Loading...
HomeMy WebLinkAbout310560_Permit Renewal Application 2019_20190410...MM.. US 1\V+ l+! �..H■ V!!!!H Department of Environmental Quality Division of Water Resources Animal Waste Management Systems Request for Certification of Coverage Facility Currently covered by an Expiring Sate Non -Discharge General Permit On September 30, 2019, the North Carolina State Non -Discharge General Permits for Animal Waste Management Systems will expire. As required by these permits, facilities that have been issued Certificates of Coverage to operate under these State Non -Discharge General Permits must apply for renewal at least 180 days prior to their expiration date. Therefore, all applications must be received by the Division of Water Resources by no later than April 3, 2019. Please do not leave any question unanswered. Please verify all information and make any necessary corrections below. Application must be signed and dated by the Per,nittee. 1. Farm Number: 31-0560 Certificate Of Coverage Number: AWS310560 2. Facility Name: Dail Farms Inc 3. Landowner's Name (same as on the Waste Management Plan): Dail Farms Inc ? /l/] a,,,r f) Phr.11,/s, LL 4. Landowner's Mailing Address: 1484 Summerlins Crosroads Rd 901 WQ oil Qray Y City: Mount Olive } 1-✓4/2-4 ,! State: NC Zip: 28365 2d'-5'41d Telephone Number: 919-618=1006 Ext. 1(0 , 2-49. OW 5. Facility's Physical Address: 203 Kelly Rd City: Mount Olive 6. County where Facility is located: Duplin 7. Farm Manager's Name (if different from Landowner): 8. Farm Manager's telephone number (include area code): 9. Integrator's Name (if there is not an Integrator, write�""None"): 10. Operator Name (OIC): Danny T. Cooper !r tn}(2-Mf{k 1, 11. Lessee's Name (if there is not a Lessee, write "None"): 12. Indicate animal operation type and number: Current Permit: Operation Types: ►EN- �' l2 3 f ear><A Lr viL 4,'t State: NC Zip: 28365 Danny .Cooper +- Mrt)t4if ,1 pk///Ps 919-658-4906 Ext. Alt 0. 2 4 0.0 1 1 1 Murphy -Brown LLC Phone No.: 919-658-1006 g/o, 2 qe. Operations Type Allowable Count Swine - Farrow to Wean 1,200 OIC #: 17186 ap71 k Swine Cattle Dry Poultry Other Types Wean to Finish Dairy Calf Non Laying Chickens Horses - Horses Wean to Feeder Dairy Hcifcr Laying Chickens Horses - Other Farrow to Finish Milk Cow Pullets Sheep - Sheep Feeder to Finish Dry Cow Turkeys Sheep - Other Farrow to Wean Beef Stocker Calf Turkey Pullet Farrow to Feeder Beef Feeder Boar/Stud Beef Broad Cow Wet Poultry Gilts Other Non Laying Pullet Other Layers bJL F4A s, ) N c-- 13: Waste Treatment and Storage Lagoons (Verify the following information is accurate and complete. Make all necessary corrections and provide missing data.) Structure Name Estimated Date Liner Type (Clay, Synthetic, Unknown) Capacity (Cubic Feet) Estimated Surface Area (Square Feet) Design Freeboard "Redline" (Inches) l /Built %/ , / 7� dl- ' (/4,- 78464690 /Q�/ 5.5-0 19.50 fay, 4145it Mail one (1) copy of the Certified Animal Waste Management Plan (CAWMP) with this completed and signed application as required by NC General Statutes 143-215.10C(d) to the address below. The CAWMP must include the following components: 1. The most recent Waste Utilization Plan (WUP), signed by the owner and a certified technical specialist containing: a. The method by which waste is applied to the disposal fields (e.g. irrigation, injection, etc.) b. A map of every field used for land application (for example: irrigation map) c. The soil series present on every land application field d. The crops grown on every land application field e. The Realistic Yield Expectation (RYE) for every crop shown in the WUP f. The maximum PAN to be applied to every land application field g. The waste application windows for every crop utilized in the WUP h. The required NRCS Standard specifications 2. A site map/schematic 3. Emergency Action Plan • 4. Insect Control Checklist with chosen best management practices noted 5. Odor Control Checklist with chosen best management practices noted 6. Mortality Control Checklist with selected method noted - Use the enclosed updated Mortality Control Checklist 7. Lagoon/storage pond capacity documentation (design, calculations, etc.) Please be sure the above table is accurate and complete. Also provide any site evaluations, wetland determinations, or hazard classifications that may be applicable to your facility. 8. Operation and Maintenance Plan If your CAWMP includes any components not shown on this list, please include the additional components with your submittal. (e.g. composting, digesters, waste transfers, etc.) As a second option to mailing paper copies of the application package, you can scan and email one signed copy of the application and all the CAWMP items above to: 2019PermitRenewal@ncdenr.gov 1 attest that this application has been reviewed by me and is accurate and complete to the best of my knowledge. I understand that, if all required parts of this application are not completed and that if all required supporting information and attachments are not included, this application package will be returned to me as incomplete. Note: In accordance with NC General Statutes I43-215.6A and 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any application may be subject to civil penalties up to $25,000 per violation. (18 U.S.C. Section 1001 provides a punishment by a fine of not more than $10,000 or imprisonment of not more than 5 years, or both for a similar offense.) Printed Name of Signing Official (Landowner, or if multiple Landowners all landowners should sign. If Landowner is a corporation, signature should be by a principal�executive officer of the corporation):� Name: fl%(2Jbi4L.. C/ �A/'*' Title: 04/41 v�'L?1i Signat / Date: 3, 2- Name: Title: Signature: Date: Name: Title: Signature: Date: THE COMPLETED APPLICATION SHOULD BE SENT TO THE FOLLOWING ADDRESS: NCDEQ-DWR Animal Feeding Operations Program 1636 Mail Service Center Raleigh, North Carolina 27699-1636 Telephone number: (919) 707-9100 E-mail: 2019PermitRenewal@ncdenr.gov Murphy -Brown, LLC 3/7/2019 NUTRIENT UTILIZATION PLAN 2822 Hwy 24 West P.O. Box 856 Warsaw, NC 28398 Grower(s): M And A Phillips, LLC Farm Name: Dail Farms, Inc Facility 31-560 County: Duplin Permit Capacity: Farrow to Wean Farrow to Feeder Farrow to Finish Wean to Feeder Wean to Finish Feeder to Finish Gilts Boars L 4518 Storage Structure: Storage Period: Application Method: Anaerobic Lagoon >180 days Irrigation The waste from your animal facility must be land applied at a specified rate to prevent pollution of surface water and/or groundwater. The plant nutrients in the animal waste should be used to reduce the amount of commercial fertilizer required for the crops in the fields where the waste is to be applied. This waste utilization plan uses nitrogen as the limiting nutrient. Waste should be analyzed before each application cycle. Annual soil tests are strongly encouraged so that all plant nutrients can be balanced for realistic yields of the crop to be grown. Several factors are important in implementing your waste utilization plan in order to maximize the fertilizer value of the waste and to ensure that it is applied in an environmentally safe manner: 1. Always apply waste based on the needs of the crop to be grown and the nutrient content of the waste. Do not apply more nitrogen than the crop can utilize. 2. Soil types are important as they have different infiltration rates, leaching potentials, cation exchange capacities, and available water holding capacities. 3. Normally waste shall be applied to land eroding at less than 5 tons per acre per year. Waste may be applied to land eroding at 5 or more tons per acre annually, but less than 10 tons per acre per year providing that adequate filter strips are established. 4. Do not apply waste on saturated soils, when it is raining, or when the surface is frozen. Either of these conditions may result in runoff to surface waters which is not allowed under DWR regulations. 5. Wind conditions should also be considered to avoid drift and downwind odor problems. 6. To maximize the value of the nutrients for crop production and to reduce the potential for pollution, the waste should be applied to a growing crop or applied not more than 30 days prior to planting a crop or forages breaking dormancy. Injecting the waste or disking will conserve nutrients and reduce odor problems. 1 of 11 This plan is based on the waste application method shown above. If you choose to change methods in the future, you need to revise this plan. Nutrient levels for different application methods are not the same. The estimated acres needed to apply the animal waste is based on typical nutrient content for this type of facility. In some cases you may want to have plant analysis made, which could allow additional waste to be applied. Provisions shall be made for the area receiving waste to be flexible so as to accommodate changing waste analysis content and crop type. Lime must be applied to maintain pH in the optimum range for specific crop production. This waste utilization plan, if carried out, meets the requirements for compliance with 15A NCAC 2H .0217 adopted by the Environmental Management Commission. AMOUNT OF WASTE PRODUCED PER YEAR ( gallons, ft3, tons, etc.): Capacity Type Waste Produced per Animal Total 4518 Farrow to Wean Farrow to Feeder Farrow to Finish Wean to Feeder Wean to Finish Feeder to Finish Gilts Boars 3203 gal/yr 3861 gal/yr 10478 gal/yr 191 gal/yr 776 gal/yr 927 gal/yr 1015 gaVyr 2959 gaVyr gal/yr gal/yr gal/yr gal/yr 3,505,968 gal/yr gal/yr gal/yr gal/yr Total 3,505,968 gal/yr AMOUNT OF PLANT AVAILABLE NITROGEN PRODUCED PER YEAR (Ibs): Capacity Type Nitrogen Produced per Animal Total 4518 Farrow to Wean Farrow to Feeder Farrow to Finish Wean to Feeder Wean to Finish Feeder to Finish Gilts Boars 3.84 Ibs/yr 6.95 Ibs/yr 18.86 Ibs/yr 0.34 Ibs/yr 1.4 Ibs/yr 1.67 Ibs/yr 1.83 Ibs/yr 5.33 Ibs/yr lbs/yr Ibs/yr Ibs/yr lbs/yr 6,325 lbs/yr lbs/yr lbs/yr lbs/yr Total 6,325 Ibs/yr Applying the above amount of waste is a big job. You should plan time and have appropriate equipment to apply the waste in a timely manner. LAND UTILIZATION SUMMARY The following table describes the nutrient balance and land utilization rate for this facility Note that the Nitrogen Balance for Crops indicates the ratio of the amount of nitrogen produced on this facility to the amount of nitrogen that the crops under irrigation may uptake and utilize in the normal growing season. Total Irrigated Acreage: Total N Required 1st Year: Total N Required 2nd Year: Average Annual Nitrogen Requirement of Crops: Total Nitrogen Produced by Farm: Nitrogen Balance for Crops: 30.18 7609.13 0.00 7,609.13 6,325.20 (1,283.93) The following table describes the specifications of the hydrants and fields that contain the crops designated for utilization of the nitrogen produced on this facility. This chart describes the size, soil characteristics, and uptake rate for each crop in the specified crop rotation schedule for this facility. 2 of 11 Reception Area Specifications Tract Field Irrigated Soil 1st Crop Time to 1st Crop 1st Crop Lbs N/Ac Lbs N Total Ibs N Acreage Type Code Apply yield Ibs N/Unit Residual /Ac Utilized 2nd Crop Time to 2nd Crop 2nd Crop Lbs N/Ac Lbs N Total Ibs N Code Apply yield Ibs N/Unit Residual /Ac Utilized Total Lbs N/Ae Total Ibs N Utilized 2318 1 4.93 AuB 8 March -Sept 5.5 36.75 202.125 996.4763 K Sept -April 1 50 50 246.5 252.125 1242.976 2318 2 3.93 AuB B March -Sept 5.5 36.75 202.125 794.3513 K Sept -April 1 50 50 196.5 252.125 990.8513 2318 3 5.44 AuB B March -Sept 5.5 36.75 202.125 1099.56 K Sept -April 1 50 50 272 252.125 1371.56 2318 4 5.25 AuB B March -Sept 5.5 36.75 202.125 1061.156 K Sept -April 1 50 50 262.5 252.125 1323.656 2318 5 4.14 AuB B March -Sept 5.5 36.75 202.125 836.7975 K Sept -April 1 50 50 207 252.125 1043.798 2318 6 6.49 AuB B March -Sept 5.5 36.75 202.125 1311.791 K Sept -April 1 50 50 324.5 252.125 1636.291 Totals: 30.18 6100.133 1509 7609.133 3(a) of 11 Reception Area Specifications Tract Field Irrigated Soil let Crop Time to 1st Crop 1st Crop Lbs N/Ac Lbs N Total Ibs N Acreage Type Code Apply yield Ibs N/Unit Residual /Ac Utilized 2nd Crop Time to 2nd Crop 2nd Crop Lbs N/Ac Lbs N Total Ibs N Code Apply Yield Ibs N/Unit Residual /Ac Utilized Total Lbs N/Ac Total Ibs N Utilized Totals: 0 0 0 0 3(b) of 11 This plan does not include commercial fertilizer. The farm should produce adequate plant available nitrogen to satisfy the requirements of the crops listed above. The applicator is cautioned that P and K may be over applied while meeting the N requirements. In the future, regulations may require farmers in some parts of North Carolina to have a nutrient management plan that addresses all nutrients. This plan only addresses nitrogen. In interplanted fields ( i.e. small grain, etc, interseeded in bermuda), forage must be removed through grazing, hay, and/or silage. Where grazing, plants should be grazed when they reach a height of six to nine inches. Cattle should be removed when plants are grazed to a height of four inches. In fields where small grain, etc, is to be removed for hay or silage, care should be exercised not to let small grain reach maturity, especially late in the season (i.e. April or May). Shading may result if small grain gets too high and this will definitely interfere with stand of bermudagrass. This loss of stand will result in reduced yields and less nitrogen being utilized. Rather than cutting small grain for hay or silage just before heading as is the normal situation, you are encouraged to cut the small grain earlier. You may want to consider harvesting hay or silage two to three times during the season, depending on the time small grain is planted in the fall. The ideal time to interplant small grain, etc, is late September or early October. Drilling is recommended over broadcasting. Bermudagrass should be grazed or cut to a height of about two inches before drilling for best results. CROP CODE LEGEND Crop Code A B C B/C D E F G H J K L M N 0 P S CC SWG Crop Barley Grazed Hybrid Bermudagrass Hybrid Bermudagrass Hay Comb. Hybrid Bermudagrass Corn - Grain Corn - Silage Cotton Grazed Fescue Fescue Hay Oats Rye Grazed Overseed Overseed Hay Grain Sorghum Wheat Soybean Pine Trees Small Grain Cover Crop Swithgrass Description -Harvested As Grain Crop Pasture/Grazed Hay Graze/Hay Combination Grain Crop Silage Cotton Lint Pasture/Grazed Hay Grain Crop Grain Crop Pasture/Grazed (Seeded in Bermudagrass) Hay (Seeded in Bermudagrass) Grain Crop Grain Crop Grain Crop Pine Trees Grain Crop/ Hay (After Grain Crop) Not Harvested; Burned/Disked In Biomass Crop Acres shown in the preceding table are considered to be the usable acres excluding required buffers, filter strips along ditches, odd areas unable to be irrigated, and perimeter areas not receiving full application rates due to equipment limitations. Actual total acres in the fields listed may, and most likely will be, more than the acres shown in the tables. See attached map showing the fields to be used for the utilization of animal waste. 