Loading...
HomeMy WebLinkAboutNC0000752_Wasteload Allocation_19881205NPDES DOCIMENT :;CANNING: COVER SHEET NPDES Permit: NC0000752 Roanoke Rapids Mill WWTP Document Type: Permit Issuance (V---Vasteload Allocation Authorization to Construct (AtC) Permit Modification Complete File - Historical Engineering Alternatives (EAA) Correspondence Instream Assessment (67b) Speculative Limits Environmental Assessment (EA) Permit History Document Date: December 5, 1988 This document is printed on rexime paper - ignore any content on time reYerse 1side • DIVISION OF ENVIRONMENTAL MANAGEMENT December 5, 1988 MEMORANDUM TO: Champion WLA file THROUGH: Trevor Clements Randy Dodd FROM: Thomas Stockton SUBJECT: Champion International -Roanoke WLA This memo is an update on the recently completed Champion -Roanoke WLA prompted by questions posed by1r y) Nisely of Champion -Roanoke and several spe- cial interest groups. Champion is planning to m machinery to increase production by 150 tons/day. The maximum daily production rate of the past year was 1500 tons/day and Champion is predicting a maximum daily production rate of 1650 tons/day for the coming year. Production of 1650 tons/day was used to develop the BCT limi- tations for BODS of 9240 lbs/day (40 CFR 430.13, Subpart A). Champion's existing permit was developed based on production of 1256 tons/day which resulted in( h effluent guidelines BODS limit of 6852 lbs/day. It appears Champion's production during the past year exceeded the production assumptions made in development of the existing permit limitations. The Environmental Defense Fund noted a discrepancy between flow rates pre- sented in the permit application and the design capacity in the draft permit. The permit application lists 19.5 mgd as the flow for pipe 001. Subsequent to the submittal of the permit application Champion requested the flow be increased to 28 mgd to provide increase treatment efficiency by reducing the hydraulic level in the stabilization pond. Since the wasteflow is insignificant in compari- son to the minimum release streamflow changes in design capacity do not affect the modeling analysis. 41 ., .. r_ c»p+CC k'. Mr. Nisely noted that the initial DO in the predicted DO profiles with the Champion discharge included was approximately 1 mg/1 lower than background. This proved to be an error in which background deficit was double counted. The cor- rected predicted DO profiles are provided in the attached graphs. The difference is significant however the conclusion is the same: expanded BCT production limits will not protect the DO standard. Standard violations are not predicted at existing permitted loading conditions. Mr. Nisely felt the NBOD loading was too high. Initially, the loading used was based on an incomplete long-term BOD analysis. The assumption was made that all the initial TKN would be converted to NH3 and would result in an oxygen demand. The long-term analysis has since been completed, however, only 20 day nitrogen samples were analyzed. Using the oxidized nitrogen portion to calculate NBOD results in an NBOD loading rate of 3053 lbs/day for this composite sample. This should be considered the minimum NBOD load associated with this composite sample. From monthly total nitrogen data a median total nitrogen of 5.3 mg/1 for the period 11/87-10/88 was calculated. Assuming that all the total nitrogen is composed of TKN (as in the long-term BOD sample) and that all but 1 mg/1 of TKN will result in an oxygen demand (typically the case as noted by Howard Byrant), at 28 mgd the expected NBOD loading rate is 4519 lbs/day ((5.3 - 1.0 mg/1)(4.5)(28 mgd)(8.34)). At the expanded BCT CBOD loadings the predicted DO minimum with NBOD loadings of 3053 and 4519 lbs/day are 4.84 and 4.78, respec- tively. In summary, within a reasonable range of expected NBOD loading DO stan- dard violations are predicted. State of North Carolina Department of Natural Resources and Community Development Division of Environmental Management 512 North Salisbury Street • Raleigh, North Carolina 27611 James G. Martin, Governor R. Paul Wilms S. Thomas Rhodes, Secretary December. 5, 1988.Director Mr. Myrl Nisely Champion International North Roanoke Avenue Roanoke Rapids, NC 27870 Subject: Champion NPDES wasteload allocation Dear Mr. Nisely: Per your request, please find enclosed documentation for the Roanoke River. "Level B" model and a copy of the Division's desktop modeling procedure. Also enclosed is an example of the model output from the wasteload allocation analysis recently performed for Champion's NPDES permit renewal, statistical summaries of Roanoke River ambient data gathered by the Division, and results of a long- term BOD analysis performed by the Division on Champion's effluent. Your observation regarding the initial dissolved oxygen predicted for the Champion existing and expanded loading scenarios was correct. The initial dis- solved oxygen concentration was approximately 1 mg/1 too low due to a double counting of the background dissolved oxygen deficit. The attached figure pre- sents results of a revised analysis. As can be seen the magnitude of the pre- dicted dissolved oxygen sag is significantly reduced, however, the conclusions drawn from .the initial analysis still