Loading...
HomeMy WebLinkAbout20080868 Ver 2_Section III G Benthos 2020 PCS Creeks Report_20210701G. BENTHOS Section II-C Question 3 contains additional benthos information with comparisons and conclusions drawn from multivariate techniques applied on the years of creeks study data (cluster analysis on community similarity based on species richness and total abundance among all sample locations of each creek for both benthic sweeps and ponars). Section II-C Question 3 also includes discussion of benthic guilds and trophic levels. Appendix A, Section H contains a history of benthic macroinvertebrate collections and a description of methods (field, laboratory, and statistics). In -situ hydrographic data are collected before each sample occasion in 2020 and included at the end of Appendix I (on CD/DVD only); ECU water quality data are presented in Appendix E (on CD/DVD only). Note that the ECU water quality sample sites are various distances upstream from where any creek is sampled for benthos; water quality is discussed in Section II-C Question 6 and Section III-C. Appendix I also contains raw benthic data collected for each sweep and ponar grab in 2020 for all sampled creeks. 1.0 Results and Discussion of Sweep and Ponar Data Figures III-G1 through III-G12 show dendrograms of species community composition for each creek sample location and type (e.g., upstream or downstream and sweep or ponar) that exhibited statistically significant groupings. Thus, in this comparison each stream had four different analyses: upstream -sweeps, downstream -sweeps, upstream-ponars, and downstream-ponars. When appropriate, additional cluster analysis of all taxa and comparisons of each particular creek results to control creeks were included. The different colored lines on the cluster dendrograms represent non -significant structure among factors (e.g., years, creeks) at the 5 percent level (P = 0.05). Tables III-G1 through III-G5 display other summary information for all monitored creeks for comparison. Table III-G1 contains the cumulative list of the 394 benthic taxa collected in ponars or sweeps across the 22 years of the study and the NCDWR-assigned sensitivity values for 190 of them (48 percent of total taxa). Tables III-G2 and III-G4 show the four most dominant upstream and downstream taxa per year in each creek. The structure of benthic assemblages in estuarine environments responds to many stressors that freshwater assemblages seldom encounter. Common estuarine stressors include frequent and often extreme fluctuations in environmental conditions, particularly salinity, dissolved oxygen, and temperature. Typically, these stressors result in a more tolerant natural community than what might be found further upstream in fresher perennial waters. However, the upstream communities in many of the study creeks (e.g., SCUT1, Little Creek, Jacobs Creek, Huddles Cut, DCUT11, and Duck Creek) also must adapt to the stress of frequent periods of lower water levels and lower flow regimes during portions of their life cycle. The sensitivity values scale from 1 to 5, with 1 being most tolerant/insensitive and 5 being most intolerant/sensitive. Over the 22 years, the average sensitivity value of all taxa is 1.9 with the most intolerant taxa at 5.0 (e.g., a Mysidae, Metamysidopsis swifti) at 0.25 percent and species with a value of 1.0 (e.g., a Naididae, Dero digitata) at 8 percent of the total taxa recorded. Five orders of the phylum Arthropoda and one order of the phylum Annelida represent the bulk of the data distribution (Diptera, Hemiptera, Coleoptera, Amphipoda, Odonata, and Haplotaxida). The structure of the benthic community within all creeks in all years is shown in Table III-G3 (sweeps) and Table III-G5 (ponar grabs) with averages also shown for each creek across the years. The bottom of each of these two tables shows summary information on the ranges and averages for all creeks on an upstream/downstream basis s. For III-G-1 the sweeps summary, there are 12 total categories overall (12 rows; ranges and averages for three parameters upstream and downstream) and when upstream and downstream are analyzed separately there are six categories (three upstream and three downstream). For the ponar grabs summary, there are 16 total categories overall (ranges and averages for four parameters upstream and downstream) and when upstream and downstream are analyzed separately there are eight categories (four upstream and four downstream). The sweeps summary information at the bottom of Table III-G3 shows that 1998 had seven of the highest scores across all 12 categories and four (two upstream and two downstream) of the six potential highest scores when upstream and downstream were separated. The year 2008 followed 1998 with three of the 12 (two upstream and one downstream); 1998 had seven highest scores (three upstream and four downstream); no year since 2011 has had the highest score for any category. For the ponar grabs summary, the highest scores were not concentrated in any given year, but instead appeared in two groups: 1998 — 2004, which contained seven of the highest 16 scores, and 2012 — 2020, which contained 11 of the highest 16 scores. Within these two groups, only 2004 contained three of the 16 overall highest scores; 2005 — 2011 contained none of the highest scores (Table III-G5). Table III-G6 is a redisplay of the community structure information found in Tables III-G3 and III-G5 in an effort to show potential relationships that may not be significantly different statistically, but nonetheless might be of ecological interest. This table has an upstream/downstream focus on the highest Shannon -Wiener diversity scores and the highest EBI scores within each creek across all years, the highest overall score within all creeks each year, and the ranges and averages of those scores for each creek. As has been the consistent case, the downstream samples had the highest percentage of years with the highest Shannon - Wiener Diversity score (76 percent), highest EBI ponar score (71 percent), and highest EBI sweep score (81 percent). When the highest average scores for the three measures are compared, out of the 15 creeks, the downstream samples had 11 of 15 for Shannon -Wiener, 10 of 15 for EBI ponar grabs, and 10 of 15 for EBI sweeps. Most of the highest scores across all three measures occur in the downstream samples (48 compared to 19 upstream), which has been the trend since 2016. Also of potential ecological interest is that the arrangement of Table III-G6 shows four dominant creeks with the most years of highest scores across all three parameters; Huddles Cut with 23 years (33.3 percent), Jacks Creek with 14 years (26.0 percent), Muddy Creek with 12 years (16.7 percent), and Tooley Creek with five years (11.1 %). The other creeks ranged from 0 to 3 years (0 = Broomfield Swamp Creek, Drinkwater Creek, and Porter Creek; one = SCUT1, Little Creek, Long Creek, DCUT11, and Duck; two = Jacobs Creek and PA2; and three = DCUT19). Among all the creeks, Huddles Cut had the highest percent of monitored years with the highest EBI scores for both ponar grabs (seven years; 41.2 percent) and sweeps (11 years; 64.7 percent) and the highest percent of years with the highest Shannon -Weiner Diversity score (five years; 29.4 percent). For the ponar grabs, Huddles Cut had the highest EBI score in seven of the 17 years, five of which were after- all drainage basin reduction. The results section on each creek below was divided into three parts: a) creeks with pre -Mod Alt L data, b) creeks with pre- and post -Mod Alt L data, and c) control creeks. Within each part, for each creek and sample location, the sweep data discussion precedes the ponar data discussion. III-G-2 a. Pre -Mod Alt L Creeks Sweep and Ponar Grab Data Broomfield Swamp Creek (2019-2020) The 2020 macroinvertebrate collection for Broomfield Swamp Creek was the second pre -Mod Alt L sample. For the sweeps, the number of dominants identified to species was three each for upstream and downstream, two of which were the same (Table III- G2). Total abundance and EBI were highest in the downstream sample (Table III-G3). For the ponars, the number of dominants identified to species to date was four upstream and five downstream (Table III-G4) and the total abundance, total taxa, and EBI were highest in the downstream sample (Table III-G5). Upstream sweeps were dominated by four different species (Gammarus tigrinus, Mytilopsis leucophaeta, Cyprideis littoralis, and species of Naididae without hair in 2020) (Table III-G2). Community structure comparisons for the upstream sweeps show that species richness was 16 (30 in 2019), total abundance was 809 individuals (293 in 2019), and the EBI score was 1.54 in 2020 (1.46 in 2019) (Table III-G3). Downstream sweeps dominants were Cyprideis littoralis and species of Naididae without hair both years, with three dominants present for only one year (Table III-G2). The community structure comparisons for the downstream sweeps show that species richness was 17 (41 in 2019), total abundance was 821 individuals (745 in 2019), and the EBI score was 1.64 in 2020 (1.34 in 2019) (Table III-G3). Upstream ponar grabs contained species of Naididae without hair, Gammarus tigrinus, Streblospio benedicti, and Limnodrilus hoffmeisteri (Table III-G4). In 2020 the total abundance was 87 individuals (347 in 2019), species richness was 5 (11 in 2019, the Shannon -Weiner Index was 1.21 (1.75 in 2019), and the EBI score was 1.22 (1.04 in 2019) (Table III-G5). Ponar grab dominants from downstream Broomfield Swamp Creek were Gammarus tigrinus, Streblospio benedicti, Mytilopsis leucophaeata, and Limnodrilus hoffmeisteri (a dominant both years) (Table III-G4). In 2020, total abundance was 144, species richness was 10, the Shannon -Weiner Index was 1.16, and the EBI was 1.91 (Table III-G5). b. Post -Mod Alt L Creeks Sweep and Ponar Grab Data Jacks Creek (1998-2005; 2011-2020) The 2020 macroinvertebrate collection for Jacks Creek was the 18th sample year and sixth post -Mod Alt L year. Drainage basin reduction in Jacks Creek ceased in 2015. For the sweeps to date, the number of dominants identified to species upstream was 12 and 13 for downstream; of which three were only upstream and four were only downstream (Table III-G2). Sweep community structure metrics for upstream and downstream years are in Table III-G3. For the ponars, the number of dominants identified to species upstream was 12 and 15 for downstream to date; of those, five were only upstream and eight were only downstream (Table III-G4). Ponar community structure metrics for upstream and downstream by year are in Table III-G5. i. Jacks Creek Upstream Sweeps Multivariate cluster analysis by a similarity profile test (SIMPROF) of benthic taxa richness and abundance from upstream Jacks Creek sweeps revealed significant variation between all years among five distinct clusters; a repeat of the 2019 dendrogram with 2020 grouped in the largest cluster (Figure III-G1a). Clusters A (1999) and B (1998) each consisted of a single year. Cluster C consisted of years 2011 and 2013, D consisted of years 2000 — 2001, 2004 — 2005, and 2014 — 2020, and E consisted of the III-G-3 remaining years 2012, 2002, and 2003. The six post -Mod Alt L years are clustered together in D with a mix of recent and earlier pre -Mod Alt L years. Comparison of interannual variability between clusters by similarity percentages (SIMPER) revealed similarity ranged from 31.2 to 53.6 percent. Clusters C and D were the most similar (53.6 percent similarity), while clusters A and C were the least similar (31.2 percent similarity) with differences driven by the absence of Goeldichiromus devineyae, and species of Chironomous and Nematoda in A. Sweeps from upstream Jacks Creek consistently were dominated by species of Apocorophium and Littoridinops, along with Gammarus tigrinus, and Cyprideis littoralis; no new dominant species have appeared since 2012 (Table III-G2). Community structure comparisons for the upstream sweeps indicate that species richness ranged from 18 (1999) to 42 (1998) and total abundance ranged from 783 individuals (1999) to 3,529 individuals (2011) (Table III-G3). The 2020 samples contained 27 taxa and 1,647 individuals. The EBI scores ranged from 1.59 (2014) to 2.07 (2013); the 2020 score was 1.83 (Table III-G3). Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance from upstream Jacks Creek sweeps by similarity percentages (SIMPER) revealed 51.2 percent similarity with differences driven predominantly by higher abundances of Corixidae sp. and species of Apocorophium and Tanytarsus in the post - Mod Alt L years (2015 — 2020). Comparison of interannual variability among upstream sweeps by ANOSIM detected no spatial differences of statistical significance between pre- and post - Mod Alt L upstream communities. ii. Jacks Creek Downstream Sweeps The SIMPROF test of benthic taxa richness and abundance of the downstream sweeps from Jacks Creek revealed significant variation between all years among four distinct clusters (Figure III-G1 b). Comparison of interannual variability between groups by means of similarity percentages (SIMPER) revealed similarity ranged from 26.8 to 47.9 percent. Clusters A (1998) and B (2002) each consisted of one year and differed from each other by the absence of Cricotopus species, Enallagma sp., and Procladius sp. in B. Cluster C consisted of years 2011-2014 and 2020, and D consisted of 1999-2005 and 2015-2019. Five of the post - Mod Alt L years were clustered in D, while the other clustered in C. Earlier pre -Mod Alt L years are mixed among clusters A-D. Sweeps collected from downstream Jacks Creek consistently contained Gammarus tigrinus and species of Littoridinops, Apocorophium, and Hargeria rapax (H. rapax only since 2011); 2018 was the last year a new dominant appeared (Table III-G2). Community structure comparisons for the downstream sweeps collected indicate that species richness ranged from 19 (1999) to 45 (1998) and total abundance ranged from 589 individuals (2000) to 2,477 individuals (1998) (Table III-G3). The 2020 samples had a total abundance of 1,334 individuals and the second lowest number of taxa (23). The 2020 EBI score matched the 2002 and 2012 EBI scores (1.93) (Table III-G3). Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance within the downstream Jacks Creek sweeps by similarity percentages (SIMPER) revealed 49.5 percent similarity with differences driven predominantly by higher abundances of Dicrotendipes nervosus in the post -Mod Alt L years (2015 — 2020). Comparison of interannual variability between the downstream Jack Creek sweeps by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. III-G-4 iii. Jacks Creek Upstream Ponar Grabs The SIMPROF test of benthic taxa richness and abundance within the upstream Jacks Creek ponar grabs revealed slight variation of statistical significance between all years among four distinct clusters (Figure III-G1c). Cluster A consisted of one year (2002), B consisted of three years (2012, 2013, and 2020), C consisted of two post -Mod Alt L year (2016 and 2019), and D consisted of all other years (1998-2001, 2003-2005, 2011, 2014, 2015, and 2017-2018). Comparison of interannual variability between the clusters by means of similarity percentages (SIMPER) indicated similarity between clusters B and C was the highest (34.9), while clusters A and C had the lowest similarity percentage (16.8). Differences were driven predominantly by the absence in species of Macoma, greater abundance in species of Chironomus, and lower abundance in species of Littordinops in C. The 18 years of data revealed that upstream ponar grabs of Jacks Creek consistently contained Gammarus tigrinus, Chironomus decorus, and Littoridinops tenuipes as dominant species, and since 2011 species of Apocorophium and Candonidae were also often a dominant. There were no new dominant species since 2016 (Table III-G4). Community structure comparisons for the upstream ponar grabs indicate that species richness ranged from five (2012) to 30 (2004) and total abundance ranged from 90 individuals (2016) to 1,356 individuals (2001); 2020 was the third lowest total taxa (12) in the 18 years (Table III-G5). The Shannon -Wiener diversity scores ranged from 0.72 (1999) to 2.33 (2011) with the 2020 score at 1.99. The EBI scores ranged from 1.07 (2012) to 2.00 (1999), with the 2020 score at 1.44. Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance from upstream Jacks Creek ponar grabs by similarity percentages (SIMPER) revealed 39.1 percent similarity with differences driven predominantly by higher abundances of Gammarus tigrinus and lower abundances of Chironomus species and Amphicteis floridus in the post -Mod Alt L years (2015-2020). Comparison of interannual variability between the upstream Jacks Creek ponar grabs by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. iv. Jacks Creek Downstream Ponars The SIMPROF test of benthic taxa richness and abundance within the downstream Jacks Creek ponar grabs revealed slight variation of statistical significance between years among three distinct clusters (Figure III-G1d). Comparison of interannual variability between the clusters by means of similarity percentages (SIMPER) indicated that clusters B and C had the highest percent similarity (33.5), with A and C had the lowest percent similarity (16.7). Differences between clusters A and C were predominantly due to higher abundances of Streblospio benedicti and species of Mediomastus, Macoma, and Tubificoides in C. Ponar grabs from downstream Jacks Creek often contained high abundances of Chironomus decorus although it was not one of the four most abundant genera in 2016-2018; no new dominant species appeared in eight of the 18 years, the last was in 2018. Other dominant species included Gammarus tigrinus, Streblospio benedicti, and species of Apocorophium (Table III-G4). Community structure comparisons for the downstream ponar grabs indicate that species richness ranged from 11 (2000) to 25 (2015) and total abundance III-G-5 ranged from 183 (2014) to 1,639 individuals (2003). The 2020 samples contained 473 individuals among 19 taxa. The Shannon -Wiener diversity scores ranged from 0.96 (2019) to 2.51 (2014) and the EBI scores ranged from 1.11 (2012) to 2.33 (2016); the 2020 Shannon - Wiener diversity score was 1.80 and the EBI score was 1.93 (Table III-G5). Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance from downstream Jacks Creek ponar grabs by similarity percentages (SIMPER) revealed 33.2 percent similarity with differences driven predominantly by higher abundances in species of Chironomus, Tubificoides, and Mediomastus, and lower abundances in Gammarus tigrinus, and species of Apocorophium in the post -Mod Alt L years (2015-2020). Comparison of interannual variability between the downstream Jacks Creek ponar grabs by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. Jacobs Creek (2011-2020) The 2020 benthic macroinvertebrate collections for Jacobs Creek represented the 10th consecutive year and the seventh post -Mod Alt L. Drainage basin reductions in Jacobs Creek ceased in 2015. For the sweeps to date the number of dominants identified to species upstream and downstream was seven and nine, respectively; of those species two were found only upstream and four were found only downstream (Table III-G2). Sweep community structure metrics for upstream and downstream by year are in Table III-G3. For the ponars to date the number of dominants identified to species upstream was eight with 11 for downstream; of those species three were found only upstream and seven only downstream (Table III-G4). Ponar community structure metrics for upstream and downstream by year are in Table III-G5. i. Jacobs Creek Upstream Sweeps According to the similarity profile test (SIMPROF), there were no clusters among the 10 years of upstream sweeps collected in Jacobs Creek. Sweep dominants from upstream Jacobs Creek typically were species of Littoridinops, Apocorophium, and Chironomus while Gammarus tigrinus was one of the four dominants for the first time in 2020 (Table III-G2). Community structure comparisons for the upstream sweeps indicate that species richness ranged from 19 (2012) to 34 (2016) and total abundance ranged from 718 individuals (2020) to 1,678 individuals (2011). The 2020 samples contained the third lowest taxa count (24; tied with 2013) and the lowest total abundance (718 individuals). The EBI scores range from 1.63 (2017) to 2.40 (2012) with an EBI score of 1.85 in 2020 (Table III-G3). Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance in upstream Jacobs Creek sweeps by similarity percentages (SIMPER) revealed 49.4 percent similarity. Comparison of interannual variability between Jacobs Creek upstream sweeps by ANOSIM detected statistical significance between pre- and post -Mod Alt L macroinvertebrate communities (R = 0.405, P = 0.02). ii. Jacobs Creek Downstream Sweeps The SIMPROF test of benthic taxa richness and abundance within the downstream Jacobs Creek sweeps revealed slight variation of statistical significance between all years among three distinct clusters (Figure III-G2). Comparison of interannual variability between the clusters by means of similarity percentages (SIMPER) indicated that III-G-6 cluster A contained four years (2015-2017 and 2019), cluster B four years (2011, 2013, 2014, and 2018), and cluster C contained 2012 and 2020. Clusters A and B had the highest percent similarity (56.2), while A and C had the lowest (48.0). Differences were driven predominantly by a higher abundance of Apedilum species and Littoridinops tenuipes in A and higher abundances of Gammarus tigrinus and species of Chironomus in C. Sweeps from downstream Jacobs Creek consistently contained species of Apocorophium, Littoridinops, and Gammarus along with Hargeria rapax. Gammarus mucronatus was a dominant for the first time in 2020 while Gammarus tigrinus was among the four most abundant species for the past six years (Table III-G2). Community structure comparisons for the downstream sweeps indicate that species richness ranged from 29 (2013 and 2016) to 35 (2014 and 2015), total abundance ranged from 905 individuals (2020) to 2,198 individuals (2018) and EBI scores ranged from 1.80 (2017) to 2.10 (2011) (Table III-G3). The 2020 samples contained 30 taxa, the lowest total abundance to date (904 individuals) and had an EBI score of 1.98. Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance of Jacobs Creek downstream sweeps by similarity percentages (SIMPER) revealed 53.7 percent similarity with differences driven predominantly by the absence of Tanytarsus sp. and higher abundance of Gammarus tigrinus and species of Chironomus for the post -Mod Alt L years (2014 — 2020). Comparison of interannual variability between Jacobs Creek downstream sweeps by ANOSIM detected statistical significance between pre- and post -Mod Alt L macroinvertebrate communities (R = 0.421, P = 0.04). iii. Jacobs Creek Upstream Ponar Grabs According to the similarity profile test (SIMPROF), there were no clusters among the 10 years of upstream ponar grabs from Jacobs Creek. Ponar grabs from upstream Jacobs Creek contained Chironomus decorus as a dominant from 2012 — 2014 and 2018-2020 with Apocorophium sp. as an occasional dominant (2011, 2015-2018, 2020); no new dominant species were identified in five of the nine years (2013, 2014, 2017, 2018, 2020) (Table III-G4). Community structure comparisons for the ponar grabs from upstream indicate that species richness was highest in 2015 (23), after the 2014 and 2019 lows of 15 taxa, and total abundance ranged from 59 individuals (2016) to 1,277 individuals (2013) (Table III-G5). The 2020 upstream samples contained the second lowest total abundance (170 individuals) in the 10 years and 21 total taxa. Shannon -Wiener diversity scores ranged from 1.89 (2014) to 2.48 (2020) and EBI scores range from 1.35 (2014) to 2.27 (2013). The 2020 upstream ponar grabs had the highest Shannon - Wiener diversity score of 2.48 and an EBI score of 1.78. Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance within the upstream Jacobs Creek ponar grabs by similarity percentages (SIMPER) revealed 39.3 percent similarity. Comparison of interannual variability between Jacobs Creek upstream ponar grabs by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. iv. Jacobs Creek Downstream Ponar Grabs According to the similarity profile test (SIMPROF), there were no clusters among the 10 years of ponar grabs collected from downstream Jacobs Creek. III-G-7 Ponar grabs dominants were typically Chironomus decorus and species of Apocorophium and Gammarus; three of the 10 years had no new dominant species (2012, 2018, and 2020) (Table III-G4). Species richness ranged from 12 (2012) to 24 (2011) and total abundance ranged from 213 individuals (2016) to 877 individuals (2017). The 2020 samples had 18 taxa and 370 individuals, the Shannon -Wiener diversity score was 1.88, and the EBI score tied with the 2017 EBI score of 2.02 (Table III-G5). Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance of Jacobs Creek downstream ponar grabs by similarity percentages (SIMPER) revealed 39.2 percent similarity with differences driven predominantly by the absence of Apedilum sp. and lower abundances of Chironomus species, Parachironomus sp., and Apocorophium species for the post -Mod Alt L years (2014 — 2020). Rangia cuneata was present only in post -Mod Alt L years although the species was also collected with ponars in the study within another nearby creek (2000 in Tooley Creek). Comparison of interannual variability between Jacobs Creek downstream ponar grabs by ANOSIM detected no statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. Drinkwater Creek (2011-2020) The 2020 benthos samples for Drinkwater Creek represented the 10th consecutive year of benthic macroinvertebrate collections and the eighth post -Mod Alt L year; drainage basin reduction in the Drinkwater Creek watershed ceased in 2014. For the sweeps to date the number of dominants identified to species was seven for upstream and eight for downstream; among those species, two were found only upstream and four only downstream (Table III-G2). Sweep community structure metrics for upstream and downstream by year are in Table III-G3. For the ponars to date the number of dominants identified to species was seven upstream and 12 downstream; among those species, one was found only upstream and six only downstream (Table III-G4). Ponar community structure metrics for upstream and downstream Drinkwater Creek by year are in Table III-G5. i. Drinkwater Creek Upstream Sweeps Multivariate cluster analysis by a similarity profile test (SIMPROF) of benthic taxa richness and abundance within the upstream Drinkwater Creek sweeps revealed slight variation of statistical significance between all years among four distinct clusters (Figure III-G3a). Comparison of interannual variability between the clusters by means of similarity percentages (SIMPER) indicated that cluster A contained one year (2011), B contained six years (2013, 2015-2019), C one year (2020), and D contained two years (2012 and 2014). Clusters A and B had the highest similarity percentage (58.4), while clusters A and C had the lowest (48.8). Differences were predominantly due to higher abundance of Littoridinops tenuipes and Trichocorixa sexcinta in cluster C. Sweeps from upstream Drinkwater Creek consistently contained species of Littoridinops and Apocorophium as dominants; no new dominant species appeared in 2013, or 2016-2018, or 2020. Gammarus tigrinus was among the most dominant species in 2011 and since 2015 (Table III-G2). Community structure comparisons for the upstream sweeps collected indicate that species richness ranged from 22 (2015 and 2020) to 34 (2011), total abundance ranged from 596 individuals (2019) to 2,032 individuals (2011), and EBI scores ranged from 1.75 (2014) to 2.25 (2011) (Table III-G3). The 2020 EBI score was 1.82, while the total abundance was 881 individuals (Table III-G3). III-G-8 Comparison of interannual variability between pre- and post -Mod Alt L upstream benthic sweep taxa composition and abundance from Drinkwater Creek by similarity percentages (SIMPER) revealed 57.0 percent similarity with differences driven predominantly by higher abundance of Gammarus tigrinus and lower abundances in species of Dasyhelea and Apedilum for the post -Mod Alt L years (2013-2020). Comparison of interannual variability between Drinkwater Creek upstream sweeps by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. ii. Drinkwater Creek Downstream Sweeps Multivariate cluster analysis by a similarity profile test (SIMPROF) test of benthic taxa richness and abundance within the downstream Drinkwater Creek sweeps revealed slight variation of statistical significance between all years among two distinct clusters (Figure III-G3b). Comparison of interannual variability between the clusters by means of similarity percentages (SIMPER) indicated that cluster A contained 2020 only, while cluster B contained nine years (2011-2019). Differences between the two clusters were due to higher abundance of Littoridinops tenuipes, Gammarus tigrinus, and species of Corixidae in B. Sweeps from downstream Drinkwater Creek consistently contained species of Littoridinops and Apocorophium along with Gammarus tigrinus as dominants; no new dominant species appeared in 2020 (Table III-G2). Species richness ranged from 24 (2020) to 40 (2016), total abundance ranged from 884 individuals (2019) to 1,785 individuals (2015), EBI scores ranged from 1.73 (2020) to 2.04 (2011 and 2019), and the 2020 abundance was 1,001 individuals (Table III-G3). Comparison of interannual variability between pre- and post -Mod Alt L downstream benthic sweep taxa composition and abundance from Drinkwater Creek by similarity percentages (SIMPER) revealed 56.6 percent similarity with differences driven predominantly by lower abundances of Americamysis almyra and Palaeomonetes pugio and higher abundances of Gammarus tigrinus for the post -Mod Alt L years (2013-2020). Comparison of interannual variability between Drinkwater Creek downstream benthic sweeps by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. Drinkwater Creek Upstream Ponar Grabs According to the similarity profile test (SIMPROF), there were no clusters among the 10 years of ponar grabs collected from upstream Drinkwater Creek. Ponar grabs within upstream Drinkwater Creek usually contained species of Chironomus and Littoridinops, and Amphicteis floridus as dominants with other species less often (Table III-G4). Species richness ranged from 11 (2019) to 23 (2013), total abundance ranged from 242 individuals (2020) to 1,267 individuals (2012) (Table III-G5). The 2020 total taxa count was 15, Shannon -Wiener diversity score was 2.14 (range: 1.58 — 2.32), and the EBI score was 1.80 (range: 1.59 — 2.10) (Table III-G5). Comparison of interannual variability between pre- and post -Mod Alt L upstream benthic ponar taxa composition and abundance within Drinkwater Creek by similarity percentages (SIMPER) revealed 53.8 percent similarity with differences driven predominantly by the absence of Aulodrilus sp. and the lower abundances of Tanytarsus and Littoridinops in the post -Mod Alt L years (2013 — 2020). Comparison of interannual variability by ANOSIM detected no spatial III-G-9 differences of statistical significance between Drinkwater Creek upstream ponar pre- and post - Mod Alt L macroinvertebrate communities. iv. Drinkwater Creek Downstream Ponar Grabs Multivariate cluster analysis by a similarity profile test (SIMPROF) of benthic taxa richness and abundance from downstream Drinkwater Creek ponar grabs revealed significant variation between all years among three different clusters (Figure III-G3c). Cluster A consisted of one post -Mod Alt L year (2015), B contained two post -Mod Alt L years (2016 and 2017), and C contained the other years (2011-2014, 2018- 2020). Comparison of interannual variability between clusters by similarity percentages (SIMPER) ranged between 29.4 and 66.80 percent, with clusters A and B more similar than clusters B and C. Ponar grabs within downstream Drinkwater Creek usually contained species of Chironomus, along with Mediomastus ambiseta and Streblospio benedicti as dominants; three years (2016-2017, and 2020) did not contain new dominant species (Table III-G4). Species richness ranged from 13 (2015) to 23 (2018 and 2020) and total abundance ranged from 161 individuals (2015) to 1,140 individuals (2013); the 2020 samples had 390 individuals among 23 taxa, Shannon -Wiener diversity score of 2.38 (range: 1.34 — 2.46), and EBI score of 1.84 (range: 1.57 — 2.23) (Table III-G5). Comparison of interannual variability between pre- and post -Mod Alt L downstream benthic ponar taxa composition and abundance within Drinkwater Creek by similarity percentages (SIMPER) revealed 34.3 percent similarity with differences driven predominantly by the absence of Apedilum sp. and lower abundances of Parachironomus sp., Macoma balthica, and Chironomus species in the post -Mod Alt L years (2013 — 2020). Comparison of Drinkwater Creek downstream interannual variability by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L downstream ponar macroinvertebrate communities. Tooley Creek (1998 — 2001; 2010 - 2020) The 2020 benthos samples for Tooley Creek represented the 15th year of benthic macroinvertebrate collections and was the ninth year considered post -Mod Alt L (2012 -2020); drainage basin reduction in the Tooley Creek watershed ceased in 2013. For the sweeps to date the number of dominants identified to species was 11 for upstream and nine for downstream; among those species three were only upstream and three were only downstream (Table III-G2). Sweep community structure metrics for upstream and downstream are in Table III-G3. For the ponars to date, 15 dominants were identified to species in the upstream and 14 downstream; among those species four were found only upstream and four were found only downstream (Table III-G4). Ponar community structure metrics for upstream and downstream are in Table III-G5. i. Tooley Creek Upstream Sweeps Multivariate cluster analysis of benthic sweep taxa richness and abundance within upstream Tooley Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among six distinct clusters (Figure III-G4a). Cluster A contained two years (1998 and 1999), B contained one year (2019), C contained one year (2000), D contained one year (2001), E contained three years (2015-2017), and F contained seven years (2010-2014, 2018, and 2020). Post -Mod Alt L years were contained in clusters which also contained pre -Mod Alt L years, except for 2016-2017, which clustered together. Comparison of interannual variability between the clusters by similarity percentages III-G-10 (SIMPER) indicated that cluster A and B were the least similar (36.1 percent); differences were due to higher abundances in Mediomastus ambiseta and species of Chironomus in cluster A. The 15 years of data revealed that sweeps within upstream Tooley Creek contained Littoridinops species as dominants every year and species of Apocorophium became a dominant after 2010 every year except 2015. Gammarus tigrinus and G. mucronatus were dominants in 2020, although G. mucronatus has not been one of the top four since 2014; no new dominants have appeared since 2015 (Table III-G2). Community structure comparisons for the upstream sweeps indicate that species richness ranged from 17 (1999) to 42 (1998), total abundance ranged from 918 individuals (2010) to 2,572 individuals (2017), and EBI scores range from 1.80 (2015 and 2018) to 2.08 (2001 and 2012) (Table III- G3). The sweeps in 2020 had 1,061 individuals among 28 taxa and an EBI score of 2.01 (Table III-G3). Comparison of interannual variability between pre- and post -Mod Alt L upstream sweep taxa composition and abundance within Tooley Creek by similarity percentages (SIMPER) revealed 49.7 percent similarity with differences driven predominantly by lower abundances of Gammarus tigrinus and Cassidinidea lunifrons, and higher abundances of both Nematoda sp. and Hargeria rapax in the post -Mod Alt L years (2012 — 2020). Comparison of interannual variability between upstream sweeps by ANOSIM detected spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities (R = 0.253, P = 0.03). ii. Tooley Creek Downstream Sweeps Multivariate cluster analysis of benthic sweep taxa richness and abundance within downstream Tooley Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among six distinct clusters (Figure III- G4b). Cluster A consisted of one year (1998), cluster B of one year (2020), cluster C of three years (1999-2001), cluster D one year (2019), cluster E of four pre -Mod Alt L years (2016- 2018), and cluster F of five years (2010-2014). As determined by a SIMPER analysis, clusters A and F were the least similar at 33.6 percent and differed based on lower abundances of the Bezzia/Palpomyia complex, Cricotopus species, and Enallagma sp. in A. Sweeps within downstream Tooley Creek consistently contained species of Littoridinops and Apocorophium, Gammarus tigrinus, and Hargeria rapax; no new dominants have appeared since 2014 (Table III-G2). Gammarus tigrinus, abundant in the first four years (1998 — 2001) was again abundant in 2015-2020. Species richness ranged from 18 (2020) to 47 (1998), total abundance ranged from 321 individuals (2020) to 3,360 individuals (1998), and EBI scores ranged from 1.80 (2019) to 2.07 (2014) (Table III-G3). In 2020 total abundance was the lowest since sampling began (321 individuals) and the EBI score was 1.98 (Table III-G3). Comparison of interannual variability between pre- and post -Mod Alt L downstream sweeps taxa composition and abundance within Tooley Creek by similarity percentages (SIMPER) revealed 51.0 percent similarity with differences driven predominantly by higher abundances of Gammarus mucronatus and lower abundances of Amphicteis floridus and Cyprideis littoralis in the post -Mod Alt L years (2012 — 2020). Comparison of interannual variability in Tooley Creek downstream sweeps by ANOSIM detected spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities (R = 0.195, P = 0.04). III-G-11 Tooley Creek Upstream Ponar Grabs Multivariate cluster analysis of benthic ponar taxa richness and abundance within upstream Tooley Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among six distinct clusters (Figure III-G4c). Cluster A consisted of two years (2016 and 2020), B of three pre -Mod Alt L years (1998, 1999, and 2001), C of one year (2010), D of two years (2000 and 2012), E of one year (2013), and F of one pre -Mod Alt L year and five post -Mod Alt L years (2011, 2013-2015, and 2017-2019). Clusters B and C had the lowest