4 of 11 SLUDGE APPLICATION: The following table describes the annual nitrogen accumulation rate per animal in the lagoon sludge Farm Specifications Farrow to Wean Farrow to Feeder Farrow to Finish Wean to Feeder 4518 Wean to Finish Feeder to Finish Gilts Boars PAN/yr/animal Farm Total/yr 0.8 0.96 3.9 0.07 0.27 0.34 0.39 0.55 1219.86 The waste utilization plan must contain provisions for periodic land application of sludge at agronomic rates. The sludge will be nutrient rich and will require precautionary measures to prevent over application of nutrients or other elements. Your production facility will produce approximately 1219.86 pounds of plant available nitrogen per year and will accumulate in the lagoon sludge based on the rates of accumulation listed above. If you remove the sludge every 5 years, you will have approximately 6099.3 pounds of plant available nitrogen to utilize. Assuming you apply this PAN to hybrid bermuda grass hayland at the rate of 300 pounds of nitrogen per acre, you will need 20 acreas of land. If you apply the sludge to corn at a rate of 125 pounds per acre, you will need 48.7944 acres of land. Please note that these are only estimates of the PAN produced and the land required to utilize that PAN. Actual values may only be determined by sampling the sludge for plant available nitrogen content prior to application Actual utilization rates will vary with soil type, crop, and realistic yield expectations for the specific application fields designated for sludge application at time of removal. APPLICATION OF WASTE BY IRRIGATION: The irrigation application rate should not exceed the intake rate of the soil at the time of irrigation such that runoff or ponding occurs. This rate is limited by initial soil moisture content, soil structure, soil texture, water droplet size, and organic solids. The application amount should not exceed the available water holding capacity of the soil at the time of irrigation nor should the plant available nitrogen applied exceed the nitrogen needs of the crop. If surface irrigation is the method of land application for this plan, it is the responsibility of the producer and irrigation designer to ensure that an irrigation system is installed to properly irrigate the acres shown in the preceding table. Failure to apply the recommended rates and amounts of nitrogen shown in the tables may make this plan invalid. *This is the maximum application amount allowed for the soil assuming the amount of nitrogen allowed for the crop is not over applied. In many situations, the application amount shown cannot be applied because of the nitrogen limitation. The maximum application amount shown can be applied under optimum soil conditions. Your facility is designed for>180 days of temporary storage and the temporary storage must be removed on the average of once every 6 months. In no instance should the volume of the waste stored in your structure be within the 25 year 24 hour storm storage or one foot of freeboard except in the event of the 25 year 24 hour storm. It is the responsibility of the producer and waste applicator to ensure that the spreader equipment is operated properly to apply the correct rates to the acres shown in the tables. Failure to apply the recommended rates and amounts of nitrogen shown in the tables may make this plan invalid. Call your technical specialist after you receive the waste analysis report for assistance in determining the amount of waste per acre and the proper application prior to applying the waste. 5 of 11 Application Rate Guide The following is provided as a guide for establishing application rates and amounts. Soil Application Rate Application Amount Tract Hydrant Type Crop in/hr * inches 2318 1 AuB B 0.6 1 2318 2 AuB B 0.6 1 2318 3 AuB B 0.6 1 2318 4 AuB B 0.6 1 2318 5 AuB B 0.6 1 2318 6 AuB B 0.6 1 6 of 11 •-• -•••••••••••• • ce.ttge,.:1-• • 411.43:elej*.,e4y,:ai.;1. -477-rr •zee," • or $,S :PC 4s • • ' 4','"Zir•A,r4T2t • nt• • -`17'.. ..1.(4•1‘,"`' 14;f4,:etcti,,r• 2 0 1-- Cr SCALE 14 g 3ce galt-V ROAD G jt- 11G4tati SI • Sm2.Ntl rktkj CET:a Eb Trak/JIM, 5-9E01 \ •a/U •L‘6771OV_ (t Ku co) • • NUTRIENT UTILIZATION PLAN CERTIFICATION Name of Farm: Dail Farms, Inc Owner: Phillips Manager: Owner/Manager Agreement: Facility 31-560 I/we understand and will follow and implement the specifications and the operation and maintenance procedures established in the approved animal waste nutrient management plan for the farm named above. I/we know that any expansion to the existing design capacity of the waste treatment and/or storage system, or construction of new facilities, will require a new nutrient management plan and a new certification to be submitted to DWR before the new animals are stocked. I/we understand that I must own or have access to equipment, primarily irrigation equipment, to land apply the animal waste described in this nutrient management plan. This equipment must be available at the appropriate pumping time such that no discharge occurs from the lagoon in the event of a 25 year 24 hour storm. I also certify that the waste will be applied on the land according to this plan at the appropriate times and at rates which produce no runoff. This plan will be filed on site at the farm office and at the office of the local Soil and Water Conservation District and will be available for review by NCDWR upon request. Name of Facility Owner: PPhittipl Signature: Name of Manager (if different from owner): Signature: \\. 3/7/ 2 Date Name of Technical Specialist: Affiliation: Address: Signature: Date Toni W. King Murphy -Brown, LLC. 2822 Hwy 24 West, PO Drawer 856 Warsaw, NC 28398 Telephone: (910) 293-3434 Date 8 of 11 NUTRIENT UTILIZATION PLAN 1 2 3 REQUIRED SPECIFICATIONS Animal waste shall not reach surface waters of the state by runoff, drift, manmade conveyances, direct application, or direct discharge during operation or land application. Any discharge of waste which reaches surface water is prohibited. There must be documentation in the design folder that the producer either owns or has an agreement for use of adequate land on which to properly apply the waste. If the producer does not own adequate land to properly dispose of the waste, he/she shall provide evidence of an agreement with a landowner, who is within a reasonable proximity, allowing him/her the use of the land for waste application. It is the responsibility of the owner of the waste production facility to secure an update of the Nutrient Utilization Plan when there is a change in the operation, increase in the number of animals, method of application, recieving crop type, or available land. Animal waste shall be applied to meet, but not exceed, the nitrogen needs for realistic crop yields based upon soil type, available moisture, historical data, climatic conditions, and level of management, unless there are regulations that restrict the rate of applications for other nutrients. 4 Animal waste shall be applied to land eroding less than 5 tons per acre per year. Waste may be applied to land eroding at more than 5 tons per acre per year but less than 10 tons per acre per year provided grass filter strips are installed where runoff leaves the field (See USDA, NRCS Field Office Technical Guide Standard 393 - Filter Strips). 5 7 8 Odors can be reduced by injecting the waste or disking after waste application. Waste should not be applied when there is danger of drift from the land application field. When animal waste is to be applied on acres subject to flooding, waste will be soil incorporated on conventionally tilled cropland. When waste is applied to conservation tilled crops or grassland, the waste may be broadcast provided the application does not occur during a season prone to flooding (See 'Weather and Climate in North Carolina" for guidance). Liquid waste shall be applied at rates not to exceed the soil infiltration rate such that runoff does not occur offsite or to surface waters and in a method which does not cause drift from the site during application. No ponding should occur in order to control odor and flies. Animal waste shall not be applied to saturated soils, during rainfall events, or when the surface is frozen. 9 of 11 NUTRIENT UTILIZATION PLAN REQUIRED SPECIFICATIONS 9 Animal waste shall be applied on actively growing crops in such a manner that the crop is not covered with waste to a depth that would inhibit growth. The potential for salt damage from animal waste should also be considered. 10 Nutrients from waste shall not be applied in fall or winter for spring planted crops on soils with a high potential for leaching. Waste/nutrient loading rates on these soils should be held to a minimum and a suitable winter cover crop planted to take up released nutrients. Waste shall not be applied more than 30 days prior to planting of the crop or forages breaking dormancy. 11 Any new swine facility sited on or after October 1, 1995 shall comply with the following: The outer perimeter of the land area onto which waste is applied from a lagoon that is a component of a swine farm shall be at least 50 feet from any residential property boundary and canal. Animal waste, other than swine waste from facilities sited on or after October 1, 1995, shall not be applied closer than 25 feet to perennial waters. 12 Animal waste shall not be applied closer than 100 feet to wells. 13 Animal waste shall not be applied closer than 200 feet of dwellings other than those owned by the landowner. 14 Waste shall be applied in a manner not to reach other property and public right-of-ways. 15 Animal waste shall not be discharged into surface waters, drainageways, or wetlands by discharge or by over -spraying. Animal waste may be applied to prior converted cropland provided the fields have been approved as a land application site by a "technical specialist". Animal waste shall not be applied on grassed waterways that discharge directly into water courses, and on other grassed waterways, waste shall be applied at agronomic rates in a manner that causes no runoff or drift from the site. 16 Domestic and industrial waste from washdown facilities, showers, toilets, sinks, etc., shall not be discharged into the animal waste management system. 10 of 11 NUTRIENT UTILIZATION PLAN REQUIRED SPECIFICATIONS 17 A protective cover of appropriate vegetation will be established on all disturbed areas (lagoon embankments, berms, pipe runs, etc.). Areas shall be fenced, as necessary, to protect the vegetation. Vegetation such as trees, shrubs, and other woody species, etc., are limited to areas where considered appropriate. Lagoon areas should be kept mowed and accessible. Berms and structures should be inspected regularly for evidence of erosion, leakage, or discharge. 18 If animal production at the facility is to be suspended or terminated, the owner is responsible for obtaining and implementing a "closure plan" which will eliminate the possibility of an illegal discharge, pollution and erosion. 19 Waste handling structures, piping, pumps, reels, etc., should be inspected on a regular basis to prevent breakdowns, leaks and spills. A regular maintenance checklist should be kept on site. 20 Animal waste can be used in a rotation that includes vegetables and other crops for direct human consumption. However, if animal waste is used on crops for direct human consumption, it should only be applied pre -plant with no further applications of animal waste during the crop season. 21 Highly visible markers shall be installed to mark the top and bottom elevations of the temporary storage (pumping volume) of all waste treatment lagoons. Pumping shall be managed to maintain the liquid level between the markers. A marker will be required to mark the maximum storage volume for waste storage ponds. 22 Waste shall be tested within 60 days of utilization and soil shall be tested at least annually at crop sites where waste products are applied. Nitrogen shall be the rate -determining nutrient, unless other restrictions require waste to be applied based on other nutrients, resulting in a lower application rate than a nitrogen based rate. Zinc and copper levels in the soil shall be monitored and alternative crop sites shall be used when these metals approach excessive levels. pH shall be adjusted and maintained for optimum crop production. Soil and waste analysis records shall be kept for a minimum of five years. Poultry dry waste application records shall be maintained for a minimum of three years. Waste application records for all other waste shall be maintained for a minimum of five years. 