 5.23 ft 0.31 ft 2.85 ft/s 0.9 0.85 lbs/ft2 4.7(SFL) Substrate S75BN Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress S75BN 0.031 0.53 ft 1.13 ft2 4.39 ft 0.26 ft 4.04 ft/s 1.4 1.47 lbs/ft2 1.09(SFP) Unvegetated Underlying 0.031 0.53 ft 1.13 ft2 4.39 ft 0.26 ft 4.04 ft/s 1.4 0.71 lbs/ft2 2.44(SFL) Substrate https://ecmds.com/project/158279/channel-analysis/253246/calculations 2/3 2/16/24,9:29 AM ECMDS 7.0 DS75 Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress DS75 0.031 0.53 ft 1.13 ft2 4.39 ft 0.26 ft 4.04 ft/s 1.4 1.47 Ibs/ft2 1.09(SFP) Unvegetated Underlying 0.031 0.53 ft 1.13 ft2 4.39 ft 0.26 ft 4.04 ft/s 1.4 0.71 lbs/ft2 2.44(SFL) Substrate https://ecmds.com/project/158279/channel-analysis/253246/calculations 3/3 Channel Report Hydraflow Express Extension for Autodesk®Civil 3D®by Autodesk, Inc. Friday, Feb 16 2024 Swale 02 Triangular Highlighted Side Slopes (z:1) = 5.00, 3.00 Depth (ft) = 0.36 Total Depth (ft) = 1.00 Q (cfs) = 1.700 Area (sqft) = 0.52 Invert Elev (ft) = 689.97 Velocity (ft/s) = 3.28 Slope (%) = 4.55 Wetted Perim (ft) = 2.97 N-Value = 0.030 Crit Depth, Yc (ft) = 0.41 Top Width (ft) = 2.88 Calculations EGL (ft) = 0.53 Compute by: Known Q Known Q (cfs) = 1.70 Elev (ft) Section Depth (ft) 691.00 1.03 690.50 0.53 v 690.00 0.03 689.50 -0.47 689.00 -0.97 0 1 2 3 4 5 6 7 8 9 10 Reach (ft) 29589.0000- Hidden Estates Temporary Diversion Swale Calculations 2/16/2024 TDS-02 C i A Q TOP 689.97 (in/hr) (ac) (cfs) BOT 669.94 0.60 8.35 0.34 1.70 LENGTH 440 SLOPE 4.55% 2/16/24,9:29 AM ECMDS 7.0 NORTH North American Green AMERICAN 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 GREEN Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0 CHANNEL ANALYSIS >>>Swale 02 Name Swale 02 Discharge 1.7 Channel Slope 0.0455 Channel Bottom Width 0 Left Side Slope 5 Right Side Slope 3 Low Flow Liner Retardence Class C 6-12 in Vegetation Type Mix(Sod and Bunch) Vegetation Density Very Good 80-95% Soil Type Clay Loam(CL) S75 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern S75 Unvegetated Straight 1.7 cfs 3.08 ft/s 0.37 ft 0.033 1.6 lbs/ft2 1.05 lbs/ft2 1.52 STABLE D Underlying Straight 1.7 cfs 3.08 ft/s 0.37 ft 0.033 1.74 lbs/ft2 0.51 lbs/ft2 3.42 STABLE D Substrate Unreinforced Vegetation Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern Unreinforced Straight 1.7 cfs 2.05 ft/s 0.46 ft 0.057 4 Ibs/ft2 1.29 lbs/ft2 3.09 STABLE -- Vegetation Underlying Straight 1.7 cfs 2.05 ft/s 0.46 ft 0.057 4 Ibs/ft2 0.63 lbs/ft2 6.39 STABLE -- Substrate S75BN Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern S75BN Straight 1.7 cfs 3.08 ft/s 0.37 ft 0.033 1.6 lbs/ft2 1.05 lbs/ft2 1.52 STABLE D Unvegetated Underlying Straight 1.7 cfs 3.08 ft/s 0.37 ft 0.033 1.74 lbs/ft2 0.51 lbs/ft2 3.42 STABLE D Substrate DS75 Normal Permissible Calculated Safety Staple Phase Reach Discharge Velocity Mannings N Remarks Depth Shear Stress Shear Stress Factor Pattern DS75 Straight 1.7 cfs 3.08 ft/s 0.37 ft 0.033 1.6 lbs/ft2 1.05 lbs/ft2 1.52 STABLE D Unvegetated Underlying Straight 1.7 cfs 3.08 ft/s 0.37 ft 0.033 1.74 lbs/ft2 0.51 lbs/ft2 3.42 STABLE D Substrate