apply. Dissolved oxygen standard (5 mg/1) violations are predicted at the expanded production BCT loadings. The Division's position will remain that the existing BOD, limit of 6852 lbs/day should apply to future expansions. To address your concerns regarding the initial assumption that all TKN gener- ates an oxygen demand an informal sensitivity analysis of the impact of the NBOD loading rate on dissolved oxygen was performed. Two measurements of the NBOD loading are available, a long-term BOD composite sample collected by the Division in May of 1988 and total nitrogen self -monitoring data submitted by Champion. Using the gain in the oxidized nitrogen from the long term BOD analysis the NBOD loading for this composite sample was estimated as 3053 lbs/day. The median total nitrogen from Champion's self -monitoring data for the past year was esti- mated as 5.3 mg/l. Assuming that all the total nitrogen is composed of TKN (as indicated by the long-term BOD sample) and that all but 1 mg/1 of TKN will result in an oxygen demand (as is typically the case as noted by Divisional per- sonnel) at 28 mgd the expected NBOD loading rate is 4519 lbs/day. The predicted minimum dissolved oxygen at the NBOD loading rates of 3053 and 4519 lbs/day is 4.84 and 4.78 mg/1, respectively. This indicates that within a'reasonable range of anticipated NBOD loading dissolved oxygen standard violations are expected. Pollution Prevention Pays P.O. Box 27687, Raleigh, North Carolina 27611-7687 Telephone 919-733-7015 An Equal Opportunity Affirmative Action Employer The Division does not anticipate that the Roanoke River will be targeted for extensive field studies in the coming year. If you feel assumptions made in the modeling analysis are inappropriate I would encourage Champion to conduct field studies to clarify those issues. If Champion chooses this path I would also encourage you to work closely with the Division in planning and conducting any field studies to ensure data is collected and analyzed in/under a standardized and mutually acceptable methodology. Please let me know if I can be of further assistance. Sincerely, Thomas Stockton Environmental Modeler II Roanoke River Predicted Dissolved Oxygen: components of the deficit at BCT limits for Champion's proposed production expansion 8.5 — 8 . 0 DO Saturation @ 27°C 7.5-< 7.0- 6.5 — 6.0 — 5.5 — L++::•��-.• 4.5 — Mininum = 4.78 mg/1 4.0 0 5 9 14 19 24 32 42 52 62 72 80 90 100 110 117 Rivermile Background deficit Deficit due to dischargers other than Champion Deficit due to CBOD decay from Champion's load (9240 lbs/day of BOD5) Deficit due to NBOD decay from Champion's load (4519 lbs/day) Vepco - Roanoke Rapids Dam Mile : • ' Roanoke Rapids Sanitary Dist. • f Mile 2. S, Q� 8.65 Champion International Paper Mile o . o, Qw2R21 02.0805.00 DA• 8384 Mlle_ U56.5 645e. Proposed Champion Int. Mile 15., Qw• 25 Ambient Station Point Source Discharger • Mile - River mile from Batchelor Bay Qw= Wasteflow ( million gallons per day) DA= Drainage Area ( square mile) Weldon WW1? Mile S. S . Qw• 0.5 DOC - Odom Mile 22.5'., Qw• 0.07 FIGURE 1 AMBIENT STATIONS AND DISCHARGERS TO THE ROANOKE RIVER DOC • Calendonia Mfle zs.S, Qw- 0.0125 02.0810.00 DM 8671 Mile Hamilton WWI? Mile 7 i , Qw• 0.08 West Point Pepperell Mile7+- <, Qw• 1.54 Perdue Farm Inc. Mile 49 , Qw• 1.5 02.0810.22 DAB 8813 Mile 024810.54 DM 9070 Mlle Town of Wflliamston MO el; , Qw'u 1.06 PlYmaoth WW'IP 10fQvra0.8 Wcyerhanser Mile/Qws SS Penn Elastic Mflelo4, Qw! 0.01 • BATCHELOR ▪ :BAY▪ • 02.0811.41 Mil 02.0811.35 DA- 9296 Mile _ Jame:►Ole WWIP Mflelo1, Qw• 0.15 8 .5 — 8.0 — 5.5 — 5.0 4.5 — 4.0 Roanoke River Predicted Dissolved Oxygen: components of the deficit at BCT limits for Champion's proposed production expansion DO Sa[uration @ 27°C Mininum = 4.78 mg/1 0 5 9 14 19 24 32 42 52 62 72 80 90 100 110 117 Rivermile Background deficit Deficit due to dischargers other than Champion Deficit due to CBOD decay from Champion's load (9240 Ibs/day of BOD5) Deficit due to NBOD decay from Champion's load (4519 lbs/day) Champion International - Roanoke River 30 BOD5 mass loading vs discharge ]].: Ju]'86 Oct'86 Jan'87 BOD5 discharge — 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 (ICEP/sqI) SQOi 7.3 ROANOKE RIVER AMBIENT DATA' DISSOLVED OXYGEN (MG/L) 1 855 9 96 UCH DEFICIT (MG/L) r 1 .-r;� f .1 .i AMBIENT STATION NUMBER I 1 ! \ • j [• `30 - -Rakv,06 920 - +IW,) 2s? hr tlle_ck v 3o - qwy i I Kr Le.westoh B5 J _ e ,J,ll,aw�stc,� Z 5— A�•,� v(r,{-�c �. c, C c e lc. h r r! 1 OA r i h &�% - N y u f cility: Champion Date: 880512 Observed Day BOD (mg/1) 5 10 15 20 25 30 35 40 45 50 55 60 34 48 65 78 83 88 92 95 98 100 103 105 International composite Observed Observed NO2+NO3 TKN (mg/1) (mg/1) 0.01 0.01 0.03 1.30 3.40 4.20 5.10 3.50 2.10 1.20 sample Predicted BOD (mg/1) 29.00 49.95 65.07 75.98 83.87 89.56 93.67 96.64 98.78 100.32 101.44 102.25 Flow: 24 mgd kd: 0.0651 /day BOD ult: 104.34 mg/1 TKN Method TKN NBOD: NBOD: CBOD: CBOD/BOD5: 13.5 mg/1 2702.2 lbs/day 90.8 mg/1 2.7 mg/1 NOx Method NOx NBOD: 15.3 mg/1 NBOD: 3053.4 lbs/day CBOD: 89.1 mg/1 CBOD/BOD5: 2.6 mg/1 14 7.2 ROANOKE RIVER AMBIENT DATA' DISSOLVED OXYGEN (MG/L) r a a 730 B2) 830 SJJ DO DEFICIT (MG/L) 925 960 1 T eX et4. Ja cISK pevce,A 130 - 9) g-Rockm06, 9zo - tikvi 2-5 v+r Sc o1-\o ittEc - qv,/ �� Let�3(Si-oh � �30 B55 — N 13-(1 Q !