Loading...
HomeMy WebLinkAbout20140872 Ver 1_Stormwater Info_20140811STORMWATER MANAGEMENT REPORT for INDIAN WELLS SUBDIVISION Prepared for: LStar Management 516 N. West Street Raleigh, NC 2760' by: BOHLER ENGINEERING, NC, PLLC 4011 Westchase Boulevard Suite 290 Raleigh, NC 27607 PHONE 919 -578 -9000 FAX 919 -703 -2665 1s1 Submittal May 8, 2014 2nd Submittal July 10, 2014 Bohler Project #: NCR] 42011 �••`'' G A R ,•�'� o 'Es rs otiq�ti 01- it 0320 j U= e-7. t o - ,�2a••F!vc �c��`` oNN M�A 10 " "f /r•'s 1:1;x' Landon M. Lovelace, PE, NCLID, LEED -AP Table of Contents Page INTRODUCTION............................................................................................. ............................... 1 1.1 PROJECT INFORMATION ................................................................................... ............................... 1 1.2 STORMWATER MANAGEMENT REQUIREMENTS ............................................... ............................... 3 STORMWATER CALCULATIONS ..................................................................... ............................... 4 2.1 METHODOLOGY .......................................................................................... ............................... 4 2.2 CONCLUSIONS ................................................................ ..............................5 2.3 WET POND DESIGN SUMMARY ................................................................... ............................... 7 APPENDICES: A. DRAINAGE AREA MAPS ............................................................................ ............................... B. BMP CALCULATIONS ................................................................................. ............................... C. NUTRIENT LOADING CALCULATIONS ....................................................... ............................... D. PIPE SIZING, GUTTER SPREAD, & HGL CALCULATIONS ............................. ............................... E. DISSIPATOR SIZING CALCULATIONS ......................................................... ............................... F. ENVIRONMENTAL LETTERS AND MAPS ............................. ERROR! BOOKMARK NOT DEFINED. G. O & M MANUALS ............................. ............................... ERROR! BOOKMARK NOT DEFINED. SECTION 1 INTRODUCTION 1.1 Project Information The project site is a total of 34.22 acres, contained currently in seven parcels, located in northwest Cary at the current terminus of Indian Wells Road. (Refer to Figure 1) The site includes Wake County PIN #'s 0735 -53 -3365 (3.09 Ac), 0735 -53 -1126 (3.04 Ac), 0735 -42 -3994 (11.10 Ac), 0735 -52 -1513 (6.72 Ac), 0735 -53 -1531 (2.50 Ac.), 0735 -52 -3632 (3.30 Ac.), and 0735 -42 -6432 (4.74 Ac). The site is zoned R8 -CU and R40 (currently being re- zoned to R8 -CU) and is in the Jordan Lake (Upper New Hope) watershed. The site has been previously developed and currently contains multiple single family dwellings, as well as numerous out - buildings, sheds, and barns. There are concrete, gravel, and dirt paths throughout the site. The site is bounded to the east by single family parcels, to the South by a tributary of Panther Creek, on the west by the Cameron Pond subdivision, and to the north by a tributary to Panther Creek and a single family parcel. The intent of this project is to create a seventy lot single - family residential subdivision including all required roadway, utility, and stormwater infrastructure. As a part of this project, the developer is also required to construct +/- 500 If of Highcroft Drive, a Collector Avenue, per the Comprehensive Transportation Plan. The site is a mix of wooded areas and open fields. There are three existing jurisdictional streams (one 50' UTB and 2 100' UTB), one existing jurisdictional pond (100' UTB), and small pockets of jurisdictional wetlands as determined by Steven Ball of S &EC and verified by the Town of Cary, and USACE. There is no FEMA mapped floodplain within the site per FIRM Panel 372200735001, dated May 2, 2006. The topography is rolling with existing slopes varying from 1% - 20 %. The site generally drains to two existing points of interest. The points of interest also pick up run -off from large off -site areas and eventually converge southwest of the site before entering Panther Creek. Please refer to the Drainage Area Map included in Appendix A. Both of the unnamed streams have an upstream drainage area greater than 50 acres, therefore a flood study is required for each reach based on Town of Cary requirements. That flood study was prepared by Bohler Engineering and is submitted under separate cover. Bohler Engineering, NC, PLLC 4011 WestChase Boulevard Suite 290 Raleigh, NC 27607 T: 919 -578 -9000 CIVIL AND CONSULTING ENGINEERS • PROJECT MANAGERS • SURVEYORS • ENVIRONMENTAL CONSULTANTS • LANDSCAPE ARCHITECTS www.BohlerEngineering.com Page 1 1 FIGURE 1: AERIAL VIEW OF SITE Bohler Engineering, NC, PLLC 4011 WestChase Boulevard Suite 290 Raleigh, NC 27607 T: 919 -578 -9000 CIVIL AND CONSULTING ENGINEERS • PROJECT MANAGERS • SURVEYORS • ENVIRONMENTAL CONSULTANTS • LANDSCAPE ARCHITECTS www.BohlerEngineering.com Page 1 2 1.2 Stormwater Management Requirements This project is subject to the regulations set forth in the Cary Land Development Ordinance, Section 7.3, pertaining to Stormwater Management. The proposed development will be required to meet all Sections of the Ordinance, specifically: 7.3.2 Nutrient Reduction Requirements and 7.3.3. Peak Runoff Control. The purpose of this report is to demonstrate the site's proposed compliance with all stormwater regulations and to provide supporting documentation to that effect. Since this site is in the Upper New Hope sub -basin of the Jordan Lake watershed it must meet the target nutrient loading rates as set forth by NCDWQ. The target rates are 2.2 # /ac /yr for Nitrogen and 0.82 # /ac /yr for Phosphorus. The nutrient loading can be off -set through the use of stormwater best management practices (BMP's) and /or a payment to the North Carolina Ecosystem Enhancement Program (NCEEP) or other approved fund. In order to use the buy -down options, the site loading must first be brought to at least 6 # /ac /yr for Nitrogen through the use of on -site BMP's. The Stormwater Runoff Control requirements of the Ordinance state that the peak stormwater runoff leaving the site for the 1 -year, 2 -year, 5 -year, and 10 -year storms shall be no greater for post - development conditions than pre - development conditions. Calculations were run to identify the peaks flows for each design storm under the existing conditions, as well as after the proposed build out. On -site Stormwater BMP's are used to mitigate the increase in run -off associated with the proposed development. A large culvert and pedestrian culvert crossing of the stream are required in order to construct Highcroft Drive and build a pedestrian underpass per the Town's Comprehensive Transportation Plan and Parks and Greenways Master Plan. A flood study and associated culvert sizing was done for this crossing to ensure that no negative impacts to surrounding properties result from this development. Bohler Engineering, NC, PLLC 4011 WestChase Boulevard Suite 290 Raleigh, NC 27607 T: 919 -578 -9000 CIVIL AND CONSULTING ENGINEERS • PROJECT MANAGERS • SURVEYORS • ENVIRONMENTAL CONSULTANTS • LANDSCAPE ARCHITECTS www.BohlerEngineering.com Page 1 3 SECTION 2 STORMWATER CALCULATIONS 2.1 Methodology This stormwater study was conducted using the natural drainage features and existing impervious areas as depicted by an existing field survey provided by M -iii Surveying. Drainage areas were based on field survey data and proposed development within those drainage areas. The scope of work included the following analyses: Hydrology: Formulation of the 1 -year, 2 -year, 5 -year, 10 -year, and 100 -year hydrographs for the pre - development and post - development drainage areas were generated with HydroCAD. The Rational Method was used to develop peak flows for the Type 11, 24 -hour storm events in the Raleigh area. This method requires three basic parameters: a weighted run -off coefficient (C), Storm Intensity (1), and drainage area in acres (A). The run -off coefficient values and drainage areas were computed using information taken directly from the field survey file and Malcolm's Table of Runoff Coefficients. The intensity was determined using the Intensity Duration Frequency tables (IDF) from the NOAA Atlas 14 rainfall data for Raleigh- Durham International Airport. Hydraulics: Computer simulated reservoir routing of the 1 -year, 2 -year, 5 -year, 10 -year, and 100 -year design storms utilized stage- storage and stage- discharge functions was completed in HydroCAD. Stage- storage functions were derived from the proposed grading of the proposed wet ponds. A non - linear regression relation for surface area versus elevation was derived for each wet pond. This relation estimates the incremental volume of the basins to the stage or elevation of the basins. Stage- discharge functions were developed to size the proposed outlet structure for each wet pond. The resulting pre- development and post - development flows out of the proposed BMP's and at untreated areas are then analyzed to ensure that there is no increase in flow for all of the required design storms. The HydroCAD modeling results are provided in Appendix B. Bohler Engineering, NC, PLLC 4011 WestChase Boulevard Suite 290 Raleigh, NC 27607 T: 919 -578 -9000 CIVIL AND CONSULTING ENGINEERS • PROJECT MANAGERS • SURVEYORS • ENVIRONMENTAL CONSULTANTS • LANDSCAPE ARCHITECTS www.BohlerEngineering.com Page 14 Nutrient Loading: Nitrogen and Phosphorus loading and removal calculations for the pre - development and post - development conditions were run using the Jordan Lake Stormwater Load Accounting Tool (JLSLAT) developed by NC State University and NCDENR -DWQ. The results of this analysis are further described in the Conclusions section and the spreadsheet can be found in Appendix C. Storm Sewer. Storm sewer design was done using StormCAD software, which uses a variety of methods such as the Rational Method, Manning's equation, Bernoulli's equation, and FHWA HEC 22 to model inlet capture, gutter flow, pipe flow, hydraulic grade line, and junction loss. The run -off coefficient values and drainage areas were computed using information taken directly from the field survey file and Malcolm's Table of Runoff Coefficients. The intensity was determined using the Intensity Duration Frequency tables (IDF) from the NOAA Atlas 14 rainfall data for Raleigh- Durham International Airport. Pipe sizing is based on the 10 -year storm and gutter spread is based on a 4" /hour intensity. Energy Dissipaters: Riprap aprons were designed per the NCDWQ spreadsheet and the standard nomographs, using the flow and velocity for the 10 -year storm obtained from the HydroCAD routing and StormCAD results. These calculations can be found in Appendix E. 2.2 Conclusions The final BMP designs are based on the Simple Method for the First 1" volume calculation and NCDENR's BMP Manual take into account the attenuation required to ensure that the site meets the pre -post requirement for peak flow. Forebays are provided for each pond, with a minimum size of 20% of the required storage volume. All ponds outlet to a level spreader outside the urban transition buffer (UTB). Based on the routing study, each proposed detention basin has sufficient volume to safely pass the 100 - year storm without overtopping the dam. The grading of each wet pond provides sufficient depth and area at normal pool to meet DWQ surface area requirements. The outlets were designed to discharge the runoff resulting from the first 1" of rainfall over 2 to 5 days to meet water quality guidelines. There is no proposed increase in peak runoff, for the site as a whole and at each study point, for any of the design storms. Refer to Appendix B for BMP sizing calculations. Bohler Engineering, NC, PLLC 4011 WestChase Boulevard Suite 290 Raleigh, NC 27607 T: 919 -578 -9000 CIVIL AND CONSULTING ENGINEERS • PROJECT MANAGERS • SURVEYORS • ENVIRONMENTAL CONSULTANTS • LANDSCAPE ARCHITECTS www.BohlerEngineering.com Page 1 5 Based on the results of the Jordan Lake Stormwater Load Accounting Tool, the post development loading rates are below the minimum required thresholds to allow for a buy -down of the remaining loading. The total Nitrogen loading is 3.07 # /ac /yr and the Phosphorus is 0.41 # /ac /yr. A buy -down for Nitrogen only will be required for this project and is calculated in the Jordan Lake Developer Nutrient Reporting Form including in Appendix C. The HGL does not exceed the pipe crowns except in instances where tailwater forces the occurrence; and in such cases, the proposed pipe is o -ring gasketed. Gutter spread at each inlet is less than the 8' allowed by Town ordinance. Refer to Appendix D for pipe sizing, gutter spread and hydraulic grade line calculations. Bohler Engineering, NC, PLLC 4011 WestChase Boulevard Suite 290 Raleigh, NC 27607 T: 919 -578 -9000 CIVIL AND CONSULTING ENGINEERS • PROJECT MANAGERS • SURVEYORS • ENVIRONMENTAL CONSULTANTS • LANDSCAPE ARCHITECTS www.BohlerEngineering.com Page 1 6 2.3 Wet Pond Design Summary BMP #1- PROPOSED WET POND w/ LEVEL SPREADER DRAINAGE AREA= 9.620 ACRES PERCENT IMPERVIOus AREA = 42.2 % • 1.00" drawdown orifice @ 308.50 • 4' x 4' riser structure w/ trash rack, crest @ 309.50 • 15" RCP Outlet Barrel • Top of Dam = 313.00 • Emergency Spillway Elevation = 312.00 Storm Event Peak WSEL Freeboard (ft) Qpeak Inflow (cfs) Qpeak Outflow (cfs) 1 -Year 309.54 3.46 26.06 0.96 2-Year 309.64 3.36 30.62 5.84 5 -Year 309.72 3.28 35.18 10.79 10 -Year 309.77 3.23 39.09 14.56 100 -Year 309.99 3.01 48.86 15.46 BMP ##2- PROPOSED WET POND w/ LEVEL SPREADER DRAINAGE AREA= 8.60 ACRES PERCENT IMPERVIOus AREA = 46.5 % • 1.5" drawdown orifice @ 310.50 • 4' x 4' riser structure w/ trash rack, crest @ 311.50 • 15" RCP Outlet Barrel • Top of Dam = 313.00 • Emergency Spillway Elevation = 312.25 Storm Event Peak WSEL Freeboard (ft) Qpeak Inflow (cfs) Qpeak Outflow (cfs) 1 -Year 311.04 1.96 24.50 0.04 2-Year 311.12 1.88 28.79 0.04 5 -Year 311.21 1.79 33.08 0.05 10 -Year 311.28 1.72 36.75 0.05 100 -Year 311.46 1.53 45.94 0.06 Bohler Engineering, NC, PLLC 4011 WestChase Boulevard Suite 290 Raleigh, NC 27607 T: 919 -578 -9000 CIVIL AND CONSULTING ENGINEERS • PROJECT MANAGERS • SURVEYORS • ENVIRONMENTAL CONSULTANTS • LANDSCAPE ARCHITECTS www.BohlerEngineering.com Page 1 7 BMP #3- PROPOSED WET POND w/ LEVEL SPREADER DRAINAGE AREA= 2.640 ACRES PERCENT IMPERVIOus AREA = 48.5 % • 0.7" drawdown orifice @ 321.50 • 4' x 4' riser structure w/ trash rack, crest @ 322.50 • 15" RCP Outlet Barrel • Top of Dam = 324.00 • Emergency Spillway Elevation = 323.00 Storm Event Peak WSEL Freeboard (ft) Qpeak Inflow (cfs) Qpeak Outflow (cfs) 1 -Year 322.20 1.80 7.89 0.01 2-Year 322.30 1.70 9.27 0.01 5 -Year 322.40 1.60 10.65 0.01 10 -Year 322.48 1.52 11.84 0.01 100 -Year 322.61 1.39 14.80 3.72 Refer to Appendix B for full BMP sizing and routing calculations. Bohler Engineering, NC, PLLC 4011 WestChase Boulevard Suite 290 Raleigh, NC 27607 T: 919 -578 -9000 CIVIL AND CONSULTING ENGINEERS • PROJECT MANAGERS • SURVEYORS • ENVIRONMENTAL CONSULTANTS • LANDSCAPE ARCHITECTS www.BohlerEngineering.com Page 1 8 APPENDIX A DRAINAGE AREA MAPS APPENDIX B BMP CALCULATIONS Project Name: Indian Wells Cit State: Cary, NC BMP Sizing Worksheet: BMP #1- Wet Pond Project #: NCR142011 Date: 7/11/2014 Surface Area to Drainage Area Ratio for Permanent Pool Sizing for85% Pollutant Removal Efficiency in the Piedmont %Impervious Cover Permanent Pool Depth (feet) 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 10 0.59 0.54 0.49 0.46 0.43 0.39 0.35 0.33 0.31 0.30 0.29 0.40 0.26 20 0.97 0.88 0.79 0.75 0.70 0.65 0.59 0.55 0.51 0.49 0.46 0.70 0.44 30 1.34 1.21 1.08 1.03 0.97 0.90 0.83 0.77 0.70 0.67 0.64 0.90 0.62 40 1.73 1.58 1.43 1.34 1.25 1.15 1.05 0.98 0.90 0.86 0.82 1.20 0.77 50 2.06 1.90 1.73 1.62 1.50 1.40 1.30 1.20 1.09 1.05 1.00 1.50 0.92 60 2.40 2.22 2.03 1.87 1.71 1.61 1.51 1.40 1.29 1.24 1.18 1.80 1.10 70 2.88 2.64 2.40 2.24 1 2.07 1.93 1.79 1 1.67 1 1.54 1 1.45 1 75 2.00 1.26 80 3.36 3.07 2.78 2.58 2.38 2.24 2.10 1.98 1.86 1.73 1.60 2.10 1.42 90 3.74 3.42 3.10 2.88 2.66 2.50 2.34 2.23 2.11 1.97 1.83 2.50 1.67 Source: NCUENN /UWQStormwaterBMV Manual, lable 11-1 STORMWATER BMP 1 - WET POND (25% TN Removal) Land Use Area (ac) %IA Imp. Area (ac) Roadway & Sidewalk 1.52 100 1.5 Lots (4000sf /lot) 2.54 100 2.5 Pervious Area 5.56 0 0.0 Totals 9.62 4.1 Total %Impervious Surface Area = 42.2 % Surface Area of Permanent Pool: Assumed depth = 4.5 feet SA /DA ratio = 1.40 % From Table From Table 1.1 Minimum pond surface area (SA) _ (DA * SA /DA ratio) /100 SA= 0.135 acres 5867 sq.ft. Normal pool elevation = 308.5 feet Surface area provided= 6032 sq. ft. 0.138 AC 1 -Inch Runoff Volume Calculation Using the runoff volume calculations in the "Simple Method" as described by Schueler (1987) Rv = 0.05 + 0.009(1) where, Rv = Runoff coefficient, in. /in. I = Percent impervious Rv= 0.43 in. /in. Total runoff volume from 1 -inch precipitation: Runoff volume, S = (Design rainfall) (Rv) (Drainage Area) S= 0.345 acre -ft 15010 cu. ft. Water quality pool elevation= 310.50 feet Storage volume provided= 0.379 acre -ft 16502 cu. ft. BMP 1 DRAWDOWN CALCULATIONS 308.5 = Permanent Pool Elevation and Orifice Invert Elevation (ft) 6032 = Permanent Pool Area (ft) 310.5 = Water Quality Pool Elev. (ft) 9555 = Water Quality Pool Area (ft) 0.6 = Cd, Orifice Coefficient 1.5 = Orifice Diameter (in) 48 = Drawdown Time (hours) 3.5.2.1 Drawdown Time Calculations for a Pond with an Orifice Outlet In the above Figure_ .31 = Area of pond at the beginning of drawdown A, = Area of pond at the end of drawdoun R — Area Area of pond at time_ t during drawdovm An = Area of pond at the orifice outlet elevation T= Time for water level to fall from H1 to H2 A = Resen oir Area Cd = Orifice coefficient of discbarge a = Orifice area g = Acceleration of gravity Hi = Maximum head (t=0) H: = Head when t = T (H: = 0 ) For the specific case where A. = A0 and Hz = 0 T # 1 2 *. * 1 -3 +"' A, 40 Ism 3 ,3 I Cd *A* 2 *g + 0 ! 