https://ecmds.com/project/158279/channel-analysis/253247/show 1/2 2/16/24,9:29 AM ECMDS 7.0 https://ecmds.com/project/158279/channel-analysis/253247/show 2/2 2/16/24,9:30 AM ECMDS 7.0 NORTH North American Green AMERICAN 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 GREEN Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0 ANALYSIS COMPUTATIONS >>>>View Computation Inputs Channel Discharge(Q): 1.7 cfs Peak Flow Period (H): hours Channel Slope(S0): 0.0455 ft/ft Bottom Width (B): 0 ft Left Side Slope(ZL): 5 (H : V) Right Side Slope(ZR): 3 (H : V) Existing Channel Bend: No Bend Coefficient(Kb): 1 Channel Bend Radius: Retardance Class of Vegetation:C 6-12 in Vegetation Type: Mix(Sod and Bunch) Vegetation Density: Very Good 80-95% Soil Type: Clay Loam (CL) Channel Lining Options DS75 Protection Type Temporary S75BN Protection Type Temporary S75 Protection Type Temporary Basic Relationships A= Cross sectional area, ft2(m2)=(B*D)+(ZL/ 2 * D2)+(ZR/2 * D2) Where: B = Base width of channel,ft(m) D = Flow depth,ft(m) ZL= Left side bank slope(H : 1 V) ZR= Right side bank slope(H : 1 V) P= Wetted perimeter,ft(m) = B +ZL* D +ZR* D R=Hydraulic radius,ft(m)=A/P V = Flow velocity,ft/s(m/s) = Q/A Where: Q = Channel discharge, cfs(cros) Taua Average bed shear stress, psf(Pa) = 62.4* R*SO Where: SO = Gradient of channel,ft/ft(m/m) Tauo= Maximum bed shear stress, psf(Pa) = 62.4* D*So Unvegetated Conditions Computations: n = Manning's n = a *Tauab and (iteratively solved). n = 1.486/Q*A* R(2/3)So°'S Where: n = Manning's n https://ecmds.com/project/158279/channel-analysis/253247/calculations 1/3 2/16/24,9:30 AM ECMDS 7.0 a = Product specific coefficient from performance testing b = Product specific coefficient from performance testing SFr= Product factor of safety=Taur/Tauo Where: TauT= Permissible shear stress from testing, psf(Pa) Taup= In place permissible shear, psf(Pa) =Taur/alpha * (Taus+ alpha/4.3) Where: alpha = unit conversion constant, 0.14 English, 6.5 Metric Taus= Permissible shear stress of soil SFL= Factor of safety of installed liner=Taup/Taua Vegetated Computations: n = Manning's n = alpha * Cn*Taua-0.4 and (iteratively solved). n = 1.486/Q*A* R(2/3)So°5 Where: alpha = Unit conversion constant, 0.213 English, 1.0 Metric Cn =Vegetation retardance coefficient SFr= Product factor of safety =Taurv/Tauo Where: Taurv= Permissible shear stress from testing, psf(Pa) Taup= In place permissible shear, psf(Pa) =Taus/(1 - CFTRM) * (n/ns)2 Where: CFTRM= Coefficient of TRM performance derived from testing Taus= Permissible shear stress of soil ns= Manning's of soil bed if left unprotected SFL= Factor of safety of installed liner=Taup/Taua S75 Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress 575 Unvegetated 0.033 0.37 ft 0.55 ft2 3.07 ft 0.18 ft 3.08 ft/s 1.28 1.05 lbs/ft2 1.52(SFP) Underlying 0.033 0.37 ft 0.55 ft2 3.07 ft 0.18 ft 3.08 ft/s 1.28 0.51 lbs/ft2 3.42(SFL) Substrate Unreinforced Vegetation Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress Unreinforced 0.057 0.46 ft 0.83 ft2 3.76 ft 0.22 ft 2.05 ft/s 0.77 1.29 lbs/ft2 3.09(SFL) Vegetation Underlying 0.057 0.46 ft 0.83 ft2 3.76 ft 0.22 ft 2.05 ft/s 0.77 