Loading...
HomeMy WebLinkAbout20071856 Ver 1_Stormwater Info_20071205 (31)r r . ~ ~ ~ ~ DATE _ - _ • ' • ~ 5-Dec-07 PROJECT NAME tt c~ PROJECT NO ~' ' ~~ Arch Aluminum GX ~ ~ '" ~ O~ ~0 07-024 LOCATION BY ~'~~.;',~..>r,,, ~1•r~~s*~/~ Youngsville, NC BDS Drainage Area, (DA) _ Impervious Area (c=0.95) _ Pervious Area (c=0.35) _ Cc = Permanent Water Quality Pool Impervious = Permanent Pool Depth = SA / DA Ratio = Required Surface Area = Surface Area Provided = Main Pond Volume Provided = Forebay Volume Required = Forebay Volume Provided = Temporary Water Quality Pool Design Storm Rainfall Runoff Coeff. (Rv = 0.05 + 0.009 (% Imperv.)) _ Required Volume (design rainfall)(Rv)(DA) _ Volume Provided = 90% TSS Mountain and Piedmont Region Tahle 1(l-4 7.21 ac 4.13 ac 3.08 ac 0.69 57 3.00 ft 3.36 (from Tbl. 10-4) 10,565 sf 11,390 sf 1,056 cy 28,512 cf (80% of Total) 264 cy 7,128 sf (20% of Total) 232 cy 6,264 cf 34,776 cf (Total Provided) 1.00 in 0.57 in/in 14,801 cf = 548.20 cy 583 cy s,a i na aaa°a Permanent Pool Depth Impervious 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 10 0.90 0.80 0.80 0.70 0.60 0.60 0.50 0.50 0.50 20 1.50 1.30 1.10 1.00 1.00 0.90 0.90 0.90 0.80 3 0 1.90 1.80 1.70 1.50 1.40 1.40 1.30 1.10 1.00 40 2.50 2.30 2.00 1.90 1.80 1.70 1.60 1.60 1.50 50 3.00 2.80 2.50 2.30 2.00 1.90 1.90 1.80 1.70 60 3.50 3.20 2.80 2.70 2.50 2.40 2.20 2.10 1.90 70 4.00 3.70 3.30 3.10 2.80 2.70 2.50 2.40 2.20 80 4.50 4.10 3.80 3.50 3.30 3.00 2.80 2.70 2.60 90 5.00 4.50 4.00 3.80 3.50 3.30 3.00 2.90 2.80 L~ ~fw~ [a~iJ GcNR - WATER QUALITY WETLANDS AtJD STORrdWATER BRANCfi s:11319\00011calcs\07-024 Wet Pond Design.XLS printed: 12l5I2007 12:59 PM Page 1 of 1 ~ ' ' ~ • ~ ~ • • ' DATE f,,Pa-r;;-;;,,;,:-;-;,,<;, ;,-.. - ' • ~ 5-Dec-07 ~~ ~ ~'~~` PROJECT NAME PROJECT NO I Arch Aluminum 07-024 LOCATION BY \`~``v'".''~,^~~ ~?=`-'-'",''' ~ Youngsville, NC BDS Volume (cf) .15,745.32 cf 583.16 cu yds Desired Drawdown Time (hrs) 4.50 days 108.00 hrs 388800 sec Q (Drawdown Rate cfs) (volume/time) 0.0405 cfs Orifice Equation - QCd A (2g(h/3)) where: Q =Discharge (cfs) A =Cross-sectional area of orifice (sf) g =Gravitational Acceleration h =Driving head to the centroid of the orifice Cd =Coefficient of discharge (usually 0.50-0.70) Assumed A: Find h: Assumed Pipe Size (in) 1.50 in A (sf)= 0.01227 sf 0.0405 cfs 32.2 fps 1.32 ft 0.6 Volume of Water Quality Pool .15,745.00 cf Surface Area of Permanent Pool 11,390.00 sf Distance to centroid of Orifice 0.06 ft (based on assumed pipe size) Calculated h 1.32 ft Find A: A=0/Cd (2g(h/3)) A= 0.0127 sf Calculated Pipe Diamater 1.52514 in Therfore Use 1 1/2 in ~~' ~~ ~ ~~ DATE ~S . ir" , ~ • • 5-Dec-07 cr 'i: 1 „i \,. PROJECT NAME PROJECT NO / , Arch Aluminum 07-024 ``~, j LOCATION BY --_,~, ~ ~ e,i~m--~' Youngsville, NC BDS Required Volume: ,~, ., ~ lolxl i ,~ .. .