�J�tt,aw�s v►� '12 5 — A60q.c. C,t ee h r pt,VvnOt. -i q& ( - KO L( IA( Dativt5 50u c OJJ AMBIENT STATION NUMBER 925 960 7.7 bUYD l rN/ L) 5.7 3.7 1.7 0.2 0.152 0.104 O.056 v Ili 730 820 830 855 925 960 AMBIENT STATION NUMBER NH3 (MG/L) 7 N RE-3 • -0.04 H 730 820 830 GJJ AMBIENT STATION NUMBER 925 960 Jan'86 Champion International - Roanoke River BOD5 mass loading vs discharge Apr'86 Ju1'86 Oct'86 Jan'87 Apr'87 Ju1'87 BOD5 3 discharge Oct'87 Jan'88 7000 L 6000 5000 4000 3000 2000 1000 Apr 88 (i(EP/sql) sclog Champion Long term BOD (880512 - grab) 100 80 50 40 • • ,r .ff . .r r r • a1 20 — I v• RF I i 1 1 1 I 1 I 1 1_11 1 1 1 1 I 1 1 1 1 I 1 1 1 0 10 20 30 40 50 days BOD utlimate 99.6119629 bottle decay rate .0732703 100 8 60 40 20 Ccw1-J1t 101J. 3g � 011 Champion Long term BOD (composite) 1 1 1 1 1 1 1( 1 1 1 1 N f 1 1 1 1 1 1 1 -1 , 1 1 • v I v. v l 9• r 0 1 i 1 1 I 1 1 1 1 I 1_ 1 1 1 I 1 1 1 1 I 1 1 1 1 0 10 20 days 30 40 PERMIT NO.: NCO() 001 52 FACILITY NAME. NPDES WASTE LOAD ALLOCATION C i'�av►•piov� T la 1OkCQ (_.orp Drainage Area (miZ) Facility Status: Ea 1STUIO PROPOSED i g: ° (circle one) - S LS Winter (cfs) 30Q2 (cfs) Permit Status RiTVE'W , 1100�1C.A � S�i9 19 � (circle Ono) Toxicity Limits: IWC X (clrcls on.) Acute / Major Minor, °E PJEITS £: E lGII'� -<< !,; r, , OO GxG2 Uv 3 Pipe No: Design Capacity (MGD)• u►oK 'cntt k I" cox, -a •.„ F . Parameters2S C rocs God.nn Domestic (% of Flow): Industrial (% of Flow)* Comments - Modeler `lc3S Date Rec. 6/f/Sq67-J (A3a,c. Avg. Streamflow (cfs)• RECEIVING STREAM: k oawo6 Z tve'r Class - Sub -Basin: c,3-oz. -oz Reference USGS Quad: 2C-5 N ►'V (please attach) County. < Regional Office: As Fa Mo . Ra Wa Wi WS (circle ...) Requested By: naVtd t� 54-er Date: 5-L5-SO Prepared By: Date- 9/8/86 Reviewed By: , ��� G2 Date- c—/6 `W 00ago5OO Upstream Instream Monitoring: 1 6/ TeNtAp ,vu11. ,re 5 e_trAcJMc.ttvi "gots Location goy cJQp- Downstream Location 0( W Zl cioN , k U hronic Effluent Characteristics ; �" O 0 2= = UCH 3 BODs (ild ) W50 i3a-ov NHa N (mg/1) -- — TDS.°S1(735//1)661) - 11 ?"6.0 -31.b°0‘ F. Col. (/100m1) pH (SU) (o -ct (Q-9. Co`9 -1- cast H.o- ca.U.S. , Pe.r(krcufe, „Qi 1L t 1 •, a ' t r , cl '� k', f { s, 0�, e X c om i� t,J a ie-wkQ, c 0,60, w+ 11 win KQ ca.,- .... ^^, ...... _ CO.M-SC reciltr4..4.0 W attA-S A c.e,ed 326'-• teJ -Q Comments- 't�c-1, does Aok rlvotnc.-aa co44wPMe d— -,�(tL Scre'rtlK� riuT (er{to n1�r kAs rlas`�CG TS 4a7 d ed Y �� FOR APPROPRIATE DISCHARGERS. LIST COMPLETE GUIDELINE LIMITATIONS BELOW Effluent Characteristics Monthly Average Daily Maximum Comments 'Bob s 2.45 tb/da•.8. x 3,300 0 igo.,3 qt " c6/d t `( S3 0 1p ldo %C.'T (e s S'T� -rSS (0.0 lbitioz VI, caw Lb/dog Ci 3a (ooG ao% scw�,-e- P H (,-q 5c G- ask S CA" 62 Type of Product Produced Lbs/Day Produced Effluent Guideline Reference . ?v\p zr>rr L 6tv, bL C. d kaaf-►-p �` 3, &Dc3,)ax0 tios/ yU c - � • 13 4a 1' A - LoAinlcAc Lect s bC ban d . a).-r - `�r • Go4mso4 li.e,6aa,a. %Act, u u. c s a,(4- A - Luktola ocL cA . Request No.:4674 a,b,c WASTELOAD ALLOCATION APPROVAL FORM Facility Name: Champion International Corp NPDES No.: NC0000752 Type of Waste: 001 - process water 002 & 003 - non -contact Status: Expansion cooling water Receiving Stream: Roanoke Classification: C Regulated Subbasin: 030208 Summer minium: 1500 cfs County: Halifax Winter mini um: 1000 cfs Regional Office: RaRO L �E����� Requestor: Foster 1� Date of Request: 5/31/88 CrP Quad: B28NW 2 iyet, RECOMMENDED EFFLUENT LIMITS --- --PE-RMLTSAlAIMn ERING 001 1 002 003 ;: Monthly Avg Daily Max Wasteflow (mgd): 28.00 6.60 1.60 BOD5 (lbs/day) : 6850 13700 469/21- TSS ( lbs/day) : 1458lr&O 64 3ij (000 pH (su): 6-9 6-9 6-9 6-9 The discharge shall not cause the receiving water's temperature to exceed 2.8°C above background and in no case cause it to exceed 32°C Quarterly Chronic toxicity target: 4% (see attached) MONITORING Upstream (Y/N): Y Location: Hwy 48 bridge Downstream (Y/N): Y Location: @ Weldon, NC Parameters: DO, temperature, conductivity, & BOD5. COMMENTS Noi1%�,rtr�-.'t7s Effluent limits are water quality based and are the existing limits. �� WQ impacts are predicted at higher loadings. ( ice a�> Facility does not use biocides in its non -contact cooling water, toxicty screening and toxicity permit reopener is recommmended. Instream monitoring data do not indicate local WQ impacts, however, modelinynalysis indicates discharge contributes to downstream WQ problems. Recommended by: Date: Reviewed by r' Tech Support Supervisor: -tom. _' Date: Regional Supervisor: /,A .�` !�.