Loading...
HomeMy WebLinkAboutWI0100353_Corrective Action Plan_20220330CORRECTIVE ACTION EVALUATION REPORT WATER QUALITY DATA THROUGH OCTOBER 2021 OLD BUNCOMBE COUNTY LANDFILL WOODFIN, NORTH CAROLINA DWM Permit Number 1101-MSWLF-1979 DWR UIC Permit No. WI0100353 Prepared For: Buncombe County, North Carolina BLE Project Number J20-14175-03 March 30, 2022 J Dr()LO BLE North Carolina Business Licenses C-284 & C-1538 IM 13UNNELL M LAMMONS ENGINEERING 6004 Ponders Court I Greenville, 5C 29615 864-288.1265 A 864,286.4330 w info@hle[orp.com BLECORP.CQM � LAMM(INS ENGINEERING March 30, 2022 Buncombe County Solid Waste Department 81 Panther Branch Road Alexander, North Carolina 28701 Attention: Ms. Kristy Smith Subject: Corrective Action Evaluation Report Water Quality Data Through October 2021 Old Buncombe County Landfill Woodfin, North Carolina DWM Permit Number 1101-MSWLF-1979 DWR UIC Permit No. W10100353 BLE Project Number J20-14175-03 Dear Ms. Smith: Pursuant to Buncombe County authorization of Bunnell-Lammons Engineering, Inc. (BLE) Contract Number J20-14175-03, dated February 27, 2020, BLE has prepared this Corrective Action Evaluation Report (CAER) of the water quality data collected through October 2021 at the Old Buncombe County Landfill. This CAER is prepared in accordance with the requirements of the North Carolina Division of Waste Management (DWM) — Solid Waste Section (SWS) approved Corrective Action Plan (CAP) and the North Carolina Division of Water Resources (DWR) approved Underground Injection Control (UIC) permit. Sincerely, BUNNELL LAMMONS ENGINEERING INC. Ril . Blais, .I.T. Staff Hydrogeologist cc: Ms. Jaclynne Drummond — DWM-ARO Mr. Brett Laverty, P.G. — DWR-ARO Mr. Michael Rogers, P.G. — DWR-CO 4&1 aL /4-4w� Andrew W. Ale der, P.G., RSM Consultant Hydrogeologist Registered, NC #1475 Ilblegvlfsllsolidwasteprojectslbuncombe county closed lf, ncU4175-03 caer 5 yearlcaerldraft old bcd(1101-mswlf-1979 caer 14175-03.docx 6004 Ponders Court, Greenville, SC 29615 ( H!54.28B.1265 a B64.288.4430 P—Minfoahlerorp.Eom 6LECORP.COM IC 1.1: Old Buncombe County Landfill — Woodfin, North Carolina March 30, 2022 CAER — WQ Data through October 2021 BLE Project No. J20-14175-03 TABLE OF CONTENTS 1.0 PROJECT INFORMATION........................................................................................................ I 2.0 DATA EVALUATION..................................................................................................................2 2.1 Trend Data...................................................................................................................................... 3 2.2 Geochemical Data........................................................................................................................... 4 2.3 Contaminant Trend Evaluation..................................................................................................... 5 2.3.1 Trend Evaluation of Chlorinated Solvents...................................................................................... 5 2.3.2 Trend Evaluation of Other Categories of VOCs............................................................................. 5 2.4 Evaluation of Geochemical Data................................................................................................... 6 2.4.1 Chlorinated Solvent Geochemical Data.......................................................................................... 6 2.4.2 Terminal Electron Accepting Processes (TEAPs) Geochemical Data ............................................ 6 3.0 FINDINGS......................................................................................................................................6 3.1 Contaminant Trend Evaluation.................................................................................................... 6 3.1.1 Trends of Chlorinated Solvents...................................................................................................... 6 3.1.2 Trends of Other Categories of VOCs............................................................................................. 7 3.2 Evaluation of Geochemical Data.................................................................................................. 8 3.2.1 Chlorinated Solvents....................................................................................................................... 8 3.2.2 Other Categories of VOCs............................................................................................................... 9 4.0 SUMMARY & CONCLUSIONS.................................................................................................. 9 4.1 Chlorinated Solvents...................................................................................................................... 9 4.2 Other Categories of VOCs..........................................................................................................10 4.3 Geochemical Conditions..............................................................................................................10 4.4 General Summary and Conclusions........................................................................................... 10 5.0 RECOMMENDATIONS.............................................................................................................11 5.1 Proposed Future Monitoring Matrix.........................................................................................11 5.2 Continuation of the Approved Remedies................................................................................... 11 5.3 Voluntary Supplemental Remedy.............................................................................................. 11 5.4 Assessment Near MW-7..............................................................................................................11 6.0 QUALIFICATIONS OF REPORT............................................................................................12 7.0 CLOSING.....................................................................................................................................12 Tables Table 1 SWS Approved Groundwater Sampling and Analysis Matrix Table IA Proposed Groundwater Sampling and Analysis Matrix Table 2 SWS Approved Surface Water Sampling and Analysis Matrix Table 3 Well Construction and Monitoring Well Data Table 4 Range of Groundwater Flow Velocities Table 5 Groundwater Transects for Remedial Monitoring Table 6A & 6B Summary of Statistical Trends VOCs in Groundwater Table 7 Summary of Statistical Trends — VOCs in Surface Water Table 8 Natural Attenuation Screening Protocol (NASP) Results Table 9A to 9E Summary of TEAP Parameters & Comparisons [November 2019 to October 2021 ] 1 of 2 1s 1m 1i Old Buncombe County Landfill — Woodfin, North Carolina CAER — WQ Data through October 2021 TABLE OF CONTENTS (continued) Figures Figure 1 Site Location Map Figure 2 Groundwater Elevation Contour Map — October 25, 2021 Figure 3 Transect Location Map Figure 4 Profile of Transect 1-1' Figure 5 Profile of Transect 2-2' Figure 6 Profile of Transect 3-3' Figure 7 Profile of Transect 4-4' Figure 8 Profile of Transect 5-5' Appendices March 30, 2022 BLE Project No. J20-14175-03 Appendix A Groundwater VOC Summary Tables Appendix B Surface Water VOC Summary Tables Appendix C Geochemical Parameters for MNA and Field Parameter Summary Tables Appendix D Groundwater VOC Trend Plots [5 VOC Categories] Appendix E Surface Water VOC Trend Plots [1 VOC Category] Appendix F Input Parameters for NASP [November 2019 to October 2021 ] Appendix G NASP Score Sheets [November 2019 to October 2021] 2 of 2 1s 1m 1i Old Buncombe County Landfill — Woodfin, North Carolina March 30, 2022 CAER — WQ Data through October 2021 BLE Project No. J20-14175-03 1.0 PROJECT INFORMATION Buncombe County provides post -closure care for the Pre -Subtitle D MSWLF (unlined) located at 2726 Riverside Drive, Woodfin, North Carolina (Figure 1). The county operated the facility as a municipal solid waste (MSW), industrial solid waste (ISW), and construction and demolition (C&D) landfill. The landfill is separated into four (4) separate waste areas labeled A through D. Waste areas A, B, and C stopped receiving waste before October 9, 1991 and waste area D stopped receiving waste on September 27, 1997. The closed landfill is commonly referred to as the Old Buncombe County Landfill. Groundwater and surface water monitoring is performed at the site in accordance with a DWM approved Corrective Action Plan (CAP) dated September 3, 2014 [DIN 21838 (SCS Engineers File No 09204072.06)] and a DWM approved Request for Reduction of MNA Parameters dated November 30, 2016 [DIN 27144 (SCS Engineers File No 09204072.14)]. Prior to the second semi-annual sampling event of 2020, BLE submitted (on behalf of Buncombe County) the Report of 1, 4-Dioxane Sampling and Analysis November 2018 to April 2020 dated September 1, 2020 [FID 145059] which included updated groundwater and surface water matrices. The report and updated matrices were approved by the DWM. Buncombe County applied for, and was granted a permit for subsurface injection of materials for enhanced bioremediation of VOCs (chlorinated solvents) in groundwater as part of the correction action at the facility. An underground injection control (UIC) Permit (No WI0100353) was transmitted by the DWR on September 11, 2015. The permit issue date was September 15, 2015. The permit was renewed on September 21, 2020 and expires on August 31, 2025 (effective dates). The facility requires semi-annual groundwater and surface water monitoring and reporting in accordance with the CAP, et seq., and UIC permit. The active groundwater monitoring network for the Old Buncombe County Landfill consists of one (1) upgradient (background) well and twenty-three (23) downgradient (compliance, performance, and sentinel) wells. There are a total of fourteen (14) additional wells that are considered inactive for sampling purposes and are used for collecting water levels only (Table 1 and Figure 2). Five (5) active surface water monitoring locations have been established for the facility to monitor surface water quality. The existing surface water locations consist of one (1) upstream (background) location and four (4) downstream (compliance) locations. Five (5) inactive surface water monitoring locations have been established but are not sampled (Table 2 and Figure 2). The selected remedies in the approved CAP include Monitored Natural Attenuation (MNA), Intuitional Controls, and In Situ Enhanced Bioremediation and Bioaugmentation. The institutional controls included a restrictive cover (landfill cap), fencing, and a landfill gas collection system. Those remedies are described in the project records (prepared by others) and are not part of the CAER. The active water quality compliance remedies were initiated in 2015 and were implemented to target chlorinated VOCs. They included the aforementioned UIC permit and underground injection for enhanced bioremediation and bioaugmentation. A bio-treatability study performed by SiREM in 2015 and included in SCS's Monitored Natural Attenuation Sampling Report dated May 5, 2015 (SCS File No. 09204072.14) concluded that bioaugmentation was not necessary at the site. 1 of 12 1s 1m 1i Old Buncombe County Landfill — Woodfin, North Carolina March 30, 2022 CAER — WQ Data through October 2021 BLE Project No. J20-14175-03 The in -situ enhanced bioremediation programs performed at the site included two events. A pre -CAP pilot - scale injection of Hydrogen Release Compound (HRC) was performed in 2007-2008 and was located upgradient of the MW-17 groundwater monitoring well cluster. The results of the pilot -scale event and monitoring was reported by others in 2009 and are not part of the CAER. A post -CAP injection of an emulsified vegetable oil (Tersus EDS-ER [Electron Donor Solution — Extended Release]) and a fermentation product (Tersus Nutrimens) was performed in 2015. The emulsified vegetable oil and fermentation product injection was performed in September 22-28, 2015 and included injection wells/points IW-1 (860 gallons), DPL-2 (447 gallons), TW-1 (275 gallons), TW-2 (275 gallons), and TW-3 (90 gallons) [Figure 2]. The CAP and UIC permit both specify that an evaluation of the site's remedial progress be documented in reports submitted to the DWM and DWR. The CAP requires the preparation of a CAER and the UIC permit requires the submittal of an Interim Evaluation Report (IER). The CAP specified the first CAER would be submitted by September 1, 2021 (approximate). Buncombe County and BLE planned to issue the CAER at the end of 2021 to include the October 2021 semi-annual water quality data as documented in several prior semi-annual water quality monitoring reports. However, the receipt of the October 2021 data was delayed and submittal of this CAER was postponed until March 31, 2022 as documented in BLE's letter to the SWS titled Revised Schedule for the Corrective Action Evaluation Report (CAER) dated December 8, 2021. The objective of this project is to evaluate the remedial progress at the facility and to prepare a CAER as required by the DWM and DWR, respectively. Please note that the general requirements for the CAER are included in the DWM Solid Waste Section (SWS) Guidelines for Corrective Action Evaluation Reports (undated whitepaper). The requirements for the IER are included in Part VI — Paragraph 5 of the permit. This CAER has been prepared in general accordance with the aforementioned guidance for the CAER and IER and includes only the relevant elements of each. The site's aquifer characteristics, contaminant distribution, site conceptual model, and regulatory status was documented in the aforementioned CAP and in multiple semi-annual monitoring and monitored natural attenuation (MNA) sampling reports prepared by SCS from 2014 through 2019. Additional monitoring data is provided in multiple semi-annual water quality reports by BLE from 2019 to 2022. No change to the aquifer characteristics, contaminant distribution, site conceptual model, or regulatory status from that documented in the CAP and prior sampling reports is proposed as part of this CAER. Please refer to those documents for those data. 2.0 DATA EVALUATION It is noted that the remedies in the approved CAP were developed to only address VOCs in groundwater. Specifically, the enhanced bioremediation project targeted chlorinated ethenes and chlorinated ethanes in specific locations where injection of substances were performed. However, this CAER has been prepared to evaluate remedial progress in the target areas and non -target areas. Additionally, this CAER has been prepared to include the evaluation of specific classes of VOCs with significant detection history in the active groundwater and surface water monitoring locations. An evaluation period from April 16, 2012 to October 28, 2021 has been established for the CAER. The evaluation period includes the data available in digital form in the facility records and provides sufficient pre -CAP baseline data (prior to 2015 injections) for comparison to post -CAP data (after 2015 injections). 2of12 1s 1M 1i Old Buncombe County Landfill — Woodfin, North Carolina March 30, 2022 CAER — WQ Data through October 2021 BLE Project No. J20-14175-03 This CAER includes a site map (Figure 2) which includes the location of groundwater and surface water monitoring points and injection points circa 2015. Groundwater elevation contours and flow arrows from the October 2021 sampling event are also shown on Figure 2. The monitoring well construction details and water levels from the October 2021 event are shown on Table 3. Groundwater flow velocities calculated for the October 2021 sampling event are included on Table 4. Five (5) transects were established for remedial monitoring in the CAP (Table 5). The locations of all five transects are shown on Figure 3. Profiles for each transect are shown on Figures 4, 5, 6, 7, and 8. Total VOC concentrations for the October 2021 event are shown at each active well location for reference. Note that the lithologic data shown on the profiles are from others and the references are cited on the figures. Summary tables of the groundwater quality data published by BLE for the five (5) most recent events; November 2019, April 2020, October 2020, April 2021, and October 2021 have been prepared for reference (Appendix A, B, and Q. The groundwater VOC summary tables are included in Table A-1 through Table A-5 (Appendix A). The surface water VOC summary tables are included in Table B-1 through Table B-5 (Appendix B). The groundwater geochemical parameters for MNA and field parameters summary tables are included in Table C-1 through Table C-5 (Appendix Q. Data from the April 2012 event through the April 2019 event was published by SCS in semi-annual water quality reports. This CAER includes the evaluation of contaminant trends and geochemical conditions to determine if conditions are favorable for natural attenuation processes. As such, this CAER is divided into two sections for each type of evaluation; 1) trend data and 2) geochemical data. 2.1 Trend Data The data from the VOC trend analyses for groundwater and surface water included data from the April 2012 event through the April 2019 event published by SCS and data from the November 2019 event through the October 2021 event published by BLE (Appendix A and B). A working list of detected VOCs during the evaluation period were prepared. The working list does not include detections of unique VOCs which are void of trends and which may be sampling and/or laboratory error. The detected VOCs selected for evaluation were classified into five (5) categories based on chemical type. The categories and compounds in each category are shown below: Chlorinated Ethenes Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-Dichloroethene (DCE) Vinyl Chloride (VC) Chlorinated Ethanes 1, 1, 1 -Trichloroethane (1,1,1-TCA) 1, 1 -Dichloroethane (1,1-DCA) Chloroethane (CA) Hvdrocarbons Benzene Toluene Ethylbenzene Total Xylenes 3of12 1s 1M 1i Old Buncombe County Landfill - Woodfin, North Carolina March 30, 2022 CAER - WQ Data through October 2021 BLE Project No. J20-14175-03 Chlorinated Benzenes Chlorobenzene (CB) 1,2-Dichlorobenzene (1,2-DCB) 1,4-Dichlorobenzene (1,4-DCB) Other VOCs Acetone 1,2-Dichloropropane (1,2-DCP) 2-Butanone (MEK) 4-Methyl-2-Pentanone (MIK) 1,4-Dioxane (DX) Trend plots of the VOCs listed above for each category were prepared for selected groundwater monitoring wells (Appendix D) for the period from April 2012 through October 2021. The selected wells included the following nineteen (19) groundwater monitoring wells: MW-B, MW-3, MW- 4, MW-4A, MW-5, MW-6, MW-6-192, MW-7, MW-12-25, MW-13-35, MW-13-132, MW-17-60, MW-17- 137, MW-18-78, MW-19-75, MW-19-110, MW-21-21, MW-21-94, and DPL-2. Groundwater elevations are included on each VOC trend plot for reference (Appendix D). Note that monitoring well DPL-2 was abandoned and sampling was discontinued in 2015. The data from DPL-2 is included for historical reference only. Also note that monitoring well MW-7 was reported to be dry from spring 2015 and not sampled until late 2019 when the water level rose and sampling resumed. Trend plots of the VOCs listed above in the Other VOC category were prepared for the active surface water locations (Appendix E). The active surface water locations included: SW -I, SW-2, SW-2A, SW-3, and SW- 4. It is noted that detected VOCs in the surface water points, which met the criteria for creation of a trend plot, were limited to the Other VOC category. Additionally, the NC2B standard for DX is included on the plots for reference. 2.2 Geochemical Data Summary tables of geochemical data from the most recent five (5) events are included in Appendix C: November 2019 (Table C-1), April 2020 (Table C-2), October 2020 (Table C-3), April 2021 (Table C-4), and October 2021 (Table C-5). These data will be evaluated herein. 4of12 1s 1M 1i Old Buncombe County Landfill — Woodfin, North Carolina March 30, 2022 CAER — WQ Data through October 2021 BLE Project No. J20-14175-03 2.3 Contaminant Trend Evaluation 2.3.1 Trend Evaluation of Chlorinated Solvents Degradation of chlorinated compounds is typically reflected in the historical trends where the concentrations of parent compounds decrease while the concentrations of daughter products increase. The two major transformation pathways for ethenes and ethanes from parent to daughter products are shown below: 1. Tetrachloroethene (PCE) 4 Trichloroethene (TCE) 4 (isomers) Dichloroethene (DCE) 4 Vinyl Chloride (VC) 4 Ethene 4 Ethane 2. 1,1,1-Trichloroethane (1,1,1-TCA) 4 1,1-Dichloroethane (1,1-DCA) 4 Chloroethane (CA) 4 Ethane It is noted that sufficient evidence of attenuation incudes: 1) decreasing trends or non -detect parent product (e.g., PCE, TCE, and 1,1,1-TCA); and/or 2) increasing, stable, and/or decreasing trends of daughter product (e.g., DCE, VC, 1,1-DCA, CA). Summary tables of the historical concentration data were prepared (Appendix A) and plots of chlorinated solvent concentrations were analyzed for wells with observed measurable concentration trends (Appendix D). Concentration trends were evaluated visually, using linear regression analysis, and using the Kendall -Mann non -parametric testing procedure. The Kendall -Mann procedure is used to determine if the concentrations detected in a well are increasing or decreasing over time. The trend analysis consisted of the following: 1. Determination of the slope of best -fit trend -lines of the detected concentrations in monitoring wells with sufficient data for analysis. A negative (-) slope indicates a decreasing trend, and a positive (+) slope indicates an increasing trend. 2. Determination of the non -parametric Kendall -Mann Trend Coefficient (r). The i provides a measure of the agreement between the two data sets (i.e., the agreement between the passage of time [sampling events], and the increase or decrease in concentration of a constituent). The resulting r can range from 1 (complete positive agreement [increasing trend]) to -1 (complete negative agreement [decreasing trend]). A i between -0.25 and 0.25 indicate a stable trend. The criteria for statistical analysis of contaminant trends requires a minimum of four (4) datapoints and a minimum of three (3) detections for analysis of any trend. Datasets that do not meet the criteria will not be analyzed and will be listed as insufficient. 2.3.2 Trend Evaluation of Other Categories of VOCs A parent and daughter product relationship does not exist for the other categories of VOCs described herein. Trends for the other categories of VOC concentration data were analyzed using linear regression analysis and the Kendall -Mann non -parametric testing procedure as described in the preceding section of this report. It is noted that sufficient evidence of attenuation incudes decreasingtrends. ends. Evidence of plume stability includes stable trends. 5of12 1s 1m 1i Old Buncombe County Landfill — Woodfin, North Carolina March 30, 2022 CAER — WQ Data through October 2021 BLE Project No. J20-14175-03 2.4 Evaluation of Geochemical Data BLE evaluated the geochemical data for the five (5) sampling events from November 2019 through October 2021 (Appendix Q. We evaluated data from the MNA wells specified in the CAP which included background well MW-2 and nine (9) downgradient wells MW-4, MW-6, MW-13-132, MW-18-78, MW- 19-75, MW-19-110, MW-21-21, MW-21-94, MW-24-160. 2.4.1 Chlorinated Solvent Geochemical Data The US EPA released a technical protocol for evaluating the natural attenuation of chlorinated solvents in groundwater in September 1998 (EPA/600/R-98/128). The protocol includes the framework for a screening model, which has been developed into a Natural Attenuation Decision Support System designated BIOCHLOR Version 2.2 (EPA/600R-00/008). BIOCHLOR Version 2.2 was developed for the Air Force Center for Environmental Excellence (AFCEE) and released in March 2001. Geochemical parameters used to assess monitored natural attenuation (MNA) were collected at the site and evaluated using the "Natural Attenuation Screening Protocol" (HASP) found in the BIOCHLOR model (Version 2.2). The NASP worksheets calculate a score from the data using a weighted point scoring system. A higher score indicates stronger evidence of anaerobic biodegradation of chlorinated organics. NASP worksheets were prepared for each well and the results of the model were used to determine if the measured parameters supported the selection of natural attenuation as a site remedy (Appendix F and G). 2.4.2 Terminal Electron Accepting Processes (TEAPs) Geochemical Data Predominant terminal electron -accepting processes (TEAPs) resulting in VOC degradation are oxidation, denitrification, iron reduction, sulfate reduction, and methanogenesis. Geochemical parameters that are indicators of microbial respiration patterns of specific TEAPs include dissolved oxygen, nitrate, iron, sulfate, sulfide, and methane concentrations. Concentrations of these geochemical parameters were evaluated to determine which TEAPs were potentially active (Table 9A to 9E). 3.0 FINDINGS 3.1 Contaminant Trend Evaluation 3.1.1 Trends of Chlorinated Solvents Chlorinated Ethenes A historical summary of chlorinated compounds in groundwater in the PCE transformation pathway (PCE, TCE, DCE isomers, and VC), are presented in Appendix A. Trend plots of chlorinated ethenes in groundwater are included in Appendix D. Note that if a specific VOC was not detected during the evaluation period; the plot legend includes a "ND" label for the VOC. Chlorinated ethenes were not detected in the surface water. Trends of the subject VOCs were evaluated visually and statistically (linear regression and Kendall -Mann tests). A summary of linear regression and Kendall -Mann test results are presented in Table 6A. The statistical summary table includes a result for the data from each well which meets the evaluation criteria. The summary table includes results for a best fit trend line (linear regression), Kendall -Mann coefficient, general trend, and notation if the most recent result exceeds the MCL. 6of12 1s 1m 1i Old Buncombe County Landfill — Woodfin, North Carolina March 30, 2022 CAER — WQ Data through October 2021 BLE Project No. J20-14175-03 In summary, the parent products (PCE and TCE) are completely transformed (non -detect) or are decreasing as expected on the transformational pathway. Note that the trend of TCE in MW-21-21 indicates the general trend is stable. However, the regression line is negative and the four (4) detections are all near the laboratory detection limit. The daughter products (DCE and VC) are decreasing, stable, or increasing as expected on the transformational pathway. Chlorinated Ethanes A historical summary of chlorinated compounds in groundwater in the 1,1,1-TCA transformation pathway (1,1,1-TCA, 1,1-DCA, and CA), are presented in Appendix A. Trend plots of chlorinated ethanes in groundwater are included in Appendix D. Note that if a specific VOC was not detected during the evaluation period; the plot legend includes a "ND" label for the VOC. Chlorinated ethanes were not detected in the surface water. Trends of the subject VOCs were evaluated visually and statistically (linear regression and Kendall -Mann tests). A summary of linear regression and Kendall -Mann test results are presented in Table 6A. The statistical summary table includes a result for the data from each well which meets the evaluation criteria. The summary table includes results for a best fit trend line (linear regression), Kendall -Mann coefficient, general trend, and notation if the most recent result exceeds the MCL. In summary, the parent product (1,1,1-TCA) is completely transformed (non -detect) as expected on the transformational pathway. The daughter products (1,1-DCA, and CA) are decreasing, stable, or increasing as expected on the transformational pathway. Note that all ethane daughter products are stable or decreasing except for 1,1-DCA in MW-B which is increasing. 3. l .2 Trends of Other Categories of VOCs Hydrocarbons A historical summary of petroleum hydrocarbons in groundwater are presented in Appendix A. Trend plots of petroleum hydrocarbons in groundwater are included in Appendix D. Note that if a specific VOC was not detected during the evaluation period; the plot legend includes a "ND" label for the VOC. Petroleum hydrocarbons were not detected in the surface water. Trends of the subject VOCs were evaluated visually and statistically (linear regression and Kendall -Mann tests). A summary of linear regression and Kendall -Mann test results are presented in Table 6A. The statistical summary table includes a result for the data from each well which meets the evaluation criteria. The summary table includes results for a best fit trend line (linear regression), Kendall -Mann coefficient, general trend, and notation if the most recent result exceeds the MCL. In summary, a majority of the petroleum hydrocarbons are stable or decreasing. Trends of benzene in MW- 7 and MW-13-132 and xylene in MW-3, MW-7, and MW-17-137 appear to be increasing. Chlorinated Benzenes A historical summary of chlorinated benzenes in groundwater are presented in Appendix A. Trend plots of chlorinated benzenes in groundwater are included in Appendix D. Note that if a specific VOC was not detected during the evaluation period; the plot legend includes a "ND" label for the VOC. Chlorinated benzenes were not detected in the surface water. Trends of the subject VOCs were evaluated visually and statistically (linear regression and Kendall -Mann tests). A summary of linear regression and Kendall -Mann test results are presented in Table 6B. The statistical summary table includes a result for the data from each well which meets the evaluation criteria. The summary table includes results for a best fit trend line (linear regression), Kendall -Mann coefficient, general trend, and notation if the most recent result exceeds the MCL. 7of12 1s 1m 1i Old Buncombe County Landfill — Woodfin, North Carolina March 30, 2022 CAER — WQ Data through October 2021 BLE Project No. J20-14175-03 In summary, CB appears to be increasing in seven (7) of the sixteen (16) wells evaluated. 1,2-DCB appears to be increasing in MW-3 and 1,4-DCB appears to be increasing in MW-B, MW-7, and MW-17-137. The chlorinated benzene trends in the remaining wells are stable, decreasing, or have insufficient data. Other VOCs A historical summary of other VOCs in groundwater and surface water are presented in Appendix A and Appendix B. Trend plots of other VOCs in groundwater and surface water are included in Appendix D and Appendix E. Note that if a specific VOC was not detected during the evaluation period; the plot legend includes a "ND" label for the VOC. Note that only DX was detected surface water. Trends of the subject VOCs were evaluated visually and statistically (linear regression and Kendall -Mann tests). A summary of linear regression and Kendall -Mann test results for groundwater and surface water are presented in Table 6B and Table 7. The statistical summary table includes a result for the data from each well or surface water point which meets the evaluation criteria. The summary table includes results for a best fit trend line (linear regression), Kendall -Mann coefficient, general trend, and notation if the most recent result exceeds the MCL or 2B standard. In summary a majority of the other VOCs are insufficient for trend analysis because of infrequent detections. Trends of acetone in MW-7 appear to be increasing. Trends of DX in MW-3, MW-4A, MW- 5, MW-6, MW-6-192, MW-17-60, MW-17-137, and MW-18-78 appear to be increasing. Trends of DX in surface water location SW-2A appear to be increasing. 