Loading...
HomeMy WebLinkAboutEDF_Biological_Environmental_Classification_updateBIOLOGICAL - ENVIRONMENTAL CLASSIFICATION (BEC) SYSTEM AND SUPPORTING FLOW – BIOLOGY RELATIONSHIPS IN NORTH CAROLINA – PROJECT UPDATE Conducted by: RTI and USGS Funded by: Environmental Defense Fund, North Carolina Division of Water Resources, North Carolina Wildlife Resources Commission BACKGROUND •Biofidelity Analysis showed –Stream classifications systems based on flow metrics (EFS and McManamay) could not be extrapolated beyond catchments with USGS gages •49% to 64% match between classifications based on USGS gage versus WaterFALL modeled hydrologic data –~ 270 USGS gages in NC –~70,000 NHD+ catchments •Streams class can change depending on period of record used to determine classes BACKGROUND •Conclusion –Need a classification system that •Is not based on sensitive threshold values •Is consistent and reproducible using USGS stream gage and modeled data •Is easy to understand and implement •Can be applied throughout state •Captures the distribution of aquatic biota in North Carolina 3 OBJECTIVES OF BEC PROJECT 1. Develop a classification system based on geographical assemblages of aquatic biota (fish and benthos) and associated environmental (physiographic and hydrologic) attributes – Biological-Environmental Classification (BEC) system 2. Determine flow–biology response relationships for each BEC class 3. Link significant flow metrics (and associated flow– biology relationships) to each BEC class to support ecological flow determinations Step 1 – Determine BEC classes based on aquatic biota assemblages and environmental characteristics Step 2 – Determine flow-biology relationships for each BEC class Step 3 – Link significant flow metrics to each BEC class to support determination of ecological flows CLASSIFICATION BASED ON ENVIRONMENTAL ATTRIBUTES CLUSTERING OF ENVIRONMENTAL FACTORS 1.NHD drainage area 2.Cumulative drainage area 3.NHD slope 4.Slope 5.Elevation 6.Minimum elevation 7.Relief (max−min elev) 8.% flat land (<1% slope) 9.% flat low land 10.% flat uplands 11.Precipitation 12.Evapotranspiration 13.Precip-Evapotransp. 14.Temperature 15.Sinuosity 16.Aquifer permeability 17.% sand in soils CORRELATIONS (SPEARMAN) AMONG ENVIRONMENTAL VARIABLES CumDA Precip NHD Slope Sinuosity Elev % SAND DA Temp AQUIFER PERM SLOPE PET PMPE MINELE RELIEF % FLAT TOT % FLAT LOW % FLAT UP CumDA Precip -0.129 NHDSlope -0.478 0.192 Sinu -0.091 0.072 0.083 Elev -0.159 0.284 0.497 -0.024 SAND -0.034 0.336 -0.101 0.027 -0.337 DA -0.006 0.069 -0.029 0.869 -0.111 0.066 Temp 0.107 -0.185 -0.457 0.064 -0.894 0.327 0.156 AQIFER PERM 0.038 0.108 -0.344 0.039 -0.756 0.701 0.125 0.717 SLOPE -0.081 0.304 0.505 -0.049 0.930 -0.292 -0.144 -0.855 -0.719 PET 0.074 -0.199 -0.439 0.064 -0.897 0.334 0.159 0.964 0.739 -0.865 PMPE -0.089 0.791 0.302 0.019 0.614 0.108 -0.021 -0.571 -0.215 0.614 -0.607 MINELE -0.078 0.268 0.460 -0.045 0.983 -0.350 -0.133 -0.889 -0.770 0.930 -0.904 0.615 RELIEF -0.080 0.308 0.499 -0.053 0.899 -0.245 -0.144 -0.828 -0.668 0.953 -0.839 0.584 0.882 % FLAT TOT 0.081 -0.330 -0.489 0.048 -0.923 0.305 0.134 0.854 0.712 -0.978 0.868 -0.636 -0.921 -0.937 %F LAT LOW 0.096 -0.445 -0.432 0.025 -0.765 0.142 0.091 0.698 0.504 -0.806 0.705 -0.663 -0.758 -0.750 0.821 % FLAT UP 0.059 -0.350 -0.392 0.033 -0.777 0.168 0.102 0.760 0.537 -0.808 0.787 -0.639 -0.785 -0.814 0.819 0.478 Environmental variables selected for cluster analysis: Cumulative drainage area Sinuosity Precipitation % Sand in soil Elevation NHD slope |r|≥ 0.7 ENVIR VAR : FULL VS. REDUCED MATRIX Environmental variables: Full vs. Reduced Matrix RELATE analysis -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Rho 0 211 Frequency Distributions of correlation base on permutations Correlation between full and reduced similarity metrics RELATE Analysis Rho Fr e q u e n c y CLUSTER ANALYSIS: ENVIRONMENTAL VARIABLES •Partitioning around medoids (PAM) •Standardized data (mean = 0, sd = 1) •Euclidean distance •Examined 2-60 clusters •Average silhouette used to determine “best” clustering •Box plots of variables in “best” clustering 0 5 10 15 20 25 30 0. 