Loading...
HomeMy WebLinkAbout310078_Application_20240328 State of North Carolina Department of Environmental Quality Division of Water Resources Animal Waste Management Systems Request for Certification of Coverage Facility Currently covered by an Expiring Sate Non-Discharge General Permit On September 30, 2024,the North Carolina State Non-Discharge General Permits for Animal Waste Management Systems will expire. As required by these permits, facilities that have been issued Certificates of Coverage to operate under these State Non-Discharge General Permits must apply for renewal at least 180 days prior to their expiration date. Therefore,all applications must be received by the Division of Water Resources by no later than April 3,2024. Please do not leave any question unanswered. Please verify all information and make any necessary corrections below. Application must be signed and dated by the Permittee. 1. Certificate Of Coverage Number: AWS310078 2. Facility Name: S.Grades 3. Permittee's Name(same as on the Waste Management Plan): S Gradv Farms LLC 4. Permittee's Mailing Address: 13 dQ� nA ,s c4s ®r City: State: NC ( Gun Zip: 28365 Telephone Number: 9 Ext. E-mail: stevegradvfarmsaa,hotmail.com 5. Facility's Physical Address: 628 Alum Springs Rd City: Mount Olive State: NC Zip: 28365 6. County where Facility is located: Du lin 7. Farm Manager's Name(if different from Landowner): 8. Farm Manager's telephone number(include area code): 9. Integrator's Name(if there is not an Integrator,write"None"): Murphy-Brown LLC 10. Operator Name(OIC): .Gradv Phone No.: 94P-6*8--7 / OIC#: 11. Lessee's Name(if there is not a Lessee,write"None"): 2 3q 12. Indicate animal operation type and number: t� Current Permit: Operations Type Allowable Count Swine-Feeder to Finish 9,792 Operation Types: Swine Cattle Dry Poultry Other Types Wean to Finish Dairy Calf Non Laying Chickens Horses-Horses Wean to Feeder Dairy Heifer Laying Chickens Horses-Other Farrow to Finish Milk Cow Pullets Sheep-Sheep Feeder to Finish Dry Cow Turkeys Sheep-Other Farrow to Wean Beef Stocker Calf Turkey Pullet Farrow to Feeder Beef Feeder Boar/Stud Beef Broad Cow Wet Poultry Gilts Other Non Laying Pullet Other Layers 13. Waste Treatment Lagoons,Digesters and Waste Storage Ponds(WSP):(Fill/Verify the following information. Make all necessary corrections and provide missing data.) Structure Type Estimated Liner Type Estimated Design Freeboard Structure (Lagoon/Digester/ Date (Clay,Synthetic, Capacity Surface Area 'Redline" Name WSP) Built Unknown) (Cubic Feet) (Square Feet) (Inches) B-1 Lagoon 1/1/1987 Full,clay 575,193.00 70,000.00 19.50 TM Lagoon 1/1/1987 Full,clay 331,632.00 60,000.00 19.50 Submit one (1) copy of the Certified Animal Waste Management Plan (CAWMP) with this completed and signed application as required by NC General Statutes 143-215.10C(d), either by mailing to the address below or sending it via email to the email address below. The CAWMP must include the following components: 1. The most recent Waste Utilization Plan(WUP),signed by the owner and a certified technical specialist,containing: a. The method by which waste is applied to the disposal fields(e.g.irrigation,injection,etc.) b. A map of every field used for land application(for example: irrigation map) c. The soil series present on every land application field d. The crops grown on every land application field e. The Realistic Yield Expectation(RYE)for every crop shown in the WUP f. The maximum PAN to be applied to every land application field g. The waste application windows for every crop utilized in the WUP h. The required NRCS Standard specifications 2.A site map/schematic 3.Emergency Action Plan 4.Insect Control Checklist with chosen best management practices noted 5. Odor Control Checklist with chosen best management practices noted 6.Mortality Control Checklist with selected method noted-Use the enclosed updated Mortality Control Checklist 7.Lagoon/storage pond capacity documentation(design,calculations,etc.) Please be sure the above table is accurate and complete. Also provide any site evaluations,wetland determinations,or hazard classifications that may be applicable to your facility. 8. Operation and Maintenance Plan If your CAWMP includes any components not shown on this list, please include the additional components with your submittal. (e.g.composting,digesters,solids separators,sludge drying system,waste transfers,etc.) I attest that this application has been reviewed by me and is accurate and complete to the best of my knowledge. I understand that, if all required parts of this application are not completed and that if all required supporting information and attachments are not included,this application package will be returned to me as incomplete. Ndte:� In accordance with NC General Statutes 143-215.6A and 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any application may be subject to civil penalties up to $25,000 per violation. (18 U.S.C. Section 1001 provides a punishment by a fine of not more than$10,000 or imprisonment of not more than 5 years,or both for a similar offense.) Print the Name of the Permittee/Landowner/Signing Official and Sign below.(If multiple Landowners exist,all landowners should sign. If Landowner is a corporation,signature should be by a principal executive officer of the corporation): Name(Print):� 6 ( S —Ap�`�',j pt� jSignature: Date: Name(Print): Title: Signature: Date: Name(Print): Title: Signature: Date: THE COMPLETED APPLICATION SHOULD BE SENT TO THE FOLLOWING ADDRESS: E-mail: animal.operations@deq.nc.gov NCDEQ-DWR Animal Feeding Operations Program 1636 Mail Service Center Raleigh,North Carolina 27699-1636 1 Murphy-Brown, LLC 9/23/2016 2822 Hwy 24 West P.O. Box 856 Warsaw, NC 28398 NUTRIENT UTILIZATION PLAN Grower(s); Farm Name: Steve Grady Coun : S Grady 1&2 Facility 31-78 Permit Capacit : Duplin Farrow to Wean Farrow to Feeder Farrow to Finish Wean to Feeder Wean to Finish Feeder to Finish Gilts 9792 Boars Storage Structure: Storage Period: Anaerobic Lagoon Application Method: '180 days Irrigation The waste from your animal facility must be land applied at a specified rate to prevent pollution Of surface water and/or groundwater. The plant nutrients in the animal waste should be used to reduce the amount of commercial fertilizer required for the crops in the fields where the waste is to be applied. This waste utilization plan uses nitrogen as the limiting nutrient. Waste should be analyzed before each application cycle. Annual soil tests are strongly encouraged so that all plant �-' nutrients can be balanced for realistic yields of the crop to be grown. Several factors are important in implementing your waste utilization plan in order to maximize the fertilizer value of the waste and to ensure that it is applied in an environmentally safe manner: 1. Always apply waste based on the needs of the crop to be grown and the nutrient content of the waste. Do not apply more nitrogen than the crop can utilize. 2. Soil types are important as they have different infiltration rates, leachin cation exchange capacities, and available water holding capacities. g potentials, 3. Normally waste shall be applied to land eroding at less than 5 tons per acre per year. Waste may be applied to land eroding at 5 or more tons per acre annually, but less than 10 tons per acre per year providing that adequate filter strips are established. Either of these conditions may result in runoff to surface w4. Do not apply waste on saturated soils, when it is raining, or when the surface is frozen. aters which is not allowed under DWR regulations. 5. Wind conditions should also be considered to avoid drift and downwind odor problems. 6. To maximize the value of the nutrients for crop production and to reduce the potential for pollution, the waste should be applied to a growing crop or applied not more than 30 days prior to planting a crop or forages breaking dormancy. Injecting the waste or -�, disking will conserve nutrients and reduce odor problems. 