HomeMy WebLinkAboutWQ0041586_Application_20231122 (6)SEWER CALCULATIONS
THE HAMPTONS - PHASE 3
Brunswick County, NC
For
Caw Caw Land Corporation
252 S. Middleton Dr., NW
Calabash, NC 28467
910-845-6928
�- 11966
' Oy�i G I N
A�►LLIP �
Prepared by:
NORRIS & TUNSTALL CONSULTING ENGINEERS, P.C.
1429 Ash -Little River Road
Ash, North Carolina 28420
(910) 287-5900 / pnorris@ntengineers.com
License # C-3641
N&T Project No. 23007
Summary
Crane Pumps & Systems is pleased to provide the following preliminary design analysis which
exa Ines he use of a low pressure sewer system utilizing the Barnes Razor Grinder PumpVor
the Brunswick County, NC project. The process includes a mass flow calculation
and system performance evaluation based on using pressure sewer force mains. The low
pressure sewer approach provides not only a technical solution, but also an economic
advantage to be realized with low up front and O&M Costs. The hydraulic analysis
incorporates force main and pumping system details {including tributary grinder pump station
inputs), head loss calculations based on respective force main size, length and system
elevations, and pump performance curves for each pump station.
Analysis Description
Using the maps and project data provided by Norris & Tunstall Consulting Engineers P.C. we ran
the enclosed preliminary pressure sewer piping analysis. This was analyzed by utilizing the
Rational Method model as recommended by the EPA Manual 625/1-91/024 in conjunction with
the KY Pipe hydraulic modeling software. In this way we are able to model using both theoretical
data as well as actual conditions. Computations are based on the Hazen -Williams formula for
friction loss, using calculations of cross -sectional area and flow rate to determine the capacity of
the existing force main while checking to ensure scouring velocity of approximately 2.0 FPS or
higher. A C factor of 120, PVC SDR-21 pipe, and an average daily flow per unit of 210 GPD are also
used.
The odeJs were created using assumptions that only residential units would be connected to
thers Brunswick County, NC portion of the system, and that it would be terminating into
an existing lift station on the south east end of the system.
This pressure sewer system accounts for 333 simplex stations, and pipe routing was laid
according to the sewer profile provided by Norris & Tunstall Consulting Engineers P.C.
Valve Recommendations
Good engineering practice suggests the installation of cleanouts / flushing connections with
associated shutoff valves in pressure sewer systems. The flushing locations are essential for
servicing sewer mains and can be used to isolate segments of a pressure sewer network for
servicing. The connections serve as locations for high pressure sewer jetting or flushing activities.
There are three primary applications for flushing connections in low pressure sewer systems;
located at the end of each main, at pipe intersections, and in -line locations. Equipment
June 8, 2023
capabilities for sewer jetting or cleaning equipment available to the municipality should also be
considered.
Cleanout locations are routinely installed in the same valve pit as automatic air release or vacuum
release valves. Representative drawings are available upon request.
Terminal Cleanout Locations:
Located at the terminal end of each pipe segment.
Inline Cleanout Locations:
Located in 800 to 1,200 foot intervals. Interval location also dependent upon type of
service equipment available to complete the flushing process.
Junction Cleanout Locations:
Located at intersections in pipe, at changes in direction in pipe and at changes in pipe
diameter.
We also recommend installation of a Crane Stainless Steel Curb Stop/Check Valve assembly in
the discharge line between the grinder pump station and the force main. It is normally acceptable
to have the Curb Stop/Check Valve assembly installed near other utility shut off valves for
convenience of access, though they may be installed closer to the station.
Rational Method Formula
There are various equations, charts and formulas that exist when trying to determine design flow
in a low pressure sewer system. In addition, local departments of environmental regulations may
offer site specific guidelines when determining design flow. Crane utilizes the Rational Method
Formula, which the EPA recognizes "has almost exclusively become the accepted method of
practice." (EPA Monuo162511-911024) This method attempts to predict average flow produced
by the system throughout the day, taking into account peak flow. This flow is directly related to
the number of homes connected to the system. The flow is not dependent on the output from
any pump being constant or the same as others, and it works with all makes and models of grinder
pumps. It also reflects a snapshot of the system at a given moment — not a best case scenario.
