Loading...
HomeMy WebLinkAboutSW6230401_Design Calculations_20231017 PHALANX CROSSFIT Storm Water and Erosion & Sedimentation Control Calculations REVISIONS PER 5/19/23 COMMENTS FROM DEMLR STORMWATER PROGRAM �1^ .i h5 '(iV ..' S6� ( F17 j ,7 6 ." " 2g yf.,t sy(( ::.44, 1t hll 27 1r7)® • G Y '.20 L. i' )'J7 $79 47•1 � 0 oii� * 57 76 /77 ,W.317°+ t311:. /fi ,1. +oM.__/ A1101L 51 �tF�J 4. �. ,�_r. ,. „ r, �Io9 y 7.560; S7 �. 1 ♦- . '61 �. U4.80•JJ4,�P 11t\ 117 1s1.:Mt,.ii i77 68��_�!!!• .5 'yy/yy o /7111 / , F J.`C` 11 •�. f ms r. .M •9 ��}1�'L 88 ,00 � �7 71 1 ? .��� f F`� 1a 4� �V 4 A, 2571 (. . a, (,t, �``MYI'J � ti .. �?7g�y � may,18�E�7g7f ��119.1 37 fir tli 128' 158 \ 4/4flit , ii.. ,'(/2,4s 95N, " ''''43 3n N7n 3 2687. , } ./63.'511 .571 .A f • fit. it 521 k 4044 Ste 2.(. 7-,.26 g' h15 if �A` 1708 � i5 Owner: Phalanx Fitness, LLC 359 Sunridge Drive Cameron, NC 28326 Phalanx Crossfit 2 The certification shown below applies only to the items listed on this 'Table of Contents' Table of Contents Rip Rap Outlet Apron 02 2 Pages Rip Rap Outlet Apron 03 2 Pages Rip Rap Outlet Apron 04 2 Pages Pond Stage-Storage Below Pool - Forebay 1 Page Pond Stage-Storage Below Pool - Main Pool 1 Page Driveway Culvert Drainage Area Map 1 Page Surface Area and Depth Required for Main Pool 1 Page HILLIARD ENGINEERING ,, s,N CAR°, ESSiQ•.7 �-57 Author:Jarrod E. Hilliard, PE, CFM - E A • PO Box 249 Sanford, NC 27331 _ t 35 5 • (919)352-2834 9A.O/G N. : Po' NC License No. P-0836 Date: 5/22/23 DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: JEH 11/29/2022 Checked By: JEH 5/19/2023 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: HC2217 Site Location (City/Town) Spout Springs Id. 02 -SCM Outlet Total Drainage Area (acres) 0.76 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter_ it is classified minimum tailwater condition. If it is greater than half the pipe diameter_ it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable Hood stage elevations show otherwise. Pipe diam., Do (in.) 3 Tailwater depth (in.) 0 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 0.56 Velocity (ft./s) 16.5 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d50 riprap size and minimum apron length (La). The d;c size is the median stone size in a well-graded riprap apron_ Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.2 Minimum apron length, La (ft.) 7 Apron width at pipe outlet (ft.) 0.75 0.75 Apron shape Trapezoidal Trapezoidal Apron width at outlet end (ft.) 7.25 0.25 Step 4. Determine the maximum stone diameter: dmax = 1.5 x d50 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.3 0 Step 5. Deternune the apron thickness: Apron thickness = 1.5 x dr,, Minimum TW Maximum TW Apron Thickness(ft.) 0.45 0 Step 6. Fit the riprap apron to the site by making it level for the minimunn length, La. from Figure 8.06a or Figure 8.06b_ Extend the apron farther downstream and along channel banks until stability is assured. Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix 8.05). Where overfills exist at pipe outlets or flows are excessive. a plunge pool should be considered, see page 8.06.8_ DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: JEH 1/11/2023 Checked By: JEH 1/11/2023 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: HC2217 Site Location (City/Town) Spout Springs Id. 03 -Swale 01B Outlet Total Drainage Area (acres) 1 .57 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter. it is classified minimum tailwater condition. If it is greater than half the pipe diameter. it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Equiv. Outlet diam., Do (in.) 18 Tailwater depth (in.) 0.25 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 3.72 Velocity (ft./s) 2.23 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d50 riprap size and minimum apron length (La). The d;c size is the median stone size in a well-graded riprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.35 Minimum apron length, La (ft.) 9 Apron width at pipe outlet (ft.) 4.5 4.5 Apron shape Trapezoidal Trapezoidal Apron width at outlet end (ft.) 10.5 1.5 Step 4. Determine the maximum stone diameter: d�*'ax 1.5 x dF0 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.525 0 Step 5. Determine the apron thickness: Apron thickness = 1.5 x d.,,, Minimum TW Maximum TW Apron Thickness(ft.) 0.7875 0 Step 6. Fit the riprap apron to the site by making it level for the nunimuin length, La_ from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along chaiumel banks until stability is assured. Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix 8.05). Where overfalls exist at pipe outlets or flows are excessive, a plunge pool should be considered. see page 8.06.8_ DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: JEH 11/29/2022 Checked By: JEH 11/29/2022 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: HC2217 Site Location (City/Town) Spout Springs Id. 04 -Swale 01A Outlet Total Drainage Area (acres) 0.55 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter_ it is classified minimum tailwater condition. If it is greater than half the pipe diameter_ it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable Hood stage elevations show otherwise. Equiv. Outlet diam., Do (in.) 18 Tailwater depth (in.) 0.25 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 1 .3 Velocity (ft./s) 0.93 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d50 riprap size and minimum apron length (La). The d;c size is the median stone size in a well-graded riprap apron_ Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.35 Minimum apron length, La (ft.) 9 Apron width at pipe outlet (ft.) 4.5 4.5 Apron shape Trapezoidal Trapezoidal Apron width at outlet end (ft.) 10.5 1.5 Step 4. Determine the maximum stone diameter: dmax = 1.5 x d50 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.525 0 Step 5. Deternune the apron thickness: Apron thickness = 1.5 x dr, Minimum TW Maximum TW Apron Thickness(ft.) 0.7875 0 Step 6. Fit the riprap apron to the site by making it level for the minimum length, La. from Figure 8.06a or Figure 8.06b_ Extend the apron farther downstream and along channel banks until stability is assured. Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix 8.05). Where overfills exist at pipe outlets or flows are excessive. a plunge pool should be considered, see page 8.06.8_ PHALANX CROSSFIT SURFACE AREA AND DEPTH REQUIRED FOR MAIN POOL EQUATION 2 WET POND 01 TABLE 1 PIEDMONT AND MOUNTAIN SA/DA TABLE TABLE 1 PIEDMONT AND MOUNTAIN SA/DA T INTERPOLATION (3 ft) INTERPOLATION (4 ft) Known Lower Percent Impervious: 80 Known Lower Percent Impervious: 80 Known Upper Percent Impervious: 90 Known Upper Percent Impervious: 90 Known Lower SA/DA: 2.92 Known Lower SA/DA: 2.41 Known Upper SA/DA: 3.25 Known Upper SA/DA: 2.64 Computed Impervious: 88.00 Computed Impervious: 88.00 Unknown Target SA/DA: 3.18 Unknown Target SA/DA: 2.59 TABLE 1 PIEDMONT AND MOUNTAIN SA/DA TABLE ,,,,,,,,,,, INTERPOLATION (Avg. Depth of Permanent Pool) .s�:\N••CA/�0", Known Lower Average Depth: 3 „-�� 0 ESS/04 by'=;- Known Upper Average Depth: 4 r Q� 9�% - Known Lower SA/DA: 2.92 = E' • Known Upper SA/DA: 2.41 •35-. • Computed Depth: 3.01 --v;• :'o Unknown Target SA/DA: 2.91 - 'p..••./Y.c NF ..\p�.' Min.Surface Area Required for Main Pool Area: SA/DA: 2.91 7/16/2023 Drainage Area to SCM: 32,944 sf �� Min. Surface Area Req'd: 960 sf Surface Area Provided: 2,038 sf HILLIARD ENGINEERING Main Pool Volume: 6,128 cf 3417 Winterwind Circle, Sanford, NC 27330 Main Pool Surface Area: 2,038 sf (919)352-2834 Main Pool Ave. Depth: 3.01 NC No. P-0836 WET POND STAGE-STORAGE FUNCTION Project# PHALANX CROSSFIT Date : 12/6/2022 Evaluation By: JEH DESIGN STORM: 10-year check 25,50,100 OBJECTIVE: Evaluate proposed Wet Pond in which storage exists from permanent pool elevation GIVEN: Location: Spout Springs, NC Watershed Area: 0.76 Accum. Storage Contour(ft-MSL): Area (sf) Inc.Vol (cu.ft) (cu.ft) Stage (ft) In Z In S Est. Stage (ft) 370.5 2,728 0,000 0,000 0.00 0.000 0.000 0.000 - — ACTUAL AVAILABLE STORAGE 371.0 3,554 1,571 1,571 0.50 -0.693 7.359 0.500 - — ABOVE PERMANENT POOL 371.5 4,206 1,940 3,511 1.00 0.000 8.164 1.000 —In intercept= 8.1635 Ks= 3,511 exponent= 1.1605 b= 1.16 ;,,_RAN CARO /� o •''ESS%�.�y" p_c„ - -1 nnnnnn cO 1,35: • _ HILLIARD = r o ENGINEERING „;7'A;•�NGINE �'.P�'` 3417 Winterwind Circle, Sanford, NC 27330 ,,.O���E...... Ns�\\'' (919) 352-2834 "' NC No. P-0836 7/16/2023 Page 7 Linear Form of Stage-Storage Data 20.000 - 18.000 - 16.000 - 14.000 - 12.000 - 10.000 - 8.000 • 6.000 - 4.000 - 2.000 - 0.000 0.00 0.50 1.00 1.50 2.00 Stage Storage Function: S= Ks*Zb Stage-Storage Function for Pond Area: S= 3,511 * Z 1.16 Page 8 PHALANX CROSSFIT WET POND TEMPORARY VOLUME DRAWDOWN ORIFICE AND TIME Time for the temporary volume related to the 1 yr,24 hr storm to drawn down provided a given orifice diameter Invert for drawdown outlet 370.5 MSL Elevation of Primary Spillway 371.5 MSL Head on Orifice 1 FT Design Volume(Actual Volume Acquired in Pond,NOT MINIMUM REQUIRED VOLUME) 3,511 cu.ft Qo=CDxAx(2gh)^1/2 Diam(in) 0.5 Diam(in) 0.75 Diam(in) 1 Diam(in) 2 Diam(in) 4 Diam(in) 6 CD: 0.58 CD: 0.58 CD: 0.58 CD: 0.58 CD: 0.58 CD: 0.58 A(sq ft): 0.001363538 A(sq ft): 0.003067962 A(sq ft): 0.005454154 A(sq ft): 0.021816616 A(sq ft): 0.087266463 A(sq ft): 0.196349541 2g(ft/s2): 64.4 2g(ft/s2): 64.4 2g(ft/s2): 64.4 2g(ft/s2): 64.4 2g(ft/s2): 64.4 2g(ft/s2): 64.4 Ho(ft): 0.333 Ho(ft): 0.333 Ho(ft): 0.333 Ho(ft): 0.333 Ho(ft): 0.333 Ho(ft): 0.333 Qo(cfs): 0.00 Qo(cfs): 0.01 Qo(cfs): 0.01 Qo(cfs): 0.06 Qo(cfs): 0.23 Qo(cfs): 0.53 Drain Time Drain Time Drain Time Drain Time Drain Time Drain Time (min): 15969.89 (hrs): 7097.73 (hrs): 3992.47 (hrs): 998.12 (hrs): 249.53 110.90 (hrs): Drain Time Drain Time Drain Time Drain Time Drain Time Drain Time (hrs): 266.16 (hrs): 118.30 (hrs): 66.54 (hrs): 16.64 (hrs): 4.16 1.85 (hrs): Drain Time Drain Time Drain Time Drain Time Drain Time Drain Time (days): 11.09 (days): 4.93 (days): 2.77 (days): 0.69 (days): 0.17 0.08 (days): RESULTS: USE 3/4"ORIFICE HILLIARD 7�• -1 ENGINEERING / ; : F,y' x<5 3417 Winterwind Circle,Sanford,NC 27330 a �Cv (919)352-2834 J`9,c fl'/,� ,-. \\-\•\,r 7/16/2023 PHALANX CROSSFIT D S TOTAL Pipe Dia. Velocity Discharge Discharge NUMBER OF CAPACITY (Inches) Pipe Slope (fps) (gpm) (cfs) PIPES (cfs) PIPE ID C I (in/hr) A(ac) Q(cfs) Capacity o.k? Notes DRIVEWAY CULVERT 36 0.660% 7.67 fps 24,319 54.19 1 54.19 0.5 8.75 12.37 54.12 Yes 25-yr storm ON-SITE PIPING 15 0.700% 4.40 fps 2,426 5.40 1 5.40 0.81 8.75 0.76 5.39 Yes 25-yr storm 3 1.300% 2.05 fps 45 0.10 1 0.10 HILLIARDi. a kI- v��. ENGINEERING = 'E 35 3417 Winterwind Circle,Sanford,NC 27330 .. 9'S' 'o (919)352-2834 ''-- . .!I;GINE;:e'' P NC No.P-0836 �� E. � ' 7/16/2023 DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: JEH 7/16/2023 Checked By: JEH 7/16/2023 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: HC2217 Site Location (City/Town) Spout Springs Id. Inlet of Ex. 24" Culvert Downstream of Driveway Total Drainage Area (acres) 12.37 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter. it is classified minimum tailwater condition. If it is greater than half the pipe diameter. it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Pipe diam., Do (in.) 24 Tailwater depth (in.) 12 Minimum/Maximum tailwater? Max TW (Fig. 8.06b) c x Q10 x A Discharge (cfs) 48.47 (0.5x7.90x12.37) Velocity (ft./s) 15.44 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d50 riprap size and minimum apron length (La). The d;c size is the median stone size in a well-graded riprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.92 Minimum apron length, La (ft.) 25 Apron width at pipe outlet (ft.) 6 6 Apron shape Trapezoidal Trapezoidal Apron width at outlet end (ft.) 27 2 Step 4. Determine the maximum stone diameter: dmax 1.5 x d50 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 1.38 0 Step 5. Determine the apron thickness: Apron thickness = 1.5 x dr,a, Minimum TW Maximum TW Apron Thickness(ft.) 2.07 0 Step 6. Fit the riprap apron to the site by making it level for the minimum length, La. from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured. Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of iipiap where protection of the channel side slopes is necessary (Appendix 8.05). Where overfalls exist at pipe outlets or flows are excessive, a plunge pool should be considered, see page 8.06.8. ,sN CAR°,, 0 ESS/0;r•• HILLIARD ' Q� , = ENGINEERING = E' • - • 135: I 3417 Winterwind Circle, Sanford, NC 27330 •�a (919) 352-2834 ,�,NGINEF:�'"P< NC No. P-0836 GD 'E' 7/16/2023 DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: JEH 11/29/2022 Checked By: JEH 7/13/2023 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: HC2217 Site Location (City/Town) Spout Springs DISCHARGE TOO Id. 02 -SCM Outlet LOW TO SHOW ON Total Drainage Area (acres) 0.76 CHART Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter. it is classified minimum tailwater condition. If it is g-eater than half the pipe diameter. it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Pipe diam., Do (in.) 3 Tailwater depth (in.) 0 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 0.48 Velocity (ft./s) 9.8 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d50 riprap size and minimum apron length (La). The d;c size is the median stone size in a well-graded riprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.2 Minimum apron length, La (ft.) 7 Apron width at pipe outlet (ft.) 0.75 0.75 Apron shape Trapezoidal Trapezoidal Apron width at outlet end (ft.) 7.25 0.25 Step 4. Determine the maximum stone diameter: d�*'ax 1.5 x dF0 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.3 0 Step 5. Determine the apron thickness: Apron thickness = 1.5 x d"„ Minimum TW Maximum TW Apron Thickness(ft.) 0.45 0 Step 6. Fit the riprap apron to the site by making it level for the nunimuin length, La_ from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along chaiumel banks until stability is assured. Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix 8.05). Where overfalls exist at pipe outlets or flows are excessive, a plunge pool should be considered. see page 8.06.8_ WET POND STAGE-STORAGE BELOW PERMANENT POOL MAIN POOL ONLY WET POND 01 Project# PHALANX CROSSFIT Date: 5/19/2023 Evaluation By: JEH OBJECTIVE: Determine volumes below permanent pool GIVEN: Location: Spout Springs, NC Watershed Area: 0.76 Accum.Storage Contour(ft-MSL): Area(sf) Inc.Vol(cu.ft) (cu.ft) Depth(ft) 364.50 0,165 0,000 0,000 0.00 368.00 1,110 2,231 2,231 3.50 368.50 1,279 0,597 2,829 4.00 ACTUAL AVAILABLE STORAGE BELOW 369.00 1,457 0,684 3,513 4.50 PERMANENT POOL 370.00 1,836 1,647 5,159 5.50 370.50 2,038 0,969 6,128 6.00 \ SS,- / ''N. • \ •� / / , */ ,\ � N N -, / 'N •\ i 'N' ‘‘, .N N,N N N N Ns / % / i / / / -/ ,,,,,,,,,,,,,,,,,,,,.. silo_ a \/. N 4 „ ....../ \/ " ./' INLET DRAINAGE AREA: •••. DA = 12.37 acres i t `N ° f 125 = 8.75 in/hr / NNN .. '''< • I c = 0.5 (Business: Neighborhood Areas) vim`. - ' Q25: 54.12 cfs � � /� PLe98 ' ORA60909 AREA map, :::,,SF AC 4, IMPERNO 9AREC) 4di4 ` ] SF(.]46AC) o r „�mc. �a.,� , ,:, ,,,,,,,,,,N ' r . 010=2 36 oft SWALE 01A .„. s/ 4 24020 SF pppyyy 7// 't i, OSS AC „''oF B .; I� R OUS EA: i/ d aa8gp4 ] 2635E(O 006AC) / / I / ,,e,T.ro BB%pmiwrs I �CIIIIIaR 4 9[ /% f K 'Nmrrtlp (-]%abpel • WET PO'°N'D Pis� £ . = ` ,," ,. •• : PHALANX CROSSFIT , ( '''' \:\\- '' - ititt• \''�'� s7�sA� DRIVEWAY CULVERT `-�1 ��4*.-14*.44''i"ia....,:4 ' :-0 ` ' DRAINAGE AREA MAP „, S PHALANX CROSSFIT SURFACE AREA AND DEPTH REQUIRED FOR MAIN POOL EQUATION 2 WET POND 01 TABLE 1 PIEDMONT AND MOUNTAIN SA/DA TABLE TABLE 1 PIEDMONT AND MOUNTAIN SA/DA T INTERPOLATION (3 ft) INTERPOLATION (4 ft) Known Lower Percent Impervious: 80 Known Lower Percent Impervious: 80 Known Upper Percent Impervious: 90 Known Upper Percent Impervious: 90 Known Lower SA/DA: 2.92 Known Lower SA/DA: 2.41 Known Upper SA/DA: 3.25 Known Upper SA/DA: 2.64 Computed Impervious: 88.00 Computed Impervious: 88.00 Unknown Target SA/DA: 3.18 Unknown Target SA/DA: 2.59 TABLE 1 PIEDMONT AND MOUNTAIN SA/DA TABLE INTERPOLATION (Avg. Depth of Permanent Pool) Known Lower Average Depth: 3 Known Upper Average Depth: 4 Known Lower SA/DA: 2.92 Known Upper SA/DA: 2.41 Computed Depth: 3.01 Unknown Target SA/DA: 2.91 Min.Surface Area Required for Main Pool Area: SA/DA: 2.91 Drainage Area to SCM: 32,944 sf Min. Surface Area Req'd: 960 sf Surface Area Provided: 1,965 sf Main Pool Volume: 6,128 cf Main Pool Surface Area: 2,038 sf Main Pool Ave. Depth: 3.01 PHALANX CROSSFIT Storm Water and Erosion & Sedimentation Control Calculations -.�ip�r 7.' .\., .-. y�+.� ,lea ur—� w . i-,!1'.„ 'Ire `i. l `., � + i-- �, try..• �45 , ,c` a .` J s�E . r 4 1 r ," ns.. . e 4 o n 1 s r , L e , o �,.7 •� tsi., w �(/ ''',to :° .0, , l'i ' .' . ; ,'' p iNi y I.+�. � so r� 0 ,ia • 1 75J7 % N •''',NC,:'.%:-, *6 ".S 4" 401,y7;'4 .'''.T. ".• ,4*, .3" Kft, th. •t:. .4, ., 2., . . . ,. . v x....4# , 0 7,,* ......“11......_ 34-'373 111W -.....'" :':.l" ,,,,. `I if "1 U, 4 4 ' y NCB,. �2H C ._ W� _- -.1 s YT rf r n v , yf,45 _ j' 5 Owner: Phalanx Fitness, LLC 359 Sunridge Drive Cameron, NC 28326 The certification shown below applies only to the items listed on this 'Table of Contents' Phalanx Crossfit 2 Table of Contents Drainage Area Map 1 Page Driveway Culvert Drainage Area Map 1 Page Runoff Coefficient 1 Page Kirpich Equation 1 Page NOAA Rainfall Intensity 1 Page Mannings n 3 Pages Permanent Clean Water Diversion Swales 2 Pages Rip Rap Outlet Aprons 6 Pages Storm Pipe Capacity 1 Page NOAA Rainfall Depth 1 Page Pond Stage-Storage Function 2 Pages TR55 Curve Numbers 1 Page Kp Values for Pond Barrel 1 Page Temporary Volume Drawdown 1 Page Riser Anti-floatation Calculations 1 Page Simple Method Volume (1 yr, 24 hr) 1 Page Pond Routing (10, 25, 50, & 100 yr Storm) 12 Pages Drop Inlet Capacity 1 Page Sediment Trap 2 Pages Rip Rap Outlet Apron 06 2 Pages Temporary Diversion Swale 01C 1 Page �;� (:. >.J.•.��'',; HDS-5 Driveway Culvert Inlet Control Analysis 1 Page ;�� , �•: �C••.......• -> HILLIARD ENGINL G Author:Jarrod E. Hilliard, PE, CFM PO Box 249 Sanford, NC 27331 (919)352-2834 NC License No. P-0836 Date: 12/7/22 Rev. 1/11/23 Rev. 2/14/23 Rev.5/19/23 077d `ON/N33N/JN3 VNI1CAIVO HINON'N0 IBV V0 ' 9£80-d.g asue nON t`Jb'.�77/f1 13d SS0210 XNY1VHd m ; l- W o_ worEuuaakeguaP,emel@Pme!11!4f:pew-a . i i °w w rI t VEBZ-ZSE l6161:amid u 3 'o tq Q LEELZ ON'P�o;ueS'64Z M3 Od u ',O ue 'a an uuvue ul dt1W t132i t13Jb'N lt/ad o a$ 3 hI � e� x ,� 3 10 ifil I I __—_1.....`,\ ` 1 - I, 1 \ '1 `\ 1 \ i �` 14. 1IIIII P3I'r ' ' _ iz ti \ \ 1n t \ 1 I I\�tV i 1 �� , �_ � � � � off me 1 � )1 !t \� h tI\'�J—\` y/ 1` \\ , m � ~ ~ \�.� — ~ a.iW.\�¢�N �1-9� 1141I \ \ J �\ 'r \IF n o� w WO Q�0p too \I1 1t/ \ 1 / £✓i/ � ,\✓ I/,' ' �ti (((111/ i:IIfl hi \ 1 � 2 !1 � � , i — L 0 \ 1 \ °a \�M Z`` o¢ ( \\� I i \c \ w0 m m _ d 1 (I 1. 11, z4 g 0O_° t' \ It l I ril I( �"rI iie \ - tl -\ \� Z —I ! I\ ('( \ QQov ) � cOor�ou�, _3GM`- 1 \�° Za, _ \ -1I� / / i( fI o a"O a� aP_ u \ sue` \\I\\,V �\ a°jooa I h l <,\\ lllti I/ r 1 �N Zrn� �� ` I\ ) 1 \ r \ ( l ( II � _-1 \ 1 l lid o 1 \ Z ` fc _ 1,"1 iy1 —��,5 vv vI vV v�r� 11) i ( ) i ` AV ��\� Al1vl > ) _i_,; i 1 7-_,'"c ' i s__i 3 _ t•-."jr-I''.4'-----___) —--—\ 1J t �� v ti l 1 1 V l ) 1 \ I I ��1 I ! 1 i �' \ r7 � v \1I /i T ,v.t• !� . 1 t v , r-- 1 gs,, yo rr� t L Z t 'c, ) a1 1 ®®® , I t I ..el ite\i 1///(N1 — tA\ C \ f P t i !I I-s i,A r 1 ti\* ill 1 TI Sq 1_I ,- \ �' ) , k .,t I I I 1 11 \ " —5 d d!' � a4 fll�1{ � �\ v� � �V �, i\ 2 I .. ��O ;y -I�I�II,ir�� V I� ' III v I I I I a - I I a r c ) I'� f J � � A I D , 1 r I'._ F:fi a 1, ItH irni r-- I yk t\ 1 �ii. i -- 1 ^ cf1 I. b I h _.�-- --� i. .a,_r' i i I+ '. Hrote: z 1: —1 \s I ^s , — \ h4j r \< z \t ?r1 .� �� ��� (Ti1t II�i 1 \ /J I o4, IC+ I` i n�j �1 t \, A, \\\N ,� ��Irllll�lll \ ,I1 • I\Gz ( ti l? ) 1 e �.��•al ! ; _,,\1 L `\ 4,1 j11 1j 10,/r�r-' •- • I iY \��Iw. , I —_�/ v iiJl Ill�ljjlt�l�� • Ilit( Ill I r •i----- ` C 1 s o oa ii 1 II II�II'I II 1 I 1 j 1 ¢ \> w v az, m o h� - 1 1II IIII III, I/I \ ¢ n O U 1) -�I�,-�ss---o¢�U�¢��o cz C ---- - 1 � I 111`II � ‘\ r I p ti Z�EzE� i\S> J J,,J g1U'i11a11NIill/ c E 1 ,_ I\�III IIINII f(/ 1 I d —L---- o o, ti� z ti j IIII III 141 f, I — o I� \ / / /`----- -N N, N>NN e . \ •` / / \ \ i. \ e N i„.....„........„.....N. N \ v `N % 1 / .i,i „ ,,,, /I / ---� lir/ \ r _ 'INLET DRAINAGE AREA: /�� /\ '' DA 12.37 acres / >1"� _I25�= 8.75 in/hr \ `A,, I c = 0.5 (Business: Neighborhood Areas) Q25: 54.12 cfs N / DRAINAGE AREA *VAN "WZ,,e I, • IMPERIVOU9ARE4 ',/I . :� .e Impervious cral p��.........0 \ e fsv j ,/ v 110,go r ` s A,,,,,,,,,,.....‘,...., , 010-236 cfs S e / i _V , ' RG AREA e ,,1 = 2S2AC '/A".„ / .� a MPER OU6 p .. 4:� ( '• m • sbp�l • `,,, ~ - 1 �f/� /i „ac ter -\ -. ,j ;, PHALANX CROSSFIT WET POND P,Ni, e' / I re � � �rJ -.'A 729AR ' Uk DRIVEWAY CULVERT i ; % ( M 12]%slop) moo 41 , l ,0.91mpe fir �j k I1' ` OB in ' O,0 486 Os 4 DRAINAGE AREA MAP 8 Table 8.03b Land Use C Land Use C Value of Runoff Coefficient (C) for Rational Formula Business: Lawns: Downtown areas 0.70-0.95 Sandy soil, flat, 2% 0.05-0.10 Neighborhood areas 0.50-0.70 Sandy soil, ave., 0.10-0.15 2-7% Residential: Sandy soil, steep, 0.15-0.20 Single-family areas 0.30-0.50 7% Multi units, detached 0.40-0.60 Heavy soil, flat, 2% 0.13-0.17 Multi units,Attached 0.60-0.75 Heavy soil, ave., 0.18-0.22 Suburban 0.25-0.40 2_7% Heavy soil, steep, Industrial: 7% 0.25-0.35 Light areas 0.50-0.80 Heavy areas 0.60-0.90 Agricultural land: Parks, cemeteries 0.10-0.25 Bare packed soil Smooth 0.30-0.60 Playgrounds 0.20-0.35 Rough 0.20-0.50 Cultivated rows Railroad yard areas 0.20-0.40 Heavy soil no crop 0.30-0.60 Heavy soil with Unimproved areas 0.10-0.30 crop 0.20-0.50 Streets: Sandy soil no crop 0.20-0.40 Asphalt 0.70-0.95 Sandy soil with Concrete 0.80-0.95 crop 0.10-0.25 Brick 0.70-0.85 Pasture Heavy soil 0.15-0.45 Drives and walks 0.75-0.85 Sandy soil 0.05-0.25 Woodlands 0.05-0.25 Roofs 0.75-0.85 NOTE: The designer must use judgement to select the appropriate C value within the range for the appropriate land use. Generally, larger areas with permeable soils, flat slopes, and dense vegetation should have lowest C values. Smaller areas with slowly permeable soils, steep slopes, and sparse vegetation should be assigned highest C values. Source: American Society of Civil Engineers 8.03.6 Rev.6/06 PHALANX CROSSFIT KIRPICH EQUATION FOR TIME OF CONCENTRATION COMPUTATIONS Tc- [K/128] [L3/H1°385 K: 1 L: 568 H: 26 Tc: 3.38 Minutes Use: 5.00 minutes Precipitation Frequency Data Server https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=35.2747... NOAA Atlas 14,Volume 2,Version 3 il Location name: Cameron, North Carolina,USA* Latitude: 35.2747°, Longitude: -79.0661° Elevation:391.72 ft** -.r.&" *source:ESRI Maps F **source:USGS POINT PRECIPITATION FREQUENCY ESTIMATES G.M.Bonnin,D.Martin,B.Lin,T.Parzybok,M.Yekta,and D.Riley NOAA,National Weather Service,Silver Spring,Maryland PF_tabular I PF_graphical I Maps_&_aerials PF tabular PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour)1 Average recurrence interval(years) Duration 1 2 5 10 25 50 100 200 500 1000 5-min 5.21 6.16 7.15 7.90 8.75 9.35 9.91 10.4 11.0 11.5 (4.72-5.81) (5.57-6.85) (6.48-7.97) (7.13-8.77) (7.86-9.71) (8.39-10.4) (8.84-11.0) (9.25-11.5) (9.70-12.2) (10.0-12.7) 10-min 4.16 4.92 5.73 6.31 6.97 I 7.45 7.88 8.26 I 8.71 9.03 (3.77-4.64) (4.46-5.48) (5.18-6.38) (5.70-7.01) (6.26-7.74) (6.68-8.25) (7.03-8.72) (7.33-9.14) I (7.67-9.64) (7.90-9.99) 15-min 3.47 4.12 4.83 5.32 5.89 6.28 6.64 6.94 7.31 7.56 (3.14-3.86) (3.74-4.59) (4.37-5.38) (4.81-5.92) (5.30-6.54) (5.64-6.96) (5.92-7.35) (6.17-7.69) (6.43-8.09) (6.61-8.36) 30-min 2.38 2.85 3.43 3.86 4.36 4.73 5.08 5.41 5.82 6.12 (2.15-2.65) (2.58-3.17) (3.11-3.82) (3.48-4.29) (3.92-4.84) (4.25-5.25) (4.53-5.63) (4.80-5.98) (5.12-6.43) (5.35-6.77) 60-min 1.48 1.79 2.20 2.51 2.91 3.21 3.50 3.79 4.17 4.47 1 (1.34-1.65) (1.62-1.99) (1.99-2.45) (2.27-2.79) (2.61-3.22) I (2.88-3.55) (3.12-3.88) (3.37-4.20) (3.67-4.62) (3.91-4.94) 1 2-hr 0.870 1.05 1.32 1.52 1.78 1.98 2.19 2.40 2.67 2.88 (0.780-0.978) (0.947-1.18) (1.18-1.48) (1.36-1.70) (1.58-1.99) (1.76-2.22) (1.93-2.45) (2.10-2.68) (2.32-2.98) (2.48-3.22) 3-hr 0.616 0.745 0.935 1.09 1.29 1.45 1.62 1.79 2.03 2.23 (0.554-0.693) (0.671-0.839) (0.841-1.05) (0.973-1.22) (1.15-1.44) (1.29-1.63) (1.42-1.81) (1.56-2.00) (1.75-2.27) (1.90-2.49) 6-hr 0.368 0.446 0.560 0.651 0.776 I 0.877 0.982 1.09 1.24 1.37 (0.335-0.409)j(0.406-0.494) (0.508-0.620) (0.589-0.720)1(0.697-0.856),(0.782-0.967) (0.868-1.08) (0.956-1.20) (1.08-1.37) 1 (1.17-1.50) 12-hr 0.216 0.262 0.331 0.386 1 0.464 0.527 0.594 0.665 0.766 1 0.847 (0.196-0.240) (0.238-0.290) (0.300-0.366) (0.348-0.427) (0.415-0.511) (0.469-0.580) (0.523-0.652) (0.579-0.729) (0.657-0.839) (0.717-0.928) 24-hr 0.128 0.155 0.195 0.227 0.271 0.306 0.342 0.379 0.431 0.472 (0.119-0.138) (0.143-0.167) (0.181-0.211) (0.210-0.245) (0.249-0.292) (0.281-0.330) (0.313-0.369) (0.347-0.409) (0.392-0.465) (0.427-0.509) 2-day 0.074 0.090 0.112 I 0.130 0.155 I 0.174 0.194 0.215 0.244 0.266 (0.069-0.080) (0.083-0.096) (0.104-0.121) (0.121-0.140) (0.143-0.166) (0.160-0.187) (0.178-0.209) (0.197-0.232) (0.222-0.263) (0.241-0.287) 3-day 0.053 0.063 0.079 0.091 0.108 0.122 0.135 0.150 0.169 0.185 (0.049-0.056) (0.059-0.068) (0.073-0.085) (0.085-0.098) (0.100-0.116)1(0.112-0.130) (0.125-0.145) (0.137-0.160) (0.155-0.182) (0.168-0.199) 