Loading...
HomeMy WebLinkAbout20180180 Ver 1_Hollowell_MY3_USACE_FINAL_11032022_20221103ID#* 20180180 Select Reviewer: Erin Davis Initial Review Completed Date 11/03/2022 Mitigation Project Submittal - 11/3/2022 Version* 1 Is this a Prospectus, Technical Proposal or a New Site?* Type of Mitigation Project:* Stream Wetlands Buffer Nutrient Offset (Select all that apply) Project Contact Information Contact Name:* Emily Dunnigan Project Information ID#:* 20180180 Existing ID# Project Type: DMS Mitigation Bank Project Name: Hollowell Mitigation Bank County: Wayne Document Information O Yes O No Email Address:* emily@waterlandsolutions.com Version:* 1 Existing Version Mitigation Document Type:* Mitigation Monitoring Report File Upload: Hollowell _MY3_USACE_FINAL _11032022.pdf 19.24MB Please upload only one PDF of the complete file that needs to be submitted... Signature Print Name: * Cara Conder Signature: * WATER & LAND SOLUTIONS November 3, 2022 US Army Corps of Engineers: Wilmington District Raleigh Regulatory Field Office Attn: Todd Tugwell 3331 Heritage Trade Drive, Suite 105 Wake Forest, NC 27587 RE: Hollowell Mitigation Bank, WLS Neuse 01 Umbrella Bank — Fifth Credit Release Request (Monitoring Year 3) Dear Mr. Tugwell: Water & Land Solutions (WLS) respectfully requests the fifth credit release on the Hollowell Mitigation Project for 10% of the total stream and 15% of total wetland (non -preservation) credits. This credit release amount would be 721.20 stream credits and 0.686 riparian wetland credits. Also included with this letter is the anticipated bank credit release schedule per the USACE-Wilmington template and the WLS stream and wetland credit ledgers as of 11/1/22. The following items have been completed regarding completion ofTask5: MonitoringYear3 (MY3) Report and the monitoring financial assurance (casualty insurance policy) is active. If you need any additional information, please contact me directly. Sincerely, C4'-r'_ /� e�� Cara Conder Sr. Project Manager 7721 Six Forks Rd., Suite 130 Raleigh, NC 27615 Mobile Phone: 843-446-2312 Email: cara@waterlandsolutions.com waterlandsolutions.com 1 7721 Six Forks Rd, Ste 130, Raleigh, NC 27615 1 919-614-5111 W 3 W N LL d d m O Z N .a 'z a c O y z u d c m — � 5 m d W a a O ad d z M y N C O LL C 2 O u O N K K 'O W i U N •C U d ° W a 'O i u m E u p F i N E d 10 10 N M n n C N a > W 2 3 c O •� � C ' E E m U � i u W u N W u N d a d a � m 0 0N N W y W O N 0 N 0 0 N N a" d 6 jp N N N m N N a N N N N Y O O O O O N O O N N O O N N a O y y N \ N \\ N\\\\\ 0 0 0 0 0\ N Ul C � a a a y m Z Z Z � V � V LL Q Q Q W W L m ti O O N .ti �fl ti Z Z Z O z N C Q Z O z W C N W i u a z d a o d 0 z z .°3 W m c o 0 Ol D 0 lfl 4. m w D o m lQ T Z Ui O a? O O i K K 3 � � N C W �Il �Il O O �Il N O W L W N N Z i U VI � 'O W u d o 19 3 u E E 0 0 0 0 0 0 0 0 0 ON N � � N lD � m N � m N N � � W H 3 � y ifl �fl O O O N O N O O L W o a�i m 'ao 'ao 'ao 'ao 'ao 'ao 'ao m y c r- - 3 fL 4° 4° ° 4 4 V woN m a o 0 0 0 0 0 0 C W ei N M a Vf lD I� C N �n y W W CO W ME U u m N N F L O C w N R Monitoring Report — MY3 Hollowell Mitigation Project WLS Neuse 01 Umbrella Mitigation Bank Monitoring Year 3 Calendar Year of Data Collection: 2022 Private Commercial Mitigation Bank for Stream and Riparian Wetland Compensatory Mitigation Credits Neuse River Basin (CU 03020201) USACE Action ID Number: SAW-2017-00159 Wayne County, NC Data Collection Period: June and October 2022 Submission Date: November 2022 Prepared for: U.S. Army Corps of Engineers, Wilmington District 69 Darlington Avenue Wilmington, North Carolina 28403-1343 Prepared by: WATER & LAND SOLUTIONS 7721 SIX FORKS ROAD, SUITE 130, RALEIGH, NC 27615 (919f 614 - 5111 1 waterlandsolutions.com :S 1 Project Summary...................................................................................................................................1 1.1 Project Location and Description.................................................................................................. 1 1.2 Project Goals and Objectives........................................................................................................ 1 1.3 Project Success Criteria................................................................................................................. 2 1.3.1 Single -Thread Streams.......................................................................................................... 2 1.3.2 Headwater Streams.............................................................................................................. 3 1.3.3 Wetlands...............................................................................................................................4 1.3.4 Vegetation.............................................................................................................................4 1.3.5 Visual Assessment.................................................................................................................4 2 Project Mitigation Components............................................................................................................ 5 2.1 Project Components..................................................................................................................... 5 3 Monitoring Year 3 Assessment and Results.......................................................................................... 5 3.1 Morphological Assessment........................................................................................................... 6 3.1.1 Stream Horizontal Pattern & Longitudinal Profile................................................................6 3.1.2 Stream Horizontal Dimension...............................................................................................6 3.2 Stream Hydrology......................................................................................................................... 6 3.2.1 Stream Flow.......................................................................................................................... 6 3.2.2 Bankfull Events......................................................................................................................7 3.2.3 Headwater Stream Channel Formation................................................................................ 7 3.2.4 Wetland Hydrology...............................................................................................................7 3.3 Vegetation.....................................................................................................................................7 3.4 Macrobenthic Sampling ................................................................................................................8 4 Methods................................................................................................................................................9 LIST OF APPENDICES Appendix A Background Tables Table 1 Project Mitigation Components Table 2 Project Activity and Reporting History Table 3 Project Contacts Table 4 Project Information and Attributes Appendix B Visual Assessment Data Figure 1a & 1b Current Condition Plan View (CCPV) Photos Stream Station Photographs Vegetation Plot Photographs Crossing Photographs Additional Photos Appendix C Vegetation Plot Data Table 5a Planted and Total Stem Counts Table 5b Vegetation Plot Mitigation Success Summary Table 5c Red -line Planting List Appendix D Stream Measurement and Geomorphology Data MY3 Cross -Sections Table 6a Baseline Stream Data Summary Table 6b Cross-section Morphology Data Table 6c Stream Reach Morphology Data Table 6d Evidence of Headwater Channel Formation Appendix E Hydrologic Data Table 7 Verification of Bankfull Events Figure 2 Surface Flow Data Figure 3 Flow Gauge and Crest Gauge Installation Diagram Figure 4 Rainfall Data Figure 5 Wetland Gauge Data Appendix F Macrobenthic Data Table 8 Biotic Index Data and Scores Macrobenthic Sampling Field Data Sheets Photos Biotic Sampling Photographs Appendix G Correspondence MY2 Credit Release Comment Response 1 Project Summary 1.1 Project Location and Description Water and Land Solutions, LLC (WLS) completed the construction and planting of the Hollowell Mitigation Project (Project) in April 2020. The Project is located approximately seven miles southwest of Goldsboro in Wayne County, NC (35.35814,-78.11642), in the Neuse River Basin 8-digit HUC 03020201 and NC Department of Environmental Quality (NCDEQ) sub -basin 03-04-02 (Warm Water Thermal Regime). The Project is a site within the WLS Neuse 01 Umbrella Mitigation Bank. This sub -basin spans portions of Johnston and Wayne Counties and includes the municipalities of Goldsboro, Selma, Pine Level, Mount Olive and Princeton. The Project involved the restoration, enhancement, preservation, and permanent protection of eight stream reaches totaling approximately 8,979 linear feet, and the preservation, re-establishment, and enhancement of riparian wetlands totaling 10.52 acres. The Project also results in nutrient offset credits, riparian buffer restoration, and buffer preservation through the Division of Water Resources. The Project will provide significant ecological improvements and functional uplift through stream and aquatic habitat restoration, and through decreasing nutrient and sediment loads within the watershed. Figures 1a and 1b illustrate the project mitigation components. Monitoring Year 3 (MY3) activities occurred during June and October 2022. This report presents the data for MY3. The Project meets the MY3 success criteria for stream hydrology, stream horizontal and vertical stability, streambed condition and stability, stream flow, and vegetation. One of the seven wetland gauges is not meeting the 12 to 16 percent hydroperiod criteria. Based on these results, the Project is on trajectoryto meet interim and final success criteria. For more information on the chronology of the project history and activity, refer to Appendix A, Table 2. Relevant project contact information is presented in Table 3 and project background information is presented in Table 4. 1.2 Project Goals and Objectives The Project will meet the goals and objectives described in the Hollowell Final Approved Mitigation Plan and will address general restoration goals and opportunities outlined in the NC DMS Neuse River Basin RBRP (DEQ 2010). More specifically, watershed goals and management strategies will be met by: • Reducing sediment, soil erosion, turbidity, and nutrient inputs such as nitrogen and phosphorus to the Neuse River Watershed. • Restoring, enhancing, preserving, and protecting headwater streams, wetlands, riparian buffers and aquatic habitat functions. • Improving riparian corridor management and targeting restoration of impacted streams and riparian buffer areas. • Promoting agronomic farm management techniques and implementing agricultural BMPs and water quality features, such as nutrient management and wetlands restoration. To accomplish these project -specific goals, the following objectives will be measured to document overall project success: • Provide a floodplain connection to the incised Project stream reaches by lowering bank height ratios (BHRs) to less than 1.2, thereby promoting a more natural headwater flow regime and overbank flood flows, • Improve bedform diversity by increasing scour pool spacing and depth variability, • Increase native species riparian buffer and wetland vegetation density/composition along streambank and floodplain areas that meet requirements of a minimum 50-foot-wide and 210 stems/acre after the monitoring period, • Improve aquatic habitat and fish species diversity and migration through the addition of in -stream cover and native woody debris, Site protection is provided by a 72-acre conservation easement with a minimum width of 50 feet from the top of the restored stream banks. The easement protects all project streams, wetlands and aquatic resources in perpetuity. 