The baseline formula of the Rational Method is —
Q = AN+B
• Q = Predicted flow derived from input data
• A = A coefficient that adjusts based on average daily flow
o EPA National Average is 200 GPD/EDU
o Divide GPD by 400 to determine A value —will typically be .5
• N = Number of Equivalent Domestic Units (EDU) or lots
June 8, 2023
• B = Minimum flow one pump will produce at maximum static head with no friction loss
Utilizing the Rational Method on this system provides the following flow -
Scenario
A = .525 (210 GPD/400)
N = 333 (333 EDUs)
B = 28 GPM (pump curve included below)
Q = 202.825 GPM System Flow
Pipe Charts
Utilizing the above Rational Method formula on the individual segments of the system, we were
able to size the pipe to reach desired scouring velocity of 2.0 FPS while not exceeding 5.0 FPS.
The below charts illustrate this by highlighting the number of EDUs required to reach the target
velocities given the defined system parameters.
GPD =
210
TABLE 1
PVC SDR 21
(IPS) (200 PSI)
A = 0.525
B=
28
NOMINAL
NOMINAL
PIPE
Effective
PIPE
Volume
GPM
EDU's
per 100
SIZE
Diameter
@
SIZE
@
Ft.
inches
Inches
2 FPS
inches
2 FPS
Gallons
1.00
1.1814
7 1.00
1
5.69
1.25
1.4925
11 1.25
1
9.09
1.50
1.7092
14 1.50
1
11.92
2.00
2.1354
22 2.00
1
18.60
2.50
2.5846
33 2.50
9
27.25
3.00
3.1460
48 3.00
39
40.38
4.00
4.0463
80 4.00
99
66.80
5.00
5.0012
122 5.00
180
102.04
6.00
5.9551
174 6.00
277
144.68
June 8, 2023
GPD
210
TABLE 1
PVC SDR 21
(IPS) (200 PSI)
A = 0.525
B=
28
NOMINAL
NOMINAL
PIPE
Effective
PIPE
Volume
GPM
EDU's
per 100
SIZE
Diameter
@
SIZE
@
Ft.
inches
Inches
5 FPS
inches
5 FPS
Gallons
1.00
1.1814
17 1.00
1
5.69
1.25
1.4925
27 1.25
1
9.09
1.50
1.7092
36 1.50
15
11.92
2.00
2.1354
56 2.00
53
18.60
2.50
2.5846
82 2.50
102
27.25
3.00
3.1460
121 3.00
177
40.38
4.00
4.0463
200 4.00
328
66.80
5.00
5.0012
306 5.00
530
102.04
6.00
5.9551
434 6.00
773
144.68
Conclusion
The design presented suggests that the system is optimally designed for the scenario detailed in
this report. This system will also benefit from several advantages of low pressure sewer systems,
including lower up -front costs, no inflow & infiltration, little environmental impacts and quicker
project implementation time.
Thank you for the opportunity to review this project. Please feel free to contact me if you have
any questions or require additional information.
