HomeMy WebLinkAboutUSGS_Macroinvertebrate_AssemblageMacroinvertebrate Assemblage
Correspondence to Hydrologic
Classes
T.F. Cuffney, Ph.D.
U.S. Geological Survey
North Carolina Water Science Center
Analysis issues
•Uneven distribution among classes
•Rare taxa
•Multiple seasons
•Ordinal data
•Ambiguous taxa
•Lowest taxonomic level
Uneven distribution among classes
Data sets used in analyses:
1. All classes and sites
2. All classes except E
a. All sites
b. 10 random sites: A, B, D
Rare taxa
0
20
40
60
80
100
120
140
160
123456789101112131415161718192021
No
.
of
ta
x
a
Occurrence (no. sites)
22 %
13 %
114
55 %
Create 5 data sets
all taxa
taxa at > 5 sites
> 10 sites
> 15 sites
> 20 sites
Multiple seasons
0
5
10
15
20
25
30
35
40
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Si
t
e
s
56 %
Ordinal Data and Ambiguous Parents
•Ordinal data:
Absent < Rare < Common < Abundant
0 13 10
Ambiguous parents:
Site 1Site 2Site 3Site 4
Order Ephemeroptera 1
Family Baetidae 1 10
Genus Baetis 33 1
Species B. flavistriga 133
B. pluto 10 3
Resolving ambiguous taxa and
recoding data
Site 1 Site 2 Site 3 Site 4
Order Ephemeroptera 1
Family Baetidae 1 10
Genus Baetis 33 1
Species B. flavistriga 133
B. pluto 10 3
Site 1 Site 2 Site 3 Site 4
Order Ephemeroptera
Family Baetidae
Genus Baetis 4
Species B. flavistriga 1.3 8 4
B. pluto 12.7 8
1. Remove ambiguous parents ≥ Order
2. DPAC‐s: Distribute Parent Among Children by sample
Site 1 Site 2 Site 3 Site 4
Order Ephemeroptera
Family Baetidae
Genus Baetis 3
Species B. flavistriga 133
B. pluto 10 3
Site 1 Site 2 Site 3 Site 4
Order Ephemeroptera
Family Baetidae
Genus Baetis 1
Species B. flavistriga 111
B. pluto 11
Qualitative (P/A)
recoding
Ordinal
recoding
Lowest taxonomic level
Ambiguous taxa
Lowest Richness Abundance Total
taxa level No. % No. % taxa
Species 116 19.0 5,819 17.6 610
Genus 27 6.6 712 2.6 408
Analysis with lowest taxa level: Species
Genus
Data preparation steps
1. Set lowest taxa level: Genus, Species
2. Remove rare taxa: 0, 5, 10, 15, 20 sites
3. Remove ambiguous parents ≥ Order
4. Resolve ambiguous taxa:
Distribute abundance of ambiguous parents
among children, proportionately
Resolve ambiguities separately for each
sample
5. Ordinal and Qualitative (P/A) data sets
6. 10 site simulations for clusters A, B, and D
Analysis
•ANOSIM: tests correspondence between
hydrologic classes and invertebrate
assemblages.
•Indicator Value Analysis: identifies taxa that
differentiate among hydrologic classes.
ANOSIM
•ANOSIM: analysis of similarity, Primer 6, Clarke &
Gorley 2006
•1‐way ANOVA analogue based on non‐parametric
permutation procedures
•Hydrologic classes = treatments
•Analysis is based on resemblance (similarity or
dissimilarity) of assemblages between sites
•Rank similarities between samples in the
underlying triangular similarity matrix
Similarity based on assemblages
Site 1 Site 2 Site 3 Site 4 Site 5
Spp 1 000211
Spp 2 70 0 47 0 72
Spp 3 00000
Spp 4 55 99 0 93 0
Spp 5 011490 0
Spp 6 0 0 76 73 3
Spp 6 60 0 60 0 43
Spp 7 32 0 0 0 36
Spp 8 09748048
Data matrix
Site‐by‐species
Site 1 Site 2 Site 3 Site 4 Site 5
Site 1
Site 2 29.20
Site 3 44.31 40.10
Site 4 31.15 42.03 28.62
Site 5 65.32 25.01 65.36 16.91
Resemblance matrix
Similarity
Quantitative:
Kendal rank correlation
Qualitative (P/A):
Sorenson index
Examines averages within & between
classes of the resemblance matrix
Site 1Site 2Site 3Site 4Site 5Site 6Site 7Site 8Site 9
SiteClassAAABBBCCC
Site 1A ‐‐‐
Site 2A 33‐‐‐
Site 3A 8 7 ‐‐‐
Site 4 B 22 11 19 ‐‐‐
Site 5 B 66 30 58 65 ‐‐‐
Site 6B 44 3152829‐‐‐
Site 7 C 23 16 5 38 57 6 ‐‐‐
Site 8 C 9 34 4 32 61 10 1 ‐‐‐
Site 9 C 48 17 42 56 37 55 51 62 ‐‐‐
Within class
Test procedure
•Test statistic:
Where:
= average rank similarity between classes
= average rank similarity within class
M = n(n‐1)/2, n= total samples
•Ho: no differences in the composition of assemblages
among classes (R=0)
•Permutations: random relabeling samples Rperm
•Significance: % of Rperm > R
Global and Pair‐wise Tests
•Global test of significance: a significant result
means there are differences somewhere that
should be examine further.
