Loading...
HomeMy WebLinkAbout20150296 Ver 1_vickery calc_03-09-2015_20150611Strickland, Bev From: To: Subject: IIAMAI Brent Cowan <bcowan@isaacsgrp.com> Thursday, June ll'ZUl5l:UZPK4 Strickland, Bev RE: Vickery 150206 vickeryca|c_U3'U0'ZUl5.pdf From: Strickland, Bev Sent: Thursday, June 11,ZU1S1U:4UAM To: Brent Cowan Subject: RE: Vickery 150296 Beve�dy Striddarid, Laserfid� ie AdrrflrflstraU)r NCDENR Division of Water Resources Physical: Suite 1229,512N Salisbury, N[ Mailing: Mail Service Center 1617, Raleigh, N[ 27699'1617 Phone#919'7O7f8789 Email Address: Bev.Strickland@ncdenr.go From: Brent Cowan Sent: Thursday,]une 11, 20159:43 AM To: Strickland, Bev Subject: RE: Vickery -15O296 Good morning Bev. Attached isapdfof the construction drawings. The file is quite large so please respond when you receive the email so | know that you got it. 1 From: Strickland, Bev [mailto:bev.strickland@ncdenr.gov] Sent: Thursday, June 11, 2015 9:26 AM To: Brent Cowan Subject: Re: Vickery - 150296 Mr. Cowan, Can you please send me a pdf version of the stormwater information you sent in for the above projects including the maps? Thanks, Bev l !I ll� ieveiii ly Stii'ic1ldaind, 11i aseii,fi'cllie NCDENR - Division of Water Resources Physical: Suite 1219, 512 N Salisbury, NC Mailing: Mail Service Center 1617, Raleigh, NC 27699-1617 Phone# 919-707-8789 Email Address: Bev.Strickland@ncdenr.go PEI VICKERY SUBDIVISION TOWN OF STALLINGS UNION COUNTY, NORTH CAROLINA PROJECT CALCULATIONS c A/?o �. :♦ I THE ISAACS GROUP. P.C. It ENGINEERING do • LAND SURVEYING ; C N0. C -1069 zzfl�,07 A�K,,N� //11111111 004 - 026462 �. ."., 'e// /11111 ►���` I_SAACS 0 CIVIL ENGINEERING DESIGN & LAND SURVEYING C 8720 RED OAK BOULEVARD, STE. 420 CHARLOTTE, N.C. 28217 PHONE (704) 527 -3440 FAX (704) 527 -8335 NO. BY DATE REVISION 1 RER 3/9/15 PER COMMENTS VICKERY SUBDIVISION TABLE OF CONTENTS Storm Drainage Calculations ............................. ..............................1 Surface Flow Runoff Calculations .......................... ............................... 2 Storm Drainage Pipe Calculations ......................... ............................... 3 -4 Spread Calculations ............................................... ............................... 5 -6 Drop Inlet Calculations .......................................... ............................... 7 -9 Rip Rap Apron Calculations .................................. ............................... 10 -22 Swale Calculations ................................................. .............................23 SwaleNarrative ....................................................... .............................24 Swale Cross Section ................................................ .............................25 Swale Runoff Calculations ....................................... .............................26 North American Green Swale Calculations ................ ..........................27 -68 Sediment Basin Calculations ...................................... ..........................69 -76 VICKERY SUBDIVISION TOWN OF STALLINGS UNION COUNTY, NORTH CAROLINA STORM DRAINAGE CALCULATIONS (SEE SHEET C6.0 FOR STORM DRAINAGE AREA MAP) Narrative: The storm drainage pipe systems are designed to accommodate the 10 year storm event except in the locations where the pipe system crosses the roadways. At these locations the pipe systems are designed to accommodate the 25 year storm event. The flows to these pipes systems are determined by the use of the rational method. HYDRAFLOW is the modeling software used in designing the storm drainage system. * For culvert crossing, see Flood study calculations R STORM RUNOFF Given Input Data: Description ........ ------------------------------------------------------------------------------- Area Area Coef Tc Intensity Flow Description ac min in /hr cfs ------------------------------------------------------------------------------- CB A5 0.2100 0.7000 5.0000 8.2100 1.2069 CB A4 0.3800 0.7500 5.0000 7.0300 2.0036 CB A3 0.0700 0.5500 5.0000 7.0300 0.2707 CB A2 0.0700 0.5000 5.0000 7.0300 0.2461 DCB B1 0.9900 0.6000 5.0000 8.2100 4.8767 CB Cl 1.6400 0.6000 5.0000 7.0300 6.9175 CB D5 0.6000 0.5600 5.0000 7.0300 2.3621 CB D4 0.3400 0.5000 5.0000 7.0300 1.1951 DCB D3 0.5700 0.6000 5.0000 8.2100 2.8078 DCB D2 0.4300 0.7000 5.0000 7.0300 2.1160 DI E1 0.5800 0.5000 5.0000 7.0300 2.0387 CB H3 0.2100 0.7500 5.0000 8.2100 1.2931 CB H2 0.2800 0.5600 5.0000 7.0300 1.1023 CB 34 0.5500 0.5000 5.0000 7.0300 1.9333 CB 33 0.5500 0.5200 5.0000 8.2100 2.3481 CB 32 0.2300 0.5300 5.0000 7.0300 0.8570 CB K4 0.5400 0.5000 5.0000 7.0300 1.8981 CB K3 0.2400 0.5000 5.0000 8.2100 0.9852 CB K2 0.1300 0.7000 5.0000 7.0300 0.6397 CB L3 0.5800 0.5500 5.0000 8.2100 2.6190 CB L2 0.1900 0.7000 5.0000 7.0300 0.9350 CB M3 0.4500 0.6000 5.0000 8.2100 2.2167 CB M2 0.3300 0.7000 5.0000 7.0300 1.6239 DI R2 0.3300 0.5500 5.0000 7.0300 1.2759 support Data: d rn (o CL t wO NW I.L L 9 LO 0 N N N N O OD O (D (D M M CO N M ID O CD O t� M M N (D (D V (6 ❑ J (0 W [0 O tD M 0 N N N (D 0 N r- N O N to O O C7 0 Cn 6 O O 4 V 6 CO CD to CD M 0 6 CO O O O n W M 2 0 LO (D (O 0 tD tD LO tD to tO v v V V IT tD tD tD tD to (D M CO M M M O (D co (D M M M (D O O M (D (D (D O (0 (D O (D '_� M co M co tO O m r O N M O t0 O tO r O N V n V N O CO � N O N t0 r CO O '7 fl' CY) O �_ to O V LO O (O n V' O � (n (6 r O O N 06 6 (O _J tO (D (O tO 10 W t(') tO t0 CO V q V" tO t0 tO tO (O (D (D ED to M (D (D (D (D M t() O (D O t0 M V to (D M (D V M M CD M M O (D V t` O (D N 00 (D (O M N 00 N (0 N N I�t M 00 V O (A N to (0 = H OD o0 O r M O M 0 0 M 0 tD r 00 0 M M V OR r O Cl) LL U OD M ao N M r (D 00 M M M (O O Di r N 0 N U r r N N N r r r r r C_ N > N 0 co O tO tD (0 I- O � N O CO tl) O 'It O) M m O tO O (O N M t0 c M O t0 t0 M O) O M — O > tO 'IT Cl) N N r- (D (0 r (D v M M Cl) (O LO co v v v v (O v j 30 O (D OD t0 M O N O V O O V CD M CO M O CD N V w M M N N 00 ll� M "I W M O M Cl! r N O t0 O W tO (0 CR Z LL Q. V 00 00 co r '�t n t0 O CD N N N r tO tt r M N r M N CO G ti O M N O N O V O O O t0 M V' O O V N N CY N N O N W r W N W M O N M M Gr (D Cn O W (D (D o V O O N N r 0 N N r r O N r O O r O N r Y N CO tt to N M V t0 N M N M V N M V N Cl) N Q Q Q Q 0] O ❑ O U ❑ W 2 2 Y Y Y -) -) Cp J — @ y N N N N N N N N N N N N N N N N N N N M N N > °' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � m c T CU U CU C) U CU CU CU U U U CU CU U U U U U U U U U J � O) C O M O O M O O O m N CO OD (T N O CY) O O G O a (O to co O O W n O O O O t0 co V tO tO 00 O V' O t- J .. O O r M r O O O r r r O r r r r O O r r (h O r- M � M O O M M O 0) M lt1 O t0 tO 0 t1 0 (M 000 O C_ C $ r r (D M O (D M M t0 M h h M V' 0) M O J tl1 O O M C V V C) N a N 7 N O M a O N N n J M CO N N N N N O M N N M N Cl) N t0 N N O co N M N y (0 w to t0 w '[t ct V w tO tO tO tO (0 (0 (0 tO tO tO tO tO tO (N N N r r r r r r r r r r r r r r J to t- 0) tO 0) t0 M M N V N (D tO ti (D N W N 'V' O Lc) G (D O (D (D N (D O V (D t0 O t0 V' O N (O O M N M E > p G t` tO M tO 00 t0 O (O 00 tO M tO CO tO V tO tO tO to tO V t0 (D V ED V It tt tO V tO V 0) V 0 V O t0 O t0 co tO O (O y (O (D (D (0 