� Date: Permits & Engineering: � _ �_ Date: RETURN TO TECHNICAL SERVICES BY: SEP 0 3 1988 .l. Facility Name C, 6, nnpIov111A-1611/10ACPYS (o&vok Permit # ? C 00061 5 2 1 . CHRONIC TOXICITY TESTING REQUIREMENT (QRTRLY) The effluent discharge shall at.no-time exhibit chronic toxicity using test procedures outlined in: 1.) The North Carolina Ceriodaphnia chronic effluent bioassay procedure (North Carolina Chronic Bioassay Procedure - Revised *February 1987) or subsequent versions. The effluent concentration at which there may be no observable inhibition of reproduction or significant mortality is `{ % (defined as treatment two in the North Carolina procedure document). The permit holder shall perform quarterly monitoring using this procedure to establish compliance with the permit condition. .The first test will be performed after thirty days from issuance of this permit during the months of Mc-, See - D e c— • . Effluent sampling for this testing shall be performed at the NPDES• permitted final effluent discharge below all treatment processes. All toxicity testing results required as part of this permit condition will be entered on the Effluent Discharge Monitoring Form (MR-1) for the month in which:it was performed, using the parameter code TGP3B. Additionally, DEM Form AT-1 (original) is to be sent to the following address: Attention: Technical Services Branch North Carolina Division of Environmental Management P.O. Box 27687 • Raleigh, N.C. 27611 Test data shall be complete and accurate and include all supporting chemical/physical measurements performed in association with the toxicity tests, as well as all dose/response data. Total residual chlorine of the effluent toxicity sample must be measured and reported if chlorine is employed for disinfection of the waste stream. Should any test data from this monitoring requirement or tests performed by the North Carolina Division of Environmental Management indicate potential impacts to the receiving stream, this permit may be re -opened and modified to include alternate monitoring requirements or limits. NOTE: Failure to achieve test conditions as specified in the cited document, such as minimum control organism survival and appropriate environmental controls, shall constitute an invalid test and will require immediate retesting(within 30 days of initial monitoring event). Failure to submit suitable test results will constitute a failure of permit condition. VVI. Wk rC.ttate 2Q4-6 U000 cfs Permited Flow 2 (6 MGD Recommended by: IWC% ''1• t 5 Basin & Sub -basin 03 6ZOS J Receiving Stream 2 oan o(cn `(�.ve r %�e-rn o•� �1J� County Hatt. -�'ay Date 2 5, e4 Si, **Chronic Toxicity (Ceriodaphnia) P/F at 4- %, irikaZ my cat , See Part 3 , Condition rr . 8 7 6 5 4 3 1 00 + With loading Roanoke River Predicted CBOD .. :sue:=: 6.5 14.0 21.0 32.0 47.0 62.0 Miles from Roanoke Rapids Dam o Champion -proposed Champion ►0 i Vepco - Roanoke Rapids Dam Mile _: 02.0805.00 DA= 8384 Mile VS& 45e Proposed Champion Int Mile I , Qw• 25 • Ambient Station Point Source Discharger . Mile - River mile from Batchelor Bay Qw= Wasteflow ( million gallons per day) DA= Drainage Area ( square mile) Champion International Paper Mlle oo, _Qw=21 Roanoke Rapids Sanitary Dist Mile 2. 5, Qw= 8.65 Weldon WWTP Mile 5. C ., Qw= 0.5 DOC - Odom Mile 2 .5 ., Qw= 0.07 FIGURE 1 AMBIENT STATIONS AND DISCHARGERS TO THE ROANOKE RIVER DOC - Calendonia Mile za.S, Qw= 0.0125 02.0810.00 DA= 8671 Mile Hamilton WWTP Mile ! , Qw= 0.08 West Point Pepperell Milo7�. <; Qw- 1.54 Perdue Farm Inc. Mlle I i Qw= 1.5 02.0810.22 DA= 8813 Mile 02.0810.54 DA= 9070 Mile Town of Williamaton Miles Qw• 1.06 i Plymouth WWTP Mile ins Qw= 0.8 Weyerhauser Mile'ta.'sQw= 55 Penn Elastic Mile l2 Qw= 0.01 •BATCHELOR 7 _ BAY 02.0811.41 M17e 02.0811.35 DA= 9296 Mile Jamesrine WWTP Milelcl, Qw= 0.15 Al c 0000 75 Ck4, P1A-% . c.co„.0 so-1z w1t.lue.41 "To.V , RNto 3L( Lj g (5 is 3 9 2. q5 ° 3 /01 I ..'"L• 4 .1/ < . 0 I 5, 1 Z.?, 3 , 33 tlk.t eh u S. 3,5 '2) 41)5 i VOriA0 k"C4) Coll ft-c.,tuJ I v(G 4 CT-4:-.1 fit •.sem t 5 1 3s g sz.S 7 5 5 5 5 5 log, 2. — 10635 00o 51, Ck 6 11, r 4v, -P %.1c.ytCR.90,491 bb 1.4•N fKN 0 5 I 15 214. 11 S3 30 35 tic),qs 45 91/ eol 55 to() i7 I tr4 LS 1‘1 3%c 2.s L(Lf is SIsuCti, N 04 C64 La -Bobs 2.4 Cavi Ldo "(lobs ittili.(0%-0 3 41-- 33. 3 3 3 3 3 )06 Z 104,2- 3 3 3 Facility: Champion International Date: 880512 composite sample Observed Day BOD (mg/1) 5 34 10 48 15 65 20 78 25 83 30 88 35 92 40 95 45 98 50 100 55 103 60 105 Observed NO2+NO3 (mg/1) 0.01 0.01 0.03 1.30 3.40 Observed Predicted TKN BOD (mg/1) (mg/1) 4.20 5.10 3.50 2.10 1.20 29.00 49.95 65.07 75.98 83.87 89.56 93.67 96.64 98.78 100.32 101.44 102.25 Flow: 24 mgd kd: 0.0651 /day BOD ult: 104.34 mg/1 TKN Method TKN NBOD: NBOD: CBOD: CBOD/BOD5: NOx Method NOx NBOD: NBOD: CBOD: CBOD/BOD5: 13.5 mg/1 2702.2 lbs/day 90.8 mg/1 2.7 mg/1 15.3 mg/1 3053.4 lbs/day 89.1 mg/1 2.6 mg/1 0 I. a,g8 5 /0 i3 /5 i7 2� f 2� 3D 35 Ck;i ot,‘ vv‘9,.4 fkl 3 1 1< N I. v 11.z 1.9 a !_a b I'� O� 5 1-0-6) 19iiqtrk,-1 5.1 3z 0,o . = 100.4 LI oS C o aIiS 0 51 1- cu s3.) ` °4-- 1.1 tZ I. za �-v o ► S, 3. �-r 9 9 9 7 7 7 5 5 5 6 1.5 4 ,7 3 ZSS 33; S 1."7 3.1' 37. 3 f 3 la Ca L( 2.5 5a. 2- 1 5 6. 0 I1 7s'I 77, Z54 83. a .35 !