3.2 Evaluation of Geochemical Data 3.2.1 Chlorinated Solvents The field and laboratory data collected for geochemical evaluation are available on the tables in Appendix C. A summary table of NASP input parameters for each event are included in Appendix F: November 2019 (Table F-1), April 2020 (Table F-2), October 2020 (Table F-3), April 2021 (Table F-4), and October 2021 (Table F-5). NASP worksheets were prepared for each of MNA wells specified in the CAP which include nine (9) downgradient wells MW-4, MW-6, MW-13-132, MW-18-78, MW-19-75, MW-19-110, MW-21-21, MW- 21-94, MW-24-160 for each of the five (5) sampling events from the data in Appendix F. The NASP calculated a score from the data using a weighted point scoring system. A higher score indicates stronger evidence of anaerobic biodegradation of chlorinated organics. The NASP score sheets are included in Appendix G. The NASP scoring results for the five (5) events from November 2019 through October 2021 are summarized in Table 8. The NASP results for the evaluation period indicate that there is "limited" to "strong" evidence for anaerobic biodegradation of chlorinated compounds at the site. A majority of the NASP results indicate "strong" evidence. The only well which scored as "limited" was MW-24-160. No well scored as "inadequate" during any event. 8of12 1s 1m 1i Old Buncombe County Landfill — Woodfin, North Carolina March 30, 2022 CAER — WQ Data through October 2021 BLE Project No. J20-14175-03 3.2.2 Other Categories of VOCs Geochemical parameters which may identify potentially active terminal electron -accepting processes (TEAPs) are summarized on tables for each sampling event as follows: November 2019 (Table 9A), April 2020 (Table 9B), October 2020 (Table 9C), April 2021 (Table 91)), and October 2021 (Table 9E). The evaluation of these geochemical parameters and associated TEAPs are performed by either comparing the upgradient geochemical conditions to the downgradient geochemical conditions, by comparing a geochemical parameter concentration to a standard value, or by comparing an unreduced parameter to a reduced parameter. Each TEAP is identified as potentially active or inactive based on evaluation of the geochemical parameters. We evaluated TEAP status from the MNA wells specified in the CAP which included background well MW-2 and nine (9) downgradient wells MW-4, MW-6, MW-13-132, MW-18- 78, MW-19-75, MW-19-110, MW-21-21, MW-21-94, MW-24-160. Please note that the determination of TEAP status is based on the conditions observed at the time of sampling and that TEAP activity is both spatially and temporally variable. The status for each TEAP was tabulated from each event and summed for all five events to calculate an activity percentage for each TEAR The results are as follows in order of most active to least active. Iron Reduction [42 of 45] 93% active Methanogenesis [34 of 45] 76% active Oxidation [10 of 45] 22% active Sulfate Reduction [2 of 45] 4% active Denitrification [0 of 45] 0% active These data, collected over a 2.5 year period, provide sufficient evidence that Iron Reduction and Methanogenesis are active TEAPs at the site. Please note that the dissolved methane observed in the groundwater may be affected be the generation of landfill gas and not directly by methanogenic activity in groundwater. Discrimination of the potential sources of methane is not technically feasible. The data also indicates that Oxidation is minimally active and that Sulfate Reduction and Denitrification are not active at the site. 4.0 SUMMARY & CONCLUSIONS 4.1 Chlorinated Solvents In summary, the parent products (PCE and TCE) are completely transformed (non -detect) or are decreasing as expected on the transformational pathway. The daughter products (DCE and VC) are decreasing, stable, or increasing as expected on the transformational pathway. In summary, the parent product (1,1,1-TCA) is completely transformed (non -detect) as expected on the transformational pathway. The daughter products (1,1-DCA, and CA) are decreasing, stable, or increasing as expected on the transformational pathway. Note that all ethane daughter products are stable or decreasing except for 1,1-DCA in MW-B which is increasing. Concentrations of ethene and ethane are pervasive throughout the entire site at concentrations typically below 0.5 µg/L indicating possible full transformation of parent product to end daughter product (Appendix Q. 9of12 1s 1m 1i Old Buncombe County Landfill — Woodfin, North Carolina March 30, 2022 CAER — WQ Data through October 2021 BLE Project No. J20-14175-03 We conclude that the trend data and observed daughter products provide sufficient evidence of natural attenuation of chlorinated solvents at the subject site. 4.2 Other Categories of VOCs In summary, a majority of the petroleum hydrocarbons are stable or decreasing. Trends of benzene in MW- 7 and MW-13-132 and xylene in MW-3, MW-7, and MW-17-137 appear to be increasing. In summary, CB appears to be increasing in seven (7) of the sixteen (16) wells evaluated. 1,2-DCB appears to be increasing in MW-3 and 1,4-DCB appears to be increasing in MW-B, MW-7, and MW-17-137. The chlorinated benzene trends in the remaining wells are stable or decreasing. In summary, a majority of the other VOCs are insufficient for trend analysis because of infrequent detections. Trends of acetone in MW-7 appear to be increasing. Trends of DX in MW-3, MW-4A, MW- 5, MW-6, MW-6-192, MW-17-60, MW-17-137, and MW-18-78 appear to be increasing. Trends of DX in surface water location SW-2A appear to be increasing. It is noted that the DX concentrations detected in the surface water do not exceed the NC213 standard. We conclude that the trend data provide sufficient evidence of natural attenuation of a majority of the VOCs in the Other VOC category at the subject site with the exception of the specific VOCs and the specific locations mentioned above. 4.3 Geochemical Conditions Results of the NASP scoring of geochemical conditions and compounds present indicate that there is "limited" to predominantly "strong" evidence for biodegradation of chlorinated solvents. This data corroborates the results of the previous MNA reports published by others. We conclude that the observed geochemical conditions are favorable for natural attenuation processes at the subject site. We also conclude that continued collection of geochemical data on a semi-annual frequency is not beneficial due to redundancy, historical result consistency, plume stability, and the trend analysis results. See Section 5.1 of this CAER. Evaluation of geochemical parameters indicate that iron reduction and methanogenesis are predominantly active TEAPs and that oxidation is a minimally active TEAR We conclude that the observed geochemical conditions are favorable for natural attenuation processes at the subject site. We also conclude that continued collection of geochemical data on a semi-annual frequency is not beneficial due to redundancy, historical result consistency, plume stability, and the trend analysis results. See Section 5.1 of this CAER. 4.4 General Summary and Conclusions The data in this CAER indicates that the VOCs present in groundwater have degraded or should continue to degrade. Geochemical conditions at the site are favorable for continued natural attenuation processes at the subject site. Overall, the VOC plume appears stable. The current data indicates that additional injections of carbon substrate are not needed at this time. A small number of VOCs in localized areas appear to exhibit increasing concentration trends. These VOCs were not the target of the remedial efforts in the CAP. Please refer to the recommendations in the following sections of this report which addresses these issues. 10 of 12 1s 1m 1i Old Buncombe County Landfill — Woodfin, North Carolina March 30, 2022 CAER — WQ Data through October 2021 BLE Project No. J20-14175-03 5.0 RECOMMENDATIONS 5.1 Proposed Future Monitoring Matrix The findings of this CAER indicate that continued collection and analysis of groundwater geochemical data (MNA parameters) on a semi-annual frequency does not provide useful data. We recommend that the frequency of groundwater geochemical data be changed to twice every five (5) years with the next sampling events to be scheduled for April 2026 and October 2026 (Table 1A). Please note that changes to the field sampling parameters in the matrix are not proposed. A UIC permit modification to incorporate the proposed matrix will be submitted to the DWR after approval by the SWS. 5.2 Continuation of the Approved Remedies The approved remedies of Monitored Natural Attenuation (MNA), Intuitional Controls, and In Situ Enhanced Bioremediation and Bioaugmentation should continue as the remedial actions for the site. The next evaluation should be performed on data collected during the April 2026 and October 2026 sampling events and the CAER should be submitted in 2027. Plans for renewal or closure of the UIC permit (which expires on August 31, 2025) should be prepared and submitted to the DWR in early 2025 in accordance with the permit requirements. Please reference the proposed matrix in the following section of this report for future monitoring details. 5.3 Voluntary Supplemental Remedy Chlorinated solvents and other classes of VOCs present in groundwater have degraded or should continue to degrade. However, trends of a limited number of VOCs (DX in particular) indicate that supplemental remedial actions may be beneficial. We recommend that phytoremediation be evaluated as a voluntary supplemental remedy to address the subject VOCs. The evaluation, remedy selection, and corrective action plans should be prepared and submitted in three (3) phases. Phase I may include: 1) an assessment of the condition, type, and efficacy of the existing flora; 2) an assessment of soil conditions and groundwater chemistry; and 3) an assessment of water quality at the groundwater -surface water boundary. Phase II may include selection of remedy in accordance with the solid waste rules. Phase III may include submittal of a CAP addendum which may include: 1) preparation of design plans; 2) preparation of bid packages and contractor selection; 3) procurement of selected flora; 4) the installation of flora and irrigation; and 5) ongoing monitoring and maintenance (inspection, testing, and normal horticultural practices). Please note that some elements of the CAP addendum may not be required depending on the findings of the Phase I assessments. We recommend preparation and submittal of an update to the status of Phase I of the voluntary supplemental remedy to the SWS on or before December 30, 2022. 5.4 Assessment Near MW-7 The source of the VOC impacts in the MW-7 area is unclear since this well was dry for an extended period. We recommend performance of an assessment of the nature and extent of the impacts (and potential source) in accordance with the solid waste rules. The assessment should include sampling of inactive downgradient groundwater monitoring wells and of downgradient surface water (if present) for VOC analysis. We recommend preparation and submittal of an assessment status update to the SWS on or before August 31, 2022. 11 of 12 1s 1m 1i Old Buncombe County Landfill — Woodfin, North Carolina March 30, 2022 CAER — WQ Data through October 2021 BLE Project No. J20-14175-03 6.0 QUALIFICATIONS OF REPORT The activities and evaluative approaches used in this CAER are consistent with those normally employed in hydrogeological and environmental assessments of this type. Our evaluation of site conditions has been based on our understanding of the site and project information and the data provided to BLE. This report has been prepared on behalf of and exclusively for the use of Buncombe County, North Carolina. This report and the findings contained herein shall not, in whole or in part, be used or relied upon by any other party (excluding the DWM and DWR) without BLE's prior written consent. 7.0 CLOSING We appreciate the opportunity to be of service to Buncombe County, North Carolina. Please contact us at (864) 288-1265 if you have any questions or comments. 12 of 12 Tables Table 1 SWS Approved Groundwater Sampling and Analysis Matrix Old Buncombe County Landfill Woodtin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Standard Semi -Annual Laboratory Parameters Standard Semi -Annual Field Parameters Semi -Annual Geochemical Parameters for MNA Monitoring Well Well Status Transect Number Appendix I VOCs (EPA 8260B) 1,4-dioxane (EPA 8260 SIM) Appendix I1 Full List (Various Methods) Appendix I Metals WL Turb Temp pH ORP DO SC: Alkalinity DH VFA TOC BOD COD Chloride COZ Fee NO3 MEE SO4 Sulfide DPLA Active 5 Y Y O Y - Y Y Y Y Y Y Y Y DPL-2 Injection 4 MW-A Inactive Active - Y MW-B 2 Y Y Y Y Y Y Y Y Y MW-2 Active - Y O Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-3 Active 3 Y Y - Y Y Y Y Y Y Y Y MW-4 Active 4 Y Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-4A Active 1 Y Y Y Y Y Y Y Y Y Y MW-5 Active 5 Y Y O Y Y Y Y Y Y Y Y MW-6 Active 5 Y Y O Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-6-192 Active 5 Y Y Y Y Y Y Y Y Y Y MW-7 Active - Y - Y Y Y Y Y Y Y Y MW-8 Inactive Y MW-9 Abandoned MW-10 Abandoned MW-12-10 Inactive - Y MW-12-25 Active 1 Y Y Y Y Y Y Y Y Y MW-13-10 Inactive - Y MW-13-35 Active 1 Y Y Y Y Y Y Y Y Y MW-13-132 Active 1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-14 Inactive - Y MW-15 Active Y Y Y Y Y Y Y Y Y MW-16 Abandoned MW-17 Abandoned MW-17-60 Active 2 Y Y Y Y Y Y Y Y Y Y MW-17-137 Active 2 Y Y Y Y Y Y Y Y Y Y MW-17-310 Active - Y Y Y Y Y Y Y Y Y MW-18-3 Inactive Y MW-18-78 Active 5 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-19-4 Inactive - Y MW-19-75 Active 4 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-19-110 Active 4 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-20-3 Inactive - Y MW-20-32 Inactive Y MW-21-4 Inactive - Y MW-21-21 Active 3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-21-94 Active 3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-22-78 Inactive - Y MW-22-143 Inactive Y MW-23-119 Inactive - Y MW-23-186 Inactive Y MW-24-45 Active 1 Y Y Y Y Y Y Y Y Y Y MW-24-160 Active 1 Y Y Y Y Y Y I Y Y Y Y Y Y Y Y Y Y Y Y I Y Y Y Y Notes: Typical Events: April (Spring) and October (Fall) O = October (Fall) Only VOCs = Volatile Organic Compounds SWS Approved Matrix on September 1, 2020 BOD = Biologic Oxygen Demand COD = Chemical Oxygen Demand 40 CFR Part 258 Appendix I - Constituents for Detection Monitoring (Organics and Inorganics) 40 CFR Part 258 Appendix II - Constituents for Assessment Monitoring (Full List) WL = Water Level ORP = Oxidation Reduction Potential DO = Dissolved Oxygen SC = Specific Conductance DH = Dissolved Hydrogen VFA = Volatile Fatty Acids TOC = Total Organic Carbon Fe' = Iron II NO3 = Nitrate MEE = Methane/Ethene/Ethane SO4 = Sulfate CO2 = Carbon Dioxide Tl GW Approved Matrix of CAER Tables 1 to 5.xlsx Prepared By: AWA Checked By: TJD Table 1A Proposed Groundwater Sampling and Analysis Matrix Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Standard Semi -Annual Laboratory Parameters Standard Semi -Annual Field Parameters Geochemical Parameters for MNA (Sampled Every 5 Years**) Monitoring Well Well Status Transect Number Appendix I VOCs (EPA 8260B) Appendix II 1,4-dioxane Full List (EPA 8260 SIM) (Various Methods) Appendix I Metals WL Turb Temp pH ORP DO SC Alkalinity DH VITA TOC BOD COD Chloride CO2 Fee NO3 MEE SOa Sulfide DPL-1 Active 5 Y Y O Y Y Y Y Y Y Y Y DPL-2 Injection 4 MW-A Inactive Y MW-B Active 2 Y Y - Y Y Y Y Y Y Y Y MW-2 Active - Y O Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-3 Active 3 Y Y - Y Y Y Y Y Y Y Y MW-4 Active 4 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-4A Active 1 Y Y - Y Y Y Y Y Y Y Y MW-5 Active 5 Y Y O Y Y Y Y Y Y Y Y MW-6 Active 5 Y Y O Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-6-192 Active 5 Y Y - Y Y Y Y Y Y Y Y MW-7 Active - Y Y Y Y Y Y Y Y Y MW-8 Inactive Y MW-9 Abandoned MW-10 Abandoned MW-12-10 Inactive Y MW-12-25 Active 1 Y Y Y Y Y Y Y Y I Y MW-13-10 Inactive Y MW-13-35 Active 1 Y Y Y Y Y Y Y Y Y MW-13-132 Active 1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-14 Inactive Y MW-15 Active Y Y Y Y Y Y Y Y Y MW-16 Abandoned MW-17 Abandoned MW-17-60 Active 2 Y Y Y Y Y Y Y Y Y Y MW-17-137 Active 2 Y Y Y Y Y Y Y Y Y Y MW-17-310 Active - Y Y Y Y Y Y Y Y Y MW-18-3 Inactive - Y MW-18-78 Active 5 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-19-4 Inactive - Y MW-19-75 Active 4 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-19-110 Active 4 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-20-3 Inactive - Y MW-20-32 Inactive Y MW-21-4 Inactive - Y NM-21-21 Active 3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-21-94 Active 3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y MW-22-78 Inactive Y MW-22-143 Inactive - Y MW-23-119 Inactive Y MW-23-186 Inactive Y MW-24-45 Active 1 Y Y Y Y Y Y Y Y Y Y MW-24-160 Active 1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Notes: Typical Events: April (Spring) and October (Fall) O = October (Fall) Only VOCs = Volatile Organic Compounds BOD = Biologic Oxygen Demand COD = Chemical Oxygen Demand 40 CFR Part 258 Appendix I - Constituents for Detection Monitoring (Organics and Inorganics) 40 CFR Part 258 Appendix II - Constituents for Assessment Monitoring (Full List) ** 5 Year MNA sampling to be performed twice consecutively every 5 years. MNA sampling events are scheduled for Spring and Fall 2026, Spring and Fall 2031, Spring and Fall 2036, etc. WL = Water Level ORP = Oxidation Reduction Potential DO = Dissolved Oxygen SC = Specific Conductance DH = Dissolved Hydrogen VFA = Volatile Fatty Acids TOC = Total Organic Carbon Fee = Iron II NO3 = Nitrate MEE = Methane/Ethene/Ethane SO4 = Sulfate CO2 = Carbon Dioxide T1A GW Prop Matrix of CAER Tables 1 to 5.xlsx Prepared By: RLB Checked By: AWA Table 2 SWS Approved Surface Water Sampling and Analysis Matrix Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Standard Semi -Annual Laboratory Parameters Standard Semi -Annual Field Parameters Surface Water Location Location Status Appendix I VOCs (EPA 8260B) 1,4-dioxane (EPA 8260 SIM) Appendix I Metals Turb Temp pH ORP DO SC SW-1 Active Y - Y Y Y Y Y Y Y SW-2 Active Y - Y Y Y Y Y Y Y SW-2A Active Y Y Y Y Y Y Y Y Y SW-3 Active Y Y Y Y Y Y Y Y Y SW-4 Active Y Y Y Y Y Y Y Y Y SW-5 Inactive - - - - - - - - - SW-6 Inactive - - - - - - - - - SW-7 Inactive - - - - - - - - - SW-8 Inactive - - - - - - - - - SW-9 1 Inactive - - - - I - I - I - I - I - Notes: Typical Events: April (Spring) and October (Fall) VOCs = Volatile Organic Compounds Y=Yes 40 CFR Part 258 Appendix I - Constituents for Detection Monitoring (Organics and Inorganics) SWS Approved Matrix on September 1, 2020 T2 SW Approved Matrix of CAER Tables 1 to 5.xlsx ORP = Oxidation Reduction Potential DO = Dissolved Oxygen SC = Specific Conductance Prepared By: AWA Checked By: TJD Table 3 Well Construction and Monitoring Well Data Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Monitoring Point Northing Eastingt TOC Elevation (ft), GS Elevation (ft), Depth to GW (ft) October 25, 2021 Groundwater Elevation (ft) Well Depth (ft)t Screen Depth (below GS)' Geology Monitored) Well Status/Purpose DPL-1 714,361.2 928,456.1 2040.73 2038.23 65.44 1975.29 65 55 - 65 Bedrock Compliance DPL-2 714,508.1 928,812.6 2112.15 2109.65 A A 97 87 - 97 Bedrock Injection MW-A 714,654.47 931,068.90 2063.37 2061.90 NM NM 33 23 - 33 Bedrock DNA MW-B 713,635.93 930,421.08 1960.86 1960.30 4.02 1956.84 15 5 - 15 Bedrock Compliance MW-2 715,052.9 930,063.8 2205.33 2203.40 107.22 2098.11 175 145 - 175 Bedrock Background MW-3 713,790.10 929,814.44 1991.15 1989.90 65.42 1925.73 90 60 - 90 Bedrock Compliance MW-4 714,177.83 928,875.09 2014.27 2013.60 72.09 1942.18 75 55 - 75 Bedrock Performance MW-4A 1713,351.70 931,195.02 2083.10 2082.50 67.89 2015.21 77 67 - 77 Bedrock Compliance MW-5 714,620.07 928,174.58 2019.73 2019.00 50.21 1969.52 80 70 - 80 Bedrock Compliance MW-6 715,103.13 928,152.69 2002.08 2000.30 0.00 2002.08 40 30 - 40 Bedrock Performance MW-6-192 715,146.34 928,113.86 2009.02 2006.73 25.84 1983.18 192 182 - 192 Bedrock Compliance MW-7 715,604.13 930,534.81 2108.86 2107.70 23.26 2085.60 29 14 - 29 Saprolite Compliance MW-8 716,107.98 930,308.94 2079.02 2077.20 25.43 2053.59 38 1 23 - 38 Saprolite DNA MW-9 716,024.04 928,619.48 2061.59 2060.00 A A 29 14 - 29 Saprolite DNA MW-10 716,086.5 929,060.5 2049.67 2047.40 A A 19 9 - 19 Saprolite DNA MW-12-10 DNA DNA 2028.03 2024.94 Dry Dry 8 4 - 8 Saprolite DNA MW-12-25 713,258.9 931,353.0 2029.98 2026.36 7.94 2022.04 26 16 - 26 Bedrock Compliance MW-13-10 713,000.2 931,279.7 2012.26 2009.85 3.95 2008.31 10 4 - 10 Saprolite DNA MW-13-35 713,023.1 931,236.9 2017.68 2014.13 6.86 2010.82 35 25 - 35 Bedrock Compliance MW-13-132 712,997.8 931,274.0 2012.89 2009.58 23.20 1989.69 132 122 - 132 Bedrock Performance MW-14 716,348.1 930,124.0 2053.46 2049.61 7.74 2045.72 55 40 - 55 Bedrock DNA MW-15 716,995.2 929,509.6 2028.08 2024.08 5.20 2022.88 72 62 - 72 Bedrock Compliance MW-16 716,170.0 929,107.2 2048.13 2045.13 A A 94 84 - 94 Bedrock DNA MW-17 DNA DNA DNA DNA A A DNA DNA -DNA DNA DNA MW-17-60 713,339.0 930,205.8 1922.97 1920.35 22.91 1900.06 60 50 - 60 Bedrock Compliance MW-17-137 713,329.8 930,199.1 1921.73 1919.24 21.60 1900.13 137 127 - 137 Bedrock Compliance MW-17-310 713,302.4 930,207.9 DNA 1918.00 0.00 DNA 310 300 - 310 Bedrock Compliance MW-18-3 714,130.9 927,843.0 1895.62 1892.62 Dry Dry 3 1 - 3 Flood Plain DNA MW-18-78 714,131.1 927,848.7 1894.62 1891.62 7.13 1887.49 78 68 - 78 Bedrock Sentinel MW-19-4 713,953.9 928,939.4 1902.27 1898.97 Dry Dry 4 2 - 4 Flood Plain DNA MW-19-75 713,948.7 928,950.0 1900.72 1898.02 9.93 1890.79 75 65 - 75 Bedrock Compliance MW-19-110 713,951.7 928,942.4 1901.43 1898.53 10.62 1890.81 110 100 - 110 Bedrock Sentinel MW-20-3 713,865.0 929,310.2 1898.90 1895.90 Dry Dry 3 2 - 3 Flood Plain DNA MW-20-32 713,879.0 929,332.7 1899.57 1896.67 6.34 1893.23 32 22 - 32 Bedrock DNA MW-21-4 713,810.5 929,567.5 1900.33 1896.73 Dry Dry 4 2 - 4 Flood Plain DNA MW-21-21 713,826.6 929,581.7 1900.49 1897.49 5.92 1894.57 21 11 - 21 Bedrock Performance MW-21-94 713,829.5 929,577.5 1901.06 1897.76 8.34 1892.72 94 84 - 94 Bedrock Sentinel MW-22-78 716,370.39 930,380.26 2068.13 2065.92 24.49 2043.64 79 69 - 79 Bedrock DNA MW-22-143 716,306.96 930,320.49 2068.34 2066.17 43.97 2024.37 148 138 - 148 Bedrock DNA MW-23-119 716,014.05 930,476.24 2076.61 2074.37 42.98 2033.63 120 110 - 120 Bedrock DNA MW-23-186 716,004.53 930,480.42 2076.43 2074.29 52.06 2024.37 186 176 - 186 Bedrock DNA MW-24-45 711,372.03 930,963.221 1932.07 1 1929.82 Dry Dry 1 45 1 35 - 45 Bedrock Compliance MW-24-160 711,435.81 931,042.73 1933.24 1 1930.93 93.97 1839.27 1 160 1 150 - 160 Bedrock Sentinel - Data from Table 1, Well Construction Summary, from Old Buncombe County Landfill Corrective Action Plan, by SCS Engineers, Dated September 3, 2014. TOC - Top of Casing. GS - Ground Surface. DNA - Data Not Available A - Abandoned CAER Tables 1 to 5 Prepared By: RLB T3 Well Const Oct 2021 Checked By: TAO/AWA TABLE 4 Range of Groundwater Flow Velocities Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Hydraulic Conductivity K(ft/min) K(cm/sec) K(ft/day) High Estimate 3.9E-02 2.0E-02 56.10 Low Estimate 3.3E-03 1.7E-03 4.80 Geometric Mean 1.1E-02 5.8E-03 16.41 Geometric Mean Hydraulic Conductivity K(ft/day) Hydraulic Grad. (ft/ft) Effective Porosity Flow Vel. (ft/day) Flow Vel. (ft/year) High Estimate 16.41 0.267 5% 87.52 31,945 Low Estimate 16.41 0.027 5% 8.75 3,194 Notes: 1. Hydraulic conductivity and effeictive porosity values obtainted from the table titled April 2014 Groundwater Velocity Calculations from the report titled Old Buncombe County Landfill Corrective Action Plan prepared by SCS dated September 3, 2014. 3. The hydraulic gradients were measured from the October 25-26, 2021 groundwater elevation contour map (Figure 2). The high hydraulic gradient was measured between the 1900-ft & 1960-ft groundwater contours near MW-17-60 and MW-B. The low hydraulic gradient was measured between the 2040-ft & 2020-ft groundwater contours near MW-14 and MW-15. 4. Groundwater velocity derived from V = Ki/ne where: K = geometric mean hydraulic conductivity, i = hydraulic gradient, and ne = effective porosity. 5. The high and low velocity estimates are calculated using the geometric mean K and the high and low range of site hydraulic data obtained from SCS's Corrective Action Plan. The accuracy is limited by the references used. CAER Tables 1 to 5.xlsx Prepared By: RLB T4 GW Flow Vel. Checked By: TAO/AWA Table 5 Groundwater Transects for Remedial Monitoring Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Transect I Transect 2 1 Transect 3 Transect 4 1 Transect 5 MW-4A MW-B MW-3 DPL-2 (AB) MW-6 MW-12-25 MW-17-60 MW-21-21 MW-4 MW-6-192 MW-13-35 MW-17-137 MW-21-194 MW-19-75 MW-5 MW-13-132 MW-19-110 DPL-1 MW-24-45 MW-18-78 MW-24-160 Bold - MNA Performance Well AB - Abandonded CAER Tables 1 to 5.xlsx T5 Transect Nos. TABLE 6A SUMMARY OF STATISTICAL TRENDS - VOCS in GROUNDWATER Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Chemical/ Compound Well Best Fit Trendline Slope Kendall -Mann Trend Coefficient General Trend Most Recent Concentration above MCL Chlorinated Ethenes Tetrachloroethene MW-4 -7.28E-04 -0.81 decrease Yes MW-7 - insufficient Yes MW-13-35 - insufficient Yes DPL-2 -2.06E-03 -0.68 decrease Yes Trichloroethene MW-4 -6.10E-04 -0.77 decrease No MW-7 -1.97E-04 -0.57 decrease No MW-13-35 -2.05E-04 -0.62 decrease No MW-21-21 -1.34E-04 -0.19 stable No DPL-2 -9.78E-04 -0.78 decrease No Cis-1,2-dichloroethene MW-B 3.52E-03 0.28 increase No MW-3 -3.09E-03 -0.65 decrease No MW-4 -1.36E-03 -0.32 decrease No MW-4A - insufficient No MW-5 -3.08E-04 -0.06 stable No MW-6 -1.72E-04 -0.12 stable No MW-7 -2.13E-03 0.07 stable No MW-12-25 - insufficient No MW-13-35 -3.45E-03 -0.89 decrease No MW-13-132 -5.44E-03 -0.64 decrease No MW-17-60 2.79E-04 0.28 increase No MW-17-137 - insufficient No MW-18-78 -1.07E-03 -0.28 decrease No MW-19-110 -1.23E-04 -0.04 stable No MW-21-21 -2.93E-03 -0.44 decrease No MW-21-94 -6.24E-04 -0.50 decrease No DPL-2 1.77E-03 -0.33 decrease No Vinyl Chloride MW-B 1.91E-03 0.32 increase Yes MW-3 -7.11E-04 -0.60 decrease Yes MW-4 -1.25E-04 -0.07 stable Yes MW-4A 1.00E-04 0.23 stable Yes MW-5 - insufficient Yes MW-6 - insufficient Yes MW-13-35 8.25E-05 0.49 increase Yes MW-13-132 3.96E-04 0.53 increase Yes MW-17-60 9.35E-05 0.24 stable Yes MW-17-137 -2.10E-05 0.10 stable Yes MW-18-78 -1.97E-04 -0.16 stable Yes MW-21-21 -3.16E-04 -0.32 decrease Yes MW-21-94 1.61E-04 0.47 increase Yes DPL-2 -1.77E-03 0.62 increase Yes Chlorinated Ethanes 1,1-Dichloroethane MW-B 4.47E-04 0.60 increase NE MW-3 -5.32E-03 -0.94 decrease NE MW-4 -6.50E-03 -0.89 decrease NE MW-5 -2.01E-06 0.11 stable NE MW-6 -2.09E-03 -0.88 decrease NE MW-6-192 -5.88E-04 -0.70 decrease NE MW-7 -2.80E-03 -0.71 decrease NE MW-13-132 -7.01E-04 -0.75 decrease NE MW-17-60 4.59E-04 -0.68 decrease NE MW-17-137 1.23E-05 -0.05 stable NE MW-18-78 -6.16E-04 -0.74 decrease NE MW-19-75 -7.81E-04 -0.73 decrease NE MW-19-110 -1.67E-04 0.08 stable NE MW-21-21 -3.69E-03 -0.65 decrease NE MW-21-94 -5.80E-04 -0.34 decrease NE DPIr2 1.19E-02 -0.90 decrease NE Chloroethane MW-B 6.78E-05 0.21 stable NE MW-3 -1.05E-03 -0.50 decrease NE MW-4 -9.04E-04 -0.42 decrease NE MW-5 -3.19E-04 2.40 decrease NE MW-6 -7.28E-04 -0.57 decrease NE MW-6-192 -1.50E-04 -0.21 stable NE MW-7 2.27E-04 0.07 stable NE MW-17-137 -2.67E-04 -0.41 decrease NE MW-18-78 9.07E-05 0.01 stable NE MW-19-75 -5.08E-04 -0.69 decrease NE MW-19-110 -3.08E-04 -0.26 decrease NE MW-21-21 -1.54E-03 -0.69 decrease NE MW-21-94 -1.52E-03 -0.63 decrease NE DPL -2 1.04E-03 -0.20 stable NE Hydrocarbons Benzene MW-3 -1.94E-05 -0.09 stable Yes MW-4 2.56E-06 0.20 stable No MW-4A -2.22E-04 -0.19 stable Yes MW-5 -7.77E-06 0.08 stable No MW-6 -5.29E-05 -0.19 stable Yes MW-7 6.34E-04 0.89 increase Yes MW-13-35 4.09E-04 -0.66 decrease Yes MW-13-132 3.70E-04 0.55 increase Yes MW-18-78 - insufficient No MW-19-75 - insufficient No MW-21-21 -5.00E-06 0.04 stable Yes DPL-2 8.29E-OS -0.15 stable Yes Toluene MW-4A -2.28E-03 -0.50 decrease No MW-6 - insufficient No MW-21-21 insufficient No DPL-2 - insufficient No Ethylbenzene MW-4A -3.30E-03 -0.43 decrease No Xylenes MW-3 1.48E-04 0.47 increase No MW-4A -7.43E-03 -0.37 decrease No MW-7 1.91E-04 0.79 increase No MW-17-137 6.27E-05 0.46 increase No MW-21-21 insufficient No Notes: 1. MCL = North Carolina Maximum Contaminant Level 2. NE = Not Established; no MCL has been established for this compound 3. NA = Not Applicable 4. The Kendall -Mann Coefficient (c) can range from -1 to 1. Coefficients greater than 0 indicate a positive trend and less than 0 indicate a negative trend. Coefficients between -0.25 and 0.25 indicate a stable trend. Table 6A-KM summary Prepared By: TAO 14175-03 Old Buncombe GW Trend Stats Checked By: IAI TABLE 6B SUMMARY OF STATISTICAL TRENDS - VOCS in GROUNDWATER Old Buncombe County Landfill Woodfin, North Carolina Permit No.1101-MSWLF-1979 BLE Project Number J20-14175-03 Chemical/ Compound Well Best Fit Trendline Slope Kendall -Mann Trend Coefficient General Trend Most Recent Concentration above MCL Chlorinated Benzenes Chlorobenzene MW-B 2.28E-04 0.59 increase No MW-3 5.82E-04 0.70 increase No MW-4 7.47E-04 0.77 increase No MW-4A 2.91E-03 0.44 increase No MW-5 -1.37E-03 -0.58 decrease No MW-6 -4.09E-04 -0.07 stable No MW-6-192 -2.25E-04 -0.38 decrease No MW-7 4.42E-03 0.94 increase No MW-12-25 -4.71E-04 0.10 stable No MW-13-35 -1.26E-03 -0.45 decrease No MW-18-78 8.59E-05 0.08 stable No MW-19-75 3.61E-04 0.28 increase No MW-19-110 1.50E-04 0.65 increase No MW-21-21 -2.25E-03 -0.32 decrease No MW-21-94 3.39E-05 -0.04 stable No DPL-2 1.32E-04 0.15 stable No 1,2-Diehlorobenzene MW-3 1.84E-04 0.45 increase No MW-4 -2.54E-04 -0.40 decrease No MW-4A -1.99E-03 -0.73 decrease No MW-12-25 -6.56E-04 -0.22 stable No MW-13-35 -2.07E-03 -0.75 decrease No MW-18-78 insufficient MW-21-21 -5.29E-04 -0.20 stable No MW-21-94 insufficient DPL -2 - insufficient 1,4-Dichlorobenzene MW-B 4.18E-04 0.41 increase No MW-3 -4.71E-04 -0.42 decrease No MW-4 -2.07E-03 -0.65 decrease No MW-4A -1.66E-02 -0.82 decrease Yes MW-5 -6.58E-04 -0.44 decrease No MW-6 -7.73E-04 -0.52 decrease No MW-6-192 -3.48E-04 -0.39 decrease No MW-7 1.75E-03 0.98 increase No MW-12-25 -4.60E-04 0.07 stable No MW-13-35 -1.27E-02 -0.77 decrease Yes MW-13-132 -4.03E-04 -0.47 decrease No MW-70-60 insufficient MW-17-137 1.36E-04 0.44 increase No MW-18-78 -9.62E-05 -0.12 stable No MW-19-75 -1.01E-03 -0.40 decrease No MW-19-110 -1.95E-04 -0.04 stable No MW-21-21 -5.93E-04 -0.04 stable Yes MW-21-94 -2.61E-04 -0.30 decrease No DPL-2 5.55E-04 0.05 stable No Other VOCs Acetone MW-B insufficient No MW-3 insufficient No MW-4 -1.60E-02 -0.14 stable No MW-4A -1.25E-01 -0.38 decrease No MW-5 insufficient No MW-6 insufficient No MW-6-192 insufficient No MW-7 1.87E-03 0.34 increase No MW-17-60 insufficient No MW-17-137 insufficient No MW-17-310 insufficient No MW-18-78 insufficient No MW-19-75 insufficient No MW-19-110 insufficient No MW-21-21 insufficient No MW-21-94 - insufficient No 1,2-Dichloropropane MW-13-35 insufficient No MW-13-132 -4.88E-04 -0.64 decrease Yes 2-Butanone MW-B insufficient No MW-4A -1.63E-01 -0.10 stable No MW-7 insufficient No MW-13-132 insufficient No MW-15 insufficient No MW-17-60 - insufficient No 4-Methyl-2-Pentanone MW-4A -2.19E-02 -0.20 stable NE 1,4-Dioxane MW-B -6.10E-03 -0.35 decrease Yes MW-3 3.08E-02 0.62 increase Yes MW-4 -1.99E-03 -0.24 stable Yes MW-4A 3.18E-02 0.81 increase Yes MW-5 2.04E-02 0.62 increase Yes MW-6 1.44E-02 1.00 increase Yes MW-6-192 2.78E-03 0.43 increase Yes MW-17-60 7.05E-03 0.71 increase Yes MW-17-137 6.36E-03 0.71 increase Yes MW-18-78 5.49E-03 0.33 increase Yes MW-19-75 -4.44E-03 -0.24 stable Yes MW-19-110 -8.38E-04 0.10 stable Yes MW-21-21 3.88E-03 0.14 stable Yes MW-21-94 -3.27E-03 -0.10 stable Yes Notes: 1. MCL = North Carolina Maximum Contaminant Level 2. NE = Not Established; no MCL has been established for this compound 3. NA = Not Applicable 4. The Kendall -Mann Coefficient (r) can range from -1 to 1. Coefficients greater than 0 indicate a positive trend and less than 0 indicate a negative trend. Coefficients between -0.25 and 0.25 indicate a stable trend. Table 6B-KM4summary Prepared By: TAO 14175-03 Old Buncombe GW Trend Stats Checked By: IAI TABLE 7 SUMMARY OF STATISTICAL TRENDS - VOCs in SURFACE WATER Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Other VOCs Chemical/ Compound Sample Location Best Fit Trendline Slope Kendall -Mann Trend Coefficient General Trend Most Recent Concentration above NC2B 1,4-Dioxane SW-2A 5.81E-03 0.68 increase No SW-3 -3.30E-02 -0.45 decrease No SW-4 -3.81E-02 -0.20 stable No Notes: 1. NC2B = North Carolina Surface Water Standards for Class B freshwater under Title 15A Subchapter 2B. 2. NE = Not Established; no MCL has been established for this compound 3. NA = Not Applicable 4. The Kendall -Mann Coefficient (i) can range from -1 to 1. Coefficients greater than 0 indicate a positive trend and less than 0 indicate a negative trend. Coefficients between -0.25 and 0.25 indicate a stable trend. Table 7-KM_summary Prepared By: TAO 14175-03 Old Buncombe SW Trend Stats Checked By: IAI TABLE 8 Natural Attenuation Screening Protocol (NASP) Results Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 November 2019 Results April 2020 Results October 2020 Results April 2021 Results October 2021 Results Monitoring Well Score Interpretation Score Interpretation Score Interpretation Score Interpretation Score Interpretation MW-2 NA Background Well NA Background Well NA Background Well NA Background Well NA Background Well MW-4 27 Strong Evidence 20 Adequate Evidence 34 Strong Evidence 20 Adequate Evidence 28 Strong Evidence MW-6 22 Strong Evidence 24 Strong Evidence 32 Strong Evidence 29 Strong Evidence 27 Strong Evidence MW-13-132 23 Strong Evidence 28 Strong Evidence 28 Strong Evidence 27 Strong Evidence 24 Strong Evidence MW-18-78 25 Strong Evidence 28 Strong Evidence 34 Strong Evidence 25 Strong Evidence 24 Strong Evidence MW-19-75 16 Adequate Evidence 20 Adequate Evidence 24 Strong Evidence 22 Strong Evidence 27 Strong Evidence MW-19-110 16 Adequate Evidence 23 Strong Evidence 25 Strong Evidence 22 Strong Evidence 23 Strong Evidence MW-21-21 27 Strong Evidence 22 Strong Evidence 32 Strong Evidence 32 Strong Evidence 29 Strong Evidence MW-21-94 23 Strong Evidence 28 Strong Evidence 30 Strong Evidence 33 Strong Evidence 32 Strong Evidence MW-24-160 10 Limited Evidence 9 Limited Evidence 13 Limited Evidence 16 Adequate Evidence 10 Limited Evidence Notes: 1. NASP from BioChlor Version 2.2 (US EPA, 2000) 2. Scores ranging from 0 to 5 indicate "inadequate evidence" 3. Scores ranging from 6 to 14 indicate "limited evidence" 4. Scores ranging from 15 to 20 indicate "adequate evidence" 5. Scores greater than 20 indicate "strong evidence" 14175-03 NASP Input and Summary Prepared By: AWA Table 8 NASP summary Checked By: IAI/TAO TABLE 9A Summary of TEAP Parameters & Comparisons - November 2019 Sampling Event Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Background Well Downgradient Wells Parameter MW-2 MW-4 MW-6 MW-13-132 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-24-160 Dissolved Oxygen (mg/L) 4.7 0.3 0.5 1.2 0.4 0.2 0.5 0.4 1 1.1 Nitrate (mg/L) <0.04 <0.04 <0.04 <0.04 0.049 <0.04 <0.04 <0.04 <0.04 0.043 Iron II (mg/L) <0.5 2.5 4.0 3.5 3.5 <0.5 2.5 4.5 4.5 <0.5 Sulfate (mg/L) 3.11 27.9 2.03 9.4 2.3 15.6 14.3 26.3 2.88 23.1 Sulfide (mg/L) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 Methane (µg/L) 0.078 J 990 2900 670 1300 240 200 960 1900 0.46 J Background Well Downgradient Wells TEAP MW-2 MW-4 MW-6 MW-13-132 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-24-160 Oxidation BG I I A I I I I A A Denitrification BG I I I I I I I I I Iron Reduction BG A A A A I A A A I Sulfate Reduction BG I I I I I I I I I Methanogenesis BG A A A A A I A A I Notes: 1. BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes 2. TEAP = Terminal Electron -Accepting Processes 3. ND = Not Detected 4. NT = Not Tested 5. BG = Background Well 6. A = TEAP is potentially Active 7. I = TEAP is potentially Inactive 8. J values are estimated concentrations greater than the MDL and less than the PQL 9. Red text indicates detections from resampling event completed between March 2-3, 2020. 