1.3 Project Success Criteria The success criteria for the Project follows the approved performance standards and monitoring protocols from the final approved mitigation plan; which was developed in compliance with the USACE October 2016 Guidance, USACE Stream Mitigation Guidelines (April 2003 and October 2005), and 2008 Compensatory Mitigation Final Rule. Cross-section and vegetation plot data will be collected in Years 0, 1, 2, 3, 5, and 7. Stream hydrology data and visual monitoring will be reported annually. Specific success criteria components and evaluation methods are described below. 1.3.1 Single -Thread Streams Stream Hydrology: Four separate bankfull or over bank events must be documented within the seven- year monitoring period and the stream hydrology monitoring will continue until four bankfull events have been documented in separate years. Stream hydrology monitoring will be accomplished with pressure transducers installed in pools and correlating sensor depth to top of bank elevation. Recorded water depth above the top of bank elevation will document a bankfull event. In addition to the pressure transducers, traditional cork gauges will be installed at bankfull elevation and will be used to document bankfull events with photographs. Stream Profiles, Vertical Stability, and Floodplain Access: Stream profiles, as a measure of vertical stability and floodplain access will be evaluated by looking at Bank Height Ratios (BHR). In addition, observed bedforms should be consistent with those observed for channels of the design stream type(s). The BHR shall not exceed 1.2 along the restored Project stream reaches. This standard only applies to restored reaches of the channel where BHRs were corrected through design and construction. Vertical stability will be evaluated with visual assessment, cross sections and, if directed by the IRT, longitudinal profile. Stream Horizontal Stability: Cross -sections will be used to evaluate horizontal stream stability on restored streams. There should be little change expected from as -built restoration cross -sections. If measurable changes do occur, they should be evaluated to determine if the changes represent a movement toward a more unstable condition (e.g., downcutting, erosion) or a movement towards increased stability (e.g., settling, vegetation establishment, deposition along the streambanks, decrease in width/depth ratio). Cross -sections shall be classified using the Rosgen Stream Classification method and all monitored cross - sections should fall within the quantitative parameters defined for channels of the design stream type. Reference photo transects will be taken at each permanent cross-section. Lateral photos should not indicate excessive erosion or continuing degradation of the streambanks. Photographs will be taken of both streambanks at each cross-section. A survey tape stretched between the permanent cross-section monuments/pins will be centered in each of the streambank photographs. The water elevation will be shown in the lower edge of the frame, and as much of the streambank as possible will be included in each photo. Photographers will attempt to consistently maintain the same area in each photo over time. Streambed Material Condition and Stability: After construction, there should be minimal change in the particle size distribution of the streambed materials, over time, given the current watershed conditions and future upstream sediment supply regime. Because the streambed material and sediment supply is predominantly sand with minimal gravel, significant changes in particle size distribution and channel substrate are not expected. Jurisdictional Stream Flow: Monitoring of stream flow will be conducted to demonstrate that the restored stream systems classified as intermittent exhibit surface flow for a minimum of 30 consecutive days throughout some portion of the year during a year with normal or below normal rainfall conditions. Stream flow monitoring will be accomplished with pressure transducers installed in pools and correlating sensor depth to the downstream top of riffle elevation. If the pool water depth is at or above the top of riffle elevation, then the channel will be assumed to have surface flow (Figure 3). The devices will record water elevation twice per day and will be inspected quarterly to document surface hydrology and provide a basis for evaluating flow response to rainfall events. 1.3.2 Headwater Streams Seasonal Flow: Surface flow must be documented using automatic pressure transducers (flow gauges). Continuous surface water flow within the valley or crenulation must be documented to occur every year for at least 30 consecutive days during the prescribed monitoring period. This will be accomplished in the same approach as Jurisdictional Stream Flow above. Channel Formation: During monitoring years 1 through 4, the preponderance of evidence must demonstrate a concentration of flow indicative of channel formation within the topographic low -point of the valley or crenulation as documented by the following indicators: • Scour (indicating sediment transport by flowing water) • Sediment deposition (accumulations of sediment and/or formation of ripples) • Sediment sorting (sediment sorting indicated by grain -size distribution with the primary path of flow) • Multiple observed flow events (must be documented by gauge data and/or photographs) • Destruction of terrestrial vegetation • Presence of litter and debris • Wracking (deposits of drift material indicating surface water flow) • Vegetation matted down, bent, or absent (herbaceous or otherwise) • Leaf litter disturbed or washed away During monitoring years 5 through 7, the stream must successfully meet the requirements above and the preponderance of evidence must demonstrate the development of stream bed and banks as documented by the following indicators: • Bed and banks (may include the formation of stream bed and banks, development of channel pattern such as meander bends and/or braiding at natural topographic breaks, woody debris, or plant root systems) • Natural line impressed on the bank (visible high-water mark) • Shelving (shelving of sediment depositions indicating transport) • Water staining (staining of rooted vegetation) • Change in plant community (transition to species adapted for flow or inundation for a long duration, including hydrophytes) • Changes in character of soil (texture and/or chroma changes when compared to the soils abutting the primary path of flow) 1.3.3 Wetlands Wetland Hydrology: The performance standard for wetland hydrology will be a minimum 12 to 16 percent based on the suggested wetland saturation thresholds for soils taxonomic subgroups provided by the IRT and on -site wetland reference data. The proposed success criteria for wetland hydrology will be when the soils are saturated within 12 inches of the soil surface for 12 to 16 percent (27 to 36 days) of the growing season (March 21 through November 6) based on WETS data table for Wayne County, NC. The saturated conditions should occur during a period when antecedent precipitation has been normal or drier than normal for a minimum frequency of 5 years in 10 (USACE, 2005 and 2010b). Precipitation data will be obtained from the Cherry Research Station near Goldsboro (GOLD), which is approximately 4 miles east from the Project site and a rain gauge was installed on site. 1.3.4 Vegetation Vegetation monitoring will occur in the fall each required monitoring year, typically prior to leaf drop. Plots will be monitored in years 1, 2, 3, 5, and 7. Vegetative success for the Project during the intermediate monitoring years will be based on the survival of at least 320, three -year -old stems per acre at the end of Year 3 of the monitoring period; and at least 260, five -year -old, stems per acre that must average six feet in height at the end of Year 5 of the monitoring period. The final vegetative restoration success criteria will be achieving a density of no less than 210, seven -year -old stems per acre that must average eight feet in height in Year 7 of monitoring. 1.3.5 Visual Assessment WLS will conduct visual assessments in support of mitigation performance monitoring. Visual assessments of all stream reaches will be conducted twice per monitoring year with at least five months in between each site visit for each of the seven years of monitoring. Photographs will be used to visually document system performance and any areas of concern related to streambank and bed stability, condition of in - stream structures, channel migration, active headcuts, live stake mortality, invasive plant species or animal browsing, easement boundary encroachments, cattle exclusion fence damage, and general streambed conditions. Permanent photo points are at the cross -sections, culvert crossings, and Enhancement 11 reaches. 2 Project Mitigation Components 2.1 Project Components The Project mitigation components include a combination of Stream Restoration, Enhancement, and Preservation activities, as well as Riparian Wetland Restoration (Re-establishment), Enhancement, and Preservation activities, as summarized in the table below. Table 1. Mitigation Plan Stream Mitigation Credits (SMCs) Stream Restoration (HW/PI) 2,151 2,131 1:1 2,131 Stream Restoration (PI) 1,777 2,007 1:1 2,007 Stream Preservation 228 228 10:1 23 Stream Restoration (HW/PI) 615 615 1:1 615 Stream Restoration (PI/PII) 1,151 1,151 1:1 1,151 Stream Enhancement Level II 1,923 1,923 3:1 641 Stream Restoration (HW/PI) 667 667 1:1 667 Stream Preservation 257 257 10:1 26 Note 1: No mitigation credits were calculated outside the conservation easement boundaries. Note 2: Headwater (HW) stream credits calculated using valley length. Table 1b. Mitigation Plan Wetland Mitigation Credits (WMCs) Wetland Preservation 2.30 10:1 0.23 Wetland Preservation 2.49 10:1 0.25 Wetland Re-establishment 1.59 1:1 1.59 Wetland Enhancement 0.84 3:1 0.28 Wetland Re-establishment 0.77 1:1 0.77 Wetland Enhancement 0.90 3:1 0.30 Wetland Re-establishment 1.63 1:1 1.63 3 Monitoring Year 3 Assessment and Results The dates of Year 3 monitoring activities are detailed in Appendix A, Table 2. All Year 3 monitoring data is presented in this report and in the appendices. The Project is on track for meeting stream, wetland, and vegetation success criteria. All monitoring device locations are depicted on the CCPV (Figures 1a and 1b). 