Loading...
HomeMy WebLinkAboutSW6221005_Design Calculations_20221028Stormwater Calculations For Project: River Run -Phase 1 Harnett County, NC Developer: River Run Developers, LLC .``�r n rrr,,r�rr �zs _ 5 AL - V 459 GI ', ,cR�, p F10 ���• � Z2 Prepared by: ENGINEERING - SURVEYING - DESIGNING - DRAFTING Larry Icing & Associates, R.L.S., P.A. P.O. Box 53787 1333 Morganton Road, Suite 201 Fayetteville, North Carolina 28305 P. (910) 483-4300 F. (910) 483-4052 www.LKandA.com Firm License #: C-887 TABLE OF CONTENTS Stormwater Narrative SC-1 Pipe Sizing Calculations APPENDIX A Pipe Headwater D,=uth Calculations for Crosshq Pipes APPENDIX B Drainage Swale Calculations (Outlets) APPENDIX C Drainage Swale Calculations (Roadside) APPENDIX D Misc. Erosion Control Calculations APPENDIX E Site Maps APPENDIX F Soils Report APPENDIX G Site Deed(s) APPENDIX H STORMWATER NARRATIVE This project is a proposed 66 lot single-family subdivision located on a 73.19 acre parcel off of Ennis Road near Highway 55 in Harnett County. This submittal is for the 29.64 acre Phase 1 of the proposed project that represents 31 single-family lots to be permitted at this time. The development is intended as a low density development. Each lot will be allowed 5500 sf of impervious area. Phase 1 will create 5.42 acres (236,000 sf) of impervious area which is 18.27% of Phase 1. The proposed streets will have roadside ditch sections with stormwater crossing pipes. Runoff ultimately discharges inio one of three drainage swales. Supplemental calculations are attached. SC-1 Appendix A to Q Z Z O H U of LL ^� LLvLL Owl? a ZOO W LL U�LL LL d LL 111 O U H Z O a O w Oaf 2� U- b 4 zW� w QQ UzZ 0LLJ 00, 0 0, O=�"U Z q 0 z �2�Z o u u 0 2 -j n Appendix B J moo MA moo MOOD woo moos was some mos/ Exhibit 11 ISO 10,000 0 168 —8,000 EXAMPLE f3y I56 0.42 )whom (3.5 tact) 6' 6,000 ti■ 144 5,0Q0 120 etc S. 132 4,000 !� 0"IN tw 3,000 S 4. 120 (1) 2.5 8.1 4. 2,000 f2I 2.1 7.4 +. 108 (3) 2.2 7.7 3. ID is tact 3• 96 1,000 3. 800 °4 600 / —+ . 2 27- Soo ' / _ 72 400 / 2. 300 z H I.S = 60 200 &_ Z / S4 4° / W 100 / °0 .J / e = 1.0 1.0 4t v 5G 4 N NW SCALE ENTRANCE 40 p TYPE 1.0 W W 36 30 (U Seaare edge with W 6 a33 hwa.ao 9 C 20 (Y) Graava sod with a 30 headwell x .e e (3) 6roeve ene •° 27 projecting 10 24 ° .T 6 To asa Sala (2) or (3) project 21 S he?iiehfolly to $eel# (1).then 4 see Straight iaelined line throvgh D and 0 scales, or reverse as 6 3 illustrated. ,6 1e 2 Is t.0 -5 .5 .S L 12 HEADWATER DEPTH FOR HEADWATER SCALES 293 CONCRETE PIPE CULVERTS t)YREAU Of ruN.1C Ramos Aft MW REVISED MAY 1964 WITH INLET CONTROL VI-11 �A.'.`T t Exhibit 11 ,. 180 10,000 168 6,000 EXAMPLE ��� ��� (�) 156 6 000 0.42 1 -1 (3.5 feet) 6. 144 5.000 0.120cf& 5• 14. 4,000 Im 0 NM 6• 5. 132 o fen 3,000 ( 1) 2.5 e.8 5' 4. 120 i2; 9.1 7.4 106 2,000 (3) 2.9 7.7 4' 3. e0 io fast 3' 96 1,0040 3. Boo —94 —600 500 72 400 = 300 x sn / Z BO v 200 I.s Z W 54 a O W 48 / W 100 Z 7 o�C a so v 42 BO w I.0 1.0 U. C 50 HW SCALE ENTRANCE 1.0 40 D TYPEui W F' W 36 30 (1) Severe edge with 3 .9 33 headwall 0 Y 4 � 20 (Y) Or*"* sod with a 30 headstall .6 .S (3) Groove ol,d '6 2i projecting 10 !C 4 6 .7 7 .7- 6 To use stela 42) or (3) oreiset 21 5 herlleetelly to &gels (1),the" 4 ela straight laelinod lion through 0 gad 0 stoles, er revere. as 6 6 3 illustrated. 16 �l P 15 3 .s 5 1.0 HEADWATER DEPTH FOR -CONCRETE PIPE CULVERTS HEADWATER SCALES 253 REVISED MONY 9" WITH INLET CONTROL whew of nNLle MAN •VA 10411 VI-11 E P- 2r Exhibit 11 r 0 Ida 10,000 168 0,000 EXAMPLE (1 ) (2) (3) 156 6,000 0•42 Inches (3.5 fast) 6' 144 5,000 0■ 120 eta S. 4,000 •r 132 3,000 3 feel 5. 4 I I) 2.5 s • 4. 120 12) 2.1 7.4 IOd 2,000 (3) 2.2 7.7 4• 3. eD Is het 3. 96 I rOft 800 84 600 500 .. 72 400 / t. = 300 a! 2 N N / Z 60 Is. 200 j.5 z 0 54 O W 46 �' W 100 z .J / e 80 = �� v 4t V 60 1.0 1.0 0 o SO MW SCALE ENTRANCE 1.0 w 40 0 TYPE (= W ►` la 36 30 (1) 511wead" with .9 g 33 heedsall a G j:p (!) Weet» wed with t 30 ha.d.•11 .6 d (3) Greets an! •d 27 projecting 10 94 d T •7 .T 6 To use seals (21 or 13) project 2 1 5 horidante117 to $sale (1),then 4 use straight inclined tins through D and 0 steles, or reverse as 6 3 illustrated. •6 Id 2 IS t.o .5 I2 HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS HEADWATER SCALES 2a3 REVISED MAYM4 WITH INLET CONTROL SUMAU OFhILLICMAN JM 003 VI-11 -EfP-2� Exhibit 11 166 6,000 EXAMPLE (3) 156 6 000 0.4T lochas (3.5 feat) 6. 144 5,000 0o120 ofs 5. 1'12 4,000 ! MM 6' S. 3,000 foal 5. 4. 120 (1) 2.5 s 4, 2,000 (2) 2.1 TA (3) 2.2 T.T 4. 10d 3. loD is toot 3 96 1000 3. e00 84�- 600g:- 500 g. 72 400 = 300 1.5 I.b 2 N / z 60 0 200 �' 1.5 o S4100 / a � > 48 � a J so 42 6v IL 1.0 1.0 0 50 HW SCALD ENTRANCE 1.0 40 0 TYPE ry W F w 36 30 (1) Severe eNe with 10- 3 .9 .9 33 headwell .9 -• 0 , �5 a Q 20 (2) room and wits W 30 hagvall x .d .8 (3) Grave one •d V ora)estisg 10 24 6 To lose scale (2) or (3) ere)aat 21 5 horl:ostolly to seals (1),thes 4 as* straight Isaiinea line through D and 0 scales, or reverse as 6 3 illustrates. B Id 2 15 LO .5 .s .5 'Y HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS HEADWATER SCALES 283 REVISED MAY 1964 WITH INLET CONTROL SUREAU Of MID6lC ROADS .IA1L ISS3 VI-11 Exhibit 11 ' ISO 10,000 168 8,000 EXAMPLE I t2I [3I 156 6 OQO 0.42 Inches (3.5 fact) 6' 144 ���� Oe120 efs 5• 4,000 Im fl Nw 6• S. 132 3,000 0 feet S' 4. I ZQ p r 2.5 s.1e 4. 2.000 (2) 2.1 7.4 (3j 2.2 7.7 4 108 3. aD it fast 3• 96 1 00D P i l 3. Boo 84 rSO4 � � 2, 2� 500 / 72 400 2. fA x 300 2 N / 2 60 200 W {.S c 54 Q / a W 48 w !DO = > / 60 v a x /7 80 � 1.0 1.0 C 50 HW SCALE ENTRANCE 10 40 D TYPE = W 38 30 (l) se•ar• edge with .9 Q 33 headwall Q 20 (2) Groove god with W 30 hooduall = 1 .8 .8 13) Gro•ta ■ed •8 2 7 projecting IQ 24 6 .7 7 T 6 To aN sedle (z1 or (3) erejact 21 S heritentally to agate (1). than 4 "so str•lght Inclined line through 0 and 0 *colas, at ►owerse sit 6 3 illustrated. •6 le 2 is 1.0 .5 S .S it HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS 14EADWATER SCALES 2&3 REVISED MAY1964 WITH INLET CONTROL BUREAU of PUBLICNOADa JIAMM vi-11 aR . l Exhibit 11 14yi- I�`,c3 ISO 10,000 l58 8,000 EXAMPLE 136 6,000 D•42 inches (].D fart) 6. 144 7,OW a• ixa eta S. 4,000 ! It mw 6. S 132 0 foe 4. l20 it) 2.. 7.4 IOa t 2,000 (3) 2.2 7.7 4 3. '^ is fr_i 3' 96 1 r04" e00 r 84 goo / 72 400 +1 = 300 Ex 1.5 I.S Z Z 60 200 1.3 O 34 / dK O 4+ 100 = W j 46 80 v Q v 60 = IL 1.0 1.0 o 42 c SO HW ENTRANCE o 40 SCALE p TYPE cc 1.0 F' W 36 30 (i) Silvers ado* with � 9 9 33 nsad..0 n 8 Q � 8D 12) wears sad wilh i 30 headvoll .6 .S ' 13) Groove and •6 27 'rajacs+h4 10 24 8 .7 7 .7- 6 To via stab (2) or (3) project 21 S noriaortolly to stele (1),tAon 4 ase strol/ht reclined line taro"N 0 ana 0 semos, or rorersa as 6 illyef rQTeq. .6 18 2 ..S L.5 12 HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS HEADWATER SCALES 283 REVISED MAY 6" WITH INLET CONTROL SUREAU Of KOLIC ROADS JAK 043 VI-11 r Exhibit 11 c $ ISO 10,000 0 168 9,000 EXAMPLE (3) 136 6,000 0.42 ineheo 13.5 fast) 6 s.000 Q-120 do — s. 144 6 S 4,000 I, * Mt 132 D tan 4 3 c0o s ► 20 (2) 2.1 7.4 2,D00 106 'D is fast 96 1000 3. 800 84 600 r� n —500 = 300 i} Z 60 v 200 1.'J _ Z � W a s4 C W 4a W �' w 100 > / cc 60 4 4>Z 60 CL id 50 KW ENTRANCE w c 40 SCALE D TYPE cc 1.0 ~ W 36 30 (1) S4usre ad" with W # 9 33 h■errell a G EO (Y) Greece end with a W 30 huhdl T (3) Groove en• •6 27 pr•)estih` 10 24 6 .7 6 To sea Stale (2, or (3) project 21 S herlselrfally to Sa•(e (1),thon ` use Stro$Oh1 Intl -nee line throallt D and 0 seeks, or reverse as 3 illustrated. Id 2 1.0 .s .s tit HEADWATER DEPTH FOR HEADWATER SCALES 283 CONCRETE PIPE CULVERTS GV"AU DF ROOK WAM � A= REv)SW MAY 0" WITH INLET CONTROL VI-11 C r- 2q D Exhibit 11 �+ a 180 10,000 188 0,000 EXAMPLE (3) 5. 138 6 000 0•42 inches (3.5 fall 144 6,000 On 120 Cfs S 14. 4,000 132 D fee 3,000 3' (1) 2.3 8.4 4. 120 (2) 2.1 7.4 106 2,000 (3) 2.2 7.7 eD m fee 3' 96 1,000 3. 800 84 500 �,,-2.-2. —500 / 72 400 2. 300 1.5 x fn / ao 200 F 1.5 _ * �— s4 O 7 48 Z �•� �'c 80 1 a 2 c�7 42 80 0~. W I.0 I.0 0 o s0 Hw SCALE ENTRANCE I.0 40 Q TYPE w t 34 30 (1) Square odes with I W � 33 a*edratt Q 9 a � 20 (2) 6rasa *ad with a 30 h*edreli i •a (3) Groeve emd •� 27 prelestims 10 24 8 .7 .7 .7.. it To use scale (2) or (3) project 2 1 s hotlsomfell} to SCSI* (4). than 4 use straight inclined limo tareapl D and 0 seen, or reverse as a d 3 illustrated. 