14175-03 TEAP Tables Prepared By: TAO Table 9A-TEAP Nov 2019 Checked By: IAI TABLE M Summary of TEAP Parameters & Comparisons - April 2020 Sampling Event Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Background Well Downgradient Wells Parameter MW-2 MW-4 MW-6 MW-13-132 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-24-160 Dissolved Oxygen (mg/L) 5 1.2 0.9 0.36 1 0.6 0.7 0.8 0.6 0.7 Nitrate (mg/L) 0.014 J <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Iron II (mg/L) <0.5 2.0 5.0 4.5 4.5 2.5 3.0 3.5 3.0 <0.5 Sulfate (mg/L) 2.9 24 1.3 8.2 1.4 14 12 38 2.2 23 Sulfide (mg/L) <1.0 <1.0 <1.0 1.1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Methane (µg/L) 3.0 0.20 J 1600 240 1400 0.28 J 690 1100 3700 490 Background Well Downgradient Wells TEAP MW-2 MW-4 MW-6 MW-13-132 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-24-160 Oxidation BG A I I A I I I I I Denitrification BG I I I I I I I I I Iron Reduction BG A A A A A A A A I Sulfate Reduction BG I I I I I I I I I Methanogenesis I BG I A A A I A A A A Notes• 1. BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes 2. TEAP = Terminal Electron -Accepting Processes 3. ND = Not Detected 4. NT = Not Tested 5. BG = Background Well 6. A = TEAP is potentially Active 7. I = TEAP is potentially Inactive 8. J values are estimated concentrations greater than the MDL and less than the PQL 14175-03 TEAP Tables Prepared By: RLB Table 9B-TEAP apr 2020 Checked By: TAO/IAI TABLE 9C Summary of TEAP Parameters & Comparisons - October 2020 Sampling Event Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Background Well Downgradient Wells Parameter MW-2 MW-4 MW-6 MW-13-132 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-24-160 Dissolved Oxygen (mg/L) 1.8 0.4 0.4 0.6 0.3 0.5 0.3 0.4 0.6 0.5 Nitrate (mg/L) 0.028 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 Iron II (mg/L) <0.5 6.0 3.0 7.0 3.0 2.0 2.5 7.0 2.0 1.5 Sulfate (mg/L) 4.1 21 0.78 J 7.2 1.2 11 9.7 13 2.2 27 Sulfide (mg/L) <0.99 1.3 <0.99 <0.99 1.2 <1.0 <1.0 1.6 <1.0 <0.99 Methane (µg/L) 7.7 720 4700 1400 1700 480 400 1900 2000 27 Background Well Downgradient Wells TEAP MW-2 MW-4 MW-6 MW-13-132 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-24-160 Oxidation BG I I I I I I I I I Denitrification BG I I I I I I I I I Iron Reduction BG A A A A A A A A A Sulfate Reduction BG I I I A I I I I I Methanogenesis I BG A A A A A A A A I Notes• 1. BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes 2. TEAP = Terminal Electron -Accepting Processes 3. ND = Not Detected 4. NT = Not Tested 5. BG = Background Well 6. A = TEAP is potentially Active 7. I = TEAP is potentially Inactive 8. J values are estimated concentrations greater than the MDL and less than the PQL 14175-03 TEAP Tables Prepared By: TAO Table 9C-TEAP Oct 2020 Checked By: IAI TABLE 9D Summary of TEAP Parameters & Comparisons - April 2021 Sampling Event Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Background Well Downgradient Wells Parameter MW-2 MW-4 MW-6 MW-13-132 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-24-160 Dissolved Oxygen (mg/L) 5.3 1.03 0.5 0.8 1.5 0.8 0.6 0.1 0.2 1.49 Nitrate (mg/L) 0.027 <0.025 <0.025 0.028 J <0.025 0.012 J <0.025 <0.025 <0.025 <0.025 Iron II (mg/L) <0.5 6.0 3.0 6.0 5.0 >7.0 2.5 2.5 4.5 5.0 Sulfate (mg/L) 3.2 <0.2 1.1 7.8 2.2 17 12 23 3.3 23 Sulfide (mg/L) 1.2 <0.99 <0.99 <0.99 3.7 <0.99 <0.99 1.5 2.6 1.8 Methane (µg/L) 5200 3.6 J 680 3.5 450 1400 170 2200 2000 35 Background Well Downgradient Wells TEAP MW-2 MW-4 MW-6 MW-13-132 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-24-160 Oxidation BG A I I A I I I I A Denitrification BG I I I I I I I I I Iron Reduction BG A A A A A A A A A Sulfate Reduction BG I I I A I I I I I Methanogenesis I BG I A I A A I A A I Notes• 1. BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes 2. TEAP = Terminal Electron -Accepting Processes 3. ND = Not Detected 4. NT = Not Tested 5. BG = Background Well 6. A = TEAP is potentially Active 7. I = TEAP is potentially Inactive 8. J values are estimated concentrations greater than the MDL and less than the PQL 14175-03 TEAP Tables Prepared By: TAO Table 9D-TEAP Apr 2021 Checked By: IAI TABLE M Summary of TEAP Parameters & Comparisons - October 2021 Sampling Event Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Background Well Downgradient Wells Parameter MW-2 MW-4 MW-6 MW-13-132 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-24-160 Dissolved Oxygen (mg/L) 6.4 0.4 0.3 1 0.6 0.2 0.4 0.3 0.2 4.2 Nitrate (mg/L) <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 Iron II (mg/L) <0.5 2.0 6.0 4.5 4.0 1.5 1.5 7.0 6.5 0.5 Sulfate (mg/L) 2.9 24 0.37 J 6.4 1.7 18 8.8 10 2.4 24 Sulfide (mg/L) <0.99 <0.99 <0.99 <0.99 <0.99 <0.99 <0.99 <0.99 <0.99 <0.99 Methane (µg/L) <2.5 270 1200 300 500 190 460 630 830 7.8 Background Well Downgradient Wells TEAP MW-2 MW-4 MW-6 MW-13-132 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-24-160 Oxidation BG I I A I I I I I A Denitrification BG I I I I I I I I I Iron Reduction BG A A A A A A A A A Sulfate Reduction BG I I I I I I I I I Methanogenesis I BG A A A A I A A A I Notes• 1. BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes 2. TEAP = Terminal Electron -Accepting Processes 3. ND = Not Detected 4. NT = Not Tested 5. BG = Background Well 6. A = TEAP is potentially Active 7. I = TEAP is potentially Inactive 8. J values are estimated concentrations greater than the MDL and less than the PQL 14175-03 TEAP Tables Prepared By: TAO Table 9E -TEAP Oct 2021 Checked By: IAI Figures r O � z A H D 25 � Oss �� 1720 o RI z \1 A1KfN St WFOMCHASE'RD 0 6F Do f ��s 0 CHAD WICK WADE'DR � GGG� O ASAA17 u, .r D - - - Ashelawn Gardens MMemory Q emorial Garden � P ! ti 'S- O BAN l �R ODF'IN 1104si ?0°O G ldvievnob u , ?CH U l/ PRO D _ ench Broad zve z�D 25 gAIA $ C' IOLivette-Cem� fq 70 ry. n ec> 00 3 UA ygNRO AL7li q Ploy �c Q Old Macedonia f Gem. f {(�, 251 N Akp UpLB�N:pR " 3 Bus 23 I 0 1 b OODFIiN r0 N 0 0 m, Q) REFERENCES: Elk Mour USGS TOPOGRAPHIC MAP, 7.5 2000 1000 0 2000 4000 r MINUTE SERIES, WEAVERVILLE AND LEICESTER. NC. QUADRANGLE 2019 APPROXIMATE SCALE IN FEET DRAWN' KLW DATE: 3-11-22 BUNNELL FIGUREIM M LAMMONS SITE LOCATION MAP CHECKED: RLB CAD: BCOLF03—SLM M ENGINEERING CLOSED BUNCOMBE COUNTY LANDFILL 6004 Ponders Court, Greenville, SC 29615 WOODFIN, NORTH CAROLINA 1 APPROVED: AWA 1OB NO: J20-14175-03 Phone: (864) 288-1265 Fax: (864) 288-4430 250 125 0 250 500 APPROXIMATE SCALE IN FEET o�No 00 '.TION ED BY RAWING CS ACTIVE MONITORING WELLS INACTIVE MONITORING WELLS ABANDONED MONITORING WELLS ACTIVE SURFACE WATER SAMPLING LOCATIONS INACTIVE SURFACE WATER SAMPLING LOCATIONS MW-2 MW-8 MW-9 SW-1 SW-5 MW-3 MW-12-10 MW-10 SW-2 SW-6 MW-4 MW-13-10 MW-16 SW-2A SW-7 MW-4A MW-14 MW-17 SW-3 SW-8 MW-5 MW-18-3 DPL-2 SW-4 SW-9 MW-6 MW-19-4 MW-6-192 MW-20-3 MW-7 MW-20-32 MW-12-25 MW-21-4 MW-13-35 MW-22-78 MW-13-132 MW-22-143 MW-15 MW-23-119 MW-17-60 MW-23-186 MW-17-137 MW-A M W-17-310 MW-18-78 M W-19-75 MW-19-110 MW-21-21 M W-21-94 M W-24-45 MW-24-160 DPL-1 MW-B NOTE: ACTIVE SAMPLING MONITORING WELLS AND SURFACE LOCATIONS ARE TO BE SAMPLED AND TESTED TWICE ANNUALLY. INACTIVE MONITORING WELLS ARE TO BE CHECKED FOR DEPTH TO GROUNDWATER ONLY. *WELL NOT USED FOR CONTOURING PURPOSES. ** WATER LEVELS COLLECTED BUT NO VERIFIABLE SURVEY DATA COLLECTED FOR GROUNDWATER ELEVATION CONTOURING PURPOSES. NM - NOT MEASURED MW-2® ACTIVE GROUNDWATER MONITORING WELL MW-8® INACTIVE GROUNDWATER MONITORING WELL MW-8 & ABANDONED GROUNDWATER MONITORING WELL SW-1- ACTIVE SURFACE WATER MONITORING LOCATION SW-54 INACTIVE SURFACE WATER MONITORING LOCATION TW-1 (abandoned) TEMPORARY INJECTION WELL (ABANDONED) IW-1 INJECTION WELL PROPERTY BOUNDARY SURFACE WATER POTENTIOMETRIC CONTOUR CONTOUR INTERVAL = 20 FEET GROUNDWATER FLOW DIRECTION TOPOGRAPHIC SURFACE CONTOUR IN FEET ABOVE MSL CONTOUR INTERVAL = 10 FEET 250 125 0 250 500 APPROXIMATE SCALE IN FEET REVISIONS No. DESCRIPTION BY DRAWN: RLB CHECKED: TAO APPROVED: AWA DATE: 3-11-22 CAD FILE: BCOLF-03POT102521 JOB NO: J20-14175-03 BUNNELL � LAMMONS ENGINEERING 6004 Ponders Court, Greenville, SC 29615 Phone: (864) 288-1265 Fax: (864) 288-4430 GROUNDWATER ELEVATION CONTOUR MAP — OCTOBER 25, 2021 OLD BUNCOMBE COUNTY LANDFILL WOODFIN, NORTH CAROLINA FIGURE N0. 250 125 0 250 500 APPROXIMATE SCALE IN FEET REVISIONS No. DESCRIPTION BY DRAWN: KLW CHECKED: RLB APPROVED: AWA DATE: 3-22-22 CAD FILE: BCOLF-03CSLP JOB NO: J20-14175-03 BUNNELL � LAMMONS ENGINEERING 6004 Ponders Court, Greenville, SC 29615 Phone: (864) 288-1265 Fax: (864) 288-4430 ACTIVE MONITORING WELLS INACTIVE MONITORINC WELLS �BANDONE[ IONITORINC WELLS ACTIVE SURFACE WATER SAMPLING LOCATIONS INACTIVE SURFACE WATER SAMPLING LOCATIONS MW-2 MW-8 MW-9 SW-1 SW-5 MW-3 MW-12-10 MW-10 SW-2 SW-6 MW-4 MW-13-10 MW-16 SW-2A SW-7 MW-4A MW-14 MW-17 SW-3 SW-8 MW-5 MW-18-3 DPL-2 SW-4 SW-9 MW-6 MW-19-4 MW-6-192 MW-20-3 MW-7 MW-20-32 MW-12-25 MW-21-4 MW-13-35 MW-22-78 MW-13-132 MW-22-143 MW-15 MW-23-119 MW-17-60 MW-23-186 MW-17-137 MW-A MW-17-310 MW-18-78 MW-19-75 MW-19-110 M W-21-21 M W-21-94 M W-24-45 M W-24-160 DPL-1 M W-B NOTE: ACTIVE SAMPLING MONITORING WELLS AND SURFACE LOCATIONS ARE TO BE SAMPLED AND TESTED TWICE ANNUALLY. INACTIVE MONITORING WELLS ARE TO BE CHECKED FOR DEPTH TO GROUNDWATER ONLY. MW-2® ACTIVE GROUNDWATER MONITORING WELL MW-8® INACTIVE GROUNDWATER MONITORING WELL MW-8 & ABANDONED GROUNDWATER MONITORING WELL SW-1- ACTIVE SURFACE WATER MONITORING LOCATION SW-54 INACTIVE SURFACE WATER MONITORING LOCATION PROPERTY BOUNDARY SURFACE WATER 0+00 1+00 2+00 �1 TRANSECTS LAN, TRANSECT LOCATION MAP OLD BUNCOMBE COUNTY LANDFILL WOODFIN, NORTH CAROLINA 250 125 0 250 500 APPROXIMATE SCALE IN FEET 500 250 0 500 1000 APPROXIMATE SCALE IN FEET 2040 2020 2000 1980 1960 If 1 r------- SW-2AA)_ MW-V' 1 � SW-2 MW-18-78 MW-6-1 MW-5 MW- / DPL-1 I I1/♦`DPL-2 SW-S MN/-4 AMA D )-fs1Mw-19-110 ►'"MW-'20`-; CI MW-20--: 1 , MW-21-94 MW-214 MW-21-21opw / MW-3� o SW 3 MW-17-137 / M, W_-17-310 MW-17-60 / Mi \ / o MW 13-10 eN 1940 Z M W— 24-16 O MW-24-45 Ld —j -----_ LL.I 1920 SW-1----------- -- ------------------ ---------------------- ND =____________________----------------- 1880 1860 IE 11to] fEjZe7 fE19111 irl:Zi7 M.-Ill ! ! 1W-4A ! 1-2 AW A SITE PLAN LEGEND MW-2® ACTIVE GROUNDWATER MONITORING WELL MW-8® INACTIVE GROUNDWATER MONITORING WELL MW-8 ABANDONED GROUNDWATER MONITORING WELL SW-1- ACTIVE SURFACE WATER MONITORING LOCATION ! ! SW-54 INACTIVE SURFACE WATER MONITORING LOCATION PROPERTY BOUNDARY SURFACE WATER D 1 TRANSECTS 01 TRA SECT I STATION MW-13-132 MW-13-35 MW-13-10� MW-12-25 MW-4A 1' 2100 2080 2060 2040 2020 2000 1980 1960 1940 1920 1900 1880 1860 itZ111 iE:YZe] M11111 ivM11 irL:111 CROSS SECTION LEGEND EXISTING TOPOGRAPHY GROUNDWATER BEDROCK SCREENED INTERVAL SOIL -------- BEDROCK VERTICAL EXAGGERATION = 4X LO 1 Inch 100 Feet TOTAL CONCENTRATION OF 14.90 µg/L VOCS FROM OCTOBER 2021 SAMPLING EVENT NOTE: APPROXIMATE BEDROCK DEPTH IS FROM PBS & J AND SCS ENGINEERING "COMPREHENSIVE SITE ASSESSMENT REPORT" DATED APRIL, 2005 REVISIONS No. DESCRIPTION BY DRAWN: KLW CHECKED: RLB APPROVED: AWA DATE: 3-22-22 CAD FILE: BCOLF-03CSLP JOB NO: J20-14175-03 � LAMMONS ENGINEERING 6004 Ponders Court, Greenville, SC 29615 Phone: (864) 288-1265 Fax: (864) 288-4430 PROFILE OF TRANSECT 1-1' OLD BUNCOMBE COUNTY LANDFILL WOODFIN, NORTH CAROLINA FIGURE NO. 4 500 250 0 500 APPROXIMATE SCALE IN FEET oe Opp SSW-3 / MW-1 _ -7-370 i m ry� . SITE PLAN LEGEND MW-2® ACTIVE GROUNDWATER MONITORING WELL MW-8® INACTIVE GROUNDWATER MONITORING WELL MW-8 ABANDONED GROUNDWATER MONITORING WELL SW-1- ACTIVE SURFACE WATER MONITORING LOCATION SW-54 INACTIVE SURFACE WATER MONITORING LOCATION — PROPERTY BOUNDARY SURFACE WATER TRANSECTS I _ sw-245 ` \ I � \ MW-16-73 �. I I\ ' MW-6-192 MW-5 DPL-1 II � DPL-2 SW-5 � MW-4 AW 4 ;-,/ MW-19-75 MW-19-110 ! I ISW-4; j j MW-20-3 ! � MW-20-32 -__ M))1)1 AFEA 0 / 1-94 MW-21-21 -- i \ MW-3 10 CROSS SECTION LEGEND EXISTING TOPOGRAPHY SOIL GROUNDWATER BEDROCK BEDROCK WASTE TOTAL CONCENTRATION OF SCREENED INTERVAL 14.90 µg/L VOCS FROM OCTOBER 2021 SAMPLING EVENT NOTE: APPROXIMATE BEDROCK DEPTH U- —` VERTICAL EXAGGERATION = 4X IS FROM PBS & J AND SCS N ENGINEERING "COMPREHENSIVE 1 Inch SITE ASSESSMENT REPORT" 100 Feet DATED APRIL, 2005 �� Mw-9 I (Abandoned) Q ! O ! (Abandon MW-10 oo� _ (Abar 2080 2060 2040 2020 2000 1980 1960 1940 1920 1900 1880 1860 z 0 j 1840 w J Ld 1820 1800 1780 1760 1740 1720 1700 1680 1660 1640 1620 2 TRANSECT 2-2' STATION 2' 2080 2060 2040 2020 2000 1980 1960 1940 1920 1900 1880 1860 1840 1820 1800 1780 1760 1740 1720 1700 1680 1660 1640 1620 -11 REVISIONS No. DESCRIPTION BY DRAWN: KLW CHECKED: RLB APPROVED: AWA DATE: 3-22-22 CAD FILE: BCOLF-03CSLP JOB NO: J20-14175-03 � LAMMONS ENGINEERING 6004 Ponders Court, Greenville, SC 29615 Phone: (864) 288-1265 Fax: (864) 288-4430 PROFILE OF TRANSECT 2-2' OLD BUNCOMBE COUNTY LANDFILL WOODFIN, NORTH CAROLINA FIGURE NO. 5 500 250 0 500 1000 APPROXIMATE SCALE IN FEET oe Opp SSW-3 / MW-1 _ -7-370 i ry� . SITE PLAN LEGEND MW-2® ACTIVE GROUNDWATER MONITORING WELL MW-8® INACTIVE GROUNDWATER MONITORING WELL MW-8 ABANDONED GROUNDWATER MONITORING WELL SW-1- ACTIVE SURFACE WATER MONITORING LOCATION SW-54 INACTIVE SURFACE WATER MONITORING LOCATION — PROPERTY BOUNDARY SURFACE WATER TRANSECTS I _ sw-245 T ` \ I � \ ' SW-2 MW-16-73 �. I I\ ' MW-6-192 MW-5 I DPL-1 �I DPL-2 SW-5 � MW-4 AW 4 MW-19-75 MW-19-116 C /W-4 �- MW-20-32 -__ MW-21-94 /�IfG C MW-21-211 10 ••F�E• /�11'� B _ BMW-21 CROSS SECTION LEGEND EXISTING TOPOGRAPHY SOIL GROUNDWATER BEDROCK BEDROCK WASTE TOTAL CONCENTRATION OF SCREENED INTERVAL 14.90 µg/L VOCS FROM OCTOBER 2021 SAMPLING EVENT NOTE: APPROXIMATE BEDROCK DEPTH U- —` VERTICAL EXAGGERATION = 4X IS FROM PBS & J AND SCS N ENGINEERING "COMPREHENSIVE 1 Inch SITE ASSESSMENT REPORT" 100 Feet DATED APRIL, 2005 mw 3 2040 2020 2000 1980 1960 1940 1920 1900 —1 S, ill z 0 a LLU 1860 1 Lv 1840 1820 1780 1760 1740 1720 1700 TRAN SECT 3-3 ) STATION 3' 2040 2020 2000 1980 1960 1940 1920 1840 1820 1780 1760 1740 1720 1700 REVISIONS No. DESCRIPTION BY DRAWN: KLW CHECKED: RLB APPROVED: AWA DATE: 3-22-22 CAD FILE: BCOLF-03CSLP JOB NO: J20-14175-03 � LAMMONS ENGINEERING 6004 Ponders Court, Greenville, SC 29615 Phone: (864) 288-1265 Fax: (864) 288-4430 PROFILE OF TRANSECT 3-3' OLD BUNCOMBE COUNTY LANDFILL WOODFIN, NORTH CAROLINA FIGURE NO. 6 500 250 0 500 1000 APPROXIMATE SCALE IN FEET oe Opp SSW-3 MW-1 _ �7-370 1-&�, k,, �(t!, ry� . SITE PLAN LEGEND MW-2® ACTIVE GROUNDWATER MONITORING WELL MW-8® INACTIVE GROUNDWATER MONITORING WELL MW-8 ABANDONED GROUNDWATER MONITORING WELL SW-1- ACTIVE SURFACE WATER MONITORING LOCATION SW-54 INACTIVE SURFACE WATER MONITORING LOCATION — PROPERTY BOUNDARY SURFACE WATER TRANSECTS I _ sw-245 T ` \ I � \ MW-16-73 �. I \ ' MW-6-192 MW-5 I DPL-1 �I r DPL-2 SW;S MW-4 AFEA D MW-19-75 MW-1&110 l ! . r. i /sw, 0-3 MW-20-32 -__ )JJ1)11�� ,Flan C o lb MW- 1-94 / �%1l�� MW-21-21 -� .:;../ MW-3 ^ 10 fU) gMW-2� CROSS SECTION LEGEND EXISTING TOPOGRAPHY SOIL GROUNDWATER BEDROCK BEDROCK WASTE TOTAL CONCENTRATION OF SCREENED INTERVAL 14.90 µg/L VOCS FROM OCTOBER 2021 SAMPLING EVENT NOTE: APPROXIMATE BEDROCK DEPTH U- VERTICAL EXAGGERATION = 4X IS FROM PBS & J AND SCS N ENGINEERING "COMPREHENSIVE 1 Inch SITE ASSESSMENT REPORT" 100 Feet DATED APRIL, 2005 1 mw- 4 2160 2140 2120 2100 2080 2060 2040 2020 2000 1980 1960 1940 z 0 a J1920 Ld 1900 1880 1860 1840 1820 1800 1780 1760 1740 1720 1700 TRANSECT 4-4' STATION )0 4' 2160 2140 2120 2100 2080 2060 2040 2020 2000 1980 1960 1940 1920 1900 1880 1860 1840 1820 1800 1780 1760 1740 1720 1700 REVISIONS No. DESCRIPTION BY DRAWN: KLW CHECKED: RLB APPROVED: AWA DATE: 3-22-22 CAD FILE: BCOLF-03CSLP JOB No: J20-14175-03 � LAMMONS ENGINEERING 6004 Ponders Court, Greenville, SC 29615 Phone: (864) 288-1265 Fax: (864) 288-4430 PROFILE OF TRANSECT 4-4' OLD BUNCOMBE COUNTY LANDFILL WOODFIN, NORTH CAROLINA FIGURE NO. 7 I SW-2A ' $W-2, y�MW-18-78 I MW-6-192 500 250 0 500 1000 I�MW-5 APPROXIMATE SCALE IN FEET MW-6 I � ! 0 DPL-1 ' DPL-2 �5 � MW-41 AW 41-,/ �fl MW-19-75 MW-19-110 ! I /SW-4; j MW-20-3 ! 0-32 MW-20-32 -__ M))1)1 AFEA 0 MW-1-21 2121 -- i MW-3 ! ^O opfU) 10 /kFEA 8 ! MW-2 .SW-3 �_ MW-17-137 - / MW-17-310 MW-17-60 ------/ / MW-B 1 SW-1 . •9W-6 MWW-24 -160 r MW / MW-3 � \ MW-13-132 13-35 M25 ! AMA SA MW-13-10 MW-12-25 SITE PLAN LEGEND MW-2® ACTIVE GROUNDWATER MONITORING WELL MW-8® INACTIVE GROUNDWATER MONITORING WELL MW-8 ABANDONED GROUNDWATER MONITORING WELL SW-1- ACTIVE SURFACE WATER MONITORING LOCATION SW-54 INACTIVE SURFACE WATER MONITORING LOCATION — PROPERTY BOUNDARY SURFACE WATER TRANSECTS CROSS SECTION LEGEND EXISTING TOPOGRAPHY SOIL GROUNDWATER BEDROCK BEDROCK TOTAL CONCENTRATION OF 14.90 µg/L VOCS FROM OCTOBER 2021 SAMPLING EVENT SCREENED INTERVAL NOTE: APPROXIMATE BEDROCK DEPTH IS FROM PBS & J AND SCS ENGINEERING "COMPREHENSIVE ,0 SITE ASSESSMENT REPORT" N VERTICAL EXAGGERATION = 4X DATED APRIL, 2005 1 Inch 100 Feet ! i B 5 MW-9 I (Abandoned) Q ! O ! 2100 (Abandoned) M W-� invnld-io2 0 • 2080 2060 2040 ! m- W-8 ! MW-7 MW-/ MW-23-186 2020 2000 1980 1960 1940 1920 z 0 Q 1900 w J Ld S' 1880 1860 1840 1820 1800 1780 1760 1740 1720 1700 TRANSECT 5-5' STATION 5' 2100 2080 2060 2040 2020 2000 1980 1960 1940 1920 1900 1880 1860 1840 1820 1800 1780 1760 1740 1720 1700 REVISIONS No. DESCRIPTION BY DRAWN: KLW CHECKED: RLB APPROVED: AWA DATE: 3-22-22 CAD FILE: BCOLF-03CSLP JOB NO: J20-14175-03 � LAMMONS ENGINEERING 6004 Ponders Court, Greenville, SC 29615 Phone: (864) 288-1265 Fax: (864) 288-4430 PROFILE OF TRANSECT 5-5' OLD BUNCOMBE COUNTY LANDFILL WOODFIN, NORTH CAROLINA FIGURE NO. 11 APPENDIX A GROUNDWATER VOC SUMMARY TABLES Table A-1 Groundwater VOCs Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. November 11-15, 2019 and Resampled on March 2-3, 2020 TEST UNITS LOQ DL MCL MW-B MW-2 MW-3 MW-4 MW-4A MW-5 MW-6 MW-6-192 MW-7 MW-12-25 MW-13-35 MW-13-132 MW-15 MW-17-60 MW-17-137 MW-17-310 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-2445 MW-24-160 DPL-1 DPL-2 Acetone µo 25 25 6,000 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 Dry <25.0 Dry NS Acrylonitrile 49/1 10 10 NE <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <10.0 <10.0 <I0.0 <10.0 <10.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <10.0 <10.0 Dry <10.0 Dry NS Benzene µg/1 1.0 1.0 1.0 <LO <1.0 1.1 <1.0 4.0 <1.0 1.1 <1.0 1.6 <1.0 1.4 1.2 <LO <1.0 <LO <1.0 <LO <1.0 <LO 1.7 <LO Dry <LO Dry NS Bromochloromethane µg/l 1.0 1.0 NE <LO <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Bromodichloromethane µg/l 1.0 1.0 0.6 <LO <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Bromoform µg/l 1.0 1.0 4.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Carbon Disulfide µg/l 2.0 1 2.0 700 <2.0 1 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 1 Dry NS Bromomethane (Methylbromide) µg/1 2.0 2.0 10.0 (1) <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 Dry NS Carbon tetrachloride µg/l 1.0 1.0 0.3 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Chlorobenzene (mono) µg/l 1.0 1.0 50 <LO <1.0 3.0 4.5 10.3 6.7 8.2 1.1 5.6 <1.0 6 <1.0 <LO <1.0 <LO <1.0 3.6 4.8 <LO 12.8 1.1 Dry <LO Dry NS Chloroethane µg/l 1.0 1.0 3,000 <LO <1.0 2.7 <1.0 <LO 1.1 5.7 <1.0 2.2 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 2.4 <1.0 <LO <1.0 <LO Dry <LO Dry NS Chloroform µg/l 5.0 5.0 70 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Dry <5.0 Dry NS Chloromethane (Methylchloride) µg/l 1.0 1.0 3.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Dibromochloromethane µg/l 1.0 1.0 0.4 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,2-Dibromo-3chloropropane; DBCP 49/1 5.0 5.0 0.04 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Dry <5.0 Dry NS 1,2-Dibromoethane; Ethylene dibromide 49/1 1.0 1.0 0.02 <LO <1.0 <I.0 <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <I.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Dibromomethane µg/l 1.0 1.0 70.0 (i) <LO <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,2-Dichlorobenzene µg/l 1.0 1.0 20.0 <LO <1.0 <1.0 <1.0 5 <1.0 <LO <1.0 <LO <1.0 3.6 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO 3 <LO Dry <LO Dry NS 1,4-Dichlorobenzene µg/l 1.0 1.0 6.0 1.2 <1.0 6.8 6.6 42.6 4.9 3.3 <1.0 2.5 <1.0 17.1 <1.0 <LO <1.0 <LO <1.0 2.6 4.9 <LO 10.7 2 Dry <LO Dry NS trans-1,4-Dichloro-2-butene 49/1 1.0 1.0 NE <LO <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,1-Dichloroethane 49/1 1.0 1.0 6.0 1.2 <1.0 3.9 7.6 <1.0 <1.0 1.9 <1.0 4.4 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO 2.5 <LO Dry <LO Dry NS 1,2-Di6loroethane 49/1 1.0 1.0 0.4 <LO <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,1-Dichloroethene(-ethylene) µg/l 1.0 1.0 350 <LO <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS cis-1,2-Dichloroethene (ethylene) µg/l 1.0 1.0 70 12.7 <1.0 1.3 15.6 <1.0 <1.0 <LO <1.0 21.6 <1.0 2.9 9 <LO 1.1 <LO <1.0 <LO <1.0 <LO 5.3 2.2 Dry <LO Dry NS trans-1,2-Dichloroethene (-ylene) µg/l 1.0 1.0 100 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,2-Dichloropropane µg/l 1.0 1.0 0.6 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS cis-1,3-Dichloropropene (-propylene) 49/1 1.0 1.0 0.4 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS trans-1,3-Dichlompropene (-propylene) 49/1 1.0 1.0 0.4 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Ethylbenzene µg/l 1.0 1.0 600 <LO <1.0 <LO <1.0 2.9 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 2-Hexanone µg/l 5.0 5.0 40.0 (1) <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Dry <5.0 Dry NS lodomethare 49/1 20.0 20.0 NE <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 Dry <20.0 Dry NS Dichlorometha re (Methylene chloride 1 5.0 5.0 5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Dry <5.0 Dry NS 2-Butanone (Methyl ethyl ketone) µg/l 5.0 5.0 4,000 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Dry <5.0 Dry NS 4-Methyl-2-Pentanone µg/l 5.0 5.0 NE <5.0 <5.0 <5.0 <5.0 11.7 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Dry <5.0 Dry NS Styrene µg/l 1.0 1.0 70.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry NS 1,1,1,2-Tetrachloroethane 49/1 1.0 1.0 1.0 (i) <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1, 1,2,2-Tetrachloroethane µg/l 1.0 1.0 0.2 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Tetrachloroethene (-ethylene) µg/l 1.0 1.0 0.7 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Toluene µg/l 1.0 1.0 600 <LO <1.0 <LO <1.0 1.6 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,1,1-Trichloroethane 49/1 1.0 1.0 200 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,1,2-Trichloroethane µg/l 1.0 1.0 0.6 (i) <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Trichloroethene (ethylene) µg/l 1.0 1.0 3.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 1.1 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Tricldorofluoromethane µg/l 1.0 1.0 2,<I.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <I.0 <1.0 <I.0 Dry <LO Dry NS 1,2,3-Trichlompropane µg/l 1.0 1.0 0.<1.0 <1.0 <1.0 <1.0 <I.0 <1.0 <LO <1.0 <LO S Vinyl acetate µg/l 2.0 2.0 8.<2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 S Vinyl chloride 1.0 1.0 0.j03518 <1.0 1.3 2.3 <1.0 <1.0 <1.0 <1.0 <O S Total Xylenes µg/l 1.0 1.0 <.0 <1.0 <1.0 <1.0 4.9 <1.0 <1.0 <1.0 S 1,4-Dion µg/l 2.0 2.0 37.2 <2.0 87.8 18.8 30.4 53.4 25.9 5.7 <2.0 <2.0 <2.0 <2.0 <2.0 24.1 29.7 <2.0 43.7 79.8 27 45.6 46.1 Dry <2.0 Dry NS 4-Chloro-3-methyl phenol µg/l NE NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT Dry NS Diethylphthalate µg/l 6,000 NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT Dry NS Naphthalene µg/l 1.0 1 1.0 6 NT <1.0 NT NT NT <1.0 <LO NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT Dry NS Other App. 11 Volatile Organic Compounds (VOC's) Various Various I Various Various NT ND NT NT NT ND ND NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT Dry NS Notes: 1. MCL = Maximum Contaminant Level, as established in the NCDENR, Classifications of Water Quality Standards Applicable to Groundwaters of North Carolina, Section 15A NCAC 2L .0202. Updated April 1, 2013 2. (i) = Interim Maximum Allowable Concentrations (IMACs). Updated June 30, 2021 3. Shaded cells indicate exceedances of 1MACs 4. Shaded cells indicated exceedances of MCLs 5. NE = Not Established; North Carolina has not established a MCL 6. LOQ = Limit of Quantitation 7. DL = Detection Limit 8. NT -Not Tested 9. NS = Not Sampled 10. "J"-flagged data (i.e., values estimated between the DL and the LOQ) are presented on this spreadsheet. 11. Red text indicates detections from resampling event completed between March 2-3, 2020. 14175-03 Apx A - GW VOCs.xlsx Prepared By: TJD Table 5 VOC Nov 2019 Checked By: IAUAWA Table A-2 Groundwater VOCs Old Buncombe County Landfill Woodfln, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. April 27, 2020 TEST UNITS LOQ DL MCL MW-B MW-2 MW-3 MW-4 MW-4A MW-5 MW-6 MW-6-192 MW-7 MW-12-25 MW-13-35 MW-13-132 MW-15 MW-17-60 MW-17-137 MW-17-310 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-2445 MW-24-160 DPL-1 DPL-2 Acetone µo 20 0.4 6,000 <20.0 <20.0 <20.0 <20.0 54 <20.0 5.5 J 8.5 J 5.1 J <20.0 <20.0 <20.0 9.4 J <20.0 <20.0 5.2 J 5.9 J <20.0 <20.0 <20.0 <20.0 Dry <20.0 Dry NS Acrylormnle 49/1 20 0.40 NE <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 Dry <20.0 Dry NS Benzene µg/1 1.0 0.40 1.0 <LO <1.0 1.6 0.81 J 5.9 0.68 J 1.4 <1.0 1.5 <1.0 1.8 1.8 <LO <1.0 <LO <1.0 <LO 0.50 J <LO 2.1 <LO Dry <LO Dry NS Bromochloromethane µg/l 1.0 0.40 NE <LO <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Bromodichloromethane 49/1 1.0 0.40 0.6 <LO <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Bromoform µg/l 1.0 0.50 4.0 <LO <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Carbon Disulfide µg/l 1.0 1 0.80 700 <LO I <1.0 <1.0 0.49 J <LO <1.0 <LO <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO I Dry NS Bromomethane (Methylbromide) µg/1 2.0 0.40 10.0 (i) <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 Dry NS Carbon tetrachloride µg/l 1.0 0.40 0.3 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Chlorobenzene (mono) µg/l 1.0 0.40 50 1.1 <1.0 4.2 5 16 9.1 10.0 1.3 7.4 <1.0 7.2 <1.0 <LO <1.0 <LO <1.0 3.3 5.1 <LO 18 1.5 Dry <LO Dry NS Chloroethane µg/l 2.0 0.40 3,000 0.65 J <2.0 3.4 2 <2.0 1.2 J 4.2 0.77 J 2.4 <2.0 <2.0 <2.0 <2.0 <2.0 0.49 J <2.0 0.70 J <2.0 0.58 J <2.0 2.8 Dry <2.0 Dry NS Chloroform µg/l 1.0 0.40 70 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Chloromethane (Methylchloride) µg/l 1.0 0.50 3.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Dibromochloromethane µg/l 1.0 0.40 0.4 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,2-Dibromo-3chloropropane; DBCP 49/1 1.0 0.40 0.04 <LO <1.0 <LO <1.0 <I.0 <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,2-Dibromoethane; Ethylene dibromide 49/1 1.0 0.40 0.02 <LO <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Dibromomethane µg/l 1.0 0.40 70.0 (i) <LO <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,2-Dichlorobenzene µg/l 1.0 0.40 20.0 <LO <1.0 0.89 J 0.53 J 6.7 <1.0 <LO <1.0 <LO <1.0 5 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO 3.1 <LO Dry <LO Dry NS 1,4-Dichlorobenzene µg/l 1.0 0.40 6.0 1.9 <1.0 9.1 5.8 56 6.8 4.2 0.55 J 3.4 <1.0 23 1.2 <LO 1.3 0.73 J <1.0 2.5 5.1 0.44 J 9.7 2.7 Dry <LO Dry NS trans-1,4-Dichloro-2-butene 49/1 2.0 0.50 NE <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 Dry NS El-Dichloroethane 49/1 1.0 0.40 6.0 1.7 <1.0 2.8 7.9 <1.0 0.68 J 2.5 0.69 J 3.2 <1.0 <1.0 1.2 <LO 1.2 0.80 J <1.0 0.96 J 0.69 J <LO 2.9 0.81 J Dry <LO Dry NS 1,2-Dichloroethane 49/1 1.0 0.40 0.4 <LO <1.0 0.47 J 0.49 J <1.0 <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 0.47 J Dry <LO Dry NS 1,1-Dichloroethene(-ethylene) 49/1 1.0 0.40 350 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <1.0 Dry <LO Dry NS cis-1,2-Dichloroethene (-ethylene) µg/l 1.0 0.40 70 23 <1.0 0.99 J 15 1.2 <1.0 0.60 J <1.0 19 <1.0 3.1 8.4 <LO 1.8 <LO <1.0 0.99 J <1.0 0.46 J 6.5 2.5 Dry <LO Dry NS trans-1,2-Dichloroethene (-ylene) µg/l 1.0 0.40 100 <LO <1.0 <LO <1.0 0.46 J <1.0 <LO <1.0 <LO <1.0 0.40 J <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,2-Dichloropropane 49/1 1.0 0.40 0.6 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS cis-1,3-Dichloropropene (-propylene) 49/1 1.0 0.40 0.4 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS trans-1,3-Dichlompropene (-propylene) 49/1 1.0 0.40 0.4 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Ethylbenzene µg/l 1.0 0.40 600 <LO <1.0 <LO <1.0 11 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 2-Hexanone µg/l 10.0 2.0 40.0 (1) <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 Dry <10.0 Dry NS lodomethare 49/1 5.0 0.40 NE <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Dry <5.0 Dry NS Dichloromethare (Methylene chloride 1 1.0 0.40 5.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 Dry <1.0 Dry NS 2-Butanone (Methyl ethyl ketone) µg/l 10.0 2.0 4,000 2.2 J <I0.0 <10.0 <I0.0 140 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 2.3 J <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 Dry <10.0 Dry NS 4-Methyl-2-Pentanone 49/1 10.0 2.0 NE <10.0 <I0.0 <10.0 <I0.0 32 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 <I0.0 <10.0 Dry <10.0 Dry NS Styrene µg/l 1.0 0.41 70.