0 0 0. 0 5 0. 1 0 0. 1 5 0. 2 0 0. 2 5 0. 3 0 0. 3 5 pam() clustering assessment k (# clusters) av e r a g e s i l h o u e t t e w i d t h best 7 “BEST” CLUSTERING OF ENVIR. VARIABLES Number of Clusters Av e r a g e S i l h o u e t t e Wid t h 0.71-1.00: Strong structure 0.51-0.70: Reasonable structure 0.26-0.50: Weak structure <0.25: No structure 1 2 3 4 5 6 7 0 50 0 10 0 0 15 0 0 Elevation Cluster % E l e v ELEVATION Cluster El e v a t i o n ( m ) 1 2 3 4 5 6 7 0 50 10 0 15 0 NHD Drainage Area Cluster Dr a i n a g e a r e a NHD DRAINAGE AREA Cluster El e v a t i o n ( m ) CHARACTERISTICS OF CLUSTERS Cluster Elevation Drainage area variability Precip. Sinuosity NHD slope % Sand in soil 1 Low High Low Low Low High 2 Med High Low Low Low Low 3 High Low Med Low Low Med 4 High Low High Low Low Med 5 High Low Med High Low High Med 6 Low Low Low Low Low High 7 Med High Low Med Low Low ENVIRONMENTAL CLUSTERS 1 2 3 4 5 6 7 A PRIORI CLASSIFICATIONS •U.S. EPA Omernik Ecoregions: III and IV •USFS Bailey Ecoregions: Provinces and Sections •Fenneman’s physiographic Provinces and Sections •USGS Wolock’s hydrologic landscape regions •Ecological Drainage Units •Stream size: –X ≤ 10 –10 < X ≤ 100 –100 < X ≤ 500 –500 < X ≤ 1000 –X > 1000 •16 a priori classifications 0.30 0.40 0.50 0.60 0.70 0.80 ER I I I ER I I I D A ER I V ER I V D A FE N P R O V FE N P R O V D A FE N S E C FE N S E C D A BA I L E Y P R O V BA I L E Y P R O V D A BA I L E Y S E C BA I L E Y S E C D A WO L O C K WO L O C K D A ED U ED U D A PA M C l u s 7 r-st a t i s t i c ANOSIM: environmental variables vs. a priori and "best" PAM cluster ANOSIM: ENVIRO. VAR. VS. CLASSIFICATIONS CLASSIFICATION BASED ON INVERTEBRATE BIOTA INVERTEBRATES •Sites rated by DWQ as –Excellent, Good, or Good-Fair –Standard qualitative or swamp methods •Most recent date for each site •Ordinal scale data –Absent < rare < common < abundant –Coded as: 0, 1, 3, and 10 –ANOSIM (MANOVA for ranked data) •Eliminated rare taxa: occur < 5 sites •Lowest taxa level: Genus •Ambiguous taxa resolved, taxa harmonized Correspondence with a priori and environmental clusters Characteristics of Invertebrate Data 0.25 0.27 0.29 0.31 0.33 0.35 0.37 0.39 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 r-st a t i s t i c Number of Clusters ANOSIM: Envir. clusters (PAM) applied to invertebrate community ANOSIM: PAM CLUSTERS VS. INVERTEBRATES 0.25 0.27 0.29 0.31 0.33 0.35 0.37 0.39 0.41 0.43 0.45 ER I I I ER I I I D A ER I V ER I V D A FE N P R O V FE N P R O V D A FE N S E C FE N S E C D A BA I L E Y P R O V BA I L E Y P R O V DA BA I L E Y S E C BA I L E Y S E C D A WO L O C K WO L O C K D A ED U ED U D A Pa m C l u s 7 r-st a t i s t i c s vs. a priori classifications ANOSIM: A PRIORI CLASSIFICATIONS AND INVERTS INVERTEBRATE: CLUSTERING •Evaluated multiple clustering methods –K-means: uses Euclidean distance –PAM: Bray-Curtis, very low silhouette values –Hierarchical clustering (Bray-Curtis): •Agglomerative: many small clusters •Divisive hierarchical clustering: “best” clustering? •Examined 2-60 clusters •ANOSIM to assess correspondence between clusters and invert data (similarity matrix) INVERTS: PAM CLUSTERING 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0 10 20 30 40 50 60 Av g . S i l h o u e t t e W i d t h Number of Clusters 0.71-1.00: Strong structure 0.51-0.70: Reasonable structure 0.26-0.50: Weak structure <0.25: No structure ANOSIM: ENV CLUSTERED BY INVERTEBRATES 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0 10 20 30 40 50 60 r-st a t i s t i c Number of Invertebrate Clusters Inverts: Divisive hierarchical clustering Envir: Euclidean similarity matrix LINKING INVERTS AND ENV: CART ANALYSIS ELEV < 242.9 MINELE < 58.8 NHDSlope < 0.008255 ANOSIM: A PRIORI & NMDS CART CLUSTERS 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Ec o R e g I I I Ec o R e g I I I D A Ec o R e g I V Ec o R e g I V D A FE N P R O V FE N P R O V D A FE N S E C FE N