Loading...
HomeMy WebLinkAbout20140865 Ver 1_Stormwater Info_20140811KILDAIRE CROSSING PHASES 2 & 3 CARY, NORTH CAROLINA STORMWATER IMPACT ANALYSIS & PRELIMINARY DESIGN OF STORMWATER MANAGEMENT FACILITIES PROJECT NUMBER: DESIGNED BY: DATE: iJ AWH -12050 JOSH ALLEN, PE, CFM APRIL 2014 McADAMS 2905 MERIDIAN PARKWAY DURHAM, NORTH CAROLINA 27713 NC Lic. # C -0293 / CARO ,- SEAL y 40761 f, = r 'STO.RMWATE R 11M PACT AN.ALYS:IS- &- P RE LINM I N, ARY t DESIGN OF STORMWATER MANAGE- MENT,FACILITY:D KILDAIRE CROSSING = PHASE- ,24 &'3'. AWH -12050 - - _� = QARY. NORTH CAROLINA - DATE: APRIL,2'014 i'T. « �. r, > `. y I - - _ - '' - • — j ^o ..' n .. � _4- -'� V `�i u ; ' _za`- T,-n� -`,`._ _. ✓' C_ MCADAMs ' .Raleigh /Durham w2.905 Meridian Parkway ■:Durham,,'NC -27713 t Charlotte ■ 11301 Carmel Commons'6W ■ Suite 111. ,Charlotte;.NC 28226° McAdamsCo.com 4 = Designing Tomorrow's Infrastructure & Communities KILDARE CROSSING - PHASES 2 & 3 Stormwater Impact Analysis & Preliminary Design of Stormwater Management Facilities Proiect Description and Summary Located off of Arthur Pierce Road and Chaumont Drive in Cary North Carolina is the proposed- -residential development - currently known as, Kildare Crossing. Proposed -- development on this site consists of the construction of single - family lots, along with supporting street, parking, utility, stormwater management improvements, and other supporting .infrastructure. This project is a multi -phase project with 3 phases. Phase 1 has been previously approved, and this report pertains only to Phases 2 and 3. Please refer to the submitted site plan for -additional information. The proposed development is located within the Neuse River Basin and will be subject to the stormwater management requirements set forth in the Town of Cary Land Development Ordinance (LDO). Stormwater management on this site shall address two primary issues: (1) peak discharge rates and (2) water quality management. 73.3 Peak Runoff Control There shall be no net increase do peak stormwater run -off flow leaving a development from pre- development conditions for, the one (1) -year design storm New developments are required to minimize damage to subject streams caused by storm flows (A) Calculation of,Peak Flow Acceptable methodologies for computing pre- and post - development conditions for the one (1) -year design storm include The Rational Method (used when the drainage area is two hundred (200) acres or less) 2 The Peak Discharge Method as described in USDA Technical Release Number 55 (TR -55) (drainage area is 2, 000 acres or less) 3, The Putnam Method (drarnage,area ►s,greater than 2,000 acres) USGS Regression Equations, where applicable The same method must be .used for both the pre- and post- development conditions (B) Exceptions to Peak Flow Control Developments with less than ten (10) percent net increase in peak flow of the one (1)- year design storm are not required to control peak flow from the site However, if ,the net Increase in peak flow from the new development is greater than ten (10) percent, the entire net increase from pre - development one (1) -year design storm- peak flow must be, controlled (C) Downstream Impact Analysis A Downstream Impact Analysis shall be supplied for all new,proposed developments that require site/ subdivision plan approval Site/ subdivision plans which are not subject to the stormwater management regulations are exempt from the Downstream Impact Analysis requirements Each development plan shall Calculate the pre- and post- development discharges for each discharge point from the site If the post- development calculated discharge is equal to or less- than a ten (10) percent increase for the two (2), five (5) and ten (10) -year peak discharges at each discharge point, then no further analysis is needed If the post-development peak discharge at any discharge point is greater than -forty (40) cubic feet per-second (cfs) then-further analysis-is needed and -shall be treated as in Section 7 3 3(C)(2) 'below In lieu of,the ten (10) percent increase,►n off site run -off the engineer shall limit run -off to the extent that downstream conveyance systems can accommodate the run -off increase without causing any propert y damage 2 If the post- development discharge for the two (2), five (5) and ten (10) =year discharges at any discharge point is greater than ten (10) percent of the pre - development discharge; then additional analysis is needed for that discharge point Identify the point downstream where the impacts become ,less than a ten (10) percent increase Analyze the impacts of the increase on the stormwater conveyance system(s) (pipes; culverts, ditches, swales, etc) between the discharge point and the point where the impact becomes less than ten (10) percent Identify negative 'impacts on all improvements (businesses, homes, lawns„ streets, pipes, ditches, swales, etc) through the use of inlet and' outlet control calculations and backwater analyses for culverts, channel capacity calculations for swales and ditches Construct on -site detention, off -site improvements, or make a payment -in -lieu for inadequate downstream conveyance systems to fully mitigate all impacts created by the proposed development -Requests for payment -m -heu must be approved by Town Council Payment -In -lieu shall be based on the sealed, approved, estimate of one hundred (100) percent of the costs to construct the appropnate mitigation facility Those costs shall include design, land costs, construction, and a fifty (50) -year cycle of maintenance The chosen facility has to be a facility that is capable of obtaining all permits required by all appropriate state and federal agencies 3 If on -site detention ,is the chosen mitigation, limit the peak discharge at all discharge points to what would be expected from an R -40 zoning, condition for the two (2), five (5) and ten (10) -year storm events, not to exceed a ten (10) percent increase over the pre - development conditions 2. 7.3.2 Nutrient Reduction Requirements (D) Nitrogen and Phosphorous Export.Standards Any activity that is required to submit a nitrogen control, plan in the Neuse River Basin must achieve a nitrogen export.of less than or equal to three and six- tenths (3 6) pounds per acre per year Any activity that is required to submit a nitrogen and phosphorus control plan in the Cape Fear River Basin must achieve an export rate of less than or equal to two and two- tenths (2 2) pounds per acre per year of nitrogen and eighty -two hundredths (0 82) pounds per acre per year of phosphorus in the Upper New Hope and four and four - tenths ,(4 4) pounds per acre per year of nitrogen and seventy -eight hundredths (0 78) pounds per acre per year in the Lower New Hope, If the development contributes greater than three and six- tenths (3 6) pounds per acre per year of,nitrogen in the Neuse R&er Basin, greater than two and two- tenths (2 2) pounds per acre per year of nitrogen and/or eighty -two hundredths (0 82) pounds per acre per year of phosphorus in the Upper New Hope, or greater than ,four,and four - tenths (4 4) pounds per acre per year of nitrogen- and/or seventy -eight hundredths- (0 78)- pounds per acre per year of phosphorus in ,the Lower, New Hope, then the table below explains the options available depending whether the development is residential or non- residential 2 Notwithstanding the foregoing, in the Cape Fear River Basin, redevelopment that would replace or expand existing structures or improvements and would result in a net increase m built -upon area shall have the option of either meeting the loading standards identified in section 7 3 2 (D)(1) or meeting a loading rate. that achieves the, following nutrient loads compared to the existing development in the Upper New Hope Watershed, thirty -five (35) percent reduction in nitrogen and five (5) percent reduction in phosphorus, and in the Lower New Hope Watershed, no Increase.for,nitrogen,or phosphorus 3 Development subject to this section 7_3 shall attain a maximum nitrogen loading rate on -site of six (6),pounds per acre per year for single family„ detached and duplex residential development and ten (10) pounds per acre per year for other development, including multi- family residential, commercial and industrial and shall meet any requirements for engineered stormwater controls otherwise imposed by the ,LDO An applicant may achieve the additional reductions in nitrogen and phosphorus loading required by this section by making offset payments to the ,North Carolina Ecosystem Enhancement Program contingent upon 'the acceptance of payments by that program An applicant .may propose other offset measures, including providing his or her own offsite offset or utilizing a ,pnvate seller All offset measures permitted by this ordinance shall meet the requ►rements,of 15A NCAC,02B 0273 (2) through (4) and 15A NCAC 02B 0240 TABLE 7.34: NITROGEN /PHOSPHORUS EXPORT REDUCTION OPTIONS Residential /Multifamily Residential Commercial /Industrial /Institutional /Local Government If the computed export is less than 6 0 Ibs /ac /yr, If the computed export is less than, 10 0 Ibs /ac /yr, then the owner may either then the owner may either -, Install BMPs to remove enough nitrogen to bring Install BMPs,to remove enough nitrogen to bring the development down to 3 6 Ibs /ac /yr in the thedevelopment down to 3 6 Ibs /ac /yr in the. Neuse River Basin Install BMPs to bring the Neuse River Basin Install BMPs to bring the nitrogen down to 2 2 Ibs /ac /yr and phosphorus nitrogen down to 2 -2 Ibs /ac /yr and phosphorus to ,to 0 82 Ibs /ac /yr,in the Upper New Hope and the 0 82 Ibs /ac /yrlin the Upper New Hope and the nitrogen down to 4 4 Ibs /ac /yr and the nitrogen -down to 4 4 Ibs /ac /yr,and the phosphorus' phosphorus to 0 78 Ibs /ac /yr Lower New Hope to 0 78 Ibs /ac /yr Lower New Hope in the Cape in, the Cape Fear River Basin Fear River Basin Pay a one -time offset payment to bring the Pay a one -time offset payment to bring the nitrogen down to the 3 6 Ibs /ac /yr in, the Neuse nitrogen down to the 3 6 Ibs /ac /yr in the Neuse River Basin. Pay a one -time offset payment to bring the nitrogen down to 2.2 Ibs /ac /yr and phosphorus to 0.82 Ibs /ac /yr in the Upper New Hope and the nitrogen down to 4.4 Ibs /ac /yr and the phosphorus to 0.78 Ibs /ac /yr Lower New Hope in the Cape Fear River Basin. River Basin. Pay a one -time offset payment to bring the nitrogen down to 2.2 Ibs /ac /yr and phosphorus to 0.82 Ibs /ac /yr in the Upper New Hope and the nitrogen down to 4.4 Ibs /ac /yr and the phosphorus to 0.78 Ibs /ac /yr Lower New Hope in the Cape Fear River Basin. Do a combination of BMPs and offset payment Do a combination of BMPs and offset payment to to achieve a 3.6 Ibs /ac /yr export in the Neuse, achieve a 3.6 Ibs /ac /yr export in the Neuse, 2.2 2.2 Ibs /ac /yr nitrogen and 0.82 Ibs /ac /yr Ibs /ac /yr nitrogen and 0.82 Ibs /ac /yr phosphorus in phosphorus in the Upper New Hope and 4.4 the Upper New Hope and 4.4 Ibs /ac /yr nitrogen Ibs /ac /yr nitrogen and 0.78 Ibs /ac /yr phosphorus and 0.78 Ibs /ac /yr phosphorus in the Lower New in the Lower New Hope. Hope. If the computed nitrogen export is greater than If the computed nitrogen export is greater than 6.0 Ibs /ac /yr, the owner must use on -site BMPs 10.0 Ibs /ac /yr, the owner must use on -site BMPs to bring the development's export down to 6.0 to bring the development's export dawn to 10.0 Ibs /ac /yr. Then, the owner may use one of the Ibs /ac /yr. Then, the owner may use one of the three options above to achieve the reduction three options above to achieve the reduction between 6.0 and 3.6 Ib /ac /yr in the Neuse River between 10.0 and 3.6 Ib /ac /yr in the Neuse River Basin, 2.2 Ibs /ac /yr in the Upper New Hope or Basin, 2.2 Ibs /ac /yr in the Upper New Hope or 4.4 4.4 Ibs /ac /yr in the Lower New Hope of the Ibs /ac /yr in the Lower New Hope of the Cape Fear Cape Fear River Basin. River Basin. Once it has been determined that an offset payment is forthcoming, the owner shall furnish the Town with evidence that the payment for the reductions in nitrogen and /or phosphorus has been made prior to the Town's issuance of a grading permit. 4. The nitrogen and phosphorus export standards in this ordinance are supplemental to, not replacements for, stormwater standards otherwise required by federal, state or local law, including without limitation any riparian buffer requirements applicable to the location of the development. This includes, without limitation, the riparian buffer protection requirements of 15A NCAC 2B . 0267 and. 0268. 4.4.6 Watershed Protection Overlay (D) Overview of High Density and Low Density Development Options There are two (2) development options in the Watershed Protection Overlay, a Low Density Option and a High Density Option, each with different provisions related to either the Swift Creek Watershed or the Jordan Lake Watershed as well as to sub- areas within either watershed. 1. Impervious Surfaces The maximum allowable amount of impervious surface within a proposed development is limited based upon the Low or High Density Option, and differs from Watershed to watershed as depicted in Table 4.4 -5. 2. Calculation of Impervious Surfaces Calculation of impervious surface area shall include the pavement area of all existing and proposed internal Lublic and private streets, one -half (112) of the width of roadways on the perimeter of the project, driveways, rooftops, parking lots, patios, and all other impervious surfaces. For the purpose of calculating the impervious surface of roadways on the perimeter of a project, the ultimate 4 pavement cross section of the roadway based on the Comprehensive Transportation Plan and any sidewalk(s) orgreenway(s) along the perimeter roadway will be included in the calculation. For purposes of calculating the percentage of impervious area coverage, the total project area shall be regarded as the actual area of the propert y plus the area within theriphts -of -way of the internal and perimeter streets included in the calculation of impervious area. 3. Residential Density In addition to limitations on the amount of impervious surface. the Low and High Density Development Options limit the gross residential densities of projects based upon the watershed where they are proposed, with higher densities allowed under the High Density Option as depicted in Table 4.4 -5. Runoff Control Engineered stormwater controls intended to contain the runoff from the first one (1) inch of rainfall are required in any development utilizing the High Density Option in either watershed. (F) Limitations on Impervious Surface Area and Density 2. High Density Option High Density Option development proposals may be approved, provided that the development applications are consistent with the following standards: TABLE 4.4 -5: MAXIMUM IMPERVIOUS SURFACE LIMITS: HIGH DENSITY OPTION Suburban -New Urban -New Existing Urban Residential Non - Residential Residential Non - Residential Residential and Non - Residential Swift Creek Watershed Maximum Two and one- The impervious Six (6.0) dwelling The impervious The impervious impervious Surface Limits half (2.5)dwelling area allowed under the units per acre east of Holly area allowed under the area allowed under the unitsper acre underlying Springs Rd., underlying underlying not to exceed general greater than six general general thirty (30) use zoning (6.0) units per use zoning use zoning percentimpervio districts, not to acre west of districts, not to districts, not to us surface area. exceed thirty (30) Holly Springs exceed seventy exceed seventy percent. Rd., not to (70) percent. (70) percent. exceed seventy (70) percentimperviou s surface area. Sewer Required Impounfte —hi Required to contain and treat the, runoff from the,filrst�one (1`) inch -of °,rainfall and to, achieve and a minimum of,eighty -'five,(85)'�percent average annual removal for`Total Suspended Solids Maintenance ��(TSS) ,Public or private mairitenance [Other BMPs besides, impounda ents may',be available, consult the Division of Water Quality's State Design M'anual,for Best _Management Practices,Rel'a_ted to Stormwater Control ] Jordan Lake Watefshed Where new development exceeds,the Low Density Option Standards above, engineered stormwater controls, shall be used to control and; treat runoff from the first inch ofirainfall and to achieveca minimum, of eighty -five (85) percent,average annual removal, for Total Suspended Solids (TSS) Development shall not exceed' seventy (70) percent, impervious surface area Jordan Lake Watershed Critical Area Where proposed development exceeds t_he'Low Density Option Standards above, engineered stormwater controls are required to,con'trol and treat runoff_ from the first inch of rainfall and -to, achieve,a minimum of eighty -five (85) percent average annual removal for'Total Suspended Solids (TSS)- Development shall not exceed fifty (50)'percent impervious surface area This report contains ,calcul'ations detailing the expected stormwater impacts as a result' of Phase ,2 and 3 of ,the proposed development, along with preliminary design calculations for the two stormwater ,ponds that will he used, to alleviate, those impacts and meet the ,requirements; of the Town of Cary. The portions of the development studied within this report ,include Phases 2 and 3 only. Please refer to the appropriate sections of `this .report for additional information. Calculation Methodology Rainfall data for the ,Cary, NC region i_s d'erived from NOAA Atlas -14. Thi's data was used to gene "rate a depth- duration- frequency (DDF) table describing rainfall depth versus time for varying return periods. These rainfall, depths were then input into the meteorological model Within PondPack V8i for peak flow rate calculations. Please reference; the rainfall data, section within this report for additional information. ® The on -site topography used in the analysis is from a field survey performed by The John R. McAdam, Company, Inc. The offs`i`te topography. used -,in the analysis 'is from Town of Cary GIS data., Please refer to the, pre- and post - development watershed maps for additional information. o Using -maps contained' within the `Wake'County Soil Survey, the on- and off site soils were determined to be from hydrologic soil groups (_HSG) `'B' ,and '`U soils. `Since the method chosen to compute 'both pre- and ,post- development peak flow rates ,and runoff volumes is 'd'ependent upon the soil type; care was taken when selecting the appropriate _S_off Conservation Service Curve Number (S'CS CN). Within each sub- basin, an approximate proportion of 'each soil group was determined using NRCS Soil Survey Maps. `Once an, approximate proportion, was determined, & composite ;S'CS CN was computed ,for each cover condition • A composite SCS Curve Number was calculated for, both the pre- and post - development condition using SCS' curve numbers and land cover conditions. Land ,cover conditions for the pre - development condition were taken from a field survey by The John R. McAdams Company, Inc. Land cover conditions for the post- development condition were taken from the proposed development plan. Please refer to the pre- and post - development watershed maps for additional information. — - - • The times of concentration are calculated using the SCS TR S5 Segmental Approach. The Tc flow paths are divided into three segments: overland flow, concentrated flow, and channel flow. The travel' time is then computed for each segment, from which the overall time of concentration is determined by taking the sum of each segmental time. • Reach lengths are modeled, as appropriate, for several sub - basins within the PondPack model assuming a time translation only, which is based on the computed travel time through each appropriate, downstream channel segment. Please, refer to pre- and post- development hydrologic inputs for additional information. • The post- development time of concentration to the proposed stormwater management facility is assumed to be 5 minutes. This provides a conservative estimate of facility size for design purposes. • PondPack Version V8i, by Bentley Systems, Inc., was used in determining the pre- & post - development peak flow rates for the 1 -, 2 -, 5 -, 10 -, 25 -, and 100 -year storm events, as well as routing calculations for the propose "d stormwater management facility. • For 100 -year storm routing calculations, a "worst case condition" was modeled in order to insure the proposed BMPs would safely pass the 100 -year storm event. The starting water surface elevation in the facility, just prior to the 100 -year storm event, is at the riser crest elevation. This scenario could occur as a result of a ,clogged orifice or a rainfall event that lingers for several days. This could also occur as ,a result of several rainfall events in a series, before the orifice has an opportunity to draw down the storage pool. • Nitrogen calculations were prepared for Phases 2 and 3, of the project together such that the two phases can "stand alone" and meet Town of Cary regulations. • A nprap basin is provided at the principal spillway outlets to prevent erosion and scour in these areas. The basin will be constructed using rip rap, underlain with a woven geotextile filter fabric. The filter fabric is used to minimize the loss of soil particles beneath the basin. • To guard against dam failure due to the buoyant forces caused by the, riser - barrel outlet structures, anti - flotation calculations were performed for each facility. These calculations consisted of determining the amount of concrete that is required to anchor the outlet structure down and prevent it from floating. In addition, the pre -cast riser sections are to be tied together to prevent separation caused by buoyant forces. Discussion of Results Peak Runoff Control, Requirements The-proposed project-will result in a significant- increase in peak-flow-rates. To mitigate this impact, the proposed facilities have been sized such that post - development peak flow rates are no greater than pre- development levels in the 1 -, 2 -, 5 -, and 10 -year storm events. Pollutant and Nutrient Control Requirements This report contains pre- and post- development nitrogen calculations for Phases 2 and 3 of the, development only. With regards to 85% TSS removal, the stormwater management facility has been sized for a 90% TSS removal efficiency to provide TSS removal to the greatest extent possible within Phases 2 and 3 of the development. Please refer to the post- development watershed map for additional information. Conclusion If the development on this tract is built as proposed within this report, then the requirements set forth in Section 7.3 and 4.4.6 of the Town of Cary Land Development Ordinance will be met with the proposed stormwater management facilities, However, modifications to the proposed development may require that this analysis be revised. Some modifications that would require this analysis to be revised include: 1. The proposed site impervious surface exceeds the amount accounted for in this report. 