18 2 15 IRS] .s L.s L.s `12 HEADWATER DEPTH FOR HEADWATER SCALES 253 CONCRETE PIPE CULVERTS GUREAU OrPWLIC0"08 J*Aleft REVISED MAY2964 WITH INLET CONTROL VI-11 Exhibit 11 ' 0 ISO 10,000 169 8,000 EXAMPLE (1) (2) (3) 136 6 000 ' 0.42 Inchso (3.5 roof)) 6. 144 3,� Q. 120 efs 5, 132 4,000 Al 6. S. 3,000 D HM 4. 120 (t) 2./f 3 . 4. I09 2.000 ) 2.1 7.4 (3) 2.2 7.7 4. 3. *ago '0 if, foot 3. 96 1,000 , �� 3. ®4 g00 —600 500 _ / 72 400 �/ Q 2. z 300 _ to / 60 v 200 W I.S z � � d 54 W t3 � / W 100 C O 46 � / a so z ��� 42 sa 1.0 1.0 o a 60 HW ENTRANCE SCALE 1.0 cc 40 D TYPE Cr y~j 39 30 (1) severs ad" with 3 .9 .9 Q 33 nave■su Cl- .4 C 20 (2) Gtosvo and with W 30 head■stl x .s s (3) Groove she •d 17 projeating to 24 s T .7 r 6 To use seals (11 or (3) project 2 1 S herlseatolq to stole (1),thea 4 ese straight Inciined line through 0 and 0 .cvlee, or reverso to .9 3 illvstroted. .6 Is 2 IS 11.0 . S 3 .6 12 HEADWATER DEPTH FOR HEADWATER SCALES 283 -CONCRETE PIPE CULVERTS euaEAU OFMOLlc ROAos ,lA1t IM W-viSEA MAY 0" WITH INLET CONTROL V1-11 Appendix C ,,nrr to C 1E ,cu l' - -,ns Proposed C Swale 1 Total Area= 375,958 sf c value 8.63 ac Imp Area = 94,291 sf 0.9 2.16 ac Pery Area = 281,667 sf 0.3 25% Comp C= 0.45 Proposed C Swale 2 Total Area= 321,721 sf c value .39 ac Imp Area = 82,116 sf 0.9 1.89 ac Pery Area = 239,605 sf 0.3 26% Comp C= 0.45 Proposed C - Swale 3 Total Area= 158,080 sf c value 3.63 ac Imp Area = 37,593 sf 0.9 0.86 ac Pery Area = 120,487 sf 0.3 24% Comp C= 0.44 SWALE--1.txT Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for .. .. .. Depth of Flow Flowrate ... .. ....... .... 23.4200 cfs Slope ........... ............. 0.0069 ft/ft Manning's n 0.0300 Height .......................... 24.0000 in Bottom width .. 30.0000 in Left slope 0.2500 ft/ft (V/H) Right slope ..................... 0.2500 ft/ft (V/H) Computed Results: Depth 13.1602 in Velocity ........................ 3.1009 fps Full Flowrate 92.3919 cfs Flow area 7.5525 ft2 Flow perimeter .................. 13C 5216 in Hydraulic radius ................ 7.8512 in Top width ....................... 135 2814 in Area .. 21.0000 ft2 Perimeter .. .. ................ 227.9091 in Percent full ,. 54.8341 Critical Information Critical depth .................. 10.7983 in Critical slope ................ 0.0163 ft/ft Critical velocity -- -- ,,..,,,.. 4.2670 fps Critical area ................... 5.4886 ft2 Critical perimeter ... ... . . . 119.0450 in Critical hydraulic radius ....... 6.6392 in Critical top width ........ ..... 116.3863 in Specific energy ................. 1.2461 ft Minimum energy .......... .... 1.3498 ft Froude number ................... 0.6679 Flow condition ...,... ... Subcritical Page 1 Hydrograph Plot Hydraflow Hydrographs by Intelisolve Hyd. No. 1 Swale-1 Hydrograph type = Rational Storm frequency = 10 yrs Drainage area = 8.630 ac Intensity = 6.031 in/hr OF Curve = River Bluff.IDF Q (cfs) 24.00 20.00 16.00 12.00 8.00 4.00 0.00 0.0 0.1 Hyd No. 1 Tuesday, May 19 2020, 2:12 PM Peak discharge = 23.42 cfs Time interval = 1 min Runoff coeff. = 0.45 Tc by User = 12.00 min Asc/Rec limb fact = 1/1 Swale-1 Hyd. No. 1 -- 10 Yr 0.2 0.3 0.3 Hydrograph Volume = 16,863 tuft Q (cfs) 24.00 20.00 16.00 12.00 8.00 4.00 0.00 0.4 Time (hrs) 2 SWALE-2.txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for .............. ...... Depth of Flow Flowrate ..... .... .......,.. 20.0600 cfs Slope ............. 0.0300 ft/ft Manning's n ..... ,..... ... .. 0.0300 Height .... ....._ .,.... 24.0000 in Bottom width ........ ........... 60.0000 in Left slope ..... ... 0,2500 ft/ft (V/H) R'I.ght slope .... . ............ 0.2500 ft/ft (V/H) Computed Results: Depth 6.8124 in Velocity ........... .. 4.8600 fps Full Flowrate .. . .............. 253.2543 cfs Flow area ....................... 4.1276 ft2 Flow peri.nir,t .r .................. 116.1762 in Hydraulic radius ................ 5.1162 in Top width ....................... 114.4989 in Area .... ..................... , 26.0000 ft2 Perimeter ............... 257.9091 in Percent full .. 28.3848 Critical Information Critical depth .................. 7.9264 in Critical slope .................. 0.0170 ft/ft Critical velocity .......... 3.9739 fps Critical area ............ .... 5.0479 ft2 Critical perimeter ..... 125.3629 in Critical hydraulic radius ....... 5.7983 in Critical top width .............. 123.4113 in Specific energy ............ .... 0.9348 ft Minimum energy ..... ........ 0.9908 ft Froude number ................... 1.3027 Flow condition ............. .. . Supercritical Page 1 Hydrograph Plot Hydraflow Hydrographs by Intelisolve Hyd. No. 2 Swale-2 Hydrograph type = Rational Storm frequency = 10 yrs Drainage area = 7.390 ac Intensity = 6.031 in/hr OF Curve - River BIuff.IDF Q (cfs) 21.00 T 18.00 15.00 12.00 9.00 6.00 3.00 0.00 0.0 Tuesday, May 19 2020, 2:12 PM Peak discharge = 20.06 cfs Time interval = 1 min Runoff coeff. = 0.45 Tc by User = 12.00 min Asc/Rec limb fact = 1/1 Swale-2 Hyd. No. 2 --10 Yr 0.1 0.2 0.3 0.3 Hyd No. 2 Hydrograph Volume = 14,440 cuff Q (cfs) 21.00 18.00 15.00 12.00 9.00 6.00 3.00 0.00 0.4 Time (hrs) 3 SWALE-3.txt Channel Calculator Given Input Data: Shape ........ Trapezoidal Solving for ..................... Depth of Flow Flowrate ..... 10 3200 cf Slope ........................... 0.0075 ft/ft Manning's n ..................... 0.0300 Height 24.0000 in Bottom width ................... 12.0000 in Left ,lope 0.3300 ft/ft (V/H) Right slope ..................... 0.3300 ft/ft (V/H) Computed Results: Depth . 11.4362 in Velocity ........................ 2.7852 fps Full Flowrate .. . .. ....... ... 61.6191 cfs Flow area ....................... 3.7053 ft2 Flow perimeter ...... . ..... 84.9867 in Hydraulic radius _ 6.2781 in Top width 81.3103 in Area ........... ...... 14.1212 ft2 Perimeter ................... ... 165.1699 in Percent full .................... 47.6508 Critical Information Critical depth 9.4667 in Critical slope . 0.0180 ft/ft Critical velocity 3.8582 fps Critical area ........... ....... 2.6748 ft2 Critical perimeter ............ . 72.4171 in Critical hydraulic radius 5.3188 in Critical top width 69.3738 in Specific energy ................. 1.0736 ft Minimum energy .................. 1.1833 ft Froude number ............. ...... 0.6640 Flow condition .................. Subcritical Page 1 Hydrograph Plot Hydraflow Hydrographs by Intelisolve Hyd. No. 3 Swale-3 Hydrograph type = Rational Storm frequency = 10 yrs Drainage area = 3.630 ac Intensity = 6.460 in/hr OF Curve = River Bluff.IDF Q (cfs) 12.00 10.00 we 4.00 2.00 — Hyd No. 3 0.1 Swale-3 Hyd. No. 3 --10 Yr 0.2 Tuesday, May 19 2020, 2:12 PM Peak discharge = 10.32 cfs Time interval = 1 min Runoff coeff. = 0.44 Tc by User = 10.00 min Asc/Rec limb fact = 1/1 0.3 Hydrograph Volume = 6,191 cult Q (cfs) 12.00 10.00 8.00 4.00 Mr 0.00 0.3 Time (hrs) 4 Appendix D •� px M1 m Inn wln� �p anva Nl�m u]I,.I M Mf0 M a n E 0 vvv`dpv aavvva a aavva vrma LL t �O m N T F- m I❑ I❑ m M1 N N M [� N ��pp m pp i!1 O 6 m O M a O 0 0 0000000000000060 0 4 C 0 0 0 0 O 0 0 O O 0 0 g G G O 0 0 O v r 0 0 0 v v- L rn^c aRm mmwmmm mm mm�oommmmmmmm 2 �- A O a W fn M M M M M M M M M M M M M M M M M c M M v v M C L N U J c O N v y 3 c ,c^ oo0obvv o0000000voo0b onI`+ 00 O coo 0 0 p v 0 0 0 0 0 0 g v v o C 0 0 2 C 0 G v v o O o C v o O o o O o p p O v O o p p N O p O o O O O O p p ( O�yy Oryry O 6 �ppp po�ppO O O r n O p h n 0. 0 t00 O 0 00 N u N�� ( Oyy O O Op 0 �O [ Od O C O O G O v 0 0 0 0 0 0 4 000 O C G O o O 0 0 C G O m W� Y N N O r Qi n m {O N O O N M N C O �� N pp �1p❑ V O m 0 0 V r m n m to O V N fM1V R N w m O] O) o nM m N N M d A C a N W M n i(1 N OI OI (O (O O) d O N m N O 00 [V c7 W A O 4 M m n m m d r c N N m m N �- R O In m 0 I� 0 0 r r r CJ fO fO b r d ry N w F n mM1n r- M ID n ? nM1lnnnn nM1 r-+-��Ammm�nn n n d n n A mm Qi of en Oi W er ❑1 oY ai ps pi vimmai of a; pi W rooi rnmnrn�rnmrnmmrnwrnovm�Nrnmrn � �c IO'm ��l .N of er tr of co Di pi ow ai ❑i oo vi W ❑i of n N m vi of m vi d N a 9 mmadm mou rd cdmmwmwmco l�nm�� n�m 0 <mp, (pp <D ImD, V rip 100❑ [mp. Imp. Imp. oo��01 rp 'DD lmp 0 m fmp. ip v _ nnnM1� nr�M1nr-nnnn�c6 mrr�r 0 aD cd<dn ImO. u 00�no0aobbg$$ 0 0 0 o n o o v o 000vvig$ mm r. w o E vi N vi � u� ui iri � � ui u� u� ui vi vi ca n ui vi ri r n u-i w j Y W Z J 'O•O n a U O '❑ 'O a ry b v >> m >? m E E E E x m ap a a w ¢ a ¢ N w ¢ ¢ ¢ w In m 3 w m w a y gg C O O N p m h p N M fop. IO N n m0 m O O v 0 0 0 �- O �- N r g 00 �Ci ry V InmnnN�u�vroi.