O (0 M O (D M (D to (D O (D (D (D (D O co (D tO �+ Cn M 0 N (3) Cl) N co (D 'V tO ti IT N 00 OD It V O It O N W V' N N O V' W M r W W M O W 'V M 'V. W (O t0 O (O > t` 00 O W M M V tO (0 V to (D V tO ED 0) 0) O O `O c CO (D tO O (D (D O tO t0 (D tO O t0 CO U) (O tO (D t0 to U') 0 V' CD V co V (D r O V' co V' co It co t17 to tO O t0 tD CO (D 2- N Z E M O N N N O (D O O M M V' I-- O W (0 M V tO M V' O) O M r V O V' V (D M m (O CD N rl� � (D E M N tO LO N 00 00 0) 0) O 00 N N O O O co M t0 N N 0) tO (D (D (D (O (D O co (D O tO (0 tO CD tO (D tO (0 (D co tO (D t0 (D CO co t0 (D tO co (O co CO (D tO (D t0 tO CO (D (D (D M (0 (o d G W N m m N co V t0 N CO [t t0 N M N M V N M V N M N U C) +_ �p m m m m m m m m m m Co Co CO M CO m m m m m U = U U U U U❑ U Q U U U ❑ U U U U U U U U U U U LL U U) N r N M V' t0 M t- 00 tT O N M V t0 CO r OO O O N O W 7 G p r r r r r r r r r r N N N a O J Z n. Z 9 -7 ) a r- O � � � � � Zi § / k §� \ / 0M / 0 /) k Cl § \J 7 / \ � §t / a " k FL 0: 3 ko § 0 � § fg � ;t 6CL / 6 @E / :1r f0 / 7 o Cl) _j E � CN fN £ » — \o £ § k c { S § C co } � c E C R » \ � £ d a k $® � % ± ° \ n I \ / . & § / : § \) / \ Zi VICKERY SUBDIVISION TOWN OF STALLINGS UNION COUNTY, NORTH CAROLINA CATCH BASIN INLET SPREAD CALCULATIONS Note: Inlet spread was calculated and measurements were taken to ensure the spread did not top the crown of the road on local streets and a maximum spread of 7' measured from the flow line is not exceeded and the velocities do not exceed 8 fps. E Project: Vickery Storm Inlets A - 2/27/2015 Location: Union County, North Carolina Rainfalllntensity= 4.0 Inlet # Drainage Area Lane Width I C Surface "Q" Sloe I Spread Depth Velocity Doubl K Inlet? Inlet Qcap Bypass Sub. Total Lon Trans. I Q ITo Inlet A5 0.21 11.0 0.70 0.59 0.59 0.0490 0.0313 3.3 0.1 3.4 29.9 N 0.68 0.00 B1 A4 0.38 11.0 0.75 1.14 1.14 0.0490 0.0313 4.2 0.1 4.0 29.9 N 1.03 0.11 L3 A2 0.07 11.0 0.50 0.14 0.14 0.0085 0.0313 23 01 1.2 19.0 N 0.31 0.00 A3 H3 021 11.0 0.75 0.63 0.63 0.0480 0.0313 3.4 0.1 3.5 29.7 N 0.71 0.00 J3 H2 0.28 11.0 0.56 0.63 0.63 0.0480 0.0313 3.4 0.1 3.4 29.7 N 0.71 0.00 J2 J4 0.26 11.0 0.55 0.57 0.57 0.0200 0.0313 3.9 0.1 2.4 23.5 N 0.70 0.00 J3 K4 1 0.54 11.0 10.50 1.08 1.08 0.0140 0.0313 5.3 0.2 2.5 20.8 N 1 1.03 0.05 K3 K3 0.24 11.0 0.50 0.48 0.53 0.0140 0.0313 4.0 0.1 2.1 20.8 N 0.66 0.00 J4 K2 0.13 11.0 0.70 0.36 0.36 0.0140 0.0313 3.5 0.1 1.9 20.8 N 0.52 0.00 J2 D5 0.60 11.0 0.56 1.34 1.34 0.0085 0.0313 6.3 0.2 2.2 19.0 N 1.26 0.08 D4 D4 0.34 11.0 0.50 0.68 0.76 0.0085 0.0313 5.1 0.2 1.9 19.0 N 0.89 0.00 D3 M3 0.45 11.0 0.60 1.08 1.08 0.0270 0.0313 4.7 0.1 3.2 25.3 N 1.02 0.06 L3 M2 0.33 11.0 0.70 0.92 0.92 0.0270 0.0313 4.4 0.1 3.1 25.3 N 0.92 1 0.00 L2 Sag Calc's: Cul -De -Sac? no Double Inlet? no From EOP @ Max Spread A3 0.07 1 11.0 10.551 0.15 1 0.15 1 n/a 10.03131 -1.5 1 1 3.23 1 OK Cul -De -Sac? no Double Inlet? yes I From EOP I I @ Max Spread 61 0.99 11.0 0.60 2.38 2.38 n/a 0.0313 2.9 4.62 1 OK Cul -De -Sac? no Double Inlet? es I From EOP I Max S read F--D3--F 0.57 1 11.0 10-601 1.37 1 1.37 1 n/a 10.03131 1.2 1 1 4.62 1 OK Cul -De -Sac? no Double Inlet? no From EOP @ Max S read D2 0.43 11.0 0.70 1.20 1.20 n/a 0.0313 1.8 323 OK Cul -De -Sac? no Double Inlet? no I From EOP 10 Max Spread J3 0.55 11.0 0.52 1.14 1.14 n/a 0.0313 1.7 3.23 OK Cul -De -Sac? no Double Inlet? no From EOP 19 Max Spread J2 T 023 1 11.0 10-531 0.49 1 0.49 1 n/a 10.03131 -0.2 1 1 3.23 1 1 OK Cul -De -Sac? FE] Double Inlet? no I From EOP I @ Max Spread L3 0.58 1 n/a 1 O.551 128 1 1.44 1 n/a 10.03131 2.4 1 3.23 1 OK Cul -De -Sac? no Double Inlet? no I From EOP @ Max Spread L2 0.19 1 11.0 10.701 0.53 1 0.53 1 n/a 10.03131 -0.1 1 1 3.23 1 OK 14209 - GUTTER SPREAD- REV1.xls d VICKERY SUBDIVISION TOWN OF STALLINGS UNION COUNTY, NORTH CAROLINA DROP INLET CALCULATIONS 7 DROP INLET CALCULATIONS Rational Method Project: VICKERY SUBDIVISION Design Objective: Ponding at yard inlets outside the roadway can be over one foot above the grated inlet, yet six inches of freeborad must be provided. 2/27/2015 A +B +6" Structure Area Coeff. Tc (t) Intensity ( i) Flow Orifice Weir Depth of Water Rim El. Water El H.P. El. Acerage (Min.) (irvhr) ds (ft) ft) over D.I. (ft) (ft) w/ 6" fb I (ft) DI -E1 0.5800 0.50 5.00 7.03 2.04 1 0.01 1 0.15 J 0.15 658.00 1 658.65 1 659.60 DI -R2 0.3300 0.55 5.00 7.03 1.28 0.01 0.11 0.11 658.49 659.10 660.00 P: \Hopper Communities \Vickery Subdivision 14209\Engineering\Calculations \14209- DI.xls 0 O.K. O.K. SLAB TYPE DROP INLET CALCULATIONS Project: Vickery Subdivision 2/27/2015 Design Objective: The flow capacity of a slab type inlet (CMLDS 20.05)* for CB -C1 with 6" (height of opening) and 10" (height to top of slab). Q 10 -yr (C1)= 6.92 See previous runoff calc's Slab Type Drop Inlet for 18" RCP Top of Slab Elevation= 659.33 6" opening w/ 4" thick slab Opening Elevation= 658.50 General Equation for a broad - crested weir for calculating the max. flow capacity: Q= CLH ^1.5 1) Calculating flow using 6" of head A B C= 3.087 C= 3.087 L= 4.00 L= 3.50 H= 0.50 H= 0.50 Q= 4.37 Q= 3.82 The slab type catch basin will have four open sides therefore the flow for A and B will be multiplied by two and summed. Qtotal= 16.37 cfs 16.37 cfs > 6.92 cfs, therefore not O.K. Calculate Depth of water: H = 6.92/3.087(15) ^0.666 = 0.28 " See attachment for description and dimensions Opening Elevation= 658.50 Top of Slab Elevation= 659.33 High Point Elevation= 660.62 Freeboard = 1.84 > 0.5 ft therefore, OK P: \Hopper Communities \Vickery Subdivision 14209\ Engineering \Calculations \14209- DI.xls I VICKERY SUBDIVISION TOWN OF STALLINGS UNION COUNTY, NORTH CAROLINA RIP RAP APRON CALCULA'T'IONS 10 (11) ozjg duAILI oep m cv rJ_r_Trrr7_rrrr�� Ra ff ��. lu 1 �L \■ '�M� 111 � • ;� �1fIICRIIAdk. gd{CDtl � �. 3��6E ®E gu !�_aymanc- �e�nentn� gill III AINN AIAIA� n!III ongIi��81��� Z Z Z Z Z Z 000000 wwwwww aan.(L aa aaaaaa m(n mmmm U) cn U) CO U) (/) C fn CO U) !n C/) U) 1555555 a000UUU 0000000 �vBO BO 60 bo ao 0 ++ X X X X X X H to 4) �o if) Uo �o J X J X X X O J J J J �0 000 N X W U) W O N v C 0 U c C C w rn 0 N V C O Mn 'v U) U N E G O 0 .. THE ISAACS GROUP PIPE OUTLET RIP RAP APRON DESIGN VICKERY SUBDIVISION UNION COUNTY, NORTH CAROLINA Minimum Tailwater Conditions D = OUTLET PIPE DIAMETER (in) Do = OUTLET PIPE DIAMETER (ft) La = LENGTH OF APRON (ft) [FROM FIGURE 8 -1, CHARLOTTE STORMWATER DESIGN MANUAL] (MINIMUM La = 10) W = WIDTH OF APRON (ft) [W = Do + La] Q = FLOW (cfs) d50 = STONE SIZE (ft) [FROM FIGURE 8 -1, CHARLOTTE STORMWATER DESIGN MANUAL] *MIN. APRON SIZE NOT TO BE LESS THAN 8'Wx10'Lx18 "D CLASS B APRON 1.Z FES Al FES H1 FES J1 FES K1 FES L1 FES M1 FES R1 D 18 15 18 15 15 15 15 Q 8.60 2.39 5.14 3.53 3.56 3.84 1.28 Do 1.5 1.25 1.5 1.25 1.25 1.25 1.25 3Do 4.5 3.75 4.5 3.75 3.75 3.75 3.75 10 10 10 10 10 10 u 11.5 11.25 11.5 11.25 11.25 11.25 11.25 d10 0.75 0.5 0.51 0.5 0.5 0.51 0.5 *MIN. APRON SIZE NOT TO BE LESS THAN 8'Wx10'Lx18 "D CLASS B APRON 1.Z 300 Outlet �T ' Do + 0.4Ly pipe diameter (DD) La - -� 7t itfigg§meabr-- -,DO 80 :, ' .� /�■ ■>Eriii� � ew■ ■ 1pnpsri' E 1 FAWM 1 .1 I€tI{Ij; i� ��AEiilf€ ItllIItl1�118i i��N'�� ua�;u�a�i'il p��tlltl','1{r1 li) MAIO! ���a��r.1�j� ��III��I��Itly61� ;41��p'A @�����/p��!.