similarity percentage with differences predominantly due to the absence of Gammarus tigrinus and Amphicteis floridus in C. Ponar grabs within upstream Tooley Creek often contained Chironomus decorus, species of Gammarus, and species of Apocorophium since 2011; Mediomastus ambiseta was a dominant in 2020 for the first time (Table III-G4). Community structure comparisons indicate that species richness ranged from 11 (2000 and 2012) to 24 (2001) and total abundance ranged from 50 (2020) to 942 (2013); 2020 Shannon -Wiener diversity score was 2.31(range: 0.49— 2.43), and the EBI score was 1.86 (range: 1.15 — 2.09) (Table III-G5). Comparison of interannual variability between pre- and post -Mod Alt L benthic ponar taxa composition and abundance within upstream Tooley Creek by similarity percentages (SIMPER) revealed 33.8 percent similarity with differences driven predominantly by lower abundances of Gammarus tigrinus, Amphicteis floridus, and Macoma balthica in the post - Mod Alt L years (2012 — 2020). Comparison of interannual variability in Tooley Creek upstream ponar grabs by ANOSIM detected no spatial differences of statistical significance between pre - and post -Mod Alt L macroinvertebrate communities. v. Tooley Creek Downstream Ponar Grabs Multivariate cluster analysis of benthic ponar taxa richness and abundance within downstream Tooley Creek by a similarity profile test (SIMPROF) revealed variation of statistical significance between years among two clusters (Figure III-G4d). Cluster A contained three years (1998-2000) while cluster B contained the remainder. Ponar grabs within downstream Tooley Creek frequently contained Mediomastus ambiseta (every year since 2011) and Chironomus decorus, although C. decorus was not among the four most dominant species in 2015-2018; with Streblospio benedicti was a dominant for the past two years (Table III-G4). Species richness ranged between 11 (2000) and 25 (2001) and total abundance ranged between 270 individuals (1999) and 1,415 individuals (2012); 2010, 2011, 2013, 2014, 2018, 2019, and 2020 did not contain any new dominant species (Table III-G4, Table III-G5). The 2020 samples contained 272 individuals among 16 taxa, the Shannon -Wiener diversity score was 1.28 (range: 1.00 — 2.31) and the EBI score was 1.85 (range: 1.16 — 2.07) (Table III-G5). Comparison of interannual variability between pre- and post -Mod Alt L ponar benthic taxa composition and abundance within downstream Tooley Creek by similarity percentages (SIMPER) revealed 37.8 percent similarity with differences driven predominantly by higher abundances of Streblospio benedicti, Mediomastus ambiseta, Eteone heteropoda, and species of Chironomus in the post -Mod Alt L years (2012 — 2020). Comparison of interannual variability of Tooley Creek downstream ponar grabs by ANOSIM detected spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities (R = 0.330, P = 0.01). III-G-12 Huddles Cut (1999-2001; 2007-2020) The 2020 benthos samples for Huddles Cut represented the 17th year of benthic macroinvertebrate collections and the 11th year considered post -Mod Alt L (2010 — 2020); drainage basin reduction from mine activities in the Huddles Cut watershed ceased in 2011. For the sweeps to date the number of dominants identified to species was nine for upstream and 15 for downstream; among those species, four were only upstream and nine were only downstream (Table III-G2). Community structure metrics for upstream and downstream sweeps are in Table III-G3. For the ponars to date the number of dominants identified to species was 16 for upstream and 18 for downstream; of those species five were only upstream and six were only downstream (Table III-G4). Community structure metrics for upstream and downstream ponars are in (Table III-G5). i. Huddles Cut Upstream Sweeps Multivariate cluster analysis of benthic sweep taxa richness and abundance within upstream Huddles Cut by a similarity profile test (SIMPROF) revealed statistically significant variation between years among seven distinct clusters (Figure III-G5a). Cluster A contained one year (1999), B contained two years (2000 and 2001), C contained two years (2012 and 2020), D contained six years (2008-2011, 2013, and 2014), E contained two years (2017 and 2018), F contained one year (2007), and G contained the remainder (2015, 2016, and 2019). Post -Mod Alt L years were clustered with at least one pre -Mod Alt L year, except for clusters C, E and F. Comparison of interannual variability between clusters by similarity percentages (SIMPER) revealed similarity ranged from 19.1 percent to 34.0 percent. Sweeps within upstream Huddles Cut consistently contained Cyprideis littoralis and Palaeomonetes pugio. However, the other 2020 dominant species were dominants only once before, Tubificoides heterochaetus in 2016, and Streblospio benedicti and Mediomastus ambiseta in 2012 (Table III-G2). Community structure comparisons for the upstream sweeps within Huddles Cut indicate that species richness ranged from 13 (2009) to 29 (2018), total abundance ranged from 273 individuals (2012) to 1,647 individuals (2016), and EBI scores ranged from 1.81 (2010) to 2.22 (2009); 2020 had 380 individuals among 18 taxa, and an EBI score of 2.09 (Table III-G3). Comparison of interannual variability between pre- and post -Mod Alt L Huddles Cut upstream sweep taxa composition and abundance by means of similarity percentages (SIMPER) revealed 47.6 percent similarity. Differences were due predominantly to higher abundances of Gammarus tigrinus and species of Chironomus and Apocorophium, and lower abundances of species of Littoridinops and Tanytarsus in the post -Mod Alt L years (2010 — 2020). Comparison of interannual variability among upstream sweeps by ANOSIM revealed spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities within Huddles Cut (R = 0.360; P = 0.005). ii. Huddles Cut Downstream Sweeps Multivariate cluster analysis of benthic sweep taxa richness and abundance within downstream Huddles Cut by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years between two distinct clusters (Figure III- G5b). Cluster A contained three sample years (1999, 2001, and 2017) and B consisted of the other 13 years (2000, 2007 — 2016, 2018-2020). Comparison of interannual variability between the clusters by similarity percentages (SIMPER) indicated 38.9 percent similarity. Cluster A contained a higher abundance of Littoridinops species and a lower abundance of Gammarus tigrinus and Palaeomonetes pugio than B. III-G-13 Sweeps in downstream Huddles Cut consistently contained Gammarus tigrinus (a dominant every year but 2001) and Palaeomonetes pugio, with species of Apocorophium as occasional dominant; Lepidactylus dytiscus, was a new dominant in 2020, the first new dominant since 2014 (Table III-G2). Species richness ranged from 12 (2011) to 33 (2017), total abundance ranged from 75 (2011) to 1,057 (2017), EBI scores ranged from 1.74 (2008) to 2.36 (2020); 2020 sweeps had 506 individuals among 22 taxa (Table III-G3). Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance within downstream Huddles Cut sweeps by similarity percentages (SIMPER) revealed 43.8 percent similarity with differences driven predominantly by higher abundances of Gammarus tigrinus, Gammarus mucronatus, Palaeomonetes pugio, and species of Apocorophium in the post -Mod Alt L years (2010 — 2020). Comparison of interannual variability among the Huddles Cut downstream sweeps by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. iii. Huddles Cut Upstream Ponar Grabs Multivariate cluster analysis of taxa richness and abundance in Huddles Cut upstream ponar grabs by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among four distinct clusters (Figure III-G5c). Comparison of interannual variability between the clusters by similarity percentages (SIMPER) indicated similarity ranged from 37.5 to 73.5 percent. Cluster A contained three years (2009, 2010, and 2019), B contained five post -Mod Alt L years (2012-2014, 2018, and 2020), C contained three years (1999, 2001, and 2016), and D contained the remainder (2000, 2007, 2008, 2011, 2015, and 2017). Ponar grabs within upstream Huddles Cut contained various dominant species over the years, but Chironomus decorus and Cyprideis littoralis, were often one of the top four with other species as dominant for several years (Table III-G4). Species richness ranged from three (2010) to 25 (2018) and total abundance ranged from 46 individuals (2000) to 596 individuals (2016); 2020 ponars contained 235 individuals among 17 taxa, the Shannon -Wiener diversity score was 1.79 (range: 0.32 — 2.52), and the EBI score was 1.76 (range: 1.11 — 1.98) (Table III-G5). Comparison of interannual variability between pre- and post -Mod Alt L upstream ponar grabs taxa composition and abundance within Huddles Cut by similarity percentages (SIMPER) revealed 31.2 percent similarity with differences driven predominantly by higher abundances of Heteromastus filiformis, species of Chironomus, and Macoma tenta, and lower abundances of Cyprideis littoralis and Amphicteis floridus in the post -Mod Alt L years (2010- 2020). Comparison of interannual variability among Huddles Cut upstream ponar grabs by ANOSIM detected no spatial differences of statistical significance between pre- and post - Mod Alt L macroinvertebrate communities. iv. Huddles Cut Downstream Ponar Grabs Multivariate cluster analysis of ponar grabs taxa richness and abundance within downstream Huddles Cut by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among three distinct clusters (Figure III- G5d). Comparison of interannual variability between the clusters by similarity percentages (SIMPER) indicated similarity ranged from 6.2 to 24.7 percent. Cluster A contained only one year (2015), cluster B contained seven years (1999-2001, 2007, 2010, 2016, and 2017), and C III-G-14 contained nine years (2008, 2009, 2011-2014 and 2018-2020). Ponar grabs within downstream Huddles Cut also contained various dominants over the years but Chironomus decorus was usually one of them with Lepidactylus dytiscus, Heteromastus filiformis, Neanthes succinea, and Eteone heteropoda as occasional dominants; only 2010, 2013, 2019 and 2020 contained no new dominant species (Table III-G4). Species richness ranged from seven (2015) to 24 (2001 and 2017) and total abundance ranged from 108 individuals (2019) to 1,980 individuals (2013); 2020 ponars contained 114 individuals among 11 taxa, the Shannon -Wiener diversity score was 2.01 (range: 1.24 — 2.56), and the EBI score was 2.44 (range: 1.13 — 3.08) (Table III-G5). Comparison of interannual variability between pre- and post -Mod Alt L downstream benthic taxa composition and abundance within Huddles Cut ponar grabs by similarity percentages (SIMPER) revealed 27.2 percent similarity with differences driven predominantly by higher abundances of Nematoda sp. and Mediomastus ambiseta and lower abundances of Chironomus species and Amphicteis floridus in the post -Mod Alt L years (2010- 2020). Comparison of interannual variability among the Huddles Cut downstream ponar grabs by ANOSIM detected no spatial differences of statistical significance between pre- and post - Mod Alt L macroinvertebrate communities. Porter Creek (2011-2020) The 2020 benthic macroinvertebrate collection in Porter Creek was the 10th consecutive year of Mod Alt L samples and the fifth year considered post -Mod Alt L. For the sweeps to date the number of dominants identified to species was nine upstream and nine for downstream; among those species, four were only upstream and another four were only downstream (Table III-G2). Community structure metrics for upstream and downstream sweeps are in Table III-G3. For the ponars to date, the number of dominants identified to species was nine for upstream and 11 for downstream; among those species, four were only upstream and six were only downstream (Table III-G4). Community structure metrics for upstream and downstream ponars are in Table III-G5. i. Porter Creek Upstream Sweeps Multivariate cluster analysis of benthic sweep taxa richness and abundance within upstream Porter Creek by a similarity profile test (SIMPROF) revealed statistically significant variation between years among four distinct clusters (Figure III-G6a). Cluster A contained one year (2019), B contained three years (2015-2017), C contained one year (2012), and D contained five years (2011, 2013, 2014, 2018, and 2020). Comparison of interannual variability between clusters B and C by similarity percentages (SIMPER) revealed that these two clusters had 41.9 percent similarity with differences driven predominantly by higher abundances of Candonidae species, Corixidae species, and Trichocorixa sexcinta in C. Cluster A lacked Apocorophium species and contained Dero sp. which drove the difference between A and the other two clusters. Sweeps from upstream Porter Creek contained Gammarus tigrinus, a dominant every year, while other frequent dominants were species of Littoridinops and Cyprideis littoralis; Apocorophium louisianum was a dominant for the first time in 2020 (Table III-G2). Species richness for the upstream sweeps ranged from 21 (2015 and 2020) to 34 (2012), total abundance ranged from 765 individuals (2016) to 2,804 individuals (2012), and EBI scores ranged from 1.85 (2011) to 2.05 (2013); 2020 sweeps had 1,578 individuals among 21 taxa, and an EBI score of 2.01 (Table III-G3). III-G-15 Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance within upstream Porter Creek sweeps by similarity percentages (SIMPER) revealed 53.7 percent similarity with differences driven predominantly by lower abundances of species of Apocorophium and Tanytarsus, Dicrotendipes nervosusand Cyathura polita in the four post -Mod Alt L years (2016-2020). Comparison of interannual variability among the Porter Creek upstream sweeps by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate. ii. Porter Creek Downstream Sweeps The SIMPROF test of benthic sweeps taxa richness and abundance from downstream Porter Creek revealed slight variation of statistical significance between years among three distinct clusters (Figure III-G6b). Cluster A contained one year (2012), cluster B contained three years (2016, 2017, and 2019), and C contained the other six years (2011, 2013 — 2015, 2018, and 2020). Clusters A and B had the lowest similarity (42.5 percent) with the absence of Littoridinops tenuipes, Gammarus mucronatus, and species of Apedilum in cluster B as predominant differences. Sweeps from downstream Porter Creek always contained species of Apocorophium and consistently contained species of Littoridinops and Gammarus as dominants, and these genera were the three most abundant in 2016-2020, while Hargeria rapax was a dominant species for only 2012-2014, and 2020 (Table III-G2). Species richness ranged from 18 (2018) to 33 (2013), total abundance ranged from 667 individuals (2012) to 1,791 individuals (2011), and EBI scores ranged from 1.82 (2020) to 2.18 (2012); 2020 sweeps had 1,095 individuals among 21 taxa (Table III-G3). Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance within downstream Porter Creek sweeps by similarity percentages (SIMPER) revealed 53.9 percent similarity with differences driven predominantly by lower abundances of Hargeria rapax, Gammarus mucronatus, Palaeomonetes pugio, Polydora cornuta, and species of Chironomus in the post -Mod Alt L years (2016-2020). Five years post -Mod Alt L, comparison of interannual variability among the Porter Creek downstream sweeps by ANOSIM detected spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities (R = 0.440; P = 0.008). iii. Porter Creek Upstream Ponar Grabs Multivariate cluster analysis of benthic ponar grabs taxa richness and abundance within upstream Porter Creek by a similarity profile test (SIMPROF) revealed statistically significant variation between years between two distinct clusters (Figure III-G6c). Cluster A contained two years (2013 and 2020) and B contained all other years (2011-2012 and 2014-2019). Comparison of interannual variability between clusters by similarity percentages (SIMPER) revealed that these two clusters were 39.1 percent similar with differences driven predominantly by higher abundances of Amphicteis floridus, and Macoma balthica in A. Ponar grabs from upstream Porter Creek contained Gammarus tigrinus as a dominant species for all sampled years except 2012 with species of Apocorophium and Amphicteis floridus as frequent co -dominants (Table III-G4). Community structure comparisons for the upstream ponar grabs indicate that species richness ranged from 14 (2020) to 22 (2011) and total abundance ranged from 317 individuals (2013) to 2,136 individuals (2012); 2020 ponars had 472 individuals, the Shannon -Wiener diversity score was 1.76 (range: 1.53 — 2.30), while the EBI range changed: 1.80 — 2.06 (Table III-G5). III-G-16 Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance within upstream Porter Creek ponar grabs by similarity percentages (SIMPER) revealed 47.4 percent similarity with differences driven predominantly by lower abundances of species of Tanytarsus and Apocorophium in the four post -Mod Alt L years (2016-2020). Comparison of interannual variability among the upstream ponars by ANOSIM detected no spatial difference of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. iv. Porter Creek Downstream Ponar Grabs According to the similarity profile test (SIMPROF), there were no clusters among the seven years of ponar grabs collected from downstream Porter Creek. Ponar grabs from downstream Porter Creek usually contained species of Chironomus and Macoma, with Mediomastus ambiseta, Streblospio benedicti, and Gammarus tigrinus less frequent dominants (Table III-G4). Species richness ranged from 10 (2012) to 19 (2013) and total abundance ranged from 123 individuals (2012) to 743 individuals (2017); 2020 grabs had 532 individuals among 17 taxa, a Shannon -Wiener diversity score of 1.10 (range: 0.79 — 2.03) and an EBI score of 1.79 (range: 1.20 — 1.94) (Table III-G5). Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance within downstream Porter Creek ponar grabs by similarity percentages (SIMPER) revealed 39.7 percent similarity. Comparison of interannual variability among the Porter Creek downstream ponars by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. DCUT11 (2013-2020) The 2020 benthic macroinvertebrate collection in DCUT11 was the eighth consecutive year of Mod Alt L samples with 2020 being the third post -Mod Alt L year. For the sweeps to date the number of dominants identified to species was six for upstream and five for downstream; among those species two were found only upstream and one was found only downstream (Table III-G2). Community structure metrics for upstream and downstream sweeps are in Table III-G3. For the ponar grabs to date the number of dominants identified to species was five upstream and nine downstream; among those species one was found only upstream and four were found only downstream; no species were only upstream while five were only downstream (Table III-G4). Community structure metrics for upstream and downstream ponars are in Table III-G5. i. DCUT11 Upstream Sweeps Multivariate cluster analysis of benthic sweeps taxa richness and abundance within upstream DCUT11 by a similarity profile test (SIMPROF) revealed statistically significant variation between years among two distinct clusters (Figure III-G7a). Cluster A contained six years (2013-2015, 2017, 2018, and 2020) and B contained two years (2016 and 2019). Comparison of interannual variability between clusters by similarity percentages (SIMPER) revealed that these two clusters were 54.1 percent similar with differences driven predominantly by the absence of Amphicteis floridus and species of Apocorophium, as well as lower abundances in species of Berosus and Cyprideis littoralis in B. Sweeps from upstream DCUT11 consistently contained III-G-17 Gammarus tigrinus (a dominant species each year), Cyprideis littoralis, species of Littoridinops. There has been no new dominant species since 2017 for DCUT11 upstream sweeps samples (Table III-G2). Species richness has ranged from 22 (2016) to 30 (2019) while abundance ranged from 613 (2019) to 1,750 (2015). The 2020 total abundance was the third highest to date (1,677), the taxa count was 25, and the EBI score was the highest to date at 2.07 (previous range: 1.46-1.97) (Table III-G3). Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance within upstream DCUT11 sweeps by similarity percentages (SIMPER) revealed 60.7 percent similarity. Differences between pre- and post - Mod Alt L included higher abundances of Littoridinops tenuipes and species of Apocorophium in post -Mod Alt L years (2018-2020). Comparison of interannual variability among the DCUT11 upstream sweeps by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. ii. DCUT11 Downstream Sweeps Multivariate cluster analysis of benthic sweeps taxa richness and abundance within downstream DCUT11 by a similarity profile test (SIMPROF) revealed statistically significant variation between years between two distinct clusters (Figure III-G7b). Cluster A contained one year (2019) and B contained seven years (2013-2018 and 2020). Comparison of interannual variability between clusters by similarity percentages (SIMPER) revealed that these two clusters were 52.9 percent similar with differences driven predominantly by higher abundances of Amphicteis floridus, Cyprideis littoralis, and species of Apocorophium in B. Like the upstream, downstream sweeps were consistently dominated by Gammarus tigrinus each year, along with species of Littoridinops, and usually Cyprideis littoralis. Other dominant species included Tanytarsus sp. (a dominant species since 2016). There were no new dominant species since 2015 (Table III-G2). Community structure comparisons for the sweeps collected from downstream DCUT11 show that species richness was lowest in 2018 (19 taxa) and highest in 2019 (32 taxa). Total abundance was lowest in 2019 (867 individuals) and highest in 2015 (2,205). In 2020, the taxa count was 28, while total abundance was 1,896; the 2020 EBI score was 2.00 (range 1.65 — 2.03) (Table III-G3). Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance within downstream DCUT11 sweeps by similarity percentages (SIMPER) revealed 62.8 percent similarity. Differences between pre- and post - Mod Alt L years include the absence of Nematoda sp. and higher abundances of Littoridinops tenuipes and Goeldichironomus devineyae in post Mod -Alt L years (2018-2020). Comparison of interannual variability among the DCUT11 downstream sweeps by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. DCUT11 Upstream Ponar Grabs According to the similarity profile test (SIMPROF), there were no clusters among the eight years of ponar grabs collected from upstream DCUT11. Ponar grabs from upstream DCUT11 consistently contained Gammarus tigrinus (a dominant every year except 2015), species of Littoridinops, and Cyprideis littoralis. The last new dominant species appeared in 2019 (Table III-G4). The total abundance was lowest in 2017 (446 individuals) and highest in 2014 (2,192), while the lowest taxa count III-G-18 was in 2017 (12) and highest in 2019 (22). In 2020, the total abundance was 1,535 individuals among 18 taxa. The Shannon -Weiner Index in 2020 was 2.01 (range: 1.17-2.42) and 2020 EBI score was 1.99 (range: 1.80-2.01) (Table III-G5). Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance within upstream DCUT11 ponar grabs by similarity percentages (SIMPER) revealed 53.8 percent similarity. Comparison of interannual variability among the DCUT11 upstream ponar grabs by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. iv. DCUT11 Downstream Ponar Grabs According to the similarity profile test (SIMPROF), there were no clusters among the eight years of ponar grabs collected from downstream DCUT11. Ponar grabs from downstream DCUT11 were consistently dominated by Gammarus tigrinus (dominant each year). Other dominants were species of Apocorophium and Amphicteis floridus. No new dominant species have appeared since 2019 (Table III-G4). Total abundance was lowest in 2016 (248 individuals) and highest in 2020 (2,105 individuals) while species richness was lowest in 2013 (14 species) and highest in 2014 (28 species). In 2020, species richness increased slightly from 2019 to 16 species. Shannon - Weiner Index (1.96) was the second highest, and the EBI score for 2020 (1.87) was the third lowest for all eight years (Table III-G5). Comparison of interannual variability between pre- and post -Mod Alt L benthic taxa composition and abundance within downstream DCUT11 ponar grabs by similarity percentages (SIMPER) revealed 49.0 percent similarity. Comparison of interannual variability among the DCUT11 downstream ponar grabs by ANOSIM detected no spatial differences of statistical significance between pre- and post -Mod Alt L macroinvertebrate communities. c. Control Creeks Sweep and Ponar Grab Data SCUT1 (2019-2020) The 2020 macroinvertebrate collection for SCUT1 was the second sample year. For the sweep collection, the number of dominants identified to species was four for upstream and five for downstream; among those species two species were found only upstream and three only downstream (Table III-G2). Community structure metrics for upstream and downstream sweeps are in Table III-G3. For the ponars to date, the number of dominants identified to species was four for upstream and five for downstream; among those species two were found only upstream and three only downstream (Table III-G4). Community structure metrics for ponars are in Table III-G5. Upstream sweeps were dominated both years by species of Naididae without hair with four other species as dominants only one year to date (Table III-G2). Community structure comparisons for the 2020 sweeps collected from upstream SCUT1 showed that species richness was 20 (28 in 2019), total abundance was 944 individuals (401 in 2019), and the EBI score was 1.53 (1.18 in 2019) (Table III-G3). Downstream sweeps were dominated by Gammarus tigrinus both years with four other species present only one year (Cyprideis littoralis, Americamysis almyra, and Amphicteis floridus) (Table III-G2). Community III-G-19 structure comparisons for the sweeps collected from downstream SCUT1 showed species richness at 18 (35 in 2019), total abundance at 997 individuals (738 in 2019), and EBI score of 1.98 (1.72 in 2019) (Table III-G3). Ponar grabs from upstream SCUT1 contained species of Naididae without hair and Limnodrilus hoffmeisteri both years with three other taxa present only one year (Tanypus neopunctipennis, Coelotanypus sp., and Cyprideis littoralis (Table III-G4). In 2020 the total abundance was 334 individuals (509 in 2019), species richness was 7 taxa (18 in 2019), the Shannon -Weiner Index was 0.99 (1.72 in 2019), and the EBI score was 1.74 (1.23 in 2019) (Table III-G5). Cyprideis littoralis was a dominant both years in ponar grabs from downstream SCUT1 while six other taxa were present only one year (Chironomus decorus Gammarus tigrinus, Amphicteis floridus, Streblospio benedicti, and species of Candonidae and Procladius) (Table III-G4). In 2020, the total abundance was 92 (219 in 2019), species richness was 8 taxa (16 in 2019), the Shannon -Weiner Index was 1.74 (2.13 in 2019), and the EBI was 1.77 (1.25 in 2019) (Table III-G5). Little Creek (2011-2020) The 2020 benthos samples for Little Creek represented the 10th consecutive year of Mod Alt L benthic macroinvertebrate collections. For the sweeps to date, the number of dominants identified to species was eight for upstream and nine for downstream; among those species three were found only upstream and four only downstream (Table III-G2). Community structure metrics for upstream and downstream sweeps by year are in Table III-G3. For the ponars to date the number of dominants identified to species was six for upstream and 11 for downstream; among those species three were found only upstream and eight were found only downstream (Table III-G4). Community structure metrics for upstream and downstream ponars are in Table III-G5. i. Little Creek Upstream Sweeps Multivariate cluster analysis of sweep taxa richness and abundance within upstream Little Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among four distinct clusters (Figure III-G8a). Comparison of interannual variability between the clusters by means of similarity percentages (SIMPER) indicated similarity ranged from 20.4 to 53.8 percent. Cluster A consisted of only one year (2012), B consisted on one year (2019), C consisted of two years (2011 and 2013), and D consisted of six years (2014-2018 and 2020). The two least similar clusters were A and B (20.4 similarity percentage), with differences being driven by the absence of Corixidae sp., and higher abundances in Enchytraeidae sp. and Tanytarsus sp. in A. Dominants in sweeps within upstream Little Creek contained Gammarus tigrinus every year but 2012 and Cyprideis littoralis for the past six years, while species of Littoridinops were dominant less frequently. There was one new dominant species in 2020, Americamysis almyra (Table III- G2). Abundance (881 individuals) and taxa richness (15) for Little Creek upstream sweeps were the lowest to date in 2020; previous taxa range was 22 - 29, previous range of abundance was 961 -2,002 individuals, and EBI scores ranged from 1.50 (2019) to 1.81 (2012) with the 2020 EBI at 1.68 (Table III-G3). ii. Little Creek Downstream Sweeps Multivariate cluster analysis of sweep taxa richness and abundance within downstream Little Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among three distinct clusters (Figure III-G8b). III-G-20 Cluster A consisted of one year (2018), B consisted of two years (2011 and 2013), and C consisted of seven years (2012, 2014-2017, 2019, and 2020). Comparison of interannual variability between the clusters by means of similarity percentages (SIMPER) indicated A and B were least similar (46.2 similarity percentage), with differences being driven by higher abundances in species of Chironomus in B and the absence of Hargeria rapax and species of Nematoda in A. Sweeps within downstream Little Creek contained species of Littoridinops every year except 2013 and species of Apocorophium every year except 2019 as dominants, while Gammarus tigrinus was among the four most abundant species every year since its first appearance as a dominant in 2015; no new dominant species since 2019 (Table III-G2). Species richness ranged from 21 (2018) to 36 (2012 and 2019), total abundance ranged from 564 individuals (2018) to 1,502 individuals (2017), and EBI scores ranged from 1.79 (2017) to 2.25 (2013) (Table III-G3). The 2020 EBI score was 1.83, taxa count was 32, and total abundance was 1,430. N. Little Creek Upstream Ponar Grabs Multivariate cluster analysis of taxa richness and abundance within downstream Little Creek ponar grabs by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among two distinct clusters (Figure III- G8c). Cluster A contained one year (2020) and B contained the other eight (2011-2019). The SIMPER test revealed that the two clusters were 25.1 percent similar with differences predominantly driven by absences in species of Chironomus, Tanytarsus, and Nais in A. Ponar grabs within upstream Little Creek usually contained Gammarus tigrinus (every year except 2012), Amphicteis floridus, and Chironomus decorus as dominants, with Bezzia/Palpomyia complex present as a dominant for the first time in 2020; only three other years contained new dominant species (2011, 2012, and 2016) (Table III-G4). Species richness ranged from 6 (2020) to 23 (2013) and total abundance ranged from 69 individuals (2020) to 1,865 individuals (2013) (Table III-G5). The Shannon -Wiener diversity score in 2020 was the lowest to date at 1.08 (previous range: 1.23 — 2.27) and the EBI score was the highest to date at 2.00 (previous range: 1.38 — 1.95). iv. Little Creek Downstream Ponar Grabs Multivariate cluster analysis of taxa richness and abundance within downstream Little Creek ponar grabs by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among two distinct clusters (Figure III- G8d). Cluster A contained one year (2012) and B contained the other nine (2011 and 2013- 2020). The SIMPER test revealed that the two clusters were 32.4 percent similar with differences predominantly driven by higher abundance in species of Mediomastus, Mactridae, and Macoma in B. Ponar grabs within downstream Little Creek often included Mediomastus ambiseta, Streblospio benedicti, and species of Apocorophium as dominants; 2014-2016 and 2019-2020 contained no new dominant species (Table III-G4). Species richness ranged from 16 (2012) to 28 (2013) and total abundance ranged from 354 individuals (2020) to 2,023 individuals (2013); 2020 species richness was 17 taxa, Shannon -Wiener diversity score was 2.27 (range: 0.75 — 2.40), and EBI score was 1.90 (range: 1.24 — 1.98) (Table III-G5). III-G-21 PA2 (2011-2020) The 2020 benthos samples for PA2 represented the 10th consecutive year of Mod Alt L benthic macroinvertebrate collections. For the sweeps to date the number of dominants identified to species was six for both upstream and downstream; among those species one was found only upstream and another was found only downstream (Table III-G2). The upstream and downstream sweeps had matched dominants in four years (2014, 2015, 2017 and 2020) (Table III-G2). Community structure metrics for upstream and downstream sweeps by year are in Table III-G3. For the ponars to date the number of dominants identified to species was eight for upstream and nine for downstream; among those species none was found only upstream and two were only downstream (Table III-G4). Community structure metrics for upstream and downstream ponars by year are in Table III-G5. i. PA2 Upstream Sweeps Multivariate cluster analysis of sweeps taxa richness and abundance within upstream PA2 by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years between two distinct clusters (Figure III-G9a). Cluster A contained five years (2011-2014 and 2018) and B contained five years (2015-2017, 2019, and 2020). The SIMPER test showed that both clusters were 52.8 percent similar, with differences predominantly driven by higher abundances of Gammarus tigrinus, species of Corixidae, and Trichocorixa sexcinta in B. Sweeps within upstream PA2 always contained Littoridinops species and Apocorophium species as dominants, with Goeldichironomus devineyae and Gammarus tigrinus less frequently; no new dominant species have appeared since 2014 (Table III-G2). Species richness ranged from 19 (2020) to 31 (2019), total abundance ranged from 977 individuals (2014) to 2,040 individuals (2016), EBI scores ranged from 1.70 (2019) to 2.23 (2012); 2020 abundance was 1,270 individuals and an EBI score of 1.86 (Table III-G3). ii. PA2 Downstream Sweeps According to the similarity profile test (SIMPROF), there were four distinct clusters among the 10 years of sweeps (Figure III-G9b). Cluster A consisted of one year (2020), B consisted of two years (2016 and 2017), C consisted of one year (2012), and D consisted of six years (2011, 2013-2015 and 2018-2019). The SIMPER test showed that clusters ranged from 51.0 to 69.2 percent similarity. Sweeps within downstream PA2 contained Apocorophium species each year, Littoridinops species each year but 2018, and often also had Goeldichironomus devineyae as dominants; no new dominants since 2018 (Table III-G2). Species richness ranged from 21 (2013) to 31 (2019), total abundance ranged from 1,123 individuals (2014) to 2,183 individuals (2018), and EBI scores ranged from 1.76 (2016) to 2.33 (2012); 2020 total abundance was 1,320, total taxa was 26, and EBI score was 1.84 (Table III-G3). PA2 Upstream Ponar Grabs According to the similarity profile test (SIMPROF), there were no clusters among the 10 years of ponar grabs collected from upstream PA2. Ponar grabs within upstream PA2 usually contained Littoridinops species as dominants with Chironomus decorus less often; 2016 was the last year a new dominant was present (Table III-G4). Species richness ranged from seven (2012) to 19 (2017) and total abundance ranged from 305 individuals (2014) to 784 individuals (2011); 2020 species richness was 18, total abundance was 363 individuals, Shannon -Wiener diversity score was III-G-22 2.17 (range: 1.07 — 2.28), and the EBI score was 2.19 (range: 1.42 — 2.87) (Table III-G5). iv. PA2 Downstream Ponar Grabs Multivariate cluster analysis of ponar grabs taxa richness and abundance within downstream PA2 by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among three distinct clusters (Figure III-G9c). Cluster A contained (2020, B contained five years (2015 — 2019), and C contained the remainder (2011-2014). The SIMPER test showed that the two clusters with the least similarity percentage was A and B with (26 percent similarity) with differences driven predominantly by higher abundances of Amphicteis floridus, Streblospio benedicti, and species of Littordinops in B. Ponar grabs within downstream PA2 usually had species of Littoridinops as a dominant, while other dominants frequently included Chironomus decorus and Gammarus tigrinus, Amphicteis floridus, and species of Apocorophium. There were no new dominant species in 2014 and 2018-2020 (Table III-G4). Community structure comparisons for the ponar grabs within downstream PA2 indicate that species richness ranged from 11 (2014) to 27 (2015 and 2017) and total abundance ranged from 137 individuals (2020) to 1,392 individuals (2018). The 2020 ponars contained 18 taxa and total abundance of 137. The Shannon -Wiener diversity score in 2020 was 1.95 (range: 1.15 — 2.46) and the EBI score was 2.04 (range: 1.38 — 2.82) (Table III-G5). Long Creek (2011-2020) The 2020 benthos samples for Long Creek represented the 10th consecutive year of benthic macroinvertebrate collections. For the sweeps to date the number of dominants identified to species was eight for both upstream and downstream; among those species five were found only upstream and five were found only downstream (Table III-G2). Community structure metrics for upstream and downstream sweeps are in Table III-G3. For the ponars to date the number of dominants identified to species was 10 for upstream and 11 for downstream; among those species two were found only upstream and two were only downstream (Table III-G4). Community structure metrics for upstream and downstream ponars by year are in Table III-G5. i. Long Creek Upstream Sweeps Multivariate cluster analysis of benthic sweep taxa richness and abundance within upstream Long Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among four distinct clusters (Figure III-G10a). Cluster A had 