3.1 Morphological Assessment 3.1.1 Stream Horizontal Pattern & Longitudinal Profile Visual assessment was utilized for assessment of MY3 horizontal and vertical stream stability. The visual assessments for each stream reach document MY3 stream channel pattern and longitudinal profiles, and in -stream structure location/function, which align with the profile design parameters and MYO/baseline conditions (Appendix D). The MY3 planform geometry and dimensions fall within acceptable ranges of the design parameters for all restored reaches. Minor channel adjustments in riffle slopes, pool depths and pattern were observed based on appropriate sediment transport and stream bank vegetation establishment. WLS staff noted beaver activity on the lower 100 feet of UT1-R2 during MY3. Beaver impacts to the site were negligible and did not negatively affect stream pattern, profile, or vegetation of the reach. WLS will continue to monitor this area closely and any remedial action taken during MY4 will be noted in future reports. 3.1.2 Stream Horizontal Dimension The MY3 channel dimensions generally match the design parameters and are within acceptable and stable ranges of tolerance. Five of the 11 cross -sections are located in headwater restoration reaches and the remaining six cross -sections are located in Priority 1/11 single -thread restoration channels. All six of the PI/II cross -sections show little to no change in the bankfull area and bank height ratios are less than 1.2. It is expected that over time that some pools may accumulate fine sediment and organic matter; however, this is not an indicator of channel instability. Maximum riffle depths are also expected to fluctuate slightly throughout the monitoring period as the channels adjust to the new flow regime and catchment conditions. The headwater cross -sections demonstrate channel formation and maintenance, and no significant change to valley geometry. Headwater cross -sections are expected to fluctuate throughout the initial monitoring years 1-4 as the headwater streams exhibit channel formation. 3.2 Stream Hydrology 3.2.1 Stream Flow The flow gauges on UT1-R2 and UT2-R2 document that the stream exhibited surface flow for a minimum of 30 consecutive days throughout the monitoring year (Appendix E, Figure 2). Additionally, to determine if rainfall amounts are normal for the given year, precipitation data was obtained from the onsite rain gauge, installed near UT2-R2 and compared with data from the North Carolina Climate Office from a weather station located at Cherry Research Station, approximately four miles east of the site. Rainfall has been lower than the 30' percentile for six of the nine months of data collected in MY3. The site has experienced abnormally dry conditions throughout the year. Flow Gauge Data FIOW -IOW Longest F'erioa of I otal uays of I otal Longest F'erioa of Gauge) Gauge Consecutive Flow Cumulative Days of Consecutive No Flow Name Location Flow No Flow 88 3.2.2 Bankfull Events During MY3, bankfull events were recorded on both pressure transducers (and the associated crest gauges). UT1-R2 gauge recorded ten events with a maximum event of 0.26 feet above bankfull elevation occurring on January 3d, 2022. UT2-R2 gauge recorded 15 events with a maximum event of 0.70 feet above bankfull occurring between January 16th, 2022. The associated data is in Appendix E. 3.2.3 Headwater Stream Channel Formation During MY3, streams UT1-RI, UT2-RI and UT2A all exhibited evidence indicative of channel formation within the topographic low -point of the valley. See tables in Appendix D for channel formation documentation. 3.2.4 Wetland Hydrology Data for the eight groundwater wells installed is available in Appendix E. Seven out of the eight wells are in creditable wetland areas. The remaining well (Groundwater Well 1) is adjacent to UT1-R2 to document fluctuations in the hyporheic zone and is not documenting a wetland area. Six of the seven wetland groundwater wells met the wetland saturation thresholds of 12 to 16 percent during the growing season. Groundwater well 4 (WG-4) had a hydroperiod of 10.39% for MY3 but maintains a mean percentage of 19.48% over the three-year monitoring period. Groundwater well locations are shown on Figures 1a and 1b. 3.3 Vegetation Monitoring of the 24 permanent vegetation plots was completed during the second week of October 2022. Vegetation data can be found in Appendix C with the associated photos located in Appendix B. The MY3 average density is 538 stems per acre, which exceeds the interim measure of vegetative success of at least 320 stems per acre at the end of the third monitoring year. All 24 vegetation plots met the interim measure of success for stems per acre. Plots ranged from 324 to 849 stems per acre, including appropriate volunteers. Volunteer river birch (Betula nigra), sweet pepperbush (clethra alnifolia), sycamore (Platanus occidentalis), and tulip poplar (Liriodendron tulipifera) were noted in MY3, and more volunteer species are expected to establish in upcoming years. Two vegetation problem areas (VPA) were identified during MY2 visual assessments. VPA-1 is approximately 0.52 acres in size. This area encompasses vegetation plot 4. This area experienced rutting and damage from feral hogs which moved through the site during MY2. The landowner has been made aware of the feral hogs. On December 7th, 2021, this area was planted with 100 tulip poplars, 50 river birches, and 20 swamp chestnut oaks. Herbaceous vegetation has reestablished. No additional areas of damage were found during visual assessment of VPA-I. VPA-2 is approximately 0.39 acres in size and is located in W2a. This area is extremely wet and has thick wetland herbaceous vegetation that has negatively impacted tree survival in the area. VPA-2 was supplementally planted on December 7th, 2021, with 100 cypress (Taxodium distichum) and 100 swamp tupelos (Nyssa biflora). During visual assessment planted stems are establishing well and VAP-2 will be removed as a VPA in MY4, if survivability remains high. See table below for supplemental plant list. Vegetation Problem Area Supplemental Planting List Three areas of landowner encroachment were identified in MY2 in the conservation easement area. Please note that visual estimates of all three encroachment areas overestimated the acreage in the MY2 report. Subsequent GPS mapping of the encroachment areas is reflected in the acreages provided below. One area was located along the easement near Wetland 4 (W4) and was approximately 0.17 acres. The second area was along the easement near UT2-RI and was approximately 0.09 acres. The third area was along the easement by UT2-R3 and was approximately 0.01 acres it. All encroachments were a result of mowing vegetation along the easement boundary due to farming activities. All encroachment areas were marked with additional t-posts and signs on December 14th, 2021. The easement was originally marked per the signage every 150 ft, and additional signs have been added. String and flagging tape were also used to demarcate the boundary. The encroachments near Wetland 4 (0.17 ac) and UT2-RI (0.19 ac) were replanted on December 7th, 2021, with 150 bare root trees (see table below). The 0.01-acre encroachment near UT2-R3 was not replanted and was marked with additional signs and string. The 0.01-acre encroachment is less than a foot into the easement and mowed herbaceous vegetation, but did not harm any planted trees. The marked easement line/t-posts are 6-12 inches outside the conservation easement boundary. Since additional marking and planting have been completed encroachments have ceased. These areas will be monitored closely in MY4, and additional adaptive management will be completed if needed. Encroachment Plantina List Platanus occidentalis Sycamore 50 33.3% Quercus michauxii Swamp Chestnut Oak 50 33.3% Quercus phellos Willow Oak 50 33.3% TOTAL 150 100.0% A significant population of privet (Ligustrum sinense) was located along the headwater restoration portion of UT1-RI prior to construction. Construction activities removed the existing privet within the easement. No treatments of invasive species were conducted during MY3. The easement will be closely monitored during MY4, and re -sprouts will be treated as needed to prevent further establishment. Any subsequent vegetation management for problem or invasive species will be included in the MY4 report. 3.4 Macr®benthic Sampling Two macrobenthic sampling locations were surveyed prior to restoration activities on September 30th, 2019, on UT1-R2 and UT2-R2. No mac roinvertebrates were found on UT1-R2 and UT2-R2 had a score of 7.92. Two macrobenthic sampling locations were surveyed in MY3 on May 11th, 2022, on UT1-R2 and UT2- R2. UT1-R2 had a biotic index score of 8.69 and UT2-R2 had a score of 6.06. Results indicate that macroinvertebrates have re-established in UT1-R2 and macroinvertebrates in UT2-R2 are recovering from construction impacts. Benthic data and photographs are located in Appendix H. 4 Methods Stream cross-section monitoring was conducted using a Topcon Total Station. Morphological data were collected at 11 cross -sections. Survey data were imported into Microsoft Excel° for data processing and analysis. The stage recorders include an automatic pressure transducer (HOBO Water Level (13 ft) Logger) set in PVC piping in the channel. The elevation of the bed and top of bank at each stage recorder location was recorded to be able to document presence of water in the channel and out of bank events. Visual observations (i.e. wrack or debris lines) and traditional cork crest gauges were also used to document out of bank events. Vegetation success is being monitored at a total of 24 permanent vegetation plots. Vegetation plot monitoring follows the CVS-EEP Level 2 Protocol for Recording Vegetation, version 4.2 (Lee et al. 2008) and includes analysis of species composition and density of planted species. Data are processed using the CVS data entry tool. In the field, the four corners of each plot were permanently marked with PVC at the origin and rebar at the other corners. Tree species and height will be recorded for each planted stem and photos of each plot are to be taken from the origin each monitoring year. Wetland hydrology is monitored to document success in wetland re-establishment and enhancement areas where hydrology was affected. This is accomplished with eight automatic pressure transducer gauges (located in groundwater wells) that record daily (twice per day) groundwater levels. Pressure transducers are HOBO Water Level (13ft) Data Loggers made by Onset. Seven data loggers have been installed within the wetland crediting area and one was installed adjacent to UT1-R2 to document fluctuations in the hyporheic zone. Of the seven located in the credited areas, two are installed within a reference wetland area. One automatic pressure transducer is installed above ground for use as a barometric reference. Gauges are downloaded quarterly and wetland hydroperiods are calculated during the growing season. Gauges are downloaded using a data download shuttle (Onset HOBO U-DTW-1 Waterproof Shuttle Data Transporter). Gauge installation followed current regulatory guidance. Visual observations of primary and secondary wetland hydrology indicators are also recorded during quarterly site visits. 4 9 Appendix A: Background Tables Table 1: Project Mitigation Components Table 2: Project Activity and Reporting History Table 3: Project Contacts Table 4: Project Information and Attributes \ \ \ \ 2 2 2 ) ) ) ) ) ) 10 \ \ \ \ \ \ \ \ I \ W \ \ \ \ \!