�2 7s.a / Ca-1—iL. ra s 2-9 ,)11„sp11s I. ,.7 Y 5gosi 2 �1'5 pnt.ct � _ o t L./„ 7 v G 5 3.ZY 5 3 3 3 3 3 3 Ckikreltifh- Roo,dla. Upstream Downstream Site: Hwy 48 Site: Halifax Date DO Temp Salin. X Sat DO Temp Salin. X Sat Flow DOD apOD (ig11) (xC) (ppt) (mg/1) (mg/1) (xC) (ppt) (mg/1) (mgd) (mg/1) rlbs/day) Jan 86 11.60 5.4 0 92X 11.70 5.1 0 92X 20.4 54.7 9.3 Feb 86 12.1 5.9 0 97% 12.2 5.1 0 96X 11.1 60.3 5.6 Mar 86 12.3 9.4 0 107% 11.7 9.2 0 102X 9.8 83.6 6.8 Apr 86 14.5 52.3 6.3 May 86 8.8 19.8 0 96X 8 19.4 0 87X 20.4 33.3 5.7 Jun 86 7.5 24.4 0 90X 6.6 25.3 0 BOX 24.4 26.7 5.4 Jul 86 6.8 26.7 0 85X 6.4 28 0 82X 19.4 23.7 3.8 Aug 86 6.9 26.3 0 86X 6.1 26.8 0 76X 20.7 24.6 4.2 Sep 86 7.6 23.6 0 90% 7 23.6 0 83X 18.1 34.1 5.1 Oct 86 8.7 20.8 0 97X 7.8 21.1 0 BBX 15.8 39.6 5.2 Nov 86 9.9 15.7 0 100X 8.1 14.8 0 80X 12.8 57.4 6.1 Dec 87 11 11.6 0 101% 10.1 10.5 0 91X 15.3 48.8 6.2 Jan 87 12.1 7.6 0 101% 11.3 6.9 0 93X 17.6 43 6.3 Feb 87 13.5 6.2 0 109X 12.2 5.7 0 97X 13.2 57.6 6.3 Mar 87 10.8 7.4 0 90X 10.6 7.7 0 89X 12.2 62 6.3 Apr 87 9.1 12.3 0 85X 9.2 12.2 0 86X 21.5 37.3 6.7 May 87 8.9 17.3 0 93X 8.8 12.4 0 82X 27.3 18.3 4.2 Jun 87 8.3 23.3 0 97X 8.2 23.7 0 97X 24.8 22.3 4.6 Jul 87 24.7 20.3 4.2 Aug 87 8.4 27.3 0 106X 8.4 26.8 0 105X 21.3 19.5 3.5 Sep 87 8.4 27.3 0 106X 8.4 26.8 0 105X 19.6 26.4 4.3 Oct 87 8.9 18.5 0 95X 8.9 18.1 0 94X 16.7 46.1 6.4 Nov 87 8.6 14.4 0 84X 8.8 13.5 0 84X 14.4 53.1 6.4 Dec 87 8.6 10 0 76X 9 9.8 0 79X 12.2 63.4 6.5 Jan 88 8,7 4.9 0 68X 9.2 5.2 0 72X 12.1 65.7 6.6 Feb 88 9 6.2 0 73X 9.3 6.1 0 75X 11.3 72.2 6.B Mar 88 8.8 9 0 76X 8.7 9.4 0 76X 10.7 72.3 6.5 Apr 88 8.3 14.7 0 82X 8.3 14.5 0 81X 21.1 29 5.1 May BB 8.5 19.3 0 92X 8.5 19.2 0 92X C_(eimAiltz;1,, gocLAALle keftOs ,nre-r 6_=t(637 — Cool -ai) 'huiFot vwj Qoace, tc‘c(c, 40c- orMA AiccertAk Of,Adno,ov, - SUMMER ROANOKE RIVER W/O CHAMPION MODEL RESULTS -----------•-- • D:L.::7chargM.r . Receiving Stream a ROANOKE: RIVER The End D.O. is 6.31 mg/l. The End CBOD is t_)o i8 mg/l The End NBOD is 0.05 mg/ l n WLA WLA WLA DO Min CBOD NBOD DO Waste Flow (mg/1) Milepoint Reach # (mg/1) (mg/1) (mg/1) (mgd) Segment 1 5.90 21.50 4 Reach 1 27720.00 Reach 4.. 60.00 Reach 3 45.00 Reach 4 10000.00 Segment 5.79 13.004. Reach 1 45.00 Reach 3 2445.00 Reach 4 45.00 Segment 3 5.89 9.00 1 Reach 1 656.00 Reach 2 45.00 Reach 7, 180.00 Reach 4 45„00 23 3 00 90.00 90.00 ,^• c;) 0 0 , t_) 0 90„c:x) 90„00 1818.00 90.00 169.00 9t_).00 14.00 90.00 0.00 0.00000 0.00 8.7'4000 0.00 0.50000 0.00 0.00000 0.00 0.07000 0„00 0u()125c) 0.00 0.12000 0.00 0.08000 0.00 0.12000 0.00 3.00000 0.00 0.08000 0.00 0.15000 * * * MODEL SUMMARY DATA * * * . Discharger 3 Subbasin c:)302c:) 3 Receiving Stream p ROANOKE RIVER Stream Class: C . s Summer 70:Lc) v 1500.0 Winter 701') u 1000.0 Design Temperature: 27.0 :LENGTH: SLOPE: VELOCITY 1 DEPTH; Kd 1 Kd 1 Ka Ka 1 KN KN KNR KNR 1 SOD : SOD 1 1 mile 1 ft/mil fps 1 ft ;design, @20° ;design; @20° ;design; @20° ;design; @20° ;design; @20° 1 Segment 1 1 3,501 0.321 1.010 1 2.00 1 0,35 1 0.25 1 0.33 1 0.28: 0.51 1 0.30 0.51 1 0.00 1 0.00 1 0.00 1 Reach 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Segment 1 1 2.00: 0.321 1.010 1 2.00 1 0.35 1 0.25 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 2 E t 1 I 1 1 I 1 ! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Segment 1 1 9.501 0.321 1.010 3,00 1 0.32 1 0.23 1 0.33 1 0.28: 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Segment 1 1 6.501 0,32: 1.010 1 4.00 1 0.31 1 0.23 1 0.33 1 0.281 0.51 1.0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 4 1 1 1 1 1 1 ! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Segment 2 1 2.00: 0.321 1.010 1 5.00 1 0.30 1 0.22 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 1 1 Segment 2 1 20.001 0.32: 1.010 1 5.00 1 0.30 1 0.22 1 0.33 1 0.281 0,51 1 0,30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 2 1 1 1 1 1 1 1 1 1 1 1 1 1 Segment 2 1 27.001 0.32: 1.010 1 5.00 1 0.30 1 0.22 1 0.33 1 0.28: 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 3 I ! 1 t I 1 1 1 1 1 1 I 1 1 1 1 ,I t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 I 1 I I I 1 1 Segment 2 1 0,501 0.32, 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.10: 0.51 1 0.30 1 0,51 1 0.00 1 0.00 1 0.00 1 Reach 4 1 E I 1111111111 1 1 1 1 I 1 1 1 1 1 1 Segment 3 1 22.001 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.101 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 1 1 11 11 11 1 1 1 1 11 Segment 3 1 15.001 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.101 0,51 1 0,30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 2 1 Segment 3 1 1.001 0.321 0.370 1 9.00 1 0.28 1 0,20 1 0.12 1 0.101 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 3 1 1 1 1 1 1 1 1 1 1 1 ; Segment 3 1 8.001 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.101 0.51 1 0.30 1 0,51 1 0.00 1 0.00 1 0.00 1 Reach 4 1 1 1 1 1 1 1 1 1 1 1 1 1 Flow CBOD ; Nr30D D.O. cfs mg/1 mg/1 mg/1 Segment 1 Reach 1 Waste 0.000 ; 27720 „ t )c_)c_) :27.67..000 Headwaters : 15c_)c_) „ c_)c 0 1 2.000 ; 1.000 Tributary 0.000 ; 0.000 ; 0.000 ; * Runoff 0.850 ; 2.000 ; 1.000 ; Segment 1 Reach 2 Waste ; 12.927 Tributary ; c_)„t_)c_)c_) * Runoff 0.850 ; Segment 1 Reach Waste 0.775 Tributary ; 0.000 * Runoff 0.850 Segment 1 Reach 4 Waste 1 0.000 Tributary ; 0.000 * Runoff 0.850 Segment 2 Reach 1 Waste 0.109 Headwaters: 0.000 Tributary ; c)„c_)c_)c_) * Runoff 0„850 Segment 2 Reach 2 Waste 0.019 Tributary ; 0.000 * Runoff 0.850 60.000 90.000 0.000 : 0.000 2.000 , 1.000 1 45.000 0.000 „ c_)c_)c_) i 90.000 0.000 1.000 1 c_) c_) c_) t_) „ c_) 0 t_) 0.000 ; 2 „ c_)t_)c_} i 45.000 0.000 0.000 2.000 0.000 6„900 0.000 6.900 0.000 0.000 6.900 0„t)c_)c_) 0.000 6„9_) ' c_) c_) c_) „ c_) c_) t_) ; 0.000 0.000 ; 0.000 1.000 ; 6.900 90.000 0.000 0.000 1.000 45.000 ; 90.000 0.000 ; 0.000 2.000 ; 1.000 Segment 2 Reach 3 Waste ; 0.186 ; 244 5 „ c_)c_)c_) ; 1818 . c_)c_) c_) 0.000 ; 0.000 ; 2.000 ; 1.000 Tributary ; 0„0)00 ; Runoff j 0„850 1 Segment 2 Reach 4 0.124 0„0tom)0 Waste Tributary ; * Runoff 0.850 Segment 3 Reach 1 Waste 0.186 Headwaters ; 0.000 Tributary ; 0.000 * Runoff ; 0.850 Segment 3 Reach Waste 4.650 Tributary ; 0.000 * Runoff 0.850 45.000 0.000 F 2„00t) 6 56 „ c_)c_)c_) 0.000 0.000 i 2.000 45.000 1 0.000 1 2.000 90.000 0.000 1.000 169 „ c_)c_)c_) 0.000 0„00t„) 1.000 90.000 0„000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 6.900 0.000 0.000 6.900 0.000 0.000 6.900 0„000 0.000 0.000 6„9c_0 0.000 0.000 6.900 Segment 3 Reach 3 Waste 0.124 ; 1.80.O00 ; 14.000 Tributary ; 0.000 ; 0.000 : 0.000. * Runoff 0.850 ; 2 a c.)00: 1.000 0.000 0.000 ice) . 