Regards,
Buddhi Amarasena
Sales Engineer
Crane Pumps & Systems
June 8, 2023
Series ZOGF
Performance Curve
2HP, 3450RPM, 60Hz, High -Flow
Submersible Grinder Pumps
BARNES @
www.cranepumps.com
nches
(MM)
Testing is performed with water, specific gravity 1.0 @ 68° F @ (200C), other fluids may vary performance
SECTION
313
PAGE 22 CRAN E PUMPS & SYSTEMS
DATE 8/20
A Crane Co. Company USA: (937) 778-8947 • Canada: (905) 457-6223 • International: (937) 615-3598
Pipe Schematic
/0,*
Phan e 3
aa, 1a,, 141 Is "1a1 ,eo'nssjt' 1� �
uAIawlaa,"yq.- ,
z])a239 ae�aT),�r)�,
ull
{�2ap 1NJ t 1 l7 ��� I�• AMENITY
zx : /^1 1 Izor j 1`' �IISS Itas 4b POND
` 2;12a2 211�,2ap �1 1202 IteJ �.2 SWSTPOND J, 29
I rzoa 11ez
uz—I ��_ `ne7 nee •\j' J 7�J i {T9
,zz3 EXISTING
lzzz� I1 z1o� SW ND �, ��,8 • • ;'JJ�7 S
1202)1,
, u
ulnas .`/iz
12,7
121 ,n_ 9B
1/0
6 �
0
J, JOS � /OOy
0 1
7,o> �JO 04e �09p9,S
J0. 0�6'1
J)O°s I Jos9 ° J JO`� `O`oya
033 030
♦001,
f ��e✓� JlOZ �) 7 JO�iS / J0j) �Oryry `ow ^�
1 48,'
♦ \/4F► 479 i - Lti\B '/ 7075 �015 �aAo 6
♦ \ ; /- .; � PROPOSED 1pg1 ,Ow
f i 47B \ y �✓ POND Jo O"'l
EXISTING j 477 �, o0 0-(b •�1\� 0701 JOB m� ` �OAo
POND 476
f 475 441 / 80 `o,, 70,0 / /JO�J ° O of s ♦ ■M ?�
f .�\, 7
1\473\474\•. \ 442 , y 919 ! ; 01� �.. 10,^OI ° Off? J J� �69 052
f ,{ 472 \ C
\443 "'�/ •'.�' 920
470 \ 444 / 921 ® JOs �,
fff f♦ . {.t, .\X4.63 6. \� // ) �� _.�(1.= .�I_L;\�.�✓\. .�.\.'• \'\�445.!6.�19' y�..i' 'SP\N\yG• 'y•q32�4\45\\yy,1 I I �j __._4 _ _ iI -,—yt� _`1 �111,.,Q1) 6J06 S �, �g9�\9.y��S/eY/'•' ./,q9//19/1`'•�.\A•
?\9B.��z6 a
11
454 \468 46922
447\• _93 0J' ��•l\ 190
467 2.465 \448\
466 \\449 ;t/9'` \
,•" 003/ .l• \'
\8•
�9L5
42".i `. .\450 '1928927I926 1061 060 894
461 45231`930-929925
453
�\460 454,453 934\933\S
y. 970
IT ( 459 458 ..jT_ /` 9J7\936\935 \ I 971 �_ _�.� m 1, �� 9gq �_ 843 g45
f /J458 1` 7 •� 940\939\938 •.\ I 972 1 �tant{1t 1c \sgQi`•. (84 847
a40
3
94�.
�♦ 954 •. � !•951/z \ EXISTING �,839..
♦ .�955.• 950 ' T \ \ J
,95.r..T J !949!9481947 1946�945 POND ,.� ..\38 882
] <<<===1 �`( `.4�59 •l�>160 .i:.�'-(�_! ...,_L_ _�r_ .~._1 �—..1-�'\-'9y6\7g\ y68\_�Yg •(\N\G �\ \�r .i .—_i./I 1'81,88
.;.
\'\.'6•�8•6.y5 �8•'-4ipe Diamete J22,2 242,
1831.
1.25 /961'962!63664pr,5g66 \86
1.5 871I7988 8
68.887
]<=2•�•''y
��
Y 87I 1
1<=3 \ i - 7 - -i- i^- a7z ;
891 883 ' � \
873
] <= 6 — 890 884. \ 875 j 874 '.
1 <= 8 j CCC \,
1885
>10;aefi'
888 /887
Pi Schemlic
4
Pipe Diameter
j
1.25
❑ <= 1.5
C:J <= 2
❑ <= 2.5
IN <= 3
El <= 4
El <= 6
M <= 8
El<= lo
■> 10
Pipe Names
Q �1
Pipe Diameter
❑<=1
■ <= 1.25
❑ — 1.5
❑<=2
El <= 2.5
■<=3
<= 4
<= 6
■<=8
■<=10
■> 10
phate 3
t oft%
P-25 ! 1
CL
do
N j
r' n.