2020, B had 2012, C had 2019, and D consisted of the other seven years (2011 and 2013-2018). Comparison of interannual variability by means of similarity percentages (SIMPER) indicated that clusters A and C were least similar with a percent similarity of 18.2. Differences between the two groups were due primarily to higher abundances of Palaemonetes pugio, Littoridinops tenuipes, and species of Apocorophium in B. Sweeps within upstream Long Creek usually contained species of Apocorophium and Littoridinops, and often Chironomus decorus or species of Gammarus as dominants; one new dominant species, Uhlorchestia uhleri, was present in 2020 (Table III-G2). Species richness ranged from 21 (2020) to 40 (2019), total abundance ranged from 250 individuals (2020) to 2,930 individuals (2019), and EBI scores ranged from 1.64 (2019) to 2.05 (2011); 2020 EBI was 2.03 (Table III-G3). III-G-23 ii. Long Creek Downstream Sweeps Multivariate cluster analysis of benthic sweep taxa richness and abundance within downstream Long Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among four distinct clusters (Figure III-G10b). Cluster A had 2012, B consisted of three years (2016, 2017, and 2019), C 2020, and D contained five years (2011, 2013-2015, and 2018). Comparison of interannual variability by means of similarity percentages (SIMPER) indicated that the clusters A and C were least similar with a 37 percent similarity. This difference was predominantly driven by higher abundances of Americamysis almyra in A and an absence of Nematoda sp. in C. Sweeps within downstream Long Creek have not contained any new dominants since 2014, but usually contained species of Gammarus (five of the 10 years had both G. tigrinus and G. mucronatus as dominants) and species of Apocorophium (almost every year) (Table III-G2). Species richness ranged from 17 (2020) to 37 (2015), total abundance ranged from 530 individuals (2020) to 1,566 individuals (2017), and EBI scores ranged from 1.91 (2019) to 2.12 (2016); 2020 EBI score was 2.09 (Table III-G3). N. Long Creek Upstream Ponar Grabs According to the similarity profile test (SIMPROF), there were no clusters among the 10 years of ponar grabs for upstream Long Creek. Ponar grabs within upstream Long Creek usually contained Chironomus decorus and species of Gammarus as dominants (two of the eight years had both G. tigrinus and G. mucronatus as dominants), with Streblospio benedicti a less frequent dominant; no new dominant species have appeared since 2016 (first and only year for Marenzelleria viridis) (Table III-G4). Species richness ranged from 10 (2019) to 32 (2018) and total abundance ranged from 86 individuals (2016) to 941 individuals (2013); 2020 had 401 individuals, 19 taxa, a Shannon -Wiener diversity score of 1.84. (range: 1.11 — 2.56) and an EBI score of 2.04 (range 1.22 — 2.31) (Table III-G5). iv. Long Creek Downstream Ponar Grabs According to the similarity profile test (SIMPROF), there were no clusters among the 10 years of ponar grabs for downstream Long Creek. Ponar grabs within downstream Long Creek usually contained species of Macoma, Streblospio benedicti, and Mediomastus ambiseta as dominants; 2019 was the last year a new dominant was present (Table III-G4). Species richness ranged from 9 (2020) to 22 (2018) and total abundance ranged from 70 individuals (2020) to 941 individuals (2015); 2020 Shannon -Wiener diversity score was 1.67 (range: 0.94 — 2.66) and the 2020 EBI score was 1.74 (range: 1.27 — 2.03) (Table III-G5). Muddy Creek (1998-2005; 2007-2020) The 2020 benthos samples for Muddy Creek represented the 22nd year of benthic macroinvertebrate collections and as the only early control creek, it has the longest data set among all creeks in the study for benthos, fish, and sediment metals. For sweeps to date the number of dominants identified to species was eight for upstream and 11 for downstream; among those species none was found only upstream and four were only downstream (Table III-G2). Community structure metrics for upstream and downstream sweeps by year are in Table III-G3. For ponars to date the number of dominants identified to species was 18 for upstream and 16 for downstream; among those species five were found only III-G-24 upstream and three only downstream (Table III-G4). Community structure metrics for upstream and downstream ponars by year in Muddy Creek are in Table III-G5. i. Muddy Creek Upstream Sweeps Multivariate cluster analysis of benthic sweep taxa richness and abundance from upstream Muddy Creek by a similarity profile test (SIMPROF) revealed statistically significant variation between years among six distinct clusters (Figure III-G11a). Comparison of interannual variability between clusters by similarity percentages (SIMPER) indicated similarity ranged from 37.3 to 57.7 percent. Cluster A had 1998, B contained four years (1999-2001, and 2004), C had 2002, D had 2019, E contained six years (2005, 2007, and 2015-2018), and F contained nine years (2003, 2008-2014, and 2020). Clusters that had the lowest percent similarity were C and D (37.3) predominantly due to higher abundances of species of Apedilum and Enchytraeidae and Polydora cornuta in C. Sweep data revealed that upstream Muddy Creek dominants have been unvaried with no new taxa identified to species since 2012 and samples usually contained species of Littoridinops, Gammarus, and Apocorophium as dominants; Goeldichironomus devineyae was a common dominant in earlier years but has not been so since 2013 (Table III- G2). Species richness ranged between 23 (2010) and 40 (2019), total abundance ranged from 602 individuals (2012) to 2,521 individuals (1998), and EBI scores ranged from 1.67 (1998) to 2.42 (2008); 2020 abundance was 1,517 individuals among 34 taxa, and 2020 EBI was 2.02 (Table III-G3). ii. Muddy Creek Downstream Sweeps Multivariate cluster analysis of benthic sweep taxa richness and abundance from downstream Muddy Creek by a similarity profile test (SIMPROF) revealed statistically significant variation between years among six distinct clusters (Figure III-G11b). Comparison of interannual variability between clusters by means of similarity percentages (SIMPER) indicated similarity ranged from 32.6 to 54.8 percent. Cluster A contained three years (2002, 2008, and 2009), B had 1998, C contained two years (2012 and 2020), D had year 1999, E contained eight years (2011, 2013-2019), and F contained seven years (2000, 2001, 2003- 2005, 2007, and 2010). Sweeps within downstream Muddy Creek usually contained Littoridinops species (18 years), Apocorophium species (16 years), and Gammarus species (most often G. tigrinus, 15 of 19 years) as dominants; no new dominant species have appeared since 2010 (Table III-G2). Species richness ranged from 25 (2013) to 50 (1998), total abundance ranged from 532 individuals (2012) to 3,062 individuals (1998), and EBI scores ranged from 1.77 (2001) to 2.47 (2008); 2020 had 29 taxa (same as 2019), 784 individuals, and an EBI score of 1.93 (Table III-G3). iii. Muddy Creek Upstream Ponar Grabs Multivariate cluster analysis of benthic ponar grabs taxa richness and abundance from upstream Muddy Creek by a similarity profile test (SIMPROF) revealed statistically significant variation between years among four distinct clusters (Figure III-G11c). Cluster A contained two years (2012 and 2014), B contained 16 years, C contained two years (2017 and 2020), and D contained two years (1998 and 1999). Comparison of interannual variability between clusters by means of similarity percentages (SIMPER) indicated clusters A and D were the least similar with 9.2 percent similarity. III-G-25 Ponar grab data revealed that upstream Muddy Creek most often contained Chironomus decorus as a dominant, with Streblospio benedicti and species of Gammarus less frequently; 2017 was the last year a new dominant species appeared (Table III- G4). Species richness ranged from six (2001) to 21 (1998) and total abundance ranged from 35 individuals (2008) to 1,191 individuals (1998); 2020 had 12 taxa, total abundance was 199 individuals, Shannon -Weiner score was 1.51 (range: 0.82 — 2.37), and EBI score was 1.94 (range: 1.05 — 2.05) (Table III-G5). iv. Muddy Creek Downstream Ponar Grabs Multivariate cluster analysis of benthic ponar grabs taxa richness and abundance from downstream Muddy Creek by a similarity profile test (SIMPROF) revealed variation of statistical significance between years among four distinct clusters (Figure III-G11d). Cluster A had 1998, B contained two years (2017 and 2020), C had 2008, and D contained the remainder (1999 — 2005, 2007, 2009 — 2012, and 2014 — 2016, 2019). Comparison of interannual variability between the clusters by similarity percentages (SIMPER) indicated similarity ranged from 2.9 to 26.2 percent, with clusters A and C being least similar (2.9 percent similarity). Ponar grabs in downstream Muddy Creek usually contained Chironomus decorus with Mediomastus ambiseta and Streblospio benedicti appearing less frequently; two new dominant species were present in 2020, Eteone heteropoda and Edotia montosa (Table III-G4). Species richness ranged from 12 (2003 and 2008) to 26 (2009) and total abundance ranged from 61 individuals (2020) to 1,329 individuals (2011); 2020 had 15 taxa (same as 2019), a Shannon -Wiener diversity score of 2.25 (range: 1.02 — 2.54), and an EBI score of 1.94 (range: 1.24 — 2.02) (Table III-G5). DCUT19 (2013-2020) The 2020 benthos samples for DCUT19 represented the seventh consecutive year of Mod Alt L benthic macroinvertebrate collections. For the sweeps to date the number of dominants identified to species was eight for upstream and six for downstream; among those species three were found only upstream and one only downstream (Table III-G2). Community structure metrics for upstream and downstream sweeps by year are in Table III-G3. For the ponars to date the number of dominants identified to species was seven for upstream and eight for downstream; among those species two were found only upstream and three only downstream (Table III-G4). Community structure metrics for upstream and downstream ponars by year are in Table III-G5. i. DCUT19 Upstream Sweeps Multivariate cluster analysis of benthic sweeps taxa richness and abundance within upstream DCUT19 by a similarity profile test (SIMPROF) showed no statistical significance between study years. Sweep data revealed that upstream DCUT19 always contained species of Littoridinops as a dominant with Gammarus tigrinus and Cyprideis littoralis less often; Apocorophium louisianum appeared for the first time as a dominant in 2020 (Table III-G2). Species richness ranged from 23 (2013) to 33 (2016), total abundance ranged from 823 individuals (2015) to 2,011 individuals (2014), and EBI scores ranged from 1.54 (2019) to 2.00 (2018); 2020 had 1,152 individuals among 26 taxa with an EBI of 1.88 (Table III-G3). ii. DCUT19 Downstream Sweeps III-G-26 Multivariate cluster analysis of benthic sweeps taxa richness and abundance within downstream DCUT19 by a similarity profile test (SIMPROF) showed no statistical significance between study years. Sweeps collected in downstream DCUT19 contained Littoridinops species every year as a dominant and often had Gammarus tigrinusHargeria rapax as other dominants; 2019 was the last year a new dominant was present (Table III-G2). Species richness ranged from 25 (2020) to 35 (2014), total abundance ranged from 1,184 individuals (2018) to 2,471 individuals (2013), and EBI scores ranged from 1.74 (2016) to 1.99 (2018); 2020 1,660 individuals and an EBI score of 1.93 (Table III-G3). DCUT19 Upstream Ponar Grabs According to the similarity profile test (SIMPROF), there were no clusters among the eight years of ponar grabs from upstream DCUT19. Ponar grabs revealed that upstream DCUT19 always contained species of Littoridinops and often contained Amphicteis floridus as dominants; Candonidae sp. was a dominant since 2017- but no new dominant species occurred since 2018 (Table III-G4). Species richness ranged from 13 (2015 and 2018) to 21 (2013) and total abundance ranged from 170 individuals (2015) to 1,169 individuals (2016); 2020 taxa richness was 20, total abundance was 402, Shannon -Wiener diversity score was 2.23 (range: 1.67 — 2.49), and EBI score was 2.00 (range 1.71 — 2.12) (Table III-G5). iv. DCUT19 Downstream Ponar Grabs According to the similarity profile test (SIMPROF), there were no clusters among the seven years of ponar grabs from downstream DCUT19. Ponar grabs within downstream DCUT19 always contained Gammarus tigrinus and often contained Amphicteis floridus or Hargeria rapax as dominants, although the latter two were never dominant in the same year until 2020; 2019 was the last year a new dominant species occurred (Table III-G4). Species richness ranged from 13 (2019) to 27 (2015) and total abundance ranged from 636 individuals (2018) to 2,641 individuals (2017); 2020 taxa richness was 25, total abundance was 1,672 individuals, Shannon -Wiener diversity score was 1.98 (range: 1.69 — 2.74), and EBI score was 1.88 (range 1.71 — 2.03) (Table III- G5). Duck Creek (2011-2020) The 2020 benthos samples for Duck Creek represented the 10th consecutive year of benthic macroinvertebrate collections. For the sweeps to date the number of dominants identified to species was seven for upstream and 10 for downstream; among those species two were found only upstream and five were found only downstream (Table III-G2). Community structure metrics for upstream and downstream sweeps by year are in Table III-G3. For the downstream ponars to date the number of dominants identified to species was six upstream and 14 downstream; among those species one was found only upstream and 10 only downstream (Table III-G4). Community structure metrics for upstream and downstream ponars by year are in Table III-G5. i. Duck Creek Upstream Sweeps Multivariate cluster analysis of benthic sweep taxa richness and III-G-27 abundance within upstream Duck Creek by a similarity profile test (SIMPROF) revealed slight statistically significant variation between years among three distinct clusters (Figure III-G12a). Cluster A 2019, B contained four years (2015-2018), and C contained five years (2011-2014 and 2020. Comparison of interannual variability between the clusters by similarity percentages (SIMPER) indicated similarity ranged from 43.7 to 54.4 percent. Clusters A and C were the least similar (43.7 percent similarity) with differences predominantly driven by the absence of Dero sp., Pristina sp., and Kiefferulus sp. in A. Clusters A and B were the most similar (54.4 percent similarity). Sweeps in upstream Duck Creek always contained Gammarus tigrinus and usually contained Littoridinops species and Cyprideis littoralis as dominants; while Tanytarsus sp. was a dominant for the first five years but not since 2015, while Amphicteis floridus was a new dominant species for 2020 (Table III-G2). Species richness ranged from 21 (2012 and 2014) to 34 (2017), total abundance ranged from 627 individuals (2013) to 1,956 individuals (2015), and EBI scores ranged from 1.50 (2019) to 1.92 (2013 and 2020); 2020 had 22 taxa and total abundance was 966 individuals (Table III-G3). ii. Duck Creek Downstream Sweeps Multivariate cluster analysis of benthic sweep taxa richness and abundance within downstream Duck Creek by a similarity profile test (SIMPROF) revealed slight statistically significant variation between years among five distinct clusters (Figure III-G12b). Cluster A had 2020, B had 2015, C had 2019, D contained two years (2016 and 2017), and E contained five years (2011-2014 and 2018). Comparison of interannual variability between the clusters by similarity percentages (SIMPER) indicated clusters A and B percent similarity ranged from 50.8-61.3. Clusters A and C were less similar due largely to higher abundance of Hargeria rapax, Amphicteis floridus, and species of Chironomus in C. Sweeps in downstream Duck Creek usually contained Gammarus tigrinus and Littoridinops species as dominants with species of Apocorophium less often, while Paleomonetes pugio was a dominant for the second year in a row in 2020 (first appearance in 2019) (Table III-G2). Species richness ranged from 20 (2016) to 32 (2013 and 2018), total abundance ranged from 809 individuals (2020) to 2,172 individuals (2014), and EBI scores ranged from 1.89 (2018) to 2.13 (2016); 2020 had 22 taxa and an EBI score of 2.07 (Table III- G3). iii. Duck Creek Upstream Ponar Grabs Multivariate cluster analysis of benthic ponar grabs taxa richness and abundance within upstream Duck Creek by a similarity profile test (SIMPROF) revealed slight statistically significant variation between years between two distinct clusters (Figure III- G12c). Cluster A had 2019 and B contained the remainder (2011-2018 and 2020). Comparison of interannual variability between the clusters by similarity percentages (SIMPER) indicated clusters A and B were 34.6 percent similar. Ponar grabs in upstream Duck Creek consistently contained Gammarus tigrinus while Amphicteis floridus, was frequently its co -dominant species; 2016 was the last year a new dominant appeared (Table III-G4). Species richness ranged from eight (2018) to 19 (2013 and 2016) and total abundance ranged from 211 individuals (2019) to 1,944 individuals (2014); 2020 had nine taxa, 212 individuals, the lowest Shannon -Wiener diversity score to date of 1.34 (previous range: 1.63 — 2.20), and the highest EBI score to date of 2.01 (previous range: 1.54 — 1.95) (Table III-G5). III-G-28 iv. Duck Creek Downstream Ponar Grabs According to the similarity profile test (SIMPROF), there were no clusters among the nine years of ponar grabs for downstream Duck Creek. Ponar grabs in downstream Duck Creek frequently contained Chironomus decorus as dominant species often with Mediomastus ambiseta, Gammarus tigrinus, and Streblospio benedicti less frequently; new dominant species appeared every year but 2012 and 2020 (Table III-G4). Species richness ranged from 11 (2019) to 25 (2017) and total abundance ranged from 147 individuals (2016) to 1,206 individuals (2011); 2020 total abundance was 445 individuals, taxa was 15, a Shannon -Wiener diversity score was 1.04 (range: 0.83 — 2.20), and the EBI score was 1.77 (range: 1.27 — 2.25) (Table III-G5). 2.0 Ponar Grabs Benthic Feeding Guild and Trophic Level Results Each species ever collected in a ponar grab was assigned a number between 0 and 3 for each of the four trophic level categories (herbivore, detritivore, carnivore, and parasite) and each of the six functional feeding guild categories (gatherer/collector, filterer/collector, scraper, predator, grazer, and shredder). A '0' indicated that the species had no affinity to that particular category whereas a '3' indicated that the species had high affinity to that particular category. An advantage to this approach is that a species could be assigned nonzero values in multiple categories, which addresses species that are omnivorous (e.g., herbivore and carnivore), or species that display multiple or facultative feeding modes (e.g., predator and gatherer/collector). Omnivory and multiple feeding modes are extremely common among benthic macroinvertebrates. The technique of fuzzy correspondence analysis (FCA) allowed examination of the list of species designations for differentiation. An FCA is similar to an ordinary correspondence analysis except that species can have membership in multiple categories. The outputs of an FCA are standardized, normally distributed scores for a certain number of axes for each species. Each axis represents some type of differentiation of the categories. From year to year, an axis number and the categories along that axis number may change as far as the loadings are determined. Six axes were produced which differentiated the trophic level categories and functional feeding guild categories. Thus, each species was described by a separate score for six different axes, each describing a different combination of trophic level and/or functional feeding guild (refer to Section II-C for a description of the guild and trophic level distribution across the six axes and a depiction of the loadings). To characterize the trophic level and functional feeding guild of the benthic macroinvertebrate community of each creek, each species' FCA score on each of the six axes was multiplied by its relative abundance for each ponar grab conducted in the creek. Relative abundance was computed as the abundance of a particular species divided by the total abundance of the sample. Species with an abundance of 0 were given a relative abundance of 0. A sum of the FCA scores weighted by the relative abundance of each species was obtained. This process was repeated for each of the six axes from the FCA. Thus, the benthic macroinvertebrate community of every ponar grab across all creeks, years, locations (upstream vs. downstream), and sample (1 - 5) is described by this summed value for each of the six FCA axes. These summed weighted FCA scores were used in subsequent statistical analyses. Temporal depictions within the six axes and cluster dendrograms based on the FCA scores are in Figures III-G13 — G31 and described in detail below. The arrows above or below zero on the right edge of the temporal depictions of the six axes are the same on each figure and indicate III-G-29 the relationships among the major trophic levels and/or feeding guilds for that axis. Values relative to zero (positive or negative designations as shown on Figure II-C17 a-f are important to note for interpretation of the benthic community relationships in the Section III-G upstream/downstream axis figures; e.g., an "increase" in a particular year for a specific guild could appear as a rise above zero on one axis and a dip below zero on another, depending on the negative or positive designation for that specific trophic level or guild across all years (as shown in Figure II-C17 a-f. Gatherer/collector and predator were consistently close to the axes' origins and therefore less distinctly differentiated. a. Post -Mod Alt L Creeks Guild Data from Ponar Grabs i. Jacks Creek Upstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for upstream ponar grabs of Jacks Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among seven distinct clusters (Figure III-G13a). Cluster A had 2012, B contained two years (2013 and 2020), C contained three years (2002-2004), D contained four years (2001, 2005, 2011, and 2015), E contained 1998, F contained two years (2014 and 2016), and G contained five years (1999, 2000, 2017-2019). The six post -Mod Alt L years split among four of the groups with pre -Mod Alt L years. The 2020 upstream ponar grab macroinvertebrate community data from Jacks Creek were consistently dominated by herbivore and detritivore trophic feeding, while the suite of earlier years appeared to vary more compared to the later suite (Figure III- G13b). The community was mainly composed of the carnivore trophic level in the three earliest years (1998 — 2000), but mostly composed of the herbivore and detritivore trophic levels in later years (Figure III-G13b). This trend was true to a lesser degree in Muddy Creek, the only control creek for the early benthic collections for comparison (Figure III-G29b). The functional feeding guilds in upstream Jacks Creek have also varied among filterer/collector, scraper, and grazer over the 18 years. Comparison of interannual variability between pre- and post -Mod Alt L ponar grab taxa FCA scores in upstream Jacks Creek by similarity percentages (SIMPER) revealed that differences were predominantly due to slightly more scraper, grazer, and shredder in the post -Mod Alt L years. However, comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities of upstream Jacks Creek by ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for Jacks Creek upstream stations were compared to the corresponding years and stations for Muddy Creek (control creek containing long-term data from 1998) and Little Creek (closest control creek with data from 2011). Separate mixed -model analysis of variances (ANOVAs) for each FCA axis, with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect, revealed one significant Creek: Mod Alt L Status interaction for the comparison of upstream Jacks Creek to Muddy Creek (Axis 1: F = 4.97, P = 0.03), where there were slightly more herbivore and detritivore within Muddy Creek when compared to Jacks Creek pre- and post - Mod Alt L years (Figure III-G13c). ii. Jacks Creek Downstream Guilds/Trophic Levels III-G-30 According to the similarity profile test (SIMPROF), there were no clusters among FCA scores for ponar grabs. Herbivore and detritivore trophic levels consistently dominated the downstream benthic macroinvertebrate community of Jacks Creek. However, herbivore and detritivore trophic guilds trended closer to zero in 1999, 2000, and 2020 (Figure III-G13b). Predominance of different functional feeding guilds did slightly vary, mostly between scraper/shredder/grazer; although filterer/collector trended closer to zero from 2015-2017 on Axes 2 and 3 and again in 2020 on Axis 2; in 2018 and 2019 this guild varied on either side of zero (Figure III-G13b). Comparison of interannual variability between pre- and post -Mod Alt L downstream ponar grab taxa FCA scores within Jacks Creek by similarity percentages (SIMPER) revealed that differences were driven predominantly by slightly less shredder and filter/collector in the post -Mod Alt L years. However, comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities of downstream Jacks Creek by ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for Jacks Creek downstream ponar samples were compared to the corresponding years and samples for Muddy and Little creeks, two control creeks. Separate mixed -model ANOVAs for each FCA axis, with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect, revealed no significant Creek: Mod Alt L Status interaction for the comparison between Jacks Creek and Little or Muddy creeks (Figure III-G13c). The lack of a significant interaction indicates that changes in guild structure between pre- and post -Mod Alt L years did not differ between impact and control creeks. iii. Jacobs Creek Upstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for upstream ponar grabs of Jacobs Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among four distinct clusters (Figure III-G14a). Cluster A consisted of four years (2015-2018), B contained three years (2014, 2019, and 2020), C contained 2012, and D contained two years (2011 and 2013); with the seven post -Mod Alt L years clustered without any pre -Mod Alt L years (Figure III-G14a). Ponar grab data revealed that the benthic macroinvertebrate community in upstream Jacobs Creek was mostly composed of herbivore and detritivore trophic levels with a slight decline in both groups for 2014, 2017, 2019, and 2020 (Figure III-G14b). The functional feeding guilds trended closer to zero in 2020. Guilds and trophic levels have not varied substantially over the ten years; however, there was some variability among each ponar grab sample in 2013, 2016, 2017, and 2020. Comparison of interannual variability between pre- and post -Mod Alt L ponar taxa FCA scores within upstream Jacobs Creek by similarity percentages (SIMPER) revealed that differences were predominantly due to slightly less herbivore and detritivore for the post -Mod Alt L years. Comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities of upstream Jacobs Creek by ANOSIM detected no spatial differences of statistical significance. III-G-31 Differences in guild composition between pre- and post -Mod Alt L years for Jacobs Creek upstream stations were compared to the corresponding years for PA2 (closest control creek) and Long Creek (control creek across South Creek from Jacobs Creek). Separate mixed -model analysis of variances (ANOVAs) for each FCA axis, with Creek Status (Impact/Control) as fixed effects and ponar subsample as a random effect, revealed no significant Creek:Mod Alt L Status interaction for the comparisons. The lack of a significant interaction indicates that changes in guild structure between pre- and post -Mod Alt L years did not differ between impact and control creeks (Figure III-G15). iv. Jacobs Creek Downstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for downstream ponar grabs of Jacobs Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among three distinct clusters (Figure III-G14c). Cluster A consisted of 2014 (the first year post -Mod Alt L) and 2020, B contained pre- Mod Alt L 2012, and C contained a mixture of pre- and post -Mod Alt L years. Trophic and functional feeding guilds drove differences between clusters A and B predominately by more scraper and grazer in A. Downstream Jacobs Creek was mostly composed of herbivore and detritivore trophic levels and grazer functional feeding guild (Figure III-G14b). This composition has not changed substantially over the 10 years, although filterer/collector was more abundant in 2011 and 2018 (Axis 2). Comparison of interannual variability between pre- and post -Mod Alt L ponar taxa FCA scores within downstream Jacobs Creek by similarity percentages (SIMPER) revealed that differences were predominantly due to slightly more grazer for the post - Mod Alt L years. Comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities of downstream Jacobs Creek by ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for Jacobs Creek downstream were compared to the corresponding years for PA2 and Long Creek. Separate mixed -model ANOVAs for each FCA axis with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect revealed no significant interactions. The lack of a significant interaction indicates that changes in guild structure between pre- and post -Mod Alt L years did not differ between impact and control creeks (Figure III-G15). v. Drinkwater Creek Upstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within upstream Drinkwater Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among three distinct clusters (Figure III-G16a). Cluster A consisted of two post -Mod Alt L years (2013 and 2015), B contained 2011 and 2017, and C contained the rest of the years (2012, 2014, 2016, 2018, and 2019). Differences between the three clusters were predominantly due to variations in abundance of scraper and grazers. Ponar grab data revealed that the benthic macroinvertebrate community in upstream Drinkwater Creek was mostly composed of herbivore and detritivore trophic levels, however, herbivore and detritivore trended toward zero in 2020. Except for slight III-G-32 changes in shredder, scraper, or grazer, the feeding guild relationships in the upstream community did not vary much over the years (Figure III-G16b). Comparison of interannual variability between pre- and post -Mod Alt L ponar taxa FCA scores within upstream Drinkwater Creek by similarity percentages (SIMPER) revealed that differences were predominantly due to slightly more scraper post -Mod Alt L. Comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities in upstream Drinkwater Creek by means of ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for Drinkwater Creek upstream were compared to the corresponding years for PA2 (closest control creek) and Long Creek (control creek across South Creek from Drinkwater Creek). Separate mixed -model analysis of variances (ANOVAs) for each FCA axis, with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect, revealed no significant Creek:Mod Alt L Status interactions for the comparison between Drinkwater Creek and PA2 or between Drinkwater Creek and Long Creek (Figure III-G17). The lack of a significant interaction indicates that changes in guild structure between pre- and post -Mod Alt L years did not differ between creeks. vi. Drinkwater Creek Downstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within upstream Drinkwater Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among three distinct clusters (Figure III-G16c). Cluster A consisted of one post -Mod Alt L year (2014) and B contained 2012, and cluster C contained the rest of the years (2011, 2013, 2015-2020). Cluster A and B were the only clusters that contained only pre- or post -Mod Alt L years, a difference predominantly driven by more scraper and grazer. Similar to upstream, the downstream benthic macroinvertebrate community was mostly composed of herbivore and detritivore trophic levels; Axis 3 differentiation from zero decreased since 2012, an indication that composition of shredder and filterer/collector more closely resembled the other guilds after 2012 (Figure III-G16b). Filterer/collector was the predominant functional feeding guild, except in 2014, 2016, and 2017. Comparison of interannual variability between pre- and post -Mod Alt L ponar taxa FCA scores within downstream Drinkwater Creek by similarity percentages (SIMPER) revealed differences driven predominantly by more scrapers for the post -Mod Alt L years. Comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities in downstream Drinkwater Creek by ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for Drinkwater Creek downstream were compared to the corresponding years for PA2 (closest control creek) and Long Creek (control creek across South Creek from Drinkwater Creek). Separate mixed -model analysis of variances (ANOVAs) for each FCA axis, with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect, revealed one significant Creek:Mod Alt L Status interaction for the comparison between Drinkwater Creek and PA2 (Axis 1: F = 7.01, P = 0.02); herbivore and detritivore trophic levels were greater in post - Mod Alt L years of Drinkwater Creek than in PA2 (Figure III-G17). III-G-33 vii. Tooley Creek Upstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within upstream Tooley Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among seven distinct clusters (Figure III-G18a). Cluster A contained 2020, B contained two early years (1999 and 2000), C and D both contained a post - Mod Alt L year each (2013 and 2016, respectively), E contained a mixture of pre and post -Mod Alt L years (2001, 2011, 2012, 2014, 2010, and 2018), F contained one post -Mod Alt L year (2015), and G contained three years (1998, 2017, and 2019). Differences in cluster A (2020) to the earlier years (cluster B; 1999 and 2000) were due to fewer members of shredder and filter/collector functional feeding guilds in A. Ponar grab data revealed that the benthic macroinvertebrate community in upstream Tooley Creek was mostly composed of herbivore and detritivore trophic levels, with a temporary increase in carnivore and parasite in 1999 and 2000. Filter -collector was a predominant guild from 2010-2016, with a slight decrease in 2013 (Axis 2). Scraper increased in relative abundance from 2015-2020 (Axis 6) (Figure III-G18b). Comparison of interannual variability between pre- and post -Mod Alt L ponar grab taxa FCA scores within upstream Tooley Creek by similarity percentages (SIMPER) revealed that differences were driven predominantly by slightly more herbivore and detritivore for the post -Mod Alt L years. Comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities in upstream Tooley Creek by ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for Tooley Creek upstream stations were compared to the corresponding years and stations for Muddy Creek (control creek with long-term data from 1998), PA2 (control creek just south of Tooley Creek with data since 2011), and Long Creek (control creek across South Creek from Tooley Creek with data since 2011). Separate mixed -model analysis of variances (ANOVAs) for each FCA axis, with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect, revealed no significant Creek:Mod Alt L Status interactions for the comparison between Tooley Creek and Muddy Creek, Tooley Creek and PA2, or Tooley Creek and Long Creek (Figure III-G19). The lack of a significant interaction indicates that changes in guild structure between pre- and post -Mod Alt L years did not differ between impact and control creeks. viii. Tooley Creek Downstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within downstream Tooley Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among six distinct clusters (Figure III-G18c). Cluster A contained one post -Mod Alt L year (2016), B contained two early years (1998 and 2000), C contained two post -Mod Alt L years (2014 and 2018), D contained 2020, E contained 1999, and F contained eight years (2001, 2010-2013, 2015, 2017, and 2019) (Figure III-G18c). Clusters B and E contained all pre -Mod Alt L years, while clusters A, C, and D contained all post -Mod Alt L years (Figure III-G18c). Differences between these clusters were predominantly driven by more herbivore and detritivore at the trophic level and more shredder and filter/collector for feeding guilds post -Mod Alt L. III-G-34 Similar to upstream, the downstream ponar grabs benthic macroinvertebrate community of Tooley Creek was composed mostly of herbivore and detritivore, with a slight decrease only in 1999 (Figure III-G18b). Filter/collector varied in earlier years but was the predominant functional feeding guild from 2010-2018 (Axis 2). Scraper, grazer, and parasite increased sharply in 2016 (Axis 4), but slowly declined from 2017-2020. There was variability in guild composition among ponar samples in 2016 (Figure III-G18b). Comparison of interannual variability between pre- and post -Mod Alt L ponar taxa FCA scores from downstream Tooley Creek by similarity percentages (SIMPER) revealed that differences were driven predominantly by slightly more grazer and scraper for the post -Mod Alt L years. Comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities in downstream Tooley Creek by means of ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for Tooley Creek downstream were compared to the corresponding years and stations for Muddy and Long creeks and PA2. Separate mixed -model ANOVAs for each FCA axis, with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect, revealed a significant Creek:Mod Alt L Status interaction for the Tooley/Muddy comparison (Axis 1: F = 5.44, P = 0.03) and Tooley/Long (Axis 1: F = 7.16, P = 0.02), but none for Tooley/PA2 comparison (Figure III-G19). Comparisons revealed greater abundances of herbivore and detritivore trophic level for Muddy Creek than Tooley Creek post -Mod Alt L, but less herbivore and detritivore for Long Creek than Tooley Creek post -Mod Alt L. ix. Huddles Cut Upstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within upstream Huddles Cut by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among four distinct clusters (Figure III-G20a). Cluster A contained three post -Mod Alt L years (2010, 2014, and 2018), B contained two pre -Mod Alt L years (1999 and 2009), C contained a mix of pre- and post -Mod Alt L years (2001,2007,2008, 