4-day 0.042 0.050 0.062 0.072 0.085 0.095 0.106 0.117 0.132 0.144 (0.039-0.045)1(0.047-0.054) (0.058-0.066) (0.067-0.076) (0.079-0.090) (0.088-0.101) (0.098-0.113) (0.107-0.125) (0.121-0.141) (0.131-0.154) 7-day 0.028 0.033 0.040 0.046 0.054 0.061 0.067 0.074 0.083 0.091 (0.026-0.030) (0.031-0.035) (0.038-0.043) (0.043-0.049) (0.050-0.058) (0.056-0.065) (0.062-0.072) (0.068-0.079) (0.076-0.089) (0.083-0.097) 10-day 0.022 0.026 0.032 0.036 0.042 0.046 0.051 0.055 0.062 0.066 (0.021-0.023) (0.025-0.028) (0.030-0.034) (0.034-0.038) (0.039-0.044) (0.043-0.049) (0.047-0.054) (0.051-0.059) (0.057-0.066) (0.061-0.071) 20-day 0.015 0.018 0.021 0.023 0.027 0.029 0.032 0.035 0.039 0.042 (0.014-0.016) (0.016-0.019) (0.019-0.022) (0.022-0.025) (0.025-0.029) (0.027-0.031) (0.030-0.034) (0.032-0.037) (0.036-0.041) (0.038-0.045) 30-day 0.012 0.014 0.017 0.019 0.021 0.023 0.025 0.027 0.029 0.031 (0.012-0.013) (0.014-0.015) (0.016-0.018) (0.018-0.020) (0.020-0.023) (0.022-0.025) (0.023-0.027) (0.025-0.029) (0.027-0.031) (0.029-0.033) 45-day 0.010 0.012 0.014 0.015 0.017 I 0.018 0.020 0.021 0.023 0.024 (0.010-0.011) (0.012-0.013)i(0.013-0.015) (0.014-0.016) (0.016-0.018)1(0.017-0.020) (0.019-0.021) (0.020-0.022)I(0.021-0.024) (0.022-0.026) 60-day 0.009 0.011 0.012 0.014 0.015 0.016 0.017 0.018 0.020 0.021 (0.009-0.010) (0.010-0.012) (0.012-0.013) (0.013-0.014) (0.014-0.016) (0.015-0.017) (0.016-0.018) (0.017-0.019) (0.018-0.021) (0.019-0.022) 1 Precipitation frequency(PF)estimates in this table are based on frequency analysis of partial duration series(PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90%confidence interval.The probability that precipitation frequency estimates (for a given duration and average recurrence interval)will be greater than the upper bound(or less than the lower bound)is 5%.Estimates at upper bounds are not checked against probable maximum precipitation(PMP)estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Top PF graphical 1 of 4 10/4/2022,8:51 AM ESTIMATING ROUGHNESS COEFFICIENTS This section describes a method for estimating the roughness coefficient n for use in hydraulic computations associated with natural streams_floodways. and excavated channels. The procedure applies to the estimation of n in Manni ng's formula (_Appendix S.05). Designed By: JEH Date: 11/29/22 Checked By: JEH Date: 11/29/22 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: Site Location (City/Town) Harnett Co. Site Id. n/a Step 1. Selection of bask value of n. Select a basic n value for a straight. uniform. smooth channel in the natural materials involved. The conditions of straight alignment.uniform cross section,and smooth side and bottom surfaces without vegetation should be kept in mind. Thus. basic n varies only with the material than forms the sides and bottom of the channel. Select the basic n for natural or excavated channels from Table S.04a. If the bottom and sides of a channel consist of different materials. select an intermediate value. Channels in earth Basic n value (n=0.020) 0.02 Table 8.04a Step 2. Selection of modifying value for surface irregularity. This factor is based on the degree of roughness or irregularity of the surfaces of channel sides and bottom. Consider the actual surface irregularity first in relation to the degree of surface smoothness obtainable with the natural materials involved. and second in relation to the depths of flow expected. If the surface irregularity is comparable to the best surface possible for the channel materials. assign a modifying value of zero. Irregularity induces turbulence that calls for increased modifying values_ Table 8.04b may be used as a guide to selection of these modifying values Modifying value: channel surface irregularity Smooth (0.000) 0 Table 8.04b Step 3. Selection of modifying value for variations in the shape and size of cross sections. In considering this factor.judge the approximate magnitude of increase and decrease in successive cross sections as compared to the average. Gradual and uniform changes do not cause significant turbulence. Turbulence increases with the frequency and abruptness of alternation from large to small channel sections_ Shape changes causing the greatest turbulence are those for which flow shifts from side to side in the channel. Select modifying values based on Table 8.04c. Modifying value: channel cross section Gradual (0.000) 0 Table 8.04c Step 4. Selection of modifying value for obstructions. This factor is based on the presence and characteristics of obstructions such as debris deposits. stumps. exposed roots. boulders. and fallen and lodged logs. Take care that conditions considered in other steps not be double-counted in this step. In judging the relative effect of obstructions. consider the degree to which the obstructions reduce the average cross-sectional area at various depths and the characteristics of the obstructions. Sharp-edged or angular objects induce more turbulence than curved. smooth-surfaced objects. Also consider the transverse and longitudinal position and spacing of obstructions in the reach. Select modifying values based on Table 8.04d. Modifying value: effect of obstructions Negligible (0.000) 0 Table 8.04d Step 5. Selection of modifying value for vegetation. The retarding effect of vegetation is due primarily to turbulence induced as the water flows around and between limbs. stems. and foliage and secondarily to reduction in cross section. As depth and velocity increase_ the force of flowing water tends to bend the vegetation. Therefore.the ability of vegetation to cause turbulence is related to its resistance to bending. Note that the amount and characteristics of foliage vary seasonally. In judging the retarding effect of vegetation. consider the following: height of vegetation in relation to depth of flow. its resistance to bending. the degree to which the cross section is occupied or blocked. and the transverse and longitudinal distribution of densities and heights of vegetation in the reach. Use Table 8.04e as a guide. Modifying value: vegetation High (0.025-0.050) 0.0375 Table 8.04e Step 6. Computation of irs for the reach. The first estimate of roughness for the reach. ri. is obtained by neglecting meandering and adding the basic rr value obtained in step 1 and modifying values from steps 2 through S. ns = n + ! modifying values Straight channel subtotal, ns 0.0575 Step 7. Meander. The modifying value for meandering is not independent of the other modifying values. It is estimated from the rr• obtained in step 6. and the ratio of the meandering length to the straight length. The modifying value for meandering may be selected from Table 8.04f. Length of meandering channel (ft) 53 Length of straight line (ft) 438 Meander ratio (ft/ft) 0.121004566 Modifying value: meandering of channel Minor(0.00) 0 Table 8.04f Meandering modification o.000 Step 8. Computation of n for a channel reach with meandering. Add the modifying value obtained in step 7. to 77.. obtained in step 6. Final roughness coefficient, n 0.058 Permanent Diversion Swale Ola PHALANX CROSSFIT OBJECTIVE: Verify Capacity of Diversion Ditch Based Upon Q10 storm event. Check that swale will non-erosively pass the Q10 storm event SOLUTIONS: Mannings Flow Equation RUNOFF CONDITIONS c: A(ac): 110(cfs): 0.3 0.55 7.90 m Q10= 1.30 cfs MAXIMUM d= 0.4500 ft (min.flow depth for Q10 storm) A= 1.41 FTA2 Slope Condition P= 4.43 FT n= 0.058 (computed) R= 0.32 B= 2 ft(min.width) Q10 Storm= 1.30 CFS Z Left= 2 :1(Side Slope) V10 Storm= 0.93 FPS Z Right= 3 :1(Side Slope) Avg.S= 0.006000 ft/ft(avg.slope) W= 4.25 FT SHEAR STRESS: T= Shear Stress Y= 62.4 PCF T= 0.168 PSF d= 0.45 FT S= 0.01 FT/FT RECOMMENDED LINING: Seed and Mulch With Contractor's Blend and Install Excelsior Matting or Equivalent SAY:6"DEPTH,4.25'NATURAL FLOW SPREAD AT TERMINUS TERMINOLOGY: Q= Peak Discharge,(CFS) A= Cross-Sectional Area of Flow,(FT^2) V= Permissible Velocity,(FPS) P= Wetted Perimeter of the Flow,(FT) d= Maximum Depth of Water,(FT) R= Hydraulic Radius,(FT) Vt=Trial Velocity,(FPS) S= Slope of the Channel,(FT/FT) n= Manning's"n"Coefficient Q= Discharge,(CFS) V*R= Product of Velocity and Hydraulic Radius V= Velocity,(FPS) B= Bottom Width of Channel,(FT) W= Top Width of Water in Channel,(FT) Z= Side Slope of Channel (Z:1) Y= Specific Weight of Water(62.4 PCF) CHANNEL LINING: With velocities less than 217s use Seed and Mulching With velocites greater than 2 f/s use Temporary Ditch Liner :if T<1 then use Coir Wattle against silt fence :if T>1 then use other lining Permanent Diversion Swale Olb PHALANX CROSSFIT OBJECTIVE: Verify Capacity of Diversion Ditch Based Upon Q10 storm event. Check that swale will non-erosively pass the Q10 storm event SOLUTIONS: Mannings Flow Equation RUNOFF CONDITIONS c: A(ac): 110(cfs): 0.3 1.57 7.90 Q10= 3.72 cfs MAXIMUM d= 0.3500 ft (min.flow depth for Q10 storm) A= 1.71 FTA2 Slope Condition P= 5.89 FT n= 0.058 (computed) R= 0.29 B= 4 ft(min.width) Q10 Storm= 3.84 CFS Z Left= 3 :1(Side Slope) V10 Storm= 2.25 FPS Z Right= 2 :1(Side Slope) Avg.S= 0.040000 ft/ft(avg.slope) W= 5.75 FT SHEAR STRESS: T= Shear Stress Y= 62.4 PCF T= 0.874 PSF d= 0.35 FT S= 0.04 FT/FT RECOMMENDED LINING: Enka,North American Green P500,or Sod SAY:6"DEPTH,6'NATURAL FLOW SPREAD AT TERMINUS TERMINOLOGY: Q= Peak Discharge,(CFS) A= Cross-Sectional Area of Flow,(FT^2) V= Permissible Velocity,(FPS) P= Wetted Perimeter of the Flow,(FT) d= Maximum Depth of Water,(FT) R= Hydraulic Radius,(FT) Vt=Trial Velocity,(FPS) S= Slope of the Channel,(FT/FT) n= Manning's"n"Coefficient Q= Discharge,(CFS) V*R= Product of Velocity and Hydraulic Radius V= Velocity,(FPS) B= Bottom Width of Channel,(FT) W= Top Width of Water in Channel,(FT) Z= Side Slope of Channel (Z:1) Y= Specific Weight of Water(62.4 PCF) CHANNEL LINING: With velocities less than 2 f/s use Seed and Mulching With velocites greater than 2 f/s use Temporary Ditch Liner :if T<1 then use Coir Wattle against silt fence :if T>1 then use other lining DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: JEH 11/29/2022 Checked By: JEH 11/29/2022 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: HC2217 Site Location (City/Town) Spout Springs Id. Inlet of 36" DW Culvert Total Drainage Area (acres) 12.37 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter. it is classified minimum tailwater condition. If it is greater than half the pipe diameter. it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailw-ater condition unless rehable flood stage elevations show otherwise. Pipe diam., Do (in.) 36 Tailwater depth (in.) 12 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 54.12 Velocity (ft./s) 7.67 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d50 riprap size and minimum apron length (La). The d:. size is the median stone size in a well-graded riprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.6 Minimum apron length, La (ft.) 20 Apron width at pipe outlet (ft.) 9 9 Apron shape Trapezoidal Trapezoidal Apron width at outlet end (ft.) 23 3 Step 4. Determine the maximuun stone diameter_ d�,, = 1 .5 x d5o Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.9 0 Step 5. Deternune the apron thickness: Apron thickness = 1.5 x d 1'1?t Minimum TW Maximum TW Apron Thickness(ft.) 1.35 0 Step 6. Fit the riprap apron to the site by making it level for the minimuun length. La. from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured_ Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix S.05). Where overfills exist at pipe outlets or flows are excessive_ a plunge pool should be considered, see page 8.06_S. DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: JEH 11/29/2022 Checked By: JEH 11/30/2022 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: HC2217 Site Location (City/Town) Spout Springs Id. 36" DW Culvert Total Drainage Area (acres) 12.37 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter. it is classified muumtuu tailwater condition. If it is greater than half the pipe diameter. it is classified maximum condition. Pipes that outlet onto wide fiat areas with no defined channel are assumed to have a mourn unn tailwater condition unless reliable flood stage elevations ,how otherwise. Pipe diam., Do (in.) 36 Tailwater depth (in.) 12 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 54.12 Velocity (ft./s) 7.67 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d5,,riprap size and minimum apron length (La). The d,c size is the median stone size in a well-graded riprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.6 Minimum apron length, La (ft.) 20 Apron width at pipe outlet (ft.) 9 9 Apron shape Trapezoidal Trapezoidal Apron width at outlet end (ft.) 23 3 Step 4. Determine the maximum stone diameter: dmax = '1.5 x d50 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.9 0 Step 5. Determine the apron thickness: Apron thickness = 1.5 x d,.,3, Minimum TW Maximum TW Apron Thickness(ft.) 1.35 0 Step 6. Fit the riprap apron to the site by making it level for the minimum length. La. from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and alone channel banks until stability is assured. Keep the apron as straight as possible and alien it with the flow of the receiving stream Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix S.05). Where overfalls exist at pipe outlets or flows are excessive. a plunge pool should be considered. see page 8.06.8. DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: JEH 11/29/2022 Checked By: JEH 5/19/2023 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: HC2217 Site Location (City/Town) Spout Springs Id. 02 -SCM Outlet Total Drainage Area (acres) 0.76 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter_ it is classified minimum tailwater condition. If it is greater than half the pipe diameter_ it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable Hood stage elevations show otherwise. Pipe diam., Do (in.) 3 Tailwater depth (in.) 0 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 0.56 Velocity (ft./s) 16.5 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d50 riprap size and minimum apron length (La). The d;c size is the median stone size in a well-graded riprap apron_ Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.2 Minimum apron length, La (ft.) 7 Apron width at pipe outlet (ft.) 0.75 0.75 Apron shape Trapezoidal Trapezoidal Apron width at outlet end (ft.) 7.25 0.25 Step 4. Determine the maximum stone diameter: dmax = 1.5 x d50 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.3 0 Step 5. Deternune the apron thickness: Apron thickness = 1.5 x dr,, Minimum TW Maximum TW Apron Thickness(ft.) 0.45 0 Step 6. Fit the riprap apron to the site by making it level for the minimunn length, La. from Figure 8.06a or Figure 8.06b_ Extend the apron farther downstream and along channel banks until stability is assured. Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix 8.05). Where overfills exist at pipe outlets or flows are excessive. a plunge pool should be considered, see page 8.06.8_ DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: JEH 1/11/2023 Checked By: JEH 1/11/2023 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: HC2217 Site Location (City/Town) Spout Springs Id. 03 -Swale 01B Outlet Total Drainage Area (acres) 1 .57 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter. it is classified muumtuu tailwater condition. If it is greater than half the pipe diameter. it is classified maximum condition. Pipes that outlet onto wide fiat areas with no defined channel are assumed to have a mourn unn tailwater condition unless reliable flood stage elevations ,how otherwise. Equiv. Outlet diam., Do (in.) 18 Tailwater depth (in.) 0.25 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 3.72 Velocity (ft./s) 2.23 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d5,,riprap size and minimum apron length (L). The d,c size is the median stone size in a well-graded riprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.35 Minimum apron length, La (ft.) 9 Apron width at pipe outlet (ft.) 4.5 4.5 Apron shape Trapezoidal Trapezoidal Apron width at outlet end (ft.) 10.5 1.5 Step 4. Determine the maximum stone diameter: dmax = '1.5xd50 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.525 0 Step 5. Determine the apron thickness: Apron thickness = 1.5 x d,.,3, Minimum TW Maximum TW Apron Thickness(ft.) 0.7875 0 Step 6. Fit the riprap apron to the site by making it level for the minimum length. La. from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured. Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix S.05). Where overfalls exist at pipe outlets or flows are excessive. a plunge pool should be considered. see page 8.06.8. DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: JEH 11/29/2022 Checked By: JEH 11/29/2022 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: HC2217 Site Location (City/Town) Spout Springs NOT WITHIN Id. 04 -Swale 01A Outlet RANGE OF Total Drainage Area (acres) 0.55 CHART Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter. it is classified minimum tailwater condition. If it is greater than half the pipe diameter. it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailw-ater condition unless rehable flood stage elevations show otherwise. Equiv. Outlet diam., Do (in.) 18 Tailwater depth (in.) 0.25 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 1 .3 Velocity (ft./s) 0.93 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d50 riprap size and minimum apron length (La). The d:. size is the median stone size in a well-graded riprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.35 Minimum apron length, La (ft.) 9 Apron width at pipe outlet (ft.) 4.5 4.5 Apron shape Trapezoidal Trapezoidal Apron width at outlet end (ft.) 10.5 1.5 Step 4. Determine the maximuuu stone diameter_ d�,, = 1 .5 x d5o Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.525 0 Step 5. Determine the apron thickness: Apron thickness = 1.5 x d 1'1?I Minimum TW Maximum TW Apron Thickness(ft.) 0.7875 0 Step 6. Fit the riprap apron to the site by mc'akmg it level for the nunnnunl length. La. from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured_ Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Sonic locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix S.05). Where overfills exist at pipe outlets or flows are excessive_ a plunge pool should be considered, see page 8.06_S. DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: JEH 11/29/2022 Checked By: JEH 11/29/2022 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: HC2217 Site Location (City/Town) Spout Springs Id. 05 -15" HDPE Outlet Total Drainage Area (acres) 0.76 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter. it is classified minimum tailwater condition. If it is greater than half the pipe diameter. it is classified maximum condition. Pipes that outlet onto wide fiat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations ,how otherwise. Outlet diam., Do (in.) 15 Tailwater depth (in.) 0.5 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 5.4 Velocity (ft./s) 4.4 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d5o riprap size and minimum apron length (La). The d;c size is the median stone size in a well-graded riprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.2 Minimum apron length, La (ft.) 9 Apron width at pipe outlet (ft.) 3.75 3.75 Apron shape Trapezoidal Trapezoidal Apron width at outlet end (ft.) 10.25 1.25 Step 4. Determine the maximum stone diameter. dux = 1.5xd50 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.3 0 Step 5. Determine the apron thickness: Apron thickness = I.5 x d,„% Minimum TW Maximum TW Apron Thickness(ft.) 0.45 0 Step 6. Fit the riprap apron to the site by making it level for the minimum length. La. from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured. Keep the apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix S.05). Where overfills exist at pipe outlets or flows are excessive• a plunge pool should be considered. see page 8.06.8. E E O 0 +) +, aJ L L 5. Z N N 0 to N UJ Q M1, } } (D Y U n N • U ii M • Lr1 U ^ LD N 0 Q c Ln N c 00 W LJ7 � U O O } J 1- O a Ldn • • Q U LL O re L.)W W -I m a 2 a Z GJ OA LyE w T-1 LL UVI Ln N 0 0 N 114 X t G. M Q H N 'NJ- 3 U, U N Q Q O 0- LSD '71- .�. N O 0 N cu O O to Q 0 l0 O d N l0 O 0 ci • 0 aJ Ln W U M Q. C cc LJJ (9 J Z —• u d U a < H > z = o 0 Precipitation Frequency Data Server https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=35.2747... NOAA Atlas 14,Volume 2,Version 3 te Location name: Cameron, North Carolina,USA* Latitude: 35.2747°, Longitude: -79.0661° Elevation:391.72 ft** 4•4447Eeof• *source:ESRI Maps F **source:USGS POINT PRECIPITATION FREQUENCY ESTIMATES G.M.Bonnin,D.Martin,B.Lin,T.Parzybok,M.Yekta,and D.Riley NOAA,National Weather Service,Silver Spring,Maryland PF_tabular I PF_graphical I Maps_&_aerials PF tabular PDS-based point precipitation frequency estimates with 90%confidence intervals (in inches)1 Average recurrence interval(years) Duration 1 2 5 10 25 50 100 200 500 1000 5-min 0.434 I 0.513 I 0.596 1 0.658 0.729 0.779 0.826 0.868 0.918 I 0.956 (0.393-0.484) (0.464-0.571) (0.540-0.664) (0.594-0.731) (0.655-0.809) (0.699-0.864) (0.737-0.915) (0.771-0.961) (0.808-1.02) (0.836-1.06) 10-min 0.694 0.820 0.955 1.05 1.16 1.24 1.31 1.38 1.45 1.51 (0.628-0.773) (0.743-0.913) (0.864-1.06)1 (0.950-1.17) (1.04-1.29) (1.11-1.38) (1.17-1.45) (1.22-1.52) (1.28-1.61) (1.32-1.67) 15-min 0.867 1.03 1.21 1.33 1.47 1.57 1.66 1.74 1.83 1.89 (0.784-0.966) (0.934-1.15) (1.09-1.35) (1.20-1.48) (1.32-1.64) (1.41-1.74) (1.48-1.84) (1.54-1.92) (1.61-2.02) (1.65-2.09) 30-min 1.19 1.42 1.72 1.93 2.18 2.37 2.54 2.70 2.91 3.06 (1.08-1.33) (1.29-1.59) (1.55-1.91) (1.74-2.14) (1.96-2.42) (2.12-2.62) (2.27-2.81) (2.40-2.99) (2.56-3.22) (2.68-3.39) 60-min 1.48 1.79 2.20 2.51 2.91 3.21 3.50 3.79 4.17 4.47 (1.34-1.65) (1.62-1.99) 1 (1.99-2.45) (2.27-2.79) I (2.61-3.22) (2.88-3.55) (3.12-3.88) (3.37-4.20) (3.67-4.62) (3.91-4.94) 2-hr 1.74 2.11 2.63 3.03 3.56 3.97 4.38 4.79 5.34 5.77 (1.56-1.96) (1.89-2.37) (2.36-2.96) (2.71-3.40) (3.17-3.99) (3.52-4.45) (3.86-4.90) (4.20-5.36) (4.63-5.97) (4.96-6.45) 3-hr 1.85 2.24 2.81 3.26 3.87 4.36 4.86 5.39 6.11 6.68 (1.66-2.08) (2.02-2.52) (2.53-3.16) (2.92-3.66) (3.45-4.33) (3.86-4.88) (4.27-5.44) (4.69-6.02) (5.26-6.82) (5.70-7.47) 6-hr 2.21 2.67 3.35 3.90 4.64 5.25 5.88 6.53 7.45 8.18 (2.00-2.45) I (2.43-2.96) 1 (3.04-3.71) (3.53-4.31) (4.17-5.13) 1 (4.68-5.79) (5.20-6.47)J (5.72-7.18) (6.44-8.18)I (7.00-8.99) 12-hr 2.61 3.15 3.98 4.65 5.59 6.35 7.16 8.01 9.22 10.2 (2.37-2.89) (2.87-3.49) (3.61-4.41) (4.20-5.14) (5.00-6.16) (5.65-6.98) (6.30-7.86) (6.98-8.78) (7.91-10.1) (8.64-11.2) 24-hr 3.07 3.71 4.68 5.45 6.50 7.34 8.21 9.11 10.3 11.3 (2.85-3.31) (3.44-4.01) (4.34-5.06) (5.03-5.88) (5.99-7.02) (6.74-7.92) (7.52-8.85) (8.32-9.81) (9.40-11.2) (10.3-12.2) 2-day 3.57 4.30 5.39 6.25 7.43 8.37 9.33 10.3 11.7 12.8 (3.32-3.84) (4.00-4.63) (5.01-5.80) (5.79-6.72) (6.86-7.99) (7.70-8.99) (8.56-10.0) (9.44-11.1) (10.6-12.6) (11.6-13.8) 3-day 3.79 4.56 5.68 6.56 7.78 8.75 9.75 10.8 12.2 13.3 (3.53-4.06) (4.25-4.89) (5.29-6.09) (6.10-7.03) (7.20-8.33) (8.07-9.37) (8.97-10.4) (9.88-11.6) I (11.1-13.1) (12.1-14.3) 4-day 4.01 4.82 5.97 6.88 8.13 9.14 10.2 11.2 12.7 13.8 (3.74-4.28) (4.50-5.15) (5.57-6.37) (6.41-7.33) (7.55-8.68) (8.45-9.74) (9.37-10.8) (10.3-12.0) (11.6-13.6) (12.6-14.8) 7-day 4.63 5.53 6.77 7.75 9.11 10.2 11.3 12.4 14.0 15.2 (4.32-4.96) (5.16-5.93) (6.30-7.26) (7.21-8.31) (8.44-9.75) 1 (9.42-10.9) (10.4-12.1) (11.4-13.3) (12.8-15.0) (13.9-16.4) 10-day 5.28 6.30 7.59 8.61 9.98 11.1 12.1 13.3 14.8 15.9 (4.96-5.62) (5.91-6.70) (7.12-8.07) (8.06-9.15) (9.31-10.6) (10.3-11.8) (11.3-12.9) (12.3-14.1) (13.6-15.7) (14.6-17.0) 20-day 7.11 8.41 9.97 11.2 12.9 14.1 15.5 16.8 18.6 20.0 (6.68-7.58) (7.90-8.97) (9.35-10.6) (10.5-11.9) (12.0-13.7) (13.2-15.1) (14.4-16.5) (15.5-17.9) (17.1-19.8) (18.4-21.4) 30-day 8.85 10.4 12.2 13.5 15.3 16.6 18.0 19.3 21.1 22.5 (8.34-9.41) (9.82-11.1) (11.4-12.9) (12.7-14.4) (14.3-16.2) (15.6-17.7) (16.8-19.2) J (18.0-20.6) (19.6-22.6) (20.8-24.1) 45-day 11.2 13.2 15.1 16.6 18.5 20.0 21.4 22.8 24.6 26.0 L (10.6-11.9) (12.4-13.9) (14.2-16.0) (15.6-17.6) (17.4-19.6) (18.8-21.2) (20.1-22.7) (21.3-24.2) (23.0-26.2) (24.2-27.7) 60-day 13.4 15.7 17.9 19.5 21.6 23.2 24.7 26.2 28.1 29.6 (12.7-14.2) (14.9-16.6) (16.9-18.8) (18.4-20.5) (20.4-22.8) (21.9-24.4) (23.3-26.1) (24.6-27.7) (26.4-29.8) (27.7-31.4) 1 Precipitation frequency(PF)estimates in this table are based on frequency analysis of partial duration series(PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90%confidence interval.The probability that precipitation frequency estimates (for a given duration and average recurrence interval)will be greater than the upper bound(or less than the lower bound)is 5%.Estimates at upper bounds are not checked against probable maximum precipitation(PMP)estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Top PF graphical 1 of 4 10/4/2022,8:50 AM w CD J < 0 = O O D_ v" z W W m as J_ g Q = > W Q D_ J IL • 0 U CO < Q I CD +-, Its O O( 0 Ln O O c-1 U, uJ w co co N 0 C 0 Cr) c-I — C IN lb C O_ Y In N 0 CD ra O a) C O - C O O V Iz ++ Z C a) M c LL E 01U 0 O 0 C O r l l-- W v + O °) m � a o a cc z tto O '�_^ dA MS 0 0 In u In ,n IA a) •'- N 00 Li.) UI UI a1 t� • E u O' r-I on' cri W coo ++ u 0 Ua Q t4 Q- U - II II Q 0 O UI O p 0 co/ m Z a > o ri ri O o u a 0 s I- ++ W ~ L 0 Li) o a) In N .