23 Dead animals will be disposed of in a manner that meets North Carolina regulations. 11 of 11 2 w — • -rREEs F iGtizi.b ern. W AnchIlk1 ArrinEb -rtewocmc u‘cit: (?:1e,60/\ 1.1(2kit4-e c cr(, /cc EMERGENCY CTION PLAN PHONE NUMBERS DIVISION OF WATER QUALITY (DWQ) EMERGENCY MANAGEMENT SERVICES (EMS) SOIL AND WATER CONSERVATION DISTRICT (SWCD) NATURAL RESOURCESSERVICE (NRCS) EXTENSION SERVICE (CES) to,Zq -pats gt5—aayatoap_nU oe oU=� W3 This plan will be implemented in the event that wastes from your operation are leaking, overflowing or running off site. You should not waituntil waswastes each sumakacery e aterst or to leave your property to consider that you have a problem. ensure that this does not happen. This plan should be posted in an accessibl location for all employees at the facility. The following are some action items you shouldoe t. Stop the release of wastes. Depending on the situation, this may or may not be possible. Suggested responses to some possible problems are listed below. A. Lagoon overflow - possible solutions are: a) Add soil to berm to increase elevation of dam. - b) Pump wastes to fieldsat an acceptable rate. c)i Stop all flowto the lagoon immediately. d) Call a pumping contractor. e) Make sure no surface water is entering lagoon. B. Runoff from waste application field -actions include: a) Immediately stop waste application. b) Create a temporary diversion to contain waste. c) Incorporate waste to reduce runoff. d) Evaluate and eliminate the reason(s) that cause the runoff. e) Evaluate the application rates for the fields where runoff occurred. C. Leakage from the waste pipes and sprinklers - action include: a) Stop recycle pump. b) Stop irrigation pump. c) Close valves to eliminate further discharge. d) Repair all leaks prior to restarting pumps. D. Leakage from flush systems, houses, solid separators - action include: a) Stop recycle pump. b) Stop irrigation pump. c) Make sure siphon occurs. d) Stop ail flow in the house, flush systems, or solid separators. E. Leakage from base or sidewall of lagoon. Often this is seepage as opposed to flowing leaks - possible action: a) Dig a small sump or ditch from the embankment to catch all seepage, put in a submersible b) If holes are caused by burrowing animals, trap or remove animals and fill holes and pump, and pump back to lagoon. compact with a clay type soil. c) Have a professional evaluate the condition of the side walls and the lagoon bottom as soon as possible. 8 2. Assess the extent of the spill and note any obvious damages. a. Did the waste reach surface waters? b. Approximately how much was releasedand for whkiat rar pro?erty damage? c. Any damage notes, such as employee injury, fish d. Did the spill leave the property? e. Does the spill have the potential to reach surface waters? f. Could a future rain event cause the spill to reach surface waters? g. Are potable water wells in danger (either on or off the property)? h. How much reached surface waters? Contact appropriate agencies. WQ regional a. r hours, emergency number::ness (919) 733-3942.hours call yYour our Dphone call should 'incl de: your namee, facility number, telephone number, the details of the incident from item 2 above, the exact location of the facility, the location or direction of the movement of the spill, weather and wind conditions. The corrective measures that have been under taken, and the seriousness of the situation. b. If the spill leaves property or enters surface waters, call local EMS phone number. c. Instruct EMS to contact local Health Department. . d. Contact CE's phone number, local SWCD office phone number and the local NRCS office for advice / technical assistance phone number. 4. If none of the above works call 911 or the Sheriff's Department and explain your problem to them and ask the person to contact the proper agencies for you. 5. Contact the contractor of your choice to begin repair or problem to minimize offsite damage. a. Contractors Name: Murphy B ��C b. Contractors Address: P.O. Box 856 Warsaw NC 28398 c . Contractors Phone: (910)293-3434 6. Contact the technical specialist who certified the lagoon (NRCS, Consulting Engineer, etc.) a. Name: Kraig Westerbeek b. Phone: (910) 2 9 3 - 5330 and technical assistance cies 7. Implemet procedures as nrepair the system,dand reassessthewaste management plan gtontrectifyo the keep problems damage with release of wastes from happening again. INSECT CONTROL CHECKLIST FOR ANIMAL OPERATIONS Source Cause BMP's to Minimize Odor Site Specific Practices (Liquid Systems) Flush Gutters i Accumulation of solids (✓) Flush system is designed and operated sufficiently to remove accumulated - - - ` solids from gutters as designed. ( ) Remove bridging of accumulated solids at discharge Lagoons and Pits Crusted Solids ✓ Maintain lagoons, settling basins and . ( ) pits where pest breeding is apparent to minimize the crusting of solids to a depth of no more than 6-8 inches over more than 30% of surface. Excessive Decaying vegetation (✓)Maintain vegetative control along banks of Vegetative Growth lagoons and other impoundment's to prevent accumulation of decaying vegetative matter ::- along waters edge on impoundment's perimeter. (Dry Systems) Feeders Feed Spillage () Design, operate and maintain feed systems (e.g.. bunkers and troughs) to minimize the. accumulation of decaying wastage. () Clean up spillage on a routine basis (e.g. 7-10 day interval during summer; 15-30 day interval during winter). Feed Storage Accumulation of feed () Reduce moisture accumulation within and around rimmediate perimeter of feed storage areas by esidues .... - - insuring drainage away from site and/or provi mg adequate containment (e.g., covered bin for brewer's grain and similar high moisture grain products). () Inspect for and remove or break up accumulated solids in filter strips around feed storage as needed. — — Eliminate low area that trap moisture along fences Animal Holding Accumulation of animal O Areas wastes and feed wastage and other locations where waste accumulates and - disturbance by animals is minimal. () Maintain fence rows and filter strips around animal holding areas to minimize accumulations of wastes (i.e. inspect for and remove or break up accumulated solids as needed). MIC — November 11, 1996 10 Dry Manure Handling Systems Accumulations of anirnal () Remove spillage on a routine basis (e.g. 7-10 day wastes interval during summer; 15-30 days interval during winter) where manure is loaded for land application or disposal. uate drainage OProvide for Inspect for and around dremo e or break accumulated wastes in filter strips around stockpiles and manure handling areas as needed. The issues checked () pertain to this operation. The landowner / integrator agrees to use sound judgment in applying insect control measures as practical. I certify the aforementioned insect control Best Management Practices have been reviewed with me. For For m re e information f rmaState tnn oUniversity, Coopealeive Extension 276n SeeMce Department of Entomology, Box h AMIC -- November 11, 1996 11 SWINE FARM WASTE MANAGEMENT ODOR CONTROL CHECKLIST Source Farmstead Animal body surfaces... Floor surfaces Cause Swine production Dirty manure covered animals Wet manure -covered Floors Manure collection pits Ventilation exhaust fans Urine Partial microbial decomposition Volatile gases Dust Indoor surfaces Dust Flush Tanks Flush alleys Pit recharge points Lift stations Outside drain collection or junction boxes End of drain pipes at lagoon Lagoon surfaces BMP's to Minimize Odor Site Specific Practices (V)Vegetative or wooded buffers: 0/Recommended best management practices; (l)Good judgment and common sense ( )Dry floors 0/Slotted floors; 0/Waterers located over slotted floors; 0/Feeders at high end of solid floors; (1)Scrape manure buildup from Floors; ( )Underfloor ventilation for drying (V)Frequent manure removal by flush, pit recharge or scrape ( )Underfloor ventilation (I)Fan maintenance; (1)Efficient air movement (✓)Washdown between groups of animals ( )Feed additives; ( )Feeder covers; ( )Feed delivery downspout extenders to feeder covers Agitation of recycled ( )Flush tank covers lagoon liquid while tanks ( )Extend fill lines to near bottom of tanks are filling with anti -siphon vents Agitation during waste ( )Underfloor flush with underfloor water conveyance ventilation ( )Extend recharge lines to near bottom of pits with anti -siphon vents Agitation of recycled lagoon liquid while pits are filling Agitation during sump tank filling and drawdown Agitation during water conveyance Agitation during waste water Volatile gas emissions Biological mixing Agitation ( )Sump tank covers ( )Box Covers ( )Extend discharge point of pipes underneath lagoon liquid level (V)Proper lagoon liquid capacity (✓)Correct lagoon startup procedures ( )Minimum surface area -to -volume ratio (V)Minimum agitation when pumping ( )Mechanical aeration ( )Proven biological additives Irrigation sprinkler High pressure agitation 0/Irrigate on dry days with little or no wind Wind draft (V)Minimum recommended operation pressure nozzles (✓)pump intake near lagoon liquid surface ( )Pump from second -stage lagoon AMOC — November 11, 1996 12 Storage tank or basin surface Partial microbial ( )Bottorn or midlevel loading decomposition Mixing while ( )Tank covers • filling Agitation when emptying( )Basin surface mats of solids ( )Proven biological additives or oxidants Settling basin surface Manure, slurry or sludge spreader outlets Partial microbial decom- position Mixing while filling Agitation when emptying Agitation when spreading Volatile gas emissions ( )Extend drainpipe outlets underneath liquid level ( )Remove settled solids regularly ( )Soil injection of slurry/sludges ( )Wash residual manure from spreader after use ( )Proven biological additives or oxidants Dead animals Carcass decomposition ( )Proper disposition of carcasses Dead animal disposal pits Carcass decomposition ( )Complete covering of carcasses in burial pits ( )Proper location / construction of disposal pits Incinerators Standing water around facilities Incomplete combustion ( )Secondary stack burners improper drainage Microbial decomposition of organic matter (i)Farm access road maintenance away from facilities Manure tracked Poorly maintained access - (L)Farm access road maintenance onto public roads roads from farm access Available From: Additional Information: - -'°-- "- Swine Manure Mon Farm Pot 0200lr BMP Packet - NCSU-County Extension Center Swine Production Farm Potential Odor Sources and Remedies, EBAE Fact Sheet NCSU-BAE Swine Production Facility_Manure Management:Pit Recharge --Lagoon Treatmeot:EBAE128-88NCSU-BAE Swine Production Facility Manure Management:Underfloor Fluse-Lagoon Treatment 129-88NCSU-BAE Lagoon Design and Management for Livestock Manure Treatment and Storage; EBAE103-83NCSU-BAE Calibration of Manure and Wastewater Application Equipment EBAE Fact Sheet CSU-BAE Controlling Odors from Swine Buildings; PIH NCSU-Swine Extension -33 - NC Pork Producers Environmental Assurance Program: NPPC Manual Assoc NCSU Agri Communication Options for Managing Odor; a report from the Swine Odor Task Force Florida Coo ommu Exteosion Nuisance Concerns in Animal Manure Management: Odors and Flies; PR0101, p 1995 Conference Proceedings The issues checked ( ) pertain to this operation. The landowner / integrator agrees to use sound judgment in applying odor control measures as practical. I certify the aforementioned odor control Best Management Pr.ctices have been reviewed with me. (Landowner ign.ture) 13 ;)"'` Version —November 26, 2018 Mortality Management Methods Indicate which method(s) will be implemented. When selecting multiple methods indicate a primary versus secondary option. Methods other than (hose listed must be approved by the State Veterinarian. Primary Secondary Routine Mortality 71 Burial three feet beneath the surface of the ground within 24 hours of knowledge of animal death. The burial must be at least 300 feet from any flowing stream or public body of water (G.S.106-403). The bottom of the burial pit should be at least one foot above the seasonal high water table. Attach burial location map and plan. I I I I Landfill at municipal solid waste facility permitted by NC DEQ under GS 15A NCAC j 1313 .0200. nRendering at a rendering plant licensed under G.S. 106-168.7.. E] 171 Complete incineration according to 02 NCAC 52C .0102. A composting system approved and permitted by the NC Department of Agriculture & Con- sumer I Services Veterinary Division (attach copy of permit). If compost is distributed off -farm, additional requirements must be met and a permit is required from NC DEQ. flji In the case of dead poultry only, placing in a disposal pit of a size and design approved by the I I I NC Department of Agriculture & Consumer Services (G.S. 106-549.70). I I I I Any method which, in the professional opinion of the State Veterinarian, would make possible the salvage of part of a dead animal's value without endangering human or animal health. (Written approval by the State Veterinarian must be attached). Mass Mortality Plan ( Mass mortality plans are required for farms covered by an NPDES permit. These plans are also recommended for all animal operations. This plan outlines farm -specific mortality man- agement methods to be used for mass mortality. The NCDA&CS Veterinary Division sup- ports a variety of emergency mortality disposal options; contact the Division for guidance. • A catastrophic mortality disposal plan is part of the facility's CAWMP and is activated when numbers of dead animals exceed normal mortality rates as specified by the State Veterinarian. • Burial must be done in accordance with NC General Statutes and NCDA&CS Veterinary Division regulations and guidance. • Mass burial sites are subject