0 0 0 6.900 Segment 3 Reach 4 Waste 45.000 90.000 Tributary ; 0a()(n) ; 0.000 ; 0.000 * Runoff 00850 : 2.000 : 1.000 * Runoff flow is in cfs/mile 0.000 0.000 6.900 y SUMMER ROANOKE RIVER •' ° W/a CHAMPION Seg # Reach # Beg Ni D.O. ; C%OD NBOD Flow 1 1 0n00 6.90 2.00 1.00 1500.00 • 1 1 0.50 6.87 1.98 0.98 1500.42 1 1 1.00 6.85 1.96 0.97 1500.85 1 1 1.50 6.83 1.94 0.95 1501.27 1 1 2.00 6.80 1.92 0.94 1501.70 1 1 2.50 6.78 1.90 0.97; 1502.12 1 1 .00 6.76 1.88 0.91 1502.55 1 1 3 a 50 6.74 1.86 0.90 1502.97 1 2 7.a 50 6268 2.35 1.66 1515n90 1 t 4.00 6.64 . 3 1.63 1516.7.7. 1 4.50 6.61 2.31 1.61 1516.75 2 5.00 6.57 2.28 1.58 1517.18 1 2 5.50 6.54 2.26 1.56 1517.60 3 5.50 6.54 2.28 1.60 1518.3B 1 3 6.00 6.51 2.26 1.58 1518.80 1 3 6.50 6.47 2.24 1.55 1519.27 1 0 7.00 6.44 2.21 1.53 1519.65 1 3 7.50 6.42 2.19 1.50 1520.08 1 3 8.00 6.39 2.17 1.48 1520.50 1 W 8.50 6.36 2.15 1.46 1520.93 1 3 9.00 6.33 2.17 1.44 1521.7.5 1 3 9.50 6.31 2.11 1.41 1521.78 0 10.00 6.28 2.09 1.39 1522g20 1 0 10.50 6.26 2.07 1.37 1522n63 1 77. 11.00 6.23 2.05 1.35 1523.05 1 .:. 11.50 6.21 2.07. 1.33 1523.48 1 :'. 12.00 6.19 2.01 1.31 1523.90 1 3 12.50 6.17 1.99 1.29 1524.= 1 3 17% 00 6.15 1.97 1.27 1524.75 1 3 17.50 6.13 1.95 1.25 1525.18 1. 3 14.00 6.11 1.93 1.23 1525.60 1 3 14.50 6.09 1.91 1.21 1 526 n 0 M 1 3 15.00 6.07 1.89 1.19 1526.45 1 4 15.00 6.07 1.89 1.19 1526.45 1 4 1.5.50 6.06 1.88 1.17 1526.88 1 4 16.00 6.04 1 .86 1.15 15 27 a 0 1 4 16.50 6.03 1.84 1.14 1527a73 1 4 17.00 6.01 1.82 1.12 1528.15 1 4 17.50 6.00 1.81 1..10 1528.58 1 4 18.00 5.98 1.79 1.08 1529.00 1 4 18.50 5.97 1.77 1.07 1529.43 1 4 19.00 5.96 1.76 1.05 1529.85 1 4 19.50 5.95 1.74 1.07 1570.28 1 4 20.00 5.93 1.72 1.02 15 70.70 1 4 20.50 5.92 1.71 1.00 1531.13 1 4 21g0x0 5.91 1.69 0.99 1531.55 1 4 21.50 5.90 1.68 0.97 1531.98 .1 0.00 5.90 1.68 0.98 1532.09 1 0.50 5.89 1.66 0.96 1532.51 -7v 1 1.00 5.88 1.65 0.95 1532.94 1 1n50 5.87 1.63 0a9 1533.36 2 1 2.00 5.86 1.62 0.92 1533.79 . i 2.00 5.86 0.92 1533.80 a. 7.a 00 5.85 1.59 0.89 1534.65 2 4.00 5.825a84 1n56 {��a8615 5n5{y 2 •, 5.00 1 a 5� »� 0.84 1536.35 5 5 .i:.. d'+' 6.00 5.82 1.51 0.81 1 5 3 7 n .� 0 . 2 7.00 5.81 1.48 0.79 1538.05 8.00 5.80 1.45 0.76 1538.90 2 9.00 5.80 1 n 43 0.74 1539.75 ) - . •1 r't r"t CI I: »7 C? 1 /1 ri r ti "7' 1 /In L. ( .i... 11.00 5.79 1.38 0.70 1541.45 4. ' 12.00 5.79 1.35 0A68 1542.30 2 17%00 5.79 1.33 0.65 1543.15 14.00 5.79 inw;(;) 0.67; 1544.00 ae' a a t«a i..a L� e: 7 9 1.28 {..} .62 1544.85 4. 16.00 5.79 1.26 0.60 1545.70 4.17.0c:a 5.80 1.23 0.58 1546.55 2 18.00 5.80 1.21 0.56 1547.40 a4.l 19x00 5w81 1.19 0a54 1548a25 5.81 4. «a i o {..a»� 1.17 0 n 5 •»r 1549.10 al 21.00 5.82 1.15 0a51 1549.95 4.5.83 1A1x0�0.50 1550.80 3 4., a00 5.83 1.42 0.71 1550.99 3 23.00 5.82 1.40 0.69 1551.84 3 24''„00 5.82 1.37 0a6i'` 1552.69 3 25 x 00 5 A 82 1 w 35 t..a .65 1553.54 3 26.00 5.82 1.32 0 . 6L; 1554.39 27.00 5182 1a30 0.61 1555.24 28w00 5.82 1.27 0.59 1556.09 3 29.00 L a82 1.25 0.58 1556.94 3 7;0.00 5.83 1.23 0.56 1557.79 3 31.00 5.83 1.21 0.54 1558.64 3 :72 . 00 5.84 1.19 .19 0 . 57; 1559.49 033n00 5.84 1n16 0.51 1560.34 3 34a00 5.85 1.14 0.49 1561.19 3 735„00 5.86 1.12 0.48 1562.04 = 6 „ 0c_a 5.87 1.10 0.46 1562.89 .,.:r 7,7.00 5.88 1 x08 0A45 1563.74 3 8 a c_ 0 5.89 1.06 0.44 1564.59 7; 7.9.00 5.90 1.05 0.42 1565.44 40.00 5.91 1.03 0.41 1566.29 3 41a00 5.92 1A01 0.40 1567.14 42.003 5.930g99 0x79 1567.99 3 47% 00 5.94 0.97 0.38 1568.84 44.00 5.95 0.96 0.36 1569.69 7; 45.00 5.97 0.94 0x75 1570.54 46.00 5.98 0.92 0.34 1571.39 47.00 5.99 0.91 0x3 ; 1572.24 48.00 6.01 0.89 0 tt 72 1573.09 3 49trE_ai«a bat«ar: 0.88 s_aa: 1 i57 a94 4 49.00 6n02 0.88 0n32 1574.06 4 49.50 6.01 0.86 0.31 1574.49 1 0.00 6.01 0w94 0a 7;^; 1574.68 1 1.00 5.98 0.89 0 . 0 157 5. 5: 1 .r... x 00 5.95 0.85 8, 0.28 L 28 1576w •. 38 1 .00 5.93 0.82 0.25 1577.23 1 4.00 5.92 0.78 0.27 1578.08 1 5.00 5.91 n 91 0 74 0q ^'1578.93 .L..1 :. 1 6.00 5.90 0.71 0.20 1579.70 1 7.00 5a89 c�ax68 =yni8 1580.63 1 8.00 5.89 0.65 0.17 1581.48 ;1 rl 1 9.00 5 w 8 9 0 g 6 2 0 a 16 1 L 2 n•„:-T•:�- 1 10.00 5.89 0.59 0.14 1583.18 1 11.00 5.89 0.57 0A17; 1584.03 1 12.00 5.90 0.54 0.12 1584.88 1 17;n00 5.91 0.52 0.11 1585.73 1 14.00 5.92 0.50 0.10 1586.58 1 15.00 5.93 0.47 0.10 1587.43 1. 16.00 5.94 0.45 0.09 1588.28 1 17.00 5.95 0.43 0.08 1589.13 1 18.00 5.97 0.41 0.08 1589.98 1. 19ac_a') 5.99 t�ag4c�a 0.07 1590.83 1 20.00 6.00 0w38 0.06 1591.68 1 21a00 6ac_a.� 0.36 0.06 1592.53 1 .c�ac:a 6.04 0.7.5 0.06 1593.38 2 � r, r, r1 ; .4. ~r 4 4 4 3 4 4 4 4 4 4 5eq # Reach %00 6.01 0.46 0.29 24.00 6.01=fp44 0.27 25.00 6.01 0.42 0.25 26.00 6.01 0.40 0.2 27n00 6.01 0.7C8 0•21 28.00 6.02 0 n 77 0.19 29.00 6.03 0.75 0.18 c��nt�)0 6n���4 0. .