��r°`$.N 0 0 b v v v O 0 [V r b A C N U u> in �n d d d a d In �n V V In a 4 u� I❑ 4 4 u� �n d d �n � d a �❑ I❑ d d w in 4 4 �n �p �i d d d u� I❑ d a V Z fA O o o O O g Q v o O O O O p O o O o O O d 0 0 y vo�Md: Ian o O N r Ni o0 s-O O M1 M U K � m �E aNi t ay¢m¢m¢m¢mc)o¢m¢ m ev �NnMMdada�❑u-r mml�m¢m¢m¢mm nmmmw yVj c N No No N0 N0 N0 N0 V0f atO aO OOp N 3 °o RO willm 0 00 p p m N U xx ¢mQOfw w 0it❑ xO w'y0O aV[[❑11!m aQ° O a d r N N N N m Ditch 1a.txt Channel Calculator Ditch 1a Given Input Data: Shape ........................... Trapezoidal Solving for Depth of Flow Flowrate 4.9400 cfs Slope 0.0200 #t'ft Manning's n ..................... 0.0300 Height 18.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.5000 ft/ft (V/H) Computed Results: Depth ........................... 9.0279 in Velocity ........................ 3.4701 fps Full Flowrate ................... 31.1088 cfs Flow area ....................... 1.4236 ft2 Flow perimeter .................. 48.9956 in Hydraulic radius ................ 4.1839 in Top width ....................... 45.4133 in Area ............................ 5.6501 ft2 Perimeter ............... .... .. 97.6879 in Percent full .................... 50.1552 Critical Information Critical depth .................. 9.0189 in Critical slope .................. 0:0201 ft/ft Critical velocity ............... 3.4771 fps Critical area ................... 1.4207 ft2 Critical perimeter .............. 48.9463 in Critical hydraulic radius ....... 4.1797 in Critical top width 45.3676 in Specific energy ................. 0.9395 ft Minimum energy 1.1274 ft Proude number 0.9975 Flow condition .................. Subcritical Page 1 Ditch 1b.txt Channel Calculator Ditch lb Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 0.3500 cfs Slope 0.0200 ft/ft Manning's n ..................... 0.0300 Height .......................... 18.0000 in Bottom width .................... 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth 3.3455 in Velocity ......................... 1.7903 fps Full Flowrate ................... 31.1088 cfs Flow area 0.1955 ft2 Flow perimeter 18.1566 in Hydraulic radius 1.5505 in Top width 16.8291 i? Area 5.6591 ft2 Perimeter 97.6879 in Percent full .................... 18.5863 Critical Information Critical depth .................. 3.1282 in Critical slope .................. 0.0286 ft/ft Critical velocity ............... 2.8478 fps Critical area ................... 0.1709 ft2 Critical perimeter .............. 16.9768 in Critical hydraulic radius ....... 1.4497 in Critical top width .............. 15.7356 in Specific energy ................. 0.3286 ft Minimum energy .................. 0.3910 ft Froude number ................... 0.8454 Flow condition Subcritical Page 1 Ditch 2a.txt Channel Calculator Ditch 2a Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 10.2400 cfs Slope ............................ 0.0200 ft/ft Manning's n ..................... 0.0300 Height .......................... 18.0000 in Bottom width 0.0000 i:j Left slope 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth 11.8660 in Velocity 4.1638 fps Full Flowrate ................... 31.1088 cfs Flow area 2.4593 ft2 Flow perimeter .................. 64.3979 in Hydraulic radius ................ 5.4992 in Top width ....................... 59.6895 in Area ............................ 5.6591 ft2 Perimeter 97.6879 in Percent full .................... 65.9221 Critical Information Critical depth .................. 12.0720 in Critical slope 0.0182 ft/ft Critical velocity ............... 4.0229 fps Critical area ................... 2.5454 ft2 Critical perimeter .............. 65.5162 in Critical hydraulic radius ....... 5.5947 in Critical top width 60.7260 in Specific energy ................. 1.2583 ft Minimum energy 1.5090 ft Froude number 1.0440 Flow condition .................. Supercritical Page 1 Ditch 2b.txt Channel Calculator Ditch 2b Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 5.2500 cfs Slope 0.0200 ft/ft Manning's n ..................... 0.0300 Height ........................ . 18.0000 in Bottom width .................... 0.0000 in Le±t slope 0.3300 ft/ft (V/H) Right slope 0.5000 ft/ft (V/H) Computed Results: Depth 9.2364 in Velocity ........................ 3.5234 fps Full Flowrate 31.1088 cfs Flow area 1.4901 ft2 Flow perimeter .................. 50.1267 Y Hydraulic radius ................ 4.2805 in Top width 46.4617 in Area ............................ 5.6591 ft2 Perimeter 97.6879 in Percent full .................... 51.3131 Critical Information Critical depth .................. 9.2411 in Critical slope .................. 0.0199 ft/ft Critical velocity ............... 3.5197 fps Critical area ................... 1.4916 ft2 Critical perimeter .............. 50.1525 in Critical hydraulic radius ....... 4.2827 in Critical top width .............. 46.4856 in Specific energy ................. 0.9626 ft Minimum energy 1.1551 ft Froude number ................... 1.0013 Flow condition .................. Supercritical Page 1 Ditch 3a.txt Channel Calculator Ditch 3a Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 3.6900 cfs Slope ........................... 0.0060 ft/ft Mianning's n ..................... 0.0300 Height .......................... 18.0000 in Bottom width .................... 0.0000 in Left slope ...................... 0.3300 ft/ft ;V/H) Right slope 0.5000 ft/ft (V/H) Computed Results: Depth ........................... 10.1418 in Velocity ........................ 2.0540 fps Full Flowrate ................... 17.0390 cfs Flow area ....................... 1.7965 ft2 Flow perimeter .................. 55.0407 in Hydraulic radius ................ 4.7001 in Top width ....................... 51.0164 in Area ............................ 5.6591 ft2 Perimeter ....................... 97.6879 in Percent full .................... 56,3434 Critical Information Critical depth .................. 8.0255 in Critical slope .................. 0.0209 ft/ft Critical velocity 3.2801 fps Critical area ................... 1.1250 ft2 Critical perimeter ............ _ 43.5552 in Critical hydraulic radius ....... 3.7193 in Critical top width .............. 40.3706 in Specific energy 0.9107 ft Minimum energy 1.0032 ft Froude number ................... 0.5570 Flow condition .................. Subcritical Page 1 Ditch 4a.txt Channel Calculator Ditch 4a Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow klowrate ...... 7.0900 cfs Slope 0.0375 ft/ft Manning's n 0.0300 Height .......................... 18.0000 in Bottom width .................... 0.0000 in Le+t slope ...................... 0.3300 ft/ft (V/H) Right slope 0.5000 ft/ft (V/H) Computed Results: Depth .. 9.1885 in Velocity 4.8079 fps Full Flowrate ................... 42.5975, cfs Flow area 1.4747 ft2 Flow perimeter .................. 49.8671 in Hydraulic radius 4.2583 in Top width 46.2211 in Area ............................ 5.6591 ft2 Perimeter 97.6879 in Percent full .................... 51.0473 Critical Information Critical depth .................. 10.4212 in Critical slope 0.0192 ft/ft Critical velocity ............... 3.7377 fps Critical area ................... 1.8969 ft2 Critical perimeter .............. 56.5572 in Critical hydraulic radius ....... 4.8296 in Critical top width .............. 52.4220 in Specific energy ................. 1.1249 ft Minimum energy .................. 1.3027 ft Froude number ................... 1.3699 Flow condition .................. Supercritical Page 1 Ditch 3b.txt Channel Calculator, Ditch 3b Given Input Data: Shape ........................... Trapezoidal Solving for Depth of Flow Flowrate ........................ 0.6900 cfs Slope 0.0060 ft/ft Manning's n ...................... 0.0300 Height .......................... 18.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth ........................... 5.4082 in Velocity ........................ 1.3507 fps Full Flowrate ................... 17.0390 cfs Flow area ....................... 0.5109 ft2 Flow perimeter .................. 29.3506 in Hydraulic radius ................ 2.5064 in Top width ....................... 27.2047 in Area ............................ 5.6591 ft2 Perimeter 97.6879 in Percent full 30.0453 Critical Information Critical depth 4.1039 in Critical slope .................. 