1 of 11 This plan is based on the waste application method shown above. If you choose to change methods in the future,you need to revise this plan. Nutrient levels for different application methods are not the same. The estimated acres needed to apply the animal waste is based on typical nutrient content for this type of facility. In some cases you may want to have plant analysis made,which could allow additional waste to be applied. Provisions shall be made for the area receiving waste to be flexible so as to accommodate changing waste analysis content and crop type. Lime must be applied to maintain pH in the optimum range for specific crop production. This waste utilization plan, if carried out,meets the requirements for compliance with 15A NCAC 2H.0217 adopted by the Environmental Management Commission. AMOUNT OF WASTE PRODUCED PER YEAR (gallons,ft3,tons,etc.): Ca aci T e Waste Produced er Animal Farrow to Wean Total 3 Farrow to Feeder gal/yr gal/yr Farrow to Finish 3861 61 gaUyr 10 gal/yr 191 Wean to Feeder gaUyr gal/yr Wean to Finish 91 gal/yr gal/yr 9792 Feeder to Finish 776 gaUyr gal/yr Gilts 927 gaUyr 9,077,184 gal/yr Boars 1015 gaUyr gal/yr 2959 aUyr al r Total 9,077,184 llyr AMOUNT OF PLANT AVAILABLE NITROGEN PRODUCED PER YEAR (Ibs): Ca aci T e Nitr en Produced r Animal Farrow to Wean Total 3. Farrow to Feeder 95 Ibs/yr Ibs/yr 1 Farrow to Finish 8.86 Ibs/yr Ibs/yr Ibs/yr 0 4 Wean to Feeder . Ibs/yr 1 Wean to Finish . Ibs/yr Ibs/yr 9792 Feeder to Finish 4 Ibs/yr Ibs/yr Gilts 1.67lbs/yr 16,353 Ibs/yr Boars 1.83 Ibs/yr Ibs/yr 5.33 Ibs/yr lb styr Total 16,353 Ibs r Applying the above amount of waste is a big job. You should plan time and have appropriate equipment to apply the waste in a timely manner. LAND UTILIZATION SUMMARY The following table describes the nutrient balance and land utilization rate for this facility Note that the Nitrogen Balance for Crops indicates the ratio of the amount of nitrogen produced on this facility to the amount of nitrogen that the crops under irrigation may uptake and utilize in the normal growing season. Total Irrigated Acreage: 75.82 Total N Required 1st Year: 18515.11 Total N Required 2nd Year: 0.00 Average Annual Nitrogen Requirement of Crops: 18,615.11 Total Nitrogen Produced by Farm: 16,362.64 Nitrogen Balance for Crops: (2,162.47) The following table describes the specifications of the hydrants and fields that contain the crops designated for utilization of the nitrogen produced on this facility. This chart describes the size, soil characteristics,and uptake rate for each crop in the specified crop rotation schedule for this facility. 2of11 c Reception Area Specifications Tract Field Irrigated Soil 1st Crop Time to 1st Crop 1s11 Crop Lbs N/Ac Lbs N Total Ibs N 2r:d Crop lime to 2nd crop 2nd Cro ^ Acres e T Code A I Yield Ibs NlUnk Residual /pc P Utilized Code A I P Lbs N/Ac Lbs N Total Ibs N Tofal Total Ibs N T4644 1 Yield Ibs N/Unit Residual !Ac Utilized Lbs NlAc Utillzed 10.2 FoA B March-Set 4.0 34.5 T4644 2 6.8E NbA 8 March-Set 6.5 138 1407.E K Sepr.q 7n1 1 T4644 3 12.7E NbB!BbA g 34.5 224.25 1538.355 50 50 510 March-Sept 4.9 32.E K Se,r#-APr41 1 50 188 1917.E T3607 1 10.19 Nob B March-Se 6.4 159.74 2038.282 K Ser.#-A nl 50 343 274.25 1881.355 T3607 2 13.03 AuB 34.5 220.8 2249.952 K 1 50 50 638 209.74 2676.282 13607 3 B March-Set 5.5 36.75 Se t-A rill 1 50 17.46 AUBl .A B March-Seat 6.0 202.125 2633.689 _ K Sepl-A aril 1 50 509.5 _ 270.8 2759.452 35.6 213.6 3729.45E K 50 50 651.5 252.125 3285.189 T3607 sub 1 Sept-A nl 1 50 1.81 NoB B March-Set 6A 50 873 263.6 4602,456 T3607 sub2 1.97 Au8 34.5 22D.8 399.648 K Se t-Ap�eil 1 T3607 sub3 1.54 AuB/GoA B March-Sept 5.5 36.75 50 50 B March-Se t 6.0 202.125 398.1863 K Se t-Apnl 1 90.5 270.8 490.148 35.E 213.E 328.944 K 50 50 98.b 252.125 496.8863 Sept-April 1 50"Optional-el 4 50 77 263.E 405.944 T3693 Field 4 13.67 NoB B March-Set 6.4 34.5 220.8 3018.336 K Sept-April 1 50 50 683.5 270.8 3701.83E Totals: 75.82 14724.71 3797 18515.11 3(a)of 11 This plan does not include commercial fertilizer. The farm should produce adequate plant available nitrogen to satisfy the requirements of the crops listed above. The applicator is cautioned that P and K may be over applied while meeting the N requirements. In the future, regulations may require farmers in some parts of North Carolina to have a nutrient management plan that addresses all nutrients. This plan only addresses nitrogen. In interplanted fields(i.e. small grain, etc, interseeded in bermuda),forage must be removed through grazing, hay, and/or silage. Where grazing, plants should be grazed when they reach a height of six to nine inches. Cattle should be removed when plants are grazed to a height of four inches. In fields where small grain, etc, is to be removed for hay or silage, care should be exercised not to let small grain reach maturity, especially late in the season(i.e. April or May). Shading may result if small grain gets too high and this will definitely intertere with stand of bermudagrass. This loss of stand will result in reduced yields and less nitrogen being utilized. Rather than cutting small grain for hay or silage just before heading as is the normal situation,you are encouraged to cut the small grain earlier. You may want to consider harvesting hay or silage two to three times during the season, depending on the time small grain is planted in the fall. The ideal time to interplant small grain, etc, is late September or early October. Drilling is recommended over broadcasting. Bermudagrass should be grazed or cut to a height of about two inches before drilling for best results. CROP CODE LEGEND Crop Code Crop Description-Harvested As Barley B Grain Crop Grazed Hybrid Bermudagrass Pasture/Grazed C Hybrid Bermudagrass Hay Hay B/C Comb. Hybrid Bermudagrass Graze/Hay Combination D Corn-Grain Grain Crop E Corn-Silage Silage F Cotton Cotton Lint G Grazed Fescue Pasture/Grazed H Fescue Hay Ha I Oats y � Grain Crop K Rye Grain Crop Grazed Overseed Pasture/Grazed(Seeded in Bermudagrass) L Overseed Hay Hay(Seeded in Bermudagrass) M Grain Sorghum Grain Crop O Wheat Grain Crop Soybean Grain Crop P Pine Trees Pine Trees S Small Grain Grain Crop/Hay(After Grain Crop) CC Cover Crop Not Harvested; Burned/Disked In SWG Swithgrass Biomass Crop Acres shown in the preceding table are considered to be the usable acres excluding required buffers,filter strips along ditches, odd areas unable to be irrigated, and perimeter areas not receiving full application rates due to equipment limitations. Actual total acres in the fields listed may, and most likely will be, more than the acres shown in the tables. See attached map showing the fields to be used for the utilization of animal waste. 4 of 11 SLUDGE APPLICATION: The following table describes the annual nitrogen accumulation rate per animal in the lagoon sludge Farm Specifications PAN/ animal7Faota Farrow to Wean 0.8 Farrow to Feeder 0.96 Farrow to Finish 3.9 Wean to Feeder 0.07 Wean to Finish 0.27 9792 Feeder to Finish 0.34 Gilts 0.39 Boars 0.55 The waste utilization plan must contain provisions for periodic land application of sludge at agronomic rates. The sludge will be nutrient rich and will require precautionary measures to prevent over application of nutrients or other elements. Your production facility will produce approximately 3329.28 pounds of plant available nitrogen per year and will accumulate in the lagoon sludge based on the rates of accumulation listed above. If you remove the sludge every 5 years,you will have approximately 16646.4 pounds of plant available nitrogen to utilize. Assuming you apply this PAN to hybrid bermuda grass hayland at the rate of 300 pounds of nitrogen per acre, you will need 55 acreas of land. If you apply the sludge to com at a rate of 125 pounds per acre,you will need 133.1712 acres of land. Please note that these are only estimates of the PAN produced and the land required to utilize that PAN. Actual values may only be determined by sampling the sludge for plant available nitrogen content prior to application Actual utilization rates will vary with soil type,crop, and realistic yield expectations for the specific application fields designated for sludge application at time of removal. APPLICATION OF WASTE BY IRRIGATION: The irrigation application rate should not exceed the intake rate of the soil at the time of irrigation such that runoff or ponding occurs. This rate is limited by initial soil moisture content, soil structure,soil texture,water droplet size,and organic solids. The application amount should not exceed the available water holding capacity of the soil at the time of irrigation nor should the plant available nitrogen applied exceed the nitrogen needs of the crop. If surface irrigation is the method of land application for this plan, it is the responsibility of the producer and irrigation designer to ensure that an irrigation system is installed to properly irrigate the acres shown in the preceding table. Failure to apply the recommended rates and amounts of nitrogen shown in the tables may make this plan invalid. *This is the maximum application amount allowed for the soil assuming the amount of nitrogen allowed for the crop is not over applied. In many situations,the application amount shown cannot be applied because of the nitrogen limitation. The maximum application amount shown can be applied under optimum soil conditions. Your facility is designed for>180 days of temporary storage and the temporary storage must be removed on the average of once every 6 months. In no instance should the volume of the waste stored in your structure be within the 25 year 24 hour storm storage or one foot of freeboard except in the event of the 25 year 24 hour storm. It is the responsibility of the producer and waste applicator to ensure that the spreader equipment is operated properly to apply the correct rates to the acres shown in the tables. Failure to apply the recommended rates and amounts of nitrogen shown in the tables may make this plan invalid. Call your technical specialist after you receive the waste analysis report for assistance in determining the amount of waste per acre and the proper application prior to applying the waste. 