� 0.16 � 1. 00 6.05 0 . ' c_y n :L 32.00 6n06 0n 7.1 0.14 7.3.00 6.07 0.29 0.13 4n00 6.09 0.28 0n12 5a00 6.11 0.27 0.11 7,6.00 6.12 0.26 0.10 37.00 6.14 0.25 `w�A09 7 n 0 0 6.14 0.26 c�' n c) 9 37.50 6.15 0.26 0.09 38.00 6.16 ().25 0.09 38.00 6.16 0.26 0.10 9n00 6.17 0.25 0.09 40.00 6•19 0.,24 0.08 41.00 6.21 c:) . 2; 0.08 42.00 6.23 0.22 0.07 47.00 6.25 0.21 (�1n07 44n00 6.27 caR c�f �_?p=�}6 45.00 6.29 0019 0.06 46.00 6.31 0.18 0.05 Seg Mi D.O. ; CBOD NBOD 1 5»• / 8 . 8 8 1599.73 1600.58 1601.43 1602.28 1603.13 1603.98 1604.83 1605.68 16c:6n53 1607.38 1608.23 1609.08 1609.93 1610.78 1610.90 1611.32 1611.75 1611.98 1612.83 1613.68 1614.53 1615.38 1616.23 1617.08 1617.93 1618.78 Flow SUMMER •x ROANOKE RIVER MODEL NO DISCHARGERS MODEL RESULTS `Discharger Receiving Stream n ROANOKE RIVER The End D.O. is 7.12 mg/ i n The End CLOD is 0.0B mg / 1 n The End NE{OD is 0.01 mg/1 n Segment 1 Reach Reach 2 Reach Reach 4 Segment 2 Reach 1 Reach Reach 3 Reach 4 Segment Reach 1 Reach .2 Reach Reach 4 WLA WLA WLA DO Min CL3OD NBOD DO Waste Flow (mg/1) Milepaint Reach * (mg/1) (mg/1) (mg/1) (mgd) 6.35 21.50 4 6u:52 7n00 6nI 6 5.00 1 27720.00 60.00 45at_0 10000.00 27,67..00 90.00 90.00 2000.00 0.00 0.00000 0.00 0.0000 �„) 0.00 0 n 00000 0.00 0.00000 45.00 90.00 0.00 0.00000 0.00000 (// 45.00 90.00 0.00 0 n c: L„)000 2445.00 1818n0ice) 0.00 0.00000 45„00 90„00 0.00 0.00000 656.00 169.00 0.00 0.00000 45.00 90.00 0.00 0.00000 180.00 14n00 0.00 0.00000 45a00 90.00 0.00 0.00000 * * * MODEL_ SUMMARY DATA * * * Discharger a Cubbasin a 030 08 a Receiving Stream : ROANOKE R]:vER Stream Class: C Summer 7010 2 1500.0 Design Temperature: 27.0 Winter 7010 2 1000„0 ;LENGTH; SLOPE; VELOCITY 1 DEPTH; Kd 1 Kd 1 Ka 1 Ka 1 KN 1 KN KNR KNR 1 SOD 1 SOD 1 1 mile 1 ft/Mi1 fps 1 ft ;design; O20° ;design; 020° ;design; 020° ;design, @20° ;design, 020° Segment 1 1 3.501 0.321 1.010 1 2.00 1 0.35 1 0.25 1 0.33 1 0.281 0.51 1 0.30 1 0,51 1 0.00 1 0.00 1 0,00 1 Reach 1 , t I 1 1 1 1 1 1 t 1 1 1 Segment 1 1 2.001 0.321 1.010 1 2.00 1 0.35 1 0.25 1 0.33 1 0.281 0.51 1 0,30 1 0,51 1 0.00 1 0.00 1 0.00 1 Reach 2 1 1 1 1 1 1 1 1 1 1 1 1 ! i F 1 1 1 1 1 1 1 1 1 I Segment 1 1 9.501 0.321 1.010 1 3.00 1 0.32 1 0.23 1 0.33 1 0.281 0,51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 1 1 1 1 1 1 1 1 1 1 Reach 3 t 1 1 t i 1 i I i t 1 1 t ! t 1 Segment 1 1 6.501 0.321 1.010 1 4.00 1 0.31 1 0.23 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 4 1 1 1 1 1 1 1 1 1 1 1 1 1 Segment 2 1 2.001 0.32: 1.010 1 5.00 1 0.30 1 0.22 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0,00 1 0.00 1 0,00 1 Reach 11 1 1 1 1 1 1 1 1 1 1 1 1 Segment 2 1 20.001 0.32: 1.010 1 5.00 1 0.30 1 0.22 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 1 I 1 1 1 1 1 1 1 1 t 1 Reach 2 1 1 Segment 2 1 27,001 0.321 1.010 1 5.00 1 0.30 1 0.22 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 3 1 1 1 1 1 1 1 1 1 1 1 1 ! , 1 ! i 1 1 1 1 ! 1 Segment 2 1 0.501 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.101 0.51 1 0.30 1 0,51 1 0.00 1 0.00 1 0,00 1 Reach 4 1 1 1 1 1 1 1 1 1 1 1 1 1 Segment 3 1 22.001 0.321 0.370 1 9,00 1 0.28 1 0.20 1 0.12 1 0.10: 0.51 1 0.30 1 0.51 1 0,00 1 0.00 1 0,00 1 Reach 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Segment 3 1 15.001 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.101 0.51 1 0.30 1 0.51 1 0,00 1 0.00 1 0.00 1 Reach 2 1 1 1 1 1 1 1 1 1 1 1 1 1 Segment 3 1 1.001 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.10: 0.51 1 0.30 1 0,51 1 0.00 1 0.00 1 0.00 1 Reach 3 1 1 1 1 1 1 1 1 1 1 1 1 1 Segment 3 1 8.00: 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.101 0.51 1 0,30 1 0.51 1 0.00 1 0.00 1 0.00 Reach 4 1 1 1 1 1 1 1 1 1 F 1 1 1 FIcaw CBOD NBOD D.O. cfs mg/1 mg/1 rng/I Segment 1 Reach 1 Waste 0.000 ; 277 2 c.) p c:)00 ; 2: 6 3 „ 000 Headwaters:1500.000 ; 2.000 ; 1.000 Tributary ; 0.000 ; 0„0c)0 ; c:)„000 * Runoff 0„850 2.000 ; 1.000 Segment 1 Reach 2 Waste i 0.000 Tributary ; 0„000 * Runoff 0„85c) Segment 1 Reach 7. Waste : 0.000 Tributary ; 0.000 * Runoff 0.850 Segment 1 Reach 4 Waste , 0.000 Tributary ; C)„000 * Runoff 0„850 Segment 2 Reach 1 Waste ; 0.000 Headwaters ; 0.000 Tributary ; 0„000 * Runoff ; 0.850 Segment 2 Reach 2 Waste i 0.000 Tributary ; 0.000 * Runoff ; C)„850 Segment 2 Reach 3 Waste : 0.000 Tributary ; 0„000 * Runoff ; 0.850 Segment 2 Reach 4 Waste ; 0.000 Tributary 0.000 * Runoff 0.850 Segment 3 Reach 1 Waste ; 0.000 Headwaters ; 0.000 Tributary ; 0„0(:)0 * Runoff ; 0.850 Segment 3 Reach 2 Waste 0.000 Tributary ; 0„000 * Runoff 0.850 60.000 ; 90.000 1 0.000 1 0.000 i 2.000 1 1.000 i 45.000 0.000 1 2„00c:) i 90.000 i 0.000 1.000 10000 p 00C) 0p00C 1 l 2„00c) 1 45.000 0.000 0.000 2.000 45.000 (:)„0c_)0 C) (:) () 0.000 6„9c)c:) 0.000 6„9c')0 c)p(:)(:)c) 0.000 6„900 0.000 c)p(:)0(:) 6.900 0.000 ; 0.000 1.000 , 6.900 90„c:0c)) 0.000 0.000 0 „ („) 0 0 1.000 0.000 1 0 p 000 0.000 90„00c) t 0„000 1 1.000 1 (:)„000 0.000 6.900 244 5 „ 000 : 1818 „ 000 0.000 0p000 1 0.000 1 0.000 '„(^)c:)(:) ; 1.000 : 6„90c:) 45.000 i 2.000 6 5 6 p 0 0 0 0.000 v 1 2 (:)c )0 , 45.000 c:)„C)C0 2.000 90.000 ; 1 0p(:)00 i :169„000 0.000 l 1 1.000 90.000 c:)„c (:)(:) 1.000 ()„0c:)c:) 0.000 6.900 0.000 0.000 0.000 6.900 