Loading...
HomeMy WebLinkAboutWQ0041586_Application_20231122 (6)SEWER CALCULATIONS THE HAMPTONS - PHASE 3 Brunswick County, NC For Caw Caw Land Corporation 252 S. Middleton Dr., NW Calabash, NC 28467 910-845-6928 �- 11966 ' Oy�i G I N A�►LLIP � Prepared by: NORRIS & TUNSTALL CONSULTING ENGINEERS, P.C. 1429 Ash -Little River Road Ash, North Carolina 28420 (910) 287-5900 / pnorris@ntengineers.com License # C-3641 N&T Project No. 23007 Summary Crane Pumps & Systems is pleased to provide the following preliminary design analysis which exa Ines he use of a low pressure sewer system utilizing the Barnes Razor Grinder PumpVor the Brunswick County, NC project. The process includes a mass flow calculation and system performance evaluation based on using pressure sewer force mains. The low pressure sewer approach provides not only a technical solution, but also an economic advantage to be realized with low up front and O&M Costs. The hydraulic analysis incorporates force main and pumping system details {including tributary grinder pump station inputs), head loss calculations based on respective force main size, length and system elevations, and pump performance curves for each pump station. Analysis Description Using the maps and project data provided by Norris & Tunstall Consulting Engineers P.C. we ran the enclosed preliminary pressure sewer piping analysis. This was analyzed by utilizing the Rational Method model as recommended by the EPA Manual 625/1-91/024 in conjunction with the KY Pipe hydraulic modeling software. In this way we are able to model using both theoretical data as well as actual conditions. Computations are based on the Hazen -Williams formula for friction loss, using calculations of cross -sectional area and flow rate to determine the capacity of the existing force main while checking to ensure scouring velocity of approximately 2.0 FPS or higher. A C factor of 120, PVC SDR-21 pipe, and an average daily flow per unit of 210 GPD are also used. The odeJs were created using assumptions that only residential units would be connected to thers Brunswick County, NC portion of the system, and that it would be terminating into an existing lift station on the south east end of the system. This pressure sewer system accounts for 333 simplex stations, and pipe routing was laid according to the sewer profile provided by Norris & Tunstall Consulting Engineers P.C. Valve Recommendations Good engineering practice suggests the installation of cleanouts / flushing connections with associated shutoff valves in pressure sewer systems. The flushing locations are essential for servicing sewer mains and can be used to isolate segments of a pressure sewer network for servicing. The connections serve as locations for high pressure sewer