�M 1
Node Names
J-17
J-22
c
J-24
a
J-20
° X�'
J-21 �p Pump-6
O Pump-7
J 33
Pipe Diameter
❑<=1
El — 1.25
■<=1.5
— 2
<= 2.5
<= 3
Cl <= 4
<= 6
■<=8
<= 10
■> 10
J-15
J-26
Pump-8 °
J-18
`; `J-19
J-4 J-3 1 9
J-12
J-23
R-1
Pump-1
�
I�O
J-27
�i.29
Pump-3
J-11
J40 J-30
Pump-4
J-9, J-31
Pump-5
Flow
29.1
<; 0
a
on
ti
V
no
�., 29 r,9 0
Q 0
c�
h'
�a 'DO
ars 3
� c
O�
•S
o Zg'L
O
N
ryo'
0 0
Pipe Diameter
❑ <= 1
❑ <= 1.25
❑ <= 1.5
❑<=2
❑ <= 2.5
■<=3
❑<=4
❑<=6
e<=8
❑ <= 10
■> 10
Velocity
,L6
Pipe Diameter
<= 1
<= 1.25
■<=1.5
<= 2
— 2.5
■<=3
■<=4
<= 6
■<=8
■<=10
■> 10
'b b
n
0
0
c
M
'moo
0
M'
�43
Head Pressure
34
0
30
c
36.2
° 36.2
47.6% 48.1
° 6 61.2
47.6
Pipe Diameter
❑<=1
❑ <= 1.25
❑ <= 1.5
❑<=2
❑ <= 2.5
■<=3
❑<=4
❑<=6
p<=8
El— 10
■> 10
34 34
32.1
14
14
i` 7.8
22.2
3
' `2.2
6.8
-5
77
1312 A
28.4
1
59.2
0 /
°48.8
41.7
1.7
52.5
32.9 32.9
43.4
38,_8 38.8
^ 49.3
h
S U M M A R Y O F O R I G I N A L D A T A
U N I T S S P E C I F I E D
FLOWRATE ............ = gallons/minute
HEAD (HGL) .......... = feet
PRESSURE ............ = psig
P I P E L I N E D A T A
STATUS CODE: XX -CLOSED PIPE CV -CHECK VALVE
P I P E
NODE
NAMES
LENGTH
DIAMETER
ROUGHNESS
MINOR
N A M E
41
#2
(ft)
(in)
COEFF.
LOSS COEFF.
-----------------------------------------------------------------------------
P-1
J-1
J-27
96.73
2.15
120.0000
0.00
P-2
J-2
J-3
310.29
3.17
120.0000
0.00
P-3
J-4
J-3
156.58
2.15
120.0000
0.00
P-4
J-3
J-25
292.98
3.17
120.0000
0.00
P-5
J-5
J-28
95.66
2.15
120.0000
0.00
P-6
J-7
J-29
72.14
2.15
120.0000
0.00
P-7
J-8
J-13
736.34
4.07
120.0000
0.00
P-8
J-9
J-31
125.88
2.15
120.0000
0.00
P-9
J-10
J-30
100.23
2.15
120.0000
0.00
P-10
J-11
J-8
969.40
3.17
120.0000
0.00
P-11
J-12
J-16
189.16
2.15
120.0000
0.00
P-12
J-13
J-18
237.69
4.07
120.0000
0.00
P-13
J-14
J-16
510.96
2.15
120.0000
0.00
P-14
J-16
J-13
296.26
2.15
120.0000
0.00
P-15
J-15
J-26
117.51
2.15
120.0000
0.00
P-16
J-18
J-19
35.46
4.07
120.0000
0.00
P-17
J-17
J-22
225.88
2.15
120.0000
0.00
P-18
J-19
J-23
837.53
5.93
120.0000
0.00
P-19
J-20
J-32
84.16
2.15
120.0000
0.00
P-20
J-22
J-19
1352.11
2.15
120.0000
0.00
P-21
J-21
J-33
89.32
2.15
120.0000
0.00
P-22
J-23
R-1
508.55
5.93
120.0000
0.00
P-23
J-25
J-8
1149.30
3.17
120,0000
0.00
P-24
J-24
J-25
437.17
2.15
120.0000
0.00
P-25
J-27
J-2
693.03
2.15
120.0000
0.00
P-26
O-Pump-1
J-27
192.87
1.72
120.0000
0.00
P-27
J-28
J-2
497.39
2.15
120.0000
0.00
P-28
O-Pump-2
J-28
162.34
1.72
120.0000