2. The post- development watershed breaks change significantly from those used to prepare this report. The above modifications may, result in the assumptions within this report becoming invalid. The computations within this report will need to be revisited if any of the above conditions become apparent as development of the proposed site moves forward. SUM MAR Y OF RESUL TS KILDAIRE CROSSING AWH -12050 KILDIARE CROSSING SUMMARY OF RESULTS J ALLEN,-PE, CFM AWW12050 4/24/2014 POINT OF ANALYSIS Hl Return_'Pen6d Pre -Dev cfs] Post -Dev [cfs] % Increase - I -Year 243 202 =17% _2 -Year 562 354 -37% — — - —5- Year_____ —_1151 _ 575 - -50% 10 -Year 1682 802 -52% 25 -Year 1 2371 2227 -6% POINT OF ANALYSIS H2 Return Period Pre -Dev cfs Post -Dev cfs % Increase 1 -Year 080 019 -76% 2-'Year 202 046 -77% 5 -Year 420' 1 1,04 -75% 10 -Year 619 156 -75% 25 -Year 1 878 1 2,25 1 -74% POINT OF ANALYSIS Hi Return Period Pre -Dev - cfs 'Post -Dev [cfs] % Increase 1 -Year 189 1 -75 w7% _ 2 -Year 389 2'99 -23% 5 -Year 733- 489 -33% _ 10- -Year 10 37' 651 -37% 25 -Year 1437 8'51 1 -41% POINT OF ANALYSIS HA Return Period Pre -Dev cfs] Post -Dev cfs % Increase 1 =Year 517 4`06 -21% 2-'Year 1155 867 -25% 5 -Year 2538 1730 -32% 10 -Year 3877 2509 -35% l 25 -Year 5695 3561 -37% KILDIARE CROSSING SUMMARY OF RESULTS J ALLEN, PE, CFM AWH-12050 4/24/2014 Design Drainage Area = 920 ac Design Impervious Area = 432 ac Impervious = 470% ft Top of Dam = 41000 ft NWSE= - 40400 ft Average Depth = 356 ft Surface Area at NWSE = 14,233 sf Required SurfaWArea at NWSE _ 10,482 sf Siphon Diameter = 2 250 in Siphon Elevation = 40400 ft Riser Size = 4'x 4' 1 75 Riser Crest = 40850 ft Barrel Diameter= 24 in 9 of Barrels = I 63 40 Invert In = 40300 ft Invert Out = 40200 ft Length = 47 ft Slope = 00213 ft/ft 9T0 tMWA L£R- . _ G VAC mBARAUI1NGY1✓ FSIJLTS Return Period - Inflow - Outflow _ Mai. WSE Freeboard cfs cfs ft ft I -Year 2002 018 40585 415 _ 2 -Year 27 17 021 406 51 _ 349 - 5 -Year 36 12, 025 40753 247 10'Year 4333 027 40831 169 25 -Year 5187 1 75 40860 1 40 100 -Year 63 40 1 1 36 408 88 1 12 100 -Year -Worst Case 63 40 35 83 40950 050 KILDIARE CROSSING SUMMARY OF RESULTS 3 ALLEN, PE, CFbl AWH -12050 4/24/2014 Design Drainage Area = 867 ac Design Impervious Area = 267 ac % Impervious = 308% Ift Top of Dam = 41200 ft NWSE= 40600 ft - Average Depth = 318 ft Surface Area at NWSE = 7,395 sf Required Surface Area at NWSE = 7,208 sf Siphon Diameter= 1750 in Siphon Elevation = 40600 ft Riser Size = 4'x 4' 598 Riser Crest = 41025 ft Bartel Diameter = 24 in # of,Barrels = 1 5015 Invert In = 40500 ft Invert Out = 40400 ft Length = 45 ft Slope = 00222 ft/ft CORMWAF�R MAN AGEMEI+ tICfl ?AGIEITY�Cr,ROiFFINC�R'ESIiLTS 'Return Period Inflow Outflow Max WSE Freeboard cfs ] [cfs] Ift ft - 1 -Year 11 16 0 11 40799 4 01 2 -Year 16 -79 _ 0 13 40886 3 14 5 -Year 2442 _ 016 41022 1 78 10 -Year 3085 1 27 41033 1 67 25 -Year 3887 598 41049 151 100 -Year 50-1 5 15 64 1 41072 128 1100 -Year - Worst Case 5015 1 3470 1 411 18 082 KILDIAKE CROSSING SUMMARY OF'RESULTS AWH -12050 i UT,. Site Area = 6418 acres Pre Development Nitrogen Loading = 7848 Ib /yr = 1 22 lb /ac /yr Post Development Nitrogen Loading = 45926 Ib /yr = 7 16 Ib /ac /yr Nitrogen Loading Allowable = 231 06 lb /yr = 360 Ib /ac /yr i U LOADIIVG*A ER� 9 MENT r Post Treatment Nitrogen Loading = 273`77 Ib /yr = 427 Ib /ac /yr COr1Tl O1WOF. RT2A11INDERt $O °BEtOFF,SETyRQT�PA a mom Nitrogen Loading to be Offset = 4271 Ib /yr = 067 lb /ac /yr Nitrogen Loadmg previously Offset (Phase 1) = 3840 Ib /yr = 060 Ib /ac /yr Remaining Nitrogen Loading to be Offset (Phases 2 and,3) = 432 Ib /yr = 007 lb /ac/yr Estimated Cost = $21 02 per lb _ $2,72327 ] ALLEN, PE, CFM 4/24/2014 MISCELLANEOUS SITE INFORMATION KULDAIRE CROSSING AWH -12050 . - � �p �1"* k 1[ zr i �rSa tt �'� " 3� � � °`i v � .c r '�y -, .� -� � T�.� =ice s .,{•y�Y � � [ r-� � �- 4 ,�`� FF �Lr� � �•deftF�- (�. 7`�� �. --Li ,s .r �.� �. q?�,�;n � ry 'scq �'�(. �I�:ai ��-��?��: -� t.'' T -.. L1rd�'�' -'l-.r `' " � ! 1 ti ?y1 �••r f- � - c •._/� .ly%L,y � � � u T,.��' �,,, � •fr is i'� c F �"'" +. �'s{[ .'�.�. � 7 ;� �^ �-r •y2:;; Ws' ,.t«' ik'• J la. � �J ,+�'' sK l g yt � ,y.> < y ` . ; ,a. ,•' r �' L fr .�. ,� ��} '' 4 . -may �..'w::�i � �.� 2 »1""Y'.t... %'t_ �-' 4 1•!f t i4[�r. �- -�..�„ �_�y�'�'`�:,, � �� ifc �'�-, �9 .. �� z �' �' j � .'{�'p", �� �� t� ��+� vy , �r - �::2i A �'�. �` r"2 � ''�..•S �/ '�'�' "" -•3.� is .a} .��C �Z�9_,. ` R_h. ,�_ s`a -a �, } fi �_,> •�1*'1` .T _ '` f _# ) `i rte• - 1 I Lt- • - ��`a�.J;,_. rte•'"' _.t d� i_. •, �*'�!'.Y �? u I Il of ty r. C�a e o r - '�6- nr4�:�a.:�Trfi��� 0 0 1,000 2,000 4,000 Feet I inch = 2,000 feet USGS QUAD MAP WAKE COUNTY, NC JONES FARM AWH -12050 'J MCADAMS Name Description Basal Creek [(Bass Lake, (Mills Pond)] From source to Sunset Lake, Middle Creek Middle Creek From dam at Sunset Lake to Swift Creek Rocky Branch From source to Middle Creek Camp Branch From source to Middle Creek Bells Lake Entire lake and connecting stream to Middle Creek Mills Branch From source to Middle Creek Terrible Creek (Johnsons Pond) From source to dam at Johnsons Pond Terrible Creek From dam at Johnsons Pond to Middle Creek Panther Branch From source to Middle Creek Little Creek From source to Middle Creek Juniper Creek From source to Little Creek Guffy Branch From source to Little Creek Ditch Branch From source to Guffy Branch Buffalo Branch From source to Middle Creek Mill Branch From source to Middle Creek Beaverdam Branch From source to Middle Creek Neuse River Basin Index Number Classification Class Date 27- 43- 15 -10 -2 C;NSW Special Designation 27- 43 -15 -3 B;NSW 05/01/88 27- 43- 15 -(4) C;NSW 05/01/88 27- 43- 15 -4.5 C;NSW 05/01/88 27- 43 -15 -5 C;NSW 05/01/88 27- 43 -15 -6 C;NSW 05/01/88 27- 43 -15 -7 C;NSW 05/01/88 27- 43- 15 -8 -(1) B;NSW 05/01/88 27- 43- 15 -8 -(2) C;NSW 05/01/88 27- 43 -15 -9 C;NSW 05/01/88 27- 43 -15 -10 C;NSW 05/01/88 27- 43- 15 -10 -1 C;NSW 05/01/88 27- 43- 15 -10 -2 C;NSW 05/01/88 27- 43- 15- 10 -2 -1 C;NSW 05/01/88 27- 43 -15 -11 C;NSW 05/01/88 27- 43 -15 -12 C;NSW 05/01/88 27- 43 -15 -13 C;NSW 05/01/88 Tuesday, February 14, 2012 Kased on C3assifications as of 20120208 Page 19 of 72 WATERSHED SOILS INFORMATION IQLDAYRE CROSSING AWH -12050 KILDAIRE CROSSING WATERSHEDSOIL INFORMATION D. PERRY, El AWH -12050 8/6/2013 Watershed soilsfrom the Wake County Soil Survey Symbol Name _ Soil Classification A B, AgB2, AgC, AgC2 Appling gravelly sandy loam B A D" Applmg sandy loam _ B CgB2.CgC2 Cecil gravelly sandy loam B W.mE Wedowee sandy,loam B WyA Worsham,sandy loam D _ References: 1 Soil Survey: Wake County. North Carolina United States Department of Agriculture. Soil Conservation Service (in cooperation with,North Carolina AgricultumExperiment Station), 2 SCS TR -5'5 United States Department of Agriculture. Soil Conservation Service 1986. COVER CONDITION SCS CN - HSG B Impervious '98_ _ Open 61 Wooded 55 _ Pond 100 COVERCONDITION SCS CN - HSG C Impervious 98 Open 74 Wooded 70 Pond 100 COVER CONDITION SCS CN = HSG D Impervious 98 Open 80 Wooded 77 _ Pond 1'00 Id se �1 +� It - r -rte :3 A41, 7 .F' • -1_* • ; ►� PRECIPITATION DA TA IOLDAIRE CROSSING AWH -12050 NOAA Atlas 14, Volume 2, Version 3 Location name: Apex, North Carolina, US *' Coordinates: 35.6967, - 78.7871` Elevation: 473 ft* source- Google Maps •� �• POINT PRECIPITATION FREQUENCY ESTIMATES G.M. Bonnin, D. Martin, B. Lin, T. Parzybok M.Yelda. and D. Riley NOAA, National Weather Service, Silver Spring, Maryland PF tabular I PF graphical I Maps & aenals PF tabular PDS -based point precipitation frequency estimates with 90% confidence intervals (in inches)' Average recurrence interval (years)_ - -_ - - -- 'Duration - -- -- --- L - - - - -- - 25 _ - 50 100 - -- - - -- 10 -2667F 500 1000 F-5-ml n 0410 0 479 0.550 0.612 0.875 F 0.722 F 0.765 1 0.802 F 0.843 0.719.0.875) - 0_920) 0.877 (0.773 - 0.959) (0.375-0.447) (0_438_0.523) (0.504 - 0.601) (0.559 - 0.667) (0.615 - 0.736)1(0.655- 0.788) (0_690-0.834)1( (0.750 0.978 1 1.15 1.22 1.27 1.33 1.38 10 min 0.854 (0.600 0 715) 0.766 0.881 (0.701- 0.837) (0.8D7- 0.962) (0.894 -1.07) (0.90 -1.17) (104 -1.25) (1.10 -1.32) (1.14.1.39) (1.19 -1.46) (1.22 15 -m I n 0.818 1 0.962 1.11 1.24 1.22) (1.13 1.35) 1.36 1.46 4 (1.24 -1.49) (1.32 1.59) [(1�3; 1.6 8) 1.60 1.68 (1.44 -1.75) (1.49 1.83) (0) (0.749 0.893) (0.881 -1.05) (1.02 1.58 1.79 2.02 2.19 2.35 2.50 2.67 2.81 F30-min 1.12 (f.03 1_23) 1.33 (1_22- 1.45) (L45 1.73) (1.64 - 1.96_) (1.84 -2 20) (1_99_2.39) (2.12-2:57)_ (2.24 -2.73) (2_38 -2.92) - 2.69 2.97 324 3.50 3.63 4.10 60 -min 1.40 (f_28 =1.53) 1.67 2.03 2.33 (1_53 1.82) (1.86 -2.22) F 2.13 2.55) (2.45 2.93) (2.70 3.24)- (2.92 =3.53) (3.14-3.82) (3.41- 4.18)- (3.61.4.48) . 1.96 2.41 2.79 3.27 3.66 4.04 4.42 4.91 5.32 F��.63 F2-h, ' 0.78 -2.15) (2_19 2.65) (2.53 -3_07) (2_943.59) (3.28 4.01) -(3_60 4.43) (3.91- 4Y84)- {4.31_5_39) 5_85) �3 -hr ( 1.73 2.08 2.56 3.00 2.83) 330) 3.54 4.00 4.46 (3_19 3.89) (3.59-4. 39) (3_97 - 4.90) 74-9:4 5.58 (4.41) (4.87 6.12) 6.13 (529 6.73} L(1.56 1.91) (1.90 229) (2.33 (2.72 2.08 6 -h r 2.49 3.08 3.60 2.74) 3.38) (3_28 3.95) 4 28 4.85 5.43 (3.87.4.67)- (4_36 5.30) (4.84.5.92)_ 6.03 6.86 (5.32 6.57) (5.97 7.46)- 7.56 (6_51 8.25) (1_91_2.28) s - (228 (2.81 2'84 3.64 4 29 5.13 5.86 6.60 7.39 89.43 � 12 - h r 2_69) (2.69 -3_23) (3.33 =4.00) (3.90 4.70} (4.63 _5.60) (5.25-6.37) (5.85_7.18) (6.48 -8.02) (7.3 (8_01 -10.2) F24-hr 2'89 � 3'48 4.38 5.09 3.76) 4.73) (4.71_5 �6.06 6.83 7 61 (5.5' 9 6.53) (6.29 7.35) (6.99 8.21) 8.43 9.54 (7.71 9_09) (6_70 10.3) 10.4 (9.46 (2.68_3.11) (3.24 (4.07 ^49) - 2 day 3 4.02 5.02 5.81 T 6 88 T-F 8 59 I 9.26) 9.48 10.7 10.2) 11.6) 11.7 (3.10 =3.60) (3_74 =4.34) (4.66 - 5.42)- (5.38 -6.26) (6.35 7_41) (7.1)` (7.8 8 (8.68 (9.75 3 -day 3.54 4.25 5.28 6.09 7.20 8.07 8.97 7.72)_ -8.67) (8.25-9.64) 9.89 112 (9.07.10.6) (10_2 12.0)_ 12.1 L(11.0-13.1) (3.29 3_80} (3_96 4.57)- (4.91 -5.67} (5.65 6.54) i (6.65 (7.44 3.73 8 5.54 6.37 7.51 8.42 9.35 10.3 11.6 12.6 �- I 4 -day (.80) (5.16 5.93) (592 6.82) (6.96.8.04) (7.78 9.02) (6.61 10.0) (9.46 -11.0) (10.6.12.5) (11_5_13_6) 5.16 6.29 T. 8.43 9.41 10.4 11.4 12.8 14.0 7 -da 4 4.32 y (.04 -4.62) (4.82 5_51) (5_88 6.72)- -7.68} (7,84 - 8_99) (8.73 -10.0) (9.63 -11.1) (10.5 -12.2) (11.8 -13.6 ) (12.8 -15.0) 10 -day 4.93 5.87 7.07 -(671 8.01 9.27 8.53) 988) 10.3 10.9) [7113 . 12.3 (11.4 -13.1) 13.7 (12.6 14.6) 14.7 (13_5 15.8) (4.63 5.26) (5.50 6 26) (6.62 -7.53) (7.48 (8_64 (9.55 _12.0) - 20 -day 6'60 7.80 9.23 [;.6 10.4 11.8 13.1 143 3.3 15_2)- 15.5 (14.4-16.6) 17.2 (15.8-18.3) 18.5 (17.0 19_8) 16_20_7.04) (7 32:8.31) 5 9.84) -12.7) (12_F - - 14.1 15.3 16.6 1T 8 19A 20.7 30 -day 820 (7.72-8.72) 9.65 (908 -10.3) 11 2 (10.6 12.OJ 12 5 (11 7 13.3) (13.2 15.0) (14 3_16.3) (15.5- 17.6) F1 61 19_0} (18.0-20.8)_ (19.2 -22.1) -F10 .5 12.3 14.1 15A 1.18.6 19.9 212 22.9 4 (11.6_ 13.0) (13.3 14,9) (14.6_16.3) (16.3 18.2) (17.5 19_6) (18.8_21.1) (19.9 22.5) - -- - (215-24.3) - F60-day 12.5 (11.9 13.2) 14.7 (13 9 15.4) 16.6 (15.7 17.5) 18.1 20.0 (17 1- 19.1) (19.0 21.1) - 21.5 (20.3 22.7) 22.9 (21.6 24.1) 24.2 (22 8 25.6) 26.0 (24.4 27.5) 27.3 (25.6 28.9) Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a ,given duration and average recurrence interval) w ill be greater than the upper bound (or less than the low er bound) is 5 %. Estimates at upper bounds are not checked against probable maximum precipitation (PIMP) estimates and may be higher than currently valid FW values. Flease refer to NOAA Atlas 14 document for more information. Back to Top PF graphical U.] M a. o �o 7 _ a N h h P 00 — u1 r CD is P N V N �O r P N D h C) a Q` N •Q P aD a 9 — r 00 T � _ a Q N N— 00 N N a0 F M O O OD OO r e p `D ' t r OPO M O O 00 �D 7 N< L aa{{ = N N ? V1 r aD P M 0 N Is M1 O vOi M M v V ov h N N N V 0 a v a, - 110 9 v F - ^ — N N M C Q V M- - N N N N M M1- ^ '^ E ONO P N M O h 10 00 m - E � 00 00 00 u•� N F M 00 - E ^ DD � — 00 N M1 OO d• 00 R �D �D h h C 00 00 C C C O C C C O 00 V V g E v: 3 4 2 e i Z 6 :i a c v C O �L Q W C a 7 U N F5 O O nl 0 pp L O m F S G O 00 O ? N O (-43u!) 9sdoa. �3 •6 O O O O O O O O C O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �•••6 O C O G O O C C O O O G O 0 0 0 0 0 0 0 0 0 0 0 0 0 T E o 0 0 0 o c o 0 0 0 0 0 0 0 0 o c o c c o d o 0 o c 8 0 0 0 0 — T E o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o c V v 88 p.ppp _ r N a0 M P O D —�pp r.pp N OO M P 0 ^ - - - ^ -- T E o 0 0 0 0 0 0 0 0 0 0 o c o o c o o c o c c o 0 0 0 � v 2 0 T E o 0 0 0 0$$ o o g o 0 0 0 0 o �•E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i 25S25o•00000000 sag 000 88o6 o �•E c o 0 0 0 0 0 0 o c c o 0 0 0 0 0 0 0 0 o c o 0 0 0 - 8p p8 8 p S Y C o O� N n 7 O v°Oi � O oM0 c ^J• O— N r� V o v00i �V, O o0 P, O O 0 0 0 0 0 O• 0 0 0 0 0 0 - - -- — — — — N N lo C U u O .0 3 G O T 9 d. o y x Q T N U QR OF ° c = c E Q a c w C (O u C V � T O yVy W y o � � a C: � 7 C N y ¢ 'a g_ F Q � , d i o � V rN ¢ O 'O y _F e - 3 e � o E F S U E t � v o 7 _ a N h h P 00 — u1 r CD is P N V N �O r P N D h C) a Q` N •Q P aD a 9 — r 00 T � _ a Q N N— 00 N N a0 F M O O OD OO r e p `D ' t r OPO M O O 00 �D 7 N< L aa{{ = N N ? V1 r aD P M 0 N Is M1 O vOi M M v V ov h N N N V 0 a v a, - 110 9 v F - ^ — N N M C Q V M- - N N N N M M1- ^ '^ E ONO P N M O h 10 00 m - E � 00 00 00 u•� N F M 00 - E ^ DD � — 00 N M1 OO d• 00 R �D �D h h C 00 00 C C C O C C C O 00 V V g E v: 3 4 2 e i Z 6 :i a c v C O �L Q W C a 7 U N F5 O O nl 0 pp L O m F S G O 00 O ? N O (-43u!) 9sdoa. �3 •6 O O O O O O O O C O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �•••6 O C O G O O C C O O O G O 0 0 0 0 0 0 0 0 0 0 0 0 0 T E o 0 0 0 o c o 0 0 0 0 0 0 0 0 o c o c c o d o 0 o c 8 0 0 0 0 — T E o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o c V v 88 p.ppp _ r N a0 M P O D —�pp r.pp N OO M P 0 ^ - - - ^ -- T E o 0 0 0 0 0 0 0 0 0 0 o c o o c o o c o c c o 0 0 0 � v 2 0 T E o 0 0 0 0$$ o o g o 0 0 0 0 o �•E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i 25S25o•00000000 sag 000 88o6 o �•E c o 0 0 0 0 0 0 o c c o 0 0 0 0 0 0 0 0 o c o 0 0 0 - 8p p8 8 p S Y C o O� N n 7 O v°Oi � O oM0 c ^J• O— N r� V o v00i �V, O o0 P, O O 0 0 0 0 0 O• 0 0 0 0 0 0 - - -- — — — — N N lo w M 0. 0 La Q r9 O M Q F Q z Q MI- oolln Mlo ool v+i Miolao SIN otn jy o n vIN rnlnlvlNlrn 'o+vl— 'rnl,o;v — too'�ol� loo .ol nlolool �'M o 00 'n'n o y C N N N N N N N N N N NiN N N M M MIM M'MrMIMiMIM M MI0 ClI Clio 0 0I0 0Io Cl Cl 010 '�l Yl h Iol a+ o,o oloiolo�olo oiolo oio olo ololo 0 0��0l0;010 0 0 0 010 01010 010 010 0lolololo(ololo 010 0�0 0 I ' If I I I 1 E N�O� COI M'O �IClI— mI'/,IN OIn ClI -l� v4iN O,�OI M(Oiniv 100 NiO,I COI MIO n ClI_t001,nI NIGH �Dlt+t Olniol_100 i i001 00 00 a„OI— NIMIM v '/lI� n 00 ODIC O O'_IN MIM a`,n Vt �inln Oo; T' O - }N N(MIoIv Viol nv V 00 V G1101N1 1 NiN,NIM M M MIM MIMIM MGM M Cl o o,Cl Cllo 0 0 010 Cl'o(oio Cl Ih = E o ololoiololo olo`oIo 0(010 olololo 01°10 ololoioioloio)C.oD0 o o101O olo,olo!Olololol0 0(D olo(o I. ( IIl III ;Ili I I�Iili I iil;lit I In Lo w IC> „o NIL1 .o N al.o M'o�I,o; MIO ao M o AIM oIn v Oln vtO n v } —I nl —loo v ao'r oo'v, Nloo rn M n 00100 D` O OI N NIM o oI'n 1,01�Oj n100 O�; O� Oi— N�M'M�Cl �O lit"n 00 O� O� � — —IN MIM;° 1'�t�ln n 00 O, —1 —I— NIN N NIN NININ N N NININ NIN M,t'!1 M }MIM M M nIMIMIM MIM v v vlv v v 0 o v v v vlClry oio,Olo ololo ololo',olol0 0 0 0 010;0 olololo olololo(, ololo !(l(lololoiolololololo(ololo,o olo IM! I_in IC. ( I 00 0 l- n Cl O n M 0 �0 I '/'1 I N DD 00 Cl Cl Y C �D n m oo O+IO O N N M M v h h join n 00 - " -1 —I N,N�M v!v v4I �0'�Olm Mi�IO�I O10;� NIN MIM'' h h ,O n100� NININ N N N NfNiN N t!1IM'M M M M M1MI,M M MI M M Cllolo o ClICl o' a;vla Cl o NE o 0 0 0 0 lolo o'ol0 0 010 0110 0�0l010 Olo 0 oloio olo olololo okololollioi,oloho 0 010 0l0l0l0ll0 ^ 0�04�0I— lnINl00l MI 0` o OI�DI _(I�nIN OOI MIOIII�Cl Oi�O -�I nI'N IMICn o'p'COl— i�INIoOI M�mI�iO �I —ln NIoO M OBI �tiO OIO� s{ff '�1 vl �O COI n_ 00 GO OHIO O' IN N M1Mio I'/1 �Or�O`n l�I00 00 OBI OiO — ;N;N1M �O m m n 00 00 - O I y N N N N7,N NiN N N N N NININ N,N N N M, MIM M M MIMIM MIMIM MIM M M M M;o Cl 0 �' "= ololo ololol�0l 0,10 0 0 0'010 0 0'0 �0 ololo ol0 0 opo o'olo; °+olololo ololol,o'o o!o o�o �,0 0 olololo ' v e t l I I I N •I' I ( ! I' I 6 i� I l 'I I !' � I I I I s i l' to — v ,v a.lv rnly a v'ol vi o 0 010 — .o .W_. W elM 0 M -O iIO- IOl - lv- i �olnI ln - Io- o lIoo a-lIa�+ . Io N �oN ' -N IIN - —NlII NolII— N IIMN Nllln N N N l�N n I l NN I i ,nNov v n 'ilI N nN lInnNl;ylMoN o ilooNa o ll MoN+ II'oallo+ lII'M 0M O 1!o0 MCo l,IM M C aM O. lliNMo v IIa N M O vMM O 1,Ia MMO l',v vM O lIay MO liitO�!1 lI0 ,Oo "ICM O.o, lIO oM n 'OO1O O O O O,0 O OOO O0 oOO O oM no 'lI�oO o o C n) C, �'b Olvin -Iv,l OLIN X010 v(ool —I IC M X01 O1 "r =1 vll O''NI�D10 v n INIP NI'0 0 vin — vl G�'NI�010 COIN _I_ Cllh u1'Vl �D ,OI�O nitylool aOl aO; �I� UIO al�'a v, vil vS;,o l�oln n1001 IN'^ — i1— �_IN NIN N N NININ N N N NIN N NININ NININ N+ E o 0 0 oIo`o 0 ololO OIOIOIC.CDcoO,O'Ololo,olal0 0;0;'0 0 0 0!0l0l0l0+0l010 olololo 0 olololo ofolol I I � I ,I IlillI _ _ II i _ _ 7 O, M1'0 0, (N I/11'o01 -1 nIOIM(�Oi G11 N� 100 0 00 0 nl0'M '0 D`I N�'n)001 -10 nIOIM� 0I Lo a '0(ai0 00 I0 n O 401 O 010101010 010 O ��O I— NININIMIM Mj ?I�!� 'n l,n�vt vl �O �01� n nl'n 00100 00 oOi 041 O' T10 OtOl -1 —I INiNIM C—1— I— —I_I —' _ N N N N'N1N NIN N o101o�ololo Ol(jo;ol( o!(to!(l(I(l( 6 C°(( olo;oto,a,o!o►o,o olo�o101o101O O(olo �I .51 4I 111�11� IIII;III!l,! ,i lli W n OIM nIOIM'n'O1M n O M niOiM l� O M n 0 Mlnl M'10 O M nio M n(OiM nJ O M n OlM I� O MInIOrM'n O M nl � �' �I M - o oo(,olln(M� -10 00 �plV11M o oo�,olln MI a, oo 1ol'n MI- 10!OOI'D VIIMI -lo 001,,o1v+ MI -lo 1 10 E ' INIM vl IN S1n;ooi c, 0101- NlMly vi 'n va n oo a`I IOI- N M;v ,n y'n v nloojrn O O NIM vl'n - l -fool- O O I NIN;N;NINIfV N M MIM MlMIM1M+M M M MIMl0loll0l0 0 oII 010(010 ClICli -I I- , YIi--- 'v, hlhlh,hlh,�l� � I _ o C of n of nlo; n o! n o o ,.,'o Info n o_ nlol n o o !'o o n o nloy No o nlol'^ o to "n o n o ,ol n to N M MICl ,0 }n''n o0 00 Oar 04'IO 1'o I" 1 r I i MIMIM MIM MlM M —( —{ — 7rl —I— — — — '_.l• -• •-•jNININ NININ NINININ;NININ NI NiN}N NIN'NIM1MlM MIM MIM, l ; �d � ! i�i' i!, Ir�llrli !�Iliillll;�dl'�l�'�ilII11i! Il� ?i1i ±11I ao W N M a F `a z_ N17'r c�IN TIC M �O m�0 Mivl h'O(N�h'r'O�IN 7i0i G�1 -IM`D m _ M V1 m q O N 7 �D O+ M vtlm OIN 7i r10�1 -!MIS mI0 N irlT 1M �O m101N ut n1a.!_I Y p fi 0 ic, ic0 ' oV' Ii0 0 C> 0 h 0m 1m m m !m,0, 1O�i OBI O, O O�1 � 10101_ � J - -;- - N -I- ^M ! ,y � "' r r o { -1 ,o m o I 171�o I,m,rn -�M 7 .o Ir;a I'Ni71,o ni'rn o fV`71vi n rJ,_1 vt O�!M r _ ,r1 p� �MIr -1 !01IiMIm N �O O < mIN {{I1I �D }0171 m'NI�OJO 7�mi N1�01 _ N 7•h ,Oim Q. _ N M N!