jetting or flushing activities. There are three primary applications for flushing connections in low pressure sewer systems; located at the end of each main, at pipe intersections, and in -line locations. Equipment June 8, 2023 capabilities for sewer jetting or cleaning equipment available to the municipality should also be considered. Cleanout locations are routinely installed in the same valve pit as automatic air release or vacuum release valves. Representative drawings are available upon request. Terminal Cleanout Locations: Located at the terminal end of each pipe segment. Inline Cleanout Locations: Located in 800 to 1,200 foot intervals. Interval location also dependent upon type of service equipment available to complete the flushing process. Junction Cleanout Locations: Located at intersections in pipe, at changes in direction in pipe and at changes in pipe diameter. We also recommend installation of a Crane Stainless Steel Curb Stop/Check Valve assembly in the discharge line between the grinder pump station and the force main. It is normally acceptable to have the Curb Stop/Check Valve assembly installed near other utility shut off valves for convenience of access, though they may be installed closer to the station. Rational Method Formula There are various equations, charts and formulas that exist when trying to determine design flow in a low pressure sewer system. In addition, local departments of environmental regulations may offer site specific guidelines when determining design flow. Crane utilizes the Rational Method Formula, which the EPA recognizes "has almost exclusively become the accepted method of practice." (EPA Monuo162511-911024) This method attempts to predict average flow produced by the system throughout the day, taking into account peak flow. This flow is directly related to the number of homes connected to the system. The flow is not dependent on the output from any pump being constant or the same as others, and it works with all makes and models of grinder pumps. It also reflects a snapshot of the system at a given moment — not a best case scenario. The baseline formula of the Rational Method is — Q = AN+B • Q = Predicted flow derived from input data • A = A coefficient that adjusts based on average daily flow o EPA National Average is 200 GPD/EDU o Divide GPD by 400 to determine A value —will typically be .5 • N = Number of Equivalent Domestic Units (EDU) or lots June 8, 2023 • B = Minimum flow one pump will produce at maximum static head with no friction loss Utilizing the Rational Method on this system provides the following flow - Scenario A = .525 (210 GPD/400) N = 333 (333 EDUs) B = 28 GPM (pump curve included below) Q = 202.825 GPM System Flow Pipe Charts Utilizing the above Rational Method