to additional permit conditions (refer to facility's animal waste management system permit). • In the event of imminent threat of a disease emergency, the State Veterinarian may enact additional temporary procedures or measures for disposal according to G.S. 106-399.4. Date f Technical Specialist Date OPERATION & MAINTENANCE PLAN Proper lagoon management should be a year-round priority. It is especially important to manage levels so that you do not have problems during extended rainy and wet periods. spells such s Maximum storage capacity should be available in the lagoon for periods when the receiving crop is plant growth c in as a dormant (such as wintertime for bermudagrass) or when there are extended rainy thunderstorm season in the summertime. This means that at the first sign of p space available e later winter / early spring, irrigation according to a farm waste management plan should be done d. This in whenever the land indry ritoreceive (late summ oon err/ learly fallthe agoonill make tshoge uld be pumped down the lagoon for future wet periods.effort should be made to to the low marker (see Figure 2-1) to allow for winter storage. Every maintain the lagoon close to the minimum liquid level as long as. the weather and waste utilization plan will allow it. Waiting until the lagoon has reached its maximum storage capacity before starting to irrigated does extended wet periods. Overflow om the lagoon for any reason except at25 year, 24-hour storm fisga violation of state law and subject r to penalty action. The routine maintenance of a lagoon involves the following: dam. Fescue aMntenance re the mostof a commontvegetativeve rcove for se The vegetationn'should becommon bfertlizedgrass ea ch year, if needed, to maintain a vigorous stand. The amount of fertilized applied t solsldtebe based on sois test, ut in the st each yearathellagoonbembankme tnandasurroundint it is galareascal tshouo obtain should be fertilized with 800 pounds per acre of 10-10-10, or equivalent Brush and trees on the embankment must be controlled. This may be done by mowing, spraying, grazing, chopping,twice in years that weather should beedone at least once a or a combination of these practices. This year and possibly conditions are favorable for heavy vegetative growth. NOTE: If vegetation is controlled by spraying, the herbicide must not be allowed to enter the lagoon water. Such chemicals could harm the bacteria in the lagoon that are treating the waste. Maintenance inspections of the entire lagoon should be made during the initial filling of the lagoon and at least monthly and after major rainfall and storm events. Items to be checked should include, as a minimum, the following: Waste Inlet Pipes, Recycling Pipes, and Overflow Pipes -- look for: 1. separation of joints 2. cracks or breaks 3. accumulation of salts or minerals 4. overall condition of pipes 2 Lagoon surface -- look for: 1. undesirable vegetative growth 2. floating or lodged debris Embankment -- look for: holes 1. settlement, cracking, or "jug" 2. side slope stability -- slumps or bulges 3. wet or damp areas on the back slope 4. erosion due to lack or vegetation or as a result of wave action 5. rodent damage Larger lagoons may be subject to liner damage due to wave - action caused by strong winds. These waves can erode the lagoon si ewalls, thereby weakening of wtial damage caused by thwavee lagoon action. dam. A good stand of vegetation will reduce the p wave action causes serious damage to a lagoon sidewall, baffles in the lagoon may be used to reduce the wave impacts. of the dam. If our oon Any of t of these featues,ures ldlead you should reall an appropriate sion and expert familiar withydesig nand hasanyprovide a temporary fix if there is a threat of a of ewaste discharge. lagoons. You may needm to tsolution should be reviewed by the threat of a waste - However, a p equipment is a serious technical expert. Any digging into a lagoon dam with heavy eq p undertaking with potentially serious consequences and "should ..not be conducted unless recommended by an appropriate technical expert. Transfer Pumps -- check for proper operation of: 1. recycling pumps 2. irrigation pumps Check for leaks, loose fittings, and overall pump operation. An unusually loud need of repair grinding noise, or a large amount of vibration, may indicate that the pump sin replacement. NOTE: Pumping systems should be inspected end ope nt eted fr quently enough so u yld perform that hat you are not completely "surprised" by eq pnla oon is at its low level. This your ill pumping system maintenance at•a time when your 9 allow some safety time should major repairs be required. Having a nearly full lagoon is not the time to think about switching, repairing, or borrowing pumps. Probably, if your lagoon is full, your neighbor's lagoon iS full also. You should consider maintaining an inventory of spare parts or pumps. Surface water diversion features are designed to carry all surface drainage of waters (such as rainfall runoff, roof drainage, gutter outlets, and parking runoff) away from your lagoon and other waste treatment or storage structures. The only water that should be coming from your lagoon is that which comes from your flushing (washing) system pipes and the rainfall that hits the lagoon directly. You should inspect your diversion system for the following: 1. adequate vegetation 2. diversion capacity 3. ridge berm height 3 Identified problems should be corrected promptly. It is advisable to inspect your system during or immediately following a heavy rain. tnIf fetechnical assistance is needed to determine proper solutions, consult with appropriate xperts. You should record the level of the lagoon just prior to when rain is pricted, and thenl record the level again 4 to 6 hours after the rain (assumes there is no pumping). This give you idea be r co ding yourr rainfall forlth sl toIlwo k).l rise wKnowing thisith a certain r must also should help in planning irrigation applications and storage: -'If your lagoon rises excessively, you into have an overflow problem from a surface water diversion or there may be seepage the lagoon from the surrounding land. Lagoon Operation Startup: 1. Immediately after construction establish a complete sod cover on bare soil surfaces to avoid erosion. 2. Fill new lagoon design treatment volume at least half full of water before waste loading begins, taking care not to erode lining or bank slopes. oon duringinitialfilling another 3. Drainpipes into the lagoon should have a flexible pipe extender on the end of the pipe to; discharge near the bottom : of. the lag means of slowing the incoming water to avoid erosion of the lining. 4. When possible, begin loading new lagoons in the spring to maximize bacterial establishment (due to warmer weather). 5. It is recommended that a new lagoon be seeded thof sltudge e full from lagoon f a ltu y hy working swine lagoon in the amount of 0.25 percent volume. This seeding should occur at least two weeks prior to the addition of wastewater. 6. Maintain a periodic check on the lagoon liqund per i 0 cubic feet of lagooblion d pH. If the pH falls below add until the al lime at theabov rate 1 tilagoon liquid pH is between 7.5 and B.O. until the pH rises above 7.0. Optimuminadequate biological 7. A dark color, lack of bubbling, and excessive eo aor st signals als inmmquate if these conditi Consultation for prolonged with a e� ods,Ical especially during the warm season. conditions occur for prolonged p Loading: The more frequently and regularly that wastewater is added to a lagoon, the better the lagoon will function. Flush systems that wash waste into the lagoon several times daily are optimum for treatment. Pit recharge work systems, in which one or more buildings are drained and recharged each day, co 4 ® Practicewater conservation --- minimize building water usage and pillaage nd from leaking waterers, broken pipes and washdown through proper water Minimize feed wastage and spillage by keeping conservation. feeders adjusted. This will reduce the ® amount of solids entering the lagoon. Management Maintain lagoon liquid level between the permanent storage level and the full temporary storage level. ® Place visible markers or stakes on the lagoon bank to show the minimum liquid level and the maximum liquid level. (Figure 2-1). Start irrigating at the earliest possible date in the spring based on nutrient ® requirements and soil moisture so that temporary storage will be maximized for the summer thunderstorm season. Similarly, irrigate in the late summer / early fall to provide maximum lagoon storage for the winter. The lagoon liquid level should never be closer than 1 foot to the lowest point of the dam or embankment. Don not pump the lagoon liquid level lower than the permanent storage level unless you are removing sludge . o Locate float pump intakes approximately 18 inches underneath the liquid surface and as far away from the drainpipe inlets as possible. ® Prevent additions of bedding materials, long-stemmed forage or vegetation, molded feed, plastic syringes, or other foreign materials into the lagoon. O Frequently remove solids from catch basins at end of confinement houses or wherever they are installed. P Maintain strict vegetation, rodent, and varmint control near lagoon edges. • Do not allow trees or large bushes to grow on lagoon dam or embankment. Remove sludge a before it fills 50 percentrsludge storage capacity is full or of the permanent storage volume. ® If animal production is to be terminated, the owner is responsible for obtaining and implementing a closure plan to eliminate the possibility of a pollutant discharge. Sludge Removal: Rate of lagoon sludge buildup can be reduced by: 5 o proper lagoon sizing, o mechanical solids separation of flushed waste, appropriately designed basin, or • gravity settling of flushed waste solids in an appro p a minimizing feed wastage and spillage. Lagoon sludge that is removed annually'rather than stored long term will: • have more nutrients, • have more odor, and ® require more land to properly use the nutrients. Removal techniques: o Hire a custom applicator. • Mix the sludge and lagoon liquid with a chopper - agitator impeller pump through large - bore sprinkler irrigation system onto nearby cropland; and soil incorporate. ® Dewater the upper part of lagoon by irrigation onto nearby cropland or forageland; mix remaining sludge; pump into liquid sludge applicator; haul and spread onto cropland or forageland; and sal incorporate. Dewater the upper part of lagoon by irrigation onto nearby �cropla d orf ragetand a dredge sludge from lagoon with dragline or sludge barge;to to receive the slugso that liquids can drain back into lagoon; allowdewater; haul and spread with manure spreader onto cropland or torageland;an area bese lagoon le d soil incorporate. Regardless of the method, you must have the sludge material analyzed for waste constituents just as you would your lagoon waterhe . The sludge of the sludge to fields differentll be nutrientm tand metal nutrients values fromsw the lany waste applications to that field and crop limited by these nutrients as well as any previous requirement. Waste application rates will be discussed in detail in Chapter 3. When removing sludge, you must also pay attention to the liner to prevent damage. Close attention by the pumper or drag -line operator will ensure that the lagoon liner remains intact. If you see soil material or the synthetic liner material being disturbed, you If the liner is damaged it must be repaired as soon as should stop the activity immediately and not resume until you are sure that the sludge can be removed without liner injury. possible. to orelans anwitd low ypmetal and Sludge removed from the lagoon has a much higher phosphorus and heavy metal content than liquid. Because of this it should probably be applied lied to fields with very high soil -test phosphors, it should be metal levels, as indicated by a soil test, and incorporated to reduce the chance of erosion. Note that if the sludge is app applied only at rates equal to the crop removal of phosphorus. As with other wastes, always have your lagoon sludge analyzed for its nutrient value. 6 The application of sludge will increase the amount of odor at the waste application site. Extra precaution should be used to observe the wind direction and other conditions which could increase the concern of neighbors. Possible' Causes of Lagoon Failure Lagoon failures result in the unplanned discharge of wastewater from the andbructure. Types of failures include leakage through the bottom or sides, overtopping, the dam. Assuming proper design and construction, the owner has the responsibility for ensuring structure safety. Items which may lead to lagoon failures include: e am ® Modification of the lagoon structure -- an example is athe exlacemrt It oof a npipe in the da e without proper design and construction. placing any pipes in dams.) o Lagoon liquid levels -- high levels are a safety risk. • Failure to inspect and maintain the dam. o Excess surface water flowing into the lagoon • Liner integrity -- protect from inlet pipe scouring,' damage during sludge removal, or rupture from lowering lagoon liquid level below groundwater table. NOTE: - If lagoon water is allowed to overtop the dam, the moving water will soon cause gullies to form in the dam. Oncethis damage starts, it can quickly cause a large discharge of wastewater and possible dam failure. 