2011-2013, 2015, 2017, and 2020), and D contained three years (2000, 2016, and 2019) (Figure III-G20a). Differences between the post -Mod Alt L years in A and the pre -Mod Alt L years in B were predominantly driven by more filter -collector in A. Ponar grab data revealed that the benthic macroinvertebrate community in upstream Huddles Cut was mostly composed of herbivore and detritivore, while the other functional feeding guilds fluctuated around zero/the axis across the years with the greatest variation in 2010 (Figure III-G20b). Comparison of interannual variability between pre- and post -Mod Alt L ponar taxa FCA scores from upstream Huddles Cut by similarity percentages (SIMPER) revealed that differences were driven predominantly by slightly more filter/collector for the post - Mod Alt L years. Comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities in upstream Huddles Cut by ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for Huddles Cut upstream stations were compared to the corresponding years for Muddy Creek (control creek with long-term data from 1998). Separate mixed -model analysis of III-G-35 variances (ANOVAs) for each FCA axis, with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect, revealed no significant Creek:Mod Alt L Status interactions for the comparison between Huddles Cut and Muddy Creek (Figure III-G21). The lack of a significant interaction indicates that changes in guild structure between pre- and post - Mod Alt L years did not differ between impact and control creek. x. Huddles Cut Downstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within downstream Huddles Cut by a similarity profile test (SIMPROF) revealed slight variation of significance between years among three distinct clusters (Figure III-G20c). Cluster A contained four years (2008, 2011, 2014, and 2015), B contained five years (2000, 2009, 2010, 2018, and 2019), and C contained eight years (1999, 2001, 2007, 2012, 2013, 2016, 2017, and 2020). Each cluster contained a mix of pre- and post -Mod Alt L years. Unlike upstream, the benthic macroinvertebrate community of downstream ponar grabs of Huddles Cut was not dominated by herbivore and detritivore every year, but was also dominated by parasite and/or carnivore for several years (2008, 2011, 2014, and 2015) (Figure III-G20b). The dominant functional feeding guilds varied little in previous years, except for an increase in scraper, grazer, and parasite in 2001 and 2012 (Axis 4) and an increase in 2020 of filter -collector (Axis 2). Comparison of interannual variability between pre- and post -Mod Alt L ponar taxa FCA scores within downstream Huddles Cut by similarity percentages (SIMPER) revealed that differences were driven predominantly by less herbivore and detritivore for the post -Mod Alt L years. Comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities in downstream Huddles Cut ponar grabs by ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for Huddles Cut downstream were compared to the corresponding years for Muddy Creek. Separate mixed -model analysis of variances (ANOVAs) for each FCA axis, with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect, revealed no significant Creek:Mod Alt L Status interactions for the comparison between Huddles Cut and Muddy Creek (Figure III-G21). The lack of a significant interaction indicates that changes in guild structure between pre- and post -Mod Alt L years did not differ between creeks. xi. Porter Creek Upstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within upstream Porter Creek by a similarity profile test (SIMPROF) revealed slight variation of significance between years among five distinct clusters (Figure III-G22a). Cluster A contained one pre -Mod Alt L year (2013), B contained three post -Mod Alt L years (2018-2020), C contained one pre -Mod Alt L year (2011), D contained two pre -Mod Alt L years (2012 and 2014), and E contained both pre and post Mod Alt L years (2015-2017). Differences between clusters B (only post -Mod Alt L years) and D (only pre -Mod Alt L years) were predominantly driven by more shredder and filter/collector in B. Ponar grab data revealed that the upstream Porter Creek benthic macroinvertebrate community was mostly composed of herbivore and detritivore trophic levels III-G-36 and filter -collector functional feeding guild (Figure III-G22b). Functional feeding guilds varied over the years; however, filter -collector has decreased over the past two years after being a dominant guild from 2011-2018 (Axis 2). In addition, there was a decrease in shredder and filterer/collector and an increase in parasite from 2014 to 2016 (Axis 3 and Axis 5) (Figure III- G22b). Comparison of interannual variability between pre- and post -Mod Alt L ponar taxa FCA scores within upstream Porter Creek by similarity percentages (SIMPER) revealed that differences were driven predominantly by slightly more scraper and grazer post - Mod Alt L (2016-2020). Comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities in upstream Porter Creek ponar grabs by ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for Porter Creek upstream were compared to the corresponding years for Duck Creek (closest control creek; across the Pamlico River) and Little Creek (control creek in South Creek with similar basin size). Separate mixed -model analysis of variances (ANOVAs) for each FCA axis, with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect, revealed significant Creek:Mod Alt L Status interactions for the comparison between Porter Creek and Duck Creek (Axis 2: F = 6.46, P = 0.02) and Porter and Little Creek (Axis 2: F = 7.96, P = 0.01) (Figure III-G23). There were slightly more filter/collector in Porter pre -Mod Alt L compared to Duck Creek or Little Creek, while Duck Creek had slightly more shredder, scraper, and grazer post -Mod Alt L years than Porter Creek. xii. Porter Creek Downstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within downstream Porter Creek by a similarity profile test (SIMPROF) revealed slight variation of significance between years among five distinct clusters (Figure III-G22c). Cluster A contained 2019, B contained 2020, C contained two years (2011 and 2017), D contained four years (2013, 2015, 2016, and 2018), and E contained two pre -Mod Alt L years (2012 and 2014). Similar to upstream, the benthic community of the downstream Porter Creek ponar grabs was mostly composed of the herbivore and detritivore trophic level (Figure III-G22b). Scraper was the predominant functional feeding guild in 2019 and 2020, while filter/collector was predominant from 2011-2018. Comparison of interannual variability between pre- and post -Mod Alt L ponar taxa FCA scores within downstream Porter Creek by similarity percentages (SIMPER) revealed that differences were driven predominantly by slightly more scraper post - Mod Alt L. Comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities in upstream Porter Creek ponar grabs by ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for Porter Creek downstream were compared to the corresponding years and stations for Duck and Little creeks. Separate mixed -model analysis of variances (ANOVAs) for each FCA axis, with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect, revealed no significant Creek:Mod Alt L Status interactions for the comparison between either Porter Creek and Duck Creek or between Porter Creek and Little Creek (Figure III-G23). III-G-37 xiii. DCUT11 Upstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for upstream ponar grabs of DCUT11 by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among five distinct clusters (Figure III-G24a). Clusters A consisted of two years (2015 and 2020), B, C, and D each consisted of one year (2014, 2016, and 2013, respectively), and E contained the remainder of years (2017-2019) (Figure III-G24a). The benthic macroinvertebrate community in upstream ponar grabs of DCUT11 was mostly composed of herbivore and detritivore trophic level (Figure III- G24b). Grazer, scraper and shredder (Axis 2), scraper, grazer, and parasite (Axis 4), and scraper (Axis 6) were predominant guilds in 2015 and 2020, but trended near zero in the other years (Figure III-G24b). Comparison of interannual variability between pre- and post -Mod Alt L ponar taxa FCA scores within upstream DCUT11 by similarity percentages (SIMPER) revealed no differences. Comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities in upstream DCUT11 ponar grabs by ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for DCUT11 downstream were compared to the corresponding years and stations for Duck and DCUT19. Separate mixed -model analysis of variances (ANOVAs) for each FCA axis, with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect, revealed no significant Creek: Mod Alt L Status interactions for the comparison between DCUT11 and Duck Creek (Figure III-G25). xiv. DCUT11 Downstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for downstream ponar grabs of DCUT11 by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among five distinct clusters (Figure III-G24c). Cluster A consisted of two years (2013 and 2018), B contained 2017, C contained 2020, D contained 2019, and E contained the other three years (2014-2016) (Figure III-G24c). Similar to upstream, the benthic macroinvertebrate community of downstream ponar grabs of DCUT11 was mostly composed of the herbivore and detritivore trophic level (Figure III-G24b). Filterer/collector was the predominant functional feeding guild, particularly in 2013, 2018, and 2020 (Figure III-G24b). Comparison of interannual variability between pre- and post -Mod Alt L ponar taxa FCA scores within downstream DCUT11 by similarity percentages (SIMPER) revealed no differences. Comparison of interannual variability between pre- and post -Mod Alt L guild and trophic level composition of benthic macroinvertebrate communities in downstream DCUT11 ponar grabs by ANOSIM detected no spatial differences of statistical significance. Differences in guild composition between pre- and post -Mod Alt L years for DCUT11 downstream were compared to the corresponding years and stations for Duck and DCUT19. Separate mixed -model analysis of variances (ANOVAs) for each FCA axis, with Creek and Mod Alt L Status as fixed effects and ponar subsample as a random effect, revealed no significant Creek: Mod Alt L Status interactions for the comparison between DCUT11 and Duck Creek (Figure III-G25). III-G-38 b. Control Creeks Guild/Trophic Level Data from Ponar Grabs i. Little Creek Upstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for the ponar grabs within upstream Little Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among three distinct clusters (Figure III-G26a). Cluster A contained 2011, B contained 2013, and C contained the other seven years (2012 and 2014- 2020) (Figure III-G26a). Ponar grab data revealed that the benthic macroinvertebrate community within upstream Little Creek was composed mostly of herbivore and detritivore trophic levels (Figure III-G26b). The dominant functional feeding guilds varied little over 10 years, except for the increase in grazer, scraper and shredder (Axis 2), scraper, grazer, and parasite (Axis 4), and scraper (Axis 6) in 2011 (Figure III-G26b). ii. Little Creek Downstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for the ponar grabs within downstream Little Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among five distinct clusters (Figure III-G26c). Clusters A, B, and C each contained one year (2013, 2019, and 2012, respectively), D contained four years (2014, 2015, 2017, and 2018), and E contained three years (2011, 2016, and 2020). Similar to upstream Little Creek, the benthic macroinvertebrate community of downstream Little Creek ponar grabs was composed mostly of herbivore and detritivore trophic levels (Figure III-G26b). Filter -collector was the dominant functional feeding guild for previous years, but trended closer to zero in 2020. Scraper increased slightly in 2020, while other functional feeding guilds tended to stay near zero. PA2 Upstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within upstream PA2 by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among four distinct clusters (Figure III-G27a). Cluster A contained two years (2015 and 2019), B contained two years (2017 and 2020), C contained two years (2012 and 2013), and D contained four years (2011, 2014, 2016, and 2018). Ponar grab data revealed that the benthic macroinvertebrate community within upstream PA2 was composed mostly of herbivore and detritivore trophic levels with an increase in scraper in 2015, 2017, 2019, and 2020 (Axis 6) (Figure III-G27b). In 2020, shredder and filterer/collector guilds decreased from the 2019 while scraper and grazer guilds increased in relative abundance from 2017-2020, with a slight decrease in 2018. iv. PA2 Downstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within upstream PA2 by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years between two distinct clusters (Figure III-G27c). Cluster A contained 2020, while B contained the remaining years. Similar to upstream, the benthic macroinvertebrate community within downstream PA2 was mostly composed of herbivore and detritivore trophic levels (Figure III-G-39 III-G27b). The dominant functional feeding guild was scraper although the guild decreased in 2013 and 2014 (Axis 6). Filter -collector increased in 2016 and 2018, but trended towards more grazer, scraper and shredder in 2019 and 2020 (Axis 2). v. Long Creek Upstream Guilds/Trophic Levels According to the similarity profile test (SIMPROF), there were no clusters among FCA scores for upstream ponar grabs of Long Creek. Ponar grab data revealed that the benthic macroinvertebrate community within upstream Long Creek was composed mostly of herbivore and detritivore, but trended closer to zero in 2020. The functional feeding guilds varied over the 10 years, with slightly less variation since 2016, and trended close to zero in 2020 (Figure III-G28a). vi. Long Creek Downstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within downstream Long Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among five distinct clusters (Figure III-G28b). Cluster A contained 2014, B contained three years (2016, 2017, and 2019), C contained 2018, D contained two years (2012 and 2015), and D contained three years (2011, 2013, 2020). Similar to upstream, the benthic macroinvertebrate community of downstream Long Creek ponar grabs mostly consisted of herbivore and detritivore trophic level (Figure III-G28a). The dominant functional feeding guild was filter/collector although scraper increased in 2016, 2017 and 2019. Scraper, and grazer increased from 2016-2018, but decreased in 2020. vii. Muddy Creek Upstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within upstream Muddy Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among five distinct clusters (Figure III-G29a). Clusters A and B contained one year each (2010 and 2004, respectively), C contained 10 years (1998, 2003, 2005, 2011- 2013, 2015, 2016, 2017, and 2019), D contained two years (2019 and 2020), and E contained eight years (1999-2002, 2007-2009, and 2014). Ponar grab data revealed that the benthic macroinvertebrate community within upstream Muddy Creek was composed mostly of herbivore and detritivore trophic levels, although parasite and carnivore were abundant in 2000, 2004, and 2010 (Figure III-G29b). Filterer/collector was dominant functional feeding guild, although grazer and scraper increased in some years (2000, 2010, 2014, and 2018-2020). viii. Muddy Creek Downstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within downstream Muddy Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among seven distinct clusters (Figure III-G29c). Cluster A contained three years (2000, 2008, and 2017), B contained 2010, C contained three years (1999, 2019, and 2020), D contained two years (2014 and 2018), E contained four years (2003, 2007, 2011, and 2012), F contained seven years (2001, 2002, 2004, 2005, 2009, 2015, and 2016), and G contained two years (1998 and 2013). The benthic macroinvertebrate community within downstream Muddy Creek was composed mostly of herbivore and detritivore trophic levels, but trended III-G-40 toward zero in 2019 and 2020 (Figure III-G29b). Similar to upstream, filterer/collector was the predominant functional feeding guild, although some years contained higher abundance of scraper, shredder, and grazer (e.g., 1998, and 2013). ix. DCUT19 Upstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within upstream DCUT19 by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among five distinct clusters (Figure III-G30a). Cluster A contained 2020, B contained two years (2014 and 2018), C contained two years (2017 and 2019), D contained 2013, and E contained two years (2015 and 2016). Ponar grab data revealed that the benthic macroinvertebrate community within upstream DCUT19 was composed mostly of herbivore and detritivore trophic levels with slight trend towards zero since 2018 (Figure III-G30b). The dominant functional feeding guild was scraper, except in 2014 when filter/collector was dominant. Scraper, grazer, and parasite (Axis 4) and scraper (Axis 6) increased in relative abundance in 2013, 2015, 2016, 2018, and 2020 but trended towards zero other years. x. DCUT19 Downstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within upstream DCUT19 by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years among three distinct clusters (Figure III-G30c). Cluster A contained two years (2013 and 2020), B contained four years (2014, 2016, 2018, and 2019), and C contained two years (2015 and 2017). Similar to upstream DCUT19, the benthic macroinvertebrate community within downstream DCUT19 ponar grabs consisted mostly of herbivore and detritivore trophic levels (Figure III-G30b). Filterer/collector was the most dominant functional feeding guild, especially in 2013. Shredder and filter -collector increased and decreased over the eight years, but steadily increased from 2018-2020 (Axis 3). xi. Duck Creek Upstream Guilds/Trophic Levels Multivariate cluster analysis of the FCA scores for ponar grabs within upstream Duck Creek by a similarity profile test (SIMPROF) revealed slight variation of statistical significance between years between two distinct clusters (Figure III-G31a). Cluster A contained eight clusters (2012, 2014-2020) and B contained two years (2011 and 2013). Ponar grab data revealed that the benthic macroinvertebrate community within upstream Duck Creek was composed mostly of herbivore and detritivore trophic levels, although parasite and carnivore increased in 2013. The dominant functional feeding guild was scraper, although filter -collector increased in 2012 and 2014 when scraper trended to zero (Figure III-G31b). xii. Duck Creek Downstream Guilds/Trophic Levels According to the similarity profile test (SIMPROF), there were no clusters among FCA scores for upstream ponar grabs of Duck Creek. The benthic macroinvertebrate community within downstream Duck Creek ponar grabs trophic levels consistently had high abundance of herbivore and detritivore and had an increase of parasite and carnivore in 2015 and 2016; grazer feeding guild increased in 2013, while scrapers increased slightly in 2017 and 2018 (Figure III-G31b). III-G-41 3.0 Summary and Conclusions The most common species encountered for most creeks/years for sweeps were (in order): species of Littoridinops (most often not identified to species, but L. tenuipes when it was identified), species of Apocorophium (most often not identified to species, but either A. lacustre, or A. louisianum when identified), and Gammarus tigrinus. The most common species encountered in most creeks/years for ponars were (in order): Chironomus decorus (when present, almost always one of the two most dominant taxa), Gammarus tigrinus, Amphicteis floridus, species of Littoridinops, species of Apocorophium, Mediomastus ambiseta, Streblospio benedicti, and Macoma balthica. Dissimilarities in abundance between these dominant taxa mostly accounted for differences among creeks/years/stations, along with the occasional presence or absence of less dominant taxa in some creeks/years. Interannual comparisons between pre- and post -Mod Alt L years indicated seven significant spatial differences among benthic macroinvertebrates for four creeks with post -Mod Alt L data (Sweeps- upstream and downstream Jacobs and Tooley creeks, upstream Huddles Cut, and downstream Porter Creek; Ponar- downstream Tooley Creek). This result suggests that close to 75 percent of the comparisons (21 out of 28) in the impacted creeks showed the benthic macroinvertebrate community of post -Mod Alt L years as similar to that of the pre -Mod Alt L years; thus, it is difficult to discern any mine -related patterns in benthic macroinvertebrate communities. Huddles Cut upstream benthic samples were compared to those of Muddy Creek (the only control creek with data corresponding to Huddles Cut pre -Mod Alt L years) to determine possible reasons for significant differences between pre- and post -Mod Alt L community structure. Muddy Creek benthic communities did not experience a significant difference between corresponding pre- and post -Mod Alt L years, as seen in Huddles Cut upstream. Variability displayed at the Huddles Cut upstream benthic station could be attributed to mine activities but it could also be related to the sand bar which formed at the mouth of Huddles Cut in 2009 (completely blocked flow in some conditions in portions of that year). The sand bar has remained a persistent feature since then and continues to periodically narrow the channel near the mouth, which restricts exchange of water between Huddles Cut and the Pamlico River. Complete blockage has not been noted since 2009; however, sand continues to be redistributed at the mouth of Huddles Cut, forming a dynamic narrow channel that has inlet - like characteristics in response to the movement of the sand from the bar. Some of the sand from the bar appears to have moved to the beach at the mouth which also periodically enters into the channel and contributes to a narrower inlet/outlet. A confident separation of such non - mine related changes in creek condition from potential mine -related changes is difficult. The benthic data continue to show considerable variation between years. For instance, in 2020, benthic abundance and/or taxa count for 17 out of 40 creek sites were record lows for both ponars and/or sweeps. Since these record lows were in both impact and control creeks, it's unlikely these changes in benthic abundance and taxa count were due to mine - related activities. This variation in community structure may be explained by temporal changes in water chemistry, recruitment, predation, and the naturally heterogeneous distribution characteristics of estuarine invertebrates (West 1985). For example, variation in salinity concentration seems to have driven population changes in several commonly collected stenohaline taxa. Amphicteis floridus and Streblospio benedicti, two species that have a preference for freshwater, have increased in abundance in years where salinity is lower in contrast to Mediomastus ambiseta and Macoma balthica, two species that prefer mesohaline conditions and have increased during years of high salinity. Salinity in the Pamlico River and its III-G-42 tributaries is mostly driven by discharge from the Tar River and changes in sea level (Kimmel 2016); thus, it seems likely that the changes seen in the benthic macroinvertebrate communities of the PCS study creeks are mostly in response to external abiotic conditions. This conclusion corresponds to other studies which demonstrated the importance of abiotic conditions like river discharge on salt marsh communities in Georgia, USA (Wieski and Pennings 2014, Li and Pennings 2016). Temporal variability analysis showed that the macroinvertebrate ponar (upstream/downstream) guilds/trophic levels displayed a strong positive correlation with environmental variables within three creeks (DCUT11, Long Creek, and Little Creek). The environmental parameters strongly correlated to the macroinvertebrate guilds/trophic levels were conductivity, nitrate (NO3), total dissolved nitrogen (TDN), dissolved organic carbon (DOC), and salinity. For the first time since 2016 (when environmental correlations were first conducted), the macroinvertebrates guilds/trophic levels in Tooley Creek were not strongly correlated to the environmental parameters. These results suggest that changes in benthic macroinvertebrate community structure are driven by environmental variables. Note that for Muddy Creek, water quality is only collected by CZR during benthos collections. For the guilds, scraper was a dominant trophic guild among most of the creek sites (e.g., Tooley upstream, DCUT 11 upstream, PA2 downstream, and DCUT19 upstream), while shredder and filter feeder trophic guild was predominant in Porter Creek downstream. Common scraper or filter -feeder trophic guilds were Littordinops tenuipes (scraper) and Mediomastus sp. (collector filter -feeder, as well as collector -gatherer). Interannual comparisons between pre- and post -Mod Alt L years for guilds indicated no significant spatiotemporal differences among benthic macroinvertebrates for all seven creeks with post -Mod Alt L data. However, four creeks showed differences in pre- and post -Mod Alt L guild structure composition when compared to concomitant composition of years in control creeks. Jacks Creek upstream had a significant interaction when compared to Muddy Creek. There were less herbivores and detritivores in upstream Jacks Creek whereas this trophic feeding guild was greater in Muddy Creek during Jacks Creek post -Mod Alt L years (Axis 1, Figure III- G13). There were less grazer, scraper, and shredder in upstream Porter Creek when compared to Duck Creek during Porter post -Mod Alt L years, and less filterer/collector in Porter Creek compared to Little Creek during Porter post -Mod Alt L years (Axis 2; Figure III-G21). In downstream Drinkwater Creek, there were more herbivore and detritivore than in PA2 during Drinkwater Creek post -Mod Alt L years (Axis 1, Figure III-G15). There were more herbivore and detritivore in downstream Tooley Creek compared to both Muddy Creek and Long Creek during Tooley post -Mod Alt L years (Axis 1; Figure III-G18). However, these effects were not observed in downstream Jacks Creek, downstream Porter Creek, upstream Drinkwater Creek, or upstream Tooley Creek, thus it is unclear if changes in trophic level or feeding guild were due to mine -related activities. The nature of a benthic community is variable. Aquatic insect populations may produce single or multiple generations in a year, or the generation time can be longer than a year. In addition, ecosystem function provided by particular taxa may change depending on environmental condition and/or life stage. The life cycle completion time can vary greatly across a species' range and between populations of the same species in upper and lower areas of the same stream. These and other factors may have contributed to the year-to-year variability that III-G-43 has been documented in this study. Such variability cannot easily be attributed to simple changes in hydrographic parameters or habitat structure, and the range of variability documented during the baseline period of this study reinforces the need for careful interpretation of any post -Mod Alt L variation that may occur. III-G-44 0 m - 0 - o - Jacks Creek, Upstream (Sweeps) ..era lea ABC 0 E 1 a EEEEEEEEEEEEEE m 2 m 2 E 2`0' E 22 2 E v E m; m E a is is is n n a a o 7 7 7 7 7 7 7 7 7 7 7 $ u]' O �' A' O tO' m' ti' 4' V'E [Y N M m m R n o n Ri gi Ri Ri gi Ri gv a 0 0 ro 0 - o- Jacks Creek, Upstream (Ponar) Group Averages AB C D 1 c EEE E E E E E E gg E E E E E m? m >u v E d 2® m Eo ry ary ry ro 4,21 m rn e m 812� e w :;1 a m r- Ri a R N R R m R 8 N a N g N g 8 oN a 0 d Q 0 o - Jacks Creek, Downstream (Sweeps) Group Averages ▪ C f] b E E E E E 6 E E E E E E E E 6,6 m E T E-0 2 2 �' 22 m E E° N �N N o0 N N N z e. e, �i N 2IS In9' o' 8' 2 ^' g s moo 2 N N N N N RJR.' N N N N N N N N N d 0 0 ro 0 o- A Jacks Creek. Downstream (Ponar) 6 c d kg E E E E g E E E E g E E E E E E 22E2E2E2 E2E2E2Emgg 1111,1ji it u y AMALA W O' o d m' t' O o O o I N N N,-,-N N N N N N N N N N N N N Figure III-G1 a — d. Dendrogram of clusters based on benthic taxa richness and abundance for all years in Jacks Creek: a) five clusters in upstream sweeps; b) four clusters in downstream sweeps; c) four clusters in upstream ponar grabs; and d) two clusters in downstream ponar grabs. Bold years are post -Mod Alt L and black lines represent significant cluster structure. III-G-45 o — co co Q 0 N A Jacobs Creek, Downstream (Sweeps) Group Averages B C I m (Ea (5 (5 m m m 2 2 2 2 2 m 2 E m m EE m U1 71 UJ U1 co to U1 71 Ul Ul 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0° 0 0 0 0 0 uI �I coI (I coI �I �I NI 01 E E E 5 5 E E E EN O N N N N N N Figure III-G2. Dendrogram of clusters based on benthic taxa richness and abundance for all years in Jacobs Creek: Three clusters for downstream sweeps. Bold years are post -Mod Alt L and black lines represent significant cluster structure. III-G-46 0 a 0 Drinkwater Creek, Upstream (Sweeps) GrotJp Averages A rs C D E 2 E E E E E E ro m a E ro >� 7� 7 g7� 7� 7� 7 7� rn_ n 0 [d N [O N N aER RR c9R Drinkwater Creek, Downstream (Sweeps) Group n,eragas Drinkwater Creek, Downstream (Ponar) Group Averages Figure III-G3 a - c. Dendrogram of clusters based on benthic taxa richness and abundance for all years in Drinkwater Creek: a) four clusters for upstream sweeps, b) two clusters for downstream sweeps, and c) three clusters for downstream ponar grabs. Bold years are post - Mod Alt L and black lines represent significant cluster structure. III-G-47 0 v o - Tooley Creek, Upstream (Sweeps) Group Averages A BC ❑ E E 6 a m 0 E m a 0I W a a F E E E 2 m EEEEE E €<' E8 • a a a a a n 71 71 71 71 71 71 71 uY M N N o_ M .i 2 8 Pv .poi 8 R a 10 8 P. 0 Tooley Creek, Upstream (Ponar) Group Averages A 6 C ❑ E E E E E E 2 2 5 8 8 E a a E. it [Or 01 m1 .01 =I o1 N aQi gi °' °' n � 2000 Upstream E F 1 c E E E E E E 8 2 5 8 8 5 E 7 7 7 7 E. 7 7 7 7 .1 1.1 N1 .1 • 0• E 5 O v - Tooley Creek, downstream (Sweeps) Group Averages A 6 C ❑ E b E 1 E E E .Ev 1 E E 1 E Ew E mEE 8 8 S S S 8 �i N �i g o �� r• Po el �I NI �� of %I N N N N N N N N N N N N Po m - 8 0 A Tooley Creek, Downstream (Ponar) Grp, .i1' A- era jea E E E E E E 2 5 2 2 E d E E E E E E E E E a m m 2 2 2 w 8 • » w a !,!,!!!,,!,;AIA.1,11,11 Qi �I �INI 00I ql N N N N N • N N N CV N N N Figure III-G4 a — d. Dendrograms of clusters based on benthic taxa richness and abundance for all years in Tooley Creek: a) six clusters for upstream sweeps; b) six clusters for downstream sweeps; c) six clusters for upstream ponar grabs; and d) two clusters for downstream ponar grabs. Bold years are post -Mod Alt L and black lines represent significant cluster structure. III-G-48 0 q 0 — 0 O — A B Huddles Cut, Upstream (Sweeps) Group Averages G 0 E F G 1 E E E m m n W v a a a WI 01 71 W R O a EEEEEEEE E 5 m E E' ; d v 2 m m L E' 2 °' v L E' n n a E n n a g. aE. a 7 7 7 7 7 7 7 7 7 7 7 7 7 7 N_ 1 � t�] VI O_F_ CD � _ :21 _ i WW_ up] �pO 1 8 8 R 8 2 N 8 2 8 8 o G N t 0 0 0 ro 0 — 0 A Huddles Cut, Upstream (Ponar) Group Averages B C D E g E E€ E E E E 1 a 1 a a a a 2 a a o01 �I p�I p�I pI pI NN1 pOI �I N N G O N O O N N w c 1 E E E E E E 1 1 1 I 1 O O 00 u] fps N cOi N N pN O m - E 0 — O — A Huddles Cut, Downstream {Sweeps) Group Averages b g ro F k E E w E E m w 1 ro 8 S$ S$$ S$ 8 8 S r1 O �1 Qu W1 m n1 N v1 h1 p m1 8 N1 NN N N N N N N N N N N N N N N 0 0 0 0 — w 0 Q 0 — A B Huddles Cut, Downstream (Ponar) Group Averages C € E pa H1 0 N N n E g E E E€ E E E E€ 11 H pp 6�1 O 01 m1 W1 N � ' a p N M1 N N N N N N N N N N N N Figure III-G5 a - d. Dendrograms of clusters based on benthic taxa richness and abundance for all years in Huddles Cut: a) seven clusters for upstream sweeps; b) two clusters for downstream sweeps, and; c) four clusters for upstream ponar grabs; and d) three clusters for downstream ponars. Bold years are post -Mod Alt L and black lines represent significant cluster structure. III-G-49 t5 a 0 Porter Creek, Upstream (Sweeps) A 6.f, P; A 8 C n a E E E E E E E E E a a ii a is °b n ▪ n 01 •1 0)I I ryl (01 0)1 R R R R R R R R • R • R Porter Creek, Downstream (Sweeps) 0 0 A 8 C a 1 N b co' 0' (0' N N C• V N 0 0 Porter Creek. Upstream (Ponar) A ki E 0 E m a R C Figure III-G6 a — c. Dendrogram of clusters of benthic taxa richness and abundance for all years in Porter Creek: a) four clusters for upstream sweeps; b) three clusters in downstream sweeps; and c) two clusters in upstream ponar grabs. Bold years are post -Mod Alt L and black lines represent significant cluster structure. III-G-50 0 0 ro 0 A DC UPI, Upstream (Sweeps} Group Averages B 2013_Upstream E E E E E E 2 2 2 2 2 2 3 'I LOI .I I 01 r(p p 81 (I n N n c�u N a Figure III-G7 a - b. Dendrogram of clusters of benthic taxa richness and abundance for all years in DCUT11: a) two clusters for upstream sweeps and b) two clusters in downstream sweeps. Bold years are post -Mod Alt L and black lines represent significant cluster structure. III-G-51 0 o - o- Little Creek, Upstream (Sweeps) e1a. e, 6 E ro E E a E a 1 rn _ N N N pDI ti.11 ppI N N N 0 0 m a o - Little Creek, Upstream (Ponar) Group Averepes 6 c E E E EEEE E E m @ ; > > > > pl vI ry p p p p p Di �I pW Little Creek, Downstream (Sweeps) H ,.,.era Je, Little Creek,Downstream (Ponar) Group averages Figure III-G8 a — d. Dendrogram of clusters based on benthic taxa richness and abundance for all years in Little Creek (control): a) four clusters in upstream sweeps; b) three clusters in downstream sweeps; and c) two clusters in downstream ponar grabs. Black lines represent significant cluster structure. III-G-52 0 0 ro a PA2 Creek, Upstream (Sweeps) Group Averages A 6 E E E E a E E E E ro m I > > > > > > m_I npi pa_I .p0I p.I I ^I a N N ER MR N 2 N 0 ro 0 - PA2 Creek, Downstream (Sweeps.) E E � m E E E E E E m n N v1I w V•1I aI N N N [V N 0 N r- N a a 0 ro 0 PA2 Creek, Downstream (Ponar) Averages A p N 0 N C C AAsg 1 ql I N N N N Figure III-G9 a — c. Dendrogram of clusters based on benthic taxa richness and abundance for all years in PA2 (control): a) two clusters in upstream sweeps; b) four clusters in downstream sweeps; and c) three clusters in downstream ponar grabs. Black lines represent significant cluster structure. III-G-53 0 0 ro 0 - Long Creek, Upstream tSweeps) Group Averages A 6 C D 1 a E E E E E E E E m m ro m gi d = > > > > > > I I M� R 2 2$ 2 F3 R 2 Figure III-G10 a — b. Dendrogram of clusters based on benthic taxa richness and abundance for all years in Long Creek (control): a) three clusters in upstream sweeps and b) three clusters in downstream sweeps. Black lines represent significant cluster structure. III-G-54 0 o w 0 — Muddy Creek. Upstream {Sweeps] Grco'-eraje, A B C DE a E E g E E E E E g E E E E E E E E E E E E E 2 2 2 2 2 m 2 m 2 2 e 2 m e T. m e m m > > > > > > > > > > > > > > > > > > > > > > 1 I 1 1 1 1 I 1 I I i I 1 1 1 1 w o g� o � �� o � o m e cr o co � on o m rn °°RR.TRRRRRRRRRRRMRRRRRR 0 0 o — n Muddy Creek, Upstream (Panar) Group Averages A B C E E E E E E E E EEEEEE E E E E E E 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 7 7 7 7 74 7 7>> 747 7 7 7 7 7 74 74 I I I I I I I I I I I I I I 1 1 1 1 1 RRRRRRRRRRRRRRRRRRRRFF E L 0 0_ 0 0 — Muddy Creek, Downstream (Sweeps) Group Averages A BC DE F b gggggggggggggggggggggg 222222 m 2222222m2 22 2'm I I NI I ^ 'I 'I' ' '1 "1 .1 I ggeI r1 01 I I g2E82 N N N W N N.- N N N N N N N N N N N N N N N 0 0 — m Muddy Creek, Downstream (Ponar) Group Averages AB C ❑ E g E E E E E E E E E E E E E E E E g E E 22 m 2 m 2 2 2 2 22 m 2 2 2 2 m if/nil lijii epI p pm� 1 I 1 I 1 I yy I mm I I ��yy I I 1 vv�� I pp�� 1 I 1 6i ` [V d E S E a E O W O. N r O 9 d 0 0 E E WNNNNNNNNN�NNNNNNNNNNN Figure III-G11 a — d. Dendrograms of clusters of benthic taxa richness and abundance for all years in Muddy Creek (control): a) six clusters for upstream sweeps; b) six clusters for downstream sweeps; c) two clusters for upstream ponar grabs, and; d) three clusters for downstream ponar grabs. Black lines represent significant cluster structure. III-G-55 Duck Creek, Upstream (Sweeps) ,,rr,.,i: average Duck Creek, Upstream (Ponar) Group Averages 8 1 c Figure III-G12 a - c. Dendrogram of clusters based on benthic taxa richness and abundance for all years in Duck Creek (control): a) three clusters for upstream sweeps; b) five clusters for downstream sweeps; and c) two clusters for upstream ponars. Black lines represent significant cluster structure. III-G-56 0 Jacks Creek (Upstream) Group Averages 2012_Upstream I =I =I pN N O 2002Upstream > j O o CFI 2011_Upstream 1998_Upstream 1 A B C 0 E F G a a0 N -0.5 N 1.0 0.5 0.0 -1.0 C7 0.2 Ts m as 4. -0s -0d -0.6 N 0.0 -0.5 0.5 U) 0.0 al -0.9 10 -1.0 b Jacks Creek (Ponar Data) • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II • 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 I I 1 1 1 1 • : •ice 1 1 1 1 1 1 1 1 l I I 1 1 1 1 I I I 1 1 I 1 • -__•____i - - i-- IlIIII I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T J I I 1 I 1 I 1 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1 — Downstream • Upslream 0P-' "a 1998 20D0 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 1 0.0- -0.5 - MA* Val x Jade 1.0 0.6 - 4 Pre Pre Peet Pre Peret Pen P. G - 00.