formula on the individual segments of the system, we were able to size the pipe to reach desired scouring velocity of 2.0 FPS while not exceeding 5.0 FPS. The below charts illustrate this by highlighting the number of EDUs required to reach the target velocities given the defined system parameters. GPD = 210 TABLE 1 PVC SDR 21 (IPS) (200 PSI) A = 0.525 B= 28 NOMINAL NOMINAL PIPE Effective PIPE Volume GPM EDU's per 100 SIZE Diameter @ SIZE @ Ft. inches Inches 2 FPS inches 2 FPS Gallons 1.00 1.1814 7 1.00 1 5.69 1.25 1.4925 11 1.25 1 9.09 1.50 1.7092 14 1.50 1 11.92 2.00 2.1354 22 2.00 1 18.60 2.50 2.5846 33 2.50 9 27.25 3.00 3.1460 48 3.00 39 40.38 4.00 4.0463 80 4.00 99 66.80 5.00 5.0012 122 5.00 180 102.04 6.00 5.9551 174 6.00 277 144.68 June 8, 2023 GPD 210 TABLE 1 PVC SDR 21 (IPS) (200 PSI) A = 0.525 B= 28 NOMINAL NOMINAL PIPE Effective PIPE Volume GPM EDU's per 100 SIZE Diameter @ SIZE @ Ft. inches Inches 5 FPS inches 5 FPS Gallons 1.00 1.1814 17 1.00 1 5.69 1.25 1.4925 27 1.25 1 9.09 1.50 1.7092 36 1.50 15 11.92 2.00 2.1354 56 2.00 53 18.60 2.50 2.5846 82 2.50 102 27.25 3.00 3.1460 121 3.00 177 40.38 4.00 4.0463 200 4.00 328 66.80 5.00 5.0012 306 5.00 530 102.04 6.00 5.9551 434 6.00 773 144.68 Conclusion The design presented suggests that the system is optimally designed for the scenario detailed in this report. This system will also benefit from several advantages of low pressure sewer systems, including lower up -front costs, no inflow & infiltration, little environmental impacts and quicker project implementation time. Thank you for the opportunity to review this project. Please feel free to contact me if you have any questions or require additional information. Regards, Buddhi Amarasena Sales Engineer Crane Pumps & Systems June 8, 2023 Series ZOGF Performance Curve 2HP, 3450RPM, 60Hz, High -Flow Submersible Grinder Pumps BARNES @ www.cranepumps.com nches (MM) Testing is performed with water, specific gravity 1.0 @ 68° F @ (200C), other fluids may vary performance SECTION 313 PAGE 22 CRAN E PUMPS & SYSTEMS DATE 8/20 A Crane Co. Company USA: (937) 778-8947 • Canada: (905) 457-6223 • International: (937) 615-3598 Pipe Schematic /0,* Phan e 3 aa, 1a,, 141 Is "1a1 ,eo'nssjt' 1� � uAIawlaa,"yq.- , z])a239 ae�aT),�r)�, ull {�2ap 1NJ t 1 l7 ��� I�• AMENITY zx : /^1 1 Izor j 1`' �IISS Itas 4b POND ` 2;12a2 211�,2ap �1 1202 IteJ �.2 SWSTPOND J, 29 I rzoa 11ez uz—I ��_ `ne7 nee •\j' J 7�J i {T9 ,zz3 EXISTING lzzz� I1 z1o� SW ND �, ��,8 • • ;'JJ�7 S 1202)1, , u ulnas .`/iz 12,7 121 ,n_ 9B 1/0 6 � 0 J, JOS � /OOy 0 1 7,o> �JO 04e �09p9,S J0. 0�6'1 J)O°s I Jos9 ° J JO`� `O`oya 033 030 ♦001, f ��e✓� JlOZ �) 7 JO�iS / J0j) �Oryry `ow ^� 1 48,' ♦ \/4F► 479 i - Lti\B '/ 7075 �015 �aAo 6 ♦ \ ; /- .; � PROPOSED 1pg1 ,Ow f i 47B \ y �✓ POND Jo O"'l EXISTING j 477 �, o0 0-(b •�1\� 0701 JOB m� ` �OAo POND 476 f 475 441 / 80 `o,, 70,0 / /JO�J ° O of s ♦ ■M ?