Loading...
HomeMy WebLinkAboutNC0028037_Fact Sheet_20240723FACT SHEET FOR PERMIT RENEWAL City of Lexington NCO028037 - Lexington WTPs #1 & #2 Division of Water Resources (DWR) - Basic Information for Permit Renewal Permit Writer / Date: Joe R. Corporon, P.G. / 23Jul2024 Permittee / Permit Number: City of Lexington / NCO028037 Facility Name / System WPCS Class: Lexington WTP #1 & #2 / Class PC-1 Mailing Address: 28West Center Street Lexin on 27292 Facility Address: 2979 Old Greensboro Street Extension, Lexington, Davidson County Facility Contacts: Tom Johnson, Water Resources Director [tdjohnson@lexingtonnc.gov] ORC: R.S. Walser rswalser lexin onnc. ov Basin Name / Subbasin Number: Yadkin Pee -Dee / 03-07-07 Receiving Stream / Hydrological Unit HUC: Abbotts Creek / 030401020306 Stream Classification / Stream Segment: WS-III• CA / 12-119- 4.5 Daily Maximum NH3 limits Needed? N/A to this effluent Does permit need TRC limits/language? Already resent Does Permittee perform WET Testing? Yes — Chronic [IWC = 52% Does permit have Special Conditions? Yes — High Rock Lake reo ever Does permit have instream monitoring? Yes Hardness — Effluent & U stream Is the stream impaired on 303 d list)? No not at the point of discharge) Any obvious compliance concerns? None Any permit mods since lastpermit? None Expiration dates - Previous / New 30A r2024 / 30A r2029 Comments on Draft Permit? Yes (See Section 7 below) Facility Overview -- The City of Lexington WTPs #1 and #2 (Lexington or the Permittee) operates two (2) Conventional WTPs [flocculation, sedimentation, disinfection, filtration], and they combine their effluent into one (1) discharge. Lexington confirmed the use of 10 media filters and 8 drying beds (see previous Fact Sheet). The system produces at a design flowrate for potable water is 9.3 MGD [currently averaging 3.2 MGD] and their wastewater discharges intermittently [one day/ week] at a flow rate averaging 0.193 MGD. For renewal, the Permittee reported a maximum monthly average flow of 1.994 MGD (database Jan2021 thru Apr2024). DWR used this figure for reasonable potential analyses (RPAs) and to calculate an instream waste concentration (IWC) of 52%. Treatment Operation Details -- Lexington draws raw water from downstream of Thom-A-Lex Reservoir. Raw water is chlorinated, fluorinated, and treated with zinc oxide (corrosion inhibitor), then recycled intermittently to backwash and rinse filter beds. The resulting wastewater (sedimentation and backwash) is combined and flows to a splitter box where flow is directed toward two settling lagoons and drying pads to generate solids. A sand and gravel filter system underlies each storage pad with its effluent directed to a v-notch weir to measure flow. The Permittee removes solids from drying beds and transports them offsite, as needed, to Davidson County Landfill [permit #29-061 for disposal. To dewater, or to maintain a safe operating levels in the lagoons, Lexington uses a gravity decant system (telescoping siphon) to intermittently extract wastewater and discharge it to the sanitary Page 1 of 7 sewer. Sludge accumulating in the settling lagoons is transferred by a pump to the drying beds. If needed, the Permittee may add polymer to a lagoon to accelerate sludge thickening. A combined wasteflow (lagoons and drying beds) is dechlorinated (liquid calcium thiosulfate), before passing through an effluent flow meter to Outfall 001. Receiving Stream — Abbotts Creek is currently classified WS-III; CA [stream segment 12-119- (4.5)]. Abbotts Creek is not impaired for turbidity, therefore Turbidity monitoring is discontinued for renewal, per current Permitting Guidance. Stream Impairment does exist downstream for Chlorophyll -a but does not exist at the point of discharge. Compliance History — [May 2021 to June 2024] • One (1) NOD for late / missing DMR, Apr2022 • Twelve (12) TRC violations (no action BPJ), all reported below 50 ug/L. • One (1) TSS violation - Monthly Average exceeded by 5% (no action BPJ). • Twelve (12) Quarterly WET Tests— All Pass [May 2021 to June 2024]. Reasonable Potential Analyses (RPAs) — RPAs were calculated using a reported maximum monthly average flow of 1.994 MGD (database Jan2021 through Apr2024). Results: • Copper — RP = Yes for both acute and chronic; applied limits and monitoring 2/Month. New limits [21.9 mg/L