HomeMy WebLinkAboutSW6221005_Design Calculations_20221028Stormwater Calculations
For
Project:
River Run -Phase 1
Harnett County, NC
Developer:
River Run Developers, LLC
.``�r n rrr,,r�rr
�zs
_ 5 AL -
V 459
GI
', ,cR�, p F10 ���• � Z2
Prepared by:
ENGINEERING - SURVEYING - DESIGNING - DRAFTING
Larry Icing & Associates, R.L.S., P.A.
P.O. Box 53787
1333 Morganton Road, Suite 201
Fayetteville, North Carolina 28305
P. (910) 483-4300 F. (910) 483-4052
www.LKandA.com
Firm License #: C-887
TABLE OF CONTENTS
Stormwater Narrative SC-1
Pipe Sizing Calculations APPENDIX A
Pipe Headwater D,=uth Calculations for Crosshq Pipes APPENDIX B
Drainage Swale Calculations (Outlets) APPENDIX C
Drainage Swale Calculations (Roadside) APPENDIX D
Misc. Erosion Control Calculations APPENDIX E
Site Maps APPENDIX F
Soils Report APPENDIX G
Site Deed(s) APPENDIX H
STORMWATER NARRATIVE
This project is a proposed 66 lot single-family subdivision located on a 73.19 acre parcel off of Ennis
Road near Highway 55 in Harnett County. This submittal is for the 29.64 acre Phase 1 of the proposed
project that represents 31 single-family lots to be permitted at this time. The development is intended
as a low density development.
Each lot will be allowed 5500 sf of impervious area. Phase 1 will create 5.42 acres (236,000 sf) of
impervious area which is 18.27% of Phase 1.
The proposed streets will have roadside ditch sections with stormwater crossing pipes. Runoff ultimately
discharges inio one of three drainage swales.
Supplemental calculations are attached.
SC-1
Appendix A
to
Q
Z
Z
O
H
U
of LL ^�
LLvLL
Owl?
a
ZOO
W LL
U�LL
LL d
LL
111
O
U
H
Z
O
a
O
w
Oaf
2�
U-
b 4
zW�
w QQ
UzZ
0LLJ
00,
0 0,
O=�"U
Z q 0 z
�2�Z
o u u
0 2 -j n
Appendix B
J
moo
MA
moo
MOOD
woo
moos
was
some
mos/
Exhibit 11
ISO
10,000
0
168 —8,000 EXAMPLE f3y
I56 0.42 )whom (3.5 tact) 6'
6,000
ti■
144 5,0Q0 120 etc
S.
132 4,000 !� 0"IN
tw
3,000 S 4.
120
(1) 2.5 8.1
4.
2,000
f2I 2.1 7.4
+.
108
(3) 2.2 7.7
3.
ID is tact
3•
96
1,000
3.
800
°4
600
/
—+
. 2
27-
Soo
'
/
_
72
400
/
2.
300
z
H
I.S
=
60
200
&_
Z
/
S4
4°
/ W
100
/
°0
.J
/
e
=
1.0
1.0
4t v
5G 4
N
NW SCALE ENTRANCE
40
p TYPE
1.0
W
W
36
30
(U Seaare edge with
W
6
a33
hwa.ao
9
C
20 (Y) Graava sod with a
30
headwell
x
.e
e
(3) 6roeve ene
•°
27
projecting
10
24
°
.T
6
To asa Sala (2) or (3) project
21
S
he?iiehfolly to $eel# (1).then
4
see Straight iaelined line throvgh
D and 0 scales, or reverse as
6
3
illustrated.
,6
1e
2
Is
t.0
-5
.5
.S
L 12 HEADWATER DEPTH FOR
HEADWATER SCALES 293 CONCRETE PIPE CULVERTS
t)YREAU Of ruN.1C Ramos Aft MW REVISED MAY 1964 WITH INLET CONTROL
VI-11
�A.'.`T t
Exhibit 11 ,.
180
10,000
168
6,000
EXAMPLE
���
���
(�)
156
6 000
0.42 1 -1 (3.5 feet)
6.
144
5.000
0.120cf&
5•
14.
4,000
Im 0 NM
6•
5.
132
o fen
3,000
( 1) 2.5 e.8
5'
4.
120
i2; 9.1 7.4
106
2,000
(3) 2.9 7.7
4'
3.
e0 io fast
3'
96
1,0040
3.
Boo
—94
—600
500
72
400
=
300
x
sn
/
Z
BO
v
200
I.s
Z
W
54
a
O
W
48
/ W
100
Z
7
o�C
a
so
v
42
BO
w
I.0
1.0
U.
C
50 HW SCALE ENTRANCE
1.0
40
D TYPEui
W
F'
W
36
30
(1) Severe edge with
3
.9
33
headwall
0
Y
4
�
20
(Y) Or*"* sod with
a
30
headstall
.6
.S
(3) Groove ol,d
'6
2i
projecting
10
!C 4
6
.7
7
.7-
6
To use stela 42) or (3) oreiset
21
5
herlleetelly to &gels (1),the"
4
ela straight laelinod lion through
0 gad 0 stoles, er revere. as
6
6
3
illustrated.
16
�l
P
15
3
.s
5
1.0
HEADWATER
DEPTH
FOR
-CONCRETE
PIPE
CULVERTS
HEADWATER SCALES 253
REVISED MONY 9" WITH
INLET
CONTROL
whew
of nNLle MAN •VA 10411
VI-11
E P- 2r
Exhibit 11
r
0
Ida
10,000
168
0,000
EXAMPLE
(1 )
(2)
(3)
156
6,000
0•42 Inches (3.5 fast)
6'
144
5,000
0■ 120 eta
S.
4,000
•r
132
3,000
3 feel
5.
4
I I) 2.5 s •
4.
120
12) 2.1 7.4
IOd
2,000
(3) 2.2 7.7
4•
3.
eD Is het
3.
96
I rOft
800
84
600
500
..
72
400
/
t.
=
300
a!
2
N
N
/
Z
60
Is.
200
j.5
z
0
54
O
W
46
�' W
100
z
.J
/
e
80
=
��
v
4t
V
60
1.0
1.0
0
o
SO MW SCALE ENTRANCE
1.0
w
40
0 TYPE (=
W
►`
la
36
30
(1) 511wead" with
.9
g
33
heedsall
a
G
j:p
(!) Weet» wed with t
30
ha.d.•11
.6
d
(3) Greets an!
•d
27
projecting
10
94
d
T
•7
.T
6
To use seals (21 or 13) project
2 1
5
horidante117 to $sale (1),then
4
use straight inclined tins through
D and 0 steles, or reverse as
6
3
illustrated.
•6
Id
2
IS
t.o
.5
I2
HEADWATER DEPTH
FOR
CONCRETE
PIPE CULVERTS
HEADWATER SCALES 2a3
REVISED MAYM4 WITH INLET
CONTROL
SUMAU OFhILLICMAN JM 003
VI-11
-EfP-2�
Exhibit 11
166
6,000
EXAMPLE
(3)
156
6 000
0.4T lochas (3.5 feat)
6.
144
5,000
0o120 ofs
5.
1'12
4,000
! MM
6'
S.
3,000
foal
5.
4.
120
(1) 2.5 s
4,
2,000
(2) 2.1 TA
(3) 2.2 T.T
4.
10d
3.
loD is toot
3
96
1000
3.
e00
84�-
600g:-
500
g.
72
400
=
300
1.5
I.b
2
N
/
z
60
0
200
�'
1.5
o
S4100
/
a
�
>
48
�
a
J
so
42
6v
IL
1.0
1.0
0
50 HW SCALD ENTRANCE
1.0
40
0 TYPE
ry
W
F
w
36
30
(1) Severe eNe with
10-
3
.9
.9
33
headwell
.9
-• 0 , �5
a
Q
20
(2) room and wits
W
30
hagvall
x
.d
.8
(3) Grave one
•d
V
ora)estisg
10
24
6
To lose scale (2) or (3) ere)aat
21
5
horl:ostolly to seals (1),thes
4
as* straight Isaiinea line through
D and 0 scales, or reverse as
6
3
illustrates.
B
Id
2
15
LO
.5
.s
.5
'Y
HEADWATER DEPTH
FOR
CONCRETE
PIPE
CULVERTS
HEADWATER
SCALES 283
REVISED MAY 1964 WITH
INLET CONTROL
SUREAU Of MID6lC ROADS .IA1L ISS3
VI-11
Exhibit 11 '
ISO
10,000
168
8,000
EXAMPLE
I
t2I
[3I
156
6 OQO
0.42 Inches (3.5 fact)
6'
144
����
Oe120 efs
5•
4,000
Im fl Nw
6•
S.
132
3,000
0 feet
S'
4.
I ZQ
p r 2.5 s.1e
4.
2.000
(2) 2.1 7.4
(3j 2.2 7.7
4
108
3.
aD it fast
3•
96
1 00D P i l
3.
Boo
84
rSO4 �
�
2,
2�
500
/
72
400
2.
fA
x
300
2
N
/
2
60
200
W
{.S
c
54
Q
/
a
W
48
w
!DO
=
>
/
60
v
a
x
/7
80
�
1.0
1.0
C
50 HW SCALE ENTRANCE
10
40
D TYPE
=
W
38
30
(l) se•ar• edge with
.9
Q
33
headwall
Q
20
(2) Groove god with
W
30
hooduall
=
1
.8
.8
13) Gro•ta ■ed
•8
2 7
projecting
IQ
24
6
.7
7
T
6
To aN sedle (z1 or (3) erejact
21
S
heritentally to agate (1). than
4
"so str•lght Inclined line through
0 and 0 *colas, at ►owerse sit
6
3
illustrated.
•6
le
2
is
1.0
.5
S
.S
it
HEADWATER DEPTH
FOR
CONCRETE
PIPE CULVERTS
14EADWATER
SCALES 2&3
REVISED
MAY1964 WITH
INLET
CONTROL
BUREAU
of PUBLICNOADa
JIAMM
vi-11
aR . l
Exhibit 11
14yi- I�`,c3
ISO
10,000
l58
8,000
EXAMPLE
136
6,000
D•42 inches (].D fart)
6.
144
7,OW
a• ixa eta
S.
4,000
! It mw
6.
S
132
0 foe
4.
l20
it) 2.. 7.4
IOa
t 2,000
(3) 2.2 7.7
4
3.