�p mIO�iO NIM i�0 m Q��Oi Ni Mfh ,01 rlO,!O NJ Mi 7i�0lr IY C Y�iIN1V'1 ih v1 `� � � � `�,� � �O lr grin fir n r m,m m•m m m,m O� T O,'O, T O� T of oio ol0 0 0 0 0 o'o1Ol olO 0 0 0 0 0 0 0 o(oio 0j10100 0 0 oioio 01 �;� Vim O� - r mI OI N1 �i3O!m O+ Mlv�,r mI OI N�R`,Oi rIO� - !M1v�I,Olm 010 �olr moo' -IN M �r�oir mta`o M v In �o r I_ I.o ,o .o•,o .oil b r n r n n r n nlm mim!m m m`m T OHO O O!OI O10 O OJOii0 O�Oi01 'M 0i 'D 0 Oi0 O Oi O�0i0i Oi0iOl 0 i011010!O I 1 _ N ,..• a�ml m�mir r �o �Ir! 17' "I:n N NIN _(_ O ololrn rn mimic ri rl,ola ,Y � N1MlvI�n;�olr!m aloe- lcvlMl�l•n�.olr mla o1 -!N M1v,vll.+ {�o!rlm'a�1ol- N M � 7I•a 7 7�vf7 7 h,u� ,n h h vi him ,nl� �,� � � ,o .o,.o, ,o .o '�oi,�o h r n r T E oio 01,0101010 ol0�010 oioio o�o o�oJolo o�ol`o�o�o�o�ololo oioio 0 M! I n 7J Ni 01mI�0I M1_ la�n17 N O m ��O O, n1 4NIOI ml�O Mi O�lh 7 N cT 9 oloioiololo,o!o;olo °10101° oio O O oioio °{ °01010 oloi °t° ° O oI all-is 0 a In rInI1�o�!0r r!im N m O, aN l_ol'rl-O N i i �O CD NiM {M1v Inllnl,o nIr m m ,n Q� C MINI MIM M, M1 M1M M M M M IMIM M M M O' ?1a CD? �i 010 T O OIO O O'O O O O O O Oi010 oio 0 0 010 0i0 O,O o 0 1 00 O 0 o O o � ! I I I 7 I_!�1 _1,pI_ �p Ir N!ri NI rI Nin y ml Ml mi Mi mi Mi m17,0� I'S 7! S 7,P 7. Oi vilO 1 O N N N NI NIN NI N, N; N�N�NIN �IM M M {rN�fIeN+1�MIeM+fiM th1 e+ll -j Ml rlI Ml �!M!7 TIE o 010101,0 o 0 01010 oio o O'o o Oioi0,010 O'ol,oio�'oiolo oioio oio KI a o M n o`�'MInIO!Min o MI n1o1'MI� o M n,ojMlnJo�MIhIo1M�_o�Mirlo�M hi v {M o m o M- o m o v M o mI c1 nII M o m o1 n1 M o1m o r M 7i v1 vii,o,r m O�,O Oi_ N M � ut vf, �O n miO�l �`r n1h11hih'nlmlmlmrml•mlm mlm,mlmlm m� o Y �iO 01,101 ;O �,JO � ° �;I °i�I° � °,�JOJv,IO��I °Ihi °��lo �� °I�!0 ►� I ml 7 T 7! NIN Mjj7 a of v 0 i ' C MI MJM M',7 71717 R 7j 7�7 � of 71 v 7 7 7 717, 7I 717iV1 V1J Vli ✓li V)1V)i Vl�lry, �¢ O Iili!jjlll IilrlilifiliIiillllil M M aI� 7''.!n1 -1 yI�Ol�o v�ir nlm�m�ml Oi'rf 7i_lm l'VIIN Q, �OiM NI�D MI.O1 rl7 c� 771r c� N h r o M m ,o rn -) i- -i -i -� -ice - •--• - - - -,i _i a, 0I0 0101 OI ^i^ � N N NIN NIi1 MI I ! 1 I :Elm M2 r m ai -IM h nIa M Inl�l IM oJolo 0 0101 °`° - - - - v, lot a mNIN v� h h!rnmmmmmarnrnrnaa o,o 'o I' .olololo o cio ol'oIo 0 010 ;ol,o ,e .e r,n r r r r r m mlm m m 0 Oi0 o O�O!O 00 Ol0 01 010 010 ! 1 1 I h �D m Gam` ^ N M COI hlO� O N!M 7 ,OI a o _ N1v7i r :°, � m'o+lo NIM,aIv+�,ol 0 0 0;'0 0 0 010 oioio oioio otol V1!y17I7 �i71MiMiM!MINiNINI� I -1t O (N'M In,,D h mIT 01_ IN,M 7 vll I I I O M r'O M r O�Min O M CIO MIt�i 01 m �D11�Mi_ O m�,0 vl M O m olvil O O INIM 7Iv1I wt b h m a,i 0 o �0'_ a a a N! a 0%!rn c 0, io, c� c. Oi,n 0!,.,loi�nJ ol�nl oilnl ol,nlo!,ni olv,I 7171 Ih �1 �, ht rim JmlO�fT OI OI _i _I vi vi I vi ,n 1 h h 1 vt vi r h ,n vi � e ,a ,o �`I IIIli1l I W M a o cti C C7 0 �3 L OI m . -'o 0 10 NImiM OI VII vIi VI h Ih Vl m m'N I^ I[ 1 y O OOII Om111�I 0I0 mI NI'N e!t''�I RI'mn �Dln mI0 MI N1 M11 N�Olm rya N'iOIIOI �IonO O'E -1 ^I INININ NINI;N N�NI NIN N NiM M Mi MI mI hIVII�VII`hl�0 r'O bI��I�D, ml N m hlm MI �I 10`10 pllm �I� h NIm vNi vmi �IOIm m -I hlm hI ^I mlh _ m n � Iml Nil mI10 h gIN �I m'Vhl OE _I_Ir _ _ �. _Ir _i NiN N NIN NI NI MI7Im ml m hi hlh h h ml IhI M'Ni0 m t`I hIM O mIhIM O mI�D M _ IrI011 [�I mI N'O m h — - 10 IO [SIP � N al�iM O h ^ a MIM�m rlvl_ — I - - c�Iml N vl - oIo N MI cola a o _ — — - r N N NIN IMIm m m mIm ? m h ` 10 m 01 m m OIM Im O'MI IN O mif� I� bl �i ��m, Ni PIt�I N _IM O N h M OIM m M m�ml;; a MI mI MjI� Nll� N n NIh M M- I_I�Im h I10 �Dlm T- N �0 NI� I� O110 NIM m m � c -I -I -I _I _I- - I_Ir r �_ NINI NIM, MIM M Vlmlm m m L =jm VaIIM o 1.3 ^ Ip � I0 I M I�ph 122 00 IlN � .V0 I I 0 M JN m p m OIIN N m Vm^ IIO[� � j Om � ' ISN O [m � mIO I0mv1 i �o ^ m �tm � N N MIM M h'��O l� imI nI ^IN MI'm ,f� la l; rI_ rI. -.1(- _I'r r� 1_I'rl rl Nl'NI MGM IM MjM M ... -� `O OI NI hI[�i0 NIh t�Im O N M hlt�Ia N m mi ml ml�0 ml -I l� m :: L m(ol N Im'�o mlrl$Im —_ m ��� rlm ml�o rn�ollrn o 0 o M to m m a 0� 01 0,1OI a a'O O N M m m m 10it� m OIM N N N y E OIO O O OIOI OIO OI -Irl rl ri_ -' I_i -' iNl'Ni NIN�M }MiMIM M � i E r1 C, C> 01010 O'Ol mi ml Nll�i ^ihl cot Ml N�rlr -i cola, MI �IO�I J O�I N r m10'^ NI MImlhl to m OIM N110 ml r rim m mlm �1P O N m OI N MI ml m�h h 10 E aL Y O OI OI OIO OI OI OIO OI CD OI OI OI ^I ^I -I^ ^INININ NIN NI NIN 1 9 10 ^r0 Ol ml t, hI yINI ID: a, ml ml[�I10 hI01I m'mI MI mI mI MII�i NI�OI- Ihl =1M C L ' m T 0 N M m �olml0 N�m O l� M O O N m h Imlm �0 m y e O 0+010 OI OIO OIOIOI OI o O OI C) 0 O NJN N N N IG 'M o m'�DI hIM -1 o, m'ID h M -IO m00 MI^ p m'IDIh iMI- Olm �O 9 �. M m hI hI�OIt�l�m�01 O OI- N M m h b'Nl mipl�pl'O IN M m h h IO E� O_ O O O O10 O'O I^ IrI^ NI'NIN,N NIN N N N C 0 h101h Oih101h OIhII "h1'h�O1hIO'hIOIhIO'nl0(In`OI� O F t s �i Oloi�i `o �{ c lilly�i!IIIi� III`(I tI1111I vl 'IrnI NI,00IM clv �i.°ho,ajM ."olo M �I of �Ioml =l h N mlh O OI �O�hINIOI 10'M O [� m �O mlm N T h1N 10 O+ MiIo�OIM �D m ^I^ t` P N,h �I 10 10 l�lm mm P GI O10 O10 I - N N N`M h hl hi hl hh M Oth� l Ii I O M— h l Il mm�hl lI� Nh III Nh IM h lIhMh ' l "oMh II"0 M IN omj- n -It 0 Rw m h mf�< h hb P 0 �, -�MhIIIh �i�Olt� �D mI0^Iinih 1�I0 NIm 101w OIN VIa, m�O ml mimiml m�mlmlmlm m mlm mIm'mim ml ml mi�I N'�pIOI, ?I'vmi l'�IO`'OIN mllp l� rn N NIm��O �I�INI mlm10101 aIOIIaJOIOIOIOIO O r _Ir _ .- .�rIN M�M M M�M'M M m m mlm m m ml m��I�m ml q,Iml' I I I I e°nleMn�Ml��ov�v.�I v.vlvl <Ja I t I I I mI N,101010 O O O OIOI ^IM mI�O [NIm O m ImoI�I�I� � �Inlnlc�+I rj� 00o mlaNOl o`"oi omol m�mlomo�oco N NIN�N N N_ININININN N NIN N'N NII NI NIN I� �IIIIII t I M N OIm l� hI (N O10 T rnlT C.I�m ml ml m`l�l N N NIN N N N NIM M M M M M M r!1 M M M m N N NI Ni NIN NI NI NI NIN N N N NI NIN NININI O M �IO��n n OI MIn o M t� OIM t`,O �iril Nl'OI MI h M IOI .D h' M, ^,O m 10 hIM ^ O mI�OI hi MI t` m G�10 O NAM m � h,IO f�Im OI O O N MI MIM 1 h O hI0 fOlhl Olh O h 0 h OI o hOl hiO �I<` �I mi m'OIIO11010 N N M M m�mlh 1 1 t`I�I�It` �It� t��ml ml m�mlm m mlm m ml mloi- l II�IIII II III I llla (IIIIfIIll�il �W M 4 � W � rn p ;3 C y i� G I= R 1 e O 1 r k `R `o 0 NI Q•! r nIN100 0.,010 h SIN M M � I I �Inln h.hlvr OIO Ih h, n00 0 0` NiN�N I I rl�o v v v N N N oiM 7 hl� oo, oo'oo i M a.l v o OI�I�IN O N y n hIh h h !I nla( =IN1� vIQ�vlvly 94;' i 04 `TaO, NIN N NIA NIN`N !I �I °jam �0 n,00 o°ol oo�oa aoloo!oo I v �I�f�ln rnij �lolNlvl�lo,l� N N N MIM M M < V!OI�17 h r M O�'hj— ao v o .oIM a m h .vloo, off- M h .o m rn= r+ v I I I l l l i j I N M "all O O O h h h hIh h'hIh �0��0 �D I I I I I i °I I ? In D` —IM �;b 00, OIL MIh D` O! N'ajjh � nloo O N'M — N N N N,N NrN N M M him hihl�, h h,hlh hIh � �i M M t+t M a�viv vl�iajalvl d' v!v q v vlv,Iv!vly� <!vrviv �D O OOI bIM;— G1In Q'tN 0100 �OIM — D\ n n n ninlnln n nl� oo�00I AIM 00100 M M MIM �M M M M M,' MIMIM MI4 M 7IO 41I hI-1o0 QIO �01M a, ala a 0 0 0 ' °0(1 0lol� {Slololo 0 N NIN N M M M M(e+li M'M MIM MIM M II I IIIIIII nI001 aI�i�IO�— ��iNINI� e�+fI71� vNt'h v v'v!� h h h h hlh hth h h h N N N�NiN NININ NIN N NrN NIN N O MIn1oIM(�nlo}M n o!MI�O'M n O 100 �0 h M O 00I �O E! h M O DD T O O NIM�RIV1i hl.o i�nlooI G1I 0 I0 TIOIO! ^! —ININi a a, V., M�eh�fl ?17' �Ib�O 0o a o�Ia,ia. aIa o` rn a, rnlrn MIh h � 1 00 n�n �I p OI � O Mih niOINKIInI�i —I ool� �I�I�InInIrl°O1 0o i�oo , oa oo m o0 0o m l o0 m;oNOl o°ol �!onol acolrn GN+I rn� ' � I = r I 1 ! I MR �0 aOI OIN a o; IMIaIv+I�o c� hlhlh;h�hlh h h ,V 1, ! VlI Vl V13 Vl 7 71R1<,Vjv R�T,v i l i IO.i I t?inia�o � OI011 -IN .Nn 00I, 00 DD 100 0\ �, D\ I T P MIM MGM M M M I I M M! aIIcl�o = = ^I vl v t �I I O'MIMIf!1�M M MIM MI OO l r�l 00 ! M I OO I M OO I M I C1 hih hlhlh '0 'O I'O I'0 NIN N!N NIN N'NN! O M nIOIMin o�i.,Inl O m �0 hIM O mid rnl.o nlooirn o!,o. -I olhlo h o_ _Io!h'o a'� 00 NIN M II O(O OIO,O101 I�0 001— �D!ODIO M +h�N O�n INI ONOi OaO Ow 1w G1'TITI�IOi —I O N,NIMt O 010;0, 0 0 I I cln(rn OIN,7 �Inlo�ol O!�_I�jjI NIM�RI o. a. c�000000 — 1 —I —�- �el.ol.o nln�nl�Inlnlnln nln, n�nl 0� M,nI' —! I O�IM i ^' —IVl N 001 iNlp�l N N N N,N NM M MIM M M M M, Ij I I I �I— SNiRl�O o0!OI— Ih 100 � _Inl 00 O�— N M �!'� � OOiU OIO i —I NIN1 hI hlhih h h hlh h h! h!h hI I I I !hl AIM MI INI�NI— — IpIO'�OI n'NI'�; Oi— N rrnlp h O n o0 a T O OI- �D v a < a,!v alv a aiv,a "v �al:vl�I olool.oi Ml— �Inly N(O hi0 hI� —IoI o. rn a o.ia,aic+Io,lo 0 R 'VD o, 7 0i of M M M MIM M M M ?!d' ��iQ! I i I I i l IfI I , I v o o M o hI- oo $lo;v N , ool —Is -I N I— — NINON N,N!N,N M MIM M MIMIM MIM,MIM M(M!MIMI 710�IR O� � Tlvil 'o M, ��C`I NI h) N'N M M V h,,- b n n n n 00,00 N N!N NIN NIN NININ N NINiNI Nj 'I 1 'I olM�n $I,M ��OiMinI,plM n�pl M;nl N M 7 h vhf SDI n100'OH' D �INIM�C' 'n lin ni,nln n, nit�In(001 OOi00I,00, OOI 00� h!OIh OIhiO!hlO+h10 hlO�h!O�hI M tT �o,.o'n n aOlaO T(O+ OIOI c��,c;ololc.c!olcko,o;0!p�.- _! I w M a o, (Lj � a F z_ aq h'.0I'n h m CIO O _ NIMI,M — — — R' n m O N NIM � ]0 nlm m OHIO `t1 IN M �Iv VI �0 ern h m ITI� O I— ^ _I - I - N IN N N,NIN NiN N NIiNIN NiMIMIM M M MIM M IM M M M v' T 0'i TiG�I O.i P'`Q\ GL\I OIIT C. a i�l0l OII OI'OII Q�1`T O+ �jol C, .91 (. G\ aI aI SIC G'� OBI GPI G1l 0� O�IPI n v ^I m' 'N PI,�I � OIn vi Im '/� N P bI Olh Q Im � N101f �0 MI OI rI./IIN OII bI MIO n vl _ m r N CJI �Oj M, Ol rlr? rA� vl � .Dlrim m OIrO NI MI MIv uti rl,�I� m m OI BOO N N M v,�Vll �1 „Oh,h m C. O.OI^ N,N MI�Ia � �O �I� �I y C — — N NIN N, Ni NIN N,N N N NjN N M M NfIMIM MIM IM M M MI MI v, d'.v d'Id' vI I C � h i� n rin n r n i� n h n r'n n n r nln r r nl'nIr r n nlNr n n n n n hin Nr�n h t`i ri nl hl r!nInli� rI =E I lil'I li �� I � i � ` IIIiIIIiI!llif I' i. Nirn X01 NIG1I'OI MiM v M O ID M10 blMf`I OIriM O h ? O h 7 — n 7I^ ml �i^ mi �'— m "n _`m' IN'mI'nl N'O�, VIINIOI °vIv a'vl�fv'c,c vlvlvl�Ivlviv°I ° �.m, v— I I I I I i I i Ijil iIi v101r M O."o M ni IN Nlml Im'v — niv O MIDI IO NIOI VI N;mI� — ml�l0 r M oi.ol Irn �0'N rnIY, Imiv + -'r �I M X01`0 r n m OI O+ OI— ^I NIM MIS h ID �O nim m d\ O O N N M d' 'n�l01 10 r'r ml �Ia\ Oj ^r— N MIM u •oI� .o .p,�o .ol.ol�ol�o ni,nln n r �In h rah - r r n m mjm m mlmlm m,m m mim m`� mlmnal oII�I�Ia,Ia a) v I� ly rig, V V IV I nip, V - - - - - - -l- - iv r �,Irj�,I- - V ICI - - -I r, 1 7( 1 1 1 1 M O\ vliOI�OI— h Nlml'MiOI' d'1 OjVI_` r NIoO i� O �j- ,n^ N,mIM T'Ir� OIa, n �Im'I- - - O'�D — h N mIMl�,ly OI N N Miv '� h `Ol rin m rnl0 O N N M v 7 h m Iplr n m -,0110 Cl IN NIM (71 n mr011 e hinrrh nnr�rr hnln'mmooioommmmmmm mlmmmlm�mfarnrnlac�rnrnc "rnata.o�,rno�a�Io�o+ E v v v v,�vl v'v vI'vl vlv vl vlv v'v v, :v v v v v v!v v viv,I vlv vlvlvly v�vi vlv v v,v, v vi'v, v�vlvl vlv,Ivi i v •• �pI_ nIN r'N�hiN hIMIm M_Im M mlMlmiC OBI �IO� 7 TI ?i0iv� Oi'n�O;O O_,�OI N�N MI M17, �'vN'ii���l �ln nI0N0�anOI �Qp vl S O 010 O O O OIO O OIO 5 �,E vtv vIv v v v vlvlv'aIv vry v v v v v v v vIv v v v v;viv vIv vlv vlvlvly v v vlvlaly vlvlvivia�vl `m 1 I M oo v�Ea , ' , T E M NM IM NM IIvN M'1 N M I i dN M ' VNM f �N M rl ' NM I II 1 ,M M r M Ir NM InN M 'm NM I,m NM ri m N M 'ONM � f(1 I ONMIIIO tM '!f IM M OM M 'I_ M —M M �I ^eM :I IIN M M N MM IIM M M M MM �IM MMI i i M IrM M I Mi IM I MI i MIMIM M M iM 'I Mi I M IM�I OmM I v 10 10 MM M M N t IO — v M IVOvMIrIIG'aOM � I r M_d i 1 I I I'I I OIm 10 C, NI'll�ml^ vin OIM �O a MIM hI NI'n mi " -M hI OI MI�O O� NI,'nl ml _f Clml �i���(O M .DI O�INI'nl C mlvl U O $i0 — N N N M MIM aid' h `D r`Irlr m m m m Q`I� a OI O I_ NrN NIN MIM �"�., �0 �O CIO n l� l� n nII r n rIh n r r rIn h r n r r r nin l� �In c`rr n n h lh ,r r m mlm'm,m m mf'm m,m m m z r = � NI NI NIN N NI Ni N�Nl NININi N�NIiN NININ NIN NIN Ni Ni NiN N�NjN �N Ni NIN N NINI N!N N�N�,NI NI NIlV1 NI NINI NifJI It , II I{ 1 1 t I I 1 � I I 1 I I I• I f I I 'I 1 'I ,I I i I I I _ pp M h OiM n pp M r 0 M`� O M r101M n CIM r O M h'O M n O'M n O'M r O M hl0 MinlO M r O�MI hlO M�_n pI V] k Y OimI.O MI_ O mi�OI VI M IO�m \0 vll Ml- Oim �M;_ICIm Ipr VIIMi^I0 m �iVII MI ^�Oim bIVII MI _IO m, �I VI,M 10, vli vl ]O � m G1 O_ O N M v wt VI ID n m V1 O O N M I vl ]O r,m G1 O O NrM vt Vl(VI V' n m,T OIO N MIv Vl E 7 m m'mlm m'm T P10+ T P Olio T O.I aIO` O O o O OI OI OIO Ol Olpj pl- i —ININ N NI NI N, NtN _N Ni NINI NI NI NI NI Ni N'Ni NI1 N�NI NI NI N�N,N N N;N NI o m v o nlol oI niol nIo . lo, nio oI i'oI . Io n o oI n o v Io�. lol nlol . lol n o' nlol nlol njo{ . of n o' r'ol nfo =l =lt_ y vl vli l0 I_Ol nln m m T � O O ^IN NIM MI yId• I'�(O'�ih rlmlm �IG1 OIO.^ NINI M�MI �I VI'nj C C —I —I^ — —I =1.-. N -�N N_ N_�� N_�N_ N N N N N N N NIN N N N M M M M min`^rM M M MIS -� I. � -t - i, -� -I � -I -� ^� ^I, I^ ^I-I ^i-I-I- -i-�- - i -�-j- -i- 1 -�- -i �Q I! iI' r. i ;I i!Il,;,.j 11'I!I,Ijll i1�rl 11,1 w M D, p r �3 =+-+ PIb M I00II�D�MI ^j00'N M O 00 N {MAO � ININ Mil NI N(�D r oo ODI G�IO INIM h o fi alalrn rn'a�al rnl rnl rn�a alrnla a rnirn�rn c oolN N cI�O'Mio h al— t N ol C, - T O E h r qIr r r r hl h�hlr t� r t`Irlrlr r N N D� COI NID`i �0 M Pi�O' O �D M O r�M O a h h h ri rl r'h hlh�h h � r 00100 OOI00 00 T �D �O \0 � ND I \D O hI M� OI oli N'N 00 N - I00��� ^Ilr��lO N N I �D h r 00 001 0\ 0 0 N N M N �D d o a` a�ic rn�al a,rn o.lo�0 0 0 0lo g� o 0 �, �D rIN100 M1o� Oj yOI COI -• ri N00 �� O I ^i —iN N MTV' �1 NI�DI�D h Vw O a\ D� 0 0 0 0 0 0 0 CN) C O O{{ O O CIO O � � v N N�N�NI NIN NI N�N NIN VI; NIN D, Ql O�OI ^I N N M M M MIM M M M M M M M M M,M E ,, E v v v,v vlv�vly v,a'v vlv v v v(v v c ' v Ol7ioo� —IN P MIDI o 001 ^iN E N N N M M M N N N \D I lD \o �D h h 00 �, T E M M M�MIM M MI M'M�e!1 {e+1iM MiM M M MGM a M 7 N ...i oo i Ih�0 MI�Di O\ M to a\i NIN aoI— I7�rIO e M v17IN ,NIN INI D DID h,h hI00 ao 0o a o a p � aol mlo0 'm � �'�Ioo l'ao�o0 00 00,00 00 00 00 00 1 TE„ NI NI Ni NIN N`N�NINi Nt NI N�NIN NINIfV 'N aL' _ M�h OIMI� O M h�O1 M'Ih'OIMIh O M h 0 00 to N �D E a NI N�NI N'N M,M MIM M'MI MI MI M�M M M'� N NI NI NI N�NI N�N�N N'N NIN N f ! { I i I cD to h h�00 00 0\ D` Or OI- N N'M MIR (c c 'M MIM MI MI _l �j yl �IV'IlV'I7, mid' o GG I- 4�ii ^i- il, ^ ?ITlilll!I PRE- DEVELOPMENT HYDROLOGIC CALCULATIONS KILDAIRE CROSSING AWH -12050 M M N' U G V ^ N O C O - N n N O O z O Cl 0 0 0 0 0 0 0 ay p; O00000 0 d u O U � . i d d 9 0 0 0 0 m O N y Q j O p i O^ N O V d' Q, � O W w O gyp(, F d o 0 0 v o ojololol00101 O N � O � ^ olloo0 0 O O o, „3 C -- �; nI'I C. M�C7, �D vl M 11 'O n O M v z C d E O O O O O O Cl 0 0 0 0 0 0 0 ay p; O00000 0 d u O � . i d d 9 0 0 0 0 N O N y Q j O p O O^ N O V d' O � - gyp(, d o 0 0 v o am Q CD r=i 5 o� C h O p 0 o0o 0 0 7 0 0 V v �0. 0 0 0 0 Mp 0 0 0 00 00 a a O` O O O O O O C ° 0 0 0 0 O O O y 0 0 0 0 0 0 0 o, „3 C -- �; nI'I C. M�C7, �D vl M 11 'O n O M v z d E O O O O O O Cl Q W Q N M'T KILDARE CROSSING PRE' - DEVELOPMENT HYDROLOGY D PERRY, El AWH -12050 Subbasin, IA 8/6/2013 Assume: HSG Impervious Open Wooded A 98 39 30 B 98_ 61 _ 55, C 98 74 70 D 98 80 77 HSG'A'= 0% HSG 'B' = 99% I-SG'C'= 0% HSG'D',= 1% Cover Condition SC_ S CN Co_ mments Im ervious 98 014 Open 61 Assume pod condition Wooded '55 Assume good condition A. Onsite Impervious Breakdown Contributing Area A_ rea [sfJ_ Area jacresi Building 6,145 014 Roads/Dnvewa s 0 000 Sidewalk _0 �0 00, Other 2,678 006 Totals, 8,823 020 B. Watershed Breakdown Contributing Area SCS.CN Areas Area acres Comments OnsiWun ervious 98 _ 8,823 020 Onsite open 61 267,541 614 _ Assume ood',condttxon Onsite wooded 55. 75,042 172 Assume good condition Onsite pond 100 0 000 - Offsrte un ervious 98 0 000 - Offstte open 61 0 000 Assume good condition Off ae wooded 55 0 000 , _ Assume good condition Offsite 2ond 100 0 .000, Total area = Composite SCS CN = % Impervious = 8'07 acres 00126 sq mi 61 2 5,°_/0 KILDAIRE CROSSING PRE- DEVELOPMENT HYDROLOGY D PERRY, E1 AWH -12050 Subbastn lA 8!6/2013 ,C. Time of 'Concentration Information Time,of concentration is calculated using the SCS Segmental Approach (7'R -55) Segment l: Overland Flow Length = 100 ft Height = 1.5 8 Slope = 00150 ft/ft Manning's n = 024 dense grasses P (2- year /24 -hour) = 348 inches (Cary, NC) Segment Time = 15.35 minutes Segment 3: Channel Flow Length = 210 ft Height = 4'S ft Slope = 00229 ft/ft Manning's n = 0 045 natural channel FIoW Area = 9,00 sf (assume Y-x 3' channel) Wetted Perimeter= 900 ft (assume Y x,3' channel), Channel Velocity = 501 ft/sec Segment Time = 0.70 minutes Segment'2: Concentrated Flow Length = 508 ft Height = 392 ft Slope = 00772 ft/ft Paved ? = No Velocity = 448 ft/sec Segment Time = 1.89 minutes Time,ofiConcentration­ 17,94 minutes SCS Lag Time = 1076 minutes (SCS Lag = 0 6* Tc) Time Increment = 3 12 mmutes = 0 29 *SCS La IQLDAME'CROSSING PRE- DEVELOPMENT HYDROLOGY D PERRY, El AWH -12050 Subbastn 1B 8/6/2013 Assume: HSG Impervious_ Open Wooded A 98 39 30 B, 98 61 55 C_ 98 _ 7,4 70 D 98 80 77 ,HSG'A,' = 0% HSG'B'= 99% HSG'C'= 0% HSG'D'= 1% Cover Condition SCS CN Comments Impervious _ 98 - en 61 Assume good condition Wooded 55 Assume good,condihon A. Onsite, Impervious Breakdown Contributor Area Area [stj Area acres Buildmg 281 001 Roads/Dnvewa s 0 000 Sidewalk T 0 000 Other 1,807 004 Totals_ 2,088 005 B. Watershed'Breakdown Contributing Area SCS CN Area Jsfj Area acres Comments Onsite up pervious 98 2,088 005 - Onsiteo en _ _ 61 250,339 5 -75 Assume ood condition Onsrte wooded 55 15,866' 036 Assume ood condition__ Onsrte p ond 100 0 0 00 - Offsite un ervious 98 0 0 00 - Offsite open 61 0 000 Assume ood condition Offs ite wooded 55 0 _ _ 000 _Assumef ood condition Offsite pond 100 0 0`00 Total area = Composite -SCS CN = % Impervious = 616 acres 0'0096 sq mi 61 08% KILDAIRE�CRGSSING PRE- DEVELOPMENT HYDROLOGY D PERRY, EI AWH -12050 Subbasin /B 8/6/2013 C. Time of Concentration Information Time of concentranomis calculated using the SC &Segmental Approach (TR -55) Segment 1: Overland Flow Segment 2: Concentrated Flow Length = 100 ft Length = 574 Height = 1.3 ft Height = 292 Slope = 00130 ft/ft Slope = 00509 Manning'syn = 0'24 dense grasses Paved 9` No P,(2-year/24-hour) = 348 inches (Cary, NC) Velocity = 364 Segment Time = 16.26 minutes Segment Time = 2.63 Segment3: Channel Flow (Breached Pond) Segment 4: Channel Flow Length = 150' ft Length = 146 Height = 6 ft Height = 105 Slope = 00400 ft/ft Slope = 00719 Manning's n = 0 045 natural channel Manning's n = 0 045 Flow Area = 100 sf (assume 1''x F channel) Flow Area = 1100 Wetted Perimeter = 300 ft (assume F x P channel) Wetted Perimeter = 100 Channel Velocity = 3 18 ft/sec Channel Velocity = 427 Segment Time = 0.79 minutes Segment Time = 0.57 Time of Concentration = 20`24 minutes SCS Lag Time = 1214 minutes (SCS Lag = 0 6* Tc) Time Increment 352 minutes (= 0 29 *SCS Lag) ft ft ft/ft ft/sec minutes ft ft ft/ft natural channel sf (assume F x F channel) ft (assume 1' x'l "channel) ft/sec minutes KILDAIRDCROSSING AWH -12050 Assume: PRE - DEVELOPMENT HYDROLOGY Subbasin 2 HSG Impervious' Open Wooded A 98 39 30 B 98 61 55 _ C 98-- .,74 70 �D 98 80, 77 HSG'A' = 0% HSG'B' = 100% HSG`0 = 0% HSG'''D' = 0% Cover Condition SCS CN Comments Impervious 98, - _ en _ 61 Assume good condition Wooded 55 Assume +good condition A. Onsite Impervious�Breakdown Contributing Area Area Isl] Area jacresl �Buildmg 0 000 Roads/Dnvewa "s 0 0:00 Sidewalk i 0 woo Other 0 000 Totals ,0 000 B. Watershed Breakdown Contributing Area SCS CN Area [sf1 Area facrest _ Comments Onsite impervious 98 0 000 Onsite open 61 151,592 348 Assume, good condition Onsite wooded 55 45,334 104 Assumes ood condition Onsite pond 100 0 000 Offsite impervious 98 0 000 Offsite open 61 0 000 Assume good conditiori Offsrte wooded 55' 0 &00 Assume goo&condition Offsite pond 100 0 000 - Total area = Composite SCS CN = % Impervious = 452 acres 00071 sq nu 60 00% D PERRY, EI 8/6/2013 KILDAIRE CROSSING AWH -12050 PRE - DEVELOPMENT HYDROLOGY Subbastn 2 C. Time,of Concentration Information Time�of concentration is, calculated using,the,SCS Segmental Approach (TR -55) Segment 1: Overland Flow Segment,2: =Concentrated Flow Length = 100 ft Length = 286 ft Height = 35 ft Height = 195 ft Slope = 00350 ft/ft Slope = 00682 ft/ft Manning's n = 024 dense grasses Paved 9 = No P (2- year/24 -hour) = 348 inches (Cary, NC) Velocity .