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry NS 1,1,1,2-Tetrachloroethane 49/1 1.0 0.40 1.0 (i) <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1, 1,2,2-Tetrachloroethane µg/l 1.0 0.40 0.2 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Tetrachloroethene (-ethylene) 49/1 1.0 0.40 0.7 <LO <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Toluene µg/l 1.0 0.40 600 <LO <1.0 <LO <1.0 3.3 <1.0 0.40 J <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,1,1-Trichloroethane 49/1 1.0 0.40 200 <LO <1.0 <LO <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,1,2-Trichloroethane µg/l 1.0 0.40 0.6 (i) <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS Trlchloroethene (-ethylene) 49/1 1.0 0.40 3.0 <LO <1.0 <1.0 0.73 J <I.0 <1.0 <LO <1.0 0.81 J <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO 0.43 J <LO Dry <LO Dry NS Tricldorofluoromethane µg/l 1.0 0.40 2,000 <I.0 <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 <I.0 <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO <1.0 <LO Dry <LO Dry NS 1,2,3-Trichlompropane µg/l 1.0 0.40 0.005 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <LO <1.0 <1.0 <1.0 <LO <1.0 <LO <1.0 < . <1.0 < . <1.0 <1.0 Dry <LO Dry NS Vinyl acetate µg/l 2.0 1.2 88.0 (1) <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 12.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 Dry NS Vinyl chloride 49/1 5.0 0.40 0.03 7.7 <5.0 0.91 J 2.3 1.2 <5.0 <5.0 <5.0 <5.0 <5.0 0.64 J 2.3 <5.0 0.78 J 0.52 J <5.0 0.58 J <5.0 <5.0 1.6 0.92 J Dry <5.0 Dry NS Total Xylenes µg/l 1.0 0.40 500 <1.0 <1.0 0.98 J <1.0 19 <1.0 <1.0 <1.0 0.42 J <1.0 <1.0 <1.0 <1.0 <1.0 0.46 J <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <LO Dry NS 1,4-Dioxane µg/l 3.0 1.0 3.0 34 <3.0 92 25 15 65 28 5.2 <3.0 <3.0 <3.0 <3.0 <3.0 24 32 <3.0 50 96 29 18 48 Dry <3.0 Dry NS 4-Chlorc-3-methyl phenol µp,/l NE NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT Dry NS Diethylphthalate µg/l 6,000 NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT Dry NS Naphthalene µg/1 6 NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT Dry NS Other App. 11 Volatile Organic Compounds (VOC's) Various Various I Various Various NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT Dry NS Notes: 1. MCL = Maximum Contaminant Level, as established in the NCDENR, Classifications of Water Quality Standards Applicable to Groundwaters of North Carolina, Section 15A NCAC 2L .0202. Updated April 1, 2013 2. (i) = Interim Maximum Allowable Concentrations (IMACs). Updated June 30, 2021 3. Shaded cells indicate exceedances of 1MACs 4. Shaded cells indicated exceedances of MCLs 5. NE = Not Established; North Carolina has not established a MCL 6. LOQ = Limit of Quantitation 7. DL = Detection Limit 8. NT = Not Tested 9. NS = Not Sampled 10. "J"-flagged data (i.e., values estimated between the DL and the LOQ) are presented on this spreadsheet. 14175-03 Apx A - GW VOCs.xlsx Prepared By: TJD Table 5 VOC April 2020 Checked By: IAI Table A-3 Groundwater VOCs Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. October 26-30, 2020 TEST UNITS LOQ DL MCL MW-B MW-2 MW-3 MW-4 MW-4A MW-5 MW-6 MW-6-192 MW-7 MW-12-25 MW-13-35 MW-13-132 MW-15 MW-17-60 MW-17-137 MW-17-310 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-2445 MW-24-160 DPL-1 DPL-2 Acetone µo 20 5.0 6,000 5.1 J <5.0 7.6 J 6.7 J <5.0 5.3 J 8.4 J <5.0 16 J <5.0 <5.0 <5.0 191 6.9 J 7.2 J <5.0 9.0 J 6.6 J 5.7 J 7.0 J 7.1 J Dry <5.0 Dry NS Acrylormnle 49/1 20 0.80 NE <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 Dry <0.80 Dry NS Benzene µgIl 1.0 0.40 1.0 <0.40 <0.40 0.78 J 0.41 J 2.8 <0.40 0.87 J <0.40 1.7 <0.40 1.7 1.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 1.8 <0.40 Dry <0.40 Dry NS Bromochloromethane µg/l 1.0 0.40 NE <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Bromodichloromethane µg/l 1.0 0.40 0.6 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Broawform µg/l 1.0 0.40 4.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Carbon Disulfide µg/l 1.0 1 0.40 700 <0.40 1 <0.40 <0.40 0.42 J <0.40 <0.40 0.84 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 1.9 0.77 J 1.1 0.60 J 1.6 Dry <0.40 Dry NS Bromomethane (Methylbromide) µg/l 2.0 0.40 10.0 (i) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Carbon tetrachloride µg/l 1.0 0.40 0.3 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Chlorobenzene (mono) µg/l 1.0 0.40 50 1.2 <0.40 3.6 4.3 13 7.1 8.8 1.3 9.9 <0.40 6.8 <0.40 <0.40 <0.40 <0.40 <0.40 3.3 4.8 0.55 J 13 1.2 Dry <0.40 Dry NS Chloroethane 49/1 2.0 0.40 3,000 0.60 J <0.40 2.6 1.9 J <0.40 0.92 J 3.7 0.75 J 3.7 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.70 J <0.40 0.81 J <0.40 2.5 Dry <0.40 Dry NS Chloroform µg/l 1.0 0.40 70 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Chloromethane (Methylchloride) µg/l 1.0 0.50 3.0 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 Dry <0.50 Dry NS Dibroawchloromethane µg/l 1.0 0.40 0.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,2-Dibromo-3chloropropane; DBCP 49/1 1.0 0.40 0.04 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,2-Dibromoethane; Ethylene dibromide 49/1 1.0 0.40 0.02 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Dibroanoaa;thane µg/l 1.0 0.40 70.0 (i) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,2-Dichlorobenzene µg/l 1.0 0.40 20.0 <0.40 <0.40 0.77 J 0.56 J 3.5 <0.40 <0.40 <0.40 <0.40 <0.40 4.1 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 2.7 <0.40 Dry <0.40 Dry NS 1,4-Dichlorobenzene µg/l 1.0 0.40 6.0 1.9 <0.40 6.5 5.5 32 4.7 3.7 0.61 J 3.9 <0.40 17 0.78 J <0.40 <0.40 0.47 J <0.40 2.5 4.2 0.64 J 12 1.6 Dry <0.40 Dry NS trans-1,4-Dichloro-2-butene 49/1 2.0 0.50 NE <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 Dry <0.50 Dry NS El-Dichloroethane 49/1 1.0 0.40 6.0 1.7 <0.40 1.7 7.4 <0.40 0.64 J 2 0.66 J 2.7 <0.40 <0.40 0.73 J <0.40 0.68 J 0.65 J <0.40 0.94 J 0.58 J <0.40 2.5 0.82 J Dry <0.40 Dry NS 1,2-Dichloroethane 49/1 1.0 0.40 0.4 <0.40 <0.40 <0.40 0.41 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.54 J 0.48 J Dry <0.40 Dry NS 1,1-Dichloroethene(-ethylene) 49/1 1.0 0.40 350 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS cis-1,2-Dkhloroethene (ethylene) µg/l 1.0 0.40 70 21 <0.40 0.84 J 16 <0.40 <0.40 0.49 J <0.40 25 <0.40 2.9 4.4 <0.40 1 <0.40 <0.40 0.85 J <0.40 0.61 J 5.2 2.4 Dry <0.40 Dry NS trans-1,2-Dichloroethene (-ylene) µg/l 1.0 0.40 100 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,2-Dichloropropane 49/1 1.0 0.40 0.6 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS cis-1,3-Dichloropropene (-propylene) 49/1 1.0 0.40 0.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS trans-1,3-Dichloropropene (-propylene) µg/l 1.0 0.40 0.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Ethylbenzene µg/l 1.0 0.40 600 <0.40 <0.40 <0.40 <0.40 1.5 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 2-Hexanone µg/l 10.0 2.0 40.0 (1) <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 Dry NS Iodomethane µg/l 5.0 0.40 NE <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.45 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Dichloromethane (Methylene chloride 1 1.0 0.40 5.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 2-Butanone (Methyl ethyl ketone) µg/l 10.0 2.0 4,000 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 2.3 J <2.0 <2.0 <2.0 <2.0 5.3 J <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 Dry NS 4-Methyl-2-Peutanone 49/1 10.0 2.0 NE <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 Dry NS Styrene µg/l 1.0 0.41 70.0 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 Dry <0.41 Dry NS 1,1,1,2-Tetrachloroethane 49/1 1.0 0.40 1.0 (i) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1, 1,2,2-Tetrachloroethane µg/l 1.0 0.40 0.2 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Tetrachloroethene (-ethylene) 49/1 1.0 0.40 0.7 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Toluene µg/l 1.0 0.40 600 <0.40 <0.40 <0.40 <0.40 1.2 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,1,1-Trichloroethane 49/1 1.0 0.40 200 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,1,2-Trichloroethane µg/l 1.0 0.40 0.6 (i) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Trichloroethene (ethylene) µg/l 1.0 0.40 3.0 <0.40 <0.40 <0.40 0.64 J <0.40 <0.40 <0.40 <0.40 0.77 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Tricldorofluoromethane µg/l 1.0 0.40 2,000 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,2,3-Trichloropropane 49/1 1.0 0.40 0.005 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Vinyl acetate µg/l 5.0 1.2 88.0 (i) <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1 2 <1.2 <1.2 <1.2 <L2 <1.2 <L2 <1.2 <1.2 <1.2 <1 2 <1.2 <1.2 Dry <L2 Dry NS Vinyl chloride µg/l 1.0 0.40 0.03 10 <0.40 0.79 J 3 0.51 J <0.40 0.44 J <0.40 <0.40 <0.40 0.53 J 1.6 <0.40 <0.40 0.54 J <0.40 0.68 J <0.40 <0.40 2.3 1.1 Dry <0.40 Dry NS Total Xylenes µg/l 1.0 0.40 500 <0.40 <0.40 1 0.82 J <0.40 3.2 <0.40 <0.40 <0.40 0.57 J <0.40 <0.40 <0.40 <0.40 <0.40 0.50 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,4-Dioxane µg/l 3.0 1.0 3.0 36 NT 97 22 20 67 31 8.5 <LO NT NT NT NT 23 34 NT 45 93 34 52 46 Dry NT Dry NS 4-Chloro-3-methyl phenol µgA 4.0 0.50 NE NT <0.50 NT NT NT <0.50 1.7 J NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NS Diethylphthalate µgA 4 0.5 6,000 NT <0.50 NT NT NT <0.50 2.5 J NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NS Naphthalene µg/l 0.8 0.2 6 NT <0.20 NT NT NT <0.20 0.78 J NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NS Other App. lI Volatile Organic Compounds (VOC's) Various I Various Various I Various NT ND NT NT NT ND ND NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NS Notes: 1. MCL = Maximum Contaminant Level, as established in the NCDENR, Classifications of Water Quality Standards Applicable to Groundwaters of North Carolina, Section 15A NCAC 2L .0202. Updated April 1, 2013 2. (i) = Interim Maximum Allowable Concentrations (IMACs). Updated June 30, 2021 3. Shaded cells indicate exceedances of IMACs 4. Shaded cells indicated exceedances of MCLs 5. NE = Not Established; North Carolina has not established a MCL 6. LOQ = Limit of Quantitation 7. DL = Detection Limit 8. NT = Not Tested 9. NS = Not Sampled 10. "J"-flagged data (i.e., values estimated between the DL and the LOQ) are presented on this spreadsheet. 14175-03 Apx A - GW VOCs.xlsx Prepared By: RLB Table 5 VOC Oct 2020 Checked By: TJD Table A-4 Groundwater VOCs Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. April 28-29, 2021 TEST UNITS LOQ DL MCL MW-B MW-2 MW-3 MW-4 MW-4A MW-5 MW-6 MW-6-192 MW-7 MW-12-25 MW-13-35 MW-13-132 MW-15 MW-17-60 MW-17-137 MW-17-310 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-2445 MW-24-160 DPL-1 DPL-2 Acetone µo 20 5.0 6,000 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 12 J <5.0 <5.0 <5.0 <5.0 5.2 J <5.0 <5.0 <5.0 Dry <5.0 11.1 NS Acrylormnle 49/1 20 0.80 NE <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 Dry <0.80 <0.80 NS Benzene µg/1 1.0 0.40 1.0 <0.40 <0.40 1.6 0.86 J 5.6 0.86 J 1.3 <0.40 2.4 <0.40 1.1 1 <0.40 <0.40 <0.40 <0.40 0.53 J <0.40 <0.40 2.8 <0.40 Dry <0.40 <0.40 NS Bromochloromethane µg/l 1.0 0.40 NE <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Bromodichloromethane µg/l 1.0 0.40 0.6 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Broawform µg/l 1.0 0.40 4.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Carbon Disulfide µg/l 1.0 1 0.40 700 <0.40 1 <0.40 <0.40 <0.40 <0.40 <0.40 4.2 <0.40 <0.40 <0.40 <0.40 2.7 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.53 J <0.40 Dry <0.40 <0.40 NS Bromomethane (Methylbromide) 49/1 2.0 0.40 10.0 (i) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Carbon tetrachloride µg/l 1.0 0.40 0.3 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Chlorobenzene (mono) µg/l 1.0 0.40 50 <0.40 <0.40 4.4 6 28 8.7 7.5 0.96 J 13 <0.40 5 <0.40 <0.40 <0.40 <0.40 <0.40 4 4.2 0.78 J 32 1.8 Dry <0.40 <0.40 NS Chloroethane µg/l 2.0 0.40 3,000 0.61 J <0.40 3.2 2 <0.40 1.0 J 3.5 0.65 J 3.4 <0.40 <0.40 <0.40 <0.40 <0.40 0.43 J <0.40 0.70 J <0.40 0.87 J <0.40 2.3 Dry <0.40 <0.40 NS Chloroform µg/l 1.0 0.40 70 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Chloromethane (Methylchloride) µg/l 1.0 0.50 3.0 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 Dry <0.50 <0.50 NS Dibroawchloromethane µg/l 1.0 0.40 0.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS 1,2-Dibromo-3chloropropane; DBCP 49/1 1.0 0.40 0.04 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS 1,2-Dibromoethane; Ethylene dibromide 49/1 1.0 0.40 0.02 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Dibroaroaa;thane µg/l 1.0 0.40 70.0 (i) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS 1,2-Dichlorobenzene µg/l 1.0 0.40 20.0 <0.40 <0.40 0.83 J 0.73 J 4.4 <0.40 <0.40 <0.40 <0.40 <0.40 3.1 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 4 0.44 J Dry <0.40 <0.40 NS 1,4-Dichlorobenzene µg/l 1.0 0.40 6.0 0.75 J <0.40 7.2 9.5 25 4.8 2.6 0.43 J 5.8 <0.40 16 0.58 J <0.40 0.53 J 0.68 J <0.40 3.1 3.2 0.76 J 14 2.8 Dry <0.40 <0.40 NS trans-1,4-Dichloro-2-butene 49/1 2.0 0.50 NE <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 Dry <0.50 <0.50 NS El-Dichloroethane µg/l 1.0 0.40 6.0 <0.40 <0.40 1.3 7.2 <0.40 0.51 J 1.8 0.69 J 2.1 <0.40 <0.40 <0.40 <0.40 1.1 0.78 J <0.40 0.98 J 0.47 J <0.40 2.8 1.2 Dry <0.40 <0.40 NS 1,2-Dichloroethane µg/l 1.0 0.40 0.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.43 J 0.42 J Dry <0.40 <0.40 NS 1,1-Dichloroethene(-ethylene) 49/1 1.0 0.40 350 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS cis-1,2-Dkhloroethene (ethylene) µg/l 1.0 0.40 70 4.7 <0.40 0.65 J 16 <0.40 <0.40 1.4 <0.40 20 0.57 J 2.7 2.6 <0.40 2.5 0.61 J <0.40 0.95 J <0.40 0.93 J 5.8 2.9 Dry <0.40 <0.40 NS trans-1,2-Dichloroethene (-ylene) 49/1 1.0 0.40 100 <0.40 <0.40 <0.40 <0.40 0.44 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS 1,2-Dichloropropane µg/l 1.0 0.40 0.6 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS cis-1,3-Dichloropropene (-propylene) 49/1 1.0 0.40 0.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS trans-1,3-Dichloropropene (-propylene) µg/l 1.0 0.40 0.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Ethylbenzene µg/l 1.0 0.40 600 <0.40 <0.40 <0.40 <0.40 6.8 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS 2-Hexanone µg/l 10.0 2.0 40.0 (1) <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 <2.0 NS lodomethane 49/1 5.0 0.40 NE <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Dichloromethane (Methylene chloride 1 1.0 0.40 5.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS 2-Butanone (Methyl ethyl ketone) µg/l 10.0 2.0 4,000 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 3.4 J <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 <2.0 NS 4-Methyl-2-Pentanone 49/1 10.0 2.0 NE <2.0 <2.0 <2.0 <2.0 4.9 J <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 <2.0 NS Styrene µg/l 1.0 0.41 70.0 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 Dry <0.41 <0.41 NS 1,1,1,2-Tetrachloroethane 49/1 1.0 0.40 1.0 (i) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS 1, 1,2,2-Tetrachloroethane µg/l 1.0 0.40 0.2 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Tetrachloroethene (-ethylene) 49/1 1.0 0.40 0.7 0.68 BJ <0.40 <0.40 1.2 B <0.40 <0.40 0.87 BJ <0.40 <0.40 0.63 BJ 0.66 BJ 0.53 BJ <0.40 0.54 BJ 0.51 BJ <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Toluene µg/l 1.0 0.40 600 <0.40 <0.40 <0.40 <0.40 2.7 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.66 J <0.40 Dry <0.40 <0.40 NS 1,1,1-Trichloroethane 49/1 1.0 0.40 200 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS 1,1,2-Trichloroethane µg/l 1.0 0.40 0.6 (i) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Trlchloroethene (ethylene) 49/1 1.0 0.40 3.0 <0.40 <0.40 <0.40 0.82 J <0.40 <0.40 <0.40 <0.40 0.60 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.51 J <0.40 Dry <0.40 <0.40 NS Tricldorofluoromethane µg/l 1.0 0.40 2,000 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS 1,2,3-Trichlompropane µg/l 1.0 0.40 0.005 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 NS Vinyl acetate µg/1 5.0 1.2 88.0 (I <1. 2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <L2 <1.2 <1.2 <1.2 <L2 <1. 2 <L2 <1.2 <L2 <1.2 <L2 <1.2 <1.2 Dry <L2 <1.2 NS Vinyl chloride µg/1 1.0 0.40 0.03 2.3 <0.40 0.723 3 1 <0.40 <0.40 <0.40 <(l <0.40 0.61 J 0.91 J <0.40 1.2 0.74 J <0.40 0.83 J <0.40 <0.40 2.2 1.2 Dry <0.40 <0.40 NS Total Xylenes µg/l 1.0 1 0.40 500 <0.40 <0.40 0.89 J <0.40 12 <0.40 <0.40 <0.40 0.54 J <0.40 <0.40 <0.40 <0.40 <0.40 0.46 J <0.40 <0.40 <0.40 <0.40 0.60 J <0.40 Dry <0.40 <0.40 NS 1,4-Dioxane µg/1 3.0 1 1.0 3.0 22 NT 95 24 31 73 33 5.6 NT NT NT NT NT 26 35 NT 53 87 35 30 46 Dry NT <1.0 NS 4-Cldoro-3-methyl phenol µg/1 NE NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT NT NS Diethylphthalate µg/l 6,000 NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT NT NS Naphthalene µg/l 6 NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT NT NS Other App. 11 Volatile Organic Compounds (VOC's) Various Various Various I Various NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT NT NS Notes: 1. MCL = Maximum Contaminant Level, as established in the NCDENR, Classifications of Water Quality Standards Applicable to Groundwaters of North Carolina, Section 15A NCAC 2L .0202. Updated April 1, 2013 2. (i) = Interim Maximum Allowable Concentrations (IMACs). Updated June 30, 2021 3. Shaded cells indicate exceedances of 1MACs 4. Shaded cells indicated exceedances of MCLs 5. NE = Not Established; North Carolina has not established a MCL 6. LOQ = Limit of Quantitation 7. DL = Detection Limit 8. NT = Not Tested 9. NS = Not Sampled 10. "J"-flagged data (i.e., values estimated between the DL and the LOQ) are presented on this spreadsheet. 11. "B"-flagged data (values detected in the lab blank) are laboratory errors and are presented on this spreadsheet. 14175-03 Apx A - GW VOCs.xlsx Prepared By: RLB Table 5 VOC April 2021 Checked By: IAI Table A-5 Groundwater VOCs Old Buncombe County Landfill Woodfln, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. October 25-28, 2021 TEST UNITS LOQ DL MCL MW-B MW-2 MW-3 MW-4 MW-4A MW-5 MW-6 MW-6-192 MW-7 MW-12-25 MW-13-35 MW-13-132 MW-15 MW-17-60 MW-17-137 MW-17-310 MW-18-78 MW-19-75 MW-19-110 MW-21-21 MW-21-94 MW-2445 MW-24-160 DPL-1 DPL-2 Acetone µo 20 5.0 6,000 <5.0 <5.0 <5.0 5.4 J <5.0 <5.0 <5.0 <5.0 13 J <5.0 <5.0 <5.0 11 J <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Dry <5.0 Dry NS Acrylormnle 49/1 20 0.80 NE <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 <0.80 Dry <0.80 Dry NS Benzene µgIl 1.0 0.40 1.0 <0.40 <0.40 1.2 0.82 J 4.4 0.82 J 1.4 <0.40 2.8 J <0.40 2.0 1.2 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 2.4 <0.40 Dry <0.40 Dry NS Bromochloromethane µg/l 1.0 0.40 NE <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Bromodichloromethane µg/l 1.0 0.40 0.6 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Bromoform µg/l 1.0 0.40 4.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Carbon Disulfide µg/l 1.0 1 0.40 700 <0.40 1 <0.40 <0.40 0.49 J <0.40 <0.40 1.1 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.49 J 0.75 J <0.40 0.88 J 0.49 J Dry 0.46 J Dry NS Bromomethane (Methylbromide) 49/1 2.0 0.40 10.0 (i) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Carbon tetrachloride µg/l 1.0 0.40 0.3 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Chlorobenzene (mono) µg/l 1.0 0.40 50 1.0 <0.40 4.3 4.1 25 8.6 9.0 1.6 16 <0.40 8.6 <0.40 <0.40 <0.40 <0.40 <0.40 3.2 5.7 0.83 J 14 1.5 Dry <0.40 Dry NS Chloroethane µg/l 2.0 0.40 3,000 <0.40 <0.40 2.7 1.7 J <0.40 0.69 J 3.3 <0.40 3.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 2.1 Dry <0.40 Dry NS Chloroform µg/l 1.0 0.40 70 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Chloromethane (Methylchloride) µg/l 1.0 0.50 3.0 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 Dry <0.50 Dry NS Dibromochloromethane µg/l 1.0 0.40 0.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,2-Dibromo-3chloropropane; DBCP 49/1 1.0 0.40 0.04 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,2-Dibromoethane; Ethylene dibromide 49/1 1.0 0.40 0.02 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Dibromomethane µg/l 1.0 0.40 70.0 (i) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,2-Dichlorobenzene µg/l 1.0 0.40 20.0 <0.40 <0.40 0.74 J 0.69 J 3.5 <0.40 <0.40 <0.40 <0.40 <0.40 4.8 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 2.7 <0.40 Dry <0.40 Dry NS 1,4-Dichlorobenzene 49/1 1.0 0.40 6.0 1.7 <0.40 7.5 7.9 20 4.6 3.4 0.58 J 6.8 <0.40 23 0.48 J <0.40 <0.40 0.66 J <0.40 2.2 4.8 0.78 J 12 2.4 Dry <0.40 Dry NS trans-1,4-Dichloro-2-butene µg/l 2.0 0.50 NE <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 Dry <0.50 Dry NS El-Dichloroethane 49/1 1.0 0.40 6.0 1.4 <0.40 1.5 7.1 <0.40 0.50 J 1.5 0.64 J 3.0 <0.40 <0.40 <0.40 <0.40 0.99 J 0.71 J <0.40 0.81 J 0.59 J <0.40 1.5 0.97 J Dry <0.40 Dry NS 1,2-Dichloroethane 49/1 1.0 0.40 0.4 <0.40 <0.40 <0.40 0.48 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.56 J 0.43 J Dry <0.40 Dry NS 1,1-Dichloroethene(-ethylene) 49/1 1.0 0.40 350 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS cis-1,2-Dichloroethene (-ethylene) µg/l 1.0 0.40 70 12 <0.40 0.79 J 17 <0.40 <0.40 <0.40 <0.40 27 <0.40 3.1 1.8 <0.40 1.3 <0.40 <0.40 0.77 J <0.40 0.78 J 4.0 2.6 Dry <0.40 Dry NS trans-1,2-Dichloroethene (-ylene) 49/1 1.0 0.40 100 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,2-Dichloropropane µg/l 1.0 0.40 0.6 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS cis-1,3-Dichlo-mopene (-propylene) 49/1 1.0 0.40 0.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS trans-1,3-Dichlompropene (-propylene) µg/l 1.0 0.40 0.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Ethylbenzene µg/l 1.0 0.40 600 <0.40 <0.40 <0.40 <0.40 4.9 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 2-Hexanone µgA 10.0 2.0 40.0 (1) <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 Dry NS lodomethare 49/1 5.0 0.40 NE <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Dichloromethane (Methliene chloride) RgA 1.0 0.40 5.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.48 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 2-Butanone (Methyl ethyl ketone) µg/l 10.0 2.0 4,000 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 2.1 J <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 Dry NS 4-Methyl-2-Peutanone 49/1 10.0 2.0 NE <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Dry <2.0 Dry NS Styrene µg/l 1.0 0.41 70.0 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 Dry <0.41 Dry NS 1,1,1,2-Tetrachloroethane 49/1 1.0 0.40 1.0 (i) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1, 1,2,2-Tetrachloroethane µg/l 1.0 0.40 0.2 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Tetrachloroethene (-ethylene) µg/l 1.0 0.40 0.7 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Toluene µg/l 1.0 0.40 600 <0.40 <0.40 <0.40 <0.40 3.0 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.40 J <0.40 Dry <0.40 Dry NS 1,1,1-Trichloroethane 49/1 1.0 0.40 200 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,1,2-Trichloroethane µg/l 1.0 0.40 0.6 (i) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Trichloroethene (-ethylene) 49/1 1.0 0.40 3.0 <0.40 <0.40 <0.40 0.69 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Tricldorofluoromethane µg/l 1.0 0.40 2,000 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,2,3-Trichlompropane 49/1 1.0 0.40 0.005 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS Vinyl acetate µg/l 5.0 1.2 88.0 (i) <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 Dry <1.2 Dry NS Vinyl chloride 49/1 1.0 0.40 0.03 9.4 <0.40 0.54 J 2.6 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.69 J 0.57 J <0.40 0.47 J <0.40 <0.40 <0.40 <0.40 <0.40 1.7 0.54 J Dry <0.40 Dry NS Total Xylenes µg/l 1.0 0.40 500 <0.40 <0.40 0.84 J <0.40 8.9 <0.40 <0.40 <0.40 1.6 <0.40 <0.40 <0.40 <0.40 10.40 0.71 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry NS 1,4-Dioxane µg/l 3.0 1.0 3.0 34 NT 90 18 48 84 38 9.1 NT NT NT NT NT 28 37 NT 52 85 34 60 47 Dry NT Dry NS 4-Chloro-3-methyl phenol µP,/1 4.0 0.50 NE NT <0.50 NT NT NT <0.50 <0.50 NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT Dry NS Diethylphthalate µP,/1 4 0.5 6,000 NT <0.50 NT NT NT <0.50 2.6 JQ NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT Dry NS Naphthalene µg/l 0.8 0.2 6 NT <0.20 NT NT NT <0.20 0.84 Q NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT Dry NS Other App. 11 Volatile Organic Compounds (VOC's) Various Various I Various Various NT ND NT NT NT ND ND NT NT NT NT NT NT NT NT NT NT NT NT NT NT Dry NT Dry NS Notes: 1. MCL = Maximum Contaminant Level, as established in the NCDENR, Classifications of Water Quality Standards Applicable to Groundwaters of North Carolina, Section 15A NCAC 2L .0202. Updated April 1, 2013 2. (i) = Interim Maximum Allowable Concentrations (IMACs). Updated June 30, 2021 3. Shaded cells indicate exceedances of 1MACs 4. Shaded cells indicated exceedances of MCLs 5. NE = Not Established; North Carolina has not established a MCL 6. LOQ = Limit of Quantitation 7. DL = Detection Limit 8. NT = Not Tested 9. NS = Not Sampled 10. "J"-flagged data (i.e., values estimated between the DL and the LOQ) are presented on this spreadsheet. 11. "Q"-flagged data (surrogate failures) are laboratory errors and are presented on this spreadsheet. 14175-03 Apx A - GW VOCs.xlsx Prepared By: RLB Table 5 VOC Oct 2021 Checked By: TAO/AWA APPENDIX B SURFACE WATER VOC SUMMARY TABLES Table B-1 Surface Water VOCs Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. November 11-15, 2019 and Resampled on March 2, 2020. TEST UNITS MRL MDL NC2B SW-1 SW-2 SW-2A SW-3 SW-4 Acetone µg/1 25 25.0 2,000 <25.0 <25.0 <25.0 <25.0 <25.0 Acrylonitrile µg/1 10 10.00 420.0 <10.0 <10.0 <10.0 <10.0 <10.0 Benzene µg/1 1.0 1.00 51.0 <1.0 <1.0 <1.0 <1.0 <1.0 Bromochloromethane µg/1 1.0 1.00 NE <1.0 <1.0 <1.0 <1.0 <1.0 Bromodichloromethane µg/1 1.0 1.00 NE <1.0 <1.0 <1.0 <1.0 <1.0 Bromoform µg/1 1.0 1.00 120 <1.0 <1.0 <1.0 <1.0 <1.0 Carbon Disulfide µg/1 2.0 2.00 100 <2.0 <2.0 <2.0 <2.0 <2.0 Bromomethane (Methylbromide) µg/1 2.0 2.00 0.04 <2.0 <2.0 <2.0 <2.0 <2.0 Carbon tetrachloride µg/1 1.0 1.00 1.6 <1.0 <1.0 <1.0 <1.0 <1.0 Chlorobenzene (mono) µg/1 1.0 1.00 800 <1.0 <1.0 <1.0 <1.0 <1.0 Chloroethane µg/1 1.0 1.00 NE <1.0 <1.0 <1.0 <1.0 <1.0 Chloroform µg/1 5.0 5.00 2,000 <5.0 <5.0 <5.0 <5.0 <5.0 Chloromethane (Methylchloride) µg/1 1.0 1.00 96.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dibromochloromethane µg/1 1.0 1.00 21 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-Dibromo-3-chloropropane; DBCP µg/1 5.0 5.00 0.13 <5.0 <5.0 <5.0 <5.0 <5.0 1,2-Dibromoethane; Ethylene dibromide µg/1 1.0 1.00 0.1 <1.0 <1.0 <1.0 <1.0 <1.0 Dibromomethane µg/1 1.0 1.00 NE <1.0 <1.0 <1.0 <1.0 <1.0 1,2-Dichlorobenzene µg/1 1.0 1.00 3,000 <1.0 <1.0 <1.0 <1.0 <1.0 1,4-Dichlorobenzene µg/1 1.0 1.00 900 <1.0 <1.0 <1.0 <1.0 <1.0 trans-1,4-Dichloro-2butene µg/1 1.0 1.00 NE <1.0 <1.0 <1.0 <1.0 <1.0 1,1-Dichloroethane µg/1 1.0 1.00 100 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-Dichloroethane µg/1 1.0 1.00 650 <1.0 <1.0 <1.0 <1.0 <1.0 1,1-Dichloroethene (-ethylene) µg/1 1.0 1.00 20,000 <1.0 <1.0 <1.0 <1.0 <1.0 cis-1,2-Dichloroethene (-ethylene) µg/1 1.0 1.00 720 <1.0 <1.0 <1.0 <1.0 <1.0 trans-1,2-Dichloroethene (-ylene) µg/1 1.0 1.00 4,000 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-Dichloropropane µg/1 1.0 1.00 31.0 <1.0 <1.0 <1.0 <1.0 <1.0 cis-1,3-Dichloropropene (-propylene) µg/1 1.0 1.00 NE <1.0 <1.0 <1.0 <1.0 <1.0 trans-1,3-Dichloropropene (-propylene) µg/1 1.0 1.00 NE <1.0 <1.0 <1.0 <1.0 <1.0 Ethylbenzene µg/1 1.0 1.00 97 <1.0 <1.0 <1.0 <1.0 <1.0 2-Hexanone µg/1 5 5.0 NE <5.0 <5.0 <5.0 <5.0 <5.0 Iodomethane µg/1 20.0 20.00 NE <20.0 <20.0 <20.0 <20.0 <20.0 Dichloromethane (Methylene chloride) µg/1 5.0 5.00 1,000 <5.0 <5.0 <5.0 <5.0 <5.0 2-Butanone (Methyl ethyl ketone) µg/1 5 5.0 26,000 <5.0 <5.0 <5.0 <5.0 <5.0 4-Methyl-2-Pentanone µg/1 5 5.0 26,000 <5.0 <5.0 <5.0 <5.0 <5.0 Styrene µg/1 1.0 1.00 NE <1.0 <1.0 <1.0 <1.0 <1.0 1, 1, 1,2-Tetrachloroethane µg/1 1.0 1.00 NE <1.0 <1.0 <1.0 <1.0 <1.0 1,1,2,2-Tetrachloroethane µg/1 1.0 1.00 4.0 <1.0 <1.0 <1.0 <1.0 <1.0 Tetrachloroethene (-ethylene) µg/1 1.0 1.00 3.3 <1.0 <1.0 <1.0 <1.0 <1.0 Toluene µg/1 1.0 1.00 11.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,1,1-Trichloroethane µg/1 1.0 1.00 200,000 <1.0 <1.0 <1.0 <1.0 <1.0 1,1,2-Trichloroethane µg/1 1.0 1.00 8.9 <1.0 <1.0 <1.0 <1.0 <1.0 Trichloroethene (-ethylene) µg/1 1.0 1.00 30.0 <1.0 <1.0 <1.0 <1.0 <1.0 Trichlorofluoromethane µg/1 1.0 1.00 67,000 <1.0 <1.0 <1.0 <1.0 <1.0 1,2,3-Trichloropropane µg/1 1.0 1.00 0.001 <1.0 <1.0 <1.0 <1.0 <1.0 Vinyl acetate µg/1 2.0 2.0 NE <2.0 <2.0 <2.0 <2.0 <2.0 Vinyl chloride µg/1 1.0 1.00 2.4 <1.0 <1.0 <1.0 <1.0 <1.0 Total Xylenes µg/1 2.0 2.00 670 <2.0 <2.0 <2.0 <2.0 <2.0 14-dioxane 2.0 2.0 80.0 <2.0 <2.0 10.3 34 49.9 Notes: NC213 = North Carolina Surface Water Standards for Class B freshwater under Title 15A Subchapter 213. per NC DWR Surface Water Quality Standards, Criteria, & In -Stream Target Values (Workbook Dated 6-10-2019) NE = Not Established; North Carolina has not established a MCL NT = Not Tested MRL = Method Reporting Limit MDL = Minimum Detection Limit "J"-flagged data (i.e., values estimated between the MDL and the MRL) are presented on this spreadsheet. Shaded cells indicated exceedances of NC2B Surface Water Standards Red text indicates detections from resampling event completed between March 2-3, 2020. 14175-03 Apx B - SW VOCs.xlsx Prepared By: RLB Table B-1 SW VOC (11-13-19) Checked By: TJD Table B-2 Surface Water VOCs Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. April 27, 2020. TEST UNITS MRL MDL NC2B SW-1 SW-2 SW-2A SW-3 SW-4 Acetone µg/1 25 0.4 2,000 <25.0 <25.0 <25.0 <25.0 5.7 J Acrylonitrile µg/1 10 0.40 420.0 <10.0 <10.0 <10.0 <10.0 <10.0 Benzene µg/1 1.0 0.40 51.0 <1.0 <1.0 <1.0 <1.0 <1.0 Bromochloromethane µg/1 1.0 0.40 NE <1.0 <1.0 <1.0 <1.0 <1.0 Bromodichloromethane µg/1 1.0 0.40 NE <1.0 <1.0 <1.0 <1.0 <1.0 Bromoform µg/1 1.0 0.50 120 <1.0 <1.0 <1.0 <1.0 <1.0 Carbon Disulfide µg/1 2.0 0.80 100 <2.0 <2.0 <2.0 <2.0 <2.0 Bromomethane (Methylbromide) µg/1 2.0 0.40 0.04 <2.0 <2.0 <2.0 <2.0 <2.0 Carbon tetrachloride µg/1 1.0 0.40 1.6 <1.0 <1.0 <1.0 <1.0 <1.0 Chlorobenzene (mono) µg/1 1.0 0.40 800 <1.0 <1.0 <1.0 <1.0 <1.0 Chloroethane µg/1 1.0 0.40 NE <1.0 <1.0 <1.0 <1.0 <1.0 Chloroform µg/1 5.0 0.40 2,000 <5.0 <5.0 <5.0 <5.0 <5.0 Chloromethane (Methylchloride) µg/1 1.0 0.50 96.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dibromochloromethane µg/1 1.0 0.40 21 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-Dibromo-3-chloropropane; DBCP µg/1 5.0 0.40 0.13 <5.0 <5.0 <5.0 <5.0 <5.0 1,2-Dibromoethane; Ethylene dibromide µg/1 1.0 0.40 0.1 <1.0 <1.0 <1.0 <1.0 <1.0 Dibromomethane µg/1 1.0 0.40 NE <1.0 <1.0 <1.0 <1.0 <1.0 1,2-Dichlorobenzene µg/1 1.0 0.40 3,000 <1.0 <1.0 <1.0 <1.0 <1.0 1,4-Dichlorobenzene µg/1 1.0 0.40 900 <1.0 <1.0 <1.0 <1.0 <1.0 trans-1,4-Dichloro-2butene µg/1 1.0 0.50 NE <1.0 <1.0 <1.0 <1.0 <1.0 1,1-Dichloroethane µg/1 1.0 0.40 100 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-Dichloroethane µg/1 1.0 0.40 650 <1.0 <1.0 <1.0 <1.0 <1.0 1,1-Dichloroethene (-ethylene) µg/1 1.0 0.40 20,000 <1.0 <1.0 <1.0 <1.0 <1.0 cis-1,2-Dichloroethene (-ethylene) µg/1 1.0 0.40 720 <1.0 <1.0 <1.0 <1.0 <1.0 trans-1,2-Dichloroethene (-ylene) µg/1 1.0 0.40 4,000 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-Dichloropropane µg/1 1.0 0.40 31.0 <1.0 <1.0 <1.0 <1.0 <1.0 cis-1,3-Dichloropropene (-propylene) µg/1 1.0 0.40 NE <1.0 <1.0 <1.0 <1.0 <1.0 trans-1,3-Dichloropropene (-propylene) µg/1 1.0 0.40 NE <1.0 <1.0 <1.0 <1.0 <1.0 Ethylbenzene µg/1 1.0 0.40 97 <1.0 <1.0 <1.0 <1.0 <1.0 2-Hexanone µg/1 5 2.0 NE <5.0 <5.0 <5.0 <5.0 <5.0 Iodomethane µg/1 20.0 0.40 NE <20.0 <20.0 <20.0 <20.0 <20.0 Dichloromethane (Methylene chloride) µg/1 5.0 0.40 1,000 <5.0 <5.0 <5.0 <5.0 <5.0 2-Butanone (Methyl ethyl ketone) µg/1 5 2.0 26,000 <5.0 <5.0 <5.0 <5.0 <5.0 4-Methyl-2-Pentanone µg/1 5 2.0 26,000 <5.0 <5.0 <5.0 <5.0 <5.0 Styrene µg/1 1.0 0.41 NE <1.0 <1.0 <1.0 <1.0 <1.0 1,1,1,2-Tetrachloroethane µg/1 1.0 0.40 NE <1.0 <1.0 <1.0 <1.0 <1.0 1,1,2,2-Tetrachloroethane µg/1 1.0 0.40 4.0 <1.0 <1.0 <1.0 <1.0 <1.0 Tetrachloroethene (-ethylene) µg/1 1.0 0.40 3.3 <1.0 <1.0 <1.0 <1.0 <1.0 Toluene µg/1 1.0 0.40 11.