0.0261 ft/ft Critical velocity 2.3456 fps Critical area 0.2942 ft2 Critical perimeter .............. 22.2725 in Critical hydraulic radius ....... 1.9019 in Critical top width .............. 20.6440 in Specific energy ................. 0.4790 Ft Minimum energy 0.5130 ft Froude number ................... 0.5016 Flow condition .................. Subcritical Page 1 Ditch 4b.txt Channel Calculator Ditch 4b Given Input Data: Shape ........... ,.......... -.... Trapezoidal Solving for Depth of Flow Flowrate 0.2400 cfs Slope 0.0375 `L1ft Manning's n ..................... 0.0300 Height 18.0000 in Bottom width 0.0000 in Left slope .................... 1. 0.3300 ft/ft (V/H) Right slope ...................... 0.5000 ft/ft (V/H) Computed Results: Depth ............................ 2.5813 in Velocity ........................ 2.0623 fps Full Flowrate 42.5975 cfs Flow area ....................... 0.1164 ft2 Flow perimeter .................. 14.0088 in Hydraulic radius 1.1963 in Top width ....................... 12.9845 in Area 5.6591 ft2 Perimeter 97.6879 in Percent full .................... 14.340z1 Critical Information Critical depth .................. 2.6900 in Critical slope .................. 0.0301 ft/ft Critical velocity 1.8990 fps Critical area ................... 0.1264 ft2 Critical perimeter .............. 14.5987 in Critical hydraulic radius ....... 1.2466 irn Critical top width .............. 13.5313 in Specific energy ................. 0.2812 ft Minimum energy .................. 0.3362 ft Froude number ................... 1.1086 Flow condition .................. Supercritical Page 1 Ditch 4c.txt Channel Calculator Ditch Q Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 0.2800 cfs Slope ........................... 0.0375 ft/ft Manning's n ..................... 0.0300 Height 18.0000 in Bottom width .................... 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth .. 2.7349 in Velocity ........................ 2.1433 fps Full Flowrate 42.5975 cfs Flow area ....................... 0.1306 ft2 Flow perimeter .................. 14.8425 in Hydraulic radius ................ 1.2675 in Top width 13.7573 in Area ............................ 5.6591 ft2 Perimeter 97.6879 in Percent full .................... 15.1938 Critical Information Critical depth .................. 2.8610 in Critical slope .................. 0.0295 ft/ft Critical velocity 1.9584 fps Critical area ................... 0.1430 ft2 Critical perimeter .............. 15.5272 in Critical hydraulic radius ....... 1.3259 in Critical top width .............. 14.3919 in Specific energy ................. 0.2993 ft Minimum energy 0.3576 ft Froude number 1.1193 Flow condition .................. Supercritical Page 1 Ditch 4d.txt Channel Calculator Ditch 4d Giver Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate 4.0100 cfs Slope 0.0375 ft/ft Manning's n ..................... 0.0300 Height 18.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth 7.4205 in Velocity ........................ 4.1694 fps Full Flowrate 42.5975 cfs Flow area 0.9618 ft2 Flow perimeter .................. 40.2718 in Hydraulic radius 3.4390 in Top width ....................... 37.3273 in Area ............................ 5.6591 ft2 Perimeter 97.6879 in Percent full 41.2249 Critical Information Critical depth .................. 8.2969 in Critical slope .................. 0.0207 ft/ft Critical velocity ............... 3.3351 fps Critical area ................... 1.2024 ft2 Critical perimeter .............. 45.0284 in Critical hydraulic radius ....... 3.8452 in Critical top width 41.7362 in Specific energy ................. 0.8885 ft Minimum energy 1.0371 ft Froude number 1.3219 Flow condition .................. Supercritical Page 1 Ditch 5a.txt Channel Calculator Ditch 5a Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate 'i..2100 cfs Slope 0.0060 ft/ft Manning's n 0.0300 Height 18.0000 in Bottom width ...... 0.0000 in Left slope 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth 6.6761 in Velocity ........................ 1.5543 fps Full Flowrate ..................... 17.0390 cfs Flow area 0.7785 ft2 Flow perimeter .................. 36.2111 in Hydraulic radius ................ 3.0940 in Top width ....................... 33.5830 in Area ............................ 5.6591 ft2 Perimeter ....................... 97.6879 in Percent full .................... 37.0897 Critical Information Critical depth .................. 5.1378 in Critical slope .................. 0.0243 ft/ft Critical velocity ............... 2.6244 fps Critical area ................... 0.4611 ft2 Critical perimeter 27.8832 in Critical hydraulic radius ....... 2.3811 in Critical top width .............. 25.8445 in Specific energy ................. 0.5939 ft Minimum energy .................. 0.6422 ft Froude number ................... 0.5195 Flow condition .................. Subcritical Page 1 Ditch 5b.txt Channel Calcuidtor Ditch 5b Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 1.3800 cfs Slope ........................... 0.0060 ft/ft Manning's n ..................... 0.0300 Height .......................... 18.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth 7.0135 in Velocity ........................ 1.6062 fps Full Flowrate 17.0390 cfs Flow area ....................... K O O ft2 Flow perimeter .................. 38.0631 in Hydraulic radius 3.2504 in Top width ....................... 35.2801 in Area ............................ 5.6591 ft2 Perimeter 97.6879 in Percent full .................... 38.9639 Critical Information Critical depth .................. 5.4152 in Critical slope 0.0238 ft/ft Critical velocity ............... 2.6943 fps Critical area 0.5122 ft2 Critical perimeter .............. 29.3887 in Critical hydraulic radius ....... 2.5096 in Critical top width .............. 27.2400 in Specific energy ................. 0.6246 ft Minimuw energy 0.6769 ft Froude number ................... 0.5238 Flow condition .................. Subcritical Page 1 Ditch 6a.txt Channel Calculator Ditch 6a Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 7.1900 cfs Slope ........................... 0.0512 ft/ft Manning's n ..................... 0.0300 Height .......................... 18.0000 in Bottom width 0.0000 i.n Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.5000 ft/ft (V/H) Computed Results: Depth ............... ........ 8.7130 in Velocity ........................ 5.4224 fps Full Flowrate ................... 49.7741 cfs Flow area ......................., 1.3260 ft2 Flow perimeter .................. 47.2866 in Hydraulic radius ................ 4.0380 in Top width ....................... 43.8292 in Area ............................ 5.6591 ft2 Perimeter ....................... 97.6879 in Percent full .................... 48.4057 Critical Information Critical depth .................. 10.4798 in Critical slope .................. 0.0191 ft/ft Critical velocity ............... 3.7482 fps Critical area ................... 1.9183 ft2 Critical perimeter .............. 56.8749 in Critical hydraulic radius 4.8568 in Critical top width .............. 52.7165 in Specific energy ................. 1.1830 ft Minimum energy 1.3100 ft Froude number ................... 1.5866 Flow condition .................. Supercritical Page 1 Ditch 6b.txt Channel Calculator Ditch 6b Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 2.0700 cfs Slope 0.0512 ft/ft Manning's n ..................... 0.0300 Height .......................... 18.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth ........................... 5.4624 in Velocity 3.9719 fps Full Flowrate ................... 49.7741 cfs Flow area ....................... 0.5212 ft2 Flow perimeter .................. 29.6451 in Hydraulic radius 2.5315 in Top width ....................... 27.4776 in Area ............................ 5.6591 ft2 Perimeter ....................... 97.6879 in Percent full 30.3468 Critical Information Critical depth .................. 6.3687 in Critical slope .................. 0.0226 ft/ft Critical velocity ............... 2.9219 fps Critical area ................... 0.7084 ft2 Critical perimeter .............. 34.5635 in Critical hydraulic radius ....... 2.9515 in Critical top width .............. 32.0363 in Specific energy ................. 0.7004 ft Minimum energy .................. 0.7961 ft Froude number ................... 