'^ is fr_i
3'
96
1 r04"
e00
r
84
goo
/
72
400
+1
=
300
Ex
1.5
I.S
Z
Z
60
200
1.3
O
34
/
dK
O
4+
100
=
W
j
46
80
v
Q
v
60
=
IL
1.0
1.0
o
42
c
SO HW ENTRANCE
o
40
SCALE
p TYPE
cc
1.0
F'
W
36
30
(i) Silvers ado* with
�
9
9
33
nsad..0
n
8
Q
�
8D
12) wears sad wilh
i
30
headvoll
.6
.S '
13) Groove and
•6
27
'rajacs+h4
10
24
8
.7
7
.7-
6
To via stab (2) or (3) project
21
S
noriaortolly to stele (1),tAon
4
ase strol/ht reclined line taro"N
0 ana 0 semos, or rorersa as
6
illyef rQTeq.
.6
18
2
..S
L.5
12
HEADWATER
DEPTH
FOR
CONCRETE
PIPE
CULVERTS
HEADWATER SCALES 283
REVISED MAY 6" WITH
INLET
CONTROL
SUREAU Of KOLIC
ROADS JAK 043
VI-11
r
Exhibit 11 c $
ISO 10,000 0
168 9,000 EXAMPLE (3)
136 6,000 0.42 ineheo 13.5 fast) 6
s.000 Q-120 do — s.
144 6 S
4,000 I, * Mt
132 D tan 4
3 c0o s
► 20
(2) 2.1 7.4
2,D00
106
'D is fast
96
1000
3.
800
84
600
r� n
—500
=
300
i}
Z
60
v
200
1.'J
_
Z
�
W
a
s4
C
W
4a
W
�' w
100
>
/ cc
60
4
4>Z
60
CL
id
50
KW ENTRANCE
w
c
40
SCALE
D TYPE
cc
1.0
~
W
36
30
(1) S4usre ad" with
W
#
9
33
h■errell
a
G
EO
(Y) Greece end with
a
W
30
huhdl
T
(3) Groove en•
•6
27
pr•)estih`
10
24
6
.7
6
To sea Stale (2, or (3) project
21
S
herlselrfally to Sa•(e (1),thon
`
use Stro$Oh1 Intl -nee line throallt
D and 0 seeks, or reverse as
3
illustrated.
Id
2
1.0
.s .s
tit HEADWATER DEPTH FOR
HEADWATER SCALES 283 CONCRETE PIPE CULVERTS
GV"AU DF ROOK WAM � A= REv)SW MAY 0" WITH INLET CONTROL
VI-11
C r- 2q
D
Exhibit 11
�+
a
180
10,000
188
0,000
EXAMPLE
(3)
5.
138
6 000
0•42 inches (3.5 fall
144
6,000
On 120 Cfs
S
14.
4,000
132
D fee
3,000
3'
(1) 2.3 8.4
4.
120
(2) 2.1 7.4
106
2,000
(3) 2.2 7.7
eD m fee
3'
96
1,000
3.
800
84
500
�,,-2.-2.
—500
/
72
400
2.
300
1.5
x
fn
/
ao
200
F
1.5
_
*
�—
s4
O
7
48
Z
�•�
�'c
80
1
a
2
c�7
42
80
0~.
W
I.0
I.0
0
o
s0 Hw SCALE ENTRANCE
I.0
40
Q TYPE w
t
34
30
(1) Square odes with I
W
�
33
a*edratt Q
9
a
�
20
(2) 6rasa *ad with a
30
h*edreli i
•a
(3) Groeve emd
•�
27
prelestims
10
24
8
.7
.7
.7..
it
To use scale (2) or (3) project
2 1
s
hotlsomfell} to SCSI* (4). than
4
use straight inclined limo tareapl
D and 0 seen, or reverse as
a
d
3
illustrated.
18
2
15
IRS]
.s
L.s L.s
`12 HEADWATER DEPTH FOR
HEADWATER SCALES 253 CONCRETE PIPE CULVERTS
GUREAU OrPWLIC0"08 J*Aleft REVISED MAY2964 WITH INLET CONTROL
VI-11
Exhibit 11 '
0
ISO
10,000
169
8,000
EXAMPLE
(1)
(2)
(3)
136
6 000
'
0.42 Inchso (3.5 roof))
6.
144
3,�
Q. 120 efs
5,
132
4,000
Al
6.
S.
3,000
D HM
4.
120
(t) 2./f
3
.
4.
I09
2.000
) 2.1 7.4
(3) 2.2 7.7
4.
3.
*ago
'0 if, foot
3.
96
1,000
, ��
3.
®4
g00
—600
500
_
/
72
400
�/ Q
2.
z
300
_
to
/
60
v
200
W
I.S
z
�
�
d
54
W
t3
�
/ W
100
C
O
46
�
/ a
so
z
���
42
sa
1.0
1.0
o
a
60 HW ENTRANCE
SCALE
1.0
cc
40 D
TYPE Cr
y~j
39
30
(1) severs ad" with 3
.9
.9
Q
33
nave■su Cl-
.4
C
20
(2) Gtosvo and with W
30
head■stl x
.s
s
(3) Groove she
•d
17
projeating
to
24
s
T
.7
r
6
To use seals (11 or (3) project
2 1
S
herlseatolq to stole (1),thea
4
ese straight Inciined line through
0 and 0 .cvlee, or reverso to
.9
3
illvstroted.
.6
Is
2
IS
11.0
. S
3
.6
12
HEADWATER DEPTH
FOR
HEADWATER
SCALES 283 -CONCRETE
PIPE
CULVERTS
euaEAU OFMOLlc ROAos ,lA1t IM
W-viSEA
MAY 0" WITH INLET CONTROL
V1-11
Appendix C
,,nrr to C 1E ,cu l' - -,ns
Proposed C Swale 1
Total Area= 375,958 sf c value 8.63 ac
Imp Area = 94,291 sf 0.9 2.16 ac
Pery Area = 281,667 sf 0.3 25%
Comp C= 0.45
Proposed C
Swale 2
Total Area=
321,721 sf c value .39 ac
Imp Area =
82,116 sf 0.9 1.89 ac
Pery Area =
239,605 sf 0.3 26%
Comp C= 0.45
Proposed C - Swale 3
Total Area= 158,080 sf
c value 3.63 ac
Imp Area = 37,593 sf
0.9 0.86 ac
Pery Area = 120,487 sf
0.3 24%
Comp C= 0.44
SWALE--1.txT
Channel Calculator
Given Input Data:
Shape ........................... Trapezoidal
Solving for .. .. .. Depth of Flow
Flowrate ... .. ....... .... 23.4200 cfs
Slope ........... ............. 0.0069 ft/ft
Manning's n 0.0300
Height .......................... 24.0000 in
Bottom width .. 30.0000 in
Left slope 0.2500 ft/ft (V/H)
Right slope ..................... 0.2500 ft/ft (V/H)
Computed Results:
Depth 13.1602 in
Velocity ........................ 3.1009 fps
Full Flowrate 92.3919 cfs
Flow area 7.5525 ft2
Flow perimeter .................. 13C 5216 in
Hydraulic radius ................ 7.8512 in
Top width ....................... 135 2814 in
Area .. 21.0000 ft2
Perimeter .. .. ................ 227.9091 in
Percent full ,. 54.8341
Critical Information
Critical
depth ..................
10.7983 in
Critical
slope ................
0.0163 ft/ft
Critical
velocity -- -- ,,..,,,..
4.2670 fps
Critical
area ...................
5.4886 ft2
Critical
perimeter ... ... . . .
119.0450 in
Critical
hydraulic radius .......
6.6392 in
Critical
top width ........ .....
116.3863 in
Specific
energy .................
1.2461 ft
Minimum energy .......... ....
1.3498 ft
Froude number ...................
0.6679
Flow condition ...,... ...
Subcritical
Page 1
Hydrograph Plot
Hydraflow Hydrographs by Intelisolve
Hyd. No. 1
Swale-1
Hydrograph type
= Rational
Storm frequency
= 10 yrs
Drainage area
= 8.630 ac
Intensity
= 6.031 in/hr
OF Curve
= River Bluff.IDF
Q (cfs)
24.00
20.00
16.00
12.00
8.00
4.00
0.00
0.0 0.1
Hyd No. 1
Tuesday, May 19 2020, 2:12 PM
Peak discharge = 23.42 cfs
Time interval = 1 min
Runoff coeff. = 0.45
Tc by User = 12.00 min
Asc/Rec limb fact = 1/1
Swale-1
Hyd. No. 1 -- 10 Yr
0.2 0.3 0.3
Hydrograph Volume = 16,863 tuft
Q (cfs)
24.00
20.00
16.00
12.00
8.00
4.00
0.00
0.4
Time (hrs)
2
SWALE-2.txt
Channel Calculator
Given Input Data:
Shape ...........................
Trapezoidal
Solving for .............. ......
Depth of Flow
Flowrate ..... .... .......,..
20.0600 cfs
Slope .............
0.0300 ft/ft
Manning's n ..... ,..... ... ..
0.0300
Height .... ....._ .,....
24.0000 in
Bottom width ........ ...........
60.0000 in
Left slope ..... ...
0,2500 ft/ft (V/H)
R'I.ght slope .... . ............
0.2500 ft/ft (V/H)
Computed Results:
Depth 6.8124 in
Velocity ........... .. 4.8600 fps
Full Flowrate .. . .............. 253.2543 cfs
Flow area ....................... 4.1276 ft2
Flow peri.nir,t .r .................. 116.1762 in
Hydraulic radius ................ 5.1162 in
Top width ....................... 114.4989 in
Area .... ..................... , 26.0000 ft2
Perimeter ............... 257.9091 in
Percent full .. 28.3848
Critical Information
Critical
depth ..................
7.9264
in
Critical
slope ..................
0.0170
ft/ft
Critical
velocity ..........
3.9739
fps
Critical
area ............ ....
5.0479
ft2
Critical
perimeter .....
125.3629 in
Critical
hydraulic radius .......
5.7983
in
Critical
top width ..............
123.4113 in
Specific
energy ............ ....
0.9348
ft
Minimum energy ..... ........
0.9908
ft
Froude number ...................
1.3027
Flow condition ............. .. .
Supercritical
Page 1
Hydrograph Plot
Hydraflow Hydrographs by Intelisolve
Hyd. No. 2
Swale-2
Hydrograph type
= Rational
Storm frequency
= 10 yrs
Drainage area
= 7.390 ac
Intensity
= 6.031 in/hr
OF Curve
- River BIuff.IDF
Q (cfs)
21.00 T
18.00
15.00
12.00
9.00
6.00
3.00
0.00
0.0
Tuesday, May 19 2020, 2:12 PM
Peak discharge = 20.06 cfs
Time interval
= 1 min
Runoff coeff.