0.00
P-29
J-29
J-8
1259.10
2.15
120.0000
0.00
P-30
O-Pump-3
J-29
198.92
1.72
120.0000
0.00
P-31
J-30
J-11
299.11
2.15
120.0000
0.00
P-32
O-Pump-4
J-30
193.52
1.72
120.0000
0.00
P-33
J-31
J-11
622.89
2.15
120.0000
0.00
P-34
O-Pump-5
J-31
192.59
1.72
120.0000
0.00
P-35
J-32
J-22
283.99
2.15
120.0000
0.00
P-36
O-Pump-6
J-32
219.27
1.72
120.0000
0.00
P-37
J-33
J-23
2276.06
2.15
120.0000
0.00
P-38
O-Pump-7
J-33
252.08
1.72
120.0000
0.00
P-39
J-26
J-18
377.72
2.15
120.0000
0.00
P-40
O-Pump-8
J-26
148.24
1.72
120.0000
0.00
N 0 D E D A T A
NODE NODE
EXTERNAL
JUNCTION
EXTERNAL
NAME TITLE
DEMAND
ELEVATION
GRADE
--------------------------------------------------------------
(gpm)
(ft)
(ft)
J-1
0.00
36.00
J-2
0.00
36.00
J-3
0.00
35.00
J-4
0.00
35.00
J-5
0.00
34.00
J-7
0.00
36.00
J-8
0.00
33.00
J-9
0.00
37.00
J-10
0.00
37.00
J-11
0.00
36.00
J-12
0.00
36.00
J-13
0.00
35.00
J-14
0.00
37.00
J-15
0.00
32.00
J-16
0.00
37.00
J-17
0.00
29.00
J-18
0.00
36.00
J-19
0.00
36.00
J-20
0.00
32.00
J-21
0.00
28.00
J-22
0.00
33.00
J-23
0.00
33.00
J-24
0.00
34.00
J-25
0.00
34.00
J-26
0.00
.32.00
J-27
0.00
36.00
J-28
0.00
34.00
J-29
0.00
36.00
J-30
0.00
37.00
J-31
0.00
37.00
J-32
0.00
32.00
J-33
0.00
28.00
O-Pump-8
----
32.00
27.00
R-1
----
36.00
31.00
O-Pump-1
----
36.00
31.00
O-Pump-2
----
34.00
29.00
O-Pump-3
----
36.00
31.00
0-Pump-4
----
37.00
32.00
O-Pump-5
----
37.00
32.00
O-Pump-6
----
32.00
27.00
O-Pump-7
----
28.00
23.00
P I P E L I N E R E S U L T S
STATUS CODE: XX -CLOSED PIPE CV -CHECK VALVE
P I P E
NODE
NUMBERS
FLOWRATE
HEAD
MINOR
LINE
HL+ML/
HL/
N A M E
#1
#2
LOSS
LOSS
VELD.
1000
1000
--------------------------------------------------------------------------------------
gpm
ft
ft
ft/s
ft/f
ft/f
P-1
J-1
J-27
0.00
0.00
0.00
0.00
0.00
0.00
P-2
J-2
J-3
58.25
3.10
0.00
2.37
10.00
10.00
P-3
J-4
J-3
0.00
0.00
0.00
0.00
0.00
0.00
P-4
J-3
J-25
58.25
2.93
0.00
2.37
10.00
10.00
P-5
J-5
J-28
0.00
0.00
0.00
0.00
0.00
0.00
P-6
J-7
J-29
0.00
0.00
0.00
0.00
0.00
0.00
P-7
J-8
J-13
145.88
11.83
0.00
3.59
16.07
16.07
P-8
J-9
J-31
0.00
0.00
0.00
0.00
0.00
0.00
P-9
J-10
J-30
0.00
0.00
0.00
0.00
0.00
0.00
P-10
J-11
J-8
58.46
9.76
0.00
2.38
10.06
10.06
P-11
J-12
J-16
0.00
0.00
0.00
0.00
0.00
0.00
P-12
J-13
J-18
145.88
3.82
0.00
3.59
16.07
16.07
P-13
J-14
J-16
0.00
0.00
0.00
0.00
0.00
0.00
P-14
J-16
J-13
0.00
0.00
0.00
0.00
0.00
0.00
P-15
J-15
J-26
0.00
0.00
0.00
0.00
0.00
0.00
P-16