-I0 fa 0 CC fa in a lD Cr LIDlD r-I O U N 2 ai O < op O I� m 0 X l\D N 'a 'a f0 I� In N l-I i�-I 0 O Y a) c L v N m a0 r4 O Q rsJ rl N as O L Q rI Q L 7,RS +�+ D- u > O >� W J > L U +al ++ CO0 W c-I c-I Q I I O p Vf 3 m m m u w . ++ O d = 0 U Z c C II 3 W O Qa > m > ( W 0 0 a) CC Un 1 N O a N * Li-) N N t: I I M to II to f6 _ Ln r+ 00 Q O a) d d z O LL a) cn 00 d ro p) O O ate+ - O fn T a) O f6 E L O U a) L Q a)a) - C _ LO 0 J O a O O u LL C1 a) I I I I I I • I I I O 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 O 00 CO N O O O N O N 00 to Chapter 2 Estimating Runoff Technical Release 55 Urban Hydrology for Small Watersheds Table 2-2a Runoff curve numbers for urban areas 1/ Curve numbers for ----------- Cover description --------------------- ------hydrologic soil group------- Average percent Cover type and hydrologic condition impervious area v A B C D Fully developed urban areas (vegetation established) Open space(lawns,parks,golf courses,cemeteries,etc.)3i: Poor condition(grass cover<50%) 68 79 86 89 Fair condition(grass cover 50%to 75%) 49 69 79 84 Good condition(grass cover>75%) 39 61 74 80 Impervious areas: Paved parking lots,roofs,driveways,etc. (excluding right-of-way) I= 98 98 98 Streets and roads: Paved;curbs and storm sewers(excluding right-of-way) 98 98 98 98 Paved;open ditches(including right-of-way) 83 89 92 93 Gravel(including right-of-way) 76 85 89 91 Dirt(including right-of-way) 72 82 87 89 Western desert urban areas: Natural desert landscaping(pervious areas only) 4/ 63 77 85 88 Artificial desert landscaping(impervious weed barrier, desert shrub with 1-to 2-inch sand or gravel mulch and basin borders) 96 96 96 96 Urban districts: Commercial and business 85 89 92 94 95 Industrial 72 81 88 91 93 Residential districts by average lot size: 1/8 acre or less(town houses) 65 77 85 90 92 1/4 acre 38 61 75 83 87 1/3 acre 30 57 72 81 86 1/2 acre 25 54 70 80 85 1 acre 20 51 68 79 84 2 acres 12 46 65 77 82 Developing urban areas Newly graded areas (pervious areas only,no vegetation)5i 77 86 91 94 Idle lands(CN's are determined using cover types similar to those in table 2-2c). 1 Average runoff condition,and Ia=0.2S. 2 The average percent impervious area shown was used to develop the composite CN's.Other assumptions are as follows:impervious areas are directly connected to the drainage system,impervious areas have a CN of 98,and pervious areas are considered equivalent to open space in good hydrologic condition.CN's for other combinations of conditions may be computed using figure 2-3 or 2-4. 3 CN's shown are equivalent to those of pasture.Composite CN's may be computed for other combinations of open space cover type. 4 Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN=98)and the pervious area CN.The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition. 5 Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development(impervious area percentage)and the CN's for the newly graded pervious areas. (210-VI-TR-55,Second Ed.,June 1986) 2-5 8 2gh o5 3. Pipe Flow: Q = a [1 +K.+KP L where: Q=discharge in cubic feet per second(cfs) a=cross-sectional area of the barrel in square feet g =acceleration due to gravity,32.2 ft/sec2 h=head above the centerline of the outlet end of the barrel Km = coefficient of minor losses, can be assumed to be 1.0 for most principal spillway systems L =barrel length in feet K, =pipe friction coefficient: _ 5087n2 (See Table 8.07c for KP values for di413 common size of pipe.) n =Manning's coefficient of roughness,use n=0.025 for corrugated metal pipe n =0.015 for reinforced concrete pipe di =inside diameter of the barrel in inches Select riser and barrel dimensions so that the riser has a cross-sectional area at least 1.5 times that of the barrel. Spillway hydraulics are improved by maximizing weir flow and minimizing orifice flow. See Table 8.07b for recommended riser/barrel proportions. Table 8.07a Kp Values for Common Sizes of Pipe Pipe Diameter Flow Area Manning's Coefficient (inches) (square feet) 0.015 0.025 6 0.196 0.1050 0.2916 8 0.349 0.0715 0.1987 10 0.545 0.0531 0.1476 12 .0785 0.0417 0.1157 14 1.069 0.0339 0.0942 15 1.23 0.0309 0.0859 16 1.40 0.0284 0.0789 18 1.77 0.0243 0.0674 21 2.41 0.0198 0.0549 24 3.14 0.0165 0.0459 27 3.98 0.0141 0.0393 30 4.91 0.0123 0.0341 36 7.07 0.0096 0.0267 42 9.62 0.0078 0.0218 48 12.57 0.0066 0.0182 54 15.90 0.0056 0.0156 60 19.64 0.0049 0.0135 8.07.6 Rev.5/13 ,•i I W O d. 0 m m N N ul up m V m l.fl rsJ 0 O lD lD O O N ci O cal e-1 6 a) a) a) c $ •• E E .. .. Q a N I d i o c O m O ti 00 L▪ m m m VD ci Ln N a m N V1 h c-1 O N lD O LD Ni O co O ,i O O a) a) a) •• •• E .. E Q aT $ v i i ' Z 10 V V " O O c -c c L c 'O 5 •Q N al I ra a a o 0 0 0 LO V W 6 a m VD N NO LID (.4 to O N D O ti O CC J J w O VD O V) V O 0 a) a) a) ~ Q _ In l0 . ,r ^ ) .. w E •• E •• N LI_ N O e.1 a-1 N `c p Cr t 1- i ~ i ~ T VI E IN IN m m M E V V v O c v c v c to O M M N f0 to 2 0 •ro al al cc as 0 a N d o O CC U CI - Z O o V m D co Q j C N O a) a 1 Ln V V m 0 4 O o0 Z 'pp 30 �' O N O NO O• O VD a CIS -a na 5 O N CC -to a) C a, o Q : -c a` x o a O w C too a) a) a) a t o m c 4N •• N E .. E .. E 3 > m O o 6 \ ` H v, ~ ^ ~ T W o c v 47. v1 E v v v o c v •c t •C ra I► -a w f0 on 2 O m 0 C co Ct Q N d Q O 8 z 3 cc a 0 -O E a O LC W E ELA W N- d- m ti `~ N N E O •C m 0 N N v1 •� 0 0 m lD p O O^ N- m L 2— O ✓ O N T c-1 a) a) a) a c .. NN •. N E E E Y _' 6 $ v I- i I- L I- j, O c V = O O c c c Oa 2 N N a a) a N d o O 8 Y (6 a) I- a.) o0 E m co oo m To tri � D m o cri m D m O O ,mi .1 m N OOV7 N N O O ,--1 to O .-i O \ 6 Q ci E a) s 00 .. a) a) a) a) N .. :" E .. E E •• Q O u H C H L H y o X E v 6 v c c c m w • f0 bA x a E N i -00 a) uo O a N O O O H Cf PHALANX CROSSFIT HARNETT COUNTY, NC ANTI-FLOATATION COMPUTATIONS LEGEND Enter Data FOR RECTANGULAR SECTION STRUCTURE Verfiy Data CONTROL: Unit Weight of Water: 62.4 lbs/cf Unit Weight of Conc. 150 lbs/cf STRUCTURE WEIGHT: o ft 371.50 ft-msl (Rim Elevation) STRUCTURE SIDES: 1 371.50 ft-msl (Top of Sides) Riser Inside Length Dimension: 3 ft Riser Inside Width Dimension: 2.16 ft Thickness of Concrete: 0.5 ft 0.5 ft Riser Outside Length Dimensions: 4 Riser Outside Width Dimensions: 3.16 369 ft-msl (Barrel Invert) Volume of Sides: 15.4 cf 368.5 ft-msl (Initial Bottom of Structure) Weight of Concrete Sides: 2,310 lbs 369.00 ft-msl (Invert with Anti-Float) 368.50 ft-msl (Bottom with Anti-Float) 0.5 ft STRUCTURE BOTTOM: STRUCUTRE TOP: Riser Inside Length Dimension: 3 ft Riser Inside Length Dimension: 3 ft Riser Inside Width Dimension: 2.16 ft Riser Inside Width Dimension: 2.16 ft Thickness of Concrete: 0.5 ft Thickness of Concrete: 0 ft Riser Outside Length Dimensions: 4 ft Riser Outside Length Dimensions: 4 ft Riser Outside Width Dimensions: 3.16 ft Riser Outside Width Dimensions: 3.16 ft Volume of Bottom: 6.32 cf Volume of Top Slab: 0 cf Weight of Concrete Bottom: 0,948 lbs Weight of Concrete Bottom: 0,000 lbs INITIAL WEIGHT OF STRUCTURE: 3,258 LBS INITIAL DESIGN O.K. BOUYANCY FORCE: ANTIFLOTATION: Weir Elevation: 371.5 ft-msl Use Bottom Inv.Elev: 368.50 ft-msl (Fill with Concrete) Trial Bottom of Box: 368.5 ft-msl Additional Str.Wt: 0,000 lbs Inside Area of Riser: 6.48 sq.ft Add.Bouy.Force: 0,000 lbs Outside Area of Riser: 12.64 sq.ft TOTAL STR.WT: 3,258 Volume of Water Displaced: 37.92 cf TOTAL BOUYANCY: 2,366 Initial Bouyancy Force: 2,366 lbs Safety Factor: 1.3769 (Minimum S.F.must be>=1.1) Message: Design o.k. PHALANX CROSS FIT VOLUME COMPUTATIONS MINIMUM VOLUME REQUIRED. USE SIMPLE METHOD Regulatory Requirement: Harnett County General Stormwater Management Additional Requirements: Non-erosive discharge Design Storm Event Return Interval/Duration: 1 year 24 hour Post Watershed Size: 0.76 acres Pre Watershed Size: 0.76 acres Peak Discharge Rainfall Intensity: 0.128 in/hr Pre-Development c: 0.1 pasture sandy soils Post-Development c: 0.81 composite Estimated Percent Impervious Area: 88.14 % Total Composite CN 91 Impervious Area: 0.670 acres Pervious Area: 0.090 acres Design Storm Event Precipitation: 1.00 inch Minimum requirement Major Hydrologic Soil Group: A WfB Pervious Land Use CN: 39 lawns(good condition) Impervious Land Use CN: 98 RUNOFF DETERMINATION: Simple Method la: 0.8814 (Impervious fraction) RD: 1.00 in (Water Quality Storm) A: 0.76 acres (Watershed Area) RUNOFF COEFFICIENT(Rv): Formula:R v=0.05+0.9"l a R,,: 0.84326 VOL.REQUIRED(V): Formula:V=Ro"Rv A (V): 2,326 ft3 = 17,401 gallons (V): 0.641 acre-inches FORMULATING PRE-POST DEVELOPMENT HYDROGRAPHS Utilize small watershed method&center-weighted storm(Malcom) Return Period 10 year I= 7.900 in/hr 10 year,Tc Intensity Cpre 0.10 (Composite Rational C, See Drainage Area/Computations Map) Cpost 0.81 (Composite Rational C, See Drainage Area/Computations Map) A= 0.76 acre A= 33,106 sf Rainfall 3.9 in (10 year,6 hour storm) Qpre= 0.60 cfs PRE CN 490 S= 10.41 Q*= 0.27 in Qpost= 4.86 cfs POST CN 91 S= 0.9 Q*= 2.92 in Vol -Pre 0,746 cf 0.2*S: 2.0816327 Vol -Post 8,060 cf (If rainfall is less than 20%S, Q*=0) Tpre 15 min Tpost 20 min Time Step 1 min Time Q-pre Q-post min cfs cfs 0 0.00 0.00 1 0.01 0.03 2 0.03 0.12 3 0.06 0.27 4 0.10 0.47 5 0.15 0.72 6 0.21 1.01 7 0.27 1.34 8 0.33 1.70 9 0.40 2.07 10 0.45 2.46 11 0.50 2.84 12 0.55 3.21 13 0.58 3.56 14 0.60 3.89 15 0.60 4.18 16 0.59 4.42 17 0.57 4.62 18 0.54 4.76 19 0.50 4.84 20 0.46 4.86 21 0.42 4.82 22 0.38 4.73 23 0.35 4.57 24 0.32 4.36 25 0.29 4.11 26 0.27 3.85 27 0.25 3.61 28 0.23 3.38 29 0.21 3.17 30 0.19 2.97 31 0.17 2.78 32 0.16 2.60 33 0.15 2.44 34 0.13 2.28 35 0.12 2.14 36 0.11 2.00 37 0.10 1.88 38 0.09 1.76 39 0.09 1.65 40 0.08 1.54 41 0.07 1.44 42 0.07 1.35 43 0.06 1.27 44 0.06 1.19 10-YEAR INFLOW 1 of 3 HYDROGRAPH ROUTING THROUGH WET POND 10-YEAR STORM Extrapolated Kp FORMULAS FROM EC MANUAL 8.07.5 Manning Coefficient Pipe Diam. Flow Area 0.015 0.025 Type Structure: Riser with Circular Drawdown Outlet and Barrel 2 0.0218 0.4542 1.2617 Orifice Equation:Q.CDA(2gh)°'s 3 0.0491 0.2645 0.7348 Pipe Flow Formula:Cl.a[2gh I 1+Km+KpL]°s 4 0.0872 0.1803 0.5007 Weir Flow Formula:Q=CLH''S 6 0.1963 0.1050 0.2916 Co(Orifice): 0.60 8 0.3489 0.0715 0.1987 Height Change,Weir to 2.00 ft Km 1.0 Standard 0.5451 Orifice Flow 10 0.0531 0.1476 C„„, 3.00 Kp 0.7348 (Table 8.07a) 12 0.7850 0.0417 0.1157 Primary Riser Diam 30.0 in. Length of Barre 20 ft 14 1.0685 0.0339 0.0942 Circum.of Riser 7.85 ft Barrel Diam. 3 in 15 1.2266 0.0309 0.0859 Area of Riser 4.91 ft' Barrel Area: 0.05 ft 2.5 0.0341 0.3373 0.9370 Riser Drawdown Outlet 0.75 in NOTE: Heights measured from normal pool elevation Orifice Diam. Number of Orifices 0 Riser Drawdown Outlet 0.00 ft Nornal Pool Height= 0.00 ft Orifice Area Existing Soil N/A Min.Infiltration Rate 0.00 in/hr 1 Height of Riser Weir= 1.00 ft 1 Vol.Lost to Infil. 0 cf/hr Stage Storage Function:S=3,525 a Z 1.15 Riser Secondary Primary Riser Primary Riser Riser/let Flo wn Barrel Capacity Total 0utflow Inflow Volume in Storage Stage Orifice Capacity Capaei y Capaelry Outlet Flow Infill Vol Out Velocity of of ft Orifice Flow(cis] Weir Flow(cfs) Orifice Flow fct-' ---(cfs; (c/s) (cfa) allif 1 0.03 0,002 0,002 0.0014 #NUM! #NUM. #NUM 0.14 0.00 0.00 0.000 0,000 2 0.12 0,007 0,009 0.0056 #NUM! #NUM. #NUM 0.14 0.00 0.00 0.000 0,000 0.00 3 0.27 0,016 0,025 0.0136 #NUMI #NUM #NUM 0.14 0.00 0.00 0.000 0,000 0.00 4 0.47 0,028 0,053 0.0261 #NUMI #NUM #NUM 0.15 0.00 0.00 0.000 0,000 0.00 5 0.72 0,043 0,097 0.0438 0.00 #NUM #NUM 0.16 0.00 0.00 0.000 0,000 0.00 6 1.01 0,061 0,157 0.0670 0.00 #NUM #NUM 0.17 0.00 0.00 0.000 0,000 0.00 7 1.34 0,081 0,238 0.0960 0.00 #NUM #NUM 0.18 0.00 0.00 0.000 0,000 0.00 8 1.70 0,102 0,340 0.1308 0.00 #NUM #NUM 0.20 0.00 0.00 0.000 0,000 0.00 9 2.07 0,124 0,464 0.1716 0.00 #NUM #NUM 0.21 0.00 0.00 0.000 0,000 0.00 10 2.46 0,147 0,612 0.2181 0.00 #NUM #NUM 0.23 0.00 0.00 0.000 0,000 0.00 11 2.84 0,170 0,782 0.2700 0.00 #NUM #NUM 0.25 0.00 0.00 0.000 0,000 0.00 12 3.21 0,193 0,975 0.3270 0.00 #NUM #NUM 0.26 0.00 0.00 0.000 0,000 0.00 13 3.56 0,214 1,188 0.3885 0.00 #NUM #NUM 0.28 0.00 0.00 0.000 0,000 0.00 14 3.89 0,233 1,422 0.4541 0.00 #NUM #NUM 0.30 0.00 0.00 0.000 0,000 0.00 15 4.18 0,251 1,672 0.5229 0.00 #NUM #NUM 0.32 0.00 0.00 0.000 0,000 0.00 16 4.42 0,265 1,938 0.5943 0.00 #NUM #NUM 0.33 0.00 0.00 0.000 0,000 0.00 17 4.62 0,277 2,215 0.6675 I 0.00 #NUM #NUM 0.35 0.00 0.00 0.000 0,000 0.00 18 4.76 0,285 2,500 0.7418 0.00 #NUM #NUM 0.37 0.00 0.00 0.000 0,000 0.00 19 4.84 0,290 2,791 0.8161 0.00 #NUM #NUM 0.38 0.00 0.00 0.000 0,000 0.00 20 4.86 0,292 3,082 0.8899 0.00 #NUM #NUM 0.40 0.00 0.00 0.000 0,000 0.00 21 4.82 0,289 3,372 0.9621 0.00 #NUM #NUM 0.41 0.00 0.00 0.000 0,000 2.76 22 4.73 0,284 3,655 1.0321 0.00 0.14 4.23 0.42 0.14 0.14 0.000 0,008 8.85 23 4.57 0,274 3,922 1.0972 0.00 0.71 7.37 0.43 0.71 0.43 0.000 0,043 9.04 24 