HomeMy WebLinkAboutNC0059439_DRAFT Fact Sheet 06Sep2022_20220906Page 1 of 7
FACT SHEET
For EXPEDITED PERMIT RENEWAL
NC0059439 – WPCS Grade I
Expedited Renewal: DWR Permit Writers complete this form as a simplified Fact Sheet to expedite permits
that, due to their lack of complexity, do not require full Fact Sheets. Expedited permits generally include 100%
domestics discharges (e.g., schools, mobile home parks, etc.) that discharge chemically simple wastestream or
stormwater mixes that DWR may renew administratively with minor changes. Expedited permits may include
marginally complex discharges with secondary containment, Special Conditions, discharges to impaired
receiving streams [303(d)-listed], WET testing, receiving-stream monitoring, and/or compliance concerns, so
deemed in the Division’s best professional judgment (BPJ).
Basic Information for Expedited Renewal
Permit Writer/Date Joe R. Corporon, P.G. / NPDES / 06Sep2022
Permit Number - Class NC0059421 – WPCS Grade I
Permitted Flow 0.005 MGD
Owner
Town of Rosman
PO Box 636
Rosman, NC 28772
Facility Name Sapphire Lakes WWTP #2
Facility Contacts
Brian Shelton, Mayor [rosmantown@comporium.net]
828-884-6859
William Wesley Royal, ORC
Type of Waste 100 % domestic - servicing population of 842 [2020]
Basin Name/Sub-basin number Savannah River Basin / 03-13-02
Receiving Stream Horsepasture River [segment 4-13-(12.5)]
HUC 0306010101
Stream Classification C; Trout +
Does permit need Daily Max NH3 limits? No
Does permit need TRC limits/language? No
Does permit have toxicity testing? No
Does permit have Special Conditions? No
Does permit have instream monitoring? No
Is the stream impaired [listed on 303(d)]? No
Any obvious compliance concerns? No - no changes recommended
Any permit MODS since last renewal? No
Permittee’s Request for Renewal Received [tardy] 19Aug2022
New expiration date August 31, 2027
Changes to current permit? Updated map, updated eDMR language;
added GRADE citation to A. (1.)
Current Conditions (BIMS) – Compliance Summary
• BIMS max reported flow = 0.028 MGD; ave. flow = 0.005 MGD; min flow reported
0.000 MGD for Jan27-30, 2018.
• annual fees paid through Jan2022; currently registered for eDMRs
• compliance - DWR has issued CPAs for permit limit exceedances [BOD-5day]
• issued NOVs for monitoring frequency violations of TSS, Fecal coliform, DO,
Temperature, and pH. for compliance history, see attached XL - Violations
Export (Jan2019-May2022)
• RPA was not required of this database (no parameters of concern).
Page 2 of 7
Permitting Strategies - Decisions and Changes for Renewal:
➢ updated permit text
➢ updated site map
➢ no further changes recommended
Proposed Schedule for Permit Renewal and Issuance
Draft Permit to Public Notice: September 06, 2022
[Tentative] Permit Scheduled to Issue: October 14, 2022
[Tentative] Effective date December 1, 2022
If you have questions, email [joe.corporon@ncdenr.gov]
__________________________________________206Sep2022_______________
Joe R. Corporon, P.G., NPDES Permitting Date
NPDES Implementation of Instream Dissolved Metals Standards – Freshwater Standards
The NC 2007-2015 Water Quality Standard (WQS) Triennial Review was approved by the NC
Environmental Management Commission (EMC) on November 13, 2014. The US EPA
subsequently approved the WQS revisions on April 6, 2016, with some exceptions. Therefore,
metal limits in draft permits out to public notice after April 6, 2016 must be calculated to protect
the new standards - as approved.
Table 1. NC Dissolved Metals Water Quality Standards/Aquatic Life Protection
Parameter Acute FW, µg/l
(Dissolved)
Chronic FW,
µg/l
(Dissolved)
Acute SW, µg/l
(Dissolved)
Chronic SW,
µg/l
(Dissolved)
Arsenic 340 150 69 36
Beryllium 65 6.5 --- ---
Cadmium Calculation Calculation 40 8.8
Chromium III Calculation Calculation --- ---
Chromium VI 16 11 1100 50
Copper Calculation Calculation 4.8 3.1
Lead Calculation Calculation 210 8.1
Nickel Calculation Calculation 74 8.2
Silver Calculation 0.06 1.9 0.1
Zinc Calculation Calculation 90 81
Page 3 of 7
Table 1 Notes:
1. FW= Freshwater, SW= Saltwater
2. Calculation = Hardness dependent standard
3. Only the aquatic life standards listed above are expressed in dissolved form. Aquatic life
standards for Mercury and selenium are still expressed as Total Recoverable Metals due
to bioaccumulative concerns (as are all human health standards for all metals). It is still
necessary to evaluate total recoverable aquatic life and human health standards listed in
15A NCAC 2B.0200 (e.g., arsenic at 10 µg/l for human health protection; cyanide at 5
µg/L and fluoride at 1.8 mg/L for aquatic life protection).