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,1,1-Trichloroethane µg/1 1.0 0.40 200,000 <1.0 <1.0 <1.0 <1.0 <1.0 1,1,2-Trichloroethane µg/1 1.0 0.40 8.9 <1.0 <1.0 <1.0 <1.0 <1.0 Trichloroethene (-ethylene) µg/1 1.0 0.40 30.0 <1.0 <1.0 <1.0 <1.0 <1.0 Trichlorofluoromethane µg/1 1.0 0.40 67,000 <1.0 <1.0 <1.0 <1.0 <1.0 1,2,3-Trichloropropane µg/1 1.0 0.40 0.001 <1.0 <1.0 <1.0 <1.0 <1.0 Vinyl acetate µg/1 2.0 1.2 NE <2.0 <2.0 <2.0 <2.0 <2.0 Vinyl chloride µg/1 1.0 0.40 2.4 <1.0 <1.0 <1.0 <1.0 <1.0 Total Xylenes µg/1 2.0 0.40 670 <2.0 <2.0 <2.0 <2.0 <2.0 1,4-dioxane µg/1 2.0 1.0 80.0 <2.0 <2.0 7.9 36 61 Notes: NC213 = North Carolina Surface Water Standards for Class B freshwater under Title 15A Subchapter 213. per NC DWR Surface Water Quality Standards, Criteria, & In -Stream Target Values (Workbook Dated 6-10-2019) NE = Not Established; North Carolina has not established a MCL NT = Not Tested MRL = Method Reporting Limit MDL = Minimum Detection Limit "J"-flagged data (i.e., values estimated between the MDL and the MRL) are presented on this spreadsheet. Shaded cells indicated exceedances of NC2B Surface Water Standards 14175-03 Apx B - SW VOCs.xlsx Prepared By: RLB Table B-2 SW VOC (4-27-20) Checked By: TJD Table B-3 Surface Water VOCs Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. October 26, 2020 TEST UNITS MRL MDL NC2B SW-1 SW-2 SW-2A SW-3 SW-4 Acetone µg/1 20 5.0 2,000 <5.0 <5.0 <5.0 5.3 J <5.0 Acrylonitrile µg/1 20 0.80 420.0 <0.8 <0.8 <0.8 <0.8 <0.8 Benzene µg/1 1.0 0.40 51.0 <0.4 <0.4 <0.4 <0.4 <0.4 Bromochloromethane µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Bromodichloromethane µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Bromoform µg/1 1.0 0.40 120 <0.4 <0.4 <0.4 <0.4 <0.4 Carbon Disulfide µg/1 1.0 0.40 100 <0.4 <0.4 <0.4 <0.4 <0.4 Bromomethane (Methylbromide) µg/1 2.0 0.40 0.04 <0.4 <0.4 <0.4 <0.4 <0.4 Carbon tetrachloride µg/1 1.0 0.40 1.6 <0.4 <0.4 <0.4 <0.4 <0.4 Chlorobenzene (mono) µg/1 1.0 0.40 800 <0.4 <0.4 <0.4 <0.4 <0.4 Chloroethane µg/1 2.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Chloroform µg/1 1.0 0.40 2,000 <0.4 <0.4 <0.4 <0.4 <0.4 Chloromethane (Methylchloride) µg/1 1.0 0.50 96.0 <0.5 <0.5 <0.5 <0.5 <0.5 Dibromochloromethane µg/1 1.0 0.40 21 <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dibromo-3-chloropropane; DBCP µg/1 1.0 0.40 0.13 <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dibromoethane; Ethylene dibromide µg/1 1.0 0.40 0.1 <0.4 <0.4 <0.4 <0.4 <0.4 Dibromomethane µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dichlorobenzene µg/1 1.0 0.40 3,000 <0.4 <0.4 <0.4 <0.4 <0.4 1,4-Dichlorobenzene µg/1 1.0 0.40 900 <0.4 <0.4 <0.4 <0.4 <0.4 trans-1,4-Dichloro-2butene µg/1 2.0 0.50 NE <0.5 <0.5 <0.5 <0.5 <0.5 1,1-Dichloroethane µg/1 1.0 0.40 100 <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dichloroethane µg/1 1.0 0.40 650 <0.4 <0.4 <0.4 <0.4 <0.4 1,1-Dichloroethene (-ethylene) µg/1 1.0 0.40 20,000 <0.4 <0.4 <0.4 <0.4 <0.4 cis-1,2-Dichloroethene (-ethylene) µg/1 1.0 0.40 720 <0.4 <0.4 <0.4 <0.4 <0.4 trans-1,2-Dichloroethene (-ylene) µg/1 1.0 0.40 4,000 <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dichloropropane µg/1 1.0 0.40 31.0 <0.4 <0.4 <0.4 <0.4 <0.4 cis-1,3-Dichloropropene (-propylene) µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 trans-1,3-Dichloropropene (-propylene) µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Ethylbenzene µg/1 1.0 0.40 97 <0.4 <0.4 <0.4 <0.4 <0.4 2-Hexanone µg/1 10 2.0 NE <2.0 <2.0 <2.0 <2.0 <2.0 Iodomethane µg/1 5.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Dichloromethane (Methylene chloride) µg/1 1.0 0.40 1,000 <0.4 <0.4 <0.4 <0.4 <0.4 2-Butanone (Methyl ethyl ketone) µg/1 10 2.0 26,000 <2.0 <2.0 <2.0 <2.0 <2.0 4-Methyl-2-Pentanone µg/1 10 2.0 26,000 <2.0 <2.0 <2.0 <2.0 <2.0 Styrene µg/1 1.0 0.41 NE <0.4 <0.4 <0.4 <0.4 <0.4 1,1,1,2-Tetrachloroethane µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 1,1,2,2-Tetrachloroethane µg/1 1.0 0.40 4.0 <0.4 <0.4 <0.4 <0.4 <0.4 Tetrachloroethene (-ethylene) µg/1 1.0 0.40 3.3 <0.4 <0.4 <0.4 <0.4 <0.4 Toluene µg/1 1.0 0.40 11.0 <0.4 <0.4 <0.4 <0.4 <0.4 1,1,1-Trichloroethane µg/1 1.0 0.40 200,000 <0.4 <0.4 <0.4 <0.4 <0.4 1,1,2-Trichloroethane µg/1 1.0 0.40 8.9 <0.4 <0.4 <0.4 <0.4 <0.4 Trichloroethene (-ethylene) µg/1 1.0 0.40 30.0 <0.4 <0.4 <0.4 <0.4 <0.4 Trichlorofluoromethane µg/1 1.0 0.40 67,000 <0.4 <0.4 <0.4 <0.4 <0.4 1,2,3-Trichloropropane µg/1 1.0 0.40 0.001 <0.4 <0.4 <0.4 <0.4 <0.4 Vinyl acetate µg/1 5.0 1.2 NE <1.2 <1.2 <1.2 <1.2 <1.2 Vinyl chloride µg/1 1.0 0.40 2.4 <0.4 <0.4 <0.4 <0.4 <0.4 Total Xylenes µg/1 1.0 0.40 670 <0.4 <0.4 <0.4 <0.4 <0.4 1,4-dioxane µg/1 3.0 1.0 80.0 NT NT 12 <1.0 <1.0 Notes: NC213 = North Carolina Surface Water Standards for Class B freshwater under Title 15A Subchapter 213. per NC DWR Surface Water Quality Standards, Criteria, & In -Stream Target Values (Workbook Dated 6-10-2019) NE = Not Established; North Carolina has not established a MCL NT = Not Tested MRL = Method Reporting Limit MDL = Minimum Detection Limit "J"-flagged data (i.e., values estimated between the MDL and the MRL) are presented on this spreadsheet. Shaded cells indicated exceedances of NC2B Surface Water Standards 14175-03 Apx B - SW VOCs.xlsx Prepared By: RLB Table B-3 SW VOC (10-26-20) Checked By: TJD Table B-4 Surface Water VOCs Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. April 28, 2021 TEST UNITS MRL MDL NC2B SW-1 SW-2 SW-2A SW-3 SW-4 Acetone µg/1 20 5.0 2,000 <5.0 <5.0 <5.0 <5.0 <5.0 Acrylonitrile µg/1 20 0.80 420.0 <0.8 <0.8 <0.8 <0.8 <0.8 Benzene µg/1 1.0 0.40 51.0 <0.4 <0.4 <0.4 <0.4 <0.4 Bromochloromethane µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Bromodichloromethane µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Bromoform µg/1 1.0 0.40 120 <0.4 <0.4 <0.4 <0.4 <0.4 Carbon Disulfide µg/1 1.0 0.40 100 <0.4 <0.4 <0.4 <0.4 <0.4 Bromomethane (Methylbromide) µg/1 2.0 0.40 0.04 <0.4 <0.4 <0.4 <0.4 <0.4 Carbon tetrachloride µg/1 1.0 0.40 1.6 <0.4 <0.4 <0.4 <0.4 <0.4 Chlorobenzene (mono) µg/1 1.0 0.40 800 <0.4 <0.4 <0.4 <0.4 <0.4 Chloroethane µg/1 2.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Chloroform µg/1 1.0 0.40 2,000 <0.4 <0.4 <0.4 <0.4 <0.4 Chloromethane (Methylchloride) µg/1 1.0 0.50 96.0 <0.5 <0.5 <0.5 <0.5 <0.5 Dibromochloromethane µg/1 1.0 0.40 21 <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dibromo-3-chloropropane; DBCP µg/1 1.0 0.40 0.13 <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dibromoethane; Ethylene dibromide µg/1 1.0 0.40 0.1 <0.4 <0.4 <0.4 <0.4 <0.4 Dibromomethane µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dichlorobenzene µg/1 1.0 0.40 3,000 <0.4 <0.4 <0.4 <0.4 <0.4 1,4-Dichlorobenzene µg/1 1.0 0.40 900 <0.4 <0.4 <0.4 <0.4 <0.4 trans-1,4-Dichloro-2butene µg/1 2.0 0.50 NE <0.5 <0.5 <0.5 <0.5 <0.5 1,1-Dichloroethane µg/1 1.0 0.40 100 <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dichloroethane µg/1 1.0 0.40 650 <0.4 <0.4 <0.4 <0.4 <0.4 1,1-Dichloroethene (-ethylene) µg/1 1.0 0.40 20,000 <0.4 <0.4 <0.4 <0.4 <0.4 cis-1,2-Dichloroethene (-ethylene) µg/1 1.0 0.40 720 <0.4 <0.4 <0.4 <0.4 <0.4 trans-1,2-Dichloroethene (-ylene) µg/1 1.0 0.40 4,000 <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dichloropropane µg/1 1.0 0.40 31.0 <0.4 <0.4 <0.4 <0.4 <0.4 cis-1,3-Dichloropropene (-propylene) µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 trans-1,3-Dichloropropene (-propylene) µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Ethylbenzene µg/1 1.0 0.40 97 <0.4 <0.4 <0.4 <0.4 <0.4 2-Hexanone µg/1 10 2.0 NE <2.0 <2.0 <2.0 <2.0 <2.0 Iodomethane µg/1 5.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Dichloromethane (Methylene chloride) µg/1 1.0 0.40 1,000 <0.4 <0.4 <0.4 <0.4 <0.4 2-Butanone (Methyl ethyl ketone) µg/1 10 2.0 26,000 <2.0 <2.0 <2.0 <2.0 <2.0 4-Methyl-2-Pentanone µg/1 10 2.0 26,000 <2.0 <2.0 <2.0 <2.0 <2.0 Styrene µg/1 1.0 0.41 NE <0.4 <0.4 <0.4 <0.4 <0.4 1,1,1,2-Tetrachloroethane µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 1,1,2,2-Tetrachloroethane µg/1 1.0 0.40 4.0 <0.4 <0.4 <0.4 <0.4 <0.4 Tetrachloroethene (-ethylene) µg/1 1.0 0.40 3.3 <0.4 <0.4 <0.4 <0.4 <0.4 Toluene µg/1 1.0 0.40 11.0 <0.4 <0.4 <0.4 <0.4 <0.4 1,1,1-Trichloroethane µg/1 1.0 0.40 200,000 <0.4 <0.4 <0.4 <0.4 <0.4 1,1,2-Trichloroethane µg/1 1.0 0.40 8.9 <0.4 <0.4 <0.4 <0.4 <0.4 Trichloroethene (-ethylene) µg/1 1.0 0.40 30.0 <0.4 <0.4 <0.4 <0.4 <0.4 Trichlorofluoromethane µg/1 1.0 0.40 67,000 <0.4 <0.4 <0.4 <0.4 <0.4 1,2,3-Trichloropropane µg/1 1.0 0.40 0.001 <0.4 <0.4 <0.4 <0.4 <0.4 Vinyl acetate µg/1 5.0 1.2 NE <1.2 <1.2 <1.2 <1.2 <1.2 Vinyl chloride µg/1 1.0 0.40 2.4 <0.4 <0.4 <0.4 <0.4 <0.4 Total Xylenes µg/1 1.0 0.40 670 <0.4 <0.4 <0.4 <0.4 <0.4 1,4-dioxane µg/1 3.0 1.0 80 NT NT 12 34 68 Notes: NC213 = North Carolina Surface Water Standards for Class B freshwater under Title 15A Subchapter 213. per NC DWR Surface Water Quality Standards, Criteria, & In -Stream Target Values (Workbook Dated 6-10-2019) NE = Not Established; North Carolina has not established a MCL NT = Not Tested MRL = Method Reporting Limit MDL = Minimum Detection Limit "J"-flagged data (i.e., values estimated between the MDL and the MRL) are presented on this spreadsheet. Shaded cells indicated exceedances of NC2B Surface Water Standards 14175-03 Apx B - SW VOCs.xlsx Prepared By: RLB Table B-4 SW VOC (4-28-21) Checked By: IAI Table B-5 Surface Water VOCs Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. October 25-26, 2021 TEST UNITS MRL MDL NC2B SW-1 SW-2 SW-2 A SW-3 SW-4 Acetone µg/1 20 5.0 2,000 <5.0 <5.0 <5.0 <5.0 <5.0 Acrylonitrile µg/1 20 0.80 420.0 <0.8 <0.8 <0.8 <0.8 <0.8 Benzene µg/1 1.0 0.40 51.0 <0.4 <0.4 <0.4 <0.4 <0.4 Bromochloromethane µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Bromodichloromethane µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Bromoform µg/1 1.0 0.40 120 <0.4 <0.4 <0.4 <0.4 <0.4 Carbon Disulfide µg/1 1.0 0.40 100 <0.4 <0.4 <0.4 <0.4 <0.4 Bromomethane (Methylbromide) µg/1 2.0 0.40 0.04 <0.4 <0.4 <0.4 <0.4 <0.4 Carbon tetrachloride µg/1 1.0 0.40 1.6 <0.4 <0.4 <0.4 <0.4 <0.4 Chlorobenzene (mono) µg/1 1.0 0.40 800 <0.4 <0.4 <0.4 <0.4 <0.4 Chloroethane µg/1 2.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Chloroform µg/1 1.0 0.40 2,000 <0.4 <0.4 <0.4 <0.4 <0.4 Chloromethane (Methylchloride) µg/1 1.0 0.50 96.0 <0.5 <0.5 <0.5 <0.5 <0.5 Dibromochloromethane µg/1 1.0 0.40 21 <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dibromo-3-chloropropane; DBCP µg/1 1.0 0.40 0.13 <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dibromoethane; Ethylene dibromide µg/1 1.0 0.40 0.1 <0.4 <0.4 <0.4 <0.4 <0.4 Dibromomethane µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dichlorobenzene µg/1 1.0 0.40 3,000 <0.4 <0.4 <0.4 <0.4 <0.4 1,4-Dichlorobenzene µg/1 1.0 0.40 900 <0.4 <0.4 <0.4 <0.4 <0.4 trans-1,4-Dichloro-2butene µg/1 2.0 0.50 NE <0.5 <0.5 <0.5 <0.5 <0.5 1,1-Dichloroethane µg/1 1.0 0.40 100 <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dichloroethane µg/1 1.0 0.40 650 <0.4 <0.4 <0.4 <0.4 <0.4 1,1-Dichloroethene (-ethylene) µg/1 1.0 0.40 20,000 <0.4 <0.4 <0.4 <0.4 <0.4 cis-1,2-Dichloroethene (-ethylene) µg/1 1.0 0.40 720 <0.4 <0.4 <0.4 <0.4 <0.4 trans-1,2-Dichloroethene (-ylene) µg/1 1.0 0.40 4,000 <0.4 <0.4 <0.4 <0.4 <0.4 1,2-Dichloropropane µg/1 1.0 0.40 31.0 <0.4 <0.4 <0.4 <0.4 <0.4 cis-1,3-Dichloropropene (-propylene) µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 trans-1,3-Dichloropropene (-propylene) µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Ethylbenzene µg/1 1.0 0.40 97 <0.4 <0.4 <0.4 <0.4 <0.4 2-Hexanone µg/1 10 2.0 NE <2.0 <2.0 <2.0 <2.0 <2.0 Iodomethane µg/1 5.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 Dichloromethane (Methylene chloride) µg/1 1.0 0.40 1,000 <0.4 <0.4 <0.4 <0.4 <0.4 2-Butanone (Methyl ethyl ketone) µg/1 10 2.0 26,000 <2.0 <2.0 <2.0 <2.0 <2.0 4-Methyl-2-Pentanone µg/1 10 2.0 26,000 <2.0 <2.0 <2.0 <2.0 <2.0 Styrene µg/1 1.0 0.41 NE <0.4 <0.4 <0.4 <0.4 <0.4 1,1,1,2-Tetrachloroethane µg/1 1.0 0.40 NE <0.4 <0.4 <0.4 <0.4 <0.4 1,1,2,2-Tetrachloroethane µg/1 1.0 0.40 4.0 <0.4 <0.4 <0.4 <0.4 <0.4 Tetrachloroethene (-ethylene) µg/1 1.0 0.40 3.3 <0.4 <0.4 <0.4 <0.4 <0.4 Toluene µg/1 1.0 0.40 11.0 <0.4 <0.4 <0.4 <0.4 <0.4 1,1,1-Trichloroethane µg/1 1.0 0.40 200,000 <0.4 <0.4 <0.4 <0.4 <0.4 1,1,2-Trichloroethane µg/1 1.0 0.40 8.9 <0.4 <0.4 <0.4 <0.4 <0.4 Trichloroethene (-ethylene) µg/1 1.0 0.40 30.0 <0.4 <0.4 <0.4 <0.4 <0.4 Trichlorofluoromethane µg/1 1.0 0.40 67,000 <0.4 <0.4 <0.4 <0.4 <0.4 1,2,3-Trichloropropane µg/1 1.0 0.40 0.001 <0.4 <0.4 <0.4 <0.4 <0.4 Vinyl acetate µg/1 5.0 1.2 NE <1.2 <1.2 <1.2 <1.2 <1.2 Vinyl chloride µg/1 1.0 0.40 2.4 <0.4 <0.4 <0.4 <0.4 <0.4 Total Xylenes µg/1 1.0 0.40 670 <0.4 <0.4 <0.4 <0.4 <0.4 1,4-dioxane µg/1 3.0 1.0 80 NT NT 13 <1.0 <1.0 Notes: NC213 = North Carolina Surface Water Standards for Class B freshwater under Title 15A Subchapter 213. per NC DWR Surface Water Quality Standards, Criteria, & In -Stream Target Values (Workbook Dated 6-10-2019) NE = Not Established; North Carolina has not established a MCL NT = Not Tested MRL = Method Reporting Limit MDL = Minimum Detection Limit "J"-flagged data (i.e., values estimated between the MDL and the MRL) are presented on this spreadsheet. Shaded cells indicated exceedances of NC2B Surface Water Standards 14175-03 Apx B - SW VOCs.xlsx Prepared By: RLB Table B-5 SW VOC (10-26-21) Checked By: TAO/AWA APPENDIX C GEOCHEMICAL PARAMETERS FOR MNA AND FIELD PARAMETER SUMMARY TABLES Table C-1 Groundwater Geochemical Parameters for MNA Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. November 11-15, 2019 and Resampled on March 2-3, 2020 TEST UNITS LOQ DL MCL MW-B MW-2 MW-3 MW-4 MW-4A MW-5 MW-6 MW-6-192 MW-7 MW-12-25 MW-13-35 MW-13- 132 MW-15 NM-17-60 MW-17- 137 MW-17- 310 NM-18-78 NM-19-75 NM-19- 110 MW-21-21 MW-21-94 MW-24-45 MW-24- 160 DPL-1 pH S.U. >6.5; <8.5 6.4 6.3 6.4 6.3 6.3 6.5 6.2 6.2 5.6 6.4 5.7 7.2 12.6 6.7 7.3 8.6 6.3 6.3 7.6 6.4 6.7 Dry 7.3 Dry Specific Conductance mmhos/cm NE 670 127.2 1202 1000 647 1231 1322 484.4 179.5 553.3 338 366.4 7695 599.7 831 141.8 1002 1194 420.4 1406 893 Dry 215.9 Dry Temperature °C NE 13.5 15.5 15.6 12.7 16.4 12.6 10.6 9.5 13.3 11.3 9.5 9.9 12.4 13.5 13.6 13.6 15.9 15.4 15.1 14.5 11.5 Dry 12 Dry Turbidity NTU NE 21.1 4.5 8.9 1.0 1.0 8.0 1.0 1.1 6.5 0.5 4.1 1.5 1.8 1.1 1.4 9.9 0.2 1.4 2.9 7.7 0.6 Dry 9.7 Dry Dissolved Oxygen (DO) m9/1- NE 0.4 4.7 0.4 0.3 0.9 0.6 0.5 0.8 0.3 3.1 0.5 1.2 9.9 1.1 0.6 0.4 0.4 0.2 0.5 0.4 1 Dry 1.1 Dry Redox my NE 58.7 118.3 -46.2 -20.4 -61.1 -21.2 -27 72.3 70.4 188 206.5 -33.3 -66.5 56.2 -172.7 17.5 -46 -13.1 -7.5 -36.5 -42.2 Dry 27.9 Dry Dissolved Hydrogen (DH) nM 1.0 0.49 NE NT 50 NT 37 NT NT 59 NT NT NT NT 40 NT NT NT NT 32 38 22 190 30 Dry 100 Dry Lactic Acid mg/I 0.20 0.043 NE NT <0.20 NT <0.20 NT NT <0.20 NT NT NT NT <0.20 NT NT NT NT <0.20 <0.20 0.056 J <0.20 <0.20 Dry <0.20 Dry Acetic Acid mg/I 0.10 0.028 5.0 (i) NT <0.10 NT 0.046 J NT NT 0.04 J NT NT NT NT 0.17 NT NT NT NT <0.10 0.037 J 0.032 J 0.046 J 0.094 J Dry 0.039 J Dry Propionic Acid mg/I 0.10 0.0040 NE NT <0.10 NT 0.0044 J NT NT <0.10 NT NT NT NT 0.045 J NT NT NT NT <0.10 <0.10 <0.10 <0.10 0.0032 J Dry <0.10 Dry Formic Acid mg/I 0.50 0.086 NE NT 0.15 J NT 0.22 J NT NT 0.16 J NT NT NT NT 0.18 J NT NT NT NT 0.14 J 0.16 J 0.44 J 0.70 1.7 Dry 0.25 J Dry Butyric Acid mg/I 0.10 0.011 NE NT <0.10 NT 0.02 J NT NT <0.10 NT NT NT NT 0.063 J NT NT NT NT <0.10 <0.10 <0.10 <0.10 <0.10 Dry <0.10 Dry Pyruvic Acid mg/I 0.10 0.0050 NE NT <0.10 NT 0.01 J NT NT 0.021 J NT NT NT NT <0.10 NT NT NT NT 0.013 J 0.015 J <0.10 0.03 J 0.024 J Dry <0.10 Dry i-Pentanoic Acid mg/I 0.10 0.0060 NE NT <0.10 NT <0.10 NT NT <0.10 NT NT NT NT <0.10 NT NT NT NT <0.10 <0.10 <0.10 <0.10 <0.10 Dry <0.10 Dry Pentanc is Acid mg/I 0.10 0.0070 NE NT <0.10 NT <0.10 NT NT <0.10 NT NT NT NT <0.10 NT NT NT NT <0.10 <0.10 <0.10 <0.10 <0.10 Dry <0.10 Dry i-Hexanoic Acid mg/I 0.20 0.029 NE NT <0.20 NT <0.20 NT NT <0.20 NT NT NT NT <0.20 NT NT NT NT <0.20 <0.20 <0.20 <0.20 <0.20 Dry <0.20 Dry Hexanoic Acid mg/I 0.20 0.010 NE NT <0.20 NT <0.20 NT NT <0.20 NT NT NT NT <0.20 NT NT NT NT <0.20 <0.20 <0.20 <0.20 <0.20 Dry <0.20 Dry Methane ug/I 0.50 0.046 NE NT 0.078 NT 990 NT NT 2,900 NT NT NT NT 670 NT NT NT NT 1300 240 200 960 1900 Dry 0.46 J Dry Ethane ug/I 0.10 0.0050 NE NT <0.1 NT 0.14 NT NT 0.4 NT NT NT NT 0.14 NT NT NT NT 0.42 0.19 0.056 J 0.081 J 0.35 Dry 0.0084 J Dry Ethene ug/I 0.10 0.0040 NE NT 0.0067 NT 0.047 J NT NT 0.14 NT NT NT NT 0.99 NT NT NT NT 0.032 0.045 J 0.058 J 0.2 0.085 J Dry 0.0079 J Dry Carbon Dioxide (CO,) mg/I 5.0 0.45 NE NT 60 NT 470 NT NT 450 NT NT NT NT 46 NT NT NT NT 260 340 7.0 370 130 Dry 4.4 J Dry Alkalinity mg/I 5.0 5.0 NE NT 59.8 NT 397 NT NT 494 NT NT NT NT 153 NT NT NT NT 284 386 155 639 303 Dry 55.6 Dry Sulfide mg/I 0.1 0.1 NE NT <0.10 NT <0.10 NT NT <0.10 NT NT NT NT <0.10 NT NT NT NT <0.10 <0.10 <0.10 <0.10 <0.10 Dry <0.10 Dry Biological Oxygen Demand (BOD) mg/I 2.0 2.0 NE NT <2.0 NT 3.0 NT NT 3.36 NT NT NT NT <2.0 NT NT NT NT 4.92 <2.0 <2.0 <2.0 2.45 Dry <2.0 Dry Sulfate mg/I 1.0 1.0 250 NT 3.11 NT 27.9 NT NT 2.03 NT NT NT NT 9.4 NT NT NT NT 2.3 15.6 14.3 26.3 2.88 Dry 23.1 Dry Nitrate mg/I 0.04 0.04 10 NT <0.04 NT <0.04 NT NT <0.04 NT NT NT NT <0.04 NT NT NT NT 0.049 <0.04 <0.04 <0.04 <0.04 Dry 0.043 Dry Chloride mg/I 10 10 250 NT 2.19 NT 63.4 NT NT 147 NT NT NT NT 5.55 NT NT NT NT 138 160 39.6 95 109 Dry 7.04 Dry Chemical Oxygen Demand (COD) mg/I 25 25 NE NT <25 NT 36.2 NT NT 41.1 NT NT NT NT <25 NT NT NT NT 44.4 39.8 <25 55.7 26.4 Dry <25 Dry Total Organic Carbon (TOC) mg/I 1.0 1.0 NE NT <1.0 NT 9.21 NT NT 15.1 NT NT NT NT 1.08 NT NT NT NT 7.72 11.9 1.97 16 9.39 Dry 1.11 Dry Iron H (field measured) I mg/I 1 0.5 1 0.5 1 NE I NT NT 1 2.5 NT NT 1 4.0 1 NT I NT I NT I NT 1 3.5 1 NT I NT I NT NT 1 3.5 2.5 1 4.5 1 4.5 1 Dry Dry Notes: 1. MCL = Maximum Contaminant Level, as established in the NCDENP, Classifications of Water Quality Standards Applicable to Groundwaters of North Carolina, Section 15A NCAC 2L .0202. Updated April 1, 2013 2. (i) = Interim Maximum Allowable Concentrations (IMACs). Updated June 30, 2021 3. Shaded cells indicate exceedances of IMACs 4. Shaded cells indicated exceedances ofMCLs 5. NE = Not Established; North Carolina has not established a MCL 6. LOQ = Limit of Quanititation 7. DL = Detection Limit 8. NT = Not Tested 9. "J"-flagged data (i.e., values estimated between the DL and the LOQ) are presented on this spreadsheet. 10. ND = Not Detected 11. Red text indicates detections from resampling event completed between March 2-3, 2020. 14175-03 Apx C - GW Geochem and Field Parameters.xlsx Table C-1 MNA Nov 2019 Prepared By: TAO Checked By: IAI Table C-2 Groundwater Geochemical Parameters for MNA Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. April 27, 2020 TEST UNITS LOQ DL MCL MW-B MW-2 MW-3 MW-4 NM-4A MW-5 AM-6 MW-6-192 NM-7 NM-12-25 NM-13-35 MW-13- 132 NM-15 NM-17-60 MW-17- 137 MW-17- 310 NM-18-78 NM-19-75 NM-19- 110 MW-21-21 MW-21-94 MW-24-45 MW-24- 160 DPL-1 pH S.U. >6.5; <8.5 6.6 6.3 6.9 6.2 6.1 6.4 6.2 6.4 5.7 6.4 5.7 7.1 12.4 6.8 7.3 8.4 6.4 6.3 7.6 6.4 6.7 Dry 7.3 Dry Specific Conductance mmhos/cm NE 679 133.5 1349 1000 733 1332 1381 465.2 208.2 566 355.9 381 6957 608 864 146.2 971 1217 438.5 1321 872 Dry 198 Dry Temperature °C NE 16.8 19.4 15.2 13.8 17.4 13.3 17.1 21.8 15.1 18.9 16.5 18.7 18.8 15.9 18 17 17.8 17.6 16.8 17.4 15.8 Dry 17.6 Dry Turbidity NTU NE 9.4 5.1 7.7 1.0 2.16 2.3 2.9 0.8 9.5 1.75 1.1 2.82 2.6 8.92 1.35 8.37 1.8 0.6 0.9 0.2 0.01 Dry 9.3 Dry Dissolved Oxygen (DO) mg/L NE 0.3 5 1.0 1.2 0.31 0.5 0.9 0.9 0.2 2.15 1.35 0.36 3.1 0.58 1.77 1.53 1.0 0.6 0.7 0.8 0.6 Dry 0.7 Dry Redox my NE -50 64.5 -40 21.4 -78 -20.6 -45 -41.1 -24.9 164.7 225.8 -139.4 -28.3 -82 -99.1 -80.4 -86.3 -39.8 -56.4 -50.8 -32.9 Dry 43 Dry Dissolved Hydrogen (DH) nM 1.0 1.00 NE NT 51 NT 21 NT NT 8.2 NT NT NT NT 3 NT NT NT NT 4.6 5 5.4 7.7 3.6 NT 27 NT Lactic Acid mg/l 0.20 0.085 NE NT <0.2 NT <0.2 NT NT <0.2 NT NT NT NT <0.2 NT NT NT NT <0.2 <0.2 <0.2 <0.2 <0.2 NT <0.2 NT Acetic Acid mg/l 0.10 0.043 5.0 (i) NT <0.1 NT <0.1 NT NT <0.1 NT NT NT NT <0.1 NT NT NT NT <0.1 <0.1 <0.1 <0.1 <0.1 NT 0.05 J NT Propionic Acid mg/l 0.10 0.0010 NE NT 0.0014 J NT 0.0018 J NT NT 0.003 J NT NT NT NT 0.0013 J NT NT NT NT 0.0036 J 0.004 J 0.0015 J <0.1 0.0023 J NT 0.0048 J NT Formic Acid mg/l 0.50 0.12 NE NT <0.5 NT <0.5 NT NT <0.5 NT NT NT NT <0.5 NT NT NT NT 0.13 J <0.5 <0.5 <0.5 <0.5 NT <0.5 NT Butyric Acid mg/l 0.10 0.0090 NE NT <0.1 NT <0.1 NT NT <0.1 NT NT NT NT <0.1 NT NT NT NT <0.1 <0.1 <0.1M<O.2 <0.1 NT <0.1 NT Pyruvic Acid mg/l 0.10 0.014 NE NT <0.1 NT <0.1 NT NT 0.016 J NT NT NT NT <0.1 NT NT NT NT 0.016 J 0.026 J <0.1 <0.1 NT <0.1 NT i-Pentanoic Acid mg/l 0.10 0.0070 NE NT <0.1 NT <0.1 NT NT <0.1 NT NT NT NT <0.1 NT NT NT NT <0.1 0.0085 J <0.1 <0.1 NT <0.1 NT Pentanoic Acid mg/l 0.10 0.0050 NE NT <0.1 NT <0.1 NT NT 0.052 J NT NT NT NT <0.1 NT NT NT NT <0.1 0.019 J <0.10.039 J NT <0.1 NT i-Hexanoic Acid mg/l 0.20 0.010 NE NT <0.2 NT <0.2 NT NT <0.2 NT NT NT NT <0.2 NT NT NT NT <0.2 <0.2 <0.2 <0.2 NT <0.2 NT Hexanoic Acid mg/l 0.20 0.020 NE NT <0.2 NT <0.2 NT NT <0.2 NT NT NT NT <0.2 NT NT NT NT <0.2 <0.2 <0.2 <0.2 NT <0.2 NT Methane ug/l 0.5 0.023 NE NT 3 NT 0.20 J NT NT 1600 NT NT NT NT 240 NT NT NT NT 1400 0.28 J 690 3700 NT 490 NT Ethane ug/l 0.1 0.010 NE NT <0.1 NT <0.1 NT NT 0.38 NT NT NT NT 0.072 J NT NT NT NT 0.078 J <0.1 0.16 0.7 NT 0.11 NT Ethene 119/1 0.1 0.0090 NE NT 0.024 J NT 0.059 J NT NT 0.21 NT NT NT NT 0.057 J NT NT NT NT 0.3 0.019 J 1.6 0.068 J 0.28 NT 0.14 NT Carbon Dioxide (CO,) mg/l 5.0 0.27 NE NT 58 NT 4.4 J NT NT 120 NT NT NT NT 8.5 NT NT NT NT 360 59 31 220 580 NT 390 NT Alkalinity mg/l 20 20 NE NT 61 NT 440 NT NT 550 NT NT NT NT 150 NT NT NT NT 300 400 160 680 320 NT 60 NT SuBide mg/l 1.0 0.99 NE NT <1.0 NT <1.0 NT NT <1.0 NT NT NT NT 1.1 NT NT NT NT <1.0 <1.0 <1.0 <1.0 <1.0 NT <1.0 NT Biological Oxygen Demand (BOD) mg/l 2.0 0.18 NE NT <2.0 NT 2.0 NT NT 8.2 NT NT NT NT <2.0 NT NT NT NT 2.9 2.2 <2.0 3.1 2.2 NT 5.8 NT Sulfate mg/l 1.0 0.20 250 NT 2.9 NT 24 NT NT 1.3 NT NT NT NT 8.2 NT NT NT NT 1.4 14 12 38 2.2 NT 23 NT Nitrate mg/l 0.020 0.0050 10 NT 0.014 J NT <0.02 NT NT <0.02 NT NT NT NT <0.02 NT NT NT NT <0.02 <0.02 <0.02 <0.02 <0.02 NT <0.02 NT Chloride mg/l 1.0 1.0 250 NT 2.1 NT 67 NT NT 140 NT NT NT NT 4.8 NT NT NT NT 130 160 38 50 99 NT 7.4 NT Chemical Oxygen Demand (COD) mg/l 20 20 NE NT <20 NT <20 NT NT 37 NT NT NT NT <20 NT NT NT NT 25 38 <20 33 20 NT <20 NT Total Organic Carbon (TOC) mg/l 1.0 1.0 NE NT <1.0 NT 6.2 NT NT 10 NT NT NT NT <1.0 NT NT NT NT 7.6 13 2 12 7.3 NT 2.6 NT Iron H (field measured) mg/l 0.5 0.5 NE NT <0.5 NT 2.0 NT NT 5.0 NT NT NT NT 4.5 NT NT NT NT 4.5 1 2.5 3.0 3.5 3.0 NT <0.5 NT Notes: 1. MCL = Maximum Contaminant Level, as established in the NCDENIR, Classifications of Water Quality Standards Applicable to Groundwaters of North Carolina, Section 15A NCAC 2L .0202. Updated April 1, 2013 2. (i) = Interim Maximum Allowable Concentrations (IMACs). Updated June 30, 2021 3. Shaded cells indicate exceedances of IMACs 4. Shaded cells indicated exceedances ofMCLs 5. NE = Not Established; North Carolina has not established a MCL 6. LOQ = Limit of Quanititation 7. DL = Detection Limit 8. NT = Not Tested 9. "J"-flagged data (i.e., values estimated between the DL and the LOQ) are presented on this spreadsheet. 10. ND = Not Detected 14175-03 Apx C - GW Geochem and Field Parameters.xlsx Table 11 NINA April 2020 Prepared By: TAO Checked By: IAI Table C-3 Groundwater Geochemical Parameters for MNA Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. October 26-30, 2020 TEST UNITS LOQ DL MCL MW-B MW-2 MW-3 NM-4 NM-4A MW-5 NM-6 MW-6-192 MW-7 NM-12-25 MW-13-35 MW-13- 132 NM-15 NM-17-60 MW-17- 137 MW-17- 310 NM-18-78 NM-19-75 NM-19- 110 MW-21-21 MW-21-94 MW-24-45 MW-24- 160 DPL-1 pH S.U. >6.5; <8.5 6.3 6 6.4 6.2 6.2 6.3 6.2 6.3 5.6 6.3 5.5 7.1 12.5 6.9 7.3 8.2 6.3 6.2 7.4 6.3 6.6 Dry 7.4 Dry Specific Conductance mmhos/cm NE 692 128.1 1413 983 548.1 1368 1496 458.6 279.3 548.7 350.2 368.6 7744 584 831 143.5 983 1285 458 1373 886 Dry 210.4 Dry Temperature °C NE 20.5 20.1 17.6 18.2 17.9 15 22.6 17.6 11.6 16.5 15.8 17.9 17.6 24.5 19.5 21.7 17.4 16.2 19 16.4 16.1 Dry 19.3 Dry Turbidity NTU NE 14.5 9.4 2.3 1.1 1 3.2 5.4 2.2 14.1 5.4 7.5 5.1 8.1 5.1 7.9 12 0.6 1.3 0.8 1.6 0.7 Dry 26.3 Dry Dissolved Oxygen (DO) m9/1- NE 0.2 1.8 0.4 0.4 2.7 0.4 0.4 0.6 0.3 1.5 0.5 0.6 5.3 0.5 2.7 0.2 0.3 0.5 0.3 0.4 0.6 Dry 0.5 Dry Redox my NE -52.6 94.1 -55 -19 -40 -16.8 -47.1 -33.5 60.1 101 68.6 -127.4 -87.8 -105.7 -65.8 -8.1 -54.8 -7.2 -128.5 -40.6 -63.9 Dry -41.4 Dry Dissolved Hydrogen (DH) nM 1.9 0.49 NE NT 5.4 NT 4.6 NT NT 20 NT NT NT NT 6 NT NT NT NT 6.6 1.4 J 3.6 2.7 5.3 Dry 10 Dry Lactic Acid mg/I 0.50 0.053 NE NT <0.053 NT <0.053 NT NT <0.053 NT NT NT NT <0.053 NT NT NT NT <0.053 <0.053 <0.053 <0.053 <0.053 Dry 0.058 J Dry Acetic Acid mg/I 0.50 0.12 5.0 (i) NT 0.41 J NT 4.0 J NT NT 4.1 J NT NT NT NT 4.0 J NT NT NT NT 4.0 J 3.9 J 0.44 J 3.7 J 0.79 J Dry 0.42 J Dry Propionic Acid mg/I 0.50 0.053 NE NT <0.053 NT <0.053 NT NT <0.053 NT NT NT NT <0.053 NT NT NT NT <0.053 <0.053 <0.053 <0.053 <0.053 Dry <0.053 Dry Formic Acid mg/I 0.50 0.055 NE NT 5.0 NT 48 NT NT 45 NT NT NT NT 44 NT NT NT NT 46 44 4.8 44 9.5 Dry 4.8 Dry Butyric Acid mg/I 0.50 0.058 NE NT <0.058 NT <0.058 NT NT <0.058 NT NT NT NT <0.058 NT NT NT NT <0.058 <0.058 <0.058 <0.058 <0.058 Dry <0.058 Dry Pyruvic Acid mg/I 0.50 0.060 NE NT <0.060 NT <0.060 NT NT <0.060 NT NT NT NT <0.060 NT NT NT NT <0.060 <0.060 <0.060 <0.060 <0.060 Dry <0.06 Dry i-Pentanoic Acid mg/I 0.50 0.061 NE NT <0.061 NT <0.061 NT NT <0.061 NT NT NT NT <0.061 NT NT NT NT <0.061 <0.061 <0.061 <0.061 <0.061 Dry <0.061 Dry Pentanoic Acid mg/I 0.50 0.056 NE NT <0.056 NT <0.056 NT NT <0.056 NT NT NT NT <0.056 NT NT NT NT <0.056 <0.056 <0.056 <0.056 <0.056 Dry <0.056 Dry i-Hexanoic Acid mg/I 0.50 0.056 NE NT <0.056 NT <0.056 NT NT <0.056 NT NT NT NT <0.056 NT NT NT NT <0.056 <0.056 <0.056 <0.056 <0.056 Dry <0.056 Dry Hexanoic Acid mg/I 0.50 0.058 NE NT 0.076 J NT 0.67 J NT NT <0.058 NT NT NT NT <0.058 NT NT NT NT <0.058 <0.058 <0.058 0.58 J <0.058 Dry 0.058 J Dry Methane ug/I 5.0 2.5 NE NT 7.7 NT 720 NT NT 4,700 NT NT NT NT 1400 NT NT NT NT 1700 480 400 1900 2000 Dry 27 Dry Ethane ug/I 1.0 0.075 NE NT <0.075 NT 0.47 J NT NT 0.92 J NT NT NT NT <0.075 NT NT NT NT 1.1 0.67 J <0.075 1.1 1.5 Dry <0.075 Dry Ethene ug/I 1.0 0.12 NE NT <0.12 NT 0.46 J NT NT 0.3 J NT NT NT NT 1.8 NT NT NT NT 1.3 0.46 J <0.12 0.75 J 0.33 J Dry 0.34 J Dry Carbon Dioxide (CO,) mg/I 0.9 0.127 NE NT 30 NT 177 NT NT 197 NT NT NT NT 281 NT NT NT NT 83.2 141 3.93 165 55.9 Dry 1.43 Dry Alkalinity mg/I 20 20 NE NT 60 NT 420 NT NT 560 NT NT NT NT 150 NT NT NT NT 300 410 170 640 310 Dry 64 Dry SuOide mg/I 1.0 0.99 NE NT <0.99 NT 1.3 NT NT <0.99 NT NT NT NT <0.99 NT NT NT NT 1.2 <1.0 <1.0 1.6 <1.0 Dry <0.99 Dry Biological Oxygen Demand (BOD) mg/I 2.0 0.18 NE NT <0.18 NT 2.2 NT NT 10 NT NT NT NT 3.6 NT NT NT NT 3.9 2.8 2.4 3.2 2.1 Dry 2 Dry Sulfate mg/I 1.0 0.20 250 NT 4.1 NT 21 NT NT 0.78 J NT NT NT NT 7.2 NT NT NT NT 1.2 11 9.7 13 2.2 Dry 27 Dry Nitrate mg/I 0.10 0.025 10 NT 0.028 NT <0.025 NT NT <0.025 NT NT NT NT <0.025 NT NT NT NT <0.025 <0.025 <0.025 <0.025 <0.025 Dry <0.025 Dry Chloride mg/I 1.0 0.20 250 NT 2.1 NT 57 NT NT 140 NT NT NT NT 4.7 NT NT NT NT 140 160 39 86 89 Dry 6.4 Dry Chemical Oxygen Demand (COD) mg/I 20 20 NE NT <20.0 NT 21 NT NT 39 NT NT NT NT <20.0 NT NT NT NT 28 45 <20.0 38 21 Dry <20.0 Dry Total Organic Carbon (TOC) mg/I 1.0 1.0 NE NT <1.0 NT 5.9 NT NT 11 NT NT NT NT <1.0 NT NT NT NT 8 14 2.2 12 7.1 Dry 1.1 Dry Iron H (field measured) mg/I 0.5 0.5 NE 2.5 ND NT 6.0 NT 2.5 3.0 3.0 3.0 ND 1.0 7.0 ND 2.0 3.0 ND 3.0 1 2.0 2.5 7.0 2.0 1 Dry 1.5 Dry Notes: 1. MCL = Maximum Contaminant Level, as established in the NCDENP, Classifications of Water Quality Standards Applicable to Groundwaters of North Carolina, Section 15A NCAC 2L .0202. Updated April 1, 2013 2. (i) = Interim Maximum Allowable Concentrations (IMACs). Updated June 30, 2021 3. Shaded cells indicate exceedances of IMACs 4. Shaded cells indicated exceedances ofMCLs 5. NE = Not Established; North Carolina has not established a MCL 6. LOQ = Limit of Quanititation 7. DL = Detection Limit 8. NT = Not Tested 9. "J"-flagged data (i.e., values estimated between the DL and the LOQ) are presented on this spreadsheet. 10. ND = Not Detected 14175-03 Apx C - GW Geochem and Field Parameters.xlsx Table 11 NINA Oct 2020 Prepared By: TAO Checked By: IAI Table C-4 Groundwater Geochemical Parameters for MNA Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. April 28-29, 2021 TEST UNITS LOQ DL MCL MW-B MW-2 MW-3 MW-4 MW-4A MW-5 NM-6 MW-6-192 NM-7 NM-12-25 NM-13-35 MW-13- 132 NM-15 MW-17-60 MW-17- 137 MW-17- 310 NM-18-78 NM-19-75 NM-19- 110 MW-21-21 MW-21-94 MW-24-45 MW-24- 160 DPL-1 pH S.U. >6.5; <8.5 6.8 6.1 6.3 5.97 6.11 6.4 6.1 6.29 5.7 6.6 5.9 6.8 12.82 6.9 7.4 8.5 6.3 6.3 7.5 6.4 6.7 Dry 7.39 7.2 Specific Conductance mmhos/cm NE 699 135.7 1450 1050 683 1490 1473 473.1 262.2 523.7 340.7 374 8058 606 824 144.9 1020 1180 459.7 1580 902 Dry 213.2 1675 Temperature °C NE 16.9 21.4 21.8 18.8 22.3 19.1 23.5 18.9 15.9 16.5 17.1 26.2 18.1 20.8 15.9 24.7 15.7 20 16.8 17.1 16.9 Dry 19 30.2 Turbidity NTU NE 9.8 8.7 5.9 2.02 5.67 1.1 0.9 3.73 9.3 1.4 2.4 7.4 2.86 4.1 0.7 3.2 4.5 0.5 0.7 4 0.1 Dry 8.08 9.9 Dissolved Oxygen (DO) m9/1- NE 0.1 5.3 0.6 1.03 3.76 0.3 0.5 0.66 0.1 2.8 2.7 0.8 5.37 2.7 0.8 0.4 1.5 0.8 0.6 0.1 0.2 Dry 1.49 1.7 Redox my NE -133.3 44.2 -64.1 -4.7 -29.7 -20 -27.2 -40.4 36.6 87 105.8 -131.4 -100.1 -71.1 -145.1 64.1 -22 -8.9 -119.4 -60.8 -71.5 Dry -94.4 64.1 Dissolved Hydrogen (DH) nM 1.9 0.49 NE NT 120 NT 0.76 J NT NT 22 NT NT NT NT 20 NT NT NT NT <0.49 0.95 J 3.4 8.4 17 Dry 4.2 NT Lactic Acid mg/l 0.50 0.053 NE NT <0.053 NT <0.11 NT NT <0.53 NT NT NT NT <0.53 NT NT NT NT <0.53 <0.53 <0.11 <0.53 <0.53 Dry <0.053 NT Acetic Acid mg/l 0.50 0.12 5.0 (i) NT 0.37 J NT 0.66 J NT NT 2.7 J NT NT NT NT 2.7 J NT NT NT NT 2.9 J 2.6 J 0.52 J 3.8 J 2.4 J Dry 0.27 J NT Propionic Acid mg/l 0.50 0.053 NE NT <0.053 NT <0.11 NT NT <0.53 NT NT NT NT <0.53 NT NT NT NT <0.53 <0.53 <0.11 <0.53 <0.53 Dry <0.053 NT Formic Acid mg/l 0.50 0.055 NE NT 4.6 NT 10 NT NT 52 NT NT NT NT 48 NT NT NT NT 45 53 12 47 49 Dry 5.3 NT Butyric Acid mg/l 0.50 0.058 NE NT <0.058 NT 0.15 J NT NT <0.58 NT NT NT NT <0.58 NT NT NT NT <0.58 <0.58 <0. 12 <0.58 <0.58 Dry <0.058 NT Pyruvic Acid mg/l 0.50 0.06 NE NT <0.060 NT <0. 12 NT NT <0.60 NT NT NT NT <0.60 NT NT NT NT <0.60 <0.60 <0. 12 <0.60 <0.60 Dry <0.060 NT i-Pentanoic Acid mg/l 0.50 0.061 NE NT <0.061 NT <0. 12 NT NT <0.61 NT NT NT NT <0.61 NT NT NT NT <0.61 <0.61 <0. 12 <0.61 <0.61 Dry <0.061 NT Pentanoic Acid mg/l 0.50 0.056 NE NT <0.056 NT <0.11 NT NT <0.56 NT NT NT NT <0.56 NT NT NT NT <0.56 <0.56 <0.11 <0.56 <0.56 Dry <0.056 NT i-Hexanoic Acid mg/l 0.50 0.056 NE NT <0.056 NT <0.11 NT NT <0.56 NT NT NT NT <0.56 NT NT NT NT <0.56 <0.56 <0.11 <0.56 <0.56 Dry <0.056 NT Hexanoic Acid mg/l 0.50 0.058 NE NT <0.058 NT <0. 12 NT NT <0.58 NT NT NT NT <0.58 NT NT NT NT <0.58 <0.58 <0. 12 <0.58 <0.58 Dry <0.058 NT Methane ug/l 5.0 2.5 NE NT 5200 NT 3.6 J NT NT 680 NT NT NT NT 3.5 NT NT NT NT 450 1400 170 2200 2000 Dry 35 NT Ethane ug/l 1.0 0.075 NE NT 1.2 NT <0.075 NT NT 0.20 J NT NT NT NT 0.79 J NT NT NT NT <0.075 0.62 J 0.18 J 0.32 J 0.75 J Dry <0.075 NT Ethene 119/1 1.0 0.12 NE NT 31 NT <0. 12 NT NT <0. 12 NT NT NT NT 0.29 J NT NT NT NT 0.70 J <0. 12 <0. 