3. Hi 1 Cd�a* 4L *g 3 3 Project Name: Indian Wells City/State: Cary, NC BMP Sizing Worksheet: BMP #2 - Wet Pond Project #: NCR142011 Date: 7/11/2014 Surface Area to Drainage Area Ratio for Permanent Pool Sizing for 85% Pollutant Removal Efficiency in the Piedmont % Impervious Cover Permanent Pool Depth (feet) 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 900 10 0.59 0.54 0.49 0.46 0.43 0.39 0.35 0.33 0.31 0.30 0.29 0.40 0.26 20 0.97 0.88 0.79 0.75 0.70 0.65 0.59 0.55 0.51 0.49 0.46 0.70 0.44 30 1.34 1.21 1.08 1.03 0.97 0.90 0.83 0.77 0.70 0.67 0.64 0.90 0.62 40 1.73 1.58 1.43 1.34 1.25 1.15 1.05 0.98 0.90 0.86 0.82 1.20 0.77 50 2.06 1.90 1.73 1.62 1.50 1.40 1.30 1.20 1.09 1.05 1.00 1.50 0.92 60 2.40 2.22 2.03 1.87 1.71 1.61 1.51 1.40 1.29 1.24 1.18 1.80 1 1.10 70 2.88 2.64 2.40 2.24 2.07 1.93 1.79 1.67 1.54 1.45 1.35 2.00 1.26 80 3.36 3.07 2.78 2.58 2.38 2.24 2.10 1.98 1.86 1.73 1.60 2.10 1.42 90 3.74 3.42 3.10 2.88 2.66 2.50 2.34 2.23 2.11 1.97 1.83 2.50 1.67 Source: NCDENR /DWQStormwater BMP Manual, Table 10 -1 STORMWATER BMP 2 - WET POND (25% TN Removal) Land Use Area (ac) % IA Imp. Area (ac) Roadway & Sidewalk 1.37 100 1.4 Lots(4000sf /lot) 2.63 100 2.6 Pervious Area 4.60 0 0.0 Totals 1 8.60 4.0 Total % Impervious Surface Area = 46.5 % Surface Area of Permanent Pool: Assumed depth = 4.5 feet SA /DA ratio = 1.52 % From Table 1.1 Minimum pond surface area (SA) _ (DA * SA /DA ratio) /100 SA= 0.131 acres 5694 sq.ft. Normal pool elevation = 310.5 feet Surface area provided = 12458 sq. ft. 0.286 Ac 1 -Inch Runoff Volume Calculation Using the runoff volume calculations in the "Simple Method" as described by Schueler (1987) Rv= 0.05 +0.009(1) where, Rv = Runoff coefficient, in./in. I = Percent impervious Rv= 0.47 in. /in. Total runoff volume from 1 -inch precipitation: Runoff volume, S = (Design rainfall) (Rv) (Drainage Area) S = 0.336 acre -ft 14629 cu. ft. Water quality pool elevation= 311.50 feet Storage volume provided = 0.341 acre -ft 14866 cu. ft. BMP 2 DRAWDOWN CALCULATIONS 310.5 = Permanent Pool Elevation and Orifice Invert Elevation (ft) 12458 = Permanent Pool Area (ft) 311.5 = Water Quality Pool Elev. (ft) 16270 = Water Quality Pool Area (ft) 0.6 = Cd, Orifice Coefficient 1.5 = Orifice Diameter (in) 65 = Drawdown Time (hours) 3.5.2.1 Drawdown Time Calculations for a Pond with an Orifice Outlet In the above Figure_ .31 = Area of pond at the beginning of drawdown A, = Area of pond at the end of drawdoun R — Area Area of pond at time_ t during drawdovm An = Area of pond at the orifice outlet elevation T= Time for water level to fall from H1 to H2 A = Resen oir Area Cd = Orifice coefficient of discbarge a = Orifice area g = Acceleration of gravity Hi = Maximum head (t=0) H: = Head when t = T (H: = 0 ) For the specific case where A. = A0 and Hz = 0 T # 1 2 *. * 1 -3 +"' A, 40 Ism 3 ,3 I Cd *A* 2 *g + 0 ! 3. Hi 1 Cd�a* 4L *g 3 3 Project Name: Indian Wells City/State: Cary, NC BMP Sizing Worksheet: BMP #2 - Wet Pond Project #: NCR142011 Date: 7/11/2014 Surface Area to Drainage Area Ratio for Permanent Pool Sizing for 85% Pollutant Removal Efficiency in the Piedmont % Impervious Cover Permanent Pool Depth (feet) 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 10 0.59 0.54 0.49 0.46 0.43 0.39 0.35 0.33 0.31 0.30 0.29 0.40 0.26 20 0.97 0.88 0.79 0.75 0.70 0.65 0.59 0.55 0.51 0.49 0.46 0.70 0.44 30 1.34 1.21 1.08 1.03 0.97 0.90 0.83 0.77 0.70 0.67 0.64 0.90 0.62 40 1.73 1.58 1.43 1.34 1.25 1.15 1.05 0.98 0.90 0.86 0.82 1.20 0.77 50 2.06 1.90 1.73 1.62 1.50 1.40 1.30 1.20 1.09 1.05 1.00 1.50 0.92 60 2.40 2.22 2.03 1.87 1.71 1.61 1.51 1.40 1.29 1.24 1.18 1.80 1.10 70 2.88 2.64 2.40 2.24 2.07 1.93 1.79 1.67 1.54 1.45 1.35 2.00 1.26 80 3.36 3.07 2.78 2.58 2.38 2.24 2.10 1.98 1.86 1.73 1.60 2.10 1.42 90 3.74 3.42 3.10 2.88 2.66 2.50 2.34 2.23 2.11 1.97 1.83 2.50 1.67 Source: NCDENR /DWQStormwater BMP Manual, Table 10 -1 STORMWATER BMP 3 - WET POND (25% TN Removal) Land Use Area (ac) % IA Imp. Area (ac) Roadway & Sidewalk 0.90 100 0.9 Lots (4000sf /lot) 0.38 100 0.4 Pervious Area 1.36 0 0.0 Totals 1 2.64 1.3 Total % Impervious Surface Area = 48.5 % Surface Area of Permanent Pool: Assumed depth = 4.5 feet SA /DA ratio = 1.58 % From Table 1.1 Minimum pond surface area (SA) _ (DA * SA /DA ratio) /100 SA= 0.042 acres 1817 sq. ft. Normal pool elevation = 321.5 feet Surface area provided = 2429 sq. ft. 0.056 Ac 1 -Inch Runoff Volume Calculation Using the runoff volume calculations in the "Simple Method" as described by Schueler (1987) Rv= 0.05 +0.009(1) where, Rv = Runoff coefficient, in./in. I = Percent impervious Rv= 0.49 in. /in. Total runoff volume from 1 -inch precipitation: Runoff volume, S = (Design rainfall) (Rv) (Drainage Area) S = 0.107 acre -ft 4661 cu. ft. Water quality pool elevation= 322.85 feet Storage volume provided = 0.120 acre -ft 5247 cu.ft. BMP 3 DRAWDOWN CALCULATIONS 321.5 = Permanent Pool Elevation and Orifice Invert Elevation (ft) 2429 = Permanent Pool Area (ft) 322.5 = Water Quality Pool Elev. (ft) 4309 = Water Quality Pool Area (ft) 0.6 = Cd, Orifice Coefficient 0.75 = Orifice Diameter (in) 57 = Drawdown Time (hours) 3.5.2.1 Drawdown Time Calculations for a Pond with an Orifice Outlet In the above Figure_ .31 = Area of pond at the beginning of drawdown A, = Area of pond at the end of drawdoun R — Area Area of pond at time_ t during drawdovm An = Area of pond at the orifice outlet elevation T= Time for water level to fall from H1 to H2 A = Resen oir Area Cd = Orifice coefficient of discbarge a = Orifice area g = Acceleration of gravity Hi = Maximum head (t=0) H: = Head when t = T (H: = 0 ) For the specific case where A. = A0 and Hz = 0 T # 1 2 *. * 1 -3 +"' A, 40 Ism 3 ,3 I Cd *A* 2 *g + 0 ! 3. Hi 1 Cd�a* 4L *g 3 3 A 3 -BMP q___` C3-POST BMP #3 DA #3 -POST A 1-BMP 1 -POST BMP #1 DA #1 -POST 2 -POST A DA #2 -POST 2 -BMP BMP #2 Subcat Reach on Link Routing Diagram for Pond Routing Prepared by Bohler Engineering, Printed 7/7/2014 FHyd,.CAD@ 10.00 s/n 07811 © 2013 Hydro CAD Software Solutions LLC Pond Routing Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 2 Area Listing (all nodes) Area C Description (acres) (s u bcatch me nt-n u mbe rs) 5.170 0.90 Lots (1 -POST, 2 -POST) 6.830 0.35 Pervious (1 -POST, 3 -POST) 4.600 0.35 Pervious (2 -POST) 2.890 0.90 Roads & Sidewalk (1 -POST, 2 -POST) 1.370 0.90 Roads & Sidewalk & Lots (3 -POST) 20.860 0.60 TOTAL AREA Pond Routing IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 3 Summary for Subcatchment 1 -POST: DA #1 -POST Runoff = 26.06 cfs @ 0.08 hrs, Volume= 0.186 af, Depth= 0.23" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Area (ac) C Description 1.520 0.90 Roads & Sidewalk 2.540 0.90 Lots 5.560 0.35 Pervious 9.620 0.58 Weighted Average 9.620 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 1 -POST: DA #1 -POST Hydrograph 26.06 cfs - -- 25 j - IDF _Rafleigh =N U_1 =yr DurAtion*5 niin, -; - - -- - , -- - ----- ----- ----- ,rin�ern =4.80 iri Thr - 20- Runoff Area = 9.620 ac j Rupoff Volu e= 18 of o Runoff Depth =0.' T' -r- ----r----T----T---- 10- Tc =5.0 min C =0.58 5- 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) ❑ Runoff Pond Routing IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 4 Summary for Subcatchment 2 -POST: DA #2 -POST Runoff = 24.50 cfs @ 0.08 hrs, Volume= 0.175 af, Depth= 0.24" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Area (ac) C Description 1.370 0.90 Roads & Sidewalk 2.630 0.90 Lots 4.600 0.35 Pervious 8.600 0.61 Weighted Average 8.600 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 2 -POST: DA #2 -POST Hydrograph 24.50 cfs - - -! - - -! - -- -------------------- r - - - -! ------ -Y - - -- IDF- R9leigh -NCISU 1 -yr - -- - - -- Duration'-5 min, - 20 Inten =4.80 in /hr N -! -- !- ------------ - - - - -- Runoff - rea =8.604ac- 15- Rupoff Volume =0.17$ of 3 I I I I I o - - - + -- -- - - - - -I_ Runoff Peptti=o.�4 "- u_ 10. Tc=5.0 min C =0.61 5 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) ❑ Runoff Pond Routing IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 5 Summary for Subcatchment 3 -POST: DA #3 -POST Runoff = 7.89 cfs @ 0.08 hrs, Volume= 0.056 af, Depth= 0.26" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Area (ac) C Description 1.370 0.90 Roads & Sidewalk & Lots 1.270 0.35 Pervious 2.640 0.64 Weighted Average 2.640 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 3 -POST: DA #3 -POST Hydrograph 7.89 cfs ---- +--------- +----------- - - - - -- - - -- - tbi IDF- Raleigh -NCSU 1 -yr - - - - - - - ----- --I -- - - -I- - -- 7 Duration =5 rein, ------------------------------ ---------- Anten =4.80- i -r /hr- 6 Runoff Alrea =2.640 ac 5 Runoff Volume "0.056 of 3 - - -- ---- r----r----+----- ---------- --- R4noff l,Depth= 0:26'- 4 0 . IL _Tc =5.0 min_ 3= C =0.64 ----+----+ ---- r ---- + ---- +----+----+ ---- + ----- ----------i---- 2 + - - - - + - - - - + - - - - + - --- + - - - - + - - - - + - - - - + ----- - - - -I- - - - -I- - - - 1 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Q Runoff Pond Routing IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 6 Summary for Pond 1 -BMP: BMP #1 Inflow Area = 9.620 ac, 0.00% Impervious, Inflow Depth = 0.23" for 1 -yr event Inflow = 26.06 cfs @ 0.08 hrs, Volume= 0.186 of Outflow = 0.96 cfs @ 0.17 hrs, Volume= 0.056 af, Atten= 96 %, Lag= 5.0 min Primary = 0.96 cfs @ 0.17 hrs, Volume= 0.056 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 309.54' @ 0.17 hrs Surf.Area= 8,450 sf Storage= 8,012 cf Plug -Flow detention time= 596.3 min calculated for 0.056 of (30% of inflow) Center -of -Mass det. time= 594.2 min ( 599.3 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 308.50' 44,258 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 308.50 6,032 0 0 309.00 7,838 3,468 3,468 310.00 8,969 8,404 11,871 310.50 9,555 4,631 16,502 311.00 10,156 4,928 21,430 312.00 11,400 10,778 32,208 313.00 12,700 12,050 44,258 Device Routing Invert Outlet Devices #1 Primary 304.00' 15.0" Round Culvert L= 48.4' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 304.00'/ 303.00' S=0.0207'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 309.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 308.50' 1.0" Vert. Orifice /Grate C= 0.600 #4 Secondary 312.00' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =0.90 cfs @ 0.17 hrs HW= 309.54' (Free Discharge) t = Culvert (Passes 0.90 cfs of 14.84 cfs potential flow) 2 =Weir Opening (Weir Controls 0.87 cfs @ 0.66 fps) 3 Orifice /Grate (Orifice Controls 0.03 cfs @ 4.81 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 308.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 7 '• • •, Hydrograph • 1 • cfs Peak Etev=309.54 Storage=-9,012 cf LL 10 offI �I it 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 313 G&VA a� T 0 311 0 a 310 w Pond 1 -BMP: BMP #1 Stage- Area - Storage Surracp1w- 0 2,000 4,000 E Inflow [ Outflow ❑ Primary ❑ Secondary etted Area (sq -ft) 6,000 8,000 10,000 12,000 0 10,000 20,000 30,000 40,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 8 Summary for Pond 2 -BMP: BMP #2 Inflow Area = 8.600 ac, 0.00% Impervious, Inflow Depth = 0.24" for 1 -yr event Inflow = 24.50 cfs @ 0.08 hrs, Volume= 0.175 of Outflow = 0.04 cfs @ 0.17 hrs, Volume= 0.071 af, Atten= 100 %, Lag= 5.2 min Primary = 0.04 cfs @ 0.17 hrs, Volume= 0.071 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 311.04' @ 0.17 hrs Surf.Area= 15,439 sf Storage= 7,591 cf Plug -Flow detention time= 683.5 min calculated for 0.071 of (40% of inflow) Center -of -Mass det. time= 681.5 min ( 686.5 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 310.50' 41,357 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 310.50 12,459 0 0 311.00 15,367 6,957 6,957 311.50 16,270 7,909 14,866 312.00 17,188 8,365 23,230 313.00 19,065 18,127 41,357 Device Routing Invert Outlet Devices #1 Primary 306.00' 15.0" Round Culvert L= 43.0' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 306.00'/ 305.00' S=0.0233'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 311.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 310.50' 1.5" Vert. Orifice /Grate C= 0.600 #4 Secondary 312.25' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =0.04 cfs @ 0.17 hrs HW= 311.04' (Free Discharge) t = Culvert (Passes 0.04 cfs of 14.52 cfs potential flow) 2 =Weir Opening ( Controls 0.00 cfs) 3 Orifice /Grate (Orifice Controls 0.04 cfs @ 3.33 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 310.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 9 Pond 2 -BMP: BMP #2 Hydrograph 24.50 cfs Inflow Area= 8.600'ac 25 -- L - - - -' i --- - ' - - -- ----- Peak EI'p-v =30LI.04' Storage= 7�1,591�1 cf 20 -- ------- -I - - -- -------- - - - - +- - - - - -' - - -- - -- I I I I I I I I I I I 15 - - - -- - - -- - - -- 3 I I I I I I I I I I I 10 -L----'--------1------------1--------'L---i---J--- 0.00 cfs 31 a� T 31 C 0 a� w 31 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Pond 2 -BMP: BMP #2 Stage- Area - Storage Q „mace /Horizor +' sd Area (sq -ft) 0 5,000 10,000 15,000 E Inflow [ Outflow ❑ Primary ❑ Secondary 0 10,000 20,000 30,000 40,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 10 Summary for Pond 3 -BMP: BMP #3 Inflow Area = 2.640 ac, 0.00% Impervious, Inflow Depth = 0.26" for 1 -yr event Inflow = 7.89 cfs @ 0.08 hrs, Volume= 0.056 of Outflow = 0.01 cfs @ 0.17 hrs, Volume= 0.019 af, Atten= 100 %, Lag= 5.2 min Primary = 0.01 cfs @ 0.17 hrs, Volume= 0.019 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 322.20' @ 0.17 hrs Surf.Area= 4,122 sf Storage= 2,445 cf Plug -Flow detention time= 698.4 min calculated for 0.019 of (34% of inflow) Center -of -Mass det. time= 696.5 min ( 701.5 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 321.50' 11,048 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 321.50 2,429 0 0 322.00 3,980 1,602 1,602 322.85 4,596 3,645 5,247 323.00 4,709 698 5,945 324.00 5,498 5,104 11,048 Device Routing Invert Outlet Devices #1 Primary 317.00' 15.0" Round Culvert L= 32.2' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 317.00'/ 316.50' S=0.0155'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 322.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 321.50' 0.7" Vert. Orifice /Grate C= 0.600 #4 Secondary 323.00' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =0.01 cfs @ 0.17 hrs HW= 322.20' (Free Discharge) t = Culvert (Passes 0.01 cfs of 14.87 cfs potential flow) 2 =Weir Opening ( Controls 0.00 cfs) 3 Orifice /Grate (Orifice Controls 0.01 cfs @ 3.93 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 321.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 11 32 a� T 32 C 0 a� w 32 ir r' • --Storage--2,445 0 24 Time (hours) Pond 3 -BMP: BMP #3 Stage- Area - Storage Surface /H ^ri-7nn +n1AP sd Area (sq -ft) 0 1,000 2,000 3,000 4,000 5,000 E Inflow Outflow ❑ Primary ❑ Secondary 0 5,000 10,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 12 Summary for Subcatchment 1 -POST: DA #1 -POST Runoff = 30.62 cfs @ 0.08 hrs, Volume= 0.218 af, Depth= 0.27" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Area (ac) C Description 1.520 0.90 Roads & Sidewalk 2.540 0.90 Lots 5.560 0.35 Pervious 9.620 0.58 Weighted Average 9.620 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 1 -POST: DA #1 -POST Hydrograph 30.62 cfs 30- OF- Raleigh -NCISU 2 -yr - 1---- 1--- -i - - -- Duration'-5 min, - 25 Inten =5.64 in /hr -- - - - - -- - - -- AL noff Area=9-620r ac- ,� 20. Rupoff !Volu'lne =0.21$ of o 15 - - -- - - -- Runoff Oeptfi =0.�T' - - -- -- --------- - - - - -- - -- Tc-=5.0 -min- 10 C =0.58 5- 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) ❑ Runoff Pond Routing IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 13 Summary for Subcatchment 2 -POST: DA #2 -POST Runoff = 28.79 cfs @ 0.08 hrs, Volume= 0.205 af, Depth= 0.29" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Area (ac) C Description 1.370 0.90 Roads & Sidewalk 2.630 0.90 Lots 4.600 0.35 Pervious 8.600 0.61 Weighted Average 8.600 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 2 -POST: DA #2 -POST Hydrograph 28.79 cfs - -- -- - - - - -' - -- - - -- - - -- - - -- IDF- Raleigh -NCISU 2 -yr 25 -T - - -- - - -- - -- Durations =5 niin,- Inten =5.64 in /hr N 20- Runoff Area = 8.600 ac -!, -- -!, -- - - - -- -- I ----- 1-Rupoff VoIuMe =0.20 af- 0 15 Runoff Oeptfi =0.�9„ - - - -- -- - - - -- Tc=5.0 -min- 10- C =0.61 5 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) ❑ Runoff Pond Routing IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 14 Summary for Subcatchment 3 -POST: DA #3 -POST Runoff = 9.27 cfs @ 0.08 hrs, Volume= 0.066 af, Depth= 0.30" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Area (ac) C Description 1.370 0.90 Roads & Sidewalk & Lots 1.270 0.35 Pervious 2.640 0.64 Weighted Average 2.640 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 3 -POST: DA #3 -POST Hydrograph 9.27 cfs - - -- i - - -- I ---- �----- �----- �----- �---- -� - - -- i - - -- i - - -- i - - -- g- OF- Raleigh -NCISU 2 -yr I I - - -- - - -- - - -- - - -- ------------------ - -rDur Lion =5 -Min-- 8 - - -- - - -- - - -- - - - -- - - - - - I- , - 7. -- - - -- ------------------- 1nfen 664- irthr- ,� I I I I I gI unof -ATI ea= I f40ac- 6. I I - --- -; - - -- ------------ Rupoff VoFuMe =�.06$ -af- 0 5 --- - - - - -! - - -! ----- 'u�i�off Dept =a.0 "- FL 4. I I I I I I I I I I I - - - -, - - -- - - - - -------------- - I - - - - - - - Tc=5.0 -min- 3 - -- - - -- - - -- - - -- --------------- - - - - -' ---------1C=O.-64- 2 0- . 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Q Runoff Pond Routing IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 15 Summary for Pond 1 -BMP: BMP #1 Inflow Area = 9.620 ac, 0.00% Impervious, Inflow Depth = 0.27" for 2 -yr event Inflow = 30.62 cfs @ 0.08 hrs, Volume= 0.218 of Outflow = 5.84 cfs @ 0.15 hrs, Volume= 0.088 af, Atten= 81 %, Lag= 4.2 min Primary = 5.84 cfs @ 0.15 hrs, Volume= 0.088 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 309.64' @ 0.15 hrs Surf.Area= 8,564 sf Storage= 8,861 cf Plug -Flow detention time= 381.0 min calculated for 0.088 of (40% of inflow) Center -of -Mass det. time= 379.4 min ( 384.4 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 308.50' 44,258 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 308.50 6,032 0 0 309.00 7,838 3,468 3,468 310.00 8,969 8,404 11,871 310.50 9,555 4,631 16,502 311.00 10,156 4,928 21,430 312.00 11,400 10,778 32,208 313.00 12,700 12,050 44,258 Device Routing Invert Outlet Devices #1 Primary 304.00' 15.0" Round Culvert L= 48.4' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 304.00'/ 303.00' S=0.0207'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 309.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 308.50' 1.0" Vert. Orifice /Grate C= 0.600 #4 Secondary 312.00' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =5.71 cfs @ 0.15 hrs HW= 309.64' (Free Discharge) t = Culvert (Passes 5.71 cfs of 14.98 cfs potential flow) 2 =Weir Opening (Weir Controls 5.68 cfs @ 1.23 fps) 3 Orifice /Grate (Orifice Controls 0.03 cfs @ 5.05 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 308.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 16 '• • •, Hydrograph 30.62 30- 1 .• • :. 