= 421 ft/sec Segment Time = 10.94 minutes Segment,Time = 1.13 minutes Time of Concentration = 1207 minutes SCS LagjTmme = ` 724 minutes'(SCS.Lag,= 0'6* Tc) Time Increment = 210 minutes = 0,29 *SCS La D PERRY, EI 8/6/2013 0 KILDAIRE "CROSSING PRE - DEVELOPMENT HYDRO_ LOGY D PERRY, EI AWH -12050 Subbasin 3 8/6/2013 Assume: HSG Im_pervio_us Open Wooded_, A 98 39 30 B 98 61 55 C 98 74 7,0 _ - D 98 '80 77 HSG'A'= 0% HSG'B'= 100% HSG 'C' = 0%_ HSG D'= 0% Cover Condition SCS CN Comments Impervious 98 004 Open 61 Assume good condition Wooded 55 Assume good condition A. Onsite Impervious Breakdown Contributor Area Area [st] Area acres Building 1,642 004 Roads/Dnvewa s 4;607 Oil Sidewalk 0 000 Other 8,972 021 Totals 15,221 035 B. Watershed Breakdown Contributing Area SCS CN Area4 s Area acres Comments Onsrte,un ervious 98 15,221 035 - Onsite open 61 262,941 604 Assume good condition Onsite wooded 55 0 00-0 Assume good condition Onside pond 100 0 000 - Offsite un ervious 98 6,308 014 Offsite open 61 _ 80,363 1 84 As "sume good condition Offsite�wooded 55 469 001, Assume good condition Offsite pond 100 0 000 - Total area, Composite SCS CN = % Impervious-,= 839 acres 0 -0131 sq mi 63 59% KILDAIRE CROSSING A WH -12050 PRE - DEVELOPMENT HYDROLOGY Stibbastn 3 C. Time of Concentration Information Time of concentration is calculated using the SCS Segmental Approach (TR -55) Segment l: Overland Flow 248 ft Length = 1'00 ft Height = 2 ft Slope = 0 0200 ft/ft Manning's n = 024 dense grasses P (2- year /24 -how) = 348 inches (Cary, NC) Segment, Time = 13.68 minutes Segment 3: Channel Flow Length = 831 ft Height = 3 ft Slope= 00036 ft/ft Manning's n = 0 045 natural channel Flow Area = 900 sf (assume 3',x 3' channel) Wetted Perimeter = 9'00 ft (assume 3' x 3' channel) Channel Velocity = 199 ft/sec Segment Time = 6.96 minutes Segment 2: Concentrated Flow D PERRY, EI' 8/6/2013 Length = 248 ft Height = 125 ft Slope = 00504 ft/ft Paved v = No Velocity = 362 ft/sec Segment Time = 1.14 minutes Time,of Concentration = 21 79 minutes SCS Lag Time = 1307 minutes (SCS Lag- 0 6* Tc) Time Increment = 3 79 minutes (= 0 29 *SCS Lag) a KILDARE CROSSING PRE - DEVELOPMENT HYDROLOGY D PERRY, El AWH -12050 Subbasin 4 8/6/2013 Assume: HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74, 70 D, 98 80 77 HSG'A' =' 0% HSG 'B' = 93% HSG'C'= 0% HSG 'D' = 76/6 Cover Condition SCS,CN Comments Im ervious 98_______]_ - O en 62 Assume ood condition Wooded 57 Assume,-good condition A. Onsite Impervious Breakdown Contributing Area Area [st] _1 , Area, latrisl Building 1,877 004 Roads/Dnvewa s 0 0 00 Sidewalk 0 000 _ Oilier 4,596 011 Totals 6,473 015 B. Watershed Breakdown Contributing Area SCS CN -'---Area Js Area lacresl Comments Onsite impervious 98 6,473 015 _ Onsite open 62 667,947 1533 Assume good condition Onsite wooded 57 636,534 1461 Assume good condition Onsite pond 100 0 000 Offsite impervious 98 1 12,895 0,30 - Offsite open 62 171,881 395 Assume good condition Offsite wooded 57 489,687 1124 Assume good condition Offsite pond 100 0 00-0 - Total area = Composite SCS CN = % Impervious= 45 58 acres 0 0712 sq mi 59 10% KILDAIRE CROSSING PRE - DEVELOPMENT HYDROLOGY D PERRY, El AWH -12050 Subbastn 4 8/6/2013 C. Time of Concentration Information Tune of concentration,is,calculated using the SCS, Segmental Approach,(TR -55) Segment 1: Overland Flow 833 ft Length = 100 ft Height= 1 ft Slope = 00100 ft/ft Manning's n = 024 dense grasses P (2- year/24 -hour) = 348 inches (Cary, NC) Segment Time = 18.06 minutes Segment 3: Channel Flow 2.64 minutes Length = 705 ft Height = 33 ft Slope = 00468 fJft Manning's n = 0 045 natural channel Flow Area = 400 sf (assume 2'x 2' channel) Wetted Perimeter = 600 ft,(assume Tx T channel) Channel Velocity = 547 ft/sec Segment Time,= 1.15 minutes Segment 6: Channel Flow Length= 833 ft Height = 21 ft Slope = 00252 ft/ft Manning's n = 0 045 natural channel Flow Area'= 900' sf (assume 3' x 3' channel) Wetted Perimeter = 900 ft,(assume Tx 3' channel) Channel Velocity= 526 ft/sec Segment Time = 2.64 minutes Segment 1: ConcentratedtFlow Length = 569 ft Height = 36 ft Slope = 00633 ft/ft Paved 9— No Velocity = 406 ft/sec Segment Time— 2.34 minutes Segment 4: Channel Flow (Breached,Pond) Length = 131 ft Height— 1 ft Slope = 00076 ft/ft Tannings n,= 0 '045 natural channel Flow Area— 100 sf (assume, F x F channel) Wetted Perimeter = 300 ft (assume 1' x F channel) Channel Velocity = 139 ft/sec Segment Time = 1.57 minutes Time,of Concentration = 2675 minutes SCS LagTime = 1605 mmutes (SCS Lag = 0 6 "Tc) Time Increment = 466 minutes (= 0 29'SCS Lag) 1 KILDAIRE CROSSING PRE- DEVELOPMENT HYDROLOGY D PERRY, EI AWH -12050 Subbastn Unanalyzed° 8/612013 Assume: HSG Impervious Open_ Wooded A 98 39 30 B 98 _ 61 �55 C, 98 74 70 _ D 98 80 77 HSG'A' = 0% HSG 'B' = 49% HSG'C' =, 0% HSG D'= 51% Cover,Condition SCS C_N Comments Impervious 98 000 Open, 71 Assume good condition Wooded 66 Assume�good condition M N6 A. "Onsite Impervious Breakdown Contributing Area Area (st] Area acres Building 0 000 Roads/Dnvewa s 4,128 009 Sidewalk 0 0 00 Other 0 000 _ Totals 4,128 009 B. Watershed Breakdown Contributing Area SCS,CN_ Areas Area acres Comments Onsite impervious 98 4,128 0_09 Onsite open 71 40,101 092 Assume good,condition Onsite wooded 66 345,818 794 Assume good condor on Onsite pond 100 0 000 Offstte impervious 98 ,0 000 - Offsrte,o en 74 0 0 00 Assume pod condition Offsite wooded 66 0 000 Assume good condmon Offsrte and 100 0 000 Total, area = Composite SCS CN = % Impervious = 895 acres 00140 sq mi 67 1 1% KILDAIRE CROSSING AWH -12050 PR_ E- DEVELOPMENT HYDROLOGY Reach Data REACH #1 - POA lA TO POA 1 Time -of concentratiomis calculated using the SCS Segmental Approach (T)q-55) Segment 1: Channel'Flow Length = 354 ft - Height = I 1 ft Slope = 00311 ft/ft Manning's n = 0^045 natural channel Flow Area = 4,00 sf (assume 2'x 2' channel) Wetted Perimeter = 600 ft (assume 2' x'2 "channel) Channel Velocity = 445 ft/sec Segment Time = 1.31 minutes Time,of Concentration = 132 minutes SCS Lag Time= 079 minutes (SCS Lag = 0 6* Tc) Time Increment = 0 23` minutes'(= 0 29 *SCS Lag) REACH #2 - POA 1B TO POA 1 Time, of concentration is calculated using the SCS Segmental Approach (TR -55) Segment 1: Channel Flow Length = 130 ft Height = 95 ft Slope = 00731 ft/ft Mannmg's n = 0 045 natural channel Flow Area = 100 sf (assume 1' x 1' channel) Wetted Perimeter = 300 ft (assume 1'-x 1' channel) Channel Velocity = 430 ft/sec Segment Time = 0.50 minutes Time of Concentration = 050 minutes SCS Lag Time= 030 minutes (SCS Lag = 0 6* Tc) Time Increment = 009 minutes (= 0 29 *SCS Lag) D PERRY, EI 8/6/2013 J McADAMS Scenario: Pre- Development .ire Crossing J Aldridge, PE HWH- 12050 ppc 8/612013 McADAMS Subsection; Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) W /s) (years) (ac -ft) Sub IA Pre 1 year 1 0 216 735 000 143 Sub IA Pre 2 year 2 0.376 732 000 331 Sub IA Pre 5 year 5 0.676 732,000 676 Sub 1A Pre 10 year 10 0.951 732 000 9.82 Sub 1A Pre 25 year 25 1.3681 730:000 13.86 Sub 1A Pre 100 year 100 2.108 730 000 20.33 Sub 1B Pre 1 year 1 0 165 737 000 103 Sub 1B Pre 2 year 2 0 287° 734 000 2.36 Sub 1B Pre 5 year 5 0.515 734.000 481 Sub 16 Pre 10 year 10 0 725 732 000 700 Sub 1B Pre 25 year 25 1043, 732.000' 9:94 Sub 1B Pre 100 year 100 1 608 732.000 1462 Sub 2 Pre 1 year 1 0.110 731000, 080 Sub 2 Pre 2 year 2 0 196 729 000 2.02 Sub 2 Pre 5 year 5 0.358 728.000 420 Sub 2 Pre 10 year 10 0.508 727 000 6 19 pub 2 Pre 25 year 25 0.736 727.000 8.78 ,ub 2 Pre 100 year 100 1 143 726.000 1293 Sub 3 Pre 1 year 1 0 268 738.000 189 Sub 3 Pre 2 year 2 0.450 735 000 389 ,Sub 3 Pre 5 year 5 0.784 735.000 7.33 Sub 3 Pre 10 year 10 1.086 733 000 10.37 Sub 3 Pre_25'year 25 1.540 732 000 14.37 Sub 3 Pre 100 year 100 2.339 732'000 20 75 Sub 4 Pre 1 year 1 0 996 756.000 5 17 SubA Pre,2 year 2 1811, 742.000 11 -.55, Sub,4 Pre,S year 5 3 375 739,000 2538, Sub 4 Pre 10 year 10 4 832 738 000 38 77 Sub 4 Pre 25 year 25 7 063' 738:000 5695 Sub 4 1 Pre 100 year 1001 11.0781 738.0001 86591 Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 %s) (years) (ac -ft) POA 1A Pre 1 year 1 0.216 735000, 1.43, POA 1A Pre 2 year 2 0.376 732 000 3.31 POA 1A Pre 5 year 5 0 676 732000, 676 POA IA Pre 10 year 10 0 951 732 000' 982 POA 1A Pre 25 year 25 1.368 730,000 1386 POA IA Pre 100 year 100 2 108 730.000 2033, POA 1B Pre 1 year 1 0.165 737 000. 103 OA 1B Pre 2 year 2 0.287 734 000 236 .daire,Crossing J Aldridge, PE AWk -12050 ppc 8/712013 L. � .. Subsection: Master Network Summary Node Summary Label 'OA 1B 'OA 16' 'OA 1B ?OA 1B '0A 1 'OA 1 'OA 1 'OA 1 'OA 1 'OA 1 'OA 2 'OA 2 'OA 2 'OA 2 'OA 2 'OA 2 'OA 3 'OA 3 'OA 3 'OA 3 IOA 3 'OA 3 'OA 4 'OA 4 'OA 4 'OA 4 'OA 4 'OA 4 daire Crossing AWH -12050 ppc Scenario Pre 5 year Pre 10 year Pre 25 year Pre 100 year Pre 1 year Pre 2 year Pre 5 year Pre 10 year Pre 25 year Pre 100 year Pre 1 year Pre 2year Pre 5 year Pre 10 year Pre,,25 year Pre 100 year Pre 1 year Pre 2 year Pre 5 year Pre 10 year Pre 25 year Pre 100 year Pre 1 year Pre 2 year Pre 5 year Pre 10 year Pre 25 year Pre 100 vear Return Hydmgraph Time to Peak Peak,Flow Event Volume (min) (ft3 /s) (years) (ac =ft) 5, 0.515 734 000 4.81 10 '0.725, 132,000; 700 25 1 043 732 000 9.94 100 1608 732.000 14.62 1 0 381 737.000 2.43 2 0 662 735 000 562 5 1 191 733 000 1151 10 1 675 733 000 1682 25' 2 410 732.000' 23.71 100 3 716 732.000 3480 1 0 110 731 000 080 Z 0.196 '729 000 2.02 5 0.358 728.000 4.20 10 0.508 727.000 619 25 0 736 , 727 000 878 100 1.143 726.000 12.93 1 0 268 738.000 189 2 0.450 735.000 389 5 0.784 735.000 7.33 10 1086 733.000 10.37 25 1.540 732.000 14.37 100 2 339 732 000 2075 1 0 996 756.000 5.17 2 1 811 742.000 11 55 5 3.375 739.000 2538 10 4.832 738 000 3877 25 7.063 738 000 56.95 100 11 078 738 000 86.59 J Aldndge, PE 8/7!2013 POST - DEVELOPMENT HYDROLOGIC CALCULATIONS IILDAIRE CROSSING AWH -12050 O V MMAS 1■ ANA&S 1 3 SIM I UMIAK IOLDAIRE CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN J ALLEN 'PE CFM AWH -12050 Subbusin lA 4[4 /2014 (PSCSCURVE "NUMBERS s .SF &t+ HSG Impervious Open Wooded A 98 39 30 B 98 61 55 _ C -98' _ 74 70 D 98 80 77 Assume HSG'A'= 0% HSG'B'= 94% HSG'C'= 0% HSG D'= 6% Cover Condition SCS CN Comments Impervious 98 0 en I _ 62 Assume good condmon` Wooded 56 Assume good condition H OS,- , EVE, A Onsite Impervious Breakdown Contributing Area # orUmts Area / Unit Area Isfl Area jacresl Lot Roof Area _ or Roof Area 4 75 3,'400 1 6,150, _ 037 0 450 Lot Driveway 0 450 _ 0 000 0 ,Lot Sidewalk 0 130 _ 0 000 0 _ Lot Patio 10 _ 120 1,200 003 M Building < Roadwi Area 0 000 0 Roadway Area _ Driveway / Parkin Lot 0 000 is Driveway / Parking Lot _ Sidewalk'/ Patio 0 _ 000 _ 000 Sidewalk / Patio Other _ Phase'3 - Ousne open 0 000 000 _ Other Phase 3 - Onsite wooded 0, 0 000 Assume ood condition Totals 100 i 0 17 350 040 Offsne impervious 91 Contnbuting Area # of Units Area / Unit Area Isfl Area acres _ 0 Lot Roof Area _ 0 3,400 0 000__ '0 00 Lot Driveway 4` '0 450 0 000 Lot Sidewalk 0 130 - 0 _ 000 r Loi Patio _ _ 0 120 0 _ _ 000 m m _ Buddm _ 0 000, < S Roadway Area 0 _ 000 tL Driveway /Parkm Lot _ 0 000 Sidewalk / Patio _ 0 000 Other 0 000 l Totals 0 000 Contributmg Area # of Units Area/Unit Area sQ Area acres Comments Lot Roof Area _ 0 3,400 0 _ 000 Lot 0 450 0 000 Assume ood condition Lot Sidewalk 0 130 _ 0 000 n _ Lot Patio 0 120 0 000 m to Building _ 000 0 '000 < Roadwi Area _ Assume good condition, 0 000 it Driveway / Parkin Lot Assume good conditon Phase 2 - Onsite poiid 0 _ 000 000 Sidewalk'/ Patio Phase 3 - Onsif im er'vmus _ 01- _ 000 000 Other _ Phase'3 - Ousne open 1 0 0 00 000 _ Torals Phase 3 - Onsite wooded 0, 0 00 B Watershed Breakdown Contributme Area SCS CN A7rea lsfl Area facresf Comments Phase'] - Onsite impervious 98 17,350 _ 040 Phase 1 - Onsite open 62 34,783 080 Assume ood condition Phase 1 - Onsite wooded 56 35,356 O 81 Assume ood'condition _ Phase I - Onsite and 100 __ 0 000 _ _ Phase 2 - Onsite impervious 98 _ 0 000 _ _ Phase 2 - Onsite open 62 _ 0 000 Assume good condition, Phase 2 - Onsite wooded 56 0 000 Assume good conditon Phase 2 - Onsite poiid 100 0 000 Phase 3 - Onsif im er'vmus _ 98 0 000 _ _ Phase'3 - Ousne open 62 0 000 _ Assume good condition Phase 3 - Onsite wooded 56 0 _ 000 Assume ood condition Phase 3 - Onsite podd 100 i 0 _ 000 Offsne impervious 91 0 _ 000 _ Offsne open 62 _ 0 000 Assume Sood condition Offsne wooded 56 0 _ '0 00 Assume good co6dmon_ Offstte pond 100 0 000 Total area = 201 acres 00031 sq mi Composite SCS CN = 67 % Impetuous = 00% KILDAIRE CROSSING' POST DEVELOPMENT HYDROLOGY - DESIGN I ALLEN,, PE, CFM AWH -12050 Subbasin IA 4/14/2014 C Time of Concentration Information Time ojconcemmnon is assumed to be 5 minutes Time of Concentration = 500 minutes' SCS Lag Time = 300 mmutes (SCS Lag = 0 6' Tc) KB,DABdE CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN J ALLEN, PE, CFM AWH -12050 Subbasin IB -lo SWMFA 4%14/2014 - HSG Impervious Open Wooded _ A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 Assume HSG'A' = 0% Area / Unit' HSG'B' = 100% Phase I - Onsite impervious HSG'C' = 0% 3 400 HSG b',= 0% 1 Cove4Condibon SCS CN Comments Impervious 98 _ Open 61 Assume goodwndition Wooded 55 Assume good condition A. Omite Impervmus Breakdown _ Contributin %Area M of Units Area / Unit' Area Isfl Area acres Phase I - Onsite impervious Lot Roof Area 5475 3 400 186,150 4'27 Lot Dnveway 62 450 27,900 0 64 0 Lot Sidewalk 62 130 8,060 019 r Lot Patio 48 120 5,760 013 rn 'Buddiii - 70,135 1,251 -'003 S Roadv+ay Area 0 - 11 1 817 _ 257 d Dnveway / Parking Lot - 15,393 031 0 Sidewalk / Patio _ _ 26,216 060 000 _Other Phase 3-- Onsite wooded - 15,999 037 r Totals 'I00 t 0 398,546 '915 Offsne impervious 98 Contnbutwi Area _ _ # of units Area /Unit Area an Area acres 0 Lot Roof Area 950 3,400 32,300 074 0 00 LofDnvewiy 9 450 4,050 009 Lot Sidewalk 9 130 _ 1 170 003 N _ Lot Patio 13 120 1,560 004 q Buddin g - - 0 000 Roadway Area - _ e 7,443 017 6. Dnvewa / Puking Lot 0- 000 _ Sidewalk'/ Patio 1,255 r 003 Other 0 000 Totals - 47,778 110 Contributing Area 0 of Units _ Area LUmt Area (sq Area acres Phase I - Onsite impervious Lot Roof Area 000 1 3,400 0 000 Lot Dnveway 0 450 0 000 0 Lot Sidewalk 01 130 0 000 r Lot Patio 0' 120 0 000 w y Building 70,135 0 000 S Roadway Area 0 000 0 000 16 Dnvewa / Parkin - Lot 000 —0 �0 00 0 Sidewalk /Patio _ 0 000 000 _ Other Phase 3-- Onsite wooded 55 _ 0 0 00 Assume good condmon Totals 'I00 t 0 0 000 B Watershed Breakdown Contributing Area Areas Area acres Comments Phase I - Onsite impervious 398,546 9 15 Phase 1 - Onsite open 461 665 10 60 Assume ood condition Phase 1 - Onsite wooded Z61 0 0 00 Assume ood condition Phase I - Onsite and 26,704 0 61 Phase 2 - Onsite impervious 47 778 1 10 Phase 2 - Onsite o en 70,135 161 Assume good condition Phase 2 - Onsite wooded 55 0 000 _ Assume good condition Phase 2 - Onsite pond 100 0 000 Phase 3 - Onsite tin pervious 98 0 Phase 3 - Onsite open 61 0 000 Assume go6d condition Phase 3-- Onsite wooded 55 _ 0 000 Assume good condmon Phase 3 - Onsife pond 'I00 t 0 000 Offsne impervious 98 0 000 Offsite open _ 61 _ 0 000 Assume good condmon Offsite wooded 55 '0 0 00 Assume` good condition Offsite pond 100 0 000 Total area = 2307 acres 00360 sq mt Composite SCS CN = 78 %'Impervious 48% KILDAIRE CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN J ALLEN, PE, CFM AWH -12050 Subbastit IB - to SWMFA 4/14/2014 " C Time of Concentration Information Time ojconcentratnon is assumed to be 5 minutes Time of Concentration = Soo minutes SCS Lne,Tune = 300 mmutes'(SCS'Lag = 0 6* Tc) Time Increment = 087 minutes (= 0 29'SCS Lag.) IQLDAIRE CROSSING, POST DEVELOPMENT HYDROLOGY - ,DESIGN t ALLEN, PE, CFM AWH -12050 Subbasin !B - Bypass 4/14/2014 rz SCS"GU�tVE NUMBERS HSG Impervious Open _ - Wooded A 98 39 30 B 98" 61 55 C 98 74 70 D 98 80 77 Assume HSG'A' = 0% HSG ,'B'= 93% HSG'C'= 0% HSG'D'= 7% Cover Condition _ SCS CN _ Comments Im em6us _ _ 98 O en 62 Assume good condition Wooded' 57 Assume good conditto6, 11.:P,OST,;DEVELOPMEN'1' A. Onsite Impe -mus Breakdown Contributing Area # of Units Area / Unit Area jsQ Comments Phased, - Onsite impervious Lot Roof Area 0 75 3,400 2,550Lot Phase 1 - Onsite open 62 Driveway 0 450 0 57 4,453 Lot Sidealk 0 130 0 0 000 Lot Patio 1 120 120 000 Buildmg 62 0 0 EOO Phase 2 - Onsite wooded Roadway Area - 000 0 Phase 2 - Onsite pond tL Dnvewa / Parkin Lot 000 0 98 0 Sidewalk / Pauo t 0 0 000 Other Phase 3 - Onsite wooded 0 000 Assume good condition Totals - 0 2,670 _ Offsdeim ervtous 98 0 000 Contributing Area It of Units Area / Unit Area [sl] Area acres Assume good condition' Lot Roof Area 0— 3,400 0 000 Offstte pond Lot Dnveive 0_ 450 0 000- Lot Sidewalk 0 130 0 _ 000 r k Lot Patio 0 120 0_ 000- m Budding 0 000 _ Roadway Area - 0 _ 000 4 _ Driveway '/ Puking Lot 0' 0 00 Sidewalk / Patio _ 0 000 Other -_ 0 000 Totals - '0 000 Contnbunn Area # of units Area / Unit Areas —_ Lot Roof Area 0 3,400 - 0 _ Lot Driveway 0 450 0 Lot Sidewalk '0 130_ 0 T'OOO vi Lot Patio 0 _ 120 0 Building _ Q Roadway Area ___ _ - 0 a. Driveway /Parkm Cot 0 Sidewalk /Patio _— 0 000_ Other - 0 0 00 Totals - 0 ,000 B Watershed Breakdown Contributing Area SCS CN Area Isn Area lacresl Comments Phased, - Onsite impervious 98 2,670 006 " Phase 1 - Onsite open 62 22,797 052 Assume good condition Phase 1'- Onsite wooded 57 4,453 010 Assume good condition Phase 1 - Onsite pond' 1 100 0 000 Phase 2 - Onsite impervious 98 0- 000 ,Phase 2 - Onsite open 62 0 000 Assume good condition Phase 2 - Onsite wooded 57 _ 0 000 Assume ood condition Phase 2 - Onsite pond 100 0 000 Phase 3 - Onsite impervious _ 98 0 000 Phase 3 - Onsite open 62 0 000 _ Assume good condition Phase 3 - Onsite wooded 57 0 000 Assume good condition Phase 3 - Onsite pond 100 0 000 _ Offsdeim ervtous 98 0 000 _ ,Offsne o en 62 0 _ 000 Assume good condition' Off tte wooded 57 0 000 Assume good condition Offstte pond 100 0 000 Total area = 069 acres 00011 sq mt Composite SCS CN = 65 %impervious = 00% KILDAIRE CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN AVIH -12050 Subbasin IB- Bypass ,C Time of ConcentratiomInformation Time of— entraaon is assumed to-be 5 minutes Time of Concentration = 5 U0 , mnutes SCSl.ag Time = 300 minutes (SCS Lag = 0 6' Tc) Time Increment = 087 minutes f= 0 29'SCS Laal 1' AL'L'EN, PE CFM 4/1'4/2014 KILDAIRE CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN AWH -12050 Subbuttn 1 f Assume HSG Impervious Open Wooded A 98 39 30 B i -�98 61 _ 55 C 98 74 -70 D 98 80 77 HSG'A'= 0% HSG;B'= 100% HSG'C = 0% HSG ,'D'= 0% Cover Condition SCS CN Comments Impervious_ 98 _ _ Open 61 1 'A— ssume'good condition Wooded 55 1 Assume good condition dyO�ST -'DEVEL'OPMENT A Onsite Impervious Breakdown Contributing Area 4 of Units Area /Unit Area Isf] Area acres Comments Lot Roof Area 0 3 400 _ 0 000 Lot Dnveway 0 450 0 000 Assume good condition' Lot Sidewalk 0 _ _ 130 0 000 Asstime good condmon _ Lot Patio 0 120 0 _ Bmldmg 0 0`00 _ S Roadway'Aiea - - 0 000 a DmJeway / Parkin j Lot _ 0 _ _ _ 000 Sidewalk /,Paso 0 _ 000 Other 0 000 Totals o 000 Contributing Area 4 of Units= Area / Umt Area �., Area acres Lot Roof Area 0 3 400 0 000 _ Lot Dnvew i " _ 0 450 0 000 _ Lot Sidewalk 0 130 0 - _ 000 _ Lot Patio 0 120 0 000 y Building _ 0 _ _ 000 S Roadway Area 0 000 a Drivewa / Parking Lot 0 000 Sidewalk / Patio - 0 000 Other 0 000 Totals 0 0 00 Contributing Area 4 of Units Area hunt Areas Area acres Lot Roof Area 0 _3,400 _ 0 0 w Lot Driveway 0 _ ,450 0 000 Lot Sidewalk 0 _ 130 0 000 e� Lot Patio _ 0 120 0 000 W Bwldm _ 0 000 z Roadway Area - - 0 - 000 a Driveway / Parking Lot 0 _ 000 Sidewalk / Patio 0 _ 0 00, Other _ 0 000 Totals 0 000 B Watershed Breakdown Contributing Area S SCS CN A Areas I I Area [acres], C Comments Phase I - Onsite impervious 9 98 _ _ 0 _ 0 000 Phase 1- Onsite open ` `61 _ _ 17,951 1 1 _ 041 A Assume good condition' Phase 1 - Onsite wooded 5 55 _ 1 11,660 0 0 27 A Asstime good condmon _ Phase 1 - Onsue pond _ 1 100 0 0 0 0 00 _ Total area = 091 acres 00014 sq mi Composite SCS CN = 59 % Impervious = 00% 3 ALLEN PE, CFM 4/14/2014 KILDAIRE CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN I ALLEN, PE, CFM AYM -12050 Subbasinm 2 4114 /z014 C Time of Concentration Information Time ojcancentration is assumed to be S minutes Time of Concentration = 500 minutes SCS Lag Time = 300 minutes (SCS Lag = 0 6" Tc) Time Increment = 087 minutes (= 0 29•SCS'La¢) KILDAIRE CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN J ALLEN, PE, CFM AWH -12050 $ubbasin 3 4/14/2014 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 Q 98 74 70 D 98 80 77' Assume HSG'A'= 0% HSG B'= 100% HSG'C'= �0% _ HSG'D' =' 0% _ Cover Condition SCS CN _ Comments _ Impervious 98 Open 61" _ Assume good condition Wooded 1 55 Assume good condition A Onsite Impervious Breakdown Contributing Area 14 ofUmts Area / Unit Area Isn Area, acres Comments Lot Roof Area 1 75 3,400 54950 _ 014 Lot Driveway 0 450 0 000 Assume good condition Lot Sidewalk 0 '130 _ 0, 000 Assume good condition - Lot Patio 3 120 _ 360 001 y _ Building ' 98 0 _ 000 S Roadway A Area - 12,945 030 a. _ Dnveway / Parking Lot _ _ 0 0 00 Assume ood'condition Sidewalk / Patio A _ 100 2,631 006 _ Other - i 98 0 212 Totals I i 61' _ 21,886 050 Assume' ood condition Phase 3 - Onsite wooded Contributing Area B # of Units Area / Unit Area JsQ Area jac6esj Phase 3 - Onsite pond Lot Roof Area ' 0 3,400 0 000 OMae im ervious _ Lot Drivewe 0 450 0 '0 00 Offsite o �en _ Lot Sidewalk 0 130 0 '000 r _ Lot Patio 0 0 _ 120 0 000 h Budding 0 0 '000 _ Q S Roadwa -Area 0 z0 00' sL Dnv"eway /Parking Lot 0 _ 000 Sidewalk / Patio 0 0 00 Other 0 0 000 Totals 0 000 Contributing Area # of Units Area / Unrt Area sQ Area acres L"ot Roof A?ea 0 3 400 0 _0 00 'Lot Dnvewa _ 0 450 0 _000 L6t Sidewalk 0 130 0 _ 000 wi Lot'Patio 0 120, _ �0 000 y Budding + - 0 000 < Roadway Area - - 0 000 s Drive" / Parking Lot d 0 000 Sidewalk/Patio 9 _ 0 _ 000 Other 1 0 000 Totals _B 0 000 B Watershed Breakdown Continbutrn Area SCS CN Area Isn Area acres Comments Phase 1 - Onsite impervious 98 21,886 050 Phase h- Onsite open 61 46 424 1107 