12 0.46 J 0.28 J Dry 0.36 J NT Carbon Dioxide (CO,) mg/l 0.9 0.127 NE NT 17.3 NT 162 NT NT 179 NT NT NT NT 15.8 NT NT NT NT 121 94.4 3.84 341 77.1 Dry 1.36 NT Alkalinity mg/l 20 20 NE NT 64 NT 450 NT NT 570 NT NT NT NT 150 NT NT NT NT 300 410 170 770 310 Dry 70 NT SuBide mg/l 1.0 0.99 NE NT 1.2 NT <0.99 NT NT <0.99 NT NT NT NT <0.99 NT NT NT NT 3.7 <0.99 <0.99 1.5 2.6 Dry 1.8 NT Biological Oxygen Demand (BOD) mg/l 2.0 0.18 NE NT <0.18 NT <0.18 NT NT 6.6 NT NT NT NT <0.18 NT NT NT NT 2.7 <0.18 <0.18 3.7 <0.18 Dry <0.18 NT Sulfate mg/l 1.0 0.2 250 NT 3.2 NT <0.2 NT NT 1.1 NT NT NT NT 7.8 NT NT NT NT 2.2 17 12 23 3.3 Dry 23 NT Nitrate mg/l 0.100 0.0250 10 NT 0.027 NT <0.025 NT NT <0.025 NT NT NT NT 0.028 J NT NT NT NT <0.025 0.012 J <0.025 <0.025 <0.025 Dry <0.025 NT Chloride mg/l 1.0 0.20 250 NT 2.4 NT 0.32 J NT NT 160 NT NT NT NT 5.1 NT NT NT NT 150 150 41 70 98 Dry 6.5 NT Chemical Oxygen Demand (COD) mg/l 20 20 NE NT <20.0 NT 20 NT NT 42 NT NT NT NT <20.0 NT NT NT NT 33 40 <20.0 58 28 Dry <20.0 NT Total Organic Carbon (TOC) mg/l 1.0 1.0 NE NT 11 NT 6.3 NT NT 15 NT NT NT NT 1.1 NT NT NT NT 8.9 12 2.8 15 7.3 Dry 1.4 NT Iron H (field measured) mg/l 0.5 0.5 NE NT ND NT 6.0 NT NT 3.0 NT NT ND ND 6.0 NT 4.5 1.5 ND 5.0 1 >7.0 2.5 2.5 4.5 1 Dry 5.0 NT Notes: 1. MCL = Maximum Contaminant Level, as established in the NCDENIR, Classifications of Water Quality Standards Applicable to Groundwaters of North Carolina, Section 15A NCAC 2L .0202. Updated April 1, 2013 2. (i) = Interim Maximum Allowable Concentrations (IMACs). Updated June 30, 2021 3. Shaded cells indicate exceedances of IMACs 4. Shaded cells indicated exceedances ofMCLs 5. NE = Not Established; North Carolina has not established a MCL 6. LOQ = Limit of Quanititation 7. DL = Detection Limit 8. NT = Not Tested 9. "J"-flagged data (i.e., values estimated between the DL and the LOQ) are presented on this spreadsheet. 10. ND = Not Detected 14175-03 Apx C - GW Geochem and Field Parameters.xlsx Table 11 NINA April 2021 Prepared By: TAO Checked By: IAI Table C-5 Groundwater Geochemical Parameters for MNA Old Buncombe County Landfill Woodfin, North Carolina Permit No. 1101-MSWLF-1979 BLE Project Number J20-14175-03 Sampled by Pace Analytical Services, LLC. October 25-28, 2021 TEST UNITS LOQ DL MCL MW-B MW-2 MW-3 MW-4 MW-4A MW-5 NM-6 MW-6-192 NM-7 MW-12-25 MW-13-35 MW-13- 132 NM-15 NM-17-60 MW-17- 137 MW-17- 310 NM-18-78 NM-19-75 NM-19- 110 MW-21-21 MW-21-94 MW-24-45 MW-24- 160 DPL-1 pH S.U. >6.5; <8.5 6.5 6.7 6.5 6.3 6.2 6.5 6.2 6.3 5.8 6.4 5.7 7.0 12.5 6.9 7.4 8.5 6.3 6.1 7.3 6.3 6.5 Dry 7.6 Dry Specific Conductance mmhos/cm NE 690 137.2 1372 966 660 1554 1526 531.1 274.9 599 353.7 369.9 8080 609.2 838 142.4 970 1121 493.1 1425 880 Dry 210.1 Dry Temperature °C NE 17.7 14.5 16 18 20.9 13.8 17.3 18.4 15.4 23.4 21 18.9 12.9 13.5 14.5 13.4 17.2 14.2 13.6 17.5 16.8 Dry 15 Dry Turbidity NTU NE 14.9 7.7 2.1 4.4 4.6 2.1 0.5 1.0 6.2 0.8 0.1 7.0 0.7 0.2 0.2 2.5 4.0 1.2 0.4 1.1 0.4 Dry 57 Dry Dissolved Oxygen (DO) m9/1- NE 0.3 6.4 0.5 0.4 0.8 0.5 0.3 0.4 0.3 0.7 0.3 1.0 6.4 0.6 0.7 0.5 0.6 0.2 0.4 0.3 0.2 Dry 4.2 Dry Redox my NE -58.2 50.8 -40.5 -18.8 -33.6 -29.9 -50 -5.7 40.7 164 179.4 -92.6 0.9 -30.7 -97.2 -17.5 -13.9 -0.6 -103 -46.9 -114.9 Dry 4.4 Dry Dissolved Hydrogen (DH) nM 1.9 0.49 NE NT 1.9 J NT 170 NT NT 25 NT NT NT NT 19 NT NT NT NT 2.9 J 3.6 J 2.7 J 2.4 J 5 Dry 120 Dry Lactic Acid mg/l 0.50 0.053 NE NT 0.70 NT 0.54 NT NT <0.053 NT NT NT NT 1 NT NT NT NT <0.053 <0.053 0.91 3.8 J <0.053 Dry 1.1 Dry Acetic Acid mg/l 0.50 0.12 5.0 (i) NT 0.18 J NT 0.26 J NT NT 1.7 J NT NT NT NT 0.15 J NT NT NT NT 1.9 J 1.6 J 0.24 J 2.0 J 1.6 J Dry 0.14 J Dry Propionic Acid mg/l 0.50 0.053 NE NT <0.053 NT <0.053 NT NT <0.053 NT NT NT NT <0.053 NT NT NT NT <0.053 <0.053 <0.053 <0.053 <0.053 Dry <0.053 Dry Formic Acid mg/l 0.50 0.055 NE NT 4.9 J NT 4.9 NT NT 43 NT NT NT NT 5.2 NT NT NT NT 43 44 5.0 45 42 Dry 4.9 Dry Butyric Acid mg/l 0.50 0.058 NE NT <0.058 NT <0.058 NT NT <0.058 NT NT NT NT <0.058 NT NT NT NT <0.058 <0.058 <0.058 <0.058 <0.058 Dry <0.058 Dry Pyruvic Acid mg/l 0.50 0.06 NE NT <0.06 NT <0.06 NT NT <0.06 NT NT NT NT <0.06 NT NT NT NT <0.06 <0.06 <0.06 <0.06 <0.06 Dry <0.06 Dry i-Pentanoic Acid mg/l 0.50 0.061 NE NT <0.061 NT <0.061 NT NT <0.061 NT NT NT NT <0.061 NT NT NT NT <0.061 <0.061 <0.061 <0.061 <0.061 Dry <0.061 Dry Pentanoic Acid mg/l 0.50 0.056 NE NT <0.056 NT <0.056 NT NT <0.056 NT NT NT NT <0.056 NT NT NT NT <0.056 <0.056 <0.056 <0.056 <0.056 Dry <0.056 Dry i-Hexanoic Acid mg/l 0.50 0.056 NE NT <0.056 NT <0.056 NT NT <0.056 NT NT NT NT <0.056 NT NT NT NT <0.056 <0.056 <0.056 <0.056 <0.056 Dry <0.056 Dry Hexanoic Acid mg/l 0.50 0.058 NE NT <0.058 NT 0.065 J NT NT <0.058 NT NT NT NT <0.058 NT NT NT NT <0.058 <0.058 0.071 J <0.058 <0.058 Dry <0.058 Dry Methane ug/l 5.0 2.5 NE NT <2.5 NT 270 NT NT 1,200 NT NT NT NT 300 NT NT NT NT 500 190 460 630 830 Dry 7.8 Dry Ethane ug/l 1.0 0.075 NE NT <0.075 NT <0.075 NT NT 0.51 J NT NT NT NT <0.075 NT NT NT NT 0.36 J 0.22 J <0.075 0.24 J 0.36 J Dry <0.075 Dry Ethene 119/1 1.0 0.12 NE NT <0. 12 NT <0. 12 NT NT <0. 12 NT NT NT NT 0.29 J NT NT NT NT <0. 12 <0. 12 <0. 12 0.26 J <0. 12 Dry <0. 12 Dry Carbon Dioxide (CO,) mg/l 0.9 0.127 NE NT 3.45 NT 373 NT NT 406 NT NT NT NT 35.9 NT NT NT NT 183 273 13.6 427 132 Dry 2.63 Dry Alkalinity mg/l 20 20 NE NT 64 NT 430 NT NT 540 NT NT NT NT 150 NT NT NT NT 260 380 180 600 290 Dry 70 Dry Sulfide mg/l 1.0 0.99 NE NT <0.99 NT <0.99 NT NT <0.99 NT NT NT NT <0.99 NT NT NT NT <0.99 <0.99 <0.99 <0.99 <0.99 Dry <0.99 Dry Biological Oxygen Demand (BOD) mg/l 2.0 0.18 NE NT <0.18 NT 3.0 NT NT 4.7 NT NT NT NT <0.18 NT NT NT NT <0.18 2.9 <0.18 <0.18 <0.18 Dry <0.18 Dry Sulfate mg/l 1.0 0.2 250 NT 2.9 NT 24 NT NT 0.37 J NT NT NT NT 6.4 NT NT NT NT 1.7 18 8.8 10 2.4 Dry 24 Dry Nitrate mg/l 0.10 0.025 10 NT <0.025 NT <0.025 NT NT <0.025 NT NT NT NT <0.025 NT NT NT NT <0.025 <0.025 <0.025 <0.025 <0.025 Dry <0.025 Dry Chloride mg/l 1.0 0.2 250 NT 2.2 NT 55 NT NT 160 NT NT NT NT 5 NT NT NT NT 140 140 42 110 96 Dry 6.8 Dry Chemical Oxygen Demand (COD) mg/l 20 20 NE NT <20 NT <20 NT NT 37 NT NT NT NT <20 NT NT NT NT 24 30 <20 33 <20 Dry <20 Dry Total Organic Carbon (TOC) mg/l 1.0 1.0 NE NT <1.0 NT 5.3 NT NT 12 NT NT NT NT 1.1 NT NT NT NT 8.1 11 2.8 11 6.9 Dry 1.3 Dry Iron H (field measured) mg/l NE NT ND NT 2.0 NT NT 6.0 NT NT NT NT 4.5 NT NT NT NT 4.0 1 1.5 1.5 7 6.5 1 Dry 0.5 Dry Notes: 1. MCL = Maximum Contaminant Level, as established in the NCDENIR, Classifications of Water Quality Standards Applicable to Groundwaters of North Carolina, Section 15A NCAC 2L .0202. Updated April 1, 2013 2. (i) = Interim Maximum Allowable Concentrations (IMACs). Updated June 30, 2021 3. Shaded cells indicate exceedances of IMACs 4. Shaded cells indicated exceedances ofMCLs 5. NE = Not Established; North Carolina has not established a MCL 6. LOQ = Limit of Quanititation 7. DL = Detection Limit 8. NT = Not Tested 9. "J"-flagged data (i.e., values estimated between the DL and the LOQ) are presented on this spreadsheet. 10. ND = Not Detected 14175-03 Apx C - GW Geochem and Field Parameters.xlsx Table 11 NINA Oct 2021 Prepared By: RLB/TAO Checked By: IAI APPENDIX D GROUNDWATER VOC TREND PLOTS [5 VOC CATEGORIES] 50 45 40 35 30 �n a 0 25 s. 20 C 0 U 15 10 5 0 I tTetrachloroethene [ND] -41—Trichloroethene [ND] f cis-1,2-Dichloroethene —*—Vinyl Chloride (Groundwater Elevation Monitoring Well MW-B Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M rn M M M M M M N N N N N N N N N N N N rl rl rl rl — — — — rl rl rl rl Chart MW-B (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 1970 1965 1960 1955 0 0 1950 W e� 1945 0 0 s. C7 1940 1935 1930 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 50 45 40 35 30 aA 0 25 s. 20 0 U 15 10 5 0 —0—Tetrachloroethene [ND] fTrichloroethene [ND] f cis-1,2-Dichloroethene Vinyl Chloride (Groundwater Elevation Monitoring Well MW-3 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M e4 N N N N N N N N N N e4 N N rl rl rl rl rl rl Chart MW-3 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 1950 1940 1930 1920 0 1910 W a� 1900 c Al 1890 1880 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 50 45 40 35 30 0 25 s. 20 0 U 15 10 5 0 —$--Tetrachloroethene tTrichloroethene f cis-1,2-Dichloroethene Vinyl Chloride (Groundwater Elevation Monitoring Well MW-4 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-4 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 1970 1960 1950 E 1940 0 0 1930 W s� 0 1920 c IN 1910 1900 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 *1 6 0 5 s. u 4 C 0 U 3 2 1 0 —$--Tetrachloroethene --&-Trichloroethene tVinyl Chloride (Groundwater Elevation Monitoring Well MW-4 (Rescaled) Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-4 (Ethene) (2) of GW Ethene Trend Plots for OBCLF 14175-03 1970 1960 1950 E 1940 0 0 1930 W s� 0 1920 c 7: 1910 1900 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 *1 6 0 5 s. u 4 C 0 U 3 2 1 0 i i —$--Tetrachloroethene [ND] tTrichloroethene [ND] f cis-1,2-Dichloroethene Vinyl Chloride (Groundwater Elevation Monitoring Well MW-4A Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-4A (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 2025 2020 2015 2010 w 2005 0 2000 W 1995 0 0 0 s. 1990 0WS1 1980 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 *1 6 0 5 s. u 4 0 0 U 3 2 1 0 —4--Tetrachloroethene [ND] -40---Trichloroethene [ND] f cis-1,2-Dichloroethene tVinyl Chloride (Groundwater Elevation Monitoring Well MW-5 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-5 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 1990 1985 1980 1975 1970 0 1965 a� W s. 1960 1955 0 1950 1945 1940 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 �4 6 aA 0 5 s. 4 u C 0 U 3 2 1 0 0 O N M N Monitoring Well MW-6 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 —+--Tetrachloroethene [ND] --W-Trichloroethene [ND] f cis-1,2-Dichloroethene tVinyl Chloride (Groundwater Elevation In AL I �� s„ s �� � �� = -MEEL � -i -0 O O O O O O O O O O O N N N N N N N N N N N M M M M M M M M M M M N N N N N N N N N N N Chart MW-6 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 2010 2005 1995 Q� N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 a 6 a 0 5 u 4 0 0 U 3 2 1 0 tTetrachloroethene [ND] tTrichloroethene [ND] fcis-1,2-Dichloroethene [ND] Vinyl Chloride [ND] f Groundwater Elevation Monitoring Well MW-6-192 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M N N N N N N N N N N N N rl rl rl rl 1-1 - - - rl rl rl rl Chart MW-6-192 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 2000 1995 1990 1985 A 1980 0 1975 W 1970 1965 c C7 1960 1955 1950 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 50 45 40 35 30 a 0 25 20 0 0 U 15 10 5 0 N Monitoring Well MW-7 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 t Tetrachloroethene f Trichloroethene f cis-1,2-Dichloroethene —Vinyl Chloride [ND] —*--Groundwater Elevation Well Dry, No Sample Collected I rl rl rl �--i .--i rl rl rl rl N N O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M e4 N N N N N N N N N N e4 N N rl rl rl rl rl rl Chart MW-7 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 2090 2089 2088 2087 A 2086 0 2085 W 2084 2083 c C7 2082 2081 2080 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 0 5 s. u 4 0 0 U 3 2 1 0 --&-Trichloroethene [ND] f cis-1,2-Dichloroethene [ND] Vinyl Chloride [ND] Monitoring Well MW-12-25 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-12-25 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 2040 2035 2030 2025 2020 0 2015 a� W s. 2010 2005 0 2000 1995 1990 N N O N M N Prepared By: RLB/TAO Checked By: RLB 30 25 20 U 10 5 Tetrachloroethene -40---Trichloroethene f cis-1,2-Dichloroethene Vinyl Chloride (Groundwater Elevation Monitoring Well MW-13-35 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 0 O rl N M 7 O N O N O N O O N N M M M M M N N N N N Chart MW-13-35 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 LE O O O O O O O N N N N N N N M M M M M M M N N N N N N N 2020 2015 2010 w 0 2005 a� W s. a� 2000 0 Al 1995 —4 1990 N N O N M N Prepared By: RLB/TAO Checked By: RLB 50 45 40 35 30 aA 0 25 s. 20 0 0 U 15 10 5 0 0 O N M N Monitoring Well MW-13-132 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 —$--Tetrachloroethene [ND] -4lo-Trichloroethene [ND] f cis-1,2-Dichloroethene Vinyl Chloride (Groundwater Elevation -i -0 O O O O O O O O O O O N N N N N N N N N N N M M M M M M M M M M M N N N N N N N N N N N Chart MW-13-132 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 2010 2000 1990 w 0 1980 a� W Al 1960 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 *1 6 0 5 s. u 4 C 0 U 3 2 1 0 —4--Tetrachloroethene [ND] -40---Trichloroethene [ND] f cis-1,2-Dichloroethene tVinyl Chloride (Groundwater Elevation Monitoring Well MW-17-60 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-17-60 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 1920 1910 1900 v w 0 1890 a� W s. a� 1880 0 Al 1870 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 0 5 s. u 4 C 0 U 3 2 1 0 —4--Tetrachloroethene [ND] -40---Trichloroethene [ND] f cis-1,2-Dichloroethene tVinyl Chloride (Groundwater Elevation Monitoring Well MW-17-137 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-17-137 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 1920 1910 1900 v w Al 1870 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 an 0 0 5 0 s. 4 c> 0 0 U 3 2 1 0 Monitoring Well MW-18-78 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 —4--Tetrachloroethene [ND] -40--Trichloroethene [ND] — cis-1,2-Dichloro ethene -40--Vinyl Chloride (Groundwater Elevation A. O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-18-78 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 1900 1895 1890 1885 w a~ 0 1880 W 1875 a~ 0 1870 U 1865 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 *1 6 0 5 s. u 4 0 0 U 3 2 1 0 --&-Trichloroethene [ND] f cis-1,2-Dichloroethene [ND] Vinyl Chloride [ND] Monitoring Well MW-19-75 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-19-75 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 1910 1905 1900 1895 1890 0 1885 a� W s. 1880 1875 0 1870 1865 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 *1 6 0 5 s. u 4 0 0 U 3 2 1 0 —4--Tetrachloroethene [ND] -40---Trichloroethene [ND] f cis-1,2-Dichloroethene tVinyl Chloride [ND] (Groundwater Elevation Monitoring Well MW-19-110 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-19-110 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 1910 1905 1900 1895 1890 0 1885 a� W s. 1880 1875 0 1870 1865 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 50 45 40 35 �1 30 aA 0 25 s. 20 0 U 15 10 5 0 0 O N M N Monitoring Well MW-21-21 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 —$--Tetrachloroethene [ND] -41-Trichloroethene f cis-1,2-Dichloroethene —Vinyl Chloride —Groundwater Elevation Pk -i .0 O O O O O O O O O O O N N N N N N N N N N N M M M M M M M M M M M N N N N N N N N N N N Chart MW-21-21 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 1920 1910 is 1880 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 *1 6 0 5 s. u 4 0 0 U 3 2 1 0 —4--Tetrachloroethene ND] -40---Trichloroethene [ND] f cis-1,2-Dichloroethene tVinyl Chloride (Groundwater Elevation Monitoring Well MW-21-94 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-21-94 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 1910 1905 1900 1895 1890 0 1885 a� W s. 1880 1875 0 1870 1865 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 50 45 40 35 30 aA 0 25 s. 20 0 0 U 15 10 5 0 0 O N M N Monitoring Well DPL-2 Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 t Tetrachloroethene tTrichloroethene f cis-1,2-Dichloroethene Vinyl Chloride (Groundwater Elevation Ah -i —I O O O O O O O O O O O N N N N N N N N N N N M M M M M M M M M M M N N N N N N N N N N N Chart DPL-2 (Ethene) of GW Ethene Trend Plots for OBCLF 14175-03 2040 2030 w 0 a� 2020 W s. a� 0 2010 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 to 0 0 5 0 s. 4 0 0 U 3 2 1 0 t Tetrachloroethene tTrichloroethene tVinyl Chloride (Groundwater Elevation Monitoring Well DPL-2 (Rescaled) Tetrachloroethene (PCE) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O -0 N M R r O 0� O —I O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart DPL-2 (Ethene) (2) of GW Ethene Trend Plots for OBCLF 14175-03 2040 2030 w 0 2020 W s. a� 0 2010 2000 N N O N M N r-I Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 a 6 0 0 5 s. 4 u 0 0 U 3 2 1 0 Monitoring Well MW-B 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 I —$--1,1,1-Trichloroethane [ND] -41-1,1-Dichloroethane f Chloroethane (Groundwater Elevation O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M N N N N N N N N N N N N rl rl rl rl - - - - rl rl rl rl Chart MW-B (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 1970 1965 1960 1955 w 0 1950 W s. 1945 0 1940 1935 1930 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 50 45 40 35 30 aA 0 25 s. 20 0 U 15 10 5 0 Monitoring Well MW-3 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 I I I —$--1,1,1-Trichloroethane [ND] 1,1-Dichloroethane f Chloroethane f Groundwater Elevation O rl N M 'IT V1 1z r- 00 0� O O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-3 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 1950 1940 1930 w 1920 0 0 0 1910 0 1900 c is 1890 1880 N N O N M N Prepared By: RLB/TAO Checked By: RLB 50 45 40 35 30 0 25 s. 20 0 U 15 10 5 Monitoring Well MW-4 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 -4-1,1,1-Trichloroethane [ND] 1,1-Dichloroethane -.i--- Chloroethane (Groundwater Elevation o -0 N M v� I r 00 0� o .0 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N 1960 1955 1950 1945 1940 1935 0 0 1930 Ell 1925 1920 0 0 0 1915 � 1910 1905 1900 N N O N M N Prepared By: RLB/TAO Chart MW-4 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 Checked By: RLB 10 9 8 7 *1 6 0 5 s. u 4 0 U 3 2 1 0 Monitoring Well MW-4A 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 —H1,1,1-Trichloroethane [ND] t1,1-Dichloroethane [ND] f Chloroethane [ND] (Groundwater Elevation o N M IT k r 00 0� o O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-4A (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 2030 2025 2020 2015 E 2010 w 0 0 2005 2000 1995 0 L7 1990 1985 1980 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 *1 6 0 5 s. u 4 0 U 3 2 1 0 Monitoring Well MW-5 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 I I --$--1,1,1-Trichloroethane [ND] f 1,1-Dichloroethane f Chloroethane (Groundwater Elevation o N M �_ kn o r 00 0� o .0 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-5 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 1990 1985 1980 1975 1970 w 0 0 1965 1960 1955 0 L7 1950 1945 1940 N N O N M N Prepared By: RLB/TAO Checked By: RLB 30 25 20 U 10 5 Monitoring Well MW-6 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 t1,1,1-Trichloroethane [ND] t 1,1-Dichloroethane f Chloroethane f Groundwater Elevation 0 O rl N M K) l 00 O) O O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-6 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 2010 2005 w 0 0 2000 0 0 0 1995 � —4 1990 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 a 6 0 0 5 s. u 4 0 0 U 3 2 1 0 Monitoring Well MW-6-192 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 —*--1,1,1-Trichloroethane [ND] 1,1-Dichloroethane f Chloroethane (Groundwater Elevation O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M N N N N N N N N N N N N rl rl rl rl 1-1 - - - rl rl rl rl Chart MW-6-192 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 2000 1995 1990 1985 1980 w 0 1975 W 1970 1965 0 L7 1960 1955 1950 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 0, 25 20 15 61 Monitoring Well MW-7 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 —4--1,1,1-Trichloroethane [ND] f Chloroethane 1,1-Dichloroethane (Groundwater Elevation • Well Dry, No Sample Collected 0 rl rl rl rl ti .--i rl rl rl rl N N O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M rn M M M M M M N N N N N N N N N N N N Chart MW-7 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 2090 2089 2088 2087 2086 w 0 2085 W 2084 3 2083 0 s. L7 2082 2081 2080 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 0 5 s. u 4 0 U 3 2 1 0 Monitoring Well MW-12-25 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 I I --$--1,1,1-Trichloroethane [ND] f1,1-Dichloroethane [ND] f Chloroethane [ND] (Groundwater Elevation o N M IT k r 00 0� o O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-12-25 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 2040 2035 2030 2025 E 2020 w 0 0 2015 2010 2005 0 �7 2000 1995 1990 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 0 5 s. u 4 C 0 U 3 2 1 0 Monitoring Well MW-13-35 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 —H1,1,1-Trichloroethane [ND] t1,1-Dichloroethane [ND] f Chloroethane [ND] (Groundwater Elevation o N M IT k r 00 0� o O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-13-35 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 2020 2015 2010 w 0 0 2005 2000 0 0 0 is 1995 1990 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 *1 6 0 5 s. u 4 C 0 U 3 2 1 0 Monitoring Well MW-13-132 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 I I I --$--1,1,1-Trichloroethane [ND] f 1,1-Dichloroethane f Chloroethane [ND] (Groundwater Elevation o N M 'IT k r 00 0� o O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-13-132 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 2010 2000 1990 w 0 0 1980 1970 0 0 0 7: 1960 —4 1950 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 o1 6 U 3 2 1 Monitoring Well MW-17-60 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 --$--1,1,1-Trichloroethane [ND] f 1,1-Dichloroethane f Chloroethane [ND] (Groundwater Elevation o -0 0� o .0 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N 1920 1915 1910 1905 1900 1895 0 0 1890 Ell 1885 1880 0 0 0 1875 � 1870 1865 1860 N N O N M N Prepared By: RLB/TAO Chart MW-17-60 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 Checked By: RLB 10 9 8 7 o1 6 U 3 2 1 Monitoring Well MW-17-137 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 I I I —$--1,1,1-Trichloroethane [ND] t 1,1-Dichloroethane —M— Chloroethane (Groundwater Elevation 0 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-17-137 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 1920 1915 1910 1905 1900 1895 0 0 1890 1885 �. 1880 0 0 0 1875 1870 1865 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 �4 6 aA 0 5 s. u 4 0 0 U 3 2 1 0 0 O N M N Monitoring Well MW-18-78 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 1910 —$--1,1,1-Trichloroethane [ND] t 1,1-Dichloroethane 1905 f Chloroethane 1900 (Groundwater Elevation 1895 1890 0 1885 W s. 1880 1875 0 1870 1865 1860 rl N M Itt O O O O O O O O O O O N N N N N N N N N N N M M M M M M M M M M M N N N N N N N N N N N Chart MW-18-78 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 *1 6 0 5 s. u 4 C 0 U 3 2 1 0 Monitoring Well MW-19-75 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 —*--1,1,1-Trichloroethane [ND] t 1,1-Dichloroethane —W- Chloroethane (Groundwater Elevation o N M 'IT k r 00 0� o O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-19-75 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 1910 1905 1900 1895 E 1890 w 0 0 1885 1880 1875 0 �7 1870 1865 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 *1 6 0 5 s. u 4 C 0 U 3 2 1 0 Monitoring Well MW-19-110 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 —+--1,1,1-Trichloroethane [ND] t 1,1-Dichloroethane f Chloroethane (Groundwater Elevation o N M v� o r 00 0� o O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-19-110 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 1910 1905 1900 1895 E 1890 w 0 0 1885 1880 1875 0 �7 1870 1865 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 30 25 20 U 10 5 Monitoring Well MW-21-21 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 —4--1,1,1-Trichloroethane [ND] t 1,1-Dichloroethane f Chloroethane (Groundwater Elevation 0 o N M v� I r 00 0� o O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-21-21 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 1910 1905 1900 1895 1890 0 0 1885 1880 1875 0 �7 1870 1865 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 30 25 20 U 10 Monitoring Well MW-21-94 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 rl rl rl rl �--i .--i rl rl N N O O O O O O O O O O O N N N N N N N N N N N M M M M M M M M M M M N N N N N N N N N N N Chart MW-21-94 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 1910 1905 1900 1895 1890 0 0 1885 W 1880 c� 1875 0 L7 1870 1865 1860 N N O N rl M N rl Prepared By: RLB/TAO Checked By: RLB 50 45 40 35 30 0 25 s. 20 0 U 15 10 5 0 Monitoring Well DPL-2 1,1,1-Trichloroethane (1,1,1-TCA) and its Breakdown Products Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 I I I —$--1,1,1-Trichloroethane [ND] t 1,1-Dichloroethane f Chloroethane (Groundwater Elevation O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart DPL-2 (Ethane) of GW Ethane Trend Plots for OBCLF 14175-03 2040 2035 2030 2025 w 0 0 2020 2015 0 0 0 2010 2005 2000 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 5 0 0 0 4 c� 0 3 0 0 U 2 1 0 Benzene [ND] --&-Ethylbenzene [ND] f Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-B Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 - - - rl rl rl rl Chart MW-B (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 1970 1960 1930 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 .a 6 nn 0 0 5 c� 4 U O V 3 2 1 0 Benzene tEthylbenzene [ND] (Toluene [ND] Total Xylenes (Groundwater Elevation Monitoring Well MW-3 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-3 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 1950 1940 1930 IN 1890 1880 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 *1 6 0 0 5 s. c> 4 0 0 U 3 2 1 0 Benzene tEthylbenzene [ND] (Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-4 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-4 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 1970 1960 1950 1940 0 1930 W 1920 0 N 1910 1900 N N O N M N Prepared By: RLB/TAO Checked By: RLB 50 45 40 35 30 an 0 25 0 20 c 0 U 15 10 5 0 Benzene tEthylbenzene f Toluene Total Xylenes (Groundwater Elevation Monitoring Well MW-4A Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-4A (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 2020 2010 = rA A 0 0 2000 W 0 1990 1980 N N O N M N Prepared By: RLB/TAO Checked By: RLB 30 25 20 Benzene -40--Ethylbenzene f Toluene —Ar--Groundwater Elevation Monitoring Well MW-4A (Rescaled) Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 2020 2010 = rA A 0 0 2000 W C 0 1990 0 1980 o -0 0� o .0 N O N O N O N O N O N O N O N O O N N O N O N O N O N M M M M M M M M M M M M M N N N N N N N N N N N N N Chart MW-4A (BTEX) (2) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 ^ 6 5 0 s. 4 u C 0 U 3 2 1 0 Benzene --&-Ethylbenzene [ND] f Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-5 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M rn M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 — — — rl rl rl rl Chart MW-5 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 1990 1980 1970 w 1950 U 1940 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 j 6 0 0 5 0 c� 4 U O V 3 2 1 0 Benzene --&-Ethylbenzene [ND] f Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-6 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M rn M M M M M M N N N N N N N N N N N N rl rl rl rl 1-1 — — — rl rl rl rl Chart MW-6 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 2010 2005 1990 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 an 0 0 5 0 4 0 0 U 3 2 1 0 Benzene [ND] --&-Ethylbenzene [ND] f Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-6-192 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M rn M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 — — — rl rl rl rl Chart MW-6-192 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 2000 1990 L7 1960 —4 1950 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 an 0 0 5 0 4 0 0 U 3 2 1 0 Benzene --&-Ethylbenzene [ND] f Toluene [ND] Total Xylenes (Groundwater Elevation Monitoring Well MW-7 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 Well Dry, No Sample Collected I rl rl rl �--i .--i rl rl rl rl N N O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M N N N N N N N N N N N N rl rl rl rl - rl rl rl rl Chart MW-7 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 2090 2089 2088 2087 2086 w 0 2085 a� W 2084 c� •a 2083 c 0 0 L7 2082 2081 2080 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 .� 6 wo 0 0 5 0 0 4 0 0 U 3 2 1 0 Benzene [ND] --&-Ethylbenzene [ND] f Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-12-25 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M rn M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 — — — rl rl rl rl Chart MW-12-25 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 2040 2030 2020 w 0 0 W 2010 0 7: 2000 1990 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 on 0 c 5 0 4 0 0 U 3 2 1 0 Benzene tEthylbenzene [ND] (Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-13-35 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-13-35 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 2020 2010 Si: u 1990 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 on 0 c 5 0 0 4 0 0 U 3 2 1 0 Benzene tEthylbenzene [ND] (Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-13-132 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-13-132 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 2010 2000 1990 it 0 1980 W 0 1970 0 0 0 1960 —4 1950 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 aio 0 5 e� s. a� 4 c> 0 U 3 2 1 0 Benzene [ND] tEthylbenzene [ND] (Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-17-60 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-17-60 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 1920 1910 1900 w 1870 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 o1 6 0 5 6 4 u 0 v 3 2 1 0 Benzene [ND] tEthylbenzene [ND] (Toluene [ND] Total Xylenes (Groundwater Elevation Monitoring Well MW-17-137 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-17-137 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 1920 1910 1900 1870 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 ao 0 c 5 0 0 4 0 0 U 3 2 1 0 Benzene tEthylbenzene [ND] (Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-18-78 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-18-78 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 1910 1900 1890 1870 —4 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 aio 0 5 0 s. 4 c> 0 0 U 3 2 1 0 Benzene tEthylbenzene [ND] (Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-19-75 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-19-75 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 1910 1900 1890 w —4 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 �1 6 an 0 c 0 5 0 s. 4 c> 0 0 U 3 2 1 0 Benzene [ND] tEthylbenzene [ND] (Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-19-110 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-19-110 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 1910 1900 1890 —4 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 0 0 0 5 c� 0 4 U O V 3 2 1 0 Benzene tEthylbenzene [ND] f Toluene Total Xylenes (Groundwater Elevation Monitoring Well MW-21-21 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-21-21 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 1910 1900 G7 1870 —4 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 wo 0 c 5 0 0 4 0 0 U 3 2 1 0 Benzene [ND] tEthylbenzene [ND] (Toluene [ND] Total Xylenes [ND] (Groundwater Elevation Monitoring Well MW-21-94 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-21-94 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 1910 1900 L7 1870 —4 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 j 6 0 0 5 0 c� 4 U O V 3 2 1 0 Benzene --&-Ethylbenzene [ND] Toluene tTotal Xylenes [ND] (Groundwater Elevation Monitoring Well DPL-2 Detected Petroleum Hydrocarbons Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 kr� 1 r 00 0� O .0 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart DPL-2 (BTEX) of GW Hydrocarbon Trend Plots for OBCLF 14175-03 2040 2030 2010 U 2000 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 W 5 s~ 0 0 4 C 0 3 U 2 1 0 0 rl O N M N rl Monitoring Well MW-B Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 tChlorobenzene f 1,2-Dichlorobenzene[ND] f 1,4-Dichlorobenzene (Groundwater Elevation rl N M R V7 �D l� 00 O\ O r-I O O O O O O O O O O O N N N N N N N N N N N rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M N N N N N N N N N N N Chart MW-B (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 1970 1965 1960 1955 w s~ 0 1950 W 1945 s~ s°. 1940 � 1935 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 30 25 20 U 10 Monitoring Well MW-3 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O N N N N N N N N N N N M M M M M M M M M M M N N N N N N N N N N N Chart MW-3 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 1950 1940 1930 w 1920 0 0 1910 W a� .o 0 1900 0 'i. 1890 1880 N N O N rl M N rl Prepared By: RLB/TAO Checked By: RLB Monitoring Well MW-4 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 30 25 20 .-, 15 0 0 10 0 0 rl rl rl rl rl N N N N N rl M rl M rl M rl M .