5.84 cfs I 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 313 G&VA a� T 0 311 0 a 310 w Pond 1 -BMP: BMP #1 Stage- Area - Storage Surracp1w- 0 2,000 4,000 Inflow Outflow ❑ Primary ❑ Secondary etted Area (sq -ft) 6,000 8,000 10,000 12,000 0 10,000 20,000 30,000 40,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 17 Summary for Pond 2 -BMP: BMP #2 Inflow Area = 8.600 ac, 0.00% Impervious, Inflow Depth = 0.29" for 2 -yr event Inflow = 28.79 cfs @ 0.08 hrs, Volume= 0.205 of Outflow = 0.04 cfs @ 0.17 hrs, Volume= 0.078 af, Atten= 100 %, Lag= 5.2 min Primary = 0.04 cfs @ 0.17 hrs, Volume= 0.078 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 311.12' @ 0.17 hrs Surf.Area= 15,591 sf Storage= 8,920 cf Plug -Flow detention time= 688.8 min calculated for 0.078 of (38% of inflow) Center -of -Mass det. time= 686.7 min ( 691.7 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 310.50' 41,357 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 310.50 12,459 0 0 311.00 15,367 6,957 6,957 311.50 16,270 7,909 14,866 312.00 17,188 8,365 23,230 313.00 19,065 18,127 41,357 Device Routing Invert Outlet Devices #1 Primary 306.00' 15.0" Round Culvert L= 43.0' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 306.00'/ 305.00' S=0.0233'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 311.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 310.50' 1.5" Vert. Orifice /Grate C= 0.600 #4 Secondary 312.25' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =0.04 cfs @ 0.17 hrs HW= 311.12' (Free Discharge) t = Culvert (Passes 0.04 cfs of 14.65 cfs potential flow) 2 =Weir Opening ( Controls 0.00 cfs) 3 Orifice /Grate (Orifice Controls 0.04 cfs @ 3.61 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 310.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 18 inflow .11 Peak E1ev=3M'2' •.• -:•, cf ff@Ylnl ME zz I �I it 31 a� T 31 C 0 a� w 31 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Pond 2 -BMP: BMP #2 Stage- Area - Storage Q „mace /Horizor +' sd Area (sq -ft) 0 5,000 10,000 15,000 E Inflow [ Outflow ❑ Primary ❑ Secondary 0 10,000 20,000 30,000 40,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 19 Summary for Pond 3 -BMP: BMP #3 Inflow Area = 2.640 ac, 0.00% Impervious, Inflow Depth = 0.30" for 2 -yr event Inflow = 9.27 cfs @ 0.08 hrs, Volume= 0.066 of Outflow = 0.01 cfs @ 0.17 hrs, Volume= 0.021 af, Atten= 100 %, Lag= 5.2 min Primary = 0.01 cfs @ 0.17 hrs, Volume= 0.021 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 322.30' @ 0.17 hrs Surf.Area= 4,195 sf Storage= 2,874 cf Plug -Flow detention time= 700.3 min calculated for 0.021 of (31 % of inflow) Center -of -Mass det. time= 698.0 min ( 703.0 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 321.50' 11,048 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 321.50 2,429 0 0 322.00 3,980 1,602 1,602 322.85 4,596 3,645 5,247 323.00 4,709 698 5,945 324.00 5,498 5,104 11,048 Device Routing Invert Outlet Devices #1 Primary 317.00' 15.0" Round Culvert L= 32.2' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 317.00'/ 316.50' S=0.0155'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 322.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 321.50' 0.7" Vert. Orifice /Grate C= 0.600 #4 Secondary 323.00' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =0.01 cfs @ 0.17 hrs HW= 322.30' (Free Discharge) t = Culvert (Passes 0.01 cfs of 15.03 cfs potential flow) 2 =Weir Opening ( Controls 0.00 cfs) 3 Orifice /Grate (Orifice Controls 0.01 cfs @ 4.22 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 321.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 20 10 rA 6 3 5 0 a: 4 Pond 3 -BMP: BMP #3 Hydrograph 9.27 CfS - -- III - -- - -- - - -- III - -- - -- - - -- III--- -11 - -- - - - - -- - -- - -- --------- - Inflow Area =2.640'ac peak �IIev =322 M - - - -Storage =2,$74 cf I I I I I I I I I I I I I I I I I I I I I I ------- -I - - -- t ------- -I - - -- t --- -I - - -- r - -- - - -- 1 - -- I I I I I I I I I I I I I I I I I I I I I I I I I T---- - - - -I_ - -- Y---- - - - -I_ - -- Y--- -I - - -- Y - -- T - -- Y - -- I I I I I I I I I I I -.. I I I I I I I I I I 0.00 CfS 32 a� T 32 C 0 a� w 32 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Pond 3 -BMP: BMP #3 Stage- Area - Storage Surface /H ^ri-7nn +n1AP sd Area (sq -ft) 0 1,000 2,000 3,000 4,000 5,000 E Inflow Outflow ❑ Primary ❑ Secondary 0 5,000 10,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 21 Summary for Subcatchment 1 -POST: DA #1 -POST Runoff = 35.18 cfs @ 0.08 hrs, Volume= 0.251 af, Depth= 0.31" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Area (ac) C Description 1.520 0.90 Roads & Sidewalk 2.540 0.90 Lots 5.560 0.35 Pervious 9.620 0.58 Weighted Average 9.620 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 1 -POST: DA #1 -POST Hydrograph 35.18 cfs 7 - - - - T --- - 35- OF- Raleigh -NCISU 5 -yr - -- - - -- - - -- - - -- --------------------,DurAtion=5Min;- 30 - ----- - - - - - - - - - - lnfgn =6A8_1h1hr_ N 25- Runoff Area = 9.620 ac ---- -; - - -- - - - -- -Ru' off 'Vofu + -e_j. - - = 25 af- 20- o--- - - - - -- - - -- Runoff Oept� =0 1 "- Tc =5.0 min ---t----I----I----7---------------r----r----r---------7---- 10- C =0.58 5" 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) ❑ Runoff Pond Routing IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 22 Summary for Subcatchment 2 -POST: DA #2 -POST Runoff = 33.08 cfs @ 0.08 hrs, Volume= 0.236 af, Depth= 0.33" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Area (ac) C Description 1.370 0.90 Roads & Sidewalk 2.630 0.90 Lots 4.600 0.35 Pervious 8.600 0.61 Weighted Average 8.600 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 2 -POST: DA #2 -POST Hydrograph 33.08 cfs - - - -- -- -'I - - - - -- - - - - T - - - - - - - - T - - -- - IDF- R9I_eiah- NCISU_5 -yr_ 30 DurAtion*5 niin, - - -- ; -- - - - -- -1nt n =6 46- ifithr- 25- Runoff Area = 8.600' ac � - r----r----r----r-----i----- i---- -----r----r----r- ---r- --- 20- Runoff Volu'Fne =0.23$ of -- !--- -7 - - -- - - -- ---------------- -- o Runoff FE 15 Tc =5.0 rmin 10 C =0.61 5 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) ❑ Runoff Pond Routing IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 23 Summary for Subcatchment 3 -POST: DA #3 -POST Runoff = 10.65 cfs @ 0.08 hrs, Volume= 0.076 af, Depth= 0.35" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Area (ac) C Description 1.370 0.90 Roads & Sidewalk & Lots 1.270 0.35 Pervious 2.640 0.64 Weighted Average 2.640 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 3 -POST: DA #3 -POST Hydrograph 10.65 cfs - - -!, - - - -!, - - - - -' - - - - -!, -! - - -- --- - - - - -- 1 - - -- 1 ---- - ----- ---- - - -- FDA -Raleigh -NCSU 5=yr- 10 - - - - - -- - - -- -- Duration'=5-rrhin;- 9 --- - - - - -- - - -- ------------------------- ,Anten=6.48- 1hthr- 8- 1---- 1--- -1 - - -- - - - -- ftunoff- Area = -2.644 ac- ,� 7• -- - - -- - - -- 3 Rup '- offiVoruLF e= 07 -a- f6 - 0 5 - -- Runoff- Oept� 0.�F- - - -- - - -- - - -- - - -- - - - -- ----------- - - - -4- - -+ 4• Tc =5.0 - - - - min - - - - + - - - - 1 - - - - 3 C =0.64 --- - + - - -- - - -- --------------- 2--------- -' - - -- - - -- --- - + - - -- - - - -- - - -- -------------------- --------------------+---- 0. . 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Q Runoff Pond Routing IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 24 Summary for Pond 1 -BMP: BMP #1 Inflow Area = 9.620 ac, 0.00% Impervious, Inflow Depth = 0.31" for 5 -yr event Inflow = 35.18 cfs @ 0.08 hrs, Volume= 0.251 of Outflow = 10.79 cfs @ 0.14 hrs, Volume= 0.121 af, Atten= 69 %, Lag= 3.6 min Primary = 10.79 cfs @ 0.14 hrs, Volume= 0.121 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 309.72' @ 0.14 hrs Surf.Area= 8,647 sf Storage= 9,477 cf Plug -Flow detention time= 280.0 min calculated for 0.121 of (48% of inflow) Center -of -Mass det. time= 278.7 min ( 283.7 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 308.50' 44,258 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 308.50 6,032 0 0 309.00 7,838 3,468 3,468 310.00 8,969 8,404 11,871 310.50 9,555 4,631 16,502 311.00 10,156 4,928 21,430 312.00 11,400 10,778 32,208 313.00 12,700 12,050 44,258 Device Routing Invert Outlet Devices #1 Primary 304.00' 15.0" Round Culvert L= 48.4' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 304.00'/ 303.00' S=0.0207'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 309.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 308.50' 1.0" Vert. Orifice /Grate C= 0.600 #4 Secondary 312.00' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =10.64 cfs @ 0.14 hrs HW= 309.71' (Free Discharge) t = Culvert (Passes 10.64 cfs of 15.08 cfs potential flow) 2 =Weir Opening (Weir Controls 10.61 cfs @ 1.51 fps) 3 Orifice /Grate (Orifice Controls 0.03 cfs @ 5.21 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 308.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 25 • ,. I• .•e= • 00 I 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 313 G&VA a� T 0 311 0 a 310 W Pond 1 -BMP: BMP #1 Stage- Area - Storage Surracp1w- 0 2,000 4,000 E Inflow Outflow ❑ Primary ❑ Secondary etted Area (sq -ft) 6,000 8,000 10,000 12,000 0 10,000 20,000 30,000 40,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 26 Summary for Pond 2 -BMP: BMP #2 Inflow Area = 8.600 ac, 0.00% Impervious, Inflow Depth = 0.33" for 5 -yr event Inflow = 33.08 cfs @ 0.08 hrs, Volume= 0.236 of Outflow = 0.05 cfs @ 0.17 hrs, Volume= 0.085 af, Atten= 100 %, Lag= 5.2 min Primary = 0.05 cfs @ 0.17 hrs, Volume= 0.085 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 311.21' @ 0.17 hrs Surf.Area= 15,743 sf Storage= 10,250 cf Plug -Flow detention time= 692.4 min calculated for 0.085 of (36% of inflow) Center -of -Mass det. time= 690.5 min ( 695.5 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 310.50' 41,357 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 310.50 12,459 0 0 311.00 15,367 6,957 6,957 311.50 16,270 7,909 14,866 312.00 17,188 8,365 23,230 313.00 19,065 18,127 41,357 Device Routing Invert Outlet Devices #1 Primary 306.00' 15.0" Round Culvert L= 43.0' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 306.00'/ 305.00' S=0.0233'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 311.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 310.50' 1.5" Vert. Orifice /Grate C= 0.600 #4 Secondary 312.25' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =0.05 cfs @ 0.17 hrs HW= 311.21' (Free Discharge) t = Culvert (Passes 0.05 cfs of 14.78 cfs potential flow) 2 =Weir Opening ( Controls 0.00 cfs) 3 Orifice /Grate (Orifice Controls 0.05 cfs @ 3.87 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 310.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 27 31 a� T 31 C 0 a� w 31 •• • •, �i I : .00 • .•- , zz I �I it 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Pond 2 -BMP: BMP #2 Stage- Area - Storage Q „mace /Horizor +' sd Area (sq -ft) 0 5,000 10,000 15,000 E Inflow Outflow ❑ Primary ❑ Secondary 0 10,000 20,000 30,000 40,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 28 Summary for Pond 3 -BMP: BMP #3 Inflow Area = 2.640 ac, 0.00% Impervious, Inflow Depth = 0.35" for 5 -yr event Inflow = 10.65 cfs @ 0.08 hrs, Volume= 0.076 of Outflow = 0.01 cfs @ 0.17 hrs, Volume= 0.022 af, Atten= 100 %, Lag= 5.2 min Primary = 0.01 cfs @ 0.17 hrs, Volume= 0.022 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 322.40' @ 0.17 hrs Surf.Area= 4,267 sf Storage= 3,302 cf Plug -Flow detention time= 701.3 min calculated for 0.022 of (29% of inflow) Center -of -Mass det. time= 699.2 min ( 704.2 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 321.50' 11,048 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 321.50 2,429 0 0 322.00 3,980 1,602 1,602 322.85 4,596 3,645 5,247 323.00 4,709 698 5,945 324.00 5,498 5,104 11,048 Device Routing Invert Outlet Devices #1 Primary 317.00' 15.0" Round Culvert L= 32.2' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 317.00'/ 316.50' S=0.0155'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 322.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 321.50' 0.7" Vert. Orifice /Grate C= 0.600 #4 Secondary 323.00' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =0.01 cfs @ 0.17 hrs HW= 322.40' (Free Discharge) t = Culvert (Passes 0.01 cfs of 15.20 cfs potential flow) 2 =Weir Opening ( Controls 0.00 cfs) 3 Orifice /Grate (Orifice Controls 0.01 cfs @ 4.48 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 321.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 29 10.65 10 3 6 0 0.00 cfs 32 a� T 32 C 0 a� w 32 Pond 3 -BMP: BMP #3 Hydrograph - -_T - -' T - - - T - - - - T- InflowAre'a=2.640 ac Peak Ellev= 322.40' -------- -- - - --------- -- - - - - -- -Storage =3,302 cf - -- ------------ ------------ -- - -- _T - T T - -- T- - - T - -- �I I I I I I I I I I I 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Pond 3 -BMP: BMP #3 Stage- Area - Storage Surface /H ^ri-7nn +n1AP sd Area (sq -ft) 0 1,000 2,000 3,000 4,000 5,000 Inflow Outflow ❑ Primary ❑ Secondary 0 5,000 10,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 30 Summary for Subcatchment 1 -POST: DA #1 -POST Runoff = 39.09 cfs @ 0.08 hrs, Volume= 0.279 af, Depth= 0.35" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Area (ac) C Description 1.520 0.90 Roads & Sidewalk 2.540 0.90 Lots 5.560 0.35 Pervious 9.620 0.58 Weighted Average 9.620 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 1 -POST: DA #1 -POST Hydrograph 39.09 cfs - - -! - - -! - -- -----'-----'----------' Y -- t----!---------Y---- IDF- RaloighTNCSU 10- r t- - - ,- - - - -r - r-------- -7 - 35- DurAtion*5 niin, -;----;----;----,----- �----- �----- �----- �rinfern =7.20 iriThr- 30- - - - flu n off - Area =-9 $20 ac - 25_ - - T - - -- - - -- - - -- --- - -I ff -R� o oIu - 27 af_ 0 20' Runoff Depth =0.$5„ 15- Tc =5.0 min - ---- rt--- -rt - - -- -------------------- 't---- t - - - -- C =0.58- 10 - - - - + - - - - t - - - - t - - - - t ----- -------------- t - - - - 5 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) ❑ Runoff Pond Routing IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 31 Summary for Subcatchment 2 -POST: DA #2 -POST Runoff = 36.75 cfs @ 0.08 hrs, Volume= 0.262 af, Depth= 0.37" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Area (ac) C Description 1.370 0.90 Roads & Sidewalk 2.630 0.90 Lots 4.600 0.35 Pervious 8.600 0.61 Weighted Average 8.600 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 2 -POST: DA #2 -POST Hydrograph 36.75 cfs - -- i - - -- i -- , -- -� -- - �----- �---- -� - - -- i - - -- i - - -- i - - -- - -- - - -- ----------- - - - -- -- IDF- Ra16ig- h'NCStr 40--r- 35- - - - - ' DurAtionL=5 rhin,- 30= Inten =7.20 ih /hr 25- I I I I I I Runoff Area =8.600 ac -- - - -- 7 - - - - - -- -- Rupoff -Vofu e= �.26� -af- 3 20• o - - - -- --- - + - - -- - - - -- - - - -I_ Runoff_Oeptti=0V"- 15-1 I I I I I I I Tc =5.0 min 5 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) ❑ Runoff Pond Routing IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 32 Summary for Subcatchment 3 -POST: DA #3 -POST Runoff = 11.84 cfs @ 0.08 hrs, Volume= 0.084 af, Depth= 0.38" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Area (ac) C Description 1.370 0.90 Roads & Sidewalk & Lots 1.270 0.35 Pervious 2.640 0.64 Weighted Average 2.640 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 3 -POST: DA #3 -POST Hydrograph 11.84 cfs - -- - - -- - - -- - - - -- - -- -- ------ - + - - -- T--- -7 - - -- - - -- ------ ]DF,RaleighTNCSU tO -yr- DurAtion 5-rhin;- 10= - - -- -T - - - - --- - ------ 1nten =7.20- Ifthr9- --- - T - - -- - - -- F un6 Area =2.640 -a-c- 42 8" -- - -! - -- ! - -- !------------------------ - - - - -- - - -- - - -- - - -- 7 Runoff Volume =0.084 -af- - - - -- - - -- ---------------- 0 6' ----- - - - -!, - - - -!, - - - -- -Runoff Oept� ="" FL5- --- - - - - -- - - -- ------------------- - - - - -- - -- Tc- =&O -min- 4 - - -- - - -- ------------------- -'r - -- - - -- C =0.64- 3- 2 - ----i----1---- J-------------------- L----L----i----i---- 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Q Runoff Pond Routing IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 33 Summary for Pond 1 -BMP: BMP #1 Inflow Area = 9.620 ac, 0.00% Impervious, Inflow Depth = 0.35" for 10 -yr event Inflow = 39.09 cfs @ 0.08 hrs, Volume= 0.279 of Outflow = 14.56 cfs @ 0.14 hrs, Volume= 0.149 af, Atten= 63 %, Lag= 3.2 min Primary = 14.56 cfs @ 0.14 hrs, Volume= 0.149 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 309.77' @ 0.14 hrs Surf.Area= 8,708 sf Storage= 9,932 cf Plug -Flow detention time= 228.8 min calculated for 0.149 of (53% of inflow) Center -of -Mass det. time= 227.3 min ( 232.3 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 308.50' 44,258 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 308.50 6,032 0 0 309.00 7,838 3,468 3,468 310.00 8,969 8,404 11,871 310.50 9,555 4,631 16,502 311.00 10,156 4,928 21,430 312.00 11,400 10,778 32,208 313.00 12,700 12,050 44,258 Device Routing Invert Outlet Devices #1 Primary 304.00' 15.0" Round Culvert L= 48.4' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 304.00'/ 303.00' S=0.0207'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 309.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 308.50' 1.0" Vert. Orifice /Grate C= 0.600 #4 Secondary 312.00' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =14.90 cfs @ 0.14 hrs HW= 309.77' (Free Discharge) t = Culvert (Passes 14.90 cfs of 15.16 cfs potential flow) 2 =Weir Opening (Weir Controls 14.87 cfs @ 1.69 fps) 3 Orifice /Grate (Orifice Controls 0.03 cfs @ 5.33 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 308.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 34 Pond 1 -BMP: BMP #1 Hydrograph 39.09 cfs inflow Area= 9.620'ac 40- 35 30 � n r E56 cf 0.00 cfs -- Peak Etev= 309.77' -- - - - T Storage =-9,932 cf - - -_T T T - -- - -- - -- ------ - - - - -- -- - - - - - - - - - - ----- - - - L - - - - - - - � - -- - -- T------- -I - - -- T- - - - --- -I - - -- T--- -I - - -- r - - - T- - -, - -- - -- L------- -� - - -- L------- -� - - -- L - - - - L - - - 1 - -- L - -- 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 313 G&VA a� T 0 311 0 a 310 w Pond 1 -BMP: BMP #1 Stage- Area - Storage E Inflow [ Outflow ❑ Primary ❑ Secondary Surracp1w- etted Area (sq -ft) 0 2,000 4,000 6,000 8,000 10,000 12,000 0 10,000 20,000 30,000 40,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 35 Summary for Pond 2 -BMP: BMP #2 Inflow Area = 8.600 ac, 0.00% Impervious, Inflow Depth = 0.37" for 10 -yr event Inflow = 36.75 cfs @ 0.08 hrs, Volume= 0.262 of Outflow = 0.05 cfs @ 0.17 hrs, Volume= 0.090 af, Atten= 100 %, Lag= 5.2 min Primary = 0.05 cfs @ 0.17 hrs, Volume= 0.090 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 311.28' @ 0.17 hrs Surf.Area= 15,873 sf Storage= 11,389 cf Plug -Flow detention time= 694.3 min calculated for 0.090 of (34% of inflow) Center -of -Mass det. time= 692.1 min ( 697.1 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 310.50' 41,357 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 310.50 12,459 0 0 311.00 15,367 6,957 6,957 311.50 16,270 7,909 14,866 312.00 17,188 8,365 23,230 313.00 19,065 18,127 41,357 Device Routing Invert Outlet Devices #1 Primary 306.00' 15.0" Round Culvert L= 43.0' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 306.00'/ 305.00' S=0.0233'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 311.