•Pair‐wise test of significance
–Extract pairs of classes
–Re‐ranked
–Repeat test
ANOSIM results: Global
DPAC‐S remove ambig. parents ≥ Order Species Genus
All sites and classes ns ns
Without class E
All sites in A, B, and D
Rare taxa ≥ 0nsns
≥ 5nsns
≥ 10 ns ns
≥ 15 ns ns
≥ 20 ns ns
Random 10 sites in A, B, and D
Rare taxa ≥ 0nsns
≥ 5nsns
≥ 10 ns ns
≥ 15 ns ns
≥ 20 ns ns
Quantitative data sets
ANOSIM results: Global
DPAC‐S remove ambig. parents ≥ Order Species Genus
All classes 0.22 0.21
W/o class E
All sites in A, B, and D
Rare taxa ≥ 0 0.22 0.26
≥ 5 0.23 0.27
≥ 10 0.22 0.46
≥ 15 0.21 0.25
≥ 20 0.25 0.33
Random 10 sites in A, B, and D
Rare taxa ≥ 0 0.28 0.25
≥ 5 0.29 0.37
≥ 10 0.20 0.42
≥ 15 0.27 0.32
≥ 20 0.34 0.36
Qualitative (P/A) data sets
Pair‐wise tests: Genus, P/A, ≥ 10
ABCDFG
A ‐‐‐‐‐
B 2.8 ‐‐‐‐‐
C 0.2 3.6 ‐‐‐‐‐
D 12.5 100 14.3 ‐‐‐‐‐
F 0.1 1.8 16.5 10 ‐‐‐‐‐
G 0.8 78.6 0.2 57.1 0.02 ‐‐‐‐‐
P‐values: p ≤ 5 % shown in yellow
ANOSIM interpretation
•Quantitative: correspondence with hydrologic
classes is not significantly different from a
random assignment of sites to classes.
•Qualitative (P/A): correspondence with
hydrologic classes significantly better than a
random assignment of sites to classes.
However, correspondence is relatively low.
Unanswered question
Is there a hydrologic classification
that optimizes the correspondence to
the distribution of assemblages?
Fidelity analysis
Identify taxa strongly associated with a
priori groups (hydrologic clusters)
Fidelity analysis methods
•Indicator value analysis (Dufrene and
Legendre 1997): quantitative data
•Fidelity analysis (Tichy and Chytry 2006):
qualitative (P/A) data
Indicator Value index
j = cluster
abundance of species i
in cluster j ‐‐specificity
Bij is occurrence of species i in cluster j –
fidelity
: Fidelity
Where: N = number of sites in the data set
Np = number of sites in target site group
n = number of occurrences of taxon in
the data set
np = number of occurrences of taxon in
the target site groups
Fidelity analysis data sets
DPAC‐S, remove ambiguous parents ≥ Order, no
rare taxa removed:
–Lowest taxa level = Species
•Quantitative: 0, 1, 3, 10
•Qualitative (P/A): 0, 1
–Lowest taxa level = Genus
•Quantitative: 0, 1, 3, 10
•Qualitative (P/A): 0, 1
Global results
•Species:
–Quantitative: p < 0.001
–Qualitative: p < 0.001
•Genus:
–Quantitative: p < 0.001
–Qualitative: p < 0.001
Hydro Class A
Species Genus
Taxon Quant Qual Quant Qual
Amnicola X Amnicola X
Isochaetides freyi X Isochaetides X
Palaemonetes paludosus XX Palaemonetes XX
Gammarus fasciatus XX Gammarus X
Acerpenna pygmaea XX Acerpenna XX
Neurocordulia obsoleta XX Neurocordulia XX
Epicordulia princeps X Epicordulia X
Erythemis XX
Enallagma XX Enallagma XX
Pelocoris X Pelocoris X
Belostoma X Belostoma X
Phylocentropus XX Phylocentropus XX
Macrostemum X Macrostemum X
Nectopsyche exquisita X Nectopsyche X
Oecetis nocturna X
Molanna X Molanna XX
Coptotomus X Coptotomus X
Laccophilus XX Laccophilus XX
Peltodytes XX Peltodytes XX
Enochrus XX Enochrus XX
