Loading...
HomeMy WebLinkAbout20141125 Ver 1_Stormwater Info_20141024SPAULDING & NORRIS PA Planning • Civil Engineeinig • Stuveying STORM DRAINAGE AND EROSION CONTROL CALCULATIONS ORCHARD LILY SUBDIVISION Town of Cary, North Carolina o� '04 " Submitted By: Spaulding & Norris, PA 972 Trinity Road Raleigh, North Carolina 27607 Office: (919) 854 -7990 Fax: (919) 854 -7925 Date: June 10,2014 S &N Project: 755 -13 TABLE OF CONTENTS SECTION Project Narrative Storm Drainage System Plan View Storm Drainage System 2 -Yr Design Chart (Gutter Spread) Storm Drainage System 10 -Yr Design Chart Storm Drainage System HGL Profiles Dual Box Culvert Design Channel Design Downstream of Box Culvert Runoff Coefficient Table Time of Concentration Calculations Hydrographs - Pre / Post / BMP Detention Impervious Surface Calculations Nitrogen Calculations Simple Method Calculations for Wet Pond Sizing Average Pond Depth Calculations Basin Dewatering Time Calculations Splitter Box and Level Spreader Sizing Skimmer Basin Design Skimmer Sizing Calculations Outlet Energy Dissipater Designs Skimmer Basin Drainage Area Map Exhibit Inlet Drainage Area Map Exhibit BMP Drainage Area Map Exhibit DESIGN NARRATIVE 1. GENERAL The project is located on Stephenson Road approximately 600 feet East of the intersection with Smith Road. The site contains 19.37 acres and was recently rezoned to R -8 CU The proposed construction will include the construction of roads, sewer, water, and storm sewer to service 52 lots The proposed construction will also include a left turn lane at the entrance and extending the existing waterline on Stephenson Road North approximately 2,000 feet to our entrance. A wet pond BMP with level spreader and filter strip has been designed to provide the required nitrogen reduction and required detention. 2. DRAINAGE CALCULATIONS A proposed storm sewer system has been designed, HGL calculations have been provided for the 10 year storm. We have also provided inlet calculations for the storm sewer system to limit gutter spread to less than 8 feet. The proposed subdivision was designed with a maximum 3,500 square feet of impervious surface per lot Nitrogen calculations included this lot impervious surface, roads, sidewalk, tot lot, and added offsite road pavement (please see calculations in this report). A nitrogen export level of 8.02 # /ac /yr was calculated for the site including the offsite pavement. Using a constructed wet pond and level spread with filter strip the nitrogen export was reduced to 5.31 #/ ac/ yr. The proposed development will use the buy down option to get to the required 3 6 #/ ac/ yr. The required storm water detention for the 1, 2, 5, and 10 year storms will be provided by the storm water wetland. Hydrographs were created using the Rational Method. Pre developed hydrographs created as a means of comparison to post developed flows. A hydrograph for the area draining to the wet pond was created and routed through the BMP Another hydrograph was created for the remaining area that does not drain to the proposed wet pond. The hydrograph routed through the wet pond was combined with the area not draining to the pond to determine the total runoff leaving the site This runoff was compared to the predeveloped flows. Below is the results- Storm Pre Dev Runoff Post Dev Runoff 1 yr 13.04 cfs 12.79 cfs 2yr 15.69 cfs 15.14 cfs Syr 18 51 cfs 17.29 cfs 10yr 20.69 cfs 18.98 cfs 3. EROSION CONTROL CALCULATIONS A detailed construction sequence has been the project A skimmer basin is provided disturbance. Skimmer basin and orifice protection calculations are provided at all ; plans are provided in two phases. One s constructed roads and any lot grading. provided to assist with the construction of and will handle the majority of the site sizing calculations are provided. Outlet >torm water outlets. The erosion control howing initial start and phase 2 showing m rn R a _o wL W 3 w E L O t`W n R O O O O N S2 r- imp Lo (T�1 mM (N) CN' T (N' T J f!1 N q to n h c 1 u� LO m m N N {L � U U U i- U U U V U U U �- L3 ❑ ❑ U U U U � O 47 CD 0 co w co N CD n CO n Co co co W o N O O O M M O �0pp O O O N Ln 2s o o M tR M w O O O N h (D R O M Cf'f E v a V w w w M v(D s to co 00 co s s s s o 0 o ° v s ° 1, $ N LC) M M M N w n M h h r — M b 0 v v a v v v V v v v v a v v `v° �D O n N M 0) co m to Cl) an M N R (D It to M M n O 0 udNS CMp CapO u�i tOD N uN7 CtLOO t�t0 tG 407 COD > > V V v R R R R R R Q Q v R R v R V a m (V O M O M h LO M N M O Lf) M M r CO) 0) M r 4) J co r O (D M N R M co M n C7) 47 M M 47 C) O Wn Z R R v v LO V V a R OV V �C) v R R V' R O n pp M O O) �p M W O rl M C�pp p O c� I- M 0 r V (D Ln Co 0) + v� y v a a a v a "� v v V v a W N O O tD O O N (O M n Lo w CA O 'n LO M to n n Q (D N CD 47 r 47 N CA (o Cl) n O (o CA N ]- CD Of r 1 C _ O M M R (D CD t CO W O M u7 O Co O M z C � v v V V R v a a V a d0' V V V V a a a QOM pp Cn 0 O O O n R n O N CA O N R N O O 47 O Wo (M7 co r n a0 O Lo _ a0 a0 O r +- +- N O r p O G O r O O r O r O O m CL C CD CD 7 CD O N N N a N C) C M M N N N r — r — r r r U) R W M M Co (D r O co M n N M n n0pp N O O 41 0 O 0 M Cp N h R y (p ... tp to co (D to to v R to M M O M M R R R 0 R n R O M 0 M r R O r R O a x C M Q .{- r W p 10 tp M C) C+� a0 ems- (v) W CD to r CA M 1Q to cli 0) O co 0 N N V V N N CRD M (O (D N N r N tO O v e4 of M a d CMD q II m .0 O h N M n M M h h W R O 0 M O co N In O h ^ h CA R O M O m N n r m r N N CD n to 47 r M N F r r M M In M M M II C t M O h co M O N M N n M M U = ? In CD (D O (O n h n h [O O co w w h n w n w w w 0 C M CD (D R O h O 47 O r O h O M M O O O O O O } N ... W O w O (D N to Co LO to Cn 00 h h O 41 h 47 co co N II L) p H O o 0 0 o O o O O 0 0 o O O o o 0 O o 0 0 C � 47 to CO 47 to 0 to 47 to >n 0 47 47 to O Lr) 0 O to O -0 y� C. 01 W CA co M N R O O N CD O n N 2 N N O O C'7 r M R n W d r N M N O I` 4) LL7 N CO N CO R R O O O N N r p O O O O O O x n p M - CO N h O CO O M N O e N N M O R O Cl) M N O O 4 C O c7 O O O O O O O O O O O O O O O O O O O O_ tt: IC O a R R O GO R h R v M a c� R R CO N p� O n LO (O LO n CD M M n LO n 47 9 n CD CO h h n CO r C W` t7 U O O O O O O O O O O O O O O O O O O O O O t m E M N r 47 N n Ol 0) h n h Cl) 00 CO 2 M h 0 co T 4) n CD O O co 00 N OD n n CD N O O O M M N N N O C> O O 0 O O O E Q N OC L R M 00 O O O R LO M Lo tO (O O7 N CD M C V V O N N M M 47 n O CO N Lo M O M O O N p Op p C4 O Cl O O O O O O O O O O O O O O O O O O O N co p O p R R O — co j O M ^ W co C CO O 0) h O a R O o N O I� O N n O R to 0t O M n r N Q N CO (D cO M n M 00 n P y J n N (O 00 its M N Cn N c0 N N P- C p[I C � 2 C FJ w N M R CO CD (O 00 N N , (/) C w o m M O N.- N M R to ED h CC) W r .N- tO fD r 0 M N cV d Z N d m N CL _O cc �L�` ^W W N E O -W c/ m O m f0 m N M M m N to M NV M 4 LL') n to 1n UN7 tM In IT p 9 m m w V m m m m m m m m m U U U r U U (�V LL f 11 tT' (� (� U 9 9 !T� U U � U G N N N m M A m �j A � N M N f� n CD O m m m z m m m w m m mU mU mU m Um U vm U v 0N > M M v M M v �p cU O ��pp M �? aD M N � M M O �(pp O W n n 0 O n O 00 c+n) n n 0 (0 M O M N O N W) (p E O (D •1' v co V (0 V' w �w w Nt OV V v OW �t e0 V' V (O0 V (mp V Vn' v O a ( pp co 0 y t�1 N LO m m N t0 0 0 m t0 M n t� tO O m r to O p sr M MM r N N M M O G m OO° 0o O o L. $ w p mE C0 00 00 00 a It v v v v v v v v v v N CD U co cn r- V [ M A N h N m w 0 w N 000 N m t0 m co v co v LO Ln m CyJ M r V to C 0 M v M LO N w to n co tO OD n M N 0 M N co 0 N O co n N O N V' M n m n O (O J _ M M M N 0tp 0 `� O `� fD � M � r M M -p v � n = o v v a a sT v v iN v iM v v v v v V t w w IT v CO 007 O co co N r t0O Om0 N COD O tno N M �Vjj C) 000 tt j N M m N tv M a `� LO W 00 m r N Iq N It M M tt t0 n C >> d v v v v y y 3 v v a v v v v v v o iu O n M M m O m (0 M O M n O q M 47 O 0 2 t0 It N O t0 VP N to 7 �0 N N m E (Nnp �fNpp (W I s s z N t�D O ti lq 1M -t v M v ;: O H h O O 0 O ... M O OD O O Oro O V tN r .- .- co O O r M 007 r EL � N N N CO tO lA tO lO M 0 00 lO 00 00 m tO 0 0 t4 to tO Cl) "y CD N tD fry7 M d' S ttS 'Q n O m t0 N N tD O O tO 0 r M m v M N V O ln0 V' l0 M M N 0 M N m n N M LO N 0 M x p y .0 N LO LO 00 n {0 M N N m O m LO LL r M m n O 0 II Q_ 'v v v M N v O v N m tp co M N r coo t0 CO m O m w Cl) n d U w r r N O 0p r N O pppp t} tO CO M n r tO m m N N v N LO N Cl) M m N t4 0 m LO N O 0 N O m M II N , po 00 LO r O r m n O 0 t4 4 v N N �- 0 L II tC N N n 00 m r N n O N N CO CO m N .