7 EMERGENCY ACTION PLAN PHONE NUMBERS DIVISION OF WATER QUALITY (DWQ) EMERGENCY MANAGEMENT SERVICES (EMS) SOIL AND WATER CONSERVATION DISTRICT (SWCD) NATURAL RESOURCES CONSERVATION SERVICE (NRCS) COOPERATIVE EXTENSION SERVICE (CES) coo--29k -cats t1/47 - 29 (4- )4( qt5- axle- aka-C) 0110 — aq to—atw `11 O - a9 to - a kt-k This plan will be implemented in the event that wastes from your operation are leaking, overflowing or running off site. You should not wait until wastes reach surface waters or leave your property to consider that you have a problem. You should make every effort to ensure that this does not happen. This plan should be posted in an accessible location for all employees at the facility. The following are some action items you should take. Stop the release of wastes. Depending on the situation, this may or may not be possible. Suggested responses to some possible problems are listed below. Lagoon overflow - possible solutions are: a) Add soil to berm to increase elevation of dam. b) Pump wastes to fields at an acceptable rate. c) Stop all flow to the lagoon immediately. d) Call a pumping contractor. e) Make sure no surface water is entering lagoon. B. Runoff from waste application field -actions include: a) Immediately stop waste application. b) Create a temporary diversion to contain waste. c) Incorporate waste to reduce runoff. d) Evaluate and eliminate the reason(s) that cause the runoff. e) Evaluate the application rates for the fields where runoff occurred. C. Leakage from the waste pipes and sprinklers - action include: a) Stop recycle pump. b) Stop irrigation pump. c) Close valves to eliminate further discharge. d) Repair all leaks prior to restarting pumps. D. Leakage from flush systems, houses, solid separators - action include: a) Stop recycle pump. b) Stop irrigation pump. c) Make sure siphon occurs. d) Stop all flow in the house, flush systems, or solid separators. E. Leakage from base or sidewall of lagoon. Often this is seepage as opposed to flowing leaks - possible action: a) Dig a small sump or ditch from the embankment to catch all seepage, put in a submersible pump, and pump back to lagoon. b) If holes are caused by burrowing animals, trap or remove animals and fill holes and compact with a clay type soil. c) Have a professional evaluate the condition of the side walls and the lagoon bottom as soon as possible. 8 2. Assess the extent of the spill and note any obvious damages. a. Did the waste reach surface waters? b. Approximately how much was released and for what duration? c. Any damage notes, such as employee injury, fish kills, or property damage? d. Did the spill leave the property? e. Does the spill have the potential to reach surface waters? f. Could a future rain event cause the spill to reach surface waters? g. Are potable water wells in danger (either on or off the property)? h. How much reached surface waters? 3. Contact appropriate agencies. a. During normal business hours call your DWQ regional office; Phone #, After hours, emergency number: (919) 733-3942. Your phone call should include: your name, facility number, telephone number, the details of the incident from item 2 above, the exact location of the facility, the location or direction of the movement of the spill, weather and wind conditions. The corrective measures that have been under taken, and the seriousness of the situation. b. If the spill leaves property or enters surface waters, call local EMS phone number. c. Instruct EMS to contact local Health Department. d. Contact CE's phone number, local SWCD office phone number and the local NRCS office for advice / technical assistance phone number. 4. If none of the above works call 911 or the Sheriffs Department and explain your problem to them and ask the person to contact the proper agencies for you. 5. Contact the contractor of your choice to begin repair or problem to minimize offsite damage. a. Contractors Name: Murphy Brown, LLC b. Contractors Address: P.O. Box 856, Warsaw, NC 28398 c . Contractors Phone: (910)293-3434 Contact the technical specialist who certified the lagoon (NRCS, Consulting Engineer, etc.) a. Name: Kraig Westerbeek b. Phone: (910) 293 - 5330 7. Implement procedures as advised by DWQ and technical assistance agencies to rectify the damage, repair the system, and reassess the waste management plan to keep problems with release of wastes from happening again. 9 INSECT CONTROL CHECKLIST FOR ANIMAL OPERATIONS Source Cause BMP's to Minimize Odor Site Specific Practices (Liquid Systems) Flush Gutters Accumulation of solids (✓) Hush system is designed and operated sufficiently to remove accumulated solids from gutters as designed. ( ) Remove bridging of accumulated solids at discharge Lagoons and Pits Crusted Solids (✓) Maintain lagoons, settling basins and pits where pest breeding is apparent to minimize the crusting of solids to a depth of no more than 6-8 inches over more than 30% of surface. Excessive Decaying vegetation (1)Maintain vegetative control along banks of Vegetative Growth lagoons and other impoundment's to prevent accumulation of decaying vegetative matter along water's edge on impoundment's perimeter. (Dry Systems) Feeders Feed Spillage () Design, operate and maintain feed systems (e.g.. bunkers and troughs) to minimize the accumulation of decaying wastage. () Clean up spillage on a routine basis (e.g. 7-10 day interval during summer; 15-30 day interval during winter). Feed Storage Accumulation of feed residues () Reduce moisture accumulation within and around immediate perimeter of feed storage areas by insuring drainage away from site and/or providing adequate containment (e.g., covered bin for brewer's grain and similar high moisture grain products). () Inspect for and remove or break up accumulated solids in filter strips around feed storage as needed. Animal Holding Accumulation of animal () Eliminate low area that trap moisture along fences Areas wastes and feed wastage and other locations where waste accumulates and disturbance by animals is minimal. () Maintain fence rows and filter strips around animal holding areas to minimize accumulations of wastes (i.e. inspect for and remove or break up accumulated solids as needed). MIC — November 11, 1996 10 Dry Manure Handling Accumulations of animal () Remove spillage on a routine basis (e.g. 7-10 day Systems wastes interval during summer; 15-30 days interval during winter) where manure is loaded for land application or disposal. () Provide for adequate drainage around manure stockpiles () Inspect for and remove or break up accumulated wastes in filter strips around stockpiles and manure handling areas as needed. The issues checked () pertain to this operation. The landowner / integrator agrees to use sound judgment in applying insect control measures as practical. I certify the aforementioned insect control Best Management Practices have been reviewed with me. (Landowner Signature) For more information contact the Cooperative Extension Service, Department of Entomology, Box 7613, North Carolina State University, Raleigh, NC 27695-7613. AMIC -- November 11, 1996 11 SWINE FARM WASTE MANAGEMENT ODOR CONTROL CHECKLIST Source Cause BMP's to Minimize Odor Site Specific Practices Farmstead Swine production (v)Vegetative or wooded buffers: (1)Recommended best management practices; (1)Good judgment and common sense Animal body surfaces Dirty manure covered animals ( )Dry floors Floor surfaces Wet manure -covered floors (V)Slotted floors; (1)Waterers located over slotted floors; (v)Feeders at high end of solid floors; (V)Scrape manure buildup from floors; ( )Underfloor ventilation for drying Manure collection pits Urine Partial microbial decomposition (V)Frequent manure removal by flush, pit recharge or scrape ( )Underfloor ventilation Ventilation exhaust fans Volatile gases (1)Fan maintenance; Dust (V)Efficient air movement Indoor surfaces Dust (✓)Washdown between groups of animals ( )Feed additives; ( )Feeder covers; ( )Feed delivery downspout extenders to feeder covers Flush Tanks Agitation of recycled lagoon liquid while tanks are filling ( )Flush tank covers ( )Extend fill lines to near bottom of tanks with anti -siphon vents Flush alleys Agitation during waste ( )Underfloor flush with underfloor water conveyance ventilation Pit recharge points Agitation of recycled lagoon liquid while pits are filling ( )Extend recharge lines to near bottom of pits with anti -siphon vents Lift stations Agitation during sump ( )Sump tank covers tank filling and drawdown Outside drain collection or junction boxes Agitation during waste ( )Box Covers water conveyance End of drain pipes at lagoon Agitation during waste water ( )Extend discharge point of pipes underneath lagoon liquid level Lagoon surfaces Volatile gas emissions Biological mixing Agitation (1)Proper lagoon liquid capacity (v)Correct lagoon startup procedures ( )Minimum surface area -to -volume ratio (1)Minimum agitation when pumping ( )Mechanical aeration ( )Proven biological additives Irrigation sprinkler High pressure agitation nozzles Wind draft (✓)Irrigate on dry days with little or no wind (1)Minimum recommended operation pressure (V)Pump intake near lagoon liquid surface ( )Pump from second -stage lagoon AMOC — November 11, 1996 12 Storage tank or basin surface Partial microbial ( )Bottom or midlevel loading decomposition Mixing while ( )Tank covers filling Agitation when emptying( )Basin surface mats of solids ( )Proven biological additives or oxidants Settling basin surface Partial microbial decom- ( )Extend drainpipe outlets underneath liquid position Mixing while filling level Agitation when emptying ( )Remove settled solids regularly Manure, slurry or sludge spreader outlets Agitation when spreading Volatile gas emissions ( )Soil injection of slurry/sludges ( )Wash residual manure from spreader after use ( )Proven biological additives or oxidants Dead animals Carcass decomposition ( )Proper disposition of carcasses Dead animal disposal pits Carcass decomposition ( )Complete covering of carcasses in burial pits ( )Proper location / construction of disposal pits Incinerators Incomplete combustion ( )Secondary stack burners Standing water around facilities improper drainage (V)Farm access road maintenance Microbial decomposition of away from facilities organic matter Manure tracked Poorly maintained access (1)Farm access road maintenance onto public roads roads from farm access Additional Information: Available From: Swine Manure Management 0200 Rule / BMP Packet NCSU-County Extension Center Swine Production Farm Potential Odor Sources and Remedies, EBAE Fact Sheet NCSU-BAE Swine Production Facility Manure Management:Pit Recharge —Lagoon Treatment:EBAE128-88NCSU-BAE Swine Production Facility Manure Management:Underfloor Fluse-Lagoon Treatment 129-88NCSU-BAE Lagoon Design and Management for Livestock Manure Treatment and Storage; EBAE103-83NCSU-BAE Calibration of Manure and Wastewater Application Equipment EBAE Fact Sheet NCSU-BAE Controlling Odors from Swine Buildings; PIH-33 NCSU-Swine Extension Environmental Assurance Program: NPPC Manual NC Pork Producers Assoc Options for Managing Odor; a report from the Swine Odor Task Force NCSU Agri Communication Nuisance Concerns in Animal Manure Management: Odors and Flies; PR0101, Florida Cooperative Extension 1995 Conference Proceedings The issues checked ( ) pertain to this operation. The landowner / integrator agrees to use sound judgment in applying odor control measures as practical. I certify the aforementioned odor control Best Management Practices have been reviewed with me. (Landowner Signature) 13 0/' Version —November 26, 2018 Mortality Management Methods Indicate which method(s) will be implemented. When selecting multiple methods indicate a primary versus secondary option. Methods other than those listed must be approved by the State Veterinarian. Primary Secondary Routine Mortality I I 71 Burial three feet beneath the surface of the ground within 24 hours of knowledge of animal death. The burial must be at least 300 feet from any flowing stream or public body of water (G.S,106-403). The bottom of the burial pit should be at least one foot above the seasonal high water table. Attach burial location map and plan. i l /[] Landfill at municipal solid waste facility permitted by NC DEQ under GS 15A NCAC ' I 13B .0200. Rendering at a rendering plant licensed under G.S. 106-168.7.. 