Loading...
HomeMy WebLinkAboutNC0085871_Fact Sheet_20240312 DEQ/DWR/NPDES FACT SHEET FOR NPDES PERMIT RENEWAL PERMIT NC0085871 Table 1 - Facility Information Applicant/Facility Flakt Product, Inc. /Former Flakt Products Site Name: Applicant Address: 131 Pheonix Crossing, Bloomfield, Connecticut 06002 Keith Knauerhase, Chief Counsel,ABB, Inc. Vance Litz, Environmental Project Leader[vance.litz@us.abb.com] Facility Contacts: 45 Griffin Road,Bloomfield,CT 06022 Joe Deatherage, Lead Consultant—Environmental Engineer, WSP USA,2030 Falling Waters Road, Suite 300,Knoxville, TN 37922 oe.deathera e ws .com ; Mobil: 865-414-0351 Facility Address: 2000 Lowery Street; Winston-Salem,NC 27101 Permitted Flow: 0.0864 MGD Type of Waste: Groundwater-remediated to remove chlorinated solvents Facility/Permit Status: WPCS Class PC-I/Renewal - Dormant discharge, sampling and repo in waved 04Au 2017 County: Fors th County Miscellaneous Receiving Stream: Brushy Fork I Stream Class: C Drainage Basin Yadkin Pee-Dee (Upper Yadkin Hydrological Unit: 03-07-04 Index No.: 12-94-12-6 Drainage Area (mil : 7.3 HUC: 03040101 Summer 7Q 10 cfs : 2.9 303 d Listed? No Winter 7Q10 cfs : - Regional Office: Winston-Salem 30Q2 (cfs): - USGS Quad: Winston-Salem East Average Flow cfs : - Permit Writer: Joe R. Corporon, P.G. IWC (%): 4.5% Date: Updated 12Mar2024 Background --Flakt Products Inc. (Flakt)manufacturing plant ceased operations in 1986. A subsequent site assessment indicated soil and groundwater contamination likely resulting from metal fabrication activities employing solvent degreasing baths, an above ground storage tank (7,000 gallons), and other sources. Soil remediation began in January 1993 and ceased once volatile organic compounds (VOCs) concentrations dropped below established target levels. In January 1997, the Division issued an NPDES permit for proposed groundwater-treatment and discharge. The Permittee was permitted to discharge to Brushy Fork at a flow rate not to exceed 0.0288 MGD. DWR approved an Authorization to Construct(ATC), and after receiving the Permittee's Engineer's Certification (November 1997), discharge commenced in July 1998. In March 2016, an influent scan for Volatile Organic Compounds (VOCs) detected the following: Table 2: Initial Influent VOCs Detected Compounds UoM Concentration 1,1,1-tichloroethane /L 40.8 1,1-dichloroethane /L 9.00 1,1-dichloroethene /L 219 1,2-dichloroethane /L 4.60 Chloroform /L 1.64 Trichloroethene /L 45.6 Trichlorofluoromethane /L 1.57 Fact Sheet for Renewal-NPDES NC0085871 Page 1 of 7 Treatment facilities consisted of: • 60 initial extraction wells, [later reduced to 7 extraction wells] • an equalization tank, • air stripper, • chemical feed system (iron sequestering-citric acid) • flow meter • bag filter and/or activated carbon filter [optional] NOTE: Bag filter and activated-carbon filter were subsequently judged"not required,"therefore never installed. DWR modified the permit in 1998 to expand the permitted flow to its current limit of 0.0864 MGD. Later in 2000, the Division reduced the monitoring frequencies to current levels of Quarterly based on"no detects." The permit was renewed in June 2009 to remove monitoring for metals based on the absence of reasonable potential [MAX predicted or non-detect value less than 50% of the standard/EPA criteria]. In August 2017, DWR granted a Waiver of Monthly Reporting although the Permittee continues to pay annual permit fees. Receiving Stream -- This facility discharges to Brushy Fork, currently a Class C stream, within the Upper Yadkin, Yadkin-Pee Dee River Basin. Brushy Fork has a summer 7Q 10 flow of 2.9 cfs [defined in 1997] and it joins Salem Creek downstream approximately 1,500 ft. Brushy Fork is not listed as impaired [303 (d) list]. Compliance-BIMS lists no permit limit violations or civil penalties for this permit. Whole Effluent Toxicity(WET) testing [Chronic, Ceriodaphnia at 4.5% effluent concentration] consistently passed and monitoring will continue Quarterly for this renewal. WSRO complimented the facility's operation and maintenance [Compliance Inspection Report, 2016]. Data Evaluation -When active, this facility discharged"intermittently"ranging from 11 to 21 consecutive days in a given month. Because there have been no discharges since 2017, this permit renewal will reflect the