1.4678 Flow condition .................. Supercritical Page 1 Ditch 7a.txt Channel Calculator Ditch 7a Given Input Data: Shape ............................ Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 6.9500 cfs Slope ...... ................ - ... 0.0200 ft/ft Manning's n ..................... 0.0300 Height .................,. ....., 18.0000 in Bottom, width — ................. 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth .................. .,...... 10.)60t+ in Velocity 3.7793 fps Full Flowrate .. 31.1088 cfs Flow area ... 1.8390 ft2 Flow perimeter 55.6870 in Hydraulic radius ................. 4.7553 in Top width 51.6154 in Area 5.6591 ft2 Perimeter ....................... 97.6879 in Percent full .................... 57.0050 Critical Information Critical depth .................. 10.3384 in Critical slope .................. 0.0192 ft/ft Critical velocity ............... 3.7228 fps Critical area ................... 1.8669 ft2 Critical perimeter 56.1078 in Critical hydraulic radius ....... 4.7913 in Critical top width .............. 52.0054 in Specific energy ................. 1.0770 ft Minimum energy .................. 1.2923 ft Froude number ................... 1.0190 Flow condition .................. Supercritical Page 1 Ditch 7b.txt Channel Calculator Ditch 7b Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 6.7400 cfs Slope 0.0200 ft/ft Manning's n ..................... 0.0300 Height 18.0000 in Bottom width .................... 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth 10.1435 in Velocity 3.7504 fps Full Flowrate ................... 31.1088 cfs Flow area ....................... 1.7971 ft2 Flow perimeter 55.0500 in Hydraulic radius ................ 4.7009 in Top width 51.0250 in Area ............................ 5.6591 ft2 Perimeter ....................... 97.6879 in Percent full .................... 56.3529 % Critical Information Critical depth .................. 10.2123 in Critical slope 0.0193 ft/ft Critical velocity ............... 3.7001 fps Critical area ................... 1.8216 ft2 Critical perimeter .............. 55.4234 in Critical hydraulic radius ....... 4.7328 in Critical top width .............. 51.3711 in Specific energy ................. 1.0639 ft Minimum energy .................. 1.2765 ft Froude number ................... 1.0170 Flow condition .................. Supercritical Page 1 Ditch 8a.txt Channel Calculator Ditch 8a Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 5.8300 cfs Slope ........................... 0.0060 ft/ft Manning's n ..................... 0.0300 Height .......................... 18.0000 in Bottom width .................... 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth ........................... 12.0394 in Velocity 2.3028 fps Full Flowrate ................... 17.0390 cfs Flow area ....................... 2.5317 ft2 Flow perimeter .................. 65.3394 in Hydraulic radius ................ 5.5796 in Top width ....................... 60.5621 in Area ............................ 5.6591 ft2 Perimeter ....................... 97.6879 in Percent full .................... 66.8858 Critical Information Critical depth 9.6367 in Critical slope .................. 0.0197 ft/ft Critical velocity ............... 3.5943 fps Critical area ................... 1.6220 ft2 Critical perimeter .............. 52.2994 in Critical hydraulic radius ....... 4.4661 in Critical top width .............. 48.4755 in Specific energy ................. 1.0857 ft Minimum energy .................. 1.2046 ft Froude number ................... 0.5732 Flow condition Subcritical Page 1 Ditch 8b.txt Channel Calculator Ditch 8b Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 0.4800 cfs Slope ........................... 0.0060 ft/ft Manning's n ..................... 0.0300 Height 18.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth ........................... 4.7200 in Velocity ........................ 1.2335 fps Full Flowrate ................... 17.0390 cfs Flow area ....................... 0.3891 ft2 Flow perimeter .................. 25.6162 in Hydraulic radius ................ 2.1875 in Top width ....................... 23.7433 in Area 5.6591 ft2 Perimeter ....................... 97.6879 in Percent full .................... 26.2225 Critical Information Critical depth .................. 3.5494 in Critical slope 0.0274 ft/ft Critical velocity ............... 2.1814 =ps Critical area 0.2200 ft2 Critical perimeter 19.2631 in Critical hydraulic radius ...... 1.6450 in Critical top width 17.8546 in Specific energy ................. 0.4170 ft Minimum energy .................. 0.4437 ft Froude number 0.4904 Flow condition Subcritical Page 1 Ditch 9a.txt Channel Calculator Ditch 9a Giver. Input Data: Shape ........................... Trapezoidal Solving for• ..................... Depth of Flow Flowrate ........................ 4.1100 cfs Slope ........................... 0.0186 ft/ft Manning's n ..................... 0.0300 Height .......................... 18.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ...................... 0.5000 ft/ft (V/H) Computed Results: Depth ........................... 8.5416 in Velocity 3.2252 fps Full Flowrate 30.0003 cfs Flow area 1.2743 ft2 Flow perimeter .................. 46.3564 in Hydraulic radius ................ 3.9586 in Top width ....................... 42.9670 in Area ............................ 5.6591 ft2 Perimeter ....................... 97.6879 in Percent full .................... 47.4535 Critical Information Critical depth 8.3791 in Critical slope .................. 0.0206 ft/ft Critical velocity ............... 3.3515 fps Critical area 1.2263 ft2 Critical perimeter 45.4743 in Critical hydraulic radius ....... 3.8832 in Critical top width .............. 42.1494 in Specific energy 0.8735 ft Minimum energy 1.0474 ft Froude number 0.9531 Flow condition .................. Subcritical Page 1 Ditch 9b.txt Channel Calculator Ditch 9b Given Input Data: Shape ........................... Trapezoidal Solving for Depth of Flow Flowrate 1.6200 cfs Slope ........................... 0.0186 ft/ft Manning's n ..................... 0.0300 Height .......................... 18.0000 in Bottom width .................... 0.0000 in Left slope 0.3300 ft/ft (V/H) Right slope ..................... 0.5000 ft/ft (V/H) Computed Results: Depth ........................... 6.0245 in Velocity ........................ 2.5555 fps Full Flowrate ................... 30.0003 cfs Flow area ....................... 0.6339 ft Flow perimeter .................. 32.6954 in Hydraulic radius ................ 2.7920 in Top width ....................... 30.3049 i-� Area 5.6591 f L2 Perimeter . ....................... 97.6879 in Percent full .................... 33.4693 Critical Critical depth ......... Critical slope ......... Critical velocity ...... Critical area .......... Critical perimeter ..... Critical hydraulic radii Critical top width ..... Specific energy ........ Minimum energy ......... Froude number .......... Flow condition ......... Information ......... 5.7739 in ......... 0.0233 ft/ft ......... 2.7821 fps ......... 0.5823 ft2 ......... 31.3354 in s ....... 2.6759 in ....,... 29.0443 in 0.6035 ft ......... 0.7217 ft ......... 0.8992 Subcritical Page 1 Swale 1.txt Channel Calculator Swale 1 Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate 24.2600 cfs Slope ........................... 0.0069 ft/ft Manning's n ..................... 0.0300 Height .......................... 24.0000 in Bottom width .................... 30.0000 in Left slope 0.2500 ft/ft (V/H) Flight slope ..................... 0.2500 ft/ft (V/H) Computed Results: Depth ........................... 13.3719 in Velocity 3.1292 fps Full Flowrate 92.3919 cfs Flow area 7.7527 ft2 Flow perimeter .................. 140.2673 in Hydraulic radius ................ 7.9590 in Top width ....................... 136.9750 in Area ............................ 21.0000 ft2 Periwever ....................... 227.9091 in Percent full .................... 55.7161 Critical Information Critical depth .................. 10.9887 in Critical slope 0.0163 ft/ft Critical velocity ............... 4.2988 fps Critical area ................... 5.6435 ft2 Critical perimeter .............. 120.6148 in Critical hydraulic radius ....... 6.7377 in Critical top width .............. 117.9093 in Specific energy ................. 1.2665 ft Minimum energy .................. 