Assume good condition Phase I`- Onsite wooded 55 0 000 _ _ Assume good condition Phase lr Onsite pond 100, 0 000 Phase 2 - Onsite'impervious- ' 98 0 _ 0 00 Phase 2 - Onsite open 61 0 000 Assume good condition _ Phase 2 Onsite wooded 55, 0 _ 000 Assume ood'condition Phase 2 Onsite and 100 0 000 _ Phase 3 --Onsite im ervious 98 0 212 'Phase 3 - Onsite open i 61' _ 0 060 Assume' ood condition Phase 3 - Onsite wooded 55 0 000 Assurnigood condition Phase 3 - Onsite pond _ 100 0 000 OMae im ervious _ _ '98 6,870 016 _ Offsite o �en _ 61 79,499 1 83 Assume good condition Offsae wooded 55 469 0 01 _ Assume good condition _ Offsne pond - 100 0 f 000' Total area = 3 56 acres 00056 sq mi Composite SCS CN = 68 % Impervious = 44% KILDAIRE CROSSING POST DEVELOPMENT HYDROLOG_ Y - DESIGN I ALLEN, PE, CFM AWH -12050 Subbasm 3 4/14/2014 C Time of Concentration Information Time ojconcentration is assumed to be 5 minutes Segment I Overland Flmv Segment 2 Concentrated Flow Length = 100 ft Length = 260 ft Height= 2 ft Height= 8 ft Slope = 00200 H/ft Slope = 06308 ft/ft Manning's n = 0 24 dense grasses Paved o = No P(2- year /24hour)= 3'48 inches (Cary, NC) Velocity = 2'83 ft/sec Segment Tome = 1368 mrnuta Segment Time = 153 minutes Segment 3 Channel Flow Length = 259 ft Height = 1 ft Slope= 00039 ft/ft Manning's n = 0 045 natural channel Plow Area = 900 sf (assume T x T channel) Wetted Perimeter = 900 ft (assume 3' x 3' channel) Channel Velocity = 206 Mac Segment Time = 210 minutes Time of Concentration-- 1731 minutes SCS Lag Time= 1039 mmutes(SCS Lag = 06•Tc) Time Increment = 3 01 minutes (, 0 29lSCS Laa) KILDAIRE CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN J ALLEN, PE, CFM AWH -12050 Subbasln a - to SWMFB 4/1 746014 HSG Impervious Open - Wooded A 98 39 30 B 98 61 55 C 96 74 70 D 98 80 77 Assume HSG,'A' = 0% HSG B'= 92% HSG'C'= 0% HSG D'= 8% Cover Condition SCS CN Comments Im ervion 98 _ Open 63 Assume good condition Wooded ,57 Assume good condition A. Onsite Impervious Breakdown Contrifinting Area N or Units Area / Unit Area [sf[ Area [acres]_ Phase I - Onsite impervious _ Lot Roof Area 0 3,400 0 000 _ 63 _ Lot Drivewiiy 0 450 0 000 0 Lot Sidewalk 0 130 0_ -000 000 Lot Patio 0 120 _ 0 000 Building - — - 0 000 1y Roadway Area - - 1 6991 004 n. Driveway / Parkin Lot, 033 - 0 000 11,184 Sidewalk-/ Patio Phase 3 - Onsite open 206 000 009 Other Phase 3 - Onsite wooded 57 1 0 000' a Assume good condition Totals - 0 1,905 004 Offstteimpervious 98 0 Contributing Area N of Units Area / Unit Area [an Area acres 000 Lot Roof Area 24 _ 3,400 181,600 1 87 Assume ood condition Lot Dnvewa 32 450 14,400 033 Lot Sidewalk 32 130 4,160 010 « Lot Patio -14 120 1,680 004 m _ Building 0 000 _ Roadway "Area = 59,282 136 46 / Parkm Lot 0 900--. Pat 14,130 032 Other, -0 000 Totals 1 175,252 402 _ Contrilinting Ana N of units Area / Unit Ana Isn Area acres _ Lot Roof Area 0 3 400 A _ 000 _ Lot Driveway 0 450 0— 000 Lot Sidewalk 0 _ 130 0 000 Lot Patio -0 120 0 000 M Build m i 0 000 Roadway Area = - 8,110 019 d Driveway / Parking Lot 0 000 Sidewalk / Patio 3,074 007 _ Other 0 _0 00 T tals 11 184 026- B Watershed Breakdown Contributing Area SCS CN Aria [sfl Area lacresl Comments Phase I - Onsite impervious 98 1,905 _ 004 Phase 1 - Onsite open 63 857 _ 002 Assume good condition Phase I - Onsite wooded 57 0 000 Assume good condition Phase 1 - Onsite and 100 0 000 Phase 2 - Onsite impervious 98 175 252 402 Phase 2 - Onsite open 63 193,489 444 Assume good condition Phase 2'- Onstte wooded 57 0 000 Assume ood condition Phase 2 -Anne pond 100 14,233 033 Phase 3 - Onsite impervious 98 11,184 026 Phase 3 - Onsite open 63 3,915 009 Assume good condition Phase 3 - Onsite wooded 57 1 0 000' Assume good condition Phase 3 - Onsite pond 100 0 000 Offstteimpervious 98 0 000 Offsite open 63 0 000 Assume good condition Offsite wooded 57 0 000 Assume ood condition Offsite and '100 0 000 - Total area = 920 acres 00144 sq tai, Composite SCS CN = 81 % Impervious = 437% KQ:DAQ2E CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN J ALLEN, PE, CFM M44-12650 Subbastn 4 -to SWMFB 4/14/2014 �C Time of Concentration Information rime ofconcentranon is assumed to be S minutes Time of Concentration = 500 minutes SCS Lag Time = 300 minutes (SCS Lag = 0 6' Tc) KILDA❑2E CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN J ALLEN, PE, CFM AWH -12050 Subbasm 4 - Bypass I 4/14/2014 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 Assume HSG'A'= 0% HSG'B' = 92% HSG'C' = 0% HSG'D' = 8% Cover Condition SCS CN _ Comments_ _ Im ervious 98 Open 63 -'Assume good condition Wooded 57 Assume good condition A Onsite Impervious Breakdown Contributing Area # of Units Area / Unit Area [an Area acres Phase 1 - Onsite impervious Lot Roof Area 0 3,400 0 - 000 63 Lot Dnveway 0 450 0 000 0 Lot Sidewalk .0 130 0 000 . 000 Lot Patio _ 0 � 120 0 000 B.,Id,ng 63 42'990 _ 0 'O 00s Phase 2 = Onsite wooded Roadway Area 32'670 075 0 000, iL Driveway / Parking Lot 000 _ 0 000 _ 7,280 Sidewalk /Patio _ 0 000 1 24 Other Phase 3--- Onsite wooded _ _ 0 000 Assume g6od condition _ Totals 100 0 0 000 Offstte impervious 98 Contributing Arcs # of Units Area / Unit Area [sq Area acre 0 Lot Roof Area 05 3 400 1,700 004_ _ 000 Lot Driveway 0 450 0 000' Lot Sidewalk 0 _ 130 0 000 r Lot Patio 0 120 -0 000 W en Building _ 0 000 = Ro ,,v a Area - _ - 0 000 d Dnvewa6 / Parking Lot _ - 0 000 Sidewalk /Ps 0 000 Other 0 000 Totals 1,700 004 Contnbuun'Area # ol"Umts Area / Unit Areas Area acres Lot Roof Area 2 3,400 6,800 016 Lot Driveway 0 450 0 000 Lot Sidewalk 0 130 0 000 M Lot Patio 4 120 480 001 m Building - 000 Roadway Area - - .0 000 ts. Dnvewa / Pa3kifig Lot 0' 000 Sidewalk / Patio _ 0 000 Other 0 000 Totals 7,280 017 B. Watershed Breakdown Contributing Area SCS CN Area [sn Arealacresl Comments _ Phase 1 - Onsite impervious 98 0 000 Phase 1= Onsite open 63 0 000 Assume g7ood condition _ Phase 1 - Onsite wooded 57 0 000 Assame good condition - Phase 1 - Onsite pond 1 100 0 . 000 Phase 2 = Onsite impervious 98 1 700 _ 004 Phase 2-- Onsite open i 63 42'990 _ 099 Assume good-condition Phase 2 = Onsite wooded 57 32'670 075 Assume good condition Phase 2 - Onsite pond 100 0 000 Phase 3 - Onsite im ious 98 _ 7,280 017 Phase 3 - Onsite "o en 63 54,022 1 24 Assume good condition Phase 3--- Onsite wooded 57 135,137 3 10 Assume g6od condition _ Phase 3 .Onsne pond 100 0 0`00 Offstte impervious 98 0 '0 00 _ Offsa o en 63 0 000 Assume good condition Offsite wooded 57 0 000 Assume good condition Offsite pond 100 0 0`00 Total'area = 629 acres 00098 sq mi Composite SCS CN = 60 % Impervious = 06% KB-DAIRE CROSSING POST DEVELOPMENT HYDROLOGY- DESIGN 3 ALLEN, PE CFM AWH -12050 _ Subbasin 4 -to SWMFC 4/14/2014 HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C X98 74' _— 70 D 98 80 77 Assume HSG'A'= 0% HSG,'B'= 92% HSG'C' = 0% HSG D'= 8% Cover Condmon SCS CN Comments Imp ermiis _ 98 - Open 63 Assume good condition Wooded - 57 Assume good condition 11 ST,DEVELOPMENT �r A_ Onsite, Impervious Breakdown Contiributing Area _ k of units Area / Unit Area sQ Area acres Phase 1 - Onsite impervious Lot Roof Area 0 3,400 0 000 63 Lot Dnveway 0 450 0 000 0 Lot Sidewalk 0 130 0 000 n Lot Patio 0 120 0 000 in Building 63 - 0 000 96 6 Roadway Area - -_ _ 0 000 ' Wi Dn%ewa / Parking Lot _ - _ 0, 000 116253 Sidewalk / Patio Phase 3 - Onsite open 0 0 00 301 Other _ _ Phase 3 - Onsite wooded 57 0 000 As- sume`ood condmon Totals 100 - 0 000 Contnbutmg Area M of units Area / Unit Ana Isfl I Area acres Phase 1 - Onsite impervious Lot Roof Area 0 3,400 _ _ _ 0 0 00 63 Lot Dnvewa 0 450 0 000 0 Lot Sidewalk 0 130 0 000 n Lot Patio 0 120 0 000 y Building 63 - 0 000 Phase 2 - Onsite wooded Roadway Area - - 0 000 ' Wi Dnvewa / Parkin Lot - - 0 000 116253 Sidewalk / Patio Phase 3 - Onsite open 0 000 301 Other Phase 3 - Onsite wooded 57 _ 0 _ 0 00 - As- sume`ood condmon Totals 100 7,395_ 0 000 Offsite im etvtous 98 Contnbuti Area 4 of Units Area / Unit Area [sfl Area acres 54,448 Lot Roof Area 165 3 400 56 100 1 29 1 58 Lot Driveway 22 450 9 900 523 Lot'Sidewalk 22 130 _ 2,860 007 m Lot Patio 11 120_ 1,320 003 q Bwldm " - 0 000 Roadwa Area - 34,914 080 d Dnve%6a / Parking Lot _ 0 000 Sidewalk/Patio 1 ];159 026 Other 0 000- _ Totals 116,253 267 B Watershed Breakdown Contiributing Area SCS CN Areas Area acres Comments Phase 1 - Onsite impervious 98 0_— 000 - Phase 1 - Onsite open 63 0 _ _ 000 Assume good condition Phase 1 - Onsite wooded 57 0 000 Assume good condition Phase I - Oasne- and 100 __0 0 00 _ _ Phase 2 - Onsite impm —mus 98 _ 0,_ 000 - Phase 2 - Onsite open 63 +0 _ 000 Assume good condition Phase 2 - Onsite wooded 57 ,0 000 Assume good condition Phase 2 - Onsite pond, '100 0 000 Phase 3 - Onsite un e-ious 98, 116253 2 67 Phase 3 - Onsite open 63 130,986 301 Assume oo`d condition Phase 3 - Onsite wooded 57 0 000 As- sume`ood condmon Phase 3 - Onsite pond 100 7,395_ 017 Offsite im etvtous 98 0 000 Offsite'o pen 63 54,448 _ 125 Assume good condition Offsne wooded 57 68 632 _ 1 58 Assume good condition Olfsite and 100 0 000 Total area = 86 7 acres 00135 'sq mi Composite SCS CN = 173 % Impervious= 00% KILDAIRE CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN J ALLEN, PE, CFM AWH;12050 Subbasin 4 -to SWMFC 4/14/2014 C Time of Concentration Information Time ojconcentranon is assumed to be 5 minutes Time of Concentration = 5 W minutes SCS Lag Time = 300 minutes (SCS Lag = 0 6` Tc) Time Increment = 087 minutes (= 0 29•SCS Lae) KILDAIRE CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN 3 ALLEN, PE, CFM AWH -12050 - 4/14/2014 Subliastn J - Bypass2 HSG ,Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 Assume HSG'A'= 0% HSG'B'= 92% HSG'C'= 0% HSG'D'= 8% Cover Condition SCS CN Comments> Im ervious 98 Open 63 Assume good condition` Wooded 57 Assume good condition A Onsite Impervwus Breakdown Contiributing Area 4 of Umts Area / Unit Area IsQ Area acres Comments Lot Roof Area 0 3,400 0 000 Lot Driveway 0 _450 0 000 Assume good condition Lot Sidewalk 0 130 0 000 Assume goodconilitida Lot Patio 0 120 0 000 m Building 98 0 000 = Roadway Area 63 0 0 00 a. Driveway / Puking Lot 11 0 0-00- Assume good condni6ii Sidewalk / Patio _ _ 0— __ _ 000 Other 98 _ 0_ 000 - Totals 63 j 0 000 Assume good condition -Phase 3 - Onsite wooded Contributing Area 4 of Units I Area GUnd Area Isn Area acres , Phase 3 - Onsite pond Lou Roof Area 7 3,400 23 800 _ _ 055 Offsite impervious Lot Driveway 0 "450 f _ 0 _ _ _ X000 " Offsite o en Lot Sidewalk 0 130 0 _ -000 i Lot Patio 14 120 ,1,680, '004 _ I,Wi„ Budding - ' 0 000 Roadwa y Area 0, 000 �CL , Dnvewa /Parkin Lot j 0 000 Sidewalk /Patio 0 -000 Othe-r 0- - 000 'Totals 25,480 058 Contributing Area 9 of Units Area / Unit Area sQ Area acres Lot Roof Area 3 5 31400 0 11,900 027 Lot Driveway 0 450 0 000 Lot Sidewalk 0 130 0 0 00 M Lot Patio 7 120 _ _ 840 0 02 rn Building 0 _ — 000 S Roadway Area - 0 - 0 00 a / Parking Lot j 0 000 ,_Driveway Sidewalk /Patio 0 000 Other 1 0 0 00 Totals 12 740 029 B Watershed Breakdown Contributing Area SCS CN Areas 1 Area acres Comments Phase 1 - Onsite impervious 98 0 000 _ Phase 1 - Onsite open 63 0 02 2 Assume good condition Phase I - Onsite wooded 57 0 6.. Assume goodconilitida Phase 1 - Onsite pond 100 0 000_ Phase 2 - Onsite impervious 98 25 480 058 Phase 2 - Onsite open 63 44,975 1 03 _ _ Assume good'condition Phase 2 - Onsite wooded 11 0 000 Assume good condni6ii Phase 2 - Onsite pond 100 0 000 Phase 3 - Onsite im ervious 98 12 740 029 - Phase 3 Onsite open 63 102,392 235 Assume good condition -Phase 3 - Onsite wooded 57 59,985 1 38 Assume` o`od condition Phase 3 - Onsite pond 100 0 000 - Offsite impervious 2' 0 000 Offsite o en 6T 160 436 368 Assurne good condition Offsite wooded 57 391,254 898 Assu`me`good condnion Offvte pond 100 01 1 000 Total area = 1830 acres 00286 sq an Composite SCS CN = 61 % Impervious = 32% KILDAIRE CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN J ALLEN, PE, CFM AWH -12050 Subbawn Unanalyzed 4114/2014 ';SCS CURSE �R'UMBER'S�`X�';M_',- '` -.-_3 lir HSG Impervious Open Wooded A___ _ 98 39_ _ _ 30 B 98 61' 55 C 98 74 70 _ D 98 80 77 Assume HSG'A'= 0% HSG'B'= 51% HSG'C' = 0% HSG'D'= 49% Cover,Condition SCSCN Comments Im ervious 98 O en 70 Assume good condition Wooded 66 Assume good condition A Onsite Impervious Breakdown Contnbutn 'Area N of Units Area/ Unit Area Isn Area jacrisj Comments Lot Roof Area 0 L400 0 000 Lot Driveway 0 450 0 000 1 Assume good conduton Lot Sidewalk_ _ _ 0 __130__ __ 0 0 00 Assume good condition Lot Patio 0 ( 120 0 000 V) Building 98 0 000 < S Roadway Area f 9 431 022 a Driveway / Parking Lot 66 0 000 Assume good condition Sidewalk / Patio e 100 1 926 0'04 Othei Y 98 0 ,000 Totals 11,357 026 Assume good condition Phase 3 - Onsae wooded Conti ibuting Area 4 of Units Area / Unit Area Isfl Area acres Phase 3 - Onsite pond Lot Roof Area e 0 3,400 0 000 Offsite impervious Lot Driveway 0 450 0 000 Offsite open _ Lot Sidewalk 0 130 0 000 r Lot Patio 0 { 120 0 000 y B`uildmg 0 0 000 a 5 Roadway Area - 0 000 a Dnvewa / hirking Lot 0 0 00_ Sidewalk / Patio _ - _ _ 0 0 00 Other 0 000 _ Totals 0 000 Contrib'uting Area 4 of Units Area / Unit Area lsfl Area [acrestj Lot Roof Area S 0 3 400 0 000 Lot Dnvewa 0 450 0 000 Lot Sidewalk _ 0 130 _ _ 0 000 vi Lot Patio 0 120 0 000 y Building - 0 000 < Roadway Area - - 0 000 a Driveway,/ Parking Cot 0 0 00 Sidewalk / Patio ( 0 000 Other 0 000 7otals 0 000 B Watershed Breakdown Contnbunng Area SCS CN Areas Area acres Comments Phase 1 - Onsite impervious 98 11,357 0 26 Phase 1 - Onsite open 0 70 33,645 1 077 1 Assume good conduton Phase I - Onsite wooded 66 0 _ 1000 Assume good condition Phase,l - Onsite pofid 100 0 000 Phase 2 - Onsite impervious 98 0 '000, Phase 2 - Onsi[e open 70 _ 0 0 00, Assume good condition ,Phase 2 `Onsne wooded _ 66 203 969 468 Assume good condition Phase 2 - Onsite pond 100 0 000 Phase 3 - Onsite impervious 98 0 02 Phase 3 - Onsite 61 0 0 00 Assume good condition Phase 3 - Onsae wooded 66 141,850 -� 326 don Msd a ood conm Phase 3 - Onsite pond 100 0 000 Offsite impervious _ 98 0 000 - Offsite open _ 70 0_ ( 000 1 Assume' ood condition Offsne wooded r 66 (-2 ( 0 00 Assume good 6ondtion Offsite pond ( 100 _ 0 000 Total area = 897 acres 00140 , sq -mi Composite SCS CN = 67 % Impervious = 00% KILDAIRE,CROSSING POST DEVELOPMENT HYDROLOGY - DESIGN AWH -12050 Reach Data .,EACH #1 - POA lA TO POA 1 Time of concentration is calculated using the SCS Segmental Approach (TR -55) Segment 1: Channel Flow Length = 354 ft Height = 11 ft Slope = 00311 ft/ft Manning's n = 0 045 natural channel Flow Area = 400 sf (assume 2'x 2' channel) Wetted Perimeter = 600 ft (assume 2' x 2' channel) Channel Velocity = 445 ft/sec Segment Time= 1.32 minutes Time of Concentration = 132 minutes SCS Lag Time= 079 minutes (SCS Lag =,0 6* Tc) Time Increment = 023 minutes (= 0 29 *SCS Lag) REACH #2 - POA 1B TO POA 1 Time of concentration is calculated using the SCS Segmental Approach (TR -55) Segment 1: Channel Flow Length = 130 ft Height = 95 ft Slope = 00731 ft/ft Manning's`n = 0 045 natural channel Flow Area = 100 sf (assume F xY channel) Wetted Perimeter = 300 ft (assume 1' x P channel) Channel Velocity = 430 ft/sec Segment Time = 0.50 minutes Time of Concentration = 050 minutes SCS Lag Time = 030 minutes (SCS Lag = 0'6* Tc) 'Time Increment = 009 minutes (= 0.29 *SCS Lag) REACH #3 - POA 4A TO POA 4 Time of concentration is calculated using4he SCS Segmental Approach (TR -55) Segment]: Channel Flow Length = 395 ft Height = 6 ft Slope = 00152 ft/ft Manning's n = 0 045 natural,channel FlowrArea = 900 sf (assume 3' x 3' channel) Wetted Perimeter = 900 ft (assume 3' x 3' channel) Channel Velocity = 408 ft/sec Segment Time --- 1.61 minutes Time of Concentration = 161 minutes SCS Lag Time = 0 97 minutes (SCS Lag = 0 6* Tc) Timedncrement = -028 minutes (= 0 29 *SCS Lag) J ALLEN, PE, CFM 4/14/2014 J MCADAMS Scenario: Post - development .,Idaire Crossing J. Aldridge, PE AWH- 12050.ppc 4/14/2014 'J McADAMS Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) (years) (ac -ft) Sub 1A Post 1 year 1 0.089 722 "000 1.45 Sub 1A Post 2 year 2 0 140 722.000 255 Sub 1A Post.5 year 5 0 232 722 000 415 Sub IA Post 10,year 10 0 312 722 000 550 Sub 1A Post 25,year 25 0.431 721 000 724 Sub 1A Post 100 year 100 0 636 721 000 982 Sub 1B - Bypass Post 1 year 1 0 026 723 000 038 Sub 1B -,Bypass Post 2 year 2 '0.043 722'000 073 Sub 1B - Bypass Post 5 year 5 0 072 722 000 126 Sub 1B - Bypass Post 10 year 10 0 098 722.000 1.71 Sub,1B -Bypass Post 25 year 25 0 138 721 000 2.28 Sub 1B - Bypass Post 100 year 100 0:206 721.000 3.16 Sub 1B - To SWMF A Post 1 year 1 2.018 722.000 42.07 Sub 1B - To SWMF A Post 2 year 2 2.845 722 000 5879 _Sub 1B'- To SWMF A Post 5 year 5 4 212 721000' 8080 Sub 1B - To SWMF A Post 10 year 10 5 353 721.000 98.68 Sub 1B - To SWMF A Post 25 year 25 6.974 721 000 12025 Sub 1B - To SWMF A Post 1`00 year 100 9,664 721 000 14979 Sub 2 Post 1 year 1 0.020 726.000 019 Sub 2 Post 2 year 2 0 037 723.000 046 Sub 2 Post 5 °year 5 0 068 722 -000 1.04 Sub 2 Post 10 year 10 0 097 722.000 156 Sub 2 Post 25 year 25 0.142 722 000 225 Sub 2 Post 100. year 100 0 222 721 000 332 Sub 3 Post 1 year 1 0 168 732.000 175 Sub 3 Post 2 year 2 0 262 731 000 299 Sub 3 Post 5 year 5 0 428 730 000 4.89 Sub 3 Post 10 year 10 0.573' 730:000 6.51 Sub 3 Post 25 year 25 0 787 729,000 8.51 Sub 3 Post 100 year 100 1 155 729 000 1160 Sub 4 - to SWMF B Post 1 year 1 0 941 722.000 20 02 Sub 4 - to SWMF B Post 2 year 2 1.296 721.000 27 17 Sub 4 - to SWMF B Post 5 year 5 1 872 721 000 36 12 Sub 4 - to SWMF B Post;10,year 10 2.347 721.000 43 33 Sub 4 - to SWMF B Post 25 year 25 3 016 721.000 5187 Sub 4 - to SWMF B Post 100 year 100 4 117 721,000 6340 Sub 4 - to SWMF C Post 1 year 1 0.570 722 000 11 16 Sub 4 - to SWMF C Post 2 year 2 0.841 7,22000 1679 Sub 4 - to SWMF C Post-5 year 5 1.302' 722:000 24.42 Sub 4 - to SWMF C Post 10 year 10 1 696 721 000 30.85 Sub 4 - to SWMF C Post 25byear 25 2.265 721.000 38.87 ,Sub 4 - to SWMF C Post 100 year 100 3 223 721.000 50.15 Sub 4 - Bypass 2 Post 1 year 1 0.489 736.000 3.06 pub 4 - Bypass 2 Post 2 year 2 0 852 734.000 6x96 ,daire Crossing J, Aldndge, PE AWH -12050 ppc 4/14/2014 RUI MCADAMS Subsection: Master Network Summary Catchments Summary Node,Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) (years] (ac -ftj POA lA Post 1 year Label Scenario Return Hydrograph Time to Peak Peak Flow 2 0 140 722.000 2.55 Event Volume (min) (ft3 /s) 722 000 4.15 POA -1A Post -10 year (years) (ac -ft) 722 000 5 50 Sub 4 - Bypass 2 Post 5 year 5 1.531 733.000 1430 Sub 4 - Bypass 2 Post 10 year 10 2 154 733.000 20'91 Sub 4 - Bypass 2 Post 25 year 25 3 099 733 000 '29 51 Sub 4 - Bypass 2 Post 100 year 100 4 778 731 000 43.45' Sub 4 - Bypass 1 Post 1 year 1 0 154 726 000 154 Sub 4 - Bypass 1 Post 2 year 2 0.273 723 000 359 Sub 4 - Bypass 1 Post 5 year 5 0.500 722 000 760 Sub 4 - Bypass 1 Post 10 year 10 0.708 722 000 11.20 Sub 4 - Bypass 1 Post 25 year 25 1.026 722 000 16.01 Sub 4 - Bypass 1 Post 100 year 100 1 593 722 000 23.34 Node,Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) (years] (ac -ftj POA lA Post 1 year 1 0.089 722.000 145 'OA IA Post,2 year 2 0 140 722.000 2.55 POA 1A Post ,,5 year 5 0 232 722 000 4.15 POA -1A Post -10 year 10 0.312 722 000 5 50 POA IA Post 25 year 25 0.431 721000 7.24 POA 1A Post 100 year 100, 0.636 721.000 9 82 POA 1B Post 1 year 1 0528, 1,082.000 062 POA 1B Post'2 year 2 1 295 901 000 1.92 POA 1'B Post'5 year 5 2 577 781000 3.53 POA 1B Post 10,year 10 3 565 751:000 461 ,POA 1B Post 25 year 25 4 976 754,000 2067 'POA 1'B Post 100 year 100 7 530 750'000 4587 POA 1 Post 1 year 1 0 616 723 000 2.02 POA 1 Post 2 year 2 1 434 723 000 3 541 POA 1 Post 5 year '5 '2 807 723'000 5.75 POA 1 Post 10 year 10 3 874 7250 00 802 POA 1 Post 25 year 25 5 403 7,54000 22 27 POA 1 Post 100 year 100 8.161 751.000 49.16 POA 2 Post 1 year 1 0' 020 i 726 000 0 19 POA 2 Post 2 year 2 0 037 723 000 046 POA 2 Post 5 year 5 0068, 722 000 1.04' POA 2 Post 10 year 10 0.097' 722 000 156 POA 2 Post 25 year 25 0 142 722 000 2 25 POA 2 Post 100 year 100 0.222 721.000 3.32 POA-3 Post 1 year 1 0 168 732 000 175 POA 3 Post 2 year 2 0.262 731.000 2.99 POA 3 Post 5 year 5 0,428 730 000 4.89 POA 3 Post 10 year 10 0 573 730 000' 6 51 'daire Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 -q!Jl CAD 1 M S Subsection:, Master Network Summary Node Summary Label Scenario POA 3, Post 25 year POA 3 Post 100 year POA 4 Post 1 year POA 4 Post 2 year POA 4 Post 5,year POA 4 Post 10 year POA 4 Post 25 year POA 4 Post 100 year POA 4A Post 1 year POA 4A Post 2 °year POA 4A Post 5 year POA 4A Post 10 year POA 4A Post 25 year POA.4A Post 100 year Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume `(min) (ft3/s) (years) (ac -ft) 1 0 502 25 0 787 729 000 851 100 1 155 729 000 1160 1 0'912 740.000 406 2� 1 447 ' 736 000 8.67' 5 2 422 735 000 1730 10 3 659 735 000 '25.09 25 6 032 733.000 35.61 100 10 332 733 000 67.17 1 0.489 736 000 106 2 0 852 734 000 6:96 5 1:531 733 000 : 1430 10 2 154 733 000 20.91 25 3 099 733 000 2951 100 4.778 731.000 43'45 Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3 /s) Water Pond Storage (years) (ac -ft) Surface (ac -ft) Elevation (ft) 'SWMF A (IN) Post1 year 1 2,018 722 000 42.07 (N /A) (N /A) SWMF A (OUT) Post 1 year 1 0 502 1,087 000 061 44608 1 522 SWMF A, (IN) Post,2 year 2 2 845 722:000 587,9 (N /A) (N /A) SWMF A (OUT) Post-2 year 2 1 252 903 000 188 44642 1.797 SWMF A (IN) Post 5 year 5, 4 212 721 000 8080 (N /A) (N /A) SWMF A (OUT) Post 5 year 5 2 505 786.000 3,42 44722 2.480 SWMF A (IN) Post 10 year 10 5.353 721 000 9868 (N /A) (N /A) SWMF,A (OUT) Post 10 year 10' 3.467' 787000, 4.40 448.00 3 186 SWMF A (IN) Post 25 year 25 6.974, 721.000 120:25 (N /A) (N /A) SWMF A (OUT) Post 25 year 25 4 8391 754 000 2022 448.65 3 799 SWMF A (IN) Post 100 year 100 9 664 721 000 14979 (N /A) (N /A) SWMF A (OUT) Post 100 year 100 7 324 751.000 4480 448.97 4.108 SWMF B (IN) Post 1 year 1 0 941 722 000 2002 (N /A) (N /A) SWMF B (OUT) Post 1 year 1 0 167 1,440 000 0 18 40585 0.774 SWMF B (IN) Post 2 year 2 1.296 721.000 27 17 (N /A) (N /A) ddaire Crossing J .Aldridge, PE AWH- ,12050 ppC 4/14/2014 0 'JMcADAMs Subsection: Master Network Summary Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3 /s) Water Pond Storage (years) (ac -ft) Surface (ac -ft) Elevation (ft) SWMF B Post 2 year '2 0 198 1,440:000 021 406.51 '1.098' (OUT) SWMF B (IN) Post,5 year 5 1 872 721.000 36.12 (N /A) (N /A) SWMF B Post 5 year 5 0 239 1,440 000 0.25 40753 1 632 (OUT) SWMF B (IN) Post 10 year 10 2 347 721 000 4333 (N /A) (N /A) SWMF B Post l0 year 10 0270, 1,440 000 0.27 408 31 2076 (OUT) SWMF B (IN) , Post 25 year 25 3 016 721.000 51.87 (N /A) (N /A) SWMF B Post 25 year 25 0.817 903.000 175 408.60 2.242 (OUT) SWMF B (IN) Post 100 year 100 4 117 721 000 6340 (N /A) (N /A) SWMF B Post 100'year 100 1915 754.000 11 36 408.88 2.408 (OUT) SWMF C.