J-18
J-19
175.30
0.80
0.00
4.32
22.59
22.59
P-17
J-17
J-22
0.00
0.00
0.00
0.00
0.00
0.00
P-18
J-19
J-23
204.51
4.02
0.00
2.37
4.81
4.81
P-19
J-20
J-32
0.00
0.00
0.00
0.00
0.00
0.00
P-20
J-22
J-19
29.21
24.85
0.00
2.58
18.38
18.38
P-21
J-21
J-33
0.00
0.00
0.00
0.00
0.00
0.00
P-22
J-23
R-1
233.60
3.13
0.00
2.71
6.15
6.15
P-23
J-25
J-8
58.25
11.49
0.00
2.37
10.00
10.00
P-24
J-24
J-25
0.00
0.00
0.00
0.00
0.00
0.00
P-25
J-27
J-2
29.11
12.65
0.00
2.57
18.26
18.26
P-26
O-Pump-1
J-27
29.11
10.42
0.00
4.02
54.01
54.01
P-27
J-28
J-2
29.14
9.10
0.00
2.58
18.30
18.30
P-28
O-Pump-2
J-28
29.14
8.78
0.00
4.02
54.11
54.11
P-29
J-29
J-8
29.17
23.09
0.00
2.58
18.33
18.33
P-30
O-Pump-3
J-29
29.17
10.79
0.00
4.03
54.23
54.23
P-31
J-30
J-11
29.25
5.51
0.00
2.59
18.43
18.43
P-32
0-Pump-4
J-30
29.25
10.55
0.00
4.04
54.51
54.51
P-33
J-31
J-11
29.20
11.44
0.00
2.58
18.37
18.37
P-34
O-Pump-5
J-31
29.20
10.46
0.00
4.03
54.33
54.33
P-35
J-32
J-22
29.21
5.22
0.00
2.58
18.38
18.38
P-36
O-Pump-6
J-32
29.21
11.92
0.00
4.03
54.37
54.37
P-37
J-33
J-23
29.09
41.51
0.00
2.57
18.24
18.24
P-38
O-Pump-7
J-33
29.09
13.60
0.00
4.02
53.94
53.94
P-39
J-26
J-18
29.42
7.04
0.00
2.60
18.63
18.63
P-40
O-Pump-8
J-26
29.42
8.17
0.00
4.06
55.09
55.09
N O D E R E S U L T S
NODE
NODE EXTERNAL
HYDRAULIC
NODE
PRESSURE
NODE
NAME
TITLE DEMAND
GRADE
ELEVATION
HEAD
PRESSURE
gpm
ft
ft
ft
psi
----------------------------------------------------------------------------
J-1
0.00
84.78
36.00
48.78
21.14
J-2
0.00
72.13
36.00
36.13
15.66
J-3
0.00
69.03
35.00
34.03
14.74
J-4
0.00
69.03
35.00
34.03
14.74
J-5
0.00
81.23
34.00
47.23
20.47
J-7
0.00
77.69
36.00
41.69
18.07
J-8
0.00
54.61
33.00
21.61
9.36
J-9
0.00
75.80
37.00
38.80
16.82
J-10
0.00
69.87
37.00
32.87
14.25
J-11
0.00
64.36
36.00
28.36
12.29
J-12
0.00
42.77
36.00
6.77
2.93
J-13
0.00
42.77
35.00
7.77
3.37
J-14
0.00
42.77
37.00
5.77
2.50
J-15
0.00
45.99
32.00
13.99
6.06
J-16
0.00
42.77
37.00
5.77
2.50
J-17
0.00
63.00
29.00
34.00
14.74
J-18
0.00
38.95
36.00
2.95
1.28
J-19
0.00
38.15
36.00
2.15
0.93
J-20
0.00
68.22
32.00
36.22
15.70
J-21
0.00
75.63
28.00
47.63
20.64
J-22
0.00
63.00
33.00
30.00
13.00
J-23
0.00
34.13
33.00
1.13
0.49
J-24
0.00
66.10
34.00
32.10
13.91
J-25
0.00
66.10
34.00
32.10
13.91
J-26
0.00
45.99
32.00
13.99
6.06
J-27
0.00
84.78
36.00
48.78
21.14
J-28
0.00
81.23
34.00
47.23
20.47
J-29
0.00
77.69
36.00
41.69
18.07
J-30
0.00
69.87
37.00
32.87