= 0.45
Tc by User
= 12.00 min
Asc/Rec limb fact
= 1/1
Swale-2
Hyd. No. 2 --10 Yr
0.1 0.2 0.3 0.3
Hyd No. 2
Hydrograph Volume = 14,440 cuff
Q (cfs)
21.00
18.00
15.00
12.00
9.00
6.00
3.00
0.00
0.4
Time (hrs)
3
SWALE-3.txt
Channel Calculator
Given Input Data:
Shape ........ Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ..... 10 3200 cf
Slope ........................... 0.0075 ft/ft
Manning's n ..................... 0.0300
Height 24.0000 in
Bottom width ................... 12.0000 in
Left ,lope 0.3300 ft/ft (V/H)
Right slope ..................... 0.3300 ft/ft (V/H)
Computed Results:
Depth . 11.4362 in
Velocity ........................ 2.7852 fps
Full Flowrate .. . .. ....... ... 61.6191 cfs
Flow area ....................... 3.7053 ft2
Flow perimeter ...... . ..... 84.9867 in
Hydraulic radius _ 6.2781 in
Top width 81.3103 in
Area ........... ...... 14.1212 ft2
Perimeter ................... ... 165.1699 in
Percent full .................... 47.6508
Critical Information
Critical depth 9.4667 in
Critical slope . 0.0180 ft/ft
Critical velocity 3.8582 fps
Critical area ........... ....... 2.6748 ft2
Critical perimeter ............ . 72.4171 in
Critical hydraulic radius 5.3188 in
Critical top width 69.3738 in
Specific energy ................. 1.0736 ft
Minimum energy .................. 1.1833 ft
Froude number ............. ...... 0.6640
Flow condition .................. Subcritical
Page 1
Hydrograph Plot
Hydraflow Hydrographs by Intelisolve
Hyd. No. 3
Swale-3
Hydrograph type
= Rational
Storm frequency
= 10 yrs
Drainage area
= 3.630 ac
Intensity
= 6.460 in/hr
OF Curve
= River Bluff.IDF
Q (cfs)
12.00
10.00
we
4.00
2.00
— Hyd No. 3
0.1
Swale-3
Hyd. No. 3 --10 Yr
0.2
Tuesday, May 19 2020, 2:12 PM
Peak discharge = 10.32 cfs
Time interval = 1 min
Runoff coeff. = 0.44
Tc by User = 10.00 min
Asc/Rec limb fact = 1/1
0.3
Hydrograph Volume = 6,191 cult
Q (cfs)
12.00
10.00
8.00
4.00
Mr
0.00
0.3
Time (hrs)
4
Appendix D
•�
px
M1 m
Inn
wln�
�p
anva
Nl�m
u]I,.I
M Mf0
M a
n
E
0
vvv`dpv
aavvva
a aavva
vrma
LL
t
�O m
N
T F-
m
I❑ I❑
m
M1 N
N
M [�
N
��pp m
pp
i!1 O
6 m O
M
a
O
0 0
0000000000000060
0
4 C
0
0 0
0 O
0
0
O O
0 0
g G
G O
0 0
O v r
0 0
0 v
v-
L
rn^c
aRm
mmwmmm
mm
mm�oommmmmmmm
2
�-
A O
a
W fn
M M
M M
M M
M M
M M
M M
M M
M M M
c M
M v v
M
C
L N
U J
c
O
N
v
y
3
c
,c^
oo0obvv
o0000000voo0b
onI`+
00
O
coo
0
0 p
v 0
0 0
0 0
0 g v
v o
C
0 0 2
C
0 G
v v
o O
o C
v o
O o
o O
o p p
O v
O o p
p
N
O p
O
o
O O
O O
p p
( O�yy Oryry
O 6
�ppp po�ppO
O O
r n
O p
h n
0. 0
t00 O
0 00
N u N��
( Oyy O O Op
0
�O [ Od
O C
O
O G
O v
0 0
0 0
0
0 4
000 O
C G O
o
O 0
0 C G
O
m
W� Y
N N
O
r
Qi n
m {O N
O O
N M N
C
O
��
N
pp
�1p❑
V O
m 0
0 V
r
m n
m to
O V
N fM1V
R
N
w
m O]
O)
o nM
m N N
M d
A
C
a N
W M
n i(1
N
OI OI
(O (O
O) d
O N
m
N O
00
[V c7
W A
O
4 M
m n m
m
d r
c
N N m
m
N
�-
R O
In
m 0
I� 0
0
r r
r CJ
fO fO
b
r d ry
N
w
F
n mM1n
r- M ID
n
?
nM1lnnnn
nM1
r-+-��Ammm�nn
n
n d n
n A
mm
Qi of
en Oi
W er
❑1 oY
ai ps
pi vimmai
of a;
pi W rooi
rnmnrn�rnmrnmmrnwrnovm�Nrnmrn
� �c
IO'm
��l
.N
of er
tr of
co Di
pi ow
ai ❑i
oo vi
W ❑i
of n N
m vi
of m
vi
d
N
a
9
mmadm
mou
rd cdmmwmwmco
l�nm��
n�m
0
<mp,
(pp
<D ImD,
V rip
100❑ [mp.
Imp. Imp.
oo��01
rp 'DD
lmp 0 m
fmp. ip
v
_
nnnM1�
nr�M1nr-nnnn�c6
mrr�r
0 aD
cd<dn
ImO.
u
00�no0aobbg$$
0 0
0 o
n o
o v
o
000vvig$
mm
r.
w o
E
vi N
vi �
u� ui
iri �
� ui
u� u�
ui vi
vi ca n
ui vi
ri r n
u-i
w
j Y
W
Z
J
'O•O
n
a
U O
'❑
'O
a ry
b
v
>>
m
>?
m
E
E
E
E
x
m
ap a
a
w
¢
a ¢
N w
¢
¢ ¢
w In
m
3 w
m
w
a
y
gg
C
O O
N p
m
h p
N M
fop. IO
N n
m0 m
O
O
v 0
0 0
�- O
�- N r
g 00
�Ci
ry
V
InmnnN�u�vroi.��r°`$.N
0 0
b v v
v O
0 [V r
b
A
C
N U
u> in �n
d d d
a
d
In �n
V V
In
a 4
u� I❑
4 4
u� �n
d d
�n �
d a
�❑ I❑
d d
w in
4 4
�n �p �i
d d d
u� I❑
d a
V
Z
fA
O o
o O
O g
Q v
o O
O O
O p
O o O
o O
O d 0
0
y
vo�Md:
Ian
o
O
N r
Ni o0
s-O
O M1
M
U
K �
m
�E
aNi
t
ay¢m¢m¢m¢mc)o¢m¢
m
ev
�NnMMdada�❑u-r
mml�m¢m¢m¢mm
nmmmw
yVj
c N
No No
N0
N0 N0
N0
V0f
atO aO
OOp
N
3
°o
RO
willm
0 00
p
p
m N
U
xx
¢mQOfw
w
0it❑
xO w'y0O
aV[[❑11!m
aQ°
O
a
d
r
N N N N
m
Ditch 1a.txt
Channel Calculator
Ditch 1a
Given Input Data:
Shape ........................... Trapezoidal
Solving for Depth of Flow
Flowrate 4.9400 cfs
Slope 0.0200 #t'ft
Manning's n ..................... 0.0300
Height 18.0000 in
Bottom width 0.0000 in
Left slope ...................... 0.3300 ft/ft (V/H)
Right slope 0.5000 ft/ft (V/H)
Computed Results:
Depth ........................... 9.0279 in
Velocity ........................ 3.4701 fps
Full Flowrate ................... 31.1088 cfs
Flow area ....................... 1.4236 ft2
Flow perimeter .................. 48.9956 in
Hydraulic radius ................ 4.1839 in
Top width ....................... 45.4133 in
Area ............................ 5.6501 ft2
Perimeter ............... .... .. 97.6879 in
Percent full .................... 50.1552
Critical Information
Critical depth .................. 9.0189 in
Critical slope .................. 0:0201 ft/ft
Critical velocity ............... 3.4771 fps
Critical area ................... 1.4207 ft2
Critical perimeter .............. 48.9463 in
Critical hydraulic radius ....... 4.1797 in
Critical top width 45.3676 in
Specific energy ................. 0.9395 ft
Minimum energy 1.1274 ft
Proude number 0.9975
Flow condition .................. Subcritical
Page 1
Ditch 1b.txt
Channel Calculator
Ditch lb
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 0.3500 cfs
Slope 0.0200 ft/ft
Manning's n ..................... 0.0300
Height .......................... 18.0000 in
Bottom width .................... 0.0000 in
Left slope ...................... 0.3300 ft/ft (V/H)
Right slope ..................... 0.5000 ft/ft (V/H)
Computed Results:
Depth 3.3455 in
Velocity ......................... 1.7903 fps
Full Flowrate ................... 31.1088 cfs
Flow area 0.1955 ft2
Flow perimeter 18.1566 in
Hydraulic radius 1.5505 in
Top width 16.8291 i?