� f .�\, 7 1\473\474\•. \ 442 , y 919 ! ; 01� �.. 10,^OI ° Off? J J� �69 052 f ,{ 472 \ C \443 "'�/ •'.�' 920 470 \ 444 / 921 ® JOs �, fff f♦ . {.t, .\X4.63 6. \� // ) �� _.�(1.= .�I_L;\�.�✓\. .�.\.'• \'\�445.!6.�19' y�..i' 'SP\N\yG• 'y•q32�4\45\\yy,1 I I �j __._4 _ _ iI -,—yt� _`1 �111,.,Q1) 6J06 S �, �g9�\9.y��S/eY/'•' ./,q9//19/1`'•�.\A• ?\9B.��z6 a 11 454 \468 46922 447\• _93 0J' ��•l\ 190 467 2.465 \448\ 466 \\449 ;t/9'` \ ,•" 003/ .l• \' \8• �9L5 42".i `. .\450 '1928927I926 1061 060 894 461 45231`930-929925 453 �\460 454,453 934\933\S y. 970 IT ( 459 458 ..jT_ /` 9J7\936\935 \ I 971 �_ _�.� m 1, �� 9gq �_ 843 g45 f /J458 1` 7 •� 940\939\938 •.\ I 972 1 �tant{1t 1c \sgQi`•. (84 847 a40 3 94�. �♦ 954 •. � !•951/z \ EXISTING �,839.. ♦ .�955.• 950 ' T \ \ J ,95.r..T J !949!9481947 1946�945 POND ,.� ..\38 882 ] <<<===1 �`( `.4�59 •l�>160 .i:.�'-(�_! ...,_L_ _�r_ .~._1 �—..1-�'\-'9y6\7g\ y68\_�Yg •(\N\G �\ \�r .i .—_i./I 1'81,88 .;. \'\.'6•�8•6.y5 �8•'-4ipe Diamete J22,2 242, 1831. 1.25 /961'962!63664pr,5g66 \86 1.5 871I7988 8 68.887 ]<=2•�•''y �� Y 87I 1 1<=3 \ i - 7 - -i- i^- a7z ; 891 883 ' � \ 873 ] <= 6 — 890 884. \ 875 j 874 '. 1 <= 8 j CCC \, 1885 >10;aefi' 888 /887 Pi Schemlic 4 Pipe Diameter j 1.25 ❑ <= 1.5 C:J <= 2 ❑ <= 2.5 IN <= 3 El <= 4 El <= 6 M <= 8 El<= lo ■> 10 Pipe Names Q �1 Pipe Diameter ❑<=1 ■ <= 1.25 ❑ — 1.5 ❑<=2 El <= 2.5 ■<=3 <= 4 <= 6 ■<=8 ■<=10 ■> 10 phate 3 t oft% P-25 ! 1 CL do N j r' n. �M 1 Node Names J-17 J-22 c J-24 a J-20 ° X�' J-21 �p Pump-6 O Pump-7 J 33 Pipe Diameter ❑<=1 El — 1.25 ■<=1.5 — 2 <= 2.5 <= 3 Cl <= 4 <= 6 ■<=8 <= 10 ■> 10 J-15 J-26 Pump-8 ° J-18 `; `J-19 J-4 J-3 1 9 J-12 J-23 R-1 Pump-1 � I�O J-27 �i.29 Pump-3 J-11 J40 J-30 Pump-4 J-9, J-31 Pump-5 Flow 29.1 <; 0 a on ti V no �., 29 r,9 0 Q 0 c� h' �a 'DO ars 3 � c O� •S o Zg'L O N ryo' 0 0 Pipe Diameter ❑ <= 1 ❑ <= 1.25 ❑ <= 1.5 ❑<=2 ❑ <= 2.5 ■<=3 ❑<=4 ❑<=6 e<=8 ❑ <= 10 ■> 10 Velocity ,L6 Pipe Diameter <= 1 <= 1.25 ■<=1.5 <= 2 — 2.5 ■<=3 ■<=4 <= 6 ■<=8 ■<=10 ■> 10 'b b n 0 0 c M 'moo 0 M' �43 Head Pressure 34 0 30 c 36.2 ° 36.2 47.6% 48.1 ° 6 61.2 47.6 Pipe Diameter ❑<=1 ❑ <= 1.25 ❑ <= 1.5 ❑<=2 ❑ <= 2.5 ■<=3 ❑<=4 ❑<=6 p<=8 El— 10 ■> 10 34 34 32.1 14 14 i` 7.8 22.2 3 ' `2.2 6.8 -5 77 1312 A 28.4 1 59.2 0 / °48.8 41.7 1.7 52.5 32.9 32.9 43.4 38,_8 38.8 ^ 49.3 h S U M M A R Y O F O R I G I N A L D A T A U N I T S S P E C I F I E D FLOWRATE ............ = gallons/minute HEAD (HGL) .......... = feet PRESSURE ............ = psig P I P E L I N E D A T A STATUS CODE: XX -CLOSED PIPE CV -CHECK VALVE P I P E NODE NAMES LENGTH DIAMETER ROUGHNESS MINOR N A M E 41 #2 (ft) (in) COEFF. LOSS COEFF. ----------------------------------------------------------------------------- P-1 J-1 J-27 96.73 2.15 120.0000 0.00 P-2 J-2 J-3 310.29 3.17 120.0000 0.00 P-3 J-4 J-3 156.58 2.15 120.0000 0.00 P-4 J-3 J-25 292.98 3.17 120.0000 0.00 P-5 J-5 J-28 95.66 2.15 120.0000 0.00 P-6 J-7 J-29 72.14 2.15 120.0000 0.00 P-7 J-8 J-13 736.34 4.07 120.0000 0.00 P-8 J-9 J-31 125.88 2.15 120.0000 0.00 P-9 J-10 J-30 100.23 2.15 120.0000 0.00 P-10 J-11 J-8 969.40 3.17 120.0000 0.00 P-11 J-12 J-16 189.16 2.15 120.0000 0.00 P-12 J-13 J-18 237.69 4.07 120.0000 0.00 P-13 J-14 J-16 510.96 2.15 120.0000 0.00 P-14 J-16 J-13 296.26 2.15 120.0000 0.00 P-15 J-15 J-26 117.51 2.15 120.0000 0.00 P-16 J-18 J-19 35.46 4.07 120.0000 0.00 P-17 J-17 J-22 225.88 2.15 120.0000 0.00 P-18 J-19 J-23 837.53 5.93 120.0000 0.00 P-19 J-20 J-32 84.16 2.15 120.0000 0.00 P-20 J-22 J-19 1352.11 2.15 120.0000 0.00 P-21 J-21 J-33 89.32 2.15 120.0000 0.00 P-22 J-23 R-1 508.55 5.93 120.0000 0.00 P-23 J-25 J-8 1149.30 3.17 120,0000 0.00 P-24 J-24 J-25 437.17 2.15 120.0000 0.00 P-25 J-27 J-2 693.03 2.15 120.0000 0.00 P-26 O-Pump-1 J-27 192.87 1.72 120.0000 0.00 P-27 J-28 J-2 497.39 2.15 120.0000 0.00 P-28 O-Pump-2 J-28 162.34 1.72 120.0000 0.00 P-29 J-29 J-8 1259.10 2.15 120.0000 0.00 P-30 O-Pump-3 J-29 198.92 1.72 120.0000 0.00 P-31 J-30 J-11 299.11 2.15 120.0000 0.00 P-32 O-Pump-4 J-30 193.52 1.72 120.0000 0.00 P-33 J-31 J-11 622.89 2.15 120.0000 0.00 P-34 O-Pump-5 J-31 192.59 1.72 120.0000 0.00 P-35 J-32 J-22 283.99 2.15 120.0000 0.00 P-36 O-Pump-6 J-32 219.27 1.72 120.0000 0.00 P-37 J-33 J-23 2276.06 2.15 120.0000 0.00 P-38 O-Pump-7 J-33 252.08 1.72 120.0000 0.00 P-39 J-26 J-18 377.72 2.15 120.0000 0.00 P-40 O-Pump-8 J-26 148.24 1.72 120.0000 0.00 N 0 D E D A T A NODE NODE EXTERNAL JUNCTION EXTERNAL NAME TITLE DEMAND ELEVATION GRADE -------------------------------------------------------------- (gpm) (ft) (ft) J-1 0.00 36.00 J-2 0.00 36.00 J-3 0.00 35.00 J-4 0.00 35.00 J-5 0.00 34.00 J-7 0.00 36.00 J-8 0.00 33.00 J-9 0.00 37.00 J-10 0.00 37.00 J-11 0.00 36.00 J-12 0.00 36.00 J-13 0.00 35.00 J-14 0.00 37.00 J-15 0.00 32.00 J-16 0.00 37.00 J-17 0.00 29.00 J-18 0.00 36.00 J-19 0.00 36.00 J-20 0.00 32.00 J-21 0.00 28.00 J-22 0.00 33.00 J-23 0.00 33.00 J-24 0.00 34.00 J-25 0.00 34.00 J-26 0.00 .32.00 J-27 0.00 36.00 J-28 0.00 34.00 J-29 0.00 36.00 J-30 0.00 37.00 J-31 0.00 37.00 J-32 0.00 32.00 J-33 0.00 28.00 O-Pump-8 ---- 32.00 27.00 R-1 ---- 36.00 31.00 O-Pump-1 ---- 36.00 31.00 O-Pump-2 ---- 34.00 29.00 O-Pump-3 ---- 36.00 31.00 0-Pump-4 ---- 37.00 32.00 O-Pump-5 ---- 37.00 32.00 O-Pump-6 ---- 32.00 27.00 O-Pump-7 ---- 28.00 23.00 P I P E L I N E R E S U L T S STATUS CODE: XX -CLOSED PIPE CV -CHECK VALVE P I P E NODE NUMBERS FLOWRATE HEAD MINOR LINE HL+ML/ HL/ N A M E #1 #2 LOSS LOSS VELD. 1000 1000 -------------------------------------------------------------------------------------- gpm ft ft ft/s ft/f ft/f P-1 J-1 J-27 0.00 0.00 0.00 0.00 0.00 0.00 P-2 J-2 J-3 58.25 3.10 0.00 2.37 10.00 10.00 P-3 J-4 J-3 0.00 0.00 0.00 0.00 0.00 0.00 P-4 J-3 J-25 58.25 2.93 0.00 2.37 10.00 10.00 P-5 J-5 J-28 0.00 0.00 0.00 0.00 0.00 0.00 P-6 J-7 J-29 0.00 0.00 0.00 0.00 0.00 0.00 P-7 J-8 J-13 145.88 11.83 0.00 3.59 16.07 16.07 P-8 J-9 J-31 0.00 0.00 0.00 0.00 0.00 0.00 P-9 J-10 J-30 0.00 0.00 0.00 0.00 0.00 0.00 P-10 J-11 J-8 58.46 9.76 0.00 2.38 10.06 10.06 P-11 J-12 J-16 0.00 0.00 0.00 0.00 0.00 0.00 P-12 J-13 J-18 145.88 3.82 0.00 3.59 16.07 16.07 P-13 J-14 J-16 0.00 0.00 0.00 0.00 0.00 0.00 P-14 J-16 J-13 0.00 0.00 0.00 0.00 0.00 0.00 P-15 J-15 J-26 0.00 0.00 0.00 0.00 0.00 0.00 P-16 J-18 J-19 175.30 0.80 0.00 4.32 22.59 22.59 P-17 J-17 J-22 0.00 0.00 0.00 0.00 0.00 0.00 P-18 J-19 J-23 204.51 4.02 0.00 2.37 4.81 4.81 P-19 J-20 J-32 0.00 0.00 0.00 0.00 0.00 0.00 P-20 J-22 J-19 29.21 24.85 0.00 2.58 18.38 18.38 P-21 J-21 J-33 0.00 0.00 0.00 0.00 0.00 0.00 P-22 J-23 R-1 233.60 3.13 0.00 2.71 6.15 6.15 P-23 J-25 J-8 58.25 11.49 0.00 2.37 10.00 10.00 P-24 J-24 J-25 0.00 0.00 0.00 0.00 0.00 0.00 P-25 J-27 J-2 29.11 12.65 0.00 2.57 18.26 18.26 P-26 O-Pump-1 J-27 29.11 10.42 0.00 4.02 54.01 54.01 P-27 J-28 J-2 29.14 9.10 0.00 2.58 18.30 18.30 P-28 O-Pump-2 J-28 29.14 8.78 0.00 4.02 54.11 54.11 P-29 J-29 J-8 29.17 23.09 0.00 2.58 18.33 18.33 P-30 O-Pump-3 J-29 29.17 10.79 0.00 4.03 54.23 54.23 P-31 J-30 J-11 29.25 5.51 0.00 2.59 18.43 18.43 P-32 0-Pump-4 J-30 29.25 10.55 0.00 4.04 54.51 54.51 P-33 J-31 J-11 29.20 11.44 0.00 2.58 18.37 18.37 P-34 O-Pump-5 J-31 29.20 10.46 0.00 4.03 54.33 54.33 P-35 J-32 J-22 29.21 5.22 0.00 2.58 18.38 18.38 P-36 O-Pump-6 J-32 29.21 11.92 0.00 4.03 54.37 54.37 P-37 J-33 J-23 29.09 41.51 0.00 2.57 18.24 18.24 P-38 O-Pump-7 J-33 29.09 13.60 0.00 4.02 53.94 53.94 P-39 J-26 J-18 29.42 7.04 0.00 2.60 18.63 18.63 P-40 O-Pump-8 J-26 29.42 8.17 0.00 4.06 55.09 55.09 N O D E R E S U L T S NODE NODE EXTERNAL HYDRAULIC NODE PRESSURE NODE NAME TITLE DEMAND GRADE ELEVATION HEAD PRESSURE gpm ft ft ft psi ---------------------------------------------------------------------------- J-1 0.00 84.78 36.00 48.78 21.14 J-2 0.00 72.13 36.00 36.13 15.66 J-3 0.00 69.03 35.00 34.03 14.74 J-4 0.00 69.03 35.00 34.03 14.74 J-5 0.00 81.23 34.00 47.23 20.47 J-7 0.00 77.69 36.00 41.69 18.07 J-8 0.00 54.61 33.00 21.61 9.36 J-9 0.00 75.80 37.00 38.80 16.82 J-10 0.00 69.87 37.00 32.87 14.25 J-11 0.00 64.36 36.00 28.36 12.29 J-12 0.00 42.77 36.00 6.77 2.93 J-13 0.00 42.77 35.00 7.77 3.37 J-14 0.00 42.77 37.00 5.77 2.50 J-15 0.00 45.99 32.00 13.99 6.06 J-16 0.00 42.77 37.00 5.77 2.50 J-17 0.00 63.00 29.00 34.00 14.74 J-18 0.00 38.95 36.00 2.95 1.28 J-19 0.00 