Loading...
HomeMy WebLinkAbout20050732 Ver 07_Stormwater Info_20071029~,cp os - o~ 3 a v'1 TIC JOHN R McADAMS COMPANY, INC. LETTER OF TRANSMITTAL To: Ms. Lia Myott Date: October 25, 2007 NC Division of Water Quality 2321 Crabtree Blvd, Suite 250 Raleigh, North Carolina 27604 ** HAND DELIVER "* (919) 733-9502 Re: Briar Chapel -Phase 4 Job No.: NEW-05042 I am sendina you the followina item(s): COPIES DATE NO. DESCRIPTION 1 A lication Fee -Check #71923 for $1,OCJ0 3 Letter Re: Stormwater M mt Plan Modification Re uest 3 Ex ress Review Stormwater Mana ement Plan A 3 BMP Su lement Forms and O&M A reements 3 PH 4 Water Qualit Pond Construction Dw s 3 PH 4 Water Qualit Pond Final Desi n Calculations Booklets 3 Briar Cha el - PH 2 Construction Dw s Low-Densit 3 Briar Chapel -Great Ridge Parkway Roadway and Waterline Extension Low-Densit These are transmitted as checked below: ^ As requested ^ For your use ® For approval ^ For your signature ^ For review and comment ^ Remarks; Copy to: M. Sanchez Signed: K. Yates remy Finch, PE roject Manager FOR INTERNAL USE ONLY ~ ~~~~~~ ^ Copy Letter of Transmittal Only to File OCT 2 ~ 2007 ® Copy Entire Document to File 4VETL ND3 AND STORMN!ATSR 9RANCN CIVIL ENGINEERING LAND PLANNING SURVEYING PO Box 14005 Research Triangle Park, NC 27709 (919) 361-5000 • fax (919) 361-2269 www.john rmcadams.com • Research Triangle Park, NC Post Office Box 14005 Research Triangle Park, North Carolina 27709 2905 Meridian Parkway Durham, North Carolina 27713 800-733-5646 919-361-5000 919-361-2269 Fax Charlotte, NC 5311 Seventy-Seven Center Drive, Suite Cr orth Carolina 28217 ~0 646 704-527-0800 704-527-2003 Fax Since 1979 THE JOHN R. McADAMS COMPANY, INC. BRIAR CHAPEL CHATHAM COUNTY, NORTH CAROLINA FINAL DESIGN CALCULATIONS WATER QUALITYPOND #1 WATER QUALITYPOND #2 WATER QUALITYPOND #3 NEW-05041 NEW-05042 ``~'~ ~~~ '~'~.. ' QOSOOa,(~un a+;.'4~Jw'lu'f't'r1 1 ~~~~~ 9604 ,j} July 2006 Revised: November 2006 Revised: October 2007 Jeremy V. Finch, PE Stormwater Project Manager Beth Ihnatolya, EI Associate Project Engineer D ~~ ~~ a~~ a'9 ~~~ ~~ Comprehensive Land Development Design Services www.johnrmcadams.com We help our clients succeed. ~kp o5 - o ~ 3 2. v7 BRIAR CHAPEL -PHASE IV '• Final Design -Water Quality Ponds #1, #2, & #3 General Description Located off from US Highway 15-501 north of Andrews Store Road and south of Mann's Chapel Road in Chatham County, NC is the proposed development known as Briar Chapel. Phase IV of the proposed development is approximately 140-acres and will consist of mostly single-family lots, along with the associated utility, parking, and roadway infrastructure. This report contains the final design calculations for the first three (3) water quality ponds (ultimately, there will be a total of six (6)) within Phase IV of Briar Chapel. The proposed development is located within the Cape Fear River Basin, and drains to streams (Pokeberry Creek & Wilkinson Creek) classified as Water Supply IV (WS-IV), and Nutrient Sensitive Waters (NSW). As a result of the proposed development exceeding the maximum allowable limit for stream impacts, an individual permit issued by The United States Army Corps of Engineers (USAGE) is required (Clean Water Act Section 404 permit). Also, a Clean Water Act Section 401 Water Quality Certification from NCDWQ will be attached to the individual permit. Under the 401 Water Quality Certification from NCDWQ, the proposed site will be required to comply the stormwater management requirements set forth in the Water Quality Certification #3402 (WQC #3402). WQC #3402 has the following water quality requirements: Site specific stormwater management shall be designed to remove 85% total suspended solids (TSS) according to the latest version of DWQ's stormwater Best Management Practices Manual at a minium. • 2. In watersheds within one mile and draining to 303(d) listed waters, as well as watersheds that are classified as nutrient sensitive waters (NSW), water supply waters (WS), trout waters (7'r), high quality waters (HWQ), and outstanding resource waters (ORT~, the Division shall require that extended detention wetlands, bioretention areas, and ponds followed by forested filter strips (designed according to the latest version of the NCDENR stormwater Management Practices Manual) be constructed as part of the stormwater management plan when asite-specific stormwater management plan is required. In addition to the above stormwater quality requirements, the following stormwater quality and quantity items are required per Section 8.3 ("stormwater Controls") of the Chatham County Compact Communities Ordinance: 1. Control and treat the first inch of runoff from the project site and from any offsite drainage routed to an on-site control structure. Ensure that the draw down time for this treatment volume is a minimum of forty eight (48) hours and a maximum of one hundred and twenty (120) hours. 2. Maintain the discharge rate for the treatment volume at or below the pre- developmentdischarge rate for the 1 year, 24-hour storm. To address these stormwater requirements, three (3) water quality ponds with preformed scour hole/level spreader outlets that will provide sheet flow of the 1" runoff volume into the stream buffers are proposed for construction as part of the development of phase IV of Briar Chapel. These are the first three (3) of a total of six (6) water quality ponds that are proposed within phase IV of Briar Chapel. These three (3) water quality ponds will be designed so that both the water quality and water quantity requirements described above are satisfactorily met. Calculation Methodolo Rainfall data for the Chatham County, NC region is derived from USWB Technical Paper No. 40 and NOAA Hydro-35. This data was used to generate adepth-duration-frequency (DDF) table describing rainfall depth versus time for varying return periods. These rainfall depths were then input into the meteorological model within HEC-HMS and Pondpack for peak flow rate calculations. Please reference the rainfall data section within this report for additional information. Using maps contained within the Chatham County Soil Survey, the on-site soils were determined to be predominantly from hydrologic soil group (HSG) `B' and HSG `D' soils. Since the method chosen to compute the post-development peak flow rates and runoff volumes is dependent upon the soil type, all hydrologic calculations are based upon the assumption of HSG `B' and HSG `D' soils. A composite SCS Curve Number was calculated for the post-development condition using SCS curve numbers and land cover conditions. Land cover conditions for the post- development condition were taken from the proposed development plan. • The post-development time of concentration to each water quality pond was assumed to be 5 minutes in the post-development condition. All on-site topo was taken from a topographic survey performed by The John R. McAdams Company, Inc. The drainage maps for the post-development condition have been included in this report. HEC-HMS Version 2.2.2, by the U.S. Army Corps of Engineers, was used to generate post-development peak flow rates for water quality pond #2 and #3. Routing calculations for these 2 ponds were also performed within HEC-HMS. Pondpack Version 8.0, by Haestad Methods, was used to generate post-development peak flow rates for water quality pond # 1. Routing calculations for water quality pond # 1 were also performed within Pondpack. Pondpack Version 8.0, by Haestad Methods, was used to generate the stage-discharge rating curves for all the proposed water quality ponds. These rating curves were input into HEC-HMS for routing calculations for water quality ponds #2 and #3. The stage-storage rating curve and stage-storage function for the proposed water quality ponds were all generated externally in a spreadsheet and then input into HEC- HMS/PondPack. • A velocity dissipater is provided at the end of the principal spillway outlets for all water ~• quality ponds to prevent erosion and scour in the downstream areas. The dissipaters are constructed using riprap, underlain with a woven geotextile filter fabric. The filter fabric is used to minimize the loss of soil particles beneath the riprap apron. The dissipaters are sized for the 10-year storm event using the NYDOT method. It is a permanent feature of the outlets. Water quality sizing calculations were performed in accordance with the N.C. Stormwater Best Management Practices manual (NCDENR April 1999). The normal pool surface area for the water quality ponds were sized by calculating the average depth and then selecting the appropriate SA/DA ratio from the water quality pond section of the NCDENR manual. A temporary storage pool for runoff resulting from the 1.0" storm is provided in all facilities, to be drawn down in 2 to 5 days using an inverted siphon. For 100-year storm routing calculations, a "worst case condition" was modeled in order to insure the proposed facilities would safely pass the 100-year storm event. The assumptions used in this scenario are as follows: 1. The starting water surface elevation in each facility, just prior to the 100-year storm event, is at the top of the principal spillway structure. This scenario could occur as a result of a clogged siphon or a rainfall event that lingers for several days. This could also occur as a result of several rainfall events in a series, before the inverted siphon has an opportunity to draw down the storage pool between NWSE and the riser crest elevation. 2. An attempt was made to achieve a minimum of approximately 0.5-ft of freeboard between the peak elevation during the "worst case" scenario and the top of the dam for each facility. The downstream tailwater elevation for all SWMF's was assumed to be a free outfall condition during the 1-year storm event (a conservative assumption). The 100-year tailwater elevation for SWMF # 1 was assumed to be 413.00 (obtained from NCFloodmaps.com), which corresponds with the floodplain elevation in Pokeberry Creek. The 100-year tailwater elevation for SWMF #2 and SWMF #3 were both assumed to be free outfall because the 100-year floodplain elevation downstream of these facilities is below the invert out elevations. The 50' principal spillway weir outlet for water quality pond #1 will be lined with Armorflex® by ArmortecTM. All design calculations/selection of materials/construction details associated with the Armorflex® spillway liner system (i.e. max allowable velocity, shear stress, safety factor, underlying drainage layer, geotextile fabric, etc.) were performed by ArmortecTM. The John R. McAdams Company, Inc. assumes no liability with respect to the accuracy of the design calculations/selected materials/construction details associated with the Armorflex® spillway liner system. • Discussion of Results At this time, there are three (3) water quality ponds proposed for phase IV of the Briar Chapel development. Ultimately, there will be a total of six (6) water quality ponds for phase IV of Briar Chapel. The final design for the remaining water quality ponds will be submitted in the future under separate cover. These ponds will function as "dual-purposed facilities" by providing both water quality and water quantity (for the 1-year storm only). Please refer to the Summary of Results tables for additional information. Conclusion If the development on this tract is built as proposed within this report, then the requirements set forth in the Water Quality Certification #3402 (WQC #3402) and Section 8.3 ("Stormwater Controls") of the Chatham County Compact Communities Ordinance will be met with the proposed water quality ponds. However, modifications to the proposed development may require that this analysis be revised. Some modifications that would require this analysis to be revised include: 1. The proposed site impervious surface exceeds the amount accounted for in this report. 2. The post-development watershed breaks change significantly from those used to prepare this report. The above modifications may result in the assumptions within this report becoming invalid. The computations within this report will need to be revisited if any of the above conditions become apparent as development of the proposed site moves forward. • • BRIAR CHAPEL SUMMARY OF RESULTS B. IHNATOLYA, EI NEW-05042 10/23/2007 ~ATER QUALITY POND #1 Return Period Inflow [cfs] Outflow [cfs] Maa. WSE [ft] 1-Year 38.8 0.4 413.43 10-Year 104.7 66.9 414.18 100-Year (Siphon Clogged) 181.5 165.3 414.67 Desi Draina e Area = 22.2 acres Desi Itn ervious Area = 9.56 acres To of Dam = 416.00 ft Re uired Surface Area / Draina a Area Ratio = 1.52 Surface Area at NWSE = 19068 sf Re uired Surface Area at NWSE = 14684 sf Si hon Diameter = 3 inches Total Number of Si hons = 1 Armorflex Weir Princi al S illwa Len = 50 ft Weir Crest Elevation = 413.6 ft Foreba Weir S illwa Len = 65 ft Forebay Weir Crest Elevation = 415.0 ft WATER QUALITY POND #2 • Return Period Inflow [cfs] Outflow [cfs] Maz. WSE (ft] 1-Year 58.7 0.4 423.22 10-Year 136.6 50.0 424.38 100-Year (Siphon Clogged) 214.4 197.3 425.19 Desi Draina a Area = 28.31 acres Desi Irn ervious Area = 13.74 acres To of Dam = 426.25 ft Re uired Surface Area / Draina a Area Ratio = 1.76 Surface Area at NWSE = 25110 sf Re uired Surface Area at NWSE = 21717 sf Si hon Diameter = 3 inches Total Number of Si hons = 1 Riser Len = 6 ft Riser Width = 6 ft Riser Crest = 423.60 ft Barrel Diameter = 42 inches # of Barrels = 1 Invert In = 414.00 feet Invert Out = 413.00 feet Len h = 68 feet Slo e = 0.0147 ft/ft Emer ency S illway Crest = 424.50 ft Emergency Spillway Length = 30 ft • BRIAR CHAPEL SUMMARY OF RESULTS B. IHNATOLYA, EI NEW-05042 10/23/2007 • WATER QUALITY POND #3 • Return Period Inflow [cfs] Outflow [cfs] Max. WSE [ft] 1-Year 19.6 0.1 434.90 10-Year 47.8 9.7 435.84 100-Year (Siphon Clogged) 76.7 47.2 436.82 Desi Draina e Area = 10.53 acres Desi Im ervious Area = 4.29 acres To of Dam = 438.00 ft Re aired Surface Area / Draina a Area Ratio = 1.62 Surface Area at NWSE = 17411 sf Re aired Surface Area at NWSE = 7428 sf Si hon Diameter = 2 inches Total Number of Si hops = 1 Riser Len = 4 ft Riser Width = 4 ft Riser Crest = 435.50 ft Barrel Diameter = 24 inches # of Barrels = 1 Invert In = 426.50 feet Invert Out = 426.00 feet Len = 73 feet Slo e = 0.0068 ft/ft • "~ 1 RAINFALL DATA 2 SOILS DATA 3 US GEOLOGICAL SURVEY MAP 4 FEMA FLOODPLAIN MAP 5 POST-DEVELOPMENT HYDROLOGIC CALCULATIONS 6 WATER QUALITY POND #1 FINAL DESIGN CALCULATIONS 7 WATER QUALITY POND #2 FINAL DESIGN CALCULATIONS 8 WATER QUALITY POND #3 FINAL DESIGN CALCULATIONS • ~.xp DS - o~ 3 a Y7 RAINFALL DATA BRIAR CHAPEL NEW-05042 B ~PEL NEW ~ I. INPUT DATA Location: Durham, North Carolina 2-Year E 100-Year Source 5 minute --°0:48....... - - ...v......U:S1....... ..NOAAHydro-3S,-- .. . 15 minute • • 1.O i 1.81 NOAH H dro-35 60 minute 1.7(i 3.S(3 NOAA H dro-35 24 hour 3.60 8.00 USWB TP-40 II. DEPTH-DURATION-FREQUENCY TABLE Return Period Duration 2-Year 5-Year 10-Year 25-Year 50-Year 100-Year [inches] [inches] [inches] ~ [inches] [inches] [inches] 5 minutes 0.48 0.55 0.60 0.68 0.75 0.81 10 minutes 0.79 0.92 1.02 1.17 1.28 1.40 15 nrinutes 1.01 1.18 1.31 1.51 1.66 1.81 30 minutes 1.3 S 1.64 1.85 2.16 2.40 2.64 60 minutes 1.70 2.12 2.41 2.84 3.17 3.50 2 hours 1.91 2.40 2.74 i 3.23 3.61 4.00 .. ..... ..................--•-•-•- 3 hours -•----.....-..-....-......... 2.12 ...................... 2.68 ..................................... . 3.07 .................... 3.62 ..................... 4.06 .......... .... 4.49 6 hours 2.65 3.38 3.90 4.62 5.19 5.75 12 hours 3.13 4.02 4.64 5.52 6.20 6.88 24 hours 3.60 4.65 5.38 6.41 7.21 8.00 III. INTENSITY-DURATION FREQUENCY DATA Return Period Duration 2-Year f 5-Year 10-Year 25-Year s0-Year 100-Year [in/hr] (h>/hr] [in/hr] [in/hr] [in/hr] [in/hr] 5 minutes 5.76 6.58 7.22 8.19 8.96 9.72 10 minutes 4.76 S.S4 6.13 7.01 7.71 8.40 is minutes 4.04 4.74 5.25 6.03 6.64 7.24 30 minutes 2.70 3.28 : 3.71 : 4.32 4.80 . . . .... 5.28 .............. . .......................... 60 minutes ............................ 1.70 ..................... . 2.12 ................................ 2.41 ..... . .................... 2.84 .. .... ....... . 3.17 .. ..... 3.50 2 hours 0.95 1.20 1.37 1.62 1.81 2.00 3 hours 0.71 0.89 1.02 1.21 1.35 1.50 6 hours 0.44 0.56 0.65 0.77 0.86 0.96 12 hours 0.26 0.33 0.39 0.46 0.52 0.57 24 hours O.1S 0.19 0.22 0.27 0.30 0.33 dCH, PE /11/2006 IV. RESULTS 2 i32 l8 .............................. s ..................... 169 ...................... z l 10 195 . . .. 22 ............................... 25 .......... .... . . 232 ...................... 23 50 2 fi 1 "-1 100 290 25 N2aPEL • ~/ 1/2006 CALCULATIONS: 1/I Duration 2-Year 5-Year 10-Year 25-Year 50-Year 100-Year 5 0.17 0.15 0.14 0.12 0.11 0.10 10 0.21 0.18 0.16 0.14 0.13 0.12 15 0.25 0.21 . ; 0.19 0.17 .. . .. ........ .. ................ . r- -- 0.15 ..................... 0.14 ...................... ....................•---. 30 ............................. ............... ..... 0.37 0.30 ... .. . .. .. .......... . . • 0.27 0.23 0.21 0.19 60 0.59 0.47 0.41 0.35 0.32 0.29 120 1.05 0.83 0.73 0.62 0.55 0.50 180 1.42 1.12 s 0.98 0.83 : 0.74 0.67 .......................... 360 ............................. ..................... 