Area 5.6591 ft2
Perimeter 97.6879 in
Percent full .................... 18.5863
Critical Information
Critical depth .................. 3.1282 in
Critical slope .................. 0.0286 ft/ft
Critical velocity ............... 2.8478 fps
Critical area ................... 0.1709 ft2
Critical perimeter .............. 16.9768 in
Critical hydraulic radius ....... 1.4497 in
Critical top width .............. 15.7356 in
Specific energy ................. 0.3286 ft
Minimum energy .................. 0.3910 ft
Froude number ................... 0.8454
Flow condition Subcritical
Page 1
Ditch 2a.txt
Channel Calculator
Ditch 2a
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 10.2400 cfs
Slope ............................ 0.0200 ft/ft
Manning's n ..................... 0.0300
Height .......................... 18.0000 in
Bottom width 0.0000 i:j
Left slope 0.3300 ft/ft (V/H)
Right slope ..................... 0.5000 ft/ft (V/H)
Computed Results:
Depth 11.8660 in
Velocity 4.1638 fps
Full Flowrate ................... 31.1088 cfs
Flow area 2.4593 ft2
Flow perimeter .................. 64.3979 in
Hydraulic radius ................ 5.4992 in
Top width ....................... 59.6895 in
Area ............................ 5.6591 ft2
Perimeter 97.6879 in
Percent full .................... 65.9221
Critical Information
Critical depth .................. 12.0720 in
Critical slope 0.0182 ft/ft
Critical velocity ............... 4.0229 fps
Critical area ................... 2.5454 ft2
Critical perimeter .............. 65.5162 in
Critical hydraulic radius ....... 5.5947 in
Critical top width 60.7260 in
Specific energy ................. 1.2583 ft
Minimum energy 1.5090 ft
Froude number 1.0440
Flow condition .................. Supercritical
Page 1
Ditch 2b.txt
Channel Calculator
Ditch 2b
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 5.2500 cfs
Slope 0.0200 ft/ft
Manning's n ..................... 0.0300
Height ........................ . 18.0000 in
Bottom width .................... 0.0000 in
Le±t slope 0.3300 ft/ft (V/H)
Right slope 0.5000 ft/ft (V/H)
Computed Results:
Depth 9.2364 in
Velocity ........................ 3.5234 fps
Full Flowrate 31.1088 cfs
Flow area 1.4901 ft2
Flow perimeter .................. 50.1267 Y
Hydraulic radius ................ 4.2805 in
Top width 46.4617 in
Area ............................ 5.6591 ft2
Perimeter 97.6879 in
Percent full .................... 51.3131
Critical Information
Critical depth .................. 9.2411 in
Critical slope .................. 0.0199 ft/ft
Critical velocity ............... 3.5197 fps
Critical area ................... 1.4916 ft2
Critical perimeter .............. 50.1525 in
Critical hydraulic radius ....... 4.2827 in
Critical top width .............. 46.4856 in
Specific energy ................. 0.9626 ft
Minimum energy 1.1551 ft
Froude number ................... 1.0013
Flow condition .................. Supercritical
Page 1
Ditch 3a.txt
Channel Calculator
Ditch 3a
Given Input Data:
Shape Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 3.6900 cfs
Slope ........................... 0.0060 ft/ft
Mianning's n ..................... 0.0300
Height .......................... 18.0000 in
Bottom width .................... 0.0000 in
Left slope ...................... 0.3300 ft/ft ;V/H)
Right slope 0.5000 ft/ft (V/H)
Computed Results:
Depth ........................... 10.1418 in
Velocity ........................ 2.0540 fps
Full Flowrate ................... 17.0390 cfs
Flow area ....................... 1.7965 ft2
Flow perimeter .................. 55.0407 in
Hydraulic radius ................ 4.7001 in
Top width ....................... 51.0164 in
Area ............................ 5.6591 ft2
Perimeter ....................... 97.6879 in
Percent full .................... 56,3434
Critical Information
Critical depth .................. 8.0255 in
Critical slope .................. 0.0209 ft/ft
Critical velocity 3.2801 fps
Critical area ................... 1.1250 ft2
Critical perimeter ............ _ 43.5552 in
Critical hydraulic radius ....... 3.7193 in
Critical top width .............. 40.3706 in
Specific energy 0.9107 ft
Minimum energy 1.0032 ft
Froude number ................... 0.5570
Flow condition .................. Subcritical
Page 1
Ditch 4a.txt
Channel Calculator
Ditch 4a
Given Input Data:
Shape Trapezoidal
Solving for ..................... Depth of Flow
klowrate ...... 7.0900 cfs
Slope 0.0375 ft/ft
Manning's n 0.0300
Height .......................... 18.0000 in
Bottom width .................... 0.0000 in
Le+t slope ...................... 0.3300 ft/ft (V/H)
Right slope 0.5000 ft/ft (V/H)
Computed Results:
Depth .. 9.1885 in
Velocity 4.8079 fps
Full Flowrate ................... 42.5975, cfs
Flow area 1.4747 ft2
Flow perimeter .................. 49.8671 in
Hydraulic radius 4.2583 in
Top width 46.2211 in
Area ............................ 5.6591 ft2
Perimeter 97.6879 in
Percent full .................... 51.0473
Critical Information
Critical depth .................. 10.4212 in
Critical slope 0.0192 ft/ft
Critical velocity ............... 3.7377 fps
Critical area ................... 1.8969 ft2
Critical perimeter .............. 56.5572 in
Critical hydraulic radius ....... 4.8296 in
Critical top width .............. 52.4220 in
Specific energy ................. 1.1249 ft
Minimum energy .................. 1.3027 ft
Froude number ................... 1.3699
Flow condition .................. Supercritical
Page 1
Ditch 3b.txt
Channel Calculator,
Ditch 3b
Given Input Data:
Shape ........................... Trapezoidal
Solving for Depth of Flow
Flowrate ........................ 0.6900 cfs
Slope 0.0060 ft/ft
Manning's n ...................... 0.0300
Height .......................... 18.0000 in
Bottom width 0.0000 in
Left slope ...................... 0.3300 ft/ft (V/H)
Right slope ..................... 0.5000 ft/ft (V/H)
Computed Results:
Depth ........................... 5.4082 in
Velocity ........................ 1.3507 fps
Full Flowrate ................... 17.0390 cfs
Flow area ....................... 0.5109 ft2
Flow perimeter .................. 29.3506 in
Hydraulic radius ................ 2.5064 in
Top width ....................... 27.2047 in
Area ............................ 5.6591 ft2
Perimeter 97.6879 in
Percent full 30.0453
Critical Information
Critical depth 4.1039 in
Critical slope .................. 0.0261 ft/ft
Critical velocity 2.3456 fps
Critical area 0.2942 ft2
Critical perimeter .............. 22.2725 in
Critical hydraulic radius ....... 1.9019 in
Critical top width .............. 20.6440 in
Specific energy ................. 0.4790 Ft
Minimum energy 0.5130 ft
Froude number ................... 0.5016
Flow condition .................. Subcritical
Page 1
Ditch 4b.txt
Channel Calculator
Ditch 4b
Given Input Data:
Shape ........... ,.......... -.... Trapezoidal
Solving for Depth of Flow
Flowrate 0.2400 cfs
Slope 0.0375 `L1ft
Manning's n ..................... 0.0300
Height 18.0000 in
Bottom width 0.0000 in
Left slope .................... 1. 0.3300 ft/ft (V/H)
Right slope ...................... 0.5000 ft/ft (V/H)
Computed Results:
Depth ............................ 2.5813 in
Velocity ........................ 2.0623 fps
Full Flowrate 42.5975 cfs
Flow area ....................... 0.1164 ft2
Flow perimeter .................. 14.0088 in
Hydraulic radius 1.1963 in
Top width ....................... 12.9845 in
Area 5.6591 ft2
Perimeter 97.6879 in
Percent full .................... 14.340z1
Critical Information
Critical depth .................. 2.6900 in
Critical slope .................. 0.0301 ft/ft
Critical velocity 1.8990 fps
Critical area ................... 0.1264 ft2
Critical perimeter .............. 14.5987 in
Critical hydraulic radius ....... 1.2466 irn
Critical top width .............. 13.5313 in
Specific energy ................. 0.2812 ft
Minimum energy .................. 0.3362 ft
Froude number ................... 1.1086
Flow condition .................. Supercritical
Page 1
Ditch 4c.txt
Channel Calculator
Ditch Q
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 0.2800 cfs
Slope ........................... 0.0375 ft/ft
Manning's n ..................... 0.0300
Height 18.0000 in
Bottom width .................... 0.0000 in
Left slope ...................... 0.3300 ft/ft (V/H)
Right slope ..................... 0.5000 ft/ft (V/H)
Computed Results:
Depth .. 2.7349 in
Velocity ........................ 2.1433 fps
Full Flowrate 42.5975 cfs
Flow area ....................... 0.1306 ft2
Flow perimeter .................. 14.8425 in
Hydraulic radius ................ 1.2675 in
Top width 13.7573 in
Area ............................ 5.6591 ft2
Perimeter 97.6879 in
Percent full .................... 15.1938
Critical Information
Critical depth .................. 2.8610 in
Critical slope .................. 0.0295 ft/ft
Critical velocity 1.9584 fps
Critical area ................... 0.1430 ft2
Critical perimeter .............. 15.5272 in
Critical hydraulic radius ....... 1.3259 in
Critical top width .............. 14.3919 in
Specific energy ................. 0.2993 ft
Minimum energy 0.3576 ft
Froude number 1.1193
Flow condition .................. Supercritical
Page 1
Ditch 4d.txt
Channel Calculator
Ditch 4d
Giver Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate 4.0100 cfs
Slope 0.0375 ft/ft
Manning's n ..................... 0.0300
Height 18.0000 in
Bottom width 0.0000 in
Left slope ...................... 0.3300 ft/ft (V/H)
Right slope ..................... 0.5000 ft/ft (V/H)
Computed Results:
Depth 7.4205 in
Velocity ........................ 4.1694 fps
Full Flowrate 42.5975 cfs
Flow area 0.9618 ft2
Flow perimeter .................. 40.2718 in
Hydraulic radius 3.4390 in
Top width ....................... 37.3273 in
Area ............................ 5.6591 ft2
Perimeter 97.6879 in
Percent full 41.2249
Critical Information
Critical depth .................. 8.2969 in
Critical slope .................. 0.0207 ft/ft
Critical velocity ............... 3.3351 fps
Critical area ................... 1.2024 ft2
Critical perimeter .............. 45.0284 in
Critical hydraulic radius ....... 3.8452 in
Critical top width 41.7362 in
Specific energy ................. 0.8885 ft
Minimum energy 1.0371 ft
Froude number 1.3219
Flow condition .................. Supercritical
Page 1
Ditch 5a.txt
Channel Calculator
Ditch 5a
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate 'i..2100 cfs
Slope 0.0060 ft/ft
Manning's n 0.0300
Height 18.0000 in
Bottom width ...... 0.0000 in
Left slope 0.3300 ft/ft (V/H)
Right slope ..................... 0.5000 ft/ft (V/H)
Computed Results:
Depth 6.6761 in
Velocity ........................ 1.5543 fps
Full Flowrate ..................... 17.0390 cfs
Flow area 0.7785 ft2
Flow perimeter .................. 36.2111 in
Hydraulic radius ................ 3.0940 in
Top width ....................... 33.5830 in
Area ............................ 5.6591 ft2
Perimeter ....................... 97.6879 in
Percent full .................... 37.0897
Critical Information
Critical depth .................. 5.1378 in
Critical slope .................. 0.0243 ft/ft
Critical velocity ............... 2.6244 fps
Critical area ................... 0.4611 ft2
Critical perimeter 27.8832 in
Critical hydraulic radius ....... 2.3811 in
Critical top width .............. 25.8445 in
Specific energy ................. 0.5939 ft
Minimum energy .................. 0.6422 ft
Froude number ................... 0.5195
Flow condition .................. Subcritical
Page 1
Ditch 5b.txt
Channel Calcuidtor
Ditch 5b
Given Input Data:
Shape Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 1.3800 cfs
Slope ........................... 0.0060 ft/ft
Manning's n ..................... 0.0300
Height .......................... 18.0000 in
Bottom width 0.0000 in
Left slope ...................... 0.3300 ft/ft (V/H)
Right slope ..................... 0.5000 ft/ft (V/H)
Computed Results:
Depth 7.0135 in
Velocity ........................ 1.6062 fps
Full Flowrate 17.0390 cfs
Flow area ....................... K O O ft2
Flow perimeter .................. 38.0631 in
Hydraulic radius 3.2504 in
Top width ....................... 35.2801 in
Area ............................ 5.6591 ft2
Perimeter 97.6879 in
Percent full .................... 38.9639
Critical Information
Critical depth .................. 5.4152 in
Critical slope 0.0238 ft/ft
Critical velocity ............... 2.6943 fps
Critical area 0.5122 ft2
Critical perimeter .............. 29.3887 in
Critical hydraulic radius ....... 2.5096 in
Critical top width .............. 27.2400 in
Specific energy ................. 0.6246 ft
Minimuw energy 0.6769 ft
Froude number ................... 0.5238
Flow condition .................. Subcritical
Page 1
Ditch 6a.txt
Channel Calculator
Ditch 6a
Given Input Data:
Shape Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 7.1900 cfs
Slope ........................... 0.0512 ft/ft
Manning's n ..................... 0.0300
Height .......................... 18.0000 in
Bottom width 0.0000 i.n
Left slope ...................... 0.3300 ft/ft (V/H)
Right slope 0.5000 ft/ft (V/H)
Computed Results:
Depth ............... ........