38.15 36.00 2.15 0.93 J-20 0.00 68.22 32.00 36.22 15.70 J-21 0.00 75.63 28.00 47.63 20.64 J-22 0.00 63.00 33.00 30.00 13.00 J-23 0.00 34.13 33.00 1.13 0.49 J-24 0.00 66.10 34.00 32.10 13.91 J-25 0.00 66.10 34.00 32.10 13.91 J-26 0.00 45.99 32.00 13.99 6.06 J-27 0.00 84.78 36.00 48.78 21.14 J-28 0.00 81.23 34.00 47.23 20.47 J-29 0.00 77.69 36.00 41.69 18.07 J-30 0.00 69.87 37.00 32.87 14.25 J-31 0.00 75.80 37.00 38.80 16.82 J-32 0.00 68.22 32.00 36.22 15.70 J-33 0.00 75.63 28.00 47.63 20.64 O-Pump-8 ---- 54.16 32.00 22.16 9.60 R-1 ---- 31.00 36.00 -5.00 -2.17 O-Pump-1 ---- 95.20 36.00 59.20 25.65 O-Pump-2 ---- 90.01 34.00 56.01 24.27 O-Pump-3 ---- 88.48 36.00 52.48 22.74 O-Pump-4 ---- 80.42 37.00 43.42 18.82 O-Pump-5 ---- 86.27 37.00 49.27 21.35 O-Pump-6 ---- 80.14 32.00 48.14 20.86 O-Pump-7 ---- 89.23 28.00 61.23 26.53 M A X I M U M A N D M I N I M U M V A L U E S P R E S S U R E S JUNCTION MAXIMUM JUNCTION MINIMUM NUMBER PRESSURES NUMBER PRESSURES --------------------- psi --------------------- psi O-Pump-7 26.53 R-1 -2.17 O-Pump-1 25.65 J-23 0.49 O-Pump-2 24.27 J-19 0.93 O-Pump-3 22.74 J-18 1.28 O-Pump-5 21.35 J-14 2.50 V E L O C I T I E S PIPE MAXIMUM PIPE MINIMUM NUMBER VELOCITY NUMBER VELOCITY --------------------- (ft/s) --------------------- (ft/s) P-16 4.32 P-18 2.37 P-40 4.06 P-2 2.37 P-32 4.04 P-4 2.37 P-36 4.03 P-23 2.37 P-34 4.03 P-10 2.38 H L+ M L / 1 0 0 0 PIPE MAXIMUM PIPE MINIMUM NUMBER HL+ML/1000 NUMBER HL+ML/1000 --------------------- (ft/ft) --------------------- (ft/ft) P-40 55.09 P-18 4.81 P-32 54.51 P-22 6.15 P-36 54.37 P-2 10.00 P-34 54.33 P-4 10.00 P-30 54.23 P-23 10.00 H L / 1 0 0 0 PIPE MAXIMUM PIPE MINIMUM NUMBER HL/1000 NUMBER HL/1000 --------------------- (ft/ft) --------------------- (ft/ft) P-40 55.09 P-18 4.81 P-32 54.51 2-22 6.15 P-36 54.37 P-2 10.00 P-34 54.33 P-4 10.00 P-30 54.23 2-23 10.00 ***** HYDRAULIC ANALYSIS COMPLETED ***** Density Soil 115 lb/cf Project: The Hamptons - Phase 3 Density Concrete 150 lb/cf NT# 23007 Date: 11-15-23 Well diameter 3.5 ft Well depth 7.0 ft Well Volume = 7.0 x rr x 3.5' — 67.31 cf Concrete Base Height 1.0 Concrete Lip Height 0.5 Concrete Base Diameter 5.5 Base Volume = 1.0 x n x 2.75' = 23.75 cf Lip Volume = 0.5 x n x (2.752 — 1.75Z) = 7.07 cf Total Base Volume 30.81 Weight of Concrete 46,21.69 Volume of Displaced Soil 98.13 Soil Volume = Base Vol.+ Well Vol. cf Ib cf Volume of Soil above Base Lip cf Soil Lip Volume = 5.5 x Tr x (2.752 — 1.752) Wei ht of Soil above Base Lip 8937.23 lb Bou ant Force of Soil Displaced 11284.38 lb Bouyant Force = Vol. Soil Displaced x Soil Density Total Weight of Components 13558.91 lb Safety Factor 1.20 Stability OKI '----CONCRETE PER BRUNSWICK COUNTY REQUIREMENTS FOR ANTI —FLOTATION 5.5'� TYPICAL RESIDENTIAL GRINDER PUMP DETAIL