2.26 1.77 ..................................... ..................... _1.54 1.30 ..................... 1.16 ...................... 1.04 _ 720 _ 3.84 2.99 2.59 2.18 1.94 1.75 1440 6.67 5.16 4.46 3.75 3.33 3.00 ear i 5-rear ! lU-Year i l5-rear 1 ~l1-xear ! tuu-rear Y-IutercePt: 0:13587 A 0:12225 0:11255 0.10001 0:09181 0:08486 132 169 195 232 261 290 h: 18~~~~ .~~~~~~~ 21 22 23 24 25 • • • 1 _- _ .•~! ,L -' ~ _.. '0 ~ r - -. %..__ - -- -- ~~..~ --= gar '~- ~~-- _- <` %~'~, -_ _. / `1 _-- _--' _ -~ _- b - `_ .'~ tip' J~/f~ ~ ~ ~Q ~~ % S~ /'"i.~" ~ `_ -- _ - -- _ -- _ _ :` ,'_.'~' ~ _ ~~ 2-YEAH 5~~b11PdUTE PRfGPfTATIOPJ ._.~- _ ~ -' / ~ _ - ~ ~ _ _ ~ ~~' ~ ~~E(EY WEST. FLOF~DA HALVE .__ ~ ~- ~-" ~~ ~ -- -~ - .~- `-:-`__~-_~'~_;~. '1 REPHESEPfTATTVE i8fl FLORID® REY3. i. r- ~ _ S6 ~~ ~ _ _ .EO __ Fp .--- ~-' Y _ ~. ~ ~; . ~ ~ ._. 50 -year 5-minutE precipitation (inches)--adjusted to partial-durata.on asrtiea. • 19 _ ~ ~~~ • , ~.~~~. ~ ~ '~ ~ ~ ~ 1 . , ~~ ,, t ~ 1`~~ _ _ ~ ~ -~ _ ,~- ' . -~ .+ _ ~J-*__ - ~..x~' _ ~,~:,`~:~ , r--`~}mot ~ _1 ~ - t r i r~ t -~- ^~z ~t . - - t L~' • `~ ~ .. Legend: ___.-,~ .-.. ~~`•-`_,- --- ~f~ -. - v T, ~_. 2-YEAR 15-LIIIdUTE PRECIPITATIO(d ~_.,..,_ -~ ._.-t: "} ,~--''~ ~?~`t,~-.(1- -~-~~-`~j`_, 0.06110A YaLUE ~,r ~ {" ~ '%1(EY WEST. 1_r '~-' ~ ~~ 1 ` - ~~ 91EVNESE PITATIVE FUft FIOSItDA Rt9~5. < ^ I ~ - j1 ~,~ 1 ~ , ,~'' r a s t c o - W _ c u ~ ~ ~ 1J~t35 '• -- - ~',~-+ ~-~ t ~~ „ R ~~r~ ustad to partial-duration series. 15-min prectipi.atatatw'; (inchesl--~1 • 23 7 3 i 5 I I i ....~ ~S" fir. a: a,...._•i'r_-,x:~su.,..ri-... ~-:. .. .~,-..- ...• i ~S _ __ , . _ .~ :, , . .. ; . 1 08 4 . - - ~ ~ --r ~J. i d9' ~ • • . •1 ~ 1 .t 10 V~. r . - ~ , ~ ~ - . -. - __._~ . l ~ 19, ~ - - -'"-`"-; -- '''-1- - , ', ; , `%`' _ 2-YEAR 60-Pd111MUTE PRECIPITATIOPJ - LL--/ ~_ . ~. 1. ' ~~, r, .•.` ' r'I• 1, *KEY W[9T. /106UOA VAIUQ 2. t • , ~_ 1 l 1 ,y a a ~IEPAQ3ENTATIY! i0A II~tOA b<EY9. a ^ I 1 ~ a.a -.n t L o ,1 ~ ~ la o ~ M t 1 2a ~~-. 9`IT5 L 0 L ~ ~ , z.z ~. 14 ~ ' _ ' •;~-~ 1 - - ;~ -- - -- --.- a y, _,rrti;t pz°ectiptitation (inches)--adjusted to partial duration series. page blank . - . - --- ®_ ®_--_ _ r-------.-~ -- - - 1 __ " `~ - ;~--`.___ 2-YEAR 24-HOUR RAINFALL (INCHES) - -- ~ ~ 4m1oE•11-Er•quracy Yn Eorm•c loo 1o ch is _ - 11 ~ ! ~s~ - -~--~~V~~ .~~~ 1 - '~,~ t c Dubliucloa Eor cl,• 11 ues [ern Scmce• ~ ll _ { ~ hu 6e•n •upe racd<d by NOM Ac 1•m 2, ~ T-} - ~ Pr•cyPlc•cloo lr• - r _ - 14y 1~ ~••[•r0 Ilat[•d Sc•c••~~yVol lmY, ollon _ t 4 r ~-'- _ 901. lI, [cam: - r 1~. 1 .,..~..L .; •' ~ `: Vol. YV, 11.0 Mo~cuo1Va111v.Ia.nuda; _ f 1/~' - '7 Vol. Vl, O[ah; Vol. VIi, Wavad•; Vol. ~ - - - - ~Yy VLII, Arf eons; Vol. Iy, y - - u ll 11 ~f / ~ Vol. Y, Orc o m•hlogcoa; - _ '{J /~~f ~ _~ i Y 0; and Vol. YI, Cm l1 [ornl•, 3 - ~ _ - ~ ,~ { - ~ - _ A . - ' ~ -~ 1. `~y. - if ~~i ,~`-. - \ 2 - - - f- ~ -~ ~ i ___~ ~ _ - .Y _ ~ ~~ - Q ~- --i_ _ Z _~i s~ ~__--- e f _,~ `` a - fA ~ u ° - [+ • r f ~ I '~ ' ='f ~ _ - ~ [ [ L. ___.._-.. _ , -.. '7mH. lM . Y•~'M}~--~vt~,'?n~n47fr.~„'•t4' '4?"M•vs+ .v~ , 'Y1~:.a~.'.' u, ~ e~^= ~.Y•Ji. .~ -~ •+l•c.w~'y .cl .": • .~I:..:'i...'. =L..... ~e~~l'.':3~ i • 21 r , ~ ~/ ~ • 1 _ _ . r', , v `~~-. •n_N x.70 '~ ,~ • • ~ _~J '-, '~ /, ~ ~~: . -- ~ ._± , ~ 70.x.-' l''~ ~ t __ _ t 1 7, - - - _~ ~'' ~-f-~" __ _ - J . -t . ,-r-~ - ,~ ~' 1'"'~~. ~ 0.81 y_f.-i ~- '~ _ - -_ '' ec 1Q4YEAR ~tb91NUTE PRECIPfTATIOIH L- ~~` _-,_' . --'1~_ `-~'-`=..r _ -'t _."i -~ ~I tIPJCNESI /"„/• ''i~),~~ :-1~1~ ,~_r---`_ ~•~---• -- -'` ~ - _ ~ ~~i 1°REY ~f/EST. 1L01710A VALUE ~ ~~^ , _n, •, -"T'; ~ , - REPAESEMT.dTIVE fOq FtOg10.;1 KETS. '. ' ry. ~... ~ •~ _ T _. „ - ~~ __ 0 ;_~~ _. -_~ ~n ;- 1'~ ' ~ \~ Y ,~ ~/ 5-minute precipitation (inches)--adjusted ¢a partial-duration seriese • ;' r ~...~. - .,w.~• 25 • . - -'•f ~ ., ~ ,, fi ~~- ~~ / 1 '. v N't'_ I ~1t __ ~ / 1 T~ ` X1,.1 M 1.5 ~ ~ U'~ Y~ // l 11 ' 1 1 l ~~ 1 .~ ~. r 3 1 ~ ~' ___ ~`.. - ~ ~~ 1. - -~, '% __ _• _t~ ~ t' ~ t..,~ 1 W~4' Ill. ~,.,~ `~ c- ~ !' ~_ ^L_~-.I1~ -~~. _ -~~.:_ .; ' ,_~- `~` ~ `'~. __ .1'_r ~.~,.:: t^ ~~~ _' ~ 100~YEAR 15-IV11PdUTE PRECIPITATION J.~ y ~ _ _.~.~ ~ 3 - ~ ~ ti.-~, _ _,~ {,~ ' t / Z~ ~I IINCHESI -f" %'c `„~ 1^A`- '. ~ •' ~- ~ _: _ _ ~ .. _ KEY WEST. FlOR1DA VAWE '7`.~? ~ ,' ~ ;•~ i.: ~ pE741ESENTATiVE F-0R FLORIDA ttEYS. Jv. S / ~ ice' • ~ ~ ~ 1--r _,`1 t ~ ~ 2.0 G u !. ' .. ~ -- I a. \~ 2'~3~ i s ~~~7 '! , '-~.A ' gt:~ l ~ ...... ~ usu v ~ artiaZ-durcttiors series. ua ted to p 1~° •,eczr IS-mtimcte precipitation (incheal °-adJ • _. t 17 • __ _____-_-_.-------- 1 --- .~~ ? ,, l 20 ~ ! c ' ~, ~ :o - ~ 7~ - ~ ~ 2 r ~ `t ~ ~ 1 5 I :5 - ~ ~ I .. r'S ~ ~ ~' 125 ~ ~ !. _ 1 l 1 ~~-` ors ~i .. . ~ . . .. 1 _ - ~, ... ~ _ r `/:' ~`'' t .l , . /.3~`' ~ ~~ -. r _ -~ ~_ ._ ;.~ J ,. _ ,~ I ~ •' 1 J r. / -_ - _ - _ • ~~~~ .1 jagend: 1p0•YFAfi 50 ti11NUTF Py~FCIp{gp,710~ (IyCl1ES) %~{(!y WEST. S109~1OA NAW'! 1 Alvglgl MTAT1V! fOC~ FlO~~OA Alv L. e~Y ~~„~ 7 ~ laly a5 ,` /,~ •, ! I It ~ C v ~'"\"}}i j ~ y a '. r -- ' e5 ~ u G ~ u a5 ~01 . ~- ', ~'„-' a iE I;ry, -- ®- _. .:_-__~__ ; --. __ ..- ial dura on sertiFS. _~-_-- - - ~ t ti .oar 60-minute precipitation (inches)--a~Jl`eted t® part • • it • v... w n y ~ Y•merd l-eraqu•rcr t. f, pub ilercf oo for ch• I1 ~ •tton !n th1• b•• beeo a"V•r•rded b taro 5c•em • 4erc. rn fOnf crd prequeneyo~dau lu[ 7, Vol. II, VYoaln SCate•,^ Vol. [. Ibocroa; ., 901. IV, Nw t: Vol. II [, Color~o. Vol. VI, ]lexl co; Vol. V, Idaho; Vol. VI1 Uc h, Yo Nev 1. 1. VII, rdr• Vol. y Ar1:on•; vol. Iy ' f1 a f)reYoo: rod Vol. YI, f:•I1 [o YCOn; ~ rnfa. \ ~` \ o ~ o o I n 1O \Z o, ~ ~ ~ ~~ `J . , `r. 6 d J _~~_ I00-YEAR 24-HOU RR A NI FALL (INCHES) __ -- ~ ~ , ~.~ _ ~ , ~; •- b /" r t j / - _ '! 1 ^~ ~ - _ - _ - f ~ , a . _ {.~• t ~ o - -r .j' ` [ Y ~ 8.a7' ~ `. r ~~ ~, _ u t _~,`. - - t1 1 a 1,7 ~~ ~ _ ~- -- yr R - - -- - f u .1 .. ~1 Y ^ Y t ~ ~ v G O L r ~ f r D r I IL I t I n ~n 1~ ~.ycp o 5- D ~13 ~ U 7 SOILS' DATA BRIAR CHAPEL NEW-05042 f a f,t '~ 4 `~. .. '~'1'" i. ~ ~.I i_ t. r ~ 1 t` 4 1 11~ 1 x 1yj t I i I 1 k an• I.I. .r:lt "~..; { ,; 1 y. ~. I~ r1 w `I '~ . i , ,.., . ti~ ., y r ,~ i t I, i1t _. I ._ ~ i 1 y I ~ ' , ~ I' t I, ". - ~, ~ ~1 .. ~ ,, r ~qv '"' ' ~ ~ 1 I.t ~I~ w r ~~ 7r, r~ 6 "S, 'h ~, 111 tY ~,Nyyi X ~ f~ ,~ 1 a £ r ~,gl 1 tt ~ , . ~ , ~~I~ ~ ~ w it ,` ',1 Y{,~,, .. a ~~ r~ 1 ~ ~ ~1... ~4..,,yw ~ ~ .. l'~. t~ .~ ~ e ~ I r!' .~' ~ ~ ''ti~ N~ r`a ^' .. w ,, ', _ i ~ t ... ~~ v ~ , _._ e J ~y ,f, r ,_._ `. ~ 1 ~~~~11... f ,1l IYftL 4.j. 41. .... ~ 1-'~ ~ l M~ 'y11 ~ ~ 3a..1. ~~ y` .~ I to .~'~ n, <15~~ d "\ ..: ~~ ,~ p ~ _. , ,,, ,, ; ,~ ,. .. , ~ 1 4~ ,.._ a ;, s t ~~ ,.r' ~ ,,_ r '- ,. r< -. . ,, gg _ . , i~ 1 ~~" ~~ ~~ ~~ ~ ~ ~ ~ ~........-.J X11 '1 f) 3 i , , r 4 ~ I_~ ~y ~I i) y ~.. S fl~ 41 i f ~ ~ I~ ' • 4 I +( ~ Nf 1 ~ r` r IA, ~. 1 -~~1. ~ .3 , ,.,~ ~ ~~, '~ i ,ka I 1 ~9v wr t el . i 1~ y, l»,~ <. .,.. .;x R o-~~ ., ~1 ~. ~~ ~ ~' al I~„`~ •.~ t4 :~!r~~ ,'~ i a~ ~. d'a~. .wJ~/ .. ~ i 1 ;~ ~$~~7 ~- ~. ,,, ~`, '' ~ ~ J _. C I -~ G ~~ i ~ ~ -"1 ~~ ....,* a r. - `~ ~ f •. ... '~, ;, ,. t -i f ~ ,: ~ 1 ~ ,d ~ w..,,;,y ~ ~'. _ ~~ ~ ~ t 4. ,.N ,, ~,~~ Y ~I. ~ ~ ~~7~' •' ., .. t I. .,, '' .. ,+M ~~ ~~~ 1~, i Jld ~~r .«. { 1 ~ r r ,.~~ I ~ I a., ~ 1 ~ ~ ~~ ~ aW ~ a r ~ o~,. ~~ ~ < NI a a ~'7 ~k"~t"r, M.~..~ ~ ` e a+.~ ~~ ~ ' ~•ti~ 1~ q~t » T. ~ I It ' ~ V . , ` j e ~ t 1 ~'~. t J tiua + l l ~>t is j ~'} }- ~ tr ~ a~ { ~~° ,. a I. I 'IY~ i ,, l ~ , a 11 ....... ,.,.~J{ I. t .. 9 f .. .4 ~ 3 a :. 3 y 1 f ~ - 1 ~, + r...._ r ~ ~ I~ ~ r r \\~ 9 . ~, i _ k x~ ` JI ~^~~ ~ '`~.~,~ -' ~~~ ~y bar ~ ° '~ ~I ' " t ~.ic ttn Il.i~ ~ti.,~ "`"^~` ar ~ ~, f9 ~ r~ o~~°>I~7~I'~Y~" ~ 4 ~;~ l~ r k 6 w :.r~;~ ~ , ~, .1 ~ ' ~ 1 ~ ~ ~ ~~ F. 2 1 h 4 ~` ~` 1~ 1 ~ ' vil 1 1 a,~• *~t 4~ ~, t ~ , rldl N >,y - ~.~. , a I 1~, ,,. ," " i;l ~~~ ~ ~ V IV ~ ~r ~'l~ IVY tt i " ~ ";~ I ~ d~ .M ,. ~~ P~, ~,~ 1 I 1~ Nx.~'ha t 1 11, iyc ;. +' ~~C'~ ui 1' ~~+rr~ ~~tl ~~~~ ~ " y ~ ~w''~"1 Gir ~ r r~. rt4.~~ x ~1i ~~ ~~~~ 1~ { k.~~i 'vi M11~1'I 1 . 3 ~~~ _ ~l ( ~ f ~N a ,{ are 3 t\ A.. a ^^~~,,,,~N X l A6 4 r I ..~ k •, i+aC ~,'d +...., •_, .~ I { ~ ~ ~I. r ~~ ,4j ~ \ ~l''n'iS'~~ ,~I u f 1 N i { d . »~ .., .i„ yl4 I ': ,.. 'I r ~ ~ ~ 112 ~. ' ,. Y '~"~I t" ~J At, J ~' t+ 1 { +t ~M4, ~~ iM r p ~ ~~. x„ r~1 ~ I ~` ~ 1 .~ ~ ~ ~ e~ a p~ r ,.J' .. Pllt 3 ,. ~' - v ~~yY t2 el i. ' ~ ~ I! ~Y F } a { ~ 1 'nY...~. ¢. -.. Nt. ., II '; a ~e L~ A~ ly ~,. ~F,W y 2 y ''~ ~ 1' I a ,1 P t{ k. h d 1 6 I r ,., L ; ~ td i w k 111 ,at. f'a PI 1 i y x ~r kKYt y k - ~ .: } f;l tJ ~~ ~ 1 y 2 1 6( F t M1t ~il f I :~~ 1 1 5 } l 1 J r 2 wy ' c 1 ,` yd. i~ d .t k 4. 4 1 t i LL '..I: ~N~t~ ~il,l+ i! a ~ I ~~ 2 htl !ael ~I I h ~ }' ~~ ° 4 'A p9 41 a-,~ L` { 5 { y' '~ j~ kxl 1 ~ ` •1ii ~ v , 1 } ,~ r, : d+a M :~" I d 3 ..,,.,m nu ~ 1 1 ~' . r'" I -, x l i A w + ;. ~, 1, a ~ 1x a ~w ;a ~~` s ~,. i r iJ S ~Y.. n r ~; r 1 Ir. { + c i r ,~ a of ~ t i M Il'~i ~., ~- Y 'x' 1 rk ~~~~~ ,. I 1 d '- tI ~ to T.'~ 12~A r.l~'~ {t f 3 ` ~I~~~ ~ qn ,w,w.rr.r r I qq-~~ •,i u ly ~.l " 1 i ,fS 1Y I y, ,~ I I 11' 1 Il, s r~' r. a l .1, ~ { .. i YY ( a l „Y 1. l~bal I ~ 1 4 11.~ ~AII aP t1 1 ,. Jr~"." ~'".. _ •t t~91 bra a r~. 1{ ,1~ ~ fl hi ho~ :r}tx.,,~ ~~§'" w y'3n y~'d~i, fW J~ro~~l;~'+ r•q li ~ .: I6 ~~N°7J'yl r~~"w+ ~ a+Yw :,1 t M.b 0 1 1 w ~~~~~ I. M~. P 4', ~.x .f r~la ., ( ,~ul~ ~ S :~S ~ f e,~~~ ~~... {J>~ ' ,,,,,! ~~ cif f ~" ii~^,a IY ,,, d ~ I e~t,s w, ~ q :,, J ~ , ,r.A ~a ~ `" ~ .1t1 k a. ~ .~! 3111 .1 f* ~s: 1~~ ~• a 1 /~ ~ ~ ~ ,l. v~ .,fi w a '"b v k';. `n I~'~ d ~"yy ~~,I ~. v 2~! :.r ~IJ y9 t a i~E S 1o-Y !L, vrv t.l ~!N ~~ o, s ~ 1~1 ,1 1 1^'0 ~ r~ ~5"a5 Yw~rutll ~'~ ~~ J I a ~:~ I 'i' ~t I ~ ~ r ~ ,~ :~.n tiP; d Y"• Ya (; 2Ia I'W. 11dr,. ~y 'g ~h~' 9` ~ 1 ° y1 1 1 1 ~_1 1 ~~~ y '71 ,4 Y ~~,L 1~~ .,n A IP 1 ~, a 1 iY~ , ~ J d i ~ t ~.{'{, ~. r 3 ..rdt ~ ~"+ u } ~ t xY°'?~ f 4{ ~.~ +, i 'M ~~ „' { '` ti~ a I w ~ ~, ~ , x ~ ~ sa 41r ~i I r~ r , 1 J •i" ^ 7 ~ I + a ;. aNT ~{ r .. 1 '~. 11. { ~.: ~ r I :+ I a II 2l t;. + '; >+ r ~ , t ~ , a'7 ~i Nt ,rl t _~ I,el ~~ ;A~~'~ r p't I~(~Rk~ >,-, ~ ~%4,~ 1'' 1 1;.ji 'A ~ , ~ d ~ ~ I ~ J~9 I~ ~ Sr~ .1. N • 'A ,P'tJ' ~l~ I °i~ ~ " "_,w., , .mod ~~l f ~ IICB , ~~ .~ Oy tV a) ~ i 1f f7 {~I 1) t7 ' >~ (.i l.) lal JAl '( i 47 Ct) y , i Y `{ .~. -r 2 > Yr y719 °i a 7 D 9:i! 17! a. ~; :. • BRIAR CHAPEL WATERSHED SOIL NEW-05042 INFORMATION WQ POND #1 • => Watershed soils - To WQ Pond #1 Symbol Name Soil Classification 37C Wedowee Sandy Loam B 37D Wedowee Sandy Loam B 37E Wedowee Sandy Loam B 39C Wedowee Sandy Loam B SA Chewacla & Wehadkee D References: 1) SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. HSG B = 95% %HSGD= 5% B. IHNATOLYA, EI 8/28/2007 _> Conclusion Watershed soils are from 'HSG B' and 'HSG D'soils. The relative percentage of each HSG was calculated. These percentages were then used in the computation of the composite curve numbers. Cover Condition Impervious SCS CN - HSG B 98 SCS CN -HSG D 98 Open 61 80 Wooded 55 77 Cover Condition Composite SCS CN Impervious 98 Open 62 Wooded 56 • BRIAR CHAPEL WATERSHED SOIL NEW-05042 INFORMATION WQ POND #2 • _> Watershed soils - To WQ Pond #2 Symbol Name Soil Classification 37C Wedowee Sandy Loam B 37D Wedowee Sandy Loam B 37E Wedowee Sandy Loam B 39C Wedowee Sandy Loam B SA Chewacla & Wehadkee D References: 1) SCS TR-55. UNITED STATES DEPARTMENT OF AGRICiJLTURE. SOIL CONSERVATION SERVICE. 1986. HSG B = 99% %HSGD= 1% B. IHNATOLYA, EI 8/28/2007 _> Conclusion Watershed soils are from 'HSG B' and 'HSG D'soils. The relative percentage of each HSG was calculated. These percentages were then used in the computation of the composite curve numbers. Cover Condition • Impervious SCS CN - HSG B 98 SCS CN -HSG D 98 Open 61 80 Wooded 55 77 Cover Condition Composite SCS CN Impervious 98 Open 61 Wooded 55 BRIAR CHAPEL WATERSHED SOIL B. IHNATOLYA, EI NEW-05042 INFORMATION 8/28/2007 WQ POND #3 • _> Watershed soils - To WQ Pond #3 Symbol Name Soil Classification 37C Wedowee Sandy Loam B 37D Wedowee Sandy Loam B 37E Wedowee Sandy Loam B 39C Wedowee Sandy Loam B References: 1) SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. HSG B = 100% _> Conclusion Watershed soils are from 'HSG B'. • Cover Condition SCS CN -HSG B Impervious 98 Open 61 Wooded 55 • Eocp D 5 - 013 a v1 US GEOLOGICAL SUR VEY MAP BRIAR CHAPEL NEW-05042 • • l` i• ,, _ , ... _ ~- .~~- r ~ • s~~/ : f ~~•~~ 111 L ~ .~i -~ {~ ~~~ . ^ -~,J~?. III r~' ~~ L I{ •~ .-Iii '~; A ~ ~ ~ ~~,ES t ;r ,,,~ ;, , ~~ ,' ' It ~,1 l~r ~' e ""y ~ . ~it4 i't~~~ ,.~.: ~ '~ ' ~ j ~ '~ ~ I / ~ "+ ~ ~ ~ , ~~~ ~',, i rt rr, -E- I I ha I, ~i i- i 6 ,, - ~ , ~ 1 TM; ~' ~' f ' ~i ; ff1 [(rf r :> E>tit.l3CIY ,. .p ~' ' , i s: ' „~ `: , t .y ~xs :, , ' ;~ , . r ;; ~~ ~~ `t ~.. " Co;,~yridht (Cl 1998, iviaplech, Inc. FEMA FLOODPLAIN MAP • BRIAR CHAPEL NEW-05042 • POST-DEVELOPMENT HYDROLOGIC CALCULATIONS BRIAR CHAPEL NEW-05042 BRIAR CHAPEL HYDROLOGIC CALCULATIONS B. IHNATOLYA, EI NEW-05042 Post-Development-To WQ Pond #1 8/28/2007 • • I. SCS CCTKVE NOliBERS =; ~`~~-~ Cover Condition SCS CN Comments Itn ervious 98 - O en 62 Assume ood Wooded 56 Assume ood Water 100 IL P05T-DEVELOI'11IE1\1'-~;' ,, ~;; _> To WQ Pond #1 A. Watershed Breakdown Total Number of 60' Residential Lots = 20.5 lots Assumed Impervious Area Per 60' Residential Lot = 3600 square feet Total Impervious Area from 60' Residential Lots = 1.69 acres Total Number of 70' Residential Lots = 0.5 lots Assumed Impervious Area Per 70' Residential Lot = 4200 squaze feet Total Impervious Area from 70' Residential Lots = 0.05 acres Total Number of 80' Residential Lots = 18 lots Assumed Impervious Area Per 80' Residential Lot = 4300 square feet Total Impervious Area from 80' Residential Lots = 1.78 acres Total Number of 90' Residential Lots = 6 lots Assumed Impervious Area Per 90' Residential Lot = 4450 square feet Total Impervious Area from 90' Residential Lots = 0.61 acres Total Number of 100' Residential Lots = 3.5 lots Assumed Impervious Area Per 100' Residential Lot = 4600 squaze feet Total Impervious Area from 100' Residential Lots = 0.37 acres Total Roadway/Alleyway Impervious Area = 3.96 acres Total Sidewalk Impervious Area = 1.00 acres Total Amenity Impervious Area = 0.10 acres Contributing Area SCS CN Area [acres] Comments On-site o en 62 11.99 Assume ood condition On-site im ervious 98 9.56 - On-site wooded 56 0.00 Assume ood condition On-site water 100 0.65 - Off-site o en 62 0.00 Assume good condition Off-site im ervious 98 0.00 - Off-site wooded 56 0.00 Assume good condition Off-site water 100 0.00 Total area = 22.20 acres 0.0347 sq.mi. Composite SCS CN = 79 • B. Time of Concentration Information Time of concentration was assumed to be a conservative S minutes Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) • m LL a ~ ~ C a° > > > > Addlink 1 Route 1 F Route 2 ~ ~ o a • Type.... Master Network Summary Page 2.01 Name.... Watershed File.... X:\Projects\NEW\NEW-05042\Storm\WQPOND#1(REV8-22-07).PPW MASTER DESIGN STORM SUMMARY • Network Storm Collection: RDU Total Depth Rainfall Return Event in Type 1-Yr 3.0000 Synthetic Curve 100-Yr 8.0000 Synthetic Curve 10-Yr 5.3800 Synthetic Curve 25-Yr 6.4100 Synthetic Curve --------------------------- ICPM CALCULATION TOLERANCES Target Convergence= .000 cfs +/- Max. Iterations = 35 loops ICPM Time Step = 1.00 min Output Time Step = 1.00 min ICPM Ending Time = -------------------- 2100.00 --------- min -- RNF ID TypeII 24hr TypeII 29hr TypeII 24hr TypeII 29hr MASTER NETWORK SUMMARY SCS Unit Hydrograph Method (*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt) Return HYG Vol • Node ID Type Event cu.ft Trun ---------- --- *POND OUTLET -- ---- JCT 1 -- - - -- 34071 *POND OUTLET JCT 100 377985 *POND OUTLET JCT 10 186608 *POND OUTLET JCT 25 260316 TO WQ POND 1 AREA 1 95777 TO WQ POND 1 AREA 100 493870 TO WQ POND 1 AREA 10 252358 TO WQ POND 1 AREA 25 326210 WQP1(FB) WQP1(FB) WQP1(FB) WQPl(FB) WQPl(FB) WQP1(FB) WQP1(FB) WQP1(FB) WQP1(MP) WQPl(MP) WQPl(MP) WQPl(MP) • POND POND POND POND OUT POND OUT POND OUT POND OUT POND POND POND POND POND 1 100 10 25 1 100 10 25 1 100 10 25 95777 993871 252358 326210 95894 443977 252454 326305 95894 443977 252454 326305 Qpeak min 1423.00 720.00 724.00 722.00 716.00 715.00 715.00 715.00 716.00 715.00 715.00 715.00 718.00 717.00 717.00 717.00 718.00 717.00 717.00 717.00 Max Qpeak Max WSEL Pond Storage cfs ft cu_ft - - .43 - --- ---- 163.32 66.87 110.08 41.00 188.68 108.83 140.02 41.00 1 s 8.6 s ~~~y ~ OL 108.83 190.02 38.82 415.33 2342 181.48 415.96 7056 104.73 415.66 4778 134.66 415.78 5721 38.82 181.48 104.73 134.66 S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 1:39 PM Date: 8/28/2007 • Type.... Master Network Summary Page 2.02 Name.... Watershed File.... X:\Projects\NEW\NEW-05042\Storm\WQPOND#1(REV8-22-07).PPW ------------------------------- ICPM CALCULATION TOLERANCES ------------------------------- Target Convergence= .000 cfs +/- Max. Iterations = 35 loops ICPM Time Step = 1.00 min Output Time Step = 1.00 min ICPM Ending Time = 2100.00 min ------------------------------- MASTER NETWORK SUMMARY SCS Unit Hydrograph Method (*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt) • Max Return HYG Vol Qpeak Qpeak Max WSEL Pond Storage Node ID Type Event cu.ft Trun min cfs ft cu.ft WQP1(MP) OUT POND 1 34071 1423.00 .43 413.43 77681 WQP1(MP) OUT POND 100 377985 720.00 163.32 419.66 110259 WQP1(MP) OUT POND 10 186608 724.00 