- Ltile 4 e5 Jade d.6 • • • F,e Re Peet Pre Pre Pos.1 1 Jacks Comparisons (Upstream) Lae G5 - Pre ere Peel Pre Port R. Pore Pae 146 R. Pre Pore Pre Pen me Pou Jacks Comparisons (Downstream) 2 0•0- u H Be Rs Pre Parl Pr. Pest Pr. Pere a 1 Pre Peel Pre Peet Pre P. a.5 -011 as -0.5 Fra 9.. Ade Prelr USW Re Pre Poe Re Pon H. Pon LJ� Nude og G M Pr. Pon Pre Pore Pee Pon Rs Pr. Pera Prs Pes1 F. Pest • 6 � 4 0 0 LAM Pre Pre Po. Pre P061 Re Peel Figure III-G13 a - c. Dendrograms of clusters of FCA scores (bold year are post -Mod Alt L) and temporal depiction of those scores weighted by relative abundance of each species in Jacks Creek: a) seven clusters in upstream ponar grabs; b) temporal depiction within the six axes of FCA scores of Jacks Creek upstream and downstream ponar grabs; and c) pre- and post -Mod Alt L boxplots of six axes of FCA scores for Jacks Creek years compared to same years in Muddy and Little creeks (controls). III-G-57 1- 0 Q Jacobs Creek (Upstream) Group Averages E (0 E d N N 10 y a a a COI �I 3I CI O O O 0 N EN N - a a .r 0o ) f 5 5 IN N 04 A B 0.5 r 0-0 -1.0 -1 5 1.0 0.5 CV 0.0 -0.5 -1.0 0.6 0.4 N 0.2 0-0 -0.2 -0.4 -0.5 -1.0 0.5 -1.0 1.5 1.0 0.5 cD •y5 OA Q -0s -1.0 -1.5 Jacobs Creek (Ponar Data) • I 1 1 1 1 1 1 1 1 • • • • 1 • 1 1 1 1 I I I I 1 • ! • • • • I 1 1 1 1 1 1 1 1 • • r I 1 — Downstream t Upstream ' r • • 1 1 1 1 1 1 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 HE. DE PH G&X cp 0 N O 0 _ Jacobs Creek (Downstream) Group Averages E (u E E E E E E E NI 0) 0) V! ° 7! N VN V1 ao o 0 ❑n 0 ❑° ❑° 0 �I WI (I (ol rl VI CI N 0 o a a O ca o N N N N N N N A Figure III-G14 a — c. Dendrograms of clusters of FCA scores (bold years are post -Mod Alt L and temporal depiction of those scores weighted by relative abundance of each species in Jacobs Creek: a) four clusters in upstream ponar grabs; b) temporal depiction within the six axes of FCA scores upstream and downstream ponar grabs; and c) three clusters in downstream ponar grabs. III-G-58 r 1k - - GA - h3 - 1 6 • T _L 111 Pre Pau pre Pau Pas Paei - p}- .0. - lamb 1 PAZ L ar4 * 1 Pre Pdu pro Pau Pre Mal PF: 4S - 44. -4 - I I 1 1 1 PAe P 4 Pro 1,M1 PM PriI }A - 43 - - Manta T T I •▪ I • Larq Pee Pau Pre Pep Pre Peel u, Jacobs Comparisons (Upstream) Pre Poi[ Pre Pena Par pan Pro Pei[ are Pap PIe Pete 5 - i T i P2 T A Lome Pre Pau Pre Pan Pre Peel N Q +u - UA = - J. Pre Pau Pre Feet Pro Peel Jacobs Comparisons (Downstream) Pre P411 Pro Ped Pie PM Pre Pau Pre Peel Pie Peet PT$ P41t Pee Pep Pre Peel 0 - 9A - A 4 a.a - kaalga a 1 it IR a HQ J. a Pre Pep Pre Pam Pre Peel Figure III-G15. Pre- and post -Mod Alt L boxplots of six axes of FCA scores for Jacobs Creek years compared to same years in PA2 and Long Creek (controls). III-G-59 m 0 Drinkwater Creek (Upstream) Group Averogaa 2013_Upstream II 0 E E E d 2 (0 N 1A N r/f N - D D D CD 1 0)l N a1 rot 0 0 o a o b ▪ b CI CV N CV CA CI A 0.5 0.0 rn 0 -1 5 1.0 0.5 0.0 -0.5 -1.0 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.5 0.5 U 0.0 -1.0 1.5 1.0 co 0.5 -1.0 -1.5 Drinkwater Creek (Ponar Data) r • • • • . • r • • 14T - • I 1 1 1 1 1 1 1 1 I • • • 1 1 1 1 1 1 1 I • • = i • • • l 1 I I 1 • • • • • ! • I I I I 1 I I v • •, 1 I I I I 1 — Downstream Upstream • vr ' -- 1.R ■ • 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 HE. OE PR. CA GR. 9GSR ro SH. FC SC.GR,PR PA GR SC 8 co 0 N C7 C7 b Drinkwater Creek (Downstream) Group Averages E m W W 50 50 m iv 2 2 2 2 al N NI N cn 11 o 0 o • 0 0 01 «I 61 <I 0I <I -I opt 0 0 0 0 0 0 0 0 N CV N N CV C•1 C•1 N A B C Figure III-G16 a — c. Dendrogram of Drinkwater Creek clusters of FCA scores (bold years are post -Mod Alt L), temporal depiction of those scores weighted by relative abundance of each species, and pre- and post -Mod Alt L comparisons to control creeks: a) three clusters in upstream ponar grabs; b) temporal depiction within the six axes of FCA scores upstream and downstream ponar grabs; and c) three clusters in downstream ponar grabs III-G-60 Y 1.0 — PA2 Lamp T A5 — y 0,5 1 r' Drinkwater Comparisons (Upstream) 0 _ ,,.. . 10 AO — 8 -0.5 — -0.5 — -1.0 11 1 Pre PUS Pry Pep 1 I Pee PO;k Pre PO11 Pry POU Pre PO01 PA= Pre Poet Pre Poe/ Pre Post rh 0.0 — 0,6 — -0.5 — -t Drinkwater Comparisons (Downstream} O.5 — e LTI 1 5 El Pre Pelt Pre POP Pre Pelt t.0 — 0.5 — T =T OA — OrinN..�W PAp El i 0 i 1 1 a e Pre Poet Pre Post Pre Post Pre Poll Pry Ppe1 Pre Poll Pre Poet Pre Poe/ Pre Post co 0.0 D��nkwln PA1 II❑1 Lmp Pre Peel Pr; REM Pee Peel Pro Pest Pre Peel Pre Post Pre Pe/1 Pre peel Pp Peet 1.0 — 0.5 — PAp Lem, Pre Past P. Peel Pre Past Fiqure III-G17. Pre- and post -Mod Alt L boxplots of six axes of FCA scores for Drinkwater Creek years compared to same years in Long creek and PA2 (controls). III-G-61 Tooley Creek (Upstream) Group Averages 2020_Upstream 1999_Upstream 2000_Upstream — 2013_Upstream 201 5_Upstream 2018_Upstream 2010_Upstream 2001_Upstream 2014_Upstream 2011_Upstream 2012_Upstream 2015_Upstream 1998_Upstream 2017_Upstream 2019_Upstrearn A B c D E F G a 0.5 -1.0 -1 5 1.0 0.5 N -0.5 -1.0 0.6 0.4 N 0.2 0-0 -0.2 - 0.4 - 0.6 0.0 1.6 0 0.5 CO rn Maley Creek (Ponar Data) •' 1 I 1 1 I 1 I I I I I I I I ■ • • I I I I I I I I I I I I I • • • • • 1 I— I. I 1 1 1 I I I I I ti 1 I I I • 1 1 1 1 1 1 1 1 • • •--1- • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - Downstream ••Upstream • 1 1 1 1 1 1 I I I I 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 HE. OE P0. CA GR. SC.SH SH. FC SC.GERA PA GR U co b cp b _ Tooley Creek (Downstream) E 5 m1 b N Group Averages E E N E TI I CO N N E N 1999 Downstream EEESEESE 11 m a`11 `0i m 2 2 u2 'A N 'A V! N N N N o555555I of 01 OI 01 01 I I 1 OOrn b C CV CVCVN 0 0 0 A c D E F c Figure III-G18 a — C. Dendrogram of Tooley Creek clusters of FCA scores (bold years are post -Mod Alt L) and temporal depiction of those scores weighted by relative abundance of each species: a) seven clusters in upstream ponar grabs; b) temporal depiction within the six axes of FCA scores upstream and downstream ponar grabs weighted by relative abundance of each species; and c) six clusters in downstream ponar grabs III-G-62 1.0 _ 0.5 — to 0.0 _ 05 Tooley Muddy T Z 0 Long 9 PAY ITS P re Post Pre Post Pre Post Pre Post 1.0 — 0.5 — ▪ 0.o — Tooley T .L i Muddy 1 T i Lang T a II mm PA2 -1 0 — 1 Y 1 1 1 1 1 P re Post Pre Post Pre Post Pre Post Tooley Comparisons (Upstream) 1 ❑ — 0,5 — UI 0 a -0.5 — Toole: T 1 1 Muddy T T I 1 Long PA2 -1 0 — Pre Post Pre Post Pre Post Pre Post 1.0 — 05 — u7 6fl — Q Tooley T a T 1 Muddy Long T Il PA2 T 1 -1 0 — Pre Post Pre Post Pre Post Pre Post Tooley Comparisons (Downstream) 1.0 - 1.0 — 6.5 — 0.0 — Q -Feeley T T _ 00ng as PA2 T iII -0.5 — Pre Post Pre Past Pre Past Pre Post 1.0 — 0.5 — 0.0 — Malay T 1 Muddy T 1 � Long 1 PA2 T ry 0.0 — 0,5 — 11] -0.5 — T T 1 I i Muddy .1 Long PA2 T Pre Post Pre Post Pre Post Pre Post 1.0 — 0.5 — .x 0,0 — Q -5.5 — L -0,5 — Pre Post Pre Post Pre Past Pre Post Tooley T hi T i Muddy T i 11 Long 4 T PA2 i 6 1 Pre Post Pre Post Pre Post Pre Post 1 0 — 0,5 — 01 A Q D a7 0,0- -0. 5 — Toolay 11 Muddy T Lang PA2 - 1 0 — Pre Post Pre Post Pre Past Pre Post 1.0 — 05 — cc, y a0 -0,5 — Toole: I; _ _ 8 Muddy T Long a T PA2 EIT - 1D — Pre Post Pre Post Pre Past Pre Past 1.0 — 0.5 — ▪ a o — -0. 5 — Tertiary j Muddy T T T I 1 s Lang PA2 Pre Post Pre Post Pre Post Pre Past 1.0 — 0.5 — - 0,5 — Tooley T 11111 1 I Muddy Long I 11 T 1 PA2 1 a Pre Post Pre Post Pre Post Pre Past Figure III-G19. Pre- and post -Mod Alt L boxplots of six axes of FCA scores for Tooley Creek years compared to same years in Muddy and Long creeks and PA2 (controls). III-G-63 8 0 Huddles Cut (Upstream) Group Averages E E E a 0vl t ro 1 O O O N N N EmEm(0mmmm 2 • m 2 y N y u11l] N N N N Q- _a aa a _a a a a NDDDDD I �I �I 6-IIImI 01 • O 4 6 O O O O ON ▪ N N N NNIN N N a a a CI 01 05 0 N • o O N N N A c 0.5 -1 5 1.0 -0.5 -1.0 0.6 0.a N 0.2 0.0 ▪ -0.5 0.5 N 0.0 ▪ 0.5 1.5 1.0 0.5 CO Huddles Cut (Ponar Data) • I .4111111,P.-il e • 1 •. • ■ i. I • • • ■ i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 • • 1 1 1 1 1 1 1 1 1 1 1• I. 1 1 1 1 1 1 1 1 1 1 • • • • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 • i . i i • . E • Nwpo .11011111Nr . 1 1 1 1 1 1 1 1 I 1 I I I I I I I 1 SI IL • • 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 I I I 1 Downstream - Upstream I • • 1 1 1 1 1 I 1 1 1 1 I 1 1 Ii 1 1 1 1 1 1 1 1 10 0 2000 2001 2002 2003 200d 2005 2006 2007 2006 2009 2010 2011 2012 2013 2014 2015 2016 2017 2016 2016 2020 RE. OE PA. CA GR. 5C.$R PG 8H. FC SC.GR,PA PA GR 6C 8 0 m 4 co 0 ID 13 Huddles Cut (Downstream) Group Averages EEES m g m g EGEGE o3 OS OS CO 00 r EEEEEEEE ❑I ❑I col ❑I 3 O O O N N N N W N V1 3 3 15 0 0 0001 b 6 00 G ao N N N N N N N N N N C N C O 0 0 o° 0 0 a �I rl of NI �I aI rl O O O 9 CDO N N N N N N r N A c c Figure III-G20 a — c. Dendrograms of clusters of FCA scores (bold years are post -Mod Alt L)1 and temporal depiction of those scores weighted by relative abundance of each species in Huddles Cut: a) four clusters in upstream ponar grabs; b) temporal depiction within the six axes of FCA scores upstream and downstream ponar grabs; and c) three clusters in downstream ponar grabs III -G-64 Huddles Cut Comparisons (Upstream) 1.0 — rn uaay 1.0 — 0.5 — -10 — Huddles H Pre Post Pre Past 0.5 — cro 0.0 -0.5 — Huddles Muddy - 1 0 — Pre Past Pre Post 1.5 — 1.0 — U.5 — 0.0 — — Huddles 1- 1 B Muddy - 1 0 — Pre Huddles Cut Comparisons (Downstream) P ast Pre Post 1.0 — 0.5 — w 0.0 Huddles Il T� IJ Muddy T I H T I I -0.5 — Pre P ast Fre Post Figure III-G21. Pre- and post -Mod Alt L boxplots of the six axes of FCA scores for Huddles Cut years compared to same years in Muddy Creek (control). III-G-65 8 c 0 00 _ v _ 0 Porter Creek (Upstream) Group Averages 2013_Upstream 2020_Upstream 2018_Upstream 2019_Upstream 2017_Upstream 2015_Upstream E 7 7 0 A B E a 0.5 -1.0 -1 5 1.0 0.5 cV N -0.5 -1.0 -0.5 0.5 �[] o.o rn 1.5 1.0 co 0.5 •}0 0.0 -0.5 -1.0 -1.5 Porter Creek (Ponar Data) • 1 1 1 1 1 1 1 1 1 I J I I I 1 I I ' ' • 1� I I I. l l I I I • V 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 — Downstream Upstream A 1 r 1 1 1 1 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 one Pk LA. dl Set. 011 8 0 co 0 4 0 _ Porter Creek (Downstream) Group Averages 0I 0 0 2011 Downstream 201 7Downstream 2013 Downstream 2015 Downstream 2016 Downstream 2018_Downstream 2012_Downstream 2014_Downstream A D E c Figure III-G22 a — c. Six axes of FCA scores, pre- and post -Mod Alt L comparisons to control creeks, and dendrogram of clusters of FCA scores in Porter Creek: a) five clusters in upstream ponar grabs (bold years are post -Mod Alt L); b) temporal depiction within the six axes of FCA scores upstream and downstream ponar grabs weighted by relative abundance of each species; c) five clusters in downstream ponar grabs (bold years are post -Mod Alt L). III-G-66 Porter Comparisons (Upstream) 1.0 - L+I1e 1.0 - 0.5 - r 0.0 - -0.6 - Pans• Mae T T T 6.5 - Pry PORt Pit PC41 Pre Pa$t 1.0 - 0.0 - Parer T J. Pack T J. 1 1 • • Lill Pre Poet Pre Past Pre Poet 1.0 - 0.6 - r o_0 - Pore* Mock -0.6 - Pry P{0t P10 P.M Pn Past • T 6 a Lame Cv 0.0 -0,5 Pro PO$1 Pt PC41 Prt POTS 1.0 - 0.5 - M 0.0 - Porter Comparisons (Downstream) 1.0 - 0.0 0 Paler Muck Pre P01S Pa P041 Pry POI{ -0.5 - P teW to^T� T 1 o T J. D T 1 Pry PHI Pry P¢41 Pr• P54t P ater 1.0 - 0,5 - 0,0 - - 0.0 - 1 PTO Paw Pre Past Pre Post 1.0 - 0.5 - 0.0 - -0.0 - 15 T 4 EP a J. Uth. • Pro Pool Pre Pp 1 Pry P941 1.0 - 0.5 - 0,0 - - 0.5 - Fader 09ck • • 1▪ 1 0 LIMN - 1.0 • Pre Paw Pre Past Pre Post Figure III-G23. Pre- and post -Mod Alt L boxplots of the six axes of FCA scores for Porter Creek years compared to same years in Duck Creek (control) and Little Creek (control). III-G-67 8 c V DCUT11 (Upstream) Croup Averages a og 0.5 -1 5 1.0 0.5 -0.5 -1.0 0.6 0.4 CO 0.2 0.0 -0.5 0.5 1.0 0.0 1.5 1.0 co 0.5 N -0.5 DCUT11 (Ponar Data) 1 }i---- •• . ••T 1 1 1 1 I 1 1 I 1 1 1 1 1 1 I 1 • 1 1 1 1 I 1 J I 1 1 1 1 1 1 1 1 • 1 1 I 1 1 1 1 1 — Downstream Upstream 1 1 1 1 1 1 2013 2014 2015 2016 2017 2018 2019 2020 FIE. OE PA. CA GR. $.$H rc OH. PC PC.OKRA PA GR sc up 0 DCUT11 (Downstream) Group Averages 2013 Downstream 2018 Downstream 2017 Downstream 01 N a,I 0 N E N 2014 Downstream 20 1 6_Downstrea m A B ! C D E c Figure III-G24 a — c. Dendrograms of clusters of FCA scores (bold year is post -Mod Alt L) and temporal depiction of those scores weighted by relative abundance of each species in DCUT11: a) five clusters in upstream ponar grabs; b) temporal depiction within the six axes of FCA scores upstream and downstream ponar grabs; and c) five clusters in downstream ponar grabs. III-G-68 DCUT11 Comparisons (Upstream) rt 1.0 o 4 — -1 O Pry Rest PIS Pop Pry PWt 1.0 — 0.5 — .0.5 T T 60117111 1 d Durk Pre Past Pre Post Pre Net 1.0 — 4r- 41,411119 T T 111 Pry PGft Pry Pop PIP P01t Pre Poet Pre Post Pre Past 1.0 — 0,5 — Q!Q — .05 — OCUr11 T 0.911949. e 1 d i P71 P01t Pet P01t Prf Pigs Pre Poet ND Peat Pre Post 0.5 — 1e 00 rD IIuuT�� 1 a T 05 — .1 a PHI Pry Pp 1 Ply 0441 0 • 0.5 — I 0.0- -0.5 — DCUT11 Comparisons (Downstream) P14 P09t P.* P041 Pry P014 Pre Poet Pre Poet Pre Post aC(R11 Meal Pre Poet Pre Post Pre Pest 0 - 0.5 — °° 00— 05 — 0CI1111 17-1 1 0CUT1P i J. T Pr* P*41 Pr! Ppp Pry PPP 10 1 0.5 d' 0.0 - -0.5 — -1.0 rYXR11 d Dunk Pre Post Pre Post Pre Post Figure III-G25. Pre- and post -Mod Alt L boxplots of the six axes of FCA scores for DCUT11 years compared to same years in DCUT19 (control) and Duck Creek (control). III-G-69 u7 O r 0 0 Little Creek (Upstream) E E E E E E E E E a 0 0 a a a a a a a a 71 71 71 71 71 71 77 1 1 N 0 q .17 to O I O 0 0 0 0 0 0 ❑ ▪ 0 N N N N (V N N A t3 a 0.5 0.0 -05 -1.0 -1 5 1.0 -1.0 0.5 0.4 N 0.2 00 -1 0 0.5 10 0.0 Cn 'x < 0.5 -1.0 1.5 1.0 co 0.5 y5 0.0 -0.5 -1.0 -1.5 Little Creek (Ponar Data) _ ! ! �� • i=i V 1 1 1 1 1 1 1 1 1 I • • 1 1 1 I 1 I I I I I • r • • 1 I I 1 I 1 I I I I L • - - -r- __ ■ • • • J I 1 I 1 I I I I I • I I — Downstream Upstream • • 1 1 1 1 1 I 1 I 1 I 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 HE.DE DR IC. 0 Little Creek (Downstream) E Group Averages E ESSE E E 0 N 0 N N N N N �I 0 �I I 0I • 10 .17 N CVN N N m N A D E Figure III-G26 a - c. Dendrogram of clusters of FCA scores and temporal depiction of those scores weighted by relative abundance of each species in Little Creek: a) three clusters in upstream ponar grab; b) temporal depiction within the six axes of the FCA scores for upstream and downstream ponar grabs; and c) five clusters in downstream ponar grab. III-G-70 0 _ 0 PA2 (Upstream) Group Averages 2O15_Upstream 2019_Upstream 2017_Upstream as a 0 2012_Upstream 2013_Upstream 2016_Upstream 2011 _Upstream 2018_Upstream A B c D a 0.5 0.0 N -0.5 -1.0 -1 5 1.0 0.5 0.0 -0.5 -1.0 0.6 0.a 0.2 0.0 -0.2 -0.4 -0.6 0.0 N 0.5 sr] 0.0 N .0.5 -1.0 5 co 0.5 N PA2 Creek (Ponar Data) Y V I I I I I I I • I I I I I I • s • 1 I I I I l 1 1 I I • It • • I I I I I I I I • • I I I I I I I — Downstream • Upstream A • • • I I 1 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 one PA CA. Gil SCAN 8 C 0 _ 0 _ 0 0 PA2 (Downstream) E 1u Group Averages E E E E E E E E 0 0 3 3 5 3 5 5 5 0 o a a ❑° ❑° ❑° c)0 �I NI En.I Ni LI')I raZrI rl (0I =pI N N N N N N N 0 0 A 6 c Figure III-G27 a - c. Six axes of FCA scores and dendrogram of clusters of FCA scores in PA2: a) four clusters in upstream ponar grabs; b) temporal depiction of FCA scores weighted by relative abundance of each species; and c) two clusters in downstream ponar grabs. III-G-71 0.5 0.0 rn -0.5 -1.0 -1 5 1.0 0.5 CV -0.5 -1.0 0.6 0.a N 0.2 0.0 -0.2 - 0.4 - 0.6 ▪ -0.5 -1.0 0.5 0.0 ▪ .0.5 -1.0 1.5 1.0 as CO Long Creek (Ponar Data) 1 -.- 1 1 1 I I 1 1 I I I • -3 • > J 1 I I I 1 1 I 1 •. • I I II I 1 1 I I 1 1 1 1 1 I 1 1 1 1 x • • 1 1 1 1 1 1 1 I I I — Downstream Upstream • • V 1 1 1 1 1 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 DE PH LA. 4C.0 PA rp 0 Long Creek (Downstream) Group Averages of E E E E E co co E E E 2 2 2 0 A B C D E Figure III-G28 a - b. Dendrograms of clusters of FCA scores and temporal depiction of those scores weighted by relative abundance of each species in Long Creek: a) temporal depiction within the six axes of FCA scores upstream and downstream ponar grabs and b) four clusters in downstream ponar grabs. III-G-72 c � v O N _ 9 _ c E Muddy Creek (Upstream) Group Averages EEEEEEEEEE EE co d 1 1 EEEEEEEE d 2 2 2 2 CD 2 2_ 01 a II 0_ 01 Q d Q Q d Q d 0_ 71 71 71 =1 71 7! 71 71 71 71 O CO co (0) r 07 N N- O CD ID O 61 O b O O O O b N N N N N N N N N 01 n 1 71 m N O b N N 01 Q Q d Q d d a 7 71 71 71 7 71 71 71 O b O O O O 61 O N N NNNN A 8 C D E a 0.5 0.0 rn -0.5 -1 5 1.0 0.5 N .7( 0.0 -0.5 0.6 0.4 0.2 0.0 -0.2 -0.6 0.0 -0.5 0.5 u, 0.0 1.5 1.0 co 0.5 -0.5 Muddy Creek (Ponar Data) el •t o t • • r • ,JmI, • • 1 1 I 1 1 1 1 1 1 1 1 1 I• 1 1 1 10 1 1 1 1 I I • • • • • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 • • • • • • • 1 I 1 I I l I 1 I 1 I I I 1 I P 1 I 1 I 1 I I • • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111 • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 • — Downstream Upstream • a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 EA. SC.514 MORN; 9 N 0 9 O Muddy Creek (Downstream) Group Averages E m C O Oi N E m 7.5 C 3 0 0I N E E m m to- to 00 a) 0 61 N 03 a-N 0 0 ❑ ❑ �I C9),I rl NI O O 9 9 9 9 N N N N EEEEEEE 2 2 2 2 2 2 2 000 •I 0I 4I NI 0-3 (I O O O 9 0 9 O O 9 9 9 9 N N N N N N N A B C D E F c Figure III-G29 a - c. Dendrogram of clusters of FCA scores and temporal depiction of those scores weighted by relative abundance of each species in Muddy Creek: a) five clusters in upstream ponar grabs; b) temporal depiction within the six axes of the FCA scores for upstream and downstream ponar grabs; and c) seven clusters in downstream ponar grabs. III-G-73 8 4 o _ 0 DCUT19 (Upstream) Group Averages 2020_Upstream 2014_Upstream 2018_Upstream 2017_Upstream 2015_Upstream (I a A B ❑ ❑ E a [V N 0.5 0.0 -0.5 -1 5 1.0 0.5 -0.5 -1.0 0.6 0.4 0.2 0.0 -0.2 - 0.4 - 0.5 0.0 -0.5 0.5 U) 0.0 di -1 0 1.5 1.0 co 0.5 N DCUT19 (Ponar Data) t: r f 1 --4 I- n • V I 1 1 1 1 1 1 I . • V 1 1 1 1 1 1 I �• •• • • 1 I I I 1 . 1 I I I I I 1 1 I I I I — Downstream Upstream A `` 2013 2014 2015 2016 2017 2018 2019 2020 FE. OE PR. CA FL 8H. FG SC.GR.PR PA GR DCUT19 (Downstream) Group Averages coI v N 2020_Downstream 2018_Downstream 2014 Downstream 2016_Downstream A B c Figure III-G30 a - c. Dendrogram of clusters of FCA scores and temporal depiction of those scores weighted by relative abundance of each species in DCUT19: a) four clusters in upstream ponar grabs; b) temporal depiction within the six axes of the FCA scores for upstream and downstream ponar grabs; and c) three clusters in downstream ponar grabs. III-G-74 CU 0 m G G 0 Duck Creek (Upstream) Group Averages a_Q Q Q Q Q Q 2_ I 1 1 =I =I =1 =I c M1 COCJ CD co a )f7 0 o d o 0 o d o CV 01 :.L SV CV CV :.L SV A 8 0.6 - 0.4 - CO D.2 - N 4-0 - -0.2 - -6.4 - -0.5 - -1-0 - Duck Creek (Panar Data) 2011 2012 2013 2014 2015 2016 2017 20"8 2019 2020 PA CAL ca SE Figure III-G31 a —b. Dendrogram of clusters of FCA scores and temporal depiction of those scores weighted by relative abundance of each species in Duck Creek: a) two clusters in upstream ponar grabs and b) temporal depiction within the six axes of the FCA scores for upstream and downstream ponar grabs. There were no defined clusters for downstream. III-G-75 C - ti N -0 (QO-0 a) O C co O co co a) to a) c,0 CV .0 r O Q0 _ CI)C as ^^`` \F O J (3 as O a) X c CD C c)U N a) ll O c6 +_ CDJ a) (NI r - L O Y a) > O a) 2 C N a) C.)o U Zr) ( O ) O U N O 1E 1 L ) OL O N _ _c N Q O ON d _ ti to'c) a.) N O a) > -0 N L C - C.) (Q C to C (Q _Q lo E O r O C O O 0 0 N O -, N C (7 D COO 0) O O O) (N = -C r CD 4 N a) O r as cs)L I—r U ON 0 a) (Q > 0 a) to Vi 0 O C U O O X (Q H a) a) ^C a) ) a) 1,. O O O LL0 CO CO O O NNN O 00O ,0,0 O CO O O I- O N LL0 CO V LL0 O V (O M (O fn N M V M M (Ni N N N N N M M N N N N N N N N N N N N N O O N N O O CO O V O O N N N V 6 N.- N N h co .N QE "y hh m 0 h E o m m a 0 ', r. am ii3 Nc m.°" , Ga y >U G'=O o h a t m �tIifl; ti 2m° N cu mamw2mNll0tJli N . a os� N :12m o _m,E--E0 m 0 U % m m 'o000m2 2 « j ^• m m m m a s ii m 2t .2 m 3. -O a mmm m :0o :0o :0o :0o 0o m U�� 0 mQam o UU U@ a Y E 0 o,fl- o 0 o E E E E o m 0 m 7m Ei t° 4 .Em E E o 72 s 22 U n U o t .�m s m mmm L'4'4 h m .° 72 aaa 'm J J J J J z cc, cc, cc, a: co oQO W On Q U U U oQ_Qa J 0 0 0 0 E UUU= J W - 2 !, as° O coco n y E U W W ce r U" W W -0 U U o Q U n W °2 W W W m s 0 mo. m 0 am o � o o cE0 m¢ m U O ¢ m-0 m o 0 - t a E- To Q m co r h o t u- W: 0 t co m .-:�. aEo 'o om co co co co o-oao g m �5�uuu :>j m2o m c c c c m A m m 72 E E E 0 m o am mm .o °i °' 2" m-o m m m m � J nU -0 2 0 0 0 -om Jn= n o C m= m ro ro ro ro cn > .x o) a m Q m m F Q 0 S CO m 1,. O co . co V N O CO CO O N V ,0 O CO V O r CO CO CO CO CO CO CO ,00 0 N M ,... N N N N NNNNN COh w ` o ° .a c m cG p m a U N O U Qm a m i m m c U N y a m G N i 0 > G 0h y NE.Qo :N 2am yV! 412 w > a .2.X0 tE oay x x Q N N°yw N N uy N m°`jhN V! 0 0° 0 `h NN jN oT N m Nim ,m N 0 Em y m0,h G a 0: o o0 jNN 2 o N .m.y 0 0._ 0 0-0 m m m m m NXm X • °m •m •m •m • O O 8 m % T T m (E m �°i � ot Q co EG m yy ^hQQ0 a m 0 o NO Oy ' `.OG Oa ')..„-Ea a>> om '2 0 2 0 co ymo00o °°°°°ywmm s a m 4N Y m h NN 2: y y 0 a y y> o, 0°° 0 E E o Eo o.G. um °i a a co0 m m o0 ,c -a0 a % 0 G won w0 0h E 0- 0- 0- m 0 o 0 0 0 0 o s 0 u,aoE E >> o 0 0 2 2 2 2 2 0 0 m m> m m :2_m0 = 0 % m m N 2)m-m m m,, E V,c ,c ,cOcy mNm° m° m a o U 2. -mG E -0 m m o m h0:o m c m o N 0 0 0m oUUUUUUoy==02 aaNO'00 0 o mcccccEN 0cm0 • G QD0m mfm00hm0-EE =,c=h 0 0 N ° N OOIN IN .2 0 0 u 0 Q cE E .2 00 N= 0 70 N E .m. o 0 ) 0 ,c ,c N N 0 Z Z o 0 0 0 0 0 1 m m m m m 0- 0 "0 U N « fl- f 0 -0 m L G m= G 3 0 oa o G 3 'm W W W U J Jm Z W W W - O WJ 5 O U - E co c0 U 0 U o- QcOcOcOcOxcn ti ti ti ti ti ti U- - Q -0 =_ mW Q. Q. n Zm Wm Q. cn o co @ Z 0 aQ Q Q Z 0 W -0cn co E Q 0 co WU o coimQ - L m m 0 0 =o 0 0 U iF F Q m 0 m 0 0 x z z a o_ CO > O a 0 0 -O a 0 0 0 m t w x 0 x 1 a` 1,. V oO O 10 10 M (O (O O O O N N N O) . co co co. co. V O O O 0) O (O O O M M c'M .. .. co. r coCOO O . V V N O r O O m m N N N m N ,- N ,-,-,-,- M N N M N M M N (o h a` ..2 � '0 c c y mm8g2_� �co o�ms 0 Q0 0shao -„• h -Q 0 h c E Q m i 2 2 m o o o 2 E E E E E 0 0 m-o'.2 -o u i i is mmmmmm `.o9o°Is_ o 0 aa a a a a_2 m ,O �O Q 'a) 0 -o0 0 0 0 0 2 o0 0 0 0 0 .- Q 6- U i -0 = -0 co co W W W= = = = = = re- x = = z m 1- a G ° a =o >avvh''a GE 0 yyyy r. E hi 0 cs m u h S u a m _•a ENu VoE a h E E .,0N 0: .a) 'E s N 0h N 0 0N 'NO - aE NQQa>>a °ah aU yo 0 0 o N0N2: N 0_ m y m s 'NN'o o N,n h Q N mQ Q.QN o:0c ,° 0._AG o 0 0 Q N ma,vYQ a a h Q i o 2 0 �o- h o o o o w E E E 2 2 2 o 0 0 o N c QVE w h ` ooi N N N 'OwN Ou c 8 2 c y 2. p m 0h02 -O O g (0 0 .c2 2 2 2 m m G a m m m m m m m m O O O a a a G G G G= am O O O O O O i i O • O 2-22 N,\ 0 U 0 0 , =2 E c c 72 i m c m oo a a 2 m i i. • E -Q E E E E§. c c = a a a a a a a 2022 cct t t ti o 2 2 2 2 0 0 ° 2 c h h h h =o c a a a a a a a. oa° m 2 Qh m-0mG 72 a 00N 0oE:o00o mU o00000o2,E,E,Ea UUUUUU. Gca asoo v. h o0000000Go m D m c N f N .° hf.o O 0 0 O 6 t 2 2 2 2 aaa ° ° ° a a 2 2 2 2 2 m m a a a ==0 cccm c o ° m 2 2 n m -aG 0o-0 Qao L m 2- m O° -0 'c t O o a 2 z z ,G ,G N N U U U U U U U C aaaz z z O O O O N •E • E m m m m m m m m O O O 2 2 am m m ,2 m O UUUUUUUE m m o m L., .2,O Q W r U g *-a' co U O W W UU U U U U 6- 6- U U O O O O O O O W W W W UUUUUUUY Z Z Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. W ce h - f. f. U J a_ 0. 0. z.0 .-U I- a a 0OIL' 0 0 0 ot 10) V V O O O co. O O O O O co. O co. O co. O O I� CO O O (O N M N N c' c' V oO oO N V V V V 0 MN N N N .-.- N N N N O h Q m co h ' s co m2 m E ' .s t .° N «' > ° c m =m «,c a E N .h. = m m cCD mw m h c °' osoN 4.2 0 N N a ° :N o c o N i i h m e t m c hu Q>m m c m c ..��- N w my y allo c mEoN w o •0 ah'. N � L tm 0 2: • o a m o s �N.ew tiE ms = m m '�'E E o m. 0 2 _ m 3. ',I t .2 c N o z 0 h m ° = 2 2 mo o a ° • m.cNo>°°o ,'QOj0u0(0mNy 0 m NEm.a. 0 0 0 co o, . N h(0-o mmmom m N h .«m yy y''a s E m a s m �' CO Nm m U 0 N m m �N' U h hQ Q 02•EGym m m ym m 2 NyE h aE. N.2 G hm m m m °m O co E u N -0 Ot-2 Na Na Na m a a a oO� m y- y 2: �2' >a a N °>hhm cO Oxim 0 . E0 0 aO ma B0 a a �' g mN E m E 0 O 0 o E m =- m -m 0 "-4 0 P. U E L wo 0 wmyom Efl- -o .o .o .o m m m mam 0 ° a a c c ., g -0 o m wc O0 o n �a m m a a m .o m �' oo o o° ,per c s 2 --0 m oo o c° m° o E m c o 0 0 0 L E ur 0 .No 0 0 0 0N T c -0 o-2 o 0 o o0 E E O O N N N N N h.h '2'2'2 0- °° - N N N 0 2 N a L E= O O m O O ON B T., N N N N :.N .N Om m 0.' 2= o S= C -` O fy0 O h yNooN N U -= •E Q 0 0 0 0 m m 0 n 0 § o=_= N 0 OU 0 0 o O O O f J J z z z W W W W h h h m O 1, J z z >. W W m o- Q o cp cp W W c) c) m .o0= Q JJ c) -O 70 Q@ 0 -0 = Q E mQ-0 WE e o L§) J 'aU U i i Jz c) - .O a_ a_ a_ a_2 >`.o .wa 9 a mQ w m m fs °x Z Z Zm ya za a 2 m¢ 0) oU O o. s .- a = E z a co ;0 U U o o _ CO °a F= 0 0 Um.,.2 a m 0U N E S U W CO 't < 0 I- a a III-G-76 Table III-G1 (concluded). h c�i c�i N — v . .. c.j c.j . . co •9 ro c 'C ro ro a 2w (19 a a �' '� a ro c° °ro' O Un C d N C io C L^ ri N m L° a •� d ro O N N N h u a s rti a fo Q O N �° to roo o N ro ri i`n N N [�o ro [�o •v' Na �0 ri G o L a N N 0 • N fi N [o [o .o_ o_ n3 0 tu y [o b h fp N 7] [m [ro- ° Q E ,f0 N s0 0 r, .13 8 9 f0 V U y 7 N D_ 0 n3 Ql b C CL C N fp Ql U 0 C a R .ro .ro f6 N C C C N-n 0 E O f6 2 0 b 9 0 7] :. b_ b_ f6 .�_ C L 0 Ql n3 • Y [5 -44 16 'a G N m 0 c1 ! 72 .- C .c 8-- r c O j,. C [, ry g O n3 N 0 O— L6 2r] C N f6 pN [p Fn. N O C N N N .p� [o O f6 'Y f6 a- 72.8 2 72 O - co c [o .— T N `� 'a -5 2 C �, Q L 2 U Q N N_ C �, 3 V cc [6 � N 8 f6 72 - (O� 8 (O� 8 (O� 8tl mU f6 0_ L o N= t §p O❑ L f0 • C -13 0 2 L ,C 8 U N Vi Sif6 O T 2 8 Si 72 fi• fi E o Q Q Q 2 O T '8 Z Z 0 '� Z L6 c1 o 8 y 0 e O f6 7 K. Vi w N T '^a a .. 2 W 'E C 0 0 x f6 L 0_ F6 C [6 =- 0 0 ( CJ O N 2 'C 0 i a N P 5 j 2 C U] 6' ❑ 2 U] F ` W ` 7 N a JT a O= J N c1 W F t d [o 0 2 t o o c� v¢¢ cn o m¢ CD ¢ m z z n E E Z ro z a Sensitivity values assigned by NCDWR in effort to standardize and evaluate benthic data from past study years. III-G-77 Table III-G2. Abundant benthic macroinvertebrate species for sweep samples collected in monitored creeks during May of Mod Alt L sample years 1998-2005 and 2007-2020. Pre -Mod Alt L: Broomfield Swamp Creek (2019-2020), Jacks Creek (1998-2005; 2011-2014), Jacobs Creek (2011-2013), Drinkwater Creek (2011-2012), Tooley Creek (1998-2001; 2010-2011), Huddles Cut (1998-2001; 2007-2009), Porter Creek (2011-2015), and DCUT11 (2013-2017). Post -Mod Alt L: Jacks Creek (2015-2020), Jacobs Creek (2014-2020), Drinkwater Creek (2013-2020), Tooley Creek (2012-2020), Huddles Cut (2010-2020), Porter Creek (2016-2020), DCUT11 (2018-2020). Control Creeks: SCUT1 (2019-2020), PA2, Long, Little, and Duck creeks (2011-2020), Muddy Creek (1998-2005 and 2007-2020), and DCUT19 (2013-2020). A - indicates the creek was not monitored that year. Benthic collection occurred in June for 2010. In each sweep sample, individuals per species were stopped at 100 and maximum number of individuals per species stopped at 300. BROOMFIELD CREEK UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Littoridinops sp. Polypedilum sp. Corixidae sp. Candonidae sp. 40 31 29 23 13.7 10.6 9.9 7.8 Gammarus tigrinus Mytilopsis leucophaeta Naididae w/o hair sp. Cyprideis littoralis 300 169 130 122 37.1 20.9 16.1 15.1 BROOMFIELD CREEK DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored (Total not monitored not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Corixidae sp. Cyprideis littoral's Naididae sp. w/o hair Dero sp. 109 83 73 63 14.6 11.1 9.8 8.5 Gammarus tigrinus Cyprideis littoral's Naididae w/o hair sp. Americamysis almyra 300 204 100 82 36.5 24.8 12.2 10.0 SCUT1 (CONTROL) UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Naididae sp. w/o hair Corixidae sp. Goeldichironomus holoprasinus Tanypus neopunctipennis 127 45 40 30 31.7 11.2 10.0 7.5 Cyprideis littoral's Gammarus tigrinus Naididae woo hair sp. Physidae sp. 300 300 207 52 31.8 31.8 21.9 5.5 SCUT1 (CONTROL) DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Gammarus tigrinus Cassidinidea lunifrons Kiefferulus sp. Candonidae sp. 133 116 99 59 18.0 15.7 13.4 8.0 Gammarus tigrinus Americamysis almyra Cyprideis littoral's Amphicteis floridus 300 227 203 108 30.1 22.8 20.4 10.8 III-G-78 Table III-G2 (continued). JACKS CREEK UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Gammanis tigrinus 300 11.3 Gammanis tigrinus 300 38.4 Amphicteis floridus 300 12.3 Amphicteis floridus 300 10.6 Littoridinops sp. 300 30.6 Chironomus decorus 300 25.2 Cyprideis Iittoralis 300 13.5 Amphicteis floridus 290 15.1 Littoridinops sp. 300 11.3 Littoridinops sp. 163 20.9 Cyprideis Iittoralis 300 12.3 Cyprideis Iittoralis 300 10.6 Goeldichironomus devineyae 115 11.7 Goeldichironomus devineyae 300 25.2 Littoridinops sp. 300 13.5 Gammanis tigrinus 288 15.0 Enallagma sp. 261 9.8 Cassidinidea Iunifrons 123 15.7 Gammanis tigrinus 300 12.3 Gammanis tigrinus 300 10.6 Enchytraeidae sp. 111 11.3 Littoridinops sp. 257 21.6 Tanytarsus Iimnecticus 288 13.0 Tanytarsus sp. 1 276 14.4 Amphicteis floridus 201 7.6 Cyprideis Iittoralis 97 12.4 Dicrotendipes nervosus 300 12.3 Littoridinops sp. 300 10.6 Palaemonetes pugio 88 9.0 Cyrenoida floridana 81 6.8 Amphicteis floridus 253 11.4 Littoridinops sp. 253 13.2 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Chironomus decorus 300 8.5 Littoridinops tenuipes 300 34.7 Nematoda sp. 300 16.9 Littoridinops tenuipes 300 27.5 - - - - - - - - - - - - Apocorophium sp. 300 8.5 Goeldichironomus devineyae 237 27.4 Littoridinops sp. 284 16.0 Chironomus decorus 141 12.9 - - - - - - - - - - - - Littoridinops sp. 300 8.5 Apocorophium sp. 126 14.6 Chironomus decorus 247 13.9 Corixidae sp. 131 12.0 - - - - - - - - - - - - Apocorophium Iouisianum 266 7.5 Chironomus decorus 65 7.5 Goeldichironomus devineyae 216 12.2 Gammanis tigrinus 96 8.8 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Littoridinops sp. 300 19.1 Corixidae sp. 300 18.7 Littoridinops sp. 300 22.9 Littoridinops sp. 300 14.0 Chironomus decorus 300 12.1 Apocorophium sp. 300 18.2 Apocorophium sp. 293 18.6 Littoridinops sp. 300 18.7 Corixidae sp. 188 14.3 Gammanis tigrinus 300 14.0 Corixidae sp. 220 8.9 Gammanis tigrinus 300 18.2 Gammarus tigrinus 286 18.2 Tanytarsus sp. 206 12.9 Gammarus tigrinus 185 14.1 Tanytarsus sp. 272 12.7 Littoridinops sp. 216 8.7 Littoridinops tenuipes 268 16.3 Amphicteis floridus 107 6.8 Apocorophium sp. 162 10.1 Apocorophium sp. 149 11.4 Chironomus decorus 266 12.4 Amphicteis floridus 208 8.4 Cyprideis littoralis 214 13.0 JACKS CREEK DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Gammanis tigrinus 295 11.9 Gammanis tigrinus 300 30.2 Littoridinops sp. 128 21.7 Gammanis tigrinus 300 14.6 Littoridinops sp. 246 29.7 Americamysis almyra 148 19.0 Littoridinops sp. 239 23.6 Apocorophium sp. 300 21.8 Cricotopus sp. 252 10.2 Apocorophium lacustre 245 24.6 Cricotopus sp. 102 17.3 Littoridinops sp. 300 14.6 Americamysis almyra 100 12.1 Littoridinops sp. 124 15.9 Cyprideis Iittoralis 132 13.0 Littoridinops sp. 300 21.8 Cassidinidea Iunifrons 235 9.5 Cassidinidea Iunifrons 170 17.1 Apocorophium lacustre 77 13.1 Dicrotendipes nervosus 230 11.2 Palaemonetes pugio 62 7.5 Apocorophium lacustre 109 14.0 Americamysis almyra 129 12.7 Gammanis tigrinus 264 19.2 Littoridinops sp. 224 9.0 Littoridinops sp. 153 15.4 Gammanis tigrinus 73 12.4 Goeldichironomus devineyae 200 9.7 Laeoneries culveri 56 6.8 Amphicteis floridus 89 11.4 Tanytarsus sp. 1 103 10.2 Americamysis almyra 248 18.0 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Apocorophium sp. 256 12.7 Hargeria rapax 159 19.7 Nematoda sp. 230 26.1 Littoridinops tenuipes 300 18.8 - - - - - - - - - - - - Palaemonetes pugio 248 12.4 Apocorophium sp. 146 18.1 Apocorophium sp. 115 13.1 Hargeria rapax 283 17.7 - - - - - - - - - - - - Hargeria rapax 204 10.2 Littoridinops tenuipes 115 14.2 Hargeria rapax 113 12.8 Apocorophium sp. 187 11.7 - - - - - - - - - - - - Gammanis tigrinus 172 8.6 Americamysis almyra 97 12.0 Littoridinops sp. 99 11.3 Gammanis tigrinus 178 11.1 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Gammanis tigrinus 300 19.2 Apocorophium sp. 300 19.3 Littoridinops sp. 300 39.2 Gammanis tigrinus 300 26.4 Littoridinops sp. 300 13.7 Apocorophium sp. 300 22.5 Littoridinops sp. 300 19.2 Gammanis tigrinus 300 19.3 Gammanis tigrinus 224 29.2 Littoridinops sp. 208 18.3 Apocorophium sp. 295 13.5 Littoridinops tenuipes 300 22.5 Apocorophium sp. 272 17.4 Littoridinops sp. 300 19.3 Apocorophium sp. 124 16.2 Americamysis almyra 180 15.8 Corixidae sp. 247 11.3 Gammarus tigrinus 255 19.1 Americamysis almyra 135 8.6 Apocorophium lacustre 269 17.3 Apocorophium lacustre 38 5.0 Gammarus mucronatus 127 11.2 Gammarus tigrinus 183 8.4 Hargeria rapax 211 15.8 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - Y 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total W W 2 lY Q not monitored - - not monitored - - not monitored - - not monitored - - Littoridinops sp. 300 18.0 Littoridinops tenuipes 300 31.9 Goeldichironomus devineyae 300 18.5 Littoridinops tenuipes 300 24.0 V W - - - - - - - - - - - - Apedilum sp. 222 13.3 Goeldichironomus devineyae 228 24.2 Littoridinops sp. 280 17.3 Chironomus decorus 212 17.0 (/) H - - - - - - - - - - - - Apocorophium sp. 218 13.1 Apedilum sp. 190 20.2 Chironomus decorus 234 14.4 Goeldichironomus devineyae 156 12.5 OV) - - - - - - - - - - - - Goeldichironomus devineyae 142 8.5 Chironomus decorus 91 9.7 Apedilum sp. 192 11.9 Apocorophium sp. 122 9.8 U ? 2015 2016 2017 2018 2019 2020 Q n Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Chironomus sp. 300 18.4 Apocorophium sp. 300 19.0 Littoridinops sp. 300 21.6 Apocorophium sp. 300 23.7 Littoridinops sp. 300 25.2 Littoridinops tenuipes 193 26.9 Littoridinops sp. 300 18.4 Littoridinops sp. 300 19.0 Apocorophium sp. 256 18.4 Littoridinops sp. 300 23.7 Goeldichironomus devineyae 134 11.3 Apocorophium sp. 132 18.4 Tanytarsus sp. 236 14.5 Goeldichironomus devineyae 138 8.7 Corixidae sp. 252 18.2 Goeldichironomus devineyae 146 11.5 Chironomus decorus 132 11.1 Corixidae sp. 100 13.9 Apocorophium sp. 222 13.6 Apocorophium lacustre 136 8.6 Trichocorixa sexcinta 136 9.8 Apocorophium Iouisianum 142 11.2 Tanytarsus sp. 130 10.9 Gammanis tigrinus 88 12.3 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - Y 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total W CeW not monitored - - not monitored - - not monitored - - not monitored - - Apocorophium sp. 285 18.9 Apocorophium sp. 220 21.5 Littoridinops sp. 203 16.4 Apocorophium sp. 274 12.8 U i_W- - - - - - - - - - - - Littoridinops sp. 201 13.3 Hargeria rapax 174 17.0 Apocorophium sp. 176 14.2 Chironomus decorus 272 12.7 CO y - - - - - - - - - - - - Hargeria rapax 198 13.1 Americamysis almyra 138 13.5 Chironomus decorus 174 14.1 Littoridinops tenuipes 232 10.8 CO Z - _ _ _ _ _ _ _ _ _ - - Chironomus decorus 184 12.2 Apocorophium Iouisianum 134 13.1 Hargeria rapax 151 12.2 Hargeria rapax 224 10.4 U p 2015 2016 2017 2018 2019 2020 p Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Apocorophium sp. 300 20.0 Apocorophium sp. 300 18.8 Gammanis tigrinus 300 21.3 Apocorophium sp. 300 13.6 Littoridinops sp. 300 21.1 Hargeria rapax 193 21.3 Littoridinops sp. 300 20.0 Littoridinops sp. 284 17.8 Apocorophium sp. 274 19.4 Gammanis tigrinus 300 13.6 Apocorophium sp. 233 16.4 Gammarus mucronatus 150 16.6 Gammanis tigrinus 243 16.2 Gammanis tigrinus 168 10.5 Littoridinops sp. 241 17.1 Littoridinops sp. 284 12.9 Goeldichironomus devineyae 204 14.4 Littoridinops tenuipes 150 16.6 Rhithropanopeus harrisii 108 7.2 Corixidae sp. 125 7.8 Corixidae sp. 126 8.9 Chironomus decorus 252 11.5 Gammanis tigrinus 139 9.8 Gammanis tigrinus 139 15.4 III-G-79 Table III-G2 (continued). 