~~-., { ~ -` CI - ~ `~ -:~ ~ r~ Graph ~ Table Interpolation t` Choose Serier and Vlaw Maximum Values - - - - ~~- -- -{ t: l - ~POPJD 1 ~ Max Volume (cu.yd.J: Elev, (ft) I ~` Max Elev. (ft) :Volume (cuyd.J Interpolate User Defined Points... ~ Max Volume (cu.yd.J - 592D.07227 : 435.0000 Elev. (ft) ': f Interpolahon - - __..__-_._ Solve for Calculated Value at ~' Solve for Volurne (cu.yd.J 548.2 Volume (cu.yd.) Calculate '/•' 8otve for Elev. (fl) ~ Interpolated value for 548.2000 Volume [cu.yd.] is: 428.9400d Elev. (ftJ -Order __ '. ~~ Linear Interpolation ' ' t~ Quadratic Interpolation Provided Volume: r:a ...:~... ~...., ~..:m.. ~~~~, ._ Graph) Table Interpolation r Chaose Series and View Maximum Values -- - -"' t' Max Volume(cu.yd.J: Elev: (ftJ ~FOtJD 1 '~, ~` Max Elev: (ftJ: Volume (cu.yd.] Interpolate User Defined Points... ( Max Volume (cu.yd.) = 5920.07227:435.0000 Elev. (ftJ .._Interpolahon -_ __. __.__ . __ _ ._ _ __.. _ ____-- Solve for --- -- Calculated Value of I ~~ <~ Solve for Volume (cu.yd.J j 423 Elev. [ftJ Calculate i C' Solve for Elev. (ftJ ~ Interpolated value for 429.0000 Elev. [ftJ is: 583.16461 Volume (cu.yd.J ~3 Xl -Order ~ - ----_ _-__ __., ! C•' Linear Interpolation E ~~ Quadratic Interpolation _ __ Type.... Vol: Elev-Area Name.... POND 1 Page 1.01 File.... C:\ SITE-CIVIL\ Active Projects\2007\07-024 (Arch Aluminum and Glass)\Pond Pack\A Elevation Planimeter Area Al+A2+sgr(A1*A2) Volume Volume Sum (ft) - --- (sq.in) (sq.ft) --------------------- (sq.ft) ---------------- (cu.yd.) ---------- (cu.yd.) ------------- ------- - 429.00 ----- 4911 0 .00 .00 425.00 ----- 6045 16405 202.53 202.53 426.00 ----- 6911 19420 239.75 492.27 427.00 ----- 7988 22329 275.67 717.94 427.50 ----- 8387 24560 151.61 869.54 428.00 ----- 11390 29551 182.41 1051.96 POND VOLUME EQUATIONS * Incremental volume computed by the Conic Method for Reservoir Volumes. Volume = (1 /3) * (EL2-EL1) * (Areal + Areal + sq.rt.(Areal*Area2)) where: EL1, EL2 = Lower and upper elevations of the increment Areal,Area2 =Areas computed for EL1, EL2, respectively Volume = Incremental volume between EL1 and EL2 S/N: FEYXYWJ8TX2A CPS Engineers PA Bentley PondPack (10.00.023.00) 12:31 PM 12/5/2007 ' ~ ~ ~ DATE DESIGN PHASE ~ 12-5-07 SD / / PROJECT NAME PROJECT NO DD / / Arch Aluminum 07-024 CD / x / LOCATION BY REV / / Youn sville, NC CSB OTHER / / CHECKED BY (SPECIFY) BS LINED CHANNEL -PERMISSIBLE VELOCITY & CAPACITY Channel No: 4 Grass Swale Drainage Area: 1.37 ac Sta from: Design Fequency: 10 yrs Sta to: Time of Conc: 5 min Section Length: 220 ft Intensity: 7.19 in/hr Section Slope: 0.10 % Runoff Coeff: 0.61 Ret Class: C Discharge: 6.02 cfs Permissible