�'I ,��� .� �1•Ji.ki �t181aiw�� [aiairN��i��i %�G1i� ., 200 500 I II d (in.) Q (cfs) Description of Apron I FES D1 24 17.24 » 101 x 8'W x 18 "D CLASS B APRON II HW Q2 48 6020 » 181 x 8'W x 18 "D CLASS B APRON P: \Hopper Communities \Vickery Subdivision 14209\ Engineering \Calculations\14209 -FES REV1.x1s (3 3 2 c` is ' uuiuiiiiiiiiiil � �•' llllEAN i 1111/111 i ip " uuluumuuwuun.. l III1111II/1 w liumnnu, u �w/ 1 l +��i� { {��p��€ ,mul.Nn I INnwcuuu'aw n 11 uuunn , ,i u ul B nonm.mw..� / /'ilin K'l) { I ;3 „!,{�� i { ' ' i'i J Jr � �� + !P / Hill I II I II IIH � �In /11 1 11 I III 1 NtI�`i�� ►�1 / // / 11 J i�� { J IltI1,W�(a I IIIIIItlIiI••• � � ° f fi...iiluui.� � IIIII,IIYN11111 , �i l li[ i ill [ [,F a a + +y' I II d (in.) Q (cfs) Description of Apron I FES D1 24 17.24 » 101 x 8'W x 18 "D CLASS B APRON II HW Q2 48 6020 » 181 x 8'W x 18 "D CLASS B APRON P: \Hopper Communities \Vickery Subdivision 14209\ Engineering \Calculations\14209 -FES REV1.x1s (3 3 2 c` is THE ISAACS GROUP FLARED END SECTION RIP RAP APRON DESIGN VICKERY SUBDIVISION UNION COUNTY, NORTH CAROLINA Maximum Tailwater Conditions D = OUTLET PIPE DIAMETER (in) Do = OUTLET PIPE DIAMETER (ft) La = LENGTH OF APRON (ft) [FROM FIGURE 8 -2, CHARLOTTE STORMWATER DESIGN MANUAL] (MINIMUM La = 10) W = WIDTH OF APRON (ft) [w= Do +0.4 La] Q = FLOW (cfs) d50 = STONE SIZE (ft) [FROM FIGURE 8 -2, CHARLOTTE STORMWATER DESIGN MANUAL] *MIN. APRON SIZE NOT TO BE LESS THAN 8'Wx10'Lx18 "D CLASS B APRON (4 FES D1 HW Q2 D 24 48 Q 17.24 60.20 Do 2 4 3Do 6 12 La 10 18 W 6 11.2 d50 0.5 0.5 *MIN. APRON SIZE NOT TO BE LESS THAN 8'Wx10'Lx18 "D CLASS B APRON (4 FES -Al Given Input Data: Shape........................... solving for ..................... Flowrate ........................ Slope........................ Manning's n ..................... Height ..................... Bottom width .................... Left slope ...................... Right slope ..................... computed Results: Depth.......................... velocity........................ Full Flowrate ................... Flow area ....................... Flow perimeter .................. Hydraulic radius ................ Top width ....................... Area ............................ Perimeter .................... Percent full .................... Trapezoidal Depth of Flow 8.6000 cfs 0.0200 ft /ft 0.0370 18.0000 in 2.0000 in 0.2000 ft /ft (v /H) 0.2000 ft /ft (v /H) 8.9643 in 2.9505 fps 53.6149 cfs 2.9147 ft2 93.4184 in 4.4929 in 91.6431 in 11.5000 ft2 185.5647 in 49.8017 FES -D1 Given Input Data: Shape....................... solving for ..................... Flowrate ........................ Slope........................ manning's n ..................... Height .. ..................... Bottom width .................... Left slope ...................... Right slope ..................... computed Results: Deth ........................... velocity ........................ Full Flowrate ................... Flow area ....................... Flow perimeter .................. Hydraulic radius ................ Top width ....................... Area............................ Perimeter .................... Percent full .................... Trapezoidal Depth of Flow 17.2400 cfs 0.0290 ft /ft 0.0370 18.0000 in 2.0000 in 0.2000 ft /ft (v /H) 0.2000 ft /ft (v /H) 10.8937 in 4.0357 fps 64.5609 cfs 4.2718 ft2 113.0940 in 5.4393 in 110.9366 in 11.5000 ft2 185.5647 in 60.5203 i1 FES -H1 Given Input Data: shape ....................... solving for ..................... Flowrate ........................ Slope........................ manning's n ..................... Height ...................... Bottom width .................... Left slope ...................... Right slope ..................... computed Results: Depth.......................... velocity ........................ Full Flowrate ................... Flow area ....................... Flow perimeter .................. Hydraulic radius ................ Top width ....................... Area ............................ Perimeter .................... Percent full .................... Trapezoidal Depth of Flow 2.3900 cfs 0.0220 ft /ft 0.0370 12.0000 in 2.0000 in 0.2000 ft /ft (v /H) 0.2000 ft /ft (v /H) 5.3718 in 2.2201 fps 19.3497 cfs 1.0765 ft2 56.7814 in 2.7302 in 55.7175 in 5.1667 ft2 124.3765 in 44.7646 17 FES -J1 Given Input Data: Shape........................... solving for ..................... Flowrate ........................ slope........................ Manning's n ..................... Height.. ....................... Bottom width .................... Left slope ...................... Right slope ..................... Computed Results: Depth.......................... velocity ........................ Full Flowrate ................... Flow area ....................... Flow perimeter .................. Hydraulic radius ................ Topwidth ....................... Area............................ Perimeter .................... Percent full .................... Trapezoidal Depth of Flow 5.1400 cfs 0.0220 ft /ft 0.0370 12.0000 in 2.0000 in 0.2000 ft /ft (v /H) 0.2000 ft /ft (v /H) 7.2228 in 2.6886 fps 19.3497 cfs 1.9118 ft2 75.6588 in 3.6386 in 74.2284 in 5.1667 ft2 124.3765 in 60.1903 18 FES K1 Given Input Data: shape........................... Solving for ..................... Flowrate ........................ Slope........................ manning's n ..................... Height ................. Bottom width .................... Left slope ...................... Right slope ..................... computed Results: Depth.......................... velocity ........................ Full Flowrate ................... Flow area ....................... Flow perimeter .................. Hydraulic radius ................ Top width ....................... Area ............................ Perimeter .................... Percent full .................... Trapezoidal Depth of Flow 3.5300 cfs 0.0160 ft /ft 0.0370 18.0000 in 2.0000 in 0.2000 ft /ft (v /H) 0.2000 ft /ft (v /H) 6.6444 in 2.1720 fps 47.9547 cfs 1.6252 ft2 69.7600 in 3.3548 in 68.4441 in 11.5000 ft2 185.5647 in 36.9134 (Cj FES -L1 Given Input Data: Shape....................... solving for ..................... Flowrate ........................ slope........................ manning's n ..................... Height ............... Bottom width .................... Left slope ...................... Right slope ..................... computed Results: Depth.......................... velocity ........................ Full Flowrate ................... Flow area ....................... Flow perimeter .................. Hydraulic radius ................ Topwidth ....................... Area............................ Perimeter .................... Percent full .................... Trapezoidal Depth of Flow 3.5600 cfs 0.0160 ft /ft 0.0370 12.0000 in 2.0000 in 0.2000 ft /ft (v /H) 0.2000 ft /ft (v /H) 6.6661 in 2.1766 fps 16.5015 cfs 1.6356 ft2 69.9816 in 3.3655 in 68.6615 in 5.1667 ft2 124.3765 in 55.5512 20 FES M1 Given Input Data: shape........................... Solving for ..................... Flowrate ........................ slope........................ Manning's n ..................... Height . — * ................ Bottom width .................... Left slope ...................... Right slope ..................... computed Results: Depth.......................... velocity ........................ Full Flowrate ................... Flow area ....................... Flow perimeter .................. Hydraulic radius ................ Top width ....................... Area ............................ Perimeter .................... Percent full .................... Trapezoidal Depth of Flow 3.8400 cfs 0.0500 ft /ft 0.0370 18.0000 in 2.0000 in 0.2000 ft /ft (v /H) 0.2000 ft /ft (v /H) 5.5062 in 3.4006 fps 84.7726 cfs 1.1292 ft2 58.1528 in 2.7962 in 57.0624 in 11.5000 ft2 185.5647 in 30.5902 z1 FES -R1 Given Input Data: Shape........................... solving for ..................... Flowrate ........................ Slope........................ manning's n ..................... Height ..................... Bottom width .................... Left slope ...................... Right slope ..................... computed Results: Depth.......................... velocity ........................ Full Flowrate ................... Flow area ....................... Flow perimeter .................. Hydraulic radius ................ Top width ....................... Area ............................ Perimeter .................... Percent full .................... Trapezoidal Depth of Flow 1.2800 cfs 0.0500 ft /ft 0.0370 18.0000 in 0.0000 in 0.3300 ft /ft (v /H) 0.3300 ft /ft (v /H) 4.5942 in 2.8818 fps 48.8331 cfs 0.4442 ft2 29.3205 in 2.1814 in 27.8435 in 6.8182 ft2 114.8774 in 25.5232 VICKERY SUBDIVISION TOWN OF STALLINGS UNION COUNTY, NORTH CAROLINA SWALE CALCULATIONS 2-3 Vickery Subdivision Swale Calculations Introduction & Summary Objective: Design swales to accommodate a 10 -yr storm event. Procedure: North American Green Erosion Control Materials Design Software was used to determine the following: • No Vegetation with S75 NAG temporary liner for stability • Cut condition grass is properly maintained (to evaluate lower depth with faster velocities) • Uncut condition when grass is long and not well maintained (to evaluate higher depth) The drainage areas and swale slopes were determined from the construction drawings. The retardance class was changed to D (grass depth 2 -6 inches) for a properly maintained grass swale to determine vegetation stability. The normal water depth (with 6" freeboard) was determined by using a unreinforced vegetation matting type with a retardance class of B (grass depth 12 -24 inches) for an un- maintained grass swale. Then the swale was changed to unvegetated with a S75 temporary liner to determine liner stability. Swales that were unstable for any reason either were widened and /or lined with a permanent liners. If the calculations of the temporary linear showed a velocity of less than 2 fps during a 10 year storm event then the temporary linear was removed. Conclusion: The attached swales will accommodate a 10 year storm event when constructed as labeled in the construction drawings. MAX FLOW SWALE SWALE TYPE SLOPE FLOW BOT. WIDTH DEPTH DEPTH TOP WIDTH LINER SIDE SLOPE 1A CURB OUTLET 6.00% 4.67 2.00 0.55 1.75 19.5 S150 5:1 16 CONVEYANCE 5.00% 2.99 2.00 0.52 1.75 12.5 575 3:1 1C CURB OUTLET 2.80% 9.03 2.00 0.88 1.75 19.5 S75 5:1 1D CURB OUTLET 2.80% 3.41 2.00 0.57 1.75 19.5 S75 5:1 1 CURB OUTLET 4.00% 12.06 2.00 0.93 1.75 19.5 SC150 5:1 2 CONVEYANCE 2.70% 6.92 2.00 0.9 1.75 12.5 S75 3:1 3 CURB OUTLET 2.90% 18.64 2.00 1.2 1.75 19.5 5150 5:1 4 CURB OUTLET 2.00% 7.72 2.00 0.89 1.75 19.5 S75 5:1 5 CURB OUTLET 5.00% 3.92 2.00 0.53 1.75 19.5 S75 5:1 6 CURB OUTLET 3.60% 4.89 2.00 0.63 1.75 19.5 S75 5:1 7 CURB OUTLET 1.60% 4.98 2.00 0.77 1.75 19.5 S75 5:1 8 CURB OUTLET 2.20% 2.39 2.00 0.51 1.75 19.5 S75 5:1 9 CURB OUTLET 2.50% 5.14 2.00 0.7 1.75 19.5 S75 5:1 10 CONVEYANCE 5.50% 4.00 0.00 0.84 1.75 12.5 C125BN 3:1 11 CONVEYANCE 5.00% 4.00 0.00 0.84 1.75 12.5 C125BN 3:1 let .5( 1.75'(MIN) 1.0' (MI N)� 1 5.0 NORTH AMERICAN GREEN BLANKET OR APPROVED EQUIVALENT CURB OUTLET SWALE ;REEN BLANKET OR APPROVED EQUIVALENT CONVEYANCE SWALE GRASSED SWALE NOTES: 1. EXCAVATE CHANNEL TO THE CROSS- SECTION SHOWN. 2. APPLY LIME, FERTILIZER AND SEED TO THE CHANNEL AND ADJOINING AREAS IN ACCORDANCE WITH THE SEEDING SCHEDULE. 3. START LAYING THE NET FROM THE TOP OF THE UPSTREAM END OF THE CHANNEL AND UNROLL IT DOWN THE GRADE. DO NO STRETCH MATTING. 4. BURY THE UPSLOPE END AND STAPLE THE NET EVERY 12" ACROSS THE TOP END, EVERY 3' AROUND THE EDGES AND ACROSS THE MAT SO THAT THE STRAW IS HELD CLOSELY AGAINST THE SOIL. 5. MATTING STRIPS SHOULD BE JOINED TOGETHER ALONG THE SIDES WITH A 3" OVERLAP AND STAPLED TOGETHER. 6. TO JOIN ENDS OF STRIPS, INSERT THE NEW ROLL OF NET IN A TRENCH AS WITH UPSLOPE END AND OVERLAP IT 18" WITH THE PREVIOUSLY LAID UPPER ROLL. TURN UNDER 6" OF THE 18" OVERLAP AND STAPLE EVERY 12" ACROSS THE END. 7. MINIMUM SLOPE ON SWALES IS 1.5% (UNLESS SPECIFICALLY LABELED ON PLANS) GRASS SWALE 2s s L.,J 1-1= R Lj O CFt . Rational Method Given Input Data: Description ........ SWALE ------------------------------------------------------------------------------- Area Area Coef Tc Intensity F1oW Description ac min in /hr cfs ------------------------------------------------------------------------------- SWALE -1A 0.9500 0.7000 5.0000 7.0300 4.6749 SWALE -1B 0.7100 0.6000 5.0000 7.0300 2.9948 SWALE -1C 0.3900 0.5000 5.0000 7.0300 1.3709 SWALE -1D 0.8100 0.6000 5.0000 7.0300 3.4166 SWALE -1 2.8600 0.6000 5.0000 7.0300 12.0635 SWALE -2 1.6400 0.6000 5.0000 7.0300 6.9175 SWALE -3 4.4200 0.6000 5.0000 7.0300 18.6436 SWALE -4 1.8300 0.6000 5.0000 7.0300 7.7189 SWALE -5 0.9300 0.6000 5.0000 7.0300 3.9227 SWALE -6 1.1600 0.6000 5.0000 7.0300 4.8929 SWALE -7 1.1800 0.6000 5.0000 7.0300 4.9772 Support Data: 1A -t- (R -t- t L - C1 10 3 Cif--S' 5 LIDA- 0e Or = 5.(4 C F6 (6409-. n - 5) 5 w A�Le g = � . 3 � &4r-5 ( S-10e�m -(A z6 HYDRAULIC RESULTS Discharge cfs Peak Flow Period (hrsl Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft i 4.7 0.1 4.31 1.09 0.21 0.31 LINER RESULTS 0:47 AM Unreinforced Vegetation (n= 0.030) S = 0.0600 1 L Bottom 1 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation D Mix 75.95% 3.33 1.15 2.89 STABLE Soil Clay Loam 0.050 0.078 0.64 UNSTABLE 1'^PPTtRU, -/ ../1^ Gr--- vPgECI I7 Pew i�� LA ke2- St�pLE-- IA Green . ECMDS Version 4.3 HYDRAULIC RESULTS Discharge cfs Peak Flow Period [hrsI Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 4.7 0.1 1.79 2.63 0.34 0.55 LINER RESULTS U nreinforced Vegetation (n= 0.100) / S = 0.0600 1 L Bottom J 1 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation B Mix 75.95% 5.73 2.07 2.77 STABLE Soil Clay Loam 0.050 0.013 3.98 STABLE 'FLA, by uej� �--- 1 MED :z P, North American Green - ECMDS Version 4.3 HYDRAULIC RESULTS Discharge cfs Peak Flow Period (hrsl Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal i Depth (ftj 1 4.7 0.1 2.78 1.69 0.27 0.42 LINER RESULTS 5 0 Width 00 ft 5 0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks St a le Pattern Phase Class Type Density Straight S150 Unvegetated 1.75 1.56 1.13 STABLE Staple D 1`ff-MPOR--) RY .L I!