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Cta not monitored - - not monitored - - not monitored - - not monitored - - Apedilum sp. 300 15.6 Apedilum sp. 300 20.0 Littoridinops sp. 300 22.9 Littoridinops tenuipes 300 30.7 lL - - - - - - - - - - - - Littoridinops sp. 300 15.6 Littoridinops tenuipes 300 20.0 Goeldichironomus devineyae 240 18.3 Goeldichironomus devineyae 204 20.9 z ct 0 Apocorophium sp. 262 13.6 Goeldichironomus devineyae 239 15.9 Paranais litoralis 106 8.1 Chironomus decorus 153 15.7 0 f/) fV m Gammarus tigrinus 170 8.8 Apocorophium louisianum 205 13.7 Apedilum sp. 102 7.8 Apocorophium sp. 88 9.0 2015 2016 2017 2018 2019 2020 d Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Littoridinops sp. 300 16.9 Corixidae sp. 300 14.7 Littoridinops sp. 300 17.8 Littoridinops sp. 300 23.2 Littoridinops sp. 300 15.0 Littoridinops tenuipes 300 23.6 Apocorophium sp. 267 15.1 Littoridinops sp. 274 13.4 Corixidae sp. 300 17.8 Apocorophium sp. 216 16.7 Apocorophium sp. 224 11.2 Apocorophium sp. 259 20.4 Gammarus tigrinus 258 14.6 Apocorophium sp. 252 12.4 Apocorophium sp. 230 13.7 Apocorophium louisianum 172 13.3 Goeldichironomus devineyae 204 10.2 Corixidae sp. 234 18.4 Goeldichironomus devineyae 215 12.1 Gammarus tigrinus 236 11.6 Gammarus tigrinus 226 13.4 Goeldichironomus devineyae 172 13.3 Chironomus decorus 184 9.2 Gammarus tigrinus 142 11.2 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 J 2 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % CtW not monitored - - not monitored - - not monitored - - not monitored - - Littoridinops sp. 300 19.8 Littoridinops tenuipes 300 22.5 Littoridinops sp. 300 23.8 Littoridinops tenuipes 300 26.7 I- Ct - - - - - - - - - - - - Apocorophium sp. 242 16.0 Apocorophium sp. 292 21.9 Goeldichironomus devineyae 295 23.4 Goeldichironomus devineyae 236 21.0 Z I- 0 Goeldichironomus devineyae 206 13.6 Apedilum sp. 202 15.1 Apocorophium sp. 185 14.7 Apocorophium sp. 226 20.1 0 Z 0 Apedilum sp. 132 8.7 Goeldichironomus devineyae 196 14.7 Amphicteis floridus 132 10.5 Chironomus decorus 119 10.6 2015 2016 2017 2018 2019 2020 dfV p Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Apocorophium sp. 300 20.7 Littoridinops sp. 300 17.0 Littoridinops sp. 300 22.6 Apocorophium sp. 300 13.7 Apocorophium sp. 300 15.0 Littoridinops tenuipes 300 22.7 Goeldichironomus devineyae 300 20.7 Apocorophium sp. 266 15.0 Corixidae sp. 251 18.9 Chironomus decorus 300 13.7 Goeldichironomus devineyae 300 15.0 Corixidae sp. 241 18.3 Littoridinops sp. 300 20.7 Corixidae sp. 234 13.2 Apocorophium sp. 217 16.4 Gammarus tigrinus 296 13.6 Littoridinops sp. 300 15.0 Gammarus tigrinus 201 15.2 Gammarus tigrinus 132 9.1 Goeldichironomus devineyae 228 12.9 Gammarus tigrinus 155 11.7 Apocorophium louisianum 282 12.9 Apocorophium louisianum 284 14.2 Apocorophium sp. 200 15.2 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Y uJ not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 W Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Ct 0 not monitored - - not monitored - - not monitored - - not monitored - - Apedilum sp. 300 14.8 Goeldichironomus devineyae 300 29.2 Apocorophium sp. 282 16.9 Littoridinops tenuipes 300 24.8 W< ctiLl - - - - - - - - - - - - Littoridinops sp. Apocorophium sp. 300 278 14.8 13.7 Littoridinops tenuipes Apocorophium sp. 300 142 29.2 13.8 Goeldichironomus devineyae Littoridinops sp. 269 258 16.1 15.4 Chironomus decorus Goeldichironomus devineyae 244 223 20.1 18.4 - - - - - - - - - - - Gammarus tigrinus 199 9.8 Apocorophium louisianum 56 5.5 Apocorophium louisianum 230 13.8 Apocorophium sp. 131 10.8 d Y 0- 2015 2016 2017 2018 2019 2020 Z_ Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % cT Gammarus tigrinus 300 22.8 Apocorophium sp. 300 18.1 Gammarus tigrinus 300 20.2 Apocorophium sp. 300 16.9 Gammarus tigrinus 207 34.7 Apocorophium sp. 255 29.0 Cl Littoridinops sp. 300 22.8 Gammarus tigrinus 300 18.1 Apocorophium sp. 295 19.9 Apocorophium louisianum 284 16.0 Littoridinops sp. 62 10.4 Littoridinops tenuipes 225 25.5 Apocorophium sp. 262 19.9 Littoridinops sp. 266 16.0 Littoridinops sp. 226 15.2 Gammarus tigrinus 254 14.3 Cassidinidea lunifrons 54 9.1 Corixidae sp. 110 12.5 Amphicteis floridus 96 7.3 Amphicteis floridus 136 8.2 Apocorophium louisianum 183 12.3 Chironomus decorus 228 12.8 Goeldichironomus devineyae 41 6.9 Gammarus tigrinus 76 8.6 I. I I 1 DRINKWATER CREEK DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - Hargeria rapax 300 22.5 Hargeria rapax 180 18.3 Hargeria rapax 216 17.3 Littoridinops tenuipes 245 19.1 - - - - - - - - - Apocorophium sp. 150 11.3 Americamysis almyra 172 17.5 Apocorophium sp. 190 15.2 Apocorophium sp. 193 15.0 Littoridinops sp. 146 11.0 Littoridinops tenuipes 132 13.5 Littoridinops sp. 149 12.0 Gammarus mucronatus 164 12.8 Gammarus tigrinus 137 10.3 Chironomus decorus 111 11.3 Nematoda sp. 120 9.6 Hargeria rapax 150 11.7 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Littoridinops sp. 300 18.1 Littoridinops sp. 300 21.3 Littoridinops sp. 300 22.4 Gammarus tigrinus 249 16.5 Littoridinops sp. 300 33.9 Littoridinops tenuipes 230 23.0 Apocorophium sp. 244 14.8 Gammarus tigrinus 295 21.0 Gammarus tigrinus 276 20.6 Hargeria rapax 206 13.6 Apocorophium sp. 216 24.4 Hargeria rapax 205 20.5 Gammarus tigrinus 218 13.2 Apocorophium sp. 228 16.2 Apocorophium sp. 215 16.1 Littoridinops sp. 204 13.5 Gammarus tigrinus 147 16.6 Corixidae sp. 147 14.7 Hargeria rapax 207 12.5 Hargeria rapax 142 10.1 Apocorophium lacustre 174 13.0 Apocorophium sp. 193 12.8 Goeldichironomus devineyae 63 7.1 Goeldichironomus devineyae 103 10.3 III-G-80 Table III-G2 (continued). LITTLE CREEK (CONTROL) UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - Littoridinops sp. Tanytarsus sp. Gammarus tigrinus Amphicteis floridus 300 166 127 122 26.1 14.5 11.1 10.6 Enchytraeidae sp. Tanytarsus sp. Dasyhelea sp. Goeldichironomus devineyae 248 185 160 121 20.3 15.2 13.1 9.9 Gammarus tigrinus Littoridinops sp. Tanytarsus sp. Cyprideis Iittoralis 300 300 216 201 15.0 15.0 10.8 10.0 Gammarus tigrinus Littoridinops tenuipes Chironomus deconis Physidae sp. (physa/physella) 300 285 170 124 25.1 23.8 14.2 10.4 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Gammarus tigrinus Cyprideis Iittoralis Naididae sp. w/o hair Littoridinops sp. 300 250 160 59 31.2 26.0 16.6 6.1 Gammarus tigrinus Cyprideis Iittoralis Tanytarsus sp. Amphicteis f/oridus 300 274 62 59 29.5 26.9 6.1 5.8 Gammarus tigrinus Cyprideis Iittoralis Chironomus decorus Littoridinops sp. 300 291 163 120 23.5 22.8 12.7 9.4 Gammarus tigrinus Cyprideis Iittoralis Mytilopsis Ieucophaeata Naididae sp. w/o hair 300 241 100 56 29.1 23.4 9.7 5.4 Gammarus tigrinus Corixidae sp. Cyprideis Iittoralis Mytilopsis /eucophaeata 300 234 154 104 24.9 19.4 12.8 8.6 Cyptideis Iittoralis Gammarus tigrinus Americamysis almyra Littoridinops tenuipes 300 300 73 62 34.1 34.1 8.3 7.0 -IDominant 0 Ce I- Z Q 0 w `-' WH j- Ce U 0 w p J I- J 1998 1999 2000 2001 2002 2003 2004 2005 Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - Apocorophium sp. Littoridinops sp. Palaemonetes pugio Apocorophium louisianum 220 152 116 115 16.1 11.2 8.5 8.5 Palaemonetes pugio Apocorophium sp. Littoridinops tenuipes Hargeria rapax 184 168 122 70 21.8 19.9 14.5 8.3 Nematoda sp. Apedilum sp. Apocorophium sp. Hargeria rapax 209 208 130 113 18.1 18.1 11.3 9.8 Littoridinops tenuipes Apocorophium sp. Chironomus decorus Hargeria rapax 300 179 118 67 30.0 17.8 11.7 6.7 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Apocorophium sp. Littoridinops sp.300 psp. Gammarus tigrinus Rhithropanopeus harrisii 300 223 141 24.1 24.1 17.9 11.3 Littoridinops sp. Apocorophium Corixidae sp. Gammarus tigrinus 300 261 187 162 22.7 19.7g 14.1 12.2 Littoridinops sp. Cyptideis littoralis Gammarus tigrinus Apocorophium sp. 300 232 196 189 20.0 15.4 13.0 12.6 Littoridinops sp. Gammarus tigrinus Apocorophium sp. Palaemonetes pugio 192 155 77 47 34.0 27.5 13.7 8.3 Littoridinops sp. Gammarus tigrinus g Goeldichironomus devineyae Palaemonetes pugio 251 90 52 50 41.1 14.7 8.5 8.2 Littoridinops tenuipes Apocorophium sp. Gammarus tigrinus Tanytarsus sp. 300 288 244 131 21.0 20.1 17.1 9.2 JIMIL ilk -IDominant 0 Ce Z 0 Q U W Y Ce wCr) cc 11 U 0Dominant Z 0 J 1998 1999 2000 2001 2002 2003 2004 2005 Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - - - - not monitored - - - - - - - - not monitored - - - - - - - - not monitored - - - - - - - - Littoridinops sp. Chironomus decorus Apocorophium sp. Apedilum sp. 300 242 178 156 18.9 15.2 11.2 9.8 Littoridinops tenuipes Apocorophium louisianum Apocorophium sp. Chironomus decorus 220 202 74 54 29.7 27.3 1.0 7.3 Goeldichironomus devineyae Littoridinops sp. Chironomus decorus Amphicteis floridus 252 212 204 68 25.9 21.8 20.9 7.0 Chironomus deconis Gammarus mucronatus Apocorophium sp. Amphicteis floridus 300 232 213 153 18.6 14.4 13.2 9.5 2015 2016 2017 2018 2019 2020 Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Apocorophium sp. Chironomus sp. Littoridinops sp. Tanytarsus sp. 300 300 300 300 12.9 12.9 12.9 12.9 Littoridinops sp. Gammarus tigrinus Apocorophium sp. Amphicteis f/oridus 300 268 210 128 19.5 17.4 13.6 8.3 Littoridinops sp. Gammarus tigrinus Apocorophium sp. Amphicteis f/oridus 300 300 202 132 20.8 20.8 14.0 9.1 Littoridinops sp. Gammarus tigrinus Apocorophium sp. Chironomus decorus 300 234 206 200 21.1 16.4 14.5 14.0 Corixidae sp. Littoridinops sp. Chironomus deconis Enallagma sp. 300 242 234 226 10.2 8.3 8.0 7.7 Gammarus tigrinus Littoridinops tenuipes Apocorophium sp. Uhlorchestia uhleri 76 53 32 32 30.4 21.2 12.8 12.8 LONG CREEK (CONTROL) DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - Apocorophium sp. Gammarus mucronatus Gammarus tigrinus Apocorophium Iacustre 226 190 117 45 25.3 21.3 13.1 5.0 Americamysis almyra Apocorophium sp. Apocorophium louisianum Nematoda sp. 214 195 120 120 19.2 17.5 10.8 10.8 Nematoda sp. Hargeria rapax Balanus improvisus Gammarus mucronatus 173 163 138 109 22.3 21.0 17.8 14.0 Gammarus mucronatus Apocorophium sp. Rhithropanopeus harrisii Hargeria rapax 241 215 186 162 17.8 15.9 13.7 12.0 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Gammarus mucronatus Apocorophium sp. Gammarus tigrinus Littoridinops sp. 236 212 172 148 17.8 16.0 13.0 11.1 Littoridinops sp. Americamysis almyra Apocorophium sp. Gammarus tigrinus 298 202 166 120 25.5 17.3 14.2 10.3 Apocorophium sp. Gammarus tigrinus Littoridinops sp. Gammarus mucronatus 300 300 300 276 19.2 19.2 19.2 17.6 Gammarus mucronatus Gammarus tigrinus Hargeria rapax Littoridinops sp. 257 245 126 124 26.8 25.5 13.1 12.9 Americamysis almyra Littoridinops sp. Apocorophium sp. Corixidae sp. 300 221 112 77 29.3 21.6 10.9 7.5 Gammarus tigrinus Gammarus mucronatus Balanus improvisus Apocorophium sp. 181 126 61 45 34.2 23.8 11.5 8.5 III-G-81 Table III-G2 (continued). TOOLEY CREEK UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Littoridinops sp. 300 16.6 Gammarus tigrinus 300 26.1 Littoridinops sp. 298 13.8 Littoridinops sp. 300 13.2 not monitored - - not monitored - - not monitored - - not monitored - - Gammarus tigrinus 226 12.5 Cassidinidea lunifrons 253 22.0 Chironomus decorus 282 13.1 Goeldichironomus devineyae 300 13.2 - - - - - - - - - - - - Amphicteis floridus 214 11.8 Littoridinops sp. 195 17.0 Amphicteis floridus 267 12.4 Tanytarsus sp. 1 300 13.2 - - - - - - - - - - - - Dicrotendipes sp. 181 10.0 Cyprideis littoralis 104 9.1 Gammarus tigrinus 224 10.4 Cyprideis littoralis 224 9.9 - - - - - - - - - - - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - Littoridinops sp. 240 26.1 Littoridinops sp. 300 18.9 Littoridinops tenuipes 300 26.3 Littoridinops sp. 268 16.4 Chironomus decorus 300 15.6 - - - - - - - - - Apocorophium sp. 189 20.6 Apocorophium sp. 202 12.7 Apocorophium sp. 197 17.3 Apocorophium louisianum 224 13.7 Littoridinops tenuipes 297 15.4 - - - - - - - - - Goeldichironomus devineyae 142 15.5 Chironomus decorus 183 11.5 Nematoda sp. 138 12.1 Apocorophium sp. 220 13.5 Apocorophium sp. 262 13.6 - - - - - - - - - Chironomus decorus 85 9.3 Apedilum sp. 164 10.3 Apocorophium louisianum 131 11.5 Goeldichironomus devineyae 204 12.5 Gammarus mucronatus 257 13.3 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Tanytarsus sp. 300 12.6 Apocorophium sp. 300 15.5 Apocorophium sp. 300 11.7 Littoridinops sp. 300 26.2 Littoridinops sp. 300 25.1 Littoridinops tenuipes 300 28.3 Hargena rapax 282 11.8 Littoridinops sp. 300 15.5 Gammarus tigrinus 300 11.7 Chironomus decorus 197 17.2 Apocorophium sp. 140 11.7 Apocorophium sp. 267 25.2 Littoridinops sp. 236 9.9 Gammarus tigrinus 233 12.0 Littoridinops sp. 300 11.7 Apocorophium sp. 191 16.7 Apocorophium louisianum 113 9.4 Gammarus tigrinus 100 9.4 Chironomus sp. 220 9.2 Apocorophium louisianum 220 11.4 Cyprideis littoralis 220 8.6 Hargena rapax 145 12.7 Gammarus tigrinus 93 7.8 Gammarus mucronatus 98 9.2 i 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Apocorophium lacustre 300 8.9 Gammarus tigrinus 300 18.6 Apocorophium lacustre 201 15.5 Gammarus tigrinus 216 13.5 not monitored - - not monitored - - not monitored - - not monitored - - Littoridinops sp. 300 8.9 Littoridinops sp. 296 18.4 Gammarus tigrinus 201 15.5 Littoridinops sp. 216 13.5 - - - - - - - - - - - - Gammarus tigrinus 300 8.9 Apocorophium lacustre 250 15.5 Littoridinops sp. 189 14.5 Hargena rapax 208 13.0 - - - - - - - - - - - - Y 2 Dicrotendipes sp. 300 8.9 Amphicteis floridus 232 14.4 Amphicteis floridus 145 11.2 Amphicteis floridus 141 8.8 - - - - - - - - - - - - III 4 2007 2008 2009 2010 2011 2012 2013 2014 W ceLij Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total 0 F not monitored - - not monitored - - not monitored - - Apocorophium sp. 300 29.9 Apocorophium sp. 239 22.0 Apocorophium sp. 203 18.3 Hargena rapax 224 24.1 Littoridinops tenuipes 250 17.7 W Z - - - - - - - - Hargena rapax 133 13.2 Hargena rapax 148 13.6 Americamysis almyra 173 15.5 Apocorophium sp. 105 11.3 Apocorophium sp. 241 17.1 0 0 0 - - - - - - - - - - - - - - - - - - Apocorophium louisianum Palaemonetes pugio 119 75 11.8 7.5 Apocorophium louisianum Littoridinops sp. 129 114 11.9 10.5 Littoridinops tenuipes Hargena rapax 158 155 14.2 14.0 Littoridinops sp. Nematoda sp. 77 71 8.3 7.7 Hargena rapax Gammarus mucronatus 228 224 16.2 15.9 I-0 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Apocorophium sp. 300 13.4 Littoridinops sp. 300 25.0 Littoridinops sp. 300 22.9 Gammarus tigrinus 213 19.9 Littoridinops sp. 300 21.2 Hargena rapax 90 28.0 Gammarus tigrinus 300 13.4 Gammarus tigrinus 256 21.3 Gammarus tigrinus 267 20.4 Littoridinops sp. 195 18.2 Apocorophium sp. 247 17.4 Littoridinops tenuipes 73 22.7 Littoridinops sp. 300 13.4 Apocorophium sp. 208 17.3 Apocorophium sp. 229 17.5 Hargena rapax 164 15.3 Gammarus tigrinus 164 11.6 Gammarus tigrinus 69 21.5 Hargena rapax 275 12.3 Tanytarsus sp. 77 6.4 Apocorophium lacustre 115 8.8 Gammarus mucronatus 105 9.8 Apocorophium louisianum 124 8.8 Apocorophium sp. 49 15.3 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Gammarus tigrinus 300 11.9 Gammarus tigrinus 300 22.5 Chironomus decorus 260 13.2 Littoridinops sp. 264 16.2 Littoridinops sp. 300 20.0 Goeldichironomus devineyae 239 28.8 Littoridinops sp. 275 30.8 Gammarus tigrinus 268 17.9 0 0 Amphicteis floridus 292 11.6 Littoridinops sp. 300 22.5 Littoridinops sp. 246 12.5 Gammarus tigrinus 247 15.1 Apedilum sp. 258 17.2 Littoridinops sp. 229 27.6 Gammarus tigrinus 114 12.8 Apocorophium sp. 259 17.3 W Apocorophium lacustre 288 11.4 Amphicteis floridus 191 14.3 Amphicteis floridus 208 10.6 Corixidae sp. 225 13.8 Goeldichironomus devineyae 230 15.3 Chironomus decorus 176 21.1 Apocorophium sp. 98 11.0 Littoridinops sp. 256 17.1 Z Littoridinops sp. 256 10.2 Corixidae sp. 106 7.9 Gammarus tigrinus 201 10.2 Amphicteis floridus 218 13.4 Enchytraeidae sp. 119 7.9 Gammarus tigrinus 45 5.4 Amphicteis floridus 51 5.7 Amphicteis floridus 185 12.4 0 2 2007 2008 2009 2010 2011 2012 2013 2014 U Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total W4 Y ce Chironomus decorus 300 14.1 Apedilum sp. 141 16.0 Goeldichironomus devineyae 248 25.6 Goeldichironomus devineyae 240 19.6 Goeldichironomus devineyae 300 12.7 Littoridinops tenuipes 184 30.6 Goeldichironomus devineyae 300 20.5 Littoridinops tenuipes 272 20.6 W 1- W N Littoridinops sp. 300 14.1 Littoridinops sp. 120 13.6 Littoridinops sp. 190 19.6 Apocorophium sp. 233 19.0 Apocorophium sp. 300 12.7 Apocorophium louisianum 102 16.9 Littoridinops sp. 300 20.5 Chironomus decorus 224 17.0 W d Apocorophium lacustre 300 14.1 Goeldichironomus devineyae 119 13.5 Naididae sp. 118 12.2 Palaemonetes pugio 131 10.7 Chironomus decorus 300 12.7 Palaemonetes pugio 76 12.6 Chironomus decorus 150 10.2 Apocorophium sp. 168 12.7 0 7 r Cl Gammarus tigrinus 283 13.3 Glyptotendipes sp. 80 9.1 Apocorophium sp. 111 11.4 Chironomus decorus 119 9.7 Littoridinops sp. 230 9.7 Goeldichironomus devineyae 64 10.6 Gammarus tigrinus 107 7.3 Parachironomus sp. 132 10.0 2015 2016 2017 2018 2019 2020 Cl Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total 7 Littoridinops sp. 300 15.8 Apocorophium sp. 290 23.7 Apocorophium sp. 300 17.2 Apocorophium sp. 300 15.3 Littoridinops sp. 144 11.6 Gammarus tigrinus 300 19.8 Apocorophium sp. 256 13.5 Littoridinops sp. 254 20.8 Gammarus tigrinus 300 17.2 Gammarus tigrinus 300 15.3 Candonidae sp. 140 11.3 Apocorophium sp. 258 17.0 Tanytarsus sp. 252 13.3 Gammarus tigrinus 216 17.7 Littoridinops sp. 236 13.5 Littoridinops sp. 300 15.3 Gammarus tigrinus 132 10.6 Apocorophium louisianum 199 13.1 Chironomus sp. 240 12.6 Apocorophium lacustre 114 9.3 Amphicteis floridus 134 7.7 Chironomus decorus 233 11.9 Apocorophium sp. 98 7.9 Littoridinops tenuipes 182 12.0 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Gammarus tigrinus 300 9.8 Gammarus tigrinus 300 26.5 Apocorophium lacustre 231 19.5 Littoridinops sp. 232 10.0 Apedilum sp. 228 27.5 Chironomus decorus 209 26.8 Littoridinops sp. 300 17.4 Apocorophium sp. 300 16.0 Amphicteis floridus 300 9.8 Littoridinops sp. 300 26.5 Gammarus tigrinus 206 17.4 Cncotopus/Orthocladius sp. 41 218 9.4 Littoridinops sp. 223 26.9 Gammarus tigrinus 148 19.0 Tanytarsus sp. 236 13.7 Gammarus tigrinus 300 16.0 0 0 d' Apocorophium lacustre 265 8.7 Apocorophium lacustre 225 19.9 Amphicteis floridus 155 13.1 Hargena rapax 210 9.1 Hargena rapax 69 8.3 Littoridinops sp. 110 14.1 Gammarus tigrinus 204 11.8 Littoridinops sp. 265 14.2 Z 2 Littoridinops sp. 239 7.8 Cyrenoida floridana 100 8.8 Littoridinops sp. 135 11.4 Gammarus tigrinus 205 8.9 Goeldichironomus devineyae 53 6.4 Apocorophium sp. 100 12.8 Apocorophium sp. 197 11.4 Cricotopus sp. 184 9.8 0 4 2007 2008 2009 2010 2011 2012 2013 2014 U W Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Y F Apocorophium lacustre 300 28.1 Apedilum sp. 152 21.3 Gammarus mucronatus 174 23.1 Apocorophium sp. 281 16.8 Apocorophium sp. 300 15.0 Palaemonetes pugio 142 26.7 Goeldichironomus devineyae 266 18.5 Gammarus mucronatus 300 15.5 W W Z Hargena rapax 214 20.0 Naididae sp. w/o hair 77 10.8 Nematoda sp. 128 17.0 Apocorophium louisianum 176 10.5 Gammarus mucronatus 262 13.1 Littoridinops tenuipes 140 26.3 Littoridinops sp. 198 13.8 Littoridinops tenuipes 300 15.5 d' ? Gammarus tigrinus 158 14.8 Goeldichironomus devineyae 75 10.5 Hargena rapax 111 14.8 Gammarus tigrinus 174 10.4 Hargena rapax 208 1.4 Apocorophium sp. 104 19.5 Chironomus decorus 190 13.2 Chironomus decorus 300 15.5 0 0 Littoridinops sp. 110 10.3 Palaeomonetes pugio 72 10.1 Palaemonetes pugio 62 8.2 Hargena rapax 165 9.9 Goeldichironomus devineyae 182 9.1 Apocorophium louisianum 28 5.3 Gammarus mucronatus 140 9.7 Goeldichironomus devineyae 237 12.2 Cl 2015 2016 2017 2018 2019 2020 ClCl Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total 2 Apocorophium sp. 300 16.4 Apocorophium sp. 300 16.0 Gammarus tigrinus 300 16.9 Gammarus tigrinus 300 21.0 Apocorophium sp. 300 20.4 Gammarus tigrinus 276 35.2 Littoridinops sp. 300 16.4 Gammarus tigrinus 300 16.0 Littoridinops sp. 300 16.9 Littoridinops sp. 300 21.0 Littoridinops sp. 300 20.4 Littoridinops tenuipes 242 30.9 Gammarus tigrinus 240 7.9 Littoridinops sp. 298 15.9 Apocorophium sp. 194 10.9 Apocorophium sp. 295 20.6 Apocorophium louisianum 205 14.0 Apocorophium sp. 66 8.4 Gammarus mucronatus 145 7.5 Apocorophium louisianum 254 13.6 Tanytarsus sp. 132 7.4 Apocorophium louisianum 150 10.5 Gammarus tigrinus 190 12.9 Corixidae sp. 42 5.4 III-G-82 Table III-G2 (continued). HUDDLES CUT UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - Gammarus tigrinus 292 28.1 Littoridinops sp. 147 40.2 Cyprideis littoralis 247 24.8 not monitored - - not monitored - - not monitored - - not monitored - - - - - Littoridinops sp. 241 23.2 Palaeomonetes pugio 68 18.6 Littoridinops sp. 208 20.9 - - - - - - - - - - - - - - - Palaeomonetes pugio 211 20.3 Naididae sp. 47 12.8 Naididae sp. 144 14.5 - - - - - - - - - - - - - - - Amphicteis floridus 108 10.4 Cyprideis littoralis 30 8.2 Palaeomonetes pugio 130 13.1 - - - - - - - - - - - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Cyprideis littoralis 267 40.5 Palaeomonetes pugio 227 48.7 Palaemonetes pugio 133 50.0 Apocorophium sp. 176 26.0 Cyprideis littoralis 292 46.0 Palaemonetes pugio 111 40.8 Cyprideis littoralis 114 31.7 Palaemonetes pugio 191 39.0 Littoridinops sp. 162 24.5 Cyprideis littoralis 117 25.1 Cyprideis littoralis 43 16.2 Chironomus decorus 147 21.7 Palaemonetes pugio 149 23.5 Cyprideis littoralis 43 15.8 Amphicteis floridus 43 11.9 Cyprideis littoralis 59 12.0 Palaeomonetes pugio 102 15.5 Gammarus tigrinus 24 5.2 Naididae sp. 18 6.8 Amphicteis floridus 136 20.1 Amphicteis floridus 40 6.3 IVvdiomastus ambiseta 23 8.5 Palaemonetes pugio 30 8.3 Chironomus decorus 49 10.0 Naididae sp. w/o hair 31 4.7 Amphicteis floridus 24 5.2 Apocorophium sp. 11 4.1 Palaemonetes pugio 79 11.7 Apocorophium sp. 32 5.0 Streblospio benedicti 14 5.1 Goeldichironomus devineyae 25 6.9 Goeldichironomus devineyae 31 6.3 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Littoridinops sp. 247 22.3 Cyprideis littoralis 300 18.2 Cyprideis littoralis 300 34.8 Cyprideis littoralis 116 17.3 Littoridinops sp. 221 24.7 Paleomonetes pugio 228 60.0 Tanytarsus sp. 216 19.5 Tubificoides heterochaetus 237 14.4 Littoridinops sp. 183 21.2 Palaemonetes pugio 79 11.8 Palaemonetes pugio 144 16.1 lubdiomastus ambiseta 31 8.2 Cyprideis littoralis 200 18.0 Palaemonetes pugio 186 11.3 Apocorophium sp. 110 12.8 Apocorophium sp. 78 11.6 Cyprideis littoralis 121 13.5 Tubificoides heterochaetus 27 7.1 Amphicteis floridus 109 9.8 Tanytarsus sp. 179 10.9 Palaemonetes pugio 67 7.8 Littoridinops sp. 63 9.4 Chironomus decorus 94 10.5 Streblospio benedicti 23 6.1 HUDDLES CUT DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - Littoridinops sp. 68 26.6 Palaeomonetes pugio 128 24.3 Littoridinops sp. 80 40.2 not monitored - - not monitored - - not monitored - - not monitored - - - - - Gammarus tigrinus 59 23.0 Apocorophium lacustre 123 23.3 Amphicteis floridus 29 14.6 - - - - - - - - - - - - - - - Amphicteis floridus 20 7.8 Shrimp zoea 70 13.3 Apocorophium lacustre 26 13.1 - - - - - - - - - - - - - - - Edotia montosa 17 6.6 Gammarus tigrinus 59 11.2 Naididae sp. 10 5.0 - - - - - - - - - - - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Gammarus tigrinus 173 41.0 Polyriora comuta 117 29.4 Gammarus tigrinus 105 36.1 Apocorophium sp. 114 60.3 Palaemonetes pugio 33 44.0 Palaemonetes pugio 166 41.2 Gammarus tigrinus 262 52.2 Gammarus tigrinus 251 67.0 Palaeomonetes pugio 89 21.1 Gammarus tigrinus 75 18.8 Palaemonetes pugio 51 17.5 Gammarus tigrinus 25 13.2 Gammarus tigrinus 16 21.3 Gammarus mucronatus 77 19.1 Gammarus mucronatus 138 27.5 Palaemonetes pugio 28 7.5 Apocorophium lacustre 62 14.7 Palaeomonetes pugio 62 15.6 Gammarus mucronatus 38 13.1 Palaemonetes pugio 19 10.1 Apocorophium sp. 7 9.3 Neanthes succinea 59 14.6 Palaemonetes pugio 64 12.7 Goeldichironomus devineyae 22 5.9 Rhithropanopeus hanisii 14 3.3 Neanthes succinea 35 8.8 Mjlinia lateralis 19 6.5 Apocorophium lacustre 16 8.4 Nematoda sp. 6 8.0 Gammarus tigrinus 27 6.7 Balanus improvisus 10 2.0 Apocorophium sp. 12 3.2 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Gammarus tigrinus 206 45.9 Gammarus tigrinus 300 44.2 Gammarus tigrinus 214 20.2 Gammarus tigrinus 300 49.8 Palaeomonetes pugio 150 49.3 Gammarus tigrinus 270 53.4 Apocorophium sp. 83 18.5 Apocorophium sp. 107 15.8 Apocorophium sp. 213 20.2 Balanus improvisus 91 15.1 Gammarus tigrinus 109 35.9 Paleomonetes pugio 135 26.7 Littoridinops sp. 63 14.0 Palaeomonetes pugio 104 15.3 Apocorophium lacustre 146 13.8 Gammarus mucronatus 83 13.8 Littoridinops sp. 18 5.9 Lepidactylus dytiscus 30 5.9 Palaeomonetes pugio 48 10.7 Apocorophium lacustre 38 5.6 Littondinops sp. 131 12.4 Palaeomonetes pugio 41 6.8 Chironomus decorus 4 1.3 Gammarus mucronatus 23 4.5 T T T PORTER CREEK UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - Apocorophium sp. 300 12.9 Gammarus tigrinus 300 10.7 Gammarus tigrinus 300 21.8 Gammarus tigrinus 300 16.1 - - - - - - - - - - - - Gammarus tigrinus 300 12.9 Candonidae sp. 300 10.7 Littoridinops sp. 300 21.8 Littoridinops tenuipes 261 14.0 - - - - - - - - - - - - Littoridinops sp. 252 10.9 Littoridinops tenuipes 294 10.5 Apocorophium sp. 250 18.2 Amphicteis floridus 242 13.0 - - - - - - - - - - - - Dicrotendipes nervosus 204 8.8 Corixidae sp. 290 10.3 Amphicteis floridus 139 10.1 Cyprideis littoralis 215 12.0 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Gammarus tigrinus 300 24.8 Gammarus tigrinus 300 39.2 Gammarus tigrinus 300 28.8 Gammarus tigrinus 300 30.1 Littoridinops sp. 249 20.9 Apocorophium sp. 300 19.0 Cyprideis littoralis 292 24.2 Cyprideis littoralis 130 17.0 Littoridinops sp. 258 24.8 Littoridinops sp. 183 18.4 Gammarus tigrinus 184 15.4 Gammarus tigrinus 300 19.0 Amphicteis floridus 236 19.5 Americamysis almyra 105 13.7 Cyprideis littoralis 162 15.6 Apocorophium lacustre 129 13.0 Naididae sp. w/o hair 152 12.7 Littoridinops tenuipes 300 19.0 Cyathura polita 132 10.9 Amphicteis floridus 59 7.7 Amphicteis floridus 91 8.8 Cyprideis littoralis 112 11.2 Cyprideis littoralis 109 9.1 Apocorophium louisianum 202 12.8 L PORTER CREEK DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - Apocorophium lacustre 300 16.8 Littoridinops tenuipes 238 35.8 Hargeria rapax 300 23.4 Apocorophium sp. 300 19.0 - - - - - - - - - - - - Gammarus tigrinus 300 16.8 Apedilum sp. 88 13.2 Gammarus tigrinus 298 23.2 Hargeria rapax 254 16.1 - - - - - - - - - - - - Apocorophium louisianum 202 11.3 Hargeria rapax 73 11.0 Apocorophium sp. 153 11.9 Gammarus mucronatus 228 14.4 - - - - - - - - - - - - Littoridinops sp. 178 10.0 Apocorophium louisianum 51 7.7 Gammarus mucronatus 152 11.8 Littoridinops tenuipes 220 13.9 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Gammarus tigrinus 300 28.1 Gammarus tigrinus 300 35.5 Apocorophium sp. 300 25.1 Gammarus tigrinus 300 28.1 Littoridinops sp. 250 33.4 Gammarus tigrinus 252 23.0 Americamysis almyra 171 16.0 Apocorophium sp. 212 25.1 Gammarus tigrinus 300 25.1 Littoridinops sp. 242 22.7 Gammarus tigrinus 122 16.3 Apocorophium sp. 232 21.2 Littoridinops sp. 153 14.3 Littoridinops sp. 174 20.6 Apocorophium lacustre 242 20.3 Gammarus mucronatus 120 11.2 Apocorophium sp. 107 14.3 Hargeria rapax 197 18.0 Palaeomonetes pugio 78 7.3 Apocorophium lacustre 76 9.0 Littoridinops sp. 224 18.8 Apocorophium sp. 100 9.4 Cassidinidea lunifrons 93 12.4 Littoridinops tenuipes 160 14.6 III-G-83 Table III-G2 (continued). DCUT11 UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - Gammarus tigrinus Littoridinops sp. Amphicteis floridus Berosus sp. 300 300 238 181 21.2 21.2 16.8 12.8 Gammarus tigrinus Littoridinops tenuipes Cyprideis Iittoralis Dicrotendipes nervosus 300 300 223 156 17.2 17.2 12.8 9.0 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Cyprideis Iittoralis Gammarus tigrinus Littoridinops sp. Dicrotendipes nervosus 300 300 300 166 17.1 17.1 17.1 9.5 Gammarus tigrinus Littoridinops sp. Tanytarsus sp. Cyprideis Iittoralis 292 208 108 88 29.0 20.6 10.7 8.7 Cyprideis Iittoralis Gammarus tigrinus Littoridinops sp. Cassidinidea Iunifrons 300 300 300 82 26.7 26.7 26.7 7.3 Cyprideis Iittoralis Gammarus tigrinus Littoridinops sp. Amphicteis fioridus 300 300 300 218 19.3 19.3 19.3 14.0 Dicrotendipes nervosus Dero sp. Gammarus tigrinus Tanytarsus sp. 132 67 67 63 21.5 10.9 10.9 10.3 Apocorophium sp. Gammarus tigrinus Littoridinops tenuipes Cyprideis Iittoralis 300 300 300 244 17.9 17.9 17.9 14.5 QDominant W H- M Cl) U j CI O 0 CeDominant z Q 0 W U Ce a) V) H 0- M U 0 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - - - not monitored - - - - - - - - not monitored - - - - - - - - not monitored - - - - - - - - not monitored - - - - - - - - not monitored - - - - - - - - Apocorophium Iacustre Gammarus tigrinus Littoridinops sp. Apocorophium sp. 300 300 300 292 15.2 15.2 15.2 14.8 Gammarus tigrinus Littoridinops tenuipes Tanytarsus sp. Cyprideis Iittoralis 300 300 268 217 15.9 15.9 14.2 11.5 2015 2016 2017 2018 2019 2020 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Cyprideis Iittoralis Dicrotendipes nervosus Gammarus tigrinus Littoridinops sp. 1998 300 300 300 300 13.6 13.6 13.6 13.6 Gammarus tigrinus Littoridinops sp. Cyprideis Iittoralis Tanytarsus sp. 1999 272 181 176 134 20.9 13.9 13.5 10.3 Cyprideis Iittoralis Littoridinops sp. Gammarus tigrinus Tanytarsus sp. 2000 300 300 278 106 24.1 24.1 22.3 8.5 Cyprideis Iittoralis Gammarus tigrinus Littoridinops sp. Tanytarsus sp. 2001 300 300 300 164 22.2 22.2 22.2 12.2 Dicrotendipes nervosus Littoridinops sp. Gammarus tigrinus Tanytarsus sp. 2002 194 147 145 91 22.4 17.0 16.7 10.5 Littoridinops tenuipes Tanytarsus sp. Gammarus tigrinus Apocorophium sp. 2003 300 300 284 230 15.8 15.8 15.0 12.1 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - - - - not monitored - - - - - - - - not monitored - - - - - - - not monitored - - - - - - - - not monitored - - - - - - - - not monitored - - - - - - - - Littoridinops sp. Gammarus tigrinus Amphicteis floridus Chironomus decorus 300 142 139 132 23.7 11.2 11.0 10.4 Littoridinops tenuipes Apocorophium sp. Nematoda sp. Amphicteis floridus 300 250 197 187 15.0 12.4 9.8 9.3 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Littoridinops sp. Tanytarsus sp. Gammarus tigrinus Cyprideis Iittoralis 266 107 92 86 32.3 13.0 11.2 10.4 Cyprideis Iittoralis Littoridinops sp. Tanytarsus sp. Goeldichironomus devineyae 300 280 276 95 21.1 19.7 19.5 6.7 Cyprideis Iittoralis Littoridinops sp. Gammarus tigrinus Amphicteis fioridus 300 300 250 122 18.3 18.3 15.3 7.5 Apocorophium sp. Littoridinops sp. Gammarus tigrinus Candonidae sp. 300 300 227 180 21.6 21.6 16.3 12.9 Tanytarsus sp. Littoridinops sp. Dero sp. Dicrotendipes nervosus 274 258 190 108 24.7 23.3 17.1 9.7 Apocorophium sp. Littoridinops tenuipes Berosus sp. Apocorophium Iouisianum 300 300 165 105 26.0 26.0 14.3 9.1 a DCUT19 (CONTROL) DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - Littoridinops sp. Gammarus tigrinus Hargeria rapax Nematoda sp. 251 232 222 208 10.2 9.4 9.0 8.4 Littoridinops tenuipes Hargeria rapax Apocorophium sp. Goeldichironomus devineyae 300 287 215 215 12.3 11.8 8.8 8.8 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Littoridinops sp. Tanytarsus sp. Cyprideis Iittoralis Gammarus tigrinus 300 300 236 221 13.1 13.1 10.3 9.6 Littoridinops sp. Gammarus tigrinus Cyprideis Iittoralis Tanytarsus sp. 300 199 156 141 18.1 12.0 9.4 8.5 Gammarus tigrinus Littoridinops sp. Cyprideis Iittoralis Tanytarsus sp. 300 300 293 205 17.0 17.0 16.6 11.6 Gammarus tigrinus Littoridinops sp. Apocorophium sp. Hargeria rapax 300 252 223 66 25.3 21.3 18.8 5.6 Littoridinops sp. Gammarus tigrinus Tanytarsus sp. Dicrotendipes nervosus 300 214 127 117 25.7 18.4 10.9 10.0 Apocorophium sp. Littoridinops tenuipes Gammarus tigrinus Hargeria rapax 300 300 286 218 18.1 18.1 17.2 13.1 III-G-84 Table III-G2 (concluded). DUCK CREEK (CONTROL) UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - Gammarus tigrinus 164 17.4 Littoridinops tenuipes 252 22.0 Littoridinops sp. 225 35.9 Littoridinops tenuipes 300 19.4 - - - - - - - - - - - - Littoridinops sp. 123 13.1 Tanytarsus sp. 217 19.0 Cyprideis Iittoralis 79 12.6 Gammanis tigrinus 300 19.4 - - - - - - - - - - - - Dicrotendipes nervosus 119 12.6 Cyprideis Iittoralis 179 15.6 Tanytarsus sp. 77 12.2 Chironomus decorus 300 19.4 - - - - - - - - - - - - Tanytarsus sp. 96 10.2 Gammarus tigrinus 153 13.4 Gammarus tigrinus 67 10.7 Tanytarsus sp. 203 13.2 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dicrotendipes nervosus 300 15.3 Gammarus tigrinus 300 17.6 Gammarus tigrinus 300 20.3 Gammanis tigrinus 300 20.7 Dero sp. 269 15.8 Cyprideis Iittoralis 300 31.1 Gammarus tigrinus 300 15.3 Littoridinops sp. 300 17.6 Cyprideis Iittoralis 255 17.3 Paranais litoralis 272 18.8 Pristina sp. 233 13.7 Littoridinops tenuipes 300 31.1 Tanytarsus sp. 300 15.3 Naididae sp. w/o hair 300 17.6 Littoridinops sp. 195 13.2 Cyprideis Iittoralis 251 17.3 Gammarus tigrinus 186 10.9 Gammanis tigrinus 211 21.8 Cyprideis Iittoralis 240 12.3 Cyprideis Iittoralis 234 13.7 Naididae sp. w/o hair 168 11.4 Littoridinops sp. 194 13.4 Kiefferulus sp. 162 9.5 Amphicteis f/oridus 31 3.2 DUCK CREEK (CONTROL) DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - Apocorophium sp. 300 14.5 Littoridinops tenuipes 300 27.7 Gammanis tigrinus 300 21.5 Gammanis tigrinus 300 13.8 - - - - - - - - - - - - Apocorophium Iacustre 290 14.0 Hargeria rapax 209 19.3 Hargeria rapax 285 20.4 Hargeria rapax 300 13.8 - - - - - - - - - - - - Hargeria rapax 274 13.3 Apocorophium sp. 107 9.9 Littoridinops sp. 240 17.2 Apocorophium sp. 290 13.4 - - - - - - - - - - - - Gammarus tigrinus 236 11.4 Apedilum sp. 91 8.4 Gammanis mucronatus 139 9.9 Littoridinops tenuipes 227 10.5 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Gammarus tigrinus 290 24.3 Gammarus tigrinus 300 25.5 Apocorophium sp. 300 22.8 Gammarus tigrinus 300 24.3 Gammarus tigrinus 300 33.7 Apocorophium sp. 290 35.8 Littoridinops sp. 263 22.1 Apocorophium Iacustre 217 18.5 Gammarus tigrinus 300 22.8 Littoridinops sp. 300 24.3 Littoridinops sp. 189 21.2 Gammarus tigrinus 177 21.9 Cyprideis Iittoralis 247 20.7 Apocorophium sp. 206 17.5 Littoridinops sp. 261 19.8 Hargeria rapax 122 9.9 Palaemonetes pugio 115 12.9 Littoridinops tenuipes 141 17.4 Dicrotendipes nervosus 75 6.3 Littoridinops sp. 159 13.5 Apocorophium Iacustre 237 18.0 Goeldichironomus devineyae 107 8.6 Amphicteis fioridus 64 7.2 Paleomonetes pugio 93 11.5 III-G-85 Table III-G3. Benthic macroinvertebrate community structure data for sweep samples collected at upstream and downstream stations in May of Mod Alt L years 1998-2005 and 2007-2020. A - indicates the creek was not monitored that year. Pre- and post -Mod Alt L collection years for impact creeks are separated by bold vertical lines. Benthic collection occurred in June for 2010. Summary pre- and post -Mod Alt L averages are shown in Table II-05 Station community structure data by year 1998 1999 2000 2001 2002 2003 2004 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 PA2 (CONTROL) JACOBS CREEK JACKS CREEK SCUT1 (CONTROL) BROOMFIELD SWAMP CREEK 0_ D Total abundance Total taxa Total taxa with sensitivity values EBIa - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 293 30 21 1.46 809 16 11 1.54 Total abundance - - - - - - - - - - - - - - - - - - - - 745 821 F) 0 Total taxa - - - - - - - - - - - - - - - - - - - - 41 17 o Total taxa with sensitivity values - - - - - - - - - - - - - - - - - - - - 28 14 EBIa - - - - - - - - - - - - - - - - - - - - 1.34 1.64 Total abundance - - - - - - - - - - - - - - - - - - - - 401 944 0_ Total taxa - - - - - - - - - - - - - - - - - - - - 28 20 D Total taxa with sensitivity values - - - - - - - - - - - - - - - - - - - - 21 12 EBIa - - - - - - - - - - - - - - - - - - - - 1.18 1.53 Total abundance - - - - - - - - - - - - - - - - - - - - 738 997 F) 0 Total taxa - - - - - - - - - - - - - - - - - - - - 35 18 o Total taxa with sensitivity values - - - - - - - - - - - - - - - - - - - - 25 15 EBIa - - - - - - - - - - - - - - - - - - - - 1.72 1.98 Total abundance 2,654 783 2,430 2,823 987 1,190 2,223 1,925 - - - - 3,529 865 1,771 1,090 1,587 1,603 1,311 2,144 2,480 1,647 0_ Total taxa 42 18 34 24 30 24 39 29 - - - - 35 19 29 33 30 35 33 30 37 27 D Total taxa with sensitivity values 34 13 27 19 25 19 34 25 - - - - 26 15 21 24 25 24 24 25 24 21 E Bla 1.78 1.97 1.74 1.86 1.75 1.72 1.90 1.99 - - - - 2.00 1.99 2.07 1.59 1.90 1.83 1.77 1.74 1.69 1.83 Total abundance 2,477 995 589 2,053 829 781 1,014 1,379 - - - - 2,016 808 880 1,599 1,565 1,551 766 1,136 2,189 1,334 F) 0 Total taxa 45 19 25 25 32 28 30 29 - - - - 33 26 27 33 31 31 24 32 33 23 o Total taxa with sensitivity values 35 16 22 23 28 24 27 25 - - - - 27 24 24 27 28 27 20 28 27 19 EBIa 1.77 2.05 1.77 1.85 1.93 2.04 2.19 2.05 - - - - 2.03 1.93 2.02 1.86 2.01 2.00 2.04 2.02 1.74 1.93 Total abundance - - - - - - - - - - - - 1,678 937 1,560 1,248 1,644 1,582 1,388 1,267 1,190 718 0_ Total taxa - - - - - - - - - - - - 32 19 24 28 26 34 25 21 32 24 D Total taxa with sensitivity values - - - - - - - - - - - - 25 16 18 19 20 23 22 17 25 20 EBIa - - - - - - - - - - - - 2.05 2.40 2.11 1.79 1.85 1.92 1.63 1.79 1.83 1.85 Total abundance - - - - - - - - - - - - 1,523 1,024 1,237 2,145 1,565 1,596 1,409 2,198 1,420 905 o 0 Total taxa - - - - - - - - - - - - 33 32 29 35 35 29 32 30 34 30 o Total taxa with sensitivity values - - - - - - - - - - - - 26 27 22 30 29 23 27 28 32 27 EBIa - - - - - - - - - - - - 2.10 2.06 2.05 1.86 2.01 1.98 1.80 1.91 1.91 1.98 Total abundance - - - - - - - - - - - - 1,916 1,504 1,312 977 1,789 2,040 1,684 1,292 2,004 1,270 0_ Total taxa - - - - - - - - - - - - 26 27 23 28 30 27 26 24 31 19 D Total taxa with sensitivity values - - - - - - - - - - - - 21 19 14 22 22 20 22 21 22 17 E Bla - - - - - - - - - - - - 2.09 2.23 2.02 1.71 1.81 1.72 1.81 1.85 1.70 1.86 Total abundance - - - - - - - - - - - - 1,502 1,330 1,263 1,123 1,628 1,768 1,325 2,183 1,996 1,320 F) 0 Total taxa - - - - - - - - - - - - 28 22 21 30 29 27 29 30 31 26 o Total taxa with sensitivity values - - - - - - - - - - - - 20 16 17 22 24 22 24 26 23 23 EBIa - - - - - - - - - - - - 2.22 2.33 1.82 1.77 1.84 1.76 1.79 1.84 1.83 1.84 III-G-86 Table III-G3 (continued). Station data by year 1998 1999 2000 2001 2002 2003 2004 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 HUDDLES CUT MUDDY CREEK TOOLEY CREEK LONG CREEK LITTLE CREEK DRINKWATER CREEK (CONTROL) (CONTROL) (CONTROL) 0_ D Total abundance Total taxa Total taxa with sensitivity values EBIa - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2,032 34 28 2.25 1,026 28 22 1.96 1,670 26 21 1.93 1,212 28 22 1.75 1,457 22 20 1.98 1,661 31 24 1.86 1,484 26 23 1.94 1,777 26 25 1.87 596 30 25 1.87 881 22 18 1.82 Total abundance - - - - - - - - - - - - 1,330 981 1,248 1,285 1,785 1,408 1,337 1,513 884 1,001 3 0 Total taxa - - - - - - - - - - - - 38 33 32 27 32 40 30 30 26 24 o Total taxa with sensitivity values - - - - - - - - - - - - 32 29 26 20 27 31 25 26 22 21 E Bla - - - - - - - - - - - - 2.04 1.78 1.90 1.88 1.87 1.88 1.89 1.86 2.04 1.73 Total abundance - - - - - - - - - - - - 1,148 1,238 2,002 1,197 961 1,017 1,279 1,032 1,204 881 0_ Total taxa - - - - - - - - - - - - 22 27 22 26 25 27 29 27 24 15 D Total taxa with sensitivity values - - - - - - - - - - - - 20 19 16 21 17 21 22 23 19 14 EBIa - - - - - - - - - - - - 1.77 1.92 1.77 1.58 1.56 1.68 1.57 1.62 1.50 1.79 Total abundance - - - - - - - - - - - - 1,363 843 1,152 1,005 1,292 1,324 1,502 564 611 1,430 0 Total taxa - - - - - - - - - - - - 33 36 28 31 33 26 32 21 36 32 o Total taxa with sensitivity values - - - - - - - - - - - - 22 30 24 26 28 21 27 17 26 28 E Bla - - - - - - - - - - - - 1.99 2.02 2.25 1.84 2.05 1.80 1.79 2.08 1.94 1.83 Total abundance - - - - - - - - - - - - 1,588 740 974 1,612 2,358 1,542 1,445 1,424 2,930 250 0_ Total taxa - - - - - - - - - - - - 33 29 23 34 31 26 31 32 40 21 D Total taxa with sensitivity values - - - - - - - - - - - - 27 25 20 29 23 23 24 28 28 13 E Bla - - - - - - - - - - - - 2.05 1.93 1.70 1.86 1.86 1.99 1.88 1.79 1.64 2.03 Total abundance - - - - - - - - - - - - 892 1,109 777 1,354 1,406 1,169 1,566 959 1,023 530 Total taxa - - - - - - - - - - - - 24 30 29 33 37 28 28 27 23 17 0 o Total taxa with sensitivity values - - - - - - - - - - - - 23 23 24 26 29 23 26 23 22 16 E Bla - - - - - - - - - - - - 2.04 1.98 1.97 2.03 1.97 2.12 1.99 2.01 1.91 2.09 Total abundance 1,809 1,148 2,148 2,276 - - - - - - - 918 1,587 1,138 1,630 1,928 2,448 1,936 2,572 1,143 1,196 1,061 0_ Total taxa 42 17 33 33 - - - - - - - 18 31 27 27 28 31 30 36 30 32 28 D Total taxa with sensitivity values 34 14 23 29 - - - - - - - 14 22 21 23 25 26 25 31 28 28 26 E Bla 1.92 2.02 1.82 2.08 - - - - - - - 1.92 1.99 2.08 1.82 1.81 1.80 2.01 1.85 1.80 1.91 2.01 Total abundance 3,360 1,616 1,302 1,595 - - - - - - - 1,005 1,085 1,110 928 1,410 2,425 1,202 1,309 1,072 1,417 321 Total taxa 47 33 31 34 - - - - - - - 33 36 32 32 34 31 31 31 24 32 18 0 o Total taxa with sensitivity values 39 28 27 31 - - - - - - - 28 32 26 28 27 26 27 30 22 28 17 E Bla 1.81 1.93 1.90 1.90 - - - - - - - 1.96 1.92 2.04 1.90 2.07 1.94 2.03 1.98 2.01 1.80 1.98 Total abundance 2,521 1,346 1,971 1,633 1,499 831 899 1,494 2,134 882 970 1,224 2,370 602 1,468 1,419 1,964 1,222 1,744 1,961 1,242 1,517 0_ Total taxa 32 29 30 38 33 26 36 39 31 27 31 23 28 27 30 29 31 33 34 39 40 34 D Total taxa with sensitivity values 25 24 18 30 28 22 27 30 23 22 25 17 20 23 23 22 23 23 30 31 28 29 E Bla 1.67 1.85 1.70 1.86 2.01 1.78 2.02 2.01 1.89 2.42 1.72 1.89 1.86 2.05 1.86 1.72 1.91 2.03 1.79 1.84 1.75 2.02 Total abundance 3,062 1,131 1,183 2,318 833 779 1,722 1,871 1,069 712 751 1,669 1,997 532 1,438 1,939 1,960 1,872 1,780 1,430 1,469 784 Total taxa 50 33 32 37 35 26 27 34 27 31 33 30 32 27 25 34 32 30 32 31 29 29 0 o Total taxa with sensitivity values 41 27 23 32 28 22 23 29 22 26 29 25 25 20 19 27 29 24 26 28 25 24 EBIa 1.78 2.00 1.94 1.77 2.42 1.88 2.05 1.80 1.95 2.47 2.00 1.99 1.98 2.15 1.88 1.87 1.93 2.09 1.87 1.95 1.95 1.93 Total abundance - 1,040 366 995 - - - - 661 468 277 677 635 273 360 490 1,109 1,647 862 670 896 380 0_ Total taxa - 25 17 22 - - - - 20 19 13 15 22 23 18 18 25 25 25 29 26 18 D Total taxa with sensitivity values - 18 12 17 - - - - 15 15 10 13 19 20 15 15 19 19 22 26 21 16 E Bla - 1.96 1.93 1.91 - - - - 2.07 2.11 2.22 1.81 2.13 2.09 1.86 2.01 1.98 1.96 2.02 2.00 2.03 2.09 Total abundance - 254 527 206 - - - - 422 398 288 189 75 403 502 375 449 679 1,057 603 304 506 Total taxa - 24 18 19 - - - - 22 23 26 13 12 20 14 24 22 24 33 26 16 22 0 o Total taxa with sensitivity values - 19 14 18 - - - - 19 20 23 13 10 18 12 18 18 22 28 22 11 20 EBIa - 2.15 2.20 1.94 - - - - 2.03 1.74 2.08 2.19 2.26 2.26 2.19 1.99 2.11 2.17 2.07 2.11 2.18 2.36 III-G-87 Table III-G3 (continued). Station data by year 1998 1999 2000 2001 2002 2003 2004 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 PORTER CREEK c 0 0 Total abundance Total taxa Total taxa with sensitivity values EBIa Total abundance Total taxa Total taxa with sensitivity values EBIa - - 2,320 2,804 1,375 1,862 1,208 - - 23 34 22 31 21 - - 21 27 19 25 17 - - 1.85 1.88 2.05 1.87 1.87 - - 1,791 - - 32 - - 26 - - 2.07 667 1,284 1,583 1,068 28 33 31 32 24 28 25 26 2.18 2.04 2.01 2.03 765 1,040 996 1,193 1,578 26 33 29 33 21 21 23 21 28 18 2.00 1.86 2.03 1.59 2.01 846 1,194 1,068 749 1,095 26 25 18 25 21 19 21 18 22 18 2.06 2.07 