Velocity: 4.50 fps Allowable Depth: 1.20 ft Swale sizing method done by manipulation of Manning's Equation to find the depth of flow that matches the known flow conditions. Performed by trial and error. INPUT DATA Qp = 6.02 cfs flow by Rational Method n = 0.03>Grass Manning's Coefficient (dimensionless) S = 0.001 ft/ft longitudinal slope (ft of fall per ft of run) Zreq = 3.83 quantity to equate to Zav M = 5:1 side slo a of channel ft of run : 1 ft of rise NORMAL DEPTH AND VELOCITY B D A P R Zav Remark 6 ' 0.65 6.01 12.63 0.48 3.67 shallow 6 0.63 5.76 12.42 0.46 3.45 shallow 6 0.64 5.89 12.53 0.47 3.56 shallow 6 0.67 6.26 12.83 0.49 3.88 OK B = bottom width of trapezoidal channel D = normal depth of flow Zav = Zreq A = cross-sectional area of flow zr~ Qn A R P = wetted perimeter of the channel = 149 R = hydraulic radius of the channel Normal Depth, D = 0.67 ft Depth O.K. Velocit = 0.96 f s Vel. O.K. SHEAR STRESS T = yds =shear stress in Ib/sq-ft Y = unit weight of water, 62.4 Ib/cu-ft D = normal depth of flow in ft S =longitudinal slope in ft/ft shear stress, T = 0.04 Ib/s -ft FINAL CHANNEL LINING DIMENSIONS B = 6 ft side slopes, M = 5 :1 D = 1.2 ft top width, W = 18.0 ft Permanent Channel Lining: Grass (REF: Malcom, 1991) ' ~ ~ ~ DATE DESIGN PHASE ~ 12-5-07 SD / / PROJECT NAME PROJECT NO DD / / Arch Aluminum 07-024 CD / X / LOCATION BY REV / / Youn sville, NC CSB OTHER / / CHECKED BY (SPECIFY) BS TEMPORARY CHANNEL LINNING -PERMISSIBLE SHEAR Channel No: 4 Grass Swale Drainage Area: 1.37 ac Sta from: Design Fequency: 2 yrs Sta to: Time of Conc: 5 min Section Length: 220 ft Intensity: 5.22 in/hr Section Slope: 0.10 % Runoff Coeff: 0.61 Lining Type: Straw w/ Tack Discharge: 4.37 cfs Permissible Shear: 0.35 Ib/sf Channel Depth: 2.00 ft Swale sizing method done by manipulation of Manning's Equation to find the depth of flow that matches the known flow conditions. Performed by trial and error. INPUT DATA Qp = 4.37 cfs flow by Rational Method n = 0.022 Manning's Coefficient (dimensionless) S = 0.001 ft/ft longitudinal slope (ft of fall per ft of run) Zreq = 2.042 quantity to equate to Zav M = 5:1 side slo a of channel ft of run : 1 ft of rise NORMAL DEPTH AND VELOCITY B D A P R Zav Remark 6 0.48. 4.03 10.90 0.37 2.078 deep 6 0.49 4.14 11.00 0.38 2.159 deep 6 0.47 3.92 10.79 0.36 1.999 shallow 6 0.48 4.03 10.90 0.37 2.078 OK B = bottom width of trapezoidal channel D = normal depth of flow Zav = Zreq A = cross-sectional area of flow ~ zr~ n = P = wetted perimeter of the channel A R R = hydraulic radius of the channel 1.44 Normal Depth, D = 0.48 ft Velocit = 1.08 f s SHEAR STRESS T = yds =shear stress in Ib/sq-ft Y = unit weight of water, 62.4 Ib/cu-ft D = normal depth of flow in ft S =longitudinal slope in ft/ft shear