` � aq S L-F- - t c3 North American Green - ECMDS Version 4.3 HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 0.0 0.1 3.88 1 0.77 0.21 — 0.27 LINER RESULTS U nreinforced Vegetation S = 0.0500 1L \' / �1 Bottom 3.0 Width = 2.00 ft 3.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation D Mix 75.95% 3.33 0.86 3.89 STABLE Soil Clay Loam 0.050 0.058 0.86 UNSTABLE P ^R 1 tfa L I.y V I �ff(,C,Tp —Ic D I PAM OE Tov\� LIkzp— '30 North American Green - ECMDS Version 4.3 HYDRAULIC RESULTS Discharge Peak Flow Velocity (fps) Area (sq.ft) Hydraulic Normal cfs Period hrs Staple Pattern Phase Radius ft I Depth ft 0.0 0.1 1.64 1.83 0.35 0.52 J LINER RESULTS Unreinforced Vegetation (n =0.1 S = 0.0500 1L \' / �1 Bottom 3.0 Width = 2.00 ft 3.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation B Mix 75 -95% 5.73 1.61 3.56 STABLE Soil Clay Loam 0.050 0.010 5.11 STABLE T- u L t.: y v�.. &E- 7p-tt� 3i Sc, /-Z-C- - (B HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft FO3 3.0 0.1 2.53 1.19 0.27 j Type LINER RESULTS S75 (n= 0.055) L— Bottom 1 3.0 Width = 2.00 It 3.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class j Type Density Straight S75 Unvegetated 1.55 1.18 1.31 STABLE Staple D '3z S wi-- LE - 1 c. North American Green - ECMDS Version 4.3 HYDRAULIC RESULTS Discharge Peak Flow Velocity (fps) Area (sq.ft) Hydraulic Normal fcfsl Period hrs Staple Pattern Phase Radius ft Depth ft X9.0 0.1 3.89 2.31 0.32 0.51 -- - -- — — —— — —j LINER RESULTS Unreinforced Vegetation (n= 0.030) L_ Bottom 1 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type I Density Straight Unreinforced Vegetation D Mix 75 -95% 3.33 0.89 3.74 STABLE Soil Clay Loam 0.050 0.060 0.83 UNSTABLE P^ PZ-T(A L(,y VE C,E7p -it � k2 0A n► TOAF, LA KJER- 33 S L"Sf-� LG - i C, North American Green - ECMDS Version 4.3 HYDRAULIC RESULTS Discharge cfs I Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 0.0 0.1 1.59 1 5.64 0.51 0.88 LINER RESULTS Unreinforced Vegetation fn= 0.1001 L— Bottom 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation B Mix 75.95% 5.73 1.54 3.72 STABLE Soil Clay Loam 0.050 0.009 5.34 STABLE 316) h1._G — t C- orth American Green - E HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 9.0 0.1 — 2.61 —3.45 0.40 0.65 LINER RESULTS 5 Width 00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight S75 Unvegetated 1.55 1.14 1.36 STABLE Staple D L v� HYDRAULIC RESULTS Discharge cfs Peak Flow Period fhrsl Velocity (fps) 1 Area (sq.ft) Hydraulic Radius ft 1 Normal Depth ft 1 0.4 0.1 2.99 1 1.14 0.22 0.32 LINER RESULTS Unreinforced Vegetation (n= 0.030) S = 0.0280 1L ` I J 1 Bottom — 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase I Class Type Density Straight Unreinforced Vegetation D Mix 7595% 3.33 0.55 6.02 STABLE Soil Clay Loam 0.050 0.037 1.34 STABLE 36 SL,)^LE - t6 North American Green - ECMDS Version 4.3 HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal De th ft 3.4 0.1 1.24 2.74 0.35 0.57 LINER RESULTS Unreinforced IS = 0.0280 1 L Bottom 1 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation B Mix 75 -95% 5.73 0.99 5.78 STABLE Soil Clay Loam 0.050 0.006 8.30 STABLE 3? American Green - ECMDS Version 4.3 HYDRAULIC RESULTS Discharge cfs Peak Flow Period [hrsl Velocity (fps) 1 Area (sq.ft) Hydraulic Radius ft 1 Normal Depth ft 1 0.4 0.1 1.93 1.77 0.28 0.43 LINER RESULTS 3/9/2015 S75 (n =0. S = 0.0280 1L Bottom 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight S75 Unvegetated 1.55 0.75 2.08 STABLE Staple D T�- 1`4�O9,4 r,,X L t tit�-- 3'?) sv,`A LE. - I orth American Green - ECMDS Version 4.3 HYDRAULIC RESULTS Discharge [cfsl Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft h 2.1 0.1 4.80 2.52 0.34 0.54 LINER RESULTS Unreinforced S = 0.0400 1 L Bottom 1 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation D Bunch 75.95% 3.33 1.34 2.48 STABLE Soil Clay Loam 0.050 0.182 0.28 UNSTABLE `Pf�R71p LC,y '��i31t� 3q ?(?oA : -ibve U Kx-YL $lets LE - l North American Green - ECMDS Version 4.3 HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs 1 Velocity (fps) Area (sq.ft) Hydraulic Radius ft 1 Normal i Depth ft 1 12.1 0.1 1.96 6.16 0.54 0.93 LINER RESULTS Unreinforced Vegetation (n= 0.100) S = 0.0400 1L ✓ 11 Bottom 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation B Bunch 75.95% 5.73 2.32 2.47 STABLE Soil Clay Loam 0.050 0.028 1.77 STABLE 17,u" VEIE Tp7co 40 reen HYDRAULIC RESULTS Discharge fcfsl Peak Flow Period [hrsl Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft [12.1 — 0.1 3.46 1 3.49 0.40 0.66 J LINER RESULTS L— Bottom 1 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight �SCP1150 Unvegetated 2.00 1.65 1.22 STABLE e D Si.J -� HYDRAULIC RESULTS Discharge cfs Peak Flow Period fhrsl 1 Velocity (fps) Area (sq.ft] 1 Hydraulic Radius ft Normal Depth ft 6.9 0.1 3.95 1.75 0.34 0.50 LINER RESULTS Unreinforced S = 0.0270 1L ` ✓ �1 Bottom 3.0 Width = 2.00 ft 3.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation D Bunch 75.95% 3.33 0.84 3.96 STABLE Soil Clay Loam 0.050 0.114 0.44 UNSTABLE `tom -vE LL- TA-Iic-v Paw�a� Ll �t North American Green - ECMDS Version 4.3 2!512015 ,061 31 PM HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps] Area (sq.ft) Hydraulic Radius ft Normal, Depth ft 0.9 0.1 1.64 4.22 1 0.55 0.90 LINER RESULTS Unreinforced Vegetation fn =0.1001 L- Bottom 1 3.0 'Width = 200 ft 3.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf] Calculated Shear Stress (psf] Safety Factor Remarks Staple Pattern Phase MBBT.nch ype Density Straight Unreinforced Vegetation 75.95 0 5.73 1.51 3.79 STABLE Soil Clay Loam 0.050 0.018 2.72 STABLE 43 '�� L-3AL-E --> HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft , 6.9 0.1 2.67 2.59 0.42 0.65 LINER RESULTS S75 (n= 0.052) Bottom 1 3.0 Width = 2.00 ft 3. 0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Ej��f se Class Type Density Straight 1.55 1.10 1.41 STABLE Stapl 4-T HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 1 18.6 0.1 4.76 3.90 0.42 0.71 LINER RESULTS Unreinforced Vegetation fn= 0.0301 5 Width 2.00 ft 5 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation D Bunch 75.95% 3.33 1.28 2.61 STABLE Soil Clay Loam 0.050 0.173 0.29 UNSTABLE f',I*TiAL L7 V bRVg0) 45 Po+pc 1OXA-P. uk-A-E2-- HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal De th ft 18.6 0.1 1.94 9.57 0.67 1.20 LINER RESULTS Unreinforced S = 0.0290 1 L Bottom �J 1 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation B Bunch 75 95% 5.73 2.17 2.64 STABLE Soil Clay Loam 0.050 0.026 1.90 STABLE i t LL y v E b -/q-It.