66.87 414.18 97370 WQP1(MP) OUT POND 25 260317 722.00 110.08 414.91 103614 M~rN Poor S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 1:39 PM Date: 8/28/2007 • BRIAR CHAPEL NEW-05042 T. SCS CUR~"E NUMBERS HYDROLOGIC CALCULATIONS Post-Development-To WQ Pond #2 Cover Condition SCS CN Comments Im ervious 98 - O en 61 Assume ood Wooded 55 Assume ood Water 100 IL POST'-llEVELOYJiF~I1' _> To WQ Pond #2 A. Watershed Breakdown • Total Number of 50' Residential Lots = 18.5 lots Assumed Impervious Area Per 50' Residential Lot = 3200 square feet Total Impervious Area from 50' Residential Lots = 1.36 acres Total Number of 60' Residential Lots = 36.0 lots Assumed Impervious Area Per 60' Residential Lot = 3600 square feet Total Impervious Area from 60' Residential Lots = 2.98 acres Total Number of 70' Residential Lots = 20.0 lots Assumed Impervious Area Per 70' Residential Lot = 4200 square feet Total Impervious Area from 70' Residential Lots = 1.93 acres Total Number of 80' Residential Lots = 13.0 lots Assumed Impervious Area Per 80' Residential Lot = 4300 square feet Total Impervious Area from 80' Residential Lots = 1.28 acres Total Number of 100' Residential Lots = 1.5 lots Assumed Impervious Area Per 100' Residential Lot = 4600 square feet Total Impervious Area from 100' Residential Lots = 0.16 acres Total Roadway/Alleyway Impervious Area = 4.86 acres Total Sidewalk Impervious Area = 1.18 acres B. IHNATOLYA, EI 8!28/2007 Contributing Area SCS CN Area [acres] Comments On-site o en 61 13.99 Assume ood condition On-site im ervious 98 13.74 - On-site wooded 55 0.00 Assume ood condition On-site water 100 0.58 - Off-site o en 61 0.00 Assume ood condition Off-site im ervious 98 0.00 - Off-site wooded 55 0.00 Assume ood condition Off-site water 100 0.00 Total area = 28.31 acres 0.0442 sq.mi. Composite SCS CN = 80 B. Time of Concentration Information Time of concentration was assumed to be a conservative 5 minutes • Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.050 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) HEC-HMS Project: NEW-05042 Basin Model: • • To V`•IQ Pond -, Fl:• WQ Pond #2 • HMS Project NEW-05042 • Start of Run 07Ju102 0000 End of Run 07Ju103 0000 Execution Time 28Aug07 1349 summary of Results Run Name 1-Yr Post Basin Model Post-Development Met. Model 1-Year Storm Control Specs 1 Min dT Hydrologic Discharge Time of Volume Drainage Element Peak Peak (ac Area (cfs) ft) (sq mi) To WQ Pond #2 WQ Pond #2 • 58.725 07 Jul 02 1157 2.9467 0.044 0.44583 08 Jul 02 0003 2.9467 0.044 • • BRIAR CHAPEL NEW-05042 I. SCS CiiR~'E Nii.11IlERS"` HYDROLOGIC CALCULATIONS Post-Development-To WQ Pond #3 Cover Condition SCS CN Comments Im ervious 98 - O en 61 Assume ood Wooded 55 Assume ood Water 100 11. POST-llEVELOP~IENT''' " _> To R'Q Pond #3 A. Watershed Breakdown Total Number of 80' Residential Lots = 17 lots Assumed Impervious Area Per 80' Residential Lot = 4300 square feet Total Impervious Area from 80' Residential Lots = 1.68 acres Total Number of 100' Residential Lots = 7.0 lots Assumed Impervious Area Per 100' Residential Lot = 4600 square feet Total Impervious Area from 100' Residential Lots = 0.74 acres Total Roadway/Alleyway Impervious Area = 1.53 acres Total Sidewalk Impervious Area = 0.34 acres • B. IHNATOLYA, EI 8/28/2007 Contributing Area SCS CN Area [acres] Comments On-site o en 61 5.84 Assume ood condition On-site im ervious 98 4.29 - On-site wooded 55 0.00 Assume ood condition On-site water 100 0.40 - Off-site o en 61 0.00 Assume ood condition Off-site im ervious 98 0.00 - Off-site wooded 55 0.00 Assume ood condition Off-site water 100 0.00 Total area = Composite SCS CN = 10.53 acres 0.0164 sq.mi. 78 B. Time of Concentration Information Time of concentration was assumed to be a conservative 5 minutes Tiroe of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) • HEC-HMS Project: BriarChapel_Pond_3 Basin Model: • ?'~ WQ Pciid #3 WQ Pond #3 • HMS * Summary of Results Project BriarChapel_ Pond 3 Run Name 1-Year Post • Start of Run 06Ju113 1200 Basin Model Post-Development End of Run 06Ju114 1200 Met. Model 1-Year Storm Execution Time 28Aug07 1357 Control Specs 1-Min dT Hydrologic Discharge Time of Volume Drainage Element Peak Peak (ac Area (cfs) ft) (sq mi) To WQ Pond #3 WQ Pond #3 • 19.613 06 Jul 13 2357 0.98735 0.016 0.14520 07 Jul 13 1203 0.98735 0.016 • ~~ ~ - a'13 ~. V 1 WATER Q UALITY POND #1 FINAL DESIGN CALCULATIONS` BRIAR CHAPEL NEW-05042 WATER QUALITY PiJND M 1 CONSTRUCTION SPECIFICATIONS GENERAL NOTES BERM SOIL AND COMPACTION SPECIFICATIONS 1. PRIOR i0 CONSMIICTON, Mf W-SUE CEOhCNNIGI ENGINEEA 5Hµ1 VFAIFY ME I. µL BlL WTEgMlS i0 BE USED FOR ME Oµl E4BwKMENTS SHILL BE SUIfABIUtt OF THE PROPOSED BORROW AREA /FlLL f0A USE IN ME DA4 TAKEN fA04 BpgRpW AA ElS APPROVED BY ME ON-SITE GEOLECHNICµ EYBANKUEHTS /KEY MCNCH. ENGINEER. THE FILL W1EAUL SHµI BE FREE TROY 80015, SNUPS, WOOD. STONES GRGIER 7H1N fi', IMO Fg02EN OR OTHER OBIECipNABLE 2. ME ON-SITE CEOTECHNpµ ENGINEER SHNL INSPECT ME KEY tRENCN E%GVALION WiEANL THE FOLLOWING Shc 11P[5 ARF SUITABLE fOR UBE AS FILL PRIOR T) PIACE4ENT pf AMY WDKFlLL WITMN ME KEY RiENCH, W TIE CDNTNALFdt WIFXN ME p.AY EMBANKMENT M'p NfY TRENCH: 4L ANp CL • LW5IRUCTS ANp COVERS UP ME KEY WENCH PRpR i0 IxSPECRON, MEN ME KEY TRENCH SHµ1 BE UNCOVERED ANO TESTED Ai ME CWTRKiOq'S gPENSE. 2. FILL PLKE4ENT $Hµ1 NOi gCEEO A MA%14U4 B~ LIR. UCX LIR SW.LL BE CONTWJOUS FOq THE ENngE LFIGM OF EuBANKMENR BEFOAE 3. ME LONiRKTOR SW11 REFER TO THE LVlffiGPE PLAN Fdi ME PERMAIIENI PLICEMENi OF FlLL f0A THE BERN SECRON, µ1 UNWITA9.E WRRAL PIµTNG P,AN /SCHEDULE. ME PERWNENT VELETAMN FOR ME PAOPOSEO W/ SNN1 BE RE40VE0 ANp ME SUAfKE PgORRLY PREPARED FCR FILL EMBANKMENT $H11L BE TALL FESCUE. PIUSE NOTE 1WI NO tREES /SHRUBS OF ANI PUCEUENi. 1YPE WY BE PUNTEp ON ME PROPOSCD 0.W E4&NK4ENL (FILL AREAS). ]ALL FlLL Sd15 USED IN TIE EMBANK4EN1$ /KEY TRENCH 1. IF ME W.KtER OWlltt POND IS TT BE USED A5 A SEDI4EM BASIN WRING CWSMUCnON SW11 BE CONPKTED i0 AI LFIST 95t OF THE StANOMO LWSIRULTON, iXE CONTRMTOR SHALL Npi CWSIRULT TIE INhRKN fpREWY BERN PAWiOR W%IYU4 OAY OEN50'Y (ASi4-69B). ME FMl SdLS SHKL BE SHOwII ON MI5 PLN1 UNRI APPRWµ i0 AEMO+E THE SEd14NT BASIN 1415 BEEN Cp4PKTE0 Ai A 4d$NRE CWTENi WIMIN -1 b +3 PEACENi OF 115 GWNhO BY ME E~SgN CONTROL INSPECTOR. OPDMUN N05NRE LONIENi. COUPKTON IESR SHµI BE PERFdtuEO BY iNE ON-SITE GCOIELHNICµ ENdNEER OUAINC LONSMU[TpN i0 vEPofY 5. IF ME WAlgt OUAUtt FOND IS i0 BE USED AS A SEDIMENT BASIN WPoNG iWi THE PROPER LOUPKnON IEVEI HAS BEEN REACHED. ME FlLL CWSTRIpMIN, ME MG SHKL BE CLEWED WT (LE SEOI4FM, iPASX, ETC) NYD SNOUD BE C04PKh0 USING A SNEEPSFWi TYPE C04PKipR. IN ORDER REVSLEtATEO (IF NECESSARf) PRIOR ip USE AS A STORMWAhR 4YNGEMENi FKIUtt, t0 PREVEM OAWDE TO TIE PIPE, NO CONPAC110N EOUIPYENI SHµ1 ME 1gA5H AND SEDIMENT SHWID BE d5PO5W d< BY ME CONTRATOR PROPERLY CA05S ANY PIPE UxnL MINIMUM CprLq 5 ESTABLISHED µONG ME PIPE (LE - UNOFlLL). +. A KEY MEKH SHVL BE PROAOEO BENGM µl FRL AREAS OF ME fi. iNE ifPE, SMF, AND STgUCNAµ DESIGN FOA ME PREFAPoipATED ARCM BERN. ME iRENCX SHVl El(fENO A uINIMU4 OF 5 R BELOW EXISTNG PEOESiPoµI BRIDGE 5WLL BF pESpNED BY OMERS IN COOAdWTpN 1WTH ME OWNER. GRKE ANp SHV1 WVE A MINIMUM BDiiW WIOTx W S FEET. ME NEY PPoOq i0 OROEPoNC OR INSiµIAnOx OF ME PEDESRWW BRIDGE ME CONTRACTOR TRENCH SIpESLOPES SWll BE A MINIMUM OF 1;1 (H;V). iXE KEF TRENCH SWLi PRCJ4IDE ME ENCNEER WM SHOP -WWINGS, SF/1E0 BY A P.E. REGSTEAEO IN SWLL BE LOYPKTEO i0 ME 5µ1E SPECIFIG,TON LISTN N Thu ! ABOVE. NOR01 CNWK.NI, FCR APPROl/L PLEASE NOTE TINT ME BAIDGE ENGWEER SHALL 5. UPON flEWEST, ME CONTPKfOA SHALL PgQv1pE ME ENGINEER WIM µS0 PROWOE A SAPEtt HNIORNI µONG ME ENTIRE LENGTH pF ME BRIDGE WRING REPoRiS i0 VEAWY 1Wi THE Gll EMAINK4ENi MEEK ME SPEpFIED ME OESpN PROCESS. CWPKTION REWIHE4ENIG COMPKTNIN REFOAIS WILL BE NEEDED DURING 1. ALL RBNFDACEO CDNCAEIE NAEp CND SECTON INLE15 N10 ME POND SNµ1 ~ TXE AS-BWLi CERTFlGTION PROCESS FOR MIS SiOALYAATFR FKIUtt. UNOERLNN WIM A 3000 P9 CIXICREIE PAd SEE OETARS SHEET Po-IE iXEAEiORE, II 5 ME CWTUGiOR'S RESPONSIBIUtt i0 ENSURE COMPKn(N h53 AAE PflOFERLY PERFORMED pUPoNC CONSiRUCDW. a. ME UroUi (INCLUpNG CAKING GEOrai4E POND UMR, BOUl0EA5, ETC.) FOA THE FORE&Y BERM 5110'hN ON MESE PINS R fOR SCNUNip PURPOSES OtNY, ilE FIWL Urout O< ME FOREBAY BEAM S"µL CONTNN AESMETC FEANAES (I.E SPBLWAYPIPE SUBGRADE SUPPORTAND BOIIlMRS, WAiERFN1S. AETNNING WµLS, ETC.) NOi SHOWN ON THESE PLWS. ME FlNµ UYOUi IMO OESpN Di ME FOREWY BERN (IN[IIIDING SPEOFlGTON Fqt ME BEDDING STJECQ~7CATIONS GEOiEXTtE POND LINER) SHµI BE DE9GNED B! OMERS IN COORdW11pN WNH ME OwHEA. THE TORE&Y BERU DESIGNER SHNL BE RESPONSIBLE PoR ME SIRUCNPN. DESIGN, GEOIECHNpµ DESIGN, AND NR PRONDNC ADEIX11iE ENOSION/SCOUR I. FILL IN TM AAG W ME PWE PENEIAI.tpNS (Rj iHR011GN ME OW PROTECTION. ME JOHN R. MLAWI$ CWPAYY, INC. ASSUMES ND U181UiT WIM AND ADYGEXi AREAS SNOIKD ~ BROUGM IN i0 A POINT OF ]" ro Y RESPECt TO AYf FOREWY BEPo4 pESIGN COUPWENi OMER 1xAN ME HlDAAUIK: OA YORE ABDVE 1NE TOP EIEYAlION Di ME PIPES IN AOWxCE Oi CkCUUnpNS ASSOWTW WIM ME WEIA LENGM 5110WN. SRLWAY CONSIRULTON 50 RN1 ME PIPES CAN BE INSi111E0 IN A TRENCH CWOn(IN. ONCE ME FILL IS BROLOIIT IA i0 ABM ME TOP 9. ME FOREBAY BERN 15 OESpNEO WIM A 65-FWi WOR IDICM TO ADEIXUTEIY OF PIPES, ME PIPE TRENCHES SNWLO MEN BE gGVATEO FOR PASS SNRM ilAWS. ME FOREGr BERM OESpNW SHµ1 eE RESPONSIBLE FOR INSiAlU1pN DF ME PIPES. FILL WIERYL PDJACENT i0 ME PIPES SWLL ENSLNING THE AfSMETIC pES!GN FUNAES W NOf C04PROUlY ME DESGN WpR MEET ME SPEC6IGTONS LISTED N IIE45 i nN011LH J IN ME SELMM' LENGM, ANO TIUT A fi5-Fppi WEW LENGM 5 MANTNNED. 1RLEp 'EERY 504 k COWKDON SPEdF1GipN5.' MC CDNfRKiOA SHILL ' PAY SPECW Ai1ENTI0N Tp ME C04PKipN EFRORTS µONC ME PIPES ~ I0. N ORDER ro 4IWlTNN ME DESIGN POND NDLDM[ IRE FlWl UYWi/DESIGN OF µ1D ME N/NHdF STiUCMRE ro ENSURE TILT µ1 SPKES UNDER /Np ME FORE&Y BERM SILL Npt ENCRpACII INTO ME WATER OIINIIY PoND INY NRMER /AVGENi t0 ME PIPES µ1O ME 4.IMplE SMNCNRE ARE FILLED W11H 1HW WWi 5 DENCiED ON M5 PUN. ME OESKN ENGINEER SHWID ~ NOnFIEO OF PROPERTY COUPKTEO WTER4L ANY pCMMN IN THE FlNµ UYOIR d ME fORE&Y BERM TW,T WgAp COMFROMSE THE DESIGN WATER OWitt PoND VDWYE, 2. If SEERADF OR fLOw OCCURS Ix OA µDNG A PIPE ALpNMFM, GRp1NDWATFR CONiRW WILL BE NECESSNtt. MIS CWID NVWVF E roPOCRwXY. G i G~ N rsD ~ N iNCi I r NE~c55 Amo wo~i Er + vm' caiomo TM CONSTRUCTION PREPARATION s I. PRXM LO FUCENfNi D< ME NEW F4L. ME AREAS CN WWLH FlLL 5 f0 BE PLACED J. PRIOR t0 INSTNUndI G ME ARMORRF%W PgNCwµ SPILLWAY LINER SWLL BE ClF1RE0 NID STRIPPED OF TCPSOX, TREES, Po101S, VEGETATgN, AND OMER SY51EU, SUBGRNE CWgTONS µONG ME PgWCIPµ SPILLWAY WEIR ANO OBJECTOFUBLE W1FAVl ME AREAS ON WHK:H Fll1 5 f0 BE PlMEO SHILL H fOREH1Y WEIRS 5HW10 BE EYµGhO BY ME ON-SOE GEOiECHNIGI SCA161E0. ENGNEEA i0 ASSESS WHETHER SJR181E BEWMG CONd1pN5 (I.E C04PKTE0 FlLL IxSiµLEO APFROPRUTELY, ETC.) g151 AL ME SUBGRADE 2. AW gEYNTO TOPSOIL SWLI BF STOCKPRED fOR USE Ix R,WnNC (SFEONC) ON LEVEL. SHWLD SOFT OR OiNERaSE uxSUITKIF CONdnONS BE ME DW EMBANKYENR ONCE FlHUL GRADES (AS SHOWN ON ME GRADNG PUN) WVE ENCOUNTERED µONG iNE SPLLWAY AUGN4ENi, MESE W1E1iW$ SHWLD BEEN ESiIBUSHEO WIM COMPACTED Rl, BE UNDERCUT IS dREC1ED Bf ME GEOhCHNICµ ENGINEER. ME UNDEAWi WTEAlµS SHµl BE REPLACED WTN µTEWATELY LOMPKfEO ]. ME CONTRACTOR SHµL NRNISX, INSTµl, OPEWTE, ANp WNTNN IAt! PIRIPING StAUCNAµ FILL AS piRECIED BY ME ON-SIZE GEOhCHNICµ ENGINEER EOUIP4ENi, qC. NEEOEp FOR AEUDJµ OF WARR iROM V1Rg115 PARR Di ME $10RYNAIER PoNp SITE. li IS ANTICIPAhp MAi PUMPING Wlll BE NECESSNO' IN ME gGVATON AREAS (I.E. - Kq TRENCH). OUtING PIKEMENi W FllL WHIN ME KEY TRENCH (OR OMER ARFIS AS NELESSA9Y), ME CWTRACTOA SHµl KEEP ME WA1ER TESTING OF THE Eb1BAN131HEN1' • LEVEL BELOW ME BOTTOM OF ME gGVAnON. ME OWNER IN MHICN ME WATER 5 REMOVED SHLLL BE YJCH M1i ME EXGVARON BCMW IND SIOESLOPES ARE SiABIE. 1. TESTING OF THE NEW FlLL WTEAWS SHALL BE PERFORMED i0 NLINFY nut ME RECOU4Ex0ED LEVEL OF CO4PKMJN IS KH(V[D WPoNG CONSTAIICMN. MEREFORE. ONE OENSRY TESL SHµI ~ PEIdDRNEO FOR OUTLET STRUCTURE MATERIAL SPECIFICATIONS EMERY 2.500 SOWAE FEEL o< IRG FDA EVERY uFr pF FlLL ) 1. ME PRRM:IPIi SPILLWAY WEIR WTET ANO FpREWY WEIRS STILL BE UNEO WI1X ARMDAFSEx® ARnWUnxc coxcAETE BIWK REVEr4Exr smEY, Br.WUORhc/LCHha STATEMENT OF RE$PONSIBILTTY: CONSMUCTION PRODUCTS INC. ME OESIGN/IAYON/INSTµUTION OF INS SYShY SW11 ALL REWIRED 4NNIENWLE M'0 NSPECTI(INS Di MIS FKAItt SNI11 BE BE PE~ORNEp Br ARYORh[/CONIECH C0.451RIICTp1N PRp000T5 INC., ANO BOM ME ME RESPONSpIUtt OF ME OWNER, PER ME gEW1ED OPERIipN ANO DESIGN ENGINEER AHD ME JOHN R. 4GNLS L04PANI, INC. ASSUME NO IWHUtt W11X MIBRENANCE KREEYENI i0R M5 iKNtt. RESPECT TO ME DESIGN OF ME ARMOAFLEX® LINER SYSTEM. INSiµUTON W ME ARMORFLE%® INER SYSTEM (lE. WhPoA15, CONSTRULTICN OEtAAS, ETCJ SHILL BE PER ME YWIFKNREA'S SPECR1GnON5 µI0 PER ME SHOP OIUWWGS PAOWOEO RY ME WNUFKNRER. ME DESIGN ENGINEER NIGHTY RECOYUEND51W1 iNE IN51µUT011 OF ME ARYORF1Ex® LINER MTEU BC PERFOA4E0 BY A SIZE CONTRKLON T4A1 5 APPRWED/SPECIFlED BY A.RUpRiEC/CONTECx CONSiRUCTIp! PROOUCR INC. HOwE3ER SHOULD ME SITE CONTPKipR CHWSE N01 t0 USE A LIWUFKNREq RECOM4ENCEp CONTICTOR PoR NSTµUTpN, MEN MF SI1E CONTRACTOR SHLLL PROADE ME OFSpN ENGINEER WIM A CEROFXLATON OF INSiµUTpN BY ME 4WUFKNRER OA ME WNUFMNRER'S REPRESENAINF. 2. TIE GPJDING CONiPACLOR SHOULD PAY SPECUI AihNipN i0 ME GRADING WIMN ) ME IREAS OF ME PPoNCIPµ SPILLWAY ANO FORCWY WEIRS t0 BE LNEO WIM NtNORRq (lE. WTCNEp AAFAS). ME PPoxCIPµ SPILLWAY WEIR CAESI ELEIWiIOX W 11].60 NID fOREWY WEIR CREST EICVATON Of 115.00 ARE FlNSHEp CPME CLEYAlI0N5, MEANING MAi ME iIN15HE0 TOP OF ME ARMORFTE%s BLOCKS SHWID BE Al EL[VAfON 413.60 µWG ME W' MIR CREST SECnON OF ME PRINCIPµ SPILLWAY AND 115.00 µONG ME b' AND 25' WEIR CREST SECTON ~ ME FOREBKY WEIRS. ME GWOIXG SHOWN IN ME ARCS TO BE LINED NM AR40RfLF% (I.E. HATCHED AREAS) A9E FlNI9IED GRADE CWTWRS, MEANING TNT ME nNCKNESS CF iFC MMORFLq 51STEY WILL NEED Tp BE KCOWhO FOR N MESE AREAS AS WELL ixE CPMINC CONfRKiOR WY PERFORM ONE OF ME FOLIAVRNG i0 ADDRESS MI5 5NATON: A CWAOIWh WITH ARNORIEC/CWIECH CWSTRULipx PRWUCiS INC. FOR ME DESIGN MICKNESS OF ME ENURE AR40RFIEJIS StSTE4 (INCLUDING CEOTE%THLE fABRIL, WASHED SipNE WBGPME, E1C.) M'0 MEN µIOW (TE SUBTAKT) FOA TWi iXMKNE55 WHEN GRADING THE ARE15 OF ME PRINCIPµ SPILLWAY A40 fOREWY WEIRS IO BE UNEO WM ARMORRq (I,E. WICNED ARgS). B. CAAOE NID CWRKi THE MFA$ Cf ME PRINLIPAI SPILLWAY AND FORE&Y WEIRS i0 AE UNEO WIM ARUORRq (lE. WTCNEO AMU) TO ME PRpPpSED DESIGN EIfVAT10NS SHOWN W ME GR+dNG MAN. ONCE THE pE51GN CRMES WK BEEN NLLY CONSMULIEO ANp MMOPRUIELY CWPKTED IN iFA: PgINdPµ SPILLWAY IMO FOREBIY WEIR ARFAR TO BE LINED NM KuORRq, ME GRADING CONRUCipA SHOULD HAVE ME LIMIR OF ME KYOAftfJf SYSTEM STAKED BY A ACGISiEREO IM'0 SUMEYOR ON ME CROUXO, AND MU! THE ARG i0 BE LINED WITH M40RftE% &[KCUT i0 ME APPROPRIh ElfVA1pN5 i0 K[WUWATE ME INSiµUTION OF ME IAUORFlq SYSTEM. IF ME GAMING CONTRACTOR ODES NOT COOAgWTE WIM AAYOATEC A40 AC[OUNt FOR THE iHICNNESS ^ iNE ARYOPHF]6 SYSTEM, ANO ME ARMORNE%A SYSTEM 5 INSTALLED AND OREAMINED 10 BE AT ME IXCORAECt ELEVAipN, ix[N ME AR40RREXS S1STE4 5Hµ1 BE AEUOVED ANp ME SPILLWAY ARElS REGRPDEO i0 ME CORRECT ELEVAnONS AND ME MuOR{LEXS SSTE4 REINSTµLEO Ai tHE GRAIING CWTAACIORS gPENSE. ], µL FOUAED CWCAEh SWLL BE MINIMUM ]CW PSI (1B DAY) UxlE55 OMEAw!SE DIRECTED BY ME STHUCNRµ ENCNEEP. 1. WA1EA Wµltt POND EMEAGENIY dIWCOWN FOR iXE POND SWil BE KNIEVED YA A B'I RUG VA1YE. ME VµVE SWLL BE A 4AH 5ME B70 X-CENMp vµVE OR APPRUED EpJµ. THIS YµvE IS IN KCORpNIC( WIM AWMA L-501 SEC 5.5. ME VµYE SHILL BE IOGIED AI 1K BOrtOY OF A W.NHOIE SINATEO IN ME pPU (SEE SHEET PO-f0 TOR MC IOGnON OF ME VµVE), ANO SHµI BE OPEMBIE FROM ixE TOP D< ME MWxWE VI A WNOWHEEL (SEE OETµI SHEET PD-10). • 5. THE IS'W 0-RING ACP OURR PIPE RWt DFNNS ID Mf PREFORUEO SCOUR HOLE/LEVEL SPREADER) SWLI RE CAPPED ON ME UF$IRUAI END WITH A YEtµ ORIFICE PUTS THE PUTE SN.ALL BE 2]'A71'AI/2' (GµVAN13E0) ANO SWLL WYE A 31 ORFICE Ai ME BOTTOM. P.FASE REFER f0 DEiµL SxEEI Pp-IC FOR KDITpWl NiORWipN. _ _ __ ' '/ ~~ I I I ( ( I I I I I I I I I I ( II I I I I I I I I I / I I I I I I I I I I I I I I I I I I I ( ) / I I ~ ~ // ~J / V // A / / ~ // ~ / ~ / ~ /v // / / / / // I I ~ i / ~ / / I ~/ / / / / I I ~ WCIR I ENGIx . 10 I I ~ , ~ ~~ / WEIR I C i 6TH R / ~ / EI II GR - E~. fR15HED G / I / ~ U G( ltnl PWp L E (DESIGN / ~ vV / = OERS GENE IB/~0) / A / ~ i i/ / // / // 1 ~ / / / / / / `/ / ~ / / W / / / / r / s_/ i .a \ l / / / / WATER gUALiTY POND N I PLAN VIEPJ I.~ p. GRAPHIC SCALE io a la w c 1 Inch = 20 ft $ FINAL DRAl11NG -NOT RELEASED FOR CONSTRUCTION C BRIAR CHAPEL WQP#1(FOREBAY) J. FINCH, PE NEW-05042 8/28/2007 Stage-Storag e Function • Project Name: Briar Chapel Designer: J. Finch, PE Job Number: NEW-05042 Date: 7/ 12/2007 • Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feed (feed (SFl (SFl (CFl (CF) (feed 415.0 0.0 6869 415.5 0.5 7400 7135 3567 3567 0.50 416.0 1.0 7946 7673 3837 7404 1.00 Storage vs. Stage sooo 7000 Y . 