14.25
J-31
0.00
75.80
37.00
38.80
16.82
J-32
0.00
68.22
32.00
36.22
15.70
J-33
0.00
75.63
28.00
47.63
20.64
O-Pump-8
----
54.16
32.00
22.16
9.60
R-1
----
31.00
36.00
-5.00
-2.17
O-Pump-1
----
95.20
36.00
59.20
25.65
O-Pump-2
----
90.01
34.00
56.01
24.27
O-Pump-3
----
88.48
36.00
52.48
22.74
O-Pump-4
----
80.42
37.00
43.42
18.82
O-Pump-5
----
86.27
37.00
49.27
21.35
O-Pump-6
----
80.14
32.00
48.14
20.86
O-Pump-7
----
89.23
28.00
61.23
26.53
M A X
I M U M A
N D M I N I M U M
V A L U E S
P
R E S S U R
E S
JUNCTION
MAXIMUM
JUNCTION
MINIMUM
NUMBER
PRESSURES
NUMBER
PRESSURES
---------------------
psi
---------------------
psi
O-Pump-7
26.53
R-1
-2.17
O-Pump-1
25.65
J-23
0.49
O-Pump-2
24.27
J-19
0.93
O-Pump-3
22.74
J-18
1.28
O-Pump-5
21.35
J-14
2.50
V
E L O C I T
I E S
PIPE
MAXIMUM
PIPE
MINIMUM
NUMBER
VELOCITY
NUMBER
VELOCITY
---------------------
(ft/s)
---------------------
(ft/s)
P-16
4.32
P-18
2.37
P-40
4.06
P-2
2.37
P-32
4.04
P-4
2.37
P-36
4.03
P-23
2.37
P-34
4.03
P-10
2.38
H
L+ M L /
1 0 0 0
PIPE
MAXIMUM
PIPE
MINIMUM
NUMBER
HL+ML/1000
NUMBER
HL+ML/1000
---------------------
(ft/ft)
---------------------
(ft/ft)
P-40
55.09
P-18
4.81
P-32
54.51
P-22
6.15
P-36
54.37
P-2
10.00
P-34
54.33
P-4
10.00
P-30
54.23
P-23
10.00
H
L / 1 0 0
0
PIPE
MAXIMUM
PIPE
MINIMUM
NUMBER
HL/1000
NUMBER
HL/1000
---------------------
(ft/ft)
---------------------
(ft/ft)
P-40
55.09
P-18
4.81
P-32
54.51
2-22
6.15
P-36
54.37
P-2
10.00
P-34
54.33
P-4
10.00
P-30
54.23
2-23
10.00
***** HYDRAULIC ANALYSIS COMPLETED *****
Density Soil
115 lb/cf
Project: The Hamptons - Phase 3
Density Concrete
150 lb/cf
NT# 23007
Date: 11-15-23
Well diameter
3.5
ft
Well depth
7.0
ft
Well Volume = 7.0 x rr x 3.5' — 67.31 cf
Concrete Base Height
1.0
Concrete Lip Height
0.5
Concrete Base Diameter
5.5
Base Volume = 1.0 x n x 2.75' = 23.75 cf
Lip Volume = 0.5 x n x (2.752 — 1.75Z) = 7.07 cf
Total Base Volume
30.81
Weight of Concrete
46,21.69
Volume of Displaced Soil
98.13
Soil Volume = Base Vol.+ Well Vol.
cf
Ib
cf
Volume of Soil above Base Lip cf
Soil Lip Volume = 5.5 x Tr x (2.752 — 1.752)
Wei ht of Soil above Base Lip 8937.23 lb
Bou ant Force of Soil Displaced 11284.38 lb
Bouyant Force = Vol. Soil Displaced x Soil Density
Total Weight of Components 13558.91 lb
Safety Factor 1.20
Stability OKI
'----CONCRETE PER BRUNSWICK
COUNTY REQUIREMENTS
FOR ANTI —FLOTATION
5.5'�
TYPICAL RESIDENTIAL GRINDER PUMP DETAIL