1.3736 ft Froude number ................... 0.6694 Flow condition .................. Subcritical Page 1 Swale 2.txt Channel Calculator Swale 2 Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate 22.6500 cfs Slope ........................... 0.0300 ft/ft Manning's n ..................... 0.0300 Height .......................... 24.0000 in Bottom width .................... 60.0000 in Left slope ...................... 0.2500 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth ........................... 7.2691 in Velocity ........................ 5.0372 fps Full Flowrate ................... 253.2543 cfs Flow area ....................... 4.4966 ft2 Flow perimeter .................. 119.9428 in Hydraulic radius ................ 5.3985 in Top width ....................... 118.1530 in Area 26.0000 ft2 Perimeter ....................... 257.9091 it Percent full .................... 30.2880 Critical Information Critical depth .................. 8.4896 in Critical slope .................. 0.0167 ft/Ft Critical velocity ............... 4.0889 fps Critical area ................... 5.5394 ft2 Critical perimeter .............. 130.0069 in Critical hydraulic radius ....... 6.1356 in Critical top width .............. 127.9167 in Specific energy ................. 1.0001 ft minimum energy .................. 1.0612 ft Froude number ................... 1.3141 Flow condition .................. Supercritical Page 1 Swale 3.txt Channel Calculator Swale 3 Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 12.2700 cfs Slope ........................... 0.0075 ft/ft Manning's n ..................... 0.0300 Height .......................... 18.0000 in Bottom width .................... 12.0000 in Left slope 0.3300 ft/ft (V/H) Right slope ..................... 0.3300 ft/ft (V/H) Computed Results: Depth ........................... 12.3138 in Velocity ........................ 2.9096 fps Full Flow•ate ................... 30.4093 c.fs Flow area ....................... 4.2170 ft2 Flow perimeter .................. 90.5877 in Hydraulic radius ................ 6.7034 in Top width ....................... 86.6291 in Area ............................ 8.3182 ft2 Perimeter ....................... 126.8774 in Percent full .................... 68.4100 Critical Information Critical depth .................. 10.2588 in Critical slope .................. 0,0175 ft/ft Critical velocity ............... 3.9972 fps Critical area ................... 3.0696 ft2 Critical perimeter .............. 77.4728 in Critical hydraulic radius ....... 5.7056 in Critical top width .............. 74.1748 in Specific energy ................. 1.1577 ft Minimum energy 1.2824 ft Froude number ................... 0.6712 Flow condition Subcritical Page 1 Appendix E User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 3/4/2020 Checked By: Date: Company: Lang King & Assoc. Project Name: River Run Project No.: P190-037 Site Location (City/Town) Harnett County, NC Culvert Id. Total Drainage Area (acres) Step 1. Deternune the tailwater depth from channel characteristics below the pipe outlet for the design capacrrt- of the pipe If the taxlts-ater depth is less than half the outlet pipe diameter_ it is classified munrmtnn taihw.ater condition If it is peater than half the pipe ch.unetei, it is classified r ix-iru un condition. Pipes that outlet onto 1&-rde fiat arras with no defined channel are asstuned to have a n uunttun tailtsater condition unle5-, rrhable flood stage elevation, shoe :-Ytherts-rse. Outlet pipe diameter, Do (in.) 15 Tailwater depth (in.) 0 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) Velocity (ft./s) Step :. Based on the tarlwater corrdrtioris detenume�3 in step 1. enter Figure 8.06a or Figure 8 46b and detemune d,Q rrprnp size and nirurun in apron length (L.). The d %ize is the niediasa stone size in a well -graded nprap apron Step 3. D, terr..ane apron width at the pipe outlet. the apron shape and the apr -. width at the outlet end frwru the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d5o, (ft.) Q.3 Minimum apron length, La (ft.) g Apron width at pipe outlet (ft.) 3.75 3.75 Apron shape Apron width at outlet end (ft.) 9.25 1 25 Step d. _)r, .nun,- the 111axiijimij Stone &-uiiet,-r G ra _ ! x u5� Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 045 0 Step 5. Deternune, the aprE.0 tni, Apron Thickness(ft.) Apron thickr�d-.,, = I Minimum TW Maximum TW 0.,'�7r) 0 Step 6. Fit the riprap apron to the site by making it level for the nunirutim length L, from Figuue 8 06a or Figgture 8 06b Extend the apron farther doximstream and along channel 1 ;xuk, tuxtil stabrhr, is assured. Keep the aprons. as straight as possible and align it with the flocs of the receiving stream Make and• necessary aliginuent bends near the pipe outlet sa that the entrance into the receivutg stream is straight Some locations nzav regture linLug of the entire channel cross section to assure stability It may be necessary to increase the size of rtpsap where protection of the channel -dc slopes is necessary (Appendn 8.05) Alicic o%cifall, exist at pipe outlets or flocs are excessive a plunge pool should be considered. see page 8.06 8 User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 3/4/20201 Checked By: Date: Company: Larry King & Assoc. Project Name: River Run Project No.: P190-037 Site Location (City/Town) Harnett County, NC Culvert Id. Total Drainage Area (acres) 5t, p 1. Determine the tailwater depth from chamiel chatacteristics below the pipe oiitleT for the desimi capacity of the pipe If the twl arer depth is less than I"the outlet pipe diameter. it is classified mum um tadwater condition If it is gi eatei than half the pipe dsameter it is classified maxiniuiu condition. Pipes that outlet onto wide flat are -is with no ckfitied chaiiiiel are asssuned to have a iuuninuni tailwater condition sinless reliable flood stage elevations shoxv c the-r- - -iK,e Outlet pipe diameter, Do (in.) 18 Tailwater depth (in.) 0 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (efs) Velocity (ft./s) Step 2. Rased on the tailwater conditions determined in step 1. {enter Figure 8.06a or Fi ¢tire 8 � d . and determine d5C riptap stze .in -Li niininaum apron ,tii (L.). The d size is the inedi r. stone size in a well graded riprap aprati -Step 3. Detenume apron width at the pipe outlet. the apron shape. and the :; i.,n -,s•tdth at the outlet end from the ,aerie fissure used in Step Riprap d5o, (ft.) Minimum TW Figure 8.66a 0.35 Maximum TW Figure 8.06b Minimum apron length, La (ft.) g Apron width at pipe outlet (ft.) 4.5 4.5 Apron shape Apron width at outlet end (ft.) 10.5 1.5 Step 4. i.J--« rnune the tnaxinuim siotie diaineter d_, _ ! h k J5 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.525 0 Step 5. Deternune the a * rL ,a t_a ti s Apron Thickness(ft.) Apron thickness = 1 5 x d.., Minimum TW Maximum TW 0.7875 0 Step 6. Fit the riprap apron to the Sits- by making it le -el for the nunuuuni length L, from Figtire 8 06a or Figure 8 06b Extend the .ipr,:!a farther dommstream and along chuuiel 1,.mkt until stability is assured Keep iiir apron as straight as possible mid align it with the flow- of the receiving stream ZL1ke any recess n. alignment be ds near the pipe outlet to that the entrance into the receiving stream is straight Some locations inay require lining of the entire channel cross section to asstue stabihn- it inav be necessan- to increase the size of nprap where protection of the cliannel Side slopes is nece5s4iry (.3, �r�c r;Cir� 8.05) Where overfa115 r,Ni%t at pipe outlets or flows me excessive a 14111ige pool Should be considered see page 8.06.8 User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 3/4/2020 Checked By: Date: Company: Lany King & Assoc. Project Name: River Run Project No.: P190-037 Site Location (City/Town) Harnett County, NC Culvert Id. Total Drainage Area (acres) Step 1. Determine the tailwater depth from chaiuirl c Jim actrii%tics below the pipe outlet for the design capaciry of the pipe. If the taihsarer depth is less than half the outlet pipe dianietei. it is clastiifird nilm um tailwater condition If it is greater than half the pipe diametam it is clasaitied rmaxull uzn ouditxoin. Pipes that outlet onto u-ide flat areas -with no defined chainirl are i. to have a inuiinnun tail-omter condition finless reliable flood stage elevation, shots othenti. e