7403.7x~ ossa 6000 RZ = 1 V 5000 ~ 4000 A ~«°~ 3000 2000 1000 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Stage (feet) ~Ks = 7403.7 b = 1.0534 • BRIAR CHAPEL S-SFXN-WQP#1(FOREBAI~ J. FINCH, PE NEW-05042 8/28/2007 • _> Stage -Storage Function Ks = 7403.7 b = 1.0534 Zo = 415 415 0 0.000 415.2 1359 0.031_ 415.4 2820 0.065 415.6 4323 0.099 415.8 5853 0.134 416 7404 0.170 • • BRIAR CHAPEL WQP#1(MAIN POOL) J. FINCH, PE NEW-05042 8/28/2007 Stage-Storage Function • Project Name: Briar Chapel Designer: J. Finch, PE Job Number: NEW-05042 Date: 7/ 10/2006 • Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feed (feed (SFl (SFl (CFl (CF) (feet) 410.0 0.0 19068 412.0 2.0 22861 20965 41929 41929 2.01 414.0 4.0 26508 24685 49369 91298 3.95 416.0 6.0 31020 28764 57528 148826 6.05 Storage vs. Stage 0 160 00 140000 ~ 14y8 y=18801x' 120000 RZ = 0.9996 v 100000 ~ 80000 m 60000 N 40000 20000 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Stage (feet) Ks = 18801 b = 1.1498 • BRIAR CHAPEL S-SFXN-WQP#1(MAIN POOL) J. FINCH, PE NEW-05042 8/28/2007 => Stage -Storage Function Ks = 18801 b = L 1498 Zo = 410 Elevation _ Storage [feet] (cfJ [acre-feet] 410 0 0.000 410.2 2955 0.068 410.4 6556 0.151 410.6 10450 0.240 410.8 14546 0.334 411 18801 0.432 411.2 23186 0.532 411.4 27682 0.635 411.6 32276 0.741 411.8 36957 0.848 412 41716 0.958 412.2 46548 1.069 412.4 51446 1.181 412.6 56405 1.295 412.8 61422 1.410 413 66493 1.526 413.2 71615 1.644 413.4 76785 1.763 413.6 82001 1.882 413.8 87260 2.003 • 414 92561 2.125 414.2 97902 2.248 414.4 103282 2.371 414.6 108698 2.495 414.8 114149 2.621 415 119635 2.746 415.2 125153 2.873 415.4 130704 3.001 415.6 136285 3.129 415.8 141896 3.257 416 147536 3.387 • Type.... Outlet Input Data Page 14.01 Name.... WQP1(FB) File.... X:\Projects\NEW\NEW-05042\Storm\WQPOND#1(REV8-22-07).PPW REQUESTED POND WS ELEVATIONS: • Min. Elev.= 415.00 ft Increment = .20 ft Max. Elev.= 416.00 ft OUTLET CONNECTIVITY ---> Forward Flow Only (Upstream to DnStream) <--- Reverse Flow Only (DnStream to Upstream) <---> Forward and Reverse Both Allowed Structure ----------------- Weir-Rectangular Weir-Rectangular TW SETUP, DS Channel • • No. Outfall E1, ft E2, ft ---- ------- --------- --------- W2 <---> TW 415.000 916.000 W1 <---> TW 415.000 916.000 S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 2:09 PM Date: 8/28/2007 Type.... Outlet Input Data Name.... WQP1(FB) Paqe 14.02 File.... X:\Projects\NEW\NEW-05042\Storm\WQPOND#1(REV8-22-07).PPW • OUTLET STRUCTURE INPUT DATA Structure ID Structure Type -------------- # of Openings Crest Elev. Weir Length Weir Coeff. W2 Weir-Rectangular ---------------- 1 915.00 ft 40.00 ft 3.000000 Weir TW effects (Use adjustment equation) Structure ID Structure Type -------------- # of Openings Crest Elev. Weir Length Weir Coeff. W1 Weir-Rectangular ---------------- 1 415.00 ft 25.00 ft 3.000000 Weir TW effects (Use adjustment equation) • • r-~~`y W Egg S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 2:09 PM Date: 8/28/2007 Type.... Outlet Input Data Page 14.96 Name.... WQP1(MP) File.... X:\Projects\NEW\NEW-05042\Storm\WQPOND#1(REV8-22-07).PPW • Min. Elev.= 910.00 ft Increment = .20 ft Max. Elev.= 416.00 ft OUTLET CONNECTIVITY ---> Forward Flow Only (Upstream to DnStream) <--- Reverse Flow Only (DnStream to Upstream) <---> Forward and Reverse Both Allowed • • REQUESTED POND WS ELEVATIONS: Structure ----------------- Orifice-Circular Weir-Rectangular TW SETUP, DS Channel S/N: 621701207003 PondPack Ver. 8.0058 No. Outfall E1, ft E2, ft ---- ------- --------- --------- OR ---> TW 410.000 416.000 WR ---> TW 413.600 916.000 The John R. McAdams Company Time: 2:04 PM Date: 8/28/2007 Type.... Outlet Input Data Name.... WQP1(MP) OUTLET STRUCTURE INPUT DATA File.... X:\Projects\NEW\NEW-05042\Storm\WQPOND#1(REV8-22-07).PPW • Page 19.97 Structure ID = OR Structure Type = Orifice-Circular ------------------------------------ # of Openings = 1 Invert Elev. = 410.00 ft Diameter = .2500 ft Orifice Coeff. _ .600 Structure ID Structure Type # of Openings Crest Elev. Weir Length Weir Coeff. WR Weir_Rectangular 1 413.60 ft 50.00 ft 3.000000 ~~~R ~,~M~F~~Sp,uwAy ~RIN~~p~~ Weir TW effects (Use adjustment equation) Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUT FALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES ... Maximum Iterations= 30 Min. TW tolerance = .O1 ft Max. TW tolerance = .O1 ft Min. HW tolerance = .O1 ft Max. HW tolerance = .O1 ft Min. Q tolerance = .10 cfs Max. Q tolerance = .10 cfs • S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 2:04 PM Date: 8/28/2007 Type.... Composite Rating Curve Name.... WQP1(MP) Page 14.100 File.... X:\Projects\NEW\NEW-05092\Storm\WQPOND#1(REV8-22-07).PPW ***** COMPOSITE OUTFLOW SUMMARY **** • WS Elev, Total Q Notes -------- -------- ------ -- Converge -- ----------------------- Elev. Q TW El ev Error ft cfs ft +/-ft Co --- ntributing Structures ----------------------- -------- 410.00 ------- .00 ------ Free -- ----- Outfall Non e contributing 410.20 .06 Free Outfall OR 410.40 .12 Free Outfall OR 410.60 .16 Free Outfall OR 910.80 .19 Free Outfall OR 411.00 .22 Free Outfall OR 911.20 .24 Free Outfall OR 911.40 .27 Free Outfall OR 411.60 .29 Free Outfall OR 411.80 .31 Free Outfall OR 412.00 .32 Free Outfall OR 412.20 .34 Free Outfall OR 412.40 .36 Free Outfall OR 412.60 .37 Free Outfall OR 412.80 .39 Free Outfall OR 413.00 .40 Free Outfall OR 413.20 .41 Free Outfall OR 413.40 .43 Free Outfall OR 413.60 .94 Free Outfall OR +WR 413.80 13.86 Free Outfall OR +WR 414.00 38.35 Free Outfall OR +WR 414.20 70.02 Free Outfall OR +WR 414.40 107.97 Free Outfall OR +WR 414.60 149.90 Free Outfall OR +WR 414.80 196.74 Free Outfall OR +WR 415.00 247.60 Free Outfall OR +WR 415.20 302.17 Free Outfall OR +WR 915.40 360.17 Free Outfall OR +WR . 415.60 421.42 Free Outfall OR +WR 415.80 485.72 Free Outfall OR +WR 416.00 552.93 Free Outfall OR +WR • S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 2:10 PM Date: 8/28/2007 Type.... Master Network Summary Page 2.01 Name.... Watershed File.... X:\Projects\NEW\NEW-05042\Storm\WQPOND#1(REV8-22-07).PPW MASTER DESIGN STORM SUMMARY • Network Storm Collection: RDU Total Depth Rainfall Return Event in Type ------------ 1-Yr ------ 3.0000 ---------- Synthetic ------ Curve 100-Yr 8.0000 Synthetic Curve 10-Yr 5.3800 Synthetic Curve 25-Yr 6.4100 Synthetic Curve --------------------------- ICPM CALCULATION TOLERANCES Target Convergence= .000 cfs +/- Max. Iterations = 35 loops ICPM Time Step = 1.00 min Output Time Step = 1.00 min ICPM Ending Time = -------------------- 2100.00 --------- min -- RNF ID TypeII 24hr TypeII 24hr TypeII 24hr TypeII 24hr MASTER NETWORK SUMMARY SCS Unit Hydrograph Method (*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt) Max • Node ID Type Return Event HYG Vol cu.ft Trun Qpeak min Qpeak cfs Max WSEL ft Pond Storage cu.ft --- --------- *POND OUTLET --- ---- JCT ------ 1 ---------- -- 34071 --- - -- 1923.00 -------- .43 -- - ---- *POND OUTLET JCT 100 377985 720.00 163.32 *POND OUTLET JCT 10 186608 724.00 66.87 *POND OUTLET JCT 25 260316 722.00 1.10.08 TO WQ POND 1 AREA 1 95777 716.00 41.00 TO WQ POND 1 AREA 100 443870 715.00 188.68 TO WQ POND 1 AREA 10 252358 715.00 108.83 TO WQ POND 1 AREA 25 326210 715.00 140.02 WQP1(FB) POND 1 95777 716.00 41.00 WQP1(FB) POND 100 443871 715.00 188.68 WQP1(FB) POND 10 252358 715.00 108.83 WQP1(FB) POND 25 326210 715.00 190.02 WQP1(FB) OUT POND 1 95894 718.00 38.82 415.33 2342 WQP1(FB) OUT POND 100 943977 717.00 181.98 415.96 7056 WQP1(FB) OUT POND 10 252454 717.00 104.73 415.66 4778 wQPi(FB) OUT POND 25 326305 717.00 134.66 415.78 5721 WQP1(MP) POND 1 95894 718.00 38.82 WQP1(MP) POND 100 493977 717.00 181.48 WQP1(MP) POND 10 252454 717.00 104.73 WQP1(MP) POND 25 326305 717.00 134.66 • S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 2:14 PM Date: 8/28/2007 • Type.... Master Network Summary Page 2.02 Name.... Watershed File.... X:\Projects\NEW\NEW-05042\Storm\WQPOND#1(REV8-22-07),PPW ------------------------------- ICPM CALCULATION TOLERANCES Target Convergence= .000 cfs +/- Max. Iterations = 35 loops ICPM Time Step = 1.00 min Output Time Step = 1.00 min ICPM Ending Time = 2100.00 min MASTER NETWORK SUMMARY SCS Unit Hydrograph Method (*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt) hy~,as~. Max Return HYG Vol Qpeak Qpeak Max WSEL Pond Storage Node ID Type Event cu.ft Trun min cfs ft cu.ft ----------- ------ ---- ------ ---------- -- --------- -------- - ------------ WQP1(MP) OUT POND 1 34071 1423.00 .43 4 3. 3 77681 WQP1(MP) OUT POND 100 377985 720.00 163.32 41 110259 WQP1(MP) OUT POND 10 186608 724.00 66.87 4 1 97370 WQP1(MP) OUT POND 25 260317 722.00 110.08 41 1 1 103619 o•yRws~c S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 2:14 PM Date: 8/28/2007 BRIAR CHAPEL WQP#1(MAIN POOL-WORST CASE) J. FINCH, PE NEW-05042 8/28/2007 • _> Stage - Storage Function Ks = 18801 b= 1.]498 Zo = 410 Elevation Storage Elevation Stora e [feet] [cfJ [acre-feet] [feet] [cl] [acre-fey 410 0 0.000 413.6 0 0.000 410.2 2955 0.068 413.8 5259 0.121 410.4 6556 0.151 414 10561 0.242 410.6 10450 0.240 414.2 15902 0.365 410.8 14546 0.334 414.4 21281 0.489 411 18801 0.432 414.6 26697 0.613 411.2 23186 0.532 414.8 32148 0.738 411.4 27682 0.635 415 37634 0.864 411.6 32276 0.741 415.2 43152 0.991 411.8 36957 0.848 415.4 48703 1.118 412 41716 0.958 415.6 54284 1.246 412.2 46548 1.069 415.8 59895 1.375 412.4 51446 1.181 416 65536 1.504 412.6 56405 1.295 412.8 61422 1.410 413 66493 1.526 413.2 71615 1.644 413.4 76785 1.763 413.6 82001 1.882 413.8 87260 2.003 414 92561 2.125 • 414.2 97902 2.248 414.4 103282 2.371 414.6 108698 2.495 414.8 114149 2.621 415 119635 2.746 415.2 125153 2.873 415.4 130704 3.001 415.6 136285 3.129 415.8 141896 3.257 416 147536 3.387 • Type.... Composite Rating Curve Page 14.45 Name.... WQPl(MP-100YR) File.... X:\Projects\NEW\NEW-05042\Storm\WQPOND#1(100YR)(REV8-22-07).PPW ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Notes -------- -------- ------ -- Converg e ------------------------- Elev. Q TW El ev Error ft cfs ft +/-ft Contributing Structures 413.60 .00 Free Outfall ------------- WR 413.80 13.41 Free Outfall WR 419.00 37.89 Free Outfall WR 414.20 69.55 Free Outfall WR 414.40 106.99 Free Outfall WR 414.60 199.40 Free Outfall WR 919.80 196.24 Free Outfall WR ^~ 415.00 247.08 Free Outfall WR ( / 915.20 301.64 Free Outfall WR 415.40 415.60 359.63 420.87 Free Free Outfall Outfall WR I~.~~~ STAGE-~iSC~A~GF WR 915.80 485.17 Free Outfall WR CU.1`-~'~p~ 416.00 552.35 Free Outfall WR r 1~ i • S/N: 6217012 07003 The John R. McAdams Company PondPack Ver . 8.0058 Time: 2:51 PM Date: 8/28/2007 Type.... Master Network Summary Page 2.01 Name.... Watershed File.... X:\Projects\NEW\NEW-05042\Storm\WQPOND#1(100YR)(REV8-22-07).PPW MASTER DESIGN STORM SUMMARY • Network Storm Collection: RDU Total Depth Rainfall Return Event in Type - ------------ 1-Yr ------ 3.0000 --------- Synthetic ---- -- Curve 100-Yr 8.0000 Synthetic Curve 10-Yr 5.3800 Synthetic Curve 25-Yr 6.4100 Synthetic Curve --------------------------- ICPM CALCULATION TOLERANCES Target Convergence= .000 cfs +/- Max. Iterations = 35 loops ICPM Time Step = 1.00 min Output Time Step = 1.00 min ICPM Ending Time = -------------------- 2100.00 --------- min -- RNF ID TypeII 24hr TypeII 24hr TypeII 24hr TypeII 24hr MASTER NETWORK SUMMARY SCS Unit Hydrograph Method (*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt) Return HYG Vol Node ID Type Event cu.ft Trun --- *POND OUTLET - JCT 1 --- -- 96177 *POND OUTLET JCT 100 499297 *POND OUTLET JCT 10 252807 *POND OUTLET JCT 25 326584 TO WQ POND 1 AREA 1 95777 TO WQ POND 1 AREA 100 443870 TO WQ POND 1 AREA 10 252358 TO WQ POND 1 AREA 25 326210 WQP1(FB) WQPl(FB) WQP1(FB) WQP1(FB) WQP1(FB) WQP1(FB) WQP1(FB) WQPl(FB) WQP1(MP) WQP1 (MP) WQP1(MP) WQPl(MP) POND 1 POND 100 POND 10 POND 25 OUT POND 1 OUT POND 100 OUT POND 10 OUT POND 25 POND 1 POND 100 POND 10 POND 25 95777 443871 252358 326210 95899 443977 252454 326305 95899 443977 252459 326305 Qpeak min 723.00 720.00 721.00 720.00 716.00 715.00 715.00 715.00 716.00 715.00 715.00 715.00 718.00 717.00 717.00 717.00 718.00 717.00 717.00 717.00 Max Qpeak Max WSEL Pond Storage cfs ---ft--- ---cu_ft---- 33.53 165.28 93.69 121.62 91.00 188.66 108.83 140.02 41.00 188.68 108.83 140.02 38.82 415.33 2342 181.48 415.96 7056 109.73 415.66 4778 134.66 415.78 5721 38.82 181.48 104.73 139.66 S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 2:51 PM Date: 8/28/2007 • Type.... Master Network Summary Page 2.02 Name.... Watershed File.... X:\Projects\NEW\NEW-05092\Storm\WQPOND#1(100YR)(REV8-22-07).PPW ------------------------------- ICPM CALCULATION TOLERANCES ------------------------------- Target Convergence= .000 cfs +/- Max. Iterations = 35 loops ICPM Time Step = 1.00 min Output Time Step = 1.00 min ICPM Ending Time = 2100.00 min ------------------------------- MASTER NETWORK SUMMARY SCS Unit Hydrograph Method (*Node=Outfall; +Node=Diversion;) (Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt) • • Return HYG Vol Qpeak Qpeak Node ID Type Event cu.ft Trun min --------- cfs -------- ----------- WQPl(MP) ------ OUT ---- POND ------ 1 ---------- -- 96177 723.00 33.53 WQP1(MP) OUT POND 100 444297 720.00 165.28 WQPl(MP) OUT POND 10 252807 721.00 93.69 WQPl(MP) OUT POND 25 326584 720.00 121.62 Max Max WSEL Pond Storage ft cu.ft - -------- ----------- 9617 14.6 28545 4 .33 19371 414.47 23149 ~~.yR sfoRM W~ GlSE (rE, s tpNON cco~~4 ~) S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 2:51 PM Date: 8/28/2007 BRIAR CHAPEL Below NWSE B. IHNATOLYA, EI NEW-05042 10/3/2007 • Stage-Storage Function Project Name: Briar Chapel Designed By: B. Ihnatolya, EI Job Number: NEW-05042 Date: 8/22/2007 Contour (feet) Stage (feet) Contour Area (SF) Average Contour Area (SF) Incremental Contour Volume (CF) Accumulated Contour Volume (CF) Estimated Stage w/ S-S Fxn (feet) 404.0 0.0 9324 406.0 2.0 11085 10205 20409 20409 2.02 408.0 4.0 13021 12053 24106 44515 3.88 410.0 6.0 19068 16045 32089 76604 6.11 • Storage vs. Stage soooo soooo 70000 y . 8795.1 xt t9ss LL soooo Rz = 0.9978 50000 o~ R 40000 0 W 30000 20000 10000 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Stage (feet) Ks = 8795.1 b = 1.1955 • BRIAR CHAPEL Forebay B. IHNATOLYA, EI NEW-05042 10/3/2007 • Stage-Storage Function Project Name: Briar Chapel Designed By: B. Ihnatolya, EI Job Number: NEW-05042 Date: 8/22/2007 Contour (feet) Stage (feet) Contour Area (SF) Average Contour Area (SF) Incremental Contour Volume (CF) Accumulated Contour Volume (CF) Estimated Stage w/ S-S Fxn (feet) 409.0 0.0 2126 411.0 2.0 3547 2837 5673 5673 2.01 413.0 4.0 5118 4333 8665 14338 3.92 415.0 6.0 6869 5994 11987 26325 6.07 • Storage vs. Stage 30000 25000 y = 2142.3x' ssos LL 20000 Rz = 0.9991 U m 15000 A 0 y 10000 5000 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Stage (feet) Ks = 2142.3 b = 1.3906 • BRIAR CHAPEL NEW-05042 BRIAR CHAPEL - WO POND #1 DESIGN ..:...:..: L FORLI~A.1'V Hl(i~~":.::`::::>;:'?:;:>~<~~_ • ..... Per NCDENR "StormwaterBest Management Practices ", the forebay volume should equal about 20% of the total basin volume. A. Water Quality Pond -Below Normal Pool Volume Volume = 76604 ft3 B. Forebay Volume Volume = 26325 ft3 Forebay = 34% Impervious Area = 9.56 acres Drainage Area = 22.2 acres Impervious = 43.1 Cotal Below NP Volume 76604 cf Surface Area 19068 sf • Average Depth = 4.02 ft __> From the NCDENR Stormwater BMP Handbook (4/99), the required SA/DA ratio for 85% TSS Removal in the Piedmont is as follows: ~1.0 4.02 ~.0 Lower Boundary => 40.0 1.43 1.2:3 Site % impervious => 43.1 1.52 1.52 1.33 Upper Boundary => j0.0 1.73 1.5(? Area Required = 14684 sq.ft. Area Provided = 19068 s .ft. YES B. II4NATOLYA, EI 10/3/2007 • BRIAR CHAPEL NEW-05042 1" RUNOFI • Project Name: Checked by: Job Number: Date: B. IHNATOLYA, EI 8/28/2007 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 410.0 0.0 19068 -- _. 