-r,) Zf 6 HYDRAULIC RESULTS Discharge [cfsI Peak Flow Period [hrsl Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft j18.6 0.1 3.42 5.43 0.50 0.86 LINER RESULTS S150 (n= 0.047) 0 Width 2 00 ft 5 Not to Scale Reach Matting Type S tability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight rJVInvegetated 1.75 1.56 1.12 STABLE Staple D C11 L f 47 tj /-- LF- - li- 3 912015 HYDRAULIC RESULTS Discharge cfs Peak Flow Period fhrsl Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 7.7 0.1 3.30 2.33 0.32 0.51 LINER RESULTS U nreinforced Vegetation f S = 0.0200 1 L Bottom 1 5.0 Width = 2.00 It 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation D Bunch 75950 3.33 0.64 5.21 STABLE Soil Clay Loam 0.050 0.086 0.58 UNSTABLE 40 �F LA kolZ 2t HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 7.7 0.1 1.35 1 5.69 0.52 0.69 LINER RESULTS Unreinforced Vegetation [n =0.1 S = 0.0200 1L ` �1 Bottom 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible ear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation B Bunch 7595% 5.73 1.11 5.18 STABLE Soil Clay Loam 0.050 0.013 3.72 STABLE fL� L-Ly VS 6,Elr i g? TEf -5, v/, t e -- Gf reen - HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 7.7 — 0.1 2.22 1 3.48 _ 0.40 0.66 LINER RESULTS S75 (n= 0.051) UWidtht= 2.00 ft 5 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase I Class I Type Density Straight S75 Un�egetated 1.55 0.82 1.89 STABLE Staple D 15 G SQL. L_e - 5 HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Nofmal De th ft 3.9 0.1 3.83 1.02 0.20 0.29 LINER RESULTS Unreinforced Vegetation (n =0.030) S = 0.0500 1 L Bottom 1 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psfl Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation D Bunch 7595% 3.33 0.92 3.64 STABLE Soil Clay Loam 0.050 0.124 0.40 UNSTABLE PPMOE TWVY Lu-Z2 SI G " S7 HYDRAULIC RESULTS Discharge cfs Peak Flow Period (hrsl Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth YO 1 0.9 0.1 1.59 2.45 0.33 0.53 LINER RESULTS Unreinforced S = 0.0500 1L \' �1 Bottom 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Umeinforced Vegetation B Bunch 75.95% 5.73 1.65 3.48 STABLE Soil Clay Loam 0.050 0.020 2.49 STABLE t- lit LL Y 52 -aj "6 � -s North American Green • ECMDS Version 4.3 HYDRAULIC RESULTS Discharge (cfsl Peak Flow Period fhrsl Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth (ft), 0.9 0.1 2.47 1.58 0.26 0.40 LINER RESULTS L_ Bottom 1 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class I Type Density Straight 575 Unvegetated 1.55 1.24 1.25 STABLE Staple D 53 HYDRAULIC RESULTS Discharge fcfsl Peak Flow Period fhrsl Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 4.9 0.1 3.63 1.35 0.24 0.36 LINER RESULTS Unreinforced S = 0.0360 1 �.' :/ 1 I� —Bottom' 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation D Bunch 7595% 3.33 0.80 4.15 STABLE Soil Clay Loam 0.050 0.108 0.46 UNSTABLE pAq;-4z r N Lrt y VE6E-r0-N-P 94 I ?gmoc T'laftP• L,I Nje(L North American Green - ECMDS Version 4.3 HYDRAULIC RESULTS Discharge cfs Peak Flow Period [hrsl Velocity (fps) 1 Area (sq.ft) Hydraulic Radius ft 1 Normal Depth ft 1 0 0.1 1.50 1 3.27 0.39 0.63 LINER RESULTS U nreinforced Vegetation (n =0.1 S = 0.0360 1L ` �1 Bottom 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation B Bunch 75 95 0 5.73 1.42 4.03 STABLE Soil Clay Loam 0.050 0.017 2.89 STABLE f7LLLLy k-�E6:ETn -7t:V S5 sL..c.At-e- 6 North American Green - ECMDS Version 4.3 HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft X4.9 0.1 2.33 1 2.11 0.31 0.48 LINER RESULTS 0 Width 2.00 ft 5 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible 5hear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight S75 Unvegetated 1.55 1.08 1.44 STABLE Staple D V 5OAtC-- -"1 North American Green - ECMDS Version 4.3 319/2015 02:44 PM HYDRAULIC RESULTS UnreinforcedVegetationfn= 0.0301 Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 1 5.0 0.1 2.71 1.84 0.28 0.44 LINER RESULTS L— Bottom 1 5.0 Width = 2.00 It 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation D Bunch 75 -957. 3.33 0.44 7.59 STABLE Soil Clay Loam 0.050 0.059 0.84 UNSTABLE P�R� ► � L�7 �6EtA —tc:� � Pj? UADIF vel"'?. U K/C—?-- S7 Ic ,.IL J^ l.Cl -? North American Green - ECMDS Version 4.3 3!9!2015 02:44 PM HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 5.0 0.1 1.11 1 4.49 0.46 0.77 LINER RESULTS U nreinforced Veaetation fn= 0.1001 5 Widtht= 2.00 ft 5 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation B Bunch 75 -95% 5.73 0.77 7.47 STABLE Soil Clay Loam 0.050 0.009 5.36 STABLE t L,(i_i, y 'uEZIG T07ep SS 5L,)v-��-a -7 HYDRAULIC RESULTS Discharge [cfsl Peak Flow Period fhrsI 1 Velocity (fps) 1 Area (sq.ft) Hydraulic Radius ft 1 Normal Depth ft 5.0 0.1 1.78 1 2.81 0.36 0.58 LINER RESULTS L— Bottom 1 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight S75 Unvegetated 1.55 0.58 2.69 STABLE Staple D L v- 57q 5(J?&t-6 - g Worth American Green - ECMDS Version 4.3 31912015 03:46 PM HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft j A 0.1 2.49 1 0.96 0.20 0.28 LINER RESULTS Unreinforced Vegetation fn= 0.0301 0 Width 2.00 ft 50 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation D Bunch 75.95% 3.33 0.39 8.59 STABLE Soil Clay Loam 0.050 0.052 0.95 UNSTABLE �idR`TiP L Y 0 )G(&—TIa'w N-L)nI)e TzivIlp- u lit 50311h. LIE - 9. HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal De th ft � A 0.1 1.04 2.32 0.32 0.51 LINER RESULTS U nreinforced Vegetation (n =0.100) S = 0.0220 1L Bottom I1 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation B Bunch 75-95% 5.73 0.70 8.19 STABLE Soil Clay Loam 0.050 0.009 5.87 STABLE - 7L),L- _y VE--Q---- f69 -Tk:39 61 North American Green - ECMDS Version 4.3 HYDRAULIC RESULTS Discharge (cfsl Peak Flow Period (hisIl Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 2.4 0.1 1.61 1 1.50 0.25 0.38 LINER RESULTS 0 Width Bottom 00 ft 0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight MS,aple Un egetated 1.55 0.52 2.95 STABLE 0. GL" QLIE - Q North American Green - ECMDS Version 4.3 319!2015 03:47 PM HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 5.1 0.1 3.21 1 1.59 0.26 0.40 i LINER RESULTS Unreinforced Vegetation (n= 0.030) L_ Bottom 1 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation D Bunch 75.95% 3.33 0.62 5.36 STABLE Soil Clay Loam 0.050 0.084 0.60 UNSTABLE -vro-P. u� 63 L -q HYDRAULIC RESULTS Discharge cfs Peak Flow Period (hrsl Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft �.1 0.1 1.32 1 3.86 0.42 0.70 LINER RESULTS Unreinforced S = 0.0250 1L ` / �1 Bottom 5.0 Width = 2.00 ft 5.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density 1 Straight Unreinforced Vegetation B Bunch 75 -95% 5.73 1.09 5.24 STABLE Soil Clay Loam 0.050 0.013 3.76 STABLE ,�71/(U --/ JE(OEIN- -lp $ wb. Le - q reen - HYDRAULIC RESULTS Discharge cfs 1 Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft 1 5.1 0.1 2.07 2.46 0.33 0.53 LINER RESULTS 5 0 Width 00 ft 5 0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Sta le Pattern Phase Class Type Density Straight S75 Unvegetated 1.55 0.83 1.88 STABLE Staple D LG�TL- bl� SLA.)A L G - 10 I 1 & 12 North American Green • ECMDS Version 4.3 3/912015 02:46 PM HYDRAULIC RESULTS Discharge cfs Peak flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft X4.0 0.1 — 4.66 - -- 0.86 -- 0.25 0.53 — i LINER RESULTS U nreinforced S = 0.0550 1 L Bottom 3.0 Width = 0.00 ft 3.