5of11 Application Rate Guide The following is provided as a guide for establishing application rates and amounts. Soil Application Rate Application Amount Tract H Brant Type Cron in/hr T4644 * inches 1 FoA B 0.5 1 T4644 2 N bA B 0.4 1 T4644 3 NbB/BbA B 0.4 1 T3607 1 NoB B 0.5 1 T3607 2 AuB B 0.6 1 T3607 3 AuB/GoA B 0.6 1 T3607 sub 1 NoB B 0.5 1 T3607 sub2 AuB B 0.6 1 T3607 sub3 AuB/GoA B 0.6 1 Optional* T3693 Field 4 NoB B 0.5 1 6 of11 �-° Additional Comments: All fields are written for Bermuda Graze however rower ma cut an fields for ha . Grower ma use "Aerwa "machine and sub field acres are shown on the table. 7of11 NUTRIENT UTILIZATION PLAN CERTIFICATION Name of Farm: S Grady 1&2 Facility 31-78 Owner: Steve Grady Manager: Owner/Manager Agreement: I/we understand and will follow and implement the specifications and the operation and maintenance procedures established in the approved animal waste nutrient management plan for the farm named above. I/we know that any expansion to the existing design capacity of the waste treatment and/or storage system, or construction of new facilities, will require a new nutrient management plan and a new certification to be submitted to DWR before the new animals are stocked. I/we understand that I must own or have access to equipment, primarily irrigation equipment, to land apply the animal waste described in this nutrient management plan. This equipment must be available at the appropriate pumping time such that no discharge occurs from the lagoon in the event of a 25 year 24 hour storm. I also certify that the waste will be applied on the land according to this plan at the appropriate times and at rates which produce no runoff. This plan will be filed on site at the farm office and at the office of the local Soil and Water Conservation District and will be available for review by NCDWR upon request. Name of Facility Owner: Steve Grad Signature: ..�-s Date Name of Manager(if different from owner): Signature: Date Name of Technical Specialist: Toni W. Kin Affiliation: Murphy-Brown, LLC. Address: 2822 H 24 West, PO Drawer 856 Warsaw, NC 28398 Telephone: 910 293-3434 Signature: Lyv' ✓ - G>]_2 Zd (co Date 8 of 11 NUTRIENT UTILIZATION PLAN REQUIRED SPECIFICATIONS 1 Animal waste shall not reach surface waters of the state by runoff, drift, manmade conveyances, direct application, or direct discharge during operation or land application. Any discharge of waste which reaches surface water is prohibited. 2 There must be documentation in the design folder that the producer either owns or has an agreement for use of adequate land on which to properly apply the waste. If the producer does not own adequate land to properly dispose of the waste, he/she shall provide evidence of an agreement with a landowner, who is within a reasonable proximity, allowing him/her the use of the land for waste application. It is the responsibility of the owner of the waste production facility to secure an update of the Nutrient Utilization Plan when there is a change in the operation, increase in the number of animals, method of application, recieving crop type, or available land. 3 Animal waste shall be applied to meet, but not exceed, the nitrogen needs for realistic crop yields based upon soil type, available moisture, historical data, climatic conditions, and level of management, unless there are regulations that restrict the rate of applications for other nutrients. 4 Animal waste shall be applied to land eroding less than 5 tons per acre per year. Waste may be applied to land eroding at more than 5 tons per acre per year but less than 10 tons per acre per year provided grass filter strips are installed where runoff leaves the field (See USDA, NRCS Field Office Technical Guide Standard 393 - Filter Strips). 5 Odors can be reduced by injecting the waste or disking after waste application. Waste should not be applied when there is danger of drift from the land application field. 6 When animal waste is to be applied on acres subject to flooding, waste will be soil incorporated on conventionally tilled cropland. When waste is applied to conservation tilled crops or grassland, the waste may be broadcast provided the application does not occur during a season prone to flooding (See "Weather and Climate in North Carolina" for guidance). 7 Liquid waste shall be applied at rates not to exceed the soil infiltration rate such that runoff does not occur offsite or to surface waters and in a method which does not cause drift from the site during application. No ponding should occur in order to control odor and flies. 8 Animal waste shall not be applied to saturated soils, during rainfall events, or when the surface is frozen. 9of11 NUTRIENT UTILIZATION PLAN REQUIRED SPECIFICATIONS 9 Animal waste shall be applied on actively growing crops in such a manner that the crop is not covered with waste to a depth that would inhibit growth. The potential for salt damage from animal waste should also be considered. 10 Nutrients from waste shall not be applied in fall or winter for spring planted crops on soils with a high potential for leaching. Waste/nutrient loading rates on these soils should be held to a minimum and a suitable winter cover crop planted to take up released nutrients. Waste shall not be applied more than 30 days prior to planting of the crop or forages breaking dormancy. 11 Any new swine facility sited on or after October 1, 1995 shall comply with the following: The outer perimeter of the land area onto which waste is applied from a lagoon that is a component of a swine farm shall be at least 50 feet from any residential property boundary and canal. Animal waste, other than swine waste from facilities sited on or after October 1, 1995, shall not be applied closer than 25 feet to perennial waters. 12 Animal waste shall not be applied closer than 100 feet to wells. 13 Animal waste shall not be applied closer than 200 feet of dwellings other than those owned by the landowner. 14 Waste shall be applied in a manner not to reach other property and public right-of-ways. 15 Animal waste shall not be discharged into surface waters, drainageways,or wetlands by discharge or by over-spraying. Animal waste may be applied to prior converted cropland provided the fields have been approved as a land application site by a "technical specialist". Animal waste shall not be applied on grassed waterways that discharge directly into water courses, and on other grassed waterways, waste shall be applied at agronomic rates in a manner that causes no runoff or drift from the site. 16 Domestic and industrial waste from washdown facilities, showers, toilets, sinks, etc., shall not be discharged into the animal waste management system. 10 of 11 NUTRIENT UTILIZATION PLAN REQUIRED SPECIFICATIONS 17 A protective cover of appropriate vegetation will be established on all disturbed areas (lagoon embankments, berms, pipe runs, etc.). Areas shall be fenced, as necessary, to protect the vegetation. Vegetation such as trees, shrubs, and other woody species, etc., are limited to areas where considered appropriate. Lagoon areas should be kept mowed and accessible. Berms and structures should be inspected regularly for evidence of erosion, leakage,or discharge. 18 If animal production at the facility is to be suspended or terminated,the owner is responsible for obtaining and implementing a "closure plan" which will eliminate the possibility of an illegal discharge, pollution and erosion. 19 Waste handling structures, piping, pumps, reels, etc., should be inspected on a regular basis to prevent breakdowns,leaks and spills. A regular maintenance checklist should be kept on site. 20 Animal waste can be used in a rotation that includes vegetables and other crops for direct human consumption. However, if animal waste is used on crops for direct human consumption, it should only be applied pre-plant with no further applications of animal waste during the crop season. 21 Highly visible markers shall be installed to mark the top and bottom elevations of the temporary storage (pumping volume) of all waste treatment lagoons. Pumping shall be managed to maintain the liquid level between the markers. A marker will be required to mark the maximum storage volume for waste storage ponds. 22 Waste shall be tested within 60 days of utilization and soil shall be tested at least annually at crop sites where waste products are applied. Nitrogen shall be the rate-determining nutrient, unless other restrictions require waste to be applied based on other nutrients, resulting in a lower application rate than a nitrogen based rate. Zinc and copper levels in the soil shall be monitored and alternative crop sites shall be used when these metals approach excessive levels. pH shall be adjusted and maintained for optimum crop production. Soil and waste analysis records shall be kept for a minimum of five years. Poultry dry waste application records shall be maintained for a minimum of three years. Waste application records for all other waste shall be maintained for a minimum of five years. 23 Dead animals will be disposed of in a manner that meets North Carolina regulations. 