\ \ \ \ \ o co Co Co \((Co EE ww ? / ) { 0 { ) _ - _ - _ E E o - - - - - - \ § `°^( § ) ) \ - - 0 0 Ir \C) ƒ §§ 0 0 » _ » _ » - - \ - EE - \ ( ( ( § § § § §§ { ))/) { \ \ w / / \ / ° E§ ) ) E§/[ 2 ƒ! { { E 2! o e : m a m I a m z z z z} e} e} E E E E E E E E z z z z z z z z z z z z z @(\ < @ < Ek < ) \) 3/ » » % » % } 0 } } ® ® ( ( ( ( � ReportingTable 2. Project Activity and Hollowell Mitigation Project (SAW-2017-00159) Elapsed Time Since planting complete: 2 year 6 months reportingElapsed Time Since grading complete: 2 year 6 months Number of DaActivity or Deliverable Complete Delivery ta Collection Completion or Date N/A 7/26/2018 404 permit date N/A 10/22/2019 Restoration Plan N/A 8/1/2019 Final Design —Construction Plans N/A 8/16/2019 Construction N/A 4/21/2020 Containerized, bare root and B&B plantings for reach/segments N/A 4/24/2020 As -built (Year 0 Monitoring— baseline) April -May 2020 7/1/2020 Year Monitoring 10/30/2020 11/6/2020 Year Monitoring 10/8/2021 10/22/2021 Year Monitoring 10/11/2022 11/3/2022 Year 4 Monitoring Year 5 Monitoring Year 6 Monitoring Year 7 Monitoring/ Close Out Replanting Encroachment/wetland area MY3 N/A 12/7/2021 3. Project Contacts Table HollowellTable ..(SAW-2017-00159) Designer Water & Land Solutions, LLC 7721 Six Forks Rd, Suite 130, Raleigh, NC 27615 Primary project design POC Kayne Van Stell Phone: 919-818-8481 Construction Contractor Wright Contracting, LLC PO Box 545, Siler City, NC 27344 Construction contractor POC Ross Kennedy Phone: 866-809-9276 Survey Contractor WithersRavenel 115 MacKenan Drive, Cary, NC 27511 Survey contractor POC Marshall Wight Phone: 919-469-3340 Planting Contractor Ripple EcoSolutions, LLC 215 Moonridge Road, Chapel Hill, NC 27516 Planting contractor POC George Morris Phone: 919-818-3984 Seeding Contractor Wright Contracting, LLC PO Box 545, Siler City, NC 27344 Contractor point of contact Ross Kennedy Phone: 866-809-9276 Seed Mix Sources Green Resource (336)588-6363 Nursery Stock Suppliers (Bare Roots) Native Forest Nursery Phone: 704-483-3397 Nursery Stock Suppliers (Bare Root/plugs) Mellow Marsh Farm Phone: 919-742-1200 Nursery Stock Suppliers (Live Stakes) Foggy Mountain Nursery Phone: 336-384-5323 Monitoring Performers Water & Land Solutions, LLC 7721 Six Forks Rd, Suite 130, Raleigh, NC 27615 Stream Monitoring POC Emily Dunnigan Phone: 269-908-6306 Vegetation Monitoring POC Emily Dunnigan Phone: 269-908-6306 Wetland Monitoring POC Emily Dunnigan Phone: 269-908-6306 Table 4. Project Background Project Name Information Hollowell Mitigation Project County Wayne Project Area (acres) 72.049 Project Coordinates (latitude and longitutle) 35.35814°,-78.11642° Planted Acreage (Acres of Woody Stems Planted) 57 in total and 17 for streamiWetland Project Watershed Summary Physiographic Province Information Inner Coastal Plain River Basin Neuse USGS Hydrologic Unit 8-digit 03020201 USGS Hydrologic Unit 14-digit 03020201170060 DWR Sub -basin 03-04-02 184 ac and 0.288 sq. mi (UT1-R1), 512 ac and 0.8 sq. Project Drainage Area (Acres and Square Miles) mi(UT2-R3) Project Drainage Area Percentage of Impervious Area <1 CGIA Land Use Classification 2.01.03, 2.01.01, 3.02 (46 % pasture/hay, 24 % row crop, 16% mixed forest) Reach Summary Information Parameters Reach UT7-RI Reach UT1-R2 Reach UT2-R1 (upper) Reach UT2-R1 pourer) Reach U72-R2 Reach U72-R3 Reach U72A Reach UT2B Length of reach (linear feet) 2,131 2,007 228 615 1,151 1,923 667 257 Valley confinement (Confined, moderately confined, unconfined) unconfined unconfined unconfined unconfined unconfined unconfined unconfined unconfined 184 ac and 0.288 260 ac and 0.406 45 ac and 0.070 256 ac and 0.400 512 ac and 0.800 69 ac and 0.108 306 ac and 0.478 Drainage area (Acres and Square Miles) sq mi sq mi sq mi N/A sq mi sq mi sq mi sq mi Perennial, Intermittent, Ephemeral Intermittent Perennial Intermittent Intermittent Perennial Perennial Intermittent Perennial NCDWRWater Quality Classification C, WS-IV C, WS-IV C, WS-IV C, WS-IV C, WSIV C, WS-IV C, WS-IV I C, WSIV Stream Classification (existing) E5 (incised) E5 (incised) E5 incised E5 incised E5 incised E5 E5 incised E5 Stream Classification (proposed) DA/E5 E5/C5 DA/E5 DA/E5 E5/C5 N/A DA N/A Evolutionary trend (Simon) IVN IVN IVN IVN IVN IVN V V FEMA classification AE AE N/A N/A AE AE N/A AE Parameters W1 Wetiand Summary Information W2 W2a W3 W3a JEEPW W4 W4a Size of wetland (acres) 2.3 2.49 1.59 0.84 0.77 0.9 1.63 Wetland Type (non -riparian, riparian riverine or riparian non-riverine) RR RR RR RR RR RR RR Mapped Soil Series Bb, Kn CrC2, NoC, We KaD, Po Po, AyA Ke, Lv Ke, Lv, To WaD, We moderatly well well drained, drained, well moderatly well very poorly well drained, poorly drained, class poorly drained drained, well poorly drained drained, very drained, well poorly drained very poorly drained, poorly poorly drained drained drained drained Non-Hydric, Non- Non-Hyrd ric, Non-Hydric, Non-Hydric, Soil Hydric Status Hydric Hyrdic, Non- Hydric Hydric Hydric, Non-Hydric Hydric Hydric, Hydric Hydric, Hydric Groundwater, Groundwater, Groundwater, Groundwater, Groundwater, Groundwater, Groundwater, Source of Hydrology Surface Hydrology Surface Surface Surface Surface Hydrology Surface Surface Hydrology Hydrology Hydrology Hydrology Hydrology Restoration or enhancement method (hydrologic, vegetative etc.) Regulatory Considerations Preservation Preservation R:Hydro/veg E: hydro/veg R: HydroNeg E: HydroNeg R: Hydro/veg Parameters Applicable? Resolved? Supporting Docs? Water ofthe United States -Section 404 Yes Yes PCN Water ofthe United States -Section 401 Yes Yes PCN Endangered Species Act Yes Yes PCN/Prospectus Historic Preservation Act No N/A PCN/Prospectus Coastal Zone Management Act (CZMA or LAMA) No N/A N/A FEMA Floodplain Compliance Yes Yes Floodplaln develop permit Essential Fisheries Habitat No N/A N/A Appendix B: Visual Assessment Data Figure 1a & 1b: Current Condition Plan View (CCPV) Stream Station Photographs Vegetation Plot Photographs Crossing Photographs Additional Photographs 1 N C-4 t O N a t) m w m _ N LL N C w Y w C L N C7 O O N O N E Q O in in m m U o fn w a O C) o Y 2 L O N !6 N O r C) a LL 0 IT m �� is to 0 N C E V U C C = d d E C c C C .� E° O O O '`O E° (g 6 Z m U (6 (6 (6 (6 U Z O 0 N c C � C � � r R U w c w to � R a R a cr w ma D (7 LL � �LL a `m 20 W C ma" Q .O OC:1 rn rn a M._ O _ O 'E - o U O it Z r Z 7 U N Z p 0 0 N co O p U >N a > O Q U) Z U) R V i O O aU O O �z a _ 7 y O �U O o Z QZ —J 0 W - f� W Q _ 0 a �.; =-. 4t t :. _ sue. : z -r <•; � "TIT" - 75 AV- CY) _ s. - +� - -= -',;'-..y,�."'"Y' ;., _ ¢y 0 � � -• '.�=:, _ :.f ;=.-... _ � � s'��r:,• �r;: -- - ___ - 1. , }} J`_' } F .. — ;.. 7 o ro J N 7-7 rr i }I I ! I 1 ! - n✓ .. _:. e.•�r�. _ F rlgi� ,� f" q',s.. O my. STOP 5 ro ro 1 L In Cl- aw iw 41 AWa X b.h � ! v • ! 1 1 ki i y OXAM w�� gfii _! r `•ti•, r. a `"~fix... -- - _ � •-- _ _ - -��,:- -� � =�, Oo co ro co co to - ~ LA r r i I A. i r s bs wp y � 4 i c Y .. IVk ' tn is _• �� >.�, {� Ga .. .. i •;F 1 ,� i � '�� t�- ', �' _ ° i�I '�: � F �� ���:,,� :� � ''fy ,, ,; . Vi �� �: �F 5�, CIAo SO 00 Q0 ro ``• .. CY) � I L i s G ro Yiln,; I N Q m cn x ri E 4 � n H r / 0 ro -�:4? _ N rn % ; I t yr i k G C ® F S fB t L I -1 m � I x r. a V (AW, I ., c • «.��\�� . .� .\ .bib= N t CN 1 cv 51 ;*� f, y ..- a !., 61 2.1 ;. r /` . 2 r ' rn Q .. .. � .. - A�' :�x�--� _ s. � �• � � - � �' ? � fir:. �.it�., ., �. �., Ctl (V R :ly rl 33 S '` = Opp �„ .s7: _ = bI CN Y' co 'lye, iJJ' `+ r •'\ .• , 1 1 —'- , E' co ro - E � II ' 00 ILI OL cr- N M. ZL L _x 4 S i _ •2 } N L N 00 l N OL d ,.. Q t I { O nr C. � N CV 16� O O C� G Y C f6 CO 4f 4- W J 0 X N Q Q c-I N D .z.: ; yr, w,.•_� , \ .. O ~ CL C d.co F o } m aA - .b 77 -mbaa. Y ro ro r- (n 4 44f 14, I &6 IL Ln -lot LO c •/ _.. _ /V4,gip.'.{y'] ••� C N N..� 1' .;fir _ r � _ -::�' . =:� T" lee �.�•-� ' o a O _ O 00 t00 A N .. � a .ilk �. -nr V y �-i'. R�;4 '� ���': ��r :�. �.�.i�•�— Y �%:��� � - ► y f L - _� 4 r, ,�>� �. Jam.... •i �. �•.' ,.. ..-. _ �.�� C r a •1 I • ro _. tib, l° fk- Wo- rc, CY) 44 to 47=� r-4 to Qcm O n ? . 00 O CV OCD CD ff' o m N�F i O f ly s r i 1 L (D > CN 21 IZ, 0 A b.0 I IJ' b.0 (Y) 0 o r r. -i U 6i o] t" C11 c16 04 0 r � 1 s � ' m O - n uo ' r PL- r X s f s O W ; a p jjtt P 9{y a f m C ao v S �y f t- >i * f 1,03 st a k Ha� 0110E r O 1 'ti i _ r�M1 '✓ O xt c '� �' ' S6 � r,' 1 •iE '�i ys 1* OlI ✓ h"#s fir,; �a O N 9a �h i ,;{at�r ��° +•+ au i �� _ __ • t_ P 3 �/'.. i.��.- (C> C a> t4k C.4 vt ro vt r-- ;z 'tt CN 0 ro CL 0 %�Cttg' . Ln LL A I a- 0L cLyr)) Cf) = U) 00 77 > a) o O C'4 -0 C%j LO C) LO 0 r-4 to 0 .4 CL _ . 04 Art co +x x' CL " b - L N IA N , AMP ,- O J _ N ' O N; Nro f i cis � �, A,.• N f Z) ►� ? N x OD t O '. m h d m O co N c 0 0 r-i N D O U ryi d o cq G7 C° ij° CN C r Mro r . a-- CL - 0 - U L... �'. O O 14ro N ro: y v O 44 •cs _ � 0 a U w ter- rJ € T Yr �r w Elm,, m O =_4 L ' Q M Vil A O ro Q) 4 1 p 0 ryi r + Ln N � i N vi 4 �.. r i'r. F• `� 'r' J O O N O N Q ro Q) 4 O 0 m cc I D Ln Ln 0 f.. N c C14 0 ldi AN it c 40 u U c LU A, v i Q � r 0 r U T N > N� T r N O N L N o LU :y. O N L r4 fo O - -- - LW cu T r r_ T r Qi O v m E t U U w Ilk lam•`. ;• .. Vyl�C\j 1�.+ _ _ r� C•.•�.: ,:�'1•� �;. ' � �!��. +E .��:� _,... may. a •7� � . � � � � rn u F U U C C i CL N Q . y'''•.' . f.ti• 7 _!4� ) o aQ *'# N ++ .''•"-�.' CL �--�� .tip_ �y ,,�i: :. '� x��: �ti � ` - . .zn -- - k Appendix C: Vegetation Monitoring Plot Data Table 5a: Planted and Total Stem Counts Table 5b: Vegetation Plot Mitigation Success Summary Table 5c: Red -line Plant List I� m 'n N m co .--i N � c-I m Ln c c-I N N Ln ^ N O 0 O — O — c-I m Ln c c-I N N Ln I� n — O N to N Ln O m O CO 7 ti N m m O Ln o r O - o — - tV .ti m .ti m O Ln Ln O Ft c-I c-I N c-I c-I V1 c-I to Ln c � c-I c-I N c-I c-I V1 N Ln ti O 7 t — O N c-I c-I Ln c-I lD V1 t 7 N N c-I c-I m N zt c CO IT Ln V1 N N c-I c-I m N N c-I CO I� ti N O L, — O — N N c-I c-I m N N c-I 7 CO I, V1 c-I m N c-I N c-I O N c-I N c-I N NZt zt to m ti c-I O lD — O c-I 77 7 c-I c-I N N c-I N Ol lD � N - o lD 7 m W C 3 ` 3 C V Ou V Q £ a v N N G _ •� •y N F- i L Ln i L Ln N N F- i L Ln i L Ln i L Ln i L LnF- N i L Ln i L Ln i L LnF- OJ OJ F- OJ F- OJ F N Y N F- OJ F- OJ � OJ OJ OJ OJ OJ i L N OJ OJ OJ i tN N N V H C y� Q C H v H N 7 E L u N N y •�N O N 7 � O O- N 7 O i. o T O O o 7 y. f0 OJ u i o o N U 'Q U +0+ O O E _ v 3 3 v 3" E Q o a m v Q c o bA t >^ i v T m Y — Q c Y m 3 t U m m m= Q ca o t , m U O O O_ O N bA N O_ T T m U O O_ O_ O T o N 3 T m U U N N .0+ ut T E N .O N Q N E N +0+ N i O O U -6 N N c o 3 3 3 u •3 a Q O C U O 7 cij 0 X O O O •m O N O T C O O m -O O 7 -6 •—m O 7 O C m'o C m O U U bA bA OJ .O •in -6 .0 N C i t bA f0 L u OJ O_ (a U 'O f0 O O f0 -6 U O l C fx L — f0 N 'i •C O O O in 'pp F •— (a in in in in o in i f0 O O f0 Y C U U U U U U U bA C 7 '— M o O C O t— — 7 m C > OJ -O C m OJ ut O i i i i i i O i N U Q O2 Q U m m O N m O_ f0 U Q OJ U O U O O U — T U X W N — (a OJ �' -O O J D T J O 'i J bA ccO C uNi o Z i v d 7 C d !a d OJ r7Y V OJ rD V OJ rD V OJ rD V OJ rD V ZW r 5 V j t— CC X In O X r O m N m m c-I N Ln lD ti v N = m N m ti M v v ti O rn m - 0 - m N m ti rn v v m m m ti N c-I ti ti a �o 00 1- N Ln Ln V O In N c-I c-I V c-I Ln Ln c-I � V N c-I c-I N c-I m c-I c-I m Ln m ^O N c-I N c-I m c-I m m n ti N O Ln O N c-I N c-I m c-I m m -r7 7F c-I N Ln c-I c-I c-I c-I c-I N c-I N O On Ln ti 0 c-I c-I c-I c-I c-I N N O1 I� V ti N O m 0 m N c-I c-I c-I c-I N Ln m I, to c `N N c-I c-I c-I c-I N On lD V � N � N m 0 N c-I c-I c-I c-I N On lD � N m c-I N c-I c-I c-I c-I c-I On I� V N m c-I N c-I c-I c-I c-I c-I On I" V ti N O m - 0 - N m r N n O O W O V H N N H H Ln Ln Ln Ln H Ln Ln N • h N 7 E L n N N y. m N O o u o v oo v 'Q v v> ° N o ' v v 3 3 '+' 3 '� 3 o 'D 3 m c c tin '.