Table 2. Dissolved Freshwater Standards for Hardness-Dependent Metals
The Water Effects Ratio (WER) is equal to one unless determined otherwise under 15A
NCAC 02B .0211 Subparagraph (11)(d)
Metal NC Dissolved Standard, µg/l
Cadmium, Acute WER*{1.136672-[ln hardness](0.041838)} ∙ e^{0.9151 [ln
hardness]-3.1485}
Cadmium, Acute Trout
waters
WER*{1.136672-[ln hardness](0.041838)} ∙ e^{0.9151[ln
hardness]-3.6236}
Cadmium, Chronic WER*{1.101672-[ln hardness](0.041838)} ∙ e^{0.7998[ln
hardness]-4.4451}
Chromium III, Acute WER*0.316 ∙ e^{0.8190[ln hardness]+3.7256}
Chromium III, Chronic WER*0.860 ∙ e^{0.8190[ln hardness]+0.6848}
Copper, Acute WER*0.960 ∙ e^{0.9422[ln hardness]-1.700}
Copper, Chronic WER*0.960 ∙ e^{0.8545[ln hardness]-1.702}
Lead, Acute WER*{1.46203-[ln hardness](0.145712)} ∙ e^{1.273[ln hardness]-
1.460}
Lead, Chronic WER*{1.46203-[ln hardness](0.145712)} ∙ e^{1.273[ln hardness]-
4.705}
Nickel, Acute WER*0.998 ∙ e^{0.8460[ln hardness]+2.255}
Nickel, Chronic WER*0.997 ∙ e^{0.8460[ln hardness]+0.0584}
Silver, Acute WER*0.85 ∙ e^{1.72[ln hardness]-6.59}
Silver, Chronic Not applicable
Zinc, Acute WER*0.978 ∙ e^{0.8473[ln hardness]+0.884}
Zinc, Chronic WER*0.986 ∙ e^{0.8473[ln hardness]+0.884}
General Information on the Reasonable Potential Analysis (RPA)
Page 4 of 7
The RPA process itself did not change as the result of the new metals standards. However,
application of the dissolved and hardness-dependent standards requires additional consideration
in order to establish the numeric standard for each metal of concern of each individual discharge.
The hardness-based standards require some knowledge of the effluent and instream (upstream)
hardness and so must be calculated case-by-case for each discharge.
Metals limits must be expressed as ‘total recoverable’ metals in accordance with 40 CFR
122.45(c). The discharge-specific standards must be converted to the equivalent total values for
use in the RPA calculations. We will generally rely on default translator values developed for
each metal (more on that below), but it is also possible to consider case-specific translators
developed in accordance with established methodology.
RPA Permitting Guidance/WQBELs for Hardness-Dependent Metals - Freshwater
The RPA is designed to predict the maximum likely effluent concentrations for each metal of
concern, based on recent effluent data, and calculate the allowable effluent concentrations, based
on applicable standards and the critical low-flow values for the receiving stream.
If the maximum predicted value is greater than the maximum allowed value (chronic or acute),
the discharge has reasonable potential to exceed the standard, which warrants a permit limit in
most cases. If monitoring for a particular pollutant indicates that the pollutant is not present (i.e.
consistently below detection level), then the Division may remove the monitoring requirement in
the reissued permit.
1. To perform a RPA on the Freshwater hardness-dependent metals the Permit Writer
compiles the following information:
• Critical low flow of the receiving stream, 7Q10 (the spreadsheet automatically
calculates the 1Q10 using the formula 1Q10 = 0.843 (s7Q10, cfs) 0.993
• Effluent hardness and upstream hardness, site-specific data is preferred
• Permitted flow
• Receiving stream classification
2. In order to establish the numeric standard for each hardness-dependent metal of concern
and for each individual discharge, the Permit Writer must first determine what effluent
and instream (upstream) hardness values to use in the equations.
The permit writer reviews DMR’s, Effluent Pollutant Scans, and Toxicity Test results for
any hardness data and contacts the Permittee to see if any additional data is available for
instream hardness values, upstream of the discharge.
If no hardness data is available, the permit writer may choose to do an initial evaluation
using a default hardness of 25 mg/L (CaCO3 or (Ca + Mg)). Minimum and maximum
limits on the hardness value used for water quality calculations are 25 mg/L and 400
mg/L, respectively.
If the use of a default hardness value results in a hardness-dependent metal showing
reasonable potential, the permit writer contacts the Permittee and requests 5 site-specific
effluent and upstream hardness samples over a period of one week. The RPA is rerun
using the new data.