11 of 11 NUTRIENT UTILIZATION PLAN AMENDMENT Grower(s): Steve Grady Farm Name: S Grady 6-9 Facility 31-683 County: Duplin Farm Capacity: Farrow to Wean Farrow to Feeder Farrow to Finish Wean to Feeder Feeder to Finish 15,912 Storage Structure: Anaerobic Lagoon Storage Period: >180 days Application Method: Irrigation Grower may use an Aerway machince to irrigate on acres in NUP. Owner/Man r Date Technical Specialist S Date 3 ice'..� ��, {tf�U.;;��� •y r••"•r.S ���i�,,�,�' �.• �Y`rrJ�J• +ti' P ,re•,. ^, s rr �„ fir '4 mow, C .. v p, '��':��,�,�is��' � A•-?,ri,�.{s` /_ �'*�rr �" y:� y,�w�=j5+. `�tY r ' trY :w- � 1. '�".� y.,r�J•`�� �-1 {►�. � J fir..`.r�y�� 'r..•;f�� _ � Y. "S` ��� � 1 .le ��'��r�-1,:�� �'��arr�^ �'� r Y•..,.11�y. y yCtir ay 'n'T" r..h,: ,..•. - 2.*�, yam,' ,�,,� F t'`� r tom' rr ti `� •_:. ;`�` 'w`.t-•'�•i- y � } c 7s 7•..w:`pr` ,� s e.�•4 Y�+•y�+�-•tic _ `•is•. may, ,•; '�' vim. _,L.'� wx•''�' ..St w -r •-!.:tr -'r it "'��,'r" .Z,..,+�. `'r - '� v � ,w, ��^I ="- 1 w x'�r-r�S,.�`""1 •1'a•' 1' r7r,,F��y� '. �r�.�r:« -ins l �"^'�.� .�;{• Kt. �d�•" �. r ti s,� '<_ y„Fwr ij ry Op An 927 .4 4- ELM-Wall JPT Wyk 3 • - J SWINE FARM Source WASTE MANAGEMENT ODOR CONTROL. CHECKLIST ' Cause BMP's to Minimize Odor ' Farmstead Site Specific Practices Swine production nve or wooded buffers; — (tYRecommended best management pr ces; cod judgment and common sense Animal body surfaces Dirty manure-covered animals ry floors Floor surfaces Wet manure-covered floors -- (.)Slotte loors; () erers located over slotted floors; ( Fee s at high end of solid floors; (44ecraPe manure buildup from floors; ()Underfloor ventilation for drying Manure collection pits Urine ()Frequent manure removal by flush,pit reoharge,or scrape Parital micorbial decomposition {)Una „loor ventilation Ventilation exhaust fans Volatile gases; F maintenance; Dust (i ""o �r movement Indoor surfaces Dust } ashdown between groups of animals Feed additives; ()Feeder covers; (}Feed delivery downspout extenders to feeder covers Flush tanks Agitation of recycled lagoon (}Flush tank covers liquid whiles tanks are filling (1 Extend fill lines to near bottom of tanks with anti-siphon vents Flush alleys Agitation during wastewater (i Underfloor flush with underfloor conveyanance ventilation Pit recharge points Agitation of recycled lagoon () Extend rechard lines to near bottom of liquid while pits are filling pits with anti-siphon vents Lift stations Agitation during sump tank filling ()Sump tank covers and drawdown Outside drain collection Agitation during wastewater or junction boxes (}Box covers conveyance End of drainpipes at lagoon Agitation during wastewater (}Extend discharge point of Pipes underneath lagoon liquid level Lagoon surfaces Volatile gas emissions ! oper lagoon liquid capacity, Biological mixing orrect lagoon startup procedures Agitation mum surface area-to-volume ratio (Wnimum agitation when pumping ()Mechanical aeration (?Proven biological additives Irrigation sprinkler nozzles High pressure agitation ( to on dry days with little or no wind Vend draft ( Inimum recommended operation pressure { Pump intake near lagoon liquid surface ()Pump from second-stage lagoon AMpC--November 11, 1996 ' F J .. J Storage tank or basin Partial microbial decomposition -surface {) Bottom or midlevel loading Mixing while filling ()Tank covers Agitation when emptying ()Basin surface mats of solids ()Proven biological additives or oxidants Settling basin surface Partial micobial decomposition (}Extend drainpipe outlets underneath liquid Mixing while filling level Agitation when emptying {) Remove settled solids regularly Manure, slurry or sludge Agitation when spreading jection of slurry/sludges spreader outlets Volatile gas emissions ash residual manure from spreader after use _ ()Proven biological additives or oxidants Uncovered manure, slurry Volatile gas emissions while drying �L of ' eCtion of slurry/sludges or sludge on field surfaces Orporetion within 48 hours Oil thin uniform layers for rapid drying (}Proven biological additives or oxidants Dead animals Carcass decomposition roper disposition of carcasses Dead'animal disposal 'Carcass decomposition [)pits Complete covering of carcasses in burial pits {)Proper location/construction of disposal pits Incinerators Incomplete combustion ()Secondary stack burners Standing wa;er around Improper drainage (x rade and landscape such that water drains facilities Microbial decomposition of away from facilities organic matter Manure tracked onto public Poorly maintained access roads (' arm access road maintenance roads from farm access Additional Information: ��- Available From: Swine Manure Management;0200 Rule/BMP Packet Swine Production Farm Potential Odor Sources and Remedies, EBAE Fact Sheet NCSU-County Extension Center Swine Production Facility Manure-Management;Pit Recharge—Lagoon Treatment;EBAE 128.88 NCSU-BAE Swine Production Facility Manure Management:Underfloor Fluse—Lagoon Treatment;EBAE 129-88 NCSU-BAE Lagoon Desig and Management for Livestock Manure Treatment and Storage;EBAE 103-83 NCSU-BAE Calibratlon of Manure and Wastewater Application Equipment,EBAE Fact Sheet NCSU-BAE Controlling Odors from Swine Buildings; PIH-33 NCSU-BAE Environmental Assuranc Program:NPPC Manual NCSUSwine Extension Options for Managing Odor;a report from the Swine Odor Task Force NC Pork Produces Assoc NCSU Agri Cm Nuisance Concerns in Animal Manure Management.Odors and Flies;PRO107, 1995 Conference Proceedings Florida Cooperativenications Extension The issues checked ( ) pertain to this operation. The landowner/integrator agrees to use sound)udgment in applying odor control measures as practical. I certify the aforementioned odor control Best Managment Practices have been reviewed with me. ( ndowner Si e AMOC-•November 11, 19ge ) INSECT CONTROL CHECKLIST FOR ANIMAL OPERATIONS Source Cause BMP's to Minimize Odor Site Specific Practices (Liquid Systems) Flush Gutters Accumulation of solids ( ush system is designed and operated sufficiently to remove accumulated so s from gutters as designed. ( emove bridging of accumulated solids at discharge Lagoons and Pits Crusted Solids (' aintain lagoons,settling basins and pits where pest breeding is apparent to minimize the crusting of solids to a depth of no m than 6-8 inches over more than 30 ' of surface. Excessive Vegetative Decaying vegetation Maintain vegetative control along banks of Growth lagoons and other impoundments to prevent accumulation of decaying vegetative matter along water's edge on impoundment's perimeter. (Dry Systems) Feeders Feed Spillage t) Design,operate and maintain food systems(e.g., bunkers and troughs)to minimize the accumulation of decaying wastage. ()Clean up spillage on a routine basis(e.g.7-10 day interval during summer;15-30 day interval during winter). Feed Storage Accumulations of feed residues (}Reduce moisture accumulation within and around immediate perimeter of feed storage areas by insuring drainage away from site and/or providing adequate containment(e.g.,.00vered bin for brewer's grain and similar high moisture grain products). ()Inspect for and remove or break up accumulated solids in filter strips around food storage as needed. Animal Holding Areas Accumulations of animal wastes {)Eliminate low area that trap moisture along fences and feed wastage and other locations where waste accumulates and and disturbance by animals is minimal. {) Maintain fence rows and filter strips around animal holding areas to minimize accumulations of wastes (i.e.inspect for and remove or break up accumulated solids as needed). AMIC--November 11, 1998 J --6ry Manure Handling Accumulations of animal wastes Systems ()Remove spillage on a routine basis(e.g.7.10 day interval during summer;16-30 days interval during winter) where manure is loaded for land application or disposal. (1 Provide for adequate drainage around manure stockpiles. (}Inspect for and remove or break up accumulated wastes in filter stripes around stockpiles and manure handling areas as needed. The issues checked ( ) pertain to this operation. The landowner/integrator agrees to use sound judgment in applying insect control measures as practical. I certify the aforementioned insect control Best Management Practices have been reviewed with me. {Lando a ig atur r'^ For more information contact the Cooperative Extension Service,Department of Entomology,Box 7613,North Carolina State Uni 27695-7613. versity, Raleigh,NC AMIC--November 11', 1996 WaterQuallty C��agfcaal OlJoratioris Secft EMERGENCY ACTION PLAN PHONE NUMBERS �.