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation D Bunch 75.95% 3.33 1.84 1.81 STABLE Soil Clay Loam 0.050 0.248 0.20 UNSTABLE QR (IA OL TONAR U nti=iz- Z6 C t.J v , H t z HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity, (fps] Area (sq.ft) Hydraulic Radius ft 1 Normal Depth ft 4.0 0.1 1.89 1 2.12 0.40 0.84 LINER RESULTS Unreinforced Vegetation (n= 0.100) S = 0.0550 1 L Bottom J 1 3.0 Width = 0.00 ft 3.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight Unreinforced Vegetation B Bunch 75 95% 5.73 2.88 1.99 STABLE Soil Clay Loam 0.050 0.035 1.42 STABLE 0 5WA -G _ to I If K I-)- HYDRAULIC RESULTS Discharge cfs Peak Flow Period (hrsl Velocity (fps) Area (sq.ft) Hydraulic Radius ft 1 Normal De th ft 4.0 0.1 5.88 1 0.68 0.23 0.48 LINER RESULTS L 3.0 Bottom Width = 0.00 ft 1 3.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight C125BN Unvegetated 2.35 1.63 1.44 STABLE Staple D i� (7cjF,,o+-y L. * 4 - 16 VICKERY SUBDIVISION TOWN OF STALLINGS UNION COUNTY, NORTH CAROLINA SEDIMENT BASIN CALCULATIONS Narrative: Erosion control is provided to this site via three (7) sediment. All calculations show that the ponds are sized to treat the 10 year storm. Each skimmer is sized to release the required storage volume (1800 cy per disturbed acre) in 3 days. The basin volume provided, skimmer outlet, and principle spillway is designed to safely convey the 10 year storm event without over topping the dam. bG The ISAACS GROUP Vickery Subdivision Union County, NC Skimmer Basin Design & Calculations (BASIN #1) Peak Flow Calculation Total Time of Concentration, T. 5.00 (min.) i, 10 yr. Rainfall Intensity 7.03 (in. /hr.) C, Rainfall Runoff Coefficient 0.5 A0, Drainage Area to Structure (Pre - Developed) 211,512 (sq. ft.) AD, Drainage Area to Structure (Post - Developed) 139,662 (sq. ft.) Drainage Area to Structure 4.86 (ac.) Area of disturbance for structure 1.71 (ac.) Q10, Peak Flow = CiA 17.068 (cfs) Volume Calculation Bottom of Basin Elevation = 651.50 Depth of Basin (to spillway) 3.00 (ft.) Skimmer Max. Elevation = 653.50 Emergency Spillway Elev. = 654.50 Top of Dam Elevation = 656.00 Contour Area Area Volume Total Elev. (sq. ft.) (ac. ft.) (cu. ft.) (cu. ft.) 651.50 4,002 0.092 652.00 4,272 0.098 2,069 2,069 653.00 4,829 0.111 4,551 6,619 653.50 5,117 0.117 2,487 9,106 654.00 5,411 0.124 2,632 11,738 654.50 5,713 0.131 5,415 14,521 655.00 6,020 0.138 5,716 17,453 656.00 6,653 0.153 9,275 23,795 Basin Volume Required (1800cu.ft. /dist. ac) = 3,078 (cu. ft.) Basin Volume Provided at Skimmer = 9,106 (cu. ft.) Required Basin Surface Area (Q10x325 sq.ft.) = 5,547 (sq. ft.) As, Surface Area Provided = 5,713 (sq. ft.) Skimmer Size Calculated Usinq Attachment: Volume to be drained in 24 -72 hrs.= 9,106 (cu. ft.) 2.5" Skimmer drains ,6,234 cf /24 hrs. & 43,638 cf /72 hrs. Skimmer Size= 2.5" Diameter Orfice diameter adjustment (((CF Volume/3,810)/3.14) ^0.5)x2= 1.74 Orfice = 1.75 Diameter Emeraencv SDillwav Calculation: Q= CLH ^1.5 C= 2.8 Q10= 17.068 (cfs) Spillway Width = 18.0 (ft.) h= 0.49 (ft.) <0.5', Therefore OK 3/6/2015 4.86 (ac.) 3.21 (ac.) Pre - Developed Greater than required, therefore OK Greater than required, therefore OK P:\HopperCommunities\Vickery Subdivision 14209\ Engineering \Calculations \Erosion Control \14209- EC.xls 70 The ISAACS GROUP Vickery Subdivision Union County, NC Skimmer Basin Design & Calculations (BASIN #2) Peak Flow Calculation Total Time of Concentration, T. 5.00 (min.) i, 10 yr. Rainfall Intensity 7.03 (in. /hr.) C, Rainfall Runoff Coefficient 0.5 AD, Drainage Area to Structure (Pre - Developed) 152,246 (sq. ft.) AD, Drainage Area to Structure (Post - Developed) 277,573 (sq. ft.) Drainage Area to Structure 6.37 (ac.) Area of disturbance for structure 2.65 (ac.) Q10, Peak Flow = CiA 22.398 (cfs) Volume Calculation Bottom of Basin Elevation = 650.50 Depth of Basin (to spillway) 3.00 (ft.) Skimmer Max. Elevation = 652.50 Emergency Spillway Elev. = 653.50 Top of Dam Elevation = 655.00 Contour Area Area Volume Total Elev. (sq. ft.) (ac. ft.) (cu. ft.) (cu. ft.) 650.50 5,474 0.126 651.00 5,764 0.132 2,810 2,810 652.00 6,362 0.146 6,063 8,873 652.50 6,671 0.153 3,258 12,131 653.00 6,986 0.160 3,414 15,545 653.50 7,307 0.168 6,989 19,120 654.00 7,634 0.175 7,310 22,855 655.00 8,308 0.191 11,711 30,831 Basin Volume Required (1800cu.ft. /dist. ac) = 4,770 (cu. ft.) Basin Volume Provided at Skimmer = 12,131 (cu. ft.) Required Basin Surface Area (Q1ox325 sq.ft.) = 7,279 (sq. ft.) As, Surface Area Provided = 7,307 (sq. ft.) Skimmer Size Calculated Using Attachment: Volume to be drained in 24 -72 hrs.= 12,131 (cu. ft.) 2.5" Skimmer drains ,6,234 cf /24 hrs. & 18,702 cf172 hrs. Skimmer Size= 2.5" Diameter Orfice diameter adjustment (((CF Volume/3,810)/3.14) ^0.5)x2= 2.01 Orfce = 2.00 Diameter Emeraencv Saillwav Calculation: Q= CLH "1.5 C= 2.8 Q10= 22.398 (cfs) Spillway Width = 23.0 (ft.) h= 0.49 (ft.) <0.5', Therefore OK 3/6/2015 3.50 (ac.) 6.37 (ac.) Post - Developed Greater than required, therefore OK Greater than required, therefore OK P: \Hopper Communities \Vickery Subdivision 14209\ Engineering \Calculations \Erosion Control \14209- EC.xls 7i The /SAACS GROUP Vickery Subdiuision Union County, NC Skimmer Basin Design & Calculations (BASIN #3) Peak Flow Calculation Total Time of Concentration, T. 5.00 (min.) i, 10 yr. Rainfall Intensity 7.03 (in. /hr.) C, Rainfall Runoff Coefficient 0.6 AD, Drainage Area to Structure (Pre - Developed) 84,142 (sq. ft.) AD, Drainage Area to Structure (Post - Developed) 52,228 (sq. ft.) Drainage Area to Structure 1.93 (ac.) Area of disturbance for structure 1.39 (ac.) Q10, Peak Flow = CiA 8.148 (cfs) Volume Calculation Bottom of Basin Elevation = 654.50 Depth of Basin (to spillway) 3.00 (ft.) Skimmer Max. Elevation = 656.50 Emergency Spillway Elev. = 657.50 Top of Dam Elevation = 659.00 Contour Area Area Volume Total Elev. (sq. ft.) (ac. ft.) (cu. ft.) (cu. ft.) 654.50 1,690 0.039 655.00 1,861 0.043 888 888 656.00 2,220 0.051 2,041 2,928 656.50 2,409 0.055 1,157 4,086 657.00 2,605 0.060 1,254 5,339 657.50 2,806 0.064 2,608 6,693 658.00 3,015 0.069 2,810 8,149 659.00 3,450 0.079 4,692 11,385 Basin Volume Required (1800cu.ft. /dist. ac) = 2,502 (cu. ft.) Basin Volume Provided at Skimmer = 4,086 (cu. ft.) Required Basin Surface Area (Q10x325 sq.ft.) = 2,648 (sq. ft.) As, Surface Area Provided = 2,806 (sq. ft.) Skimmer Size Calculated Usino Attachment: Volume to be drained in 24 -72 hrs.