8.7130
in
Velocity ........................
5.4224
fps
Full Flowrate ...................
49.7741
cfs
Flow area .......................,
1.3260
ft2
Flow perimeter ..................
47.2866
in
Hydraulic radius ................
4.0380
in
Top width .......................
43.8292
in
Area ............................
5.6591
ft2
Perimeter .......................
97.6879
in
Percent full ....................
48.4057
Critical Information
Critical depth .................. 10.4798 in
Critical slope .................. 0.0191 ft/ft
Critical velocity ............... 3.7482 fps
Critical area ................... 1.9183 ft2
Critical perimeter .............. 56.8749 in
Critical hydraulic radius 4.8568 in
Critical top width .............. 52.7165 in
Specific energy ................. 1.1830 ft
Minimum energy 1.3100 ft
Froude number ................... 1.5866
Flow condition .................. Supercritical
Page 1
Ditch 6b.txt
Channel Calculator
Ditch 6b
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 2.0700 cfs
Slope 0.0512 ft/ft
Manning's n ..................... 0.0300
Height .......................... 18.0000 in
Bottom width 0.0000 in
Left slope ...................... 0.3300 ft/ft (V/H)
Right slope ..................... 0.5000 ft/ft (V/H)
Computed Results:
Depth ........................... 5.4624 in
Velocity 3.9719 fps
Full Flowrate ................... 49.7741 cfs
Flow area ....................... 0.5212 ft2
Flow perimeter .................. 29.6451 in
Hydraulic radius 2.5315 in
Top width ....................... 27.4776 in
Area ............................ 5.6591 ft2
Perimeter ....................... 97.6879 in
Percent full 30.3468
Critical Information
Critical depth .................. 6.3687 in
Critical slope .................. 0.0226 ft/ft
Critical velocity ............... 2.9219 fps
Critical area ................... 0.7084 ft2
Critical perimeter .............. 34.5635 in
Critical hydraulic radius ....... 2.9515 in
Critical top width .............. 32.0363 in
Specific energy ................. 0.7004 ft
Minimum energy .................. 0.7961 ft
Froude number ................... 1.4678
Flow condition .................. Supercritical
Page 1
Ditch 7a.txt
Channel Calculator
Ditch 7a
Given Input Data:
Shape ............................
Trapezoidal
Solving for .....................
Depth of Flow
Flowrate ........................
6.9500 cfs
Slope ...... ................ - ...
0.0200 ft/ft
Manning's n .....................
0.0300
Height .................,. .....,
18.0000 in
Bottom, width — .................
0.0000 in
Left slope ......................
0.3300 ft/ft (V/H)
Right slope .....................
0.5000 ft/ft (V/H)
Computed Results:
Depth .................. .,...... 10.)60t+ in
Velocity 3.7793 fps
Full Flowrate .. 31.1088 cfs
Flow area ... 1.8390 ft2
Flow perimeter 55.6870 in
Hydraulic radius ................. 4.7553 in
Top width 51.6154 in
Area 5.6591 ft2
Perimeter ....................... 97.6879 in
Percent full .................... 57.0050
Critical Information
Critical depth .................. 10.3384 in
Critical slope .................. 0.0192 ft/ft
Critical velocity ............... 3.7228 fps
Critical area ................... 1.8669 ft2
Critical perimeter 56.1078 in
Critical hydraulic radius ....... 4.7913 in
Critical top width .............. 52.0054 in
Specific energy ................. 1.0770 ft
Minimum energy .................. 1.2923 ft
Froude number ................... 1.0190
Flow condition .................. Supercritical
Page 1
Ditch 7b.txt
Channel Calculator
Ditch 7b
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 6.7400 cfs
Slope 0.0200 ft/ft
Manning's n ..................... 0.0300
Height 18.0000 in
Bottom width .................... 0.0000 in
Left slope ...................... 0.3300 ft/ft (V/H)
Right slope ..................... 0.5000 ft/ft (V/H)
Computed Results:
Depth 10.1435 in
Velocity 3.7504 fps
Full Flowrate ................... 31.1088 cfs
Flow area ....................... 1.7971 ft2
Flow perimeter 55.0500 in
Hydraulic radius ................ 4.7009 in
Top width 51.0250 in
Area ............................ 5.6591 ft2
Perimeter ....................... 97.6879 in
Percent full .................... 56.3529 %
Critical Information
Critical depth .................. 10.2123 in
Critical slope 0.0193 ft/ft
Critical velocity ............... 3.7001 fps
Critical area ................... 1.8216 ft2
Critical perimeter .............. 55.4234 in
Critical hydraulic radius ....... 4.7328 in
Critical top width .............. 51.3711 in
Specific energy ................. 1.0639 ft
Minimum energy .................. 1.2765 ft
Froude number ................... 1.0170
Flow condition .................. Supercritical
Page 1
Ditch 8a.txt
Channel Calculator
Ditch 8a
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 5.8300 cfs
Slope ........................... 0.0060 ft/ft
Manning's n ..................... 0.0300
Height .......................... 18.0000 in
Bottom width .................... 0.0000 in
Left slope ...................... 0.3300 ft/ft (V/H)
Right slope ..................... 0.5000 ft/ft (V/H)
Computed Results:
Depth ........................... 12.0394 in
Velocity 2.3028 fps
Full Flowrate ................... 17.0390 cfs
Flow area ....................... 2.5317 ft2
Flow perimeter .................. 65.3394 in
Hydraulic radius ................ 5.5796 in
Top width ....................... 60.5621 in
Area ............................ 5.6591 ft2
Perimeter ....................... 97.6879 in
Percent full .................... 66.8858
Critical Information
Critical depth 9.6367 in
Critical slope .................. 0.0197 ft/ft
Critical velocity ............... 3.5943 fps
Critical area ................... 1.6220 ft2
Critical perimeter .............. 52.2994 in
Critical hydraulic radius ....... 4.4661 in
Critical top width .............. 48.4755 in
Specific energy ................. 1.0857 ft
Minimum energy .................. 1.2046 ft
Froude number ................... 0.5732
Flow condition Subcritical
Page 1
Ditch 8b.txt
Channel Calculator
Ditch 8b
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate ........................ 0.4800 cfs
Slope ........................... 0.0060 ft/ft
Manning's n ..................... 0.0300
Height 18.0000 in
Bottom width 0.0000 in
Left slope ...................... 0.3300 ft/ft (V/H)
Right slope ..................... 0.5000 ft/ft (V/H)
Computed Results:
Depth ........................... 4.7200 in
Velocity ........................ 1.2335 fps
Full Flowrate ................... 17.0390 cfs
Flow area ....................... 0.3891 ft2
Flow perimeter .................. 25.6162 in
Hydraulic radius ................ 2.1875 in
Top width ....................... 23.7433 in
Area 5.6591 ft2
Perimeter ....................... 97.6879 in
Percent full .................... 26.2225
Critical Information
Critical depth .................. 3.5494 in
Critical slope 0.0274 ft/ft
Critical velocity ............... 2.1814 =ps
Critical area 0.2200 ft2
Critical perimeter 19.2631 in
Critical hydraulic radius ...... 1.6450 in
Critical top width 17.8546 in
Specific energy ................. 0.4170 ft
Minimum energy .................. 0.4437 ft
Froude number 0.4904
Flow condition Subcritical
Page 1
Ditch 9a.txt
Channel Calculator
Ditch 9a
Giver. Input Data:
Shape ........................... Trapezoidal
Solving for• ..................... Depth of Flow
Flowrate ........................ 4.1100 cfs
Slope ........................... 0.0186 ft/ft
Manning's n ..................... 0.0300
Height .......................... 18.0000 in
Bottom width 0.0000 in
Left slope ...................... 0.3300 ft/ft (V/H)
Right slope ...................... 0.5000 ft/ft (V/H)
Computed Results:
Depth ........................... 8.5416 in
Velocity 3.2252 fps
Full Flowrate 30.0003 cfs
Flow area 1.2743 ft2
Flow perimeter .................. 46.3564 in
Hydraulic radius ................ 3.9586 in
Top width ....................... 42.9670 in
Area ............................ 5.6591 ft2
Perimeter ....................... 97.6879 in
Percent full .................... 47.4535
Critical Information
Critical depth 8.3791 in
Critical slope .................. 0.0206 ft/ft
Critical velocity ............... 3.3515 fps
Critical area 1.2263 ft2
Critical perimeter 45.4743 in
Critical hydraulic radius ....... 3.8832 in
Critical top width .............. 42.1494 in
Specific energy 0.8735 ft
Minimum energy 1.0474 ft
Froude number 0.9531
Flow condition .................. Subcritical
Page 1
Ditch 9b.txt
Channel Calculator
Ditch 9b
Given Input Data:
Shape ........................... Trapezoidal
Solving for Depth of Flow
Flowrate 1.6200 cfs
Slope ........................... 0.0186 ft/ft
Manning's n ..................... 0.0300
Height .......................... 18.0000 in
Bottom width .................... 0.0000 in
Left slope 0.3300 ft/ft (V/H)
Right slope ..................... 0.5000 ft/ft (V/H)
Computed Results:
Depth ........................... 6.0245 in
Velocity ........................ 2.5555 fps
Full Flowrate ................... 30.0003 cfs
Flow area ....................... 0.6339 ft
Flow perimeter .................. 32.6954 in
Hydraulic radius ................ 2.7920 in
Top width ....................... 30.3049 i-�
Area 5.6591 f L2
Perimeter . ....................... 97.6879 in
Percent full .................... 33.4693
Critical
Critical depth .........
Critical slope .........
Critical velocity ......
Critical area ..........
Critical perimeter .....
Critical hydraulic radii
Critical top width .....
Specific energy ........
Minimum energy .........
Froude number ..........
Flow condition .........