previous permit's parameters of concern. Table 3: DMR Data Summary [Jan2009 to Jun2017] Parameter UoM Average Maximum Minimum Count ( Flow, MGD MGD 0.021 0.207 < 0.000003 1,441 TSS m /L 1.56 6.53 < 1 32 Benzene /L No Detects < 1 33 Carbon tetrachloride /L No Detects < 1 33 Chloroform /L No Detects < 1 33 1,1-dichloroethene /L 1.16 3.54 1 33 33 1,2-dichloroethane /L No Detects < 1 33 Methylene chloride /L No Detects < 5 33 Trichloroethene /L No Detects < 1 33 Tetrachloroethene /L No Detects < 1 33 1,1,2,2-tetrachloroethane /L No Detects < 1 33 1,1,2-trichloroethane µg/L No Detects < 1 33 Fact Sheet for Renewal-NPDES NC0085871 Page 2 of 7 Renewal Summary: 1. No changes to parameters of concern (POC). 2. RPA suggests we discontinue monitoring for some parameters intermittently detected. Instead, DWR judges it prudent to reduce monitoring from Quarterly to Annually [best professional judgment(BPJ)] as these remain contaminants of concern (COCs). 3. Effluent vs. receiving stream IWC confirmed at 4.5 % (see attached WLA). 4. Added Monthly Average limit for TSS [both limits required by EPA] 5. Updated WET text [section A. (2.)] 6. Updated Special Condition for eDMR compliance [section A. (3.)]. Proposed Permit Issuance Schedule Draft Permit to Public Notice January 4, 2024 Submittal for signature March 12, 2024 Permit Scheduled to Issue (Tentative) March 22, 2024 Effective Date (Tentative) May 1, 2024 Note: permit issuance was delayed due to State signatory authorization issues. NPDES Division Contact If you have questions regarding any of the above information or on the attached permit, please contact Joe R. Corporon P.G. [joe.corporon@deq.nc.gov]. NAME: DATE: Updated 12Mar2024 NPDES Im 1 mentatio of Instream Dissolved Metals Standards—Freshwater Standards The NC 2007 2015 Wat&Quality Standard(WQS) Triennial Review was approved by the NC Environmental Management Commission(EMC) on November 13, 2014. The US EPA subsequently approved the WQS revisions on April 6, 2016,with some exceptions. Therefore, metal limits in draft permits out to public notice after April 6, 2016 must be calculated to protect the new standards - as approved. Table 1. NC Dissolved Metals Water Quality Standards/Aquatic Life Protection Parameter Acute FW, µg/1 Chronic FW, Acute SW, µg/l Chronic SW, (Dissolved) µg/1 (Dissolved) µg/1 (Dissolved) (Dissolved) Arsenic 340 150 69 36 Beryllium 65 6.5 --- --- Cadmium Calculation Calculation 40 8.8 Chromium III Calculation Calculation --- --- Chromium VI 16 11 1100 50 Fact Sheet for Renewal-NPDES NC0085871 Page 3 of 7 Copper Calculation Calculation 4.8 3.1 Lead Calculation Calculation 210 8.1 Nickel Calculation Calculation 74 8.2 Silver Calculation 0.06 1.9 0.1 Zinc Calculation Calculation 90 81 Table 1 Notes: 1. FW=Freshwater, SW= Saltwater 2. Calculation=Hardness dependent standard 3. Only the aquatic life standards listed above are expressed in dissolved form. Aquatic life standards for Mercury and selenium are still expressed as Total Recoverable Metals due to bioaccumulative concerns (as are all human health standards for all metals). It is still necessary to evaluate total recoverable aquatic life and human health standards listed in 15A NCAC 213.0200 (e.g., arsenic at 10 µg/1 for human health protection; cyanide at 5 µg/L and fluoride at 1.8 mg/L for aquatic life protection). Table 2. Dissolved Freshwater Standards for Hardness-Dependent Metals The Water Effects Ratio (WER) is equal to one unless determined otherwise under 15A NCAC 02B .0211 Subparagraph (11)(d) Metal NC Dissolved Standard, /l Cadmium, Acute WER*{1.136672-[ln hardness](0.041838)} e^{0.9151 [In hardness]-3.14851 Cadmium, Acute Trout WER*{1.136672-[ln hardness](0.041838)} eA10.9151[In waters hardness]-3.623 61 Cadmium, Chronic WER*{1.101672-[In hardness](0.041838)} eA10.7998[ln hardness]-4.4451} Chromium III, Acute WER*0.316 • e^{0.8190[ln hardness]+3.7256} Chromium III, Chronic WER*0.860 eAtO.8190[ln hardness]+0.6848} Copper, Acute WER*0.960 eAtO.9422[ln hardness]-1.7001 Copper, Chronic WER*0.960 e^{0.8545[ln hardness]-1.7021 Lead, Acute WER*{1.46203-[ln hardness](0.145712)} • e^{1.273[ln hardness]- 1.460} Lead, Chronic WER*{1.46203-[ln hardness](0.145712)} • eAl1.273[ln hardness]- 4.705} Nickel, Acute WER*0.998 e^{0.8460[ln hardness]+2.255} Nickel, Chronic WER*0.997 e^{0.8460[ln