- r N N N U v n n n CO o ED n n to n n n 4 tD t0 n n n n n n o_ O n M - M O a0 t0 N o to to N O a M O O tO 0 CO tD O O 0 m Co tO tO LO to O m 0 tO to to t4 M v o f �j O O O O O O O O O O O O O O O O O O O O O O m G tO tO tO tO lO LO u) tO LO to 0 O to N u'i u') 0 O N tc) M a E v n M O n M M m O M LO O m y O M r O N N ' r r n N r � v r 00 4 tD M U O O O O O O O O N O O O O O X N O b O O ��pp O O O p� M 0 Q C1 G O O 4 O O O O O O O O tmO O O O O O O O O O O O C7 O <. O_ OD to m LO v n v n v n n n v n V n n LO t2 LO v 8 M v n m r N m m n LO LO to LO to to to r o 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 + d E %y (� 0 LO v N O M n N M a0 n v oD M o cn m n LO N v 0 o 0 N r r n O M N LO v w N r O M O O O O O O O sF N O N N O O OE c n N O O O O w LO tl) o O O m N 4 v O U Cj r r O n O N O r O t0 O r O N O r O N O r O tt'! O LO G O co O0 co N O o Cl) N 0 OO m l0 to N Cl) 0 N n O 4 N O ao Cl) m to n m O to O $ n g m IT C COO n O N N �M) 7 m O O 00 tq 0p to tO N n M m 0 � t0 n M n ti y 1 m t0 N M M t0 V 00 N N M N a0 N � N 2 N N w N N N CO w 0 C14 M N t� �p o m M � U. G ? N 0 M (n M M Cl) tMn w O N I���U) G N N N N N N N N pp M r M N M M M v Cl) N Cl) m Cl) n Cl) o co m M O v N d Z - ) CL c 0 � 75 � � � � � � � ca E � O 14W co � \ f A $ $ _ = a » < R § ® £ a § LO a E � @ A " E @ E ) ,1- 0 m q > £ £ f R E \ \ $ j CL j > £ - - 0 k § B / o � Lo E E E 0 m m 0 0 ƒ § 2 m§§to . x co LID Go 00 � k k m CL M� k C14 c"I ) _ « It _ o} § § ° B tE C*q c"I � )= — — o { � 7 2 \ \ o: u � kk ZZ / 0 - � E 5� @ § LO LO E ) Cl) co E - $ LO { 2) k p § Cl) m 6 2 _ C14 \ / - e 2 = £ k � § w w $ § § k ) 2 � 2 `o a) rn m CL m r cn LU LL r d C .J 4) 0 a a� J 0. _LO I�■11�II�NIIN U ■�1�11�II�� o N to 8 8 ❑ r �■1�11�1� I�11■II�II�1 CN �II�I�Nllll�le CL M go yam/ �11��1�111�1� V �II���I� ■I� �R:�Ipf N � N ❑ CO malmlillm $ r r LO y C J C J O N O Z malmlimom � v ro a x ° c � co io LU U- 1 � Q � w J o LO co a a m ❑ LO sv U') to Q � — r � 0 � c o � a ,-- v � w CO d N ¢ QTY �.�j LZ r C J I�■11�II�NIIN ■�1�11�II�� �■1�11�1� I�11■II�II�1 �II�I�Nllll�le �11��1�111�1� �II���I� ■I� O m m W CL M m V N m N J d O IL ^W W m E `o io C. M Q N O U N � C � r '�RRL�•7?7?' Q m rf O oL V Qc In M O V LO C 11111I J J �IIl O 'a O Z � �R�1�11l1� 7 A � U) ISO J co o a N C Q ~ d � U N a� a c J E `o io II� �R�1�11l1� E `o io 0 m CL ►: rr �i J m V M m ci M .0 J L a a� c .J a 8 Lilt' LO d � � O ~ M '61 0 N LO M U`n , i 0 C) C) A � v M LO v O U N co v N LL M O a� a v 0 ll��ll a� > N "o M N G LD � C -7 J J O LU O Z MollMEIN No C� LO n U) m = o c ❑ v qt T 3 0 I V- ,- 0 CL T T rL 0 II a 8 Lilt' LO 9 0 d � � O ~ M 0 N LO .r U`n 9 0 d � � O ~ M 0 N LO p U`n w 0 C) C) A � v M LO v O U N co v N LL M O a� a v 0 a� > N "o M N G LD � C -7 J J O LU O Z C� LO n U) m = o c ❑ v qt T 3 0 I V- ,- 0 CL T T rL 0 9 0 0 � rn o 0 0 LO w C) c M LO v O U N co N LL M O a� a 9 0 `o rn a /m V V 1 J O a a� J y N CL co L r N_ �AN�Il�1� U U") o LO III ■I�Illl■ D ��II 011 ,IIYll�lld�'� r cc c CD ch N c $ Ln L N J J CD O N co Z 0 U O M Lo LO 7 N O to C � C J _O a 419 � � O Oc - o c+,1 o M L � C O ... > N � W N �D > 49 D M HIM m Q C J y �AN�Il�1� ��I��11�11■ III ■I�Illl■ ��II 011 ,IIYll�lld�'� y 0 d rn m IL LO m V r-. LO J 0 a as J 0 E m CL fl- N .. O c� r� N d CD I� CL U) UO �dl■igl�� > N C v (p ■■IIR�I�Y 0 N 0 I c $ �Q y� N r J IB�IIN�11. J O O Z 1 ■�tl�fi� U Q .� c6 LD I�I�IAaI�� CD r � 2 ch s- 0 ko lion O J � � 0 CL = v 0 W 4i 0 C) c o C) 0 o o CL ''' Ln v o LO w C a� C C 0 V LO C7 M °' C'J v CD N L o 4 J 0 E m �dl■igl�� t ■■IIR�I�Y IB�IIN�11. 1 ■�tl�fi� I�I�IAaI�� 0 E m 0 d c0 EL MMr-_ V 1 r► J d 4m CL as c J N CL � r C) U � N � N pq � o LO LO [Alm L � O LO M �! co (D U U') N � J O O m M Z 0 co U C .3 'O T p- = N 3 ti NMI [INS rn o J U- CL o a Mal lum a� N Q O t� C M O N N ' V w ��Mpp MUSE Sri LL co m a� a c J 0 r O m CL a t� V m ■ J �A L L W J E 0 y O �111■II�IY�■■ CL ����AIIIIV� tl�aY111111�� O �Nd11iN11�1� U`n 1�81■�YI!i�l� IIYY��NI��I o LO C, u�g N o :3 i a M ME L. m o a ��l�IllNltl� cli ui 0 Lr) rn CO T (n co J O J CD O Z 20/ CC) N 2 � v' co J LL co try L 5 $ O CrJ Q d M Cl) t" �J av LO W d (_ Q Lo Lo L V co co v V � 8 8 U O � n O a� a` J E 0 y �111■II�IY�■■ �II■�All�� ����AIIIIV� tl�aY111111�� �Nd11iN11�1� 1�81■�YI!i�l� IIYY��NI��I ��l�IllNltl� E 0 y 0 m a V 1 C) co 1 d ,C J d L W J y Q � 0 N � o CD o R��tna CD ■■ � v M7� re�'ui �7 Rf 4 y LtJ � U i v � co LO V' N N C J J N O T p Z N U .. co co LO "' z Cl) Q00 Q1 +C, o d � d C) C LQI r C M O O /7 a IM r w V- � LIM o CID �I $ co U N co O a� C a` J y R��tna ■■ re�'ui y `o a O U v� m V oa J d 0 CL a� J a o UtO t _ o co C N CL M 03 o co M C v C J J N O L z � o N 00 D co all v o LL _ L_ C)- � O ERIE Ilwm C. 0 C" LO ` ° CL CD CU C14 c c � OWN C3 v co f N C o J 1�11NB:�II ■��ur1� w 0 m a 0 N _ Q co `n r � > U ° CN ;25 �iann�i�A - T _ m cu r N 0 M �IAI��I ■B�� Gi ndiwn�ur�u�w� N O M qq N U L LO .J O J O Z C CL N W ■awu�i Z Cl) �� LO �I�■Y� ■N�911� I E-3 L e� ��■���YdgOtl 3 L o CL d 0 � to N L} CV ne��■ow� Ul) O ^ Q c'q O LO W �ii�a�e• N rn °•m�J� LO d U LO LTL O T Q CD c a 0 N �iann�i�A �IAI��I ■B�� ndiwn�ur�u�w� ■awu�i �� �I�■Y� ■N�911� ��■���YdgOtl ne��■ow� �ii�a�e• °•m�J� 0 N O m b LTJ +ire m qla"' rM /W V 1 r r� V 1 r r O L wm W J 8 8 C14 9 w Ir- r w LO fl � c _N U - M 0 � � N W N � W � T ? M U _0 NT c � M Qv� N cn O N C N J J O T I Z _v LO SC 2 � p $ U-) v (0 3 M _ N O CL LL t N a� D N r N to C � O LO > > v N W N LO C 0 LO C3 N O U_ U N � � O a� a c J 3 OJ SEEM ,NEI 8 C14 9 w Ir- r w LO fl � c _N U - M 0 � � N W N � W � T ? M U _0 NT c � M Qv� N cn O N C N J J O T I Z _v LO SC 2 � p $ U-) v (0 3 M _ N O CL LL t N a� D N r N to C � O LO > > v N W N LO C 0 LO C3 N O U_ U N � � O a� a c J 3 OJ 0 d) 0 a fl c+7 N O p N U `LO LO Ch e cc U O 1 t > N z N 0 ch C Lfi N N J J O ro O Z � U M T = O $ co Lo Elm" cl � O LL LO Q LO P LU mwlm�ml M. a) M C 0 r LO Lo CY r 8 8 v LL 8 N � O (D C J k N rn W CL r r m V J Lm . ^ W c m, cn IB ■l�ll� IY�II�I�� I��II ■I�■ y Q 0 N N :D `. d' V > O T N Ci LO r c'�D aFl N n O 3 04 NN i2 (Y) 0 U � � J J N SM� O O Z CCU U CL � LO 7 LO M co LO 7+ 2 LO � T � CD 40 o LL rn a D °D C O a -- N Lo CU > '4i' lLl rT 4 J 0) � 84 Q T Vj N U N L N � r D O a� c a J cn IB ■l�ll� IY�II�I�� I��II ■I�■ y y r O N CL CL r m _r i r J O L CL as J co U 1D o O 1� N i N � r re LO �' LX71 O ai O UJ r U In N W LO _l J r � O � � Z V a .$. Lf) d' I6 'd r _ C) CD O C 4- t0 O T J r � t f�l 0 a� D cn o LO a� w a o 0 M _ 11') MMmc!Zmj'Q LL a � V J �B�fAll� E O d U Ui V c �B�fAll� E E 0 m C CL r m 1 M�M I.f.i V 1 r J O O L a as c J LU P'+ P M!� f 4'7 k� J 6�� i ( I��i Y77 .Y� 9 �t9 U P I f� M d � O U`') M Q � N N 0 � C U O N co co Q � � M Lo U to C � � � C J J O CO) Z N LO to U in 7 (6 r` 2 Cl) C � O 3 0 LL co 6 -� ti y D b fz N 0 � b LO C O Lo v qr N W N LO c in o in M Li V o a� a J m eals MEN "n MINI NMI 1 11mills �I� NXIN mom o� r 1 -40 6�� i ( I��i Y77 .Y� 9 �t9 U P I f� M d � O U`') M Q � N N 0 � C U O N co co Q � � M Lo U to C � � � C J J O CO) Z N LO to U in 7 (6 r` 2 Cl) C � O 3 0 LL co 6 -� ti y D b fz N 0 � b LO C O Lo v qr N W N LO c in o in M Li V o a� a J m 0 CL 0 `n M O A��IIII U`O ■� M 00 �! 4 8 8P{! �I 0 M cn M I��IQII�� AUD m IN�1111�11� to AY�illl�� C y C J O J O -' (� 0) Z a co M T = M C v o 6 LO 3 � � V V" 3 co o J t f) 0 m co �v � ti v � Q LO � � r N W N LO =o REM NEI Q U 8 8 8 8 v LL U N C O Q7 C d J 0 A��IIII ■� I��IQII�� IN�1111�11� AY�illl�� 0 w 0 a� m �o a r m V Cfl r V 1 r J 0 L A� W J s co a �. 00 cf) v > o U`n O co rn 3 o �i■n�e��� rn ui- c�! �n o $ __ U c N J J O N O Z M � 0 .-. N U LO 7 d) = LO CO Ina LL O CD J ) o CL a� co 0 o c� a. c _ O' c'Q t0 a d W N N c LO CO C� U ,n N � r O N d C J s �i■n�e��� s T 0 d rn m a �I M r N M 0 1 C6 TM M M IW V 1 .0•. OCR J d i� 0 w. W J i }! ►' u 9 S� Ln V-- r ig 9 w a b in CO L > O '� m °D S T o v U co (O tO tf m _ cc 0) a� Ci v ��nwwin�� Vj CL C 3 U N N c U O 0. J 0 � T ti O N C to N J J m o z 7 � CV) b T 2 Q LO LO slims z � T 3 O U- T 4-- O Q T a Milton INIIIIII . 11=001 m � u 9 S� Ln V-- r ig 9 w t E a b in CO L > O '� m °D S T o v U co (O tO tf m _ cc 0) a� Ci v cu 0 Vj CL C 3 U N N c U O 0. J 0 � T ti O N C to N J J m o z 7 � CV) b T 2 Q LO LO z � T 3 O U- T 4-- O Q T a t E N c O '� m °D S ca v w tf m _ cc 0) Ci v U- U N N c 0. J t E RIIoG■ rn Q CN CN �,tnn■ N O O N U `n M � 0 N ROD N M b� L7 O � U T tD Q7 C _ � J � LU LU O Z N U ; (O tt =3 N C LO T � T LL y/ 0 CL co V ^Q W 00 r- Q V p Q rn LO D C �) N W > cD 0 LO lug M (D N U N 0) O a� a` c J RIIoG■ �,tnn■ CL ,. M 0 CO o C) U rn v n�man�� a �r U LO o L r J J O � O Z � r U CD r .0 J+ = � b CD MraM 3 $ M O LL O C CL 5 - b O U b O MINE O � r �Mlmm milill, mm cc av >_ 0) LLI V- 4) 0) LO d O N M LL U 0 N N C) N n. C J n�man�� 0 d Ol a N m V N N m V 1 N Qi �C J d L W J • r�l C mmimpl- a 8 L7�1 Lo O Q C' Co o o � U M co a� N C N 3 CL ZN v 0 m U M co to J J O O Co ca Z N (0 T _ Lo Lo 0 (o co 3 0 0 CL 0 a 0 o 0 N w I ti (D _ U' M N LL U N N O N d C d 8_ ! i MR MEMO C mmimpl- a 8 L7�1 Lo O Q C' Co o o � U M co a� N C N 3 CL ZN v 0 m U M co to J J O O Co ca Z N (0 T _ Lo Lo 0 (o co 3 0 0 CL 0 a 0 o 0 N w I ti (D _ U' M N LL U N N O N d C d MEMO I I INEVIN Mill a 8 L7�1 Lo O Q C' Co o o � U M co a� N C N 3 CL ZN v 0 m U M co to J J O O Co ca Z N (0 T _ Lo Lo 0 (o co 3 0 0 CL 0 a 0 o 0 N w I ti (D _ U' M N LL U N N O N d C d 0 N rn m (L MN W V 1 N m L) lom-► N C J O L W J 8 O_ M I- cy) � O r U _ O qT U*y <n cej y L5 �J �I�IaE