412.0 2.0 22861 20965 41929 41929 2.01 414.0 4.0 26508 24685 49369 91298 3.95 416.0 6.0 31020 28764 57528 148826 6.05 • Storage vs. Stage 160000 140000 i 1498 y = 18801x 120000 RZ = 0.9996 v 100000 rn 80000 A 60000 40000 20000 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Stage (feet) VOLUME CALCULATION SHEET Briar Chapel B. Ihnatolya, EI NEW-05042 8/22/2007 Ks = 18801 b = 1.1498 Calculation of Runoff Volume required for Storage The runoff to the water quality pond for the 1" storm runoff requirement is calculated by simply multiplying the total watershed area draining to the water quality pond times the runoff depth. Total Drainage Area to WQ Pond = 22.20 acres Runoff Depth = t inches Therefore. total runoff from precipitation in question = 80586 CF This amount of runoff must be stored in the pond above normal pool elevation, and be released in a period of two (2) to five (5) days, by an inverted PVC siphon, the invert end of which is set at permanent pool elevation. • • BRIAR CHAPEL B. IHNATOLYA, EI NEW-05042 8/28/2007 Calculation of depth required for runoff storage pool (above normal pool) Normal pool depth (above invert) = 0.00 feet Storage provided at permanent pool depth = 0 CF (calculated) Total storage required for normal + storage pool = 80586 CF Stage (above invert) associated with this storage = 3.55 feet Therefore, depth required above normal pool for storm storage = 3.55 feet 42.55 inches Set crest of principal spillway at stage = 3.55 feet and EL = 413.55 feet At principal spillway crest, storm pool storage provided = 80693 CF • • sRIAR cxAPEL Stormwater Management_Facility #1 B. IxrIATOLYA, EI NEW-05042 8/28/2007 • Drawdown Time = 2.84 da s By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 1.713 feet Orifice composite loss coefficient = 0.600 X-Sectional area of 1 - 3" inverted siphon = 0.049 ftz Q = 0.3093 cfs Drawdown Time =Volume / Flowrate / 86400 (sec/day) Drawdown Time = 3.02 da s Inverted Siuhon Design Sheet D siphon No. siphons Ks b Cd siphon Normal Pool Elevation Volume @ Normal Pool Siphon Invert WSEL @ 1" Runoff Volume 3 inches 1 18801 1.1498 0.60 410.00 feet 0 CF 410.00 feet 413.55 feet WSEL (feet) Vol. Stored (cf) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (cf) Incr. Time (sec) 413.550 80693 0.437 413.243 72720 0.417 0.427 7972 18683 412.936 64860 0.396 0.406 7860 19352 412.629 57123 0.373 0.385 7737 20123 412.322 49520 0.350 0.362 7603 21027 412.015 42067 0.324 0.337 7453 22113 411.708 34782 0.297 0.311 7285 23452 411.400 27692 0.267 0.282 7090 25170 411.093 20833 0.232 0.249 6859 27507 410.786 14260 0.192 0.212 6573 30997 410.479 8069.3 0.140 0.166 6191 37254 Conclusion : Use 1 - 3.0" Diameter PVC Inverted Siphon to drawdown the accumulated volume from the 1.0 "storm runoff, with a required time of about 2.84 days. • BRIAR CHAPEL SWMF #1 - 15" RCP Drawdown Pipe NEW-05042 • This sheet will, given the barrel length of interest and minimum seep collar projection from the barrel, determine the number ofanti-seep collars to place along the barrel section, and the expected spacing of the collars. Design Requirements => Anti-seep collars shall increase the flow path along the barrel by 15%. Anti-seep collars shall be spaced a maximum of 14X the minimum collar projection or 25 feet, whichever is less. J.V. FINCH, PE 11 / 16/2006 Anti-Seep Collar Design => SWMF # • Anti-Seep Collar Design Sheet Flow Length Min. Calc'd # Max ' ~'~` # of ~~' °: Ise Pond along barrel Projection of collars Spacing :~olhrs to~, SpPCing Spacing ID (feet) (feet) required (feet) i ~ ~ use - ~ .~ (feet)'' OK? l - 15" RCP 21.0 1.60 0.98 22.4 : 1.00 10.5 YES Note : If spacing to use is greater than the maximum spacing, add collars until the spacing to use is equal to or less than the maximum spacing allowable for the collar design. Anti-seep collars shall be used under the structural fill portions of all berms/dams unless an approved drainage diaphragm is present at the downstream end of the barrel. • BRIAR CHAPEL SWMF #1 - 15" RCP J.V. FINCH, PE NEW-05042 11/16/2006 • This sheet will, given the barrel length of interest and minimum seep collar projection from the barrel, determine the number of anti-seep collars to place along the barrel section, and the expected spacing of the collars. Design Requirements =_> Anti-seep collars shall increase the flow path along the barrel by 15%. Anti-seep collars shall be spaced a maximum of 14X the minimum collar projection or 25 feet, whichever is less. Anti-Seep Collar Design => SWMF # Flow Length Min. Calc'd # Max. ~ ~' '~ se~,i+~ Pond along barrel Projection of collars Spacing acing :, Spacing ID (feet) (feet) required (feet) Feet), z: OK? ~~" r ~ pik~yi~ 1 - 15" RCP 46.0 1.7~ 1.97 24 5 ::" ; 2cf~0 '.5;33333 Zr:ES • Note: If spacing to use is greater than the maximum spacing, add collars until the spacing to use is equal to or less than the maximum spacing allowable for the collar design. Anti-seep collars shall be used under the structural fill portions of all berms/dams unless an approved drainage diaphragm is present at the downstream end of the barrel. Anti-Seep Collar Design Sheet • BRIAR CHAPEL Stormwater Management Facility #1 J. FINCH, PE NEW-05042 10/2/2007 Inverted Sip hon Design Sheet S D siphon = 8 inches No. siphons = 1 Ks = 18801 b = 1.1498 Cd siphon = O.bO Normal Pool Elevation = 410.00 feet Volume @ Normal Pool = 0 CF Siphon Invert = 410.00 feet WSEL @ Principal Spillway Crest = 413.60 feet • WSEL (feet) Vol. Stored (cf) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (cf) Incr. Time (sec) 413.600 82001 3.033 413.289 73899 2.885 2.959 8102 2738 412.977 65912 2.729 2.807 7987 2846 412.666 58049 2.563 2.646 7863 2972 412.354 50323 2.386 2.474 7726 3123 412.043 42748 2.194 2.290 7574 3308 411.732 35346 1.984 2.089 7403 3543 411.420 28141 1.749 1.867 7205 3859 411.109 21171 1.478 1.614 6970 4320 410.797 14491 1.143 1.310 6680 5097 410.486 8200.1 0.605 0.874 6291 7198 Drawdown Time = 0.45 da s By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 1.633 feet Orifice composite loss coefficient = 0.600 X-Sectional area of 1 - 8" Orifice = 0.349 ftz Q = 2.1480 cfs Conclusion : Use 1 - 8" Diameter Orifice to dawdown the accumulated volume from the principal spillway elevation down to normal pool elevation, with a required time of about 0.49 days. Drawdown Time =Volume / Flowrate / 86400 (sec/day) Drawdown Time = 0.44 da s • BRIAR CHAPEL WQP#1-EMERGENCYDP NEW-05042 NRCD Land Quality Section Pipe Design Entering the following values will provide you with the expected outlet velocity and depth of flow in a pipe, assuming the Mannings roughness number is constant over the entire length of the pipe. flow Q in cfs : 3 Flow depth (ft) = 0.67 slope S in % :0.50% Outlet velocity (fps) = 8.594 pipe diameter D in in.: 8 Manning number n :0.014 NRCD Land Quality Section NYDOT Dissipator Design Results Pipe diameter (ft) 0.67 Outlet velocity (fps) 8.59 Apron length (ft) 4.00 J. FINCH, PE 10/2/07 AVG DIAM STONE THICKNESS • (inches) CLASS (inches) 3 A 9 »6 B 22« 13 Borl 22 23 2 27 CALCULATION: Minimum TW Conditions: W = Do + La = 1.25' + 4' = 5.25 ft CONCLUSION: USE NCDOT CLASS `B' RIP RAP 4'L x 6'W x 22" THK • ~x.~ 05-o~3a v? WATER QUALITYPOND #2 FINAL DESIGN CALCULATIONS BRIAR CHAPEL NEW-05042 • N V N N N _~ O N C L Q M O Q O• N N N O m 3 N O a N O I>n l1J Z m 3 0) U N C71 C 3 • WATER OUALI'I7' POND A2 CONSTRUCTION SPECIFICATIONS GENERAL NOTES 1. PROR Ip CWSTRUCigN, iNE W-SITE GEOTECMNICN ENGINEER SHALL VFRRY THE SURPBILItt 0< THE PAOPOSEO BORROW ARG /FILL FOA USE IN iNF DAa EMBNW(MENi$ /KEY 1AENCH. Z. THE W-9TE CEOIECHNIGL ENGINEER SHaL INSPECT THE KEY TRENCH EKGVATION PRgR i0 PuCEMENi OF ANY BACKRLL MTHIN THE KEY TRENCH, IF n+E CWiPACTOR CWSTAUCiS AND COVERS UP THE KEY TRENCH PNgR i0 INSPECTIOR THEN THE KEY TRENCH SHNL BE UNCOVERED AND TESTED Ai NE CONTPACTOR'S E%PENSE J. 7HE CONIPACiOA SHALL REFER i0 ME UWOSCME PLW FOR THE PERWNENi PUNTING %,W/SCHEDULE. ME PERWINENT VECETAnW FpA THE PAOPpffO EMBPNKMENT SHALL BE CALL FESCUE PIFASE NOTE IIMT NO RiEES/SHRUBS OF AN1 TYPE MAY BE PlAN1E0 ON THE PROPOSED 00.11 EMAANNMENi (FILL ARFlSJ, 4. i ME WRIER WHItt PONp IS TO BE USED AS A $C04ENi BI51N DURING CONSiAUCTgN, THE CONTRACTOR SHALL NOi CONSTRUCT 141E INTERIOR EARTHEN GERMS SHOWN W MI5 F1AN UNill APPROVµ i0 REMOTE THE SE014ENT BASIN H/5 BEEN GPAMEO BY ME EROSION CWiRW INSPECTOR. 5. IF THE WATER OWLItt PONp IS i0 BE USED AS A SEgMENi B61N DURING CONSTRUCIgN, THE aRU SHALL BE CLEANED OUT Q.E. SEOIMENi, TRASH, ETC) A40 REYEGEg1E0 (IF NECESSARr) PRgR t0 USE AS A STg1MWATER MNLILE4ENi FACEITY. THE TPASN AND SEDIMENT SHOULD BE DISPOSED OF PROPERLY (I.E - UNOFlLL). 6. 1HE STRJCNRAL DESIGN FOR ME RETUNING WALL AWACENi t0 THE POND FACll/tt SHALL EIE MSgNED Bf OTHERS PROR ro gtpERING OR INSiµUTpN a< ANY RRNNING WALLS ixE CONTAACIOA SXa1 PRONOE THE ENLINEEA WITH SHOP DRAWINGS, SEAED BY A P.E REGISTEPEO IN NORTH CAROUTAI FOR APPFOVµ. PIERCE VOCE MAi ME STRUCNRµ ENGINEER SHILL AL50 PROVIpE (WHERE xECESSARY) A SNETY FENCE ALONG THE i0P DC n+E RCENNINC WA115 DURING iNE DESIGN PROCESS 1. 111 REfAMING WAIL 111CNMENtS SHOWN pN THESE PUNS OEPg1S nVE LpGTIW pf 1HE FAON7 FACE OF THE RETNNING WALLS Ai ME AOiT04. 8. RETAINING WNL$ ARE i0 BE DESIGN-BUILD PRpIEtT(5) BY THE CW1RACfOR. II SRµI BE ME CONmACTDA'S AESPOHSIBIUtt TO OBiNN Flw1 CWSTRUCTION DRAWINGS igOM A REGISTERED PROFESSKWYLL ENgNEEA 0.N0 CNN µL REOURED PERMITS NECESSARY Fpt THE CONSTRLK:TION OF niE RETAINING WµLS. 9. RETAINING WµIS SH41 BE ASSUMED i0 BE BACNRLLEO WITH OFF-SITE BORROW NAIERAL OR PROCESSED FILL UNlE55 COARRACiOA GN PROVIDE OWNER WITH CONFlRWTIW FRpM THE GEOTE[HNGL ENGINEER ANO ME AEiaNINL Wµl DESIGNER MAi READILY AYNUBLE ON-SITE SOILS GN BE USED. 10. MF i0P AND BORON OF WALL EIEVAnONS SHOWN W MESS PUNS IOENIIFY RN6XE0 LPADE EIFVAnONS ONLY, iNE EMIENi MAi ME AETaxING W/J1 WILL BE GIENCED BELOW GARDE i0 7NE FWRNC SIU11 BE IfENiIFlm ON ME RETNNINC WALL LaNSmucnW oAAWwcs. fi. NL REINFORCED CONCRETE R/AED ENO SECnON INLE15 BRO INE POND SHALL BE UNDERUk! WN A ]000 P51 CONCRETE AID. SEE DETAWS SHEET Pp-Z0. CONSTRUCTION PREPARATION 1. PRgA i0 PUCEMRAT OF 1NE NEW FILL THE AREAS W WHICH FlLL IS 10 BE PVCED SHALL BE CIEAREO ANO STAIPPEp OF i0P5014 TREES, ROOTS, VECETAnOR AND OTHER OBIECMlNABLE INTERW. THE AAFAS W WHICH FlLL I$ i0 ff PVCEO SHALL BE SLAAIFIED. Z. ANY REMOVED tOPSpIL $Ha1 BE SiOCKPWEO FOR USE IN PWATINL (SEEDING) W THE DAM EMBMNMENiS ONCE FlNµ GRADES (AS SHOWN ON DIE CRAfWC PIPAI) HAUL BEEN ESDBUSHEO WI1H COMPACTED FILL, ]. THE CONTRACTOR SHLLL VANISH, INSiµL OPERATE, NWI M4NIaN ANY PUIVINC EWIPMENI, ETC. NEEDED FOR REMMAI OF WATER FROM VARIWS PMfi OF iXE SiORMWAiER POND SIZE. R IS ANTgIPATEO tNAt PIIMPINp WILL BE NELESSafV IN THE EKGVAigN ARG$ (I.E. - KEY TRENCH). WRING PIAC[MENi OF RlL WITHIN ixE KEY TRENCH (Oft OTHER NAFAS AS NECESS44YJ, lHE CONRM[tOR $HAll KEEP THE WATER LLVEL BELOW THE BOTTOM OF THE ExGVATIpN. 1HE MANNER IN WNICN NE WATER 5 REMOVED SWLI BE SUCH nUi NE EXGVARW BOrtON ANO SIDESLOPES N>E srABIE. OUTLET STRUCTURE MATERIAL SPECQ~ICAT[ONS 1, n1E 1Y RCP OURET WtAEL SHALL BE CIA55 III RCP, u001RED BELL AND SPMgT, MEETING ME REOUIREMENI$ OF ASTM LZ6-UTESi. MC PIPE SHLLL HAVE CWFlNEO 0-RING RUBBER GISKET JOIN15 MEERNC ASTN C-11]-U1ESi. NE PIPE JOINTS SHALL BE TYPE R-/. Z. ME SIRUCRIPAL OESK;N FOR THE 616' (INTEANµ OMENSIONS) ASfA BQx WRX EXTENDED B6E Swll BE BY OTHERS. PRIOR i0 ORpEPINC nlE STRLICNRfS, ME CONTPACTpA SHALL PRONOE iNE FNUNEER WifH SHOP OAAWNLS, SEVEO Bf A P.E. REG5IERED W NORTH GAOUALA, i0R RENEW. !. THE RISER BON OU1lET STRUCTURE SwLL DE PgpVIpEO WITH Sl[PS tfi' W CENTER, STEPS Sw1L BE PRONOEO pN NE IxNEA WALL OF iNE AIffR BOX. S1EP5 SNa1 fE N ACCORDwCE WIM NCWt SiO 810.66. PLEASE REFER TO SHEET Pp-28 FOR LOGigN OF iNE RISER STEPS. A. iME AO'4I0'W.]9' MICN CONLPEIE ANn-ROi,AnpN BIOCx FOR WARA pW111Y PoND ~Z SHAH BE PREGSi A$ ME Ex1EWE0 RISE W THE RISER BOx WRING FAIStIGnON. THE PRECAST BISE SHLLL 8E INCLUDED IS PART OF ME SHOP DRAWINGS IW,i YRLL BE SUBMITTED LO ME ENGINEER FOR RENEW (SEE ITEM 1 ABIVE). s. EACH RISER BOx JOINT DESIGN SHLLL CONFORM ro ASi4 C-179. THE JOINTS SHALL BE SEALED USING WM RUBBER SEVANi CONFORMWG i0 AS1M-990. nlE CONRACTOR SHALL PARGE JOINTS ON BCTH THE INSIDE ANO WTSgE WIM NON-SHRINK LAOUT. 6. THE PAEGSi R6ER BOM SiiIUCNAE FOR WATER OLLWtt POND (Z SHNI HAVE A SNIPPING WEICHi OF 6!.000 CBS. THE STNUCTURE WEIGHT SNAIL BE THE SHIPPING WEICHi ANp SHALL BE DETERMINED BY SDBTRAC11NC ME WEIGHT pF NE FACTORY BLWNOUTS FROM 1HE GROSS siRUCNAE WEICHi. 1HIS INFOAMAnON SHALL BE SHOWN W THE SHOP DRAWINGS SUBMITTED i0 ME ENGINEER FpR REVIEW. 7. PRIOR TO ORDERING, THE CONTMCipq SHal $UlWlli 7R45H AACN SHOP DRAWINGS t0 iNE ENGINEER FOR APPROVAL CONTRCTOA SHALL ENSURE nUi AN ACCESS NATCX 5 PROVIDED WITHIN ME TRASH RKN (SEE WING FOR LOLAnpN) nLAi WILL NLOW FOR FIJNRE WJNIENWCE ACCESS. CONTACTOR SHALL A150 PAONOE A [HNN M'0 LOCH FOR SECURING THE ACCESS HATCH. B. ALL PWREO CWCRER SNNl BE KHRAQN 7000 P51 (IS GY) UNIFS$ OMERWSE NOTED. 9. CEOIExnLE FABRIC FOR THE 12-INCH WREi BNREL JOINTS SNµ1 BE AMOCO STriE 155! PWTPRpPnENE NON-WOVEN NEEDLE PUNCHED OR APPAWN EOW1 (NON-WOVEN FABRq) 10. W0.1FJR QWLItt PpNO EMERGENCY OIUWppWN FOR ME PWD SHALL AE ACHIEVED VW IN B'R PLUG VµVE. nfE vµVE SHALL BE A MkN SME BZO N-CENTRIC VALVE OR APPROVED EOWL THIS VµVE IS IN ACCORDANCE WRH AWYI.A C-501 SEC. 5.5. ME YAIYE SHaL BE LOGRO WITHIN ME 6' x 6' RISER STRUCZURE. Ax0 $Ha1 BE OPERABLE FROM i0P pF STHUCNRE YA A HWOYIHE0. (SEE DEtaL SHEET PO-ZB). 11. THE IZ'W DIP DU7LEi PIPE SHµL BE GPPEO ON iNE UPSiRF1Jl ENO WIM A 4ETµ ORIRCE PUTS. NE PUTE SHµL BE IB'.I B'.I/]' (G4VANIZEO) ANp SHALL HAVE A ]'F ORIRCE A7 THE BOTTOM. PLEASE REFER i0 DETPA SHEET PO-ZC FOR AOOI110Nµ INFORMATION. BERM SOIl. AND COMPACTION SPECQ~7CATIONS I. ALL FILL uAiERM15 i0 BE USED FOA THE OAk E4BANNUENIS SIW.I % iPJ(EN FROM BORROW AREAS APPROVED BY 1HE ON-SITE LEOiECHNIGi ENGINEER. nlE RLL NATERIµ SHALL RE FREE FROM RW72, SN4P5, W000, STONES GRGIER THAN 6', ANO fAOZEN OA OTHER OBIELnONABIE 4A7ERLAL THE FOLLOWING SOIL MES ME SUIIAALE FOR USE AS RLL WiHIN THE 0.4M EMBwK4EN1 AND NEY TRENCH: ul AND 0. 7. RLL PUCEMENI SWLL x01 EKCEEO A MA%IMUU 8' UR. EACH UR SHµL BE CONTINUWS FOR THE ENTIRE LENGTH OP EMBANNMENiS BEFORE PUCCMEM OF FLL FDA THE BER4 SECnON, µl UNSUITABLE IMTERML SHALL BE REMOVED ANO THE SURFACE PROPERLr PAEPAREp FDA FlLL PUCEMENi. !. All FILL SOILS USED IN THE E4BWNMENiS / NEY TRENCH CONSTRUCTION SHALL DE COMPACTED 10 Ai 1FA51 95F OF THE SiANOaA PRpCTOR YASIMUM DRY OENSItt (A51M-fi9B). THE FlLL SOILS SHAll BE COMPACTED Ai A MOISNPE CONTENT WITHIN -I to ~! PEACEN7 D< rt5 OPTIMUM MOISTURE CONTENT. COMPACTION IESiS SHALL BE PERiORMED BY THE pN-SRE GEOIECHNIGL ENGINEER WRING CONSTRUCnON f0 VERIFY i11Ai n+E PROPER CWPACnON LEVEL HAS BEEN RF/CHEO. iNE RLL SHOULD BE COMPACTED USING A SHEEFSFOOi rnE COMPACTOR. IN ORDER 10 PREVENT GNAGE ip NE PIPE, Np LOUPACIION EWIPMENi $NNL CROSS ANY PIPE UNRL MINIMUM COVER IS ESiABL15HE0 ALONG THE PW E. •. A NEY TRENCH SHALL BE PAONOEp BENUiN Nl FILL MUS OF THE BER4, iNE TRENCH SILL Ex1EN0 A MINIMUU OF S FI BELOW EXISnxc GRADE AAq SHALL HAYS A NWIUUM BOTTOM WIDTH DF 5 RET. NE NEY TRENCH SIDESLOPCS SHALL BE A MINIMUM OF I;I (H:YJ. ME KEY TRENCH SHALL BE COMPACTOO i0 THE SANE SPECIRGIgN LRTED IN HEM I N30AS. 5. UPW REQUEST, THE LONRULiOR SW11 PRONOE ME ENLINEEA 'M1H REPORTS 10 tiFPoIX 11Mi THE MM EMfSWNMEM uEEiS NF SPECIMO COMPACTDN REWIREMENIS. COMPACTION REPORTS WILL BE NEEDED OURNlG THE 0.S-BUILT CERTIFIGTgN PROCESS FOR iH5 SiOAEIWAIEA FACILITY. MEREFORE, li I$ iNE CONTRACTOR'S RESPONSIBUTY TO ENSURE COMPAC110N TESTS ARE PROPERLY PERFptMED OU%NG CONS1RUCnON. SPILLWAY PIPE SUBGRADE SUPPORTAND BEDDING SPECIFICATIONS I. RLL IN THE ARG OF /HE SPILLWAY %PE ANO N)JACENT ARF/S SHOULD ff BAOUWT UP i0 A POINT Di Y i0 J' OR MDAE ABOIE ME i0P ELLYAiNWA OF THE PIPES IN IDVANCE DF $%LLWAY CONSIRUCMN 50 nlAi THE SRLLWAY PIPES CAN BE INSiN1E0 IN A 1RENCH CONDIigN. ONCE THE RLL IS BROUGHT UP TO ABOvE ME i0P W %PES, THE PIPE TRENCHES SHOULD MEN BE FxGYA1ED PoR INSiNUnON OF 1HE %PES Z. IF SEEPAGE OR ROW OCCURS IN pR µONG THE PIPE NILNMENi, CRWNDWAIER CONTROL WILL DE NECESSARr, nib COULD INtgLVE %1MPINC (OR SiAUY pMRSION, ETC.) OEPENOING ON 1NE iOPpGAAPHY. SINCE IT I$ NECESWtY i0 WORN RI A VRY CONgiN1N, MI5 SIRNTION MAY REQUIRE USE OF LEAN CWCREfE BACNFlLL ROWAeIE FIl4 FTC. TO ESiABUSN SU~WDE COxDInONS SUITABIF FOA SOIL TYPE BACKFlLL ]. PAaA ro INSTUUnoN, suBLRAW coxompxs uoxc THE s%LLwY PIPE SHWLD AE EVALUATED Bt THE ON-SI/E GEOiECHNICµ ENGINEER N ASSESS WHEMER SUITABLE BEARING CONgiNR.S EKISi Ai niC SUBGRADE LEVEL sxouln soFr oR on+ERWISE uxwrtAaE cWIRnoNS eE ENCWNIEREO µONL THE PIPE µgNMENR, 1HESE NAIERMlS SHWID BE UNDERCUT AS DIRECTED BY ME GEOiECINICµ ENGINEER. ixE UNDERCUT MATERULS SWLL BE AfPLKEO WI1H ADEpGTEIY CWPMTED STRUCNAAL RLL, LGN CONCRETE OA FLOWABIE RLL A$ DIRECTED BF iNE ON-SITE GEOIECHNIGL ENGINEER. 1. IN ORDER TD NEIP PROTECT nW: SOIL SUBLRAOE FROM OEIFRIORAnON (DUE t0 EXPOSURE, RNNFAll, SEEPAGE, eNp RUN7i F) BEFORE iNE CRNLE O1N BE POURED. R I$ SLAONGLY RECOMMENDED IH1i A J' i0 1' THICK CONCRETE MUD W,I BE POURED OVER iNC SUAGRAOE ONCE li IS APPROVED B1 IHF ON-SITE CEOIECHNIGI ENGINEER ME uUD MAi WILL A150 PAONDE BURING FOR THE BLOCKS 171!1 TEMPORAAILT LJPPOR7 THE SPILLWAr PIPE UNNL THE CRAW£ WA BE PoURED. TIC ME1H00 OF BLOCK WPPOAT FOR 1HE PIPE PPCPOSEO q NE CONIRACTpA $HOUID BE sueMlirEO ro THE JDHN R LgADANS couPANr FaR wPAwu 5. FlLL MATEAUI PAMCENI t0 THE 1YF 0-BRIG OU1LEi BARRELS SHAll MEET THE SPECIRGnONS USIEO IN ITEMS 1 iHAWGH J IN THE SECigN niLED 'BEAM SOLI tr COMPACnON SPECIfMAnpNS.' 1NE LONIRACiOq $HµL PAY SPELUI ATIENnpN i0 1NE CDMPACiIDN EFFpAT2 ALONG iNE PIPES i0 ENSURE TAUT NL SPACES UNDER AYD AD1AWNi 10 THE PIPES VRE RLLEO WI1M PROPERLY COUPACTEO NA7ERML TESTING OF THE EbffiANHIulENf I. TESWG OF nq HEW FlLL WIERIALS SHALL BE PERFOR4E0 TO VLPott nUi ME REWMMENpEO LEVEL OF COMPACnOH q ALHIMO pURINC COx57RUCTgN. MEREFOAE, ONE OEN41Y 7ESi SHALL BE PERFORMED FOR EYERN Z,SW SQUARE FEET ^ IRFI. FOR EVERY UFT pF RlL Z. iESnNG WILL BE REQUIRED ALONG THE AZ' 0-RING OU7LEi BARREL Ai A FREQUENCY OF ONE 1FSi PER GS LF OF PAE PER YFRTKII Fppl W FlLL STATEMENT OF RESPONSIBIITiY: a1 REQUIRED MNNtENANCE ANO INSPECnONS OF THIS FACILITY SHµL BE THE RESPONSIBILITY OF 1ME OWNER PER 1HE EXEWTEO OPERATION PND iWNTENANCE AGAEEMENi FOR MI5 FACIUTY. 1 1 1 I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 11 \` \1\ \\ \ \- \` ~1 \ \ A \NA 1 I I 1 1 I II ~ `A 1` II 1 II I 1 I 1 1 1 1 1 1 1 I 1 1 I 1 1 1 1 II 1 I I II I I 1 I 1 I I I I 1 I I ( I I 1 I 1 1 I I I I I I ~ I II I I I I i I I I I I I 1 II I I I I I 1 I I 1 1 1 I I I I I ~I I I I 1 I I I I I I I I I I I l 1~1 ~ 11 11. ) /.a / ~~' - 1 __________ ~ I -' 452 -----------"-'-- , ~ 1 "' I I " _ I \ ________" l / 1 / 1 j / / ~ ~ / / KA \ NNING Wµl (DE4GH / I OTHERS) - SEE NOTE ~iZ / / / / 1 UNDER ONIEi STRUCTURE ~ MATERIAL SPELttgATgNS --'-- / / / ~(~~ ~~`_~~` FOREBIY ' ~ \ I /I ` \ ~ // ; / I \ '1\ --- ,~ f _ ~ I I ` NOR41L POOL 1. EL~119. 