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 310.50' 1.5" Vert. Orifice /Grate C= 0.600 #4 Secondary 312.25' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =0.05 cfs @ 0.17 hrs HW= 311.28' (Free Discharge) t = Culvert (Passes 0.05 cfs of 14.88 cfs potential flow) 2 =Weir Opening ( Controls 0.00 cfs) 3 Orifice /Grate (Orifice Controls 0.05 cfs @ 4.08 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 310.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 36 31 a� T 31 C 0 a� w 31 • Inflow ` : . 1 i • .•- :• cf zz I it 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Pond 2 -BMP: BMP #2 Stage- Area - Storage Q „mace /Horizor +' sd Area (sq -ft) 0 5,000 10,000 15,000 E Inflow [ Outflow ❑ Primary ❑ Secondary 0 10,000 20,000 30,000 40,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 37 Summary for Pond 3 -BMP: BMP #3 Inflow Area = 2.640 ac, 0.00% Impervious, Inflow Depth = 0.38" for 10 -yr event Inflow = 11.84 cfs @ 0.08 hrs, Volume= 0.084 of Outflow = 0.01 cfs @ 0.17 hrs, Volume= 0.023 af, Atten= 100 %, Lag= 5.2 min Primary = 0.01 cfs @ 0.17 hrs, Volume= 0.023 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 322.48' @ 0.17 hrs Surf.Area= 4,329 sf Storage= 3,669 cf Plug -Flow detention time= 702.5 min calculated for 0.023 of (28% of inflow) Center -of -Mass det. time= 700.0 min ( 705.0 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 321.50' 11,048 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 321.50 2,429 0 0 322.00 3,980 1,602 1,602 322.85 4,596 3,645 5,247 323.00 4,709 698 5,945 324.00 5,498 5,104 11,048 Device Routing Invert Outlet Devices #1 Primary 317.00' 15.0" Round Culvert L= 32.2' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 317.00'/ 316.50' S=0.0155'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 322.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 321.50' 0.7" Vert. Orifice /Grate C= 0.600 #4 Secondary 323.00' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =0.01 cfs @ 0.17 hrs HW= 322.48' (Free Discharge) t = Culvert (Passes 0.01 cfs of 15.34 cfs potential flow) 2 =Weir Opening ( Controls 0.00 cfs) 3 Orifice /Grate (Orifice Controls 0.01 cfs @ 4.70 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 321.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 38 32 a� T 32 C 0 a� w 32 i� i . -0 • .•- ..• cf zz �I 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Pond 3 -BMP: BMP #3 Stage- Area - Storage Surface /H ^ri-7nn +n1AP sd Area (sq -ft) 0 1,000 2,000 3,000 4,000 5,000 E Inflow Outflow ❑ Primary ❑ Secondary 0 5,000 10,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 39 Summary for Subcatchment 1 -POST: DA #1 -POST Runoff = 48.86 cfs @ 0.08 hrs, Volume= 0.348 af, Depth= 0.43" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Area (ac) C Description 1.520 0.90 Roads & Sidewalk 2.540 0.90 Lots 5.560 0.35 Pervious 9.620 0.58 Weighted Average 9.620 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 1 -POST: DA #1 -POST Hydrograph 48.86 cfs - - -! - - -! - -- -----'-----'----------'r----!---------Y---- - - -- - - -- ----- - - - - -- 1DF- RaI'eigh�NOSU 100 -yr- . --- - + - - -- 45= Duration =5 ruin, ----1----1----1----J-----1---------------L- 40= Inten =6.00 in /hr .. 35 Runoff Area =9.620 ac ,� - - - -- - - -- --- - -I - -- Runoff Volume=�0.- 348-af- c, 30. - --- T--- -I - - - - - - -- ------ - - - -I- Runoff Depth --0 43 -- 25' —- - -- - - -- --- - + - - -- - - - -- 0 - - - - -- Tc=-5.0 -rntn- u_ 20. ----1----1----1----J-----1---------------L----L----1-C-=d-58- 15 10 5 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) ❑ Runoff Pond Routing IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 40 Summary for Subcatchment 2 -POST: DA #2 -POST Runoff = 45.94 cfs @ 0.08 hrs, Volume= 0.327 af, Depth= 0.46" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Area (ac) C Description 1.370 0.90 Roads & Sidewalk 2.630 0.90 Lots 4.600 0.35 Pervious 8.600 0.61 Weighted Average 8.600 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 2 -POST: DA #2 -POST Hydrograph 45.94 cfs - -- i - - -- i - - - -, -- -� -- - �----- �---- -� - - -- i - - -- i - - -- i - - -- 45- IDF- Raleigh;NCSU 100 -yr 40- Ouration=5 rein, --- - + - - -- - - -- - - -- ----------------------Irrtien=9,.0ain/hr- 35 _ Rurtoff Area =9.600 -ac_ 30• Runoff Volume -0.327 of 7 - - - - T - - - - 3 25• Runoff, Depth = 0.,46" ---- - 1---- 1---- 1---- J----- 1 - - - -- L - - -- -1 1- -- FL 20. �c =5.� �nin 15 10 5 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) ❑ Runoff Pond Routing IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 41 Summary for Subcatchment 3 -POST: DA #3 -POST Runoff = 14.80 cfs @ 0.08 hrs, Volume= 0.105 af, Depth= 0.48" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Area (ac) C Description 1.370 0.90 Roads & Sidewalk & Lots 1.270 0.35 Pervious 2.640 0.64 Weighted Average 2.640 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment 3 -POST: DA #3 -POST Hydrograph 14.80 cfs - -- i - - -- i -- � -- -� -- - �----- �---- -� - - -- i -- i - - -- i - - -- - 1---- 1---- 1---- J----- 1------- iDF- Rai'eigh.,IN SU400 -yr- 14 Duration =5 min, 12 Inten =9.00 ire /hr - -- -T - - - - - - -- ---- ----------------- RuhoffAr-ea =2.640 ac- ,� 10 Runoff Volume "0.105 of v 3 8 Runoff, Depth= 0.48" —° ---- L---- L---- L---- L - - - -- L - - - - L- Tc=-5.0 -MEn- u_ 6- I I I I I I I I I I C =0.64 -------------------------------------------- 4' T - - - - 7 - - - - 7 - - - - - - - - T - - - - 7 - - - - T - - - - 2 0- . 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Q Runoff Pond Routing IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 42 Summary for Pond 1 -BMP: BMP #1 Inflow Area = 9.620 ac, 0.00% Impervious, Inflow Depth = 0.43" for 100 -yr event Inflow = 48.86 cfs @ 0.08 hrs, Volume= 0.348 of Outflow = 15.46 cfs @ 0.14 hrs, Volume= 0.218 af, Atten= 68 %, Lag= 3.5 min Primary = 15.46 cfs @ 0.14 hrs, Volume= 0.218 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 309.99' @ 0.14 hrs Surf.Area= 8,953 sf Storage= 11,754 cf Plug -Flow detention time= 157.3 min calculated for 0.218 of (63% of inflow) Center -of -Mass det. time= 156.6 min ( 161.6 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 308.50' 44,258 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 308.50 6,032 0 0 309.00 7,838 3,468 3,468 310.00 8,969 8,404 11,871 310.50 9,555 4,631 16,502 311.00 10,156 4,928 21,430 312.00 11,400 10,778 32,208 313.00 12,700 12,050 44,258 Device Routing Invert Outlet Devices #1 Primary 304.00' 15.0" Round Culvert L= 48.4' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 304.00'/ 303.00' S=0.0207'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 309.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 308.50' 1.0" Vert. Orifice /Grate C= 0.600 #4 Secondary 312.00' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =15.45 cfs @ 0.14 hrs HW= 309.98' (Free Discharge) t =Culvert (Barrel Controls 15.45 cfs @ 12.59 fps) 2 =Weir Opening (Passes < 26.82 cfs potential flow) 3 Orifice /Grate (Passes < 0.03 cfs potential flow) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 308.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 43 � i i• • 0' 9' I 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 313 G&VA a� T 0 311 0 a 310 w Pond 1 -BMP: BMP #1 Stage- Area - Storage Surracp1w- 0 2,000 4,000 E Inflow Outflow ❑ Primary ❑ Secondary etted Area (sq -ft) 6,000 8,000 10,000 12,000 0 10,000 20,000 30,000 40,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 44 Summary for Pond 2 -BMP: BMP #2 Inflow Area = 8.600 ac, 0.00% Impervious, Inflow Depth = 0.46" for 100 -yr event Inflow = 45.94 cfs @ 0.08 hrs, Volume= 0.327 of Outflow = 0.06 cfs @ 0.17 hrs, Volume= 0.101 af, Atten= 100 %, Lag= 5.2 min Primary = 0.06 cfs @ 0.17 hrs, Volume= 0.101 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 311.46' @ 0.17 hrs Surf.Area= 16,198 sf Storage= 14,239 cf Plug -Flow detention time= 697.0 min calculated for 0.101 of (31 % of inflow) Center -of -Mass det. time= 695.0 min ( 700.0 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 310.50' 41,357 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 310.50 12,459 0 0 311.00 15,367 6,957 6,957 311.50 16,270 7,909 14,866 312.00 17,188 8,365 23,230 313.00 19,065 18,127 41,357 Device Routing Invert Outlet Devices #1 Primary 306.00' 15.0" Round Culvert L= 43.0' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 306.00'/ 305.00' S=0.0233'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 311.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 310.50' 1.5" Vert. Orifice /Grate C= 0.600 #4 Secondary 312.25' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =0.06 cfs @ 0.17 hrs HW= 311.46' (Free Discharge) t = Culvert (Passes 0.06 cfs of 15.15 cfs potential flow) 2 =Weir Opening ( Controls 0.00 cfs) 3 Orifice /Grate (Orifice Controls 0.06 cfs @ 4.56 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 310.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 45 31 a� T 31 C 0 a� w 31 I � I Peak -. Storage-14,239 zz �I 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Pond 2 -BMP: BMP #2 Stage- Area - Storage Q „mace /Horizor +' sd Area (sq -ft) 0 5,000 10,000 15,000 F Inflow Outflow ❑ Primary ❑ Secondary 0 10,000 20,000 30,000 40,000 Storage (cubic -feet) Surface ❑ Storage Pond Routing IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 46 Summary for Pond 3 -BMP: BMP #3 Inflow Area = 2.640 ac, 0.00% Impervious, Inflow Depth = 0.48" for 100 -yr event Inflow = 14.80 cfs @ 0.08 hrs, Volume= 0.105 of Outflow = 3.72 cfs @ 0.15 hrs, Volume= 0.042 af, Atten= 75 %, Lag= 3.9 min Primary = 3.72 cfs @ 0.15 hrs, Volume= 0.042 of Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 of Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs Peak Elev= 322.61' @ 0.15 hrs Surf.Area= 4,419 sf Storage= 4,199 cf Plug -Flow detention time= 391.6 min calculated for 0.042 of (40% of inflow) Center -of -Mass det. time= 389.6 min ( 394.6 - 5.0 ) Volume Invert Avail.Storage Storage Description #1 321.50' 11,048 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq -ft) (cubic -feet) (cubic -feet) 321.50 2,429 0 0 322.00 3,980 1,602 1,602 322.85 4,596 3,645 5,247 323.00 4,709 698 5,945 324.00 5,498 5,104 11,048 Device Routing Invert Outlet Devices #1 Primary 317.00' 15.0" Round Culvert L= 32.2' RCP, groove end projecting, Ke= 0.200 Inlet/ Outlet Invert= 317.00'/ 316.50' S=0.0155'/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 322.50' 6.0" x 192.0" Horiz. Weir Opening C= 0.600 Limited to weir flow at low heads #3 Device 1 321.50' 0.7" Vert. Orifice /Grate C= 0.600 #4 Secondary 323.00' 15.0' long x 8.0' breadth Broad - Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74 Primary OutFlow Max =3.64 cfs @ 0.15 hrs HW= 322.60' (Free Discharge) t = Culvert (Passes 3.64 cfs of 15.53 cfs potential flow) 2 =Weir Opening (Weir Controls 3.63 cfs @ 1.06 fps) 3 Orifice /Grate (Orifice Controls 0.01 cfs @ 4.99 fps) t condary OutFlow Max =0.00 cfs @ 0.00 hrs HW= 321.50' (Free Discharge) 4= Broad -Crested Rectangular Weir( Controls 0.00 cfs) Pond Routing IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/7/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 47 .' Peak Elev=322 -61 • ' I • .•- .. cf ff@Ylnl I 32 a� T 32 C 0 a� w 32 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) Pond 3 -BMP: BMP #3 Stage- Area - Storage Surface /H ^ri-7nn +n1AP sd Area (sq -ft) 0 1,000 2,000 3,000 4,000 5,000 E Inflow Outflow ❑ Primary ❑ Secondary 0 5,000 10,000 Storage (cubic -feet) Surface ❑ Storage PRE -3 POST -3 DA #3 -PRE DA #3 POST PRE -1 POST -1 DA #1 -PRE DA 1 -POST PRE -2 POST -2 DA #2 -PRE DA #2 -POST Subcat Reach on Link E Hydr.CAD@ Routing Diagram for 140710 Site Pre -Post Prepared by Bohler Engineering, Printed 7/9/2014 10.00 s/n 07811 © 2013 Hydro CAD Software Solutions LLC 140710 Site Pre -Post Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 2 Area Listing (all nodes) Area C Description (acres) (s u bcatch me nt-n u mbe rs) 248.400 0.70 Composite C (POST -1, POST -2, POST -3) 269.200 0.70 Composite C (PRE -1, PRE -2, PRE -3) 517.600 0.70 TOTAL AREA 140710 Site Pre -Post IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 3 Summary for Subcatchment POST -1: DA 1 -POST Runoff = 149.41 cfs @ 0.08 hrs, Volume= 1.065 af, Depth= 0.28" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Area (ac) C Description 45.700 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -1: DA 1 -POST Hydrograph 149.41 cfs - -- ------ - - -- - - - - -- 0 Runoff --------------------------- - - - - -- ]DF-Releigh- NCSU -1 -yr- 140 Duration =5 min, 120 Inten =480 irk /hr - - - -' r---- r-------------- Runoff Area =45 -706 ac - .T 100 Runoff Volume= 11.065 of v 3 80 RLjnoffDepth= 0.28" ° T'C 5.0 -ray i r} - u- 60 C =0.70 40 - - -- - -- r--- -r - - -- - - -- r--- -r - - -- 20 1 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 4 Summary for Subcatchment POST -2: DA #2 -POST Runoff = 359.64 cfs @ 0.08 hrs, Volume= 2.563 af, Depth= 0.28" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Area (ac) C Description 110.000 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -2: DA #2 -POST Hydrograph - - -- --- - - - - -- - - -- - 359.64 cfs 0 Runoff 350 - -- - -- - -- - -- - -- - -- - -- IDF - Raleigh-NCSU 1 -yr - - - -' ---------r----r---------------------Duratio-p=&minr- 300 Inten =480 irk /hr N 250 -- - -- RunoffArea =111Q.00a ac - Runoff Volume =2.568 of 3 200 RLjnoffDepth= 0.28" o - - -- - - - -I r--- -r - - -- - -- - T-C=5.0- rnirr- '� 150 I I I I I I I I I I ' C =0.70 ---- L--------- L--- -L - - -- - - -- - ---L----L---------L---- L ---- 100 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 5 Summary for Subcatchment POST -3: DA #3 POST Runoff = 303.08 cfs @ 0.08 hrs, Volume= 2.160 af, Depth= 0.28" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Area (ac) C Description 92.700 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -3: DA #3 POST Hydrograph 303.08 cfs Q Runoff 300 IDF - Raleigh -NCSU 1 -yr - ---------- r--- -r - - -- - - -- - - - -' ---- '_Duratio _n=5 rain, 250 Inten =480 irk /hr - - - -' - - -- - - -- -------- Runoff Area=92 -706 ac v 200 Runoff Volume= 12.160 of - - - - - -R4noff,Depth =a 28" 0 150 Tc =5.0 min - - - - -- - -- - - - - -- -C=010 100 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 6 Summary for Subcatchment PRE -1: DA #1 -PRE Runoff = 180.80 cfs @ 0.08 hrs, Volume= 1.288 af, Depth= 0.28" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Area (ac) C Description 55.300 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -1: DA #1 -PRE Hydrograph 180.80 cfs Q Runoff 180 IDF - Raleigh -NCSU 1 -yr 160 I Duration =5 min, 140 ---- --tnten= 4,80- ir�fhr- - - - -' --------- ---- - - - - -- - - -- --- Runoff Area= 55.306ar_- v 120 Runoff Volume= 11.288 of 3 100 RLjnoff, Depth= 0.28" 80 Tc =5.0 rn i n 60 - - - -I - - - -I - - - -I - - - -I - - - -I - - - - 40 20 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 7 Summary for Subcatchment PRE -2: DA #2 -PRE Runoff = 387.75 cfs @ 0.08 hrs, Volume= 2.763 af, Depth= 0.28" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Area (ac) C Description 118.600 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -2: DA #2 -PRE Hydrograph 387.75 cfs ---' ----- 0 Runoff ---- --- --- --- --- --- IDF - Ralei _qh- NCSU_l -yr_ 350 Duration =5 min, 300 Runoff A een= 480- ir�fhr- ------- - - - - -- --- --- --- --- - - - - -- a #11$.600 ac ------ Area-- -- 250 Runoff Volume #2.763 of ----' r--------- r---- r---- r---- r---- 'r-- R -4no#f',-Depth= i-.28 "- 0 200 — Tv=5.0nIin- 150 C =0.70 100 50 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 8 Summary for Subcatchment PRE -3: DA #3 -PRE Runoff = 311.58 cfs @ 0.08 hrs, Volume= 2.220 af, Depth= 0.28" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 1 -yr Duration =5 min, Inten =4.80 in /hr Area (ac) C Description 95.300 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -3: DA #3 -PRE Hydrograph 311.58 cfs Q Runoff 300 1DF= Raleigh =N U_1__r ---- r---- r Duration =5 min, r---- r---- , 250 rI r I r r Inten =480 iri%hr Runoff Area = 95.300 ac 200 Runoff Volume #2.220 of -- R4n off ',Depth =0 2X' - 0 150 Tc =5.0 min ---- 'r - - - -I- - -r - -r- - -r- -- r---- 'r---- 'r--------- rC =0�.70- 100 -- - - -r - - -r- - -r- - -r- - -r -- -r----r---------r----r---- 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 9 Summary for Subcatchment POST -1: DA 1 -POST Runoff = 175.56 cfs @ 0.08 hrs, Volume= 1.251 af, Depth= 0.33" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Area (ac) C Description 45.700 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -1: DA 1 -POST Hydrograph 175.56 cfs - - -'r ---- !---- !---- !--- -! - - -- !