4.36 0,262 4,141 1.1502 0.00 1.37 9.16 0.44 1.37 0.44 0.000 0,082 9.18 25 4.11 0,247 4,305 1.1899 0.00 1.95 10.30 0.45 1.95 0.45 0.000 0,117 9.28 26 3.85 0,231 4,419 1.2173 0.00 2.39 11.02 0.46 2.39 0.46 0.000 0,143 9.34 27 3.61 0,217 4,493 1.2348 0.00 2.68 11.45 0.46 2.68 0.46 0.000 0,161 9.37 28 3.38 0,203 4,535 1.2448 0.00 2.85 11.70 0.46 2.85 0.46 0.000 0,171 9.39 29 3.17 0,190 4,553 1.2493 0.00 2.93 11.80 0.46 2.93 0.46 0.000 0,176 9.39 30 2.97 0,178 4,555 1.2498 0.00 2.94 11.81 0.46 2.94 0.46 0.000 0,176 9.38 31 2.78 0,167 4,545 1.2474 0.00 2.90 11.76 0.46 2.90 0.46 0.000 0,174 9.37 32 2.60 0,156 4,528 1.2432 0.00 2.83 11.66 0.46 2.83 0.46 0.000 0,170 9.35 33 2.44 0,146 4,504 1.2376 0.00 2.73 11.52 0.46 2.73 0.46 0.000 0,164 9.32 34 2.28 0,137 4,478 1.2312 0.00 2.62 11.36 0.46 2.62 0.46 0.000 0,157 9.30 35 2.14 0,128 4,449 1.2243 0.00 2.50 11.19 0.46 2.50 0.46 0.000 0,150 9.28 36 2.00 0,120 4,419 1.2171 0.00 2.38 11.01 0.46 2.38 0.46 0.000 0,143 9.25 37 1.88 0,113 4,388 1.2098 0.00 2.26 10.83 0.45 2.26 0.45 0.000 0,136 9.22 38 1.76 0,105 4,358 1.2025 0.00 2.15 10.64 0.45 2.15 0.45 0.000 0,129 9.20 39 1.65 0,099 4,328 1.1953 0.00 2.03 10.45 0.45 2.03 0.45 0.000 0,122 9.17 40 1.54 0,093 4,298 1.1882 0.00 1.92 10.25 0.45 1.92 0.45 0.000 0,115 9.15 41 1.44 0,087 4,269 1.1813 0.00 1.82 10.06 0.45 1.82 0.45 0.000 0,109 9.13 42 1.35 0,081 4,241 1.1746 0.00 1.72 9.87 0.45 1.72 0.45 0.000 0,103 9.10 43 1.27 0,076 4,214 1.1680 0.00 1.62 9.69 0.45 1.62 0.45 0.000 0,097 9.08 44 1.19 0,071 4,188 1.1617 0.00 1.53 9.51 0.45 1.53 0.45 0.000 0,092 9.06 45 1.11 0,067 4,163 1.1556 0.00 1.45 9.32 0.44 1.45 0.44 0.000 0,087 9.04 46 1.04 0,062 4,139 1.1498 0.00 1.37 9.15 0.44 1.37 0.44 0.000 0,082 9.02 47 0.98 0,059 4,115 1.1441 0.00 1.29 8.97 0.44 1.29 0.44 0.000 0,077 9.00 48 0.91 0,055 4,093 1.1387 0.00 1.22 8.80 0.44 1.22 0.44 0.000 0,073 8.98 49 0.86 0,051 4,071 1.1334 q 0.00 1.15 8.63 0.44 1.15 0.44 0.000 0,069 8.96 50 0.80 0,048 4,050 1.1284 0.00 1.08 8.47 0.44 1.08 0.44 0.000 0,065 8.94 51 0.75 0,045 4,030 1.1235 0.00 1.02 8.31 0.44 1.02 0.44 0.000 0,061 8.93 52 0.70 0,042 4,011 1.1189 0.00 0.97 8.15 0.44 0.97 0.44 0.000 0,058 8.91 53 0.66 0,040 3,993 1.1144 0.00 0.91 7.99 0.44 0.91 0.44 0.000 0,055 8.90 54 0.62 0,037 3,975 1.1101 0.00 0.86 7.84 0.44 0.86 0.44 0.000 0,052 8.88 55 0.58 0,035 3,958 1.1080 0.00 0.81 7.69 0.44 0.81 0.44 0.000 0,049 8.87 56 0.54 0,032 3,942 1.1020 0.00 0.77 7.55 0.44 0.77 0.44 0.000 0,046 8.85 57 0.51 0,030 3,926 1.0982 0.00 0.73 7.41 0.43 0.73 0.43 0.000 0,044 8.84 58 0.47 0,028 3,911 1.0946 0.00 0.69 7.27 0.43 0.69 0.43 0.000 0,041 8.83 59 0.44 0,027 3,897 1.0911 0.00 0.65 7.13 0.43 0.65 0.43 0.000 0,039 8.81 60 0.42 0,025 3,883 1.0877 0.00 0.61 7.00 0.43 0.61 0.43 0.000 0,037 8.80 61 0.39 0,023 3,869 1.0845 0.00 0.58 6.87 0.43 0.58 0.43 0.000 0,035 8.79 62 0.37 0,022 3,857 1.0813 0.00 0.55 6.74 0.43 0.55 0.43 0.000 0,033 8.78 63 0.34 0,021 3,844 1.0784 0.00 0.52 6.62 0.43 0.52 0.43 0.000 0,031 8.77 64 0.32 0,019 3,833 1.0755 0.00 0.49 6.49 0.43 0.49 0.43 0.000 0,029 8.76 65 0.30 0,018 3,821 1.0727 0.00 0.46 6.37 0.43 0.46 0.43 0.000 0,028 8.75 66 0.28 0,017 3,811 1.0701 0.00 0.44 6.26 0.43 0.44 0.43 0.000 0,026 8.43 67 0.26 0,016 3,800 1.0675 0.00 0.41 6.14 0.43 0.41 0.41 0.000 0,025 7.97 68 0.25 0,015 3,790 1.0651 1 0.00 0.39 6.03 0.43 0.39 0.39 0.000 0,023 7.54 69 0.23 0,014 3,781 1.0627 0.00 0.37 5.92 0.43 0.37 0.37 0.000 0,022 7.14 70 0.22 0,013 3,771 1.0605 0.00 0.35 5.81 0.43 0.35 0.35 0.000 0,021 6.76 71 0.20 0,012 3,762 1.0583 0.00 0.33 5.71 0.43 0.33 0.33 0.000 0,020 6.40 72 0.19 0,011 3,754 1.0562 0.00 0.31 5.61 0.43 0.31 0.31 0.000 0,019 6.06 73 0.18 0,011 3,746 1.0542 0.00 0.30 5.50 0.43 0.30 0.30 0.000 0,018 5.74 74 0.17 0,010 3,738 1.0523 0.00 0.28 5.41 0.43 0.28 0.28 0.000 0,017 5.44 75 0.16 0,009 3,730 1.0505 0.00 0.27 5.31 0.43 0.27 0.27 0.000 0,016 5.16 76 0.15 0,009 3,723 1.0487 0.00 0.25 5.22 0.43 0.25 0.25 0.000 0,015 4.89 77 0.14 0,008 3,716 1.0470 0.00 0.24 5.12 0.43 0.24 0.24 0.000 0,014 4.64 78 0.13 0,008 3,709 1.0453 4 0.00 0.23 5.03 0.43 0.23 0.23 0.000 0,014 4.40 79 0.12 0,007 3,703 1.0438 0.00 0.22 4.94 0.42 0.22 0.22 0.000 0,013 4.17 80 0.11 0,007 3,697 1.0423 0.00 0.20 4.86 0.42 0.20 0.20 0.000 0,012 3.96 81 0.11 0,006 3,691 1.0408 0.00 0.19 4.77 0.42 0.19 0.19 0.000 0,012 3.75 82 0.10 0,006 3,685 1.0394 0.00 0.18 4.69 0.42 0.18 0.18 0.000 0,011 3.56 83 0.09 0,006 3,680 1.0380 0.00 0.17 4.61 0.42 0.17 0.17 0.000 0,010 3.38 84 0.09 0,005 3,674 1.0367 0.00 0.17 4.53 0.42 0.17 0.17 0.000 0,010 3.21 10-YEAR HYDROGRAPH ROUTING 1 Of 0 0 • o 1 0 1 1 0 1 0 1 0 0 III 1 0 1 0 1 °0 1 1 1 O 1 0 O 1 o 1 0 2 1 0 a I CD - re 1 CD 0 o w U I CO I 0 I 0 I I 2 1 0o c o 1 0 O 1 a, H I E o z i= & 0_ w > H 1 00 o a w d d 0 I ' a I o w I ca o [ 8 I— o II 1 co • ` O • O ` N • • • O • O • • I 1 0 0 0 0 0 O O O 0 0 0 0 O O 6 4 C7 CV '- O (II) a6e;S 1s13)mold FORMULATING PRE-POST DEVELOPMENT HYDROGRAPHS Utilize small watershed method&center-weighted storm(Malcom) Return Period 25 year I= 8.750 in/hr 25 year,Tc Intensity Cpre 0.10 (Composite Rational C, See Drainage Area/Computations Map) Cpost 0.81 (Composite Rational C, See Drainage Area/Computations Map) A= 0.76 acre A= 33,106 sf Rainfall 4.64 in (25 year,6 hour storm) Qpre= 0.67 cfs PRE CN 490 S= 10.41 Q*= 0.50 in Qpost= 5.39 cfs POST CN 91 S= 0.9 Q*= 3.63 in Vol -Pre 1,393 cf 0.2*S: 2.0816327 Vol -Post 10,024 cf (If rainfall is less than 20%S, Q*=0) Tpre 25 min Tpost 22 min Time Step 1 min Time Q-pre Q-post min cfs cfs 0 0.00 0.00 1 0.00 0.03 2 0.01 0.11 3 0.02 0.24 4 0.04 0.42 5 0.06 0.64 6 0.09 0.91 7 0.12 1.21 8 0.15 1.54 9 0.19 1.89 10 0.23 2.26 11 0.27 2.63 12 0.31 3.01 13 0.35 3.38 14 0.39 3.74 15 0.43 4.08 16 0.47 4.39 17 0.51 4.67 18 0.54 4.91 19 0.57 5.10 20 0.60 5.25 21 0.62 5.34 22 0.64 5.38 23 0.65 5.37 24 0.66 5.31 25 0.66 5.20 26 0.66 5.03 27 0.66 4.82 28 0.64 4.57 29 0.63 4.32 30 0.60 4.07 31 0.58 3.84 32 0.55 3.62 33 0.52 3.42 34 0.50 3.22 35 0.47 3.04 36 0.45 2.87 37 0.42 2.71 38 0.40 2.55 39 0.38 2.41 40 0.36 2.27 41 0.35 2.14 42 0.33 2.02 43 0.31 1.91 44 0.30 1.80 10-YEAR INFLOW 1 of 3 HYDROGRAPH ROUTING THROUGH WET POND 25-YEAR STORM Extrapolated Kp FORMULAS FROM EC MANUAL 8.07.5 Manning Coefficient Pipe Diam. Flow Area 0.015 0.025 Type Structure: Riser with Circular Drawdown Outlet and Barrel 2 0.0218 0.4542 1.2617 Orifice Equation:Q.CDA(2gh)°'s 3 0.0491 0.2645 0.7348 Pipe Flow Formula:Cl.a[2gh I 1+Km+KpL]°s 4 0.0872 0.1803 0.5007 Weir Flow Formula:Q=CLH''S 6 0.1963 0.1050 0.2916 Co(Orifice): 0.60 8 0.3489 0.0715 0.1987 Height Change,Weir to 2.00 ft Km 1.0 Standard 0.5451 Orifice Flow 10 0.0531 0.1476 C„„, 3.00 Kp 0.7348 (Table 8.07a) 12 0.7850 0.0417 0.1157 Primary Riser Diam 30.0 in. Length of Barre 20 ft 14 1.0685 0.0339 0.0942 Circum.of Riser 7.85 ft Barrel Diam. 3 in 15 1.2266 0.0309 0.0859 Area of Riser 4.91 ft2 Barrel Area: 0.05 ft2 2.5 0.0341 0.3373 0.9370 Riser Drawdown Outlet 2 in NOTE: Heights measured from normal pool elevation Orifice Diam. Number of Orifices 0 Riser Drawdown Outlet 0.00 ft5 Norval Pool Height= 0.00 R Orifice Area Existing Soil N/A Min.Infiltration Rate 0.00 in/hr 1 Height of Riser weir= 1.00 ft 1 Vol.Lost to Infil. 0 cf/hr Stage Storage Function:S=3,525 a Z 1.15 Riser Secondary Primary Riser Primary Riser Riser/Drawdown Barrel Capacity Totatoutflow Inflow Volume in Storage Stage Orifice Capacity Capaei y Capacity Outlet Flow Infill Vol Out Velocity s(R of of ft Orifice Flow(cis] Weir Flow(cts) Orifice Flow fcf-' -.(cfs; (c/s) (cfa) allif 1 0.03 0,002 0,002 0.0012 #NUM! #NUM. #NUM 0.14 0.00 0.00 0.000 0,000 2 0.11 0,006 0,008 0.0050 #NUM! #NUM. #NUM 0.14 0.00 0.00 0.000 0,000 0.00 3 0.24 0,014 0,022 0.0122 #NUMI #NUM #NUM 0.14 0.00 0.00 0.000 0,000 0.00 4 0.42 0,025 0,047 0.0235 #NUMI #NUM #NUM 0.15 0.00 0.00 0.000 0,000 0.00 5 0.64 0,038 0,086 0.0394 #NUMI #NUM #NUM 0.16 0.00 0.00 0.000 0,000 0.00 6 0.91 0,054 0,140 0.0604 #NUMI #NUM #NUM 0.17 0.00 0.00 0.000 0,000 0.00 7 1.21 0,072 0,212 0.0868 0.00 #NUM #NUM 0.18 0.00 0.00 0.000 0,000 0.00 8 1.54 0,092 0,304 0.1188 0.00 #NUM #NUM 0.19 0.00 0.00 0.000 0,000 0.00 9 1.89 0,113 0,418 0.1565 0.00 #NUM #NUM 0.21 0.00 0.00 0.000 0,000 0.00 10 2.26 0,135 0,553 0.1998 0.00 #NUM #NUM 0.22 0.00 0.00 0.000 0,000 0.00 11 2.63 0,158 0,711 0.2486 0.00 #NUM #NUM 0.24 0.00 0.00 0.000 0,000 0.00 12 3.01 0,181 0,892 0.3027 0.00 #NUM #NUM 0.26 0.00 0.00 0.000 0,000 0.00 13 3.38 0,203 1,095 0.3618 0.00 #NUM #NUM 0.27 0.00 0.00 0.000 0,000 0.00 14 3.74 0,225 1,319 0.4255 0.00 #NUM #NUM 0.29 0.00 0.00 0.000 0,000 0.00 15 4.08 0,245 1,564 0.4934 0.00 #NUM #NUM 0.31 0.00 0.00 0.000 0,000 0.00 16 4.39 0,263 1,828 0.5649 0.00 #NUM #NUM 0.33 0.00 0.00 0.000 0,000 0.00 17 4.67 0,280 2,108 0.6394 0.00 #NUM #NUM 0.34 0.00 0.00 0.000 0,000 0.00 18 4.91 0,294 2,402 0.7164 0.00 #NUM #NUM 0.36 0.00 0.00 0.000 0,000 0.00 19 5.10 0,306 2,708 0.7951 0.00 #NUM #NUM 0.38 0.00 0.00 0.000 0,000 0.00 20 5.25 0,315 3,023 0.8749 0.00 #NUM #NUM 0.39 0.00 0.00 0.000 0,000 0.00 21 5.34 0,320 3,343 0.9550 0.00 #NUM #NUM 0.41 0.00 0.00 0.000 0,000 3.11 22 5.38 0,323 3,666 1.0347 0.00 0.15 4.41 0.42 0.15 0.15 0.000 0,009 8.90 23 5.37 0,322 3,979 1.1112 0.00 0.87 7.88 0.44 0.87 0.44 0.000 0,052 9.13 24 5.31 0,319 4,246 1.1756 0.00 1.73 9.90 0.45 1.73 0.45 0.000 0,104 9.30 25 5.20 0,312 4,453 1.2254 0.00 2.52 11.22 0.46 2.52 0.46 0.000 0,151 9.43 26 5.03 0,302 4,604 1.2614 0.00 3.15 12.08 0.46 3.15 0.46 0.000 0,189 9.51 27 4.82 0,289 4,704 1.2853 0.00 3.59 12.62 0.47 3.59 0.47 0.000 0,215 9.56 28 4.57 0,274 4,763 1.2993 0.00 3.86 12.93 0.47 3.86 0.47 0.000 0,231 9.58 29 4.32 0,259 4,791 1.3058 0.00 3.98 13.07 0.47 3.98 0.47 0.000 0,239 9.58 30 4.07 0,244 4,796 1.3070 0.00 4.01 13.10 0.47 4.01 0.47 0.000 0,240 9.57 31 3.84 0,230 4,786 1.3046 0.00 3.96 13.05 0.47 3.96 0.47 0.000 0,238 9.56 32 3.62 0,217 4,766 1.2998 0.00 3.87 12.94 0.47 3.87 0.47 0.000 0,232 9.54 33 3.42 0,205 4,739 1.2934 0.00 3.74 12.80 0.47 3.74 0.47 0.000 0,225 9.51 34 3.22 0,193 4,707 1.2860 0.00 3.60 12.64 0.47 3.60 0.47 0.000 0,216 9.48 35 3.04 0,183 4,674 1.2780 0.00 3.45 12.46 0.47 3.45 0.47 0.000 0,207 9.46 36 2.87 0,172 4,639 1.2697 0.00 3.30 12.27 0.46 3.30 0.46 0.000 0,198 9.43 37 2.71 0,162 4,603 1.2612 0.00 3.15 12.08 0.46 3.15 0.46 0.000 0,189 9.40 38 2.55 0,153 4,568 1.2527 4 0.00 2.99 11.88 0.46 2.99 0.46 0.000 0,180 9.37 39 2.41 0,145 4,533 1.2444 0.00 2.85 11.68 0.46 2.85 0.46 0.000 0,171 9.34 40 2.27 0,136 4,498 1.2362 0.00 2.70 11.49 0.46 2.70 0.46 0.000 0,162 9.31 41 2.14 0,129 4,465 1.2281 0.00 2.57 11.29 0.46 2.57 0.46 0.000 0,154 9.29 42 2.02 0,121 4,432 1.2203 0.00 2.44 11.09 0.46 2.44 0.46 0.000 0,146 9.26 43 1.91 0,115 4,400 1.2127 0.00 2.31 10.90 0.45 2.31 0.45 0.000 0,139 9.23 44 1.80 0,108 4,370 1.2054 0.00 2.19 10.71 0.45 2.19 0.45 0.000 0,132 9.21 45 1.70 0,102 4,340 1.1983 0.00 2.08 10.52 0.45 2.08 0.45 0.000 0,125 9.19 46 1.60 0,096 4,311 1.1914 0.00 1.97 10.34 0.45 1.97 0.45 0.000 0,118 9.16 47 1.51 0,091 4,284 1.1847 0.00 1.87 10.16 0.45 1.87 0.45 0.000 0,112 9.14 48 1.43 0,086 4,257 1.1783 0.00 1.77 9.98 0.45 1.77 0.45 0.000 0,106 9.12 49 1.35 0,081 4,231 1.1721 0.00 1.68 9.81 0.45 1.68 0.45 0.000 0,101 9.10 50 1.27 0,076 4,207 1.1662 0.00 1.60 9.63 0.45 1.60 0.45 0.000 0,096 9.08 51 1.20 0,072 4,183 1.1604 0.00 1.51 9.47 0.45 1.51 0.45 0.000 0,091 9.06 52 1.13 0,068 4,160 1.1548 0.00 1.44 9.30 0.44 1.44 0.44 0.000 0,086 9.04 53 1.07 0,064 4,137 1.1495 0.00 1.36 9.14 0.44 1.36 0.44 0.000 0,082 9.02 54 1.01 0,060 4,116 1.1443 0.00 1.29 8.98 0.44 1.29 0.44 0.000 0,078 9.00 55 0.95 0,057 4,096 1.1393 0.00 1.23 8.82 0.44 1.23 0.44 0.000 0,074 8.98 56 0.89 0,054 4,076 1.1345 0.00 1.16 8.67 0.44 1.16 0.44 0.000 0,070 8.97 57 0.84 0,051 4,057 1.1299 0.00 1.10 8.52 0.44 1.10 0.44 0.000 0,066 8.95 58 0.80 0,048 4,038 1.1255 0.00 1.05 8.37 0.44 1.05 0.44 0.000 0,063 8.94 59 0.75 0,045 4,020 1.1212 0.00 0.99 8.23 0.44 0.99 0.44 0.000 0,060 8.92 60 0.71 0,043 4,003 1.1170 0.00 0.94 8.08 0.44 0.94 0.44 0.000 0,057 8.91 61 0.67 0,040 3,987 1.1130 0.00 0.90 7.95 0.44 0.90 0.44 0.000 0,054 8.89 62 0.63 0,038 3,971 1.1092 0.00 0.85 7.81 0.44 0.85 0.44 0.000 0,051 8.88 63 0.60 0,036 3,956 1.1055 0.00 0.81 7.68 0.44 0.81 0.44 0.000 0,048 8.87 64 0.56 0,034 3,941 1.1019 0.00 0.77 7.54 0.44 0.77 0.44 0.000 0,046 8.85 65 0.53 0,032 3,927 1.0984 0.00 0.73 7.42 0.43 0.73 0.43 0.000 0,044 8.84 66 0.50 0,030 3,913 1.0951 0.00 0.69 7.29 0.43 0.69 0.43 0.000 0,041 8.83 67 0.47 0,028 3,900 1.0919 0.00 0.66 7.16 0.43 0.66 0.43 0.000 0,039 8.82 68 0.44 0,027 3,887 1.0888 0.00 0.62 7.04 0.43 0.62 0.43 0.000 0,037 8.81 69 0.42 0,025 3,875 1.0858 0.00 0.59 6.92 0.43 0.59 0.43 0.000 0,036 8.80 70 0.40 0,024 3,863 1.0829 0.00 0.56 6.81 0.43 0.56 0.43 0.000 0,034 8.79 71 0.37 0,022 3,852 1.0802 0.00 0.53 6.69 0.43 0.53 0.43 0.000 0,032 