0 ~~__ . \~ -\ \ ~ s-__ ~ -- i\p, ~~ `~~ ~ b.- r.n-R. WIDE WATER QUAiIfP POND #2 PLAN VIEW ,.. ,~. X BRIAR CHAPEL WATER QUALITY POND #2 B. IHNATOLYA, EI NEW-05042 8/28/2007 Stage-Storage Function • Project Name: Briar Chapel Designer: B. Ihnatolya, EI Job Number: NEW-05042 Date: 8/21 /2007 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feed (feed (SFl (SF) (CFl (CF) (feet) 419.5 0.0 25110 420.0 0.5 26023 25567 12783 12783 0.51 422.0 2.5 29817 27920 55840 68623 2.41 424.0 4.5 33836 31827 63653 132276 4.42 42b.0 6.5 38395 36116 72231 204507 6.61 426.25 6.75 38826 38611 9653 214160 6.90 t Ks= 26549 b = 1.0809 • BRIAR CHAPEL SS FXN - WQP#2 B. IHNATOLYA, EI NEW-05042 8/28/2007 • => Stage -Storage Function Ks = 26549 b = 1.0809 Zo = 419.5 Elevation • 419.5 0 0.000_ 419.7 4662 0.107 419.9 9861 0.226 420.1 15285 0.351 420.3 20859 0.479 420.5 26549 0.609 420.7 32332 0.742 420.9 38194 0.877 421.1 44125 1.013 421.3 50116 1.150 421.5 56161 1.289 421.7 62255 1.429 421.9 68394 1.570 422.1 74575 1.712 422.3 80794 1.855 422.5 87050 1.998 422.7 93339 2.143 422.9 99661 2.288 423.1 106012 2.434 423.3 112392 2.580 423.5 118800 2.727 423.7 125233 2.875 423.9 131691 3.023 424.1 138173 3.172 424.3 144678 3.321 424.5 151205 3.471 424.7 157752 3.621 424.9 164321 3.772 425.1 170909 3.924 425.3 177516 4.075 425.5 184142 4.227 425.7 190785 4.380 425.9 197446 4.533 426.1 204124 4.686 426.25 209143 4.801 • • Type.... Outlet Input Data Page 1.01 Name.... WQPond #2 File.... X:\Projects\NEW\NEW-05092\Storm\Construction Drawings\WQPOND#2.PPW Title... Project Date: 7/12/2006 Project Engineer: Jeremy V. Finch, PE Project Title: Brier Chapel Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 419.50 ft Increment = .20 ft Max. Elev.= 926.25 ft OUTLET CONNECTIVITY ---> Forward Flow Only (Upstream to DnStream) <--- Reverse Flow Only (DnStream to Upstream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft E2, ft Weir-XY Points ES ---> TW 429.500 426.250 Inlet Box RI ---> BA 423.600 426.250 Culvert-Circular BA ---> TW 414.000 426.250 Orifice-Circular SI ---> TW 419.500 926.250 TW SETUP, DS Channel • • S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 3:45 PM Date: 8/28/2007 • Type.... Outlet Input Data Name.... WQPOnd #2 Page 1.02 File.... X:\Projects\NEW\NEW-05042\Storm\Construction Drawings\WQPOND#2.PPW Title... Project Date: 7/12/2006 Project Engineer: Jeremy V. Finch, PE Project Title: Brier Chapel Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = ES Structure Type = Weir-XY Points ------------------------------------ # of Openings = 1 WEIR X-Y GROUND POINTS X, ft Elev, ft --------- --------- .00 426.25 5.25 424.50 35.25 424.50 40.50 426.25 Lowest Elev. = 924.50 ft Weir Coeff. = 3.000000 Weir TW effects (Use adjustment equation) • • Structure ID = RI Structure Type = Inlet Box ----- ------ ----------------- # of Openings -------- = 1 Invert Elev. = 423.60 ft Orifice Area = 36.0000 sq.ft Orifice Coeff. _ .600 Weir Length = 24.00 ft Weir Coeff. = 3.000 K, Submerged = .000 K, Reverse = 1.000 Kb, Barrel = .000000 (per ft of full flow) Barrel Length = .00 ft Mannings n = .0000 S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 3:45 PM Date: 8/28/2007 • • Type.... Outlet Input Data Name.... WQPond #2 Page 1.03 File.... X:\Projects\NEW\NEW-05042\Storm\Construction Drawings\WQPOND#2.PPW Title... Project Date: 7/12/2006 Project Engineer: Jeremy V. Finch, PE Project Title: Brier Chapel Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type = Culvert-Circular ------------------- ----------------- No. Barrels = 1 Barrel Diameter = 3.5000 ft Upstream Invert = 914.00 ft Dnstream Invert = 413.00 ft Horiz. Length = 68.00 ft Barrel Length = 68.01 ft Barrel Slope = .01471 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .005885 Kr = .5000 HW Convergence = .001 INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.153 T2 ratio (HW/D) = 1.299 Slope Factor = -.500 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 418.04 ft ---> Flow = 63.00 cfs At T2 Elev = 418.55 ft ---> Flow = 72.00 cfs • S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 3:45 PM Date: 8/28/2007 • Type.... Outlet Input Data Name.... WQPond #2 Page 1.04 File.... X:\Projects\NEW\NEW-05042\Storm\Construction Drawings\WQPOND#2.PPW Title... Project Date: 7/12/2006 Project Engineer: Jeremy V. Finch, PE Project Title: Brier Chapel Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = SI Structure Type = Orifice-Circular ------------------------------------ # of Openings = 1 Invert Elev. = 419.50 ft Diameter = .2500 ft Orifice Coeff. _ .600 Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFACE CONDITIONS SPECIFIED CONVERGENCE TOLERANCES ... Maximum Iterations= 30 Min. TW tolerance = .O1 ft Max. TW tolerance = .O1 ft Min. HW tolerance = .O1 ft Max. HW tolerance = .O1 ft Min. Q tolerance = .10 cfs Max. Q tolerance = .10 cfs • • S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 3:45 PM Date: 8/28/2007 • Type.... Composite Rating Curve Name.... WQPond #2 Page 1.16 File.... X:\Projects\NEW\NEW-05042\Storm\Construction Drawings\WQPOND#2.PPW Title... Project Date: 7/12/2006 Project Engineer: Jeremy V. Finch, PE Project Title: Brier Chapel Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** • • WS Elev, Total Q Notes -------- -------- ------ -- Converge ------------------------- Elev. Q TW El ev Error ft cfs ft +/-ft Contributing Structures ---------------------- -------- 419.50 ------- .00 ------ Free -- ----- Outfall ---- (no Q: ES,RI,BA,SI) 419.70 .06 Free Outfall SI (no Q: ES,RI,BA) 419.90 .12 Free Outfall SI (no Q: ES,RI,BA) 420.10 .16 Free Outfall SI (no Q: ES,RI,BA) 420.30 .19 Free Outfall SI (no Q: ES,RI,BA) 420.50 .22 Free Outfall SI (no Q: ES,RI,BA) 920.70 .29 Free Outfall 5I (no Q: ES,RI,BA) 920.90 .27 Free Outfall SI (no Q: ES,RI,BA) 421.10 .29 Free Outfall SI (no Q: ES,RI,BA) 421.30 .31 Free Outfall SI (no Q: ES, RI, BA) 421.50 .32 Free Outfall SI (no Q: ES,RI,BA) 421.70 .34 Free Outfall SI (no Q: ES,RI,BA) 921.90 .36 Free Outfall SI (no Q: ES,RI,BA) 422.10 .37 Free Outfall SI (no Q: ES,RI,BA) 422.30 .39 Free Outfall SI (no Q: ES,RI,BA) 422.50 .40 Free Outfall SI (no Q: ES,RI,BA) 422.70 .41 Free Outfall SI (no Q: ES,RI,BA) 422.90 .43 Free Outfall SI (no Q: ES,RI,BA) 423.10 .49 Free Outfall SI (no Q: ES,RI,BA) 923.30 .95 Free Outfall SI (no Q: ES,RI,BA) 423.50 .47 Free Outfall SI (no Q: ES,RI,BA) 423.60 .47 Free Outfall SI (no Q: ES,RI,BA) 423.70 2.76 Free Outfall RI,BA,SI (no Q: ES) 423.90 12.32 Free Outfall RI,BA,SI (no Q: ES) 424.10 25.96 Free Outfall RI,BA,SI (no Q: ES) 424.30 42.68 Free Outfall RI, BA,SI (no Q: ES) 924.50 62.02 Free Outfall RI,BA,SI (no Q: ES) 429.70 91.76 Free Outfall ES, RI,BA,SI 424.90 130.67 Free Outfall ES,RI,BA,SI 425.10 187.06 Free Outfall ES,RI,BA,SI 425.30 213.13 Free Outfall ES, RI,BA,SI 425.50 293.06 Free Outfall ES, RI,BA,SI 425.70 276.63 Free Outfall ES, RI,BA,SI 425.90 313.71 Free Outfall ES, RI,BA,SI S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 3:45 PM Date: 8/28/2007 • Type.... Composite Rating Curve Name.... WQPond #2 Page 1.17 File.... X:\Projects\NEW\NEW-05042\Storm\Construction Drawings\WQPOND#2.PPW Title... Project Date: 7/12/2006 Project Engineer: Jeremy V. Finch, PE Project Title: Brier Chapel Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** • • WS Elev, Total Q Notes -------- -------- -------- Converge ------------------------- Elev. Q TW Elev Error ft cfs -- ft +/-ft -------- ----- - Contributing Structures ------------------------- -------- 926.10 ----- 354.18 Free Outfall ES, RI,BA,SI 426.25 386.72 Free Outfall ES, RI,BA,SI S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 3:45 PM Date: 8/28/2007 HMS * Summary of Results for WQ Pond #2 • Project NEW-05042 Start of Run 07Ju102 0000 End of Run 07Ju103 0000 Execution Time 28Aug07 1548 Run Name 1-Yr Post Basin Model Post-Development Met. Model 1-Year Storm Control Specs 1 Min dT Computed Results Peak Inflow 58.725 (cfs) Peak Outflow 0.94583 (cfs) Total Inflow 1.25 (in) Total Outflow 1.25 (in) Date/Time of Peak Inflow 07 Jul 02 1157 Date/Time of Peak Outflow 08 Jul 02 0003 Peak Storage 2.5190 (ac-f t) Peak Elevation 923.22 (f t) • HMS * Summary of Results for WQ Pond #2 Project NEW-05042 Run Name 10-Year Post . Start of Run 07Ju102 0000 Basin Model Post-Development End of Run 07Ju103 0000 Met. Model 10-Year Storm Execution Time 28AUg07 1549 Control Specs 1 Min dT Computed Results Peak Inflow 136.61 (cfs) Date/Time of Peak Inflow 07 Jul 02 1204 Peak Outflow 49.970 (efs) Date/Time of Peak Outflow 07 Jul 02 1216 Total Inflow 3.23 (in) Peak Storage 3.3775 (ac-f t) Total Outflow 3.23 (in) Peak Elevation 924.38 (f t) • • HMS * Summary of Results for WQ Pond #2 Project NEW-05042 Run Name 25-Yr Post Start of Run 07Ju102 0000 Basin Model Post-Development End of Run 07Ju103 0000 Met. Model 25-Year Storm Execution Time 03OCt07 1013 Control Specs 1 Min dT Computed Results Peak Inflow 167.17 (cfs) Date/Time of Peak Inflow 07 Jul 02 1204 Peak Outflow 110.41 (efs) Date/Time of Peak Outflow 07 Jul 02 1210 Total Inflow 4.15 (in) Peak Storage 3.6934 (ac-f t) Total Outflow 4.15 (in) Peak Elevation 424.80 (f t) • BR1AR cxaPEl, Stormwater Management Facility #2 8.11-INATOI,YA, El NEW-05042 100-Year Worst Case Scenario 8/28/2007 > Stage -Storage Function Ks= 26549 b = 1.0809 Zo = 419.50 • Elevation Storage [feet] [cfJ [acre-feet] with Water @ Riser Crest EL. [acre-feet] 419.50 0 0.000 - 419.70 4662 0.107 - 419.90 9861 0.226 - 420.10 15285 0.351 - 420.30 20859 0.479 - 420.50 26549 0.609 - 420.70 32332 0.742 - 420.90 38194 0.877 - 421.10 44125 1.013 - 421.30 50116 1.150 - 421.50 56161 1.289 - 421.70 62255 1.429 - 421.90 68394 1.570 - 422.10 74575 1.712 - 422.30 80794 1.855 - 422.50 87050 1.998 - 422.70 93339 2.143 - 422.90 99661 2.288 - 423.10 106012 2.434 - 423.30 112392 2.580 - 423.50 118800 2.727 - 423.60 122013 2.801 0.000 423.80 128459 2.949 0.148 424.00 134929 3.098 0.297 424.20 141423 3.247 0.446 424.40 147938 3.396 0.595 424.60 154476 3.546 0.745 424.80 161034 3.697 0.896 425.00 167612 3.848 1.047 425.20 174210 3.999 1.198 425.40 180827 4.151 1.350 425.60 187461 4.304 1.502 425.80 194113 4.456 1.655 426.00 200783 4.609 1.808 426.20 207469 4.763 1.962 426.25 209143 4.801 2.000 • 1 OF I • • • Type.... Composite Rating Curve Name.... WQP 2 - 100yr TW Page 1.09 File.... X:\Projects\NEW\NEW-05042\Storm\Construction Drawings\WQPOND#2.PPW Title... Project Date: 7/12/2006 Project Engineer: Jeremy V. Finch, PE Project Title: Brier Chapel Project Comments: WS Elev, Total Q Elev. Q ft cfs ----- -------- 923.60 -- .00 423.80 6.44 424.00 18.21 429.20 33.46 424.40 51.52 424.50 61.47 429.60 74.87 924.80 109.75 425.00 152.21 425.20 199.04 425.90 227.06 425.60 258.82 425.80 294.15 426.00 332.93 426.20 375.06 426.25 386.12 S/N: 621701207003 PondPack Ver. 8.0058 ***** COMPOSITE OUTFLOW SUMMARY **** Notes ------ -- Converge ------------- ------------ TW El ev Error ft +/-ft Contributing ---------- Structures ------------ ------ Free -- ----- Outfall ---- (no Q: ES,RI ,BA) Free Outfall RI, BA (no Q: ES) Free Outfall RIBA (no Q: ES) Free Outfall RI, BA (no Q: ES) Free Outfall RI, BA (no Q: ES) Free Outfall RI, BA (no Q: ES) Free Outfall ES, RI, BA Free Outfall ES, RI, BA Free Outfall ES, RI, BA Free Outfall ES,RI,BA Free Outfall ES, RI, BA Free Outfall ES, RI, BA Free Outfall ES, RI, BA Free Outfall ES,RI,BA Free Outfall ES, RI, BA Free Outfall ES, RI, BA The John R. McAdams Company Time: 4:02 PM Date: 8/28/2007 HMS * Summary of Results for WQ Pond #2 Project NEW-05042 Start of Run 07Ju102 0000 End of Run 07Ju103 0000 Execution Time 28Aug07 1603 Run Name 100-Year WC Basin Model Worst Case Met. Model 100-Year Storm Control Specs : 1 Min dT Computed Results Peak Inflow 214.41 (efs) Date/Time of Peak Inflow 07 Jul 02 1204 Peak Outflow 197.34 (cfs) Date/Time of Peak Outflow 07 Jul 02 1206 Total Inflow 5.62 (in) Peak Storage 1.1925 (ac-f t) Total Outflow 5.63 (in) Peak Elevation 425.19 (f t) • • BRIAR CHAPEL BELOW NWSE B. II4NATOLYA, EI NEW-05042 8/28/2007 Stage-Storage Function • Project Name: Briar Chapel Desired By: B. Ihnatolya, EI Job Number: NEW-05042 Date: 8/28/2007 µ,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,~,,,~,,,,~,~„~„~,~ „~,,,F,~„~,,,H Average ,,,,~,,, Incremental .,,,,,,,,,,,,,,,,,, Accumulated ,,,,,,,..,, Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 413.0 0.0 719 114.0 1.0 8934 8065 ~. 8065 ......................._....~... 8065 ..._...-..._....._m......_..._ 1.03 _....,..._................_... ...-.-.....-.........._. 416.0 ...._.......-~.,.....,...-...,-..-..- ...... 3.0 12919 ..............._.... 10927 21853 29918 2.85 417.5 4.5 1634 14637 21955 51872 _4.36 418.0 5.0 19863 18109 9054 60927 4.94 419.5 6.5 2110 22487 33730 94656 6.95 • • Ks = 7761.3 b = 1.2901 1 OF 4 BRIAR CHAPEL FOREBAY 1 B. II~NATOLYA, EI NEW-05042 8/28/2007 • • Storage vs. Stage 12000 10000 ~ 2971 y = 1470.6x soot R2 = 0.9989 a U ~ 6000 N 4000 2000 0 0.0 1.0 2.0 3.0 4.0 5.0 Stage (feet) x9 = 147x.6 b = 1.2971 2OF4 Stage-Storage Function Project Name: Briar Chapel Designed By: B. Ihnatolya, EI Job Number: NEW-05042 Date: 8/21/2007 ~~~~~ Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 413.0 0.0 1275 414.0 1.0 1696 1486 1486 1486 1.01 -116.0 3.0 2708 2202 4404 5890 2.91 417.5 4.5 3616 3162 4743 10633 4.60 • • Storage vs. Stage sooo sooo 7000 13672 y = 953.81 x a 6000 R2 = 0.9987 5000 '~~° 4000 y 3000 2000 1000 0 0.0 1.0 2.0 3.0 4.0 5.0 Stage (feet) Ks = 953.81 b = 1.3672 • BRIAR CHAPEL NEW-05042 FOREBAY 2 Stale-Storage Function Project Name: Briar Chapel Designed By: B. Ihnatolya, EI Job Number: NEW-05042 Date: 8/21/2007 ~ ~~~ Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF} (feet) 41.1.0 0.0 792 414.0 1.0 1138 965 965 965 1.01 416.0 3.0 1999 1569 3137 4102 2.91 417.5 4.5 2793 2396 3594 7696 4.61 B. IIjNATOLYA, EI 8/28/2007 30F4 BRIAR CHAPEL VOLUME AND SURFACE AREA CHECK B. II3NATOLYA, EI NEW-05042 8/28/2007 ~,~qy~~~~~ :a. ..::..: .:::::........::.m:::::..'::::::.::. :....... '%'Q.~...:::. • Per NCDENR "StormwaterBestManagementPractices ", the forebay volume should equal about 20% of the total basin volume. A. Water Quality Pond -Below Normal Pool Volume B. Forebay Volume Volume = 94656 ft3 Volume = 18329 ft3 Forebay = 19% Impervious Area = 1.3.74 acres Drainage Area = 211.31 acres Impervious = 48.5% Cotal Below NP Volume 94656 cf Surface Area 25110 sf Average Depth = 3.77 8 __> From the NCDENR Stormwater BMP Handbook (4/99), the required SA/DA rati o for 85% TSS Removal . in the Piedmont is as follows: 3.0 3.77 4.0 Lower Boundary => 40.0 1.73 1.43 Site % impervious => 48.5 2.01 1.76 1.69 Upper Boundary => 50.0 2.06 1.73 Area Required = 21717 sq.ft. Area Provided = 25110 s .ft. YES • 40F4 BRIAR CHAPEL WATER QUALITY POND #2 B. IHNATOLYA, EI NEW-05042 8/28/2007 1" RUNOFF VOLUME CALCULATION SHEET • Project Name: Briar Chapel Checked by: B. Ihnatolya, EI Job Number: NEW-05042 Date: 8/21/2007 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 419.5 0.0 25110 420.0 0.5 26023 25567 12783 12783 0.51 422.0 2.5 29817 27920 55840 68623 2.41 424.0 4.5 33836 31827 63653 132276 4.42 426.0 6.5 38395 36116 72231 204507 6.61 426.3 6.75 38826 38611 9653 214160 6.90 • Calculation of Runoff Volume required for Storage The runoff to the water quality pond for the 1" storm runoff requirement is calculated by simply multiplying the total watershed area draining to the water quality pond times the runoff depth. Total Drainage Area to WQ Pond = 28.31 acres Runoff Depth = I inches Therefore, total runoff from reci itation in uestion = 102765 CF This amount of runoff must be stored in the pond above normal pool elevation, and be released in a period of two (2) to five (5) days, by an inverted PVC siphon, the invert end of which is set at permanent pool elevation. • KS = 26549 b = 1.0809 Blume cx~EL WATER QUALITY POND #2 B.111NaTOLYa> El NEW-05042 8/28/2007 Calculation of depth required for runoff storage pool (above normal pool) • Normal pool depth (above invert) = 0.00 feet Storage provided at permanent pool depth = 0 CF (calculated) Total storage required for normal + storage pool = 102765 CF Stage (above invert) associated with this storage = 3.50 feet Therefore, depth required above normal pool for storm storage = 3.50 feet 41.97 inches Set crest of principal spillway at stage = 3.50 feet and EL = 423.00 feet 423.00 At principal spillway crest, storm pool storage provided = 102833 CF • • BRIAR CHAPEL Stormwater Management Facility #2 NEW-05042 Inverted Sip hon Design Sheet • D siphon = 3 inches No. siphons = I Ks= 26549 b = 1.0809 Cd siphon = 0.60 Normal Pool Elevation = 419.50 feet Volume @ Normal Pool = 0 CF Siphon Invert = 419.50 feet WSEL @ 1" Runoff Volume = 423.00 feet • WSEL (feet) Vol. Stored (cf) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (cf) Incr. Time (sec) 423.000 102833 0.434 422.692 93074 0.413 0.423 9759 23049 422.383 83391 0.392 0.403 9683 24052 422.075 73792 0.369 0.381 9599 25219 421.766 64286 0.345 0.357 9506 26603 421.458 54884 0.319 0.332 9402 28285 421.149 45602 0.291 0.305 9282 30392 420.841 36460 0.260 0.276 9142 33148 420.533 27488 0.225 0.243 8972 36995 420.224 18733 0.183 0.204 8755 42969 419.916 10283.3 0.127 0.155 8449 54523 Drawdown Time = 3.76 da s By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 1.688 feet Orifice composite loss coefficient = 0.600 X-Sectional area of 1 - 3" inverted siphon = 0.049 ft2 Q = 0.3070 cfs Drawdown Time =Volume / Flowrate / 86400 (sec/day) Drawdown Time = 3.88 da s Conclusion : Use I - 3.0" Diameter PVC Inverted Siphon to drawdown the accumulated volume from the 1.0 "storm runoff, with a required time of about 3.76 days. B. IHNATOLYA, EI 8/28/2007 • BRIER CHAPEL $WMF #2 - 12~~ DIP J.V. FINCH, PE NEW-05042 7/13/2006 • This sheet will, given the barrel length of interest and minimum seep collar projection from the barrel, determine the number ofanti-seep collars to place along the barrel section, and the expected spacing of the collars. Design Requirements => Anti-seep collars shall increase the flow path along the barrel by 15%. Anti-seep collars shall be spaced a maximum of 14X the minimum collar projection or 25 feet, whichever is less. Anti-Seep Collar Design => SWMF h Flow Length Min. Calc'd # Max. ~ # of ' ` Use Pond along barrel Projection of collars Spacing coll~rsto. Spacing Spacing ID (feet) (feet) required (feet) use = (feet) - , OK? 2 - 12" DIP 67.0 2.53 1.99 25 2.110 ?