-- DIVISION OF WATER QUALITY (DWQ) EMERGENCY MANAGEMNET SERVICES (EMS) (910)396-3900 SOIL AND WATER CONSERVATION DISTRICT (SWCD) (910)296-2160 NATURAL RESOURCES CONSERVATION SERVICE (NRCS) (910)296-2121 COOPERATIVE EXTERSION SERVICE (CES) (910)296-2143 This plan will be implemented in the event that wastes from your operation are leaking, overflowing or running off site. You should not wait until wastes reach surface waters or leave you property to consider that you have a problem. You should make every effort to ensure that this does not happen. This plan should be posted in an accessible location for all employees at the facility. The following are some action items you should take. Stop the release of wastes. Depending on the situation, this may ore may not be possible. Suggested responses to some possible problems are listed belwo. A. Lagoon overflow-possible Solutions are: a. Add soil to berm to increase elevation-of dam. b. Pump wastes to fields at an acceptable rate. C. Stop all flows to the lagoon immediately. d. Call a pumping contractor. e. Make sure no surface water is entering lagoon. g. Runoff from waste application field-actions include: a. Immediately stop waste application. b. Create a temporary diversion to contain waste. c. Incorporate waste to reduce runoff. d. Evaluate and eliminate the reason(s) that cause the runoff. e. Evaluate the application rates for the fields where runoff occurred. C. Leakage from the waste pipes and sprinklers-action include: a. Stop recycle pump. b. Stop irrigation pump. C. Close valves to eliminate further discharge. d. Repair all leaks prior to restarting pumps. D. Leakage from flush systems, houses, solid separators-action include: a. Stop recycle pump. b. Stop irrigation pump. c. Make sure siphon occurs. d. Stop all flows in the house, flush systems, or solid separators. E. Leakage from base or sidewall of lagoon. Often this is seepage as opposed to flowing leaks-possible action: a. Dig a small sump or ditch from the embankment to catch all seepage, put in a submersible pump, and pump back to lagoon, b. If holes are caused by burrowing animals, trap or remove animals and fill holes and compact with a clay type soil. c. Have a professional evaluate the condition of the side walls and lagoon .�, bottom as soon as possible. 7 2. Assess the extent of the spill and'note any obvious damages. a. Did the waste reach any surface waters? b. Approximately how much was released and for what duration? c. Any damage notes, such as employee injury, fish kills, or property damage? d. Did the spill leave the property? e. Does the spill have the potential to reach surface waters? f. Could a future rain event cause the spill to reach surface waters? g. Are potable water wells in danger (either on or off the property)? h. How much reached surface waters? 3. Contact appropriate agencies. a. During normal business hours call your DWQ regional office; Phone - -. After hours, emergency number: 919-733-3942. Your phone call should include: name, facility number, telephone number, the details of the incident from item 2ur above, the exact location of the facility, the location or direction of movement of the spill, weather and wind conditions. The corrective measures that have been under taken, and the seriousness of the sitution. _ b.- If spill leaves property or enters surface waters, call local EMS phone number. 'c. Instruct EMS to contact local Helath Department. d. Contact CEs, phone number - , local SWCD office phone number - -, and local NRCS office for advice/technical assistance phone number - -. 4. If none of the above works call 911 or the Sheriff's Department and explain you problem to them and ask the person to contact the proper agencies for you. 5. Contact the contractor of your choice to begin repair or problem to minimize off- site damage. w a. Contractors Name: b. Contractors Address: c. Contractors Phone: 5. Contact the technical specialist who certified the lagoon (MRCS, Consulting Engineer, etc.) a. Name: b. Phone: _ 7. Implement procedures as advised by DWQ and technical assistance agencies to rectify the damage, repair the system, and reassess the waste managment plan to keep problems with release of wastes from happening again. 2 version—November 26,2028 Mortality Management Met Indicate which method(s)will be i hods When selecting multiple methods indicate a prima ry versus secondary option. Methods other than those listed must be appnd State Veterinarian, Primary Secondary Routine Mortality roved by the aBurial three feet beneath the surface of the ground within 24 hours of death. The burial must be at least 300 feet from any flowing stream or public bodyof (G.S.106-403). The bottom of the burial pit should be at least one foot abov tknowledge of animal high water table.Attach burial location map and plan. water e the seasonal Landfill at municipal solid waste facility permitted b 13B .0200. Y NC DEQ under GS 15q NCAC Rendering at a rendering plant licensed under G.S. 106-168.7. Complete incineration according to 02 NCAC 52C .0102. A composting system approved and permitted by the NC Department Con- sumer Services Veterinary Division(attach co p additional requirements must be met and a perm t is eequiredf compost DEQ distributed off farm, ® In the case of dead poultry only, placing in a disposal pit of a s NC Department of Agriculture&Consumer iz Services (G.S. 106-549.Oj esi 9 n approved by the Any method which, in the professional opinion of the State Vet the salvage of part of a dead animal's value without endangering human or animal health (Written approval by the State Veterinarian must be attached)Veterinarian, would make possible aMass Mortality Plan Mass mortality plans are required for farms covered by an NPDES permit. also recommended for all animal operations. This plan outlines farm-specific mortalityman- agement methods to be used for mass mortality. The NCDA&CS rmit These plans are Ports a variety of emergency mortality disposal options;contact the Division foriverinary ui sup- guiddaa nce. • A catastrophic mortality disposal plan is part of the facility's CAWMP and is activated when numbers of dead animals exceed normal mortality rates as specified by the State Veterinarian. • Burial must be done in accordance with NC General Statutes and NCDA&CS Veterinary Division regulations and guidance. • Mass burial sites are subject to additional permit conditions(refer to facility's animal y waste management system permit). • In the event of imminent threat of a disease emergency, the State Veterinarian may enact additional temporary procedures or measures for disposal according to G.S. 106.399.4. Signatu a of Farm Owner/Manager J ✓/ Date Signature of Technical Specialist Date 2 STAGE WASTE LAGOON DESIGN Operator: RAY BELL County: DUPLIN Date: 01/20/95 Distance to nearest residence (other than owner), 2,000 feet 1. AVERAGE LIVE WEIGHT (ALW) 0 sows (farrow to finish) x 1417 lbs. = 0 lbs 0 sows (farrow to feeder) x 522 lbs. = 0 lbs 3672 head (finishing only) x 135 lbs. = 495,720 lbs. 0 sows (farrow to wean) x 433 lbs. = 0 lbs 0 head (wean to feeder) x 30 lbs. = 0 lbs Describe other : 0 y3 10 A- Total Average Live Weight = 495,720 lbs ***** 2. PRIMARY STAGE ***** 2a. MINIMUM REQUIRED TREATMENT VOLUME OF LAGOON Volume = 495,720 lbs. ALW x Treatment Volume(CF)/Ib. ALW Treatment Volume(CF)/Ib. ALW = 1 CF/lb. ALW Volume = 495,720 cubic feet 2b. STORAGE VOLUME FOR SLUDGE ACCUMULATION Volume = 0 cubic feet 2c. TEMPORARY STORAGE REQUIRED DRAINAGE AREA: Lagoon (top of dike primary stage) (Length * Width of primary stage) 350.0 200.0 70,000 square feet Volume of 25 year — 24 hour storm (PRIMARY STAGE) Volume = 7.5 inches/ 12 inches per foot * DA Volume = 43,750 cubic feet 2d. DESIGNED PRIMARY,.AGE VOLUME Inside top length (feet) ---------------- 350.0 Inside top width (feet)----------------- 200.0 Top of dike elevation (feet) --------------- 78.6 Bottom of lagoon elevation (feet)----------- 66.6 Freeboard (feet)-------------------• 1.0 Side slopes (inside lagoon)-------------- 3.0 : 1 Connector Pipe invert (feet) ------------- 76.9 Total design PERMANENT STORAGE volume using prismoidal formula SS/END1 SS/END2 SS/SIDE SS/SIDE2 LENGTH WIDTH DEPTH 3.0 3.0 3.0 3.0 344.0 194.0 10.3 AREA OF TOP LENGTH * WIDTH = 344.0 194.0 66,736 (AREA OF TOP) AREA OF BOTTOM LENGTH * WIDTH = 282.2 132.2 37,307 (AREA OF BOTTOM) AREA OF MIDSECTION LEN. * WIDTH * 4 = 313.1 163.1 204,266 (AREA OF MIDSEC. *4) CU. FT. _ [AREA TOP + (4*AREA MIDSECTION) + AREA BOTTOM] * DEPTH/6 66,736 204,266 37,307 1.7 Total Designed PERMANENT Volume Available in Primary Stage= 529,264 CU. FT. Total design STORM STORAGE volume using prismoidal formula : SS/END1 SS/END2 SS/SIDE SS/SIDE2 LENGTH WIDTH DEPTH 3.0 3.0 3.0 3.0 344.0 194.0 0.7 AREA OF TOP LENGTH * WIDTH = 344.0 194.0 66,736 (AREA OF TOP) AREA OF BOTTOM LENGTH * WIDTH = 339.8 189.8 64,494 (AREA OF BOTTOM) AREA OF MIDSECTION LEN. * WIDTH * 4 = 341.9 191.9 262,442 (AREA OF MIDSEC. *4) CU. FT. _ [AREA TOP + (4*AREA MIDSECTION) + AREA BOTTOM] * DEPTH/6 66,736 262,442 64,494 0.1 Total Designed STORM Volume Available in First Stage= 45,928 CU. FT. r ***** 3. SECOND STAGE ***** TEMPORARY STORAGE REQUIRED �--3A. Volume of waste produced Feces & urine production in gal./day per 135 lb, ALW 1.37 Volume = 495,720 lbs. ALW/135 lbs. ALW * 1,37 gal/day 180 Volume = 905,515 gals. or 121,058 cubic feet days 3B. Volume of wash water This is the amount of fresh water used for washing floors or volume of fresh water used for a flush system. Flush systems that recirculate the lagoon water are accounted for in 3A. Volume = 0 gallons/day * 180 days storage/7.48 gallons Volume = 0 cubic feet per CF 3C, Volume of rainfall in excess of evaporation DRAINAGE AREA: — Lagoon (top of dike second stage) (Length * Width of second stage) 300.0 * 200.0 = 60,000 square feet — Buildings (roof and lot water) �-- 0 square feet Describe this area. TOTAL DRAIN. AREA 60,000 square feet Design temporary storage period to be 180 days. Use period of time when rainfall exceeds evaporation by largest amount. 