� �n > '� ai mom- m 3 u m m p m= Q Q • m o t E m o Y o m ° v tin v Q >> 'v o - Q i v 3> u E E u N E 11 v y v a E m o - ° E E v o° Y" v • o z ° v•>_ Q o N 3 bn Y> 3 3 3 v o¢ 3 3 3 3 u 3 a o m � m —o N � � % m �- � � •X � m E o 'E c o ° o o m o E E� (0 m 7 EO E C m i C m '6 m O U U bn b4 N ,c ,ti -6 .0 -6 i t U t O E N N fl U c m O '> O m U o E m Q t— Q N c m '� .tin c ° m U ° c o m w o v m c Q m E E E i m c N O m m U U U U U U O tin '� m C N m 00 t—- V m O a t O_ t O m - c X x2 E X '> m w.2 -6 7 -O O 2 c tin m ti 7 C m (0 u N u N u N u N N N O C X -O O N E 7 N O C cm > v C N7 r7Y N7 r7Y N7 D t m -a Q Q m m U U U U U LL Y J J J G Z LL LL LL �„/ �„/ V V V �„/ CC (n 0 t v E v E �Y m c-I c-I W c-I m c-I N N N W c-I NO c-I W O c-I c-I W 7 O N of W N N N c-I c-I c-I c-I c-I c-I c-I c-I Ln r" cy W oo ti O to O N N c-I c-I c-I c-I c-I c-I c-I c-I Ln W c c W N c-I N c-I m c-I c-I c-I N Oo to c oo N c-I `4 N c-I c-I c-I O rI 7 ti N O a O N c-I `4 N c-I c-I c-I O 77 71 ti O V N c-I N N N c-I c-I c-I c-I N m W c-I W c-I c-I N n N N c-I N c-I N c-I c-I c-I c-I N m I� cy W oo ti O to O N c-I N c-I N c-I c-I c-I c-I N m I� cy W c c W N N W Ln V m c-I N c-I N N W Ln V � N � N m o 67 Ln N m N c-I N N c-I Ln c-I N lD lD O a O c-I N N c-I Ln c-I N lD lD c W V a N n C NJ = W LLI = V Ou V Q H Ln Ln H H Ln Ln Ln Ln H Ln Ln v7 • h N 7 L y. U o v ,Q v v 3 t n 3 O v 3 ° c c tin '.� �n > ai m •°- m 3 u u m m p m= o- • m o t m U o Y o Q m L m v tin v Q>> u o Q o Q E o o° Y v • ° U i Q o o N 3 Y> 3 3 3 v o Q 3 3 3 3 u .3 - Q Q m ° � � 'x E '� m °° o° Eo c m° c °0 m 6 m o u u ° tin °� b w- i •c E ai v °- u c m o •� o m u-a E '° Q Q v c .� u 2° ° w ° v°°� Q E E E E vOi 7 °� O c ._ .0+ ti ti ti O by O O O •o m e m m c `0 •� v -° ° m v c u u u u u u u E -° c v u 0 o Q°= •X °x° °, '5 o tin N L° ,� N v v v v v v o x o Q Q m m U U ai U U U m LL v Y c J , J '� J cm G > Z v o_ c LL m LL N� �„/ r�Y 0 N V r�Y V N� V r�Y V t CC (n r _ 0 t v o T O C C v d E E v v ° n a- c v v v v v v M �i c Y LO E n E d c a a E O f0 c-I � N N c-I m O N c-I m N N V c-I lD n lD m ti ti ti ti ti m N^ N c-I c-I c-I c-I c-I m O Ln cy O O V O N c-I c-I c-I c-I c-I m O 77 7 ti O V c-I 7 c-I c-I c-I c-I c-I c-I II) c-I c-I c-I O1 N O1 c-I c-I lD n c-I c-I c-I c-I c-I c-I c-I In c-I c-I c-I In c-I 0 O O ti ti ti ti ti ti ti ti ti ti ti r` ti ti O N c-I c-I c-I c-I c-I c-I N c-I m -Zl" O c-I c-I lD N N c-I c-I c-I c-I c-I c-I N c-I m -Zl" O 77 — O N c-I m O n c-I � V W 7 N O N c-I N N c-I c-I c-I V V Z 77 c-I c-I c-I c-I c-I N c-I c-I O) o V m c-I c-I c-I c-I c-I N c-I c-I O) W V c N O m - o — O) oo to m N n LLI 3 W Lu 3 V o o G a1 L L a1 a1 L L L i a1 L L L aJ a! aJ a! v a1 a! a1 aJ a! w w w w w a! H W V H cn Ln H H to to to cn H to to Lo H H H H H H H H in H H H cn Vf N • h N 7 E L �n a1 � a1 y. m a1 o u v o 'Q v a) > ° N o v v t 3 3 '+ aa) 3 E .c- c t n 3 O v 3 u c, c �n ba '..� t ,� > 'n L a1 > m m 3 u m m p m- Q • m o t m U o Y o Q o v tin v� Q >> m u o Q Q i a) 3> Q u E U +0+ N c a1 c y N N-a p v a1 i o N Y U N v3i • o ° v •' Q o N o bn Y o 3 3 v o Q 3 3 3 3 u •3 m Q Q m C U m 3 m m Z— m o m m `o m Q 'Y m c x t m E o c o m o N c> c m 'c v `o m m n o E u c m 7 E '� _ m m° ° Eo c m° m c °a m -6 u m O u u m ba bn v .c n •E -6 i t u .c E a1 a1 c- m u c m o `o •� o o m u o E 'c m m t— Q a) c n tia .E c m u c m o v m� Q m E E E m e m vmi °a m m y •p Y o •°a m z3 m m —— m m c •> ai -o c m a1 c u u u u u u c .E -o v o u 3 .Q t Q t c= •X m o '� o tia N ti m v v v v v v x o u m ai m a1 11 0 > m x a1 a1 c a- '� cm > v c m ND rDY ND rDY ND rDY t 'm E _ Q Q m m U U U U U LL= Y J J J G Z CL LL CL �„/ �„/ V V V V CC (n D t a, o T O 4. C C v v E E a) v D 0 a- c m a, a, a, u u W W 0 t a, E v E �i c Y `0 E n E a) c a a E 0 m N m N m N c-I O m m V N m c-I V c-I Ol c-I n c-I �o c-I V m c-I lD N N r, c-I Ln N m N n c-I V I� V c-I D1 m Ln V Ln D1 c-I I, O m V Ln V D1 n to V m c-I N I, Ln m r, � N N O V c-I m m m V Ln D1 c-I I, O Ln V Ln V D1 n to V m c-I N 7 Ln m n V I� m V n N N n c-I O Ln N N to 01 N 01 N m N Ln m 01 N c-I N O V 1 N m N m N N c-I c-I c-I c-I c-I c-I c-I to c-I c-I on N m � m V n N N n c-I O Ln N N to m N 01 N m N Ln m 01 N c-I NF'oono V �--� N m N m N N c-I c-I c-I c-I c-I c-I c-I lD c-I c-I Ln N N C5 m V n N N n c-I O Ln N N lD 01 N 01 N m N Ln m D1 N c-I N �--� N m N m N N c-I c-I c-I c-I c-I c-I c-I lD c-I c-I I io Ln N N Ln oo Ln c m c-I to N c-I to c-I V N Ln Dl rl Ln V Ln cy .--I c-I N oo c-I c-I Ln c-I on O c-I r, ri to Ln on I, :t N oo oo m Ln N to Ln c m to c-I to -Zl" N to Ln -Zl" m c-I on c-I m w O I, to w I, ^ On N N c-I N c-I c-I c-I N c-I c-I c-I Ln O Ln N N Ln C5 N to Ln c-I m to c-I to N to Ln Ln c-I on c-I Ln on O r, lD oo ^ ^ W O m Ln N m v Ln ti m m N io m N ti io Ln Ln Ln m v Ln O �o on ti n Ln oo Ln n io ti rn kD N t .--I N c-I rl ri c-I N c-I c-I c-I N Ln I" N N m D N to Ln c-I O m N to m N c-I c-I Ln Ln m O Ln O to on I, Ln n to O m m N N c-I N c-I c-I c-I N c-I c-I c-I Ln N N V N Ln V N to m c-I O m N to m N c-I c-I m m m O m O to on c-I I, Ln r, tD O Ln D1 N N c-I N c-I c-I c-I N c-I c-I c-I Ln Dl N N oo V O W W O V 0 Q c0 E H Q y Gl G H Ln Ln H H Ln Ln Ln Ln H Ln Ln N • h N 7 L y. u t v o v 3 3 '+ t 3 E > c t O v Q o c m c n tin'. > E v m m m 3 U m m o m= Q m • m t — U o— o Q o L o v tin v Q >> u o Q Q o v 3> u E E o° Y v • o °•>_ Q o N 3 Y 3 3 3 v o¢ 3 3 3 3 u 3 a Q m C U � 3 - 'O w N w •X N E o'E E o° z, o N c' m v f u Y o m o ti E 4� (0 (0 U U .0 o m� E E c m Q Q m 3 ° m m n c�� 'tin E c—— v Y O z3 D D z Q o bn E S E E i (p m e N m 7 e m '> (0 N -o O m (p 7 7 7 7 7 7 u j E N V O fl- O — X ai -6 7 O c bn ti ai i ti 7 N N N N wD N N ,� X O 7 o O_ N (0 X N N O O O- 'i > O C (0 D D O t xm E _ Q Q m m U U U U U LL Y J J J cO G Z O_ LL O_ N7 V V N7 V V Cr V V CC (n f0 Table Plot # 5b: Vegetation Plot Mitigation Success Summary Planted Volunteers/ Total Success Criteria Stems/Acre Acre Stems/Acre Met Table Average Stem Height (ft) 0 0 Species Fraxinus pennsylvanica HollowellTable 5c: ..Red -line Planting 11hM=1 Green ash . List Stems 2400 % Planted 5.85% Mitigation Plan Percent 7% Betula nigra River birch 3400 8.29% 7% Quercus nigra Water oak 2100 5.12% 5% Nyssa biflora Swamp black gum 1050 2.56% 5% Platanus occidentalis Sycamore 3400 8.29% 7% Liriodendron tulipifera Tulip poplar 2800 6.83% 7% Quercus phellos Willow oak 1600 3.90% 5% Quercus alba White oak 1700 4.15% 5% Quercus bicolor Swamp white oak 1700 4.15% 5% Taxodium distichum Bald cypress 2900 7.07% 5% Magnolia virginiana Sweetbay magnolia 2100 5.12% 6% Carpinus caroliniana Ironwood 2900 7.07% 6% Ulmus americana American elm 1175 2.87% 0% Aronia arbutifolia Red chokecherry 1419 3.46% 0% Ceplalanthus occ Buttonbush 400 0.98% 0% Cyrilla racimiflora Titi 173 0.42% 6% Itea virginica Sweetspire 1902 4.64% 6% Viburnum nudum Possomhaw viburnum 2206 5.38% 0% Clethra alnifolia Sweet pepperbush 1620 3.95% 6% Cornus amomum Silky dogwood 1312 3.20% 0% Persea borbonia Red bay 408 0.99% 0% Ilex glabra Inkberry 841 2.05% 0% Quercus pagoda Cherrybark oak 800 1.95% 0% Quercus michauxii Swamp chestnut oak 700 1.71% 0% Total 41,006 100% * changes from mitigation plan in red Appendix D: Stream Measurement and Geomorphology Data MY3 Cross -Sections Table 6a: Baseline Stream Data Summary Table 6b: Cross-section Morphology Data Table 6c: Stream Reach Morphology Data Table 6d: Evidence of Headwater Channel Formation 1— V LO 0 0 N N O O I— co co Y —\ O r o Y v = > C i r s aP �i W s y 0s a+ r Z .2 T aJs+r•�Y a� ❑ a� 'v hc R > O a, S x t6 S �, s a, y m W Y Y 01 X a) m73 m 2 w R W J COJ CO W O O co 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ' O 1 1 1 1 1 1 1 1 1 1 1 1 a3 N Q ' 1 1 O (O a) c O � 1 Q -O O 1 1 1 O L 1 ' 1 1 1 ' O LO 1 L(i + O ' wo — T a3 1 1 Q a) LLB 1 1 C � L 1 1 ++ � 2 1 Tco } 1 ; cAh ' Q 1 M 1 1 1 N 1 1 1 1 1 1 1 O N 1 1 1 1 1 1 1 1 1 0 1 1 ; 0 1 1 1 1 1 1 1 1 1 1 1 1 1 O (O co LO qt co co co M N co co (1881) UOIIEA813 o a o v m — � L m c uo m c 0 y yN ycu = C y t oy O �+ t y Q �+ t = C _ O ,O Y > d O 2 X 0 2 t W W W W W O CO O J O CO-i O O m O m o O co 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O � 1 1 1 1 1 � 1 1 1 1 1 1 N Q 1 1 O (O a c o � a -O i 1 i o LL 1 1 O LO O ti o N - Q � H � fn LU m 3 m o I 1 N CO 1 c x IM o N 1 1 1 1 1 1 1 O N _ 1 1 1 1 1 1 1 1 1 1 0 ' 0 1 1 1 0 r co 0 co O) 00 1- I- I- I- I- (1881) UOIIEA813 o Qo v m — cc O m m 'n > v -o > c on m c O O 06 y O O y Cu y Cu t o= Ica o O — t y Q Z t= .0 2 O N ,O Y .a: o P - 1}'f U > d O 2 X 0 O 2 s N m W C 0) V 4) W W W W W O O J O m O J O I m O m o O co O N Q p N C O O O LL O LO CD La + o O - M > Q � F-� W C i o d O v 2 M Cl) 1 X o IM N O N O O G 0 r co 0 0) co co (1881) UOIIEA813 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 00-) 0 I— m o Lo I\ Lo O O r O y C O +' � cu I.f y = C y t oy O �+ t y Q �+ t = C _ O ,O Y > d O 2 X 0 2 t W W W W W O m O J O m O J O I m O m o O LO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 O � (6 N 1 1 1 1 1 Q 1 1 N C O 1 1 1 Q -O 1 1 1 O LL 1 1 1 1 1 1 1 1 1 0 OCD 1 1 O M N 1 ♦ LU 00 — 1 1 M Q � 1 1 1 *, � in � � 1 1 1 � � 1 1 _ N LL 1 1 M 1 1 CDcn X N N 1 1 1 1 1 0 0 c� G 1 1 0 00 Il- (O LO M (1881) UOIIEA813 O O) N N 00 c Lo V O I- O 00 y O C O +' � cu I.f y = C y t oy o O — t y �.. t= 0 O 2 O N , Y c a: Q 1}'f - U cu d 2 X c6 2 s N m W W 3 c c c �c c s V O m O J O m O J O m O m o O LO 1 1 1 1 1 1 1 1 I i I � 1 I ; 1 1 1 1 1 1 1 1 1 1 1 1 O � N 1 1 ' 1 Q j N C O � � I? O 1 O LL 1 ' 1 li li li 1 1' O 1 ' O M � 0 N LLIco 1 1 1 M Y 1 1 ' 1 ++ � Q m Co � 1 I ' � O 1 i O a ' Ln fn ' o N X N 1 1 1 1 1 1 1 1 1 _ 1 ' 1 0 1 1 � 1 1 1 0 1 1 ' 1 1 1 0 1- (O LO M N (1881) UOIIEA813 . ( . N c O N I� N 00 O N y O yN cu y = C y t oy O t y t O N ,O Y cu d 2 X 0 2 t W C V W W W W W cu O m O J O m O J O m O m o O LO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O (6 N Q c O a O O LL o O O M � LO N014 LLBco 1 1 1 1 1 1 ++ � C� 1 � 1 � 0 � 1 0 a 1 M 1 1 0 cn X N 1 1 I 1 1 N 1 1 1 f 1 1 >J j 1 1 _ 1 1 1 1 O 1 1 1 � 1 1 1 O } 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 LO M N O (1881) UOIIEA813 o Qo 4� ar m — cc O m a] Ln } ar -o > c on m c 7 0 0 I -I- (V O O N O O co y O O N y Cu = t oy o O — t y 0- Z t= O 2 O •O Y > d O 2 X 0 2 t W C 0) V 4) O m O J O m O J O m O m o O LO , , , , , , , , , , , , , , , , , , , , , , 1 1 O 1 Q � , O 1 i o LL , , , , , , , O i O M N 1 1 1 + w , � Y Q m , � � r d Co � I , M I R ti m fn O N X , , I , , , , , N , j 1 1 1 1 1 1 1 _ J{jj 1 1 1 1 O 1 1 � 1 1 1 O 1 1 G , , , , , , , , , , , , 1 1 O LO M N O (1881) UOIIena13 O O LO LO OO Lo c (h 00 00 p y O 0 O a cu y Cu = Cu a+ t oy o O — t y Q Z t= .0 2 O cu ,O Y d 2 LCo 2 s W W W W 3 c c c �c c s V O m O J O m O J O m O m o O co 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1 1 1 1 � N Q 1 1 1 1 O (o N c 0 1 1 a 0 0 LL O LO O to + 0 M - > Q N W L CCD 1 d 3 Co a� C? m cis X IM O N } 1 1 1 1 1 1 1 1 1 1 O N _ 1 1 1 1 1 1 1 1 1 i 1 O 1 1 O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O O 0) O) 00 co co 1- (0 LO co co co (1881) UOIIEA813 o Qo .5 v m — cc O m a Ln > v -0 > c on m c N N IT m 0 0 0 � 0 000 0 N N y O C O +' � cu I.f y Cuy Cu t o= o O — t y Q Z t= 0 2 O cu ,O Y cu .a: Q ai U d 2 cC6 2 s W C V cu W 3 cu W 3 cu O m O J O m O J O I m O m o O co 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1 1 1 1 Q 1 1 O O c o � a -O i 1 i o LL 1 1 1 � 1 1 O LO O + o M - > � 1 F-� W L 1 (� m I s 3 1 1 a� c } 1 c X O M I 1 1 1 N } 1 1 j 1 f 1 j 1 1 1 1 1 O N _ 1 1 1 1 1 1 1 1 1 O 1 1 O 1 1 1 1 1 1 1 1 1 1 1 1 1 O 00 co Il- (O LO qt co co co co co 00 (1881) UOIIEA813 'if•C'�R,•� _ ,1��."