stress, T = 0.03 Ib/s -ft Tem Liner O.K. FINAL CHANNEL LINING DIMENSIONS B= E ft side slopes, M= 5 :1 D = 1 ft top width, W = 16.0 ft Line Channel with: Straw w/ Tack (REF: Malcom, 1991) ' ' ~ DATE DESIGN PHASE ~ 12-5-07 SD / / PROJECT NAME PROJECT NO DD / / Arch Aluminum 07-024 CD / X / LOCATION BY REV / / Youn sville, NC CSB OTHER / / CHECKED BY (SPECIFY) BS LINED CHANNEL -PERMISSIBLE VELOCITY & CAPACITY Channel No; 5 Grass Swale Drainage Area: PP ac Sta from: Design Fequency: 10 yrs Sta to: Time of Conc: min Section Length: 152 ft Intensity: in/hr Section Slope: 0.20 % Runoff Coeff: Ret Class: C Discharge: 2.55 cfs Permissible Velocity: 4.50 fps Discharge from Pond Pack Report Allowable Depth: 1.20 ft Swale sizing method done by manipulation of Manning's Equation to find the depth of flow that matches the known flow conditions. Performed by trial and error. INPUT DATA Qp = 2.55 cfs flow by Rational Method n = 0..03 Grass Manning's Coefficient (dimensionless) S = 0.002 ft/ft longitudinal slope (ft of fall per ft of run) Zreq = 1.15 quantity to equate to Zav M = 5:1 side slo a of channel ft of run : 1 ft of rise NORMAL DEPTH AND VELOCITY B D A P R Zav Remark 2 0.55 2.61 7.61 0.34 1.28 deep 2 0.54 2.54 7.51 0.34 1.23 deep 2 0.53 2.46 7.40 0.33 1.18 deep 2 0.53' ' 2.46 7.40 0.33 1.18 OK B = bottom width of trapezoidal channel D = normal depth of flow Zav = Zreq A = cross-sectional area of flow ~ n zr~ = P = wetted perimeter of the channel A R 1 4~ ~ . R = hydraulic radius of the channel Normal Depth, D = 0.53 ft Depth O.K. Velocit = 1.03 f s Vel. O.K. SHEAR STRESS T = yds =shear stress in Ib/sq-ft Y = unit weight of water, 62.4 Ib/cu-ft D = normal depth of flow in ft S =longitudinal slope in ft/ft shear stress, T = 0.07 Ib/s -ft FINAL CHANNEL LINING DIMENSIONS B = 2 ft side slopes, M = 5 :1 D = 1.2 ft top width, W = 14.0 ft Permanent Channel Lining: Grass (REF: Malcom, 1991) ' ~ ~ ~ DATE DESIGN PHASE ~ 12-5-07 SD / / PROJECT NAME PROJECT NO DD / / Arch Aluminum 07-024 CD / x / LOCATION BY REV / / Youn sville, NC CSB OTHER / / CHECKED BY (SPECIFY) BS TEMPORARY CHANNEL LINNING -PERMISSIBLE SHEAR Channel No: 5 Grass Swale Drainage Area: PP ac Sta from: Design Fequency: 2 yrs Sta to: Time of Conc: min Section Length: 152 ft Intensity: in/hr Section Slope: 0.20 % Runoff Coeff: Lining Type: Straww/.Tack Discharge: 0.20 cfs Permissible Shear: 0.35 Ib/sf Discharge from Pond Pack Report Channel Depth: 2.00 ft Swale sizing method done by manipulation of Manning's Equation to find the depth of flow that matches the known flow conditions. Performed by trial and error. INPUT DATA Qp = 0.20 cfs flow by Rational Method n = 0.022 Manning's Coefficient (dimensionless) S = 0.002 ft/ft longitudinal slope (ft of fall per ft