= 4,086 (cu. ft.) 2.0" Skimmer drains ,3,283 cf /24 hrs. & 13,132 cf/72 hrs. Skimmer Size= 2.0" Diameter Orfice diameter adjustment (((CF Volume /3,369)/3.14) ^0.5)x2= 1.24 Orfice = 1.30 Diameter Emeroencv Spillway Calculation: Q= CLH ^1.5 C= 2.8 Q1o= 8.148 (cfs) Spillway Width = 10.0 (ft.) h= 0.44 (ft.) <0.5', Therefore OK 3/6/2015 1.93 (ac.) 1.20 (ac.) Pre - Developed Greater than required, therefore OK Greater than required, therefore OK P: \Hopper Communities \Vickery Subdivision 14209\ Engineering \Calculations \Erosion Control \14209- EC.xls "72. The ISAACS GROUP Vickery Subdivision Union County, NC Skimmer Basin Design & Calculations (BASIN #4) Peak Flow Calculation Total Time of Concentration, T. 5.00 (min.) i, 10 yr. Rainfall Intensity 7.03 (in. /hr.) C, Rainfall Runoff Coefficient 0.6 A0, Drainage Area to Structure (Pre - Developed) 106,217 (sq. ft.) AD, Drainage Area to Structure (Post - Developed) 77,778 (sq. ft.) Drainage Area to Structure 2.44 (ac.) Area of disturbance for structure 1.84 (ac.) Q10, Peak Flow = CiA 10.285 (cfs) Volume Calculation Bottom of Basin Elevation = 645.50 Depth of Basin (to spillway) 3.00 (ft.) Skimmer Max. Elevation = 647.50 Emergency Spillway Elev. = 648.50 Top of Dam Elevation = 650.00 Contour Area Area Volume Total Elev. (sq. ft.) (ac. ft.) (cu. ft.) (cu. ft.) 645.50 2,231 0.051 646.00 2,428 0.056 1,165 1,165 647.00 2,843 0.065 2,636 3,800 647.50 3,063 0.070 1,477 5,277 648.00 3,282 0.075 1,586 6,863 648.50 3,511 0.081 3,287 8,564 649.00 3,747 0.086 3,515 10,378 650.00 16,441 0.377 14,964 23,528 Basin Volume Required (1800cu.ft. /dist. ac) = 3,312 (cu. ft.) Basin Volume Provided at Skimmer = 5,277 (cu. ft.) Required Basin Surface Area (Q,ox325 sq.ft.) = 3,343 (sq. ft.) As, Surface Area Provided = 3,511 (sq. ft.) Skimmer Size Calculated Using Attachment: Volume to be drained in 24 -72 hrs.= 5,277 (cu. ft.) 2.0" Skimmer drains ,3,283 cf /24 hrs. & 9,849 cf/72 hrs. Skimmer Size= 2.0" Diameter Orfice diameter adjustment (((CF Volume/3,369)/3.14) ^0.5)x2= 1.41 Orfice = 1.40 Diameter Emergency Spillway Calculation: Q= CLH ^1.5 C= 2.8 Q10= 10.285 (cfs) Spillway Width = 12.0 (ft.) h= 0.45 (ft.) <o.g', Therefore OK 3/6/2015 2.44 (ac.) 1.79 (ac.) Pre - Developed Greater than required, therefore OK Greater than required, therefore OK P:\HopperCommunities\Vickery Subdivision 14209\ Engineering \Calculations \Erosion Control \14209- EC.xls W' The /SAACS GROUP Vickery Subdivision Union County, NC Skimmer Basin Design & Calculations (BASIN #5) Peak Flow Calculation Total Time of Concentration, T. 5.00 (min.) i, 10 yr. Rainfall Intensity 7.03 (in. /hr.) C, Rainfall Runoff Coefficient 0.6 A., Drainage Area to Structure (Pre - Developed) 54,462 (sq. ft.) AD, Drainage Area to Structure (Post - Developed) 52,688 (sq. ft.) Drainage Area to Structure 1.25 (ac.) Area of disturbance for structure 1.15 (ac.) Q10, Peak Flow = CiA 5.274 (cfs) Volume Calculation Bottom of Basin Elevation = 659.50 Depth of Basin (to spillway) 3.00 (ft.) Skimmer Max. Elevation = 661.50 Emergency Spillway Elev. = 662.50 Top of Dam Elevation = 664.00 Contour Area Area Volume Total Elev. (sq. ft.) (ac. ft.) (cu. ft.) (cu. ft.) 659.50 1,426 0.033 660.00 1,591 0.037 754 754 661.00 1,938 0.044 1,765 2,519 661.50 2,124 0.049 1,016 3,534 662.00 2,310 0.053 1,109 4,643 662.50 2,506 0.058 2,315 5,849 663.00 2,708 0.062 2,509 7,152 664.00 3,131 0.072 4,228 10,077 Basin Volume Required (1800cu.ft. /dirt. ac) = 2,070 (cu. ft.) Basin Volume Provided at Skimmer = 3,534 (cu. ft.) Required Basin Surface Area (Q1ox325 sq.ft.) = 1,714 (sq. ft.) A5, Surface Area Provided = 2,506 (sq. ft.) Skimmer Size Calculated Using Attachment: Volume to be drained in 24 -72 hrs.= 3,534 (cu. ft.) 2.0" Skimmer drains ,3,283 cf /24 hrs. & 9,849 cf/72 hrs. Skimmer Size= 2.0" Diameter Orfice diameter adjustment (((CF Volume/3,369)/3.14) ^0.5)x2= 1.16 Orfice = 1.30 Diameter Emergency Spillway Calculation: Q= CLH ^1.5 C= 2.8 Q10= 5.274 (cfs) Spillway Width = 10.0 (ft.) h= 0.33 (ft.) <0.5, Therefore OK Kill— W$11141 1.25 (ac.) 1.21 (ac.) Post - Developed 25 Greater than required, therefore OK Greater than required, therefore OK P: \Hopper Communities \Vickery Subdivision 14209\ Engineering \Calculations \Erosion Control \14209- EC.xls 74 The /SAACS CROUP Vickery Subdiuision Union County, NC Skimmer Basin Design & Calculations (BASIN #6) 646.50 Peak Flow Calculation Total Time of Concentration, T. 5.00 (min.) i, 10 yr. Rainfall Intensity 7.03 (in. /hr.) C, Rainfall Runoff Coefficient 0.6 AD, Drainage Area to Structure (Pre - Developed) 33,219 (sq. ft.) AD, Drainage Area to Structure (Post - Developed) 32,105 (sq. ft.) Drainage Area to Structure 0.76 (ac.) Area of disturbance for structure 0.76 (ac.) 010, Peak Flow = CiA 3.217 (cfs) Volume Calculation Bottom of Basin Elevation = 646.50 Depth of Basin (to spillway) 3.00 (ft.) Skimmer Max. Elevation = 648.50 Emergency Spillway Elev. = 649.50 Top of Dam Elevation = 651.00 Contour Area Area Volume Total Elev. (sq. ft.) (ac. ft.) (cu. ft.) (cu. ft.) 646.50 850 0.020 647.00 979 0.022 457 457 648.00 1,254 0.029 1,117 1,574 648.50 1,404 0.032 665 2,238 649.00 1,554 0.036 740 2,978 649.50 1,714 0.039 1,559 3,797 650.00 1,880 0.043 1,717 4,695 651.00 2,887 0.066 3,451 7,248 Basin Volume Required (1800cu.ft. /dist. ac) = 1,368 (cu. ft.) Basin Volume Provided at Skimmer = 2,238 (cu. ft.) Required Basin Surface Area (Q,ox325 sq.ft.) = 1,045 (sq. ft.) As, Surface Area Provided = 1,714 (sq. ft.) Skimmer Size Calculated Using Attachment: Volume to be drained in 24 -72 hrs.= 2,238 (cu. ft.) 1.5" Skimmer drains ,1,728 cf /24 hrs. & 5,184 cf /72 hrs. Skimmer Size= 1.5" Diameter Orfice diameter adjustment (((CF Volume /3,810)/3.14) ^0.5)x2= 1.00 Orfice = 1.00 Diameter Emergencv Splllwav Calculation: Q= CLH ^1.5 C= 2.8 010= 3.217 (cfs) Spillway Width = 10.0 (ft.) h= 0.24 (ft.) <0.5', Therefore OK 3/6/2015 0.76 (ac.) 0.74 (ac.) Pre - Developed Greater than required, therefore OK Greater than required, therefore OK P:\HopperCommunities\Vickery Subdivision 14209\ Engineering \Calculations \Erosion Control \14209- EC.xls '7> The ISAACS GROUP 3/6/2015 Vickery Subdivision Union County, NC Skimmer Basin Design & Calculations (BASIN #7) Peak Flow Calculation Total Time of Concentration, Tc 5.00 (min.) i, 10 yr. Rainfall Intensity 7.03 (in. /hr.) C, Rainfall Runoff Coefficient 0.5 AD, Drainage Area to Structure (Pre - Developed) 108,346 (sq. ft.) 2.49 (ac.) AD, Drainage Area to Structure (Post - Developed) 100,346 (sq. ft.) 2.30 (ac.) Drainage Area to Structure 2.49 (ac.) Pre - Developed Area of disturbance for structure 1.47 (ac.) 010, Peak Flow = CiA 8.743 (cfs) Volume Calculation Bottom of Basin Elevation = 644.50 Depth of Basin (to spillway) 3.00 (ft.) Skimmer Max. Elevation = 646.50 Emergency Spillway Elev. = 647.50 Top of Dam Elevation = 649.00 Contour Area Area Volume Total Elev. (sq. ft.) (ac. ft.) (cu. ft.) (cu. ft.) 644.50 2,003 0.046 645.00 2,180 0.050 1,046 1,046 646.00 2,553 0.059 2,367 3,412 646.50 2,751 0.063 1,326 4,738 647.00 2,950 0.068 1,425 6,164 647.50 3,159 0.073 2,955 7,693 648.00 3,373 0.077 3,162 9,325 649.00 3,821 0.088 5,235 12,928 Basin Volume Required (1800cu.ft. /dist. ac) = 2,646 (cu. ft.) Basin Volume Provided at Skimmer = 4,738 (cu. ft.) Greater than required, therefore OK Required Basin Surface Area (Q10x325 sq.ft.) = 2,841 (sq. ft.) As, Surface Area Provided = 3,159 (sq. ft.) Greater than required, therefore OK Skimmer Size Calculated Using Attachment: Volume to be drained in 24 -72 hrs.= 4,738 (cu. ft.) 2.0" Skimmer drains ,3,283 cf /24 hrs. & 9,849 cf /72 hrs. Skimmer Size= 2.0" Diameter Orfice diameter adjustment (((CF Volume/3,369)/3.14) 110.5)x2= 1.34 Orfice = 1.40 Diameter Emergency Spillway Calculation: Q= CLH ^1.5 C= 2.8 Qt0= 8.743 (cfs) Spillway Width = 10.0 (ft.) h= 0.46 (ft.) <0.5', Therefore OK P:\HopperCommunities\Vickery Subdivision 14209\ Engineering \Calculations \Erosion Control \14209- EC.xls 76