-" pil 1�} ws �y, Ip •y�'1yy�� ��,p�5 a � V N O r- 00 00 p O O O O O m p 0 00 N y O 0 O a cu y Cu = Cu a+ t oy O t y t= O N ,O Y c a: Q 1}'f- U 2 X c6 2 s N u c c c c V O O Cu O O O O 1 LO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ' o 1 � 1 1 1 Q ' N 1 C �1 O 0 1 LL ' 1 1 1 1 1 1 1 O 1 M O � 1 Lo 1 co N 1 w 1 1 ++ 1 1 fA 1 � I O ' i I 1 O cn N x I 1 1 1 1 N 1 j 1 1 1 1 1 1 1 1 1 _ 1 1 ' 1 O � 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O M N O O) 00 co co co co I` I` (1881) UOIIEA813 L() 00 I— r p 00 O O O ('o00 (rj y O C O +' � cu I.f y = C y t oy O t y t= O Cu ,O Y cu .a: o 1}'f- U d 2 X ccd 2 s N u W W 3 W W O m O J O m O J O m O m o O '0 1 1 1 1 1 1 1 1 1 1 1 O (6 N Q 0 c 0 a 0 1 O LL O 1 O M � Q N 1 1 1 1 Co W N 1 1 1 ++ U) 1 � 1 R ' 1 r c� 1 1 i� O ch x �' N I 1 1 N 1 1 1 1 _ 1 1 ' 0 1 1 1 � 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 M co N O O) 00 co co co I- I- (1881) UOIIEA813 00 O M O O r o V D O m 0 00 I� mcu 0 0-) 0 OO m I O O ONNM O N 0 C) O Cl) 0 0 O V M W V 0 0 co In 00 I— 00 00 M NO N N O O O) O) M (O O O M (O CO N O 0 O N N V - V In N 00 O 0 0 0CU 0 0 (O O (O r V O O) O O 0 O� O I— (D O O V M I� V O; 0 O Cl) M O 00 O LO N 0 C) O Cl) 0 0 O V M W V 0 0 O O O 0 O N O O O O O O O NO O NNO O 'O 'O 'O $ $ C O Y Q }' �_ m m� U) N a) 0 c 0 X mp a) E a) a) JcnJ o a) p XU) a) 3� a) a)� �_ m m a)� cn c mU) o O a) O t U Y 0 0 u 0 m U 3 Zm M a) 0 U i in 7 m O— m Q O LL C a) Q a) — N m O Y N W m LL � t U) m a) U) E Y O m LL C m Ul Um U m �' cn O m m U) cu m-0 o E R cu m U NC) d m z. — 3 O a) L t T ' m U) f0 U)R m a m 0 O a c s M m 2 o w I i(Li r o I I I I a (O N In O In 00 (O O r v 0 0CU 0 (O Cl) O O M N O r 0 N— O 0 N 0 m W In O V V 0 V 0 Q N N —00 O00 O In M M V N" O O D N r m V N co O O N r r N O 0 In 0 In In N (O O CO V N O (O O O O O 00 0 V 0 00 M 00 — O O O O O • MO N 0 LO W m 0 00 O V O N N 00 0 0 O Cl) O D O � O O C4 0 Cl) 0 O 0 0 0 'O 'O 'O $ O Y t t t — t m cu t t t Ol t t n a U o Q t a) m �_ ; m t -o -a_ N n y a) D a) i N 3 c 0 c 0 X m p a) t 2 a) O cn a) J 0 X U) a) 3 a) a) a) U) m O a) m U) c 0 cn a) 0 0 0 m U 7 Zm M O LL Vl U i U) U 7 3 C m CL a— U O_ N C_ m LL O O / 'O C m a) ' N E N a)— 3 Y y m O w �C Y C a) M uj m LL 7 m -O cu a) M O E N E U) O C m Y O m LL Ul U m U m u! U) Q' m cn m m m o U of of a) ar a m c E E R M cu m a) m w 3 R m .N N U) m a ai 0 0 00 .N 0 R m o a` a x LO O 00 O I- O O O M O CO O CO O r- V O N CO M LO V O M r- Ln N O) LO r CN N 00 U 00 O 00 O �/ N w O M O 00 O 00 (0')O 0-)CO N 0')O 00 O O O O CO O M M O V O N O 0000 000 N m 0 0 LO I- 00 O V O O 0 O� O I- 0 O O M M m m O O V- 0 LO N M O I- N 00 U 00 O M 00 O N w00 0(')— - O O O M O 0 O N O O O O O 00 N M N O O N N N N LO LO (h �6 (.i 3 O 2 N -O U (n N O N 0 M N 0) N N O (6 C O w� (6 M C 0 t O 2 N O O m m) U > (n �> tl) t 1 O 0) � O t 1 r� 0 0 _ a) — 3 (6 > 0) d 3 m O Y C > W m d t a m 0) M O (6 Y O m LL U M m m m U w m U (n C 7 E ` C14w 3 r O m 0) N ) N E N L V �... _ m ` Q w >N M R a m 0 0 ° c ° R a, a, c r =a m O r N 0 0 c O V OO M v M M M O O M A N O O N M b LO a0 r 00 LO CO 0 �oo C _ Cfl (0') 0 O O O r Lo O (M V O CO O O D O 00 0 V 0 0 0 00 O O O O O O co o LO a0-m r LO 00 oo LO 0 0 - oo �• � � O Cl) O D O� O O 00 O 0 0 0 Q ' 0) �_ 0) O 0) 0 (0 (0 '>6_ '>O U) (n C O N - N C X (p N 0) J (n J X (n 0) 7 > 0) > > N N N 2i (0 O (6 (.) (o (n O 0) O t O1 w O O m _ U 3 (6 () 0) o d ` U i tl) t N CE Q. d O d C O `1 > '0 M N- N N w- M lC N O w : 0) (n ui m O d t tl) m U 0) t M O (6 N G) E O �C (6 3 Y 0) O m LL U O0 cm: (n Q' m (n c- N m m O U -O d m U a 3 E s m N 3 R O m (1) N R N j M m a r 0 o m r- Q c m v c (n m ° x 0 2 co e o m g g ©/ R coo & % 6 6 & / a / / \ / / / \ / \ % \ \ \ = m CDA = = 6 6 - , coCD\ 6 CD $ )@ o r@ CDo/ CD CDs» 6 6 goo a 6 d CDd g d r w g a e / / \ \ \ \ % \ \ = o r o/ CDw CD . - , / 0 6 6 6 / $ © / / / » \ g f © » � _ _ _ t _ = e _ 2 \ \ % o _ \ \ CO) CO) \ \ _ \ \ \ \ / / k \ cn E t_ + + / \ \ _ % / ƒ o 3 ± G ) _ E = a = 7 a x ® $ % $ > 7= = * o n $ _ ° % 7 / e > = o _ ® 2» > — § o= 2 n + m O> .� __ 0 2 # » n _ } 3 .g t g - e ¥ n i® E i o E $ = o $ _ _ + = g a ® m= 2 ° 3 ® — _ _ 0 — / » = m 4 « i _ n = = _ I= \ S $ ° E / § o ¥ n / _ 2 n Co _ e 7 m E I/ co Co / of a) f J \ © ° E _ 0 g § ¥ = u ®CO CL % CO co k ' m \ ƒ k x r 0 4 § E k § k . . ■ o 0 a < M M lf') W M 00 O N N O lf') N lf') O W W N 00 c'? N V O O) N O) N L6 � 0 0 V M M O N M O V N N O O N N O V O) - N� � N (O O N � V N lf') O V lf') O N � M M lf') � 00 M O N • M M O O M� A V 0 6 6— M vi � V � O O N lf') � V V (O (O c') W M l) O) O C? c, N V � f' OO N O OOO) N O O 04 V M MO — V O N M lf') V(O M (O OD M M N (O O O N M (O O (O ON ON • O O V w M � O V r-� N VO • N (O l) V O W Lc? 00 NO (O 00 lV) llff)0 O OO 04 V' O N W NMV N 6 6 c-i V O (O VO V O .c) V O LO M IL- LO (O O (O(O M 0� O � ) WN OON Lq ON 00 NON MM 0 V !f L6 O M V OO V V r OV V N MO C? O) N O f 00 O V f) — ON Q T7 W N V l) W MN Lq O W NO NV L2 OD 0 v M v M 0 0 O M MO v V • LO OOO o O) f V (0 0 T7V r- c) 00 O VM N LO Lf W O N V OLO 0) O 00 O NC?V 0 M (O O O M(ONl) O)O V O O M NOV O LOVON O O M OC? V LE • • p co VO NN O) O MO OO OM V 0. C? N N 0) U? ' O OO N`W VVVVV V V V OOM V O 6 M 0 l) C,O 0 VO(0 0) c) M (O (O OR OInM OVM NVM O O V M OV N Ci MO fOMNONV V OLq O O c, O O U? c'? (O ONc, M OV V (O O O M O O V M O M N MM On V ME M V N SON OV N M 0 M O O N N l) O) W (O(O O N"?M M WO V (O V (O 0 m V O O M V VM fq O O O fq O O O fq O O O fq O O O E L L L L L L L L N L L L L N L L L L N E R�� 'O_ 'O_ Q N OL N d Q L Q C a) L CA O � E R� 'O_ 'O_ � Q N Q N d Q L n C a) .0 CA O � E R�� 'O_ 'O_ Q N Q N d Q L Q C.0 a) CA O � E R� 'O_ 'O_ � Q N Q N d Q L n C a) L CA O � R— 0 0 E a) R— 0 0 E a) R— 0 0 E a) R— 0 0 E a) a Z C C m x m m C pp x (L C C m x x m C p - x a C C m x m m C p x a C C m x m m C p x Y O a) O L U Y Y O a) O L U Y Y O a) . O L U Y Y O a) O t U Y L0 m Q p — U �_ d C N m C L6 m Q p — U �_ d N m m m Q� p — U �_ d N C m m Q p �_ N m LLJ LLJ a -he com LLJ LLJ L.L C L0 N CO N p Y 7 7 Y L.L . m N CO N p Y 7 7 Y L.L C m N m N O Y 7 7 Y LL C m N CO N p Y 7 7 Y m U N Y L6 m U N Y L6 m U m Y m m U N Y L6 — m C N m — m C N m — m C N m — m N m Y m _he m Y m Y m C m C m C m C m co o 2\\\ 0.0 j ) Co \\\2\ ' \\\/ .00 b 0 0 {{#{af )`_#{f\ \ \)t\/ ` >[\/\\\\ -_* wa}®/ �;§:__ -- 2/\)\ \�2\3 k�°/§!/\7)\ /{))! ® k� ° - ~~z)/k tr ~ ! \ �\�\\ • �~ ^ 2 ) % . { n2--. \ \\\o • §�) 2\) §0)) \we e m {`#{U)cwo w § /))}/ \)f{\//\)\ _ \�)\\ 2}\)_\ ���\\}/\/){ ~~zƒ/3 /])w ® k� ° - \Gg=2 ~ ! ~ \ \ \\ • ^% _ 2 2 \ § \\\k } w IS we /f)) DM 0 {i - 23)/o 2f �� ))\)� �z _ ?0 - w) k\}/\w �)]0�()z©\ 0 2}\)_\ 0 ~~zƒ\3 /]) ® E ° \Gg=2 ~ ~ \ • � � U) ^% _ = 2oo is o z, ca \/{\ ITM I {\\{) {!{{\ oo ![(j3 _�- o o -\§Jf -2 0- o_ t{`} -__){} _ ~ ����� o �`7«a \� \\\\\ of co ° \z k k k � ca \\{) LU cl {\\{) {#{{\ ){{ (o -2 - �ok�{ {__-- k{`o - _ __){} �`!« a Table .. Evidence of Headwater Channel Formation Hollowell. . Scour (indicating sediment transport by flowing water) Yes Yes Yes Sediment deposition (accumulations of sediment and/or formation of ripples) Yes Yes Yes Sediment sorting (sediment sorting indicated by grain -size distribution within primary flow path) Yes Yes Yes Multiple observed flow events (must be documented by gauge data and/or photographs) Yes Yes Yes Destruction of terrestrial vegetation No Yes No Presence of litter and debris Yes No No Wracking (deposits of drift material indicating surface water flow) Yes No No Vegetation matted down, bent, or absent (herbaceous or otherwise) No Yes No Leaf litter disturbed or washed away No No No Scour (indicating sediment transport by flowing water) Yes Yes Yes Sediment deposition (accumulations of sediment and/or formation of ripples) Yes No No Sediment sorting (sediment sorting indicated by grain -size distribution within primary flow path) Yes Yes Yes Multiple observed flow events (must be documented by gauge data and/or photographs) Yes Yes Yes Destruction of terrestrial vegetation No No No Presence of litter and debris Yes No No Wracking (deposits of drift material indicating surface water flow) Yes No No Vegetation matted down, bent, or absent (herbaceous or otherwise) No Yes Yes Leaf litter disturbed or washed away No No No Scour (indicating sediment transport by flowing water) Yes Yes Yes Sediment deposition (accumulations of sediment and/or formation of ripples) No No No Sediment sorting (sediment sorting indicated by grain -size distribution within primary flow path) No No No Multiple observed flow events (must be documented by gauge data and/or photographs) Yes Yes Yes Destruction of terrestrial vegetation Yes No No Presence of litter and debris No No No Wracking (deposits of drift material indicating surface water flow) No Yes No Vegetation matted down, bent, or absent (herbaceous or otherwise) No Yes Yes Leaf litter disturbed or washed away No No No Appendix E: Hydrologic Data Table 7: Verification of Bankfull Events Figure 2: Surface Flow Data Figure 3: Flow Gauge and Crest Gauge Installation Diagram Figure 4: Rainfall Data Figure 5: Wetland Gauge Data late 7/7/2020 7/7/2020 7/7/2020 10/26/2020 10/26/2020 10/26/2020 MY1 10/26/2020 10/26/2020 10/26/2020 10/26/2020 Table 7A: Hollowell Date of 4/30/2020 Verification of Bankfull Events Mitigation Site - WILS Neuse Pressure Transducer - UTI-R2 01 Bank Bankfull from rain event Measurement above bankfull 0.495 5/20/2020 Pressure Transducer Bankfull from rain event 0.142 6/17/2020 Pressure Transducer Bankfull from rain event 0.38 8/4/2020 Pressure Transducer Bankfull from rain event 0.665 8/9/2020 Pressure Transducer Bankfull from rain event 0.272 8/20/2020 Pressure Transducer Bankfull from rain event 0.327 9/5/2020 Pressure Transducer Bankfull from rain event 1.701 9/11/2020 Pressure Transducer Bankfull from rain event 0.778 9/17/2020 Pressure Transducer Bankfull from rain event 0.526 9/25/2020 Pressure Transducer Bankfull from rain event 0.429 10/26/2020 9/29/2020 Pressure Transducer Bankfull from rain event 0.702 10/26/2020 10/11/2020 Pressure Transducer Bankfull from rain event 0.194 10/26/2020 10/25/2020 Pressure Transducer Bankfull from rain event 0.273 10/26/2020 Unknown Cork Gauge Yes 1.4 M Y2 3/29/2021 1/2/2021 - 1/10/2021 Pressure Transducer Bankfull as a result of backwater from the Neuse River 3.921 3/29/2021 1/26/2021 Pressure Transducer Bankfull from rain event 0.221 3/29/2021 1/31/2021 Pressure Transducer Bankfull from rain event 0.169 3/29/2021 2/11/2021 - 2/25/2021 Pressure Transducer Bankfull as a result of backwater from the Neuse River 3.993 3/29/2021 3/16/2021 Pressure Transducer Bankfull from rain event 0.578 3/29/2021 Unknown Cork Gauge Yes 3.5 8/5/2021 6/3/2021 Pressure Transducer Bankfull from rain event 0.885 8/5/2021 6/10/2021 Pressure Transducer Bankfull from rain event 0.163 8/5/2021 7/8/2021 Pressure Transducer Bankfull from rain event 0.285 