--- -! - - -- pRunoff - - -- - -- - -- - -- - -- - -- IDF - Raleigh- NCSU_2 -yr_ 160 Duration =5 min, ---- r---- r---- r---- r---- r--- -r - - -- r-Inten =5x64 i 61 r 140 ---------------------------------- RLmoff Area=4510d a -c - ,� 120 - RU noff -Volu me=,-1-2.51 -af - 3 100 ---- �----- �---------------------------- Ronoff,Depth =0.33" _ ° 80 Tc =5.0 min 60 - - - -, .7II- 40 ---- L--------- L--- -L - - -- - - -- ----L----L---------L----r---- 20 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 10 Summary for Subcatchment POST -2: DA #2 -POST Runoff = 422.57 cfs @ 0.08 hrs, Volume= 3.011 af, Depth= 0.33" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Area (ac) C Description 110.000 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -2: DA #2 -POST Hydrograph 422.57 cfs -- -- - - - - -- -- -- -- -- - - -- p Runoff - - -- - -- - -- - -- - -- - -- -- -IDF- Raleigh= NCS- Ul2ryr- 400 ---- r---- -Du ratio-n=5 mint - 350 Inten =564 irk /hr ------------------- N 300 Runoff Area= 110.000 ac `� -------- -' - - -- - -- - -- - -- - Runoff -Volume =3FA I-af- 250 3 ---- L---- L---- r---- L---- L---- L---- L-- R-4noff,Depth =0 33 "_ 2 200 Tc =5.0 min ---- r---- r---- r---- r---- r---- r---- r---- r---- r - - - -r C_ ----- 150 100 ---- L--------- L--- -L - - -- - - -- ----L----L---------L----L---- 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 11 Summary for Subcatchment POST -3: DA #3 POST Runoff = 356.11 cfs @ 0.08 hrs, Volume= 2.537 af, Depth= 0.33" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Area (ac) C Description 92.700 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -3: DA #3 POST Hydrograph 356.11 cfs Q Runoff 350 IDF - Raleigh -NCSU 2 -yr - - -- -Duration =5mEn, - 300 Inten =564 irk /hr N 250 -- - -r - -- - -- - -- - -- - -- --- IRuno'ffArea=g2.700r ac- ---- 'L ---- I L --- - L - - -- Run_offLyQlume= 2.537_af 3 200 Rwnoff',Depth= 0.33" o --------- L---- r---- L--- -L - - -- - -- - T5.0 -rnirr- '� 150 I I I I I I I I I I ' C =0.70 100 50j/ 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 12 Summary for Subcatchment PRE -1: DA #1 -PRE Runoff = 212.44 cfs @ 0.08 hrs, Volume= 1.514 af, Depth= 0.33" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Area (ac) C Description 55.300 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -1: DA #1 -PRE Hydrograph 212.44 cfs ---'-------------------------------------------- - - - - -- 0 Runoff - --- L--------- L--- -L - - -- L - - -- L - -- IDF =Rafe gh=NCS -Ul 2 -yr- 200 - --- L---- ----- L --- - L - - -- - - -- ---- L - - - - L - -Du ration =& m In, - 180 - - -- --------- L--- -L - - -- - - -- --- -L - - -- - L Inten= 5,64 -' 11hr- 160 ---- ' L ---- '----- L ---- L ---- L ---- L --- Runoff Area= 55.306 ar-- 140 - - - -'L L L L L__Run_offLVo1Ume= ,_t514_af_ 3 120 ---- L ---- ----- L ---- L ---- L ---- L ---- L-- R4noff,Deph =0.3 "_ 0 100 M- - - - � - - - - ----- L - - - - I - - - - I - - - - I - Tc =5.0 ml i n - - - I - - - - - - - - - - - - - - - - - - - - - - 80 C =0.70 60 40 ----r---------r----r----r----r----r----r---------r----r---- 20 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 13 Summary for Subcatchment PRE -2: DA #2 -PRE Runoff = 455.61 cfs @ 0.08 hrs, Volume= 3.246 af, Depth= 0.33" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Area (ac) C Description 118.600 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -2: DA #2 -PRE Hydrograph 455.61 cfs 0 Runoff ---r----r----r----r----r----r----r----r----r----r---- 450 IDF - Raleigh -NCSU 2 -yr 400 --- -r - - -- - - - -r- r- r- r- r----r-tnten= 5-64- irhFhr- 350 ---- L ---- ----- L ---- L ---- L ---- L-- Runoff Ar-ea =118.604 ar-- 300 Runoff Volume =3.246 of _- - - -- --------- r--- -r - - -- ------- --------- --- ----- r ---- r ---- 3 250 RLjnoffDepth= 0.33" iz 200 Tc =5.0 min 150 - - - -I - - - -I - - - -I - - - -I - - - -I - - - - -- -C= 0�.7a- - - -- ------------------ -- - - -- - - -- - - -- --- - - - - -- - - -- - - -- 100 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 14 Summary for Subcatchment PRE -3: DA #3 -PRE Runoff = 366.10 cfs @ 0.08 hrs, Volume= 2.609 af, Depth= 0.33" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 2 -yr Duration =5 min, Inten =5.64 in /hr Area (ac) C Description 95.300 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -3: DA #3 -PRE Hydrograph 366.10 cfs 0 Runoff - - -- - -- - -- - - - -i - - - -i - - - -,-- -1[7F= Raleigh -NCSU 2yr- 350 - - - -' - - - -' - - -- ---- ----- ----- ------ '-- DurOon =5 m, in, 300 Inten =564 irk /hr -Runoff 250 0 Runoff Volume #2.609 of -I- - - - - r - - - - r - - - - r - - - - r - - - - r - - - - r - - - -I----- r - - - - - 3 200 RLjnoffDepth= 0.33" 2 ---- L --- - - - - -- - - -- - - -- - - -- - - - -' - - - -' ------ T 'C-=5.0- rnirr- " 150 I I I I I I I I I I ' C =0.70 ---- L--------- L--- -L - - -- - - -- - ---L----L ---- -----L ---- L---- 100 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 15 Summary for Subcatchment POST -1: DA 1 -POST Runoff = 201.71 cfs @ 0.08 hrs, Volume= 1.437 af, Depth= 0.38" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Area (ac) C Description 45.700 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -1: DA 1 -POST Hydrograph 201.71 cfs 0 Runoff 200 IDF - Raleigh -NCSU 5 -yr 180 Duration =5 min, - - -- -------- - } - - -- - - -- - - -- - - -- - - - -1- Intl - --- 8 iri %hr 160 - - - -- - -- - -- - -- - -- - -- Runoff Area --4510a ac - N 140 - - -- - -------- L ---- L ---- L ---- L - - RUno f Vblume--t.*37-af- -- 120 I I I 1 0 100 - -- - -- - -- - -- - -- - -- - - - -I - -R4nof #'I]Depth =a3$ "- - -- - -- - -- -- - -- - -- - -- - -- - -- - -- - C =9- 70 60 - -- - - - - - - - -- F - - - - -- I - - - - - - - - - - - - - -- F - - -- 40 ----------------------------------- - - -- - - -- 20 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 16 Summary for Subcatchment POST -2: DA #2 -POST Runoff = 485.51 cfs @ 0.08 hrs, Volume= 3.459 af, Depth= 0.38" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Area (ac) C Description 110.000 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -2: DA #2 -POST Hydrograph 485.51 cfs - - -' - - - -- p Runoff -- aDF- RaIejgh -NCSU 5 -yr- 450 - - -- - - -- - - -- - - -- - - -- - - -- - - -- - Dur•atior) =5 min,- 400 Inten =t48 ir7 /hr - --- L---- ----- L ---- L ---- L ---- L - - - - L - L ---- ----- L- ---L ---- .. 350 Runoff Area= 110.000 ac N-- - - - - -- ------- - - - - -- 300 Runoff Volume #3.459 of ----' r--------- r---- r---- r---- r---- 'r-- R4no#f',Depth= O-.38 "- 0 250 _ ----r----r----r----r----r----r----r----r----r-Tc=5.0-rnirr- " 200 - --- L---- L---- L---- L ---- L ---- L ---- L ---- L ---- - - - - -r C =(.70 - 150 100 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 17 Summary for Subcatchment POST -3: DA #3 POST Runoff = 409.15 cfs @ 0.08 hrs, Volume= 2.915 af, Depth= 0.38" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Area (ac) C Description 92.700 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -3: DA #3 POST Hydrograph 409.15 cfs 0 Runoff -�- - - - - L - - - - L - - - - L - - - - L - - - - L - - - - L - - - -I - __L--- - L --- - 400 IDF- Raleigh -NCSU 5 -yr - - - -' - - - -' - - -- - - -- - - -- ---- L------ Duratio-n=&min, - 350 I I I I I I I I ----' r--------- r---- r---- r---- r---- 'r---- 'r- Int -- --- 48- iQ-- -- 300 Runoff Area = 92.700 ac - -- ---- --- ---- --------- -- ---- --- -- ---- ---------R--u-n- ff- VoFume =2.9T5 of - 250 ' R4noff,�ep h =Q38 "- 0 200 Tc =5.0 min FL 150 C =0.70 - ---L----L---- L ---- L ---- L ---- L ---- L ---- L ----L---- L ---- L---- 100 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 18 Summary for Subcatchment PRE -1: DA #1 -PRE Runoff = 244.08 cfs @ 0.08 hrs, Volume= 1.739 af, Depth= 0.38" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Area (ac) C Description 55.300 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -1: DA #1 -PRE Hydrograph 244.08 cfs - - -' ---- !---- !---- !--- -! - - -- -- !--- -! - - -- pRunoff IDF - Raleigh -NCSU 5 -yr - - -- ------------------------ - Dur•atior) =5 min,- 200 Inten=t 48 in /hr Runoff Area = 55.300 ac `� - - -- - -- --- - - - - -- RUnoff- VoFUme =1.739 of 150 3 RLjnoff Depth= 0.38" 2 --- -' --- -- -- -- - -- - - - -' - - - -' - - -- TC =5.0 -ruin LL 100 I I I I I I I I I I ' C =0.70 50 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 19 Summary for Subcatchment PRE -2: DA #2 -PRE Runoff = 523.47 cfs @ 0.08 hrs, Volume= 3.730 af, Depth= 0.38" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Area (ac) C Description 118.600 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -2: DA #2 -PRE Hydrograph 523.47 cfs - - -', -------------------- 'r---- 'r - - - -', ------ - - - - -- 10 Runoff ---- r - - - -, 500 - - - -; - - - -i - - - -i - - - -, -- -IDF= Raleigh -NCSU 5yr- ---- r---- r---- 450 r---- r---- r---- r---- r - - - - r - Du ration =5- rr i n, - ---- r---- ----- r---- r---- r - - - -r- r---- r- Inten =6 48- ir�1hr- 400 ----r----r----r----r----r----r- - Runoff Ar -ea =1-18 60d ac - ,0 350 Ci ---- r---- r---- r---- r---- r - - - -1 RunoffrVolume =3. 30 -af - _. 300 - -- - -- - -- - -- - R4noff,IDep h =O 3N "- ° 250 LL r----r----r----r----r----r----r----r----r----r----r---- — - - -- Tc =5.0 rn i n 200 C =0.70 150 100 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 20 Summary for Subcatchment PRE -3: DA #3 -PRE Runoff = 420.63 cfs @ 0.08 hrs, Volume= 2.997 af, Depth= 0.38" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 5 -yr Duration =5 min, Inten =6.48 in /hr Area (ac) C Description 95.300 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -3: DA #3 -PRE Hydrograph 420.63 cfs - - - - - -- - -- - - - -- - -- - - -- 0 Runoff - - -- - -- - -- - -- - -- -- -IDF- Raleigh= NCS- Ul5=yr- 400 _Durzti 5L in 350 Inten =648 irk /hr ------------------------ N 300 Runoff Area = 95.300 ac - - -- - -- - -- - -- - -- - -- --Rdnoff- volume -- x`2.997 -af- -- 250 I I I 1 3 - - -- --------- +--- - - - - -- - - -- - - -- -- R-4n off ,Depth =9 3V "- 2 200 Tc =5.0 min LL 150 C =0.70 100 - - -- ------------------------------------------------------ 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 21 Summary for Subcatchment POST -1: DA 1 -POST Runoff = 224.12 cfs @ 0.08 hrs, Volume= 1.597 af, Depth= 0.42" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Area (ac) C Description 45.700 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -1: DA 1 -POST Hydrograph 0 Runo 224.12 cfs - - - - - -- - -- - - - -- - -- - - -- ff 220 IDF- Raleigh -NCSU 10 -yr 200 Duration =5 min, 180 Inten=t 20 in /hr ------------------------ N 160 Runoff Area = 45.700 ac ------------------------------- 140 Runoff Volume #1.597 of 3 120 Runoff, Depth =0.42" ----r---------r----r----r----r----r----r----r----r----r---- 100 1 Tc =5.0 min ------- - - - - -- - -- - -- - -- - - - - - - - - --- - - - - - - - - - - - -- 80 C =0.70 60 40 -- --------- - - - - -- - - -- - - -- - - -- - - -- --- - - - - -- - - -- - - -- 20 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 22 Summary for Subcatchment POST -2: DA #2 -POST Runoff = 539.45 cfs @ 0.08 hrs, Volume= 3.844 af, Depth= 0.42" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Area (ac) C Description 110.000 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -2: DA #2 -POST Hydrograph - - -- --- - - - - -- - - -- - 539.45 cfs --- r---- ! - - - -- - !---- !---- 'r---- 'r - - -- !--- -! - - -- pRunoff 1 -0 -yr- ----r----r----r----r----r----r- 500 ----' r--------- r ---- r ---- r ---- r---- 'r - - - -'r -Duration =5Lm in, - 450 lnten =t 20_'1 /Jhr _ ---- r---- r---- r---- r---- r---- r---- r - - - -r- - t 400 - - -- - -- - -- - -- - -- RunoffAr_ea_ =_'110.000 a-o_ 350 Runoff Volume= 13.844 of 3 300 - - -- - - -- - -- - -- - -- Runoff ,Deptlh =0.!12" ro 250 - Tc =5.0 min 200 C =0.70 - --- L--------- L ---- L ---- L ---- L ---- L ---- L ---- ----- L --- - L - - -- 150 ----r----r----r----r----r----r----r----r----r----r----r--- 100 ----r---------r----r----r----r----r----r----r----r----r-- 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 23 Summary for Subcatchment POST -3: DA #3 POST Runoff = 454.61 cfs @ 0.08 hrs, Volume= 3.239 af, Depth= 0.42" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Area (ac) C Description 92.700 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -3: DA #3 POST Hydrograph 454.61 CfS 0 Runoff ---r----r----r----r----r----r----r----r----r----r---- 450 IDF- Raleigh -NCSU 10 -yr 400 350 ------tnten= 7,20- ir�fhr- - - - -' --------- ---- - - - - -- - - -- ---Runoff Area=192-70d-ac- v 300 Runoff Volume =3.239 of 3 250 Runoff ' , Depth =0.42" iz 200 Tc =5.0 min 150 - - - -I - - - -I - - - -I - - - -I - - - -I - - - - -- -C=0�10- - - -- ------------------ -- - - -- - - -- - - -- --- - - - - -- - - -- - - -- 100 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 24 Summary for Subcatchment PRE -1: DA #1 -PRE Runoff = 271.20 cfs @ 0.08 hrs, Volume= 1.932 af, Depth= 0.42" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Area (ac) C Description 55.300 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -1: DA #1 -PRE Hydrograph 271.20 cfs Q Runoff 11� -yr- 250 Duration =5 min, r lnten= 7.20 - [P/hr- 200 Runoff Area = 55.300 ac ° Runoff Volume #1.932 of 3 150 Runoff, Depth =0.42" ° Tc =5.0 min LL- - -- - -- - - 100 C =0.70 50 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 25 Summary for Subcatchment PRE -2: DA #2 -PRE Runoff = 581.63 cfs @ 0.08 hrs, Volume= 4.144 af, Depth= 0.42" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Area (ac) C Description 118.600 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -2: DA #2 -PRE Hydrograph 581.63 cfs - - -' - - - -- p Runoff - -- L--------- L--- -L - - -- L - - -- L - -FDF Raleigh -NGS 1 -0-yr- 550 - - - -r Dur�atiori=5 rr 1n, - ---- r---- r---- r---- r---- r---- r---- r 500 - -- - -- - -- - -- - -- - -- - -- ------tnten= 720- ir�fhr- 450 - --- L- -------- L --- -L - - -- - - -- -- RUnoffArea =TI8 600ac- n 400 -------------- +--------- ----- -RUnoff-Volume= 4.144 -af- " 350 ----'r---------r----r----r----r----'r--Rtnoff',- Depth =O -AV- 0 300 - 9 250 -T-C=5-.O- rn i n - 200 150 ---- �--------- r---- r---- �---- �---- �---- �--------- r--- -r - - -- i 100 -- ---- - - - - -- - - -- - - -- - - -- - - - -' - - - -' --- - - - - -- - - -- - - -- 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 26 Summary for Subcatchment PRE -3: DA #3 -PRE Runoff = 467.36 cfs @ 0.08 hrs, Volume= 3.330 af, Depth= 0.42" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 10 -yr Duration =5 min, Inten =7.20 in /hr Area (ac) C Description 95.300 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -3: DA #3 -PRE Hydrograph 467.36 cfs - - - ------ - -- - ------ - -- - - -- Q Runoff 450 - -- - -- ----- - -- - -- - -- IDF= Raleigh -NCSU 10 -_r - - - -' - - - -' - - - -- - - -- - - -- - - - -' - - -- — Duration =&min, - 400 - - -- - - -- - -- - -- - -- ----------- inten =t20A 1/hr- 350 Runoff Area = 95.300 ac 300 Runoff Volume #3.330 of 3 250 Rwnoff�,Depth =0.42" ° rc =5.0 -r in - 200 /� ---- r---- r---- r---- r---- r---- r---- r---- r----------- C=O� TG - 150 100 ----------r----r----r----r----r--------------r----r---- 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 27 Summary for Subcatchment POST -1: DA 1 -POST Runoff = 280.15 cfs @ 0.08 hrs, Volume= 1.996 af, Depth= 0.52" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Area (ac) C Description 45.700 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -1: DA 1 -POST 280.15 cfs -- -- 250 N 200 v I I 3 150 0 100 50 - -, 0 2 4 6 Hydrograph -! - - -- - - - - -! - - - -! - - -- 0 Runoff IDF- Raloigh =NCSU 100 -yr --r----r-- --r---- r ---- ----- r ---- r ---- Duration =5 min, Inten =9 00 in /hr ------------------------ Runoff Area = 45.700 ac Runoff Volume= 11.996 of RLjnoffDepth= 0.52" Tc =5.0 min - - -- ------- - - - - -- - - - -- C =0.70 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 28 Summary for Subcatchment POST -2: DA #2 -POST Runoff = 674.32 cfs @ 0.08 hrs, Volume= 4.805 af, Depth= 0.52" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Area (ac) C Description 110.000 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -2: DA #2 -POST Hydrograph 674.32 cfs - - -' - - - -- 0 Runoff OF- Raleigh -NCSU 100 -yr - - -- -------- - + - - -- - - -- - - -- - - -- - - -- ---------+----' - - -- 600 Duration =5 min, lnten= 9.00 -' /-hr- 500 Runoff Area = 110.000 ac `� - - -- L---- L---- L - - - -L- RdnoffVo[ume=4.805 af - -- 400 I I I 1 3 Runoff, Depth =0.52" ----r---------r----r----r----r----r----r----r----r----r---- rL 300 Tc =5.0 min -- - - - - -- -- I ---- ---- ---- ---I -------- C=0 70 -- - -- - - - -- - 200 - -- -- - -L - -L- - -L- -L----L---------L----L---- 100 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 29 Summary for Subcatchment POST -3: DA #3 POST Runoff = 568.27 cfs @ 0.08 hrs, Volume= 4.049 af, Depth= 0.52" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Area (ac) C Description 92.700 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment POST -3: DA #3 POST Hydrograph 568.27 cfs -- - -- - -- - - - - r--- -'r - -- - -- - -- - - -- 10 Runoff 550 - -- F - - - - IF - - - - ,I - - -- 1DF_- Ra10igh_NCSU1 _G0 =yr -Duration- m1n, 500 _ 450 ---- r---- r---- r---- r---- r---- r--- -r - - -- -Inten =9,00 in/hr N 400 -- - -r - -- - -- - -- - -- - -- Runoff Area= 9 .70 ac -------- - - - - -- 350 Runoff Volume= 4.049 of ---- L---- �----- L---- L---- L ---- L ---- L-- �noffDepth =0.52.. �, 3 300 R r---- r---- r---- r---- r---- r r r 250 Tc =r 5- - .0 - - min ---- r---- ---- r---- - C -0.70 200 150 100 -- --------- - - - - -- - - -- - - -- - - -- - - -- --- - - - - -- - - -- - - -- 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 30 Summary for Subcatchment PRE -1: DA #1 -PRE Runoff = 339.00 cfs @ 0.08 hrs, Volume= 2.416 af, Depth= 0.52" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Area (ac) C Description 55.300 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -1: DA #1 -PRE Hydrograph I 339.00 cfs - - -' - - - -- 0 Runoff OF- Raleigh -NCSU 100 -yr - - -- L ---- L---- L ---- L - - - - L - L--------- L--- -L - - -- 300 Duration =5 min, 1nten= 9.00_ir1/hr- 250 Runoff Area = 55.300 ac - - -- - - - - -I - - - -I - - - -I - - - -'- --Runoff-Vo[ume=2.4t6-af- 200 3 Runoff, Depth= 0.52" - - - - - - -�- - - - - - - - - - - - - - - - - - - - - - - ----- - - - - I - - - - - - - - 150 Tc =5.0 min C =0.70 100 --- -L - - -- - - - -L - -L- - _L- -L----L---------L----L---- 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 31 Summary for Subcatchment PRE -2: DA #2 -PRE Runoff = 727.04 cfs @ 0.08 hrs, Volume= 5.180 af, Depth= 0.52" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Area (ac) C Description 118.600 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -2: DA #2 -PRE Hydrograph 727.04 CfS 0 Runoff 700 - -- - -- - -- - -- - -- - - - -I - �DF-Rai�igh= NCSU100 -yr- - - - -' --------- r--- -r - - -- - - -- - - - -' ---- '_Duratio _n=5 min,-- 600 Inten =900 irk /hr - --- L--------- L---- L------ - - - - -- Runoff Area= TI8.600ac- n 500 Runoff Volume #15.180 of 3 400 Ronoff',Depth# 0.52" 2 ----'r---------r---- r----r----r---- 'r---- 'r------ �c=5.0- rnirr- " 300 I I I I I I I I I I ' C =0.70 ---- L---- ----- L ---- L ---- L ---- L ---- L ---- L---- ----- L --- - L - - -- 200 100 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) 140710 Site Pre -Post IDF- Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Prepared by Bohler Engineering Printed 7/9/2014 HydroCAD® 10.00 s/n 07811 @2013 HydroCAD Software Solutions LLC Page 32 Summary for Subcatchment PRE -3: DA #3 -PRE Runoff = 584.20 cfs @ 0.08 hrs, Volume= 4.163 af, Depth= 0.52" Runoff by Rational method, Rise /Fall= 1.0/1.0 xTc, Time Span= 0.00 -24.00 hrs, dt= 0.01 hrs IDF - Raleigh -NCSU 100 -yr Duration =5 min, Inten =9.00 in /hr Area (ac) C Description 95.300 0.70 Composite C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft /sec) (cfs) 5.0 Direct Entry, Subcatchment PRE -3: DA #3 -PRE Hydrograph - - -- --- - - - - -- - - -- - 584.20 cfs - - -' ---- ! - - - -- - !- -- -! - - -- !