1-1 n Complete incineration according to 02 NCAC 52C .0102. n n A composting system approved and permitted by the NC Department of Agriculture & Con- sumer Services Veterinary Division (attach copy of permit). If compost is distributed off -farm, additional requirements must be met and a permit is required from NC DEQ. n n In the case of dead poultry only, placing in a disposal pit of a size and design approved by the NC Department of Agriculture & Consumer Services (G.S. 106-549.70). Any method which, in the professional opinion of the State Veterinarian, would make possible t I I I the salvage of part of a dead animal's value without endangering human or animal health. (Written approval by the State Veterinarian must be attached). Mass Mortality Plan I Mass mortality plans are required for farms covered by an NPDES permit. These plans are also recommended for all animal operations. This plan outlines farm -specific mortality man- agement methods to be used for mass mortality. The NCDA&CS Veterinary Division sup- ports a variety of emergency mortality disposal options; contact the Division for guidance. • A catastrophic mortality disposal plan is part of the facility's CAWMP and is activated when numbers of dead animals exceed normal mortality rates as specified by the State Veterinarian. • Burial must be done in accordance with NC General Statutes and NCDA&CS Veterinary Division regulations and guidance. • Mass burial sites are subject to additional permit conditions (refer to facility's animal waste management system permit). • In the event of imminent threat of a disease emergency, the State Veterinarian may enact additional temporary procedures or measures for disposal according to G.S. 106-399.4. LI Signature of Farm Owner/Manager ol(7 Date s-ao- /9 f Technical Specialist Date MORTALITY MANAGEMENT METHODS (Check which method(s) are being implemented) Burial three feet beneath the surface of the ground within 24 hours after knowledge of the death. The burial will be at least 300 feet from any flowing stream or public body of water. (✓ ) Rendering at a rendering plant licensed under G. S. 106 - 168.7 ( ) Complete incineration ( ) In the case of dead poultry only, placing in a disposal pit of a size and design approved by the Department of Agriculture. ( Any method which in the professional opinion of the State Veterinarian would make possible the salvage of part of a dead animal's value without endangering human or animal health. (Written approval of the State Veterinarian must be attached) 14 OPERATION & MAINTENANCE PLAN Proper lagoon management should be a year-round priority. It is especially important to manage levels so that you do not have problems during extended rainy and wet periods. Maximum storage capacity should be available in the lagoon for periods when the receiving crop is dormant (such as wintertime for bermudagrass) or when there are extended rainy spells such as a thunderstorm season in the summertime. This means that at the first sign of plant growth in the later winter / early spring, irrigation according to a farm waste management plan should be done whenever the land in dry enough to receive lagoon liquid. This will make storage space available in the lagoon for future wet periods. In the late summer / early fall the lagoon should be pumped down to the low marker (see Figure 2-1) to allow for winter storage. Every effort should be made to maintain the lagoon close to the minimum liquid level as long as the weather and waste utilization plan will allow it. Waiting until the lagoon has reached its maximum storage capacity before starting to irrigated does not leave room for storing excess water during extended wet periods. Overflow from the lagoon for any reason except a 25-year, 24-hour storm is a violation of state law and subject to penalty action. The routine maintenance of a lagoon involves the following: Maintenance of a vegetative cover for the dam. Fescue or common bermudagrass are the most common vegetative covers. The vegetation should be fertilized each year, if needed, to maintain a vigorous stand. The amount of fertilized applied should be based on a soils test, but in the event that it is not practical to obtain a soils test each year, the lagoon embankment and surrounding areas should be fertilized with 800 pounds per acre of 10-10-10, or equivalent. Brush and trees on the embankment must be controlled. This may be done by mowing, spraying, grazing, chopping, or a combination of these practices. This should be done at least once a year and possibly twice in years that weather conditions are favorable for heavy vegetative growth. NOTE: If vegetation is controlled by spraying, the herbicide must not be allowed to enter the lagoon water. Such chemicals could harm the bacteria in the lagoon that are treating the waste. Maintenance inspections of the entire lagoon should be made during the initial filling of the lagoon and at least monthly and after major rainfall and storm events. Items to be checked should include, as a minimum, the following: Waste Inlet Pipes, Recycling Pipes, and Overflow Pipes -- look for: 1. separation of joints 2. cracks or breaks 3. accumulation of salts or minerals 4. overall condition of pipes 2 Lagoon surface -- look for: 1. undesirable vegetative growth 2. floating or lodged debris Embankment -- look for: 1. settlement, cracking, or "jug" holes 2. side slope stability -- slumps or bulges 3. wet or damp areas on the back slope 4. erosion due to lack or vegetation or as a result of wave action 5. rodent damage Larger lagoons may be subject to liner damage due to wave action caused by strong winds. These waves can erode the lagoon sidewalls, thereby weakening the lagoon dam. A good stand of vegetation will reduce the potential damage caused by wave action. If wave action causes serious damage to a lagoon sidewall, baffles in the lagoon may be used to reduce the wave impacts. Any of these features could lead to erosion and weakening of the dam. If your lagoon has any of these features, you should call an appropriate expert familiar with design and construction of waste lagoons. You may need to provide a temporary fix if there is a threat of a waste discharge. However, a permanent solution should be reviewed by the technical expert. Any digging into a lagoon dam with heavy equipment is a serious undertaking with potentially serious consequences and should not be conducted unless recommended by an appropriate technical expert. Transfer Pumps -- check for proper operation of: 1. recycling pumps 2. irrigation pumps Check for leaks, loose fittings, and overall pump operation. An unusually bud or grinding noise, or a large amount of vibration, may indicate that the pump is in need of repair or replacement. NOTE: Pumping systems should be inspected and operated frequently enough so that you are not completely "surprised" by equipment failure. You should perform your pumping system maintenance at a time when your lagoon is at its low level. This will allow some safety time should major repairs be required. Having a nearly full lagoon is not the time to think about switching, repairing, or borrowing pumps. Probably, if your lagoon is full, your neighbor's lagoon is full also. You should consider maintaining an inventory of spare parts or pumps. • Surface water diversion features are designed to carry all surface drainage waters (such as rainfall runoff, roof drainage, gutter outlets, and parking lot runoff) away from your lagoon and other waste treatment or storage structures. The only water that should be coming from your lagoon is that which comes from your flushing (washing) system pipes and the rainfall that hits the lagoon directly. You should inspect your diversion system for the following: 1. adequate vegetation 2. diversion capacity 3. ridge berm height 3 Identified problems should be corrected promptly. It is advisable to inspect your system during or immediately following a heavy rain. If technical assistance is needed to determine proper solutions, consult with appropriate experts. You should record the level of the lagoon just prior to when rain is predicted, and then record the level again 4 to 6 hours after the rain (assumes there is no pumping). This will give you an idea of how much your lagoon level will rise with a certain rainfall amount (you must also be recording your rainfall for this to work). Knowing this should help in planning irrigation applications and storage. If your lagoon rises excessively, you may have an overflow problem from a surface water diversion or there may be seepage into the lagoon from the surrounding land. Lagoon Operation Startup: 1. Immediately after construction establish a complete sod cover on bare soil surfaces to avoid erosion. 2. Fill new lagoon design treatment volume at least half full of water before waste loading begins, taking care not to erode lining or bank slopes. 3. Drainpipes into the lagoon should have a flexible pipe extender on the end of the pipe to discharge near the bottom of the lagoon during initial filling or another means of slowing the incoming water to avoid erosion of the lining. 4. When possible, begin loading new lagoons in the spring to maximize bacterial establishment (due to warmer weather). 5. It is recommended that a new lagoon be seeded with sludge from a healthy working swine lagoon in the amount of 0.25 percent of the full lagoon liquid volume. This seeding should occur at least two weeks prior to the addition of wastewater. 6. Maintain a periodic check on the lagoon liquid pH. If the pH falls below 7.0, add agricultural lime at the rate of 1 pound per 1000 cubic feet of lagoon liquid volume until the pH rises above 7.0. Optimum lagoon liquid pH is between 7.5 and 8.0. 7. A dark color, lack of bubbling, and excessive odor signals inadequate biological activity. Consultation with a technical specialist is recommended if these conditions occur for prolonged periods, especially during the warm season. Loading: The more frequently and regularly that wastewater is added to a lagoon, the better the lagoon will function. Flush systems that wash waste into the lagoon several times daily are optimum for treatment. Pit recharge systems, in which one or more buildings are drained and recharged each day, also work well. 4 • Practice water conservation --- minimize building water usage and spillage from leaking waterers, broken pipes and washdown through proper maintenance and water conservation. • Minimize feed wastage and spillage by keeping feeders adjusted. This will reduce the amount of solids entering the lagoon. Management: • Maintain lagoon liquid level between the permanent storage level and the full temporary storage level. • Place visible markers or stakes on the lagoon bank to show the minimum liquid level and the maximum liquid level. (Figure 2-1). • Start irrigating at the earliest possible date in the spring based on nutrient requirements and soil moisture so that temporary storage will be maximized for the summer thunderstorm season. Similarly, irrigate in the late summer / early fall to provide maximum lagoon storage for the winter. • The lagoon liquid level should never be closer than 1 foot to the lowest point of the dam or embankment. • Don not pump the lagoon liquid level lower than the permanent storage level unless you are removing sludge. • Locate float pump intakes approximately 18 inches underneath the liquid surface and as far away from the drainpipe inlets as possible. • Prevent additions of bedding materials, long-stemmed forage or vegetation, molded feed, plastic syringes, or other foreign materials into the lagoon. • Frequently remove solids from catch basins at end of confinement houses or wherever they are installed. • Maintain strict vegetation, rodent, and varmint control near lagoon edges. • Do not allow trees or large bushes to grow on lagoon dam or embankment. • Remove sludge from the lagoon either when the sludge storage capacity is full or before it fills 50 percent of the permanent storage volume. • If animal production is to be terminated, the owner is responsible for obtaining and implementing a closure plan to eliminate the possibility of a pollutant discharge. Sludge Removal: Rate of lagoon sludge buildup can be reduced by: 5 • proper lagoon sizing, • mechanical solids separation of flushed waste, • gravity settling of flushed waste solids in an appropriately designed basin, or • minimizing feed wastage and spillage. Lagoon sludge that is removed annually rather than stored long term will: • have more nutrients, • have more odor, and • require more land to properly use the nutrients. Removal techniques: • Hire a custom applicator. • Mix the sludge and lagoon liquid with a chopper - agitator impeller pump through large - bore sprinkler irrigation system onto nearby cropland; and soil incorporate. • Dewater the upper part of lagoon by irrigation onto nearby cropland or forageland; mix remaining sludge; pump into liquid sludge applicator; haul and spread onto cropland or forageland; and soil incorporate. • Dewater the upper part of lagoon by irrigation onto nearby cropland or forageland; dredge sludge from lagoon with dragline or sludge barge; berm an area beside lagoon to receive the sludge so that liquids can drain back into lagoon; allow sludge to dewater; haul and spread with manure spreader onto cropland or forageland; and soil incorporate. Regardless of the method, you must have the sludge material analyzed for waste constituents just as you would your lagoon water. The sludge will contain different nutrient and metal values from the liquid. The application of the sludge to fields will be limited by these nutrients as well as any previous waste applications to that field and crop requirement. Waste application rates will be discussed in detail in Chapter 3. When removing sludge, you must also pay attention to the liner to prevent damage. Close attention by the pumper or drag -line operator will ensure that the lagoon liner remains intact. If you see soil material or the synthetic liner material being disturbed, you should stop the activity immediately and not resume until you are sure that the sludge can be removed without liner injury. If the liner is damaged it must be repaired as soon as possible. Sludge removed from the lagoon has a much higher phosphorus and heavy metal content than liquid. Because of this it should probably be applied to land with low phosphorus and metal levels, as indicated by a soil test, and incorporated to reduce the chance of erosion. Note that if the sludge is applied to fields with very high soil -test phosphors, it should be applied only at rates equal to the crop removal of phosphorus. As with other wastes, always have your lagoon sludge analyzed for its nutrient value. 6 The application of sludge will increase the amount of odor at the waste application site. Extra precaution should be used to observe the wind direction and other conditions which could increase the concern of neighbors. Possible Causes of Lagoon Failure Lagoon failures result in the unplanned discharge of wastewater from the structure. Types of failures include leakage through the bottom or sides, overtopping, and breach of the dam. Assuming proper design and construction, the owner has the responsibility for ensuring structure safety. Items which may lead to lagoon failures include: • Modification of the lagoon structure -- an example is the placement of a pipe in the dam without proper design and construction. (Consult an expert in lagoon design before placing any pipes in dams.) • Lagoon liquid levels — high levels are a safety risk. • Failure to inspect and maintain the dam. • Excess surface water flowing into the lagoon. • Liner integrity -- protect from inlet pipe scouring, damage during sludge removal, or rupture from lowering lagoon liquid level below groundwater table. NOTE: If lagoon water is allowed to overtop the dam, the moving water will soon cause gullies to form in the dam. Once this damage starts, it can quickly cause a large discharge of wastewater and possible dam failure. 