hardness]+0.0584} Silver, Acute WER*0.85 • e All.72[ln hardness]-6.59} Silver, Chronic Not applicable Zinc, Acute WER*0.978 e^{0.8473[ln hardness]+0.884} Zinc, Chronic WER*0.986 eA10.8473[ln hardness]+0.884} Fact Sheet for Renewal-NPDES NC0085871 Page 4 of 7 General Information on the Reasonable Potential Analysis (RPA) The RPA process itself did not change as the result of the new metals standards. However, application of the dissolved and hardness-dependent standards requires additional consideration in order to establish the numeric standard for each metal of concern of each individual discharge. The hardness-based standards require some knowledge of the effluent and instream(upstream) hardness and so must be calculated case-by-case for each discharge. Metals limits must be expressed as `total recoverable' metals in accordance with 40 CFR 122.45(c). The discharge-specific standards must be converted to the equivalent total values for use in the RPA calculations. We will generally rely on default translator values developed for each metal (more on that below), but it is also possible to consider case-specific translators developed in accordance with established methodology. RPA Permitting Guidance/WQBELs for Hardness-Dependent Metals -Freshwater The RPA is designed to predict the maximum likely effluent concentrations for each metal of concern,based on recent effluent data, and calculate the allowable effluent concentrations,based on applicable standards and the critical low-flow values for the receiving stream. If the maximum predicted value is greater than the maximum allowed value (chronic or acute), the discharge has reasonable potential to exceed the standard, which warrants a permit limit in most cases. If monitoring for a particular pollutant indicates that the pollutant is not present (i.e. consistently below detection level), then the Division may remove the monitoring requirement in the reissued permit. 1. To perform an RPA on the Freshwater hardness-dependent metals the Permit Writer compiles the following information: • Critical low flow of the receiving stream, 7Q 10 (the spreadsheet automatically calculates the 1 Q 10 using the formula 1 Q 10= 0.843 (s7Q 10, cfs) 0.993 • Effluent hardness and upstream hardness, site-specific data is preferred • Permitted flow • Receiving stream classification 2. In order to establish the numeric standard for each hardness-dependent metal of concern and for each individual discharge, the Permit Writer must first determine what effluent and instream(upstream) hardness values to use in the equations. The permit writer reviews DMR's, Effluent Pollutant Scans, and Toxicity Test results for any hardness data and contacts the Permittee to see if any additional data is available for instream hardness values,upstream of the discharge. If no hardness data is available, the permit writer may choose to do an initial evaluation using a default hardness of 25 mg/L (CaCO3 or(Ca+Mg)). Minimum and maximum limits on the hardness value used for water quality calculations are 25 mg/L and 400 mg/L, respectively. If the use of a default hardness value results in a hardness-dependent metal showing reasonable potential, the permit writer contacts the Permittee and requests 5 site-specific effluent and upstream hardness samples over a period of one week. The RPA is rerun using the new data. Fact Sheet for Renewal-NPDES NC0085871 Page 5 of 7 The overall hardness value used in the water quality calculations is calculated as follows: Combined Hardness (chronic) = (Permitted Flow, cfs *Avg.Effluent Hardness,mg/L)+(s7Q10, cfs *Avg. Upstream Hardness,mg/L) (Permitted Flow, cfs+s7Q10,cfs) The Combined Hardness for acute is the same but the calculation uses the IQ 10 flow. 3. The permit writer converts the numeric standard for each metal of concern to a total recoverable metal, using the EPA Default Partition Coefficients (DPCs) or site-specific translators, if any have been developed using federally approved methodology. EPA default partition coefficients or the "Fraction Dissolved" converts the value for dissolved metal at laboratory conditions to total recoverable metal at in-stream ambient conditions. This factor is calculated using the linear partition coefficients found in The Metals Translator: Guidance for Calculating a Total Recoverable Permit Limit