T � M ■Ib■� O C .... to v C J J O a O Z � U CL (A N M a T 0 ti 1 M O LL O aO 4 D CD O o p N Ise > °v w V- > o ca v LO mum 00 i N 8 8 1 8 LL U N N N v c a J 8 �I�IaE ■Ib■� 8 0 0 Cl) L r 0 IN M co u��eni O ch ■e de Ir 0 uw��n N � U nn�ni�e N � �t m J J O O N U _ a � v v c0 = o -- LEI _ N O C � J o � ou O L1 :c M 0 r C O co O M a� r W Q7 00 _ cq CO Nt � � o N N O v c a J 0 u��eni ■e de ■rtn�■ uw��n nn�ni�e 0 0 CL N C4 CL 4) c .j �a 4 I 8 8 A F; LO LEE MEN ILI in 8 8 llm��lll am-No I�'ll�� FINE III iI■■�11-ki, lip, A F; LO LEE 0) rL CD 0 IN L) Lo co ia W 0 co rL 04 O C14 ce) C S Q) d Z CV) co c C9 CD CN 0 LL a) m 0 D CL ci C'4 CL Cf) 0) r cl C) 0 0 00 CL D w (0 qT 00 LL t Q) 04 cl) to E h iz 8 8 8 0) rL CD 0 IN L) Lo co ia W 0 co rL 04 O C14 ce) C S Q) d Z CV) co c C9 CD CN 0 LL a) m 0 D CL ci C'4 CL Cf) 0) r cl C) 0 0 00 CL D w (0 qT 00 LL t Q) 04 cl) to E h iz y 0 rn CL T N r � O O O N U o it ■I�11�■ ■1�1�1�1�1 O CL M � O N r M M U LO L y --MEN J J (9 O Z M V Q LO (D malls m ro M A = Ismillm� O 9g 11�001�m� O 3 � m o �9 LL m w o a rL W 0 cn 0 o LO � O q > > .. W V_ Lo > — DC CN CC) `n 0 v LZ V O it N m a c J y 0 it ■I�11�■ ■1�1�1�1�1 y 0 w mo cc W M M m V C4 N M m U r N C J y-- O a a� J 8 8 8 8 L a� O T o N U _ LO n N .5 _ 8 8 i r- MI 8 C'N C. La r uD 0 N O CL J £a L h n 11 8 N O CL J £a L h n 11 T 0) N L a� O T o N U CD LO n N m 0 N a � � � � U O C � ❑ v r N CD N C ((D N J ---1 O N O Z Nr 7 a z CO Q to d' CA O O LL � T a a� 0 0 rn o � o C M � O .. �t CD N w m co o CD a CD N O CL J £a L h .i pp 8 8 n J Y S2- .L LfW e-- \ Q n r Pdl�m on > O - k mi IN U imommilom .-. 00 ■I�IIII N ■� N 0 m ti 7 = Cl) 0 CD > co to �I U .. ■Ili'■ N C J J O a O Z M 0 U 4:� 7 � N (O T _ C Lo _ M O O LL C7 � et:! d Q 0 m to O C O N O CL LO C cC > :5 N W N � c Qc to �' ■111 ■■ C� N LL ik ~ N N C d J mum RINI n J Y S2- .L LfW e-- \ Q n r > O Q N U .-. 00 N N 0 CL ti 7 = Cl) 0 CD > co to C U .. to N C J J O a O Z M 0 U 4:� 7 � N (O T _ C Lo _ M O O LL C7 � et:! d Q 0 m to O C O N O CL LO C cC > :5 N W N � c Qc to v C� N LL ik ~ N N C d J O N m 07 l6 EL M m V M4 /W V 1 co J v 0 w� W sum J 0 CL .� to v CO rnw�iil�� O CD U ti co 8 0 N rn a W .=.mmm, co Qc p c v En c J O J O C-1) Z U CL $ CD 5 Oo Io T = COD H7 co M o LL co —� c = o 0 co M � � O O O CO > LU �T c V- a) c c o v O W 8 8 U co N a) N C d J 0 rnw�iil�� 0 N a M ui LL M m V r\ N C J 4— AA0 I.Ai�'. W J 0 N ��Il1lll�� N O U 1■■1'N6��■1 to Rl�fll�l�� Q6F LO 7 j CN Q qCr CIR N C co C L�7 G --� O Z co _U $ C(O N A = M LO W Nr LL C) L J ' � - o n N O o N a o O c iO r 0 t,0 .. co w N N LO mom O � LL N � N O a� a c J 0 ��Il1lll�� 1■■1'N6��■1 Rl�fll�l�� 0 `o m a m V VL W LIL 0 M J Q� y= 0 IL J ti DL Q `n rn 8 8 Q o is M 7 Of Sri E5 N ti N O $ L N J .J � � O n L m co Z CD o Q Ln co Lo � r � o a Q o� w N N C Q M CJ U oD .o m J S N N■�I�I��IE =� S N co a $ co j v !n W r CD U `O r- m r� ti CL Lf) o V O N 43 > lu N OR LO m MEN U ltd N J J O O � Z N V $ LO LO N A = M �Q N 67 Q LO loWl 'd' mmm�illlf , LO ito LO � 3 O LL N O Q Q i�11 Q LO r CO C � O �- W o Lis c = r ME m ❑ — LO N v Q U 00 LL T O _ J O y ■I�dI��Y �I III 'ANI�IIN� O y a rn °0 v N O U tD co co f�1 � �1 ■lam Q LO 1�1111�d�1 m Cl CL U X11 ■�1�1�■ mom, MOM > LO lu Mull LO I-z Q M ��aaial�l ��I�li ■1- U M a) �I�I�II ■1� J J O O C) M Z d 3 Q � IMA � f4 T INNIM r co LO � O LL 0 M a a) Q � pc cv as rn C O r v LO > M, Immilim m w ' to ai mpm�m c L N LO 11b LL v Q) M O a� a c J f�1 � �1 ■lam 1�1111�d�1 X11 ■�1�1�■ ��aaial�l 0 rn co CL AA$ �5 i I r�r A LO U 1 4 M�M 0 1 M d .J 0 Lm a C J t f� 8 it 0 rlj Y/ r r LO G rl- M LL L. 9 O r N U M M rn co LO co c ❑ .. M El m io N c N c O U O � N M r C � ❑ r C) r t f� 8 it 0 rlj Y/ r r LO G rl- M LL L. 9 O r N U M M rn co LO co c ❑ .. M m io N c N c O U O � N M r C � ❑ r C) r aD c � v c J J O C) O Z _u $ cf) �1�11 >, 2 i co c LO NEI, I LO c) O m Hi . 0. LL 1_1O, EIIE- 0 j_— 1 13--: J Ict C� Q M � � r r t f� 8 it 0 rlj Y/ r r LO 9 rn In rn G rl- M LL L. 9 O r N U M M rn co LO co c ❑ .. M m io N c N c O U O � N M r C � ❑ r C) r aD c � v c J J O C) O Z _u $ cf) >, 2 co c LO ' iT7 LO c) O LL 1_1O, 0 j_— 1 13--: J Ict C� Q M � � r r O m Q .� (V to w cf) c Qc LO v d 9 rn In rn LL U � M M � N d 9 rn In rn O C13 CL cc N CL 01 Q 0 C) (D rl- 8 8 8 m co 04 CL B., moil L 1III�S� "� *+ mm r CN tu 0 Mu co CN (D CI4 ra (0 IT MIMI m 04 LO OD CN ce) 0 CI4 v J Z N C o 04 VM ce) 0 C) rr LLI C) > MR C a L) C) o M CY) U d Sr �,�81{I�YR■ �lYII11VI�Y� Sr 1 ii 1 J r` s[J .2 Lo SY r ma ti Q � m L T CD o o tn C : N to 0 as a � 3 Q U O 7 Q � � W T (A J J O O 70 co Z C9 w Q T ca L 73 T � = N C $ T N _ � T _O LL � T O Q N L � T CL a) a M Q a T ti C � O CD > > v co co 2 W N N C O C a qtr d v co N LL U a) a2 d c J A E in 0 m m a co L) 1 V I M C_ J 4- 0 L W J U) y LO > o N ■■ U � r � � �I ■ cc y 3 O + c to �IB�VIV ■ ■� N � r M to r C c N O Z m � v N � a0 >. s 00 ° co v ham-• ° � 3 $ Q J LL CL ^C` W ° y O ^ v T O r_ N ca co w c c o QU N m O � c a J U) y ■1111 ■ ■■ �I ■ ■�101�� �IB�VIV ■ ■� y N_ $ 00 a O O N U M CD 0 O N _ C N � 7 L o � r M 1� O N > N 0 r v f', $ v c c c LU J J � _ O � Z r � � r N r M o LL A' o a M ao O 0 CD mill M O Cl > Q v N W � N � C v IMMIMEN, , IRMO M aw d V O N � p- c J 0 �li��ni■ I�IIIII■ ���1�1111e man n�u■n �I�V�9All�� 0 g CL � v ■�i�ll�l■ o C) �v1 ■IIIB� U L M � 8 8 o$ Lo �NA�IIII N 3 L6 �11� ■Illi O N O) ti LU 1■Nl�lo�� W) O M Y r� ��1 ■OIII� ■�11�1111� N J ■III C J ■11�1� O 'a O Z p ,r CM} OD N A = � v co � 1 v O 0 i` J O y = v o CL L49 4) � m 00 c Q v � j co C O a �- M co w L CD (L) C w N C OME M L d v N � N k co M N d C J g ■�i�ll�l■ �v1 ■IIIB� ��1�11111� �NA�IIII �11� ■Illi 1■Nl�lo�� ��1 ■OIII� ■�11�1111� ■III ■11�1� g Ez K L R a 9 4 zu M D 0 > ce) ■III■ LO LO O Cf) cn a) MUSM z Opp-is cf) limillimm 1.1■1111.1■ Immull, co O R a 9 4 zu M D 0 > ce) LO LO O Cf) cn a) z cf) co O O Ll ce) 0 M 00 c; C) 00 C') LU tf Cl) 0 U') > ce) CD co LO LL Pu a) tm m (L LID Lf) 0 J "Mm 0 a WON -i Ur m 9 'I C-4 9 a IE 7-o CL 0 C.) oo c 4=! N m U) 04 0 N > ce) Oq L) (D 0 'D z 2 CL qT LD ti 0 ty) 4- 0 Cf) 4 C) 0- W 0 cli C LO O O CL LL] U-) CI4 1 Is 8 4 Lim m 9 'I C-4 9 a IE 7-o CL 0 C.) oo c 4=! N m U) 04 0 N > ce) Oq L) (D 0 'D z 2 CL qT LD ti 0 ty) 4- 0 Cf) 4 C) 0- W 0 cli C LO O O CL LL] U-) CI4 Lim loin on INN m 9 'I C-4 9 a IE 7-o CL 0 C.) oo c 4=! N m U) 04 0 N > ce) Oq L) (D 0 'D z 2 CL qT LD ti 0 ty) 4- 0 Cf) 4 C) 0- W 0 cli C LO O O CL LL] U-) CI4 0 m Q) d m V r LO m V 1 J 4) 0 IL W J u7 C}' C 0 U`O o C N LO j nni�� ui LO N c ` 0 00 c co co fA 47 C J C $ � co C J � m O Z U ti Ell 7 'O IL > jj9y (� Lo OD O C LO ..J ° a a° CD CL � � o � t*1 o a ti Lis c N CL w N LO CD N � � O a� a` c J nni�� 8 8 8 a, 0 94 41 I- 2 7+j Cf) CD 0 LO 00 (D Cl) ❑ 00 CL C, O cr) G) CR 4i p- a) (D O 6 Z (D IT V C) (D LO 0 U- 0 n. LO co Cl) 0 MJ. qcr LU t: 0) LO N L) CN LL CN Itt a) Nonni ail ■ � ■� mom If ,ELM a, 0 94 41 I- 2 7+j Cf) CD 0 LO 00 (D Cl) ❑ 00 CL C, O cr) G) CR 4i p- a) (D O 6 Z (D IT V C) (D LO 0 U- 0 n. LO co Cl) 0 MJ. qcr LU t: 0) LO N L) CN LL CN Itt a) vs a> 0) a N to T�T I r' 2 I M d C J O L 0. W J C o o t- � 0 CD co co :3 � CO N a 00 co h C M U co LO N J J M LIR O z �lall ■��■ M r 3 _ M 3 LL ...! Ell Ilium o m a N N N r 1�,1� Ell 1011WE a it:! N P O F CL N LO v o w m c 0 LO L6 MNI w U �$ M � O N G J 1�,1� 0 a $ a c (D o 9 N _ U 1O o co _ v ❑ $ M i o h- a = v ~ MENEM 4� V O MENEM � CR C ti M It 4 OD C � c J J N O M Z U LO O �+ _ QO _ ❑ v LO � M 3 O O to ._� J CL N � +L+ O CD Q N Lo r N C N � $ v LO > > � W O � C �^ L Lo Q Lo LO U d UO co U. N O a� a` c J 141- OCJ CULL.-'C_9-i5 — 1 Watershed Model SchematkrfdraflowHydrographs Extension for AutoCADG Civil 3DV2014 by Autodesk, Inc v103 1 Legend mod. Origin Descnotion 1 Rational Culvert 1 Rational Project. Culvert 1 Flow gpw Thursday, 06 1 12 1 2014 Hydrograph Summary ReKyrd1flowHydrographs Extension for AutoCADM Civil 3D ®2014 byAutodesk, Inc v10.3 Hyd. No. Hydrograph type (origin) Peak flow (cfs) Time Interval (min) Time to Peak (min) Hyd. volume (cuft) Inflow hyd(s) Maximum elevation (ft) Total strge used (cuft) Hydrograph Description 1 Rational 17082 1 56 573,947 -- -- — Culvert 1 Rational 0 Culvert 1 Flow.gpw Return Period, 10 Year Thursday, 06 / 12 / 2014 3 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10 3 Thursday, M / 12 / 2014 Hyd. No. 1 Culvert 1 Rational Hydrograph type = Rational Peak discharge = 170.82 cfs Storm frequency = 10 yrs Time to peak = 0 93 hrs Time interval = 1 min Hyd. volume = 573,947 cult Drainage area = 63.500 ac Runoff coeff. = 0.52 Intensity = 5.173 In /hr Tc by User = 14.00 min OF Curve = Cary- Stephenson Road. OF Asc /Rec limb fact = 4/4 Q (cfs) 18000 16000 14000 12000 100.00 8000 6000 4000 2000 Culvert 1 Rational Hyd No 1 -- 10 Year Q (cfs) 18000 16000 14000 12000 100.00 8000 6000 4000 20.00 0 00 It I I I I I I I I I I I` 1 000 00 0.2 0.3 05 07 08 10 12 13 15 17 18 20 — Hyd No 1 Time (hrs) 4 Hydrograph Summary Re Ry'dIrflow Hydrographs Extension for AutoCAD® Civil 3D@2014 by Autodesk, Inc 003 Hyd. No Hydrograph type (origin) Peak flow (cfs) Time interval (min) Time to Peak (min) Hyd volume (cult) Inflow hyd(s) Maximum elevation (ft) Tote strge used (cuft) Hydrograph Description 1 Rational 20526 1 56 689,686 - -- — — -- Culvert 1 Rational a Culvert 1 Flow gpw Return Period, 50 Year Thursday, 06 ! 