Information
......... 5.7739 in
......... 0.0233 ft/ft
......... 2.7821 fps
......... 0.5823 ft2
......... 31.3354 in
s ....... 2.6759 in
....,... 29.0443 in
0.6035 ft
......... 0.7217 ft
......... 0.8992
Subcritical
Page 1
Swale 1.txt
Channel Calculator
Swale 1
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate 24.2600 cfs
Slope ........................... 0.0069 ft/ft
Manning's n ..................... 0.0300
Height .......................... 24.0000 in
Bottom width .................... 30.0000 in
Left slope 0.2500 ft/ft (V/H)
Flight slope ..................... 0.2500 ft/ft (V/H)
Computed Results:
Depth ........................... 13.3719 in
Velocity 3.1292 fps
Full Flowrate 92.3919 cfs
Flow area 7.7527 ft2
Flow perimeter .................. 140.2673 in
Hydraulic radius ................ 7.9590 in
Top width ....................... 136.9750 in
Area ............................ 21.0000 ft2
Periwever ....................... 227.9091 in
Percent full .................... 55.7161
Critical Information
Critical depth .................. 10.9887 in
Critical slope 0.0163 ft/ft
Critical velocity ............... 4.2988 fps
Critical area ................... 5.6435 ft2
Critical perimeter .............. 120.6148 in
Critical hydraulic radius ....... 6.7377 in
Critical top width .............. 117.9093 in
Specific energy ................. 1.2665 ft
Minimum energy .................. 1.3736 ft
Froude number ................... 0.6694
Flow condition .................. Subcritical
Page 1
Swale 2.txt
Channel Calculator
Swale 2
Given Input Data:
Shape ........................... Trapezoidal
Solving for ..................... Depth of Flow
Flowrate 22.6500 cfs
Slope ........................... 0.0300 ft/ft
Manning's n ..................... 0.0300
Height .......................... 24.0000 in
Bottom width .................... 60.0000 in
Left slope ...................... 0.2500 ft/ft (V/H)
Right slope 0.2500 ft/ft (V/H)
Computed Results:
Depth ........................... 7.2691 in
Velocity ........................ 5.0372 fps
Full Flowrate ................... 253.2543 cfs
Flow area ....................... 4.4966 ft2
Flow perimeter .................. 119.9428 in
Hydraulic radius ................ 5.3985 in
Top width ....................... 118.1530 in
Area 26.0000 ft2
Perimeter ....................... 257.9091 it
Percent full .................... 30.2880
Critical Information
Critical
depth ..................
8.4896
in
Critical
slope ..................
0.0167
ft/Ft
Critical
velocity ...............
4.0889
fps
Critical
area ...................
5.5394
ft2
Critical
perimeter ..............
130.0069 in
Critical
hydraulic radius .......
6.1356
in
Critical
top width ..............
127.9167 in
Specific
energy .................
1.0001
ft
minimum
energy ..................
1.0612
ft
Froude number
...................
1.3141
Flow condition
..................
Supercritical
Page 1
Swale 3.txt
Channel Calculator
Swale 3
Given Input Data:
Shape Trapezoidal
Solving for Depth of Flow
Flowrate 12.2700 cfs
Slope ........................... 0.0075 ft/ft
Manning's n ..................... 0.0300
Height .......................... 18.0000 in
Bottom width .................... 12.0000 in
Left slope 0.3300 ft/ft (V/H)
Right slope ..................... 0.3300 ft/ft (V/H)
Computed Results:
Depth ........................... 12.3138 in
Velocity ........................ 2.9096 fps
Full Flow•ate ................... 30.4093 c.fs
Flow area ....................... 4.2170 ft2
Flow perimeter .................. 90.5877 in
Hydraulic radius ................ 6.7034 in
Top width ....................... 86.6291 in
Area ............................ 8.3182 ft2
Perimeter ....................... 126.8774 in
Percent full .................... 68.4100
Critical Information
Critical depth .................. 10.2588 in
Critical slope .................. 0,0175 ft/ft
Critical velocity ............... 3.9972 fps
Critical area ................... 3.0696 ft2
Critical perimeter .............. 77.4728 in
Critical hydraulic radius ....... 5.7056 in
Critical top width .............. 74.1748 in
Specific energy ................. 1.1577 ft
Minimum energy 1.2824 ft
Froude number ................... 0.6712
Flow condition Subcritical
Page 1
Appendix E
User Input Data
Calculated Value
Reference Data
Designed By: JAN, PE Date: 3/4/2020
Checked By: Date:
Company: Lang King & Assoc.
Project Name: River Run
Project No.: P190-037
Site Location (City/Town) Harnett County, NC
Culvert Id.
Total Drainage Area (acres)
Step 1. Deternune the tailwater depth from channel characteristics below the
pipe outlet for the design capacrrt- of the pipe If the taxlts-ater depth is less
than half the outlet pipe diameter_ it is classified munrmtnn taihw.ater condition
If it is peater than half the pipe ch.unetei, it is classified r ix-iru un condition.
Pipes that outlet onto 1&-rde fiat arras with no defined channel are asstuned
to have a n uunttun tailtsater condition unle5-, rrhable flood stage elevation,
shoe :-Ytherts-rse.
Outlet pipe diameter, Do (in.) 15
Tailwater depth (in.) 0
Minimum/Maximum tailwater? Min TW (Fig. 8.06a)
Discharge (cfs)
Velocity (ft./s)
Step :. Based on the tarlwater corrdrtioris detenume�3 in step 1. enter Figure
8.06a or Figure 8 46b and detemune d,Q rrprnp size and nirurun in apron length
(L.). The d %ize is the niediasa stone size in a well -graded nprap apron
Step 3. D, terr..ane apron width at the pipe outlet. the apron shape and the
apr -. width at the outlet end frwru the same figure used in Step 2.
Minimum TW Maximum TW
Figure 8.06a Figure 8.06b
Riprap d5o, (ft.) Q.3
Minimum apron length, La (ft.) g
Apron width at pipe outlet (ft.) 3.75 3.75
Apron shape
Apron width at outlet end (ft.) 9.25 1 25
Step d. _)r, .nun,- the 111axiijimij Stone &-uiiet,-r
G
ra _ ! x u5�
Minimum TW Maximum TW
Max Stone Diameter, dmax (ft.) 045 0
Step 5. Deternune, the aprE.0 tni,
Apron Thickness(ft.)
Apron thickr�d-.,, = I
Minimum TW Maximum TW
0.,'�7r) 0
Step 6. Fit the riprap apron to the site by making it level for the nunirutim
length L, from Figuue 8 06a or Figgture 8 06b Extend the apron farther
doximstream and along channel 1 ;xuk, tuxtil stabrhr, is assured. Keep the
aprons. as straight as possible and align it with the flocs of the receiving stream
Make and• necessary aliginuent bends near the pipe outlet sa that the entrance
into the receivutg stream is straight
Some locations nzav regture linLug of the entire channel cross section to assure
stability
It may be necessary to increase the size of rtpsap where protection of the
channel -dc slopes is necessary (Appendn 8.05) Alicic o%cifall, exist at
pipe outlets or flocs are excessive a plunge pool should be considered. see
page 8.06 8
User Input Data
Calculated Value
Reference Data
Designed By: JAN, PE Date: 3/4/20201
Checked By: Date:
Company: Larry King & Assoc.
Project Name: River Run
Project No.: P190-037
Site Location (City/Town) Harnett County, NC
Culvert Id.
Total Drainage Area (acres)
5t, p 1. Determine the tailwater depth from chamiel chatacteristics below the
pipe oiitleT for the desimi capacity of the pipe If the twl arer depth is less
than I"the outlet pipe diameter. it is classified mum um tadwater condition
If it is gi eatei than half the pipe dsameter it is classified maxiniuiu condition.
Pipes that outlet onto wide flat are -is with no ckfitied chaiiiiel are asssuned
to have a iuuninuni tailwater condition sinless reliable flood stage elevations
shoxv c the-r- - -iK,e
Outlet pipe diameter, Do (in.) 18
Tailwater depth (in.) 0
Minimum/Maximum tailwater? Min TW (Fig. 8.06a)
Discharge (efs)
Velocity (ft./s)
Step 2. Rased on the tailwater conditions determined in step 1. {enter Figure
8.06a or Fi ¢tire 8 � d . and determine d5C riptap stze .in -Li niininaum apron ,tii
(L.). The d size is the inedi r. stone size in a well graded riprap aprati
-Step 3. Detenume apron width at the pipe outlet. the apron shape. and the
:; i.,n -,s•tdth at the outlet end from the ,aerie fissure used in Step
Riprap d5o, (ft.)
Minimum TW
Figure 8.66a
0.35
Maximum TW
Figure 8.06b
Minimum apron length, La (ft.) g
Apron width at pipe outlet (ft.) 4.5 4.5
Apron shape
Apron width at outlet end (ft.) 10.5 1.5
Step 4. i.J--« rnune the tnaxinuim siotie diaineter
d_, _ ! h k J5
Minimum TW Maximum TW
Max Stone Diameter, dmax (ft.) 0.525 0
Step 5. Deternune the a * rL ,a t_a ti s
Apron Thickness(ft.)
Apron thickness = 1 5 x d..,
Minimum TW Maximum TW
0.7875 0
Step 6. Fit the riprap apron to the Sits- by making it le -el for the nunuuuni
length L, from Figtire 8 06a or Figure 8 06b Extend the .ipr,:!a farther
dommstream and along chuuiel 1,.mkt until stability is assured Keep iiir
apron as straight as possible mid align it with the flow- of the receiving stream
ZL1ke any recess n. alignment be ds near the pipe outlet to that the entrance
into the receiving stream is straight
Some locations inay require lining of the entire channel cross section to asstue
stabihn-
it inav be necessan- to increase the size of nprap where protection of the
cliannel Side slopes is nece5s4iry (.3, �r�c r;Cir� 8.05) Where overfa115 r,Ni%t at
pipe outlets or flows me excessive a 14111ige pool Should be considered see
page 8.06.8
User Input Data
Calculated Value
Reference Data
Designed By: JAN, PE Date: 3/4/2020
Checked By: Date:
Company: Lany King & Assoc.
Project Name: River Run
Project No.: P190-037
Site Location (City/Town) Harnett County, NC
Culvert Id.
Total Drainage Area (acres)
Step 1. Determine the tailwater depth from chaiuirl c Jim actrii%tics below the
pipe outlet for the design capaciry of the pipe. If the taihsarer depth is less
than half the outlet pipe dianietei. it is clastiifird nilm um tailwater condition
If it is greater than half the pipe diametam it is clasaitied rmaxull uzn ouditxoin.