~~33333 .YES Note: If spacing to use is greater than the maximum spacing, add collars until the spacing to use is equal to or less than the maximum spacing allowable for the collar design. Anti-seep collars shall be used under the structural fill portions of all berms/dams unless an approved drainage diaphragm is present at the downstream end of the barrel. Anti-Seen Collar Design Sheet • BRIER CREEK WATER QUALITY POND #2 J.V. FINCH, PE NEW-05042 7/13/2006 .Input Data =_> Spuare Riser/Barrel Anti-Flotation Calculation Sheet Inside length of riser = Inside width of riser = Wall thickness of riser = Base thickness of riser = Base length of riser = Base width of riser = Inside height of Riser = Concrete unit weight = OD of barrel exiting manhole = Size of drain pipe (if present) _ Trash Rack water displacement = Concrete Present in Riser Structure =_> Total amount of concrete: Adjust for openings: 6A0 feet 6.00 feet 6.00 inches 8.O0 inches 7.00 feet 7.t)0 feet 9.6(1 feet 1.42.0 PCF 52.50 inches 8.0 inches 79.39 CF Base of Riser = 32.667 CF Riser Walls = 124.800 CF Opening for barrel = 7.517 CF Opening for drain pipe = 0.175 CF i?iv~~ NC P:.~3ucts lisp uni: wt.:,P it;::flhsi~G- i::~ttC:i'ti: 8.L i~ ~ ~}i~.^'. . Total Concrete present, adjusted for openings = 149.776 CF Weight of concrete present = 21268 lbs Amount of water displaced by Riser Structure =_> Displacement by concrete = 149.776 CF Displacement by open air in riser = 345.600 CF Displacement by trash rack = 79.390 CF Total water displaced by riser/barrel structure = 574.766 CF Weight of water displaced = 35865 lbs Calculate amorint of concrete to be added to riser =_> Safety factor to use = 1.15 (re:z:::,:u:;rtf ~ . ~ ~;, i~tt>i:~; Must add = 19977 lbs concrete for buoyancy Concrete unit weight for use = 142 PCF (note above observation for NCP concrete) Buoyant weight of this concrete = 79.60 PCF Buoyant, with safety factor applied = 69.22 PCF Therefore, must add = 288.613 CF of concrete Standard based described above = 32.667 CF of concrete • Therefore, base design must have = 321.280 CF of concrete 1 OF 2 BRIER CREEK WATER QUALITY POND #2 J.V. FINCH, PE NEW-05042 7/13/2006 • Calculate size of base for riser assembly =_> Length = 10.000 feet Width = l0.DOt1 feet Thiclaiess = 39.0 inches Concrete Present = 325.000 CF f)1~ Check validity of base as designed => Total Water Displaced = 867.099 CF Total Concrete Present = 442.109 CF Total Water Displaced = 54107 lbs Total Concrete Present = 62779 lbs Actual safety factor = 1.16 Results of design =_> • • O.~ Base length = 10.00 feet Base width = 10.00 feet Base Thickness = 39.00 inches CY of concrete total in base = 12.04 CY Concrete unit weight in added base >= 142 PCF 2OF2 BRIAR CHAPEL NEW-05042 • NRCD Land Quality Section Pipe Design Entering the following values will provide you with the expected outlet velocity and depth of flow in a pipe, assuming the Mannings roughness number is constant over the entire length of the pipe. flow Q in cfs :49.97 Flow depth (ft) = 1.56 slope S in % :1.47% Outlet velocity (fps) = 12.052 pipe diameter D in in.: 42 Manning number n :0.013 NRCD Land Quality Section NYDOT Dissipator Design Results Pipe diameter (ft) 3.5 Outlet velocity (fps) 12.05 Apron length (ft) 28.00 B. IHNATOLYA, EI 8/28/07 AVG DIAM STONE THICKNESS • (inches) CLASS (inches) 3 A 9 6 B 22 »13 B or 1 22« 23 2 27 CALCULATION: Minimum TW Conditions: W = Do + La = 3.5' + 28' = 31.5 ft CONCLUSION: USE NCDOT CLASS `B' RIP RAP 28'L x 32'W x 22" THK • ECDesign(R)2000 Channel Analysis Report Proiect Information Last Update: 10/03/2007 ~ect Name: Briar Chapel Description: NEW-05042 State: RalPiuh RtatP~ N(' Units: Fnnlish Notes: Channel Design Channel Name: RmP,YAP.YI(:V Rnillwav - Pnn[l #2. Units: False. Desi n life: 12(l~ Design Criteria Vegetation and Soil Channel Geometry Flow/Velocity Flew Rate ((ll VP.~P.tAtP.d Yes Vegetation Class 1~ Soil Filled Nn Bed Slope (ft/ft) 2nn Req. Freeboard (ft) ~~~ Channel Length (ft) 7nnnn Discharge (cf/s) 1 1O 41 ~ Flow Duration (hrs) ~ Avg. Velocity (ft/s) 7 4~n Channel Side Slopes Channel Bend False Width ft ~p ppp B Re uired Factor 1 15 q (H:1 V) ~ non ght (H:1 V) ~ nnn Bend Radius (ft) pip Outside Bend ( ) ottom Channel Depth (ft) t 5~(1 of Safety Results Avg. Flow Depth (ft) Velocity (ft/s) Shear Stress (lbs/sgft) Pass Quantity Lining Materials Computed ~'Iax A owed ~afety~ acto Computed ~ax A owed Safety Factor (SY) Left PYRAMAT 7 22e 21 F,9(1 '~ ~~~ 4.54(1 R R~(1 1.94(1 Y '~F R9 Botto PYRAMAT 7 R7~ 71 f9(1 2 7(,(1 5.41(1 R ROp 1 Fi'i(1 Y 2'i'~ 'i l Right PYRAMAT 7.22.(1 21 f,9(1 ~ nnn 4 54p R R(1(1 1 94(1 Y ~( R9 Calculation Results: Flow Depth (ft) 411 Left Wetted Perimeter (ft) 1 'i7(1 Flow Area (ft) 1 ~ 57p Bottom Wetted Perimeter (ft) 30.000 Right Wetted Perimeter (ft) 1 'i7(1 Total Wetted Perimeter (ft) 'i2 74~ Hydraulic Radius (ft) 41 p Avg. Velocity (ft/s) 7 4~n ~posite'n' O47 Avg. Discharge (cf/s) 1 1(1 41 O ~ x.,p o s • 013 a ~7 WATER Q UALITY POND #3 FINAL DESIGN CALCULATIONS BRIAR CHAPEL NEW-05042 WA1ER OUAGRY POND 83 CONSTRUCTION SPECIFICATIONS GENERAL N07ES BERM SOII. AND C0MPAC110N SPECIFICATIONS i. PRgR i0 CONSTRUCTON, THE ON-SIZE GEORCHNIfAi ENCINEEfl SHNL VERIFY INE 1, KL F0.L MATERVIS T) BE USED FOR THE DKI E4BWNMENT SNKL BE SURABILItt OF TIE PROPOSED BORROW /RU/Flll FpR USE Ix NE DAM TAKEN RiOY BORROW 1RE15 APRtWEO BY NE ON-SIR GEOTECNNICK EMOVJNMEN7/I(EY TRENCH. ENCNEER. THE iLL WRRNL SHALL ~ TREE FROM R001H, STUMPS, W000, STONES GRUTER THIN 6', AND FROZEN OR O1HEA OBJECTONABLE 1. T[ Ox-SITE GEOTECHNKAI ENGINEER SMKL NSPECi THE NET TRENCH E%GVAnON IMTERWL THE FdLOMNG SOIL ttPES ARE SNIPBIE i0R u5E AS FILL PRgR i0 PUCEMENI OF ANI BACKFILL NTIIN THE KEY TRENCH. IF THE CONTAACiOA NTHIN THE OKI EMBANKMENT M'0 KEY TRENCH: W 0.ND CL CONSTAlgTS PND fPVERS UP THE KEY TRENCH PRgR TO INSPECTIgJ, INQ! ME KEY IPENCH SHALL BE UNCOVERED ANO TESTED Ai THE CpNTWLTOR$ ExPENSE 7. FILL PUCEMENT SMALL NOI ExCEED A MA%NUM 6' UR. FACN UR $HKL BE CONIINUg15 FOR THE ENTAE LLNGTH a EMBWKMENi. BEFORE 7. 1HE CONIAACIOR SH/1L REFER TO ME UNDSCAI; PUN FOR THE PEIDNNEM PUCEMENi pF RL TOR INE BERY SECTON, KL UNSUITABLE WRRNL PUNnNG PUW/SCHEDULE iNE PEAMANENi VEGETAIIp! FOA NE PROPOSED SHKL BE REMOVED AND THE SURfKE PROPEIAY PREPARED TOR FlLL EMBANNMEM SW1L BE TALL FESCUE. PLEASE NOTE IHAi NO TREES/SxRlIBS D< MY PUCEMENi. TYPE IU,Y BE PUN1E0 ON INE PROPOSED DAM E4BANKMENI (FILL AREAS). }, ALL FlU SOILS USED IN T+E CMBWNMENL / NEY 1RCNCN CONSTRIgRCNY A. IF NE WARR OuAUTY POND Nll BE USED AS A SEDIMENT BASH WNNG SWYL BE COMPKIEO 10 AT LFASi 95S OF TIE STANMAD PROCTOR CONSTRUCTON, THE CONIWCTIA SHNL NOT CONSIAIgT THE INTERIOR GAIHEN BE9A MAKI4UY DRY pEN$ITY (O.STM-69Bf. INE FILL SOILS SHALL BE COYPALRO SHJWII ON THIS PI.W UNTL APPROVAL i0 REMOVE THE SEOIMENi BASIN INS BEEN Ai A MOISNRE CONTEXT WITHIN -I W 4J PERCENT Of ITS OPT4U4 CRANTEp BY THE EROSION CONTRA INSPECTOR. MgSNRE CONTENT. COYPALigN RSTS SHKL BE PERFORMED BY THE ON-SIZE CEO7ECHNIGL ENGINEER DUNNC COIdTNULT10N TO VERIFY THAT 5. IF THE WATER ODAI/tt POND WlL BE USED AS A SEDIMENT BASIN pURING THE PROPER COMPPLMN LEVEL INS BEEN REACHED. TIE FlLL SHOULD Bf LONSIRUCMIN, THE AREA SWLL BE CIFINEO WT (LE. SEDIMENT, iRPSH, ET:) PND COMPACRO USING A SNEEPSFDOi ttPE COMPKiOR. IN CRDER 10 PREVENT AEVEGEURD (IF NELESSMft) PApA TO uSE AS A SiORVWATER MANALE4ENT FACId1Y. NJJACE TO NE RPE, NO COMPACTON EOUPMENi SHALL CROSS IVY PIPE THE IPASX PNO SEDIMEM SNWLD BE dSPoSED W PROPERLY (LE - LWOFlIL). UN70. WNINUY CDKR 6 ESTABLISHED ALONG INE PIPE. 6. ILL FENFORCED CONCRETE F1MEO ENO SECigN NLLTS INTO TVE PoND $HKL BE * A KEY 1AENCH SWLL BE FRONDED BENEAN ALL DLL A9EA5 OF 1HE BERY THE 1RENCH SWLL ExiENO A YINI4UI Di J R BELOW EXISTNG UNDEAWN NIH A 7000 FSI CdICRER PAp, SEE DEIMIS SHEEt PD-7D. . GRADE AND SHALL 1NVE A MINIMUM BOT10Y w101H OF 5 FEET. THE KEY TRENCH SICESLpPES SHALL BE A MINIMUM OF I:I (N:V), THE KEY TRENCX SwLL BE co1NKRO ro THE sAJJE sPEnFlGmx usRO N ITEM J AeovE. C0NSIRUC170N PREPARATION S UPON REOVE51, THE CONIR.1CipA SHKL PROHDE NE ENGINEER NM I. PRIOR ro F'IACEMENf OF ME NEW Flll, THE ARF/$ ON WHICH FlLL IS REPORR TO VERIFY TINT THE 0.W E4BM'NMENi MEEK THE SPELIFlED TO BE PLACED SHKL H CLEARED ANO STRIPPED D< TOPSOIL TREES, CpIPACTMNJ REWIREMENIS COMPACTION REPoRfS WILL BE NEEpED WRING R0015, VEGETA1gN, AND OTTER OB,IECIgN1BlF YAIENW.. THE IRUS CN THE AS-BUILT CERTi1GIK1N PROCESS FOA iH5 SNRMWARR FAGUtt. WHICH FlLL Is TO BE PULED SWLL BE SCAAIFlED. TIEREPOAE, IT IS THE CDNTAACiOR'S RESPONSIBUTY i0 ENSURE CQIFAC7gN TESTS ORE PRpPEAiY PEAFOflMEO OUAVJG CONSTgCBON, Z. ANY AE1glE0 i0P50K SHAH BE SiOCItPIlFO FOR USE IN PVNnNG (SEEDING) ON iNE dAM EMBANNNENT ONCE FlNK GRADES (AS SHOWN ON TxE cRADINC %AN) MAV4 BEN EsTABUSHEO wllx coMFALRO FILL. SPILLWAY PIPE SUBGRADE SUPPDRTAND ]. TIE CONRNCipR SHKL NRNISH, NSTKL OPEMR. IMO WJNTAN MD' BEDDING SPECQ+'[CATIONS PUMPING EWIPMENi, ETC. NEEDED FOR FE40VK Of WATER fRON VARIOUS PAR15 OP ME SIORMwA1ER POND SIR. IT IS ANTLIPATED THAT PUMPING I, FlLL IN THE ARU Of THE SPILLWAY PIPE A40 Ap1ACENi AREAS SHOULD NLL BE NECESSMtY IN NE EKGVATION ARFA$ (I.E. -KEY TRENCX). BE BROUGHT UP TO A PONi OF Z' t0 }' DR MOPE ABODE THE i0P DURNG PIALENEM D< FlLL WITHIN THE KEY TRENCH (CR OTHER AREAS AS ELEVATION Of NE PNE N ALNANCE Of SPILLWAY CONSTRUCTION 50 DNi NELESSA~, THE CONIRACNA SHALL xEEP THE WARR LEVEL BEIDW NE iNE SPRLWAY PIPE CA4 BE INSTKIFD IN A TRENCH CONdnON, ONCE LNE BOROM W THE IXGVAIgN, THE MANNER IN WHICx iXE WRIER IS FllL I$ BROUGHT W i0 ABOVE THE TOP OF PIPE, 1HE PPE TRENCH REMOVED SHKL BE SUCH 1HAi TIE IXGVAnON BOROM MID SgESLOPES SHOULD THEN BE F%GVAfEO FOR INSTKUigN OF NE PIPE. ARE STABLE. 7. IF SEEPAGE OR ROW OCCURS IN OR ALONG TIE PIPE ALIGNMENi$, GROUNDWATER CONTROL WILL BE NECESSAI7Y. NIS CWLD INALVE PUMPING (DA STAEWI ONERSgN, EICJ OEPENEWG ON I!E iOFOGMPNY. 0U'1TET STRUCTURE MATERIAL SPECQI7CATI0NS u wTn e I ~ 1. THE 7M' RCP ODTET &RREL SHKL BE CUSS AI flCP, MOOIFlED BELL AND SPg0i, AY AEOU RE us TO a LEAN coNCAER BACItFl1L n wABLE n C ESTANISH SUBGPADE CONDInONS SUITABLE FOR 5dL TYPE BALKFlLL MEETING TiE REOUIRENENIS OF ASIM C7fi-UIEST. TIE RPE SHKL H4YE CONFlNEO PVLEMENT, 0-RING RUBBER GA%Ei ,gN15 MEETNG ASM C-u]-UIESi, THE PIPE JOINR SWVL BE ttPE A-K. }. PRAR ro INSTKUTgN, SUBGAlDE CONDInONS ALONG THE SPILLWAY PIPE SNWLD BE EYKWRO BY THE ON-SITE GEOTECHNKAL ENGINEER N i 11E 5TAl1C1ULK DESIGN Fqt iNE A'xW' (IMERNK gNFN510N5j ASEA BOx NTH ASSESS WHETHER SUITABE BEAIRJG CONgnONS F%ISI Ai ME SUBGPADE ExTENdA 841E SHALL BE BY OMERS. PRdI TO dtOERING INE $iRIICNRE, THE LEVEL SHWID SOR OA OIHEANSE UNSIIIfIBLL CONOInONS BE CONIRACfd1 SMALL PAONOE n+E ENGINEER NM SHOP ORANNGS, SEMID BY A P,E. ENCOUNRREO KONG iNE PIPE ALgN4ENI, THESE 1URRW3 SHOULD ~ REGISRRED IN NORTH CAAOUNh PoA MPROVAL UNDERLUt AS dREL1ED ttt THE GEORCHNKJl ENGINEER TIE UNDERCUT YARIINLS SMALL BE REFUSED NN ADEOWTELY COMPKIED 51RUCNRK }. THE RISER BOX OIIILET STRUCNRE SHKL BE PAONpEO NT1 SRPS 16 ON LEVIER. Fitt. LEAN LONCRER Olt iLOWABLE FILL u DIRECTED BY iNE DN-SITE STEPS SNKL BE PRO/gED ON THE INNER WALL 0 THE RSER BOX STEPS SHALL BE IN GEOTECHNIg1 FNGNEER ACCORDINCE NTH NCOOt STD. BA0.66. PLEASE REFER N SHEET FO-JB FOR LOGMNJ D< THE RISER SRPS. 4, TILL wRRLK AAMLENi i0 n+E 74'1 0-PoNG WNEI BANREL SwLL MEET TIE SPECIFlC11gN5 L51ED IN BEMS 1 MAOUGH J N THE SECTION K, THE 6'UBIYAZI' THIGH COVLRER ANn-ROTAnpN BLOCK SHML PRECAST AS THE TIED ffiRM SOIL d COMPACTION SPECIFiG00N5.' iXE COMRACNR SHKL EXTENDED BASE Of THE RISER BDx WRING FABRIGigN. IRE PRECAST BASE Swll BE PAY SPEQAl ATIFNTXIN LO TFq COYPACTIOx EfF0A15 KONG NE PIPE i0 INCLUDED AS PART Of THE SHOP DMNNGS iW,i WILL BE 5'JBMIREO TO iNE ENGINEER ENSURE TWIT ALL SPACES UNOEA ANO IDNCENI TO THE PIPE ARE FKLEO FOR APPROYK (SEE IRK 7 AA7JE). WIM PROPERLY COMPACRO MARRNL 5, THE RISER Bp% JOINT DESIGN LNLL CONFORM TO hSnJ C-X]6. ME JONTS SHKI T ESIIlVG OFTHE EMBANI(MENT BE SFAlEp f51NG AIIM1L RUBBER SEVANi CONFOAMIxG i0 ASTI-990. 111E CONIPALTOR . SHALL PAAGE JWN15 ON BOTH THE IxSIOE AND WROE WITH NON-SHRNN CROUi. I, iESTNC OF TIE NEW TILL NA7ERW5 SHKL BE PERiORMEO i0 VERIFY 6. T+E PREGSf ASER BO% STRUCNRE $HKL HAVE A SHIPPING WEIGHT Di 27,410 1.05, NAI THE RECOMMENOEO LEKL OF COMPACTON 5 KHIEVEp DURING CONSTRUCTON. THEREFORE ONE DENSITY LEST SHALL BE PERFORYCD TOR 1ME STRUCTURE WEgM SH41 BE ME SHIPPING WEIGHT AND SW1L BE OEIEAMNED B/ SUBTRACIWG TH WEIGHT OF TIE FACTORY BlOCK0Ul5 FRW ME GROSS SiRUCNAE EVERY 7500 SgNRE iEET W MU TOR EVER! UR Of FAL WEIGHT, iH5 INFORYAIION SHILL BE SHOWN ON THE SHOP OMwNCS SUBMIrtEp TD 1HE 7. RSTNG WILL BE REOWRED ALONG TIE N' 0-RNC WTEi BIRREI Ai ENGINEER TOR APPACIVAL A FNEWENCY OP DHE IESi PER 25 U Oi PIPE PER VEATK/L F00T OF 1 PPoOR i4 OROEAIHG, TIE CONTRACTOR SHKL SUBMIT iFASH PACK SHOP dV,NI&S FILL i0 THE ENGINEER FOR APPROVAL CONTRACTOR SHAM ENSURE DNi AN ACCESS IUILx IS PROVIDED NiHIN THE TRASH RACK (SEE OETNL FOR ICGnON) THAT NLL ALLOW FOR OM R ~14I STATEMENT OF RESPONS®aul l: FUTURE WJNRNWCE KCESS. CONTRACTOR $HKL K50 PRONOE A CwJN ANO IOCX ALL REQUIRED YNNRNANCE AND INSPECTIONS Of MI5 fACNtt Swll BE FOR SECURING THE ACCESS HITCH ME AESPONSIAIUtt OF THE OWNER, PER IHF EKECURD OPEPAIgN ANO B. KL PoURED CONCRETE SHALL BE MINIMUM 7W0 P51 (Ze WY) UNLLSS 01NERNSE NDRO. 4NNTEWNCE AGREEMENT i0R NIS FKIUtt. 9. GEORxnLE FABRq FCW THE I/-INCH OUTLET BMWiLR JOIxiS SHKL BE AIAOCO SttLL AS57 NLYPROF'REIw: NON-WO.EN NEEDLE PUNCHED OA APPROVED EOWL (NON-WOVEN FABRIC) I0. WATER DLLKITY POYD EMERCENLI' OPAWYKriVN 5 Vl1 AN B.A PWG VKVE ME YKVE SNKL BE A MBH SME B70 K-CENTRIC VKVE OR MPROVED EOUK THIS VK1E 5 IN OLCOAOW[E NN AwwA C-501 SEC. 5.5, M'D SHML BE OPEPABLE iROM TOP OF WTBT SIRUCNRE YI.A A WWOWNEEL (SEE DETMI). NE CONTRACTOR Swll PROYIpE A REMOVABLL YKVE WRENCH WITH A HA40wHEC1 ON tOP FOA OPER.ITION OF ME B'P PILL VKYF. A CHVN ANO LOCH SWML ALSO BE PRWIDEO FOR SECURING INE WRENCH t0 ME TRASH RACK. ~-_ \ ___-__ \ 1 I III ~ I I} i j\ \ / \\\ ~ \ 7q ` \ / \ / 100-YR TENT FLOOOfLUx (rnou vaEROOOLIAPs.CaJ) ___,`_ ~ ~ \ ~ 1 ~ / / 1 / 1 \ `\ 1 1 7pW ~ \ bD, a \ W~ , M i ~~ 1 \\ \ i \ ( 1 11 N~ // 1 ~ ~1 1\ 1 1 / / / // / 1 \`` \ ~ ~ 1 I 1 . 1 \ 1 \I\ 1 wN \ / / / / / // / /\ 1 /`- ~ ~ -` 1 1 \ ~~ 1 II I ~ ~ /Iy` i~ / / /. \ \ \ f/ ~ /~ 1\ 1 \ // ~ / // //~ ~ \\ J /V/~ ~ y ~~ i I ~ ~ L / / / // \, v , ~ Y ~ ~-- ~ / I I ,, v 1 \ 1\ \ \ ` 1 \ 11 1 ` i I ~ /~ ~ I /~ I I) ) I I I FpNM IY I / / / I I I ~ I / I / / // \\ \\1 I I AERMMEM PDpI I I I 1,/ ~ NOR PWL . FL 1JJ.00 I I I (1~y7 / ~ ' / l / / / \ \ 1 \ 1 I ~ 1f I I r I \` ~ J ~ / I / ` I I ~ / \ I I 1 I ~ 1 / 1 1 I / 1\ \1 1 1 ~ \~~_ ~~^l" ~ 1 1 I \\ ' ~ 1 A SNP 6:1 T'L \ \ 1 I I ~ 1 ~ %~ 11 I ~~= i ~ i V y ~ I ~ c Ir ~ ~ I f ~ _ r 1 \ 1 I ~ I 1 ~ I 1 ~ ~ ~ ~~ 1 I \ I / ~ 1 1 1 I( 1 I I I II I I 1 I I _ 4JJ~ ^ 1 ~ I 11 \-~-1-___ _ ~ ~ I I ~~ I I ~ / ' ~ ~ j I ~ -. ~~ ~ ~ I I /' .I ~ \ _ ~ ~ I - \ / ( ) ~ / ~ I I I AAA ___ '; 5 ~ \ _~~ 1 ~ ~ ~ ~ I / I I I , ~ , ____ ~ A -- ~ ~ - , ; ; I I / r I I I I ~ 1 _ -' ~ i\ _ -- ~--~ ~ \ ( I ~F55/R4ANTEWMCE - 1 I II I I I I ~ I I / I I I I ~ I I ~ _,_ v-- 1 __- ~ ~~ ~ -- I I I II I I ~ I 1 _-~'-~ ~~ ~ ~~ I I I I I I I I r 1 I I I _- - , ~ . 1 I ` \ I I ( ~ I I I \ ~ I I I ( i 1 ~ \ ( / ~ WATER OUAiIIY POND N3 PLAN VINW r=7a' GRAPHIC SCALE ,~ x o 1o Ad m o $i 1 Inch ~ 70 IL FINAL DRANINC -RELEASED FOR CONSTRUCTION BRIAR CHAPEL WATER QUALITY POND #3 B. IHNATOLYA, EI NEW-05042 8/28/2007 Stage-Storage Function • Project Name: Briar Chapel Designer: B. Ihnatolya, EI Job Number: NEW-05042 Date: 8/21 /2007 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SFl (SFl (CF) (CF) (feet) 433.0 0.0 17411 434.0 1.0 19144 18278 18278 18278 1.01 436.0 3.0 22779 20962 41923 60201 2.95 438.0 5.0 26641 24710 49420 109621 5.06 • Storage vs. Stage 120000 100000 y = 18164x1 t0~ RZ = 0.9996 LL 80000 V or 60000 0 ~ 40000 20000 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 Stage (feet) KS = 18164 b = 1.1086 • BRIAR CHAPEL SS FXN - WQP#3 B. IHNATOLYA, EI NEW-05042 8/28/2007 • _> Stage -Storage Function Ks= 18164 b = 1.1086 Zo = 433 Elevation Storage [feet] [cfJ [acre-fey 433 0 0.000 433.2 3050 0.070 433.4 6577 0.151 433.6 10310 0.237 433.8 14183 0.326 434 18164 0.417 434.2 22233 0.510 434.4 26376 0.606 434.6 30584 0.702 434.8 34850 0.800 435 39168 0.899 435.2 43533 0.999 435.4 47942 1.101 435.6 52390 1.203 435.8 56876 1.306 436 61397 1.409 436.2 65951 1.514 436.4 70536 1.619 436.6 75150 1.725 436.8 79792 1.832 437 84461 1.939 437.2 89155 2.047 437.4 93874 2.155 437.6 98615 2.264 437.8 103380 2.373 438 108166 2.483 • Type.... Outlet Input Data Page 1.01 Name.... Pond #3 File.... X:\Projects\NEW\NEW-05042\Storm\Construction Drawings\WQPOND#3.PPW Title... Project Date: 7/13/2006 Project Engineer: Beth Ihnatolya, EI Project Title: Briar Chapel - WQ Pond #3 • Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 433.00 ft Increment = .20 ft Max. Elev.