8.78 72 0.35 0,021 3,841 1.0775 0.00 0.51 6.58 0.43 0.51 0.43 0.000 0,031 8.77 73 0.33 0,020 3,830 1.0749 0.00 0.48 6.47 0.43 0.48 0.43 0.000 0,029 8.76 74 0.31 0,019 3,820 1.0724 0.00 0.46 6.36 0.43 0.46 0.43 0.000 0,028 8.75 75 0.30 0,018 3,810 1.0700 0.00 0.44 6.26 0.43 0.44 0.43 0.000 0,026 8.46 76 0.28 0,017 3,801 1.0677 1 0.00 0.42 6.15 0.43 0.42 0.42 0.000 0,025 8.05 77 0.26 0,016 3,792 1.0655 0.00 0.40 6.05 0.43 0.40 0.40 0.000 0,024 7.65 78 0.25 0,015 3,783 1.0634 0.00 0.38 5.95 0.43 0.38 0.38 0.000 0,023 7.28 79 0.23 0,014 3,775 1.0613 0.00 0.36 5.85 0.43 0.36 0.36 0.000 0,021 6.93 80 0.22 0,013 3,766 1.0593 0.00 0.34 5.75 0.43 0.34 0.34 0.000 0,020 6.59 81 0.21 0,013 3,758 1.0574 0.00 0.32 5.66 0.43 0.32 0.32 0.000 0,019 6.27 82 0.20 0,012 3,751 1.0555 0.00 0.31 5.57 0.43 0.31 0.31 0.000 0,018 5.97 83 0.19 0,011 3,744 1.0537 0.00 0.29 5.48 0.43 0.29 0.29 0.000 0,018 5.68 84 0.18 0,011 3,736 1.0520 0.00 0.28 5.39 0.43 0.28 0.28 0.000 0,017 5.41 10-YEAR HYDROGRAPH ROUTING 1 Of O O IQ 0 T O O O O 11 O O O co O O O O w 7 0 2 C a a 0 Ca CL 00 a) (-9 0 0 cn • o w o a_2 0 .c co L O I o 0 I— E o Z I i= & 0_ w I 12 w I — 0 0 ClI I . o0 Q I 00 > I O a N 0 II I c) 1 • ` O O • O S N 0 O 0 O I I I ' 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 CO L(i 4 cri CV T 0 (ii) e6e4S `(sjo)mold FORMULATING PRE-POST DEVELOPMENT HYDROGRAPHS Utilize small watershed method&center-weighted storm(Malcom) Return Period 50 year I= 9.350 in/hr 50 year,Tc Intensity Cpre 0.10 (Composite Rational C, See Drainage Area/Computations Map) Cpost 0.81 (Composite Rational C, See Drainage Area/Computations Map) A= 0.76 acre A= 33,106 sf Rainfall 5.25 in (50 year,6 hour storm) Qpre= 0.71 cfs PRE CN 490 S= 10.41 Q*= 0.74 in Qpost= 5.76 cfs POST CN 91 S= 0.9 Q*= 4.23 in Vol -Pre 2,040 cf 0.2*S: 2.0816327 Vol -Post 11,656 cf (If rainfall is less than 20%S, Q*=0) Tpre 34 min Tpost 24 min Time Step 1 min Time Q-pre Q-post min cfs cfs 0 0.00 0.00 1 0.00 0.02 2 0.01 0.10 3 0.01 0.21 4 0.02 0.38 5 0.04 0.58 6 0.05 0.82 7 0.07 1.10 8 0.09 1.41 9 0.11 1.74 10 0.14 2.09 11 0.16 2.45 12 0.19 2.83 13 0.22 3.20 14 0.25 3.56 15 0.28 3.92 16 0.32 4.26 17 0.35 4.57 18 0.38 4.86 19 0.41 5.11 20 0.44 5.33 21 0.48 5.50 22 0.51 5.63 23 0.53 5.72 24 0.56 5.75 25 0.59 5.74 26 0.61 5.69 27 0.63 5.58 28 0.65 5.43 29 0.67 5.24 30 0.68 5.00 31 0.69 4.75 32 0.70 4.50 33 0.71 4.27 34 0.71 4.05 35 0.71 3.84 36 0.71 3.64 37 0.70 3.45 38 0.69 3.27 39 0.68 3.10 40 0.67 2.93 41 0.65 2.78 42 0.63 2.64 43 0.61 2.50 44 0.59 2.37 10-YEAR INFLOW 1 of 3 HYDROGRAPH ROUTING THROUGH WET POND 50-YEAR STORM Extrapolated Kp FORMULAS FROM EC MANUAL 8.07.5 Manning Coefficient Pipe Diam. Flow Area 0.015 0.025 Type Structure: Riser with Circular Drawdown Outlet and Barrel 2 0.0218 0.4542 1.2617 Orifice Equation:Q.C0A(2gh)°'s 3 0.0491 0.2645 0.7348 Pipe Flow Formula:Cl.a[2gh I 1+Km+KpL]°s 4 0.0872 0.1803 0.5007 Weir Flow Formula:Q=CLH''S 6 0.1963 0.1050 0.2916 Co(Orifice): 0.60 8 0.3489 0.0715 0.1987 Height Change,Weir to 2.00 ft Km 1.0 Standard 0.5451 Orifice Flaw 10 0.0531 0.1476 C„„, 3.00 Kp 0.7328 (Table 8.07a) 12 0.7850 0.0417 0.1157 Primary Riser Diam 30.0 in. Length of Barre 20 ft 14 1.0685 0.0339 0.0942 Circum.of Riser 7.85 ft Barrel Diam. 3 in 15 1.2266 0.0309 0.0859 Area of Riser 4.91 5° Barrel Area: 0.05 5° 2.5 0.0341 0.3373 0.9370 Riser Drawdown Outlet 2 in NOTE: Heights measured from normal pool elevation Orifice Diam. Number of Orifices 0 Riser Drawdown Outlet 0.00 0° Normal Pool Height= 0.00 ft Orifice Area Existing Soil N/A Min.Infiltration Rate 0.00 in/hr 1 Height of Riser Weir 1.00 ft 1 Vol.Lost to loll. 0 cf/hr Stage Storage Function:S=3,525 a Z 1.15 Riser Secondary Primary Riser Primary Ricer Riaer/fogs) wn Barrel Capacity Total Outflow Mk Inflow Volume in Storage Stage Orifice Capacity Gaped y Capaelry Outlet Flow Infill Vol Out Velocity or of of # Orifice Flow(cfs) Weir Flow(cfs) Orifice Flow fcf-' ---(cfs; (c/s) (c/a) - 1 0.02 0,001 0,001 0.0011 #NUM. #NUM. #NUM 0.14 0.00 0.00 0.000 0,000 2 0.10 0,006 0,007 0.0046 #NUM. #NUM. #NUM 0.14 0.00 0.00 0.000 0,000 0.00 3 0.21 0,013 0,020 0.0112 #NUM #NUM #NUM 0.14 0.00 0.00 0.000 0,000 0.00 4 0.38 0,023 0,043 0.0215 #NUM #NUM #NUM 0.15 0.00 0.00 0.000 0,000 0.00 5 0.58 0,035 0,078 0.0362 #NUM #NUM #NUM 0.15 0.00 0.00 0.000 0,000 0.00 6 0.82 0,049 0,127 0.0556 #NUM #NUM #NUM 0.16 0.00 0.00 0.000 0,000 0.00 7 1.10 0,066 0,193 0.0800 #NUM #NUM #NUM 0.18 0.00 0.00 0.000 0,000 0.00 8 1.41 0,085 0,278 0.1097 0.00 #NUM #NUM 0.19 0.00 0.00 0.000 0,000 0.00 9 1.74 0,104 0,382 0.1448 0.00 #NUM #NUM 0.20 0.00 0.00 0.000 0,000 0.00 10 2.09 0,125 0,508 0.1854 0.00 #NUM #NUM 0.22 0.00 0.00 0.000 0,000 0.00 11 2.45 0,147 0,655 0.2314 0.00 #NUM #NUM 0.23 0.00 0.00 0.000 0,000 0.00 12 2.83 0,170 0,824 0.2827 0.00 #NUM #NUM 0.25 0.00 0.00 0.000 0,000 0.00 13 3.20 0,192 1,016 0.3390 0.00 #NUM #NUM 0.27 0.00 0.00 0.000 0,000 0.00 14 3.56 0,214 1,230 0.4003 I 0.00 #NUM #NUM 0.28 0.00 0.00 0.000 0,000 0.00 15 3.92 0,235 1,465 0.4661 0.00 #NUM #NUM 0.30 0.00 0.00 0.000 0,000 0.00 16 4.26 0,255 1,720 0.5359 0.00 #NUM #NUM 0.32 0.00 0.00 0.000 0,000 0.00 17 4.57 0,274 1,995 0.6095 0.00 #NUM #NUM 0.34 0.00 0.00 0.000 0,000 0.00 18 4.86 0,291 2,286 0.6862 0.00 #NUM #NUM 0.35 0.00 0.00 0.000 0,000 0.00 19 5.11 0,307 2,593 0.7656 0.00 #NUM #NUM 0.37 0.00 0.00 0.000 0,000 0.00 20 5.33 0,320 2,912 0.8470 0.00 #NUM #NUM 0.39 0.00 0.00 0.000 0,000 0.00 21 5.50 0,330 3,242 0.9298 0.00 #NUM #NUM 0.40 0.00 0.00 0.000 0,000 0.76 22 5.63 0,338 3,580 1.0136 0.00 0.04 2.75 0.42 0.04 0.04 0.000 0,002 8.85 23 5.72 0,343 3,921 1.0969 0.00 0.71 7.36 0.43 0.71 0.43 0.000 0,043 9.11 24 5.75 0,345 4,223 1.1702 0.00 1.65 9.75 0.45 1.65 0.45 0.000 0,099 9.31 25 5.74 0,345 4,469 1.2291 0.00 2.58 11.31 0.46 2.58 0.46 0.000 0,155 9.47 26 5.69 0,341 4,655 1.2735 0.00 3.37 12.36 0.46 3.37 0.46 0.000 0,202 9.57 27 5.58 0,335 4,787 1.3050 0.00 3.97 13.05 0.47 3.97 0.47 0.000 0,238 9.64 28 5.43 0,326 4,875 1.3257 0.00 4.38 13.49 0.47 4.38 0.47 0.000 0,263 9.68 29 5.24 0,314 4,926 1.3379 0.00 4.63 13.74 0.48 4.63 0.48 0.000 0,278 9.70 30 5.00 0,300 4,949 1.3432 0.00 4.74 13.85 0.48 4.74 0.48 0.000 0,284 9.70 31 4.75 0,285 4,950 1.3434 0.00 4.74 13.85 0.48 4.74 0.48 0.000 0,284 9.69 32 4.50 0,270 4,936 1.3400 0.00 4.67 13.78 0.48 4.67 0.48 0.000 0,280 9.67 33 4.27 0,256 4,911 1.3343 0.00 4.55 13.67 0.47 4.55 0.47 0.000 0,273 9.65 34 4.05 0,243 4,881 1.3271 0.00 4.41 13.52 0.47 4.41 0.47 0.000 0,264 9.62 35 3.84 0,230 4,847 1.3190 0.00 4.24 13.35 0.47 4.24 0.47 0.000 0,255 9.59 36 3.64 0,218 4,810 1.3103 0.00 4.07 13.17 0.47 4.07 0.47 0.000 0,244 9.56 37 3.45 0,207 4,772 1.3014 0.00 3.90 12.98 0.47 3.90 0.47 0.000 0,234 9.53 38 3.27 0,196 4,734 1.2924 0.00 3.73 12.78 0.47 3.73 0.47 0.000 0,224 9.50 39 3.10 0,186 4,697 1.2834 0.00 3.56 12.58 0.47 3.56 0.47 0.000 0,213 9.47 40 2.93 0,176 4,659 1.2746 0.00 3.39 12.38 0.46 3.39 0.46 0.000 0,203 9.44 41 2.78 0,167 4,623 1.2659 0.00 3.23 12.19 0.46 3.23 0.46 0.000 0,194 9.41 42 2.64 0,158 4,587 1.2574 0.00 3.08 11.99 0.46 3.08 0.46 0.000 0,185 9.38 43 2.50 0,150 4,553 1.2491 0.00 2.93 11.80 0.46 2.93 0.46 0.000 0,176 9.36 44 2.37 0,142 4,519 1.2411 0.00 2.79 11.61 0.46 2.79 0.46 0.000 0,167 9.33 45 2.25 0,135 4,486 1.2333 0.00 2.66 11.42 0.46 2.66 0.46 0.000 0,159 9.30 46 2.13 0,128 4,455 1.2257 4 0.00 2.53 11.23 0.46 2.53 0.46 0.000 0,152 9.28 47 2.02 0,121 4,424 1.2184 0.00 2.41 11.05 0.46 2.41 0.46 0.000 0,144 9.25 48 1.91 0,115 4,395 1.2113 0.00 2.29 10.87 0.45 2.29 0.45 0.000 0,137 9.23 49 1.81 0,109 4,366 1.2045 0.00 2.18 10.69 0.45 2.18 0.45 0.000 0,131 9.21 50 1.72 0,103 4,338 1.1978 0.00 2.07 10.51 0.45 2.07 0.45 0.000 0,124 9.18 51 1.63 0,098 4,312 1.1914 0.00 1.97 10.34 0.45 1.97 0.45 0.000 0,118 9.16 52 1.54 0,093 4,286 1.1852 0.00 1.88 10.17 0.45 1.88 0.45 0.000 0,113 9.14 53 1.46 0,088 4,261 1.1792 0.00 1.79 10.01 0.45 1.79 0.45 0.000 0,107 9.12 54 1.39 0,083 4,237 1.1734 0.00 1.70 9.84 0.45 1.70 0.45 0.000 0,102 9.10 55 1.31 0,079 4,214 1.1678 0.00 1.62 9.68 0.45 1.62 0.45 0.000 0,097 9.08 56 1.25 0,075 4,191 1.1624 0.00 1.54 9.53 0.45 1.54 0.45 0.000 0,093 9.06 57 1.18 0,071 4,169 1.1572 0.00 1.47 9.37 0.44 1.47 0.44 0.000 0,088 9.04 58 1.12 0,067 4,149 1.1521 0.00 1.40 9.22 0.44 1.40 0.44 0.000 0,084 9.03 59 1.06 0,064 4,128 1.1473 0.00 1.33 9.07 0.44 1.33 0.44 0.000 0,080 9.01 60 1.01 0,060 4,109 1.1425 0.00 1.27 8.92 0.44 1.27 0.44 0.000 0,076 8.99 61 0.95 0,057 4,090 1.1380 0.00 1.21 8.78 0.44 1.21 0.44 0.000 0,072 8.98 62 0.90 0,054 4,072 1.1336 0.00 1.15 8.64 0.44 1.15 0.44 0.000 0,069 8.96 63 0.86 0,051 4,054 1.1293 0.00 1.10 8.50 0.44 1.10 0.44 0.000 0,066 8.95 64 0.81 0,049 4,037 1.1252 0.00 1.04 8.36 0.44 1.04 0.44 0.000 0,063 8.93 65 0.77 0,046 4,021 1.1212 0.00 0.99 8.23 0.44 0.99 0.44 0.000 0,060 8.92 66 0.73 0,044 4,005 1.1173 0.00 0.95 8.10 0.44 0.95 0.44 0.000 0,057 8.91 67 0.69 0,041 3,989 1.1136 0.00 0.90 7.97 0.44 0.90 0.44 0.000 0,054 8.89 68 0.66 0,039 3,975 1.1100 1 0.00 0.86 7.84 0.44 0.86 0.44 0.000 0,052 8.88 69 0.62 0,037 3,960 1.1065 0.00 0.82 7.71 0.44 0.82 0.44 0.000 0,049 8.87 70 0.59 0,035 3,946 1.1032 0.00 0.78 7.59 0.44 0.78 0.44 0.000 0,047 8.86 71 0.56 0,033 3,933 1.0999 0.00 0.74 7.47 0.43 0.74 0.43 0.000 0,045 8.85 72 0.53 0,032 3,920 1.0968 0.00 0.71 7.35 0.43 0.71 0.43 0.000 0,043 8.83 73 0.50 0,030 3,908 1.0938 0.00 0.68 7.24 0.43 0.68 0.43 0.000 0,041 8.82 74 0.48 0,029 3,896 1.0908 0.00 0.64 7.12 0.43 0.64 0.43 0.000 0,039 8.81 75 0.45 0,027 3,884 1.0880 0.00 0.61 7.01 0.43 0.61 0.43 0.000 0,037 8.80 76 0.43 0,026 3,873 1.0852 0.00 0.59 6.90 0.43 0.59 0.43 0.000 0,035 8.79 77 0.40 0,024 3,862 1.0826 0.00 0.56 6.79 0.43 0.56 0.43 0.000 0,034 8.78 78 0.38 0,023 3,851 1.0800 0.00 0.53 6.69 0.43 0.53 0.43 0.000 0,032 8.77 79 0.36 0,022 3,841 1.0775 0.00 0.51 6.58 0.43 0.51 0.43 0.000 0,031 8.77 80 0.34 0,021 3,831 1.0751 0.00 0.49 6.48 0.43 0.49 0.43 0.000 0,029 8.76 81 0.33 0,020 3,822 1.0728 0.00 0.46 6.38 0.43 0.46 0.43 0.000 0,028 8.75 82 0.31 0,019 3,813 1.0706 0.00 0.44 6.28 0.43 0.44 0.43 0.000 0,027 8.59 83 0.29 0,018 3,804 1.0684 0.00 0.42 6.18 0.43 0.42 0.42 0.000 0,025 8.19 84 0.28 0,017 3,795 1.0663 0.00 0.40 6.09 0.43 0.40 0.40 0.000 0,024 7.82 10-YEAR HYDROGRAPH ROUTING 1 Of 0 O 0 O O O 0 rn O O I 0 0 I I O 0 0N- o _ O a s Ce 0 4) 000 0) ! IP 0 I N I 1 2 I o c _c Q I o c Z 0 O ' E I E � o Z 0 w I > W I 0 0 0 I a � < 1 w a I 1' o 0 0 in II I co I I I 0 O O I N Ilit I ♦ ♦ O ♦♦` 1 O • I I I I T I I P O O O O O O O O O O O O O O O 6 6 4 cO N O (U) e6e1S `(SJO) MOI J FORMULATING PRE-POST DEVELOPMENT HYDROGRAPHS Utilize small watershed method&center-weighted storm(Malcom) Return Period 100 year I= 9.910 in/hr 100 year,Tc Intensity Cpre 0.10 (Composite Rational C, See Drainage Area/Computations Map) Cpost 0.81 (Composite Rational C, See Drainage Area/Computations Map) A= 0.76 acre A= 33,106 sf Rainfall 5.88 in (100 year,6 hour storm) Qpre= 0.75 cfs PRE CN 490 S= 10.41 Q*= 1.02 in Qpost= 6.10 cfs POST CN 91 S= 0.9 Q*= 4.84 in Vol -Pre 2,802 cf 0.2*S: 2.0816327 Vol -Post 13,352 cf (If rainfall is less than 20%S, Q*=0) Tpre 45 min Tpost 26 min Time Step 1 min Time Q-pre Q-post min cfs cfs 0 0.00 0.00 1 0.00 0.02 2 0.00 0.09 3 0.01 0.19 4 0.01 0.34 5 0.02 0.53 6 0.03 0.75 7 0.04 1.01 8 0.06 1.30 9 0.07 1.61 10 0.09 1.94 11 0.11 2.28 12 0.13 2.64 13 0.15 3.01 14 0.17 3.37 15 0.19 3.73 16 0.21 4.08 17 0.24 4.42 18 0.26 4.73 19 0.29 5.02 20 0.32 5.29 21 0.34 5.52 22 0.37 5.72 23 0.40 5.87 24 0.42 5.99 25 0.45 6.07 26 0.47 6.10 27 0.50 6.09 28 0.52 6.03 29 0.55 5.94 30 0.57 5.80 31 0.59 5.62 32 0.61 5.40 33 0.63 5.16 34 0.65 4.91 35 0.67 4.68 36 0.69 4.45 37 0.70 4.23 38 0.71 4.03 39 0.72 3.84 40 0.73 3.65 41 0.74 3.47 42 0.75 3.31 43 0.75 3.15 44 0.75 2.99 10-YEAR INFLOW 1 of 3 HYDROGRAPH ROUTING THROUGH WET POND 100-YEAR STORM Extrapolated Kp FORMULAS FROM EC MANUAL 8.07.5 Manning Coefficient Pipe Diam. Flow Area 0.015 0.025 Type Structure: Riser with Circular Drawdown Outlet and Barrel 2 0.0218 0.4542 1.2617 Orifice Equation:Q.CDA(2gh)°'s 3 0.0491 0.2645 0.7348 Pipe Flow Formula:Cl.a[2gh I 1+Km+KpL]°s 4 0.0872 0.1803 0.5007 Weir Flow Formula:Q=CLH''S 6 0.1963 0.1050 0.2916 Co(Orifice): 0.60 8 0.3489 0.0715 0.1987 Height Change,Weir to 2.00 ft Km 1.0 Standard 0.5451 Orifice Flaw 10 0.0531 0.1476 C„„, 3.00 Kp 0.7348 (Table 8.07a) 12 0.7850 0.0417 0.1157 Primary Riser Diam 30.0 in. Length of Barre 20 ft 14 1.0685 0.0339 0.0942 Circum.of Riser 7.85 ft Barrel Diam. 3 in 15 1.2266 0.0309 0.0859 Area of Riser 4.91 ft2 Barrel Area: 0.05 ft2 2.5 0.0341 0.3373 0.9370 Riser Drawdown Outlet 2 in NOTE: Heights measured from normal pool elevation Orifice Diam. Number of Orifices 0 Riser Drawdown Outlet 0.00 ft0 Norval Pool Height= 0.00 h Orifice Area Existing Soil N/A Min.Infiltration Rate 0.00 in/hr I Height of Riser Weir 1.00 ft 1 Vol.Lost to Infil. 