-- M N rl N rl N rl N rl N e--i Chart MW-4 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 O O O O O O O N N N N N N N M M M M M M M N N N N N N N 1970 1960 1950 w 1940 0 1930 W a� c� .o 0 1920 0 �. 1910 1900 N N O N rl M N rl Prepared By: RLB/TAO Checked By: RLB 150 140 130 120 110 100 90 80 0 70 0 60 50 0 U 40 30 20 10 0 t Chlorobenzene --0--1,2-Dichlorobenzene f 1,4-Dichlorobenzene —*--Groundwater Elevation Monitoring Well MW-4A Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 2025 2020 2015 2010 w 2005 0 0 0 2000 W 0 1995 .� 0 0 s°. 1990 1985 EMY-1l1 O O O O O O O O O O O O O N N N N N N N N N N N N N M M M M M M M M M M M M M N N N N N N N N N N N N N Prepared By: RLB/TAO Chart MW-4A (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 Checked By: RLB Monitoring Well MW-5 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 30 25 20 0 rl rl rl rl rl N N N N N rl M rl M rl M rl M .-- M N rl N rl N rl N rl N e--i Chart MW-5 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 O O O O O O O N N N N N N N M M M M M M M N N N N N N N 1L• :111 1975 1olff 1965 w 0 1960 W s. 1955 .o 0 0 1950 �o C7 1945 1940 N N O N rl M N rl Prepared By: RLB/TAO Checked By: RLB 30 25 20 .-, 15 0 0 10 0 5 0 t Chlorobenzene -40--1,2-Dichlorobenzene [ND] f 1,4-Dichlorobenzene f Groundwater Elevation Monitoring Well MW-6 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 rl rl rl rl rl N N N N N rl rl rl rl .-- M M M M M N N N N N rl rl rl rl e--i Chart MW-6 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 O O O O O O O N N N N N N N M M M M M M M N N N N N N N W411101 2005 0 0 2000 W 0 0 0 1995 1990 N N O N rl M N rl Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 5 0 4 C 0 3 U 2 1 0 0 rl O N M N rl Monitoring Well MW-6-192 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 2000 t Chlorobenzene f 1,2-Dichlorobenzene [ND] 1995 f 1,4-Dichlorobenzene (Groundwater Elevation 1990 1985 1980 1975 1970 1965 0 1960 1955 �— - ` 1950 O O O O O O O O O O O N N N N N N N N N N N rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M N N N N N N N N N N N Chart MW-6-192 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 25 20 15 00 0 10 0 ,e 5 Chlorobenzene -40--1,2-Dichlorobenzene[ND] 41--1,4-Dichlorobenzene (Groundwater Elevation Monitoring Well MW-7 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 Well Dry, No Sample Collected 0 I rl rl rl �--i .--i rl rl rl rl N N O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-7 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 —I 2090 2089 2088 2087 2086 2085 2084 2083 0 2082 2081 2080 N N O N M N rl Prepared By: RLB/TAO Checked By: RLB 30 25 20 W V 10 Monitoring Well MW-12-25 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O N N N N N N N N N N N M M M M M M M M M M M N N N N N N N N N N N Chart MW-12-25 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 2040 2035 2030 2025 2020 0 2015 W 2010 2005 0 C7 2000 1995 1990 N N O N rl M N rl Prepared By: RLB/TAO Checked By: RLB 100 90 80 70 60 50 0 40 0 30 U 20 10 0 Chlorobenzene f 1,2-Dichlorobenzene f 1,4-Dichlorobenzene —*--Groundwater Elevation Monitoring Well MW-13-35 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-13-35 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 KINII 2015 2010 P 2005 ,o 0 a� W s� 2000 0 s� C7 1995 1990 N N O N rl M N rl Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 5 0 4 C 0 3 U 2 1 0 +Chlorobenzene [ND] 1,2-Dichlorobenzene [ND] f 1,4-Dichlorobenzene f Groundwater Elevation Monitoring Well MW-13-132 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O rl N M k r 00 0� O —I O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-13-132 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 2010 2000 1990 0 1980 W e� 1970 0 0 s. I. u 1960 —4 1950 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 W 5 0 4 C 0 3 U 2 1 0 —+--Chlorobenzene [ND] 1,2-Dichlorobenzene [ND] f 1,4-Dichlorobenzene (Groundwater Elevation Monitoring Well MW-17-60 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 o N M IT k r 00 0� o .0 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-17-60 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 1920 1910 1900 1890 W 1880 0 A 1870 —4 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 5 0 4 C 0 3 U 2 1 0 —*--Chlorobenzenee [ND] 1,2-Dichlorobenzene [ND] f 1,4-Dichlorobenzene (Groundwater Elevation Monitoring Well MW-17-137 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 o N M IT k r 00 0� o .0 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-17-137 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 1920 1910 1900 0 1890 W e� 1880 0 0 s. I. u 1870 —4 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 wo 0 5 0 4 0 U 3 2 1 0 0 O N M N Monitoring Well MW-18-78 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 1910 Chlorobenzene �1,2-Dichlorobenzene 1905 f 1,4-Dichlorobenzene 1900 f Groundwater Elevation 1895 1890 w 0 1885 W 1880 0 3 1875 0 L7 1870 1865 1860 -0 (14 M Itt W� r 00 O) O O O O O O O O O O O O N N N N N N N N N N N M M M M M M M M M M M N N N N N N N N N N N Chart MW-18-78 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 N N O N M N Prepared By: RLB/TAO Checked By: RLB 30 25 20 Monitoring Well MW-19-75 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 rl N —I O O O O O O O O O O O N N N N N N N N N N N M M M M M M M M M M M N N N N N N N N N N N Chart MW-19-75 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 1910 1905 1900 1895 1890 w 1885 W 1880 0 1875 0 1870 1865 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 ^ 6 W wo 0 0 5 0 4 0 0 U 3 2 1 0 --$--Chlorobenzene [ND] 1,2-Dichlorobenzene [ND] f 1,4-Dichlorobenzene (Groundwater Elevation Monitoring Well MW-19-110 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 o N M 'IT k r 00 0� o .0 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-19-110 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 1910 1905 1900 1895 1890 0 0 1885 W 1880 1875 0 0 1870 1865 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 100 90 80 70 �1 60 wo 0 50 0 40 0 U 30 20 10 0 Chlorobenzene --&-1,2-Dichlorobenzene f 1,4-Dichlorobenzene f Groundwater Elevation Monitoring Well MW-21-21 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-21-21 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 1910 1905 1900 1895 1890 w 0 1885 e� 1880 0 1875 0 1870 1865 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 10 9 8 7 6 0 c 0 5 e� s. u 4 0 0 U 3 2 1 0 Monitoring Well MW-21-94 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 + Chlorobenzene -40--1,2-Dichlorobenzene [ND] f 1,4-Dichlorobenzene (Groundwater Elevation Koo- F O rl N M 7 V1 K) l-- 00 0� O —I O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart MW-21-94 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 1910 1905 1900 1895 1890 1885 1880 W 1875 ^� 0 1870 1865 1860 N N O N M N Prepared By: RLB/TAO Checked By: RLB 30 25 20 5 Chlorobenzene -41-1,2-Dichlorobenzene f 1,4-Dichlorobenzene f Groundwater Elevation Monitoring Well DPL-2 Detected Chlorinated Benzenes Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 0 N N N N N M M M M M N N N N N Chart DPL-2 (CB) of GW Chlorinated Benzenes Trend Plots for OBCLF 14175-03 O O O O O O O N N N N N N N M M M M M M M N N N N N N N 2045 2040 2035 2030 2025 0 2020 ,� W a. 2015 0 2010 U 2005 2000 N N O N M N Prepared By: RLB/TAO Checked By: RLB 100 90 80 70 a 60 an 0 50 s. 40 C 0 U 30 20 10 0 Acetone f1,2-Dichloropropane [ND] 0-- 2-Butanone t4-Methyl-2-Pentanone [ND] t 1,4-Dioxane (Groundwater Elevation Monitoring Well MW-B Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 - - - rl rl rl rl 1970 1960 1950 c c� W c� 1940 0 A + 1930 Chart MW-B (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 160 140 120 100 0 80 s. 60 0 U 40 20 Acetone 1,2-Dichloropropane [ND] '9-2-Butanone [ND] t4-Methyl-2-Pentanone [ND] 1,4-Dioxane —*--Groundwater Elevation 0 O N O N O N O N O N rl M rl M rl M rl M � M N N N N N Chart MW-3 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Monitoring Well MW-3 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O N N N N N N N �--i rl rl rl rl M M M M M M M N N N N N N N 0 rl rl rl 1950 1940 1930 1920 0 0 c� 1910 W c� 1900 0 0 1890 + 1880 N N O N M N rl A Prepared By: TAO Checked By: RLB 300 iAT'J11! 200 ° 100 v 50 Monitoring Well MW-4 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 Acetone 1,2-Dichloropropane [ND] f2-Butanone [ND] f4-Methyl-2-Pentanone [ND] t 1,4-Dioxane (Groundwater Elevation - 1960 - 1950 1940 1930 c 1920 ° 1910 O O O O O O O O O O O O O N N N N N N N N N N N N N M M M M M M M M M M M M M N N N N N N N N N N N N N rl rl rl rl - rl rl rl rl rl Prepared By: TAO Chart MW-4 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Checked By: RLB Monitoring Well MW 4 (Rescaled) Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 100 90 80 70 60 an c 50 e� s. 40 U O U 30 20 10 0 1,2-Dichloropropane [ND] f2-Butanone [ND] --W-4-Methyl-2-Pentanone [ND] t 1,4-Dioxane (Groundwater Elevation O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 - - - rl rl rl rl 1960 1950 1940 1930 c L 1920 0 0 0 7: 1910 + 1900 Chart MW-4 (Other) (2) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 3500 3000 04.11111 wo2000 u 1000 500 Acetone 1,2-Dichloropropane [ND] f 2-Butanone 4-Methyl-2-Pentanone 1,4-Dioxane (Groundwater Elevation Monitoring Well MW-4A Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M N N N N N N N N N N N N rl rl rl rl 1-1 - rl rl rl rl 2030 2020 Pi. u 1990 Chart MW-4A (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 500 450 400 350 300 0 250 c� 200 C 0 U 150 100 50 0 i i i t1,2-Dichloropropane [ND] 4-Methyl-2-Pentanone t 1,4-Dioxane (Groundwater Elevation Monitoring Well MW-4A (Rescaled) Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 - - - rl rl rl rl 2030 2020 2010 c W a� 2000 0 s. I. u 1990 + 1980 Chart MW-4A (Other) (2) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 100 90 80 70 a 60 a 0 50 c� 40 C 0 U 30 20 10 0 1,2-Dichloropropane [ND] 1,4-Dioxane (Groundwater Elevation Monitoring Well MW-4A (Rescaled - 2) Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M rn M M M M M M N N N N N N N N N N N N rl rl rl rl 1-1 — rl rl rl rl 2030 2020 I. u 1990 Chart MW-4A (Other) (3) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 100 90 80 70 60 on 0 50 s. 40 0 0 L� 30 20 10 0 tAcetone f 1,2-Dichloropropane [ND] IF2-Butanone [ND] --W-4-Methyl-2-Pentanone [ND] --+-1,4-Dioxane (Groundwater Elevation Monitoring Well MW-5 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 - - - rl rl rl rl 1980 1975 1970 1950 1945 + 1940 Chart MW-5 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 100 90 80 70 W 60 aA 0 0 50 40 C 0 U 30 20 10 0 0 rl O N M N rl Monitoring Well MW-6 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 Acetone f1,2-Dichloropropane [ND] IF2-Butanone [ND] t4-Methyl-2-Pentanone [ND] t 1,4-Dioxane (Groundwater Elevation 2010 2005 1995 L7 1990 O N O N O N O N O N O N O N O N O N O N O N O N rl M rl M rl M �--i M �--i M M M rl M rl M rl M rl M rl M N N N N N N N N N N e4 N N Chart MW-6 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 0, 14 12 10 4 2 Acetone —410--1,2-Dichloropropane [ND] f2-Butanone [ND] --W-4-Methyl-2-Pentanone [ND] t 1,4-Dioxane (Groundwater Elevation Monitoring Well MW-6-192 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 0 O N O N O N O N O N rl M rl M rl M rl M � M N N N N N Chart MW-6-192 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 O O O O O O O N N N N N N N �--i rl rl rl rl M M M M M M M N N N N N N N 0 rl rl rl 2000 1990 1980 7: 1960 + 1950 Prepared By: TAO Checked By: RLB 50 45 40 35 a 30 aA 0 25 20 0 0 U 15 10 5 0 Acetone f1,2-Dichloropropane [ND] f 2-Butanone t4-Methyl-2-Pentanone [ND] t 1,4-Dioxane (Groundwater Elevation Monitoring Well MW-7 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 Well Dry, No Sample Collected I rl rl rl �--i .--i rl rl rl rl N N O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M N N N N N N N N N N N N rl rl rl rl - rl rl rl rl 2090 2089 2088 2087 P 2086 0 2085 a� W 2084 0 2083 c L� 2082 2081 2080 N N O N M N rl Chart MW-7 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 10 9 8 7 W 6 0 0 5 s. u 4 0 0 U 3 2 1 0 i tAcetone [ND] f 1,2-Dichloropropane [ND] f 2-Butanone [ND] —0-4-Methyl-2-Pentanone [ND] --*--1,4-Dioxane [ND] (Groundwater Elevation Monitoring Well MW-12-25 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl .--i .--i rl rl rl rl M M M M M M M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 - - - rl rl rl rl 2040 2035 2030 2025 2020 w 0 2015 W s. 2010 2005 0 2000 1995 1990 N N O N M N rl Chart MW-12-25 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 10 9 8 7 a 6 0 5 s. u 4 C 0 U 3 2 1 0 Acetone [ND] 1,2-Dichloropropane f 2-Butanone [ND] t4-Methyl-2-Pentanone [ND] t 1,4-Dioxane [ND] —*--Groundwater Elevation Monitoring Well MW-13-35 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M rn M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 — — — rl rl rl rl 2020 2010 w 0 W u + 1990 Chart MW-13-35 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 10 9 8 7 W 6 0 5 s. 4 u C 0 U 3 2 1 0 Acetone [ND] 1,2-Dichloropropane f2-Butanone --W-4-Methyl-2-Pentanone [ND] —+--1,4-Dioxane [ND] (Groundwater Elevation Monitoring Well MW-13-132 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M rn M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 — — — rl rl rl rl 2010 2000 1990 V r- w 0 1980 a� W I. u 1960 + 1950 Chart MW-13-132 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 100 90 80 70 W 60 an 0 50 s. 40 C 0 U 30 20 10 0 Acetone -40--1,2-Dichloropropane [ND] f 2-Butanone -40--4-Methyl-2-Pentanone [ND] 1,4-Dioxane (Groundwater Elevation Monitoring Well MW-17-60 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M rn M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 — — — rl rl rl rl 1920 1910 1900 w 1870 + 1860 N N O N M N rl A6 Chart MW-17-60 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 100 90 80 70 W 60 an 0 0 50 s. 40 C 0 U 30 20 10 0 Acetone -40--1,2-Dichloropropane [ND] f2-Butanone [ND] f4-Methyl-2-Pentanone [ND] 1,4-Dioxane (Groundwater Elevation Monitoring Well MW-17-137 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 - - - rl rl rl rl 1920 1910 1900 w 0 1890 W 1880 "o 0 1870 + 1860 N N O N M N rl '7: Chart MW-17-137 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 100 90 80 70 W 60 0 0 50 s. 40 C 0 U 30 20 10 0 0 rl O N M N rl Monitoring Well MW-18-78 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 Acetone -41-1,2-Dichloropropane [ND] f2-Butanone [ND] --W-4-Methyl-2-Pentanone [ND] 1,4-Dioxane (Groundwater Elevation ot 1900 1890 1860 O N O N O N O N O N O N O N O N O N O N O N O N rl M rl M rl M �--i M �--i M M M rl M rl M rl M rl M rl M N N N N N N N N N N N N Chart MW-18-78 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 160 140 120 100 40 20 tAcetone 1,2-Dichloropropane [ND] A-2-Butanone [ND] -40--4-Methyl-2-Pentanone [ND] t 1,4-Dioxane —*--Groundwater Elevation Monitoring Well MW-19-75 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 0 O N O N O N O N O N rl M rl M rl M rl M � M N N N N N Chart MW-19-75 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 O O O O O O O N N N N N N N �--i rl rl rl rl M M M M M M M N N N N N N N 0 rl rl rl 1910 1900 1890 1870 + 1860 N N O N M N rl I. u Prepared By: TAO Checked By: RLB 100 90 80 70 a 60 an 0 50 s. 40 0 U 30 20 10 0 i Acetone 1,2-Dichloropropane [ND] f2-Butanone [ND] --&-4-Methyl-2-Pentanone [ND] 1,4-Dioxane (Groundwater Elevation Monitoring Well MW-19-110 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M rn M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 — rl rl rl rl 1910 1900 1870 + 1860 N N O N M N rl i Chart MW-19-110 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 100 90 80 70 a 60 0 0 50 s. 40 0 0 U 30 20 10 0 i Acetone 1,2-Dichloropropane [ND] f 2-Butanone [ND] t4-Methyl-2-Pentanone [ND] t 1,4-Dioxane —*--Groundwater Elevation Monitoring Well MW-21-21 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M rn M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 — — — rl rl rl rl 1910 1900 C7 1870 + 1860 N N O N M N rl Chart MW-21-21 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 100 90 80 70 W 60 an 0 50 s. 40 C 0 U 30 20 10 0 Acetone -41*-1,2-Dichloropropane [ND] IF2-Butanone [ND] f4-Methyl-2-Pentanone [ND] 1,4-Dioxane (Groundwater Elevation Monitoring Well MW-21-94 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M e4 N N eq N eq N N N N N N eq N eq e4 N N rl rl rl rl 1-1 - - - rl rl rl rl 1900 1895 1885 + 1880 N N O N M N rl Chart MW-21-94 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 10 9 8 7 a 6 0 5 s. u 4 C 0 U 3 2 1 0 i i i Acetone [ND] -40--1,2-Dichloropropane [ND] f2-Butanone [ND] t4-Methyl-2-Pentanone [ND] —*--Groundwater Elevation Monitoring Well DPL-2 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 I rl rl rl �--i .--i rl rl rl rl N N O O O O O O O O O O O O N N N N N N N N N N N N rl rl rl rl �--i �--i rl rl rl rl M M M M M M M M M M M M N N N N N N N N N N N N rl rl rl rl - rl rl rl rl 2040 2035 W 2025 c 0 0 2020 OW-TIM N N O N M N rl Ai Chart DPL-2 (Other) of GW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB APPENDIX E SURFACE WATER VOC TREND PLOTS [1 VOC CATEGORY] 100 90 80 70 60 bA 0 50 s. 40 C 0 U 30 20 10 0 tAcetone [ND] —0--1,2-Dichloropropane [ND] f2-Butanone [ND] f4-Methyl-2-Pentanone [ND] —0--1,4-Dioxane [ND] �1,4-Dioxane NC2B Standard Surface Water Location SW-1 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O O N N N N N N N N N N N N N M M M M M M M M M M M M M N N N N N N N N N N N N N rl rl rl rl - rl rl rl rl rl Prepared By: TAO Chart SW-1 (Other) of SW Other VOC Trend Plots for OBCLF 14175-03 Checked By: RLB 100 90 80 70 60 U 30 20 10 0 tAcetone [ND] —40--1,2-Dichloropropane [ND] f2-Butanone [ND] -40--4-Methyl-2-Pentanone [ND] t 1,4-Dioxane [ND] �1,4-Dioxane NUB Standard Surface Water Location SW-2 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart SW-2 (Other) of SW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 100 90 80 70 U 30 20 10 0 ---Acetone [ND] —40--1,2-Dichloropropane [ND] f2-Butanone [ND] f4-Methyl-2-Pentanone [ND] 1,4-Dioxane �1,4-Dioxane NC2B Standard Surface Water Location SW-2A Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 00 01 O 1-1 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart SW-2A (Other) of SW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 100 90 80 70 U 30 20 10 0 tAcetone t 1,2-Dichloropropane [ND] f2-Butanone [ND] -40--4-Methyl-2-Pentanone [ND] t 1,4-Dioxane �1,4-Dioxane NC2B Standard Surface Water Location SW-3 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 00 01 O 1-1 O O O O O O O O O O O O N N N N N N N N N N N N M M M M M M M M M M M M N N N N N N N N N N N N Chart SW-3 (Other) of SW Other VOC Trend Plots for OBCLF 14175-03 Prepared By: TAO Checked By: RLB 100 90 80 70 U 30 20 10 0 tAcetone 1,2-Dichloropropane [ND] f2-Butanone [ND] -40--4-Methyl-2-Pentanone [ND] 1,4-Dioxane �1,4-Dioxane NUB Standard Surface Water Location SW-4 Other Detected VOCs Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 00 ON O -1 N O O O O O O O O O O O O O N N N N N N N N N N N N N M M M M M M M M M M M M M N N N N N N N N N N N N N Prepared By: TAO Chart SW-4 (Other) of SW Other VOC Trend Plots for OBCLF 14175-03 Checked By: RLB APPENDIX F INPUT PARAMETERS FOR NASP [NOVEMBER 2019 TO OCTOBER 2021] TABLE F-1 Input Parameters for the Natural Attenuation Screening Protocol (NASP) - November 2019 Event Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 Background Well Downgradient Wells Test MW-2 MW-B MW-3 MW-4 MW-4A MW-5 MW-6 MW-6-192 MW-7 MW-12-25 MW-13-35 MW-13- 132 MW-15 MW-17-60 MW-17- 137 MW-17- 310 MW-18-78 MW-19-75 MW-19- 110 MW-21- 21 MW-21- 94 MW-24- 45 MW-24- 160 DPL-1 Dissolved Oxygen (mg/L) 4.7 0.4 0.4 0.3 0.9 0.6 0.5 0.8 0.3 3.1 0.5 1.2 9.9 1.1 0.6 0.4 0.4 0.2 0.5 0.4 1 Dry 1.1 Dry Nitrate (mg/L) <0.04 NT NT <0.04 NT NT <0.04 NT NT NT NT <0.04 NT NT NT NT 0.049 <0.04 <0.04 <0.04 <0.04 Dry 0.043 Dry Iron II (mg/L) (Field Measurement) - NT NT 2.5 NT NT 4.0 NT NT NT NT 3.5 NT NT NT NT 3.5 NT 2.5 4.5 4.5 Dry NT Dry Sulfate (mg/L) 3.11 NT NT 27.9 NT NT 2.03 NT NT NT NT 9.4 NT NT NT NT 2.3 15.6 14.3 26.3 2.88 Dry 23.1 Dry Sulfide (mg/L) <0.10 NT NT <0.10 NT NT <0.10 NT NT NT NT <0.10 NT NT NT NT <0.10 <0.10 <0.10 <0.10 <0.10 Dry <0.10 Dry Methane (µg/L) 0.078 NT NT 990 NT NT 2900 NT NT NT NT 670 NT NT NT NT 1300 240 200 960 1900 Dry 0.46 J Dry Oxidation reduction Potential (ORP)(mv) 118.3 58.7 -46.2 -20.4 -61.1 -21.2 -27 72.3 70.4 188 206.5 -33.3 -66.5 56.2 -172.7 17.5 46 -13.1 -7.5 -36.5 42.2 Dry 27.9 Dry pH (standard units) 6.3 6.4 6.4 6.3 6.3 6.5 6.2 6.2 5.6 6.4 5.7 7.2 12.6 6.7 7.3 8.6 6.3 6.3 7.6 6.4 6.7 Dry 7.3 Dry TOC (mg/L) <1.0 NT NT 9.21 NT NT 15.1 NT NT NT NT 1.08 NT NT NT NT 7.72 11.9 1.97 16 9.39 Dry 1.1 Dry Temperature (C°) 15.5 13.5 15.6 12.7 16.4 12.6 10.6 9.5 13.3 11.3 9.5 9.9 12.4 13.5 13.6 13.6 15.9 15.4 15.1 14.5 11.5 Dry 12 Dry Carbon Dioxide (mg/L) 60 NT NT 470 NT NT 450 NT NT NT NT 46 NT NT NT NT 260 340 7 370 130 Dry 4.4 J Dry Alkalinity (mg/L) 59.8 NT NT 397 NT NT 494 NT NT NT NT 153 NT NT NT NT 284 386 155 639 303 Dry 55.6 Dry Chloride (mg/1) 2.19 NT NT 63.4 NT NT 147 NT NT NT NT 5.55 NT NT NT NT 138 160 39.6 95 109 Dry 7.04 Dry Hydrogen (nM) 50 NT NT 37 NT NT 59 NT NT NT NT 40 NT NT NT NT 32 38 22 190 30 Dry 100 Dry Lactic Acid (mg/1) <0.20 NT NT <0.20 NT NT <0.20 NT NT NT NT <0.20 NT NT NT NT <0.20 <0.20 0.056 J <0.20 <0.20 Dry <0.20 Dry Acetic Acid (mg/1) <0.10 NT NT 0.046 J NT NT 0.04 J NT NT NT NT 0.17 NT NT NT NT <0.10 0.037 J 0.032 J 0.046 J 0.094 J Dry 0.039 J Dry Propionic Acid (mg/1) <0.10 NT NT 0.0044 J NT NT <0.10 NT NT NT NT 0.045 J NT NT NT NT <0.10 <0.10 <0.10 <0.10 0.0032 J Dry <0.10 Dry Formic Acid (mg/1) 0.15 J NT NT 0.22 J NT NT 0.16 J NT NT NT NT 0.18 J NT NT NT NT 0.14 J 0.16 J 0.44 J 0.7 1.7 Dry 0.25 J Dry Butyric Acid (mg/1) <0.10 NT NT 0.02 J NT NT <0.10 NT NT NT NT 0.063 J NT NT NT NT <0.10 <0.10 <0.10 <0.10 <0.10 Dry <0.10 Dry Pyruvic Acid (mg/1) <0.10 NT NT 0.01 J NT NT 0.021 J NT NT NT NT <0.10 NT NT NT NT 0.013 J 0.015 J <0.10 0.03 J 0.024 J Dry <0.10 Dry i-Pentanoic Acid (mg/1) <0.10 NT NT <0.10 NT NT <0.10 NT NT NT NT <0.10 NT NT NT NT <0.10 <0.10 <0.10 <0.10 <0.10 Dry <0.10 Dry Pentanoic Acid (mg/1) <0.10 NT NT <0.10 NT NT <0.10 NT NT NT NT <0.10 NT NT NT NT <0.10 <0.10 <0.10 <0.10 <0.10 Dry <0.10 Dry i-Hexanoic Acid (mg/1) <0.20 NT NT <0.20 NT NT <0.20 NT NT NT NT <0.20 NT NT NT NT <0.20 <0.20 <0.20 <0.20 <0.20 Dry <0.20 Dry Hexanoic Acid (mg/1) <0.20 NT NT <0.20 NT NT <0.20 NT NT NT NT <0.20 NT NT NT NT <0.20 <0.20 <0.20 <0.20 <0.20 Dry <0.20 Dry Benzene (µg/1) <1.0 <1.0 1.1 <1.0 4.0 <1.0 1.1 <1.0 1.6 <1.0 1.4 1.2 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1.7 <1.0 Dry <1.0 Dry Toluene (µg/1) <1.0 <1.0 <1.0 <1.0 1.6 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry Ethylbenzene (µg/1) <1.0 <1.0 <1.0 <1.0 2.9 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry Xylenes (µg/1) <1.0 <1.0 <1.0 <1.0 4.9 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry Total BTEX (µg/l) ND ND 1.1 ND 13.4 ND 1.1 ND 1.6 ND 1.4 1.2 ND ND ND ND ND ND ND 1.7 ND Dry ND Dry PCE (µg/1) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry TCE (µg/1) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1.1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry cis-1,2-Dichloroethene (µg/1) <1.0 12.7 1.3 15.6 <1.0 <1.0 <1.0 <1.0 21.6 <1.0 2.9 9.0 <1.0 1.1 <1.0 <1.0 <1.0 <1.0 <1.0 5.3 2.2 Dry <1.0 Dry trans-1,2-Dichlorethene (µg/1) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry DCE Detected? ND Yes Yes Yes ND ND ND ND Yes ND Yes Yes ND Yes ND ND ND ND ND Yes Yes Dry ND Dry VC (µg/1) <1.0 5.8 1.3 2.3 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1.3 <1.0 Dry <1.0 Dry 1,1,1-Trichloroethane (µg/l) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry 1,1-DCA+1,2-DCA (µg/1) ND 1.2 3.9 7.6 ND ND 1.9 ND 4.4 ND ND ND ND ND ND ND ND ND ND 2.5 ND Dry ND Dry Carbon Tetrachloride (µg/1) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry Chloroethane (µg/1) <1.0 <1.0 2.7 <1.0 <1.0 1.1 5.7 <1.0 2.2 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 2.4 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry Ethene (µg/L) 0.0067 NT NT 0.047 J NT NT 0.14 NT NT NT NT 0.99 NT NT NT NT 0.032 0.045 J 0.058 J 0.2 0.085 J Dry 0.0079 J Dry Ethane (µg/L) <0.1 NT NT 0.14 NT NT 0.4 NT NT NT NT 0.14 NT NT NT NT 0.42 0.19 0.056 J 0.081 J 0.35 Dry 0.0084 J Dry Chloroform (µg/1) <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Dry <5.0 Dry Dichloromethane (µg/1) <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Dry <5.0 Dry Notes: 1. ND =Non Detected 2. NT =Not Tested 3. MW-2 is the background well 4. J values are estimated concentrations greater than the MDL and less than the PQL 5. Red text indicates detections from resampling event completed between March 2-3, 2020. 14175-03 NASP Input and Summary.xlsx Prepared By: TAO Table F-1 NASP Input (Nov 19) Checked By: IAI TABLE F-2 Input Parameters for the Natural Attenuation Screening Protocol (NASP) - April 2020 Event Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 Background Well Downgradient Wells Test MW-2 MW-B MW-3 MW-4 MW-4A MW-5 MW-6 MW-6-192 MW-7 MW-12-25 MW-13-35 MW-13- 132 MW-15 MW-17-60 MW-17- 137 MW-17- 310 MW-18-78 MW-19-75 MW-19- 110 MW-21- 21 MW-21- 94 MW-24- 45 MW-24- 160 DPL-1 Dissolved Oxygen (mg/L) 5 0.3 1.0 1.2 0.31 0.5 0.9 0.9 0.2 2.15 1.35 0.36 3.1 0.58 1.77 1.53 1.0 0.6 0.7 0.8 0.6 Dry 0.7 Dry Nitrate (mg/L) 0.014 J NT NT <0.02 NT NT <0.02 NT NT NT NT <0.02 NT NT NT NT <0.02 <0.02 <0.02 <0.02 <0.02 Dry <0.02 Dry Iron II (mg/L) (Field Measurement) <0.5 NT NT 2.0 NT NT 5.0 NT NT NT NT 4.5 NT NT NT NT 4.5 2.5 3.0 3.5 3.0 Dry <0.5 Dry Sulfate (mg/L) 2.9 NT NT 24 NT NT 1.3 NT NT NT NT 8.2 NT NT NT NT 1.4 14 12 38 2.2 Dry 23 Dry Sulfide (mg/L) <1.0 NT NT <1.0 NT NT <1.0 NT NT NT NT 1.1 NT NT NT NT <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry Methane (µg/L) 3.0 NT NT 0.20 J NT NT 1600 NT NT NT NT 240 NT NT NT NT 1400 0.28 J 690 1100 3700 Dry 490 Dry Oxidation reduction Potential (ORP)(mv) 64.5 -50 -40 21.4 -78 -20.6 45 41.1 -24.9 164.7 225.8 -139.4 -28.3 -82 -99.1 -80.4 -86.3 -39.8 -56.4 -50.8 -32.9 Dry 43 Dry pH (standard units) 6.3 6.6 6.9 6.2 6.1 6.4 6.2 6.4 5.7 6.4 5.7 7.1 12.4 6.8 7.3 8.4 6.4 6.3 7.6 6.4 6.7 Dry 7.3 Dry TOC (mg/L) <1.0 NT NT 6.2 NT NT 10 NT NT NT NT <1.0 NT NT NT NT 7.6 13 2.0 12 7.3 Dry 2.6 Dry Temperature (C°) 19.4 16.8 15.2 13.8 17.4 13.3 17.1 21.8 15.1 18.9 16.5 18.7 18.8 15.9 18 17 17.8 17.6 16.8 17.4 15.8 Dry 17.6 Dry Carbon Dioxide (mg/L) 58 NT NT 4.4 J NT NT 120 NT NT NT NT 8.5 NT NT NT NT 360 59 31 220 580 Dry 390 Dry Alkalinity (mg/L) 61 NT NT 440 NT NT 550 NT NT NT NT 150 NT NT NT NT 300 400 160 680 320 Dry 60 Dry Chloride (mg/1) 2.1 NT NT 67 NT NT 140 NT NT NT NT 4.8 NT NT NT NT 130 160 38 50 99 Dry 7.4 Dry Hydrogen (nM) 51 NT NT 21 NT NT 8.2 NT NT NT NT 3.0 NT NT NT NT 4.6 5.0 5.4 7.7 3.6 Dry 27 Dry Lactic Acid (mg/1) <0.2 NT NT <0.2 NT NT <0.2 NT NT NT NT <0.2 NT NT NT NT <0.2 <0.2 <0.2 <0.2 <0.2 Dry <0.2 Dry Acetic Acid (mg/1) <0.1 NT NT <0.1 NT NT <0.1 NT NT NT NT <0.1 NT NT NT NT <0.1 <0.1 <0.1 <0.1 <0.1 Dry 0.05 J Dry Propionic Acid (mg/1) 0.0014 J NT NT 0.0018 J NT NT 0.003 J NT NT NT NT 0.0013 J NT NT NT NT 0.0036 J 0.004 J 0.0015 J <0.1 0.0023 J Dry 0.0048 J Dry Formic Acid (mg/1) <0.5 NT NT <0.5 NT NT <0.5 NT NT NT NT <0.5 NT NT NT NT 0.13 J <0.5 <0.5 <0.5 <0.5 Dry <0.5 Dry Butyric Acid (mg/l) <0.1 NT NT <0.1 NT NT <0.1 NT NT NT NT <0.1 NT NT NT NT <0.1 <0.1 <0.1 <0.1 <0.1 Dry <0.1 Dry Pyruvic Acid (mg/1) <0.1 NT NT <0.1 NT NT 0.016 J NT NT NT NT <0.1 NT NT NT NT 0.016 J 0.026 J <0.1 <0.1 <0.1 Dry <0.1 Dry i-Pentanoic Acid (mg/1) <0.1 NT NT <0.1 NT NT <0.1 NT NT NT NT <0.1 NT NT NT NT <0.1 0.0085 J <0.1 <0.1 <0.1 Dry <0.1 Dry Pentanoic Acid (mg/1) <0.1 NT NT <0.1 NT NT 0.052 J NT NT NT NT <0.1 NT NT NT NT <0.1 0.019 J <0.1 <0.1 0.039 J Dry <0.1 Dry i-Hexanoic Acid (mg/1) <0.2 NT NT <0.2 NT NT <0.2 NT NT NT NT <0.2 NT NT NT NT <0.2 <0.2 <0.2 <0.2 <0.2 Dry <0.2 Dry Hexanoic Acid (mg/1) <0.2 NT NT <0.2 NT NT <0.2 NT NT NT NT <0.2 NT NT NT NT <0.2 <0.2 <0.2 <0.2 <0.2 Dry <0.2 Dry Benzene (µg/1) <1.0 <1.0 1.6 0.81 J 5.9 0.68 J 1.4 <1.0 1.5 <1.0 1.8 1.8 <1.0 <1.0 <1.0 <1.0 <1.0 0.50 J <1.0 2.1 <1.0 Dry <1.0 Dry Toluene (µg/1) <1.0 <1.0 <1.0 <1.0 3.3 <1.0 0.40 J <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry Ethylbenzene (µg/1) <1.0 <1.0 <1.0 <1.0 11 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry Xylenes (µg/1) <1.0 <1.0 0.98 J <1.0 19 <1.0 <1.0 <1.0 0.42 J <1.0 <1.0 <1.0 <1.0 <1.0 0.46 J <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry Total BTEX (µg/l) ND ND 2.58 J 0.81 J 39.2 0.68 J 1.8 J ND 1.92 J ND 1.8 1.8 ND ND 0.46 J ND ND 0.5 J ND 2.1 ND Dry ND Dry PCE (µg/1) <1.0 <l.l <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry TCE (µg/1) <1.0 <1.0 0.73 J <1.0 <1.0 <1.0 <1.0 0.81 J <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 0.43 J <1.0 <1.0 Dry <1.0 Dry cis-1,2-Dichloroethene (µg/1) <1.0 23 0.99 J 15 1.2 <1.0 0.60 J <1.0 19 <1.0 3.1 8.4 <1.0 1.8 <1.0 <1.0 0.99 J <1.0 0.46 J 6.5 2.5 Dry <1.0 Dry trans-1,2-Dichlorethene (µg/1) <1.0 <1.0 <1.0 <1.0 0.46 J <1.0 <1.0 <1.0 <1.0 <1.0 0.40 J <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry DCE Detected? ND Yes Yes Yes Yes ND Yes ND Yes ND Yes Yes ND Yes ND ND Yes ND Yes Yes Yes Dry ND Dry VC (µg/1) <5.0 7.7 0.91 J 2.3 1.2 <5.0 <5.0 <5.0 <5.0 <5.0 0.64 J 2.3 <5.0 0.78 J 0.52 J <5.0 0.58 J <5.0 <5.0 1.6 0.92 J Dry <5.0 Dry 1,1,1-Trichloroethane (µg/l) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry 1,1-DCA+1,2-DCA (µg/1) ND 1.7 3.27 J 8.39 J ND 0.68 J 2.5 0.69 J 3.2 ND ND 1.2 ND 1.2 0.8 J ND 0.96 J 0.69 J ND 2.9 1.28 J Dry ND Dry Carbon Tetrachloride (µg/1) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry Chloroethane (µg/1) <2.0 0.65 J 3.4 2 <2.0 1.2 J 4.2 0.77 J 2.4 <2.0 <2.0 <2.0 <2.0 <2.0 0.49 J <2.0 0.70 J <2.0 0.58 J <2.0 2.8 Dry <2.0 Dry Ethene (µg/L) 0.024 J NT NT 0.059 J NT NT 0.21 NT NT NT NT 0.057 J NT NT NT NT 0.3 0.019 J 1.6 0.068 J 0.28 Dry 0.14 Dry Ethane (µg/L) <0.1 NT NT <0.1 NT NT 0.38 NT NT NT NT 0.072 J NT NT NT NT 0.078 J <0.1 0.16 0.39 0.7 Dry 0.11 Dry Chloroform (µg/1) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry Dichloromethane (µg/1) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dry <1.0 Dry Notes: 1. ND =Non Detected 2. NT =Not Tested 3. MW-2 is the background well 4. 7 values are estimated concentrations greater than the MDL and less than the PQL 14175-03 NASP Input and Summary.xlsx Prepared By: TAO Table F-2 NASP Input (April 20) Checked By: IAI TABLE F-3 Input Parameters for the Natural Attenuation Screening Protocol (HASP) - October 2020 Event Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 Background Well Downgradient Wells Test MW-2 MW-B MW-3 MW-4 MW-4A MW-5 MW-6 MW-6-192 MW-7 MW-12-25 MW-13-35 MW-13- 132 MW-15 MW-17-60 MW-17- 137 MW-17- 310 MW-18-78 MW-19-75 MW-19- 110 MW-21- 21 MW-21- 94 MW-24- 45 MW-24- 160 DPL-1 Dissolved Oxygen (mg/L) 1.8 0.2 0.4 0.4 2.7 0.4 0.4 0.6 0.3 1.25 0.5 0.6 5.3 0.5 2.7 0.2 0.3 0.3 0.3 0.4 0.3 Dry 0.5 Dry Nitrate (mg/L) 0.028 NT NT <0.025 NT NT <0.025 NT NT NT NT <0.025 NT NT NT NT <0.025 <0.025 <0.025 <0.025 <0.025 Dry <0.025 Dry Iron II (mg/L) (Field Measurement) ND 2.5 NT 6.0 NT 2.5 3.0 3.0 3.0 ND 1.0 7.0 ND 2.0 3.0 ND 3.0 2.0 2.5 7.0 2.0 Dry 1.5 Dry Sulfate (mg/L) 4.1 NT NT 21 NT NT 0.78 J NT NT NT NT 7.2 NT NT NT NT 1.2 11 9.7 13 2.2 Dry 27 Dry Sulfide (mg/L) <0.99 NT NT 1.3 NT NT <0.99 NT NT NT NT <0.99 NT NT NT NT 1.2 <1.0 <1.0 1.6 <1.0 Dry <0.99 Dry Methane (µg/L) 7.7 NT NT 720 NT NT 4700 NT NT NT NT 1400 NT NT NT NT 1700 480 400 1900 2000 Dry 27 Dry Oxidation reduction Potential (ORP)(mv) 94.1 -52.6 -55.0 -19.0 -40.0 -16.8 -47.1 -33.5 60.1 101.0 68.6 -127.4 -87.8 -105.7 -65.8 -8.1 -54.8 -7.2 -128.5 40.6 -63.9 Dry -41.4 Dry pH (standard units) 6.0 6.3 6.4 6.2 6.2 6.3 6.2 6.3 5.6 6.3 5.5 7.1 12.5 6.9 7.3 8.2 6.3 6.2 7.4 6.3 6.6 Dry 7.4 Dry TOC (mg/L) <1.0 NT NT 5.9 NT NT 11 NT NT NT NT <1.0 NT NT NT NT 8 14 2.2 12 7.1 Dry 1.1 Dry Temperature (C°) 20.1 20.5 17.6 18.2 17.9 15 22.6 17.6 11.6 16.5 15.8 17.9 17.6 24.5 19.5 21.7 17.4 16.2 19 16.4 16.1 Dry 19.3 Dry Carbon Dioxide (mg/L) 30 NT NT 177 NT NT 197 NT NT NT NT 281 NT NT NT NT 83.2 141 3.93 165 55.9 Dry 1.43 Dry Alkalinity (mg/L) 60 NT NT 420 NT NT 560 NT NT NT NT 150 NT NT NT NT 300 410 170 640 310 Dry 64 Dry Chloride (mg/1) 2.1 NT NT 57 NT NT 140 NT NT NT NT 4.7 NT NT NT NT 140 160 39 86 89 Dry 6.4 Dry Hydrogen (nM) 5.4 NT NT 4.6 NT NT 20 NT NT NT NT 6.0 NT NT NT NT 6.6 1.4 J 3.6 2.7 5.3 Dry 10 Dry Lactic Acid (mg/1) <0.053 NT NT <0.053 NT NT <0.053 NT NT NT NT <0.053 NT NT NT NT <0.053 <0.053 <0.053 <0.053 <0.053 Dry 0.058 J Dry Acetic Acid (mg/1) 0.41 J NT NT 4.0 J NT NT 4.1 J NT NT NT NT 4.0 J NT NT NT NT 4.0 J 3.9 J 0.44 J 3.7 J 0.79 J Dry 0.42 J Dry Propionic Acid (mg/1) <0.053 NT NT <0.053 NT NT <0.053 NT NT NT NT <0.053 NT NT NT NT <0.053 <0.053 <0.053 <0.053 <0.053 Dry <0.053 Dry Formic Acid (mg/1) 5.0 NT NT 48 NT NT 45 NT NT NT NT 44 NT NT NT NT 46 44.0 4.8 44 9.5 Dry 4.8 Dry Butyric Acid (mg/1) <0.058 NT NT <0.058 NT NT <0.058 NT NT NT NT <0.058 NT NT NT NT <0.058 <0.058 <0.058 <0.058 <0.058 Dry <0.058 Dry Pyruvic Acid (mg/1) <0.060 NT NT <0.060 NT NT <0.060 NT NT NT NT <0.060 NT NT NT NT <0.060 <0.060 <0.060 <0.060 <0.060 Dry <0.06 Dry i-Pentanoic Acid (mg/1) <0.061 NT NT <0.061 NT NT <0.061 NT NT NT NT <0.061 NT NT NT NT <0.061 <0.061 <0.061 <0.061 <0.061 Dry <0.061 Dry Pentanoic Acid (mg/1) <0.056 NT NT <0.056 NT NT <0.056 NT NT NT NT <0.056 NT NT NT NT <0.056 <0.056 <0.056 <0.056 <0.056 Dry <0.056 Dry i-Hexanoic Acid (mg/1) <0.056 NT NT <0.056 NT NT <0.056 NT NT NT NT <0.056 NT NT NT NT <0.056 <0.056 <0.056 <0.056 <0.056 Dry <0.056 Dry Hexanoic Acid (mg/1) 0.076 J NT NT 0.67 J NT NT <0.058 NT NT NT NT <0.058 NT NT NT NT <0.058 <0.058 <0.058 0.58 J <0.058 Dry 0.058 J Dry Benzene (µg/1) <0.40 <0.40 0.78 J 0.41 J 2.8 <0.40 0.87 J <0.40 1.7 <0.40 1.7 1.