of run) Zreq = 0.066 quantity to equate to Zav M = 5:1 side slo a of channel ft of run : 1 ft of rise NORMAL DEPTH AND VELOCITY B D A P R Zav Remark 2 0.10 0.25 3.02 0.08 0.047 shallow 2 0.12 0.31 3.22 0.10 0.066 shallow 2 0.11 0.28 3.12 0.09 0.056 shallow 2 0.12 0.31 3.22 0.10 0.066 OK B = bottom width of trapezoidal channel D = normal depth of flow Zav =Zreq A = cross-sectional area of flow ~ 2r~ n = P = wetted perimeter of the channel A R 1 49 . R = hydraulic radius of the channel Normal Depth, D = 0.12 ft Velocit = 0.64 f s SHEAR STRESS T = yds =shear stress in Ib/sq-ft Y = unit weight of water, 62.4 Ib/cu-ft D = normal depth of flow in ft S =longitudinal slope in ft/ft shear stress, T = 0.01 Ib/s -ft Tem Liner O.K. FINAL CHANNEL LINING DIMENSIONS B = 2 ft side slopes, M = 5 :1 D = 1 ft top width, W = 12.0 ft Line Channel with: Straw w/ Tack (REF: Malcom, 1991) PROJECT NAME Arch Aluminum Younasvi-le. NC Culvert No: Culvert Diameter: Culvert Material: Entrance Type Shoulder Elevation: HW Control Elev: Upper Invert: Lower Invert: Culvert Length: Culvert Slope: Tailwater Elevation Basin outlet FES-3 18in ~~ KC: F' FES 433.00 433.00 425.00 ...424.20 74 ft 0.010811 ft/ft 425.40 Outlet Protection Q25 = 10.73 cfs Qfull = 10.94 cfs Vfull = 6.19 fps From Fig. 8.06.b.1: From Fig. 8.06.b.2: ~~;_h .~>< ~, '~ - ~;~~ 3 ~e~ath Zone D50 DMAX Riprap Class Apron Thickness Apron Length Apron Width = 3xDia DATE 12/5/2007 PROJECT NO 07-024 BY BMP Drainage Area: ac Design Frequency: 10 yrs Time of Conc: min Intensity: in/hr Runoff Coeff: Discharge:` 10.73 cfs *NOTE: Discharge from PondPack run using TR-55 method Oz5/Qfull = 0.98 V/Vfull = 1.14 V = 7.05 fps _ 1 = 4 in = 6 in = A = 12 in = 6.0 ft = 4.5 ft CPS Engineers, P.A. LATEST REVISION: 12/5/2007 12:32 PM PAGE 1 OF 2 Appendices L'~s1 Cr~i G4~n/.~.~tL ~~ NEW YORK DOT DISSIPATOR METHOD FOR USE IN DEFINED CHANNELS (Sounre: "Bank and channel lining procedures", New Yodc Department of Transportation, Division of Design and Consttvction, 1971.) Note: To use the following chart you must know: (i) Q fait capacity (2) Qro (3) V full {4) Yto where Q =discharge in cfs and V =Velocity in FPS. ESTIMATION OF STONE SIZE AND DIMENSIONS FOR CULYERT APRONS C`at' ~,p_ Step i) Compute [low velocity Vo at culvert or paved channel outlet. Step 2) Far pipe culvens Do is diameter. For pipe arch, arch and box culverts, and paved channel outlets, Do=Ao, where A.= cross-sectional area of flow at outlet For multiple culverts, use Do=I.25xDo of single culvert. Step 3) For apron grades of 109a or steeper, use recommendations Far next higher zone. (Zones 1 through 6). ~ ~ LL_ ~_U O W t •6 !p i5 7 5 0 ~ 2 3 4 . 5 ' ' ~ D ~ ~ w, :[ ~~ a s w• ts• 20• zs• t)WME7ER (Ft.) 1=tgure 8.06.b.1 tom. tzis3 8.06.5