8/5/2021 7/27/2021 Pressure Transducer Bankfull from rain event 0.321 8/5/2021 8/1/2021 Pressure Transducer Bankfull from rain event 0.29 8/5/2021 8/4/2021 Pressure Transducer Bankfull from rain event 0.25 8/5/2021 Unknown Cork Gauge Yes 1.2 10/1/2021 8/7/2021 Pressure Transducer Bankfull from rain event 1.289 MY3 1/14/2022 1/1/2022 Pressure Transducer Bankfull from rain event 0.217 1/14/2022 1/3/2022 Pressure Transducer Bankfull from rain event 0.26 4/14/2022 1/16/2022 Pressure Transducer Bankfull from rain event 0.15 4/14/2022 1/17/2022 Pressure Transducer Bankfull from rain event 0.099 4/14/2022 2/7/2022 Pressure Transducer Bankfull from rain event 0.147 4/14/2022 3/12/2022 Pressure Transducer Bankfull from rain event 0.17 10/10/2022 7/8/2022 Pressure Transducer Bankfull from rain event 0.1 10/10/2022 7/9/2022 Pressure Transducer Bankfull from rain event 0.23 10/10/2022 7/10/2022 Pressure Transducer Bankfull from rain event 0.159 10/10/2022 9/30/2022 Pressure Transducer Bankfull from rain event 0.125 Monitoring Yea r MY1 Date of Collection 7/7/2020 Table 7B: Hollowell Date of Occurrence Unknown Verification of Bankfull Events Mitigation Site - WILS Neuse Method Cork Gauge - UT2-R2 01 Bank Photos/Notes Yes Measurement above bankfull (feet) 0.72 7/7/2020 4/30/2020 Pressure Transducer Bankfull from rain event 1.498 7/7/2020 5/20/2020 Pressure Transducer Bankfull from rain event 0.658 7/7/2020 5/28/2020 Pressure Transducer Bankfull from rain event 0.206 7/7/2020 6/17/2020 Pressure Transducer Bankfull from rain event 0.834 10/26/2020 8/4/2020 Pressure Transducer Bankfull from rain event 1.353 10/26/2020 8/9/2020 Pressure Transducer Bankfull from rain event 0.284 10/26/2020 Unknown Cork Gauge Yes 0.55 M Y2 3/21/2021 1/1/2021- 1/3/2021 Pressure Transducer Bankfull from rain event 1.56 3/21/2021 2/1/2021 Pressure Transducer Bankfull from rain event 0.228 3/21/2021 2/11/2021- 2/16/2021 Pressure Transducer Bankfull from rain event 1.142 3/21/2021 2/18/2021- 2/20/2021 Pressure Transducer Bankfull from rain event 1.263 3/21/2021 Unknown Cork Gauge Yes 1.2 8/5/2021 3/16/2021 Pressure Transducer Bankfull from rain event 1.469 8/5/2021 3/31/2021 Pressure Transducer Bankfull from rain event 0.222 8/5/2021 6/2/2021- 6/5/2021 Pressure Transducer Bankfull from rain event 1.453 8/5/2021 6/9/2021 - 6/13/2021 Pressure Transducer Bankfull from rain event 0.442 8/5/2021 6/26/2021 Pressure Transducer Bankfull from rain event 0.49 8/5/2021 6/29/2021- 7/2/2021 Pressure Transducer Bankfull from rain event 0.321 8/5/2021 7/8/2021- 7/15/2021 Pressure Transducer Bankfull from rain event 0.622 8/5/2021 Unknown Cork Gauge Yes 0.8 8/5/2021 7/18/2021- 8/5/2021 Pressure Transducer Bankfull from rain event 0.57 MY3 1/14/2022 1/1/2022 Pressure Transducer Bankfull from rain event 0.09 1/14/2022 1/3/2022 Pressure Transducer Bankfull from rain event 0.16 4/14/2022 1/16/2022 Pressure Transducer Bankfull from rain event 0.7 4/14/2022 1/17/2022 Pressure Transducer Bankfull from rain event 0.1 4/14/2022 3/12/2022 Pressure Transducer Bankfull from rain event 0.04 10/10/2022 7/7/2022 Pressure Transducer Bankfull from rain event 0.01 10/10/2022 7/8/2022 Pressure Transducer Bankfull from rain event 0.46 10/10/2022 7/9/2022 Pressure Transducer Bankfull from rain event 0.36 10/10/2022 7/10/2022 Pressure Transducer Bankfull from rain event 0.28 10/10/2022 7/15/2022 Pressure Transducer Bankfull from rain event 0.02 10/10/2022 8/12/2022 Pressure Transducer Bankfull from rain event 0.002 10/10/2022 9/10/2022 Pressure Transducer Bankfull from rain event 0.04 10/10/2022 9/11/2022 Pressure Transducer Bankfull from rain event 0.005 10/10/2022 9/30/2022 Pressure Transducer Bankfull from rain event 0.2 10/10/2022 10/1/2022 Pressure Transducer Bankfull from rain event 0.04 Figure 2: Surface Flow Data Hollowell Flow Gauge FG-1 (UT1-131) Maximum Days of Consecutive Flow 88 days (1/1/2022 - 3/29/2022) 1.5 1.25 v 1 E M �U 0.5 G1K.7 3 W Gk7 0 WI 1. 1.Y . LL 1 1 a . 1 a 1 I L179- - I i ■ 1.ti!-01 111 _W V.I A4L + 11 ' 0 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N N N N N N N c\i M Oa) N LOO N LOO O0) M n -1 T 0000 N LOO O M n O ZT W N L 1 01 M I, ci \ \ \ \ \ \ \W\n\\\ \ \ \ \ O \� \ N ci ci N N rn rn qT M LO I, n 00 00 Ol Ol ci O ci ci ci N N ci ci ci ci Rainfall Sensor Depth Downstream Riffle 1 0.8 t 0.6 a v 0 � 0.4 v 0.2 Hollowell Flow Gauge FG-2 (UT2-131) Maximum Days of Consecutive Flow 283 days (1/1/2022 - 10/10/2022) 3 2.5 0.5 0 L 1.1 . r. 1 r 1:9 r R r 1 n1 n 1n1 r 1 n 1, mrw nl lrrn 2 1 HI . In rr 1 11_ 0 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O N O N O N O N O N O N O N O N O N O N O N O O O O N N N N O N O N O N O N O N O N O N O N O N O N O N O N M rn N �O N �O rn M r, 1 -1 zT W N LOO W n o M 1" o zT W N L`n -1 rn M N r, -i ci \ ci \ N \ N \ rn \ rn qT \ qT � \ M \ \ LO r, \ n \ 00 \ 00 \ Ol \ Ol O ci \ O ci ci \ ci ci ci N ci N ci Rainfall Sensor Depth Downstream Riffle 1.6 1.4 1.2 0 0.8 E 0.6 v `n 0.4 0.2 2.5 6 v Hollowell Crest Gauge CG-1 (UT1-R2) N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N N N N N N N c\i M a) N LOO N LOO 00) M n -1 T 0000 N LOO O M n O zT W N L 1 0) M I, ci �--� \ \ \ \ \ \ \W\n\\\ NqT \ \ \ \ \ O \ \ ci ci N N cn cn qT M lD I, n 00 00 0) 0) ci O -1 -1 -1 N N ci ci ci ci Daily Rainfall Stream Max Depth Bankfull Depth Hollowell Crest Gauge CG-2 (UT2-R2) 1.5 I . I +� a a) o x cu 2 1 E v v7 3 2.5 0.5 3 2.5 v 2 U C 1.5 M 1 0 0.5 0 ' ' 0 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N N N N N N N LOO N LOO 00) M n -1 zT W N LOO O M n O zT W N LLn 0) M I, ci T \ � 1 \ W \ n \ \ \ \ \ \ O \ -1 \ N ci ci N N cn cn qT M LD I, n 00 00 0) 0) ci O -1 -1 -1 N N ci ci ci ci Daily Rainfall Stream Max Depth Bankfull Depth z 1' 3:aj o„ 0L LL J O LL LL Z O N Lal LL a) O c O co a� w O � �rn + ao �LO 0 L a) Nco + W a) CO o Q u u u o00 J O O O LL LL LL LL z �C(j O„ 0L LL J OLL LL z FY O N u C a C G c u Ll c 0 c N 4- 0 c O co a� w CL O N + ap CL L p N it N + W a) LO o Q u u u CLCLCL o00 O J O O O LL LL LL LL CROSS SECTIONAL VIEW OF STREAM PRESSURE TRANSDUCER CORK GAUGE TOP OF CREST GAUGE O rrf-- HEIGHT = 4.75 LU Illlli l O Lu co U) Crest Gauge CG-1 (UT1-R2) Bankfull Event Depth (for transducer) = (Top of Gauge + Sensor Depth) - Bankfull Depth Bankfull Event Depth = 0.95 CROSS SECTIONAL VIEW OF STREAM PRESSURE TRANSDUCER CORK GAUGE TOP OF CREST GAUGE C] HEIGHT = 5.25 9.13= BANKFULL DEPTHLU III III a = Q IIIIII I� o U) Crest Gauge CG-2 (UT2-R2) Bankfull Event Depth (for transducer) _ (Top of Gauge + Sensor Depth) - Bankfull Depth Bankfull Event Depth = 1.10 10.00 9.00 8.00 7.00 a 6.00 s U 5.00 m �o 4.00 m w E 3.00 M W 2.00 1.00 0.00 Jan-22 Feb-22 Mar-22 Apr-22 May-22 Jun-22 Jul-22 Aug-22 Sep-22 Oct-22 Nov-22 Dec-22 Observed Monthly Rainfall - -30th Percentile -70th Percentile Oth and 70th percentile data collected from weather station CLAY- Central Crops Research Station in Clayton, NC. Incomplete Month Jan-22 2.22 3.84 Observed 5.20 Feb-22 2.16 4.02 1.62 Mar-22 2.25 3.95 2.13 Apr-22 2.67 4.41 2.64 May-22 2.60 4.73 2.02 Jun-22 2.70 5.32 1.25 Jul-22 4.43 6.57 8.97 Aug-22 4.66 6.39 4.49 Sep-22 3.97 8.03 5.05 Oct-22 1.39 3.88 Nov-22 1.70 4.18 Dec-22 2.48 4.42 ** Figure 5 Hollowell Groundwater Gauge GW-1 10 k, v 0 U U C -5 ++ Q N 0 -10 C7 20 -25 3 2.5 0.5 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N N N N N N N .\i Ln Oa) N W N W O0) m n -i � 0000 N W O m n O qT 00 N Ln 0) m n -i -i \ \ \ \ \ \ qf \ Ln \ \ n \ \ \ \ \ \ O \ \ N -i\ .-i .-i N N m m qT Ln W I, n 00 00 m m ci O ci -1 -1 ci -1 N ci N ci 10 5 v 0 U U C 5 ++ Q N -10 L -15 c o -20 (D -25 Rainfall — Groundwater Depth — Ground Level 12" Below Surface Growing Season Hollowell Groundwater Gauge WG-2 (W4) Hydrologic Criteria Met 3 2.5 2 v U U C 1.5 42 0.5 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N N N N N N N .\i Lf Oa) N W N W O0) m n -i � 0000 N W O m n O qT 00 N Lf O0) m n -i -i \ \ \ \ \ \ qT Lr \ \ n \ \ \ \ \ \ O \ c\-I \ N \ \ .--I .--I N N m m qT Lr) W I, n 00 00 m m ci O ci -1 -1 ci -1 N ci N ci Rainfall Groundwater Depth Ground Level 12" Below Surface Growing Season 10 k, v 0 U U C -5 ++ Q N 0 -10 O 20 (D -25 Hollowell Groundwater Gauge WG-3 (W4a) HvdroloRic Criteria Met 3 2.5 0.5 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N N N N N N N .\i Ln Oa) N W N W O0) m n -i � 0000 N W O m n O qT 00 N Ln 0) m n -i -i \ \ \ \ \ \ qf \ Ln \ \ n \ \ \ \ \ \ O \ \ N -i\ .-i .-i N N m m qT Ln W I, n 00 00 m m ci O ci -1 -1 ci -1 N ci N ci 10 5 v 0 U U C 5 ++ Q N -10 L -15 C o -20 (D -25 Rainfall — Groundwater Depth — Ground Level 12" Below Surface Growing Season Hollowell Groundwater Gauge WG-4 (W3) Hvdroloeic Criteria Not Met 3 2.5 2 v U U C 1.5 42 0.5 -30 LL'- — . 0 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O N \i N N N N N N N N N N N N N N N N N N N N N N N N N N . Ln Oa) N W N W O\1 m n -i � 0000 N W O m n O qT 00 N LnO\1 m n -i -i \ \ \ \ \ \ qf \ In \ \ n \ \ \ \ \ \ O \ \ N \ \ .--I .--I N N m m qT Ln W I, n 00 00 Ol Ol c-I O c-I ci ci c-I ci N c-I N c-I Rainfall Groundwater Depth Ground Level 12" Below Surface Growing Season 10 5 v 0 U U C -5 ++ Q N 0 -10 C7 20 -25 Hollowell Groundwater Gauge WG-5 (W3a) Hydrologic Criteria Met 3 2.5 2 v U U C 1.5 C 0.5 -30 ■� . �. �.� . ._ . . . .�..� . i . �..�. ��. _�, ..,ice. .... . 1 0 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N N N N N N N .\i Ln Oa) N W N W O0) m r,.\i � 0000 N W O m r,O qT 00 N Ln 0) m n .\i ci \ \ \ \ \ \ qf \ Ln \ \ n \ \ \ \ \ \ O \ \ N \ \ .-i .-i N N m m qT Ln W r, n 00 00 m m ci O ci ci ci ci ci N ci N ci 10 5 v 0 U U C 5 ++ Q N -10 L -15 C o -20 (D -25 Rainfall — Groundwater Depth — Ground Level 12" Below Surface Growing Season Hollowell Groundwater Gauge WG-6 (W2) Hydrologic Criteria Met 3 2.5 2 v U U C 1.5 42 0.5 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N N N N N N N .\i Ln Oa) N W N W O0) m r,.\i � 0000 N W O m r,O qT 00 N Ln 0) m n .\i ci \ \ \ \ \ \ qT \ in \ \ n \ \ \ \ \ \ O \ \ N \ \ ci .-i N N m m qT Ln W r, n 00 00 m m ci O ci ci ci ci -1 N ci N ci Rainfall Groundwater Depth Ground Level 12" Below Surface Growing Season Hollowell Groundwater Gauge WG-7 (W2a) Hydrologic Criteria Met 10 k, v 0 U U C -5 ++ Q N 0 -10 C7 20 -25 3 2.5 0.5 -30 .. L IL I 1 0 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N N N N N N N .\i Ln Oa) N W N W O0) m r,.\i � 0000 N W O m r,O qT 00 N Ln 0) m n .\i ci \ \ \ \ \ \ qf \ Ln \ \ n \ \ \ \ \ \ O \ \ N \ \ .-i .-i N N m m qT Ln W r, n 00 00 m m ci O ci ci ci ci ci N ci N ci Rainfall — Groundwater Depth — Ground Level 12" Below Surface Growing Season Hollowell Groundwater Gauge WG-8 (W1) Hydrologic Criteria Met 10 5 v 0 U U C 5 ++ Q N -10 L -15 C o -20 (D -25 3 2.5 2 v U U C 1.5 42 0.5 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O N N N N N N N N N N N N N N N N N N N N N N N N N N N .\i Ln Oa) N W N W O0) m r,.\i � 0000 N W O m r,O qT 00 N Ln 0) m n .\i ci \ \ \ \ \ \ qT \ in \ \ n \ \ \ \ \ \ O \ \ N \ \ ci .