0 cf/hr Stage Storage Function:S=3,525 a Z 1.15 Riser Secondary Primary Riser Primary Riser Riser/Drawdown Barrel Capacity Total Outflow Inflow Volume in Storage Stage Orifice Capacity Capaei y Capacity Outlet Flow Infill Vol Out Velocity of of ft Orifice Flow(ors) Weir Flow(cfs) Orifice Flow fcf-' ---(cfs; (c/s) (cfa) allif 1 0.02 0,001 0,001 0.0010 #NUM. #NUM. #NUM 0.14 0,00 0.00 0.000 0,000 2 0.09 0,005 0,007 0.0042 #NUM. #NUM. #NUM 0.14 0.00 0.00 0.000 0,000 0.00 3 0.19 0,012 0,018 0.0103 #NUM #NUM #NUM 0.14 0.00 0.00 0.000 0,000 0.00 4 0.34 0,021 0,039 0.0198 #NUM #NUM #NUM 0.15 0.00 0.00 0.000 0,000 0.00 5 0.53 0,032 0,071 0.0334 #NUM #NUM #NUM 0.15 0.00 0.00 0.000 0,000 0.00 6 0.75 0,045 0,116 0.0513 #NUM #NUM #NUM 0.16 0.00 0.00 0.000 0,000 0.00 7 1.01 0,061 0,176 0.0740 #NUM #NUM #NUM 0.17 0.00 0.00 0.000 0,000 0.00 8 1.30 0,078 0,254 0.1016 0.00 #NUM #NUM 0.18 0.00 0.00 0.000 0,000 0.00 9 1.61 0,096 0,350 0.1344 I 0.00 #NUM #NUM 0.20 0.00 0.00 0.000 0,000 0.00 10 1.94 0,116 0,467 0.1723 0.00 #NUM #NUM 0.21 0.00 0.00 0.000 0,000 0.00 11 2.28 0,137 0,604 0.2156 0.00 #NUM #NUM 0.23 0.00 0.00 0.000 0,000 0.00 12 2.64 0,159 0,762 0.2640 0.00 #NUM #NUM 0.24 0.00 0.00 0.000 0,000 0.00 13 3.01 0,180 0,943 0.3176 0.00 #NUM #NUM 0.26 0.00 0.00 0.000 0,000 0.00 14 3.37 0,202 1,145 0.3761 0.00 #NUM #NUM 0.28 0.00 0.00 0.000 0,000 0.00 15 3.73 0,224 1,369 0.4393 0.00 #NUM #NUM 0.29 0.00 0.00 0.000 0,000 0.00 16 4.08 0,245 1,613 0.5088 0.00 #NUM #NUM 0.31 0.00 0.00 0.000 0,000 0.00 17 4.42 0,265 1,878 0.5785 0.00 #NUM #NUM 0.33 0.00 0.00 0.000 0,000 0.00 18 4.73 0,284 2,162 0.6538 0.00 #NUM #NUM 0.35 0.00 0.00 0.000 0,000 0.00 19 5.02 0,301 2,464 0.7324 0.00 #NUM #NUM 0.36 0.00 0.00 0.000 0,000 0.00 20 5.29 0,317 2,781 0.8137 9 0.00 #NUM #NUM 0.38 0.00 0.00 0.000 0,000 0.00 21 5.52 0,331 3,112 0.8974 0.00 #NUM #NUM 0.40 0.00 0.00 0.000 0,000 0.00 22 5.72 0,343 3,455 0.9828 0.00 #NUM #NUM 0.41 0.00 0.00 0.000 0,000 8.75 23 5.87 0,352 3,808 1.0694 0.00 0.43 6.22 0.43 0.43 0.43 0.000 0,026 9.04 24 5.99 0,359 4,141 1.1504 0.00 1.37 9.17 0.44 1.37 0.44 0.000 0,082 9.28 25 6.07 0,364 4,423 1.2181 q 0.00 2.40 11.04 0.46 2.40 0.46 0.000 0,144 9.46 26 6.10 0,366 4,645 1.2711 0.00 3.33 12.31 0.46 3.33 0.46 0.000 0,200 9.59 27 6.09 0,365 4,811 1.3104 0.00 4.08 13.17 0.47 4.08 0.47 0.000 0,245 9.69 28 6.03 0,362 4,928 1.3382 0.00 4.63 13.75 0.48 4.63 0.48 0.000 0,278 9.75 29 5.94 0,356 5,008 1.3566 0.00 5.02 14.12 0.48 5.02 0.48 0.000 0,301 9.78 30 5.80 0,348 5,053 1.3676 0.00 5.25 14.33 0.48 5.25 0.48 0.000 0,315 9.80 31 5.62 0,337 5,075 1.3728 0.00 5.36 14.43 0.48 5.36 0.48 0.000 0,322 9.80 32 5.40 0,324 5,077 1.3734 0.00 5.38 14.44 0.48 5.38 0.48 0.000 0,323 9.79 33 5.16 0,310 5,064 1.3704 0.00 5.31 14.38 0.48 5.31 0.48 0.000 0,319 9.77 34 4.91 0,295 5,041 1.3648 0.00 5.19 14.27 0.48 5.19 0.48 0.000 0,311 9.75 35 4.68 0,281 5,010 1.3575 0.00 5.04 14.13 0.48 5.04 0.48 0.000 0,302 9.72 36 4.45 0,267 4,974 1.3492 0.00 4.86 13.97 0.48 4.86 0.48 0.000 0,292 9.69 37 4.23 0,254 4,937 1.3403 0.00 4.68 13.79 0.48 4.68 0.48 0.000 0,281 9.66 38 4.03 0,242 4,898 1.3311 0.00 4.49 13.60 0.47 4.49 0.47 0.000 0,269 9.63 39 3.84 0,230 4,859 1.3219 0.00 4.30 13.41 0.47 4.30 0.47 0.000 0,258 9.60 40 3.65 0,219 4,820 1.3126 0.00 4.12 13.21 0.47 4.12 0.47 0.000 0,247 9.57 41 3.47 0,208 4,781 1.3034 0.00 3.94 13.02 0.47 3.94 0.47 0.000 0,236 9.54 42 3.31 0,198 4,743 1.2944 0.00 3.76 12.83 0.47 3.76 0.47 0.000 0,226 9.51 43 3.15 0,189 4,708 1.2856 0.00 3.60 12.63 0.47 3.60 0.47 0.000 0,216 9.48 44 2.99 0,180 4,670 1.2770 0.00 3.44 12.44 0.47 3.44 0.47 0.000 0,206 9.45 45 2.85 0,171 4,635 1.2687 0.00 3.28 12.25 0.46 3.28 0.46 0.000 0,197 9.42 46 2.71 0,163 4,600 1.2605 0.00 3.13 12.06 0.46 3.13 0.46 0.000 0,188 9.40 47 2.58 0,155 4,567 1.2526 0.00 2.99 11.88 0.46 2.99 0.46 0.000 0,180 9.37 48 2.46 0,147 4,535 1.2449 0.00 2.86 11.70 0.46 2.86 0.46 0.000 0,171 9.35 49 2.34 0,140 4,504 1.2375 0.00 2.73 11.52 0.46 2.73 0.46 0.000 0,164 9.32 50 2.22 0,133 4,474 1.2303 0.00 2.60 11.34 0.46 2.60 0.46 0.000 0,156 9.30 51 2.12 0,127 4,444 1.2233 0.00 2.49 11.17 0.46 2.49 0.46 0.000 0,149 9.27 52 2.01 0,121 4,416 1.2165 1 0.00 2.37 11.00 0.46 2.37 0.46 0.000 0,142 9.25 53 1.92 0,115 4,389 1.2100 0.00 2.27 10.83 0.45 2.27 0.45 0.000 0,136 9.23 54 1.82 0,109 4,362 1.2036 0.00 2.16 10.66 0.45 2.16 0.45 0.000 0,130 9.21 55 1.74 0,104 4,337 1.1974 0.00 2.07 10.50 0.45 2.07 0.45 0.000 0,124 9.19 56 1.65 0,099 4,312 1.1914 0.00 1.97 10.34 0.45 1.97 0.45 0.000 0,118 9.17 57 1.57 0,094 4,288 1.1857 0.00 1.88 10.18 0.45 1.88 0.45 0.000 0,113 9.15 58 1.50 0,090 4,264 1.1801 0.00 1.80 10.03 0.45 1.80 0.45 0.000 0,108 9.13 59 1.42 0,085 4,242 1.1746 0.00 1.72 9.88 0.45 1.72 0.45 0.000 0,103 9.11 60 1.36 0,081 4,220 1.1694 0.00 1.64 973 0.45 1.64 0.45 0.000 0,099 9.09 61 1.29 0,077 4,199 1.1643 0.00 1.57 9,58 0.45 1.57 0.45 0.000 0,094 9.07 62 1.23 0,074 4,178 1.1593 0.00 1.50 9,43 0.45 1.50 0.45 0.000 0,090 9.06 63 1.17 0,070 4,158 1.1545 0.00 1.43 9.29 0.44 1.43 0.44 0.000 0,086 9.04 64 1.11 0,067 4,139 1.1499 0.00 1.37 9.15 0.44 1.37 0.44 0.000 0,082 9.02 65 1.06 0,063 4,121 1.1454 0.00 1.31 9.01 0.44 1.31 0.44 0.000 0,078 9.01 66 1.01 0,060 4,103 1.1411 0.00 1.25 8.88 0.44 1.25 0.44 0.000 0,075 8.99 67 0.96 0,057 4,085 1.1369 0.00 1.19 8.74 0.44 1.19 0.44 0.000 0,072 8.98 68 0.91 0,055 4,068 1.1328 0.00 1.14 8.61 0.44 1.14 0.44 0.000 0,068 8.96 69 0.87 0,052 4,052 1.1288 0.00 1.09 8.48 0.44 1.09 0.44 0.000 0,065 8.95 70 0.83 0,050 4,036 1.1250 0.00 1.04 8.36 0.44 1.04 0.44 0.000 0,062 8.94 71 0.79 0,047 4,021 1.1213 0.00 1.00 8.23 0.44 1.00 0.44 0.000 0,060 8.92 72 0.75 0,045 4,006 1.1177 0.00 0.95 8.11 0.44 0.95 0.44 0.000 0,057 8.91 73 0.71 0,043 3,992 1.1142 0.00 0.91 7.99 0.44 0.91 0.44 0.000 0,055 8.90 74 0.68 0,041 3,978 1.1108 0.00 0.87 7.87 0.44 0.87 0.44 0.000 0,052 8.89 75 0.64 0,039 3,964 1.1075 0.00 0.83 7.75 0.44 0.83 0.44 0.000 0,050 8.88 76 0.61 0,037 3,951 1.1044 0.00 0.79 7.64 0.44 0.79 0.44 0.000 0,048 8.86 77 0.58 0,035 3,939 1.1013 0.00 0.76 7.52 0.44 0.76 0.44 0.000 0,046 8.85 78 0.56 0,033 3,926 1.0983 0.00 0.73 7.41 0.43 0.73 0.43 0.000 0,044 8.84 79 0.53 0,032 3,915 1.0954 0.00 0.69 7.30 0.43 0.69 0.43 0.000 0,042 8.83 80 0.50 0,030 3,903 1.0926 0.00 0.66 7.19 0.43 0.66 0.43 0.000 0,040 8.82 81 0.48 0,029 3,892 1.0899 0.00 0.64 7.09 0.43 0.64 0.43 0.000 0,038 8.81 82 0.46 0,027 3,881 1.0873 0.00 0.61 6.98 0.43 0.61 0.43 0.000 0,036 8.80 83 0.43 0,026 3,871 1.0848 0.00 0.58 6.88 0.43 0.58 0.43 0.000 0,035 8.79 84 0.41 0,025 3,861 1.0823 0.00 0.56 6.78 0.43 0.56 0.43 0.000 0,033 8.79 10-YEAR HYDROGRAPH ROUTING 1 Of O O - O O T O O O O) O O • co O O 0 0 I 0 a a ° CL o aa) C9 1 - • �° 0 1 I • 0 I 1 >- I 2 I 1 I O a_Zo co p I o E 0 1 a) 0 w I I-: c� a) 112 w I °o o a_1 0 o 0 a > < I 0 0 > IIll = a I 0 I O II r I M • • O ` O • N • • • ` O O O O I I 1 P O O O O O O O O O O O O O O O O O f: CO iri 4 M N T O (ii) a6e4S `(sjo)mold d v 2 c c as Cr o § fl § up < c E 0 a) 2 \ - 0 % p - C 2 § \ > 2 4.4 o \ C ® � c \ g ] & ra m e c c / � � - 0 2 2 -0 ^ / 2 (5 / kk ,_ a \ E § \ / 2 - m g g 2 111 k y - / ; \ IA VI U u q- " 0 \U § - k 2 VI x al \ \ / / • % % 2 j k ® CD b q u » = d o w m a m o - Q . j q g 6 \ U [ 0_ e U = < d i i i , i i § E ° / ) / (5 C k k C ® § ,_ § 0 ( cc k 0. 0 0- ru » -0 a) Q = 7 c o c e ) a g D 2 0 \ ƒ ƒ \ < E m { u 0 u / 2 / 0 2 0 a) / / ) \ 3 2 0 in 5 I- 0 0 ° Q d 0v / \ § ) 7 ° B \ < c v .. c P o § 3 c { o I ¥ _ \ et e 0 o o§ LLI $ § #) q 0 0 L § d CI m tt / « Selection of Sediment Control Measure 0.76 Total Drainage Area User entry Okay Temporary Sediment Trap Calculated Value Okay Skimmer Sediment Basin Okay Sediment Basin 0.76 Disturbed Area (Acres) 4.86 Peak Flow from 10-year Storm (cfs) df Temporary Sediment Trap Okay 0.76 Disturbed Area (Acres) 4.86 Peak Flow from 10-year Storm (cfs) 2736 Required Volume ft3 2117 Required Surface Area ft2 32.5 Suggested Width ft 65.1 Suggested Length ft 33 Trial Top Width at Spillway Invert ft 66 Trial Top Length at Spillway Invert ft 3 Trial Side Slope Ratio Z:1 3.5 Trial Depth ft (1.5 feet below grade + 2 to 3.5 feet above grade) 12 Bottom Width ft 45 Bottom Length ft 540 Bottom Area ft2 4499 Actual Volume ft3 Okay 2178 Actual Surface Area ft2 Okay 5 Trial Weir Length ft 0.5 Trial Depth of Flow ft 5.3 Spillway Capacity cfs Okay DESIGN OF RIPRAP OUTLET PROTECTION User Input Data Calculated Value Reference Data Designed By: JEH 1/9/2023 Checked By: JEH 1/9/2023 Company: Hilliard Engineering, PLLC Project Name: Phalanx Crossfit Project No.: HC2217 Site Location (City/Town) Spout Springs Id. sed trap outlet Total Drainage Area (acres) 0.76 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter. it is classified muumtuu tailwater condition. If it is greater than half the pipe diameter. it is classified maximum condition. Pipes that outlet onto wide fiat areas with no defined channel are assumed to have a mourn unn tailwater condition unless reliable flood stage elevations ,how otherwise. Equivalent Outlet diam., Do (in.) 21 Tailwater depth (in.) 0.5 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 4.86 Velocity (ft./s) 1.94 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b.and determine d5,,riprap size and minimum apron length (L). The d,c size is the median stone size in a well-graded riprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.) 0.4 Minimum apron length, La (ft.) 10 Apron width at pipe outlet (ft.) 5.25 5.25 Apron shape Trapezoidal Trapezoidal Apron width at outlet end (ft.) 11.75 1.75 Step 4. Determine the maximum stone diameter: dmax = '1.5xd50 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.6 0 Step 5. Determine the apron thickness: Apron thickness = 1.5 x dr,„ Minimum TW Maximum TW Apron Thickness(ft.) 0.9 0 Step 6. Fit the riprap apron to the site by making it level for the minimum length. La. from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and alone channel banks until stability is assured. Keep the apron as straight as possible and alien it with the flow of the receiving stream Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessary (Appendix S.05). Where overfalls exist at pipe outlets or flows are excessive. a plunge pool should be considered. see page 8.06.8. Temporary Diversion Swale 01C PHALANX CROSSFIT OBJECTIVE: Verify Capacity of Diversion Ditch Based Upon Q10 storm event. Check that swale will non-erosively pass the Q10 storm event SOLUTIONS: Mannings Flow Equation RUNOFF CONDITIONS c: A(ac): 110(cfs): 0.81 0.76 7.90 Q10= 4.86 cfs MAXIMUM d= 0.9400 ft (min.flow depth for Q10 storm) A= 2.65 FTA2 Slope Condition P= 5.95 FT n= 0.058 (computed) R= 0.45 B= 0 ft(min.width) Q10 Storm= 4.87 CFS Z Left= 3 :1(Side Slope) V10 Storm= 1.84 FPS Z Right= 3 :1(Side Slope) Avg.S= 0.015000 ft/ft(avg.slope) W= 5.64 FT USE 6"HIGH BERM,2'TOP WIDTH,3'BOTTOM WIDTH SHEAR STRESS: T= Shear Stress Y= 62.4 PCF T= 0.880 PSF d= 0.94 FT S= 0.02 FT/FT RECOMMENDED LINING: Seed and Mulch With Contractor's Blend and Install Excelsior Matting or Equivalent SAY:1'DEPTH,6'NATURAL FLOW SPREAD AT TERMINUS TERMINOLOGY: Q= Peak Discharge,(CFS) A= Cross-Sectional Area of Flow,(FT^2) V= Permissible Velocity,(FPS) P= Wetted Perimeter of the Flow,(FT) d= Maximum Depth of Water,(FT) R= Hydraulic Radius,(FT) Vt=Trial Velocity,(FPS) S= Slope of the Channel,(FT/FT) n= Manning's"n"Coefficient Q= Discharge,(CFS) V*R= Product of Velocity and Hydraulic Radius V= Velocity,(FPS) B= Bottom Width of Channel,(FT) W= Top Width of Water in Channel,(FT) Z= Side Slope of Channel (Z:1) Y= Specific Weight of Water(62.4 PCF) CHANNEL LINING: With velocities less than 2 f/s use Seed and Mulching With velocites greater than 2 f/s use Temporary Ditch Liner :if T<1 then use Coir Wattle against silt fence :if T>1 then use other lining s awwoo .0 } k N co co CV CV ugewg in co o m o c 11 Ry ,�MeH m • \& § o Almo n CO _ • / \ / 2 / y i _ _ \ & > / 2 W n n j % Co E ° ® m E 7 o \ / 11 2 Z _ i \ E } / / \ 3 % \ 66 § HI- \ § § O e ) a - - 2 • \ W ` .- § ° = E > 5 - / § O o a _ < e 02 o j gyy - I / r < § cc e \ _ o : \ II ii \ 0 co ~ / 2 o )I o \ co g » 1 °` c 0 , 0 in \ 5 \ \ ; \ a C \ I z z = & j o I _ _ 2 _ K co I <in . 7 / R \ / § § ) / o = . LT, 0 § z w 2 } - w § w § w 0 _ _ N § 30 U) § < t \ = n ■ W c o e 0 ƒ e % 2 ) Ce w < 0 m = « _ & z 2 w ( 0 ' o 0 F o u_ / - < z co . 0 } w ; H _II 0 \ $ 0 ) \ W o CC G o 2 r e f N k x ) } i \ ) § \ ƒ k \ CO 2 § ^ j ( 0 < ) ( q 2 % § 2 W £ z D E CO + / ) 7 § \ z — ƒ 0 0 - / / § Z . z § 0 < w { ( « U ` X -I ) j 0 } / } C.) a a = 0 < o f a 2 3 = 3 \ ) _ x © o p _ 2 k m = a w + 0 J 6 + @ c a u o 0 2 0 y N a- 0- e ntu e m z ? o < z z § < _ = f ? / ƒ m / V w e 3 ) $ § o = O o 0 , ƒ , ± \ , II / E W ( § o o } - / _ D u. e ) / j u D § W \ - a r , r = w = < ° k S1HS j Eo