180 days excess rainfall = 7.0 inches Volume = 7.0 in * DA/ 12 inches per foot Volume = 35,000 cubic feet 3D. Volume of 25 year — 24 hour storm (SECOND STAGE) Volume = 7.5 inches/ 12 inches per foot * DA Volume = 37,500 cubic feet TOTAL REQUIRED SECOND STAGE STORAGE 3A. 121,058 cubic feet — waste production 3B. 0 cubic feet — wash water 3C. 35,000 cubic feet — rainfall excess (both stages) 3D. 37,500 cubic feet — 25 yr/24 hr storm (second stage) `-� TOTAL 193,558 cubic feet 3e. DESIGNED SECOND STAGE VOLUME Inside top length (feet) ---------------- 300.0 Inside top width (feet)----------------- 200.0 Top of dike elevation (feet) -------------- 78.6 Start Pump elevation (feet) -------------- 76.9 End Pump elevation (feet) -------------- 72.8 Bottom of lagoon elevation (feet)----------- 70.6 Freeboard (feet)-------------------- 1.0 Side slopes (inside lagoon)-------------- 3.0 : 1 Total design TEMPORARY STORAGE volume using prismoidal formula SS/END1 SS/END2 SS/SIDE SS/SIDE2 LENGTH WIDTH DEPTH 3.0 3.0 3.0 3.0 289.8 189.8 4.1 AREA OF TOP LENGTH * WIDTH = 289.8 189.8 55,004 (AREA OF TOP) AREA OF BOTTOM LENGTH * WIDTH = 265.2 165.2 43,811 (AREA OF BOTTOM) AREA OF MIDSECTION LEN. * WIDTH * 4 = 277.5 177.5 197,025 (AREA OF MIDSEC. * 4) CU. FT. _ [AREA TOP + (4*AREA MIDSECTION) + AREA BOTTOM] * DEPTH/6 55,004 197,025 43,811 0.7 Total Designed TEMPORARY Volume Available in Second Stage= 202,157 CU. FT. Total design STORM STORAGE volume using prismoidal formula : SS/END1 SS/END2 SS/SIDE SS/SIDE2 LENGTH WIDTH DEPTH 3.0 3.0 3.0 3.0 294.0 194.0 0.7 AREA OF TOP LENGTH * WIDTH = 294.0 194.0 57,036 (AREA OF TOP) AREA OF BOTTOM LENGTH * WIDTH = 289.8 189.8 55,004 (AREA OF BOTTOM) AREA OF MIDSECTION LEN. * WIDTH * 4 = 291.9 191.9 224,062 (AREA OF MIDSEC. * 4) CU. FT. _ (AREA TOP + (4*AREA MIDSECTION) + AREA BOTTOM] * DEPTH/6 57,036 224,062 55,004 0.1 Total Designed STORM Volume Available in Second Stage= 39,212 CU. FT. r � Total design volume using prismoidal formula SS/END1 SS/END2 SS/SIDE SS/SIDE2 LENGTH WIDTH DEPTH 3.0 3.0 3.0 3.0 294.0 194.0 7.0 AREA OF TOP LENGTH * WIDTH = 294.0 194.0 57,036 (AREA OF TOP) AREA OF BOTTOM LENGTH * WIDTH = 252.0 152.0 38,304 (AREA OF BOTTOM) AREA OF MIDSECTION LEN. * WIDTH * 4 = 273.0 173.0 188,916 (AREA OF MIDSEC. * 4) CU. FT. = [AREA TOP + (4*AREA MIDSECTION) + AREA BOTTOM] * DEPTH/6 57,036 188,916 38,304 1.2 Total Design Volume Available in Second Stage= 331,632 CU. FT. i 4. SUMMARY Temporary storage period -------------- 180 days Rainfall in excess of evaporation ----------- 7.0 inches 25 year - 24 hour rainfall -------------- 7,5 inches Side slopes ---------------------- 3.0 : 1 Seasonal high watertable elevation (SHWT) ----- 72.8 feet *********** PRIMARY STAGE*********** Inside top length ------------------- 350.0 feet Inside top width --------------------- 200.0 feet Top of dike elevation ----------------- 78.6 feet Bottom of lagoon elevation -------------- 66.6 feet Freeboard ------------------------ 1.0 foot Connector Pipe Invert ---------------- 76.9 feet The design intent is to store the 25 yr/24 hr storm over both stages Required PERMANENT storage volume ------- 495,720 cu. ft. Actual design PERMANENT storage volume ----- 529,264 cu. ft. Required STORM Storage volume ---------- 43,750 cu. ft. Actual design STORM Storage volume ------- 45,928 cu. ft. Total Required Storage Volume ----------- 539,470 cu. ft. Total Actual Design Storage Volume --------- 575,193 cu. ft. Min. thickness of soil liner when required ------ 1.8 feet *********** SECOND STAGE*********** Inside top length ------------------- 300,0 feet Inside top width -------------------- 200.0 feet Top of dike elevation ----------------- 78.6 feet Bottom of lagoon elevation -------------- 70.6 feet Freeboard ---------------------- 1.0 foot Stop pumping elevation (> or : 72.8 ft. SHWT) 72.8 feet Required TEMPORARY Storage volume ------- 156,058 cu. ft. Actual design TEMPORARY Storage volume ---- 202,157 cu. ft. Start pumping elevation --------------- 76.9 feet Required STORM Storage volume ---------- 37,500 cu. ft. Actual design STORM Storage volume ------- 39,212 cu. ft. Total Required Storage Volume ----------- 193,558 cu. ft, Total Actual Design Storage Volume --------- 331,632 cu. ft. Min. thickness of soil liner when required ------ 1.2 feet 7. DESIGNED BY: APPROVED BY: DATE: DATE: ( - NOTE: SEE ATTACHED WASTE UTILIZATION PLAN COMMENTS: ' NAME: Ray Be | | ADDRESS: KenansviI | e, N.C. 'PE AND SIZE Topping Hog --,' OPERATION 4896 CLASS | V DESIGNED BY Kenneth R. Futrea | DATE ' 9_11-87 APPROVED BY DATE �� V—� � ~-?� ~�7 � PERMAMENT STORAGE 01; 4896 Hogs x 135 / bs per hug 1 Cu Ft per I 660960 Cut ~- ��-l�-1 u��=,-��n�.��. \� �� \�� ,, ', ^ u TEMPORARY STORAGE �-p (v C) |A0 5 . 660960 / bs of animal x 1 .35 cu. ft . of waste per day 160613 Cu Ft +~ Per 1000 / bs of animal wt . x 180 days RAINFALL LESS EVAPORATION 7'' X 157050 sq . ft. surface area per 12''per ft 91613 Cu Ft RAINFALL - 25 YR. 1 DAY STORM 7.51' X 157050 sq . ft. of surface area per 12'' per ft . 98156 Cu Ft *~' 4- TOTAL STORAGE NEEDED 101 1342 Cu Ft ~ ` 37457 Cu Yds TOTAL STORAGE AVAILABLE 1028695 Cu Ft 38100 Cu Yds AMOUNT OF FILL DIKE 228900 Cu Ft � 8 �-�'��_ PAD 295800 Cu Ft TOTAL 524700 Cu Ft SETTLEMENT^~ / zoz 52470 Cu Ft TOTAL AMOUNT OF FILL 577170 Cu Ft 21377 Cu Yds CUT TO FILL RATIO /�/��� / TOTAL EXCAVATION 800500 Cu Ft _ 29648 Cu Yds � . NAME: Ray Bell SEEDING SPECIFICATIONS %- ,, EA TO BE SEEDED 5 AC:. APPLY THE FOLLOWING 5000 Lr:S. _ _-= FERTILIZER 1() 'TONS DOLOMITIC L I MESTi)NE: 500 DALES SMALL GRAIN STRAW USE THE SEED MIXTURE INDICATED �� 250 LBS. FESCUE GRASS 175 LBS. OATS f 250 LSS. BAHIA GRASS } 210 LBS. WEEPING LOVE GRASS 60 LBS. HULLED BERMUDA GRASS �i ' 100 L.r,S. UNHULLED BERMUDA GRASS VERT ALL ,WATER T!i A (:ITAI_,LE OUTLET -l"HE NEAREST RESIDENCE IS 10C)o FT. T.B.lyl. 50. 00 ELEVAT.IC-JN DESCRIPTION Hub at A 0+00 TAME: Ray BeII APPROXIMATE NITROGEN CONTENT THAT WILL DE PRODUCED PER YEAR NITROGEN (N) - 0.48 LBS PER 1000 0 LBS OF ANIMAL WT. X 365 DAYS ---------------------------------- 1fI00 (N) -115800 � F . 1�: LBS � IT IS ESTIMATED THAT APPROXIMATELY 25 OF THE NITROGEN WILL BE AVAILABLE FOR USE AS FERTILIZER THE FOLLOWING AMOUNT CAN BE APPLIED i�N THE LAND 28950.048 LBS. T F APPLIED AT THE RATE OF ZOO i LBS PER ACRE ON CROPLAND (CORN) 144.75024 ACRES WILL BE NEEDED TO TAKE CARE OF THE EFFLUENT. IF APPLIED AT THE RATE OF 400 LBS PER ACRE ON PASTURELAND (COASTAL) ) 72.3751Z ACRES WILL BE NEEDED TO TAKE CARE OF THE EFFLUENT BEFORE ANY EFFLUENT IS APPLIED TO THE LAND IT SHOULD BE ANALYZED TO DETERMINE THE:. EXACT NUTRIENT CONTENT. THE NCDA LABORATORY 9 RALE:I GH IS MAKING SOME TEST ON A LIMITED BASIS. YOU SHOULD %—NTACT AGRONOMIC SERVICES DIVISION NCDA r BLUE RIDGE: ROAD CENTER RAL.E.I GH N.C. 27611 PHONE; 91 9...7:=3-'2_;55 WHEN APPLYING THE EFFLUENT TO CROPLAND IT SHOULD BE DISK AND A COVER CROP SEEDED OR A ROW CROP PLANTED TO PREVENT EROSION SOME Or THE EFFLUENT COULD BE USED FOR IRRIGATION PURPOSES DURING THE GROWING SEASON. i3O * AC OF LAND AVAILABLE:. FOR APPLICATION OF EFFLUENT.. BEGIN PUMPING THE EFFLUENT WHEN Upper- post ( I ft above the? THE FLUID LEVEL_. REACHES outlet pipe E I P_v 41 .00) - - DO NOT LOWER THE FLUID ANY Lower- post ( 1 .5 ft below ow the LOWER THAN outlet pipe E l ev 38.50) - THE EFFLUENT SHOULD BE APPLIED AT A RATETHAT WILL NOT CAUSE ANY RUNOFF ONTO SURROUNDING AREAS OR LEACHING INTO THE GROUND WATER RECOMMENDED APPPL I CAT I.i N RATE IS 0.5 INCHES PER HOUR AND THE MAXIMUM RECOMMENDED APPLICATION AMOUNT IS 1 INCH PER I RRGAT I ON �N' Agreements from adjoining land :owner, attached with sufficient acreage for effluent app I i cat i an DAME: Flay Be 1 I DEPTH E AREA !iF TOP + AREA OF BOTTOM + 4 X AREA OF MIDSECTION] -)LUME _ --------- ------------- DEPTH E L X W + L .: W + 4 ;; L ;; W ] VOLUME _ --------- --------------------------------------- Is 27 VOLUME = •------.__.-- ----------X-----,--+--f'-----1---±—_----- ----r----- 1-- 6.o 27 8.5 E517437.51 VOLUME _ -------- r „ti 27 7 30_r-''..5 CU. FT. VOLUME _ --- ------ 27.0 VOLUME _ 27149.5 CU.YDS. 109800.0 s q . f t . 1011342.0 cu. ft. needed DE SLOPES .F: 1 d�. r NAME: Ray Dell iLUME DEPTH-- [AREA OF TOP + AREA OF BOTTOM + 4 X AREA OF MIDSECTION] - __----- --------------------- DEPTH C L x W + L X VOLUME _ ------ W + - - - W ] 6 27 91 VOLUME _ --------- .---------------.------_ - --1---�--------1.-�,-}-;•- -- 6.0 27 8.5 C 2087001 VOLUME _ --------- -------- 6.0 27 295658.3 CU. FT. VOLUME = ----•----- 27.0 VOLUME = 1 t=}9 0 C:U. YDS. 47250.0 s q . f t. 0.0 cu. ft . needed DE ,SLOPES 2.5 g 1 -4ECEIMUCLEalDlRdl= APR 0 3 2019 wowou llw Regional Orations Section ---- - ------ • I , I r - r vh A I . ...._ i I'_T•��i-T�`�� yT--� r�- "---+�� , I ��, � _-� • -`�--=-� •-7-1 ;_,_� .9. _-_-_ '-_..-_., + - __..�..I.- �11 .-1 I I � i I -TT� � i?�:_7�-r_T-T-r- rt�--7-_ �..�.___,�.