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 1.8 <0.40 Dry <0.40 Dry Toluene (µg/1) <0.40 <0.40 <0.40 <0.40 1.2 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry Ethylbenzene (µg/1) <0.40 <0.40 <0.40 <0.40 1.5 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry Xylenes (µg/1) <0.40 <0.40 0.82 J <0.40 3.2 <0.40 <0.40 <0.40 0.57 J <0.40 <0.40 <0.40 <0.40 <0.40 0.50 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry Total BTEX (µg/l) ND ND 1.6 J 0.41 J 8.7 ND 0.87 J ND 2.27 J ND 1.7 1.4 ND ND 0.50 J ND ND ND ND 1.8 ND Dry ND Dry PCE (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry TCE (µg/1) <0.40 <0.40 <0.40 0.64 J <0.40 <0.40 <0.40 <0.40 0.77 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry cis-1,2-Dichloroethene (µg/1) <0.40 21 0.84 J 16 <0.40 <0.40 0.49 J <0.40 25 <0.40 2.9 4.4 <0.40 1.0 <0.40 <0.40 0.85 J <0.40 0.61 J 5.2 2.4 Dry <0.40 Dry trans-1,2-Dichlorethene (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry DCE Detected? ND Yes Yes Yes ND ND Yes ND Yes ND Yes Yes ND Yes ND ND Yes ND Yes Yes Yes Dry ND Dry VC (µg/1) <5.0 10 0.79 J 3.0 0.51 J <0.40 0.44 J <0.40 <0.40 <0.40 0.53 J 1.6 <0.40 <0.40 0.54 J <0.40 0.68 J <0.40 <0.40 2.3 1.1 Dry <0.40 Dry 1,1,1-Trichloroethane (µg/l) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry 1,1-DCA+1,2-DCA (µg/1) ND 1.7 1.7 7.81 J ND 0.64 J 2 0.66 J 2.7 ND ND 0.73 J ND 0.68 J 0.65 J ND 0.94 J 0.58 J ND 3.04 J 1.30 J Dry ND Dry Carbon Tetrachloride (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry Chloroethane (µg/1) <0.40 0.60 J 2.6 1.9 J <0.40 0.92 J 3.7 0.75 J 3.7 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.70 J <0.40 0.81 J <0.40 2.5 Dry <0.40 Dry Ethene (µg/L) <0.12 NT NT 0.46 J NT NT 0.3 J NT NT NT NT 1.8 NT NT NT NT 1.3 0.46 J <0.12 0.75 J 0.33 J Dry 0.34 J Dry Ethane (µg/L) <0.075 NT NT 0.47 J NT NT 0.92 J NT NT NT NT <0.075 NT NT NT NT 1.1 0.67 J <0.075 1.1 1.5 Dry <0.075 Dry Chloroform (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry Dichloromethane (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry Notes: 1. ND =Non Detected 2. NT =Not Tested 3. MW-2 is the background well 4. 7 values are estimated concentrations greater than the MDL and less than the PQL 14175-03 NASP Input and Summary.xlsx Prepared By: TAO Table F-3 NASP Input (Oct 20) Checked By: IAI TABLE F-4 Input Parameters for the Natural Attenuation Screening Protocol (NASP) - April 2021 Event Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 Background Well Downgradient Wells Test MW-2 MW-B MW-3 MW-4 MW-4A MW-5 MW-6 MW-6-192 MW-7 MW-12-25 MW-13-35 MW-13- 132 MW-15 MW-17-60 MW-17- 137 MW-17- 310 MW-18-78 MW-19-75 MW-19- 110 MW-21- 21 MW-21- 94 MW-24- 45 MW-24- 160 DPL-1 Dissolved Oxygen (mg/L) 5.3 0.1 0.6 1.03 3.76 0.3 0.5 0.66 0.1 2.8 2.7 0.8 5.37 2.7 0.8 0.4 1.5 0.8 0.6 0.1 0.2 Dry 1.49 1.7 Nitrate (mg/L) 0.027 NT NT <0.025 NT NT <0.025 NT NT NT NT 0.028 J NT NT NT NT <0.025 0.012 J <0.025 <0.025 <0.025 Dry <0.025 NT Iron II (mg/L) <0.5 NT NT 6.0 NT NT 3.0 NT NT ND ND 6.0 NT 4.5 1.5 ND 5.0 >7.0 2.5 2.5 4.5 Dry 5.0 NT Sulfate (mg/L) 3.2 NT NT <0.2 NT NT 1.1 NT NT NT NT 7.8 NT NT NT NT 2.2 17 12 23 3.3 Dry 23 NT Sulfide (mg/L) 1.2 NT NT <0.99 NT NT <0.99 NT NT NT NT <0.99 NT NT NT NT 3.7 <0.99 <0.99 1.5 2.6 Dry 1.8 NT Methane (µg/L) 5200 NT NT 3.6 J NT NT 680 NT NT NT NT 3.5 NT NT NT NT 450 1400 170 2200 2000 Dry 35 NT Oxidation reduction Potential (ORP)(mv) 44.2 -133.3 -64.1 -4.7 -29.7 -20.0 -27.2 40.4 36.6 87.0 105.8 -131.4 -100.1 -71.1 -145.1 64.1 -22.0 -8.9 -119.4 -60.8 -71.5 Dry -94.4 64.1 pH (standard units) 6.1 6.8 6.3 6.0 6.1 6.4 6.1 6.3 5.7 6.6 5.9 6.8 12.8 6.9 7.4 8.5 6.3 6.3 7.5 6.4 6.7 Dry 7.4 7.2 TOC (mg/L) 11 NT NT 6.3 NT NT 15 NT NT NT NT 1.1 NT NT NT NT 8.9 12 2.8 15 7.3 Dry 1.4 NT Temperature (C°) 21.4 16.9 21.8 18.8 22.3 19.1 23.5 18.9 15.9 16.5 17.1 26.2 18.1 20.8 15.9 24.7 15.7 20.0 16.8 17.1 16.9 Dry 19.0 30.2 Carbon Dioxide (mg/L) 17.3 NT NT 162 NT NT 179 NT NT NT NT 15.8 NT NT NT NT 121 94.4 3.84 341 77.1 Dry 1.36 NT Alkalinity (mg/L) 64 NT NT 450 NT NT 570 NT NT NT NT 150 NT NT NT NT 300 410 170 770 310 Dry 70 NT Chloride (mg/1) 2.4 NT NT 0.32 J NT NT 160 NT NT NT NT 5.1 NT NT NT NT 150 150 41 70 98 Dry 6.5 NT Hydrogen (nM) 120 NT NT 0.76 J NT NT 22 NT NT NT NT 20 NT NT NT NT <0.49 0.95 J 3.4 8.4 17 Dry 4.2 NT Lactic Acid (mg/1) <0.053 NT NT <0.11 NT NT <0.53 NT NT NT NT <0.53 NT NT NT NT <0.53 <0.53 <0.11 <0.53 <0.53 Dry <0.053 NT Acetic Acid (mg/1) 0.37 J NT NT 0.66 J NT NT 2.7 J NT NT NT NT 2.7 J NT NT NT NT 2.9 J 2.6 J 0.52 J 3.8 J 2.4 J Dry 0.27 J NT Propionic Acid (mg/1) <0.053 NT NT <0.11 NT NT <0.53 NT NT NT NT <0.53 NT NT NT NT <0.53 <0.53 <0.11 <0.53 <0.53 Dry <0.053 NT Formic Acid (mg/1) 4.6 NT NT 10 NT NT 52 NT NT NT NT 48.0 NT NT NT NT 45 53 12 47 49 Dry 5.3 NT Butyric Acid (mg/1) <0.058 NT NT 0.15 J NT NT <0.58 NT NT NT NT <0.58 NT NT NT NT <0.58 <0.58 <0.12 <0.58 <0.58 Dry <0.058 NT Pyruvic Acid (mg/1) <0.060 NT NT <0.12 NT NT <0.60 NT NT NT NT <0.60 NT NT NT NT <0.60 <0.60 <0.12 <0.60 <0.60 Dry <0.060 NT i-Pentanoic Acid (mg/1) <0.061 NT NT <0.12 NT NT <0.61 NT NT NT NT <0.61 NT NT NT NT <0.61 <0.61 <0.12 <0.61 <0.61 Dry <0.061 NT Pentanoic Acid (mg/1) <0.056 NT NT <0.11 NT NT <0.56 NT NT NT NT <0.56 NT NT NT NT <0.56 <0.56 <0.11 <0.56 <0.56 Dry <0.056 NT i-Hexanoic Acid (mg/1) <0.056 NT NT <0.11 NT NT <0.56 NT NT NT NT <0.56 NT NT NT NT <0.56 <0.56 <0.11 <0.56 <0.56 Dry <0.056 NT Hexanoic Acid (mg/1) <0.058 NT NT <0.12 NT NT <0.58 NT NT NT NT <0.58 NT NT NT NT <0.58 <0.58 <0.12 <0.58 <0.58 Dry <0.058 NT Benzene (µg/1) <0.40 <0.40 1.6 0.86 J 5.6 0.86 J 1.3 <0.40 2.4 <0.40 1.1 1.0 <0.40 <0.40 <0.40 <0.40 0.53 J <0.40 <0.40 2.8 <0.40 Dry <0.40 <0.40 Toluene (µg/1) <0.40 <0.40 <0.40 <0.40 2.7 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.66 J <0.40 Dry <0.40 <0.40 Ethylbenzene (µg/1) <0.40 <0.40 <0.40 <0.40 6.8 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 Xylenes (µg/1) <0.40 <0.40 0.89 J <0.40 12 <0.40 <0.40 <0.40 0.54 J <0.40 <0.40 <0.40 <0.40 <0.40 0.46 J <0.40 <0.40 <0.40 <0.40 0.60 J <0.40 Dry <0.40 <0.40 Total BTEX (µg/l) ND ND 2.49 J 0.86 J 27.1 0.86 J 1.3 ND 2.94 J ND 1.1 1.0 ND ND 0.46 J ND 0.53 J ND ND 4.06 J ND Dry ND ND PCE (µg/1) <0.40 0.68 BJ <0.40 1.2 B <0.40 <0.40 0.87 BJ <0.40 <0.40 0.63 BJ 0.66 BJ 0.53 BJ <0.40 0.54 BJ 0.51 BJ <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 TCE (µg/1) <0.40 <0.40 <0.40 0.82 J <0.40 <0.40 <0.40 <0.40 0.60 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.51 J <0.40 Dry <0.40 <0.40 cis-1,2-Dichloroethene (µg/1) <0.40 4.7 0.65 J 16 <0.40 <0.40 1.4 <0.40 20 0.57 J 2.7 2.6 <0.40 2.5 0.61 J <0.40 0.95 J <0.40 0.93 J 5.8 2.9 Dry <0.40 <0.40 trans-1,2-Dichlorethene (µg/1) <0.40 <0.40 <0.40 <0.40 0.44 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 DCE Detected? ND Yes Yes Yes ND ND Yes ND Yes Yes Yes Yes ND Yes Yes ND Yes ND Yes Yes Yes Dry ND ND VC (µg/1) <0.40 2.3 0.72 J 3 1 <0.40 <0.40 <0.40 <0.40 <0.40 0.61 J 0.91 J <0.40 1.2 0.74 J <0.40 0.83 J <0.40 <0.40 2.2 1.2 Dry <0.40 <0.40 1,1,1-Trichloroethane (µg/l) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 1,1-DCA+1,2-DCA (µg/1) ND ND 1.3 7.2 ND 0.51 J 1.8 0.69 J 2.1 ND ND ND ND 1.1 0.78 J ND 0.98 J 0.47 J ND 3.23 J 1.62 J Dry ND ND Carbon Tetrachloride (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 Chloroethane (µg/1) <0.40 0.61 J 3.2 2 <0.40 1.0 J 3.5 0.65 J 3.4 <0.40 <0.40 <0.40 <0.40 <0.40 0.43 J <0.40 0.70 J <0.40 0.87 J <0.40 2.3 Dry <0.40 <0.40 Ethene (µg/L) 31 NT NT <0.12 NT NT <0.12 NT NT NT NT 0.29 J NT NT NT NT 0.70 J <0.12 <0.12 0.46 J 0.28 J Dry 0.36 J NT Ethane (µg/L) 1.2 NT NT <0.075 NT NT 0.20 J NT NT NT NT 0.79 J NT NT NT NT <0.075 0.62 J 0.18 J 0.32 J 0.75 J Dry <0.075 NT Chloroform (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 Dichloromethane (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 <0.40 Notes: 1. ND =Non Detected 2. NT =Not Tested 3. MW-2 is the background well 4. 7 values are estimated concentrations greater than the MDL and less than the PQL 5. B values (method blank yielded detections of PCE) are laboratory errors and are presented on this spreadsheet. 14175-03 NASP Input and Summary.xlsx Prepared By: TAO Table F-4 NASP Input (April 21) Checked By: IAI TABLE F-5 Input Parameters for the Natural Attenuation Screening Protocol (HASP) - October 2021 Event Old Buncombe County Landfill Woodfin, North Carolina BLE Project Number J20-14175-03 Background Well Downgradient Wells Test MW-2 MW-B MW-3 MW-4 MW-4A MW-5 MW-6 MW-6-192 MW-7 MW-12-25 MW-13-35 MW-13- 132 MW-15 MW-17-60 MW-17- 137 MW-17- 310 MW-18-78 MW-19-75 MW-19- 110 MW-21- 21 MW-21- 94 MW-24- 45 MW-24- 160 DPL-1 Dissolved Oxygen (mg/L) 6.4 0.3 0.5 0.4 0.8 0.5 0.3 0.4 0.3 0.7 0.3 1 6.4 0.6 0.7 0.5 0.6 0.2 0.4 0.3 0.2 Dry 4.2 Dry Nitrate (mg/L) <0.025 NT NT <0.025 NT NT <0.025 NT NT NT NT <0.025 NT NT NT NT <0.025 <0.025 <0.025 <0.025 <0.025 Dry <0.025 Dry Iron II (mg/L) <0.5 NT NT 2.0 NT NT 6.0 NT NT NT NT 4.5 NT NT NT NT 4.0 1.5 1.5 7.0 6.5 Dry 0.5 Dry Sulfate (mg/L) 2.9 NT NT 24 NT NT 0.37 J NT NT NT NT 6.4 NT NT NT NT 1.7 18 8.8 10 2.4 Dry 24 Dry Sulfide (mg/L) <0.99 NT NT <0.99 NT NT <0.99 NT NT NT NT <0.99 NT NT NT NT <0.99 <0.99 <0.99 <0.99 <0.99 Dry <0.99 Dry Methane (µg/L) <2.5 NT NT 270 NT NT 1200 NT NT NT NT 300 NT NT NT NT 500 190 460 630 830 Dry 7.8 Dry Oxidation reduction Potential (ORP)(mv) 50.8 -58.2 -40.5 -18.8 -33.6 -29.9 -50 -5.7 40.7 164 179.4 -92.6 0.9 -30.7 -97.2 -17.5 -13.9 -0.6 -103 46.9 -114.9 Dry 4.4 Dry pH (standard units) 6.7 6.5 6.5 6.3 6.2 6.5 6.2 6.3 5.8 6.4 5.7 7.0 12.5 6.9 7.4 8.5 6.3 6.1 7.3 6.3 6.5 Dry 7.6 Dry TOC (mg/L) <1.0 NT NT 5.3 NT NT 12 NT NT NT NT 1.1 NT NT NT NT 8.1 11 2.8 11 6.9 Dry 1.3 Dry Temperature (C°) 14.5 17.7 16 18 20.9 13.8 17.3 18.4 15.4 23.4 21 18.9 12.9 13.5 14.5 13.4 17.2 14.2 13.6 17.5 16.8 Dry 15 Dry Carbon Dioxide (mg/L) 3.45 NT NT 373 NT NT 406 NT NT NT NT 35.9 NT NT NT NT 183 273 13.6 427 132 Dry 2.63 Dry Alkalinity (mg/L) 64 NT NT 430 NT NT 540 NT NT NT NT 150 NT NT NT NT 260 380 180 600 290 Dry 70 Dry Chloride (mg/1) 2.2 NT NT 55 NT NT 160 NT NT NT NT 5 NT NT NT NT 140 140 42 110 96 Dry 6.8 Dry Hydrogen (nM) 1.9 J NT NT 170 NT NT 25 NT NT NT NT 19.0 NT NT NT NT 2.9 J 3.6 J 2.7 J 2.4 J 5 Dry 120 Dry Lactic Acid (mg/1) 0.70 NT NT 0.54 NT NT <0.053 NT NT NT NT 1.0 NT NT NT NT <0.053 <0.053 0.91 3.8 J <0.053 Dry 1.1 Dry Acetic Acid (mg/1) 0.18 J NT NT 0.26 J NT NT 1.7 J NT NT NT NT 0.15 J NT NT NT NT 1.9 J 1.6 J 0.24 J 2.0 J 1.6 J Dry 0.14 J Dry Propionic Acid (mg/1) <0.053 NT NT <0.053 NT NT <0.053 NT NT NT NT <0.053 NT NT NT NT <0.053 <0.053 <0.053 <0.053 <0.053 Dry <0.053 Dry Formic Acid (mg/1) 4.9 J NT NT 4.9 NT NT 43 NT NT NT NT 5.2 NT NT NT NT 43 44 5.0 45 42 Dry 4.9 Dry Butyric Acid (mg/1) <0.058 NT NT <0.058 NT NT <0.058 NT NT NT NT <0.058 NT NT NT NT <0.058 <0.058 <0.058 <0.058 <0.058 Dry <0.058 Dry Pyruvic Acid (mg/1) <0.06 NT NT <0.06 NT NT <0.06 NT NT NT NT <0.06 NT NT NT NT <0.06 <0.06 <0.06 <0.06 <0.06 Dry <0.06 Dry i-Pentanoic Acid (mg/1) <0.061 NT NT <0.061 NT NT <0.061 NT NT NT NT <0.061 NT NT NT NT <0.061 <0.061 <0.061 <0.061 <0.061 Dry <0.061 Dry Pentanoic Acid (mg/1) <0.056 NT NT <0.056 NT NT <0.056 NT NT NT NT <0.056 NT NT NT NT <0.056 <0.056 <0.056 <0.056 <0.056 Dry <0.056 Dry i-Hexanoic Acid (mg/1) <0.056 NT NT <0.056 NT NT <0.056 NT NT NT NT <0.056 NT NT NT NT <0.056 <0.056 <0.056 <0.056 <0.056 Dry <0.056 Dry Hexanoic Acid (mg/1) <0.058 NT NT 0.065 J NT NT <0.058 NT NT NT NT <0.058 NT NT NT NT <0.058 <0.058 0.071 J <0.058 <0.058 Dry <0.058 Dry Benzene (µg/1) <0.40 <0.40 1.2 0.82 J 4.4 0.82 J 1.4 <0.40 2.8 J <0.40 2 1.2 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 2.4 <0.40 Dry <0.40 Dry Toluene (µg/1) <0.40 <0.40 <0.40 <0.40 3 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.40 J <0.40 Dry <0.40 Dry Ethylbenzene (µg/l) <0.40 <0.40 <0.40 <0.40 4.9 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry Xylenes (µg/1) <0.40 <0.40 0.84 J <0.40 8.9 <0.40 <0.40 <0.40 1.6 <0.40 <0.40 <0.40 <0.40 <0.40 0.71 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry Total BTEX (µg/l) ND ND 2.04 J 0.82 J 21.2 0.82 J 1.4 ND 4.4 J ND 2 1.2 ND ND 0.71 J ND ND ND ND 2.8 ND Dry ND Dry PCE (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry TCE (µg/1) <0.40 <0.40 <0.40 0.69 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry cis-1,2-Dichloroethene (µg/1) <0.40 12 0.79 J 17 <0.40 <0.40 <0.40 <0.40 27 <0.40 3.1 1.8 <0.40 1.3 <0.40 <0.40 0.77 J <0.40 0.78 J 4.0 2.6 Dry <0.40 Dry trans-1,2-Dichlorethene (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry DCE Detected? ND Yes Yes Yes ND ND ND ND Yes ND Yes Yes ND Yes ND ND Yes ND Yes Yes Yes Dry ND Dry VC (µg/1) <5.0 9.4 0.54 J 2.6 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.69 J 0.57 J <0.40 0.47 J <0.40 <0.40 <0.40 <0.40 <0.40 1.7 0.54 J Dry <0.40 Dry 1,1,1-Trichloroethane (µg/l) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry 1,1-DCA+1,2-DCA (µg/1) ND 1.4 1.5 7.58 J ND 0.50 J 1.5 0.64 J 3.0 ND ND ND ND 0.99 J 0.71 J ND 0.81 J 0.59 J ND 2.06 J 1.40 J Dry ND Dry Carbon Tetrachloride (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry Chloroethane (µg/1) <0.40 <0.40 2.7 1.7 J <0.40 0.69 J 3.3 <0.40 3.4 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 2.1 Dry <0.40 Dry Ethene (µg/L) <0.12 NT NT <0.12 NT NT <0.12 NT NT NT NT 0.29 J NT NT NT NT <0.12 <0.12 <0.12 0.26 J <0.12 Dry <0.12 Dry Ethane (µg/L) <0.075 NT NT <0.075 NT NT 0.51 J NT NT NT NT <0.075 NT NT NT NT 0.36 J 0.22 J <0.075 0.24 J 0.36 J Dry <0.075 Dry Chloroform (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry Dichloromethane (µg/1) <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 0.48 J <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 Dry <0.40 Dry Notes: 1. ND =Non Detected 2. NT =Not Tested 3. MW-2 is the background well 4. 7 values are estimated concentrations greater than the MDL and less than the PQL 14175-03 NASP Input and Summary.xlsx Prepared By: TAO Table F-5 NASP Input (Oct 21) Checked By: IAI APPENDIX G NASP SCORE SHEETS [NOVEMBER 2019 TO OCTOBER 2021] APPENDIX G -I NASP SCORE SHEETS [NOVEMBER 2019] M W-4 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 27 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 0 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ DO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-6 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 22 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 0 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 0 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 0 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 0 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 0 1 Chloride* >2x background Daughter product of organic chlorine 0 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source 0 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 0 PCE* Material released 0 0 0 TCE* Daughter product of PCE of 0 0 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 0 VC* Daughter product of DCE'/ 0 0 0 1,1,1- Trichloroethane* Material released 0 0 0 DCA Daughter product of TCA under reducing conditions 0 0 2 Carbon Tetrachloride Material released 0 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 0 0 >0.1 mg/L Daughter product of VC/ethene 0 0 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 0 Dichloromethane Daughter product of Chloroform 0 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). MW-13-132 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 23 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released O� 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-18-78 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 25 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-19-75 Natural Attenuation Screening Protocol Interpretation Score y COFf : 16 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 0 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 O 0 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). MW-19-110 Natural Attenuation Screening Protocol Interpretation Score y COFf : 16 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-21-21 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 27 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 0 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-21-94 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 23 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 0 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 4 0 0 TCE* Daughter product of PCE of OO 0 2 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ 0 ( 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions (k 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-24-160 Natural Attenuation Screening Protocol Interpretation Score y Col- : 10 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 0 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 0 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 (k 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 0 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). APPENDIX G- 2 NASP SCORE SHEETS [aPRIL 2020] M W-4 Natural Attenuation Screening Protocol Interpretation Score y COFf : 20 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 0 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source 0 0 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ DO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). MW-6 Natural Attenuation Interpretation Score Screening Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 Protocol Score: 24 f.1,1—g Is taken from the usePA protocol IusePA, issa>. Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 �Th. he results of this scoring process have no regulatory 9°1fOe�ee. Scroll to End of Table Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductivedechionnahon points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen* <0.5 mg/L Tolerated, suppresses the reductive pathway at higher O 0 0 concentrations > 5mg/L Not tolerated; however, VC may be oxidized aerobically O 0 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive OO O 2 pathway Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under 0 O 3 Fe(Ill)-reducing conditions Sulfate* <20 mg/L At higher concentrations may compete with reductive OO O 2 pathway Sulfide* >1 mg/L Reductive pathway possible O 0 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates O O 3 Oxidation <50 millivolts (mV) Reductive pathway possible O O 1 Reduction Potential* (ORP) <-100mV Reductive pathway likely O 0 0 pH* 5 < pH < 9 Optimal range for reductive pathway O O 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be O 0 0 natural or anthropo enic Temperature* >20°C At T >20°C biochemical process is accelerated O 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 O 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer O O 1 minerals Chloride* >2x background Daughter product of organic chlorine O O 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate O O 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic O 0 0 compounds; carbon and energy source BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination O 0 0 PCE* Material released O 0 0 TCE* Daughter product of PCE of O 0 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter OQ Q 2 product of TCEaf; 1,1-DCE can be a Chem. reaction product of TCA VC* Daughter product of DCE O 0 0 1,1,1- Material released O 0 0 Trichloroethane* DCA Daughter product of TCA under reducing conditions OO O 2 Carbon Material released O 0 0 Tetrachloride Chloroethane* Daughter product of DCA or VC under reducing conditions OO O 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene O 0 >0.1 mg/L Daughter product of VC/ethene O 0 Chloroform Daughter product of Carbon Tetrachloride O 0 0 Dichloromethane Daughter product of Chloroform O 0 * required analysis. l a/ Points awarded only if it can be shown that the compound is a daughter product SCORE I ( Reset (i.e., not a constituent of the source NAPL). MW-13-132 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 28 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 3 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 2 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source 0 0 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-18-78 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 28 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released O� 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-19-75 Natural Attenuation Screening Protocol Interpretation Score y COFf : 20 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). MW-19-110 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 23 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source 0 0 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of OO 0 2 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-21-21 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 22 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 0 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source 0 0 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released O� 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-21-94 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 28 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source 0 0 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 4 0 0 TCE* Daughter product of PCE of OO 0 2 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-24-160 Natural Attenuation Screening Protocol Interpretation Score y Col- : 9 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 0 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 0 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 0 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source 0 0 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). APPENDIX G- 3 NASP SCORE SHEETS OCTOBER 2020] M W-4 Natural Attenuation Screening Protocol Interpretation Score y COFf : .34 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 0 Sulfide* >1 mg/L Reductive pathway possible 0 0 3 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of OO 0 2 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ DO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-6 Natural Attenuation Screening Protocol Interpretation Score y COFf : .32 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 1 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). MW-13-132 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 28 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 2 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ DO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-18-78 Natural Attenuation Screening Protocol Interpretation Score y COFf : .34 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 3 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-19-75 Natural Attenuation Screening Protocol Interpretation Score y COFf : 24 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). MW-19-110 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 25 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 2 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source 0 0 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of OO 0 2 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-21-21 Natural Attenuation Screening Protocol Interpretation Score y COFf : .32 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 3 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-21-94 Natural Attenuation Screening Protocol Interpretation Score y COFf : .30 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-24-160 Natural Attenuation Screening Protocol Interpretation Score y COFf : 13 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 0 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 0 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 4 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). APPENDIX G- 4 NASP SCORE SHEETS [aPRIL 202 i ] M W-4 Natural Attenuation Screening Protocol Interpretation Score y COFf : 20 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 0 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 0 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ DO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-6 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 29 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic OO 0 2 Temperature* >20°C At T >20°C biochemical process is accelerated O� 0 1 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). MW-13-132 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 27 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 2 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated O� 0 1 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-18-78 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 25 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 3 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 0 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released O� 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-19-75 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 22 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released O� 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). MW-19-110 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 22 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 2 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source 0 0 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of OO 0 2 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-21-21 Natural Attenuation Screening Protocol Interpretation Score y COFf : .32 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 3 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-21-94 Natural Attenuation Screening Protocol Interpretation Score y COFf : .33 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 3 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-24-160 Natural Attenuation Screening Protocol Interpretation Score y COFf : 16 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 0 Sulfide* >1 mg/L Reductive pathway possible 0 0 3 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 0 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). APPENDIX G- 5 NASP SCORE SHEETS OCTOBER 2021 ] M W-4 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 28 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 0 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of OO 0 2 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ DO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-6 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 27 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). MW-13-132 Natural Attenuation Screening Protocol Interpretation Score y COFf : 24 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-18-78 Natural Attenuation Screening Protocol Interpretation Score y COFf : 24 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions O� 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 3 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released O� 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-19-75 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 27 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). MW-19-110 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 25 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 2 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of OO 0 2 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-21-21 Natural Attenuation Screening Protocol Interpretation Score 9 coi-e: 29 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible 0 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 1 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ OO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 if 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-21-94 Natural Attenuation Screening Protocol Interpretation Score y COFf : .32 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s Of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in * reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 0 3 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 3 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 3 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 2 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 1 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA O 0 2 VC* Daughter product of DCE'/ DO 0 2 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 2 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions O 0 2 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL). M W-24-160 Natural Attenuation Screening Protocol Interpretation Score y Col- : 10 scroll to End of Table Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5 Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14 The foliowing is Wken from the UsePA protowl (usePA, 1998). The rssW4s of this Scoring process have no regulatory signs i- Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20 Strong evidence for anaerobic biodegradation* of chlorinated organics >20 Concentration in reductive dechlorination Points Analysis Most Contam. Zone Interpretation Yes No Awarded Oxygen` <0.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations 0 Di 0 > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 O 0 Nitrate* <1 mg/L At higher concentrations may compete with reductive pathway 0 0 2 Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under Fe(Ill)-reducing conditions 0 0 Sulfate* <20 mg/L At higher concentrations may compete with reductive pathway 0 0 0 Sulfide* >1 mg/L Reductive pathway possible 0 (0) 0 Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 Oxidation Reduction Potential* (ORP) <50 millivolts (mV) Reductive pathway possible O 0 1 <-100mV Reductive pathway likely 0 0 PH* 5 < pH < 9 Optimal range for reductive pathway 0 0 0 TOC >20 mg/L Carbon and energy source; drives dechlorination; can be natural or anthro o enic 0 O 0 Temperature* >20°C At T >20°C biochemical process is accelerated 0 (k 0 Carbon Dioxide >2x background Ultimate oxidative daughter product 0 0 Alkalinity >2x background Results from interaction of carbon dioxide with aquifer minerals 0 0 Chloride* >2x background Daughter product of organic chlorine 0 2 Hydrogen >1 nM Reductive pathway possible, VC may accumulate 0 3 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source OO 0 2 BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 0 PCE* Material released 0 0 TCE* Daughter product of PCE of 0 OO 0 DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCEef; 1,1-DCE can be a Chem. reaction product of TCA 0 0 VC* Daughter product of DCE'/ 0 OO 0 1,1,1- Trichloroethane* Material released 0 0 DCA Daughter product of TCA under reducing conditions 0 0 Carbon Tetrachloride Material released 0 0 Chloroethane* Daughter product of DCA or VC under reducing conditions 0 O 0 Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 O 0 >0.1 mg/L Daughter product of VC/ethene 0 O 0 Chloroform Daughter product of Carbon Tetrachloride 0 0 Dichloromethane Daughter product of Chloroform 0 0 * required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product SCORE Reset (i.e., not a constituent of the source NAPL).