(IN) Post'l, year 1 0 570 722 000 11 16 (N /A) (N /A) SWMF C Post 1 year 1 0 102 1,440 000 0 11 407.99 0 468 ' OUT) SWMF C (IN) Post 2' year 2 0 841 722:000 1679 (N /A) (N /A) .SWMF C Post 2 year 2 0.125 1,440.000 0.13 408:86 0 716 (OUT) SWMF C (IN) Post,5 year 5, 1.302 722 000 24.42 (N /A) (N /A) SWMF C Post-,5 year 5 0.154 1,440.000 0.16 41022 1 149 (PUT) SWMF C_(IN) Post 10 year 10 ,1 696, 721 000 30.85 (N /A) (N /A) SWMF C Post 10 year 10 A.52&'' 901000, 1.27 410:33 1 184 (OUT) SWMF C (IN) Post 25 year 25 2 265. 721.000 38.87 (N /A) (N /A) SWMF C (OUT) Post 25 year 25 1 093 755 000 598 41049 1.243 SWMF C (IN) Post 100 year ' 100 3.223 721.000 50 15 (N /A) (N /A) SWMF C Post 100 year 100 2.049 751,000 1564, 41072 1 321 (OUT) Jdaire Crossing AWO -12050 ppc J Aldndge,,PE 4/14/2014 STORMWATER MANAGEMENT FACIL'I'TY `B' DESIGN CALCULATIONS KILDAIRE CROSSING AWH -12050 KILDAIRE CROSSING STORMWATE_R MANAGEMENT FACII AWH -12050 SSFxn Above NP [STAGE ;ST GEZT, JNCTION ABQ8 EeNORMAL &PO',OL ?; n Average Incremental Accumulated Contour Contour Contour Contour Contour Stage Area Area Volume Volume 00 000 1 :,ITY'B' J ALLEN, PE, CFM 4/14/2014 Estimated Stage w/ S -S Fxn 40450 050 17.766 16000 8000 8000 0.51 40600 200 20.805 19286 28928 36928 1'95 40800 400 24,908 22857 45713 82641 397 41000 6'00 27,958 26433 52866 135507 6 13 Ks = 17313 b = 1.1347 KILDAIRE CROSSING STORMWATER MANAGEMENT FACI_LITY'B' AWH -12050 SSFxn Main Pool ISTfAGE�ST024 °GE2FUNCrTION� -�ti4LN P,0,7OL�'k,�b�,ne�;� 45000 40000 Storage vs. Stage Average Incremental Accumulated Estimated 35000 W = 0 997 Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S -S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 39800 0`00 3.902 10000 5000 40000 200 5.457 4680 9359 9359 202 40200 400 7,147 6302 _12604 21963 3,90 40350 550 8,506 6982 24435 33794 543 40400 600 10.719 8933 17866' 39829 6 17 45000 40000 Storage vs. Stage O y = =3754 x1298 35000 W = 0 997 30000 LL U 25000 '0 20000 0 rn 15000 10000 5000 0 0 "00 200 400 600 800 Stage (feet) KS = 3754 b = 1.2982 J ALLEN, PE, CFM 4/14/2014 KILDAIRE CROSSING STORMWATER MANAGEMENT FACILITY'B' J. ALLEN, PE, CFM AWH -12050 SSFxn Forebay 4/14/2014 STAGE- STORAGE FUNCTION - FOREBAY Ks = 716.3 b = 1.4845 Storage vs. Stage Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S -S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 398.00 0.00 754 w 400.00 2.00 1,294 1024 2048 2048 2.03 402.00 4.00 1,972 1633 3266 5314 3.86 403.50 5.50 2,571 1933 6764 8812 5.42 404.00 6.00 3.514 2743 5486 10800 6.22 Ks = 716.3 b = 1.4845 Storage vs. Stage 12000 • 10000 y = 716.2x'.484 R'= 0.996 8000 LL U a 6000 w o` 4000 2000 0 0.00 2.00 4.00 6.00 8.00 Stage (feet) Ks = 716.3 b = 1.4845 KILDAIRE CROSSING STORMWATER MANAGEMENT FACILITY'B' AWH -12050 volume Calculation Volume of Main Pool = 39,829 cf Volume of Forebay = 10,800 cf Total Volume Below�NWSE = 50,629 cf = 116 acre -ft, Total Volume Above,NWSE`= 135,507 cf 311 acre -ft Total Volume of Facility= 186;136 cf = 427 acre -ft .Fur' -1 OLU Per WCDWQ design guidelines, the forehay volume should equal approximately 20% of the total permanent pool volume Total Volume Below NWSE = 50,629 cf Volume of Forebay = 10,800 cf % Forebay = 213% Total Volume Below NWSE = 50,629 cf Surface Area at NWSE = 14,233 sf Average Depth = 3 56 ft J ALLEN, PE, CFM 4/14/2014 KILDAIRE CROSSING STORMW_ATER MANAGEMENT FACILITY'B' J ALLEN, PE, CFM AWH -12050 Surface Area Calculation 4/14/2014 WE- I'll EN•TION =BArSI1V1SiJ1Y1MA1tY� " From Stormwater Best Management Practices,Manual NCDENR ,Division of Water Quality, 1999 Enter the drainage area characteristics => Total drainage area,to pond = 920 acres Includes portions offuture phases Total impervious,area,to pond = 432 acres Note The basin must be "sized to treat all impervious surface runoff, draining into the pond, not just the impervious surface from on -site development Dramage•area = 9.20 acres @ 47.0% impervious Estimate the surface aremrequired at pond normal pool,elevation => Wet Detention Basins are based on an minimum average depth of = 3.56 feet (Calculated) From.the�DWQ BMP Handbook (1999), the required,SA /DA ratio for 90% TSS,Removal => 3 5 356 4.0 Lower Boundary => 400 230 200 Site % impervious => 470 265 2.62 235 Upper Boundary => 500 280 .2 50 Therefore, SA/DA required = 2.62 Surface area required abnormal,pool = 10,482 ftZ = 024 acres Surface area provided at normal pool— 14,233 ftZ KILDAIRE CROSSING STORMWATER MANAGEMENT FACILITY'B' AWH -12050 WQv Calculation EDETERM� ATION'OF'MATER QUALLTY WQv = (P) (R v)(A)II2 where, WQv= water quality volume (in, acre -ft) Rv = 0 "05 +0 009Q) where.I is percent - impervious cover A =,area in acres P = rainfall (m inches) Input data: 17313 b = Total area, A = 920 acres Impervious area = 4 -32 acres Percent impervious cover, I = 470 % Rainfall, P = 100 inches Calculated values: Rv= 047 WQv= 036 acre-ft' = 15796 cf A=S OCIAFEDsDE AFIN�POIVD�,� WQv= 15796 cf Stage /'Storage Data: Ks= 17313 b = 1 135 Zo = 40600 Volume in 1" rainfall = 15796 cu. ft Calculated values: Depth of WQv in Basin = 092 ft 1107 inches Elevation = 40692 ft J ALLEN „PE, CFM 4/14/2014 KILDAIRE CROSSING STORMWATER MANAGEMENT FACILITY'B' AW,H42050 W,QV Drawdown Calculation iDRAWDOWN =STP$ONI E3IG b' D onfice = '2 25 inch # orifices = 1 Ks = 17313 b = 1 1347 Cd,siphon— 060 Normal Pool Elevation =} 40400 feet Volume@ Normal Pool = 0 cf Orifice Invert = 40400 feet WSEL @ I "' Runoff Volume = 404 92 feet WSEL feet Vol. Stored c ) Siphon Flow (cfg) Avg. Flow (cfs' Incr. Vol. c Incr. Time sec 40492 15796 0 121' 40484 14248 0 115 0 118 1547 13132 40,476 12,721 0 109 0.- 112 1528 13679 40468 11214 0102 0 05 1506 14322 40460 9732 0 095 0 098 1482 15094 40452 8276 0 08,7 0 091 1456 16048 404 44' 6850 0 078 0 083 1426 17272 40436 5458 0 069 0 073 1392 18934 40428 4108 0 058 0 063 1350 21400 40420 2809 0 044 0 051 1299 25709 404 12 1580 0 021 0 032 1229 37983 Drawdown Time = 2 24 days By comparison, if calculated by the average head over the onfice (assummg,average head.is`half the,total depth), the result would be Average driving head,on onfice = 0 414 feet Orifice composite loss coefficient = 0 600 Cross - sectional area of siphon = 0 028 sf Q = 0 0856 cfs Drawdown Time = Volume / Flowrate / 86400 (sec /day) Drawdown Time— 2'14 da s J ALLEN, PE, CFM 4/14/2014 IN McADAMS Klldaire Cros "sing Subsection: Elevation -Area Volume Curve Label: SWMF B Elevation Planlmeter Area Al +A2 +sqr (ft) (ftz) (acres) (Al *A2) (acres) Return Event. 1 years Storm Event: 1 year Volume Volume�(Total), (ac -ft) (ac -ft) 404.00 00 0.33 0.00 0 000 0.000 4M50, 0.0 0.41 1.10 , 0 183 0.183 406A0 `0.0 0.48 1.33 0.663 0.847 40800 00 0 57 157 1.048 1 895 410.00, 0.0 0:64 1.82, 1'213 3.108 Jdaire Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 "T McADAMS Kildaire Crossing Subsection: Outlet Input Data Label: SW,MF B Return Event: 1 years Storm Event: 1 year Requested Pond Water Surface Elevations Minimum (Headwater) 404.00 ft Increment (Headwater) 0-10 ft Maximum (Headwater) 410.00 ft Outlet Connectivity Structure Type , Outlet ID Direction Outfall ES E2 (ft) (ft) ;Inlet Box Riser Forward Culvert 40850 41000 Orifice - Circular Siphon Forward iCulvert 404.00 41000 Culvert- Circular Culvert Forward TW 403.00 41000 Tallwater Settings Tadwater (N /A) (N /A) .idaire Crossing J Aldridge; PE AWH -12050 ppc 4/14/2014 'J McADAMS Kaaaallr® Crossing Subsection: Outlet Input Data Label: SWMF B Structure ID Culvert Structure Type Culvert- Circular Number of Barrels 1 Diameter 24 00 In Length 47.00 ft- Length (Computed Barrel), 47 01 ft Slope (Computed) 0 021 ft/ft Outlet Control Data Manning's n 0:013 Ke 0.500 Kb 0 012 Kr 0:000 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0098 M 20000 C 00398 Y 0.6700 TI ratio (HW /D) 1,150 T2 ratio (HW /D) 1.296 Slope Correction Factor -0.500 Use unsubmerged'Inlet control 0 equation, below T1 elevation Use submerged Inlet control 0 equation above T2 elevation In'transltlon zone between unsubmerged and submerged Inlet control', Interpolate between flows at T1 & T2 Return Event: 1 years Storm Event, 1 year T1 Elevation 405.30 ft T1 Flow 15 55 ft3 /s T2 Elevation 405 59 ft T2 Flow 17.77 ft3 /s .faire Crossing J Aldridge, PE HWH -12050 ppc 4114/2014 IRUIMcADaMs Kildaire Crossing Subsection: Outlet Input Data Label: SVVMF B Structure ID Riser Structure Type Inlet Box Number of Openings 1 Elevation 408 50 ft OnficeArea, 160 ftz Orifice Coefficient 0 600 Weir Length 16 00 ft Weir Coefficient 3 00 (ft ^0 5) /s K Reverse 1 000 Manning's n 0.000 Kev, ChargedAser 0 000 Weir Submergence False Orifice H to crest False Structure ID Siphon Structure Type Orifice - Circular Number of "Openings 1 Elevation 404.00 ft Orifice Diameter 2 25 in Orifice Coefficient 0.600 Structure ID_ TW Structure Type TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0 01 ft (Minimum) Tailwater Tolerance (Maximum) 0.50 ft Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0 50 ft (Maximum) Flow Tolerance (Mini 'mum) 0.001 ft3 /s Flow Tolerance (Maximum) 10 000 ft3 /s Return Event: 1 years Storm Event: 1 year ,0 .]acre Crossing J Aldridge, RE AWH -12050 ppc 4/14/2014 qT1 MCADAMS Kildaire Crossing Subsection: Composite Rating Curve Label: SWMF B Composite Outflow Summary Water Surface Flow Tailwater Elevation, Convergence Error Elevation MIN (ft) (ft) (ft) Return Event: 1 years Storm Event: 1 year Contributing Structures 404.00 0.00 NA) 000 (no Q Riser,Siphon,Culvert) 40410 001 (N /A) 000 Siphon,Culvert (no Q Riser) 40420 004 (N /A) 0.00 Siphon,Culvert (no Q• Riser) 40430 0.06 (N /A) 000 Siphon,Culvert (no Q Riser) 40440 007 (N /A) 0 00 Siphon,Culvert (no Q: Riser) 404.50 0.09 (N /A) 000 Siphon,Culvert (no Q: Riser) 404'.60 0.09 (N /A) 0 00 Siphon,Culvert (no Q: Riser) 40470 0 10 (N /A)' 000 Siphon,Culvert (no Q Riser) 40480 0 11 (N /A) 0.00 Siphon,Culvert (no Q: Riser) 40490 012 (N /A) 000 Siphon,Culvert (no Q Riser) 40500 013 (N /A) 000 Siphon,Culvert (no Q. Riser) 40510 0 13 (N /A) 0.00 Siphon,Culvert (no Q Riser) 405:20 0.14 (N /A) 0.00 Siphon,Culvert (no Q• Riser) 405,30 0' -15 (N /A) 0.00 Siphon,Culvert (no Q• Riser) 405'40 0 15 (N /A) 1 000 Siphon,Culvert (no Q• Riser) 40550 0.16 (N /A) 000 Siphon,Culvert (no Q: Riser) 405.60 0 16 (N /A) 0.00 Siphon,Culvert (no Q Riser) 40570 0 17 (N /A) 000 Siphon,Culvert (no Q: Riser) 405.80 0.17 (N /A) 0.00 Siphon,Culvert (no Q Riser) 40590 0.18 (N /A) 000 Siphon,Culvert (no Q Riser) 40600 0.18 (N /A) 000 Siphon,Culvert (no Q Riser) 406.10 0.19 (N /A) 000 Siphon,Culvert (no Q Riser) 406.20, 0 19 (N /A). 000 Siphon,Culvert (no Q• Riser) 40630 0.20 (N /A) ' 0.00 Siphon;Culvert (no Q Riser) 40640 0.20 (N /A) 000 Siphon,Culvert (no Q Riser) 40650 021 (N /A) 000 Siphon,Culvert (no Q Riser) 40660 0.21 (N /A) 000 Siphon,Culvert (no Q Riser) 40670 021 (N /A) 000 Siphon,Culvert (no Q Riser) ,40680 022 (N /A) 000 Siphon,Culvert (no Q• Riser) 406.90 022 (N /A)' 000 Siphon,Culvert (no Q. Riser) 407.00 0 23, (N /A) 1 000 Siphon,Culvert (no Q. Riser) 407.10 0.23 (N /A), '0.00 Siphon,Culvert (no Q• Riser) 40720 0.23. (N /A) 000 Siphon,Culvert (no Q Riser) 40730 024 (N /A) 0.00 Siphon,Culvert (no Q• Riser) 40740 024 (N /A) 000 Siphon,Culvert (no Q Riser) 407.50 024 (N /A) 000 Siphon,Culvert (no Q: Riser) 407.60 0.25 (N /A) 0.00 Siphon,Culvert (no Q. Riser) 407.70 025 (N /A) 0.00 Siphon,Culvert (no Q: Riser) 40780 0.26 (N /A) 0.00 Siphon,Culvert (no Q• Riser) 40790 016 (N /A) 000 Siphon,Culvert (no Q Riser) 40800 026 (N /A) 000 Siphon,Culvert (no Q• Riser) 408.10 0.27 (N /A) 0.00 Siphon,Culvert (no Q: Riser) 408.20 027 (N /A) 000 Siphon,Culvert (no Q• Riser) .Idaire Crossing AWH -12050 ppc J Aldridge, PE 4/14/2014 ''!]1 MCADAMS Subsection: Composite Rating Curve Label: SWMF B Composite Outflow 'Summary Water Surface Flow Elevation (ft3 /s) (ft) 40830 40840 40850 408.60 40870 40880 40890 -40900 40910 409.20 40930 40940 409.50 409.60 40970 40980 40990 410.00 Kildair® Crossing Return Event- 1 years Storm Event: 1 year ,jdaire Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 Tailwater Elevation Convergence Error Contributing Structures (ft) (ft) 0.27 (N /A) 000 Siphon,Culvert (no Q Riser) 0.28 (N /A) 000 Siphon,Culvert (no Q• Riser) 0.28 (N /A) 0.00 Siphon,Culvert (no Q Riser) 180 (N /A) 000 Riser, Siphon,Culvert 458 (N /A) 0.00 Riser, Siphon,Culvert 816 (N /A) 000 Riser, Siption,Culvert 1240 (N /A) 0.00 Riser,Siphon;Culvert 1722 (N /A) 0.00 Riser,Siphon ,,Culvert 22.51 (N /A) 0:00 Riser,Siphon ',Culvert 2827 (N /A)' 0:00 Riser;Siphon;Culvert 34 39 (N /A)' 000 Riser, Siphon ,,Culvert 35.50 (N /A) 0 00 Riser,Culvert (no Q Siphon) 3585 (N /A) 0.00 Riser,Culvert (no Q Siphon) 36 19 (N /A) 0.00 Riser,Culvert (no Q Siphon) 3653 (N /A) 000 Riser,Culveit (no Q Siphon) 36.87 (N /A) 0.00 Riser,Culvert (no Q• Siphon) 3721 (N /A) 000 Riser,Culvert (no Q: Siphon) 3753 (N /A) 0.00 Riser,Culvert (no Q Siphon) ,jdaire Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 9I McADAMS Kildair® Crossing Subsection: Level Pool Pond Routing Summary Label: SWMF B (IN) Infiltration Infiltration Method No Infiltration (Computed) Initial Conditions Return Event, 1 years, Storm Event: 1 year Elevation (Water Surface, 404 00 ft Initial) Volume (Initial) 0 000 ac -ft Flow (Initial Outlet) 0 00 ft3 /s Flow (Initial Infiltration) 0 00,ft3 /s Flow (Initial, Total) 0.00 ft3 /s, Time Increment 1,000 min Inflow /Outflow Hydrograph Summary 0 774 ac -ft Flow (Peak In) 20 02 ft3 %s Time to Peak (Flow, In) 722 000 min Flow (Peak Outlet) 0.18 ft3 /s Time to Peak (Flow, Outlet) 1,440 000 min Elevation (Water Surface, 405'85 ft Pea k) Volume (Peak) 0 774, ac -ft -daire Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 Mass Balance (ac -ft) Volume (Initial) 0.000 ac -ft Volume (Total Inflow) 0.941 ac -ft Volume (Total Infiltration) 0.000 ac -ft VolumeA(Total Outlet 0.167 ac -ft Outflow) Volume (Retained) 0 774 ac -ft Volume (Unrouted) 0.000 ac -ft Error (Mass Balance) 00% -daire Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 "!J1 MCADAMS Kildaire Crossing -Subsection: Level Pool Pond Routing Summary ,Label: SWMF B (IN) Infiltration Infiltration Method (Computed) No Infiltration Initial Conditions Return.Event: 2 years Storm Event: 2 year Elevation (Water Surface, 404.00 ft Initial) 0 000 ac -ft Volume (Initial) 0 000 ac -ft Flow (Initial Outlet) 0 00 ft3 /S Flow (Initial Infiltration) 0.00 ft3 /s Flow (Initial, Total) 0.00 ft3 /s Time Increment 1 000 min Inflow /,Outflow Hydrograph Summary 0.000 ac -ft Flow (Peak In) 27 17 ft3 /s Time to Peak (Flow, In) 721 000 min Flow (Peak Outlet) 0 21,ft3 /s Time to Peak.(Flow, Outlet) 1,440 000 min Elevation (Water Surface, 406:51 ft Pea k) Volume (Peak) 1 098�ac -ft Mass Balance (ac -ft) Volume,(Initial) 0 000 ac -ft Volume (Total Inflow) 1 296 ac -ft Volume (Total Iiifiliration) 0 000 ac -ft Volume, (Total Outlet 0 198 ac,ft Outflow) Volume (Retained) 1.098 ac -ft Volume (Unrouted) 0.000 ac -ft Error (Mass Balance) 00% .10aire,Crossing J Aldridge, PE AWH -12050 ppc 4r/1 "4/2014 'J McADAMS Klldaire Crossing Subsection: Level Pool Pond Routing Summary Label: SWMF B (IN) Return Event: 5 years Storm Event: 5 year Infiltration Infiltration Method No Infiltration (Computed) Initial Conditions Elevation (Water Surface,, 40400 ft Initial) Volume (Initial) 0 000 °ac -ft Flow (Initial Outlet) 0.00 ft3 /s Flow (Initial Infiltration) 0.00 ft3 /s Flow (Initial, Total) 0 00 ft3 /s Time Increment 1 000 min Inflow /Outflow Hydrograph, Summary Flow (Peak In) 36.12 ft3 /s Time to Peak (Flow, In) 721'000, min Flow (Peak Outlet) 0.25 ft3 /s Time to Peak, (Flow, Outlet) 1,440 000 min Elevation (Water Surface, 407:53 ft Peak) Volume (Peak) 102 ac -ft Mass Balance (ac -ff) Volume (Initial) 0 000 ac -ft Volume (Total Inflow) 1 872 ac -ft Volume (Total Infiltration) 0 000 ac -ft Volume (Total Outlet 0 239 ac -ft Outflow) Volume (Retained) 1 632 ac -ft Volume�(Unrouted) 0 000,ac -ft Error (Mass Balance) 00% Jaire Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 'J MCADAMS Kildair® Crossing Subsection- Level Pool,Pond Routing Summary Label; SWMF B (IN) Infiltration Infiltration Method, No Infiltration (Computed) 0.000 ac -ft Volume (Total Inflow) 2 347 ac -ft Initial Conditions 0 000 ac -ft Elevation (Water Surface, 404 00 ft Initial) 2.076ac -ft Volume (Initial) 0 000 ac -ft Flow (Initial Outlet) 0.00 ft3 /s Flow (Initial Infiltration) 0.00 ft3 /s Flow (Initial, Total) 0 00 Ift3 /5 Time Increment 1.000 min Return Event: 10 years Storm Event: 10 year Inflow /Outflow Hydrograph Summary Flow (Peak In) 43 33 ft3 /s Time to Peak (Flow, In) 721 000 min Flow (Peak Outlet) 0 27 ft3 /s Time to Peak (Flow, Outlet) 1,440 000 min Elevation (Water Surface, 408.31 ft Peak) Volume (Peak) 2 076 ac -ft daire- Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 Mass Balance (ac =ft) Volume (Initial) 0.000 ac -ft Volume (Total Inflow) 2 347 ac -ft Volume (Total Infiltration) 0 000 ac -ft Volume (Total Outlet Outflow) 0 270 ac -ft Volume (Retained) 2.076ac -ft Volume (Unrouted) 0 000 lac -ft Error (Mass Balance) 00% daire- Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 'JMcADAMs Kildsir® Crossing Subsection: Level Pool Pond Routing' Summary, Label SWMF B (IN) I'nfiltration 408 60 ft Infiltration Method No Infiltration '(computed) 2 242 ac7ft Initial,Conditions Elevation (Water,Surface, 404 00 ft Initial) 3'01'6 ac =ft 'Vol uume (Initial) 0 000' ac -ft ,Flow (Initial Outlet) 0 00 ft3 /s 'Flow, (Initial Infiltration) 0 00 ft3 /s ,Flow�(Initial, Total) 0 00 ff3 /s Tme`Increment 1 000 min Return Event: 25 years Storm Event: 25 year Inflow /Outflow Hydrograph Summary Flow °(Peak In) 5187 ft? /s Time to Peak (FIoW, In) 721 000 min Flow (Peak Outlet) 1:75 ^ft3 /s Tme,to Peak (Flow, Outlet), 9,03:000 min Elevation (Water'Surface, 408 60 ft Peak) Volume (Peak) 2 242 ac7ft Mass Balance (ad-,ft)' Volume (Initial) 0 000 ac -ft Volume (TotaldnfloW) 3'01'6 ac =ft Volume (Total Infiltration) 0 000 ac -ft Volume (Total,Outlet Outflow) 0.817 ac -ft Volume (Retained) 2 199 ac -ft Volume (Unrouted) -0.001 ac -ft Error (Mass Balance) -0.0% idaire Crossing J Aldridge, PE AWH -12050 ppc 4114%2014 'q!JJ MCADAMS Kildalr® Crossing Subsection: Level Pool Pond Roufing Summary Return Event: 100 years ,Label: SWMF B (IN) Storm Event: 100 year Infiltration Infiltration Method No Infiltration (Computed) Initial Conditions Elevation (Water Surface, 40850 ft Initial) 35 83 ft3 /,s Time to Peak (Flow, Outlet) 727.000 min Volume (Initial) 2.185 ac -ft Flow (Initial Outlet) 0.00 ft3 /s Flow (Initial Infiltration) 0.00 ft3 /s Flow (Initial, Total) 0 00 ft3 /5 Time Increment 11000 min Inflow /Outflow Hydrograph Summary 00 Flow (Peak In) 63.40 ft3 /s Time to Peak (Flow, In) 721.000 min Flow (Peak.Outlet) 35 83 ft3 /,s Time to Peak (Flow, Outlet) 727.000 min Volume (Total Infiltration) 0 000 ac -ft Elevation (Water Surface, 409.50 ft Peak) Volume (Peak) 2.788 ac -ft Mass Balance (ac -ft) -0.001 ac -ft Volume (Initial) 2 185 ac -ft Volume (Total Inflow) 4.117 ac -ft Volume (Total Infiltration) 0 000 ac -ft