Outlet pipe diameter, Do (in.) 24 Tailwater depth (in.) 0 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) Velocity (ft./s) Step 2. B.1 rJ Oil the tailwater conditions detemu ned in step 1. enter Figure 8.06a or Figure 5.065b and determine d;a riptap size andd iniuirnu:ni apron length (L.). The ds, size is the nnedixz. stone size m a well -graded nprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron widtL at the outlet end from the sauce figure used ui Step 2_ Minimum TW Maximum TW Figure 8.06@ Figure 8.06b Riprap d50, (ft-) 0.4 Minimum apron length, La (ft.) 14 Apron width at pipe outlet (ft.) 6 6 Apron shape Apron width at outlet end (ft.) 16 �t I 4. Deternune the niaxrnuuu stout dranret dr jx = 1 5 x d50 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.6 0 'str. 5. Derentune the apron thtcluuss Apron thickness = I Y� Apron Thickness(ft.) Minimum TW Maximum TW 0.9 0 Step 6. Fit the nprap aproi, to the site by nnaki,ie it level for the nuntriinn, length L, ti onx Fimue 8 06a or Figure 8 06b Extend the apron farther dowmtitrraui and alostg (haruiel batiks until stabrht, is assured Deep The apron as straight as possible and align it with the $ou of rile receiving stream 11 ake ant• necessax-v alis-nunent bends new the pipe outlet so that the entrance into the recen-mg sti emu is straight Some locations niav require lining of the entire chm u:el cross section to assure ,tabrhtti- It may be necetisa-y to increase the sue of nprap where protection of the channel side slope% is nri r-Lo my ( 4ppc,-e iA 8.0.5) Wieie overfills exist at Pipe outlets or flows we excessive a plunge pool Should be considered. see page 8 06.8 Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) 30 Outlet M . D0 + La pipe I diameter (Do) j Irat r < 0.500 +70 rO' 60 f 50t.:�.'::l 4 --+ 30 :1: ffi l5 IN I. �?Wml � 4 3 2 3 5 10 20 50 100 200 500 1000 Discharge (Olsec) Curves may not be extrapolated, Figure 8.06a Design of outlet protection protection from a round pipe flowing full, minrmum taiwater condition {Tw c 0.5 diameter). Rev. 1193 8.06.3 Z Bridgeport Subdivision Erosion Control Structures OUTLET: 41 Basin Volume Structure Name: Skimmer Basin-2 Drainage Area= 7.39 ac Stage Elev. Diff Contour Area Incr. Vol. ccum. Vol. Q10= 22 cfs (ft) (ft) (sf) (cf) (cf) `Required SA= 7,150 sf 279.5 0 5,299 **Required Volume= 13,302 cf 280 1 5,667 2,742 2.742 Proposed Size: 45'xl67'x2.5 281 1 6.423 6,045 8,787 SA Provided= 7,204 sf 282 1 7,204 6,814 15,600 Volume Provided= 15,600 cf Baffle Spacing Inlet Zone (25%): 40 ft First Cell 25%): 40 ft Second Cell (25%): 40 ft Outlet Zone (25%): 40 ft Weir Sizing Cw=1 3 H= 0.5 ft Len th= Q/(Cw*H^3/2) Length= 20.741 ft OUTLET: 22, 26 1 Basin Volume Structure Name: Skimmer Basin-1 Drainage Area= 7.71 ac Stage Elev. Diff Contour Area Incr. Vol. Accum. Vol. Quo= 21 cfs (ft) (ft) (sf) (cp (cf) *Required SA= 6,825 sf 282 0 5.314 **Required Volume= 13,878 cf 282.5 0.5 5,624 2,735 2,735 Proposed Size: 59'xl20'x2.5' 283.5 1 6,265 5,945 8,679 SA Provided= 6.930 sf 284.5 1 6,930 6,598 15,277 Volume Provided= 15,277 cf Baffle Spacing Inlet Zone 25%l0 : 29 ft First Cell 25%): 29 ft Second Cell (25%): 29 ft Outlet Zone (25%): 29 ft Weir Sizing Cw= 3 H= 0.5 ft Len th= Q/(Cw*HA3/2) Length= 20 ft *Required SA=0.01*Qlo -.Required Volume=1800cf/ac * Drainage Area 1 of 2 Bridgeport Subdivision Erosion Control Structures OUTLET: 35 Basin Volume Structure Name: Skimmer Basin-3 Drainage Area= 3.63 ac Stage Elev. Diff on our Area Incr. Vol. Tccum. Vol. Q,o= 11 cfs (ft) (ft) (sf) (cf) (cf) *Required SA= 4,792 sf 0 0 3,748 "Required Volume= 6,534 cf 1 1 4,287 4,018 4,018 Proposed Size: 47'x107'x2' 1 1 4,851 4,569 8,587 SA Provided= 4,851 sf Volume Provided= 8,587 cf Baffle Spa-cl Inlet Zone (2M° : 26 Ift *Required SA=0.01*Qi0 -Required Volume=1800cf/ac * Drainage Area 2 of 2 36s ),^ . t Calculate Skimmer Size Basin Volume in Cubic Feet r 15,277 Cu.Ft Skimmer Size 2.6 1 nch Days to Drain* Days Orifice Radius 1.1 Inch[es ] "In NC assume 3 days to drain Orifice Diameter 2.3 Inch[es] Estimate Volume of Basin Length width Top of water surface in feet D Feet VOLUME #VALUEI cu. Ft. Bottom dimensions in feet Feet Depth in feet Feet SA. $ i , - /-.. Calculate Skimmer Size Basin Volume in Cubic Feet 15,600 Cu.Ft Skimmer Size 2.5 Inch Days to Drain* 3 Days Orifice Radius 1.1 lnch[es] Orifice Diameter 2.3 Ernch[es] "In NC assume 3 days to drain Estimate Volume of Basin Length width Top of water surface in feet D Feet VOLUME #VALUEi Cu. Ft. Bottom dimensions in feet Feet Depth in feet Feet �aS tin • " Calculate Skimmer Size Basin Volume in Cubic Feet 8,587 Cu.Ft Skimmer Size 2.0 Inch Days to Drain* 3 Days Orifice Radius 0.9 Inch[es] Orifice Diameter 1.8 Inch[es] "In NC assume 3 days to drain Estimate Volume of Basin Length width Top of water surface in feet D Feet VOLUME #VALUi=i Cu. Ft. Bottom dimensions in feet Feet Depth in feet Feet Appendix F � ��� . � ��;� � .��%•a '�'�������: ■ a% % %-� %� :� � �� � �� :2: �� '���:� �����|* ;� + : i ' ; '�!� |� ����#�%•�� .irk �;�� � .. l������:A:: :� .� p �: �� lift oM 01 0 Old '][\[.) Ml\�) 'PIOU\,1?1 I -1:0 W.l If Appendix C HAL OWEN & ASSOCIATES, INC. SOIL & ENVIRONME,NTAL SCIENTISTS P.O. Box 400, Lillington NC 27546-0400 Phone (910) 893-8743 / Fax (910) 893-3594 www.halowensoil.com 6 March 2020 Mr. John Homaday Reference:Soil Scientist Investigation for Stormwater Management River Run Phase 1 , Britt Property (---73 Acres); NC PIN 0682-28-1492 Dear %1r. Hornaday, A site investigation has been conducted for the above referenced property, located on the southern side of Ennis Road (SR 1543) in Harnett County, North Carolina. The purpose of this investigation was to provide a general characterization of the soils in the areas proposed for stormwater infiltration devices, including a determination of the depth to ev'din)ce of a .seasonal high water table and estimation of the permeability of the various soil layer . In -situ hydraulic conductivity testing was not conducted. All soil characteristics were described in accordance with the USDA Field Book for Describing and Sampling Soils. This report represents my professional opinion as a Licensed Soil Scientist. Location 1 (stake 11002): A soil boring was advanced by hand pot\ er in the area proposed for the infiltration device (Figure 1) to a depth of 60 inches below ground surface. Soil morphological characteristics indicating a seasonal high water table (SHWT) were observed at 32 inches below surface. Infiltration rates (permeability) range from 0.6 in/hr in the sandy clay loam layer between 12 and 60 inches to as high as 6.0 in/hr in the sandy loam textured soils observed between 0 and 12 inches below surface. A soil profile description was collected at location 41 and is attached to this report. This site appears well suited to support a wet detention basin. Location 2 (stake 11000): A soil boring was advanced by hand power in the area proposed for the infiltration device (Figure 1) to a depth of 36 inches below ground surface. Soil morphological characteristics indicating a seasonal high water table (SHWT) were observed at 24 inches below surface. Infiltration rates (permeability) range trim} 0.6 in/hr in the sandy clay loam layer between 14 and 36 inches to as hi._,h as 6.0 in,"hr in the loamy textured soils observed between 0 and 14 inches below surface. A soil profile description was collected at location #2 and is attached to this report. This site appears well suited to support a wet detention basin. Soil Science Invesi igations • Wetland Delineations, Permitting, and Consulting 4AL OWEN & ASSOCIATES, INC. SOIL & ENVIRONMENTAL SCIENTISTS P.O. Box 400, Lillington NC 27546-0400 Phone (910) 893-8743 / Fax (910) 893-3594 www.halowensoil.com Location 3 (stake 11003 upper): A soil boring was advanced by hand power in the area proposed for the infiltration device (Figure 1) to a depth of 78 inches below ground surface. Soil morphological characteristics indicating a seasonal high water table (SHWT) were observed at 72 inches below surface. Infiltration rates (permeability) range from 0.6 in/hr in the clay and sandy clay loam layers between 38 and 78 inches to as high as 6.0 in/hr in the sandy loam textured soils observed between 0 and 38 inches below surface. A soil profile description was collected at location 43 and is attached to this report. This