12 ! 2014 5 Hydrograph Report Hydraflow Hydrographs Extension forAutoCAD® Civil 3D® 2014 by Autodesk, Inc v10 3 Thursday, 06 112 / 2014 Hyd. No. 1 Culvert 1 Rational Hydrograph type = Rational Peak discharge = 205.26 cfs Storm frequency = 50 yrs Time to peak = 0.93 hrs Time interval = 1 min Hyd. volume = 689,686 cuft Drainage area = 63.500 ac Runoff coeff = 0.52 Intensity = 6 216 in /hr Tc by User = 14.00 min OF Curve = Cary- Stephenson Road.IDF Asc /Rec limb fact = 4/4 Q (cfs) 21000 18000 15000 12000 9000 6000 3000 Culvert 1 Rational Hyd No 1 -- 50 Year Q (cfs) 21000 180.00 15000 12000 . I T1 3000 000 Y I I I I I I I I I I �` ' 000 00 02 03 05 07 08 10 12 13 15 1.7 1.8 2.0 Hyd No 1 Time (hrs) ---- Hydrograph Summary Re P9 draflow Hydrographs Extension for AutoCAD® Crnl 3D® 2014 by Autodesk, Inc v10 3 Hyd. No Hydrograph type (origin) Peak flow (cfs) Time interval (min) Time to Peak (min) Hyd. volume (cuft) Inflow hyd(s) Maximum elevation (ft) Total strge used (cuft) Hydrograph Descnption 1 Rational 21754 1 56 730,926 - -- — — Culvert 1 Rational Culvert 1 Flow gpw Return Period- 100 Year Thursday, 06 / 12 / 2014 7 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 31)9) 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Hyd. No. 1 Culvert 1 Rational Hydrograph type = Rational Peak discharge = 217.54 cfs Storm frequency = 100 yrs Time to peak = 0.93 hrs Time interval = 1 min Hyd volume = 730,926 cuft Drainage area = 63.500 ac Runoff coeff. = 0.52 Intensity = 6.588 in /hr Tc by User = 14.00 min OF Curve = Cary- Stephenson Road.IDF Asc /Rec limb fact = 4/4 Q (cfs) 240.00 21000 18000 150.00 12000 9000 6000 3000 Culvert 1 Rational Hyd, No 1 —100 Year Q (cfs) 240.00 21000 18000 15000 12000 3000 000 If I 1 I I 1 ' I 1`- - 1 000 00 02 03 05 07 08 10 12 13 15 17 18 20 Hyd No 1 Time (hrs) Hydraflow Rainfall Report Hydraflow Hydrographs Extension for AutoCADO Civil 3D® 2014 by Autodesk, Inc v10 3 Thursday, 06 112 / 2014 Return Period Intensity- Duration- Frequency Equation Coefficients (FHA) (Yrs) B D E (N /A) 1 00000 00000 00000 ---- -_ 2 662053 128000 08787 -- 3 00000 00000 0.0000 - - -- 5 730474 130000 08409 - -- 10 688310 121000 0.7934 -- 25 632015 11 1000 07421 - - - -- 50 58.8146 10.4000 0.7034 -- - - ---- 100 50.8258 90000 06516 - -- File name Cary- Stephenson Road OF Intensity = B I (Tc + D) "E Return Period Intensity Values (in/hr) (Yrs) 6 min 10 16 20 25 30 35 40 45 50 55 60 1 000 000 000 000 0.00 000 000 000 000 000 000 0.00 2 527 424 356 308 272 244 221 203 187 1 74 1 63 1 53 3 000 000 000 000 000 000 000 000 000 000 000 000 5 643 523 443 386 343 309 282 259 240 224 210 1 98 10 7.24 590 502 439 391 354 324 299 278 260 245 231 25 804 658 562 493 442 401 368 341 318 299 282 267 50 859 705 604 533 478 436 402 373 349 329 311 295 100 910 746 641 566 511 467 432 4,02 3.78 357 338 322 Tc = time in minutes Values may exceed 60 Precin file name F. 1Hvdraflow \PrecindationlC2rv- Stenhenson Rnad ncn Storm Rainfall Precipitation Table (in) Distribution 1 -yr 2 -yr 3-yr 5-yr 10 -yr 25-yr 50 -yr 100 -yr SCS 24 -hour 000 320 000 427 503 601 678 756 SCS 6 -Hr 000 229 000 300 356 424 481 538 Huff -1st 000 000 000 000 000 000 000 000 Huff -2nd 000 000 000 000 000 000 000 000 Huff -3rd 000 000 000 000 000 000 000 000 Huff4th 000 000 000 000 000 000 000 000 Huff -Indy 0.00 000 000 000 000 000 000 000 Custom 000 000 000 000 000 000 000 000 ti W S Channel Report Hydraflow Express Extension for Autodesk® AutoCAEM Civil 31® by Autodesk, Inc Pond Channel 10YR Trapezoidal Area (sqft) Bottom Width (ft) = 12.00 Side Slopes (z:1) = 3.00, 3 00 Total Depth (ft) = 300 Invert Elev (ft) = 456.00 Slope ( %) = 1.00 N -Value = 0.034 Calculations Compute by, Known Q Known Q (cfs) = 170.82 Elev (ft) 460 00 45900 45800 457.00 45600 45500 Section Thursday, Jun 12 2014 Highlighted Depth (ft) = 1.83 Q (cfs) = 170.82 Area (sqft) = 32.01 Velocity (ft/s) = 534 Wetted Perim (ft) = 23.57 Crlt Depth, Yc (ft) = 1.61 Top Width (ft) = 22.98 EGL (ft) = 2.27 5 10 15 20 25 30 35 40 Reach (ft) Depth (ft) 400 300 200 1 00 11MIIIIIIIIIIIII Wm Channel Report Hydraflow Express Extension for Autodesk®AutoCAD® Civil 3D® by Autodesk, Inc Pond Channel- 50YR Q (cfs) Trapezoidal Area (sqft) Bottom Width (ft) = 12.00 Side Slopes (z.1) = 3 00, 3.00 Total Depth (ft) = 3.00 Invert Elev (ft) = 456.00 Slope ( %) = 1.00 N -Value = 0.034 Calculations Compute by. Known Q Known Q (cfs) = 205 26 Elev (ft) Section 46000 45900 45800 45700 456.00 45500 Tuesday, Jun 10 2014 Highlighted Depth (ft) = 2.02 Q (cfs) = 20526 Area (sqft) = 36.48 Velocity (fVs) = 5.63 Wetted Perim (ft) = 24.78 Crit Depth, Yc (ft) = 1.79 Top Width (ft) = 24.12 EGL (ft) = 2.51 Depth (ft) 400 300 200 100 _i nn 0 5 10 15 20 25 30 35 40 vV Reach (ft) Channel Report Hydraflow Express Extension for Autodesk@ AutoCADW Civil 31M by Autodesk, Inc Pond Channel- 100 YR Trapezoidal Area (sqft) Bottom Width (ft) = 12.00 Side Slopes (z.1) = 3.00, 3.00 Total Depth (ft) = 3.00 Invert Elev (ft) = 456.00 Slope (%) = 1.00 N-Value = 0.034 Calculations Compute by: Known Q Known Q (cfs) = 217 54 Elev (ft) Section 46000 45900 458.00 45700 45600 45500 Tuesday, Jun 10 2014 Highlighted Depth (ft) = 2.08 Q (cfs) = 217.54 Area (sqft) = 37.94 Velocity (ft/s) = 5.73 Wetted Perim (ft) = 25.16 Crit Depth, Yc (ft) = 1.85 Top Width (ft) = 2448 EGL (ft) = 2.59 5 10 15 20 25 30 35 40 Reach (ft) Depth (ft) 400 3.00 200 1 00 -i nn Description Exhibit 1 Table of Rational runoff coefficients C Source Roof, inclined 1.00 Malcom 7eSariv',ew�y;�sde,�c►alk :. Chow, 1964 Parking lot Malcom Roof, flat 0.90 Malcom Commercial, generalized 0.85 Malcom Apartments, schools, churches 0.60 WSSC, c.1968 Residences, 10 dwellings/acre 0.60 Malcom Residences, 6 dwellings/acre 0.55 Malcom Residences, 4 dwellings/acre 0.50 Malcom Residences, 2 dwellings/acre ,;`OOx ' Malcom Unimproved cleared area 0.35 Malcom Lawn, dense soil, steep >7% 0.35 Chow, 1964 Playground 0.35 Chow, 1964 Park, cemetery '0,25 Chow, 1964 Lawn, dense soil, avg 2 -7% Chow, 1964 Wooded, sparse ground litter 0. Malcom Lawn, dense soil, flat 2% Chow, 1964 Lawn, sandy, avg 2 -7% 0.15 Chow, 1964 Lawn, sandy, flat Q% 0.10 Chow, 1964 Wooded, deep ground litter 0.10 Malcom VI-2 Orchard Lily Subdivision TIME OF CONCENTRATION Tc Kirpich Equation L= Hydraulic length Tc = {[(L ^3) /H] ^0.385/128] H= Elevation Difference along hydraulic length L= 2005 H= 29 Tc= 13.9 Use 14 minutes Post developed site assume 5 Minutes Watershed Model Schematigraflow Hydrographs Extension for AutoCADV Crvil 3D® 2014 by Autodesk, Inc v10.3 1 2 ['�4 Leaend V5 Hvd• Orfaln Description 1 Rational predeveloped site 2 Rational Post Developed site to pond 3 Reservoir Post Dev thru pond 4 Rational Post Dev not to pond 5 Combine Total post site with pond Project BMP rational 6 -9 -14 gpw Thursday, 06 / 12 / 2014 Hydrograph Return Period Hyaefevograpns Extension for AutoCADO Civil 3D02014 by Autodesk, Inc v103 Hyd. Hydrograph Inflow Peak Outflow (cfs) Hydrograph No type hyd(s) Description (origin) 1-yr 2 -yr 3-yr 5 -yr 10 -yr 25-yr 50-yr 100 -yr 1 Rational -- 13 04 1569 -- 1851 2069 23.79 26.25 28 70 predeveloped site 2 Rational - -- 31 77 3760 — 4294 4715 5349 5849 6345 Post Developed site to pond 3 Reservoir 2 0 040 0.044 -- 0 048 0 050 0 054 0 056 0 059 Post Dev thru pond 4 Rational - - -- 1277 1511 - -- 1726 1895 21 50 2351 25.50 Post Dev not to pond 5 Combine 3,4 1279 1514 - -- 1729 1898 21 53 2355 25.54 Total post site with pond Prod file BMP rational 6- 9- 14.gpw Thursday, 06 / 12 / 2014 Hydrograph Summary Re P9fdrtaflow Hydrographs Extension for AutoCADV Civil 3DID 2014 by Autodesk, Inc v103 Hyd No. Hydrograph type (origin) Peak flow (cfs) Time interval (min) Time to Peak (min) Hyd volume (cult) Inflow hyd(s) Maximum elevation (ft) Total strge used (cuft) Hydrograph Description 1 Rational 1304 1 14 10,952 - - -- - -- -- predeveloped site 2 Rational 31 77 1 5 9,530 -- -- -- Post Developed site to pond 3 Reservoir 0 040 1 10 5,510 2 45253 9,517 Post Dev thru pond 4 Rational 1277 1 5 3,830 - ---- - -- - -- Post Dev not to pond 5 Combine 1279 1 5 9,340 3,4 -- -- Total post site with pond BMP rational 6- 9- 14.gpw Return Period 1 Year Thursday, 06 / 12 / 2014 4 Hydrograph Report Hydraflow Hydrographs Extension for AutoCADO Crvil 3138 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 12014 Hyd. No. 1 predeveloped site Hydrograph type = Rational Peak discharge = 13.04 cfs Storm frequency = 1 yrs Time to peak = 14 min Time interval = 1 min Hyd. volume = 10,952 cuft Drainage area = 19.370 ac Runoff coeff. = 02 Intensity = 3.366 in /hr Tc by User = 14.00 min OF Curve = Raleigh.IDF Asc/Rec limb fact = 1/1 Q (cfs) 14.00 1200 1000 8.00 600 400 200 predeveloped site Hyd No 1 -- 1 Year L--i- -1--i - - Q (cfs) 1400 1200 1000 800 600 4.00 2.00 000 Y I I L 1 I I 1 ' I 1 1 1 1 3 000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Hyd No 1 Time (min) 5 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 31® 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Hyd. No. 2 Post Developed site to pond Hydrograph type = Rational Peak discharge = 31.77 cfs Storm frequency = 1 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 9,530 cuft Drainage area = 13.900 ac Runoff coeff = 0.47*—,— Intensity = 4.863 in /hr Tc by User = 5.00 min OF Curve = Raleigh OF Asc /Rec limb fact = 1/1 * Composite (Area/C) = [(4 690 x 0 95) + (9 210 x 0 22)] / 13 900 Q (cfs) 3500 3000 2500 2000 1500 1000 500 0 00 X I - I 0 1 2 --- Hyd No 2 Post Developed site to pond Hyd No. 2 - -1 Year 3 4 5 6 7 8 Q (cfs) 35.00 3000 2500 20.00 1500 10.00 500 �- 0 00 9 10 Time (min) Hydrograph Report u Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Hyd. No. 3 Post Dev thru pond Hydrograph type = Reservoir Peak discharge = 0 040 cfs Storm frequency = 1 yrs Time to peak = 10 min Time interval = 1 min Hyd. volume = 5,510 cult Inflow hyd. No. = 2 - Post Developed site to poA&x. Elevation = 452 53 ft Reservoir name = Wet Pond Max. Storage = 9,517 cult Storage Indication method used. Q (cfs) 35.00 30.00 2500 2000 1500 1000 5.00 0 00 ' 0 300 Hyd No. 3 Post Dev thru pond Hyd No 3 - -1 Year Q (cfs) 3500 3000 2500 2000 1500 1000 500 ' 000 900 1200 1500 1800 2100 2400 2700 3000 Time (min) Hyd No 2 ® Total storage used = 9,517 tuft Pond Report 7 Hydraflow Hydrographs Extension for AutoCADO Civil 3D® 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Pond No.1 - Wet Pond Weir Structures Pond Data [A] [B] Contours -User-defined contour areas Average end area method used for volume calculation Begrning Elevation = 452 00 ft Stage / Storage Table [A] [B] Stage (ft) Elevation (ft) Contour area (sgft) Incr. Storage (cuft) Total storage (cult) 000 45200 16,349 0 0 1 00 45300 19,640 17,995 17,995 2.00 45400 22,989 21,315 39,309 300 455 00 25,055 24,022 63,331 400 45600 27,177 26,116 89,447 Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] Rise (in) = 18,00 1,50 000 000 Crest Len (ft) = 16.00 3000 000 000 Span (in) = 18.00 1.50 000 000 Crest El. (ft) = 453.50 454.25 0.00 000 No. Barrels = 1 1 1 0 Weir Coeff. = 333 260 333 333 Invert El. (ft) = 451.50 452.00 000 000 Weir Type = 1 Broad — — Length (ft) = 24.00 0.00 000 000 mum -stage = Yes No No No Slope ( %) = 050 000 000 n/a N -Value = 013 013 013 n/a Orifice Coeff. = 060 060 0.60 0.60 Exfll ()n /hr) = 0 000 (by Contour) Multi -Stage = n/a Yes Yes No TW Elev. (ft) = 000 Stage (ft) 400 300 200 100 000 Note Culvert/Onfics outnows are analyzed under Inlet (1c) and outlet (oc) control Weir risers checked for orifice conditions (1c) and submergence (a) Stage / Discharge Elev (ft) 45600 45500 45400 45300 45200 00 200 400 600 800 1000 1200 1400 1600 1800 2000 Total Q � Discharge (cfs) � 8 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc A 0 3 Thursday, 06112 12014 Hyd. No. 4 Post Dev not to pond Hydrograph type = Rational Peak discharge = 12.77 cfs Storm frequency = 1 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 3,830 cult Drainage area = 5.470 ac Runoff coeff. = 0.48* Intensity = 4.863 in /hr Tc by User = 5.00 min OF Curve = Raleigh.IDF Asc /Rec limb fact = 1/1 Composite (Area /C) = [(1 320 x 0 20) + (1 950 x 0 95) + (2 200 x 0 22)] 15 470 Post Dev not to pond Q (off) Hyd No 4 --1 Year Q (off) 14 00 1200 1000 800 600 400 200 000 14 00 1200 1000 800 600 400 200 000 0 1 2 3 4 5 6 7 8 9 10 Hyd No 4 Time (min) Hydrograph Report 9 Hydraflow Hydrographs Extension for AutoCADO Crod 3D® 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Hyd. No. 5 Total post site with pond Hydrograph type = Combine Peak discharge = 12.79 cfs Storm frequency = 1 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 9,340 cuft Inflow hyds = 3, 4 Contrib. drain area = 5.470 ac Total post site with pond Q ion) Hyd No 5 - -1 Year Q (S) 1400 1200 1000 800 600 400 200 0 00 14.00 1200 1000 800 600 400 200 000 0 1 2 3 4 5 6 7 8 9 10 Time (min) — Hyd No 5 Hyd No 3 — Hyd No 4 10 Hydrograph Summary Report ydraflow Hydrographs Extension for AutoCADO Civil 3D®2014 by Autodesk, Inc v10 3 Hyd. No. Hydrograph type (origin) Peak flow (cfs) Time Interval (min) Time to Peak (min) Hyd. volume (cult) Inflow hyd(s) Maximum elevation (ft) Total strge used (cuft) Hydrograph Description 1 Rational 1569 1 14 13,178 - -- — - -- predeveloped site 2 Rational 3760 1 5 11,280 -- — - - -- Post Developed site to pond 3 Reservoir 0 044 1 10 6,207 2 45263 11,265 Post Dev thru pond 4 Rational 1511 1 5 4,533 - - -- - - -- -- Post Dev not to pond 5 Combine 1514 1 5 10,741 3.4 -- — Total post site wdh pond BMP rational 6 -9 -14 gpw Return Period. 2 Year Thursday, 06 112 / 2014 Q (cfs) 1800 1500 1200 900 600 3.00 0 00 predeveloped site Hyd No 1 -- 2 Year Q (cfs) 1800 1500 1200 M 300 Ell 01 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Time (min) - Hyd No 1 11 Hydrograph Report Hydrafiow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Hyd. No. 1 predeveloped site Hydrograph type = Rational Peak discharge = 15.69 cfs Storm frequency = 2 yrs Time to peak = 14 min Time interval = 1 min Hyd. volume = 13,178 cuft Drainage area = 19.370 ac Runoff coeff. = 0.2 Intensity = 4 050 in /hr Tc by User = 14.00 min OF Curve = Raleigh.IDF Asc /Rec limb fact = 1/1 Q (cfs) 1800 1500 1200 900 600 3.00 0 00 predeveloped site Hyd No 1 -- 2 Year Q (cfs) 1800 1500 1200 M 300 Ell 01 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Time (min) - Hyd No 1 12 Hydrograph Report Hydraflow Hydrographs Extension for AutoCADO Civil 3DO 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 12014 Hyd. No. 2 Post Developed site to pond Hydrograph type = Rational Peak discharge = 37.60 cfs Storm frequency = 2 yrs Time to peak = 5 min Time interval = 1 min Hyd, volume = 11,280 cult Drainage area = 13.900 ac Runoff coeff. = 0.47* Intensity = 5.755 in/hr Tc; by User = 5 00 min OF Curve = Raleigh.IDF Asc/Rec limb fact = 1/1 * Composite (Area/C) = [(4 690 x 0 95) + (9 210 x 0 22)] / 13 900 Q (Cfs) 4000 3000 1000 roluffiT , Post Developed site to pond Hyd No 2 — 2 Year Q (Cfs) 4000 3000 20.00 1000 now 0 1 2 3 4 5 6 7 8 9 10 --- Hyd No 2 Time (min) Hydrograph Report 13 Hydraflow Hydrographs Extension for AutoCADO Civil 3D® 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 1 2014 Hyd. No. 3 Post Dev thru pond Hydrograph type = Reservoir Peak discharge = 0.044 cfs Storm frequency = 2 yrs Time to peak = 10 min Time interval = 1 min Hyd. volume = 6,207 cuff Inflow hyd. No = 2 - Post Developed site to poA&x. Elevation = 452.63 ft Reservoir name = Wet Pond Max Storage = 11,265 cuft Storage Indication method used Q (cfs) 4000 3000 1000 Post Dev thru pond Hyd No 3 -- 2 Year Q (cfs) 4000 i� 2000 1000 ±i 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 Time (min} Hyd No. 3 Hyd No 2 ® Total storage used = 11,265 cult 14 Hydrograph Report Hydraflow Hydrographs Extension forAutoCAD® Civil 31382014 by Autodesk, Inc v10 3 Thursday, 06 / 1212014 Hyd. No. 4 Post Dev not to pond Hydrograph type = Rational Peak discharge = 15.11 cfs Storm frequency = 2 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 4,533 cuft Drainage area = 5.470 ac Runoff . coeff. = 0.48* Intensity = 5 755 in /hr Tc by User = 5.00 min OF Curve = Raleigh.IDF Asc /Rec limb fact = 1/1 " Composite (Area/C) = [(1 320 x 0 20) + (1 950 x 0 95) + (2 200 x 0 22)] / 5 470 Q (cfs) 1800 1500 1200 • M M11#11 300 Post Dev not to pond Hyd, No. 4 — 2 Year Q (cfs) 1800 1500 1200 • e . 