Tribelos X
Labrundinia pilosella xX Labrundinia X
Hydro Class B
Species Genus Species Genus
Taxon Quant Qual Taxon Quant Qual Taxon Quant Qual Taxon Quant Qual
Serratella deficiens X Serratella X Pteronarcys XX
Serratella serratoides X Ceratopsyche bronta X Ceratopsyche X
Paraleptophlebia X Paraleptophlebia X Ceratopsyche sparna X
Acentrella X Dolophilodes X Dolophilodes X
Baetis pluto X Goera X Goera X
Epeorus vitreus XXEpeorus XX Pycnopsyche XXPycnopsyche XX
Heptagenia marginalis X Neophylax XXNeophylax XX
Stenacron pallidum X Glossosoma X Glossosoma X
Stenonema ithaca X Rhyacophila fuscula XX
Stenonema pudicum XX Optioservus ovalis X
Lanthus X Lanthus XX Microtendipes x
Leuctra XXLeuctra XX Diamesa X Diamesa X
Tallaperla XXTallaperla XX Parametriocnemus X Parametriocnemus X
Acroneuria abnormis X Antocha X Antocha X
Paragnetina
immarginata X Paragnetina X Dicranota XXDicranota XX
Isoperla holochlora X Atherix X
Malirekus hastatus X Malirekus X
Hydro Class C
Species Genus
Taxon Quant Qual Taxon Quant Qual
Dugesia tigrina XXDugesia XX
Elliptio complanata X Elliptio X
Ferrissia X Ferrissia X
Limnodrilus XXLimnodrilus X
Tricorythodes XXTricorythodes XX
Baetis intercalaris X Baetis X
Heptagenia XX
Stenonema exiguum XX
Stenonema integrum X
Stenonema ithaca X
Gomphus X Gomphus X
Macromia XXMacromia XX
Paragnetina X
Pteronarcys dorsata X
Corydalus cornutus XXCorydalus XX
Macronychus glabratus X Macronychus X
Hydropsyche X Hydropsyche X
Brachycentrus
numerosus X
Paracladopelma XXParacladopelma XX
Polypedilum X Polypedilum X
Robackia demeijerei XXRobackia X
Cricotopus bicinctus XXCricotopus XX
Lopescladius X Lopescladius X
Thienemanniella X
Nilotanypus X
Ablabesmyia XX
Hydro Class D
Species Genus
Taxon Quant Qual Taxon Quant Qual
Progomphus obscurus X Progomphus X
Hydro Class E
•Eliminated, only 1 site in class.
Hydro Class F
Species Genus
Taxon Quant Qual Taxon Quant Qual
Serratella serratoides X Serratella X
Baetis pluto X
Heterocloeon XXHeterocloeon XX
Hetaerina X
Argia X
Boyeria vinosa X Boyeria XX
Hagenius brevistylus X Hagenius X
Hetaerina XX
Perlesta X Perlesta X
Agnetina X
Ranatra X
Ceratopsyche morosa XXCeratopsyche X
Ceratopsyche sparna X
Hydropsyche phalerata X
Hydropsyche venularis XX
Psychomyia nomada X
Oecetis avara X
Promoresia elegans XXPromoresia XX
Psephenus herricki X Psephenus X
Anchytarsus X
Cryptochironomus XXCryptochironomus X
Microtendipes rydalensis X
Paratendipes albimanus X
Brillia sera XX
Cardiocladius obscurus XXCardiocladius XX
Cricotopus (Cricotopus)X
Antocha X Antocha X
Hydro Class G
Species Genus
Taxon Quant Qual Taxon Quant Qual
Lirceus XXLirceus XX
Prostoia X Prostoia X
Ironoquia XXIronoquia XX
Ptilostomis X Ptilostomis X
Parachironomus X Parachironomus X
Fidelity analysis: conclusions
•Can extract taxa that are indicative of clusters
•Key question is whether clusters are optimal
and indicators are informative
•Identifying optimal clusters for taxa or groups
of taxa is possible using fidelity analysis, but
may be tedious