�.r1. ~_•, r�' .I U. S. Department of Agriculture } NC-ENG-34 Soil Conservation Service September 1980 File Code: 210 HAZARD CLASSIFICATION DATA SHEET FOR DAMS Landowner jr .� j. �1� --- -. County Community or Group No. Conservation Plan No. Estimated Depth of Water to Top of Dam__ Q, Ft. Length of Flood Pool Ft. Date of Field Hazard Investigation Evaluation by reach of flood plain downstream to the point of estimated minor effect from sudden dam failure. • Est. Elev. st, Elevation Kind of :Improvements: of Breach Reach: Length: Width: Slope: Land Use Improvements Above :Floodwater Above Flood Plain: Flood Plain Ft. Ft. % Ft. Ft. 2 . 3 , Describe potential for loss of life and damage to existing or probable future downstream improvements from a sudden breach 6 �_',, - 2aa ., d 0,) -� 4t Hazard Classification of Dam 6 b, c) (see NEM-Part 520.21) _k4d"Mssification (I, II, III, IV V) 4 BY L S rc rc Date 1 '- °I 1 na tit]e Concurred By Date name title NOTE: 1. Instructions on' reverse side. 2. . Attach additional- sheets as needed. ;-a-'t s� USA A." 7 C.- 17 .......... F 11 17, CUT TC-1 E"t`�CAVAT.11"DIA -I- ! 45 C: Y 11 lujc�Q, riot O-t relve4it lu d le tD be C*,,,Qvej O—S nce4c). do uAjey%%T-*vp'j arc pre S e A - J"�.v r., ww6t be. rg ICA;' 00 ,4 N Lr jD i/ro 06-AL 00�Al dq $': : '•"'�+�' :�p'• .. .,r 1'�' '}' i^c. I 1 '^a`'i."..v.'!^ �.�:' .1{.. _ i.'? I-I n .� != ?`je C.i;•>. .J ,. _ ... I )' ; a ,. +i; !:. :, '4 1::; ,'C -> In .1. ,! =. v ��... i•r, i .. ,, ... ^.�. yr .... ! ... .. .. • I .. re... rrr — , r_ ::c�"=i.__j:•i::i J i .. C• _ - _. - - .; i.5 a,r ri•_ `F i"-_:I';.: ..r _ f'Q;"I c r,,r, I T 1t tr•. .`1 .. I. I _ _. ..I L: L": { ... .. ,.:�i r_ ..�I ..•!.i ,.. t.1 1 I LA{. .r,r ) tr•ia ' i'� .. 'I, . y 4..:7 1.. !' '?:I i:.r I_I Y'i ) l: . ''1 �-', ,. ..n f:�.'. a •E E`I�' {a ti: .I �:'I'i?'.E 'I: En v } I'': I"t E13:?rt v a 1 t j..;p �r'i d 1`,'1'1;La'r :... I Re r-v..-a w N ci:. 't:i ::i:, •ri:•I ' 7 I i FI {+•i-s:1 i-!�:1 R` .? ! 1 U J; .E:ft{'' ?r.i 1+1^,I;t.. 1 "1 E A I I s Ls 1 i' � � w n. s 0 h'r rt !,Ia CI.r) 1, r•:'! I L.E1\1 ?r eI:1'y f,•'•:}^v' i 1; ) �' 1. 41 n d i' 'r' 'a 13I'i: i"p r• r:ri G'I-" k i :1;I '.:,I rn-a. ,en r r'e1_,ui r-Tenen.i::i ;;t t.1..cf.1 utbc:vl-, .I I^U,r' t:he.,{"IIiitr'- • ,.r, ..... :' a .!r'i l"i l•'}' `i• �,t:t r; ! !' _4J i'C .I i <1cres arL r"E:+�E_l I r"L,d E n cirder tct I a{'td a p p I v tI^t e Waste Arid that; th' Ia9oi.1r{ ratary hisve tL1 1.1e F,Urnped r'- ri1c1{'-e 'tIrnLs a yCar • TI.-IIs d.0 5''i �j ri h a.Sit };t e}-n e i.p I cY. i r Y e d t 17 rn E a E"i ci I cl. :i r e e w i t I-, ':, I I p r^i'i v i S t f}1.1 s 1 st te,j:. i it "-the cles i ,1n 1. a I Ott :cer^t i fy tf'ia.t ti-,er e a E? . n ., r(a; i d P n c e Y ! t;1=iar}. mi r;a 1:1r- my 'te6ar1ts' w'i th i r} 750 feet, of this opqrati r1r'I I, ' thaA crtrri I. kancp wi th th i s de:.s i Sri DOES INi..T prevent' �rX Sept e:• fr rh, sul `' vaa Lbac°a. e of riLri sa.rice° o - other r e a s rr r,s, . �C..• t,c �,��•' 11 r .�i/ f ,iG• �'' _ ':. ID a t ,`:� �; ,r � �•rk'•��t'y; it 'FY j�'�I'''f'i� C y#I.t'��Y1 ..� �i aJ•, � i t a� � ���'^�T�' �. ... .._.'k �a�..;n+t,w_,._..- ie 5h,'..' �G tL'1L i'�-:.•i,L�4 ._ c ..,M..,.s s'a+_m\-.�\.. ....,f., -gYa s:.._.. ..._ x . - ._ _ .._ ... AL MAL -_ 1:4 cow, .. ,. �.. •. .. ..,. a 1.1• ,. .. __ .. .,.s.... _ 5 a.b j,,.,,..., ._ _ t„• 0.0 a C Ir of cropland planted to corn 0 0,0 v C: 1• of coastal M i(1:.:.d_ y?1"::i.s.. i I`•:...:Y'd �•I 0,r_'' dc .: of is cl_` " i:• _zI_IiI r THE FLUID LEVEL REACHES E"iI_S bottom of outlet P i j:7_ tljv,----------------------------- -- sµ,a 0000T LOWER THE FLUID ANY LOWO i '-ri.'',AN 4 feet ICIe i r-iw p: i Ise �,��v, S0,D :,T ;y Flri �_ EN SHOULDBE APPLIED AT A f�A E, THAT WILL NOT CAUSE ANY r_ UI F C`3NTC+ SURR it,SNDIN& ARq S OR LEACHING INTO THE SROiJND WATER t 4 • D L I CAT I C► f jAlt I S I NCMES X EW HP U A(+ JJ ,TAE. -7+ .n 4,$^a ,� :; J 3 _,..�' iaG '�� z F l-' a.• 1-r -.�a+3 - t � 1� cR , . A-2^.,Y;�i .&...n...»+rF .._.. a __•...n....s.}...d.. �. .s.a _ 1. .... - ... •• ,•-• - '-- - - 1 {',1.... L:#Cl.:._{,'+t r ,.;E. ti n; _ '_i' :''.' I*{'..'. '' "i ` ' _F : ':' `r' i ,._ ....� iw -t :", : i_.• a ._;.'•�1,-• { •„_{" t6:.i'S{':.'si+:,._. ,.'I'-.,l.... .. .. ,. .`i.; 1!ti _ ,.:fl _...f I... r — — - — i +.S'".y Ih{d. I I'.' I,,i I : ,.i..,,..,.., . �. .1�). ... ri'i;LJ 1'-�'•,_,L:I j�'J ^�` ...'•f: ! 'i:... 1_'LJ.: !' •, c:-• — f_ .:! T ;h 'ry� \i 1:.-1u�C' -!— i ,t_- I_:_ ^i' c.. 'i'.,: - _i- C: r'..:.i" •:f P :. .......... ......- a .:... .,:., • ._, .:_: ._ . :., ,. .. � -—— :,._ -. ._. _......._ �_ -- ._.... : ...... ,,_. !s.-i-� .I _ .... .'I"..,I �.J' Lt,_.. t_ _... RESULT ,I:N A t:'I l I t-I; `_,- t , 'ci'1`r`*d") CIF r: ;:;r;'i'::t' A p�,i� '/,M Q. h ... t_t�:: 1'�.:.i-� .;; r .,�� :� ��r'i�e//za o`".�nc,c.�r�a�R,ke. i S ?AIZPot'e o- 3 i' S- ejlewd • -p�{� vnu.lcG, . DIsk l,'! /y cr �K.!>tipuL�c �p fswl .J&Gdle�, t N � y EA L jh 3 OPERATION & MAINTENANCE PLAN Proper lagoon liquid management should be a year-round priority, It is especially important to manage levels so that you do not have problems during extended rainy and wet periods. Maximum storage capacity should be available in the lagoon for periods when the receiving crop is dormant (such as wintertime for bermudagrass) or when there are extended rainy spells such as the thunderstorm season in the summertime. This means that at the first signs of plant growth in the later winter/early spring, irrigation according to a farm waste management plan should be done whenever the land is dry enough to receive lagoon liquid. This will make storage space available in the lagoon for future wet periods. In the late summer/early fall the lagoon should be pumped down to the low marker (see Figure 2-1) to allow for winter storage. Every effort should be made to maintain the lagoon close to the minimum liquid level as long as the weather and waste utilization plan will allow it. Waiting until the lagoon has reached its maximum storage capacity before starting to irrigate does not leave room for storing excess water during extended wet periods. Overflow from the lagoon for any reason except a 25-year, 24-hour storm is a violation of state law and subject to penalty action. The routine maintenance of a lagoon involves the following: Maintenance of a vegetative cover for the dam. Fescue or common bermudagrass are the most common vegetative covers. The vegetation should be fertilized each year, if needed, to maintain a vigorous stand. The amount of fertilizer applied should be based on a soils test, but in the event that it is not practical to obtain a soils test each year, the lagoon embankment and surrounding areas should be fertilized with 800 pounds per acre of 10-10-10, or equivalent. Brush and trees on the embankment must be controlled. This may be done by mowing, spraying, grazing, chopping, or a combination of these practices. This should be done at least once a year and possibly twice in years that weather conditions are favorable for heavy vegetative growth- NOTE: If vegetation is controlled by spraying, the herbicide must not be allowed to enter the lagoon water. Such chemicals could harm the bacteria in the lagoon that are treating the waste. Maintenance inspections of the entire lagoon should be made during the initial filling of the lagoon and at least monthly and after major rainfall and storm events. Items to be checked should include, as a minimum, the following: Waste Inlet Pipes, Recycling Pipes, and Overflow Pipes---look for: 1. separation of joints 2. cracks or breaks 3. accumulation of salts or minerals 4, overall condition of pipes -- Lagoon surface---look for: 1. undesirable vegetative growth 2, floating or lodged debris Embankment---look for: 1, settlement, cracking, or "jug" holes 2. side slope stability---slumps or bulges 3. wet or damp areas on the back slope 4. erosion due to lack of vegetation or as a result of wave action 5. rodent damage Larger lagoons may be subject to liner damage due to wave action caused by strong winds. These waves can erode the lagoon sidewalls, thereby weakening the lagoon dam. A good stand of vegetation will reduce the potential damage caused by wave action, If wave action causes serious damage to a lagoon sidewall, baffles in the lagoon may be used to reduce the wave impacts. Any of these features could lead to erosion and weakening of the dam. If your lagoon has any of these features, you should call an appropriate expert familiar with design and construction of waste lagoons. You may need to provide a temporary fix if there is a threat of a waste discharge. However, a permanent solution should be reviewed by the technical expert. Any digging into a lagoon dam with heavy equipment is a serious undertaking with potentially serious consequences and should not be conducted unless recommended by an appropriate technical expert. Transfer Pumps---check for proper operation of: 1. recycling pumps 2. irrigation pumps Check for leaks, loose fittings, and overall pump operation. An unusually loud or grinding noise, or a large amount of vibration, may indicate that the pump is in need or repair or replacement. NOTE: Pumping systems should be inspected and operated frequently enough so that you are not completely "surprised" by equipment failure. You should perform your pumping system maintenance at a time when your lagoon is at its low level. This will allow some safety time should major repairs be required. Having a nearly full lagoon is not the time to think about switching, repairing , or borrowing pumps. Probably, if your lagoon is full, your neighbor's lagoon is full also. You should consider maintaining an inventory of spare parts or pumps. Surface water diversion features are designed to carry all surface drainage waters (such as rainfall runoff, roof drainage, gutter outlets, and parking lot runoff) away from your lagoon and other waste treatment or storage structures. The only water that should be coming from your lagoon is that which comes from your flushing (washing) system pipes and the rainfall that hits the lagoon directly. You should inspect your diversion system for the following: I. adequate vegetation 2, diversion capacity 3. ridge berm height _ Identified problems should be corrected promptly. It is advisable to inspect your system during or immediately following a heavy rain. If technical assistance is needed to determine proper solutions, consult with appropriate experts. You should record the level of the lagoon just prior to when rain is predicted, and then record the level again 4 to 6 hours after the rain (assumes there is no pumping). This will give you an idea of how much your lagoon level will rise with a certain rainfall amount (you must also be recording your rainfall for this to work). Knowing this should help in planning irrigation applications and storage. If your lagoon rises excessively, you may have an inflow problem from a surface water diversion or there may be seepage into the lagoon from the surrounding land. Lagoon Operation Startup: 1. Immediately after construction establish a complete sod cover on bare soil surfaces to avoid erosion. 2. Fill new lagoon design treatment volume at least half full of water before waste loading begins, taking care not to erode lining or bank slopes. 3. Drainpipes into the lagoon should have a flexible pipe extender on the end of the pipe to discharge near the bottom of the lagoon during initial filling or another means of slowing the incoming water to avoid erosion of the lining. 4. When possible, begin loading new lagoons in the spring to maximize bacterial establishment (due to warmer weather). 5. It is recommended that a new lagoon be seeded with sludge from a healthy working swine lagoon in the amount of 0.25 percent of the full lagoon liquid volume. This seeding should occour at least two weeks prior to the addition of wastewater. 6. Maintain a periodic check on the lagoon liquid pH. If the pH falls below 7.0, add agricultural lime at the rate of 1 pound per 1000 cubic feet of lagoon liquid volume until the pH rises above 7.0. Optimum lagoon liquid pH is between 7.5 and 8.0, 7. A dark color, lack of bubbling, and excessive odor signals inadequate biological activity, Consultation with a technical specialist is recommended if these conditions occur for prolonged periods, especially during the warm season. Loading: The more frequently and regularly that wastewater is added to a lagoon, the better the lagoon will function. Flush systems that wash waste into the lagoon several times daily are optimum for treatment. Pit recharge systems, in which one or more buildings are drained and recharged each day, also work well. Practice water conservation—minimize building water usage and spillage from leaking waterers, broken pipes and washdown through proper maintenance and water conservation. Minimize feed wastage and spillage by keeping feeders adjusted. This will reduce the amount of solids entering the lagoon Management: Maintain lagoon liquid level between the permanent storage level and the full temporary storage level. Place visible markers or stakes on the lagoon bank to show the minimum liquid level and the maximum liquid lever (Figure 2-1). Start irrigating at the earliest possible date in the spring based on nutrient requirements and soil moisture so that temporary storage will be maximized for the summer thunderstorm season. Similarly, irrigate in the late summer/early fall to provide maximum lagoon storage for the winter. The lagoon liquid level should never be closer than 1 foot to the lowest point of the dam or embankment. Do not pump the lagoon liquid level lower that the permanent storage level unless you are removing sludge, Locate float pump intakes approximately 18 inches underneath the liquid surface and as far away from the drainpipe inlets as possible. Prevent additions of bedding materials, long-stemmed forage or vegetation, molded feed, plastic syringes, or other foreign materials into the lagoon. Frequently remove solids from catch basins at end of confinement houses or wherever they are installed. Maintain strict vegetation, rodent, and varmint control near lagoon edges. Do not allow trees or large bushes to grow on lagoon dam or embankment. Remove sludge from the lagoon either when the sludge storage capacity is full or before it fills 50 percent of the permanent storage volume. If animal production is to be terminated, the owner is responsible for obtaining and implementing a closure plan to eliminate the possibility of a pollutant discharge. Sludge Removal: Rate of lagoon sludge buildup can be reduced by: proper lagoon sizing, mechanical solids separation of flushed waste, gravity settling of flushed waste solids in an appropriately designed basin, or minimizing feed wastage and spillage. Lagoon sludge that is removed annually rather than stored long term will; have more nutrients, have more odor, and require more land to properly use the nutrients. Removal techniques: Hire a custom applicator. Mix the sludge and lagoon liquid with a chopper-agitator impeller pump through large-bore sprinkler irrigation system onto nearby cropland; and soil incorporate. Dewater the upper part of lagoon by irrigation onto nearby cropland or forageland; mix remaining sludge; pump into liquid sludge applicator; haul and spread onto cropland or forageland; and soil incorporate. Dewater the upper part of lagoon by irrigation onto nearby cropland or forageland; dredge sludge from lagoon with dragline or sludge barge; berm an area beside lagoon to receive the sludge so that liquids can drain back into lagoon; allow sludge to dewater; haul and spread with manure spreader onto cropland or forageland; and soil incorporate. Regardless of the method, you must have the sludge material analyzed for waste constituents just as you would your lagoon water. The sludge will contain different nutrient and metal values from the liquid. The application of the sludge to fields will be limited by these nutrients as well as any previous waste applications to that field and crop requirement. Waste application rates will be discussed in detail in Chapter 3. When removing sludge, you must also pay attention to the liner to prevent damage. Close attention by the pumper or drag-line operator will ensure that the lagoon liner remains intact. If you see soil material or the synthetic liner material being disturbed, you should stop the activity immediately and not resume until you are sure that the sludge can be removed without liner injury. If the liner is damaged it must be repaired as soon as possible. Sludge removed from the lagoon has a much higher phosphorus and heavy metal content than liquid, Because of this it should probably be applied to land with low phosphorus and metal levels, as indicated by a soil test, and incorporated to reduce the chance of erosion. Note that if the sludge is applied to fields with very high soil-test phosphores, it should be applied only at rates equal to the crop removal of phosphorus. As with other wastes, always have your lagoon sludge analyzed for its nutrient value. The application of sludge will increase the amount of odor at the waste application site. Extra precaution should be used to observe the wind direction and other conditions which could increase the concern of neighbors. Possible Causes of Lagoon Failure Lagoon failures result in the unplanned discharge of wastewater from the structure. Types of failures include leakage through the bottom or sides, overtopping, and breach of the dam. Assuming proper design and construction, the owner has the responsibility for ensuring structure safety. Items which may lead to lagoon failures include: Modification of the lagoon structure---an example is the placement of a pipe in the dam without proper design and construction. (Consult an expert in lagoon design before placing any pipes in dams.) Lagoon liquid levels---high levels are a safety risk. Failure to inspect and maintain the dam. Excess surface water flowing into the lagoon. Liner integrity---protect from inlet pipe scouring, damage during sludge removal, or rupture from lowering lagoon liquid level below groundwater table. NOTE: If lagoon water is allowed to overtop the dam, the moving water will soon cause gullies to form in the dam. Once this damage starts, it can quickly cause a large discharge of wastewater and possible dam failure.