site appears well suited to support a wet detention basin. Location 4 (stake 11003 lower): A soil boring was advanced by hand power in the area proposed for the infiltration device (Figure 1) to a depth of 60 inches below ground surface. Soil morphological characteristics indicating a seasonal high water table (SIIWT) were observed at 46 inches below surface. Infiltration rates (permeability) range from 0.6 in/hr in the clay and sandy clay loam layers between 28 and 60 inches to as high as 6.0 in/hr in the sandy loam textured soils observed between 0 and 28 inches below surface. A soil profile description was collected at location #4 and is attached to this report. This site appears well suited to support a wet detention basin. I appreciate the opportunity to provide this service and trust that you will feel free to call on me again in the future. If you have any questions or need additional information, please contact me at your convenience. SOIL So O XX r � tdti� •a,,;: f• v NoR Sincerely 1 Li I Owen Licensed Soil Scientist Soil Science Investigations • Wetland Delineations, Permitting, and Consulting 01. N 00 N N 00 O �v to s.. �d «I 3 � t1. on c N COO CA N a. o 10 ._ 4 It � 1 � 1• --- `" r• � 1 l..r 7 HAL OWEN & ASSOCIATES, INC. SOIL PROFILI4', DESCRIPTIONS FOR STOWNIWATER MANAGEMENT DEVICES PROJECT NAME: River Run Phase 1 PROPOSED FACILITY: Wet Basin LOCATION OF SITE: Ennis Rd. near Highway 55 COUNTY: Hamett County EVALUATED BY: Hal Owen NC Licensed Soil Scientist DATE EVALUATED: 2/27/2020 EVALUATION METHOD: Auger Boring ®. Pit ❑ PROFILE: 1 HORIZON )11 U IN MATRIX MOTTLES TEXTURE STRUCTURE C t t V515- TENCE PERMEABIL 1TY I IN IIR 1 NOTE S A 0-10 1 OYR 4/3 NA SL GR FR 6 E 10-12 1 OYR 5/8 NA SL GR FR 6 Bti 12-26 I OYR 5/6 NA SCL SBK FI 0.6 Bt2 26-32 IOYR 6/8 5YR 5/8 f2F SCL SBK FI 0.6 130 32-40 10YR 5/8 5YR5/6 f2D I OYR 7/1 f2D C M VFI FI 0.2 U 6 130 40-60 I OYR 6/8 2.5YR 5.8 m3P IOYR 7/1 m3P SCI M AWT >18 in SHWT 32 in SLWT DRAINAGE SOIL SERIES Dothan SLOPE VEGETATION COMMENTS: Standing surface water on the day of investigation. PROFILE: Soil Science Investigations • Wetland Delineations, Permitting, and Consulting IIAI. OWEN & ASSOCIATES, INC. SOIL PROFILE DESCRIPTIONS FOR STORMWATER MANAGEMENT DEVICI!'.S PROJECT NAME: River Run Phase I PROPOSED FACILITY: Wet Basin LOCATION OF SITE:- Ennis Rd. near Highway 55 COUNTY: Harnett County EVALUATED BY: Hal Owen, NC Licensed Soil Scientist —DATE EVALUATED: 2/27/2020 EVALUATION METHOD: Auger Boring ®. Pit ❑ PROFILE: 3 HORIZON DEPTH QN)TENCE MATRIX MOTTLES TEXTURE STRUCTURE CONSIS- PERMEABL, NOTES ITY (iN/HR) Al 0-6 1OYR 4/3 NA SL GR FR 6 EB 6-38 1 OYR 6/4 NA SL GR FR 6 Btl 3842 1 OYR 5/8 SYR 4/6 c2D SCL SBK FI 0.6 Bt2 42-66 10YR 5/8 SYR 4/6 c2D SCL SBK FI 0.6 1 OYR 7/3 c2D Rt3 66-72 1 OYR 6/8 SYR 4/6 c2P C SBK FT 0.2 1 OYR 7/1 c2P Bt4 72-78 1 OYR 6/8 SYR 4/6 m3P C M FI 0.2 1 OYR 7/1 m3P AWT 66 SHWT 72 SLWT SLOPE DRAINAGE SOIL SERIES Dothan VEGETATION COMMENTS: PROFILE: 4 HORIZON DEPTH( MATRIX MOTTLES TEXTURE STRUCTURE CONSIS- TENCE PERMEABIL ITY (IN/HR) NOTES A 0-5 1 OYR 4/3 SI, GR FR 6 E 5-12 1 OYR 5/4 SL GR FR 6 EB 12-28 1 OYR 6/6 SL OR FR 6 Btl 28-36 IOYR 6/8 SCL SBK FI 0.6 DO 3646 I OYR 6/8 1 OYR 7/1 c2D C SBR FT 0.2 130 46-54 1 OYR 6/8 SYR 5/8 m3P IOYR 7/1 m3P C SBK FI FI 0.2 Bt4 54-60 I OYR 6/8 SYR 5/8 m3P 1OYR 7/1 m3P C M 0.2 AWT 52 SHWT 46 SLWT SLOPE DRAINAGE SOIL SERIFS Dothan VEGETATION - — — COMMENTS. Soil Science Investigations • Wetland Delineations, Permitting, and Consulting AA.L O«'EN & ASSOCIATES, INC. LEGEND OF ABBREVIATIONS FOR SOIL PROFILE DESCRIPTIONS TEXTURE S - Sand LS - Loamy Sand SL - Sandy Loam L - Loam SCL - Sandy Clay Loam CL - Clay Loam SiL - Silt Loam Si - Silt SiCL- Silt Clay Loam SC - Sandy Clay C - Clay SiC - Silty Clay O - Organic MOTTLES f — few c — common m — many MOIST CONSISTENCE L - Loose VFR - Very Friable FR - Friable FI - Firm VFI - Very Firm EFI - Extremely Firm AWT — Apparent Water Table SHWT —Seasonal High Water Table SLWT — Seasonal Love Water Table I - fine F - Faint 2 - medium D - Distinct 3 - coarse P - Prominent S'I"RUCTC:RE 0 - structureless VF -very fine I - weak F - fine 2 - moderate M - medium 3 - strong C - coarse VC -very coarse G - Single Grain M - Massive CR - Crumb GR - Granular SBK - Subangular Blocky ABK - Angular Blocky PL - Platy PR - Prismatic Soil Science Investigations • Wetland Delineations, Permitting, and Consulting Appendix H B3756 - P 957 HAR NETT COUNTY I-AX JD# FOR REGISTRATION Kind**rly 5. Her rave R�eGISTER OF DEEpS Hernnstt Canny HC 2019 NOV 18 $9:34:98 M BK:373E PG:957-995A INS TRUMENTi#8208190 t me SARTIS 111111111111 2019017050 Prepared by and Return to: Lewis, Deese, Nance & Ditmore, LLP P.O. Drawer 1358 Fayetteville, NC 28302 PID#: 040682 0131 REVENUE STAMPS: $0.00 STATE OF NORTH CA RO1.1NA COUNTY OF HARNETT WARRANTYDEED This WARRANTY DEED is made the 24 day of October, 2019, by and between Coldstream Developer, LLC, of 581 Executive Place, Fayetteville, NC, 28305 (hereinafter referred to in the neuter singular as "the Grantor") and River Run Developers, LLC of 581 Executive Place, Fayetteville, NC, 28305 (hereinafter referred to in the neuter singular as "the Grantee"); WITNESSETH: THAT said Grantor, for valuable consideration, receipt of which is hereby acknowledged, has given, granted, bargained, sold and conveyed, and by these presents does hereby give, grant, bargain, sell and convey unto said Grantee, its heirs, successors, administrators and assigns, all of that certain piece, parcel or tract of land situate, lying and being in Black River Township of .�; id County and State, and more particularly described as follows: BEING all of that tract containing 72.58 acres total (less 0.53 acres in SK 1543 road right-of-way and less 0.15 acre in 30' road easement for a 71.90 acres net) as shown on survey entitled "Property of John B. Britt, Jr. and wife, Rhonda R. Britt" dated March 13, 2019 by .Andrew H. Joyner, PLS and recorded in Map Book 2019, Page ' 17, Harnett County Registry. B3756 - P 958 Subject to a non exclusive 3W wide ingress, egress, regress and utility easement running from NCSR 1543 (Ennis Road) to 0.67 acre tract now or formerly owned by Kenneth Wayne Snipes, Jr. and shown on Map Number 2000-389, Harnett County Registry, This property was acquired in f]ecd Book 3742, Page 710, Harnett County Registry. Also see Deed Book , Page _ , ; tarnett County Registry. **The property herein described is not the primary residence of the Grantor (NCGS 10-1-317.2) —C f't VE AN-)IJ(iLD the above -described lands and dt,­ ses, to tht - with all appurtenances thereunto belonging, or in anywise appe ,aining, unto the Grantee, its heirs, successors, administrators mitt assigns forever, but subject always, however ,to the limitations set out above. AND the said Grantor covenants to and with said Grantee, its heirs, successors, administrators and assigns that it is lawfully seized in fee simple of said lands and premises, and has full right and power to convey the same to the Orar.tec in fee simple (but subject, however, to the limitations set out above) and that said lands and premises are f' co from any and all encumbrances, except as set forth above, and that it will, and its heirs, successors, administrators and assigns shall fore. er warrant and nu the title to the same lands and premises, together with the appurtenances thereunto appertaining, unto the Grantee, its heirs, successors, administrators and assigns against the lawful claims of all persons whomsoever. IN WITNESS WHEREOF, the Grantor has hereunto set its hand and seal and does adopt the printed word "SEAL" beside its name as its lawful seal. GRANTOR Coldstream Developers, LLC BY: (SEAL) Printed Name/I'itle l B3756 - P 958A STATE OF NORTH CAROLINA COUNTY OF CwM .�� ad 1, the undersigned Notary Public of the County- of lU. A6A ad ai36 State A toresaid, certify that personally came before me this day and acknowledged that he is the "4. Ak,"tir of Coldstream Developers, LLC, a North Carolina limited liability company, nd hat by authority duly given and as the act of such entity, he signed the foregoing instrument in its name on its behalf as its act and deed. itness my and and Notarial Stamp or seal, this 2,4, day of October, 2019. joaoe tratdiy-seal hire) r� - Notary Public • �; Notary's Printed or Typed Name 9 i' y* yri ."•.... 4 is PEr iitL 1.