11 300 000 000 0 1 2 3 4 5 6 7 8 9 10 Hyd No 4 Time (min) Hydrograph Report 15 Hydreflow Hydrographs E)denslon for AutoCADO Civil 3DaD 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Hyd. No. 5 Total post site with pond Hydrograph type = Combine Peak discharge = 15.14 cfs Storm frequency = 2 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 10,741 cuft Inflow hyds. = 3, 4 Contrib. drain. area = 5.470 ac Q (cfs) 18.00 1500 1200 900 600 300 Total post site with pond Hyd No. 5 — 2 Year Q (cfs) 1800 1500 1200 • IX . Me 300 0 00 Ir i , 0.00 0 1 2 3 4 5 6 7 8 Hyd No 5 --- Hyd No 3 — Hyd No 4 9 10 Time (min) 16 Hydrograph Summary Re pQyd afknu Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc 003 Hyd. No Hydrograph type (origin) Peak flow (cfs) Time Interval (min) Time to Peak (min) Hyd volume (cult) Inflow hyd(s) Maximum elevation (ft) Total ` strge used (cult) Hydrograph Description 1 Rational 1851 1 14 15,548 -- - -- - — predeveloped site 2 Rational 4294 1 5 12,883 - - - -- -- — Post Developed site to pond 3 Reservoir 0 048 1 10 6,791 2 45272 12,866 Post Dev thru pond 4 Rational 1726 1 5 5,178 — ---- -- Post Dev not to pond 5 Combine 1729 1 5 11,968 3,4 - -- ----- Total post site with pond BMP rational 6 -9 -14 gpw Return Period 5 Year Thursday, 06 / 12 12014 17 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAM Civil 3136 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 1 2014 Hyd. No. 1 predeveloped site Hydrograph type = Rational Peak discharge = 18.51 cfs Storm frequency = 5 yrs Time to peak = 14 min Time interval = 1 min Hyd. volume = 15,548 cuft Drainage area = 19.370 ac Runoff coeff. = 0.2 Intensity = 4 778 in /hr Tc by User = 14.00 min OF Curve = Raleigh.IDF Asc /Rec limb fact = 1/1 Q (cfs) 21.00 18.00 1500 1200 900 600 300 predeveloped site Hyd No 1 -- 5 Year Q (cfs) 2100 1800 15.00 1200 M .1 11 300 000 it I I I I I I I I I I I 1 1 .I 000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Hyd No 1 Time (min) 18 Hydrograph Report HydraFlow Hydrographs Extension for AutoCADO Civil 3D® 2014 by Autodesk, Inc 003 Thursday, 06 112 / 2014 Hyd. No. 2 Post Developed site to pond Hydrograph type = Rational Peak discharge = 42.94 cfs Storm frequency = 5 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 12,883 cuft Drainage area = 13.900 ac Runoff coeff. = 0.47* Intensity = 6.573 in /hr Tc by User = 5.00 min OF Curve = Raleigh OF Asc /Rec limb fact = 1/1 " Composite (Area /C) = [(4 690 x 0 95) + (9 210 x 0.22)] / 13 900 Q (cfs) 5000 4000 3000 2000 1000 Post Developed site to pond Hyd No 2 — 5 Year Q (cfs) 5000 4000 3000 2000 1000 000 x ' ' ' ' ' ' ' ' ' X- 000 0 1 2 3 4 5 6 7 8 9 10 Hyd No 2 Time (min) Hydrograph Report 19 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc v10 3 Thursday, 06 11212014 Hyd. No. 3 Post Dev thru pond Hydrograph type = Reservoir Peak discharge = 0.048 cfs Storm frequency = 5 yrs Time to peak = 10 min Time interval = 1 min Hyd volume = 6,791 cult Inflow hyd. No. = 2 - Post Developed site to pot&x. Elevation = 452.72 ft Reservoir name = Wet Pond Max. Storage = 12,866 cult Storage Indication method used Q (cfs) 5000 X111 CI 11 20.00 1000 roysTis Post Dev thru pond Hyd No 3 -- 5 Year Q (Cfs) 50.00 4000 30.00 2000 1000 i1L1I17 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 Time (min) --- Hyd No 3 Hyd No 2 ® Total storage used = 12,866 cult 20 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10 3 Thursday, 06 / 12 12014 Hyd. No. 4 Post Dev not to pond Hydrograph type = Rational Peak discharge = 17.26 cfs Storm frequency = 5 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 5,178 cuft Drainage area = 5.470 ac Runoff coeff. = 0.48* Intensity = 6.573 in /hr Tc by User = 5.00 min OF Curve = Raleigh.IDF Asc/Rec limb fact = 1/1 Composite (Area/C) = [(1 320 x 0 20) + (1 950 x 0 95) + (2 200 x 0 22)] / 5 470 Q (cfs) 1800 1500 1200 • M . De 300 000 11 1 ' 0 1 2 Hyd No 4 Post Dev not to pond Hyd, No. 4 -- 5 Year Q (cfs) 1800 1500 1200 900 M 300 N 000 3 4 5 6 7 8 9 10 Time (min) Hydrograph Report 21 Hydraflow Hydrographs Extension for AutoCADO Civil 3D® 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 1 2014 Hyd. No. 5 Total post site with pond Hydrograph type = Combine Peak discharge = 17.29 cfs Storm frequency = 5 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 11,968 cuft Inflow hyds. = 3, 4 Contrib. drain. area = 5.470 ac Q (cfs) 1800 15.00 1200 900 600 300 Total post site with pond Hyd, No. 5 -- 5 Year Q (cfs) 1800 1500 1200 MM 300 000 000 0 1 2 3 4 5 6 7 8 9 10 Time (min) — Hyd No 5 — Hyd No 3 --- Hyd No 4 22 Hydrograph Summary Re Kyld aflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc v10 3 Hyd. No. Hydrograph type (origin) Peak flow (cfs) Time interval (min) Time to Peak (min) Hyd. volume (cult) Inflow hyd(s) Maximum elevation (ft) Total strge used (cuff) Hydrograph Description 1 Rational 2069 1 14 17,380 — - -- - predeveloped site 2 Rational 47 15 1 5 14,144 -- — -- — Post Developed site to pond 3 Reservoir 0 050 1 10 7,223 2 452.79 14,127 Post Dev thru pond 4 Rational 1895 1 5 5,685 -- - - -- — Post Dev not to pond 5 Combine 1898 1 5 12,908 3.4 -- — Total post sde with pond BMP rational 6- 9- 14,9pw Return Period, 10 Year Thursday, 06 if 12 / 2014 23 Hydrograph Report Hydraflow Hyd rographs Extension for AutoCADO Civil 3138 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Hyd. No. 9 predeveloped site Hydrograph type = Rational Peak discharge = 20.69 cfs Storm frequency = 10 yrs Time to peak = 14 min Time interval = 1 min Hyd. volume = 17,380 cuft Drainage area = 19.370 ac Runoff coeff = 0.2 Intensity = 5.341 in /hr Tc by User = 14.00 min OF Curve = Raleigh.IDF Asc /Rec limb fact = 111 Q (cfs) 2100 1800 15 00 1200 900 600 3.00 predeveloped site Hyd No 1 — 10 Year Q (cfs) 21 00 18.00 swell] 1200 IIIM IIIMI 300 0.00 -% I I I 1 I V I I I I I I I V 000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Time (min) — Hyd No 1 Hydrograph Report 24 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc 00.3 Thursday, 06 / 12 / 2014 Hyd. No. 2 Post Developed site to pond Hydrograph type = Rational Peak discharge = 47.15 cfs Storm frequency = 10 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 14,144 cuft Drainage area = 13 900 ac Runoff coeff = 0.47* Intensity = 7.217 in /hr Tc by User = 5 00 min OF Curve = Raleigh OF Asc /Rec limb fact = 1/1 " Composite (Area/C) = [(4.690 x 0.95) + (9.210 x 0 22)] / 13 900 Q (cfs) 5000 40.00 3000 2000 1000 0 00 y I ' 0 1 2 — Hyd No 2 Post Developed site to pond Hyd No 2 —10 Year 3 4 5 6 7 8 Q (cfs) 5000 MtIlIT, 3000 1000 N 000 9 10 Time (min) Storage Indication method used Q (cfs) 50.00 4000 ffilm 0 00 w 0 300 ---- Hyd No 3 Post Dev thru pond Hyd No. 3 - -10 Year 600 900 1200 Hyd No 2 1500 1800 2100 2400 2700 ® Total storage used = 14,127 cuft Q (cfs) 5000 4000 30.00 2000 1000 1 0.00 3000 Time (min) 25 Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD®Crvil 3D® 2014 by Autodesk, Inc 003 Thursday, 06 / 12 / 2014 Hyd. No. 3 Post Dev thru pond Hydrograph type = Reservoir Peak discharge = 0.050 cfs Storm frequency = 10 yrs Time to peak = 10 min Time interval = 1 min Hyd. volume = 7,223 cuft Inflow hyd. No = 2 - Post Developed site to pot&x. Elevation = 452.79 ft Reservoir name = Wet Pond Max. Storage = 14,127 cuft Storage Indication method used Q (cfs) 50.00 4000 ffilm 0 00 w 0 300 ---- Hyd No 3 Post Dev thru pond Hyd No. 3 - -10 Year 600 900 1200 Hyd No 2 1500 1800 2100 2400 2700 ® Total storage used = 14,127 cuft Q (cfs) 5000 4000 30.00 2000 1000 1 0.00 3000 Time (min) Hydrograph Report 26 Hydraflow Hydrographs Extension forAutoCAD® Cnni 3D® 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Hyd. No. 4 Post Dev not to pond Hydrograph type = Rational Peak discharge = 18.95 cfs Storm frequency = 10 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 5,685 cuft Drainage area = 5.470 ac Runoffcoeff. = 0 48* Intensity = 7.217 in /hr Tc by User = 5 00 min OF Curve = Raleigh OF Asc /Rec limb fact = 1/1 ' Composite (Area/C) = [(1 320 x 0 20) + (1 950 x 0 95) + (2 200 x 0 22)] / 5 470 Q (cfs) 21 00 1800 1500 1200 900 600 300 0.00 if ' ' 0 1 2 — Hyd No 4 Post Dev not to pond Hyd No 4 - -10 Year 3 4 5 6 7 8 Q (cfs) 2100 1800 15.00 1200 3 00 300 300 ' 311 0 00 9 10 Time (min) Hydrograph Report 27 Hydraflow Hydrographs E)dension for AutoCAD® Cmi 3DQD 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Hyd. No. 5 Total post site with pond Hydrograph type = Combine Peak discharge = 18.98 cfs Storm frequency = 10 yrs Time to peak = 5 min Time interval = 1 min Hyd volume = 12,908 cuft Inflow hyds. = 3, 4 Contrib. drain area = 5.470 ac Q (cfs) 21 00 1800 1500 1200 900 600 300 Total post site with pond Hyd No 5 — 10 Year 0.00 - —+ 0 1 2 3 4 — Hyd No 5 --- Hyd No 3 Q (cfs) 21.00 1800 1500 1200 900 600 300 0 00 5 6 7 8 9 10 — Hyd No 4 Time (min) 28 Hydrograph Summary Re Kyrtflow Hydrographs Extension for AutoCAD® Civil 3D02014 by Autodesk, Inc v10 3 Hyd. No. Hydrograph type (origin) Peak flow (cfs) Time interval (min) Time to Peak (min) Hyd. volume (cult) Inflow hyd(s) Maximum elevation (ft) Total strge used (cuft) Hydrograph Description 1 Rational 2870 1 14 24,104 - -- -- — predeveloped sde 2 Rational 6345 1 5 19,036 - -- – -- - -- Post Developed site to pond 3 Reservoir 0 059 1 10 8,724 2 45305 19,016 Post Dev thru pond 4 Rational 2550 1 5 7,651 -- - - -- - --- -- Post Dev not to pond 5 Combine 2554 1 5 16,375 3,4 - -- - - -- Total post site with pond BMP rational 6 -9 -14 gpw Return Period 100 Year Thursday, 06 / 12 / 2014 Hydrograph Report 29 Hydraflow Hydrographs Extension for AutoCADO Civil 3D® 2014 by Autodesk, Inc 003 Thursday, 06 / 12 / 2014 Hyd. No. 1 predeveloped site Hydrograph type = Rational Peak discharge = 28.70 cfs Storm frequency = 100 yrs Time to peak = 14 min Time interval = 1 min Hyd. volume = 24,104 cuft Drainage area = 19 370 ac Runoff coeff. = 0.2 Intensity = 