--- -! - - -- pRunoff ---- L --------- L---- L---- L --- - L - tDP -Rat igh- PtCSU1� -tr- 550 - Duration =&min, - 450 ------tnten= 900- ir�fhr- 400 - -- - -- - -- - -- - -- - - - -I ---- RunoffArea=95 -30d a -c - - - -- ------------------------ �-- RiAnoff-Votume= 4.1-63 af- " 350 ----' r--------- r---- r---- r---- r---- 'r-- Rtmoff',- Depr(h= i�52"- 0 300 - - -- - - -- - -- - -- - -- FL 250 rc =5 -0 -rn in - 200 - - -- - -------- r ---- r ---- r ---- r --- - r - - -- ---------r----r---- 150 100 -- ---- - - - - -- - - -- - - -- - - -- - - - -' - - - -' --- - - - - -- - - -- - - -- 50 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hours) PRE -POST SUMMARY Project Name Indian Wells Subdivision Bohler Project � NCR142011 EACH POINT OF INTEREST HAS BEEN STUDIED TO ENSURE THAT THERE WILL BE NO NEGATIVE DOWNSTREAM IMPACT. TOTAL OFF -SITE DRAINAGE AREA IS INCLUDED IN THIS ANALYSIS. ALL BMP'S HAVE BEEN DESIGNED IN ACCORDNACE WITH THE NCDWQ BMP MANUAL AND TOWN OF CARY STANDARDS TO PROVIDE SUFFICIENT PRE -POST STORAGE TO MEET REQUIREMENTS FOR THE 1, 2, 5, & 10 YEAR STORMS. THE BMP'S HAVE ALSO BEEN DESIGNED TO HAVE A MINIMUM OF 1' OF FREE BOARD IN THE 100 -YEAR STORM. INTENSITIES ARE BASED ON NOAA Atlas 14, Vol.2 1, = 4.80 in. /hr. 12 = 5.64 in. /hr. 15 = 6.48 in. /hr. 110 = 7.20 in. /hr. 1100 = 9.00 in. /hr. Q1 (Cfs) QZ (Cfs) Q5 (Cfs) 010 (Cfs) 0100 (Cfs) PRE POST PRE POST PRE POST PRE POST PRE POST POINT 1 180.80 150.37 212.44 181.40 244.08 212.49 271.20 238.68 339.00 295.61 POINT 2 387.80 359.90 455.60 423.00 523.50 486.00 581.60 540.00 727.00 675.10 POINT 3 311.60 308.81 1 366.10 356.12 1 420.63 409.16 467.36 454.62 1 727.00 571.99 TOTAL SITE 1 880.20 1 819.08 1 1034.14 1 960.52 1 1188.21 1 1107.65 1320.16 1 1233.30 1 1793.00 1 1542.70 EACH POINT OF INTEREST HAS BEEN STUDIED TO ENSURE THAT THERE WILL BE NO NEGATIVE DOWNSTREAM IMPACT. TOTAL OFF -SITE DRAINAGE AREA IS INCLUDED IN THIS ANALYSIS. ALL BMP'S HAVE BEEN DESIGNED IN ACCORDNACE WITH THE NCDWQ BMP MANUAL AND TOWN OF CARY STANDARDS TO PROVIDE SUFFICIENT PRE -POST STORAGE TO MEET REQUIREMENTS FOR THE 1, 2, 5, & 10 YEAR STORMS. THE BMP'S HAVE ALSO BEEN DESIGNED TO HAVE A MINIMUM OF 1' OF FREE BOARD IN THE 100 -YEAR STORM. INTENSITIES ARE BASED ON NOAA Atlas 14, Vol.2 1, = 4.80 in. /hr. 12 = 5.64 in. /hr. 15 = 6.48 in. /hr. 110 = 7.20 in. /hr. 1100 = 9.00 in. /hr. APPENDIX C NUTRIENT LOADING CALCULATIONS Watershed CharacteristicsVer2.0 ' Clear All Values Return to Instructions Proceed to BMP Characteristics I ' Skip to Development Summary Instructions 1. Selectyour physiographic /geologic region. (see map on 'instructions' page) 2. Enterthe area of the entire development in square feet (ft'). 3. Select the location that is most representative of the site's precipitation characteristics. (see map on 'instructions' page) 4. For each applicable land use, enter the total area of that land use that lies within the development under pre - development conditions. 5. For each applicable land use, enterthe total area of that land use that lies within the development under post - development conditions, before BMP implementation. 6. Ensure that the sum of pre- and post - development areas entered equal the orginaI development area. 7. Continue to "BMP Characteristics'' tab. Additional Guidelines - For non - residential watersheds, indicate acreages of each land use type in Column 1 for both pre- and post - development conditions. - For residential watersheds, complete the required information in Column 2 for both pre- and post- development conditions. - If a given land use is not present in the given watershed, leave the cell blank or enter a zero. - Ensure that land use areas entered for both pre- and post - development conditions match the total development area entered in cell 021. - Residential areas may be entered by average lot size (column, part A), or may be separated into individual land uses (column 2, part B) - do NOT list out individual land uses within an area already described by lot size. - Unless runoff flowing onto the development from offsite is routed separately around orthrough the site, the offsite catchment area draining in must be included in the acreage values of the appropriate land use(s) and treated. Physiographic /Geologic Region: Triassic Basin Soil Hydrologic Group D Precipitation location: Raleigh COLUMN 1 -- NON- RESIDENTIAL LAND USES 1,508,855 Development Name: Pre- TP EMC Development (mg /L) (ftz ) Model Prepared By: TN EMC (r ng/L) P o Development (ft') COMMERCIAL Parking lot 1.44 1 0.16 -ac lots Roof 1.08 1 0.15 Open /Landscaped 2.24 0.44 INDUSTRIAL Parking lot 1.44 0.39 1 -ac lots Roof 1.08 0.15 Open /Landscaped 2.24 0.44 TRANSPORTATION Hi h Densi interstate, main 3.67 0.43 Multi- family Low Densi ,econda ,feeder 1.4 0.52 Rural 1.14 0.47 Sidewalk 1.4 1.16 PERVIOUS Managed pervious 3.06 0.59 PART B Unmanaged (pasture) 3.61 1.56 0.52 37,824 118,730 Forest 1.47 0.25 1.44 0.39 JURISDICTIONAL LANDS* Parking lot 1.44 Natural wetland Roof Riparian buffer 0.15 25,323 280,000 Sidewalk /Patio Open water 1.4 1.16 23,750 LAND TAKEN UP BY BMPs 1.08 0.15 0.44 0.59 599,318 482,285 *Jurisdictional land uses are not Included In nutrient /flow calculations. Total Development Area (ft'): 1,508,855 Development Name: Indian Wells Model Prepared By: MAR COLUMN 2 -- RESIDENTIAL LAND USES Custom Pre- Post - Lot Size Age TN EMC TP EMC Development Development (ac) (yrs) (mg /L) (mg /L) (ft2) ft) PART A -ac lots -ac lots -ac lots 1 -ac lots 2 -ac lots Multi- family Townhomes Custom Lot Size PART B Roadway 1.4 0.52 37,824 118,730 Driveway 1.0 1.44 0.39 Parking lot 1.44 0.39 Roof 1.08 0.15 25,323 280,000 Sidewalk /Patio 1.4 1.16 23,750 Lawn 2.24 0.44 0.59 599,318 482,285 Managed pervious 3.06 Forest 1.47 0.25 846,390 579,930 Natural wetland* Riparian buffer* Ell Open water* LANDTAKEN UP BY BMP, 1.08 0.15 24,160 Total Development Area Entered (ft): 1,508,855 Total Pre - Development Calculated Area (ft): 1,508,855 Total Post - Development Calculated Area (ft): 1,508,855 BMP CharacteristicsVer2.0 Return to Watershed Proceed to Development Clear All Values Re—to Instructions Characteristics Summery J InstruRions 1. Selectthe type of BMP for each catchment. 2. Enter the area of each land use type m the contributing drainage area for each BMP. 3. Continue to "Development Summary" tab. Additional Guidelines This spreadsheet allows the development to be divided into as many as 6 smaller catchments. - BMPS 1, 2, and 3 fora given catchment are assumed to operate m series, with the outflow from 1 serving as the inflow to 2, etc. - If the outflow from an entire catchment (including outflow from selected BMPS) drains to another BMP, indicate this m the drop down menu below the BMP type and leave all cells for individual land uses blank. - Not all BMP or catchments must be utilized. Simply leave fields blank in the columns not needed. - Leave cells blank or insert zeroes if a land use is not present m the area draining to the BMP. -FOr water harvesting BMPS, be sure to enter the per cent volume reduction that will be achieved by your system. Volume detention(catch- and - release mechanisms) will not be considered -Only proven volumer.d.cti.m are valid i nputs. -The BMP undersi mig option should only be used for existing development orretrofit sites. - Volume reduction efficiencies for undersized BM Ps are calculated based c n a 1:1 ratio (a BMP that is 60 %smaller than the required design size is assigned a removal efficiency equal to 60 % of the standard efficiency value). Effluent concentrations remain the same as full -sized BMPS. - IMPORTANT: for the land area calculation checks to occur, you MUST press enter after entering a value for area to be treated by a BMP (not just click c n the next cell). - See User's Manual for instructions c n modeling oversized BM Ps BMP DETAILS BMP Volume ReduRion ( %) TN Effluent Concen. (mg/L) TP Effluent Concen. (MI BiorMention with IWS 35% 0.95 0.12 BiorMention without IWS 15% 1.00 0.12 Dry Detention Pond 0% 1.20 0.20 Grassed Swale 0% 1.21 0.26 Green ROOF 50% 1.08 0.15 Level Spreader, Filter Strip 20% 1.20 0.15 Permeable Pavement• 0% 1.44 0.39 Sand Fite, S% 0.92 0.14 Water Harvesting s er defined 1.08 0.15 Wet Detention Pond 5% 1 1.01 0.11 Wetland 15% 1 1.08 0.12 n treating commercial parking lot, INemuent concentration= u.ib mg /c Type of IBMIP: —I d.cti.n in decimal form. C.tchm.rt 1: Utchm.rt 3: Ford Filter Strip Does IBMIP accept the ou no Detention L-e Spread P nd Filt r St rip Ford Filter Strip If so, indicate which one(s). (Land se areas entered below are in aM the watershed areas treated n.InoIno noI by conicrib�lhmer,I no no no no no �I no �I no Utchm.rt 4: Utchm.rt 5: IL Utchm.rt 6: F Drainage Are. Land Use Are. Treated byBMP Are. treated Are. treated by IBIMP #3 that is rot treated by IBIMP #1 treated by 1 #1 A... T ... t d B Area treated treated by IBIMP #1 Aie. t ... t.cl Are, t ... t,d 1 11 IBIMP #3 that is rot Are, Treated V IBIMP treated by IBIMP #1 treated by 1 #1 Are. Treated by IBIMP AP, T ... t d , IBIMP A... t ... t,d IBIMP . that is rot e.ted by 1 #1 Are. Treated by IBIMP All I Allow Us:" Total Land A, —be Treated Based on 392,733 0 0 0 0 0 Date: WATERSHED SUMMARY Ver2.0 3. Development Summary REGION: Triassic Basin TOTAL DEVELOPMENT AREA (ft!): 1,508,855 Percent Impervious (%) 25% 25% 0% Pre - Development Conditions Post - Development Conditions Post - Development w/ BMPS Percent Impervious 4.2% 29.6% 29.6% N Total Nitrogen Loading (lb /ac /yr) 168% 96% Annual Runoff Volume Total Phosphorus EMC (mg /L) -18% -58% -49% 500,551 1,806,632 1,403,947 Total Nitrogen EMC Grassed Swale 0% 1.21 (mg /L) 1.74 1.29 1.22 Total Nitrogen Loading Level Spdr, Filter 20% 1.20 (lb /ac /yr) 1.57 4.22 3.07 Total Phosphorus EMC Permeable Pond (mg /L) 0.38 0.31 0.16 Total Phosphorus Loading Sand Filter 5% 0.92 (lb /ac /yr) 0.34 1.02 0.41 Percent Difference Between: 'IVegative percent dltterence values Indicate a decrease In runottvolume, pollutant concentration or pollutant loading. Positive values Indicate an Increase. BMP SUMMARY Ver2.0 Indian Wells MAR July 9, 2014 BMP VOLUME REDUCTIONS /EFFLUENT CONCENTRATIONS Pre -Dev. & Post -Dev. without BMPs Pre - Development & Post - Development with BMPs Post -Dev without BMPS & Post -Dev with BMPS Percent Impervious (%) 25% 25% 0% Annual Runoff Volume (c.f.) 261% 180% -22% Total Nitrogen EMC (mg /L) -26% -30% -6% Total Nitrogen Loading (lb /ac /yr) 168% 96% -27% Total Phosphorus EMC (mg /L) -18% -58% -49% Total Phosphorus Loading (Ib/ac) 196% 18% -60% 'IVegative percent dltterence values Indicate a decrease In runottvolume, pollutant concentration or pollutant loading. Positive values Indicate an Increase. BMP SUMMARY Ver2.0 Indian Wells MAR July 9, 2014 BMP VOLUME REDUCTIONS /EFFLUENT CONCENTRATIONS 'It treating commercial parking lot, I P effluent concentration - U.l6 mg /L IReturn to Instructions IReturn to Watershed Characteristics i IReturn to BMP Characteristics IPrint Summary i T lume Reduction TN Effluent Cancer. TP Effluent Cancer. CATCHMENT 4 %) (mg /L) (mg /L) Bioretention with 35% 0.95 0.12 WS BMP1 BMP2 BMP3 Bioretention without 15% 1.00 0.12 MIS BMP3 BMP1 BMP2 Dry Detention Pond 0% 1.20 0.20 Grassed Swale 0% 1.21 0.26 Green Roof 50% 1.08 0.15 Level Spdr, Filter 20% 1.20 0.15 Strip -- Catchment Outflow Permeable Pond Filter Strip Pavement* 0% 1.44 0.39 Sand Filter 5% 0.92 0.14 Water Harvesting user defined 1.08 0.15 Wet Detention Pond 5% 1.01 0.11 Wetland 15% 1.08 0.12 'It treating commercial parking lot, I P effluent concentration - U.l6 mg /L IReturn to Instructions IReturn to Watershed Characteristics i IReturn to BMP Characteristics IPrint Summary i BMP Outflow 3.61 3.28 -- 6.30 5.79 -- 5.53 5.07 -- -- -- -- -- -- -- -- -- -- Nitrogen (Ibs /ac /yr) BMP Outflow Phosphorus (Ibs /ac /yr) ' Catchment Outflow Nitrogen EMC (mg /L) CATCHMENT 1 CATCHMENT 2 CATCHMENT 3 CATCHMENT 4 CATCHMENT 5 CATCHMENT 6 BMP1 BMP2 BMP3 BMP1 BMP2 BMP3 BMP1 BMP2 BMP3 BMP1 BMP2 BMP3 BMP1 BMP2 BMP3 BMP1 BMP2 BMP3 -- Wet Detention Level Spreader, Catchment Outflow Phosphorus EMC Wet Detention Level Spreader, Level Spreader, (mg/L) 0.152 0.152 0.152 -- -- -- Catchment Outflow Pond Filter Strip - Pond Filter Strip -- Wet Detention Pond Filter Strip -- -- -- -- -- -- -- -- -- -- Total Area Treated (ac) 9.12 9.12 -- 9.02 9.02 -- 2.64 2.64 -- -- -- -- -- -- -- -- -- -- Total Inflow Volume 531,665 505,082 -- 927,384 881,015 -- 237,851 225,958 -- -- -- -- -- -- -- -- -- -- Percent Volume Reduced 5% 20% -- 5% 20% -- 5% 20% -- -- -- -- -- -- -- -- -- -- Inflow Nitrogen EMC (mg /L) 1.35 1.01 -- 1.24 1.01 -- 1.26 1.01 -- -- -- -- -- -- -- -- -- -- Total Inflow Nitrogen (Ib /ac /yr) 4.90 3.61 -- 7.98 6.30 -- 7.10 5.53 -- -- -- -- -- -- -- -- -- -- Inflow Phosphorus EMC (mg /L) 0.305 0.115 -- 0.321 0.115 -- 0.322 0.115 -- -- -- -- -- -- -- -- -- -- Total Inflow Phosphorus (Ib /ac ) 1.11 0.46 -- 2.06 0.82 -- 1.81 0.72 -- -- -- -- -- -- -- -- -- -- BMP Outflow 3.61 3.28 -- 6.30 5.79 -- 5.53 5.07 -- -- -- -- -- -- -- -- -- -- Nitrogen (Ibs /ac /yr) BMP Outflow Phosphorus (Ibs /ac /yr) ' Catchment Outflow Nitrogen EMC (mg /L) 1.19 1.19 1.19 -- -- -- Catchment Outflow Total Nitrogen (Ib/ac ) 3.28 5.79 5.07 -- -- -- Percent Reduction in Nitrogen Load ( %) 23% 19% 20% -- -- -- Catchment Outflow Phosphorus EMC (mg/L) 0.152 0.152 0.152 -- -- -- Catchment Outflow Total Phosphorus(lb /ac /yr) 0.419 0.738 0.647 -- -- -- Percent Reduction in Phosphorus Load ( %) 47% 10% 49% -- -- -- Jordan Lake Developer Nutrient Reporting Form Please complete and submit the following information to the local government permitting your development project to characterize it and assess the need to purchase nutrient offsets. Contact and rule implementation information can be found online at http: / /Dortal.ncdenr.org/ web /wo /os /nos /nutrientoffsetintro. PROJECT INFORMATION (for Jordan Cake) Applicant Name: S T141L K Aw, .a L,1-2- fE N T Project Name: N 6 tar V I S Project Address (if available): Street: City/Town: County: 11)0 r 04n01 lu& G-otr (A,.4-yLfG Date: (mo/d/yr) Project Lat: (decimal degrees) Long: (decimal degrees) _70- 4- Location : Is this Redevelopment? ❑ Yes No Development Type (Please check all that apply) Impervious Cover Commercial �ixed -Use Single Fam. Residential (Pre- Construction) 4.7- ❑ ❑ Industrial Institutional I — ❑ Duplex Residential ❑' Multi -Fam. Residential Impervious Cover ( °k): (Post - Construction) Z9 • Ce JORDAN WATERSHED INFORMATION Small Watershed ID (6 digits): (See next page or online mao.) New Development Load Requirements (See individual rules D (_ 0 / q0 for a full description of nutrient requirements.) Jordan Subwatershed (Please check one) Loading Rate Targets Nitrogen N & Phosphorus (P Offsite Thresholds 6 N Ibs /ac Residential; Upper New Hope 2.2 N Ib /ac /yr 10 N Ibs /ac Commercial 0.82 P Ib /ac /yr (must meet all onsite treatment requirements) ❑ Lower New Hope 4.4 N Ib /ac/yr 0.78 P Ib /ac /yr NUTRIENT OFFSET REQUEST(Must meet the offsite thresholds - see above) Nitrogen Loading / Offset Needs (A) (B) (C) (D) (E) (F) I (G) (H) Untreated Treated Loading Rate Reduction Need Project Offset Delivery State Buy Down Loading Rate Loading Rate Target (lbslaclyr) Size (ac) Duration (yrs) Factor ( °h) Amount (Ibs) (Ibslactyr) (lbslac/yr) (lbstac/yr) B- C D' E` F' G 4.7.7- 3.07 2-.2 0 .g? sf.2 30 0 7579.-7 Phosphorus Loading 1 Offset Needs (A) (B) (C) (D) (E) (F) (G) (H) Untreated Treated Loading Rate Reduction Need Project Offset Delivery State Buy Down Load Rate Load Rate Target (lbslaclyr) Size (ac) Duration (yrs) Factor(96) Amount (Ibs) (lbslaclyr) (lbslaclyr) (lbsiac/yr) B - C D ' E' F ' G o• 3 4 0. 41 o. S2 0 ;4. z 30 a Control of Peak Stormwater Flow (1 year 24 hour design storm) Calculated Predevelopment Peak Flow SS 0 , If Calculated Post Development Peak Flow 614 . f F ow Control Method W I`T- P Authorizing Local Government Name: Staff Name: Staff Email: Phone: Jordan Nutrient Load Reporting Form. September 12, 2012 APPENDIX D PIPE SIZING, GUTTER SPREAD, & HGL CALCULATIONS 1 1® Notes HGL is dependent on tailwater from BAAP; Pipe is o-ring gasketed w/ joints double wrapped in no—oven fi I ter fabc 2 'Upstream structure shal I be single piece pre- cast, fitted with A Lock neoprene gaskets cast into manhole wal 'Inlet shal I have 2 1 coal depression. Intensity show in this table is based on a time of concentration �c) of 5 minutes 'Al RCP pipe is Class III unless otheriwse noted. 'Gutter spread shown in this table is based on the 2 yr storm intensity (4.00 inkhr) 'Yard Inlet (YI) rim elev is @ top of grate. Flared End Section (FE) CULVERT SUMMARY Project Name Indian Wells Subdivisic Bohler Project # NCR142011 Drainage Area (Ac.) 127.0 Design Frequency (yr.) 25 Design Discharge (cfs) 550.60 Design H.W. Elevation (ft.) 303.48 Q100 Discharge (cfs) 710.50 Q100 H.W. Elevation (ft.) 306.01 12'X 6' Upstream Invert (ft.) 295.40 12'X 6' Downstream Invert (ft.)i 1 291.60 Note: The culvert configuration is a12' x 6' RC Box Culvert 130 LF @ 2.92 % located in the channel with a 1' bury for aquatic passage. The roadway does NOT overtop in the 100 - year storm. APPENDIX E DISSIPATOR SIZING CALCULATIONS DISSIPATOR SUMMARY Indian Wells Subdivision Bohler Project # NCR142011 LOCATION PIPE SIZE START WIDTH END WIDTH APRON LENGTH STONE CLASS THICKNESS FE 100 30" 7.5' 10.5' 8' B 15" FE 150 30" 7.5' 10.5' 8' B 15" BMP #1 OUTLET 15" 3.8' 13.3' 12' B 15" FE 200 18" 4.5' 9.5' 8' B 15" FE 250 30" 7.5' 10.5' 8' B 15" BMP #2 OULET 15" 3.8' 13.3' 12' B 15" FE 300 36" 9.0' 31.0' 12' B 18" BMP #1 OUTLET 15" 3.8' 13.3' 12' B 15" ALL RIP -RAP DISSIPATORS SHALL BE UNDERLINED WITH FILTER FABRIC PER A GEOTECHNICAL ENGINEER'S RECCOMENDATION. User Input Data Calculated Value Reference Data Designed By: LML Date: 2014.05.08 Checked By: Company: Bohler Engineering NC Project Name: Indian Wells Subdivision Project No.: NCR 142011 Site Location (City /Town) Cary Culvert Id. BMP 1 Outlet Total Drainage Area (acres) NA Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe_ If the tailwater depth is less than half the outlet pipe diameter, it is classified minimum tailwater condition. If it is greater than half the pipe diameter_ it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum /Maximum tailwater? Discharge (cfs) Velocity (ft. /s) 15 0 Min TW (Fig. 8.06a) 0.7 10.9 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b, and determine d50 riprap size and minimLUn apron length (Q. The d50 size is the median stone size in a well- graded riprap apron. Step 3. Determine apron width at the pipe outlet, the apron shape, and the apron width at the outlet end from the same figure used in Step 2_ Riprap d50, (ft.) Minimum apron length, La (ft.) Apron width at pipe outlet (ft.) Apron shape Minimum TW Maximum TW Figure 8.06a Figure 8.06b 0.6 12 3.75 3.75 Trapezoid Apron width at outlet end (ft.) 13.25 1.25 Step d. Determine the maximum stone diameter dm,x = 1.5 x d5, Minimum TW Max Stone Diameter, dmax (ft.) 0.9 Step 5. Deternne the apron thickness - Apron thickness = Apron Thickness(ft.) Minimum TW 1.35 Maximum TW 0 Maximum TW 0 Step 6. Fit the riprap apron to the site by making it level for the nnirnilnnrm length, La_ from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured_ Beep the apron as straight as possible and align it with the flogs of the receiving streainn. Make any necessan• ahgiunent bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may • require lining of the entire channel cross section to assure stabihty. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessan (Appeildix 5.05). NNliere overfills exist at pipe outlets or flows are excessive, a plunge pool should be considered, see page 8.06.8. Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) 4 3 Q 2 N a a 1 v a.� a totO Curves may not be extrapolated Figure 8.06& Design of outlet protecfton protection Mom a round pipe flowtn0 lull. niournurn Ltdwater condition (T. c 0.5 dameter) 1$ r I e_,,p @ 2 0 7 '7e 0,-7 c.fs e 10,) Fr'S V 5 e I Z L.-" w( J-5.0= t: I b — V S+s ,t.t►'� = ''S tr►1 i N R.er. 11.4503 5.063 t Outlet W 00 a t pipe diameter .. LA 0. 5DO �,. • 60 r ldlt� .iiN P�rlll4 t • ,tl��IPN rl �rtii�lln rary I Ian 11q 9 •: � IUrN �r I :Pr jplINU ' {ItIlIlNlt !I I 1 , � r I�Mi�n�µnH�� i •.. i MEN AEI 4 3 Q 2 N a a 1 v a.� a totO Curves may not be extrapolated Figure 8.06& Design of outlet protecfton protection Mom a round pipe flowtn0 lull. niournurn Ltdwater condition (T. c 0.5 dameter) 1$ r I e_,,p @ 2 0 7 '7e 0,-7 c.fs e 10,) Fr'S V 5 e I Z L.-" w( J-5.0= t: I b — V S+s ,t.t►'� = ''S tr►1 i N R.er. 11.4503 5.063 User Input Data Calculated Value Reference Data Designed By: LML Date: 2014.05.08 Checked By: Company: Bohler Engineering NC Project Name: Indian Wells Subdivision Project No.: NCR 142011 Site Location (City /Town) Cary Culvert Id. BMP 2 Outlet Total Drainage Area (acres) NA Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe_ If the tailwater depth is less than half the outlet pipe diameter, it is classified minimum tailwater condition. If it is greater than half the pipe diameter_ it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum /Maximum tailwater? Discharge (cfs) Velocity (ft. /s) 15 0 Min TW (Fig. 8.06a) 0.5 11.6 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b, and determine d50 riprap size and minimLUn apron length (Q. The d50 size is the median stone size in a well- graded riprap apron. Step 3. Determine apron width at the pipe outlet, the apron shape, and the apron width at the outlet end from the same figure used in Step 2_ Riprap d50, (ft.) Minimum apron length, La (ft.) Apron width at pipe outlet (ft.) Apron shape Minimum TW Maximum TW Figure 8.06a Figure 8.06b 0.6 12 3.75 3.75 Trapezoid Apron width at outlet end (ft.) 13.25 1.25 Step d. Determine the maximum stone diameter dm,x = 1.5 x d5, Minimum TW Max Stone Diameter, dmax (ft.) 0.9 Step 5. Deternne the apron thickness - Apron thickness = Apron Thickness(ft.) Minimum TW 1.35 Maximum TW 0 Maximum TW 0 Step 6. Fit the riprap apron to the site by making it level for the nnirnilnnrm length, La_ from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured_ Beep the apron as straight as possible and align it with the flogs of the receiving streainn. Make any necessan• ahgiunent bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may • require lining of the entire channel cross section to assure stabihty. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessan (Appeildix 5.05). NNliere overfills exist at pipe outlets or flows are excessive, a plunge pool should be considered, see page 8.06.8. 15 OAP T Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) 1 III ,,II 111 � k 1 , 1 IIIY 1 ',.��� � • ���j Y 1 Ildln NNI • � r��� • W „11111 +1����Afff g1III Y I 1 !' �et,I II IIY ff I� ■IIY.�1� .I�.JNI� .+� II IIM N Unlltllll - ! Ir IN 1 IW '� 11� ��1 ■111, I 11 11 111 Discharge (Olsec) Curves may not be extrapolated. Figure 8.06a Design of outlet proWaxon ptotecbon from a round pipe flowing lull, muurnum tallwator condition (T„ c 05 diameter) S ,t P- CP (2- 2.33io O.Sc�s (r Il.lo t=1': USrL IZI t0n.a so` S1 --� VSfc C Sb w,IN, Raw, L 93 8.06.3 User Input Data Calculated Value Reference Data Designed By: LML Date: 2014.05.08 Checked By: Company: Bohler Engineering NC Project Name: Indian Wells Subdivision Project No.: NCR 142011 Site Location (City /Town) Cary Culvert Id. FE 100 Total Drainage Area (acres) NA Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe_ If the tailwater depth is less than half the outlet pipe diameter, it is classified minimum tailwater condition. If it is greater than half the pipe diameter_ it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum /Maximum tailwater? Discharge (cfs) Velocity (ft. /s) 30 0 Min TW (Fig. 8.06a) 20.2 2.6 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b, and determine d50 riprap size and minimLUn apron length (Q. The d50 size is the median stone size in a well- graded riprap apron. Step 3. Determine apron width at the pipe outlet, the apron shape, and the apron width at the outlet end from the same figure used in Step 2_ Riprap d50, (ft.) Minimum apron length, La (ft.) Apron width at pipe outlet (ft.) Apron shape Minimum TW Maximum TW Figure 8.06a Figure 8.06b 0.6 8 7.5 7.5 Trapezoid Apron width at outlet end (ft.) 10.5 2.5 Step d. Determine the maximum stone diameter_ dm,x = 1.5 x d5, Minimum TW Max Stone Diameter, dmax (ft.) 0.9 Step 5. Deternne the apron thickness - Apron thickness = Apron Thickness(ft.) Minimum TW 1.35 Maximum TW 0 Maximum TW 0 Step 6. Fit the riprap apron to the site by making it level for the nnirnilnnrm length, La_ from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured_ Beep the apron as straight as possible and align it with the flogs of the receiving streainn. Make any necessan• ahgiunent bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may • require lining of the entire channel cross section to assure stabihty. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessan (Appeildix 5.05). NNliere overfills exist at pipe outlets or flows are excessive, a plunge pool should be considered, see page 8.06.8. Figure 8.86a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) 1 -5111,.11{ t�uulflN I � � liin uutll Itt • N ./� ,Alit K I nl n,•rrr W Ingo j1t1���Irru � pfhll 1 ' ��;r •� I'll , III r�l nnln 1 1 III II41r fl IIMIIIIM M�.�1.�1M� M' U4tt I11 I I�I�I'I�I' I •v'� �� 1 Illflr 1 s" i I1111 it :�F,• I p .I Fit WIN �•a. ml � NI� �IIIIIIIIIIII � Jvttal 1 hl 11 I1 t141t IIHtl lltll ♦ � ttl" -. NIM 1 I II� P!F ^ �• III& -� •� .M.Ij{f �/h�,IG.�i�N 1111 ll 111 lltl • � ,11� unli Curves may not be extrapolated Figure 8.06& Dosrgn of outk,t protea.on protection Iron a round pipe flowing full, mn.mum tallwater condition (T,,,, .c 0.5 dameler) So" 2cp @ o. /0% 2a.Z IFS @ 2.to FPS —* Pill IS Sv6wFrt1.c;4 USk 81 L���. Gam► � r> Rex-. 12 93 8.063 User Input Data Calculated Value Reference Data Designed By: LML Date: 2014.05.08 Checked By: Company: Bohler Engineering NC Project Name: Indian Wells Subdivision Project No.: NCR 142011 Site Location (City /Town) Cary Culvert Id. FE 150 Total Drainage Area (acres) NA Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe_ If the tailwater depth is less than half the outlet pipe diameter, it is classified minimum tailwater condition. If it is greater than half the pipe diameter_ it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum /Maximum tailwater? Discharge (cfs) Velocity (ft. /s) 30 0 Min TW (Fig. 8.06a) 22.1 18.3 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b, and determine d50 riprap size and minimLUn apron length (Q. The d50 size is the median stone size in a well- graded riprap apron. Step 3. Determine apron width at the pipe outlet, the apron shape, and the apron width at the outlet end from the same figure used in Step 2_ Riprap d50, (ft.) Minimum apron length, La (ft.) Apron width at pipe outlet (ft.) Apron shape Minimum TW Maximum TW Figure 8.06a Figure 8.06b 0.6 8 7.5 7.5 Trapezoid Apron width at outlet end (ft.) 10.5 2.5 Step d. Determine the maximum stone diameter_ dm,x = 1.5 x d5, Minimum TW Max Stone Diameter, dmax (ft.) 0.9 Step 5. Deternne the apron thickness - Apron thickness = Apron Thickness(ft.) Minimum TW 1.35 Maximum TW 0 Maximum TW 0 Step 6. Fit the riprap apron to the site by making it level for the nnirnilnnrm length, La_ from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured_ Beep the apron as straight as possible and align it with the flogs of the receiving streainn. Make any necessan• ahgiunent bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may • require lining of the entire channel cross section to assure stabihty. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessan (Appeildix 5.05). NNliere overfills exist at pipe outlets or flows are excessive, a plunge pool should be considered, see page 8.06.8. Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) / • 1. •1 �I1/ Milo �1' t� IIYIIIN 1' I 110110 ph .1 I}! IIIN tll 4 1 I'.N 1} If1�41Mq U11111 It �� w. 11 Ililll .. nrr � 1 Jr.. It rlri..1 « r �_I1 /�,11II I M1IEEp {N���11++1p ~ t , B 111 1 1 i 1111 Il lltliilll'MW f r I Vta IOM11n �1 11n 1 nfunnN 111 fl tin No I�{� Ipp} 111111 rML . 1111 ` (N I UYI It N Irl Curves may not be extrapolated Figure 8.06a Design of ouriet protertron protection 11om a round pipe flowing full. minimum to lwater conchtlon (T,. < 0 5 damelefr 3d'1 & LIO 22.1 cK 1 �, >�+s —� P•�� is SvFSw.ri n cIG+� �JSZ B" lo+JCn G1 �`SS 3 Fev.1! 193 8.06.3 User Input Data Calculated Value Reference Data Designed By: LML Date: 2014.05.08 Checked By: Company: Bohler Engineering NC Project Name: Indian Wells Subdivision Project No.: NCR 142011 Site Location (City /Town) Cary Culvert Id. FE 200 Total Drainage Area (acres) NA Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe_ If the tailwater depth is less than half the outlet pipe diameter, it is classified minimum tailwater condition. If it is greater than half the pipe diameter_ it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum /Maximum tailwater? Discharge (cfs) Velocity (ft. /s) 18 0 Min TW (Fig. 8.06a) 8.6 21.7 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b, and determine d50 riprap size and minimLUn apron length (Q. The d50 size is the median stone size in a well- graded riprap apron. Step 3. Determine apron width at the pipe outlet, the apron shape, and the apron width at the outlet end from the same figure used in Step 2_ Riprap d50, (ft.) Minimum apron length, La (ft.) Apron width at pipe outlet (ft.) Apron shape Minimum TW Maximum TW Figure 8.06a Figure 8.06b 0.6 8 4.5 4.5 Trapezoid Apron width at outlet end (ft.) 9.5 1.5 Step d. Determine the maximum stone diameter_ dm,x = 1.5 x d5, Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.9 0 Step 5. Deternne the apron thickness - Apron thickness = Minimum TW Maximum TW Apron Thickness(ft.) 1.35 0 Step 6. Fit the riprap apron to the site by making it level for the nnirnilnnrm length, La_ from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured_ Beep the apron as straight as possible and align it with the flogs of the receiving streainn. Make any necessan• ahgiunent bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may • require lining of the entire channel cross section to assure stabihty. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessan (Appeildix 5.05). NNliere overfills exist at pipe outlets or flows are excessive, a plunge pool should be considered, see page 8.06.8. FF zoo Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) 3 0 Outlet W • Do ' La pipe 1 drarneter Mo) a i w r O.SOa IPI t00 dP o k PQ 60 V0o 50 IM Discharge (h3 /sec) N CD 2 N Cn a 1? II I O La 1000 Curves may not be extrapolated. Figure 8.06a Des+gn of oulUtt protecl*n proWCIoon Irom a round pApe llowing full, m nrmum tadvmwr conditron (T. < 0 5 Oameter) 8" P'o Q, -1 .11 `7, j?jo r-r5 Q. Z1 FPS r'a 15 Svfsror,W -Wtb U s &._ 8 r 1,...v (- G -wS s ►3 Kra. 12 93 8.06.3 User Input Data Calculated Value Reference Data Designed By: LML Date: 2014.05.08 Checked By: Company: Bohler Engineering NC Project Name: Indian Wells Subdivision Project No.: NCR 142011 Site Location (City /Town) Cary Culvert Id. FE 250 Total Drainage Area (acres) NA Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe_ If the tailwater depth is less than half the outlet pipe diameter, it is classified minimum tailwater condition. If it is greater than half the pipe diameter_ it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum /Maximum tailwater? Discharge (cfs) Velocity (ft. /s) 30 0 Min TW (Fig. 8.06a) 0.08 3.69 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b, and determine d50 riprap size and minimLUn apron length (Q. The d50 size is the median stone size in a well- graded riprap apron. Step 3. Determine apron width at the pipe outlet, the apron shape, and the apron width at the outlet end from the same figure used in Step 2_ Riprap d50, (ft.) Minimum apron length, La (ft.) Apron width at pipe outlet (ft.) Apron shape Minimum TW Maximum TW Figure 8.06a Figure 8.06b 0.6 8 7.5 7.5 Trapezoid Apron width at outlet end (ft.) 10.5 2.5 Step d. Determine the maximum stone diameter_ dm,x = 1.5 x d5, Minimum TW Max Stone Diameter, dmax (ft.) 0.9 Step 5. Deternne the apron thickness - Apron thickness = Apron Thickness(ft.) Minimum TW 1.35 Maximum TW 0 Maximum TW 0 Step 6. Fit the riprap apron to the site by making it level for the nnirnilnnrm length, La_ from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured_ Beep the apron as straight as possible and align it with the flogs of the receiving streainn. Make any necessan• ahgiunent bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may • require lining of the entire channel cross section to assure stabihty. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessan (Appeildix 5.05). NNliere overfills exist at pipe outlets or flows are excessive, a plunge pool should be considered, see page 8.06.8. FE z sp Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) r J�p 1.1' •P TfB�. •� t WIN, "' p111111 Q I Illtl glll1611 J�• 11�� IsM :I!!'"1!IikII+F�j$jj It+ �� IIIIIgni�Me IM »Ilii11 "1lll�i�'IHlllflgl IU �• I• ' I puupfl NII Iplgnigw . , .in » » i glllMki N nA r10 ��11 I ii1133wNl, Mi1VNll1 I�{ HIM ��' E nnI �IgMI��IMIJ liI � 11 1 III Curves may not be extrapolated. Figure 8.06a Design of outlet protecbon proter.14011 from a rcur:d pipe flowing lull. miranum talhvatur condition (T.. < 0 S darrmeter) 1 � • —1 e-f: l2— 0 B P S --+■j !'r ►'fi I � iSlw � .., r,�+J� Us.A. cS'I Gary+ Clr'Sf Rev. 12 93 8.06.3 User Input Data Calculated Value Reference Data Designed By: LML Date: 2014.05.08 Checked By: Company: Bohler Engineering NC Project Name: Indian Wells Subdivision Project No.: NCR 142011 Site Location (City /Town) Cary Culvert Id. FE 300 Total Drainage Area (acres) 20 Step 1. Determine the tailwater depth from channel characteristics below the pipe outlet for the design capacity of the pipe_ If the tailwater depth is less than half the outlet pipe diameter, it is classified minimum tailwater condition. If it is greater than half the pipe diameter_ it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum /Maximum tailwater? Discharge (cfs) Velocity (ft. /s) 36 0 Min TW (Fig. 8.06a) 65 20.2 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b, and determine d50 riprap size and minimLUn apron length (Q. The d50 size is the median stone size in a well- graded riprap apron. Step 3. Determine apron width at the pipe outlet, the apron shape, and the apron width at the outlet end from the same figure used in Step 2_ Riprap d50, (ft.) Minimum apron length, La (ft.) Apron width at pipe outlet (ft.) Apron shape Minimum TW Maximum TW Figure 8.06a Figure 8.06b 0.6 28 9 9 Trapezoid Apron width at outlet end (ft.) 31 3 Step d. Determine the maximum stone diameter_ dm,x = 1.5 x d5, Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.9 0 Step 5. Deternne the apron thickness - Apron thickness = Minimum TW Maximum TW Apron Thickness(ft.) 1.35 0 Step 6. Fit the riprap apron to the site by making it level for the nnirnilnnrm length, La_ from Figure 8.06a or Figure 8.06b. Extend the apron farther downstream and along channel banks until stability is assured_ Beep the apron as straight as possible and align it with the flogs of the receiving streainn. Make any necessan• ahgiunent bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may • require lining of the entire channel cross section to assure stabihty. It may be necessary to increase the size of riprap where protection of the channel side slopes is necessan (Appeildix 5.05). NNliere overfills exist at pipe outlets or flows are excessive, a plunge pool should be considered, see page 8.06.8. Ff- 300 \ Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) ■ 1� r P I 1 e r,•• �,y��1, II INN nm u u NN 1 INBiih � 111 I •�i.�I�i1��,'/I',+� ' � ®�r�� n I h °I1!+ii +u l i t 11Nltllln ...nlnr.'•:. ..� . .Or�'� �I {II I'tlnuu. .. •' r'l 11 PAIN- • �� �� IIII�1 °'..nHlt �// �I it�ItlIIIILINM � l� IIl lllpllltlnn�i��l l�llllt+IN111MIY '� �/ ■1I1I1III Ullllltlll 1iYi IMMMMMM 11111UINIYYIIM 1 MIIlIIIII IIIII IIIL 1l11IIIII IItIi IIIY � ,. ���� ��. �/� NIIII 1 1 UIRn INI Kill N gllU�l�l,l�,ltlll�� j i�t�`Ntt'InNl �� �•.Nl� ICIe� t1�1 1 1 1 11 1 111 Curves may not be extrapolated. Figure 8.06a D"gn of outset protection protectwn Irom a round pipe Ilpwlng full, minimum tallwater comStlon (T. < 0 5 ciamete:ri 1�4L P Ig Z.'52 -2. 2 Z0.2 FPS USA 7S+' Lv ,,q Gtw•.�� Rev. 1.93 8.06.3 APPENDIX F ENVIRONMENTAL LETTERS & MAPS April 23, 2014 Mr. Steven Ball Soil and Environmental Consultants, PA 8412 Falls of the Neuse Rd, Suite 104 Raleigh, NC 27615 WATER RESOURCES DEPARTMENT Subject: Jordan Lake Watershed - Urban Transition Buffer Rules Indian Wells Sites (6 properties) Real ID #: 0081386, 0084257, 0084064, 0150628, 0084259, and 0084258 (7008, 7016, 7017, 7020, 7029, and 7032 Indian Wells Rd.) TCRB 14 -010 Dear Mr. Ball: The site location map and other information that was provided, allowed a determination to be made as to whether or not the referenced site would require compliance with The Town of Cary Urban Transition Buffer (UTB) Rules. This project, as referenced by the Town of Cary as TCRB 14 -010, includes features as depicted on the attached maps. The table below summarizes the stream determinations made in a site visit on April 14, 2014. This determination is valid until April 14, 2019. Reference ID I USGS Ma 100 Ft. Buffer Soil Survey Ma 50 Ft. Buffer Not Subject A x* B x (Start at Flag S02) C x* Pond C x* D x E x* *Feature subjectivity not contested. Si ly, 1 �44�1 n Patterson Town of Cary Water Resources Department TOWN Ot CARY 318 North Academy Street •Cary, NC 27513•PO Box 8005•Cary, NC 27512 -8005 te1919- 469 -4030 • fax 919- 460 -49359 www.townofeary.org j l� r1 4 - C�RIMMON_Pxwr ,' —��.* � r— .L.J:'�•` � {ter.. ,'! ,\�f 350 J d . a w ,1. Project No. USGS Vicinity Map I 0 1,000 2,000 4,000 12252.W 1 Feet Project Mgr.: Indian Wells Site SB Wake Co., NC Scale: • 1" = 1,000' 2013 Green Level USGS Soil & Environmental Consultants, PA Quadrangle (Portion of 8412 Falls of \clue Road, Suite 104, Raleigh, VC 27615 •Phone: (919) 846 -5900 •Fax: (919) 846 -9467 2014 -02 -11 Cary Quad also Shown) sandccxom Project Mgr.: SB Indian Wells Site Wake Co., NC Scale: 1 " = 500' 1970 Printed Wake County 2014 -02 -11 Soil Survey, Map Sheet 45 8412 Falls of \came Road, Suite 104, Raleigh, NC 27615 • Phone: (919) 846 -5900 • Fax: (919) 846 -9467 sandec.com NC Division of Water Quality - Methodology for Identification of Intermittent and Perennial Streams and Their Origins v. 4.11 NC DWO Stream Identification Form Version 4.11 Date: 3 Z / Project/Site: -11 !