0.63 lbs/ft2 6.39(SFL) Substrate S75BN Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress S75BN 0.033 0.37 ft 0.55 ft2 3.07 ft 0.18 ft 3.08 ft/s 1.28 1.05 lbs/ft2 1.52(SFP) Unvegetated Underlying 0.033 0.37 ft 0.55 ft2 3.07 ft 0.18 ft 3.08 ft/s 1.28 0.51 lbs/ft2 3.42(SFL) Substrate https://ecmds.com/project/158279/channel-analysis/253247/calculations 2/3 2/16/24,9:30 AM ECMDS 7.0 DS75 Predicted flow Cross sectional Wetted Hydraulic Flow velocity Froude Calculated Shear Phase Mannings N SFP/SFL depth(D) area(A) perimeter(P) radius(R) (V) number(FR) Stress DS75 0.033 0.37 ft 0.55 ft2 3.07 ft 0.18 ft 3.08 ft/s 1.28 1.05 lbs/ft2 1.52(SFP) Unvegetated Underlying 0.033 0.37 ft 0.55 ft2 3.07 ft 0.18 ft 3.08 ft/s 1.28 0.51 lbs/ft2 3.42(SFL) Substrate https://ecmds.com/project/158279/channel-analysis/253247/calculations 3/3 EROSION CONTROL AND STORMWATER CALCULATIONS HIDDEN ESTATES SECTION 2 RIP RAP OUTLET PROTECTION 29589.0000 ITI THOMAS Sc HUTTON Rip Rap Apron Design Project Name: 29589.0000 -Hidden Estates Outfall 2 Drainage Specialist: KSC Date: February 8, 2024 Checked By: NW Date: February 8, 2024 Step 1. Determine the tailwater depth from the channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter,it is classifies as minimum tailwater conditions. If the tailwater is greater than half the pipe diameter,it is classified as maximum tailwater conditions. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Rational Method for Flow Total Drainage Area(Acres): 0.8 Outlet pipe diameter,Do(in.) 18 Tailwater depth(Feet) 0.5 Tailwater Method To Be Used Min TW(Fig.8.06a) Discharge(cfs) 4.0 Velocity(ft./s) 2.3 Step 2. Based on the tailwater conditions determined in Step 1,enter Figure 8.06a or Figure 8.06b and determine the d50 rip rap size and minimum apron length(La). The d50 size is the median stone size in a well-graded rip rap apron. Step 3. Determine the apron width at the pipe outlet,the apron shape, and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Riprap d50, (ft.) 0.3 Minimum apron length, La(ft.) ** 10 Apron width at pipe outlet(ft.) 5 Apron shape W=Do+La Apron width at outlet end(ft.) 12 **-Minimum Apron Length Is 10 Feet per CLDS 20.23 Step 4. Determine the maximum Stone Diameter. D,,,aX= 1.5 X d50 Determine the Apron Thickness,Ta= 1.5 X dmax Minimum TW Maximum TW Max Stone Diameter, dmax (Inches): I 5 Apron Thickness(Inches): 10 gimmmilM1, **-Minimum Apron Thickness Is 10 Inches per CLDS 20.23 Step 5. Fit the rip rap apron to the site by making it level for the minimum length La. Extend the apron farther downstream and along the channel banks until stability is assured. Keep apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of the rip rap where protection of the channel side slopes is necessary. Where overfalls exist at pipe outlets or flows are excessive,a plunge pool should be considered. Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) 3Io 3 Outlet W = Go + La 9`I • -- -..:i... ----.:... .__: _._' diameter (Do) : •::: :: •y�. �a _� 80 t. .. �.I!''i� if T,�ilwater 0. 5Ro ' I j _ - ,-� : ' , .AO . . J • till ` r rut, II NII :: <.% .,2, e r , „co. . ..1 .: • ...: ..., . . 