MA / 28.6 mg/L DM] were compared to the previous Total Copper database to evaluate future compliance. Only two (2) samples in 41 exceed these limits in a database with considerable variability (see DMR reports and RPA). • Zinc - RP = no; [max predictable < 50% allowable]; monitoring discontinued. Changes / Updates to Previous Permit • Total Zinc — RP = no; [max predictable < 50% allowable]; monitoring discontinued. • Total Copper — updated limits from previous 41.45 MA / 47.85 DM to 21.9 MA / 28.6 DM, monitoring updated from Monthly to 2/Month. [NCAC 2B .0505] • Turbidi — discontinued; receiving stream not impaired for Turbidity. • updated Schedule of Compliance for Total Copper limits [see permit section A. (4.)] • undated footnote for Upstream Total Hardness monitoring [see A. (1.), #5 • undated eDMR footnote [see A. (L), footnote #1 and language in Special Condition in A. (5.) • updated Facility Location Map Page 2 of 7 Eligibility for General Permit NCG590000: • Lexington uses conventional treatment technology; therefore, they are eligible. • Lexington has passed last 12 WET tests therefore by TOX standards, they are eligible. • Renewal adds limits for Total Copper therefore they are not eligible. • Conclusion: Lexington WTP is not eligible for the NCG59. PROPOSED SCHEDULE FOR PERMIT ISSUANCE Draft Permit to Public Notice: Submitted for final signature [estimated]: Permit Issue [estimated]: Effective Date [estimated]: NPDES DIVISION CONTACT July 24, 2024 August 16, 2024 August 30, 2024 October 1, 2024 If you have questions about any of the above information, or about the attached permit, please email Joe R. Corporon, P.G. Doe.corporongdeq.nc.gov]. NAME 23JUL2024 NPDES Implementation of Instream Dissolved Metals Standards — Freshwater Standards The NC 2007-2015 Water Quality Standard (WQS) Triennial Review was approved by the NC Environmental Management Commission (EMC) on November 13, 2014. The US EPA subsequently approved the WQS revisions on April 6, 2016, with some exceptions. Therefore, metal limits in draft permits out to public notice after April 6, 2016 must be calculated to protect the new standards - as approved. Page 3 of 7 Table 1. NC Dissolved Metals Water Quality Standards/Aquatic Life Protection Parameter Acute FW, µg/l (Dissolved) Chronic FW, µg/1 (Dissolved) Acute SW, µg/1 (Dissolved) Chronic SW, µg/l (Dissolved) Arsenic 340 150 69 36 Beryllium 65 6.5 --- -- Cadmium Calculation Calculation 40 8.8 Chromium III Calculation Calculation --- -- Chromium VI 16 11 1100 50 Copper Calculation Calculation 4.8 3.1 Lead Calculation Calculation 210 8.1 Nickel Calculation Calculation 74 8.2 Silver Calculation 0.06 1.9 0.1 Zinc Calculation Calculation 90 81 Table 1 Notes: 1. FW= Freshwater, SW= Saltwater 2. Calculation = Hardness dependent standard 3. Only the aquatic life standards listed above are expressed in dissolved form. Aquatic life standards for Mercury and selenium are still expressed as Total Recoverable Metals due to bioaccumulative concerns (as are all human health standards for all metals). It is still necessary to evaluate total recoverable aquatic life and human health standards listed in 15A NCAC 213.0200 (e.g., arsenic at 10 µg/l for human health protection; cyanide at 5 µg/L and fluoride at 1.8 mg/L for aquatic life protection). Table 2. Dissolved Freshwater Standards for Hardness -Dependent Metals The Water Effects Ratio (WER) is equal to one unless determined otherwise under 15A NCAC 02B .0211 Subparagraph (11)(d) Metal NC Dissolved Standard, 1 Cadmium, Acute WER*{1.136672-[ln hardness](0.041838)) • e^{0.9151 [In hardness]-3.1485) Cadmium, Acute Trout waters WER*(1.136672-[ln hardness](0.041838)) eA(0.9151[in hardness]-3.6236) Cadmium, Chronic WER* { 1.101672-[/n hardness](0.041838)) e^ (0.7998[in hardness]-4.4451) Chromium III, Acute WER*0.316 • e^ {0.8190[ln hardness]+3.72561 Chromium III, Chronic WER*0.860 • e^{0.8190[ln hardness]+0.6848) Copper, Acute WER*0.960 - e^{0.9422[ln hardness]-1.700) Copper, Chronic WER*0.960 - eA(0.8545[in hardness]-1.7021 Lead, Acute WER*{1.46203-[ln hardness](0.145712)) - e^{1.273[in hardness]-1.460) Lead, Chronic WER*{1.46203-[ln hardness](0.145712)) • eA(l.273[ln hardness]4.705) Nickel, Acute WER*0.998 • eA(0.8460[in hardness]+2.255) Nickel, Chronic WER*0.997 • eA10.8460[In hardness]+0.0584) Silver, Acute