7 DA1t-- EFif mS flows /ZoD> Operator: County: Date: Dist.to nearest residence (other than owner): sows (farrow to finish):=== sows (farrow to feeder): eder):= head (finishing only): sows (farrow to wean): head (wean to feeder): Ave. Live Weight for other operations(Ibs.)=> Storage volume for sludge accum. (cu. ft.):=> Treatment Volume (min. 1 cu. ft./lb.) 25 Year - 24 Hour Rainfall (in.) Rainfall in excess of evaporation (in.) Drainage area of buildings & lots (sq. ft.)=> Volume of wash water (gallons/day) Temporary storage period (days) Freeboard (ft.): Side slopes (inside lagoon): Inside top length (ft.): Inside top width (ft.): Top of dike elevation (ft.): Bottom of lagoon elevation (ft.): Seasonal high water table(SHWT) elev.(ft.):=> Total required volume: Actual design volume: Stop pumping el.(> or = to (>or=to Required minimum treatment volume: Volume at stop pumping elevation: Start pumping elev.: Volume at start pumping elevation: Actual volume less 25yr-24hr rain: NOTE: Verify that temp. storage is adequate: Req. volume to be pumped:====> Actual volume to be pumped:==> 46.0 ft. 51.5 ft. Dail Farms Inc Duplin 04/14/05 0 ft. 0 1200 0 1.0 7.0 180 1.0 3.0 : 1 255.0 410.0 57.5 45.5 46.0 772821 cu. ft. 885489 cu. ft. SHWT)> 52.6 ft. Min.) 519600 cu. ft. 522249 cu. ft. 55.8 ft. cu. ft. cu. ft. 816028 820145 187877 cu. ft. 293778 cu. ft. Pc 0 --.DDRFSSr. ODDSI Mt. Olive, N.C. TYPE AND SIZE 1000 Sows OF OPERATION Farrow/Feeder CLASS IV DESIGNED BY RJohn Wilkins DATE 2/7/91 APPROVED BY DATE .3/2 e A n PERMANENT STORAGE 1000 Hogs x 522 1 per hos 1 Cu. Ft per lb'. TEMPORARY STORAGE USZ000 its of animal x 1.33 c ft. of waste per 1000 ite of aniir.a! wt x 1S0 days RAINFALL LESS EVARShA—op. 7" X 10.4r7.‘ rr,ft nrface arEa iz”PEr ft RATNFAEL - E5 YP. 1 DAY STORM 104560 sqft of surface area per 12" per ft. TOTAL STORAGE NEEDED CUT TO FILL RATIO 1.2N 1 FOTAL sTURAGE AVAILABLE AMOUNT OF FILL DIKE; PAD TOTAL SETTLEMENT 10% TOTAL AMOUNT OF FILL TOTAL EXCAVATION 5E2000 Cu Ft 77t-i177 Ea710 Vas 2914Z Cu Yds 2001°U Cu ht Zii151'415 Cu Ft 4455.2 Cu ht 48972',8 eu Ft 1S139 Cu Yds 600200 Cu Ft 22230 Cu Yds )1r. j-itickfe, 51ORA6-a. Not copilot/it' A t /Arlo svmr.c ts, ; I/ be. RCP4oVed AS AI c2 sect et/ 12. e A. e-• Al 1?"'s Ay...1 0 IC /ea A-cf Ivo to/de/et f I, If/17LP -S rA°4 e 5 eall" '-al.e../.141/f/jadi f(4-• I.iME 'VOLUME = ,E_,[AREA 01 TOP 4AR A O1= BOTTOM + 4 X AREA OF MIDSECTION] t=.,tl DEPTH C L 14 + LX W -I- 4 I_ X W ] 10.0 C 243 X 298 + 183 VOLUME. = --------- VOLUME = 10.0 C 47104] 27 26::40.0 CU. FT,. VOLUME = -._.._...."..---_. 27. CU. YDS. 104550.0 sq..ft. 775177.3 cu ft., needed SIDE SL.OFF 4 7: 213 X 368] FPIt0M-'0 X m TO 1 wcX IOTX LINT HEAVY LAC c miummilimmiumunommord • IF 1(/ ■■■t■■■■■■■i■tt■t■■■■■t■■■■t■w■■■■■t■f■■■■ti■■■■■tt■■■■■t■■■■■■■■■■■■■ N■■■ . 111111111111111I11■1111111111111111111111■11111111�111■111111N1�11111111■1111111uup]pp I ■■.■.■o■■■■.i■■■■.■■.■■.■.■■.■■■■u■ l■iimmilimmElimmimummilimmommomminummummoiiiiiiiu :::G.o000G: GGff Mein • ■r,G alb. ■■■■■■■■■■■■■■■■■■■o■a.■■■■uot■■■i ■t ■■o■uuG u■ . ■■ t■■ . ■ di■■m�''�"'ir"''►��.,.. CGGGGGCGGGCGG oy'GX'mammon■■■C..W■G■■I�G M■■GII1'.■ Gaon 'IG ■■■t■■■■■■■lim■■ ■ ■ ■■■■■ ■■W ■ .■■■■.......��.� ■■ia■■ GY ■ , n■ ■■G■ut0G ■■■■i ■ mini i■ mom ■ : - o■■1w67ii■Eyg� of a �i >s lif` -''' 'Mom tfff tfll■tfmlWO■■ ■loll .M111 o u� iT6 _JG]6 I p7 T� MIM ollie IMMAIMM tiG�t�!y}��INIMME �iiiiG i�iiGfttommuni mittti =:::Gi■iGi t iG�i" '"'tnt�� �rr,�rGftin�iti :iitw■Niel■ilia■ t//I tttt..Ylttt IEI�tttttllttt■■ttl��tMtW/�t ■ 1 37r T_1, i. iffw■I1isri ■off■w ■■■C■■■■f■momorwooraremmorrc99■illema■nnsv nog on moan H' %°�I 1 �jyi■■i■.GG ■flit■i■o■�iiiiii ■`Sn■ MEMMO �■■Oo.■u■om■ofai■■o■■■i■■■■■■■ ■u ill Wpiinnoi■■■■i■nn iiiC MISMEMEMOGi :'Zi00iTh :GGGitiiifN■G iiiiG■iaminG iYI■i GiGini■■•■iimiii■■iiim■o: o■■■■ ■t■■ W■■■■■■■q■.O■■ ■ti�i■■■i■iitttio■■■■■li�lol■oli io■lit■ti l■ ■itli■lfo it■lio o■i II • 46? 1 I ` ■flow■■■■■ mum `. ■ manCilimmus_ um 4 yi I Iu IEmsmannaimirmtammue o W■■f■■w■■flimmomm■o< ew Wm ■■fN flf■■awa�■ueluii : MI- 4--� r1 ram`'- .4. . ROM MO 'twill■■■ tt ■ ■■ N■■■`ice-■a ■ ■■Oo■l■wMMEMWEVAM�• ME yp�■ S'_ S s^ 1 • r Ir P ii mom mminamo now ■W■■■■o ui■gf■■IMEMB MEAN n ■ I I fw on■■nua2On r'' YMMEMICIUMMging %fr +S'"�L 5 s rt 3 rc rtS■fit■f■tn� rMEMMUMPIMIRsO.6nr ■ / £� R .. 1 �■1 1 ■■■■mInn illt •i./t7!7■. is ■ � 0 1 ■ ■■-I-"-I r-rr -i r C-I M 11inii11111111111111uNi iN owliif■■■■■■m■ ■t■■■i =h■o■■ou ■■ ■ Am Niii� ■ 1 ................................o .. C Y1111 CG 41 :C:GGG::a G.■n ■■■G■::'■:G:GG :GGi:wMINMEM1.. ■■: =Y:GgGI■.SGGG�i f CGGC:CMEMINN nu1'::000 11G':G'• M■G:G'it■:■G:1::GG:GY I:G:■".� ■ ■ii■i I MOM� ■■mail■■■■ 1 [ -I 3 7 F peaku Coope'e 1. c 5c 4/, 4-G_ h 6 oo '/. 09- x .Soo 3 23 \, 5>e 2•52 X ;"ca 2,2° Nc 0 20 /Q /o0 ram: C V951 • 66900 2az100a let/ ;00 126/00 0 36,3 0 o C7_. 7J p , 26 ;-oo x 7S ` 7560 Fr 1/ ( PA) c) ( 03 k S°o X' FD _ /xoo C- �3 x /Zy s 332/.23 y lh,b` c\ a o 3 X /O- r 7,(600 2,2CC x _Cow 'r /2o .: /3t Er 6iDcnn/ Co0,e•C) ,Ov y ,26 d ,16 1 ,J? i ,271 ,53 � •°3 0 _ , 2i 25n5 -) 53 200,/ov CA v4 11 • O Y //1 (-GUN Aq 57 2, .7 o 0 750o 6af 2 a 0 V4 ) 212'5/25— A/0 % y% /. 2 sy777 Gob ,zoo (De4 N CO0/59, • ) 1,23 EP.IOM-l0 X 10 TO 1 INCH 10TH LINE HEAVY 3 • N■■�■ • RN Mena 1 • ■�� I I I 1 I I _d np� litinell — rail. _ 1 I; i I 1 so' r' �■ - N. ■ __• 17 EallEMME i 1 -- �HU��1 11 11 ., z °9 'S7 11 lir: _ 11-7. . L ' I 1-11 I I. I 5 ■MOE r • -- L 1.1 , 1 Q -4111I II r-t � 1 1 1 I ■ 1 ■_ SI MEM nnLIE • 5-8 1444 - -T I r u-�MEE EN■■ _� ■N■N • II WNW IMIUSOMENIMINEINEE N1 NM MEM Mann -■MaNINIMENIEMI NM NE ■_III♦■■ I��■ EIMENNIEMIIIMEMESS nSiiiiinji _■■■■■■iN_■x■■■■ 1 • • I I r- II _1_1 i r • • rI /•,31 �H�_ I I '� 1 1 i l -r 11- -4 ii ■ r- IN INWiu • ■_■■ ■1o■■ MEM ■ _ ■■1_0■ IT4II ' 1 IT; i l l ■ _ I; 1 1 r 1 �l ■ I -'-1 r '- 1 1 I I 1 n: T LI 11 r,- 1 a-; 111 ' 1 :1 I r' rl -j I _j 1.- I ? I -.^ITT _T I. ,____r f 1 i- -17r1-I- -r-,1 �IrItl;;r l,; _-I-1-f � ■u■��pi!L�I_g_in■ ! i s I elm_■■■■■■■■N_= MMIEM i■0 ■■�■EN EMI SO iIII 11r I jl ■ r' M - ■_■ -I-!-- - -1-- ifiPllt i ■1■1■ 1 T"-r" ■_■■_■■_ ■■� III `_�:! ■■■■■■_■■ EN TT i vq■W��ME NM NW ■ TII ■_ 7 , - p II mini WWI I 11 rr-r I I 1 II, I I 1 : IiIrj- •1 ' _ T I I l -1 ; 1 1 ■■ ■_■ NM III II1;i e 1 ! r i■ii■iii■■ j , I TI 'P� L/0) ,o,h .W XMMTINCK HEAVY ■■■■t■m.■■t..mt.•t■.•a■■■■u••o•t■•.■t ■■nnmi••nt•nto•n••t ■o nn •t ■ am..........4■■ ■■■■..n..••••..■■•mmn■umm••m■■■■■•■m■■m■umu■.m••■t■•m•■•■• •• •■ ••■mt■ ■um•• mmtp� mmo ■ molimm.■■t.: mommi .1� u::•t.e■n:••t. mmommo■■am■:■ .t :■•:•ot.:ll:lmotatl.. tt■i.ttoam.tn..•mm•t. ■■•tm.to..m• t••t t. m . . . •■tto . nm ■ . um ■ mom m■n••n . .. .....••onnnn•.......••mm ....n:'r=1�':::mn:m.•...._':i.=•n•:•:Im•.�n=:::: n: n•n•" i i ■■ :■: •••••••att••a•mu■m•am •tn••um ■■ton■ •mma■ ■ •■■■mn •t ■ •••■u ■ •mmtt•.nnm■■.mu u.ont.m •.■:.•■• a:■m■u a■mmmn=•■mm.■■m•■m■0:: :• ':C-�'■mm:�' , : NEEMIEMEMEMEEM NIIIINIItm■: .»� IIII mom Imm !flt11iu1!Hn; ' 1 :.MMEEMMEMEMEMEN IIIliq �, ul •a■■■■■■t.aa f•qom Emmm mum ! 9■W■■■C 7F7■�Wn I ■WWt 1 _, IIIIIIIIIIIIIIIIIIII •........■■a•mmt■ inn •m■m■m■t■■••um ■mm ■ ttmW _ ■oll ■n• ON MOM ■ ■m fl flT-1 ■ 1 I i IIIIIIIIIIIIIII 1 1111111N1�t11 4 I11 _ I I 1 _1I11• _ ', [ !i mma■■m•m■■■■mmm :'■::n ■ tat ' " ■■1 Y--t ■ tr T mnnm■mane _ !! '-� . _� ■■: ■ _ •oa■mmm.t••un ■■■■ �i:omm 1- ~f-r i.n 1 ■_ ■ t„■= ■ ITT ■ .n■t■■•■■tm•t■tn ' ■■ •tea• • 1, "7-7■•1 tnt� r ■ t• I. ' Fr -' -i 1 i 1 t Wmn■m.'an•on• III niinmull dm•■ _= pn1.l■1 ■W mum mum mnmm•■W _t■Ltt ME■:::n:i■M l_r■■untu■■=M:n:■r '.iit■:i�::'m'miu'En n:E "■:o ■ 1 1 1. M� mum:: _ nn.n.n p IOII�eIIIuuI IIH ::. IIIIIN�IIN IIIIIIIIII N = 11 1 i re E mt Itnllotn■ ■■••■n■ttm■ ■ou■::'m■un:■rum: ' •um:•t■ ■ 1 ��r = utm m...• •u.. .• t■atm ■. flu. ■ r itutu...ut'iiii�.■=t.■'�ii tntur■s■t■nt �:m■'tt % , .. +T 1 T _, -, .� mu••toutt•mum Art•■t. ■ Ammo•■ at•rtrr nut ntn G�7 n:■l: '� o -r= •tm•.t■ttm■m.mmm•1i■■tm•m■•■ma■:■■mmmt■mm::.:=loa■mon■■■o•f�t■m■ ■ e-f-r-r ?T r i n•m••ttuunu■o 1i.■ttnm••t:.■■ t•tn■tot ■ rtu•a■:•..mli::::::a :li - r ~" hIIIIIIIIIMMIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11111111H111111'!I 1T u■■■■■.a••••■ut■t.■t■■■■t■■■■■ttt■■■■■■■■un ao■■mm•m■m•o■■■•om ■ ■ �!■■ „ "a '■'m■aim t■tt■■■■t■tn■■t■tt■■■■■■■■■■■■n■■..■■■t■■■■■11:t11t■t■tt.■t■■t■■■t�t■�■ rnrrrrrrnntnrttrnrrn■motto■mtnn••m ommaatmllt•ummmummomp ■ ..r -1 ■oo■untmu■■u■:mo umu ■ ■ ■ mmo.otnni m■11m■■numm■m■: �:::: y• ■■m■tor■.■mums ■ ■a■ s p° rn ■ -� 1 r '� ■■■mm■mmomm ntm. ■ ■mil p■•n mtn••■rr■_rno 7- : Wnnm•m•mmnnnn• E ■ mnn•mn••nmm• ■ tnmi:ii:■n■:omnml=m■■ ■ - ?::_i= :.+ a• mun■o•■am■noau ■ m■•■ma ■ 1 .nm am ■ F 1-r n••n••uWamt m "mimutWWO■t 1 El 1uu:n■mEMEMEMIMEME mmmii11 •■•■tm■mnt■mm MENNEMEMME SINS u■n■■aam■ 1 -� r i 1 i 1 1 7 1 i-T Pm f r uWmmm •mm■■■■•ua ttu�ta:�t.mt 1 1 r n? ■ r 1 rT numum.tmm Tr r= r r •nnmmommunm imNENNEEEMEINOMMEMEIMimnnii::EEEMINEMi: - Tr �:r11Lij 1 amp n••n•n•••nnm•m•mt■UWWf••n•m 1 I I nn.! Wmm mnn rnrnnt.tmto. n•ma••ttnu• : I ram ■..■■m■■..nt■■.■mtn.m■•nutm ■mm•■:mutn n•oo _T` T ■ �.:[ MEM . n..•••u■••to■n•■ EMEENEEMEMENMEMEMEME ':mn': t■t •t•:MM IIMENEEMMENEMEMEMEMMEMEMNIM ■ •-r ■EnnEMBEEMMEMEMEMEMEMEM �,_ _ ■ t - -r- ••••• •nn•nnnm ■ :m•mo■•.••■mu ':■ ; 1 ri ' r 1 T �r :'m:rlm'm�'in NM •nnWn1n'•:•n•••m••••NMIIMM I . BAN opR' 6`' P L;,ve • DRAWING PAPER N0. IE10.10 TPACINO PAPER N0. IEE7.10 CROSS SECTIO11.10210 T0. 1 INCH ADUARCC MADE IN USA sr • • 1 PI MIN 3 t 4 5 b 7 anlin 1 1 1 1 • ■ 1 1 • ME■ • 1 61 S 9 KJ IILOM- 0 X 10 10 1 INCH 10TH LINE HEAVY 7d 141 m..■.■./■■■/NNNU■■■ ■■■■■■■//■■■■■.ff ...■.■■■ .■..an..■... m .n. nm ..■■.... ■N■■.■.■.N■.NN.■■■■■■N■■■N■■/■n■■■■■■■N■■■■N■/ ....m/■■ ■/C■nl" + _■N■///■/■En■■■N/■ ■■■■■■//■N■■■N/N■//N/NN/■■■■ //■ N■///■N■■■■■■■■■■■■■■ /n /■/ N ! -1 ■N//NNN .N■....u.... ■■ N ■N■/■■amN■mu■/■■ ■■■■■■■N■NNNN■■■■ ■■■■m ■■■■■■■■■N ■.....■■■■f. .■. ■ ■9■■.N.EM.n. ■.■.. ■/.........../■■N■■ ■ 1 ■■n■.N■■■ ..■■■.■N..■. . .N■N .■■■ .... NNN■■■■■■.■.■......... rt ■■N■■■.■■■ 1111111111111 1? 111 ■ ' ! 1.r,� i "NNmIII- i111"i " T NIMMUNN ■■■■■■ ■■nn //■■ ■ - f- ./ m■ ...■ ■es NW■■N.N.■. ......�....N'1 �._. .._ .�__�._, =..Q.CN..C.... =Clew@1� 'i; �'. N: mm.N./■/.NN ■ ■ ■ ■�Nii Nei■■.■. ■ ■ .n.nn.nN.■ ■ iMIIIIIMENISMINIMMINNImMellitr N ■. .■.■ .■N ■ ■ .m .. EMEM ■■N■■n■■/...NNn N/� • .■�I■N■ ...�imm�■..■.N�■.CHggommum N..■.. ■ N.■N..N...■ ....n.n.■E'rn.■n.. .■ N Nn .■ppNn ■ .■N..■■ ! ■ N/N.N.■ ...■N.N..■./s. /.. /...■ .■.■■N .■. ■■■NN /. ■■■...... r 1 �I N1N�111N e ' .N�� ' Ii..N,NIl�1 ININI ! a ! ■■■.nN..■■m.■N.■WiiiN../i`� rj. ... .........I ■ ■n■.nn...■■. 1 F ■ .■■..N.■.mm�m..�....■.■■ ,5mow\ Q!■..� T , ■ /■■N// N ..■... .. ■ I: 1 ....L::u: n:NC�.: :.'C� n:: ii�. ..: "t.C■' N� .... • . 1I1' Nmm■■..mNN■ ■ I ! \nmNl N. 1111N IiiG I! .N■N..././n�.�.N�p..� .N.. .��.■p�■�■ynn/.■Im.�N■■N....'m.\�..■... .■ 1 h■.. ! ! ■ p.�m...... ■.OnalLi NmN.■.■N.NN.N/.■ �� N■NN... NN..■■�■ an. ■ NNu■�/N.��. ■ ..■ ■■N■.N..•■�■.■N■.. uN �N\■m.■�1■ ■■i. ���TT NCn r.■ 1.. .....■.....■.■ T^�T .NN Nm N11N1 11 B1NN r 11 11 INU IN111 mingammiummmim .m..Nn.N m• ' mmommmmunim Jill N.NN..■.. .N■1111 ■1'man rt I MEMO MUM= MMEMEMEMEM IMEMEMEM MENEEMMEMEME MMEMEMIMME /mmn■n ■ 1111N111 /■nn./.■.m■MEMEMEMEMMEEM MOM ■n/■.../.../■um.■. .■■mN...N■Nn■. NN..■■N...MIMMEMM�mNN�,,, ILMIEMEMEMM .■.n.....N.in.n II NII111111 11 Iill ! !I . I I MIME EMEMMEMEMEMEM MMEMISMEMMEME nnn/m■ Nn/ ..N ■.■. .. n■N■- I..N .N. ■�. .■..■. ! N. • /N. ■.■n■.■��p■ ■�- ■.m.mmN■n.NN■..■mm■.il� mimmillemmomp N.......■mn.. u'11NN111111N1111111111111111111N ��u ■.....■.mommimmEmmummumme .n■n ■Nn. ■ Y] .. .■■/.. .■n..■■■.../..■.■.■n..■■■.■moi IN MEMMENEM I I ■ II! ! N .■ I EMI ■ LI I4 i ni■N■IN nn ' I ■� ■ T_ ■N■0■ ■►■ + a. ..■NI... II III !IIII! ...■..■.■/■.m■ .■...■...N..N.. nun■■N■■■nm ..N■■■■N/■/NN. n.■■.n.um.. .N..■■np I p■. • ■..■....■■■..■■n..■....■...N...■.■■. mnn mrf. MEMEMIMMEMOMMIMEMEMMENIMMEMEMEMEMEME il _■■■■■■■■■.■■■■n■■■■■n■N■■ f■■■■■■N■■pNp■■■p_C■.■....■■..■■....■n..■....NmommumommommummummunammmomnaluinEMEMM ..■..■= ■m IMEMEMENIMEM MEMEMEMEMn EMNEMMEME ME • gp emo■p :.■q■W■.■■■N■■■N m� nmmommun�n En�pummEONmn■/mmomm ii.N.Nm•■ 111111111111111N11N11111111111111111N111111 111111111111111111111111 NN111111111 I ! N br 5 'f5 2- 9 J 6 m.LOM-m X m To I mw LJ i Co r ::.■a.n an:nnC ■: ■a ■■■n■■■■•n•n■n■nu•••■nl u■nnnnn n ini�i■al i■ ■■■■■N■■■■■u ■ ■ ■■■ ■ ■n ■Ni■■■■■■■■ u■■■ NN■■■ ■N■■■■n■N ■ IIUMMUMINIMOMIN1 ME MN OEM •■• ■■■••■■p■••�un■pu■ ■np■■n■n.■id■.■ n ■■■■■B■■■NNN■ ■■ ■■nu SOW•IIMMUIM !II Ilffil;'II • , 1 717 • • IHNIIIHIIIIIHINIIInIN111 �i � - LI mu NIL NEN lillii�� nanNEENNEEmmommL INo •• EE■■■nlir ■■ numm is• Eon am um Nemo non -1 r I � � Iti-'_i i-!-r�l-��r _1- rT1-i-.7. � 1_L_- 1_r_ I �1 1-77777717 ■■■■ ■ ■nn■u g_nnn■n■ ■W■N■EE■ n■n■■■nuu ■■n■■N■■■■■u un■■n■■■■■■■ 11NN1111 ■u■EE■■■■■� 1 r: ; I I_I ■n■■■■■■■■■ I I. ■■■■■■N■p■■u■■ f i- i N■NN■■■■■■■B■Nu■nN ; I NEE■ Ih y } aI 9r Mrs ■ rnm _r 1 1 'Arai n 1 ■ Llenli I I_ n•u LI� ■■■■■■■■ ■■ ■■ME MEM N1 ■uuu 1 1 1 1 It En nii■■■i nallall lanninall rI1-rrr 1 r rr 1 4 ; • O un ■ ME Id NW 1 r- • T 1 N■N■■ BEEN • NI N■ • � r II ii I 77777 - .-1-4-Er IH- - r r; i _� I ' OM ■ ' I -I- T t i I I I^- 4 I I �'-f_ 777 I NEMBIMIMMUM t Iy rk ■ Milli nal itimaninammunnumnommon N■■■.■N■■■■■■■■■■■■BEE ■Niii■1iiiiiiiiiiiiiii•- •i■iini■iiiiun"i■■■u■n■i.' • u ■ EEN■ nii■■EEu■■■■i ■■ MEMORISE rr Y+I•j� , nu • L. 3 6 7 U o ,o „MCI IDIM LINE MtAW L.'Ne mom mmommummann ■..N..r.........n.