7.407 in /hr Tc by User = 14.00 min OF Curve = Raleigh.IDF Asc /Rec limb fact = 1/1 Q (cfs) 3000 2500 2000 1500 1000 500 000 1 ' ' 0 2 4 — Hyd No. 1 predeveloped site Hyd. No 1 - -100 Year Q (cfs) 3000 2500 20.00 15.00 10.00 MU ' I I w 0.00 6 8 10 12 14 16 18 20 22 24 26 28 Time (min) Hydrograph Report 30 Hydraflow Hydrographs Extension for AutoCADO Civil 3138 2014 by Aurtodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Hyd. No. 2 Post Developed site to pond Hydrograph type = Rational Peak discharge = 63.45 cfs Storm frequency = 100 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 19,036 cuft Drainage area = 13.900 ac Runoff coeff. = 0.47* Intensity = 9.713 in/hr Tic by User = 5.00 min OF Curve = Raleigh OF Asc/Rec limb fact = 1/1 * Composite (Area/C) = [(4 690 x 0 95) + (9 210 x 0 22)] / 13 900 Q (Cfs) Post Developed site to pond Hyd No 2 — 100 Year 70.00 - 60.00 - 5000 4000 - OF 3000 - 0" 2000 - 1000 A 0 00 - 0 1 2 — Hyd No 2 3 4 5 6 7 8 Q (Cfs) 7000 50.00 5000 4000 3000 MOO 1000 1 31 000 9 10 Time (min) Hydrograph Report 31 Hydraflow Hydrographs Extension for AUtoCAD® Civil 3136 2014 by Autodesk, Inc v10 3 Thursday, 06 112 / 2014 Hyd. No. 3 Post Dev thru pond Hydrograph type = Reservoir Peak discharge = 0.059 cfs Storm frequency = 100 yrs Time to peak = 10 min Time interval = 1 min Hyd volume = 8,724 cuft Inflow hyd. No. = 2 - Post Developed site to podl&x. Elevation = 453.05 ft Reservoir name = Wet Pond Max. Storage = 19,016 cuft Storage Indication method used Q (cfs) 7000 5000 40.00 3000 2000 1000 0 300 Post Dev thru pond Hyd No 3 —100 Year 600 900 1200 — Hyd No 2 1500 1800 2100 2400 2700 ® Total storage used = 19,016 cult Q (cfs) 7000 5000 40.00 3000 2000 1000 3000 Time (min) Hydrograph Report 32 Hydraflow Hydrographs Extension for AutoCAM Civil 3DO 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Hyd. No. 4 Post Dev not to pond Hydrograph type = Rational Peak discharge = 25.50 cfs Storm frequency = 100 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 7,651 cuft Drainage area = 5 470 ac Runoff coeff = 0.48* Intensity = 9.713 in/hr Tic by User = 5.00 min OF Curve = Raleigh.IDF Asc/Rec limb fact = 1/1 * Composite (Area/C) = f(l 320 x 0 20) + (1 950 x 0 95) + (2.200 x 0 22)] / 5 470 Q (Cfs) 2800 - 24.00 - 2000 16.00 1200 800 - 400 - 000 0 1 2 — Hyd No 4 Post Dev not to pond Hyd No 4 – 100 Year Q (Cfs) 2800 24.00 L 2000 OF 1600 1200 800 400 0.00 3 4 5 6 7 8 9 10 Time (min) Hydrograph Report 33 Hydraflow Hydrographs Extension for AutoCADO Civil 3D® 2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Hyd. No. 5 Total post site with pond Hydrograph type = Combine Peak discharge = 25 54 cfs Storm frequency = 100 yrs Time to peak = 5 min Time interval = 1 min Hyd. volume = 16,375 cult Inflow hyds = 3, 4 Contrib drain. area = 5.470 ac Q (cfs) 2800 2400 2000 1600 1200 800 400 Total post site with pond Hyd No 5 — 100 Year Q (cfs) 2800 24.00 2000 1600 1200 800 400 0 00 0 00 0 1 2 3 4 -- Hyd No. 5 Hyd No 3 5 6 7 — Hyd No 4 i . 9 10 Time (min) Hydraflow Rainfall Report 34 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D02014 by Autodesk, Inc. 00 3 Thursday, 06 / 12 12014 Return Period Intensity - Duration- Frequency Equation Coefficients (FHA) (Yrs) B D E (NIA) 1 575301 121000 0.8703 - -- 2 740559 133000 08788 - --- 3 00000 00000 00000 - ----- 5 835112 148000 08514 - -- 10 1057041 168000 08710 - -- 25 1189252 176000 08582 - - -- 50 1370265 186000 08630 - - - - - -- 100 157.1769 196000 08692 -- File name Raleigh OF Intensity = B / (Tc + D) ^E Return Period Intensity Values (In/hr) (Yrs) 5 min 10 15 20 25 30 35 40 45 60 66 60 1 486 389 326 281 248 222 201 184 1.70 1 58 148 1 39 2 576 465 392 340 301 270 245 2.25 208 193 181 170 3 000 000 000 000 000 000 000 000 000 000 000 000 5 6.57 543 464 407 3.63 328 300 276 257 240 225 212 10 722 603 519 457 409 371 3.40 313 291 272 2.56 241 25 819 690 598 529 475 432 397 367 341 320 301 284 50 895 759 660 586 527 480 441 408 381 357 336 3.17 100 971 827 722 642 579 528 486 450 420 393 370 350 Tc = time in minutes Values may exceed 60 Prean file name F IHvdraflnw \Precrnitntinn \Carv- Stanhancnn Pnnd nrn Storm Rainfall Precipitation Table (in) Distribution 1 -yr 2 -yr 3 -yr 5-yr 10 -yr 25 -yr 60 -yr 100 -yr SCS 24 -hour 288 320 000 427 503 601 678 756 SCS 6 -Hr 207 229 000 300 356 424 481 538 Huff -1st 000 000 000 000 000 000 000 000 Huff -2nd 000 000 000 000 000 000 000 000 Huff -3rd 000 000 000 000 000 0.00 000 000 Huff -4th 000 000 000 000 000 000 000 000 Huff -Indy 000 000 000 0.00 000 000 000 000 Custom 000 000 000 000 000 000 000 000 Orchard Lily Subdivision Impervious Surface Summary Impervious Surface Total for Site Onsite Roads 203 ac Sidewalks 0.19 ac Offsite Roads 0.20 ac Tot Lot 0.04 ac 52 Lots @ 3,500 SF/ Lot 4.18 ac Total 6.64 ac Impervious Surface Total to BMP Onsite Roads and Sidewalk 0 92 ac Area In Lots - 47 lots 3.77 ac @ 3,500 Sf/ Lot Total 4.69 ac LL U. 0 z LU 0 0 LL 0 1 Z LU (D 0 w F- 0 F- t 0 4- :3 U) U) O lz r., V L m LiJftl cu .r- 2 U) O u-) lr- 6 z O C) CL M -j V. 1 CN 0 CL X W Z V (q Fl- Ul) ati 0 = A I- ci Cl 0 "T LO LO CL Ul Z t: C L. 0 0 .— f, X .2 CC) CN lui r- �z 8 C; 04 C.) kh CN 14- CO Ci C6 0 CD r_ a) '010 ca a) 12 0) C (a 20) E w r CL > 0 V c 3: m o 'a E E C C c>u CL 4) 0 4- 0 Sw Q 0 tt;l UZI Cl) 0 c _ '''' c U) 5 L. .02 CL 0 D 0 m u) mc E c L- 0 E Q 0 CL E6 a. 0 CL 0 0 CL a. 0 E 0 — m 1�0 - > !!;�-j W L) w 0 IL W Q V) 0 J Z W ED H Z J tt7 O N r 1 L i r N T C Sj O (6 Y U U U 0 J 'a N u to OF- U Z J m 0 O Z r U 10 0 CL d J 1 i4G"J. IR r: �J3,y°ff ryi 17"p V �iit • � 4 tI Q �Y i'+ . �1'rt� ar r + E r OL • I ' • • - • • o CL • w 0 M N Z O H g U N �a vCO J CO Ell L Od �NN Z> w O E O .L z a T L � N JL U � N (SiL yN UUD ri Q r 0 c 2 m 0 � c J C O OtiU Z m 0 o Z -u o N a) CU U o U LLJ Nra Yi 0 CO C N� I.L L�- a C 0 CL0 m m x Q IL m V m IL 2 m } Q a m w O O r CN N V M N 0 w Total Area TN Export Total Site Area = TN Export (lbs /yr) _ OFFSET PAYMENT CALCULATIONS Orchard Lily 19 37 Ac 155 25 Ibs /yr (See page 1) Area Treated by BMP(s) TN Export Area to BMP(s) _ TN Export (lbs/yr) _ 13 90 Ac 110.48 Ibs /yr TN Reduction from BMP(s) = 5248 Ibs /yr Adjusted TN Export by Land Use Adjusted TN Export (Ibs /yr)= 15525 less 52.48 Adjusted TN Export from Site 4of5 102 77 Ibs /yr Adjusted TN Export (Ibs /ac /yr)= 102 77 divided by 1937 5 31 lbs /ac/yr Total Nitrogen contribution for the offset payment = 1.71 Ibs /ac /yr Offset payment amount = Project: Orchard Lily Subdivision Date: 3- Jun -14 Pond Runoff Volume Calculations Simple Method - V = 3630 *Rv *Rd *A Rd - Rainfall Depth (inches)= 1 Rv = 0.05+0 9*la Rv = Runoff Coefficient la = Impervious fraction = Impervious drainage area/ Total drainage area A = Drainage area (ac. ) = 13.9 Impervious portion of drainage area (ac.) = 4.69 la = 0.34 Rv = 0.05 +0.9 *la Rv = 0.35 Required V = 3630 *Rv *Rd *A = 17,845 CU FT Pond Report Hydratlow Hydrographs Extension for AutoCAD® Civil M2014 by Autodesk, Inc v10 3 Thursday, 06 / 12 / 2014 Pond No.1 - Wet Pond Pond Data Contours - User - defined contour areas Average end area method used for volume calculation Beglning Elevation = 452 00 ft Stage / Storage Table Stage (ft) Elevation (ft) Contour area (sgft) Incr Storage (cuft) Total storage (cuft) 000 45200 -16 34 0 1 00 45300 19,640 17,995 17,995 200 45400 22,989 21,315 3 , 300 45500 25,055 24,022 63,331 400 456.00 27,177 26,116 89,447 Culvert I Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] Rise (in) = 1800 1 50 000 000 Crest Len (ft) = 1600 30.00 000 000 Span (in) = 1800 1 50 000 000 Crest El. (ft) = 45350 45425 000 000 No Barrels = 1 1 1 0 Weir Coeff. = 3.33 260 333 333 Invert El. (ft) = 45150 45200 000 000 Weir Type = 1 Broad — - -- Length (ft) = 2400 000 000 000 Multi -Stage = Yes No No No Slope ( %) = 050 000 000 n/a N -Value = 013 .013 013 n/a Orifice Coeff. = 060 060 060 060 Exfil.