WER*0.85 - e^{1.72[ln hardness]-6.59) Silver, Chronic Not applicable Zinc, Acute WER*0.978 • eA(0.8473[ln hardness]+0.884) Zinc, Chronic WER*0.986 - eA(0.8473[ln hardness]+0.884) Page 4 of 7 General Information on the Reasonable Potential Analvsis (RPA The RPA process itself did not change as the result of the new metals standards. However, application of the dissolved and hardness -dependent standards requires additional consideration in order to establish the numeric standard for each metal of concern of each individual discharge. The hardness -based standards require some knowledge of the effluent and instream (upstream) hardness and so must be calculated case -by -case for each discharge. Metals limits must be expressed as `total recoverable' metals in accordance with 40 CFR 122.45(c). The discharge -specific standards must be converted to the equivalent total values for use in the RPA calculations. We will generally rely on default translator values developed for each metal (more on that below), but it is also possible to consider case -specific translators developed in accordance with established methodology. RPA Permittine Guidance/WOBELs for Hardness -Dependent Metals - Freshwater The RPA is designed to predict the maximum likely effluent concentrations for each metal of concern, based on recent effluent data, and calculate the allowable effluent concentrations, based on applicable standards and the critical low -flow values for the receiving stream. If the maximum predicted value is greater than the maximum allowed value (chronic or acute), the discharge has reasonable potential to exceed the standard, which warrants a permit limit in most cases. If monitoring for a particular pollutant indicates that the pollutant is not present (i.e. consistently below detection level), then the Division may remove the monitoring requirement in the reissued permit. 1. To perform a RPA on the Freshwater hardness -dependent metals the Permit Writer compiles the following information: • Critical low flow of the receiving stream, 7Q10 (the spreadsheet automatically calculates the 1 Q 10 using the formula 1 Q 10 = 0.843 (s7Q 10, cfs) 0.993 • Effluent hardness and upstream hardness, site -specific data is preferred • Permitted flow • Receiving stream classification 2. In order to establish the numeric standard for each hardness -dependent metal of concern and for each individual discharge, the Permit Writer must first determine what effluent and instream (upstream) hardness values to use in the equations. The permit writer reviews DMR's, Effluent Pollutant Scans, and Toxicity Test results for any hardness data and contacts the Permittee to see if any additional data is available for instream hardness values, upstream of the discharge. If no hardness data is available, the permit writer may choose to do an initial evaluation using a default hardness of 25 mg/L (CaCO3 or (Ca + Mg)). Minimum and maximum limits on the hardness value used for water quality calculations are 25 mg/L and 400 mg/L, respectively. If the use of a default hardness value results in a hardness -dependent metal showing reasonable potential, the permit writer contacts the Permittee and requests 5 site -specific Page 5 of 7 effluent and upstream hardness samples over a period of one week. The RPA is rerun using the new data. The overall hardness value used in the water quality calculations is calculated as follows: Combined Hardness (chronic) _ (Permitted Flow, cfs *Avg. Effluent Hardness, mg/L) x (s7Q10, cfs *Avg. Upstream Hardness, mgL) (Permitted Flow, cfs + s7Q10, cfs) The Combined Hardness for acute is the same but the calculation uses the 1 Q 10 flow. 3. The permit writer converts the numeric standard for each metal of concern to a total recoverable metal, using the EPA Default Partition Coefficients (DPCs) or site -specific translators, if any have been developed using federally approved methodology. EPA default partition coefficients or the "Fraction Dissolved" converts the value for dissolved metal at laboratory conditions to total recoverable metal at in -stream ambient conditions. This factor is calculated using the linear partition coefficients found in The Metals Translator: Guidance for Calculating a Total Recoverable Permit Limit from a Dissolved Criterion (EPA 823-B-96-007, June 1996) and the equation: Cd;ss = 1 Ctotal I + { [Kpo] [ss(]+a)] [10-6] } Where: ss = in -stream suspended solids concentration [mg/1], minimum of 10 mg/L used, and Kpo and a = constants that express the equilibrium relationship between dissolved and adsorbed forms of metals. A list of constants used for each hardness -dependent metal can also be found in the RPA program under a 4. The numeric standard for each metal of concern is divided by the default partition coefficient (or site -specific translator) to obtain a Total Recoverable Metal at ambient conditions. In some cases, where an EPA default partition coefficient translator does not exist (ie. silver), the dissolved numeric standard for each metal of concern is divided by the EPA conversion factor to obtain a Total Recoverable Metal at ambient conditions. This method presumes that the metal is dissolved to the same extent as it was during EPA's criteria development for metals. For more information on conversion factors see the June, 1996 EPA Translator Guidance Document. 5. The RPA spreadsheet uses a mass balance equation to determine the total allowable concentration (permit limits) for each pollutant using the following equation: Ca = (s7O10 + Ow) (Cwgs) — WOW) (Cb) Qw Where: Ca = allowable effluent concentration (µg/L or mg/L) Cwqs = NC Water Quality Standard or federal criteria (µg/L or mg/L) Cb = background concentration: assume zero for all toxicants except NH3* (µg/L or mg/L) Page 6 of 7 Qw = permitted effluent flow (cfs, match s7Q 10) s7Q 10 = summer low flow used to protect aquatic life from chronic toxicity and human health through the consumption of water, fish, and shellfish from noncarcinogens (cfs) * Discussions are on -going with EPA on how best to address background concentrations Flows other than s7Q10 may be incorporated as applicable: IQ 10 = used in the equation to protect aquatic life from acute toxicity QA = used in the equation to protect human health through the consumption of water, fish, and shellfish from carcinogens 30Q2 = used in the equation to protect aesthetic quality 6. The permit writer enters the most recent 2-3 years of effluent data for each pollutant of concern. Data entered must have been taken within four and one-half years prior to the date of the permit application (40 CFR 122.21). The RPA spreadsheet estimates the 95th percentile upper concentration of each pollutant. The Predicted Max concentrations are compared to the Total allowable concentrations to determine if a permit limit is necessary. If the predicted max exceeds the acute or chronic Total allowable concentrations, the discharge is considered to show reasonable potential to violate the water quality standard, and a permit limit (Total allowable concentration) is included in the permit in accordance with the U.S. EPA Technical Support Document for Water Quality -Based Toxics Control published in 1991. 7. When appropriate, permit writers develop facility specific compliance schedules in accordance with the EPA Headquarters Memo dated May 10, 2007 from James Hanlon to Alexis Strauss on 40 CFR 122.47 Compliance Schedule Requirements. 8. The Total Chromium NC WQS was removed and replaced with trivalent chromium and hexavalent chromium Water Quality Standards. As a cost savings measure, total chromium data results may be used as a conservative surrogate in cases where there are no analytical results based on chromium III or VI. In these cases, the projected maximum concentration (95th %) for total chromium will be compared against water quality standards for chromium III and chromium VI. 9. Effluent hardness sampling and instream hardness sampling, upstream of the discharge, are inserted into all permits with facilities monitoring for hardness -dependent metals to ensure the accuracy of the permit limits and to build a more robust hardness dataset. 10. Hardness and flow values used in the Reasonable Potential Analysis for this permit included: Parameter Value Comments(Data Source Average Effluent Hardness (mg/L) 25 mg/L Default value used (no Total as, CaCO3 or Ca+M monitoring data available Average Upstream Hardness (mg/L) 25 mg/L Default value used (no Total as, CaCO3 or Ca+M monitoring data available 7 10 summer cfs 2.90 BIMS 1 10 cfs 2.43 RPA Maximum Monthly Average Permitted Flow (MGD) 1.994 (previous 36 months at time of renewal Page 7 of 7