Page 5 of 7
The overall hardness value used in the water quality calculations is calculated as follows:
Combined Hardness (chronic)
= (Permitted Flow, cfs *Avg. Effluent Hardness, mg/L) x (s7Q10, cfs *Avg. Upstream Hardness,
mg/L)
(Permitted Flow, cfs + s7Q10, cfs)
The Combined Hardness for acute is the same but the calculation uses the 1Q10 flow.
3. The permit writer converts the numeric standard for each metal of concern to a total
recoverable metal, using the EPA Default Partition Coefficients (DPCs) or site-specific
translators, if any have been developed using federally approved methodology.
4. The numeric standard for each metal of concern is divided by the default partition
coefficient (or site-specific translator) to obtain a Total Recoverable Metal at ambient
conditions.
In some cases, where an EPA default partition coefficient translator does not exist (ie.
silver), the dissolved numeric standard for each metal of concern is divided by the EPA
conversion factor to obtain a Total Recoverable Metal at ambient conditions. This
method presumes that the metal is dissolved to the same extent as it was during EPA’s
criteria development for metals. For more information on conversion factors see the June,
1996 EPA Translator Guidance Document.
5. The RPA spreadsheet uses a mass balance equation to determine the total allowable
concentration (permit limits) for each pollutant using the following equation:
Ca = (s7Q10 + Qw) (Cwqs) – (s7Q10) (Cb)
Qw
Where: Ca = allowable effluent concentration (µg/L or mg/L)
Cwqs = NC Water Quality Standard or federal criteria (µg/L or mg/L)
Cb = background concentration: assume zero for all toxicants except NH3* (µg/L or
mg/L)
Qw = permitted effluent flow (cfs, match s7Q10)
EPA default partition coefficients or the “Fraction Dissolved” converts the
value for dissolved metal at laboratory conditions to total recoverable metal
at in-stream ambient conditions. This factor is calculated using the linear
partition coefficients found in The Metals Translator: Guidance for
Calculating a Total Recoverable Permit Limit from a Dissolved Criterion
(EPA 823-B-96-007, June 1996) and the equation:
_Cdiss__ = _______1_______________
Ctotal 1 + { [Kpo] [ss(1+a)] [10-6] }
Where:
ss = in-stream suspended solids concentration [mg/l], minimum of 10 mg/L
used, and
Kpo and a = constants that express the equilibrium relationship between
dissolved and adsorbed forms of metals. A list of constants used for each
hardness-dependent metal can also be found in the RPA program under a
sheet labeled DPCs.
Page 6 of 7
s7Q10 = summer low flow used to protect aquatic life from chronic toxicity and
human health through the consumption of water, fish, and shellfish from
noncarcinogens (cfs)
* Discussions are on-going with EPA on how best to address background
concentrations
Flows other than s7Q10 may be incorporated as applicable:
1Q10 = used in the equation to protect aquatic life from acute toxicity
QA = used in the equation to protect human health through the consumption of
water, fish, and shellfish from carcinogens
30Q2 = used in the equation to protect aesthetic quality
6. The permit writer enters the most recent 2-3 years of effluent data for each pollutant of
concern. Data entered must have been taken within four and one-half years prior to the
date of the permit application (40 CFR 122.21). The RPA spreadsheet estimates the 95th
percentile upper concentration of each pollutant. The Predicted Max concentrations are
compared to the Total allowable concentrations to determine if a permit limit is
necessary. If the predicted max exceeds the acute or chronic Total allowable
concentrations, the discharge is considered to show reasonable potential to violate the
water quality standard, and a permit limit (Total allowable concentration) is included in
the permit in accordance with the U.S. EPA Technical Support Document for Water
Quality-Based Toxics Control published in 1991.
7. When appropriate, permit writers develop facility specific compliance schedules in
accordance with the EPA Headquarters Memo dated May 10, 2007 from James Hanlon to
Alexis Strauss on 40 CFR 122.47 Compliance Schedule Requirements.
8. The Total Chromium NC WQS was removed and replaced with trivalent chromium and
hexavalent chromium Water Quality Standards. As a cost savings measure, total
chromium data results may be used as a conservative surrogate in cases where there are
no analytical results based on chromium III or VI. In these cases, the projected maximum
concentration (95th %) for total chromium will be compared against water quality
standards for chromium III and chromium VI.
9. Effluent hardness sampling and instream hardness sampling, upstream of the discharge,
are inserted into all permits with facilities monitoring for hardness-dependent metals to
ensure the accuracy of the permit limits and to build a more robust hardness dataset.
Page 7 of 7
10. Hardness and flow values used in the Reasonable Potential Analysis for this permit
included:
Parameter Value Comments (Data Source)
Average Effluent Hardness (mg/L)
[Total as, CaCO3 or (Ca+Mg)] N/A No metals monitoring
Average Upstream Hardness (mg/L)
[Total as, CaCO3 or (Ca+Mg)] N/A No metals monitoring
7Q10 summer (cfs) ~ IWC < 5% (?)
1Q10 (cfs) ~
Permitted Flow (MGD) 0.025 & 0.300 Phased Permit