S E C D A WO L O C K WO L O C K D A EC O D R A I N U N I T S EC O D R A I N U N I T S D A BA I L E Y P R O V BA I L E Y P R O V D A BA I L E Y S E C BA I L E Y S E C D A CA R T 2 CA R T 3 a CA R T 3 b CA R T 4 CA R T 8 CA R T 9 AN O S I M r -st a t i s t i c NUMBER CLASSES 0 10 20 30 40 50 60 70 80 Ec o R e g I I I Ec o R e g I I I D A Ec o R e g I V Ec o R e g I V D A FE N P R O V FE N P R O V D A FE N S E C FE N S E C D A WO L O C K WO L O C K D A EC O D R A I N U N I T S EC O D R A I N U N I T S D A BA I L E Y P R O V BA I L E Y P R O V D A BA I L E Y S E C BA I L E Y S E C D A CA R T 2 CA R T 3 a CA R T 3 b CA R T 4 CA R T 8 CA R T 9 No . c l a s s e s NON-SIGNIFICANT PAIRWISE CLASSES 0.0 10.0 20.0 30.0 40.0 50.0 60.0 Ec o R e g I I I Ec o R e g I I I D A Ec o R e g I V Ec o R e g I V D A FE N P R O V FE N P R O V D A FE N S E C FE N S E C D A WO L O C K WO L O C K D A EC O D R A I N U N I T S EC O D R A I N U N I T S D A BA I L E Y P R O V BA I L E Y P R O V D A BA I L E Y S E C BA I L E Y S E C D A CA R T 2 CA R T 3 a CA R T 3 b CA R T 4 CA R T 8 CA R T 9 % n o n -si g n i f i c a n t ( p , 0 . 0 5 ) NEXT STEPS FOR INVERT ANALYSES •Derive invertebrate metrics (aggregations of species attributes) with emphasis on those sensitive to flow (e.g., filter-feeders, collector-gatherers) •Directly related invertebrate metrics to environmental variables (CART) to develop integrated classifications •Relate invertebrate metrics to flow variables: –Flow surplus/deficit and IHA metrics –CART analysis (identify important flow variables) –Analyses (e.g., quantile regression) •Within classes •State-wide •Repeat analyses at species level CLASSIFICATION BASED ON FISH STREAM FISH COMMUNITY DATA Data Description and Formatting Most recent sample at 858 unique XY coordinate locations Count data at species level Data was log transformed Species observed at <5 sites were removed Sample locations with no fish were removed Bray-Curtis method used to calculate dissimilarity matrix ANALYTICAL APPROACH Environmental Classifications – Associate sample locations and community data with eco-region level, drainage class, and USGS-derived environmental clusters – Test explanatory power of each classification (PERMANOVA) Biological Classification – Use community data to create biology-based groups with PAM and hierarchical agglomerative techniques – Test significance and explanatory power (Silhouette width, multi-scale bootstrap re-sampling, PERMANOVA) ENVIRONMENTAL CLASSIFICATIONS BIOLOGICAL CLUSTERS: PAM BIOLOGICAL CLUSTERS: HIERARCHICAL Bootstrap Sampling alpha=0.5 n=62 clusters BIOLOGICAL CLUSTERS: HIERARCHICAL k=8 Cluster Freq Elev Slope Drain 1 86 2555 3.93 23 2 166 107 0.14 72 3 82 1235 0.93 45 4 205 522 0.24 77 5 82 386 0.24 118 6 51 1101 2.75 61 7 77 812 0.43 68 8 108 2094 0.91 77 Cluster Freq Elev Slope Drain 1 86 2593 1.85 14 2 166 58 0.10 47 3 82 1127 0.49 40 4 205 541 0.16 58 5 82 335 0.17 64 6 51 468 0.27 58 7 77 830 0.27 55 8 108 2072 0.65 51 Mean Values Median Values GEOGRAPHIC DISTRIBUTION; HIER K=8 CLUSTER/CLASS SIZE COMPARISON NEXT STEPS FOR FISH Cluster Analysis –Incorporate select environmental variables into biological clustering process –Assess cluster p-values in terms of centers and multivariate spread NEXT STEPS FOR FISH Classification –Classify ‘best’ cluster results in terms of environmental variables; assess predictive power using 80/20 training/test regime 1 2 3 4 5 6 7 8 1 24 0 1 0 0 3 0 8 2 0 47 0 12 7 5 0 0 3 0 0 16 4 2 0 9 0 4 0 1 3 34 1 4 8 0 5 0 0 0 4 13 2 0 0 6 1 0 0 0 0 2 0 0 7 0 0 1 9 2 0 3 0 8 1 0 6 0 0 0 0 18 RECOMMENDATIONS •Correspondence between independently derived environmental and biological classification is weak •Most promising approach is a classification system based on integrated biological and environmental attributes (e.g., CART univariate analysis) •Need to adjust/optimize taxonomic resolution and environmental spatial scale •Consider the purpose of a classification system…are the number of classes workable? •Use an existing classification scheme?