-i N N m m qT Ln W r, n 00 00 m m ci O ci ci ci ci -1 N ci N ci Rainfall Groundwater Depth Ground Level 12" Below Surface Growing Season Fiqure 5 Max Consecutive Hydroperiod Saturation within 12 Inches of Soil Surface (Percent of Growing Season 3/21-11/6) CRONOS Station: GOLD - Cherry Research Station Monitoring Gauge Name MY1 2020 MY2 MY3 2021 2022 MY4 MY5 2023 2024 MY6 MY7 2025 2026 Mean Groundwater Gauge 1 Wetland Gauge 2 Wetland Gauge 3 Wetland Gauge 4 Wetland Gauge 5 Wetland Gauge 6 Wetland Gauge 7 Wetland Gauge 8 Fails to meet 12% hydroperiod Meets 12% hydroperiod Appendix F: Macrobenthic Data Table 8: Biotic Index Data and Scores Macrobenthic Sampling Field Data Sheets Biotic Sampling Photographs / Biotic Index Value EPHEMEROPTERA Table 8: UT2-112 Biotic Index UTI-112 Data and Scores BioticTaxa Taxa / EPHEMEROPTERA Family Baetidae Family Baetidae Barris pluto (3.4) Barris intercalaris (5.0) Family Ephemeridae Barris pluto (3.4) Ephemera sap (2.0) Family Ephemeridae Family Heptageniidae Ephemera sap (2.0) Maccaffertium modestum (5.7) Family Heptageniidae Stenacron carolina (1.3) Maccaffertium modestum (5.7) C PLECOPTERA Stenacron carolina (1.3) Family Perlidae Family Leptophlebiidae Eccoptura xanthenes (4.7) Paraleptophlebia sap (1.2) TRICHOPTERA PLECOPTERA Family Hydropsychidae Family Perlidae Cheumatopsyche sap (6.6) Amphinemoura (3.8) Hydropsyche betteni (7.9) Eccoptura xanthenes (4.7) Family Philopotamidae TRICHOPTERA Chimarra sap (3.3) Family Hydropsychidae MISC DIPTERA Cheumatopsyche sap (6.6) C Family Culicidae Diplectrona modesta (2.3) Anopholes sap (8.6) R Hydropsyche betteni (7.9) Empididae Family Limnephilidae Family Simuliidae Neophylax atla nta (1.6) Simulium sap (4.9) Pycnopsyche sap (2.5) R Family Tabanidae MISC DIPTERA Ch ryso ps (6.7) Family Ceratopogonidae Family Tipulidae Atrichopogon sap Hexatoma sap (3.5) Family Simuliidae DIPTERA; CHIRONOMIDAE Simulium sap (4.9) R Ablabesmyia mallochi (7.4) R DIPTERA; CHIRONOMIDAE Corynoneura sap (5.7) Corynoneura sap (5.7) C Dicrotendipes neomodestus (7.9) Cricotopus bicintus (C/O sp 1) (8.7) Nanocladius (7.4) Orthocladius carlatus: C/O sp 54 (4.4) R Rheota nyta rsus s p p (6.5) Parakieferiella sap (4.8) Ta nyta rs us s p p (6.6) Parametriocnemus sap (3.9) Thienemannimyia group (8.4) Thienemaniella sap(6.4) C Tribelos sap (6.4) Thienemannimyia group (8.4) R ODONATA Tribelos jacundum (5.7) Family Aeshnidae COLEOPTERA Boyeria vinosa (5.6) Family Dryopidae Family Calopterygidae Helichus sap (4.1) R Ca In ate ryx s p p (7.5) Family Dytiscidae Family Coenagrionidae Ilybius sap R Argia sap (8.3) R Neoporus sap (7.0) R Family Gomphidae Family Elmidae Gomphus sap (5.9) R Macronychus glabratus (4.7) R Ophiogomphus sap (5.9) Family Haliplidae Stylogomphus albistylus (5.0) Peltodytes sap (8.4) R Family Libellulidae Family Hydrophilidae Plathymis lydia (9.8) R Hydrochus sap R OLIGOCHAETA Laccobius sap (6.5) R Family Naidae Tropisternus blachleyi (9.3) C Aulodrilus pleuriseta (5.6) Tropisternus col la ris (9.3) R Nais sap (8.7) Family Noteridae Pristina sap (7.7) Hydrocanthus sap R MEGALOPTERA Family Ptilodactylidae Family Corydalidae Anchyta rsus bicolor(2.4) Nigronia serricornis (4.6) ODONATA Family Sialidae Family Aeshnidae Sialis sap (7.0) R Boyeria vinosa (5.6) C Family Calopterygidae Total Taxa Richness 6 Calopteryx sap (7.5) R E PT Taxa Richness 0 Family Coenagrionidae EPTAbundance 0 Argia sap (8.3) Biotic Index 7.92 Enallagma sp (8.5) Key R=Rare, C=Common, A=Abundant Family Gomphidae Gomphus sap (5.9) R Progomphus obscurus (8.2) Family Libellulidae Pachydiplax longipenis (9.6) R Family Macromiidae Macromia sap (6.2) R OLIGOCHAETA Family Lumbriculidae (7.0) R Family Naidae Pristinella sap (7.7) R CRUSTACEA Family Cambaridae immature crayfish (7.5) R MOLLUSCA Family Pleuroceridae Elimia sap (2.7) Family Corbiculidae Corbicula fluminea (6.6) R OTHERTAXA Family Corixidae Sigara sap (8.7) R R Family Hydrachnidae Torrenticola sap (5.5) R Total Taxa Richness 21 9 EPT Taxa Richness 3 0 EPT Abundance 7 0 Biotic Index 6.06 8.69 Appendix C - Benthos Collection Card DATE �1"oZOaa. COLLECTTIIME )O %5 fK^ COLLECTO1RSl VJ3(CbjUD CARD# WATEMODY V I t—eli( VT A ,&V QIUlet) STAT.LOC. RIVER BASIN NQ. fiP- -01 COMY AJ QU y\P, Substrate ;� rr�� Field Parameter s Boulder(101 V % Mcandepth i Bank Erasion NMod_Sev Cobble (2 1/2-10*3 =% Maxim. depth � Canopy 4SQTgpe Gravel L1/12-2 1;'2") j Width y • o, Aufwvdu N Mod_Abund. Sand (1/12-) _% % Current ot-'ev Podoste=m iti Mod_Abund. h SEt.finePartir, 10D % Recent Rain? --Dr,5 TribsPresent? \b Other Photo (N) InstremnHabitat (0,+,++) $fig; (#) Pools Jr + BUdc=ters D . Kicks p Temperature ('C) r Ran _Detritus !J Sweeps '2 Dissolved CbWgen (rM/L) Snags IZ) Aquatic Weeds r t LeafPada Cooduetirity(µmbos/ae) Uadercut Banks _Other (Is Rock -Log o pH Root Mats �' - -- Sand i Visuals Other Field Observations: L S+G S `!L. \Js�,M � s itAJkrXlYi(i�i"�� sireO+V%- 0 5o Appendix C — Benthos Collection Card DATE 5_ I? _ 13Z2 COLLECT ��Tim I V S D AM COLLECTORS W IEq% CAROM WATERBODY �,�%i MR,L 11 uoq\ SCAT.LOC. RIVERBASIN COUNTY Subst ate: River - Boulder (10') fl % Mean depth Cobble (21/2.101 =% Maxim depth Crawl (1/12.21/2"] % Width Sand(1/12") % Current Scat. fine Partic % Recent Rain ? Other rZ% Photos Instream Habitat (0,+++) Pools -4--4• Backwaters A" Rifles Detritus -t- Snags AquaticLVeeds -1 Undercut Banks + Other D Root Mats 4. Field Observations 0 � Field o .dal Parameters Hank Erosion Campy — Lp' AufK,udu MA P Odostetn m + V Tribs Present? (R) Kicks S%eeps LeafPacks f1 Rock -Log Sand j Visuals Other 7 N Q Mod_ Sev %Type M a-kJ`i. N _Mod_�_Abuud. N _Mod Abund. SYat=Lh=9sWa Temperature rn Dissolved Oxygen (mg/L) Canducti%ity (µ:rhos/ao) PH 50 C,1 5, LOO a'x N _ ly r N N Q rl 4 N ':1 Appendix G: Correspondence MY2 Credit Release Comment Response WATER & LAND SOLUTIONS November 2, 2022 US Army Corps of Engineers Regulatory Division, Wilmington District Attn: Todd Tugwell 3331 Heritage Trade Drive, Suite 105 Wake Forest, NC 27587 RE: WLS Responses to NCIRT Review Comments Regarding the WLS Neuse 01 Umbrella Mitigation Bank (UMBI) Monitoring Year 2 Report for the Hollowell Mitigation Project, USACE AID# SAW-2017-00159, Neuse River Basin, Cataloging Unit 03020201, Wayne County, NC Dear Mr. Tugwell: Water & Land Solutions, LLC (WLS) is pleased to provide our written responses to the North Carolina Interagency Review Team (NCIRT) review comments dated December 14", 2021 regarding the Monitoring Year 2 Report for the Hollowell Mitigation Project. We are providing our written responses to the NCIRT's review comments below. Each of the NCIRT review comments is copied below in bold text, followed by the appropriate response from WLS in regular text: Erin Davis, NCDWR: • 1 appreciated the level of detail provided in the monitoring report narrative and on the CCPV. Also, the photo comparisons were helpful both to show the veg establishment over time and infer what the flow paths/channels looks like beneath the veg obstructing view. Response: Thank you. • Regarding the UT2-R2 single -thread restoration, if channel maintenance is being considered to manage any vegetation growing within the channel it should be proposed within the next year. In general, DWR does not support channel maintenance beyond MY3 in order to evaluate the trajectory of a feature's functions (stream vs. wetland). Response: No channel maintenance is being proposed at this time. • The number of gauge malfunctions was a bit concerning. DWR's glad corrective actions were taken, as substantial data loss/gaps can affect our ability to properly review and support a proposed credit release. Response: WLS will continue to monitor gauges closely and prevent malfunctions to the best of our ability. WLS downloads and checks gauges a minimum of four times per year. • The number and size of mowing encroachments is also concerning. In the MY3 report, please provide photos of these easement boundary areas showing the corrective actions taken (planting and signage/tape). Response: During MY2 the encroachment acreage was visually overestimated. During MY3 replanting, encroachments were more accurately mapped with GPS. The total acreage of encroachments found in MY2 is approximately 0.27 acres of the 72-acre easement. All areas of waterlandsolutions.com 1 7721 Six Forks Rd, Ste 130, Raleigh, NC 27615 1 919-614-5111 WATER & LAND SOLUTIONS encroachment were planted with bare root trees (see MY3 report) and all were marked with additional t-posts and flagging tape to prevent future encroachments. Encroachment in these areas has ceased since planting and additional marking. Photos of the encroachments are provided in the report appendices. Casey Haywood, USACE: • Appreciate the inclusion of the Problem Vegetation Treatment table for management of cattail and privet. Response: Thank you. • Photos of the stream problem areas look good. Response: Thank you. • The comparison photos from MYO to MY2 helped with the review. Please keep in mind that it will be important to provide photo documentation of channel formation for the headwater streams. If some of the cross-section photos are impeded by vegetation it is recommended to add additional photos as needed to show field indicators. Response: WLS will provide additional photo documentation as needed for headwater channel formation. Todd Tugwell, USACE: • It appears that there are issues with vegetation growth within portions of project based on photos of the site. Manipulation of channel reaches, including vegetation maintenance within the channel, should be coordinated with the IRT prior to being conducted so that we may provide comment/approval of proposed actions. Response: WLS did not find any vegetation growth issues on site and no vegetation maintenance is being proposed at this time. Channels are stable and no sedimentation is accumulating within pools. • The encroachments into the site are concerning, and I would not consider a %: acre of mowing to be a minor incident. The areas of encroachment should be replanted using containerized trees and improved markings/bollards should be used to ensure the landowner has a visual boundary. Response: Response: During MY2 the encroachment acreage was visually overestimated. During MY3 replanting, encroachments were more accurately mapped with GPS. The total acreage of encroachments found in MY2 is approximately 0.27 acres of the 72-acre easement. All areas of encroachment were planted with bare root trees (see MY3 report), and all were marked with additional t-posts and flagging tape to prevent future encroachments. Encroachment in these areas has ceased since planting and additional marking. Photos of the encroachments are provided in the report appendices. • Gauge WG7 in wetland W2a appears to have standing water most of the year based on the gauge data, which explains the vegetation issue in this area. Is this a concern? How big is this area? Are there cattails present here? Response: Prior to construction this area had consistent standing water during wet seasons. The area is approximately 0.39 acres and WLS does not expect excessive tree mortality issues, but tree vigor/height may be lower than typical. Cattails are present in small clumps throughout W2a, however they are not affecting tree survival. waterlandsolutions.com 1 7721 Six Forks Rd, Ste 130, Raleigh, NC 27615 1 919-614-5111 WATER & LAND SOLUTIONS Please contact me if you have any questions or comments. Sincerely, Water & Land Solutions, LLC Emily Dunnigan Water & Land Solutions, LLC 7721 Six Forks Road, Suite 130 Raleigh, NC 27615 Office Phone: (919) 614-5111 Mobile Phone: (269) 908-6306 Email: emily@waterlandsolutions.com waterlandsolutions.com 1 7721 Six Forks Rd, Ste 130, Raleigh, NC 27615 1 919-614-5111