2.08 2.00 1.82 1- 0 0 c 0 0 Total abundance Total taxa Total taxa with sensitivity values EBIa Total abundance Total taxa Total taxa with sensitivity values EBIa 1,413 1,748 1,750 1,008 1,123 24 28 29 22 23 19 22 21 17 15 1.90 1.79 1.75 1.85 1.89 1,970 1,890 2,205 1,229 1,246 29 27 31 31 24 23 23 26 21 17 2.03 1.86 1.80 1.87 1.98 1,553 613 1,677 28 30 25 23 24 21 1.97 1.46 2.07 1,349 867 1,896 19 32 28 16 24 22 2.03 1.65 2.00 DCUT19 (CONTROL) c 0 0 c 0 0 Total abundance Total taxa Total taxa with sensitivity values EBIa Total abundance Total taxa Total taxa with sensitivity values EBIa Total abundance Total taxa Total taxa with sensitivity values EBIa Total abundance Total taxa Total taxa with sensitivity values EBIa - - 1,266 2,011 823 1,419 1,636 1,390 1,108 1,152 - - 23 28 30 33 30 25 25 26 - 19 24 22 24 21 22 17 22 - 1.81 1.84 1.87 1.78 1.83 2.00 1.54 1.88 - - 2,471 2,431 2,298 1,653 1,760 1,184 1,166 1,660 - - 32 35 34 34 29 26 32 25 - - 26 27 28 27 25 24 25 21 - - 1.90 1.97 1.79 1.74 1.87 1.99 1.81 1.93 941 1,144 627 1,543 1,956 1,702 1,475 1,450 1,700 966 30 21 25 21 26 27 34 27 29 22 24 17 21 18 18 21 23 21 21 18 1.73 1.85 1.92 1.69 1.64 1.74 1.53 1.52 1.50 1.92 2,066 1,082 1,397 2,172 1,191 1,175 1,315 1,237 890 809 26 26 32 28 27 20 23 32 24 22 22 22 28 22 22 17 19 28 20 15 1.90 2.02 1.91 1.97 1.96 2.13 2.08 1.89 2.01 2.07 III-G-88 Table III-G3 (concluded). In the sweep summary table below, bold values denote the highest value in a given row (12 bold values total) and bold italics denote the highest value on an upstream or downstream basis (six bold italic values total- three upstream and three downstream). In the sweep summary table below, bdd xelues denote the highest value in a gren row (12 total) and bdd italics denote the highest value on an upstream or downstream basis (three ranges and three averages). Annual Ranges All Creeks (upstream): 1998 1999 2000 2001 2002 2003 2004 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total abundance 1,809-2,654 783-1,346 366-2,430 995-2,823 987-1,499 831 -1,190 899-2,223 1,494-1,925 661-2,134 468-882 277-970 677-1,224 635-3,529 273-2,804 360-2,002 490-2,011 823-2,448 765-2,040 862-2,572 670-2,144 293-2,930 250-1,677 Total taxa 32 - 42 17 - 29 17 - 34 22 - 38 30 - 33 24 - 26 36-39 29 - 39 20 - 31 19 - 27 13 - 31 15-23 22 -35 19 -34 18 -30 18 - 34 21 - 31 22 - 35 23 - 36 21 - 39 24 - 40 15-34 EBI 1.67 -1.92 1.85 -2.02 1.70 -1.93 1.86 -2.08 1.75 -2.01 1.72 -1.78 1.90 -2.02 1.99 -2.01 1.89 -2.07 2.11 -2.42 1.72 -2.22 1.81-1.92 1.73 -2.25 1.85 -2.40 1.70 -2.11 1.58 -2.01 1.56 -1.98 1.68 -2.03 1.53 -2.02 1.52 -2.03 1.18 -2.03 1.53-2.09 Annual Ranges All Creeks (downstream): Total abundance 2,477-3,360 254 - 1,616 527 - 1,302 206 - 2,318 829 - 833 779 - 781 1,014 - 1,722 1,379 - 1,871 422 - 1,069 398 - 712 288-751 189-1,669 75-2,006 403-1,330 502-2,471 375-2,431 449-2,425 679-1,872 766-1,780 564-2,198 304-2,189 321-1,896 Total taxa 45 -550 19 - 33 18 - 32 19 - 37 32 - 35 26 - 28 27 - 30 29 - 34 22 - 27 23 - 31 26-33 13-33 12-38 20-36 14-33 24-35 22-37 20-40 23-33 18-32 16-41 17-32 EBI 1.77 -1.81 1.93 - 2.15 1.77 - 2.20 1.77 -1.94 1.93 -2.42 1.88 -2.04 2.05 - 2.19 1.80 -2.05 1.95 -2.03 1.75 - 2.47 2.00-2.08 1.96-2.19 1.90-2.26 1.78-2.33 1.82-2.25 1.77-2.07 1.79-2.11 1.74-2.17 1.79-2.08 1.84-2.11 1.34-2.18 1.64-2.36 Annual Averages All Creeks (upstream) Total abundance 2,328 1,079 1,729 1,932 1,243 1,011 1,561 1,710 1,398 675 624 940 1,795 1,116 1,341 1,411 1,620 1,473 1,465 1,392 1,270 1,049 Total taxa 39 22 29 29 32 25 38 34 26 23 22 19 29 26 24 28 27 29 30 28 31 23 EBI 1.79 1.95 1.80 1.93 1.88 1.75 1.96 2.00 1.98 2.27 1.97 1.87 1.98 2.03 1.91 1.77 1.83 1.87 1.80 1.83 1.64 1.88 Annual Averages All Creeks (downstream) Total abundance 2,966 999 900 1,543 831 780 1,368 1,625 746 555 520 954 1,422 899 1,273 1,562 1,603 1,344 1,351 1,269 1,098 1,027 Total taxa 47 27 27 29 32 27 29 32 25 27 30 25 30 28 28 31 31 29 29 27 30 23 EBI 1.79 2.03 1.95 1.87 2.18 1.96 2.12 1.93 1.99 2.11 2.04 2.05 2.05 2.07 1.99 1.92 1.97 1.98 1.94 1.98 1.86 1.94 III-G-89 Table III-G4. Abundant benthic macroinvertebrate species for ponar grab samples collected in monitored creeks during May of Mod Alt L sample years 1998-2005 and 2007-2020. Pre -Mod Alt L: Broomfield Swamp Creek (2019-2020), Jacks Creek (1998-2005; 2011-2014), Jacobs Creek (2011-2013), Drinkwater Creek (2011-2012), Tooley Creek (1998-2001; 2010-2011), Huddles Cut (1998-2001; 2007-2009), Porter Creek (2011-2015), and DCUT11 (2013-2017). Post -Mod Alt L: Jacks Creek (2015-2020), Jacobs Creek (2014-2020), Drinkwater Creek (2013-2020), Tooley Creek (2012-2020), Huddles Cut (2010- 2020), Porter Creek (2016-2020), and DCUT11 (2018-2020). Control Creeks: SCUT1 (2019-2020), PA2, Long, Little, and Duck creeks (2011-2020), Muddy Creek (1998-2005 and 2007-2020), and DCUT19 (2013-2020). A - indicates the creek was not monitored that year. Benthic collection occurred in June for 2010. In each ponar grab sample, count of individuals per species stopped at 100 and maximum number of individuals per species stopped at 500. BROOMFIELD CREEK UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Naididae sp. w/o hair Limnodrilus hoffmeisteri Chaoborus albatus Glossiphoniidae sp. 163 56 33 33 47.0 16.1 9.5 9.5 Naididae sp. w/o hair Limnodrilus hoffmeisteri Gammarus tigrinus Streblospio benedicti 44 24 14 3 50.6 27.6 16.1 3.4 BROOMFIELD CREEK DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Naididae sp. w/o hair Limnodrilus hoffmeisteri Chironomus decorus Naididae sp. w/ hair 217 78 21 10 61.0 21.9 5.9 2.8 Gammarus tigrinus Streblospio benedicti Limnodrilus hoffmeisteri Mytilopsis Ieucophaeata 105 8 7 6 72.9 5.6 4.9 4.2 SCUT1 (CONTROL) UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored 1 - - not monitored not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Naididae sp. w/o hair Tanypus neopunctipennis Coelotanypus sp. Limnodrilus hoffmeisteri 283 48 37 34 55.6 9.4 7.3 6.7 Gammarus tigrinus Naididae sp. w/o hair Cyprideis littoralis Limnodrilus hoffmeisteri 222 69 31 5 66.5 20.7 9.3 1.5 J O 2 C' Q ~ W Z !Y 0 I- 0 Cn Z > D0 0 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Procladius sp. Candonidae sp. Chironomus decorus Cyprideis littoralis 62 44 38 22 28.3 20.1 17.4 10.0 Gammarus tigrinus Amphicteis floridus Cyprideis littoralis Streblospio benedicti 34 18 11 11 40.0 19.6 12.0 12.0 III-G-90 Table III-G4 (continued). JACKS CREEK UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Gammarus tigrinus 61 28.4 Gammarus tigrinus 418 81.2 Tanypus neopunctipennis 406 36.1 Gammarus tigrinus 424 31.1 Macoma balthica 163 54.2 Chironomus decorus 474 77.1 Tanytarsus Iimneticus 167 30.4 Chironomus decorus 183 39.5 Amphicteis fioridus 58 27.0 Nematoda sp. 50 9.7 Amphicteis fioridus 324 28.9 Dicrotendipes nervosus 418 30.7 Littoridinops tenuipes 90 30.0 Amphicteis fioridus 41 6.7 Cyprideis Iittoralis 117 21.3 Tanytarsus sp. 1 84 18.1 Littoridinops tenuipes 17 7.9 Amphicteis fioridus 31 6.0 Gammanis tigrinus 101 9.0 Amphicteis fioridus 213 15.6 Bezzia/Palpomyia complex 12 4.0 Gammanis tigrinus 38 6.2 Littoridinops tenuipes 89 16.2 Tanypus neopunctipennis 38 8.2 Procladius sp. 16 7.4 Littoridinops tenuipes 5 1.0 Chironomus decorus 100 8.9 Chironomus decorus 109 8.0 Cyprideis Iittoralis 8 2.7 Littoridinops tenuipes 34 5.5 Gammanis tigrinus 27 4.9 Gammanis tigrinus 37 8.0 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Chironomus decorus 133 24.2 Candonidae sp. 167 65.5 Chironomus decorus 150 39.2 Chironomus decorus 286 30.4 - - - - - - - - - - - - Macoma balthica 88 16.0 Chironomus decorus 80 31.4 Candonidae sp. 136 35.5 Amphicteis fioridus 174 18.5 - - - - - - - - - - - - Apocorophium sp. 80 14.6 Naididae sp. w/o hair 4 1.6 Littoridinops tenuipes 29 7.6 Gammanis tigrinus 122 13.0 - - - - - - - - - - - - Gammanis tigrinus 72 13.1 Tanytarsus sp. 2 0.8 Apedilum sp. 26 6.8 Candonidae sp. 104 11.1 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Gammanis tigrinus 97 27.5 Marenzelleria viridis 27 30.0 Gammanis tigrinus 162 29.5 Gammanis tigrinus 330 51.9 Chironomus decorus 44 35.8 Chironomus decorus 35 24.6 Amphicteis fioridus 84 23.8 Gammanis tigrinus 26 28.9 Littoridinops sp. 71 12.9 Chironomus decorus 71 11.2 Amphicteis fioridus 15 12.2 Candonidae sp. 34 23.9 Littoridinops sp. 50 14.2 Apocorophium sp. 8 8.9 Tanytarsus sp. 66 12.0 Apocorophium sp. 44 6.9 Tanypus neopunctipennis 14 11.4 Gammarus tigrinus 18 12.7 Apocorophium sp. 21 5.9 Amphicteis floridus 7 7.8 Amphicteis floridus 54 9.8 Parachironomus sp. 44 6.9 Gammarus tigrinus 10 8.1 Littoridinops tenuipes 18 12.7 JACKS CREEK DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Chironomus decorus 49 22.2 Amphicteis fioridus 103 37.6 Chironomus decorus 192 61.1 Gammanis tigrinus 106 26.6 Macoma balthica 443 35.6 Tubificoides sp. 500 30.5 Purbifidoides sp. 239 33.2 Cyprideis Iittoralis 398 39.1 Tubificoides sp. 42 19.0 Leptocheirus plumulosus 37 13.5 Procladius sp. 60 19.1 Macoma balthica 81 20.4 Mediomastus ambiseta 399 32.0 Mediomastus ambiseta 480 29.3 Marenzelleria viridis 118 16.4 Chironomus decorus 349 34.3 Cyprideis Iittoralis 36 16.3 Marenzelleria viridis 25 9.1 Tubificoides sp. 30 9.6 Mediomastus ambiseta 76 19.1 Tubificoides sp. 214 17.2 Streblospio benedicti 355 21.7 Streblospio benedicti 99 13.8 Streblospio benedicti 108 10.6 Amphicteis fioridus 26 11.8 Gammanis tigrinus 23 8.4 Amphicteis fioridus 11 3.5 Marenzelleria viridis 51 12.8 Littoridinops tenuipes 43 3.5 Mediomastus sp. 231 14.1 Littoridinops tenuipes 57 7.9 Macoma balthica 51 5.0 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Macoma balthica 280 25.7 Chironomus decorus 145 66.2 Chironomus decorus 268 62.8 Chironomus decorus 45 24.6 - - - - - - - - - - - - Chironomus decorus 234 21.5 Streblospio benedicti 24 11.0 Gammanis mucronatus 40 9.4 Streblospio benedicti 21 11.5 - - - - - - - - - - - - Streblospio benedicti 102 9.4 Candonidae sp. 18 8.2 Gammams tigrinus 25 5.9 Amphicteis fioridus 20 10.9 - - - - - - - - - - - - Gammams tigrinus 94 8.6 Macoma tenta 8 3.7 Macoma tenta 24 5.6 Macoma tenta 20 10.9 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Chironomus sp. 335 40.3 Marenzelleria viridis 181 57.5 Marenzelleria viridis 135 36.3 Gammams tigrinus 142 32.6 Chironomus decorus 148 77.1 Gammams tigrinus 223 47.1 Streblospio benedicti 162 19.5 Apocorophium sp. 47 14.9 Rangia cuneata 79 21.2 Apocorophium sp. 138 31.7 Amphicteis fioridus 17 8.9 Apocorophium sp. 96 20.3 Gammarus tigrinus 68 8.2 Apocorophium /acustre 29 9.2 Gammarus tigrinus 43 11.6 Mediomastus ambiseta 32 7.3 Cyprideis littoralis 6 3.1 Littoridinops tenuipes 29 6.1 Naididae sp. w/o hair 59 7.1 Gammarus tigrinus 13 4.1 Cyprideis littoralis 43 11.6 Apocorophium louisianum 24 5.5 Gammarus tigrinus 5 2.6 Streblospio benedicti 26 5.5 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - Y 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total W W < not monitored - - not monitored - - not monitored - - not monitored - - Aulodrilus sp. 110 27.8 Chironomus decorus 244 36.0 Apedilum sp. 436 34.1 Chironomus decorus 222 39.7 Q 0 V W - - - - - - - - - - - - Macoma balthica 109 27.6 Littoridinops tenuipes 143 21.1 Chironomus decorus 298 23.3 Candonidae sp. 126 22.5 (/) H - - - - - - - - - - - - Amphicteis fioridus 37 9.4 Apedilum sp. 119 17.6 Candonidae sp. 208 16.3 Parachironomus sp. 55 10.0 Oco - - - - - - - - - - - - Apocorophium sp. 31 7.8 Candonidae sp. 52 7.7 Littoridinops tenuipes 67 5.2 Littoridinops tenuipes 49 9.8 d U = 2015 2016 2017 2018 2019 2020 Q n Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Gammarus tigrinus 269 23.2 Littoridinops sp. 13 22.0 Littoridinops sp. 322 32.5 Apocorophium sp. 121 24.5 Chironomus decorus 147 43.1 Apocorophium sp. 33 19.4 Apocorophium sp. 255 22.0 Apocorophium sp. 9 15.3 Amphicteis fioridus 194 19.6 Chironomus decorus 117 23.7 Amphicteis fioridus 41 12.0 Chironomus decorus 31 18.2 Amphicteis fioridus 204 17.6 Marenzelleria viridis 9 15.3 Apocorophium sp. 140 14.1 Macoma balthica 69 14.0 Tanypus neopunctipennis 36 10.6 Gammams tigrinus 24 14.1 Littoridinops sp. 116 10.0 Cyprideis Iittoralis 5 8.5 Gammams tigrinus 78 7.9 Gammams tigrinus 57 11.6 Tanytarsus sp. 35 10.3 Conxidae sp. 14 8.2 1 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - Y 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total W CeW not monitored - - not monitored - - not monitored - - not monitored - - Chironomus decorus 184 29.3 Apedilum sp. 240 39.5 Chironomus decorus 319 54.2 Chironomus decorus 129 41.7 V i_W- - - - - - - - - - - - Macoma balthica 137 21.8 Mediomastus ambiseta 144 23.7 Apocorophium sp. 85 14.4 Gammams mucronatus 71 23.0 CO y - - - - - - - - - - - - Mediomastus ambiseta 113 18.0 Chironomus decorus 124 20.9 Streblospio benedicti 32 5.4 Mediomastus ambiseta 36 11.7 CO Z Apocorophium sp. 60 9.6 Parachironomus sp. 54 8.9 Apedilum sp. 27 4.6 Macoma tenta 26 8.4 U p 2015 2016 2017 2018 2019 2020 p Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Chironomus sp. 443 65.2 Marenzelleria viridis 104 48.8 Marenzelleria viridis 293 33.4 Mediomastus ambiseta 226 31.9 Chironomus decorus 491 79.7 Apocorophium sp. 162 43.8 Gammams tigrinus 58 8.5 Mediomastus ambiseta 37 17.4 Mediomastus ambiseta 238 27.1 Macoma tenta 130 18.4 Streblospio benedicti 37 6.0 Gammams tigrinus 51 13.8 Streblospio benedicti 33 4.9 Apocorophium sp. 15 7.0 Gammams tigrinus 74 8.4 Chironomus decorus 122 17.2 Littoridinops sp. 35 5.7 Gammams mucronatus 33 8.9 Eteone heteropoda 20 2.9 Eteone heteropoda 13 6.1 Rangia cuneata 61 7.0 Gammams tigrinus 48 6.8 Americamysis almyra 14 2.3 Eteone heteropoda 32 8.6 III-G-91 Table III-G4 (continued). 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total Dominant Species Total % Dominant Species Total Dominant Species Total % Dominant Species Total % Dominant Species Total Dominant Species Total % Dominant Species Total not monitored not monitored not monitored not monitored not monitored not monitored not monitored not monitored 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total Dominant Species Total % Dominant Species Total Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored not monitored not monitored not monitored Apocorophium sp. Chironomus deconis Littoridinops tenuipes Apedilum sp. 205 194 69 62 26.1 24.7 8.8 7.9 Candonidae sp. Littoridinops tenuipes Apedilum sp. Chironomus deconis 385 68 63 63 65.7 11.6 10.8 10.8 Apedilum sp. Chironomus decorus Candonidae sp. Goeldichironomus devineyae 253 38 26 19 61.6 9.2 6.3 4.6 Littoridinops tenuipes Chironomus deconis Goeldichironomus devineyae Apocorophium sp. 141 71 23 19 46.2 23.3 7.5 6.2 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Dominant Species Total % Chironomus sp. Amphicteis floridus Tanypus neopunctipennis Littoridinops sp. 1998 384 68.2 30 5.3 29 5.2 27 4.8 Chironomus deconis Streblospio benedicti Gammarus tigrinus Marenzelleria viridis 1999 376 67.9 59 10.7 38 6.9 32 5.8 Littoridinops sp. Amphicteis floridus Corixidae sp. Apedilum sp. 2000 167 42.3 141 35.7 29 7.3 14 3.5 Chironomus deconis Gammarus tigrinus Apocorophium sp. Candonidae sp. 2001 138 27.2 80 15.8 62 12.2 54 10.7 Chironomus deconis Tanytarsus sp. Littoridinops sp. Tanypus neopunctipennis 2002 363 61.6 58 9.8 57 9.7 30 5.1 Apocorophium sp. Littoridinops tenuipes Amphicteis floridus Apedilum sp. 2003 76 64 63 43 20.9 17.6 17.4 11.8 2004 2005 Dominant Species Total % Dominant Species Total Dominant Species Total Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Dominant Species Total % not monitored not monitored not monitored not monitored not monitored not monitored not monitored not monitored 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total Dominant Species Total Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored not monitored not monitored not monitored Chironomus deconis Apocorophium sp. Aulodrilus sp. Apedilum sp. 101 79 61 52 23.0 18.0 13.9 11.8 Chironomus deconis Apedilum sp. Candonidae sp. Littoridinops tenuipes 488 123 111 31 62.9 15.9 14.3 4.0 Apedilum sp. Chironomus deconis Gammarus mucronatus Littoridinops tenuipes 204 81 54 20 45.4 18.0 12.0 4.5 Naididae sp. w/o hair Gammarus mucronatus Chironomus deconis Littoridinops tenuipes 64 36 30 22 % 36.8 20.7 17.2 12.6 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total Dominant Species Total % Dominant Species Total % Dominant Species Total % Gammarus tigrinus Tanytarsus sp. Littoridinops sp. Tanypus neopunctipennis 1998 159 20.3 152 19.4 106 13.5 83 10.6 Marenzelleria viridis Apocorophium sp. Streblospio benedicti Corixidae sp. 1999 361 37.2 164 16.9 99 10.2 54 5.6 Marenzelleria viridis Amphicteis floridus Littoridinops sp. Laeonereis culveri 2000 470 38.6 325 26.7 173 14.2 39 3.2 Gammarus tigrinus Chironomus deconis Streblospio benedicti Apocorophium sp. 2001 287 20.6 265 19.0 174 12.5 144 10.3 Chironomus deconis Littoridinops sp. Amphicteis floridus Tanypus neopunctipennis 2002 402 60.4 87 13.1 44 6.6 43 6.5 Littoridinops tenuipes Apocorophium sp. Gammarus tigrinus Amphicteis floridus 2003 40 39 21 10 29.2 28.5 15.3 7.3 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored not monitored not monitored not monitored not monitored not monitored not monitored not monitored 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored not monitored not monitored not monitored Tanytarsus sp. Aulodrilus sp. Littoridinops tenuipes Apocorophium sp. 269 154 148 146 21.8 12.5 12.0 11.8 Chironomus deconis Littoridinops tenuipes Candonidae sp. Amphicteis floridus 478 244 126 92 37.7 19.3 9.9 7.3 Chironomus decorus Littoridinops tenuipes Amphicteis floridus Goeldichironomus devineyae 452 169 63 32 54.7 20.4 7.6 3.9 Chironomus deconis Amphicteis floridus Naididae sp. w/o hair Gammarus tigrinus 358 96 69 63 36.8 9.8 7.1 6.5 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Littoridinops sp. Chironomus sp. Tanytarsus sp. Amphicteis floridus 67 63 30 27 25.3 23.8 11.3 10.2 Amphicteis floridus Gammarus tigrinus Marenzelleria viridis Apocorophium sp. 118 86 64 40 32.5 23.7 17.6 11.0 Amphicteis floridus Gammarus tigrinus Littoridinops sp. Apocorophium sp. 309 278 174 35 33.2 29.9 18.7 3.8 Chironomus deconis Gammarus tigrinus Apocorophium sp. Candonidae sp. 359 145 83 52 46.8 18.9 10.8 6.8 Chironomus stigmaterus Candonidae sp. Amphicteis floridus Tanytarsus sp. 149 92 87 81 28.1 17.4 16.4 15.3 Gammarus tigrinus Apocorophium sp. Chironomus deconis Amphicteis floridus 64 46 36 22 26.4 19 14.9 9.1 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored not monitored not monitored not monitored not monitored not monitored not monitored not monitored 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored not monitored not monitored not monitored Chironomus deconis Macoma balthica Mediomastus ambiseta Parachironomus sp. 245 194 179 88 22.5 17.8 16.4 8.1 Chironomus deconis Apedilum sp. Parachironomus sp. Littoridinops tenuipes 415 256 52 28 51.3 31.6 6.4 3.5 Chironomus deconis Gammarus mucronatus Apocorophium Iouisianum Apocorophium sp. 231 140 136 134 22.4 13.6 13.2 13.0 Chironomus deconis Gammarus mucronatus Mediomastus ambiseta Streblospio benedicti 415 270 113 98 % 37.3 24.3 10.2 8.8 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Dominant Species Total % Chironomus sp. Macoma tenta Marenzelleria viridis Streblospio benedicti 38 29 25 18 23.6 18.0 15.5 11.2 Marenzelleria viridis Littoridinops sp. Streblospio benedicti Mediomastus ambiseta 223 31 28 21 63.0 8.8 7.9 5.9 Marenzelleria viridis Littoridinops sp. Mediomastus ambiseta Corixidae sp. 180 108 52 42 37.3 22.4 10.8 8.7 Mediomastus ambiseta Chironomus decorus Gammarus tigrinus Streblospio benedicti 266 142 127 123 23.4 12.5 11.2 10.8 Chironomus deconis Streblospio benedicti Amphicteis floridus Chironomus stigmatenis 486 110 21 15 72.2 16.3 3.1 2.2 Apocorophium sp. Streblospio benedicti Gammarus tigrinus Mediomastus ambiseta 88 71 48 36 22.6 18.2 12.3 9.2 III-G-92 Table III-G4 (continued). -IDominant O a' I- Z 0 a �-' lL Y W I- W co a' 11 lL ~ � O a' I- Z a 0 ,,, `-- W- �Z C.) O IL p I- -IDominant 0 C' I- Z O a C.)lL Y Ct W CO Ct fl U zChironomus O J -IDominant 0 C' I- Z 0 W U- ct- WCO lL Z 0 Op Z 0 J 1998 1999 2000 2001 2002 2003 2004 2005 Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - Littoridinops tenuipes Amphicteis floridus Gammarus tigrinus Tanytarsus sp. 410 88 36 26 67.2 14.4 5.9 4.3 Tanytarsus sp. Candonidae sp. Littoridinops tenuipes Chironomus decorus 416 408 254 212 29.8 29.3 18.2 15.2 Gammarus tigrinus Tanytarsus sp. Littoridinops tenuipes Amphicteis floridus 429 366 199 188 23.0 19.6 10.7 10.1 Chironomus decorus Gammarus tigrinus Amphicteis floridus Littoridinops tenuipes 100 96 58 36 27.3 26.2 15.8 9.8 2015 2016 2017 2018 2019 2020 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Gammarus tigrinus Naididae sp.w/o hair Amphicteis floridus Littoridinops sp. 1998 284 78 60 30 54.4 14.9 11.5 5.7 Gammarus tigrinus Amphicteis floridus p Cyprideis littoralis Chironomus decorus 1999 230 191 90 26 36.8 30.6 14.4 4.2 Chironomus decorus Naididae sp.w/o hair Gammarus tigrinus Candonidae sp. 2000 399 179 153 99 34.5 15.5 13.2 8.5 Amphicteis floridus Gammarus tigrinus g Chironomus decorus Naididae sp. w/o hair 2001 464 306 242 62 35.8 23.6 18.7 4.8 Gammarus tigrinus Naididae sp.w/o hair Kiefferulus sp. Chironomus decorus 2002 255 147 96 90 34.8 20.1 13.1 12.3 Gammarus tigrinus Cyprideis littoralis Amphicteis floridus Bezzia/Palpomyia complex 2003 45 10 9 3 65.2 14.5 13 4.3 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - - - not monitored - - - - - - - - not monitored - - - - - - - - not monitored - - - - - - - - Marenzelleria viridis Macoma balthica Streblospio benedicti Aulodrilus sp. 267 95 58 53 42.4 15.1 9.2 8.4 Mediomastus ambiseta Chironomus decorus Macoma tenta Macoma balthica 306 94 56 42 57.4 17.6 10.5 7.9 Chironomus decorus Apocorophium louisianum Gammarus mucronatus Amphicteis floridus 500 262 255 214 24.8 13.0 12.6 10.6 Chironomus decorus Streblospio benedicti Amphicteis floridus Mediomastus ambiseta 428 116 98 84 48.1 13.0 11.0 9.4 2015 2016 2017 2018 2019 2020 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Apocorophium sp. Streblospio benedicti Chironomus sp. Amphicteis floridus 1998 396 396 302 230 20.2 20.2 15.4 11.8 Marenzelleria viridis Chironomus decorus Apocorophium sp. Mediomastus ambiseta 1999 158 109 52 38 33.1 22.8 10.9 8.0 Marenzelleria viridis Apocorophium lacustre Apocorophium sp. Amphicteis floridus 2000 328 166 162 154 26.9 13.6 13.3 12.6 Streblospio benedicti Mediomastus ambiseta Gammarus tigrinus Macoma balthica 2001 361 188 150 55 36.5 19.0 15.2 5.6 Chironomus decorus Streblospio benedicti Littoridinops sp. Gammarus tigrinus 2002 485 62 34 5 80.7 10.3 5.7 0.8 Apocorophium sp. Streblospio benedicti Mediomastus ambiseta Parachironomus sp. 2003 112 41 39 28 31.6 11.6 11 7.9 Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Apedilum sp. Macoma balthica Chironomus decorus Aulodrilus sp. 170 101 73 35 32.9 19.5 14.1 6.8 Chironomus decorus Macoma balthica Macoma tenta Naididae sp. w/o hair 224 37 31 24 59.6 9.8 8.2 6.4 Chironomus decorus Gammarus mucronatus Mediomastus ambiseta Amphicteis floridus 500 130 110 60 53.1 13.8 11.7 6.4 Chironomus decorus Gammarus mucronatus Eteone heteropoda Apocorophium sp. 450 54 48 42 62.6 7.5 6.7 5.8 2015 2016 2017 2018 2019 2020 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % sp. Apocorophium sp. Gammarus tigrinus Streblospio benedicti 1998 320 66 49 48 50.6 10.4 7.7 7.6 Marenzelleria viridis Chironomus decorus Gammarus tigrinus Streblospio benedicti 1999 31 22 12 4 36.0 25.6 14.0 4.7 Gammarus tigrinus Marenzelleria viridis Littoridinops sp. Chironomus decorus 2000 209 134 115 109 25.4 16.3 14.0 13.3 Gammarus tigrinus Streblospio benedicti Macoma balthica Gammarus mucronatus 2001 130 74 67 66 23.2 13.2 11.9 11.8 Chironomus decorus Littoridinops sp. Gammarus tigrinus Streblospio benedicti 2002 179 16 15 12 73.1 6.5 6.1 4.9 Apocorophium sp. Gammarus tigrinus Gammarus mucronatus Eteone heteropoda 2003 144 123 32 27 35.9 30.7 8 6.7 Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - - not monitored - - Macoma balthica Marenzelleria viridis Mediomastus ambiseta Eteone heteropoda 124 58 10 8 57.4 26.9 4.6 3.7 Mediomastus ambiseta Macoma tenta Streblospio benedicti Macoma balthica 500 77 76 52 65.0 10.0 9.9 6.8 Mediomastus ambiseta Chironomus decorus Scoloplos robustus Streblospio benedicti 125 105 52 45 34.4 29.0 14.3 12.4 Chironomus decorus Macoma tenta Macoma balthica Mediomastus ambiseta 148 78 24 5 54.2 28.6 8.8 1.8 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Chironomus sp. Streblospio benedicti Mediomastus ambiseta Macoma tenta 406 295 80 65 43.1 31.3 8.5 6.9 Littoridinops sp. Chironomus decorus Macoma tenta Streblospio benedicti 43 42 24 15 24.4 23.9 13.6 8.5 Marenzelleria viridis Chironomus decorus Littoridinops sp. Macoma tenta 101 62 32 25 34.1 20.9 10.8 8.4 Streblospio benedicti Balanus improvisus Macoma tenta Gammarus mucronatus 49 46 39 31 14.0 13.1 11.1 8.8 Chironomus decorus Littoridinops sp. Streblospio benedicti Gammarus tigrinus 421 31 31 11 79.1 5.8 5.8 2.1 Streblospio benedicti Mediomastus ambiseta Macoma tenta Gammarus tigrinus 22 21 13 5 31.4 30.0 18.6 7.1 III-G-93 Table III-G4 (continued). TOOLEY CREEK TOOLEY CREEK UPSTREAM DOWNSTREAM 1998 Dominant Species Gammarus tigrinus Amphicteis flondus Littoridinops tenuipes Cyprideis littoralis 2007 Dominant Species not monitored Total 1999 Dominant Species Total 2000 Dominant Species Total 2001 Dominant Species Total 2002 Dominant Species Total 2003 Dominant Species Total 2004 Dominant Species Total 2005 Dominant Species Total 118 90 80 78 24.8 18.9 16.8 16.4 Gammarus tigrinus Nematoda sp. Amphicteis flondus Leptocheims plumulosus 206 33 32 13 64.4 10.3 10.0 4.1 Chironomus decorus Littoridinops tenuipes Ostracoda sp. Tanypus neopunctipennis 418 11 7 6 91.1 2.4 1.5 1.3 Gammarus tigrinus Macoma balthica Chironomus decorus Amphicteis flondus 382 226 104 87 40.8 24.1 11.1 9.3 not monitored not monitored not monitored not monitored Total 2008 Dominant Species Total 2009 Dominant Species Total 2010 Dominant Species Total 2011 Dominant Species Total 2012 Dominant Species Total 2013 Dominant Species Total 2014 Dominant Species Total not monitored not monitored Chironomus decorus Macoma tenta Naididae sp. w/o hair Tubificoides sp. 48 24 22 11 34.8 17.4 15.9 8.0 Macoma balthica Chironomus decorus Apocorophium sp. Gammarus tigrinus 116 61 41 38 30.3 15.9 10.7 9.9 Chironomus decorus Naididae sp. w/o hair Streblospio benedicti Candonidae sp. 96 15 14 10 61.9 9.7 9.0 6.5 Chironomus decorus Apocorophium sp. Amphicteis flondus Gammarus mucronatus 439 107 105 102 46.7 11.4 11.2 10.8 Naididae sp. w/o hair Macoma balthica Chironomus decorus Gammarus mucronatus 56 41 38 13 24.1 17.7 16.4 5.6 2015 Dominant Species Chironomus sp. Apocorophium sp. Tanytarsus sp. Littoridinops sp. 1998 Total 2016 Dominant Species Total 2017 Dominant Species Total 2018 Dominant Species Total 2019 Dominant Species Total 2020 Dominant Species Total 77 33.2 Marenzelleria viridis 54 23.3 Bezzia/Palpomyia complex 22 9.5 Streblospio benedicti 3 5.6 Eteone heteropoda 1999 26 40.0 6 9.2 6 9.2 5 7.7 Littoridinops sp. Marenzelleria viridis Gammarus tigrinus Chironomus decorus 2000 55 21.8 48 19.0 41 16.3 27 10.7 Macoma balthica Chironomus decorus Gammarus tigrinus Apocorophium sp. 2001 51 25.8 49 24.7 19 9.6 8 9 Chironomus decorus Amphicteis flondus Cyprideis littoralis Apocorophium sp. 2002 136 37.8 42 11.7 34 9.4 33 9.2 Littoridinops tenuipes Apocorophium sp. Mediomastus ambiseta Streblospio benedicti 2003 9 18.0 6 12.0 6 12.0 6 12 2004 2005 Dominant Species Chironomus decorus Tubificoides sp. Gammarus tigrinus Apocorophium lacustre 2007 Dominant Species not monitored Total 366 289 81 57 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Dominant Species Total 39.8 31.4 8.8 6.2 Gammarus tigrinus Apocorophium lacustre Amphicteis flondus Leptocheims plumulosus 70 42 36 28 25.9 15.6 13.3 10.4 Chironomus decorus Tubificoides sp. Amphicteis flondus Rangia cuneata 423 158 68 23 56.9 21.3 9.2 3.1 Macoma balthica Mediomastus ambiseta Cyprideis littoralis Macoma tenta 444 368 47 34 40.8 33.8 4.3 3.1 not monitored not monitored not monitored not monitored 2008 2009 2010 2011 2012 2013 2014 Total Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Dominant Species Total not monitored not monitored Macoma tenta Chironomus decorus Mediomastus sp. Cyprideis littoralis 151 103 80 33 29.5 20.1 15.6 6.4 Mediomastus ambiseta Chironomus decorus Parachironomus sp. Apedilum sp. 159 90 40 39 37.9 21.5 9.5 9.3 Mediomastus ambiseta Chironomus decorus Streblospio benedicti Tubificoides sp. 500 353 350 92 35.3 24.9 24.7 6.5 Chironomus decorus Mediomastus ambiseta Streblospio benedicti Apocorophium sp. 457 190 119 20 52.1 21.7 13.6 2.3 Chironomus decorus Macoma tenta Mediomastus ambiseta Macoma balthica 391 268 62 48 48.2 33.0 7.6 5.9 2015 Dominant Species Total 2016 Dominant Species Total 2017 Dominant Species Total 2018 Dominant Species Total 2019 Dominant Species Total 2020 Dominant Species Total Chironomus sp. Mediomastus ambiseta Tubificoides heterochaetus Streblospio benedicti 1998 Dominant Species Gammarus tigrinus Amphicteis flondus Apocorophium lacustre Edotia triloba 500 139 114 13 Total 410 301 265 55 50.3 14.0 11.5 1.4 Littoridinops sp. Macoma tenta Marenzelleria viridis Mediomastus ambiseta 1999 89 31.2 78 27.4 27 9.5 22 Rangia cuneata Marenzelleria viridis Mediomastus ambiseta 7.7 Tubificoides heterochaetus Dominant Species Total % 2000 133 19.9 130 19.4 126 18.8 78 Dominant Species Total % Mediomastus ambiseta Balanus improvisus Macoma tenta Macoma balthica 2001 250 23.7 214 20.3 154 14.6 41 Chironomus decorus Streblospio benedicti Mediomastus ambiseta 13.4 Tubificoides heterochaetus Dominant Species Total % 2002 264 74.4 48 13.5 11 3.1 3.1 Dominant Species Total % Mediomastus ambiseta Streblospio benedicti Macoma tenta Chironomus decorus 2003 187 68.8 21 7.7 18 6.6 17 6.3 Dominant Species Total % 2004 Dominant Species Total 2005 Dominant Species Total 34.4 25.3 22.3 4.6 Amphicteis flondus Gammarus tigrinus Nematoda sp. Littoridinops tenuipes 59 41 13 9 39.6 27.5 8.7 6.0 Chironomus decorus Procladius sp. Amphicteis flondus Ostracoda sp. 446 52 24 6 82.3 9.6 4.4 1.1 Ostracoda sp. Macoma balthica Cyprideis littoralis Chironomus decorus 17 14 7 5 37.0 30.4 15.2 10.9 Chironomus decorus Apedilum sp. Littoridinops tenuipes Streblospio benedicti 41 11 7 6 54.7 14.7 9.3 8.0 Chironomus decorus Macoma balthica Goeldichironomus devineyae Littoridinops tenuipes 41 31 7 6 44.1 33.3 7.5 6.5 Ostracoda sp. Rangia cuneata Littoridinops tenuipes Chironomus decorus 13 13 7 4 28.3 28.3 15.2 8.7 Apocorophium lacustre Gammarus tigrinus Chironomus decorus Macoma balthica 174 164 131 49 26.8 25.2 20.2 7.5 2007 Dominant Species Chironomus decorus Streblospio benedicti Cyprideis littoralis Tanypus neopunctipennis 2015 Dominant Species Chironomus sp. Streblospio benedicti Amphicteis flondus Tanypus neopunctipennis 1998 Dominant Species Tubificoides sp. Cyprideis littoralis Mediomastus ambiseta Apocorophium lacustre 2007 Dominant Species Chironomus decorus Macoma balthica Macoma tenta Mediomastus ambiseta 2015 Dominant Species Chironomus sp. Streblospio benedicti Naididae sp. w/o hair Macoma tenta Total 175 28 26 18 2008 Dominant Species Total % 2009 Dominant Species Total % 2010 Dominant Species Total % 2011 Dominant Species Total % 2012 Dominant Species Total % 2013 Dominant Species Total 2014 Dominant Species Total 60.1 9.6 8.9 6.2 Streblospio benedicti Ostracoda sp. Chironomus decorus Macoma balthica 12 6 5 5 32.4 16.2 13.5 13.5 Chironomus decorus Parachironomus directus Ostracoda sp. Macoma balthica 59 22 20 19 30.9 11.5 10.4 9.9 Ostracoda sp. Chironomus decorus Littoridinops tenuipes Apocorophium sp. 48 10 3 2 71.6 14.9 4.5 3.0 Chironomus decorus Aulodrilus sp. Streblospio benedicti Amphicteis flondus 145 54 14 5 62.0 23.1 6.0 2.1 Macoma balthica Mediomastus ambiseta Candonidae sp. Macoma tenta 116 40 23 14 57.1 19.7 11.3 6.9 Chironomus decorus Candonidae sp. Streblospio benedicti Amphicteis flondus 113 17 9 7 70.6 10.6 5.6 4.4 Candonidae sp. Chironomus decorus Gammarus mucronatus Parachironomus sp. 31 9 2 2 63.3 18.4 4.1 4.1 2016 2017 2018 2019 2020 Total Dominant Species Total Dominant Species Total Dominant Species Total Dominant Species Total Dominant Species Total 149 35 11 9 Total 229 42 40 Total 65 55 29 13 Total 367 49 40 31 63.4 14.9 4.7 3.8 65.6 12.0 11.5 3.2 33.2 28.1 14.8 6.6 62.0 8.3 6.8 5.2 Chironomus decorus Streblospio benedicti Gammarus tigrinus Marenzelleria 1999 Dominant Species Gammarus tigrinus Mediomastus ambiseta Chironomus decorus Amphicteis flondus 2008 Dominant Species Apedilum sp. Chironomus decorus Polydora comuta Littoridinops sp. 2016 Dominant Species Chironomus decorus Marenzelleria viridis Macoma tenta Macoma balthica 100 33.2 72 23.9 50 16.6 Total 67 37 23 19 Total 29 28 16 6 Total 162 46 30 25 0 25.5 14.1 8.7 7.2 31.9 30.8 17.6 6.6 53.3 15.1 9.9 8.2 Apocorophium sp. Gammarus tigrinus Eteone heteropoda Candonidae sp 2000 Dominant Species Chironomus decorus Amphicteis flondus Procladius sp. Chironomus plumulosus 2009 Dominant Species Chironomus decorus Polydora comuta Macoma balthica Streblospio benedicti 2017 Dominant Species Marenzelleria viridis Gammarus tigrinus Streblospio benedicti Apocorophium sp. 100 35.2 42 14.8 28 9.9 22 Total 469 60 36 32 Total 92 76 58 33 Total 83 33 16 15 73.6 9.4 5.7 5.0 22.0 18.2 13.9 7.9 40.1 15.9 7.7 7.2 Chironomus decorus Candonidae sp. Gammarus tigrinus Littoridinops sp. 2001 Dominant Species Macoma balthica Mediomastus ambiseta Chironomus decorus Cyprideis littoralis 2010 Dominant Species Chironomus decorus Macoma tenta Macoma balthica Cyprideis littoralis 2018 Dominant Species Gammarus tigrinus Macoma balthica Apocorophium sp. Gammarus mucronatus 85 28.1 80 26.5 51 16.9 28 9.3 Total 160 135 44 42 Total 61 34 11 9 Total 118 77 66 59 29.1 24.6 8.0 7.7 43.9 24.4 7.9 6.5 23.6 15.4 13.2 11.8 Candonidae sp. Chironomus decorus Tanypus neopunctipennis Littoridinops sp 2002 Dominant Species Macoma balthica Mediomastus ambiseta Chironomus decorus Apedilum sp. 2011 Dominant Species Macoma balthica Chironomus decorus Mediomastus ambiseta Streblospio benedicti 2019 Dominant Species Chironomus decorus Streblospio benedicti Littoridinops sp. Conxidae sp. 125 56.8 86 39.1 4 1.8 Total 153 73 38 34 Total 415 292 18 83 Total 356 22 18 17 0.9 38.3 18.3 9.5 8.5 31.0 21.8 13.7 6.2 77.9 4.8 3.9 3.7 Candonidae sp. Apocorophium sp. Streblospio benedicti Eteone heteropoda 2003 Dominant Species Macoma balthica Chironomus decorus Streblospio benedicti Macoma tenta 2012 Dominant Species Chironomus decorus Macoma balthica Mediomastus ambiseta Macoma tenta 2020 Dominant Species Gammarus tigrinus Eteone heteropoda Littoridinops tenuipes Edotia montosa 97 48.7 58 29.1 10 5.0 8 4.0 Total 309 55 55 6 Total 116 83 78 38 Total 21 6 6 4 70.1 12.5 12.5 1.4 28.2 20.1 18.9 9.2 34.4 9.8 9.8 6.6 2004 Dominant Species Amphicteis flondus Chironomus decorus Littoridinops tenuipes Macoma balthica 2013 Dominant Species Gammarus mucronatus Chironomus decorus Parachironomus sp. Gammarus tigrinus Total 60 54 33 32 Total 53 31 11 10 18.4 16.6 10.1 9.8 40.8 23.8 8.5 7.7 2005 Dominant Species Chironomus decorus Streblospio benedicti Cyprideis littoralis Mediomastus ambiseta 2014 Dominant Species Chironomus decorus Macoma tenta Streblospio benedicti Polydora comuta Total 153 89 34 25 Total 419 18 14 11 41.2 24.0 9.2 6.7 76.3 3.3 2.6 2.0 Table III-G4 (continued). HUDDLES CUT UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - - - - Amphicteis floridus Monopylephorus sp. 120 62 46.9 24.2 Cyprideis littoralis Laeonereis culveri 9 6 19.6 13.0 Amphicteis floridus Laeonereis culveri 68 41 22.7 13.7 not monitored - - - - - not monitored - - - - - not monitored - - - - - not monitored - - - - - - - Gammarus tigrinus 20 7.8 Naididae sp. 5 10.9 Tanytarsus sp. 1 40 13.3 - - - - - - - - - - - - - - - Bezzia/Palpomyia complex 18 7.0 Chironomus decorus 5 10.9 Naididae sp. 33 11.0 - - - - - - - - - - - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Cyprideis littoralis 77 64.7 Chironomus decorus 104 52.0 Chironomus decorus 77 52.4 Chironomus decorus 137 91.3 Cyprideis littoralis 54 32.5 Heteromastus filiformis 182 49.2 Heteromastus filiformis 144 45.0 Macoma tenta 120 23.6 Laeonereis culveri 7 5.9 Cyprideis littoralis 38 19.0 Cyprideis littoralis 28 19.0 Apocorophium sp. 12 8.0 Heteromastus filiformis 50 30.1 Cyprideis littoralis 52 14.1 Chironomus decorus 47 14.7 Chironomus decorus 91 17.9 Amphicteis floridus 6 5.0 Laeonereis culveri 10 5.0 Goeldichironomus devineyae 14 9.5 Glyptotendipes sp. 1 0.7 Macoma tenta 23 13.9 Neanthes succinea 36 9.7 Naididae sp. w/o hair 28 8.8 Naididae sp. w/o hair 50 9.8 Apocorophium Iacustre 5 4.2 Amphicteis floridus 8 4.0 Heteromastus filiformis 7 4.8 - - - Bezzia/Palpomyia complex 15 9.0 Mediomastus amhiseta 20 5.4 Neanthes succinea 26 8.1 Gammarus tigrinus 50 9.8 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Tanytarsus sp. 19 19.6 Tubificoides heterochaetus 251 42.1 Cyprideis littoralis 146 49.0 Balanus improvisus 150 39.7 Chironomus decorus 379 70.6 Mediomastus amhiseta 105 44.7 Amphicteis floridus 12 12.4 Tanytarsus sp. 81 13.6 Chironomus decorus 39 13.1 Neanthes succinea 50 13.2 Tanypus neopunctipennis 57 10.6 Heteromastus filiformis 55 23.4 Macoma tenta 11 11.3 Amphicteis floridus 54 9.1 Laeonereis culveri 24 8.1 Heteromastus filiformis 35 9.3 Littoridinops sp. 39 7.3 Neanthes succinea 22 9.4 Bezzia/Palpomyia complex 9 9.3 Calanoida sp. 43 7.2 Macoma tenta 19 6.4 Macoma tenta 19 5.0 Cyprideis littoralis 38 7.1 Macoma tenta 11 4.7 HUDDLES CUT DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - Chironomus decorus 91 33.5 Chironomus decorus 463 35.9 Mediomastus amhiseta 144 28.7 not monitored - - not monitored - - not monitored - - not monitored - - - - - Amphicteis floridus 24 8.8 Amphicteis floridus 440 34.1 Macoma halthica 106 21.1 - - - - - - - - - - - - - - - Macoma tenta 22 8.1 Marenzelleria viridis 111 8.6 Amphicteis floridus 34 6.8 - - - - - - - - - - - - - - - Gammanis tigrinus 20 7.4 Polydora cornuta 71 5.5 Macoma tenta 28 5.6 - - - - - - - - - - - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Chironomus decorus 356 55.1 Nematoda sp. 220 44.3 Naididae sp. 116 52.7 Marenzelleria viridis 208 66.7 Nematoda sp. 416 32.8 Chironomus decorus 89 17.7 Streblospio benedicti 412 20.9 Nematoda sp. 500 45.0 Gammanis tigrinus 134 20.7 Laeonereis culveri 72 14.5 Nematoda sp. 64 29.1 Chironomus decorus 28 9.0 Turhellaria sp. 288 22.7 Streblospio benedicti 80 15.9 Mediomastus amhiseta 328 16.6 Grania sp. 252 22.7 Streblospio benedicti 36 5.6 Polydora cornuta 60 12.1 Neanthes succinea 8 3.6 Laeonereis culveri 17 5.4 Marenzelleria viridis 147 11.6 Heteromastus filifomiis 74 14.7 Naididae sp. w/o hair 226 11.5 Lepidactylus dytiscus 96 8.6 Littoridinops tenuipes 30 4.6 Naididae sp. 27 5.4 Macoma tenta 6 2.7 Nemertea sp. 10 3.2 Heteromastus filiformis 78 6.2 Eteone heteropoda 63 12.5 Gammanis tigrinus 196 10.0 Marenzelleria viridis 92 8.3 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Nematoda sp. 500 50.2 Nematoda sp. 124 18.3 Chironomus decorus 462 49.8 Marenzelleria viridis 475 59.8 Naididae sp. w/o hair 60 55.6 Lepidactylus dytiscus 34 29.8 Aulodrilus limnobius 276 27.7 Chironomus decorus 97 14.3 Cyprideis littoralis 131 14.1 Haustorius sp. 62 7.8 Marenzelleria viridis 12 11.1 Heteromastus filifomiis 18 15.8 Ostracoda sp. 124 12.4 Marenzelleria viridis 97 14.3 Amphicteis floridus 120 12.9 Lepidactylus dytiscus 42 5.3 Chironomus decorus 9 8.3 Neanthes succinea 18 15.8 Lepidactylus dytiscus 84 8.4 Cyprideis littoralis 66 9.8 Rangia cuneata 55 5.9 Naididae sp. w/o hair 40 5.0 Neanthes succinea 9 8.3 Eteone heteropoda 14 12.3 PORTER CREEK PORTER CREEK DOWNSTREAM UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Amphicteis floridus 379 29.4 Tanytarsus sp. 448 20.8 Apocorophium sp. 109 34.4 Amphicteis floridus 333 29.0 - - - - - - - - - - - - Apocorophium sp. 283 22.0 Littoridinops tenuipes 416 19.3 Gammanis tigrinus 81 25.6 Streblospio benedicti 256 22.3 - - - - - - - - - - - - Gammanis tigrinus 205 15.9 Cyprideis littoralis 300 13.9 Apocorophium Iouisianum 44 13.9 Tanytarsus sp. 205 17.8 - - - - - - - - - - - - Streblospio benedicti 180 14.0 Amphicteis floridus 260 12.1 Streblospio benedicti 32 10.1 Gammanis tigrinus 122 10.6 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Amphicteis floridus 484 56.7 Amphicteis floridus 500 40.3 Amphicteis floridus 500 37.5 Gammanis tigrinus 400 57.6 Gammanis tigrinus 176 39.7 Gammanis tigrinus 172 36.4 Gammanis tigrinus 183 21.5 Cyprideies littoralis 281 22.7 Gammanis tigrinus 317 23.7 Streblospio benedicti 78 11.2 Chironomus decorus 78 17.6 Apocorophium sp. 130 27.5 Apocorophium sp. 54 6.3 Gammanis tigrinus 249 20.1 Cyprideis littoralis 236 17.7 Littoridinops sp. 64 9.2 Littoridinops sp. 42 9.5 Apocorophium Iouisianum 78 16.5 Mytilopsis Ieucophaeata 29 3.4 Littoridinops sp. 45 3.6 Littoridinops sp. 149 11.2 Apocorophium Iacustre 32 4.6 Dero sp. 26 5.9 Candonidae sp. 22 4.7 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total not monitored - - not monitored - - not monitored - - not monitored - - Macoma halthica 308 52.3 Mediomastus amhiseta 42 34.1 Streblospio benedicti 109 38.1 Chironomus decorus 197 46.4 - - - - - - - - - - - - Marenzelleria viridis 207 35.1 Macoma tenta 28 22.8 Chironomus decorus 85 29.7 Tanypus neopunctipennis 63 14.8 - - - - - - - - - - - - Mediomastus amhiseta 16 2.7 Macoma halthica 20 16.3 Mediomastus amhiseta 23 8.0 Macoma tenta 58 13.6 - - - - - - - - - - - - Eteone heteropoda 14 2.3 Streblospio benedicti 18 14.6 Macoma halthica 14 4.9 Macoma halthica 34 8.0 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Chironomus sp. 500 79.6 Chironomus decorus 102 26.7 Chironomus decorus 184 24.8 Mediomastus amhiseta 212 32.2 Chironomus decorus 406 83.0 Mediomastus amhiseta 399 75.0 Streblospio benedicti 79 12.6 Marenzelleria viridis 96 25.1 Amphicteis floridus 170 22.9 Macoma tenta 111 16.9 Gammanis tigrinus 36 7.4 Streblospio benedicti 41 7.7 Amphicteis floridus 12 1.9 Macoma tenta 65 17.0 Streblospio benedicti 150 20.2 Marenzelleria viridis 84 12.8 Littoridinops sp. 23 4.7 Gammanis tigrinus 26 4.9 Gammanis tigrinus 12 1.9 Gammanis tigrinus 31 8.1 Marenzelleria viridis 75 10.1 Macoma halthica 83 12.6 Procladius sp. 8 1.6 Chironomus decorus 11 2.1 III-G-95 Table III-G4 (continued). anot .