1 g ,_ . , I IIIII- • ''*. . 41:-.- .,„0\tx- , 60. .:,.. ., . , , . . , _ , . . • ,• IF rat' 1 . * . .-.4 ,• i ki\(‘\ s s• I .:. :: : - : . , .. .,:: ' s - .40.0 a ,, , - - - :::: :::! .... ql H. : _' �I '` In. �f4,i,j • • 1 IIn ,--J_,� q ;t If ;i:i01111.a • • I a • • {{�I11�11 1 s r 31 1 i ill , I., ,, 1 :�''•�,I , "PROF 1 IIIN11111111111 r0...: ..,! 1f-" n i . �i ' :: ,, s . , 11I1 ',. illl t1 III v ��r v. mummy NI,i - o _ I I _ , '. 3 1,- ' ' :' ' : ' :,_I I niso.!«,:iii0°IMP • 4,airtieL117,A44:41 ___, “i- I 'N1;111°;° '13 *1 MM. WINnllllll ■ I1IIIAl1� M1� I O niTOriii. Ni IM 1 as■1111I I .�, ,. ._t1 IRI �.-, I � !� dl2 YnMI m NIMI 11 j '' e j =�i�i ! 1, t1Nell 11�111 II NII 1l l�1 � ■ ' ' •11♦1 T I* . _.. . 1 lit-411 ! t b pIII1Mr•:'! 9' .a:-. (1 m e N«1X1i I :�ILI ...■IN ' in., ; ' :: , , 1+ 00- .,fib, .00k , 7 ifr'_w, ::: :--- IN co co i .■... NII J 'V 'Mr'' b jormair . .41 1 L .: ..::::tt till v _ 15 s �. ,Ili/ II�I ( 1 tt ; 1 v . 10 :4 _,..iiiorr- airial v = _ r.J ' 1 i 0 3 5 10 20 5'i 100 200 500 1000 Discharge (ft3tsec) Curves may not be extrapolated. Figure 8.06a Dosign of outlet protection protection from a round pipe flowing full, minimum tailwater condition (to<0.5 diameter) Rev. 12'93 8.06.3 Rip Rap Apron Design Project Name: 29589.0000 -Hidden Estates Outfall 5 Drainage Specialist: KSC Date: February 8, 2024 Checked By: NW Date: February 8, 2024 Step 1. Determine the tailwater depth from the channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter,it is classifies as minimum tailwater conditions. If the tailwater is greater than half the pipe diameter,it is classified as maximum tailwater conditions. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Rational Method for Flow Total Drainage Area(Acres): 0.9 Outlet pipe diameter,Do(in.) 15 Tailwater depth(Feet) 0.5 Tailwater Method To Be Used Min TW(Fig.8.06a) Discharge(cfs) 4.5 Velocity(ft./s) 3.7 Step 2. Based on the tailwater conditions determined in Step 1,enter Figure 8.06a or Figure 8.06b and determine the d50 rip rap size and minimum apron length(La). The d50 size is the median stone size in a well-graded rip rap apron. Step 3. Determine the apron width at the pipe outlet,the apron shape, and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Riprap d50, (ft.) 0.3 Minimum apron length, La(ft.) ** 10 Apron width at pipe outlet(ft.) 4 Apron shape W=Do+La Apron width at outlet end(ft.) 11 **-Minimum Apron Length Is 10 Feet per CLDS 20.23 Step 4. Determine the maximum Stone Diameter. D,,,aX= 1.5 X d50 Determine the Apron Thickness,Ta= 1.5 X dmax Minimum TW Maximum TW Max Stone Diameter, dmax (Inches): I 5 Apron Thickness(Inches): 10 gimmmilM1, **-Minimum Apron Thickness Is 10 Inches per CLDS 20.23 Step 5. Fit the rip rap apron to the site by making it level for the minimum length La. Extend the apron farther downstream and along the channel banks until stability is assured. Keep apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of the rip rap where protection of the channel side slopes is necessary. Where overfalls exist at pipe outlets or flows are excessive,a plunge pool should be considered. Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) 310 3 Outlet W = Go + La 9`I -- -..:i:...:----. ... .__: _._' pipe 4. diameter (Do) 1 : .::: - ::1, , ./. La —� 80 t. �,Ir�l .h r,�r T, ater 0. 500 j _ ,- •� . . 1 IIII ` r , ai Mill 11NIli ro._.,, i trO 50 , . PIlly' 1 4. .. .. i _ I . .. :i i 41,, 0/ 7 . b „ ...t -.I N•I\(‘' , ,, I .! :: • .. . , .:',.,:. . , - • A d . t), " -- - .. :::: :::: :::. qt : _' , jI ! LiHh In. 1f81,.. 1 • hth'F' II4 r 31 - ' ' i , ., ,, ,i'';;� �, •�hluJlfldn ,,, di iiNi 11111111111111 11 0#:11 _ : . .,1!41, -,. ::. 7t- 4 I I Mill..11 , : :!. 1 111101 Mil litajr, 3 4 2 i -. opipaposi ., _ , 11 - ... .. v♦ 4 4114-4191. 41 . .d.41. "4 .6111 . , . .. . -1-: i i'`i --.;'11 01001441 4'..,.' Z.;"''' . _ _____ . , ' AifilaT 'art , 0r-el , „,N • • • • c ol• b -- t -; '" 1L�� � .• �, oi� ! ilmiiri ,11 P..4 .1.1Pri'l -illriglagirlA ..i opi , � a._ i�1 CE • ....ti cz. ,. , •., ••• 1 •• • .... •__, _,,. t_ ; _ v ... 253 - _ 2, _ re- '7 III ill 1 1 _,.,I.,r_ '" "" 1 14)) 41 . . ,�j d .11 al. 1 ...1 r ' oip am , id ' .adigi III 3 5 10 20 5:1 100 200 500 1000 Discharge (fit3tsec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full, minimum tailwater condition (To<0.5 diameter) Rev. 1:'93 8.06.3 EROSION CONTROL AND STORMWATER CALCULATIONS HIDDEN ESTATES SECTION 3 HEC-22 STORMWATER ANALYSIS 29589.0000 ITI THOMAS Sc HUTTON 25-YR CAPACITY HEC-22 Storm Drain Computations Structure ID Length Drainage Runoff Tc Rain"I" Runoff Known Q Total Q Pipe Full Q Velocity Velocity Invert Elevation Slope (ft) Area Coeff"C" (min) (in/hr) "Q" (cfs) (cfs) Dia. (cfs) Full Design From To (ac) (cfs) (in) (ft/s) (ft/s) U/S D/S 6 2 90 0.35 0.50 5 8.35 7.3 7.3 18 7.4 4.21 4.79 665.20 664.75 0.50% 1 6 15 1.38 0.50 5 8.35 5.8 5.8 18 37.0 20.96 15.25 667.00 665.20 12.41% 4 5 34_ 0.07 0.50 5 8.30 3.8 3.8 15 12.8 10.46 9.09 658.33 657.00 3.94% 3 4 67 0.84 0.50 5 8.35 3.5 3.5 15 9.7 7.88 7.25 659.83 658.33 2.24% Ili THOMAS& HUTTON T:\AutoCADlReports\HEC-221HEC-22Reporting HEC-22 Energy Grade Line Computations Struct. Q EGLo HGLo Total Pipe EGLi HGLi Ea EGLa Surface Elev. ID (cfs) (ft) (ft) Loss (ft) (ft) (ft) (ft) (ft) (ft) 2 1 664.75 664.75 666.46 6 7.3 666.31 665.95 _ 0.45 666.76 666.40 1.8 667.02 670.32 1 5.8 667.09 666.92 671.01 667.40 4.0 671.01 668.71 5 _ 657.00 657.00 658.44 4 3.8 658.75 657.46 660.08 658.79 1.8 660.08 665.50 3 3.5 660.13 660.00 661.17 660.35 1.3 661.17 667.32 T'THOMAS& HUTTON T.•\AutoCAD\Reports\HEC-221HEC-22Reporting 4 IN/HR INLET SPREAD H EC-22 Inlet Capacity Results Structure Q=CIA/Kc Known Longitudinal Cross Cross Prey. Total Depth Gutter Spread Inlet Type Grate Grate Curb Curb Intercept Bypass Bypass Remark (cfs) Q Slope Slope Slope Bypass Gutter d Width T Length Width Opening Opening Flow Flow Structure (cfs) SL Sx Sw Flow Flow (ft) (ft) (ft) (in) (in) Length Height Qi Qb (ft/ft) (ft/ft) (ft/ft) (cfs) (cfs) (in) (in) (cfs) (cfs) 6 1.5 0.08 0.10 1.5 0.1 2.0 3.0 Grate inlet 23.8 23.8 1.3 0.2 3 3.5 0.04 0.04 3.5 0.2 2.0 5.8 Grate inlet 23.8 23.8 2.1 14H 4 0.3 0.161 0.09 1.4 1.7 0.1 2.0 2.9 Grate inlet 23.8 23.8 1.4 0.31 TH THOMAS& HUTTON T:\AutoCAD\Reports\HEC-221HEC-22Reporting