= 438.00 ft OUTLET CONNECTIVITY ---> Forward Flow Only (Upstream to DnStream) <--- Reverse Flow Only (DnStream to Upstream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft E2, ft Orifice-Circular OR ---> TW 433.000 938.000 Inlet Box RI ---> BA 435.500 438.000 Culvert-Circular BA ---> TW 426.500 438.000 TW SETUP, DS Channel • • S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 4:21 PM Date: 8/28/2007 • Type.... Outlet Input Data Name.... Pond #3 Page 1.02 File.... X:\Projects\NEW\NEW-05042\Storm\Construction Drawings\WQPOND#3.PPW Title... Project Date: 7/13/2006 Project Engineer: Beth Ihnatolya, EI Project Title: Briar Chapel - WQ Pond #3 Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = OR Structure Type = Orifice-Circular ------------------------------------ # of Openings = 1 Invert Elev. = 433.00 ft Diameter = .1667 ft Orifice Coeff. _ .600 Structure ID = RI Structure Type ----------------- = Inlet Box ------------- ------ # of Openings = 1 Invert Elev. = 435.50 ft Orifice Area = 16.0000 sq.ft Orifice Coeff. _ .600 Weir Length = 16.00 ft Weir Coeff. = 3.000 K, Submerged = .000 K, Reverse = 1.000 Kb, Barrel = .000000 (per ft of full flow) Barrel Length = .00 ft Mannings n = .0000 • • S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 4:21 PM Date: 8/28/2007 • Type.... Outlet Input Data Name.... Pond #3 Page 1.03 File.... X:\Projects\NEW\NEW-05092\Storm\Construction Drawings\WQPOND#3.PPW Title... Project Date: 7/13/2006 Project Engineer: Beth Ihnatolya, EI Project Title: Briar Chapel - WQ Pond #3 Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type ------------------ = Culvert-Circular ------------------ No. Barrels = 1 Barrel Diameter = 2.0000 ft Upstream Invert = 426.50 ft Dnstream Invert = 426.00 ft Horiz. Length = 73.00 ft Barrel Length = 73.00 ft Barrel Slope = .00685 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .012411 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.157 T2 ratio (HW/D) = 1.303 Slope Factor = -.500 • Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 428.81 ft ---> Flow = 15.55 cfs At T2 Elev = 429.11 ft ---> Flow = 17.77 cfs S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 4:21 PM Date: 8/28/2007 • Type.... Outlet Input Data Name.... Pond #3 Page 1.04 File.... X:\Projects\NEW\NEW-05042\Storm\Construction Drawings\WQPOND#3.PPW Title... Project Date: 7/13/2006 Project Engineer: Beth Ihnatolya, EI Project Title: Briar Chapel - WQ Pond #3 Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFACE CONDITIONS SPECIFIED CONVERGENCE TOLERANCES ... Maximum Iterations= 30 Min. TW tolerance = .O1 ft Max. TW tolerance = .O1 ft Min. HW tolerance = .O1 ft Max. HW tolerance = .O1 ft Min. Q tolerance = .10 cfs Max. Q tolerance = .10 cfs • • S/N: 621701207003 The John R. McAdams Company PondPack Ver. 8.0058 Time: 4:21 PM Date: 8/28/2007 • • • Type.... Composite Rating Curve Name.... Pond #3 Page 1.10 File.... X:\Projects\NEW\NEW-05042\Storm\Construction Drawings\WQPOND#3.PPW Title... Project Date: 7/13/2006 Project Engineer: Beth Ihnatolya, EI Project Title: Briar Chapel - WQ Pond #3 Project Comments: WS Elev, Total Q Elev. Q ft cfs 433.00 .00 433.20 .04 433.40 .06 433.60 .08 433.80 .09 434.00 .10 434.20 .11 439.40 .12 934.60 .13 434.80 .14 435.00 .15 435.20 .15 435.40 .16 435.50 .16 435.60 1.68 435.80 8.06 436.00 17.15 436.20 28.30 436.40 41.17 436.60 46.83 436.80 47.36 437.00 47.89 437.20 48.41 437.40 98.93 437.60 49.44 437.80 49.94 438.00 50.49 S/N: 621701207003 PondPack Ver. 8.0058 ***** COMPOSITE OUTFLOW SUMMARY **** -------- Converge TW Elev Error ft +/-ft Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Notes ------------------------- Contributing Structures (no Q: OR, RI, BA) OR (no Q: RI, BA) OR (no Q: RIBA) OR (no Q: RIBA) OR (no Q: RI, BA) OR (no Q: RI, BA) OR (no Q: RI, BA) OR (no Q: RI, BA) OR (no Q: RIBA) OR (no Q: RIBA) OR (no Q: RI, BA) OR (no Q: RI, BA) OR (no Q: RI, BA) OR (no Q: RI, BA) OR, RI, BA OR, RI, BA OR, RI, BA OR, RI, BA OR,RI,BA OR,RI,BA OR, RI, BA OR, RI, BA OR, RI, BA OR,RI,BA OR,RI,BA OR, RI , BA OR, RI, BA The John R. McAdams Company Time: 4:21 PM Date: 8/28/2007 HMS * Summary of Results for WQ Pond #3 • Project BriarChapel_Pond 3 Run Name 1-Year Post Start of Run 06Ju113 1200 Basin Model Post-Development End of Run 06Ju114 1200 Met. Model 1-Year Storm Execution Time 28Aug07 1626 Control Specs 1-Min dT Computed Results Peak Inflow 19.613 (cfs) Date/Time of Peak Inflow 06 Jul 13 2357 Peak Outflow 0.14520 (c£s) Date/Time of Peak Outflow 07 Jul 13 1203 Total Inflow 1.13 (in) Peak Storaqe 0.85143 (ac-f t) Total Outflow 1.13 (in) Peak Elevation 434.90(£t) • HMS * Summary of Results for WQ Pond #3 Project BriarChapel_Pond 3 Run Name 10-Year Post • Start of Run 06Ju113 1200 End of Run 06Ju114 1200 Execution Time 28Aug07 1626 Basin Model Post-Development Met. Model 10-Year Storm Control Specs 1-Min dT • Computed Results Peak Inflow 47.777 (efs) Peak Outflow 9.6885 (cfs) Total Inflow 3.04 (in) Total Outflow 3.04 (in) Date/Time of Peak Inflow 07 Jul 13 0004 Date/Time of Peak Outflow 07 Jul 13 0025 Peak Storage 1.3245 (ac-f t) Peak Elevation 435.84 (f t) • BIUAx CHAPEL Stormwater Management Facility #3 B. IHNATOLYA, EI NEW-05042 100-Year Worst Case Scenario 8/28/2007 > Stage -Storage Function Ks= 18164 b = 1.1086 Zo = 433.00 • Elevation [feet] Stora e [cf] [acre-feet] with Water @ Riser Crest EL. [acre-feet] 433.00 0 0.000 - 433.20 3050 0.070 - 433.40 6577 0.151 - 433.60 10310 0.237 - 433.80 14183 0.326 - 434.00 18164 0.417 - 434.20 22233 0.510 - 434.40 26376 0.606 - 434.60 30584 0.702 - 434.80 34850 0.800 - 435.00 39168 0.899 - 435.20 43533 0.999 - 435.40 47942 1.101 - 435.50 50161 1.152 0.000 435.70 54629 1.254 0.103 435.90 59132 1.357 0.206 436.10 63670 1.462 0.310 436.30 68240 1.567 0.415 436.50 72839 1.672 0.521 436.70 77468 1.778 0.627 436.90 82123 1.885 0.734 437.10 86805 1.993 0.841 437.30 91511 2.101 0.949 437.50 96242 2.209 1.058 437.70 100995 2.319 1.167 437.90 105770 2.428 1.277 438.00 108166 2.483 1.332 • 1 OF 1 • • • Type.... Composite Rating Curve Name.... Worst Case Page 1.07 File.... X:\Projects\NEW\NEW-05041\Storm\Construction Drawings\PondPack\WQPOND#3.PPW Title... Project Date: 7/13/2006 Project Engineer: Beth Ihnatolya, EI Project Title: Briar Chapel - WQ Pond #3 Project Comments: WS Elev, Total Q Elev. Q ft cfs 435.50 .00 435.70 4.29 435.90 12.14 436.10 22.31 436.30 34.35 436.50 46.36 436.70 46.89 436.90 97.42 437.10 47.99 437.30 48.95 437.50 48.96 437.70 49.47 437.90 49.96 438.00 50.21 S/N: 621701207003 PondPack Ver. 8.0058 ***** COMPOSITE OUTFLOW SUMMARY **** -------- Converge TW Elev Error ft +/-ft Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Notes ------------------------- Contributing Structures (no Q: RI, BA) RIBA RI, BA RI, BA RI, BA RI, BA RIBA RIBA RI, BA RI, BA RI, BA RIBA RIBA RI, BA The John R. McAdams Company Time: 3:56 PM Date: 9/4/2007 HMS * Summary of Results for WQ Pond #3 Project BriarChapel Pond 3 Run Name 100-Yr WorstCase • Start of Run 06Ju113 1200 End of Run 06Ju119 1200 Execution Time 04Sep07 1626 Basin Model Worst Case Met. Model 100-Year Storm Control Specs 1-Min dT • Computed Results Peak Inflow 76.695 (efs) Peak Outflow 47.209 (efs) Total Inflow 5.39 (in) Total Outflow 5.39 (in) Date/Time of Peak Inflow 07 Jul 13 0009 Date/Time of Peak Outflow 07 Jul 13 0010 Peak Storage 0.69147 (ac-f t) Peak Elevation 436.82 (f t) • BRIAR CHAPEL WQ POND #3 B. Ihnatolya, EI NEW-05042 Below NWSE 9/4/2007 • Stage-Storage Function Project Name: Briar Chapel Designed By: Job Number: Date: B. Ihnatolya, EI NEW-05042 9/4/2007 Contour (feet) Contour Stage Area (feet) (SF) Average Contour Area (SF) Incremental Contour Volume (CF) Accumulated Contour Volume (CF) Estimated Stage w/ S-S Fxn (feet) 42b.5 0.0 2961 427.0 0.5 5053 4007 2004 2004 0.52 428.0 1.5 6010 5532 5532 7535 1.44 430.0 3.5 8293 7152 14303 21838 3.23 432.0 5.5 14114 11204 22407 44245 5.54 433.0 6.5 17411 15763 15763 60008 6.99 • Storage vs. Stage ~oooo soooo ~ 50000 y = 4692x13ioe v 40000 RZ = 0.9966 m m c 30000 N ~ 20000 10000 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Stage (feet) Ks = 4692 b - 1.3108 • BRIAR CHAPEL WQ POND #3 B. Ihnatolya, EI NEW-05042 Forebay #2 9/4/2007 Stage-Storage Function • Project Name: Briar Chapel Designed By: B. Ihnatolya, EI Job Number: NEW-05042 Date: 9/4/2007 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 427.0 0.0 1004 428.0 1.0 1277 1141 114) 1141 1.00 430.0 3.0 1936 1607 3213 4354 2.95 431.0 4.0 2310 2123 2123 6477 4.06 • Storage vs. Stage ~ooo sooo y = 1135.3x1 2435 5000 RZ = 0.9995 LL V 4000 m rn c 3000 N 2000 1000 0 0.0 1.0 2.0 3.0 4.0 5.0 Stage (feet) Ks = 1135.3 b = 1.2435 • BRIAR CHAPEL NEW-05042 BRIAR CHAPEL - WO POND #3 DESIGN v ~`~~ ~~+. ,;:; ~:iii>:~I.~iiiii»Y::o.:tt...>::ii:<i:y~,v,.i::n: ~... . .F. %ii: ~~. Per NCDENR "Stormwater BestManagement Practices", the forebay volume should equal about 20% of the total basin volume. A. Water Quality Pond -Below Normal Pool Volume Volume = 60008 cf B. Forebay Volumes Forebay 1 Volume = 5322 cf Forebay 2 Volume = 6477 cf Forebay = 20% .~ ;; "~~:~:': Impervious Area = •4.213 acres Drainage Area = 1.0. ~ acres Impervious = 40.7% Cotal Below NP Volume 60008 cf Surface Area 17411 sf Average Depth = 3.45 ft > From the NCDENR Stormwater BMP Handbook (4/99), the required SA/DA ratio for 85% TSS Removal in the Piedmont is as follows: 3.0 3.45 4.0 Lower Boundary => 40.0 1.73 1.43 Site % impervious => 40.7 1.75 1.62 1.45 Upper Boundary => 50.0 2.06 1.73 Area Required = 7428 sf Area Provided = 17411 sf YES B. Ihnatolya, EI 9/4/2007 • BRIAR CHAPEL NEW-05042 1" RUNOFI • Project Name: Checked by: Job Number: Date: B. IHNATOLYA, EI 9/4/2007 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 433.0 0.0 17411 434.0 1.0 19144 18278 18278 18278 1.01 436.0 3.0 22779 20962 41923 6020] 2.95 438.0 5.0 26641 24710 49420 109621 5.06 • Storage vs. Stage lzoooo ~ooooo y.18164x1'10~ Rz = 0.9996 ., soooo LL U rn 60000 ~o `o N 40000 20000 0 0.0 1.0 2.0 Stage gfeet) 4.0 5.0 6.0 VOLUME CALCULATION SHEET Briar Chapel B. Ihnatolya, EI NEW-05042 8/22/2007 Ks= 18164 b = 1.1086 Calculation of Runoff Volume required for Storage The runoff to the water quality pond for the 1" storm runoff requirement is calculated by simply multiplying the total watershed area draining to the water quality pond times the runoff depth. Tota] Drainage Area to WQ Pond = 10.53 acres Runoff Depth = I inches Therefore, total runoff from precipitation in question = _ 38224 CF This amount of runoff must be stored in the pond above normal pool elevation, and be released in a period of two (2) to five (5) days, by an inverted PVC siphon, the invert end of which is set at permanent pool elevation. • BRIAR CHAPEL NEW-05042 • B. IHNATOLYA, EI 9/4/2007 Calculation of depth required for runoff storage pool (above normal pool) Normal pool depth (above invert) = 0.00 feet Therefore, depth required above normal pool for storm storage = 1.96 feet 23.48 inches Storage provided at permanent pool depth = 0 CF (calculated) Total storage required for normal + storage pool = 38224 CF Stage (above invert) associated with this storage = 1.96 feet Set crest of principal spillway at stage = 1.96 feet and EL = 434.96 feet • At principal spillway crest, storm pool storage provided = 38301 CF • BRIAR CHAPEL NEW-05042 Stormwater Management Facility #3 B. IHNATOLYA, EI 9/4/2007 Inverted Sip hon Design Sheet • D siphon = 2 inches No. siphons = 1 Ks = 18164 b = 1.108b Cd siphon = O.b0 Normal Pool Elevation = 433.00 feet Volume @ Normal Pool = 0 CF Siphon Invert = 433.00 feet WSEL @ 1" Runoff Volume = 434.96 feet Drawdown Time = 4.21 days By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.938 feet Orifice composite loss coefficient = 0.600 X-Sectional area of 1 - 2" inverted siphon = 0.022 ft2 Q = 0.1018 cfs Drawdown Time =Volume / Flowrate / 86400 (sec/day) Drawdown Time = 4.36 da s WSEL (feet) Vol. Stored (c Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (cf) Incr. Time (sec) 434.960 38301 0.144 434.789 34605 0.137 0.140 3696 26339 434.617 30947 0.130 0.133 3658 27413 434.446 27332 0.122 0.126 3616 28660 434.274 23763 0.114 0.118 3569 30137 434.103 20245 0.106 0.110 3517 31925 433.931 16787 0.097 0.101 3458 34159 433.760 13398 0.086 0.091 3389 37073 433.588 10091 0.075 0.080 3307 41125 433.417 6889 0.061 0.068 3202 47397 433.246 3830.1 0.042 0.051 3059 59486 Conclusion : Use 1 - 2.0" Diameter PVC Inverted Siphon to drawdown the accumulated volume from the 1.0 "storm runoff, with a required time of about 4.21 days. • BRIER CHAPEL SWMF #3 - 8~~ DIP B. Ihnatolya, EI NEW-05041 7/19/2006 • Anti-Seen Collar Design Sheet This sheet will, given the barrel length of interest and minimum seep collar projection from the barrel, determine the number of anti-seep collars to place along the barrel section, and the expected spacing of the collars. Design Requirements -> Anti-seep collars shall increase the flow path along the barrel by 15%. Anti-seep collars shall be spaced a maximum of 14X the minimum collar projection or 25 feet, whichever is less. Anti-Seep Collar Design => SWMF Flow Length Min. Calc'd # Max. ~ '. # of ~" ~ ' , Use Pond along barrel Projection of collars Spacing collars toy .,Spacing :~ Spacing ID (feet) (feet) required (feet) `use , , (feet} ~ ; OK? #3 - 8" DIP 67.0 2.53 1.99 25 ~ ~ 2.00 .;, 22.33333 YES • Note : If spacing to use is greater than the maximum spacing, add collars until the spacing to use is equal to or less than the maximum spacing allowable for the collar design. Anti-seep collars shall be used under the structural ftll portions of all berms/dams unless an approved drainage diaphragm is present at the downstream end of the barrel. • BRIAR CHAPEL -POND #3 CKP-05041 Square RiserBarrel Anti-Flotation Calculation Sheet • Input Data =_> Inside length of riser = 4.00 feet Inside width of riser = 4.04 feet Wall thickness of riser = bA0 inches Base thickness of riser = R.t)0 inches Base length of riser = B.OU feet Base width of riser = 8.00 feet Inside height of Riser = 9.00 feet Concrete unit weight = 142.0 PCF OD of barrel exiting manhole = 31.50 inches Size of drain pipe (if present) = 8.0 inches Trash Rack water displacement = 38A0 CF Concrete Present in Riser Structure =_> Total amount of concrete: Adjust for openings: Base ofRiser = 42.667 CF Riser Walls = 81.000 CF Opening for barrel = 2.706 CF Opening for drain pipe = 0.175 CF B. IHNATOLYA, EI 7/14!2006 iVoE2~ \C Froduc-ts lis~~ uri: w. oi' • Total Concrete present, adjusted for openings = 120.786 CF Weight of concrete present = I7I52 lbs Amount of water displaced by Riser Structure =_> Displacement by concrete = 120.786 CF Displacement by open air in riser = 144.000 CF Displacement by trash rack = 38.000 CF Total water displaced by riser/barrel structure = 302.786 CF Weight of water displaced = 18894 lbs Calculate amount of concrete to be added to riser =_> Safety factor t0 use = 1.15 ~:c;a:m:a:,-::i; ~. ~ ~ or lit>t:~r; Must add = 4576 lbs concrete for buoyancy Concrete unit weight for use = 142 PCF (note above observation for NCP concrete) Buoyant weight of this concrete = 79.60 PCF Buoyant, with safety factor applied = 69.22 PCF Therefore, must add = 66.115 CF of concrete Standard based described above = 42.667 CF of concrete • Therefore, base design must have = 108.782 CF of concrete 1 OF 2 BRIAR CHAPEL -POND #3 CICP-05041 Calculate size of base for riser assembly =_> Length = 8.000 feet Width = 8.f)00 feet Thicla-ess = 21.0 inches Concrete Present = 112.000 CF Check validity of base as designed => Off. Total Water Displaced = 372.120 CF Total Concrete Present = 190.120 CF Total Water Displaced = 23220 lbs Total Concrete Present = 26997 lbs Actual safety factor = 1.16 Results of design => • • f3.1C B. IHNATOLYA, EI 7/14/2006 Base length = 8.00 feet Base width = 8.00 feet Base Thickness = 21.00 inches CY of concrete total in base = 4.15 CY Concrete unit weight in added base >= 142 PCF 2OF2 • BRIAR CHAPEL NEW-05042 NRCD Land Quality Section Pipe Design Entering the following values will provide you with the expected outlet velocity and depth of flow in a pipe, assuming the Mannings roughness number is constant over the entire length of the pipe. flow Q in cfs :9.6885 Flow depth (ft) = 1.02 slope S in % :0.685 Outlet velocity (fps) = 6.003 pipe diameter D in in.: 24 Manning number n :0.013 NRCD Land Quality Section NYDOT Dissipator Design Results • Pipe diameter (ft) 2.00 Outlet velocity (fps) 6.00 Apron length (ft) 12.00 AVG DIAM STONE THICKNESS (inches) CLASS (inches) 3 A 9 »6 B 22« 13 B or l 22 23 2 27 CALCULATION: Minimum TW Conditions: W = Do + La = 2' + 12' =14ft CONCLUSION: USE NCDOT CLASS `B' RIP RAP 12'L g 14'W x 22" THK B. IHNATOLYA, EI 9/4/07 •