■.....:....■...■nn■.:n■:■■.■.....N.■.■■..■N.■..■....•■.■■. W NN■■ �o�inn.�un.n:nn n :EEE:EEEEEf fIfn� MISMI. laillial • UU•Um �mCEEY....gNN.ni.Wm.. .n...■Nn..■..n........in..■.■■..n�...nn■•...■W.■N.n....■n....n.n■N■...■.W.WN■. mumminimmummummammmommummommmo.N.■■■�..nn.....■.n.■ ■. ■ ..■ ■■■■..n■ .n.W�n.nn..■N..n..:■.:■:.n:n.f........■n.u.mf....nn■m. ■W .■■■..■W.n...■■■■■.■■.■..■ ■ ■ ..■■. ■..n■■■......■l■.n N.N n.... Nn. n■.Wn nnn.■■nn■■N■/.■WUNMEMMEM■ ..■iu::f■■.■.■■...■■■■n■.n ..::M■■ • - i u.■N.n�....n.. ■ ■ ■ ■ ■W....n.■■.■■. N� .. ■.. ..■■■■ MN W■ ■■■IM.■�.....MMEMMIMEMMEM■:n■.■.■.pp..ENITEl....n...C.... ■■..fWnMIIMMENIMEN M■ ■■..11■: .■ .. .....N .......■.■ .■.nn..nnn.nu.■W.■■■n...■■■. -. -i IMMO ■..nMn..MMIIM Wn■...■n...WW...N�.n...........n.W.n.n.. ; Ti W.O.. ..N.N!!.. N_n..N■:.■ -f - j I f ? .W... nN ■......M►\■.. .way .__-i .W.. i .... Ti�-I fart-..- WW.Wn.n L. ■.n.nnN■. 4 • 1 ■ .N 1 ■ 1_, 4 1- { . . ��.�� ..■....n il np••■■nn..►.P 1 1 1 r ■pp.. r n. .. I u nN.W.n...n •®W_■.n ■ 1 1Tf '. fit-�:T �-j f1 V' .V n: L_ 1_ -.. 1 ■n■.N■nn NBWnW... p�. ;_� y • W.N.N.N . 1 1 1 1 1 H.� IIMN..n�W.■■ .. ■N.n..Nn.■n ..■W■■.nN■ `' 1 ry, Tl r T- " I .■■ ..N1nNN.. ..■ 1' 1 1 N r ME MR MEMO M OM .N....n.■p■p■ 1 7 i -- r -rr InmonUS'Isn. ■ •.■N n 1 �■ r1. l- !_' ■. 1 IMMEIMMMEMMUEMME .�n...■.W n�O.. W.■...■ I IIMIWIMMINNIMINIMMIS:::na..1■iiwiiiE.0 ■iinW .. ■ .WW:..•■ • W... MIMMOINMOMMIMMEMORIMMIUM EN MN.. ...■ .'■.n. N■NW.■NW MEMOMMENOMMIMMERMIMM 1 .■■NN...■NM.un -i- -;_, 1 1 1 _iI...NW.■..n.n j■ .N ■ ■ n lillmaIll ■■.nn....n n . 1 �,2 - - .1t. r j-i=1 i I ; ; 1 N...n.■mmum ..n 1:. n. n.n. WNn■.N n..__...N �Y=� 1 , I : rf-r~T _aims■ ■■■un.W �N:NN. nammuW■■u uN■..�...ui 1 -r-i-r n■■■..■.W..WNn■n.NWu.W.■.W.O..N. n■....W..■.. i 1 , , ' 1 W■. 1 ■ .nnm... 1 ■ ....■ ...■..NN..n n T 11 1 i r -4 -- T 1 ,. ?" •N 1 ■.. .■■ 1 :n ..■ .■.n.. ....■..nn■.■W r rEI r1 i- i- 17 - 1 j ■ -I-- 1 • �. .WW -HI 1+:317111 ■.Nn■nnn E-`-II r i-i j r-} �. { Li 1 r, �- i ( 1 I I -*TrI ;T-� -. ,_ OE M 1 T Wp�. .Nunn --1 - -I 1- i - - - I-- � T' 1 1- .- '-r, nnd.d nnnW .■n••• .. ....■■.Nu..n OEM Ern MUM • 51 a N ■ ■■. ■ on ■NNB SIT flL .n:..i.W N. T �{ i ■■ ■■■■ ■.. nN■.nn.n■ 7 1 ' _ I ; ; b. ■N�..... 1 1 •j I 1 ■ ■■■■N■■ ■■■■ ■■ n 1 1 ■nn■■. 1-` 4 I W■■W■n■N■N■W■ ■■ ■E ■ ■■W■■Nn■■■■WN 1 r-- p i T� _1_l.._ .NW.■..Wn■...NNmin ■■ 1 • 1 un•. moo; mim..■■■. 1 ■pp■ ■��■nN■■■■■■� ■:::■■::r:::■�:a■ ■■�W■ o�Nn■ons■ N ■mumm ■::::■■■■ ■■■■:::::■■■•■nnn.N.■.■ ■.n■■nn■■■■■� ■■■■■.W■■ Jr- 50 L' C 7 Q ,o ■...■■.■..■.■■■uNU. .■■■■...u..■nn ;1 1■■t■■ ..■un...n ■■1111.. ■ ■■■■■■■■■■...■■N■.■t. ■t■■.■■.■■■■■.....w...■■■■■.t■■■it..t..■■iiw■i■.. ■.nnNwwN ■■■■■■■■■■..■■■■■t.■.■■■■■■■■msmaimmommommmommommommommemi■■.■u■.■. ■mmumnomminim=■■=n..■w■..■ ■■■■■■■.■■..■■■■■ n... ■....n.■■■■■� mmomummumminim t...t■t...■....■..■■t.■■■..■■■■.n.■.u.■■..■...■■...unu.. .w■■■■■■■■■.■■■fl■ ....■■Nunn■ mommommmomminimmumammEmmmommommunnumnammgminmm•u•..u.nnn� nnnn•\nn..•n.n •n .•un■N■•Yu•nn•.. unnug •••u ••..n■ u •u •n•�HE�.w■.NN IH iIF1 1111111111111111Hn�•IIHIi�lii 1 ■■■■■■■■■■■■Pr1■■■■■■ ■■■ •nnnm•11� 11 11.1.1� • ••mEE •• —' �T rr •■■■■■■fin i■■■■I w■u■n■■ 1 nsN■■••■�i�--r r� IIIEMMIEIMMEMEMEMEMEMMEMEMME MIIMIMEMMEEMMEMMEMEMEENEEME Nu■nNt.N �.■�IIIMMEMEMEMMEMEEMMEMMEFIEMM 11111111 MEMO MN rr . ■■ ■ Mr°■■■ ■ • ■ .mmtnm it ';:■■■:••• ■■■ ■ ■iu Nii.s••iii• 1■N .•■nu•■o■�._ 11.1.1rt1 wu �w��■.■■a . ■.■ ■■ Minn MM■.■N■ .■.■NICE■ u■■.■.EMEM 1E ■■■V■N■u - . ••■.�•... _ _ ■■w■■■■■■■■N WI■nu. ■■■.■■■■■■■■■■wE••ii■ ■1 r i�r �:.■■■ tiiiii • I ■awn i- -1-i .I--■■■■■■■■■■■.. �i q. r� .■Nn■■■■■■■■■■■■■■■���■ ■ ■�■wn ■N ■N ■■..1 wu.■■u ■ ■■nuNw■■■n■■■u■■■■■■■■■■■■un • ■■■■Nu■nn ! ■■■ t T: • u■■ ff■u.•�..�■�■w■■n�N■0N N■■■■■■■■N ■ ■ rig -rj-j-+--:i-7-rrrf-, ■■■■■N u 1i r T 1 4 +i � 1/11111/1 IINIIHHIInIIn IIIIIIIH �` ���t 11 i , INIIIIIW11■011 N� 1 ■■■■■.....N■■■■n..w■■■nau •.iinn•u.u• ■ •i'Giiii■..•� 11 111HHHHHHH i111niiiiH11H1111111 ■li"N I�n11 11 I51 IH 11 1 111H 11n111 nIHHH1 1111111111n111H111 H1111111111111111H IN111HIH1 111i�IwH11H11111H111 IIIIIHIIIIIIIHIIgu HNIHIIH 1H1 IIHIHHHIIIN�BH _�___ ■■■■■■■■■■■.■■■■■■■■■■ !9•N■■■■■■..N■.•■.■■■■ u.■..■■■■ •■■.n..■.0 IIIIIIIIIIi1111B1111111m1111i1111111111 MUMMERS I I ! m 1 •• •• •• ....; � :. ..:.. - I LJ {N.IOM-10 N 10 TO 1 INCH :0111 LINE HEAVY C F c- 70 Imm ■■■■■■■■■■■tuna.■■■■■■■■■■C■u■ ■■Immommommmommmommommumummmammum C■■� ■n �■N■■■■■n■■■N■■■■■ ■■■ ■■n■ ■n■■■■■■I•■■■ IllIMMEMEMEMIMMEMEMMUM■Nn■n■■N■■■ ■w ■■■■■■ ■ ■�■■ ■■ ■ ■ ■ ■■.■■■ ■■■■�w■■■■■■ ■■ ■■■n■■■ ■■■ INIIIIHINi1N ■■ ■ ■■ iNli LI i uill�di i 1�i i amium ■ i ■■ n .I.IH..N■Mn --r ■■.u■�•ia• •• ' ■ w■:■■N �■■n■■■■■■■■ ■N N.■.Nu■nnn.■N ■E!4_n n....■.n■N •■ai•••iinn ■nu•.wuunnnn IHIIIIHINHH1- w■uw■■N■■■■w I• ■N II u 11 O.■ I re) DeAN Coopei2 U o,.LOM_to X IO to + wcx IOIN IWE NERVY Z. cil,e 1 ■■■■■■nn■■■■■■nn■■■■■■ n o■■■■■■■ o■ ■n■■■■■■■■■■L■■n ■■i■ ■■■■i■ I I ■■ 1 ln■■■■iini ■■■■■■■n■■■■■n■■■■■■■■■■C�' ou■■■■■Co u■■■■■■■■■ n■ ■■■■CC■■■■ ■■■ ■■uu■M_u■■nuo■■C IIII• ■■■■■m■■■■■■■■CCiCCCCi:C' kill MMENNMCiiiiiii C ■■■ . ■■■ _Li_C■■■ puremilir. CCCC■u■i■: 'i:::::iiC ■■■■n■■■■■■■■■■■■'C'�C■�CCC 'C■ ■n ■■■ ' L. ' ■■■■■IIIICC■ ■ ■ -1 1 ■ruin■ nu■■■ • ■■■■■■■■■■mo■n ■■■■■■■.■■■■■■■■■■■■ ■■■■.■■■■E8■■a■II'I■. NI ■■ IMUM NIII M ' IFII r 1 .1911111 ........."��' IINNIIIIIIIIMEMMMEEMMMEMMM..•nMI5 MINIM■.���■■■■n■n■ili■■■r■i■i■■■■■■�■..n■■■■ n... ■i■■!!!ll-i o■■■■■u■m■■■ p l ■■u■■■i■ ■■■■■■u■uw■C■■■■ o■■■m■■■■�■u■■■ ■■■■■u■■■■■nu■u■■■■unn■ nn■■■■■■■■■■Hn'.■■■■■n■■_■■■■EM■n■■I■■■CCE��M■vMI■■■■MYM■M■ ■"'■■'■On"■■O■"■■n■■■■■■■■■■:■■■■■■■n■ o■■■■■■■■uu■■m ■■■■ ■■■■ n■n ■ ■mu■n■■■■■■■■a■■oi'■■'Ciii■■C■C■u■■■C■■■■■■■'■■n■■■C■■i■CCCY.CCCCC%G' ■■■n.■"uin.■n■ui un.■n■ii■' ■■un■■■■■■■ ■■■m■ ■ ■■n■■■■ u■■■■ ■_■�, .�i _j_, , �i "' "r iC'C'■'■CCCC� iiiC""' ■ '"m■Ciiii■u"NEI mms "'C■•nu ■ MEMOm"m'■n■n �•iillli l�l1Y r Am CI fill CICCC!N " (ia . 1 T ■■■■■■ �■ W■ms�■ inane mm ■■■■■■■■ ■■ ■ 1 1 I . '■■d■ ■■■o■■i■��■C7Lr•nar.• ■■nn•nn■ ■■■m■■'n ■ . ■■o■u■ ■■■■..■■n ■u■■■■■■■o■C ...■.... �.. ■■■■■■■■■■■■■■■■n �■q■ ■■ ■■■ ■■■ ■ ■■■ ■ t- r--r `t-I-rt-;Tr ■mn■u■n■ ■■ 1 e 1 ■� jj'=■i .,M m■C■• mmaimmi 7 ,-1 -- .i 1 i 1 r MEMMEMMEMIMMEEMMEMENMmmn EMMEMEMMENE �t t 777■1■■ 1 �' F �� r f ■■■■�■■ ■per T ■■■ ■ 1 1 11 111 ..................... ■■m■ C"n'■'■CC■■n■n■■IME C■■■■ ` ii■ ��� a' - { ,_ -i 1 ] - ■■■■n■u■■nnnm ■■■■p ■■■nup n�, ,r { ■mn■■■■m■■■■■■■C nW ■ _' iI Tiri�lirt T m■■■■■■■■m■uu■ n ■ T-1 ■C' .n C.C. - 1•moil MIMEO i�ii � r..� m ■■■■■ ■■■■■■•■• ■■■■ ■■■u u■■■■ ■■ ■ ■ IIIHIHIi■IIII IIIIi1111 WM • ■n.■ .. ■■■■■■■m■■■■■■■■■■■onf■ ■aU ■u■'n"Ili' CiCii■I='C ■u' ""' ININI n■■■■n■C■■■■■unCC■■ C e ......... n■■■■u■ ■■�■■u'■i�■�ii■MEMC = • ■■■■■■■o■uu■■n■■■■ ■■ ■ ■ ■ ■■■■ i •MIIIMEMMUMMUIMMEMMUMMEMMINIMME■ ■ i ■■■■■■■■■■■■■nu■■■■m■■ ■ ■ MOIMMEMMUMMEMMEMEMOMEMMEME MOON ■■u■■u■■■■n■■a■u■o■NEMMEMMIIMMOIMMEMMEMEMMUNIMM MMERMME MI EMI. n■■nw■ T-1-� ■■■mn■t ■■■■n■■■■u■n■■■■u II OM ■ t �■�' �y m■■■■■■■■■■■■nu■■■ ■■n C n■■u■■nn■■'iu = 1 rt ii1=rL ill ■■■■■■■■■■■C■■■■ _ r. ■p■ n■■■■■■■■■■■■onno■■■ ■■ ■■■ • jI ,_,_ ■ ■�� ■■■■■■■■■n■u■■m■■■■■■■■ ■■■■■■■■■ ■ I. a■■■■■■■■■■■■■■uu■■■■■■■CC■uu■■■.uu■ 1 1 1 ■1 n■■■■■■■ ■m■■n■■W■■■■■■■n■■■■■m■■ -T ■■■■■ ■■■■I ■I n■■■■■■■C...■■■■■■■■■■m■■■■■■■■■■■n■■■m ■■■■■1'::CC ■■■n■■■■■■n■■■n■■■■■■■■■n■■■n■■■■ ■■■ ■ t ■ .m.!;11■NNImIIIINNIIIII�i1IUIII 1 1 ■■ u■n .... o n ::::C:fC :'■CC".• nn CiM EMMEMMCCCC.-'r:C:CCCCC:CCCCCC C• HIIflhII1IIIII.. . 1 • f , 1 ti- 11 ;, r t 4T • -j-- -r1T77Y pp M1111111111 MEMSMOMM m■■■■■■■■■n 'uui CCCC■i.0 ■wun■ mi NIMMEEMMOMMM ME MEMEMMEEMMiiii ihmallarEMBEM• C■ui'MMEMIUMIME ■�iC EMM nu■i WOW 'u■■■ n ■u■■•■■■■ • ■ T, _, Ti t1:T i l i r' ::1 , 7 T 1 1 1 1 1 1 1 1I 1 1111 I I1!1 11 111111111 1 1 1 11 1 1 1 1 { 11 1 1 1 1 1 1 1 1 1 1 1 1 I Z 3 /2eAN Co opc•C ly 3 3 3 a I. 2540 A 4 1.817 Acres 9158.3 Sq. Fe (/ aaa'S 51 ITO 125.86 26.10 1" t 73 '124.33 38 3137 L 13 19 31 G Tl'U $174 90 20.03 TL TL p4fCr 46.137 Acres 2009723.9 Sq. Feet 117.14 0.554 Acres 24111.3 Sq. Fe 5 PL • 'gal 119.67 2.07gq6 Acres 1.18.5;c1. Feet 121.13 1 4 TL 8.88 14 118.98 119.03 1 - 1 120.42 123 ' 107.12 MP QS Feet 2 PL W oocff 21 /L.UCNt sfr 120.18 .4 : 19.90 16.75 • C7 C 111.07 !7 b08.06 PL 105.67 FL c t-560 Version —November 26, 2018 Mortality Management Methods Indicate which method(s) will be implemented. When selecting multiple methods indicate a primary versus secondary option. Methods other than those listed must be approved by the State Veterinarian. Primary Secondary Routine Mortality 0 0 Burial three feet beneath the surface of the ground within 24 hours of knowledge of animal death. The burial must be at least 300 feet from any flowing stream or public body of water (G.S.106-403). The bottom of the burial pit should be at least one foot above the seasonal high water table. Attach burial location map and plan. Landfill at municipal solid waste facility permitted by NC DEQ under GS 15A NCAC 13B .0200. Rendering at a rendering plant licensed under G.S. 106-168.7. 0 El Complete incineration according to 02 NCAC 52C .0102. ❑ ❑ A composting system approved and permitted by the NC Department of Agriculture & Con- sumer Services Veterinary Division (attach copy of permit). If compost is distributed off -farm, additional requirements must be met and a permit is required from NC DEQ. O El In the case of dead poultry only, placing in a disposal pit of a size and design approved by the NC Department of Agriculture & Consumer Services (G.S. 106-549.70). El El Any method which, in the professional opinion of the State Veterinarian, would make possible the salvage of part of a dead animal's value without endangering human or animal health. (Written approval by the State Veterinarian must be attached). Mass Mortality Plan Mass mortality plans are required for farms covered by an NPDES permit. These plans are also recommended for all animal operations. This plan outlines farm -specific mortality man- agement methods to be used for mass mortality. The NCDA&CS Veterinary Division sup- ports a variety of emergency mortality disposal options; contact the Division for guidance. • A catastrophic mortality disposal plan is part of the facility's CAWMP and is activated when numbers of dead animals exceed normal mortality rates as specified by the State Veterinarian, • Burial must be done in accordance with NC General Statutes and NCDA&CS Veterinary Division regulations and guidance. • Mass burial sites are subject to additional permit conditions (refer to facility's animal waste management system permit). • In the event of imminent threat of a disease emergency, the State Veterinarian may enact additional temporary procedures or measures for disposal according to G.S. 106-399.4. Signature of Farm Owner/Manager Date Signature of Technical Speclalislr Date Notification of Change of Ownership Animal Waste Management Facility (Please type or print all information that does not require a signature) In accordance with the requirements of 15A NCAC 2H .0217(a)(1)(H)(xii) this form is official notification to the Division of Water Quality (DWQ) of the transfer of ownership of an Animal Waste Management Facility. This form must be submitted to DWQ no later than 60 days following the transfer of ownership. General Information: Name of Farm: Dail Farms Previous Owner(s) Name Danny Cooper New Owner(s) Name: Mailing Address: M And A Phillips, LLC 903 Wards Bridge Rd. Warsaw, NC 28398 Farm Location: 35 3' 55" / 77 56' 42" County: Please attach a copy of a county road map with location identified and described below (Be directions, milepost, etc.): From Warsaw Hwy 24 East to intersection with Wards Bridge Rd S.R. 1004 Summerlin rd. then right onto SR 1511 Kelly Rd. Farm entrace is .4 miles on the Facility No: Phone No: Phone No: 31-560 919-658-1006 910-290-0111 Duplin specific: road names, . Go straight. Turn left on left. Operation Description: Type of Swine No. of Animals oaoa0000 Wean to Feeder Feeder to Finish Farrow to Wean Farrow to Feeder Farrow to Finish Wean to Finish Gilts Boars 1200 Type of Poultry 0 Layer ❑ Pullets No. of Animals Type of Cattle No. of Animals ❑ Dairy ❑ Beef Other Type of Livestock: Number of Animals Acreage Available for Application: 35.12 Required Acreage: 35.12 Number of Lagoons / Storage Ponds: 1 Total Capacity: 885,489 Cubic Feet (ft3) *****aU*******************************************r***tit,tit*******,Firs****+*****************x**It** *********** rrrr*************t********** Owner / Manager Agreement • I (we) verify that all the above information is correct and will be updated upon changing. I (we) understand the operation and maintenance procedures established in the Certified Animal Waste Management Plan (CAWMP) for the fame named above and will implement these procedures. I (we) know that any modification or expansion to the existing design capacity of the waste treatment and storage system or construction of new facilities will require a permit modification before the new animals are stocked. I (we) understand that there must be no discharge of animal waste from the storage or application system to surface waters of the state either directly through a man-made conveyance or from a storm event less severe than the 25 - year, 24 - hour storm and there must not be run-off from the application of animal waste. I (we) understand that this facility may be covered by a State Non -Discharge Permit or a NPDES Permit and completion of this form authorizes the Division of Water Quality to issue the required permit to the new land owner. Name of Previ Signature: Name of New Signature: 4 Name of Signature; us Lan Owne and Owner: ger (if d er t Danny Cooper M An A Phillips f L.GG rom owner): (114A-4(17) Y - Please sign and return this form to: Date: Date: 77:77- 2-ri;tg Date: N.C. Division of Water Quality Aquifer Protection Section Animal Feeding Operations Unit 1636 Mail Service Center Raleigh, NC 27699-1636 November 1, 2004