from a Dissolved Criterion (EPA 823-B-96-007, June 1996) and the equation: Cdiss = I Ctotal 1 + { [Kpo] [ss(i+a)] p of i 4. The Where: ss =in-stream suspended solids concentration [mg/1], minimum of 10 mg/L used, and Kpo and a =constants that express the equilibrium relationship between dissolved and adsorbed forms of metals. A list of constants used for each hardness-dependent metal can also be found in the RPA program under a numeric standard for each metal of concern is divided by the default partition coefficient (or site-specific translator)to obtain a Total Recoverable Metal at ambient conditions. In some cases, where an EPA default partition coefficient translator does not exist(ie. silver), the dissolved numeric standard for each metal of concern is divided by the EPA conversion factor to obtain a Total Recoverable Metal at ambient conditions. This method presumes that the metal is dissolved to the same extent as it was during EPA's criteria development for metals. For more information on conversion factors see the June, 1996 EPA Translator Guidance Document. 5. The RPA spreadsheet uses a mass balance equation to determine the total allowable concentration(permit limits) for each pollutant using the following equation: Ca= (s7Q10+ Qw) (Cwgs)—(s7Q10) (Cb) Qw Where: Ca=allowable effluent concentration (µg/L or mg/L) Cwqs =NC Water Quality Standard or federal criteria(µg/L or mg/L) Cb=background concentration: assume zero for all toxicants except NH3* (µg/L or mg/L) Qw=permitted effluent flow (cfs, match s7Q 10) s7Q10= summer low flow used to protect aquatic life from chronic toxicity and human health through the consumption of water, fish, and shellfish from noncarcinogens (cfs) Fact Sheet for Renewal-NPDES NCO085871 Page 6 of 7 * Discussions are on-going with EPA on how best to address background concentrations Flows other than s7Q10 may be incorporated as applicable: IQ 10 =used in the equation to protect aquatic life from acute toxicity QA=used in the equation to protect human health through the consumption of water, fish, and shellfish from carcinogens 30Q2 =used in the equation to protect aesthetic quality 6. The permit writer enters the most recent 2-3 years of effluent data for each pollutant of concern. Data entered must have been taken within four and one-half years prior to the date of the permit application (40 CFR 122.21). The RPA spreadsheet estimates the 95th percentile upper concentration of each pollutant. The Predicted Max concentrations are compared to the Total allowable concentrations to determine if a permit limit is necessary. If the predicted max exceeds the acute or chronic Total allowable concentrations, the discharge is considered to show reasonable potential to violate the water quality standard, and a permit limit(Total allowable concentration) is included in the permit in accordance with the U.S. EPA Technical Support Document for Water Quality-Based Toxics Control published in 1991. 7. When appropriate,permit writers develop facility specific compliance schedules in accordance with the EPA Headquarters Memo dated May 10, 2007 from James Hanlon to Alexis Strauss on 40 CFR 122.47 Compliance Schedule Requirements. 8. The Total Chromium NC WQS was removed and replaced with trivalent chromium and hexavalent chromium Water Quality Standards. As a cost savings measure, total chromium data results may be used as a conservative surrogate in cases where there are no analytical results based on chromium III or VI. In these cases, the projected maximum concentration(95th%) for total chromium will be compared against water quality standards for chromium III and chromium VI. 9. Effluent hardness sampling and instream hardness sampling, upstream of the discharge, are inserted into all permits with facilities monitoring for hardness-dependent metals to ensure the accuracy of the permit limits and to build a more robust hardness dataset. 10. Hardness and flow values used in the Reasonable Potential Analysis for this permit included: Parameter Value Comments (Data Source) Average Effluent Hardness (mg/L) Metals monitoring not [Total as, CaCO3 or(Ca+Mg)] required Average Upstream Hardness (mg/L) [Total as, CaCO3 or(Ca+Mg)] 7Q10 summer(cfs) 2.9 IWC 4.5 % 1 Q 10 (cfs) 2.43 Permitted Flow (MGD) 0.0864 Fact Sheet for Renewal-NPDES NC0085871 Page 7 of 7