�6 Latitude: Evaluator: County: ua Longitude: Total Points: 3 2 Stream is at least intermittent /L aj Stream Dete (circle one) Other if 2 19 or perennial If 2 30 7 E hemeral term tte Perennial p e. Quad Name: g• A. Geomorphology (Subtotal = ) 18 Continuity of channel bed and bank Absent 0 Weak 1 Moderate Strong 3 2. Sinuosity of channel along thalweg 0 3 2 3 3. In- channel structure: ex. riffle -pool, step -pool, ripple-pool sequence 0 1 (D2 3 4. Particle size of stream substrate 0 3 2 3 5. Active /relict floodplain 0 2 2 3 6. Depositional bars or benches 0 1 (2 3 7. Recent alluvial deposits 0 0> 2 3 8. Headcuts 0 1 Q 3 9. Grade control 0 0.5 0 1.5 10. Natural valley 0 0.5 0 1.5 11. Second or greater order channel No 0 Yes = 3 MURU911 aacnes are not raved; see disco ions in manual B. Hydrology (Subtotal= ) 12. Presence of Baseflow 0 1 3 13. Iron oxidizing bacteria 0 3 3 14. Leaf litter 1.5 20. Macrobenthos (note diversity and abundance) 0.5 0 15. Sediment on plants or debris 0 3 1 1.5 16. Organic debris lines or piles 0 2 1 1.5 17. Soil -based evidence of high water table? No = 0 Yes - C. 1510109y (Subtotal = .c. ) 18. Fibrous roots in streambed 3 1 0 19. Rooted upland plants in streambed 3 1 0 20. Macrobenthos (note diversity and abundance) 2 3 21. Aquatic Mollusks 1 2 3 22. Fish 0.5 1 1.5 23. Crayfish 0 0> 1 1.5 24. Amphibians 0 Q 1 1.5 25. Algae 0 01) 1 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other 'perennial streams may also be identfed using other methods. See p. 35 of manual. Notes: Sketch: 41 �14dluu Pt"ILP) NC Division of Water Quality - Methodology for Identification of Intermittent and Perennial Streams and Their Origins v. 4.11 NC DWO Stream Identification Form Version 4.11 Date: 7 I Project/Site: �i/tR ` Latitude: Evaluator: County: f% Longitude: Total Points: 1 2 Stream is at least intermittent St Determination (circle one) Other if s i9 or rennia! if t 30` p hem I Intermittent Perennial e. Quad Name: 9• A. Geomorphology (subtotal= 18 Continuity of channel bed and bank Absent 0 Weak 1 Moderate 2 Strong 3 2. Sinuosity of channel along thalweg 19. Rooted upland plants in streambed 1 2 3 3. In- channel structure: ex. riffle -pool, step -pool, ripple-pool sequence 1.5 1 2 3 4. Particle size of stream substrate m 1 2 3 5. Active /relict floodplain W 1 2 3 6. Depositional bars or benches 0 Yes = 3 2 3 7. Recent alluvial deposits 1 2 3 8. Headcuts & 1 2 3 9. Grade control 1.5 0.5 1 1.5 10. Natural valley 0 1 0.5 1 11. Second or greater order channel No Yes = 3 niuncarai UILUMs are not raiea; see aiscu ons in manual B. Hvdrology (Subtotal = 1- 1 12. Presence of Baseflow (i� 1 2 3 13. Iron oxidizing bacteria 19. Rooted upland plants in streambed 1 2 3 14. Leaf litter 1.5 1 0 15. Sediment on plants or debris 0 3 1 1.5 16. Organic debris lines or piles 0 2 1 1.5 17. Soil -based evidence of high water table? No Yes = 3 C. Blol Subtotal = Ib- 18. Fibrous roots in streambed 3 2 0 19. Rooted upland plants in streambed 3 2 0 20. Macrobenthos (note diversity and abundance) 1 2 3 21. Aquatic Mollusks 1 2 3 22. Fish 0.5 1 1.5 23. Crayfish 0.5 1 1 1.5 24. Amphibians 0 0.5 1 1.5 25. Algae 0 0.5 1 1.5 26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other `perennial streams may also be identified using other methods. See p. 35 of manual. Notes: Sketch: 41 APPENDIX G O & M MANUALS WET DETENTION BASIN OPERATION AND MAINTENANCE AGREEMENT — BMP #1 INDIAN WELLS SUBDIVISION The wet detention basin system is defined as the wet detention basin, pretreatment including forebays, and the vegetated filter if one is provided. Maintenance activities shall be performed as follows: After every significant runoff producing rainfall event and at least monthly: a. Inspect the wet detention basin system for sediment accumulation, erosion, trash accumulation, vegetated cover, and general condition. b. Check and clear the orifice of any obstructions to ensure that drawdown of the temporary pool occurs within 2 to 5 days as designed. 2. Repair eroded areas immediately, re -seed as necessary to maintain good vegetative cover, mow vegetative cover to maintain a maximum height of six inches, and remove trash as needed. 3. Inspect and repair the collection system (i.e. catch basins, piping, swales, riprap, etc.) quarterly to maintain proper functioning. 4. Remove accumulated sediment from the wet detention basin system semi - annually or when depth is reduced to 75% of the original design depth (see diagram below). Removed sediment shall be disposed of in an appropriate manner and shall be handled in a manner that will not adversely impact water quality (i.e. stockpiling near a wet detention basin or stream, etc.). The measuring device used to determine the sediment elevation shall be such that it will give an accurate depth reading and not readily penetrate into accumulated sediments. BASIN DIAGRAM Permanent Pool Elevation 308.50 Sediment Removal El. 305.00 7 ------- - - - - -- - Sediment Removal Elevation 305.00 75% Bottom E�vat i on 304.00 5% ------------------------ - - - - -- - - - -- FOREBAY MAIN POND 5. Remove cattails and other indigenous wetland plants when they cover 50% of the basin surface. These plants shall be encouraged to grow along the vegetated shelf and forebay berm. 6. If the basin must be drained for an emergency or to perform maintenance, the flushing of sediment through the emergency drain shall be minimized to the maximum extent practical. 7. All components of the wet detention basin system shall be maintained in good working order. 8. Level spreaders or other structures that provide diffuse flow shall be maintained every six months. All accumulated sediment and debris shall be removed from the structure, and a level elevation shall be maintained across the entire flow spreading structure. Any down gradient erosion must be repaired and /or replanted as necessary. Page 1 of 2 I acknowledge and agree by my signature below that I am responsible for the performance of the seven maintenance procedures listed above. I agree to notify the Town of Cary of any problems with the system or prior to any changes to the system or responsible party. Print name: Title: Address: Phone: Signature: Date: Note: The legally responsible party should not be a homeowners association unless more than 50% of the lots have been sold and a resident of the subdivision has been named the president. I, , a Notary Public for the State of County of , do hereby certify that personally appeared before me this day of , and acknowledge the due execution of the forgoing wet [wetland] detention basin maintenance requirements. Witness my hand and official seal, SEAL My commission expires Page 2 of 2 WET DETENTION BASIN OPERATION AND MAINTENANCE AGREEMENT — BMP #2 INDIAN WELLS SUBDIVISION The wet detention basin system is defined as the wet detention basin, pretreatment including forebays, and the vegetated filter if one is provided. Maintenance activities shall be performed as follows: After every significant runoff producing rainfall event and at least monthly: a. Inspect the wet detention basin system for sediment accumulation, erosion, trash accumulation, vegetated cover, and general condition. b. Check and clear the orifice of any obstructions to ensure that drawdown of the temporary pool occurs within 2 to 5 days as designed. 2. Repair eroded areas immediately, re -seed as necessary to maintain good vegetative cover, mow vegetative cover to maintain a maximum height of six inches, and remove trash as needed. 3. Inspect and repair the collection system (i.e. catch basins, piping, swales, riprap, etc.) quarterly to maintain proper functioning. 4. Remove accumulated sediment from the wet detention basin system semi - annually or when depth is reduced to 75% of the original design depth (see diagram below). Removed sediment shall be disposed of in an appropriate manner and shall be handled in a manner that will not adversely impact water quality (i.e. stockpiling near a wet detention basin or stream, etc.). The measuring device used to determine the sediment elevation shall be such that it will give an accurate depth reading and not readily penetrate into accumulated sediments. BASIN DIAGRAM Permanent Pool Elevation 310.50 Sediment Removal El. 307.00 7 ------- - - - - -- - Sediment Removal Elevation 307.00 75% Bottom E�vat i on 306.00 5% ------------------------ - - - - -- - - - -- FOREBAY MAIN POND 5. Remove cattails and other indigenous wetland plants when they cover 50% of the basin surface. These plants shall be encouraged to grow along the vegetated shelf and forebay berm. 6. If the basin must be drained for an emergency or to perform maintenance, the flushing of sediment through the emergency drain shall be minimized to the maximum extent practical. 7. All components of the wet detention basin system shall be maintained in good working order. 8. Level spreaders or other structures that provide diffuse flow shall be maintained every six months. All accumulated sediment and debris shall be removed from the structure, and a level elevation shall be maintained across the entire flow spreading structure. Any down gradient erosion must be repaired and /or replanted as necessary. Page 1 of 2 I acknowledge and agree by my signature below that I am responsible for the performance of the seven maintenance procedures listed above. I agree to notify the Town of Cary of any problems with the system or prior to any changes to the system or responsible party. Print name: Title: Address: Phone: Signature: Date: Note: The legally responsible party should not be a homeowners association unless more than 50% of the lots have been sold and a resident of the subdivision has been named the president. I, , a Notary Public for the State of County of , do hereby certify that personally appeared before me this day of , and acknowledge the due execution of the forgoing wet [wetland] detention basin maintenance requirements. Witness my hand and official seal, SEAL My commission expires Page 2 of 2 WET DETENTION BASIN OPERATION AND MAINTENANCE AGREEMENT — BMP #3 INDIAN WELLS SUBDIVISION The wet detention basin system is defined as the wet detention basin, pretreatment including forebays, and the vegetated filter if one is provided. Maintenance activities shall be performed as follows: After every significant runoff producing rainfall event and at least monthly: a. Inspect the wet detention basin system for sediment accumulation, erosion, trash accumulation, vegetated cover, and general condition. b. Check and clear the orifice of any obstructions to ensure that drawdown of the temporary pool occurs within 2 to 5 days as designed. 2. Repair eroded areas immediately, re -seed as necessary to maintain good vegetative cover, mow vegetative cover to maintain a maximum height of six inches, and remove trash as needed. 3. Inspect and repair the collection system (i.e. catch basins, piping, swales, riprap, etc.) quarterly to maintain proper functioning. 4. Remove accumulated sediment from the wet detention basin system semi - annually or when depth is reduced to 75% of the original design depth (see diagram below). Removed sediment shall be disposed of in an appropriate manner and shall be handled in a manner that will not adversely impact water quality (i.e. stockpiling near a wet detention basin or stream, etc.). The measuring device used to determine the sediment elevation shall be such that it will give an accurate depth reading and not readily penetrate into accumulated sediments. BASIN DIAGRAM Permanent Pool Elevation 321.50 Sediment moval El. 318.7 7 /o Sediment Removal Elevation 318.00 175%- Bottom E ------------ vation 317.75 5% ---------------------- ------- - - - - -- FOREBAY MAIN POND 5. Remove cattails and other indigenous wetland plants when they cover 50% of the basin surface. These plants shall be encouraged to grow along the vegetated shelf and forebay berm. 6. If the basin must be drained for an emergency or to perform maintenance, the flushing of sediment through the emergency drain shall be minimized to the maximum extent practical. 7. All components of the wet detention basin system shall be maintained in good working order. 8. Level spreaders or other structures that provide diffuse flow shall be maintained every six months. All accumulated sediment and debris shall be removed from the structure, and a level elevation shall be maintained across the entire flow spreading structure. Any down gradient erosion must be repaired and /or replanted as necessary. Page 1 of 2 I acknowledge and agree by my signature below that I am responsible for the performance of the seven maintenance procedures listed above. I agree to notify the Town of Cary of any problems with the system or prior to any changes to the system or responsible party. Print name: Title: Address: Phone: Signature: Date: Note: The legally responsible party should not be a homeowners association unless more than 50% of the lots have been sold and a resident of the subdivision has been named the president. I, , a Notary Public for the State of County of , do hereby certify that personally appeared before me this day of , and acknowledge the due execution of the forgoing wet [wetland] detention basin maintenance requirements. Witness my hand and official seal, SEAL My commission expires Page 2 of 2 ENVIRONMENTAL IMPACT MAPS INDIAN WELLS SUBDIVISION CARY, NC VICINITY MAP SCALE: 1" =1000' SHEET INDEX 1 COVER 2 OVERALL IMPACT MAP 3 IMPACT AREA "A" 4 CULVERT SECTION & PROFILE DEVELOPER / OWNER RALEIGH LAND FUND I, LLC 516 N. WEST STREET RALEIGH, NC 27603 ADAM ASHBAUGH, PE, AICP ADAM @LSTARLAND.COM 919.256.1981 H:\ 2014 \NCR142011 \DRAWINGS\PINI SEIS\IW= MAPS\140715 IMPACT MAPSDWG PRIMED BY: MROSELU 8.04.14 0 4:45 PM LAST SAVED BY: MRO SITE DATA Address: 7008, 7016, 7020, 7032, 7017, 7029, 7041 INDIAN LTME- ENVIRONMENTAL IMPACT MAPS INDIAN WELLS SUBDIVISION CARY, NC COVER SHEET D O � � � � TM Shee t 1 of 4 IE N G H N IE IE a H iq G DAIS CAD ID: PRQIECf NUMBER: NC, PLLC NCBELS P 1132 4011 WESTCHASE BLVD., SUITE 290 00 2014.07.21 1 KRW I NCR142011 PHONE: (919)578- 9000 FAX (919)703 -2665 WELLS ROAD REID#: 0081386, 0084257, 0150628, 0084258, 0084064, 0084259,0084260 PIN #: 0735 -53 -3365, 0735 -53 -1531, 0735 -53 -1126, 0735 -42 -3994, 0735 -52 -3632, 0735 -52 -1513, 0735 -42 -6432 Site Area: (ac.) 3.09, 2.50, 3.04, 11.10, 3.30, 6.72, 4.47: Total = 34.22 Zoning: R8 -CU Watershed: JORDAN LAKE (UPPER NEW HOPE) LTME- ENVIRONMENTAL IMPACT MAPS INDIAN WELLS SUBDIVISION CARY, NC COVER SHEET D O � � � � TM Shee t 1 of 4 IE N G H N IE IE a H iq G DAIS CAD ID: PRQIECf NUMBER: NC, PLLC NCBELS P 1132 4011 WESTCHASE BLVD., SUITE 290 00 2014.07.21 1 KRW I NCR142011 PHONE: (919)578- 9000 FAX (919)703 -2665 / H:\ 2014 \NCR142011 \DRAWNG9\PUN SDS\IMPACf WPS \140715 NVO WPS.BNG PPoNIED 8f: IROSEW 8.04.14 0 4:44 PM usr SAVED Ili: MRo J LOCATION IMPACT TYPE STREAM IMPACT WETLANDS IMPACT (SF) BUFFER ZONE IMPACTS (SF) LF SF ZONE I ZONE 2 A PERMANENT (ROAD CULVERT) 120 700 1,757 7897 6105 A TEMPORARY (ROAD CULVERT) 20 204 9 137 0 A TEMPORARY (UTILITY) 0 0 0 168 1199 Z (f] O 1vN Q m0 aw (V'1 ww 0 U z wo Fm �C7 kw � wLj F4 UO z >1 w -j so H J Q a m F 1w: �_ it z a W o 0 z�O ZUU9 y Z U ♦��♦ 0a a Wpm ao �w z LL� ° Z w F Qo m- :5 Cz`n aav >- ww zwu}ZQ�� -ay W W W Q 8 F- QUFofZ zJ N w> V O = O J = n �. W O W Q 'ao U z �mo!mmW z ao Oa 0 d lz w Ua o 1.w Q > z �0w ¢ a .. C7 wzm> - T o-� zgYW, CL =o C7w wc7o!�w zd ZA ¢w >0 w, � �w awww= z`_ a� �zzzd y-w zs �. s AF REVISIONS REV DATE COMMENT BY r, THE FOLLOWING STATES REQUIRE NOTIFICATION BY EXCAVATORS, DESIGNERS, OR ANY PERSON PREPARING TO DISTURB THE EARTH'S SURFACE ANYWHERE IN THE STATE. IN VIRGINIA, MARYLAND, THE DISTRICT OF COLUMBIA, AND DELAWARE CALL - 811 (WV 1- 800 - 245 -4848) (PA 1-800- 242- 1776) (DC 1- 800 - 257 -7777) (VA 1- 800 - 552- 7001) (MD 1-800- 257- 7777) (DE 1 -800- 282 -8555) PROJECT No.: NCR142011 DRAWN BY: MAR CHECKED BY: LML DATE: SCALE: AS NOTED CAD I.D.: MAR PROJECT: INDIAN WELLS SUBDIVISION FOR L STAR MANAGEMENT LOCATION OF SITE INDIAN WELLS ROAD WAKE COUNTY CARY, NC BOH LER E N G I N E E R I N G NC. PLLC NCBELS P -1132 4011 WESTCHASE BLVD., SUITE 290 RALEIGH, NC 27607 Phone: (919) 578 -9000 Fax: (919) 703 -2665 SHEET TITLE: I .1" .e' I . I . SHEET NUMBER: 2 ®f 4 STREAM CROSSING NOTES 1. A TEMPORARY STREAM CROSSING PER TOWN OF CARY DETAIL 04000.11 (3) WILL BE REQUIRED TO ACCESS THE AREA NORTH OF THE MAIN STREAM CHANNEL. CULVERT SHALL BE INSTALLED PER SUMMARY (REFER TO SHEET 4). IF STREAM IS WET AT TIME OF CONSTRUCTION, A TEMPORARY PUMP AROUND SHALL BE USED TO DIVERT FLOW AROUND THE WORK AREA. PUMP SHALL BE DESIGNED TO CARRY NORMAL STREAM FLOW. PUMP AROUND IS ALLOWED A MAXIMUM OF 24 HOURS DURING DRY WEATHER. IF STREAM WORK CANNOT BE COMPLETED IN 24 HOURS, A TEMPORARY CHANNEL LINED WITH FABRIC LINER SIZE APPROPRIATELY TO HANDLE EXPECTED FLOWS WILL BE REQUIRED TO DIVERT STREAM. 2. CHANNEL SHALL BE ESTABLISHED BACK TO EXISTING CROSS SECTION AT DOWNSTREAM END OF CULVERT. w\ i ,77 / / r oF / / 1�4 �7 \ PERMANENT IMPACT AREAS TEMPORARY IMPACT AREAS _ STREAM CHANNEL STREAM CHANNEL / ® ZONE 1 (30) ZONE 1 (30) / ® ZONE 2 (20) ® ZONE 2 (20) ,`{ Q WETLAND 0 WETLAND LOCATION IMPACTTYPE STREAM IMPACT WETLANDS IMPACT(SF) BUFFER ZONE IMPACTS (SF) LF SF ZONE ZONE A PERMANENT (ROAD CULVERT) 120 700 1,757 7897 6105 A TEMPORARY (ROAD CULVERT) 20 204 9 137 0 A TEMPORARY (UTILITY) 0 0 0 168 1199 ol yF 0 H:\ 2014 \NCR142011 \DRAWINGS\PIAN SEIS\IMPACT NAPS\140715 IMPACT MAPS.DWG PRINTED BY: MROSEW &04.14 0 4:44 PM UST SAVED BY: MRO PROJECT NAME ENVIRONMENTAL IMPACT MAPS INDIAN WELLS SUBDIVISION CARY, NC SHEET RU- IMPACT AREA "A "' DD O L � TM Sheet 3 of 4 N G H N E IE R H N (G SCALE DATE CAD IN PROJECT NUMBER: NC, NCBELS,SUT 4011 WESTC TCHASE BLVD., SUITE 290 1° = 40' 2014.07.21 1 KRW NCR142011 PHONE: (919) 578-9000 FAX: (919) 703 -2665 �Op / i EXISTING • a. NV 41 = n .. e . a ` a,. '--1' BURY 12'X6' BOX CULVERT CROSS SECTION N.T.S. LF 12'X6' RCP BOX CULVERT @ 3.53% EXISTING 12'X6' BOX CULVERT PROFILE N.T.S. NOTE: THIS EXHIBIT IS FOR ILLUSTRATIVE PURPOSES ONLY. H:\ 2014 \NCR142011 \DRAWINGS\PIAN SEIS\IMPACT MAPS\140715 IMPACT NOOK PRINTED BY: MROSELU &04.14 0 5:24 PM LAST SAVO BY: MRO PROJECT NAME ENVIRONMENTAL IMPACT MAPS INDIAN WELLS SUBDIVISION CARY. NC SHEET TITLE:- CULVERT SECTION & PROFILE Sheet 4 of 4 SCALE: DATE CAD ID: PROJECT NUMBER: NTS 2014.07.21 1 KRW I NCR142 1p INVERT = 295.5 D O I L �TM IENGHNIEIEmHN(G NC, PLLC NCBELS P -1132 4011 WESTCHASE BLVD., SUITE 290 PHONE: (919) 578 -9000 FAX: (919) 703 -2665