-lL ct M H 0 d aDominant W •- Ct M 0 Z In O Cl 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % monitored - - - - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - Gammarus tigrinus Amphicteis floridus Apocorophium sp. Littoridinops tenuipes 500 414 155 150 35.1 29.1 10.9 10.5 Littoridinops tenuipes Gammarus tigrinus Amphicteis floridus Cyprideis littoralis 500 458 368 312 22.8 20.9 16.8 14.2 2015 2016 2017 2018 2019 2020 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Littoridinops sp. Cyprideis littoralis Amphicteis floridus Berosus sp. 1998 464 111 63 42 65.1 15.6 8.8 5.9 Cyprideis littoralis Gammarus tigrinus Amphicteis floridus Littoridinops sp. 1999 407 263 224 190 28.6 18.5 15.8 13.4 Gammarus tigrinus Cyprideis littoralis Littoridinops sp. Amphicteis floridus 2000 298 68 28 26 66.8 15.2 6.3 5.8 Gammarus tigrinus Amphicteis floridus Cyprideis littoralis Littoridinops sp. 2001 356 148 107 81 45.4 18.9 13.6 10.3 Gammarus tigrinus Amphicteis floridus Candonidae sp. Dicrotendipes nervosus 2002 134 95 88 73 21.9 15.5 14.4 11.9 Gammarus tigrinus Littoridinops tenuipes Apocorophium sp. Cyprideis littoralis 2003 396 389 236 118 25.8 25.3 15.4 7.7 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - not monitored - - - - - not monitored - - - - - not monitored - - - - - not monitored - - - - - not monitored - - - - - Gammarus tigrinus Apocorophium sp. Apocorophium louisianum Amphicteis floridus 429 317 57 15 48.9 36.1 6.5 1.7 Amphicteis floridus Gammarus tigrinus Chironomus decorus Dicrotendipes nervosus 447 400 165 114 28.4 25.4 10.5 7.2 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Amphicteis floridus Gammarus tigrinus Dicrotendipes nervosus Apocorophium sp. 358 332 196 64 32.6 30.2 17.8 5.8 Gammarus tigrinus Amphicteis floridus Marenzelleria viridis Apocorophium lacustre 108 90 11 8 43.5 36.3 4.4 3.2 Gammarus tigrinus Amphicteis floridus Littoridinops sp. Mytilopsis leucophaeta 440 422 186 50 37.0 35.5 15.7 4.2 Gammarus tigrinus Apocorophium sp. Apocorophium lacustre Tanytarsus sp. 462 456 318 102 29.8 29.5 20.5 6.6 Amphicteis floridus Gammarus tigrinus Littoridinops sp. Cyprideis littoralis 224 203 20 18 41.3 37.5 3.7 3.3 Gammarus tigrinus Apocorophium sp. Apocorophium lacustre Dicrotendipes nervosus 500 438 387 320 23.8 20.8 18.4 15.2 CtDominant Z Q 0 lL () Ct (/) x- 11 I- M M UCl 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - not monitored - - - - - not monitored - - - - - not monitored - - - - - not monitored - - - - - not monitored - - - - - Littoridinops tenuipes Chironomus decorus Amphicteis floridus Gammarus tigrinus 182 146 116 70 21.4 17.2 13.6 8.2 Littoridinops tenuipes Tanytarsus sp. Chironomus decorus Bezzia/Palpomyia complex 497 185 157 55 43.1 16.0 13.6 4.8 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total Amphicteis floridus Littoridinops sp. Tanytarsus sp. Cyprideis littoralis 44 36 18 12 25.9 21.2 10.6 7.1 Amphicteis floridus Littoridinops sp. Cyprideis littoralis Nematoda sp. 297 295 160 128 25.4 25.2 13.7 11.0 Candonidae sp. Tanytarsus sp. Amphicteis floridus Littoridinops sp. 256 160 136 116 22.8 14.2 12.1 10.3 Candonidae sp. Apocorophium sp. Littoridinops sp. Apocorophium louisianum 290 136 67 37 46.0 21.6 10.6 5.9 Tanytarsus sp. Candonidae sp. Amphicteis floridus Littoridinops sp. 290 177 155 61 36.4 22.2 19.5 7.7 Apocorophium sp. Littoridinops tenuipes Candonidae sp. Chironomus decorus 128 83 35 28 31.8 20.6 8.7 7.0 DCUT19 (CONTROL) DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - not monitored - - - - - not monitored - - - - - not monitored - - - - - not monitored - - - - - not monitored - - - - - Hargeria rapax Gammarus tigrinus Nematoda sp. Cyathura polita 500 424 140 68 36.0 30.5 10.1 4.9 Gammarus tigrinus Naididae sp. w/o hair Hargeria rapax Littoridinops tenuipes 500 428 128 95 34.6 29.6 8.9 6.6 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Amphicteis floridus Gammarus tigrinus Candonidae sp. Chironomus sp. 395 296 171 165 19.7 14.7 8.5 8.2 Gammarus tigrinus Amphicteis floridus Apocorophium lacustre Cyprideis littoralis 475 147 63 45 50.8 15.7 6.7 4.8 Gammarus tigrinus Amphicteis floridus Littoridinops sp. Cyprideis littoralis 500 500 282 234 18.9 18.9 10.7 8.9 Gammarus tigrinus Naididae sp. w/o hair Apocorophium sp. Hargeria rapax 433 95 31 15 68.1 14.9 4.9 2.4 Gammarus tigrinus Candonidae sp. Littoridinops sp. Chironomus decorus 476 158 84 79 49.9 16.6 8.8 8.3 Hargeria rapax Gammarus tigrinus Apocorophium sp. Amphicteis floridus 500 435 344 78 29.9 26.0 20.6 4.7 III-G-96 Table III-G4 (concluded). DUCK CREEK (CONTROL) UPSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - Amphicteis fioridus Littoridinops tenuipes Gammarus tigrinus Dicrotendipes nervosus 436 416 308 152 23.4 22.3 16.5 8.2 Candonidae sp. Chironomus deconis Tanytarsus sp. Littoridinops tenuipes 500 484 332 276 26.2 25.4 17.4 14.5 Nematoda sp. Candonidae sp. Amphicteis fioridus Littoridinops tenuipes 293 227 193 147 25.3 19.6 16.6 12.7 Amphicteis fioridus Chironomus decorus Gammarus tigrinus Littoridinops tenuipes 500 500 221 191 25.7 25.7 11.4 9.8 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Amphicteis fioridus Gammarus tigrinus Candonidae sp. Chironomus sp. 199 115 54 44 33.2 19.2 9.0 7.3 Gammarus tigrinus Amphicteis fioridus Candonidae sp. Cyprideis Iittoralis 386 247 221 126 29.5 18.9 16.9 9.6 Amphicteis fioridus Candonidae sp. Gammarus tigrinus Naididae sp. w/o hair 254 74 70 64 43.8 12.8 12.1 11.0 Cyprideis Iittoralis Candonidae sp. Gammarus tigrinus Littoridinops sp. 126 95 55 51 34.5 26.0 15.1 14.0 Candonidae sp. Gammarus tigrinus Naididae sp. w/o hair Tanytarsus sp. 71 58 26 15 33.6 27.5 12.3 7.1 Amphicteis fioridus Gammarus tigrinus Cyprideis Iittoralis Candonidae sp. 126 28 22 20 59.4 13.2 10.4 9.4 DUCK CREEK (CONTROL) DOWNSTREAM 1998 1999 2000 2001 2002 2003 2004 2005 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - not monitored - - 2007 2008 2009 2010 2011 2012 2013 2014 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - not monitored - - - - - - - - - - - Macoma baithica Marenzelleria viridis Mediomastus ambiseta Chironomus decorus 456 338 166 81 37.8 28.0 13.8 6.7 Mediomastus ambiseta Chironomus decorus Macoma baithica Parachironomus sp. 398 167 49 23 54.5 22.9 6.7 3.2 Gammanis mucronatus Macoma baithica Gammanis tigrinus Chironomus decorus 123 72 70 47 28.1 16.5 16.0 10.8 Chironomus decorus Streblospio benedicti Littoridinops tenuipes Macoma tenta 500 56 15 13 79.0 8.8 2.4 2.1 2015 2016 2017 2018 2019 2020 Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Dominant Species Total % Chironomus sp. Tanytarsus sp. Tanypus neopunctipennis Streblospio benedicti 489 30 29 14 82.2 5.0 4.9 2.4 Gammarus tigrinus Leptocheirus plumulosus Coeiotanypus sp. Macoma tenta 35 35 14 12 23.8 23.8 9.5 8.2 Amphicteis fioridus Procladius sp. Tubificoides heterochaetus Apocorophium sp. 244 55 54 42 40.6 9.2 9.0 7.0 Gammarus tigrinus Chironomus deconis Mediomastus ambiseta Balanus improvisus 384 156 104 101 38.5 15.6 10.4 10.1 Procladius sp. Cyprideis Iittoralis Chironomus decorus Tanypus neopunctipennis 293 219 172 44 35.3 26.4 20.7 5.3 Mediomastus ambiseta Streblospio benedicti Chironomus deconis Gammanis tigrinus 331 54 17 11 74.4 12.1 3.8 2.5 III-G-97 Table III-G5. Benthic macroinvertebrate community structure data for ponar grab samples collected at upstream and downstream stations in May of Mod Alt L sample years 1998-2005 and 2007-2020. Pre - Mod Alt L: Broomfield Swamp Creek (2019-2020), Jacks Creek (1998-2005; 2011-2014), Jacobs Creek (2011-2013), Drinkwater Creek (2011-2012), Tooley Creek (1998-2001; 2010-2011), Huddles Cut (1998-2001; 2007-2009), Porter Creek (2011-2015), and DCUT11 (2013-2017). Post -Mod Alt L: Jacks Creek (2015-2020), Jacobs Creek (2014-2020), Drinkwater Creek (2013-2020), Tooley Creek (2012- 2020), Huddles Cut (2010-2020), Porter Creek (2016-2020), and DCUT11 (2018-2020). Control creeks: SCUT1 (2019-2020), PA2, Long, Little, and Duck creeks (2011-2020), Muddy Creek (1998-2005 and 2007-2020), and DCUT19 (2013-2020). A - indicates the creek was not monitored that year. Pre- and post -Mod Alt L collection years for impact creeks are separated by bold vertical lines. Benthic collections occurred in June for 2010. Summary pre and post Mod Alt L are shown in Table II-05. Station community structure data by year 1998 1999 2000 2001 2002 2003 2004 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 JACOBS CREEK JACKS CREEK SCUT 1 (CONTROL) BROOMFIELD SWAMP CREEK Total abundance - - - - - - - - - - - - - - - - - - - - 347 87 Total taxa - - - - - - - - - - - - - - - - - - - - 11 5 D Total taxa with sensitivity values - - - - - - - - - - - - - - - - - - - - 9 5 Shannon -Wiener Index - - - - - - - - - - - - - - - - - - - - 1.75 1.21 EBIa - - - - - - - - - - - - - - - - - - - - 1.04 1.22 Total abundance - - - - - - - - - - - - - - - - - - - - 356 144 Total taxa - - - - - - - - - - - - - - - - - - - - 14 10 oTotal taxa with sensitivity values - - - - - - - - - - - - - - - - - - - - 10 10 Shannon -Wiener Index - - - - - - - - - - - - - - - - - - - - 1.30 1.16 EBIa - - - - - - - - - - - - - - - - - - - - 1.02 1.91 Total abundance - - - - - - - - - - - - - - - - - - - - 509 334 Total taxa - - - - - - - - - - - - - - - - - - - - 18 7 D Total taxa with sensitivity values - - - - - - - - - - - - - - - - - - - - 14 6 Shannon -Wiener Index - - - - - - - - - - - - - - - - - - - - 1.72 0.99 EBIa - - - - - - - - - - - - - - - - - - - - 1.23 1.74 Total abundance - - - - - - - - - - - - - - - - - - - - 219 92 Total taxa - - - - - - - - - - - - - - - - - - - - 16 8 oTotal taxa with sensitivity values - - - - - - - - - - - - - - - - - - - - 11 6 Shannon -Wiener Index - - - - - - - - - - - - - - - - - - - - 2.13 1.74 EBIa - - - - - - - - - - - - - - - - - - - - 1.25 1.77 Total abundance 215 515 1,121 1,356 295 615 549 463 - - - - 549 255 389 940 353 90 549 636 123 142 Totaltaxa 19 8 19 17 13 17 30 18 - - - - 19 5 13 24 18 14 19 24 15 12 D Total taxa with sensitivity values 17 5 16 13 12 14 26 15 - - - - 17 4 11 20 16 12 17 22 12 9 Shannon -Wiener Index 2.14 0.72 1.82 1.77 1.26 0.97 2.22 2.01 - - - - 2.33 0.78 1.62 2.19 2.20 2.00 2.22 1.83 2.17 1.99 EBIa 1.85 2.00 1.57 1.65 1.67 1.48 1.80 1.58 - - - - 1.57 1.07 1.41 1.63 1.84 1.99 1.79 1.75 1.43 1.44 Total abundance 221 274 314 398 1246 1639 719 1013 - - - - 1090 203 427 183 831 315 372 436 192 473 Totaltaxa 18 17 11 16 18 15 22 18 - - - - 23 15 19 23 25 15 18 14 10 19 o Total taxa with sensitivity values 16 15 11 15 17 14 21 17 - - - - 22 11 17 21 21 14 16 14 8 16 Shannon -Wiener Index 2.27 2.07 1.25 1.94 1.64 1.55 2.18 1.59 - - - - 2.39 1.24 1.54 2.51 2.08 1.55 1.91 1.89 0.96 1.80 EBIa 1.40 2.13 1.19 1.95 1.57 1.56 1.71 1.29 - - - - 1.46 1.11 1.41 1.57 1.42 2.33 2.10 2.06 1.17 1.93 Total abundance - - - - - - - - - - - - 395 678 1,277 559 1,163 59 990 493 341 170 Totaltaxa - - - - - - - - - - - - 18 18 18 15 23 16 22 19 15 21 D Total taxa with sensitivity values - - - - - - - - - - - - 17 17 13 13 18 14 19 16 11 19 Shannon -Wiener Index - - - - - - - - - - - - 2.10 1.92 1.98 1.89 2.14 2.42 2.15 2.09 1.92 2.48 EBIa - - - - - - - - - - - - 1.66 2.22 2.27 1.35 2.00 2.00 1.91 1.71 1.40 1.78 Total abundance - - - - - - - - - - - - 628 608 592 309 679 213 877 708 616 370 Totaltaxa - - - - - - - - - - - - 24 12 22 18 23 21 21 19 14 18 oTotal taxa with sensitivity values - - - - - - - - - - - - 21 11 19 16 21 21 19 17 11 18 Shannon -Wiener Index - - - - - - - - - - - - 2.1 1.58 1.78 1.77 1.55 1.87 2.07 2.06 0.90 1.88 EBIa - - - - - - - - - - - - 1.58 2.17 1.57 1.47 1.43 2.27 2.02 1.68 1.30 2.02 III-G-98 Table III-G5 (concluded). Station community structure data by year 1998 1999 2000 2001 2002 2003 2004 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 LONG CREEK (CONTROL) LITTLE CREEK (CONTROL) DRINKWATER CREEK PA2 (CONTROL) D Total abundance Total taxa Total taxa with sensitivity values Shannon -Wiener Index E Bla - - - - - - - - - - - - 784 - - - - - - - - - - - - 18 - - - - - - - - - - - - 16 - - - - - - - - - - - - 2.26 - - - - - - - - - - - - 1.89 586 7 6 1.07 2.31 414 14 12 1.54 2.87 305 13 12 1.68 1.75 563 18 15 1.35 1.42 554 14 11 1.23 1.49 395 19 17 1.55 2.02 507 16 15 2.28 1.54 589 18 14 1.48 1.42 363 15 14 2.17 2.19 Total abundance - - - - - - - - - - - - 439 776 450 174 783 970 1217 1392 666 137 Total taxa - - - - - - - - - - - - 19 12 16 11 27 23 27 25 18 18 oTotal taxa with sensitivity values - - - - - - - - - - - - 16 10 14 11 24 22 25 24 15 16 Shannon -Wiener Index - - - - - - - - - - - - 2.31 1.15 1.84 1.71 2.35 2.16 1.88 2.46 1.46 1.95 E Bla - - - - - - - - - - - - 1.80 2.39 2.82 1.49 1.89 2.06 1.99 1.65 1.38 2.04 Total abundance - - - - - - - - - - - - 1,236 1,267 829 973 265 363 930 767 530 242 Total taxa - - - - - - - - - - - - 21 22 23 22 22 17 19 18 11 15 D Total taxa with sensitivity values - - - - - - - - - - - - 19 19 21 20 19 16 16 17 9 15 Shannon -Wiener Index - - - - - - - - - - - - 2.32 2.08 1.58 2.32 2.27 1.87 1.80 1.75 1.97 2.14 E Bla - - - - - - - - - - - - 1.88 1.70 1.64 1.59 1.71 2.10 1.95 1.68 1.76 1.80 Total abundance - - - - - - - - - - - - 1089 810 1140 1113 161 354 483 1138 673 390 Total taxa - - - - - - - - - - - - 21 16 22 19 13 17 17 23 16 23 oTotal taxa with sensitivity values - - - - - - - - - - - - 20 14 20 16 12 15 16 22 12 22 Shannon -Wiener Index - - - - - - - - - - - - 2.33 1.34 2.46 1.85 2.18 1.45 2.00 2.43 1.03 2.38 E B la - - - - - - - - - - - - 1.68 2.22 1.86 1.68 1.57 2.23 2.03 1.67 1.16 1.84 Total abundance - - - - - - - - - - - - 610 1,394 1,865 366 522 625 1,158 1,297 732 69 Total taxa - - - - - - - - - - - - 15 11 23 11 12 17 18 19 16 6 D Total taxa with sensitivity values - - - - - - - - - - - - 14 9 18 9 11 14 15 16 13 4 Shannon -Wiener Index - - - - - - - - - - - - 1.23 1.65 2.27 1.94 1.51 1.74 2.11 1.85 1.95 1.08 E Bla - - - - - - - - - - - - 1.95 1.78 1.71 1.45 1.75 1.88 1.38 1.64 1.49 2.00 Total abundance - - - - - - - - - - - - 619 533 2023 889 2018 478 1219 988 601 354 Total taxa - - - - - - - - - - - - 22 16 28 19 25 18 20 25 11 17 oTotal taxa with sensitivity values - - - - - - - - - - - - 21 15 25 18 22 17 18 23 10 15 Shannon -Wiener Index - - - - - - - - - - - - 2.01 1.39 2.34 1.81 2.40 2.08 2.24 2.07 0.75 2.27 E Bla - - - - - - - - - - - - 1.98 1.84 1.71 1.36 1.68 1.84 1.90 1.72 1.24 1.90 Total abundance - - - - - - - - - - - - 503 376 941 719 633 86 822 561 245 401 Total taxa - - - - - - - - - - - - 18 14 22 25 19 12 25 32 10 19 D Total taxa with sensitivity values - - - - - - - - - - - - 17 12 20 22 16 11 21 28 9 18 Shannon -Wiener Index - - - - - - - - - - - - 2.04 1.49 1.65 1.57 1.91 1.87 2.27 2.56 1.11 1.84 E Bla - - - - - - - - - - - - 2.31 1.36 1.89 1.49 1.45 2.05 1.90 1.79 1.22 2.04 Total abundance - - - - - - - - - - - - 216 769 363 273 941 176 296 351 532 70 Total taxa - - - - - - - - - - - - 11 15 16 14 14 14 17 22 16 9 o Total taxa with sensitivity values - - - - - - - - - - - - 10 12 15 13 12 12 16 21 15 9 Shannon -Wiener Index - - - - - - - - - - - - 1.25 1.26 1.71 1.29 1.52 2.12 2.03 2.66 0.94 1.67 E B la - - - - - - - - - - - - 1.76 1.72 1.44 1.29 1.27 1.66 2.03 1.85 1.28 1.74 III-G-99 Table III-G5 (continued). Station community structure data by year 1998 1999 2000 2001 2002 2003 2004 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 PORTER CREEK HUDDLES CREEK MUDDY CREEK (CONTROL) TOOLEY CREEK Total abundance 475 320 459 937 - - - - - - - 138 363 155 942 232 232 65 252 198 360 50 Totaltaxa 17 13 11 24 - - - - - - - 13 19 11 21 23 19 13 19 18 16 12 D Totaltaxa with sensitivity values 16 10 10 23 - - - - - - - 10 18 10 19 21 16 12 16 16 15 11 Shannon -Wiener Index 2.04 1.35 0.49 1.81 - - - - - - - 2.04 2.30 1.40 1.86 2.43 2.25 2.07 2.39 2.21 2.11 2.31 E Bla 2.09 2.03 1.16 1.58 - - - - - - - 1.28 1.76 1.15 1.80 1.51 1.73 2.03 2.00 1.52 1.51 1.86 Total abundance 919 270 743 1,088 - - - - - - - 511 416 1,415 877 812 995 285 669 1,056 355 272 Totaltaxa 20 18 11 25 - - - - - - - 18 18 17 24 16 20 16 23 22 14 16 o Totaltaxa with sensitivity values 19 15 9 24 - - - - - - - 16 17 16 22 14 19 15 22 20 13 15 Shannon -Wiener Index 1.68 2.31 1.37 1.75 - - - - - - - 2.16 1.93 1.57 1.54 1.33 1.66 2.01 2.28 2.21 1.00 1.28 E Bla 1.45 2.07 1.22 1.77 - - - - - - - 1.59 1.89 1.42 1.46 1.54 1.41 1.86 1.75 1.79 1.16 1.85 Total abundance 1,191 149 546 51 75 114 46 616 291 35 191 67 234 203 160 49 235 307 284 302 220 199 Totaltaxa 21 12 9 6 11 8 11 20 11 9 19 7 12 7 10 8 13 16 15 12 7 12 D Totaltaxa with sensitivity values 20 10 6 5 10 6 9 17 10 8 17 6 10 6 8 5 11 13 14 10 6 11 Shannon -Wiener Index 1.77 1.77 0.82 1.47 1.57 1.54 1.93 2.01 1.48 1.86 2.37 1.02 1.21 1.25 1.14 1.23 1.39 1.89 2.19 1.87 0.88 1.51 E Bla 2.05 2.00 1.17 1.51 1.73 1.33 1.32 1.69 1.14 1.32 1.57 1.36 1.23 1.65 1.05 1.41 1.19 1.50 2.02 1.55 1.07 1.94 Total abundance 349 263 637 556 400 442 326 371 196 91 418 139 1329 412 162 549 592 304 207 500 457 61 Totaltaxa 15 17 16 25 18 12 21 16 15 12 26 17 24 19 16 19 20 15 19 20 15 15 o Totaltaxa with sensitivity values 14 16 14 24 17 11 19 15 14 10 23 16 22 18 14 17 18 13 17 18 13 13 Shannon -Wiener Index 1.25 2.45 1.08 2.32 2.03 1.03 2.54 1.81 1.88 1.76 2.52 1.81 2.17 2.08 2.22 1.19 1.58 1.60 2.12 2.31 1.02 2.25 E Bla 1.42 1.81 1.28 1.72 1.87 1.39 1.64 1.24 1.47 2.01 1.45 1.63 1.63 1.44 1.74 1.28 1.31 1.53 2.02 1.91 1.24 1.94 Total abundance - 256 46 300 - - - - 119 200 147 150 166 370 325 509 97 596 298 378 537 235 Totaltaxa - 17 10 20 - - - - 18 13 15 3 15 14 15 22 17 23 21 25 11 17 D Totaltaxa with sensitivity values - 13 9 18 - - - - 15 12 11 3 14 13 13 20 15 18 19 24 9 16 Shannon -Wiener Index - 1.69 2.27 2.41 - - - - 1.56 1.59 1.61 0.32 1.81 1.83 1.95 2.47 2.52 2.14 1.93 2.30 1.07 1.79 E Bla - 1.98 1.57 1.72 - - - - 1.63 1.12 1.34 1.11 1.57 1.44 1.29 1.65 1.85 1.65 1.49 1.81 1.26 1.76 Total abundance - 272 1291 502 - - - - 646 500 220 312 1268 530 1980 1112 996 676 928 794 108 114 Totaltaxa - 19 23 24 - - - - 19 13 11 17 21 19 20 19 7 22 24 18 8 11 o Totaltaxa with sensitivity values - 17 19 19 - - - - 17 11 10 15 17 18 17 15 4 19 21 15 8 11 Shannon -Wiener Index - 2.4 1.8 2.4 - - - - 1.53 1.88 1.39 1.44 2.09 2.56 2.43 1.77 1.24 2.52 1.82 1.70 1.51 2.01 E Bla - 1.62 1.81 1.71 - - - - 1.56 1.29 1.13 2.23 1.96 1.66 1.49 2.03 3.08 1.85 1.53 2.15 1.49 2.44 Total abundance - - - - - - - - - - - - 1,387 2,136 317 1,150 847 1,240 1,335 695 443 472 Totaltaxa - - - - - - - - - - - - 22 20 15 21 18 16 18 15 21 14 D Totaltaxa with sensitivity values - - - - - - - - - - - - 20 17 14 18 13 12 14 13 17 12 Shannon -Wiener Index - - - - - - - - - - - - 2.14 2.30 1.84 2.01 1.53 1.73 1.74 1.61 2.08 1.76 E Bla - - - - - - - - - - - - 1.86 1.84 1.91 1.80 1.96 1.90 1.91 1.87 1.68 2.06 Total abundance - - - - - - - - - - - - 589 123 287 425 628 382 743 658 489 532 Totaltaxa - - - - - - - - - - - - 12 10 19 11 11 16 14 16 12 17 oTotaltaxa with sensitivity values - - - - - - - - - - - - 12 9 17 11 10 14 13 15 11 14 Shannon -Wiener Index - - - - - - - - - - - - 1.23 1.72 1.87 1.62 0.79 2.00 2.03 2.00 0.72 1.10 E Bla - - - - - - - - - - - - 1.94 1.76 1.26 1.33 1.2 1.6 1.55 1.89 1.31 1.79 III-G-100 Table III-G5 (continued). Station community structure data by year 1998 1999 2000 2001 2002 2003 2004 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total abundance - - - - - - - - - - - - - - 1,423 2,192 713 1,422 446 784 611 1,535 Total taxa - - - - - - - - - - - - - - 19 21 18 21 12 18 22 18 D Total taxa with sensitivity values - - - - - - - - - - - - - - 15 16 14 15 9 16 17 15 Shannon -Wiener Index - - - - - - - - - - - - - - 1.83 2.08 1.20 2.12 1.17 1.71 2.42 2.01 EBIa - - - - - - - - - - - - - - 2.01 1.88 1.88 1.84 2.00 1.95 1.80 1.99 D Total abundance - - - - - - - - - - - - - - 878 1575 1099 248 1188 1548 542 2105 U 0 Total taxa - - - - - - - - - - - - - - 14 28 22 17 18 20 15 16 oTotal taxa with sensitivity values - - - - - - - - - - - - - - 11 25 17 14 14 18 13 15 Shannon -Wiener Index - - - - - - - - - - - - - - 1.31 2.19 1.88 1.54 1.52 1.78 1.55 1.96 DUCK CREEK (CONTROL) DCUT19 (CONTROL) EBIa - - - - - - - - - - - - - - 2.07 1.67 1.71 2.02 1.95 2.05 1.95 1.87 Total abundance - - - - - - - - - - - - - - 850 1,153 170 1,169 1,124 630 796 402 Total taxa - - - - - - - - - - - - - - 21 17 13 19 18 13 15 20 D Total taxa with sensitivity values - - - - - - - - - - - - - - 19 14 10 15 13 11 11 19 Shannon -Wiener Index - - - - - - - - - - - - - - 2.49 1.95 2.19 2.11 2.32 1.67 1.78 2.23 EBIa - - - - - - - - - - - - - - 1.71 1.73 1.88 1.98 1.96 2.12 2.03 2.00 Total abundance - - - - - - - - - - - - - - 1388 1446 2007 935 2641 636 953 1672 Total taxa - - - - - - - - - - - - - - 20 24 27 21 24 17 13 25 oTotal taxa with sensitivity values - - - - - - - - - - - - - - 18 23 23 18 19 15 11 23 Shannon -Wiener Index - - - - - - - - - - - - - - 1.88 2.01 2.74 1.84 2.52 1.25 1.69 1.98 EBIa - - - - - - - - - - - - - - 1.78 1.71 1.75 2.03 1.71 1.86 1.73 1.88 Total abundance - - - - - - - - - - - - 1,865 1,908 1,173 1,944 600 1,307 580 365 211 212 Totaltaxa - - - - - - - - - - - - 17 15 19 15 16 19 11 8 15 9 D Total taxa with sensitivity values - - - - - - - - - - - - 15 12 14 12 11 15 8 6 12 7 Shannon -Wiener Index - - - - - - - - - - - - 2.20 1.93 2.14 2.09 2.17 2.15 1.75 1.63 1.94 1.34 EBIa - - - - - - - - - - - - 1.76 1.73 1.85 1.54 1.86 1.77 1.83 1.95 1.64 2.01 Total abundance - - - - - - - - - - - - 1206 730 438 633 595 147 601 998 829 445 Totaltaxa - - - - - - - - - - - - 19 18 20 16 16 16 25 21 11 15 oTotal taxa with sensitivity values - - - - - - - - - - - - 19 17 18 15 13 14 22 20 8 13 Shannon -Wiener Index - - - - - - - - - - - - 1.77 1.52 2.19 0.94 0.83 2.20 2.19 2.08 1.65 1.04 EBIa - - - - - - - - - - - - 1.91 1.55 1.87 1.27 1.32 2.25 1.73 1.74 1.31 1.77 III-G-101 Table III-G5 (concluded). In the ponar summary table below, bold values denote the highest value in a given row (16 bold values total) and bold italics denote the highest value on an upstream or downstream basis (eight bold italic values total- four upstream and four downstream). Annual Ranges All Creeks(upstream): 1998 1999 2000 2001 2002 2003 2004 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total abundance 215-1,191 149-515 46-1,121 51-1,356 75-295 114-615 46-549 463-616 119-291 35-200 147-191 67-150 166-1,865 155 -2,136 160-1,865 49-2,192 97-1,163 59-1,422 252-1,335 198-1,297 123-796 50-1,535 Total taxa 17-21 8-17 9-19 6-24 11-13 8-17 11-30 18-20 11-18 9-13 15-19 3-13 12-22 5-22 10-23 8-25 12-23 12-23 11-25 8-32 7-22 5-21 Shannon -Weiner ponar grabs 1.77 - 2.14 0.72 - 1.77 0.49 - 2.27 1.47 - 2.41 1.26 - 1.57 0.97 -1.54 1.93 - 2.22 2.01 1.48 - 1.56 1.59 - 1.86 1.61 - 2.37 0.32 - 2.04 1.21 - 2.33 0.78 - 2.30 1.14 - 2.49 1.23 - 2.47 1.20 - 2.52 1.23 - 2.42 1.17 - 2.39 1.61 - 2.56 0.88 - 2.42 0.99-2.48 EBI ponar grabs 1.85 - 2.09 1.98 - 2.03 1.16 - 1.57 1.51 - 1.72 1.67 - 1.73 1.33 - 1.48 1.32 - 1.80 1.58 - 1.69 1.14 - 1.63 1.12 1.32 1.34 - 1.57 1.11 - 1.36 1.23 - 2.31 1.07 - 2.31 1.05 - 2.87 1.35 - 1.88 1.19 - 2.00 1.49 - 2.10 1.38 - 2.02 1.52 - 2.12 1.04 - 2.03 1.22-2.19 Annual Ranges All Creeks (downstream): Total abundance 221-919 263 - 274 314 - 1,291 398 - 1,088 400 - 1,246 442 - 1,639 326 - 719 371 - 1,013 196 - 646 91 - 500 220 - 418 139 - 511 216 - 1,329 123 - 1,415 162 - 2,023 174 - 1,575 161 - 2,018 147 - 970 207 - 2,641 351 - 1,548 108 - 953 61-2,105 Total taxa 15-20 17-19 11-23 16-25 18 12-15 21-22 16-18 15-19 12-13 11-26 17-18 11-24 10-19 14-28 11-28 7-27 14-23 14-27 14-25 8-18 8-25 Shannon -Weiner ponar grabs 1.25 - 2.27 2.07 - 2.45 1.08 - 1.80 1.75 - 2.40 1.64 - 2.03 1.03 - 1.55 2.18 - 2.54 1.59 - 1.81 1.53 - 1.88 1.76 - 1.88 1.39 - 2.52 1.44 - 2.16 1.23 - 2.39 1.15 -2.56 1.31 - 2.46 0.94 - 2.51 0.79 - 2.74 1.45 - 2.52 1.52 - 2.52 1.25 - 2.66 0.72 - 2.13 1.04-2.38 EBI ponar grabs 1.40 - 1.45 1.62 - 2.13 1.19 - 1.81 1.71 - 1.95 1.57 - 1.87 1.39 - 1.56 1.64 - 1.71 1.24 - 1.29 1.47 - 1.56 1.29 - 2.01 1.13 - 1.45 1.59 - 2.23 1.46 - 1.98 1.11 - 2.39 1.26 - 2.82 1.27 - 2.03 1.20 - 3.08 1.53 - 2.33 1.53 - 2.10 1.65 - 2.15 1.02 - 1.95 1.74-2.44 Annual Averages All Creeks (upstream): Total abundance 627 310 543 661 185 365 298 540 205 118 169 118 736 848 839 853 492 606 705 586 440 328 Total taxa 19 13 12 17 12 13 21 19 15 11 17 8 18 13 18 18 17 17 18 18 15 13 Shannon -Weiner ponar grabs 1.98 1.38 1.35 1.42 1.42 1.26 2.08 2.01 1.52 1.73 1.99 1.13 1.99 1.61 1.84 1.99 1.89 1.95 1.97 1.95 1.76 1.79 EBI ponar grabs 2.00 2.00 1.37 1.62 1.70 1.41 1.56 1.64 1.39 1.22 1.46 1.25 1.77 1.66 1.80 1.60 1.73 1.86 1.86 1.76 1.47 1.86 Annual Averages All Creeks (downstream): Total abundance 496 270 746 636 823 1,041 523 692 421 296 319 321 808 618 847 584 948 422 880 862 506 482 Total taxa 18 18 15 23 18 14 22 17 17 13 19 17 19 15 20 17 19 18 21 20 14 16 Shannon -Weiner ponar grabs 1.73 2.31 1.38 2.10 1.84 1.29 2.36 1.70 1.71 1.82 1.96 1.80 1.96 1.58 1.93 1.69 1.75 1.92 2.05 2.07 1.24 1.76 EBI ponar grabs 1.42 1.91 1.38 1.79 1.72 1.48 1.68 1.27 1.52 1.65 1.29 1.82 1.78 1.75 1.73 1.51 1.62 1.96 1.87 1.85 1.33 1.91 III-G-102 Table III-G6. Highest Shannon -Weiner diversity score and highest EBI score by creek per year, highest Shannon -Weiner diversity score and highest EBI score for each year among all creeks, and summary of ranges and averages by creek. Short bold underline separates pre -/post -Mod Alt L years for each impact creek. Pink highlighted cells indicate average scores which were higher post -Mod Alt L; yellow highlighted cells indicate averages where post -Mod Alt L score was lower; grey highlighted cells indicate averages that did not change pre- to post -Mod Alt L. Highest Shannon -Wiener Diversity Score among all Ponars in each Creek by Year "2 = not monitored; (u) = upstream (d) = downstream; bold values = highest score all creeks that year Highest EBI Score among all Sweeps in each Creek by Year "2 = not monitored; (u) = upstream (d) = downstream; bold values = highest score all creeks that year Year Broomfield Swamp SCUT1 Jacks Jacobs PA2 Drinkwater Little Long Tooley Muddy Huddles Cut Porter DCUT11 DCUT19 Duck Year Broomfield Swamp SCUT1 Jacks Jacobs PA2 Drinkwater Little Long Tooley Muddy Huddles Cut Porter DCUT11 DCUT19 Duck 1998 - - 227 (d) - - - - - 2.04 (u) 2.05 (u) - - - - - - - - - - - - - - 1998 - - 1.78 (u) - - - - - 1.92 (u) 1.78 (d) - - - - - 1999 - - 2.07 (d) - - _ - - - 2.31 (d) 2.45 (d) 2.40 (d) - - 1999 - - 2.05 (d) - - - - - 2.02 (u) 2.00 (d) 2.15 (d) - - - - 2000 - - 1.82 (u) - - _ - - - 1.37 (d) 1.08 (d) 227 (u) - - 2000 - - 1.77 (d) - - - - - 1.90 (d) 1.94 (d) 220 (d) - - - - 2001 - - 1.94 (d) - - _ - - - 1.81 (u) 2.32 (d) 2.41 (u) - - 2001 - - 1.86 (u) - - - - - 2.08 (u) 1.86 (u) 1.94 (u) - - - - 2002 - - 1.64 (d) - - _ - - - - 2.03 (d) - - - - 2002 - - 1.93 (d) - - - - - - 2.42 (d) - - - - - 2003 - - 1.55 (d) - - _ - - - - 1.54 (u) - - - - 2003 - - 2.04 (d) - - - - - - 1.88 (d) - - - - - 2004 - - 2.22 (u) - - - - - - - 2.54 (d) - - - - 2004 - - 2.19 (d) - - - - - - 2.05 (d) - - - - - 2005 - - 2.01 (u) - - - - - 2.01 (u) - - - - 2005 - - 2.05 (d) - - - - - - 2.01 (u) - - - - - 2007 - - - - - - - - - 1.88 (d) 1.86 (u) 2.52 (d) 1.81 (d) 1.56 (u) - - - - 2007 - - - - - - - - - 1.95 (d) 2.07 (u) - - - - 2008 - - - - - - - - - 1.88 (d) - - - - 2008 - - - - - - - - - 218 (d) 2.11 (u) - - - - 2009 - - - - - - - - - 1.61 (h_ - - - - 2009 - - - - - - - - - 1.99 (d) 222 (u) - - - - 2010 - - - - - - - - 2.16 (d) 1.44 (d) - - - - 2010 - - - - - - - - 1.96 (d) 1.98 (u) 2.19 (d) - - - - 2011 - - 2.39 (d) 2.10 (u/d) 2.31 (d) 2.33 (d) 2.01 (d) 2.04 (u) 2.30 (u) 2.17 (d) 2.09 (d) 2.14 (u) - - 2.20 (u) 2011 - - 2.03 (d) 2.10 (d) 2.22 (d) 2.18 (u) 1.99 (d) 2.05 (u) 1.99 (u) 1.98 (d) 226 (d) 2.07 (d) - - 1.90 (d) 2012 - - 1.24 (d) 1.92 (u) 1.15 (d) 2.08 (u) 1.65 (u) 1.49 (u) 1.57 (d) 2.08 (d) 2.56 (d) 2.30 (u) - - 1.93 (u) 2012 - - 1.99 (u) 2 40 (u) 2.33 (d) 1.96 (u) 2.02 (d) 1.98 (d) 2.08 (u) 2.15 (d) 2.26 (d) 2.17 (d) - - 2.02 (d) 2013 - - 1.62 (u) 1.98 (u) 1.84 (d) 2.46 (d) 2.34 (d) 1.71 (d) 1.86 (u) 2.22 (d) 2.43 (d) 1.87 (d) 1.83 (u) 2.49 (u) 2.19 (d) 2013 - - 2.07 (u) 2.07 (u) 1.98 (u) 1.93 (u) 225 (d) 1.97 (d) 1.90 (d) 1.88 (d) 2.19 (d) 2.05 (u) 2.03 (d) 1.90 (d) 1.92 (u) 2014 - - 2.51 (d) 1.89 (u) 1.71 (d) 2.32 (u) 1.94 (u) 1.57 (u) 2.43 (u) 1.23 (u) 2.47 (u) 2.01 (u) 2.19 (d) 2.01 (d) 2.09 (u) 2014 - - 1.86 (d) 1.86 (d) 1.77 (d) 1.88 (d) 1.84 (d) 2.03 (d) 2.07 (d) 1.87 (d) 2.01 (u) 2.01 (d) 1.86 (d) 1.97 (d) 1.97 (d) 2015 - - 2.20 (u) 2.14 (u) 2.35 (d) 2.27 (u) 2.40 (d) 1.91 (u) 2.25 (u) 1.58 (d) 2.52 (u) 1.53 (u) 1.88 (d) 2.74 (d) 2.17 (u) 2015 - - 2.01 (d) 2.01 (d) 1.84 (d) 1.98 (u) 2.05 (d) 1.97 (d) 1.94 (d) 1.93 (d) 2-11 (d) 2.03 (d) 1.80 (d) 1.87 (u) 1.96 (d) 2016 - - 2.00 (u) 2.42 (u) 2.16 (d) 1.87 (u) 2.08 (d) 2.12 (d) 2.07 (u) 1.89 (u) 2.52 (d) 2.00 (d) 2.12 (u) 2.11 (u) 2.20 (d) 2016 - - 2.00 (d) 1.98 (d) 1.76 (d) 1.88 (d) 1.80 (d) 2.12 (d) 2.03 (d) 2.09 (d) 2.17 (d) 2.06 (d) 1.86 (d) 1.77 (u) 2.13 (d) 2017 - - 2.22 (u) 2.15 (u) 1.88 (d) 2.00 (d) 2.24 (d) 2.27 (u) 2.39 (u) 2.19 (u) 1.93 (u) 2.03 (d) 1.52 (d) 2.52 (d) 2.19 (d) 2017 - - 2.04 (d) 1.80 (d) 1.81 (u) 1.94 (u) 1.79 (d) 1.99 (d) 1.98 (d) 1.87 (d) 2.07 (d) 2.07 (d) 1.98 (d) 1.87 (d) 2.08 (d) 2018 - - 1.89 (d) 2.09 (u) 2.46 (d) 2.43 (d) 2.07 (d) 2.66 (d) 2.21 (u/d) 2.31 (d) 2.30 (u) 2.00 (d) 1.78 (d) 1.67 (u) 2.08 (d) 2018 - - 2.02 (d) 1.91 (d) 1.85 (u) 1.87 (u) 2.07 (d) 2.01 (d) 2.01 (d) 1.95 (d) 2.11 (d) 2.08 (d) 2.03 (d) 2.00 (u) 1.89 (d) 2019 2020 1.75 (u) 1.21 (u) 2.13 (d) 1.74 (d) 2.17 (u) 1.99 (u) 1.92 (u) 2.48 (u) 1.48 (u) 2.17 (u) 1.97 (u) 2.38 (d) 1.95 (u) 2.27 (d) 1.11 (u) 1.84 (u) 2.11 (u) 2.31 (u) 1.02 (d) 2.25 (d) 1.51 (d) 2.01 (d) 2.08 (u) 1.76 (u) 2.42 (u) 2.07 (u) 1.78 (u) 2.00 (u) 1.94 (u) 1.34 (u) 2019 2020 1.46 (u) 1.64 (d) 1.72 (d) 1.98 (d) 1.74 (d) 1.93 (d) 2.24 (u) 1.98 (d) 1.83 (d) 1.86 (u) 1.98 (u) 1.82 (u) 2.04 (d) 1.83 (d) 1.91 (d) 2.09 (d) 1.91(u) 2.01 (u) 1.95 (d) 2.02 (u) 2.18 (d) 2.36 (d) 2.00 (d) 2.01 (u) 1.65 (d) 2.07 (u) 1.81 (d) 1.93 (d) 2.01 (d) 2.07 (d) Total range (u) 1.21-1.75 - 1.62-2.22 1.92-2.48 1.48-2.17 1.87-2.32 1.65-1.95 1.11-2.27 1.81-2.43 1.23-2.19 1.56-2.52 1.53-2.30 1.83-2.42 1.67-2.49 1.93-2.20 Total range (u) 1.46/- - 1.78-2.07 2.07-2.40 1.81-1.98 1.82-2.18 - 2.05 1.91-2.08 1.86-2.02 1.94-2.22 2.01-2.05 2.07/- 1.77-2.00 1.92 Total avg (u) 1.48 - 2.03 2.11 1.83 2.10 1.85 1.75 2.16 1.82 2.1 1.97 2.11 2.01 1.95 Total avg (u) 1.46 - 1.93 2.24 1.88 1.95 - 2.05 2.00 1.97 2.07 2.03 2.07 1.82 1.92 Avg pre/post (u) 1.48/- - L2/2.12 2.00/2.16 - 2 - - 2.05/2.20 - 1.96/2.31 2.00/1.92 1.98/2.25 - - Avg pre/post (u) 1.46/- - 1.93/- 1224/22j - 2.07/1.91.11 - - - 2.09/2.01 2.05/2.01 j -/2.07 - - Total range (d) - 1.74-2.13 1.24-2.51 2.10 1.15-2.46 2.00-2.46 2.01-2.40 1.71-2.66 1.37-2.31 1.02-2.54 1.44-2.56 1.87-2.03 1.52-2.19 2.01-2.74 2.08-2.20 Total range (d) 1.64/- 1.72-1.98 1.74-2.05 1.80-2.10 1.76-2.33 1.88/'- 1.79-2.25 1.91-2.12 1.90-2.07 1.78-2.48 2.07-2.36 2.00-2.17 1.65-2.03 1.81-1.97 1.89-2.13 Total avg (d) - 1.94 1.94 2.10 1.98 2.32 2.2 2.16 1.92 2.0 2.10 1.98 1.84 2.42 2.17 Total avg (d) 1.64 1.85 1.98 1.94 1.96 1.88 1.96 2.01 1.97 2.01 2.19 2.06 1.89 1.91 2.00 Avg pre/post (d) - 1.94/- 2.10/- - 2.33/2.32 - - .95/1.8. - 2.14/2.0: - - Avg pre/post (d) 1.64/- 1.85/'- - -/1.88 - - 1.93/1.99I - 2.18/2.19 2.07/2.05 1.91/1.84 I - - Highest EBI Score among all Ponars in each Creek by Year = not monitored; (u) = upstream (d) = downstream; bold values = highest score all creeks that year Summary of Highest Shannon Weiner Diversity and EBI Scores Year Broomfield Huddles SCUT1 Jacks Jacobs PA2 Drinkwater Little Long Tooley Muddy Porter DCUT11 DCUT19 Duck Swamp Cut 1998 - 1.85 (u) 1999 - - 2.13 (d) 2000 - - 1.57 (u) 2001 - - 1.95 (d) 2002 - - 1.67 (u) 2003 - - 1.48 (u) 2004 - - 1.80 (u) 2005 - - 1.58 (u) 2007 - - 2008 - - - 2009 - - - 2.09 (u) 2.05 (u) - 2.07 (d) 2.00 (u) 1.98 (u) 1.22 (d) 1.28 (d) 1.81 (d) 1.77 (d) 1.72 (d) 1.72 (u) - 1.87 (d) - 1.39 (d) 1.64 (d) 1.69 (u) 1.24 (d) 1.63 (u) 2.01 (d) 1.29 (d) - 2.52(d) 1.34 (u) 2010 - - - - - - 1.59 (d) 1.63 (d) 223 (d) - - - 2011 - - 1.57 (u) 1.66 (u) 1.89 (u) 1.88 (u) 1.98 (u) 2.31 (u) 1.89 (d) 1.63 (d) 1.96 (d) 1.94 (d) - - 1.91 (d) 2012 - - 1.11 (d) 2.22 (u) 2.39 (d) 2.22 (d) 1.84 (d) 1.72 (d) 1.42 (d) 1.65 (u) 1.66 (d) 1.84 (u) - 1.73 (u) 2013 - - 1.41 (u/d) 2.25 (u) 2.87 (u) 1.86 (d) 1.71 (u/d) 1.89 (u) 1.80 (u) 1.74 (d) 1.49 (d) 1.91 (u) 2.07 (d) 1.78 (d) 1.87 (d) 2014 - - 1.63 (u) 1.47 (d) 1.75 (u) 1.68 (d) 1.45 (u) 1.49 (u) 1.54 (d) 1.41 (u) 2.03 (d) 1.80 (u) 1.87 (u) 1.73 (u) 1.54 (u) 2015 - - 1.84 (u) 2.00 (u) 1.89 (d) 1.71 (u) 1.75 (d) 1.45 (u) 1.73 (u) 1.31 (d) 3.08 (d) 1.96 (u) 1.88 (u) 1.88 (u) 1.86 (u) 2016 - - 2.33 (d) 2.27 (d) 2.06 (d) 2.23 (d) 1.88 (u) 2.05 (u) 2.03 (u) 1.53 (d) 1.84 (d) 1.90 (u) 2.02 (d) 2.03 (d) 2.25 (d) 2017 - - 2.10 (d) 2.02 (d) 2.02 (u) 2.03 (d) 1.90 (d) 2.03 (d) 2.00 (u) 2.02 (u/d) 1.53 (d) 1.91 (u) 2.00 (u) 1.95 (u) 1.83 (u) 2018 - 2.06 (d) 1.71 (u) 1.65 (d) 1.68 (u) 1.72 (d) 1.85 (d) 1.79 (d) 1.91 (d) 2.15 (d) 1.89 (d) 2.05 (d) 2.12 (u) 1.95 (u) 2019 1.04 (u) 2.13 (d) 1.43 (u) 1.40 (u) 1.42 (u) 1.76 (u) 1.49 (u) 1.28 (d) 1.51 (u) 1.24 (d) 1.49 (d) 1.68 (u) 1.95 (d) 2.03 (u) 1.64 (u) 2020 1.91 (d) 1.77 (d) 1.93 (d) 2.02 (d) 2.19 (u) 1.84 (d) 2.00 (u) 2.04 (u) 1.86 (u) 1.94 (u/d) 2.44 (d) 2.06 (u) 1.99 (u) 2.00 (u) 2.01 (u) Total range (u) - - 1.41-2.13 1.66-2.25 1.42-2.87 1.68-1.88 1.45-2.00 1.45-2.31 1.51-2.09 1.41-2.05 1.34-1.98 1.68-2.06 1.87-2.00 1.73-2.12 1.54-2.01 Total avg (u) 1.04 1.62 1.87 2.02 1.76 1.75 1.87 1.86 1.82 1.67 1.88 1.94 1.95 1.79 Avg pre/post (u) 1.04/- - L2/1.64 2.04/1.70 - 8/1.72 - - 2.09/1.82 - 1.67/- L8/1.89 1.92/1.99 Total range (d) 1.77-2.13 1.11-2.33 1.47-2.27 1.65-2.39 1.68-2.23 1.71-1.90 1.28-2.03 1.22-2.07 1.24-2.52 1.29-3.08 1.89-1.94 1.95-2.07 1.78-2.03 1.87-2.25 Total avg (d) 1.91 1.51 1.88 1.95 2.00 1.98 1.78 1.72 1.66 1.68 1.92 1.92 2.02 1.91 2.01 Avg pre/post (d) 1.91/- 1.51/- -/1.95 1.94/1.89 2.04/2.00 Shannon -Wiener Diversity Ponar Grabs: years w/ upstream highest score years w/ downstream highest score 7 of 21 or 33.0% 16 of 21 or 76.0% Downstream Average Scores Compared to Upstream Average Scores: EBI Ponar Grabs: years w/ upstream highest score years w/ downstream highest score EBI Sweeps: years w/ upstream highest score years w/ downstream highest score Shannon -Wiener Diversity Ponar Grabs: 4 of 15 creeks had lower downstream averages EBI Ponar Grabs: 5 of 15 creeks had lower downstream averages EBI Sweeps: 5 of 15 creeks had lower downstream averages Creeks with Highest Percent of Monitored Years with Highest Scores: Shannon -Wiener Diversity Ponar Grabs: EBI ponar grabs: EBI sweeps: Huddles Cut 29.4% (5 of 17 years; 2 of which are post all drainage basin reduction) Jacks 27.8% (5 of 18 years, which none are post all drainage basin reduction) Tooley 6.7% (1 of 15; which none are post all drainage basin reduction) Muddy 27.2% (6 of 22 years) Huddles Cut 41.2% (7 of 17 years; 5 of which are post all drainage basin reduction) Jacks 33.3% (6 of 18 years; 2 of which are post all drainage basin reduction) Tooley 6.7% (1 of 15; which none are post all drainage basin reduction) Muddy 13.6% (3 of 22 years) Huddles Cut 64.7% (11 of 17 years; 7 of which are post all drainage basin reduction) Jacks 16.7% (3 of 18; which none are post all drainage basin reduction) Tooley 20.0% (3 of 15; 1 of which is post all drainage basin reduction) Muddy • 16.7% (2 of 22) 7 of 21 or 33.0% 15 of 21 or 71.0% 5 of 21 or 24.0% 17 of 21 or 81.0% III-G-103