(in/hr) = 0 000 (by Contour) Multi -Stage = n/a Yes Yes No TW Elev. (ft) = 000 Note Culvert/Onfice outflows are analyzed under inlet (ic) and outlet (oc) control Weir risers checked for orifice condihors (ic) and submergence (s) Stage / Storage 1 Discharge Table Stage Storage Elevation Clv A Clv B Clv C PrfRsr Wr A Wr B Wr C Wr D Exfil User Total ft cult ft cfs cis oft; cfs cfs cfs cfs cfs cis cfs cfs 000 0 45200 000 000 — -- 0.00 000 — - — 0 000 100 17,995 453 DO 1 00 oc 0.06 is -- — 000 000 — — - -- 0.057 200 39,309 454.00 10 43 oc 0 02 Ic — — 10 41 s 000 - — — — 1042 3.00 63,331 45500 14 09 is 0 00 is — — 14.04s 5066 - - — - -- - -- 6471 4.00 89,447 45600 16 47 is 0 00 Ic -- — 1631 s 18057 - -- - -- - -- -- 19689 9c' o, w4 AX, )Fr- t ) ?, ,4 5-aga + Ok- Environmental Consultants, PA Road • Raleigh, North Carolina 27614 . Phone: (919) 846 -5900 • Fax: (919) 646.9467 www.SandFC.com April 7, 2014 Job # 12310. S 1 Spaulding & Norris Attn: Tom Spaulding 972 Trinity Road Raleigh, NC 27607 Re: Detailed storm water soils evaluation for the proposed Stephenson Road project, Stephenson Road, Apex, NC. Dear Mr. Spaulding: Soil & Environmental Consultants, PA (S &EC) performed a detailed soil evaluation within the targeted area of the potential storm water BMP on the site mentioned above. The purpose of this evaluation was to provide additional information for the proper design of the proposed BMP to treat the on -site storm water. As indicated on the attached map, soil morphological profile descriptions were performed at the specified locations to determine depths to seasonal high water table (SHWT). The following is a brief report of the methods utilized in this evaluation and the results obtained. Soil/Site Evaluation Methodol The site evaluation was performed by advancing hand auger borings to sufficient depths to estimate seasonal high water table. S&EC navigated to the storm water device locations with a GPS receiver to describe soil morphological conditions at the boring locations using standard techniques outlined in the "Field Book for Describing and Sampling Soils" published by the Natural Resources Conservation Service (NRCS, 2002). Soil/Site Conditions This site is located in the Piedmont Acid Crystalline geological area consisting of metamorphic rock parent materials. Field investigation revealed that the borings were most similar to the Worsham soil series (Fine, mixed, active, thermic Endoaquults). Worsham series soils are poorly drained. Soil Borings 1 and 2 revealed seasonal high water table indicators at existing ground surface. Soil & Environmental Consultants, PA is pleased to be of service in this matter and we look forward to assisting in the successful completion of the project. If requested, S &EC S<Vz,_ IV Project: Lily Orchard Subdivision Date: 2- Jun -14 SPAULDING & NORRIS, PA Planning • Civil Engineering • Surveying Average Wet Pond Depth Calculations (Option 2 Per NCBMP Manual) Average Depth of Permanent Pool to Use in SAIDA Tables (ft) Equation: Option 2: d�, = 2.5 X J+ Ab_^�v + Ate e` +AP„ � X Depth AP­_ Poor ( 2 A"m_%&f Where. ■ dg, = Average permanent pool depth (ft) ■ Ab,u_rw = Surface area at bottom of shelf, including forebay (W) • Ate,, Pm► Surface area at permanent pool level, including fon.bay (ftl • Aw-..d -Surface area at the bottom of the pond (fts) (excludes the sediment cleanout depth) • Depflr - Distance between the bottom of the shelf and the pond bottom (ft) (excludes the sediment cleanout depth) rr Depth= I D av= 3.49 ft *Use 1 3.0 ft Average Depth I *Rounded down to nearest 0.5' NCDENR Stormwater BMP Manual Chapter Revised 06 -16 -09 Ap ,,,-p l = Surface area at permanent pool level, including forebay (ft2) Ab c -.„d = Surface area at the bottom of the pond (ft2) (excludes the sediment cleanout depth) Depth = Distance between the bottom of the shelf and the pond bottom (ft) (excludes the sediment cleanout depth) Example: • Surface area at permanent pool: 10,000 ft2, including forebay • Surface area at bottom of shelf: 8,000 ft2, including forebay • Surface area at bottom of pond 2,000 ft2 • Depth: 4.5 ft �tL v�D Average Depth, day, =.25 x (1 + (8000/10,000)) + ((8000 + 2000)/2) x y 4.5) / 8000 = 3.26 ft outs - 3 -f, 3 % Therefore use 3.0 to enter the SA /DA table. (To avoid multiple interpolations, please round the average depth down to the nearest 0.5'.) 34.3 % - 3 Table 10-1 Surface Area to Drainage Area Ratio for Permanent Pool Sizing to Achieve 85 Percent TSS Pollutant Removal Efficiency in the Mountain and Piedmont Re ons, Adapted from Driscoll, 1986 Percent Impervious Cover 4.0 Permanent Pool Average Depth (ft) 50 6.0 70 80 9.0 10% 059 049 0.43 0.35 031 029 0.26 20% 097 0.79 070 059 0.51 0.46 044 30% 134 1.08 097 0.83 070 0.64 062 40% 173 143 125 105 090 0.82 0.77 50% 2.06 1.73 1.50 1.30 1.09 100 092 60% 2.40 203 1.71 1.51 1.29 1.18 1.10 70% 288 2.40 207 179 1.54 135 126 80% 336 2.78 2.38 210 186 1.60 142 90% 3.74 310 2.66 2.34 211 1.83 1.67 Table 10 -2 Surface Area to Drainage Area Ratio for Permanent Pool Sizing to Achieve 85 Percent TSS Pollutant Removal Efficiency in the Coastal Region, Adapted from Driscoll, 1986 Percent Impervious Cover 30 3.5 40 Permanent Pool Average Depth (ft) 4.5 50 55 60 65 70 75' 10% 0.9 08 07 06 05 0 0 0 0 0 20% 17 13 12 11 10 09 0.8 0.7 06 05 30% 25 22 19 18 16 15 1.3 1.2 1.0 0.9 40% 34 30 26 24 21 1.9 16 1.4 1.1 10 50% 42 37 33 3.0 2.7 24 21 18 1.5 13 60% 50 45 38 35 3.2 2.9 2.6 23 20 16 70% 60 52 45 41 3.7 33 29 2.5 21 18 80% 6.8 6.0 52 4.7 42 37 32 27 22 20 90% 7.5 65 58 5.3 4.8 4.3 38 33 28 23 100% 8.2 7.4 6.8 62 5.6 5.0 44 38 32 26 Wet Detention Basin 10 -14 July 2007 Subject Z✓Z-x � CAA� Sheet No. Job No. Date 1� Of Designed by Checked by Date al-14-14 Water Quality Basin Dewatering Time Calculations Project Project No Date Wet Pond 03 -Jun -14 755 Surface area of pond @ maximum head Surface area of basin @ orifice outlet Maximum head of water above dewatering hole Orifice coefficient Diameter of each hole Number of holes Cross sectional area of each hole = Cross sectional area of each hole = Cross sectional area of dewatering hole(s) _ Cross sectional area of dewatering hole(s) = Dewatering time for basin = Dewatering time for basin = 19,640 square feet 16,349 square feet 092 feet 060 1.50 inches 1 0.012 square feet 18 square inches 0.012 square feet 18 square inches 787 hours 33 days Calculations based on City of Greensboro Stormwater Management Manual Section 3 5 2 Notes v A 4�v Suliject 4-ie-y aae4-itq4tL Designed by Checked by Sheet No. Job No. Date of Date 4-�V-I'q Splitter Box Design Calculations Project S&N Project No. Structure No. Date Orchard Lily 755 BMP Outlet 10- Jun -14 Invert Elevation into Box Invert Out to Level Spreader Invert Out to By -Pass FES Drainage Area ( a ) Runoff Coefficient ( c) Known Flow from BMP for 10 year storm Orifice Equation A = Q/ [Co " (2gh) 5] Orifice Coefficient (Co) Gravity (g) Height of Baffle (h) Area of Outlet Pipe to Level Spreader (A) Diameter of Outlet to Level Spreader ( D ) D = (4 "A/ Pi)o s Diameter in Inches Elevation Top of Baffle Level Spreader length = 10 ft per cfs (10 foot minimum and 100 foot Maximum) 45120 feet 451 10 feet 451 10 feet 0.00 Acres 061 050 cfs 0.6 322 feet/ second squared 15 feet 008 square feet 03 feet 3.94 Inches Use 6" Pipe 45276 feet 10 feet Required USE Required USE Sediment Basin Calculations Skimmer Basin #1 =Cx C value 5 intensity 10 ear Surface Area Calculation (A)= Drainage area (ac), ' ?�7;? ll Peak Inflow cfs 17.69 A =325 sf x Surface Area 10 yr peak flow Peak inflow 10 = 1769 cfs Surface Area Calculation (A)= width ft = 1 63.61 5 749 sf Basin Shape Ensure flow length to basin width ratio is greater than 2 1 Calculated Ratio= len th (ft )= 107.23 width ft = 1 63.61 LxW = 5,749 used Ratio= CF 160.00 width (ft )= 1 120.00 LxW = 1 19,200 Basin Volume Basin Dimensions Top of water storage �ro;� Required Volume for Water storage depth (ft) Storage volume Disturbed area (ac) ni-11,1111, basins 1800cf per ac 11,700 CF 63.61 f of disturbed area= 5,749 3 Basin Dimensions Top of water storage Bottom Surface area (so Water storage depth (ft) Storage volume length ft width ft length ft width ft ) 107.23 63.61 95.23 41.61 5,749 3 14,460 160.00 120.00 148 108 19,200 3 52,668 Top of basin Freeboard depth (ft) Total Depth ft length ft width ft 113 60 1 5 Total Depth ft 178 138 1 5 1 Of 5 Skimmer Basin Design- 6 -12 -14 As 6/12/2014,1146 PM Calculate Skimmer Size Basin Volume in Cubic Feet 52,668 Cu Ft Skimmer Size 4.4 Inch Days to Drain* 3 Days Orifice Radius 1.9 Inchles] Orifice Diameter 3.7 Inchles] 'I� NC a6ewne 3 days a drain Storm Outlet Structure FES No= FES Pipe Dia= 15 in Q10= 0.91 cfs Qfull = 1192 cfs From Fig 8 06 b 1 From Fig 8 06 b 2 Zone D50 DmAx Riprap Class Apron Thickness Apron Length Apron Width = 3xDia DATE 6/12/2014 PROJECI 755 Q10 /Qfull = 008 VNfull = 059 V = 3 7 fps - 1 3 in 45 in A 12 in 50 ft 375 ft (required) o " • e '' DATE 6/12/2014 PROJECT NAME PROJECT NO Orchard Lily 755 BY TS Storm Outlet Structure FES No= FES 1 Q10/Qfull = 075 Pipe Dia= 30 in V/Vfull = 1 10 Quo = 21.83 cfs V= 6 5 fps Qfull = 29.00 cfs From Fig 8 06 b 1 From Fig 8 06 b 2 Zone D5o DmAx Riprap Class Apron Thickness Apron Length Apron Width = 3xDia 2 6 in 9 in 8 18 in 150 ft 75 ft (required) Storm Outlet Structure FES No.= FES 41 Pipe Dia= 30 in Q10 = 18.59 cfs Qfull = 25 90 cfs From Fig 8 06 b 1 From Fig 8 06 b 2 loll Iloilo Zone D50 DMAx Riprap Class Apron Thickness Apron Length Apron Width = 3xDia DATE 6/12/2014 755 TS Q10 /Qfu1l = 072 V/Vfull = 108 V = 5 7 fps 2 = 6 in = 9 in B 18 in 150 ft 75 ft (required) rm FES No.= BMP Pipe Dia= 18 in re V= 3.2 fps From Fig 8 06 b.1: Zone = 1 From Fig. 8.06 b 2 D5o — 3 in DmAx = 45 in Riprap Class = A -C Apron Thickness = 12 in Apron Length = 60 ft 3 Apron Width = 3xDia = 4.5 ft (required) Length