Pipes that outlet onto u-ide flat areas -with no defined chainirl are i.
to have a inuiinnun tail-omter condition finless reliable flood stage elevation,
shots othenti. e
Outlet pipe diameter, Do (in.) 24
Tailwater depth (in.) 0
Minimum/Maximum tailwater? Min TW (Fig. 8.06a)
Discharge (cfs)
Velocity (ft./s)
Step 2. B.1 rJ Oil the tailwater conditions detemu ned in step 1. enter Figure
8.06a or Figure 5.065b and determine d;a riptap size andd iniuirnu:ni apron length
(L.). The ds, size is the nnedixz. stone size m a well -graded nprap apron.
Step 3. Determine apron width at the pipe outlet. the apron shape. and the
apron widtL at the outlet end from the sauce figure used ui Step 2_
Minimum TW Maximum TW
Figure 8.06@ Figure 8.06b
Riprap d50, (ft-) 0.4
Minimum apron length, La (ft.) 14
Apron width at pipe outlet (ft.) 6 6
Apron shape
Apron width at outlet end (ft.) 16
�t I 4. Deternune the niaxrnuuu stout dranret
dr jx = 1 5 x d50
Minimum TW Maximum TW
Max Stone Diameter, dmax (ft.) 0.6 0
'str. 5. Derentune the apron thtcluuss
Apron thickness = I Y�
Apron Thickness(ft.)
Minimum TW Maximum TW
0.9 0
Step 6. Fit the nprap aproi, to the site by nnaki,ie it level for the nuntriinn,
length L, ti onx Fimue 8 06a or Figure 8 06b Extend the apron farther
dowmtitrraui and alostg (haruiel batiks until stabrht, is assured Deep The
apron as straight as possible and align it with the $ou of rile receiving stream
11 ake ant• necessax-v alis-nunent bends new the pipe outlet so that the entrance
into the recen-mg sti emu is straight
Some locations niav require lining of the entire chm u:el cross section to assure
,tabrhtti-
It may be necetisa-y to increase the sue of nprap where protection of the
channel side slope% is nri r-Lo my ( 4ppc,-e iA 8.0.5) Wieie overfills exist at
Pipe outlets or flows we excessive a plunge pool Should be considered. see
page 8 06.8
Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum
tailwater condition (Tw<0.5 diameter)
30
Outlet M . D0 + La
pipe I
diameter (Do)
j Irat r < 0.500
+70
rO' 60 f
50t.:�.'::l
4 --+
30
:1: ffi l5
IN I. �?Wml �
4
3
2
3 5 10 20 50 100 200 500 1000
Discharge (Olsec)
Curves may not be extrapolated,
Figure 8.06a Design of outlet protection protection from a round pipe flowing full, minrmum taiwater condition {Tw c 0.5 diameter).
Rev. 1193 8.06.3
Z
Bridgeport Subdivision
Erosion Control Structures
OUTLET: 41
Basin Volume
Structure Name: Skimmer Basin-2
Drainage Area=
7.39 ac
Stage
Elev. Diff
Contour
Area
Incr. Vol.
ccum.
Vol.
Q10=
22 cfs
(ft)
(ft)
(sf)
(cf)
(cf)
`Required SA=
7,150 sf
279.5
0
5,299
**Required Volume=
13,302 cf
280
1
5,667
2,742
2.742
Proposed Size:
45'xl67'x2.5
281
1
6.423
6,045
8,787
SA Provided=
7,204 sf
282
1
7,204
6,814
15,600
Volume Provided=
15,600 cf
Baffle Spacing
Inlet Zone (25%):
40
ft
First Cell 25%):
40
ft
Second Cell (25%):
40
ft
Outlet Zone (25%):
40
ft
Weir Sizing
Cw=1
3
H=
0.5
ft
Len th=
Q/(Cw*H^3/2)
Length=
20.741 ft
OUTLET: 22, 26
1
Basin Volume
Structure Name: Skimmer Basin-1
Drainage Area=
7.71 ac
Stage
Elev. Diff
Contour
Area
Incr. Vol.
Accum.
Vol.
Quo=
21 cfs
(ft)
(ft)
(sf)
(cp
(cf)
*Required SA=
6,825 sf
282
0
5.314
**Required Volume=
13,878 cf
282.5
0.5
5,624
2,735
2,735
Proposed Size:
59'xl20'x2.5'
283.5
1
6,265
5,945
8,679
SA Provided=
6.930 sf
284.5
1
6,930
6,598
15,277
Volume Provided=
15,277 cf
Baffle Spacing
Inlet Zone 25%l0 :
29
ft
First Cell 25%):
29
ft
Second Cell (25%):
29
ft
Outlet Zone (25%):
29
ft
Weir Sizing
Cw=
3
H=
0.5
ft
Len th=
Q/(Cw*HA3/2)
Length=
20 ft
*Required SA=0.01*Qlo
-.Required Volume=1800cf/ac * Drainage Area 1 of 2
Bridgeport Subdivision
Erosion Control Structures
OUTLET: 35
Basin Volume
Structure Name: Skimmer Basin-3
Drainage Area=
3.63 ac
Stage
Elev. Diff
on our
Area Incr. Vol.
Tccum.
Vol.
Q,o=
11 cfs
(ft)
(ft)
(sf) (cf)
(cf)
*Required SA=
4,792 sf
0
0
3,748
"Required Volume=
6,534 cf
1
1
4,287
4,018
4,018
Proposed Size:
47'x107'x2'
1
1
4,851
4,569
8,587
SA Provided=
4,851 sf
Volume Provided=
8,587 cf
Baffle Spa-cl
Inlet Zone (2M° : 26 Ift
*Required SA=0.01*Qi0
-Required Volume=1800cf/ac * Drainage Area 2 of 2
36s ),^ . t
Calculate Skimmer Size
Basin Volume in Cubic Feet r 15,277 Cu.Ft Skimmer Size 2.6 1 nch
Days to Drain* Days Orifice Radius 1.1 Inch[es
]
"In NC assume 3 days to drain Orifice Diameter 2.3 Inch[es]
Estimate Volume of Basin Length width
Top of water surface in feet D Feet VOLUME #VALUEI cu. Ft.
Bottom dimensions in feet Feet
Depth in feet Feet
SA. $ i , - /-..
Calculate Skimmer Size
Basin Volume in Cubic Feet 15,600 Cu.Ft Skimmer Size 2.5 Inch
Days to Drain* 3 Days Orifice Radius 1.1 lnch[es]
Orifice Diameter 2.3 Ernch[es]
"In NC assume 3 days to drain
Estimate Volume of Basin Length width
Top of water surface in feet D Feet VOLUME #VALUEi Cu. Ft.
Bottom dimensions in feet Feet
Depth in feet Feet
�aS tin • "
Calculate Skimmer Size
Basin Volume in Cubic Feet 8,587 Cu.Ft Skimmer Size 2.0 Inch
Days to Drain* 3 Days Orifice Radius 0.9 Inch[es]
Orifice Diameter 1.8 Inch[es]
"In NC assume 3 days to drain
Estimate Volume of Basin Length width
Top of water surface in feet D Feet VOLUME #VALUi=i Cu. Ft.
Bottom dimensions in feet Feet
Depth in feet Feet
Appendix F
� ��� . � ��;�
� .��%•a
'�'�������:
■ a% % %-� %�
:� � �� � �� :2: ��
'���:� �����|*
;� + : i ' ; '�!�
|� ����#�%•��
.irk �;�� � ..
l������:A::
:�
.� p
�:
��
lift
oM 01 0 Old '][\[.) Ml\�) 'PIOU\,1?1 I -1:0 W.l If
Appendix C
HAL OWEN & ASSOCIATES, INC.
SOIL & ENVIRONME,NTAL SCIENTISTS
P.O. Box 400, Lillington NC 27546-0400
Phone (910) 893-8743 / Fax (910) 893-3594
www.halowensoil.com
6 March 2020
Mr. John Homaday
Reference:Soil Scientist Investigation for Stormwater Management
River Run Phase 1 , Britt Property (---73 Acres); NC PIN 0682-28-1492
Dear %1r. Hornaday,
A site investigation has been conducted for the above referenced property, located on the
southern side of Ennis Road (SR 1543) in Harnett County, North Carolina. The purpose of this
investigation was to provide a general characterization of the soils in the areas proposed for
stormwater infiltration devices, including a determination of the depth to ev'din)ce of a .seasonal
high water table and estimation of the permeability of the various soil layer . In -situ hydraulic
conductivity testing was not conducted. All soil characteristics were described in accordance
with the USDA Field Book for Describing and Sampling Soils. This report represents my
professional opinion as a Licensed Soil Scientist.
Location 1 (stake 11002):
A soil boring was advanced by hand pot\ er in the area proposed for the infiltration device
(Figure 1) to a depth of 60 inches below ground surface. Soil morphological characteristics
indicating a seasonal high water table (SHWT) were observed at 32 inches below surface.
Infiltration rates (permeability) range from 0.6 in/hr in the sandy clay loam layer between 12 and
60 inches to as high as 6.0 in/hr in the sandy loam textured soils observed between 0 and 12
inches below surface. A soil profile description was collected at location 41 and is attached to
this report. This site appears well suited to support a wet detention basin.
Location 2 (stake 11000):
A soil boring was advanced by hand power in the area proposed for the infiltration device
(Figure 1) to a depth of 36 inches below ground surface. Soil morphological characteristics
indicating a seasonal high water table (SHWT) were observed at 24 inches below surface.
Infiltration rates (permeability) range trim} 0.6 in/hr in the sandy clay loam layer between 14 and
36 inches to as hi._,h as 6.0 in,"hr in the loamy textured soils observed between 0 and 14 inches
below surface. A soil profile description was collected at location #2 and is attached to this
report. This site appears well suited to support a wet detention basin.
Soil Science Invesi igations • Wetland Delineations, Permitting, and Consulting
4AL OWEN & ASSOCIATES, INC.
SOIL & ENVIRONMENTAL SCIENTISTS
P.O. Box 400, Lillington NC 27546-0400
Phone (910) 893-8743 / Fax (910) 893-3594
www.halowensoil.com
Location 3 (stake 11003 upper):
A soil boring was advanced by hand power in the area proposed for the infiltration device
(Figure 1) to a depth of 78 inches below ground surface. Soil morphological characteristics
indicating a seasonal high water table (SHWT) were observed at 72 inches below surface.
Infiltration rates (permeability) range from 0.6 in/hr in the clay and sandy clay loam layers
between 38 and 78 inches to as high as 6.0 in/hr in the sandy loam textured soils observed
between 0 and 38 inches below surface. A soil profile description was collected at location 43
and is attached to this report. This site appears well suited to support a wet detention basin.
Location 4 (stake 11003 lower):
A soil boring was advanced by hand power in the area proposed for the infiltration device
(Figure 1) to a depth of 60 inches below ground surface. Soil morphological characteristics
indicating a seasonal high water table (SIIWT) were observed at 46 inches below surface.