Volume (Total Outlet 4.089 ac -ft Outflow) Volume (Retained) 2 212 ac -ft Volume (Unrouted) -0.001 ac -ft Error (Mass Balance) 00 Adaire,Crossing J ,Aldridge, PE AWH -12050 ppc 4/14/2014 a 'J McADAMS Kiidairo Crossing Subsection: Outlet Input Data Label: SWMF B -WC Return Event: 100 years Storm Event: 100 year Requested Pond Water, Surface,Elevatlons Minimum (Headwater) 404 00 ft Increment (Headwater) 0.10 ft 'Maximum (Headwater) 410.00 ft Outlet Connectivity Structure'Type Outlet ID Direction Outfall E1 E2 (ft) (ft) Inlet Box Riser Forward Culvert 408:50 410.00 Culvert- Circular Culvert Forward TW 40300 410.00 TadwaterSettings Tadwater (N /A) (N /A) .faire Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 'J MCADAMS Kildaire Crossing Subsection: Outlet Input Data Label: SWMF B -WC Structure ID- Culvert Structure Type Culvert- Circular Number of Barrels 1 Diameter 24.00 In Length 47.00 ft Length (Computed Barrel) 4701 ft Slope (Computed) 0 021 ft/ft Outlet Control Data Manning's n 0.013 Ke 0.500 Kb 0.012 Kr 0.000 Convergence Tolerance 0 00 ft Inlet Control Data Equation Form Form 1 K 00098 M 2.0000 C 00398 Y 0.6700 T1 ratio (HW /D) 1 -.150 T2 ratio (HW /D) 1 296 Slope Correction Factor 0,500 Use unsubmerged inlet control 0 equation below T1 elevation Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2 `Return Event: 100 years Storm Event: 100 year TI Elevation 405 30 ft T1 Flow 15 -55 ft3 /s T2, Elevation 405 59 ft T2 Flow 17 77,ft3/s dage Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 IN MCADAMS Kildaire Crossing Subsection- Outlet Input Data Label: SWMF B -WC Structure ID Riser Structure Type Inlet Box Number of Openings 1 Elevation 408.50 ft Orifice Area 16.0 f:2 Orifice Coefficient 0.600 Weir Length 16.00 ft Weir Coefficient 3.00 (ft ^0.5) /s K Reverse 1 000 Manning's n 0 000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest False Structure ID TW Structure Type TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0 50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0 001 ft3 /s Flow'Tolerance,(Maximum) ,10 000 ft3 /s Return Event: 100 years Storm Event: 100 year ,Idaire Crossing J Aldridge, PE AWH -12050 ppc 411412014 J MCADAMS Subsection: Composite Rating Curve Label: ' SWMF B -WC Composite Outflow Summary Water,Suriace Flow Elevation (ft3 /s) (ft) Kildaire Crossing Return Event: 100 years Storm Event: 100 year Tailwater Elevation Convergence Error Contributing Structures (ft) (ft) 40400 0.00 (N /A) 0.00 (no Q Riser,Culvert) 40410 000 (N /A) 000 (no Q Riser,Culvert) 404.20 '0.00, (N /A) 000 (no Q: Riser,Culvert) 404.30 0.00 (N/A) 000 (no Q. Riser,Culvert) 404.40 0.00 (N /A) 000 (no Q. Riser,Culvert) 40450 000 (N /A) 000 (no Q: Riser,Culvert) 40460 0100 (N /A) 000 (no Q, Riser;Culvert) 40470 000 (N /A) 000 (no Q, Riser,Culvert) 40480 000 (N /A) 000 (no Q: Riser,Culvert) 40490 000 (N /A) 000 (no Q Riser,Culvert) 40500 000 (N /A) 0.00 (no Q Riser,Culvert) 405 10 000 (N /A) 0.00 (no Q �Riser,Culvert) 405.20 0.00 (N /A), 0.00 (no Q. Riser,Culvert) 405.30 000 (N /A) 000 (no Q. Riser,Culvert) 40540 000 (N /A) 000 (no Q. Riser,Culvert) 40550 000 (N /A) 0.00 (no Q: Riser,Culvert) 405.60 000 (N /A) 0.00 (no•Q• Riser,Culvert) 40570 000 (N /A) 0.00' (no Q Riser,Culvert), 405.80 000 (N /A) 000 (no Q: Riser,Culvert) 40590 000 (N /A) 000 (no Q• Riser;Culvert) 40600 0.00 (N /A) 0.00 (no Q Riser;Culvert) 406.10, 0:00 (N /A) 000 (no Q Riser,Culvert) 40620 0.00 (N /A) 0 -00, (no,Q:'Riser;Culvert) 40630 0.00 (N /A) 0.00 (no Q: Riser,Culvert) 40640 0.00 (N /A) 0.00 (no Q. Riser,Culvert) 40650 000 (N /A) 0.00 (no Q. Riser,Culvert) 40660 0.00 (N /A) 0.00 (no Q Riser;Culvert) 40670 000 (N /A) 0 °00, (no Q Riser,Culvert) 406.80 000 (N /A) 0.00 (no Q• Riser,Culvert) 40690 000 (N /A) 000 (no Q Riser,Culvert) 40700 000 (N /A) 0,00 (no Q. Riser,Culvert) 40710 0.00 (N /A) 0 00 (no Q: Riser,Culvert) 40720 000 (N /A) 000, (no Q: Riser,Culvert) 407.30 000 (N /A) 0'00 (no Q Riser,Culvert) 40740 0.00 (N /A) 000 (no Q. Riser,Culvert) 407.50 000 (N /A) 0.00 (no Q Riser,Culvert) 40760 0.00 (N /A) 0:00' (no Q Riser ,,Culvert) 40770 000 (N /A) 0.00 (no Q Riser,Culvert) 407.80 000 (N /A) 000 (no Q• Riser,Culvert) 40790 000 (N /A) 0.00 (no Q• Riser,Culvert) 40800 0.00 (N /A) 0.00 (no Q• Riser,Culvert) 40810 000 (N /A) 000 (no Q. Rise-r,Culvert) 408.20 000 (N /A) 0.00 (no Q: Riser,Culvert) ,daire Crossing AWH -12050 ppc J Aldridge, PE 4/14/2014 'T MCADAMS Subsection. Composite Rating Curve Label: SWMF B -WC (N /A) Composite Outflow Summary (no Q Riser,Culvert) Water Surface Flow 000 Elevation (R3 /s) (N /A) (ft) Riser,Culvert 408.30 000 0.00 408.40 000 0.00 40850 000 0,00 40860 0:00 152 40870 0.00 429 40880 0.00 , 7,89 40890 0.00' 1214 409.00 000 1696 409.10 0.00 2230 409.20 000 28.11 40930 0 00,1 34.34 40940 0.00 3549 409.50 0.00 35.85 409.60 0.00 36.19 40970 36 53 40980 3687 409.90 3721 I 41000 3753 . daire Crossing AWH =12050 ppc Midaire Crossing Return Event* 100 years Storm Event* 100 year Tadwater Elevation Convergence Error Contributing Structures (ft) (ft) (N /A) 0.00 (no Q• Riser,Culvert) (N /A) 0.00 (no Q Riser,Culvert) (N /A) 000 (no Q Riser,Culvert) (N /A) 000 Riser,Culvert (N /A) 000 Riser,Culvert (N /A) 000 Riser,Culvert (N /A) 000 Riser,Culvert (N /A) 0:00 Riser,Culvert (N /A) 0.00 Riser,Culvert (N /A) 0.00 , ,Riser,Culvert (N /A,) 0.00' Riser,Culvert (N /A) 000 Riser,Culvert (N /A) 0.00 Riser,Culvert (N /A), 000 Riser,Culvert (N /A) 0 00,1 Riser,Culvert (N /A) 0.00 Riser,Culvert (N /A) 0.00 Riser,Culvert' '(N /A) 0.00 Riser,Culvert J Aldndge, PE, 4/14/2014 'T MCADAMS Kildairo Crossing Subsection: Level Pool Pond Routing Summary Label: SWMF B (IN) Infiltration Infiltration Method No Infiltration (Computed) `Initial,Conditions Return Event: 100 years Storm Event: 100 year Elevation (Water Surface, 404.00 ft Initial) 4.117 ac -ft Volume (Initial) 0 000 ac -ft Flow (Initial,Outlet) 0.00 ft3 /s Flow (Initial Infiltration) 0.00 ft3 /s Flow (Initial, Total) 0 00 ft3 /s Time,Increment 1 000 min Inflow /Outflow Hydrograph Summary 0.0% Flow (Peak In) 63 40 ft3 /s Time to Peak,(Flow, In) 721.000 min Flow (Peak Outlet) 1136 ft3 /s Time to Peak (Flow„ Outlet) 754 000 min Elevation (Water Surface, 408.88 ft Peak) Volume,(Peak) 2.409 ac -ft Mass Balance (ac -ft) Volume (Initial) 0 000 ac -ft Volume' (Total Inflow) 4.117 ac -ft Volume (Total Infiltration) 0 000 ac -ft Volume (Total Outlet 1915 ac -ft Outflow) Volume (Retained) 2 201 ac -ft Volume (Unrouted) -0.001 ac -ft Error (Mass Balance) 0.0% 'Idaire Crossing, J Aldndge; PE AWH -12050 ppc 4/14/2014 KILDAIRE CROSSING STORMWATER MANAGEMENT FACI_LITY'B' J ALLEN, PE, CFM AWHA2050 Anti- Flotation Block Calculations 4%14/2014 Input Data => Inside length of riser = 400 feet Inside width of riser = 400 feet Wall thickness of nser = 6 °00 inches Base,thickness of riser = 600 inches Base4ength of nsef = 8,00 feet Base width of nser = 800 feet Inside height of Riser = 5.50 feet 'Concrete,unit weight = 1420 PCF OD,of barrel exiting manhole- 48500 'inches Size,of drain pipe (if present) = 8 0 inches, Trash Rack water displacemeni = 52 67 CF Concrete Present in Riser Structure =5 Total amount of concrete Base of Riser = 32,000 CF Riser Walls = 49 500 CF Adjust for openings 52 670 CF Opening for barrels= 6283 CF Opening for drainpipe = `0 175 CF Total Concrete present, adjusted for openings = 75.042 CF Weight of concrete present = 10656 ibs Amount of water displaced by Riser Structure => Displacement by concrete = 75 042 CF Displacement by open air in riser = 88 000 CF Displacement by trash rack = 52 670 CF Total water displaced by nser/barrel' structure = 215.712 CF Weight of water displaced' =, 13460 16s Note: NC Products lists unit-wt of manhole,concrete at 142 PCF KILDARE CROSSING STO_RM_WATER,MANAGEMENT FACILITY W J ALLEN,.PE, CFM AWH -12050 Anti- Flotation Block Calculations 4/14/2014 Calculate amount of concrete to be added to riser => Safety factor to use = Must,add = Concrete unit weight for use = Buoyant weight of this concrete = Buoyant, with safety factorrapplied = Therefore, must add = Standard based described,above = Therefore, base design must have = Calculate size, of base for riser assembly => Length =' Width = Thickness = Concrete Present = Check validity of base,as designed— Total Water Displaced = Total Concrete Present = Total Water Displaced = Total Concrete Present = Actual safety factor Results of desigm => - 1 15 (recommend 1 I S ,or higher) 4824 fbs,concrete for buoyancy 142 PCF (note above observation for NCP concrete) 79 60 PCF 69 22 PCF 69 686,CF of concrete 32 000 CF of concrete 101 686 CF of concrete 8'000 feet, 8'000 feet 20 0 inches 106 667 CF OK 290 379 CF 149 709 CF 19120 120 lbs 21259`lbs FRAKIIC1 Base length = 8.00 feet Base width = 8.00 feet Base Thickness = 20.00 inches CY of concrete total in base = 3.95 CY Concreteiunit weight in added base= 142 PCF 61 Proj ect Project No. Outlet ID Flow, Q10_Y, Slope, S Pipe Diameter, D,, Pipe Diameter, D,, Number of pipes Pipe separation Manning's n DESIGN OF RIPRAP OUTLET PROTECTION WORKSHEET KILDAIRE CROSSING Date 4/14/2014 AWH -12050 Designer JCA SWMF'B' I Diameter Thickness 0.27 cfs 2.13 % 24 inches 2.0 feet 1 0 feet 0.013 3 in. Zone from graph above = I Diameter Thickness Outlet pipe diameter 24 in. Length = 8.0 It. Outlet flowrate 0.3 cfs Width = 6.0 It. Outlet velocity 3.2 ft/sec Stone diameter = 3 in. Material = Class A Thickness = 9 in. Zone Material Diameter Thickness Length Width 1 Class A 3 9 4 x D(o) 3 x D(o) 2 Class B 6 22 6 x D(o) 3 x D(o) 3 Class 13 22 8 x D(o) 3 x D(o) 4 Class I 13 22 8 x D(o) 3 x D(o) 5 Class II 23 27 10 x D(o) 3 x D(o) 6 Class II 23 27 10 x D(o) 3 x D(o) 7 Special study required 1. Calculations based on NY DOT method - Pages 8.06.05 through 8.06.06 in NC Erosion Control Manual 2. Outlet velocity based on full -flow velocity Rip Rap Outlet Protection Design.xlsm4 /14/2014 STORMWA TER MANA,GEME` NT FACILITY `C' DESIGN CAL CULATIO1iNS KILDAIRE CROSSING AWH -12050 `KILDAIRE,CROSSING STORMWATER MANAGEMENT FACILITY'C' AWH -12050 SSFxnAbove NP }STAG E;STOR AGE FUTI ON,f1BOV EiN ORNIA`L�PO,OL`^ Ks = 9476 6 = 1 1628 J ALLEN, PE, CFM 4/14/2014 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S -S Fxn (feet) (feet) (SF) (SF) 529 (CF) (feet) 40600 000 7,395 40650 050 9,811 8603 4302, 4302 0 51 40800 200 11,890 10851_ 16276 20577 1 95 41000 400 14 444 12128 42446 46748 3 95 41200 600 17,058 14474 57896 78473 6 16 Ks = 9476 6 = 1 1628 J ALLEN, PE, CFM 4/14/2014 KILDAIRE CROSSING STORMWATER MANAGEMENT FACILITY 'C' AWH -12050 SSFxn Main Poo! STAGE - STORAGE FUNCTION - MAIN POOL Contour (feet) Stage (feet) Contour Area (SF) Average Contour Area (SF) Incremental Contour Volume 5.29 Accumulated Contour Volume (CF) Estimated Stage w/ S -S Fxn (feet) 398.00 0.00 598 14000 U 12000 400.00 2.00 1,305 952 1903 1903 2.04 402.00 4.00 2,118 1712 3423 5326 3.85 404.00 6.00 3,072 2189 8754 10657 5.91 405.50 7.50 3,884 3001 10504 15830 7.55 406.00 8.00 5.230 4557 2279 18108 8.20 20000 18000 Storage vs. Stage — • y = 597.4x' 621 16000 RZ = 0.997 14000 U 12000 10000 ro 8000 h 6000 4000 2000 0 0.00 2.00 4.00 6.00 8.00 10.00 Stage (feet) Ks = 597 b = 1.6215 J. ALLEN, PE, CFM 4/14/2014 KILDAIRE CROSSING STORMWATER MANAGEMENT FACILITY'C' J. ALLEN, PE, CFM AWH -12050 615 2458 SSFxn Forebay 4/14/2014 STAGE - STORAGE FUNCTION - FOREBAY 1.454 1000 3500 4492 7.51 406.00 8.00 Estimated 1810 Average Incremental Accumulated 8.14 Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S -S Fxn (feet) (feet) (SF) (SF) 5.29 (CF) (feet) 398.00 0.00 20 0.00 2.00 4.00 6.00 8.00 10.00 400.00 2.00 213 117 233 233 2.04 402.00 4.00 546 380 759 992 3.86 404.00 6.00 1,016 615 2458 2691 5.99 405.50 7.50 1.454 1000 3500 4492 7.51 406.00 8.00 2.165 1810 905 5397 8.14 3000 Ks= 46.4 b = 2.2676 Storage vs. Stage 6000 5000 y = 46.42x1267 Rz = 0.998 4000 U 3000 2000 1000 0 0.00 2.00 4.00 6.00 8.00 10.00 Stage (feet) Ks= 46.4 b = 2.2676 KILDAIRE CROSSING STO_RMWATER MANAGEMENT FACILITY'C' AWH -12050 Volume Calculation TOTAL VOLUME ^OFjFACILiyT�]',;:;'"-3W Volume of Main Pool = 18,108 cf Volume of Forebay = 5,397 cf Total Volume;Below NWSE = 23,505 cf = 054 acre -ft Total Volume Above NWSE = 78,473 cf 180 acre -ft Total Volume of Facility = 101,978 cf 234 acre -ft FOREBA�PERCENT?1GE OF�P„�ERMANENT�PEOOL V,OLYJI!'�� °N . Per NCDWQ „design.guidehnes„ the forebay volume�shouldxqual approximately 20% of the totalpermanent pool volume Total Volume Below NWSE = 23,505 cf Volume of Forebay = 5,397 cf % Forebay = 23 0% A�VERtf GEDEPTAWF POND Total Volume.Below NWSE = 23,505 cf Surface Area at -NWSE = 7;395 sf Average Depth = 3 18 ft J ALLEN, PE, CFM 4/14/2014 KIL'DAIRE,CROSSING STORMWATER MANAGEMENT FACILITY'C' AWH -12050 Surface Area Calculation WET DETENTIONTI SIN SU RYA: From Stormwater Best Management Practices Manual NCDENR' Division of Water Quality, 1999 Enter the drainage area characteristics => Total drainage area to pond = 867 acres Total impervious area to pond = 267 acres 'Vote The basin must be sized to treat all impervious surface runoff draining into the pond, notjust.the impervious surface from on -site development Drainage area = 8.67 acres @ 30.8% impervious Estimatelhe°surface aped required at pond normal pool elevation => Wet Detention Basins are based on,an minimum average depth of = 3.18 feet (Calculated) From the DWQ BMP Handbook (1999), the required SA%DA ratio for 90% TSS Removal => 30 318 35 Lower Boundary => 300 1 90 1 80 Site % impervious => 308 1.95 1:91 1 84 Upper Boundary => 400 250 230 Therefore, SA/DA required = 1.91 Surface area required at normal pool = 7,208 ftZ = 017 acres Surface arealprovided atnormal pool = 7,395 ft2 J ALLEN, PE, CFM 4/14/2014 KILDAIRE CROSSING STORMWATER MANAGEMENT FA_ CILITY'C' AWH -12050 WQv Calculation { DETERMINATIO "NOFWATER�QUAIITcYsVdOIiME" WQ v = (P) (R v)(A) /12 where, WQv= water quality volume �(m,acre -ft; 5 -29 Rv= 0,05 +0 009(I) where I is percent u 24,1 A-= area in acres P = rainfall (in inches) Input data: 9476 Total area, A = 867 acres Imperviousiarea = 267 acres Percent impervious, cover, I = 308 % Rainfall, P = 1 00 inches Calculated values: Rv= 033 W,Qv = 024 acre -ft = 10293 cf 4ASSOCLiff,=E DEPrHxIN;P,OND - WQv= 10293 cf Stage /Storage Data: Ks = 9476 b = 1 163 Zo = 40600 Volume in 1" rainfall = 10293 cu It Calculated values: Depth of WQv in Basin = 107 ft 1288 inches Elevation = 40707 ft J ALLEN, PE, CFM 4/14/2014 KILDAIRE, CROSSING STORMWATER MANAGEMENT FACILITY'C' J ALLEN, PE, CFM AWIA-12050 WQUDrawdown Calculation 4/14/2014 DRAWDOWN Sl IPHON�DESIG D onfice = # orifices = Ks = b= ,Cd siphon = Normal Pool "Elevation— Volume @ Normal Pool = Orifice Invert- WSEL @' I" Runoff Volume = 1 75 inch 1 9476 1 1628 060 406 00 feet O.cf 406,00 feet 40707 feet 529 241 WSEL feet Vol. Stored c ) Siphon Flow (cfs) Avg. Flow cfs Incr. Vol. c Incr: Time sec 40707 10293 0 080 40698 9269 0 077 0 078 1024 13060 40689 8260 0 073 0 075 1009 13534 40680 7268 0 068 0 070 992 14085 40670 6295 0 064 0 066 973 14737 40661 5343 0 059 0 061 952 15527 40652 4414 0 054 0 056 929 16517 406 43 3512 0 048 0 051 902 17814 40633 2641 0 041 0 044 871 19637 40624 1809 0 033 0637, 832 22519 40615 1029 0 022 0 027 780 28404 Drawdown Time = 2104 days By comparison, if calculated'by the average head over,the.onfice (assuming averagelhead ts�halfthe total depth), the,result would be Average driving head on onfice = 0 500 feet Orifice composite loss coefficient = 0 600 Cross - sectional area of siphon = 0 017 sf Q= 0 0569 cfs Drawdown Time = Volume / Flowrate / 86400 (sec /day) Drawdown Time = 2'09 da s IN McADAMS Kildaire Crossing Subsection: Elevation -Area Volume Curve Label: SWMF C Elevation Planimeter Area Al +A2 +sqr (ft) (ftz) (acres) (A1 *A2) (acres) Return Event: 1 years Storm Event: 1 year Volume Volume (Total) (ac -ft) (ac -ft) 40600 0�o 0.17 000 0.000 0.000 40650 0'�0 0.23 059 0.098 0.098, 408.00 00 027 075 0 373 0 471 410:00 00 033 091 0 604 1 075 412.00 0.0 039 168 0.722 1.797 ,faire Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 'J MCADAMS W11dair® Crossing Subsection: Outlet Input Data Label, SWMF C 'Requested Pond Water=Surface,Elevations' Minimum (Headwater) 406.00 ft Increment (Headwater,) 0.10 ft Maximum (Headwater) 412.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall E1 (ft) Return 'Event: 1 years Storm Eyent: 1' year E2' (ft) Inlet Box Riser Forward, ' ' Culvert 41'0 25 412:00 Orifice- Circular Siphon Forward, Culvert 40600 412.00 Culvert - Circular Culvert Forward, TW 405.00 412.00 Tailwater Settings Tailwater (N /A) (N/A) darp,Cressing J tAldridgp, Pq AWH -12050 ppc 4/4`4/2014 r 'J MCADAMS Kildaire Crossing Subsection: Outlet Input Data Label: SWMF C Structure ID Culvert Structure Type Culvert- Circular Number of Barrels 1 Diameter 24 00 In Length 45 00 ft Length (Computed Barrel) 4501 ft Slope (Computed) 0 022 ft/ft Outlet Control Data Manning's n 0 013 Ke 0.500 Kb 0 012 Kr 0 000 Convergence Tolerance 0 00 ft Inlet Control Data Equation Form Form 1 K 0.0098 M 20000 C 00398 Y 0'6700 T1 ratio (HW /D) 1.149 T2 ratio (HW /D) 1 296 Slope Correction Factor -0500 Use unsubmerged Inlet control O equation below T1 elevation Use submerged inlet'contro140,equatlon above T2 elevation In transition zone between unsubmerged and submerged Inlet control, Interpolate,between flows at T1 '& T2 Return Event: 1 years Storm Event: 1 year TI Elevation 407 30 ft T1 Flow 15 55 ft3 /s T2 Elevation 407 59 ft T2 Flow 17 77 ft3 /s ,dace Crossing AWH -12050 ppc J Aldridge, PE 4/14/2014 'J MCADAMS Kildair® Crossing Subsection: Outlet Input Data Label: SWMF C Structure ID Riser Structure Type Inlet Box Number of Openings 1 Elevation 410 25 ft OnficeArea 160 ftz Orifice Coefficient 0 600 Weir Length 16 00 ft Weir Coefficient 3.00 (ft ^0 5) /s K Reverse 1.000 Manning's n 0 000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest False Maximum Iterations Structure ID Siphon Structure Type Orifice - Circular Number of Openings 1 Elevation 406.00 ft Orifice Diameter 1.75 in Orifice Coefficient 0 600 Structure ID TW Structure Type TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0 03 It (Minimum) Tailwater Tolerance 0 50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) 'Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3 /s Flow Tolerance (Maximum) 10.000 ft3 /s Return Event: 1 years Storm Event: 1 year idaire�Crossing J Aidridge;'PE AWH- 12050'ppo 4/14/2014 '!JI MCADAMS Subsection:' Composite Rating Curve Label: SWMF C Composite Outflow Summary Water Surface Flow Elevation (ft3 /S) (ft) Kiideire Crossing Tailwater Elevation Convergence Error (ft) (ft) Return Event: 1 years Storm Event: 1 year Contributing Structures 40600 000 (N /A) 0:00 (no Q Riser, Siphon,Culvert) 40610 001 (N /A) 000 Siphon,Culvert (no Q: Riser) 40620 003 (N /A) 000 Siphon,Culvert (no Q Riser) 40630 004 (N /A) 000 Siphon,Culvert (no Q: Riser) 40640 005 (N /A) 000 Siphon,Culvert (no Q: Riser) 40650 005 (N /A) 0.00 Siphon,Culvert (no,Q Riser) 40660 006 (N /A) 000 Siphon,Culvert (no Q: Riser) 40670 006 (N /A) 000 Siphon,Culvert (no Q• Riser) 406.80 0.07 (N /A) 0.00 Siphon,Culvert (no Q: Riser) 40690 0.07 (N /A) 0.00 Siphon,Culvert (no Q Riser) 407.00 0.08 (N /A) 0.00 Siphon,Culvert (no Q. Riser) 40710 008 (N /A) 000 Siphon;Culvert (no Q• Riser) 40720 008 (N /A) 0.00 Siphon,Culvert (no Q. Riser) 40730 0.09 (N /A) 060 Siphon,Culvert (no -Q Riser) 40740 009 (N /A) 000 Siphon,Culvert (no Q Riser) 407.50 0.10 (N /A) 000 Siphon,Culveit (no Q: Riser) 40760 0.10 (N /A) 0.00 Siphon,Culvert (no Q: Riser) 40770 0.10 (N /A) 000 Siphon,Culvert (no Q: Riser) 40780 0 10 (N /A) 000 Siphon,Culvert (no Q Riser) 40790 0 11 (N /A) 000 Siphon,Culvert (no Q Riser) 40800 0.11 (N /A) 0.00 Siphon,Culvert (no Q Riser) 40810 Oil (N /A) 000 Siphon;Culvert (no Q: Riser) 408,20 0 12 (N /A) 0.'00 Siphon,Culvert (no Q Riser) 40830 0 12 (N /A)� 0.00 Siphon,Culvert (no Q Riser) 40840 01-2 (N /A) 000 Siphon;Culvert (no,Q Riser) 408.50 0 12 (N /A) 000 Siphon;Culvert (no Q Riser) 40860 0 13 (N /A) 0.00 Siphon;Culvert, (no Q Riser) 40870 0 13 (N /A) 000 Siphon,Culvert (no,Q ,Riser), 408.80 013 (N /A) 000 Siphon,Culvert (no Q Riser) 40890 0.14 (N /A) �0 00 Siphon,Culvert (no Q. Riser) 40900 014 (N /A) '0.00 Siphon,Culvert (no Q. Riser) 409.10 0,14 (N /A) 0.00 Siphon,Culvert (no Q Riser), 40920 0114 (N /A) 0.00 Siphon,Culvert (no Q Riser) 409.30' 0 15 (N /A) 000 Siphon,Culvert (no Q Riser) 409.40 0 15, (N /A) 0.00 Siphon,Culvert (no Q• Riser) 409.50 0:15, (N /A) 000 Siphon,Culvert (no Q. Riser) 409.60 015 (N/A), 000 Siphon,Culvert (no Q: Riser) 40970 0 15 (N /A) 0.00 Siphon,Culvert (no Q• Riser) 40980 0'16 (N /A) 0.00 Siphon,Culvert (no Q: Riser) 40990 016 (N /A) 000 Siphon,Culvert (no Q Riser) 41000 016 (N /A) 0.00 Siphon,Culvert (no Q• Riser) 410.10 0.16 (N /A) 0.00 Siphon,Culvert (no Q: Riser) 410.20 0.16 (N /A) 000 Siphon,Culvert (no Q: Riser) 'idaire Crossing AWH -12050 ppc J Aldridge, PE 4/14/2014 M McADAMS Subsection: Composite Rating Curve Label: SWMF C Composite Outflow Summary Water Surface Flow Elevation (ft3 /s) (ft) 41025 41030 41040 41050 41060 41070 410.80 41090 41100 41110 41120 41130 411.40 41150 411.60 41170 411.80 41190 41200 ,daire Crossing AWH -12050 ppc Kildaire Crossing Return Event• 1 years Storm Event* 1 year J Aldrndge,,PE 4/14/20,14 Tailwater Elevation Convergence Error Contributing Structures (ft) (ft) 0.16 (N /A) 000 Siphon,Culvert (no Q Riser) 070 (N /A) 000 Riser, Siphon,Culvert 296 (N /A) 0.00 Riser, Siphon;Cuivert 616 (N /A) 0.00 Riser;Siphon,Cuivert 10.09 (N /A) 000 Riser,Siphon;Culvert 1463 (N /A) 000 Riser;Siphon,Culvert 19.72 (N /A) 0.00 Riser,Siphon,Culvert 25.25 (N /A) 000 Riser,Siphon;Culvert 31.23 (N /A) 000 Riser; Siphon,Culvert 3444 (N /A) 0.00 Riser,Culvert (no Q•, Siphon) 3480 (N /A) 000 Riser,Culvert (no Q. Siphon) 35 15 (N /A) 000 Riser,Culvert (no Q• Siphon) 35.50 (N /A) 000 Riser,Culvert (no Q. Siphon) 3585 (N /A) 000 Riser,Culvert (no Q: Siphon) 36.19 (N /A) 000 Riser,Culvert (no Q: Siphon) 3653 (N /A) 0.00 Riser,Culvert (no Q Siphon) 36:87 (N /A) 0.00 Riser,Culvert (no Q: Siphon) 37 21 (N /A) 000 Riser,Culvert (no Q Siphon) 3754 (N /A) 000 Riser,Culvert (no Q Siphon) J Aldrndge,,PE 4/14/20,14 'J McADAMS kildairo, Crossing Subsection: Level Pool Pond Routing,Summary Label- SWMF,C (IN); 'Infiltration 407 99 ft Infiltration Method No Infiltration ,(Computed) 0 468,acift, Initial,Conditiobs' Elevation ('Water,surface, 406.00 ft Initial) 0.570, ac -ft Volume (Initial) 0 000 ac -ft Flow (Initial Outlet) 0'00`ft3 /s Flow °(Initial Infiltration) 0:00 ft3 /s, Flow °(Initial, Total) 0 00 ft3 /s Time Increment 1 000' mih `Return Event, 1 years Storm Event: 1, year Inflow /Outflow Hydrograph Summary Flow (Beak „fn) 11:16 ft3 /s Time to Peak (Flow; In) 7,22 -.000 min Flow (Peak,Outlet) 0:11`ft3 /s Time to Peak (Flow; Outlet) '1,440:000 min Elevation (Water °Surface; 407 99 ft Peak) Volume (Peak) 0 468,acift, Mass,Balance (ac --ft) Volume,(Initlal)' 0 000 ac -ft Volume. (Total Inflow) 0.570, ac -ft Volume (Total Infiltration) 0.000 aceft Volume (Total Outlet 0 102,ac -ft Outflow)` Volume, (Retained) 0 467,ac 7ft Volume (Unrouted) 0 000 ac-ft Error (Mass Balance) 00% ,daire,Crossing J Aldridge,,PE AWH 112050 p"pc' 4/14'12014 'J MCADAMS Kildaire Crossing Subsection: Level Pool Pond Routing Summary Label: SWMF C (IN) Infiltration 0 000 ac -ft Infiltration Method No Infiltration (Computed) 0 000 ac -ft Initial, Conditions 0 125 ac -ft 'Elevation (Water 'Surface, 406 00 ft Initial) 0 716 ac =ft Volume (Initial) 0.000 ac -ft Flow (Initial Outlet) 0.00 ft3 /S Flow (Initial Infiltration) 0 00 ft3 /S Flow (Initial, Total) 0 00 ft3 /S Time Increment 1 000 min Inflow /Outflow Hydrograph Summary Return Event: 2 years Storm Event: 2 year Flow (Peak In) 16:79 ft3 /S Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 0 13 ft3 /s Time to Peak (Flow, Outlet) 1,440 000 min Elevation (Water Surface, 408.86 ft Peak) Volume (Peak) 0 716 ac -ft Mass Balance (ac -ft) Volume (Initial) 0 000 ac -ft Volume (Total Inflow) 0 841 ac -ft Volume (Total Infiltration) 0 000 ac -ft Volume (Total Outlet 0 125 ac -ft Outflow) Volume,(Retamed) 0 716 ac =ft Volume (Unrouted) 0 000 ac -ft Error (Mass Balance) 00% Jaire Crossing J Aidndge, PE AWH -12050 ppc 4/14/2014 'J MCADAMS Kildaire Crossing Subsection: Level Pool Pond Routing Summary Label: SWMF C (IN) Infiltration Infiltration, Method No Infiltration (Computed) 1.302 ac -ft Volume (Total Infiltration) 0 000 ac -ft Initial Conditions 0.154 ac -ft Elevation (,Water'Surface, 406 00 ft Initial) 1 148 ac -ft Volume (Initial) 0 000 ac -ft Plow (Initial Outlet) 0 00 ft3 /s Flow (Initial Infiltration) 000 ft3 /s ,Flow (Initial, Total) 0 00 ft3 /s Time Increment 1.000 min Inflow /Outflow Hydrograph Summary Return Event: 5 years Storm Event' 5 year Flow (Peak.In) 24 42 ft3 /s Time to Peak (Flow, In) 722.000 min Flow (Peak Outlet) 0.16 ft3 /s Time to Peak (Flow, Outlet) 1,440 000 min Elevation (Water Surface, 410.22 ft Peak) Volume (Peak) 1.149 ac -ft Mass Balance (ac -ft) Volume (Initial) 0 000 ac -ft Volume (Total Inflow) 1.302 ac -ft Volume (Total Infiltration) 0 000 ac -ft Volume (Total Outlet 0.154 ac -ft Outflow) Volume (Retained) 1 148 ac -ft Volume (Unrouted) 0.000 ac -ft Error (Mass Balance) 00% Jdaire Crossing J Aldndge, PE AWH -12050 ppc 4/14/2014 MCADAMS K11daifra Cr6ssihil Subsection: Level'Pool Pond �Routing Summary Label: SWMF C (IN) Infiltration Infiltration Method No Infiltration (Computed) Initial Conditions ,Return Event, 10,years Storm Event:; 10 year Elevation (Water Surface; 40600 ft Initial) 1 696,ac =ft Volume (Initial) - 10 000 ac -f't Flow (Initial Outlet) 0 ^00 ft3 /s, Flow (Initial' Infiltration) 0 Wft3 /s' Flow (Initial, Total) 0100 ft3 /s1 Time Increment 1 000 min Inflow /Outflow Hydrograph�Summary 001% Flow (Peak I6) '30 85 ft3 %s Time to Peak, (Flow, In) 721.000 min Flow (Peak Outlet) 1.27 ft3 7s Time to,Peak (Flow,, Outlet) 901 000 min Elevation (Water, Surface, 410 33'ft Peak) Volume j (Peak) 1 184 ,ac -ft Mass Balance (ac -ft) volume�(Imitial) 0 000 ac -ft Volume (Total Inflow) 1 696,ac =ft Volume (Total Infiltration) 0.000,ac =ft Volume (Total Outlet 0 528',ac -ft Outflow,) Volume, (Retained) 1 167 ac -ft Volume (Unrouted) 70.001,ac -ft Error (MassBalance) 001% daire Crossing, J Aldridge, PE AWH -12050 ppc 4/14/20,14 Kildaire Crossing Subsection. , Level Pool Pond Routing Summary Label ,SWMF ,C (IN) Infiltration Infiltration Method No Infiltration (Computed) - Initial Conditions Eleyatlon,(Water Surface, 406 00 ft Initial) 'Volume (Initial) 0,000 ac -ft Return Event: 25 years Storm Event: 25 ,year Flow (Ihitlal,0utlet) 0 00 ft3 /s Flow (Initial Infiltration) 0 00'ft3 /s Flow (Initial, Total) 0 00 ft3 /s Time Increment 1:000 min Inflow /Outflow "Hydrograph Summary 1 1 +71 ac -ft F16 (Peak In)' 38 87 ft3 /s Tlme,zto Peak (Flow; In) 721 000 rnia Flow (Peak Outlet) 5.98 ft3 /s� Time,to, Peak (Flow, Outlet) 755,000 ruin' Elevation (Water Surface, '410.49 ft Peak), - Volume (Peak) 1.243 ac -ft Mass Balance (ac -ft) Volume ,(Initial) 0 1000 ac -ft Volume (Total Inflow) 2 265 ac-,ft Volume (Total Infiltration) 0:000 acsft Volume (Total,0utlet 1 093 ac -ft Outflow) Volume (Retained) 1 1 +71 ac -ft 'Volume (Unrouted) -0001 ac -ft 'JError(Mass Balance) 0.0 % daire3Crossing J,A1dndge, PE AWH' -12050 ,ppc, 4/,14/2014 '21 MCADAMS Kildeiire Crossing Subsection: ;Le"vel Pool Pond Routing Summary Label: SWMF °'C (SIN) Infiltration InfiltrationAethod No Infiltration (Computed) 3 223 ac =ft Volume (Total Infiltration) 0 000,ac,ft Initial,Conditions 3.205 ,ac -ft Elevation (Water - Surface, 41'0 25 ft Inibal)- '1.177 ,ac -ft Volumf (Initial) 1159.ac =ft Flow (Initial Outlet) 0 100 ft3 %s Flow (Initial Infiltration) 000 ft3 /s Flow (Initial, Total) 0`00 ft3 /s Time Increment 1.000 min Return Event: 100'years Storm Event: 100 year Inflow /Outflow Hydrograph Summary Flow�(Peak.In) 50 15 ft3 %s Time to Peaki(Flow, In) 7-21000 min Flow '(Peak,Outlet) 34.70103 s Time to Peak ^(Flow, Outlet) 725 000 min Elevation (Water Surface, 411 -18 °ft Peak) Volume (Peak) 1485 ac -ft Mass Balance (ac -ft) Volume (Initial) 1 159,ac =ft Volume (Total Inflow) 3 223 ac =ft Volume (Total Infiltration) 0 000,ac,ft Volume (Total Outlet 3.205 ,ac -ft Outflow) Volume (Retained) '1.177 ,ac -ft Volume (Unrouted) -0 001 ac -ft Error (Mass Balance) 0'0 daire Crossing J Aldridge, PE "AWH- 12050,ppc 4/14/2014 'J MCADAMS Kildalre Crossing Subsection: Outlet Input Data Label: SWMF C -WC Requested Pond WaterSurface Elevations Return Event- 100 years Storm Event: 100 year Minimum (Headwater,) 406 00 ft Increment (Headwater) 0.10 ft Maximum (Headwater) 412.00.,ft Outlet Connectivity Structure Type Outlet ID Direction Outfall El E2 (ft) (ft) Inlet Box Riser Forward I Culvert 410.25 412.00 Culvert- Circular Culvert Forward I TW 405.00 41200 Tailwater Settings Tailwater I (N /A) (N /A) ,idaire Crossing J Aldridge, PE AWH -12050 ppc 4/14/2014 l 'J McADaMs 1C1111deire Crossing Subsection: Outlet Input Data Label: SWMF C -WC Structure ID Culvert Structure Type Culvert- Cftular Number of Barrels 1 Diameter 24 00 in Length 45.00 ft Length (Computed Barrel) 4501 ft Slope (Computed) 0 022 ft/ft Outlet Control Data Manning's n 0 013 Ke 0.500 Kb 0 012 Kr 0 000 Convergence Tolerance 0 00 ft Inlet Control Data Equation Form Form 1 K 00098 M 20000 C 0.0398 Y 0.6700 T1 ratio (HW /D) 1 149 T2 ratio (HW /D) 1 296 Slope Correction Factor -0500 Use unsubmerged Inlet control "0 equation below T1 elevation Use submerged Inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged Inlet control, Interpolate between flows at T1 & T2 Return Event: 100 years Storm Event: 100 year TI Elevation 407.30 ft T1 Flow 15 55 ft3 /s T2 Elevation 407 59 ft T2 Flow 17 77 ft3 /s tldaire Crossing AWH- 12050,ppc J Aldridge, PE 4/14/2014 .s Kiidni re Crossing Subsection : Outlet Input Data Label: SWMF CkKC- Structure ib, 'Riser Structure Type Inlet Box 'Number of,Openings 1 Elevation 410 25 ft Orifice Area -16.'0 ,ft? Onfice Coefficient 0:600 Weir-Length 16 00 ft Weir, Coefficient 3 00 (ft"0'5) /s K Reverse 1.000 Manning!s n 0000 Kev; Charged Riser 0-000 Weir iSubmergence, False Orifice H to crest False Structure ID TW Structure Type TVV'Setup, DS Channel Tailwater Type, Free Outfail Convergence Tolerances Maximum Iterations 30 Tailwater'Toleranee 0:01 ft (Minimum) Tailwater`Tolerance, 0:50 ft (Maximum) Headwater Tolerance 0,01 ft (Minimum) Headwater Tolerance 0 501ft (Maznnum) Flow Tolerance (Minimum) 0 001 °ft3 /s, Flow Tolerance'(Maximum) 10 O00'ft3 /s Return Event: 100 years Storm Event: 100 year idai�e,Cr ssing J Altlndge,'PE 'AWW12050 ppc 4/1.4/2014 'J McADAMS Subsection- Composite Rating Curve Label: SWMF C -WC Composite Outflow Summary Water Surface Flow Elevation (ft3 /s) (ft) Kildsir® Crossing Return Event: 100 years, Storm Event: 100 year Tailwater Elevation Convergence Error Contributing Structures (ft) (ft) 406.00 000 (N /A) 000 (no Q: Riser,Culvert) 406.10 000 (N /A) 000 (no Q: Riser,Culvert) 406.20 000 (N /A) 000 (no Q: Riser,Culvert) 406 -30 000 (N /A) 000 (no Q: Riser,Culvert) 406.40 0.00 (N /A) 0.00 (no Q* Riser,Culvert) 406.50 0.00 (N /A) 0.00 (no Q Riser,Culvert) 40660 0.00 (N /A), 0.00 (no Q Riser,Culvert) -40670 0.00 (N /A) 000 (no Q Riser,Culvert) ,40680 0.00 (N /A) 000 (no Q: Riser,Culvert) 406.90 000 (N /A) 0.00 (no Q• Riser,Culvert) 407.00 000 (N /A) 0.00 (no Q• Riser;Culvert) 407.10 ' 0.00 (N /A) 0,00 (no Q: Riser,Culvert) 40720 000 (N /A) 0:00 (no Q. Riser;Culvert) 40730 000 (N /A) 0'00 (no Q. Riser;Culvert) 40740 000 (N /A) 0:00 (no,Q* Riser;Culvert) 407.50 0.00 (N /A) 0.00 (no Q Riser,Culvert) 407.60 0.00 (N /A) 000 (no Q. RiseryCulvert) 40770 0.00 (N /A) 000 (no Q: Riser,Culvert) 407.80 0.00 (N /A) 000 (no Q: Riser,Culvert) 40790 000 (N /A) 0.00 (no Q: Riser,Culvert) 40800 000 (N /A) 000 (no Q Riser,Culvert) 40810 0.00 (N /A) 000 (no Q. Riser,Culvert) 40820 000 (N /A) 0.00 (no Q Riser,Culvert) 40830 000 (N /A), 0.00 (no Q Riser,Culvert) 408:40 0.00 (N /A) 000 (no Q: Riser,Culvert) 40850 000 (N /A) 000 (no,Q Riser,Culvert) 40860 000 (N /A) 0.00 (no Q• Riser,Culvert) 40870 000 (N /A) 000 (no,Q- Riser,Culvert) 40880 0100 (N /A) 000 (no Q. Riser,Culvert) 408.90 0100 (N /A) 0.00 (no Q• Riser;Culvert) 409.08 0:00 (N /A)i 0'00' (no,Q. Riser;Culvert) 409 1'0 0:00' (N /A) 000 (no Q: Riser,Culvert) 40920 000 (N /A); 0.00 (no Q. Riser;Culvert) 40930 000 (N /A) 000 (no,Q Riser,Culvert) 40940 0:00 (N /A) 000 (no Q. Riser,Culvert) 409.50 0.00 (N /A) 000 (no Q: Riser,Culvert) 409.60 000 (N /A) 000 (no Q: Riser,Culvert) 409.70 000 (N /A) 0 00 (no Q Riser,Culvert) 40-980 0.00 (N /A) 000 (no Q Riser,Culvert) 409.90 0.00 (N /A) 000 (no Q• Riser,Culvert) 410.00 000 (N /A) 000 (no Q: Riser,Culvert) 410.10 000 (N /A) 000 (no Q• Riser,Culvert) 41020 000 (N /A) 000 (no Q Riser;Culvert) daire Crossing AWH -12050 ppc J Aldridge, PE 4/14/2014 991 MCADAMS Subsection: Composite Rating Curve Label: SWMF C--WC (ft) Composite Outflow, Summary Water Surface Flow 000 Elevation (ft3 /s) (N /A) (ft) Riser,Culvertf 410.25 &00 000 41030 000 0.54 41040 000 2.79 41050 000 600 410.60 000 994 41070 000 14.50 41080 000 19.57 410' 90 000 25 15 41-100 0.00 31 17 41,110 0.00 3443 41120 0.00 3479 41130 000 35 15 41140 000 35 50 411.501 0:00 3585 41160 0.00 3619 41-170 000 3653 411.80 000 36.87 411.90 37.21 I 412.00 37.54 Jane Crossing ,AWH -12050 ppc r Kildaire Crossing Return Event, 100 years Storm Event: 100 year Tadwater Elevation Convergence'Error Contributing Structures (ft) (ft) (N /A) 000 (no Q Riser,Culvert) (N /A) 000 Riser,Culvertf (N /A)' &00 Riser - ;Culvert (N /A) 000 Riser,Culvert (N /A) 000 Riser,Culvert- (N/A) 000 Riser,Culvert (N /A) 000 Riser,Culvert (N /A), 000 Riser,Culvert (N /A) 000 Riser,Culvert (N /A) 000 Riser,Culvert (N /A) 0.00 Riser,Culvert' (N /A) 0.00 Riser,Culvert (N /A) 0.00 Riser,Culvert (N /A) 000 Riser;Culvert (N /A) 000 Riser,Culvert (N /A) 0:00 Riser,Culvert (N /A) 0.00 Riser,Culvert (N /A) 000 Riser,Culvert (N /A) 000 Riser,Culvert J Aldridge, PE 4/14/2014 .qJ MCADAMS Kildalr® Crossing Subsection: Level Pool Porid Routing Summary Label: SWMF C (IN) Infiltration 410 72 ft Infiltration Method No Infiltration, (Computed) 1.321 ac -ft Initial Conditions Elevation (Water Surface, 406 00 ft Initial) 3.223 ac -ft Volume (Initial) 0 000 ac -ft Flow (Initial Outlet) 0 00 ft3 /s Flow (Initial Infiltration)_ 0 00 ft3 /s Flow (Initial, Total) 0.00 ft3 /s Time Increment 1.000 min Return, Event: 100 years Storm Event: 1001year Inflow /Outflow Hyd�rograph'Summary Flow (Peak In) 50.15 ft3 /s Time to Peak (Flow,`In) 721.00&mm Flow (Peak Outlet) 15.64 ft3 /s Tme,to Peak,(Flow; Outlet), 751.000,min Elevation (Water Surface;, 410 72 ft Peak) Volume (Peak) 1.321 ac -ft Mass Balance (ac -ft) Volume (Initial) 0 000 ac -ft Volume (Total Inflow) 3.223 ac -ft Volume (Total Infiltration) 0.000 ac -ft Volume (Total Outlet 2 049 ac -ft Outflow) Volume (Retained) 1.173 ac -ft Volume (Unrouted) -0.001 ac -ft Error'(Mass Balance) 0.0% daire Crossing ,J Aldridge, PE AWH -12050 ppc 4/14/2014 KILDAIRE CROSSING STORMWATER MANAGEMENT FACIL_ITY'C' J ALLEN, PE, CFM AWH -12050 Ant: - Flotation Block Calculations 4/14/2014 Input Data => Inside length of riser = 400 feet Inside width,of riser = 400 feet Wall thickness of riser = 600 inches Base thickness of riser = 600 inches Base length of riser = 800 feet Base widthdof riser = 800 feet Inside height of Riser = 5 25 feet Concrete umt'weighf= 142 0 PCF OD of barrel exiting manhole = 24 00 inches Size of dram pipe (if present)— 80 inches Trash Rack water, displacement = 5267 CF Concrete Present in Riser Structure => Total amount of concrete Base of Riser = 32 000 CF Riser Walls = 47 250 CF Adjustfor openings 52 670 CF Opening for barrel= 1 571 CF Opening for dram pipe = 0 175 CF Total Concrete present, adjusted for openings = 77.505 CF Weight of concrete present'= 11006 lbs Amount of water displaced, by Riser Structure => Displacement by concrete = 77 505 CF Displacement by,open air „m riser =' 84 000 CF Displacement by trash radk = 52 670 CF Total water displaced by r'iser/barrel structure= 214.175 CF Weight of water displaced = 13364 lbs Note: NC Products lists unit wt of manhole concrete at 142,PCF KILDAIRE CROSSING STOR_ MWATER MANAGEMENT FACILITY 'C' J ALLEN, PE, CFM AWH -12050 Anti- Flotation Block Calculations 4/14/2014 Calculate,amountbf concrete to,be added toxiser — Safety factor to use = Must add = Concrete unit weight for use = Buoyant weight of this concrete = Buoyant, with safety factor applied = ` Therefore, must,add = Standard based described above = Therefore;,base design must1have = Calculate size of base for riser assembly => Length= Width = Thickness = Concrete Present = Check validity of base as designed => Total Water Displaced = Total Concrete Present = Total Wafer Displaced = Total Concrete Present = Actual safety factor Results of design => 1 15 (recommend 1 15 or higher) 4364 lbs concrete for buoyancy 142 PCF (note above observation for NCP concrete) 79 60 PCF 69 -21 PCF 63 041 CF of concrete 32 000 CF of concrete 95,041 CF of concrete 8 000 feet 8 000 feet 1&0 inches 96.000 CF OK 278 175 CF 141 505 CF 17358 Ibs 20094 lbs 116 OK Baselenl;0= 8.00 feet Base width= 8.00 feet Base Thickness-= 18.00 inches CY of concrete total in base = 3.56 CY Concrete unit weight in added base >= 141 PCF f 0 DESIGN OF RIPRAP OUTLET PROTECTION WORKSHEET Project KILDAIRE CROSSING Date 4/14/2014 Project No. AWH -12050 Designer JCA Outlet ID SWMF'C' Flow, Q10_n 1.27 cfs Slope, S 2.22 % Pipe Diameter, Do 24 inches Pipe Diameter, Do 2.0 feet Number of pipes 1 Pipe separation 0 feet Manning's n 0.013 ►�� \iiii iiiiii�i■�i` Sri -iiii !�iiiii • ii iliii3■iiiiiiiiiii iiii 1 ' 1 Zone from graph above = 2 Diameter Thickness Outlet pipe diameter 24 in. Length = 12.0 ft. Outlet flowrate 1.3 cfs Width = 6.0 ft. Outlet velocity 5.1 ft/sec Stone diameter = 6 in. Material = Class B Thickness = 22 in. Zone Material Diameter Thickness Length Width I Class A 3 9 4 x D(o) 3 x D(o) 2 Class B 6 22 6 x D(o) 3 x D(o) 3 Class I 13 22 8 x D(o) 3 x D(o) 4 Class I 13 22 8 x D(o) 3 x D(o) 5 Class II 23 27 10 x D(o) 3 x D(o) 6 Class II 23 27 10 x D(o) 3 x D(o) 7 Special study required 1. Calculations based on NY DOT method - Pages 8.06.05 through 8.06.06 in NC Erosion Control Manual 2. Outlet velocity based on full -flow velocity Rip Rap Outlet Protection Design.xlsm4 /14/2014 NUTRIENT LOADING CALCULATIONS KILDAIRE CROSS_ ING AWH -12050 Neuse Nutrient Reporting Form Please complete and submit the following information to the local government permitting your development project to characterize it and assess the need to purchase nutrient offsets. Contact and rule implementation information can be found online at http: / /Portal.ncdenr.orp/ web /wq /ps /nps /nutrientoffsetintro. PROJECT INFORMATION Applicant Name : A Project Name: .,Aa:, ne CNKS; n vkrzt Project Address (if available): Street: City/Town: County: Ct. v.I o.Ke Date: (mo/d/yr) Project Lat: (decimal degrees) Long: (decimal degrees) Oti l y l y Location: 5, 6q �8 Is this Redevelopment? ❑ Yes Development Type (Please check all that apply) No Impervious Cover ( %): ❑ Commercial ❑ Mixed -Use 00�1 Single Fam. Residential (Pre - Construction) 1 o ❑ ❑ Industrial Institutional ❑ Duplex Residential ❑ Multi -Fam. Residential Impervious Cover ( %): (Post - Construction) 30,60/. WATERSHED INFORMATION 12- Digit Watershed ID: (see online map) New Development Load Requirements (See individual rules for a full 010201,o% 010 description of nutrient requirements.) Nutrient Strategy Loading Rate Targets Nitrogen (N) Offsite Thresholds 03020201 3.6 N Ib /ac/yr; 6 N Ibs /ac - Residential; Neuse 10 N Ibs /ac Commercial NUTRIENT OFFSET REQUEST (Must meet the offsite thresholds - see above) Nitrogen Loading / Offset Needs (A) (B) (C) (D) (E) (F) (G) Untreated Treated Loading Rate Reduction Need Project Offset State Buy Down Loading Rate Loading Rate Target (Ibs /ac/yr) (Ibs /ac/yr) Size (ac) Duration (yrs) Amount (Ibs) (Ibs /ac/yr) (Ibs /ac/yr) B- C D' E' F q,70 `i.2i . (,o 0.G7 6y•l8 30 ( '1,90, C) �F Control of Peak Stormwater Flow (1 year 24 hour design storm) Calculated Predevelopment Flow Calculated Post Development Flow Flow Control Method Sf �F Authorizing Local Government Name: Staff Name: Staff Email: Phone: ak i t S(,86 Ibs q ;o.,sl� � set- ��r E sc 1c•.�re�vre .w%k rr'. Neuse Nutrient Load Reporting Form. November 1, 2012 U � L e a z 0 F Q a r� r� 04 O z H .V Y 3 O z z a 0 V I� ^I II 3 o° o' r a'. a� 0 V II O m T N tV0 1i O U V A^ �+ A T A T tC r � �10+1 N yA C 4 � T .r, Q ` 0 � m o r O z a is W �-o F 0 0 d �v E U 11 C d E d F r X W z F 11 c� a. O 3 0 x W z F i ^y v U � ° O z � m v e a t z z E a 7� /\ k / R/ i i \) j ( z c. e § /* e 2 / ? y § ¥ / f § k ES m R� \ SZ + \��\ /��f/ _\ \ 2 B ) a a E 2 E x mow%_ «y 5 -t3 « $ / « E ] m a.§ 2 2 a*I�'�� \ a .w« \� \z / Ic §'sk i \ ] � / ƒ k [ / /\7±/ � ■& \ \ � k k \� k \ � �4 F «4 �- « -- / R/ i i \) j ( z c. e § /* e §z \\ < � a/ »$ \k \ � e § /* e 2 � � y .e 2 ¥ / f ! ƒ B §(§ * y } \ th / 1 \ ! } § \ 2 \ \yR \I\ k\ ( ƒ§ \ }\ ■% \ /ƒ /%j ,� ¥« w§§§§ 3 Q) 2 rA V) W) 'A rA � a/ »$ \k \ � e § /* e /\ k cz »\ i i /j m E § § j� 2 j Z [ ` l \ -, / i e k t ` ® / w_ lu 2 f - t E $ a u E a§ :3��b;�y w Tz § z qj , \ j \ - \ ( lz SZ \ } k ( .RQ R a2�5aƒ �0. Aw CLW_ cz »\ i i /j m E § § j� 2111' /§ k /2 E 2 2 ¥ / C� . .) E z m � E3 _ x § \!§\ } / [�dƒ \£ $ f§ ¥ \] ® ~ r4 2k ° § \ K § \ \ ƒ - �s %�kR § $ } \ Z \ \ & S & � \w\\#t 2 \ & 3 ( to k= ■' 2' °� ; Xts 14 t3 e § § k22 § tF K \§ # )) 2 3 mEn 2 E 3§ cn W) 0£ 7= \§ k \ � r ? 22 q 2 \� / n \ o j f C �/ 2 � ae35[ It ' r- .13 k 4 o ell k» 2\$; E r k a»:3 2 ƒ\ y\� a , \ w « \ z ] 6 2 - - - § 3 i 7\/ 123 ƒ E \ / ? � & § \ w k j \ \ ] } t 2 % k § J \ § zt 2 2 k o —x CA §\ § \ /' §)�w / )} 2 a 3 t t o 0 4 3§ Z` /\ « - / y y ! j Z 2 k y \ \ � ® \ § 3 $ * y § \ \ \ Iz 5 § / \ § $ \ \ \ \yy \{\ \ ��- �a a2aav� c = � 13 w u ;4l t 7/ /\ _ \ { § \* e