Infiltration rates (permeability) range from 0.6 in/hr in the clay and sandy clay loam layers
between 28 and 60 inches to as high as 6.0 in/hr in the sandy loam textured soils observed
between 0 and 28 inches below surface. A soil profile description was collected at location #4
and is attached to this report. This site appears well suited to support a wet detention basin.
I appreciate the opportunity to provide this service and trust that you will feel free to call
on me again in the future. If you have any questions or need additional information, please
contact me at your convenience.
SOIL So
O
XX r �
tdti� •a,,;: f• v
NoR
Sincerely
1 Li I Owen
Licensed Soil Scientist
Soil Science Investigations • Wetland Delineations, Permitting, and Consulting
01.
N
00
N
N
00
O
�v
to
s..
�d
«I
3 �
t1.
on
c
N
COO
CA N
a.
o
10
._
4
It
�
1 � 1•
---
`" r•
� 1 l..r
7
HAL OWEN & ASSOCIATES, INC.
SOIL PROFILI4', DESCRIPTIONS
FOR
STOWNIWATER MANAGEMENT DEVICES
PROJECT NAME: River Run Phase 1 PROPOSED FACILITY: Wet Basin
LOCATION OF SITE: Ennis Rd. near Highway 55 COUNTY: Hamett County
EVALUATED BY: Hal Owen NC Licensed Soil Scientist DATE EVALUATED: 2/27/2020
EVALUATION METHOD: Auger Boring ®. Pit ❑
PROFILE: 1
HORIZON
)11
U IN
MATRIX
MOTTLES
TEXTURE STRUCTURE
C t t V515-
TENCE
PERMEABIL
1TY I IN IIR 1
NOTE S
A 0-10
1 OYR 4/3
NA
SL GR
FR
6
E 10-12
1 OYR 5/8
NA
SL GR
FR
6
Bti 12-26
I OYR 5/6
NA
SCL
SBK
FI
0.6
Bt2 26-32
IOYR 6/8
5YR 5/8 f2F
SCL
SBK
FI
0.6
130 32-40
10YR 5/8
5YR5/6 f2D
I OYR 7/1 f2D
C
M
VFI
FI
0.2
U 6
130 40-60
I OYR 6/8
2.5YR 5.8 m3P
IOYR 7/1 m3P
SCI
M
AWT
>18 in SHWT 32 in SLWT
DRAINAGE SOIL SERIES Dothan
SLOPE
VEGETATION
COMMENTS: Standing surface water on the day of investigation.
PROFILE:
Soil Science Investigations • Wetland Delineations, Permitting, and Consulting
IIAI. OWEN & ASSOCIATES, INC.
SOIL PROFILE DESCRIPTIONS
FOR
STORMWATER MANAGEMENT DEVICI!'.S
PROJECT NAME: River Run Phase I PROPOSED FACILITY: Wet Basin
LOCATION OF SITE:- Ennis Rd. near Highway 55 COUNTY: Harnett County
EVALUATED BY: Hal Owen, NC Licensed Soil Scientist —DATE EVALUATED: 2/27/2020
EVALUATION METHOD: Auger Boring ®. Pit ❑
PROFILE: 3
HORIZON
DEPTH
QN)TENCE
MATRIX
MOTTLES
TEXTURE
STRUCTURE
CONSIS-
PERMEABL,
NOTES
ITY (iN/HR)
Al
0-6
1OYR 4/3
NA
SL
GR
FR
6
EB
6-38
1 OYR 6/4
NA
SL
GR
FR
6
Btl
3842
1 OYR 5/8
SYR 4/6 c2D
SCL
SBK
FI
0.6
Bt2
42-66
10YR 5/8
SYR 4/6 c2D
SCL
SBK
FI
0.6
1 OYR 7/3 c2D
Rt3
66-72
1 OYR 6/8
SYR 4/6 c2P
C
SBK
FT
0.2
1 OYR 7/1 c2P
Bt4
72-78
1 OYR 6/8
SYR 4/6 m3P
C
M
FI
0.2
1 OYR 7/1 m3P
AWT
66
SHWT
72
SLWT
SLOPE
DRAINAGE
SOIL SERIES
Dothan
VEGETATION
COMMENTS:
PROFILE: 4
HORIZON DEPTH(
MATRIX
MOTTLES
TEXTURE
STRUCTURE
CONSIS-
TENCE
PERMEABIL
ITY (IN/HR)
NOTES
A
0-5
1 OYR 4/3
SI,
GR
FR
6
E
5-12
1 OYR 5/4
SL
GR
FR
6
EB
12-28
1 OYR 6/6
SL
OR
FR
6
Btl
28-36
IOYR 6/8
SCL
SBK
FI
0.6
DO
3646
I OYR 6/8
1 OYR 7/1 c2D
C
SBR
FT
0.2
130
46-54
1 OYR 6/8
SYR 5/8 m3P
IOYR 7/1 m3P
C
SBK
FI
FI
0.2
Bt4
54-60
I OYR 6/8
SYR 5/8 m3P
1OYR 7/1 m3P
C
M
0.2
AWT
52
SHWT
46
SLWT
SLOPE
DRAINAGE
SOIL SERIFS
Dothan
VEGETATION
- — —
COMMENTS.
Soil Science Investigations • Wetland Delineations, Permitting, and Consulting
AA.L O«'EN & ASSOCIATES, INC.
LEGEND OF ABBREVIATIONS FOR SOIL PROFILE DESCRIPTIONS
TEXTURE
S
- Sand
LS
- Loamy Sand
SL
- Sandy Loam
L
- Loam
SCL
- Sandy Clay Loam
CL
- Clay Loam
SiL
- Silt Loam
Si
- Silt
SiCL- Silt Clay Loam
SC
- Sandy Clay
C
- Clay
SiC
- Silty Clay
O
- Organic
MOTTLES
f — few
c — common
m — many
MOIST CONSISTENCE
L
- Loose
VFR
- Very Friable
FR
- Friable
FI
- Firm
VFI
- Very Firm
EFI
- Extremely Firm
AWT — Apparent Water Table
SHWT —Seasonal High Water Table
SLWT — Seasonal Love Water Table
I - fine F - Faint
2 - medium D - Distinct
3 - coarse P - Prominent
S'I"RUCTC:RE
0 - structureless
VF -very fine
I - weak
F - fine
2 - moderate
M - medium
3 - strong
C - coarse
VC -very coarse
G
- Single Grain
M
- Massive
CR
- Crumb
GR
- Granular
SBK
- Subangular Blocky
ABK - Angular Blocky
PL
- Platy
PR
- Prismatic
Soil Science Investigations • Wetland Delineations, Permitting, and Consulting
Appendix H
B3756 - P 957
HAR NETT COUNTY I-AX JD#
FOR REGISTRATION
Kind**rly 5. Her rave
R�eGISTER OF DEEpS
Hernnstt Canny HC
2019 NOV 18 $9:34:98 M
BK:373E PG:957-995A
INS TRUMENTi#8208190 t me
SARTIS
111111111111
2019017050
Prepared by and Return to:
Lewis, Deese, Nance & Ditmore, LLP P.O. Drawer 1358 Fayetteville, NC 28302
PID#: 040682 0131
REVENUE STAMPS: $0.00
STATE OF NORTH CA RO1.1NA
COUNTY OF HARNETT
WARRANTYDEED
This WARRANTY DEED is made the 24 day of October, 2019, by and between
Coldstream Developer, LLC, of 581 Executive Place, Fayetteville, NC, 28305 (hereinafter
referred to in the neuter singular as "the Grantor") and River Run Developers, LLC of
581 Executive Place, Fayetteville, NC, 28305 (hereinafter referred to in the neuter
singular as "the Grantee");
WITNESSETH:
THAT said Grantor, for valuable consideration, receipt of which is hereby
acknowledged, has given, granted, bargained, sold and conveyed, and by these presents does
hereby give, grant, bargain, sell and convey unto said Grantee, its heirs,
successors, administrators and assigns, all of that certain piece, parcel or tract of land situate,
lying and being in Black River Township of .�; id County and State, and more particularly
described as follows:
BEING all of that tract containing 72.58 acres total (less 0.53 acres in SK 1543
road right-of-way and less 0.15 acre in 30' road easement for a 71.90 acres net) as
shown on survey entitled "Property of John B. Britt, Jr. and wife, Rhonda R. Britt"
dated March 13, 2019 by .Andrew H. Joyner, PLS and recorded in Map Book 2019,
Page ' 17, Harnett County Registry.
B3756 - P 958
Subject to a non exclusive 3W wide ingress, egress, regress and utility easement
running from NCSR 1543 (Ennis Road) to 0.67 acre tract now or formerly owned
by Kenneth Wayne Snipes, Jr. and shown on Map Number 2000-389, Harnett
County Registry,
This property was acquired in f]ecd Book 3742, Page 710, Harnett County
Registry. Also see Deed Book , Page _ , ; tarnett County Registry.
**The property herein described is not the primary residence of the Grantor (NCGS 10-1-317.2)
—C f't VE AN-)IJ(iLD the above -described lands and dt, ses, to tht - with all
appurtenances thereunto belonging, or in anywise appe ,aining, unto the Grantee, its heirs,
successors, administrators mitt assigns forever, but subject always, however ,to the limitations set
out above.
AND the said Grantor covenants to and with said Grantee, its heirs, successors,
administrators and assigns that it is lawfully seized in fee simple of said lands and premises,
and has full right and power to convey the same to the Orar.tec in fee simple (but subject,
however, to the limitations set out above) and that said lands and premises are f' co from any
and all encumbrances, except as set forth above, and that it will, and its heirs, successors,
administrators and assigns shall fore. er warrant and nu the title to the same lands and
premises, together with the appurtenances thereunto appertaining, unto the Grantee, its heirs,
successors, administrators and assigns against the lawful claims of all persons whomsoever.
IN WITNESS WHEREOF, the Grantor has hereunto set its hand and seal and does adopt
the printed word "SEAL" beside its name as its lawful seal.
GRANTOR
Coldstream Developers, LLC
BY:
(SEAL)
Printed Name/I'itle l
B3756 - P 958A
STATE OF NORTH CAROLINA
COUNTY OF CwM .�� ad
1, the undersigned Notary Public of the County- of lU. A6A ad ai36 State
A toresaid, certify that personally came before me this
day and acknowledged that he is the "4. Ak,"tir of Coldstream Developers, LLC,
a North Carolina limited liability company, nd hat by authority duly given and as the act of
such entity, he signed the foregoing instrument in its name on its behalf as its act and deed.
itness my and and Notarial Stamp or seal, this 2,4, day of October, 2019.
joaoe tratdiy-seal hire)
r� - Notary Public
• �; Notary's Printed or Typed Name
9
i'
y* yri ."•....
4
is PEr iitL 1.