c:)„c:)00 0.000 6„900 Segment 3 Reach 3 Waste 0.000 : 180 Q 000 : 14.000 ; 0.000 Tributary ; 0.000 ; 0.000 : 0.000 ; 0.000 * Runoff ; 0.850 ; 2.000 ; 1.000 ; 6.900 Segment 3 Reach 4 Waste , 0.000 ( 45.000 : 90.000 , 0o 00t ) Tributary 0a0c 0 : 0v000 : 0n000 0n000 * Runoff C)085() ; ;?.0t 0 : 1.000 ; 6.900 * Runoff flow is in cfs/mile �P, /S / , Geg # | 1 " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 n Reach 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 � 3 3 3 3 3 3 3 4 4 4 4 4 4 4 A. 4 4 4 4 4 4 1 1 1 1 1 2 2 2 2 2 2 2 2 � # Geg Mi | D.O. 0.00 6.90 0.50 6"87 1.00 6"85 1.50 6.E0 2.00 6.80 2.50 6.78 3.00 6.76 3.50 6.74 3.50 6"74 4.00 6.72 4.50 6.70 5.00 6"68 5.50 6.66 5.50 6"66 6.00 6.64 6.50 6.63 7.A0 6.61 7.50 6.60 8.00 6.58 8.50 6.57 9.00 6.55 9.50 6.54 10.00 6.53 10.50 6.52 11"00 6.50 11.50 6.49 12.00 6.48 12.50 6"47 13"0O 6"46 13.50 6.45 14.00 6.44 14.50 6.43 15.00 6"43 15.00 6.43 15.50 6.42 16.00 6.41 16.50 6.40 17.00 6.40 l7.50 6.39 18.00 6.38 18.50 6.38 19.00 6.37 19"50 6.37 20.00 6"36 20"5O 6"36 21.00 6.36 21.50 6.35 0.00 6.35 0.50 6.35 1.00 6.34 1.50 6.34 2.00 6.33 2.00 6"33 3.00 6.33 4.00 6.33 5.00 6.32 6.00 6.32 7.00 6.32 8.00 6.32 9.00 6.32 ,o o^ I- `rn | CBOD 2.00 1.98 1.96 1.94 1.92 1.90 1.88 1.86 1.88 1.84 1.82 1"80 1.78 1.78 1.77 1.75 1.73 1.72 1.70 1.68 1.67 1.65 1.63 1.62 1.60 1.59 1.57 1.56 1.54 1.53 1.51 1.50 1.48 1.48 1.47 1.46 1.44 1.43 1.42 1.40 1.39 1.38 1.36 1.35 1"34 1.33 1.31 1.31 1.3O 1.29 1.28 1.27 1.27 1.25 1.22 1.20 1.18 1.16 1.14 1.12 SUMMER ROANOKE RIVER MODEL NO DI8CHAR8ERS NBOD | Flow | 1.00 1500.00 0.98 1500.42 0.97 1500.85 0.95 1501.27 0.94 1501.70 0.93 1502.12 0.91 1502.55 0.90 1502.97 0.90 1502.97 0.88 1503.40 0.87 1503.82 0.86 1504.25 0.84 1504.67 0.84 1504.67 0.83 1505.10 0.82 1505.52 0.80 1505.95 0.79 1506.37 0.78 1506.80 0.77 1507.22 0.76 1507.65 0.74 1508.07 0.73 1508.50 0"72 1508.92 0.71 1509.35 0.70 1509.77 0.69 1510.20 0.68 1510.62 0.67 1511.05 0.66 1511.47 0.65 1511.90 0.64 1512.32 0.63 1512.75 0.63 1512.75 0.62 1513.17 0.61 1513.60 0.60 1514.02 0.59 1514.45 0.58 1514.87 0.57 1515.30 0.56 1515.72 0.56 1516.15 0.55 1516.57 0.54 1517.00 0.53 1517.42 0.52 1517.85 0.51 1518.27 0.51 1518.27 0.51 1518.70 0.50 1519.12 0.49 1519.55 0.48 1519.97 0"48 1519.97 0.47 1520.82 0.46 1521.67 0"44 1522.52 0.43 1523.37 0.42 1524.22 0.40 1525.07 0.39 1525.92 o "'o ,=n/- �*7 d2 2 i 1 a 00 b a 3•.: 1.08 0.37 1527.62 « 2 2 12.00 6.33 1.06 0. 36 1529.32 6 a1 528.47 k '' ;i -:1a (�} { } •..t 1.04 t«) n W: +..' 1 2 14.00 6.34 1.02 0.34 1530.17 2 15.00 6.34 1.00 (�} a 1531.02 2 16.00 6.35 0.99 0 a ti:2• 1531.87 471 17.00 6.35 0.97 0n 7:1 1532.72 2 R57 6.36 0.94 0.29 154a42 2 � .: 2 _a««0a92 0a28 1535.27i ti 7 2 21a00 6.38 0.90 0.27 1536.12 2 2 22.00 6.39 0.89 0.27 1536.97 3 22.00 6.39 0.89 0.27 1536.97 2 W° 1 0.87 '' " (�}t�} t�} 0.268 •...t 27..a 6p aL7 2 a 2. 3 24.00 6.40 0.86 0.25 1538.67 2 0 25.00 6.41 0.84 0.24 1539.52 2 0 0 26.00 6.42 0 a 8 ti 0.24 1540.37 .' 327.00 6.43 0.81 0.2y 1541.22 3 .t_. +« 28.00 6.44 tt tt 1542.07 2 29.00 6.45 0.78 O ?? 1542.92 2 0 30.00 6.46 0.77 0.21 1543a77 2 0 31.00 6.47 0.76 0.20 1544.62 2 •mo3t 7...2 tt0_6.48 0.74 0.20 1545.47 33a00 6.49 0.77; 0.19 1546a32 4 n tt L 0(_} 6 ,0 0.72 72 0.19 1547.17 2 0 7;5 tt 00 6.52 0.71 0.18 1548.02 2 0 736a00 6.53 0.69 0.18 1548.87 77.00 6.54 0.68 0.17 1549.72 2 8a00 6.55 0.67 0.17 1550.57 7;9 a(«)(«} 6 a 560.66 0.16 1551.42 +-. 3tt 6.57 R L 0.16 1552.27 +:. 3 41.00 6.59 0.64 0.15 1553.12 42.00 6.60 0.6 3 0.15 1553.97 �« 34..tRt")t«} ba6.1 t_}R61 0.14 1554n82 ,..:1 3 44.00 6.62 0.60 0.14 1555.67 45R00 6.63 0.59 0.14 1556.52 2 7. 46.00 6.65 0.58 0.13 1557.37 .t�i.. 3 47.00 6.66 0.57 0.13 1558.22 3 48.00 6.67 0.56 0.13 1559.07 a:.. �t 49.00 6.680.55 L u 2 1559.92 4 49R0} 6a68 0.55 0.12 1559tt92 4 49a50 6a68 0.54 0.12 1560a:5 0 1 0.00 6.68 0.54 0.12 1560.35 3 1 1.00 6.67 0a5 0.11 1561.20 0 1 2.00 6.67 0.50 0.10 1562.05 3 1 a00 6.66 0.47 0.09 1562.90 3 1 4.00 6.66 0.45 0.09 1563.75 �.; 1 5.00 6.66 0.43 0.08 1564.60 0 01 6.00 6.66 0.41 0.07 1565.45 1 7.00 6.66 0.40 0.07 1566.30 .0 1 8n00 6.67 On W8 0.06 1567.15 0 1 9.00 6.67 0.7.6 0a06 1568.00 0 1 10.00 6.68 0 n W 5 0.05 1568.85 1 11.00 6.68 0.77. 7: 0.05 1569.70 0 1 12.00 6.69 0 n 7:2 0.05 1570.55 0 1 17..00 6.70 0 a 0 0.04 1571.40 3 1 14.00 6.71 0.29 0.04 1572.25 1 15.00 6.72 0.28 0.04 1573.10 0 1 16.00 6.73 0.27 0.07; 1573.95 �.� 1 17a00 6.74 0.26 0.07. 1574.80 0 1 18n00 6.75 0a25 0.07; 1575.65 1 19.00 6.76 0.24 0.07; 1576.50 O 1 20.00 6.77 0 R ^:': 0.07. 1577.35 1 21 00 6 78 (�) 22 0.02 1578 20 • .t .s:.. a n ,r i+« ,.. a .�.. 3 1 22.00 6.79 0.21 0.02 1579.05 "1 r"tr"% L -70 n ,71 i t r'ti' 1 •7r r"�_, . 3 2 23.00 6"81 0.20 2 24"00 6,82 0.19 2 25.00 6.83 0.18 ~'3 2 26.00 6.85 0"18 3 2 27.00 6.86 0.17 3 2 28.00 6.87 0.16 3 2 29.00 6.89 0.16 3 2 30.O0 6.90 0.15 3 2 31.00 6"92 0.14 3 2 32.00 6.93 0.14 3 2 33.00 6.94 0.13 3 2 34.00 6.96 0.13 3 2 35.00 6.97 0"12 3 2 36.00 6.98 0"12 3 2 37.00 7,00 0.11 3 3 37.00 7.00 0"11 3 3 37"50 7"01 0.11 3 3 38.00 7.01 0.11 3 4 38.00 7.01 0.11 3 4 39"00 7"03 0.11 3 4 40.00 7.04 0"10 3 4 41.00 7.05 0"10 3 4 42.00 7.07 0.09 3 4 43.00 7.08 0.09 3 4 44.00 7.09 0"09 3 4 45.00 7.11 0.08 3 4 46.00 7.12 0.08 Geg # Reach # | Geg Mi D.O. | CBOD 0.02 1579.90 0.02 1580"75 0.02 1581.60 0.02 1582.45 0.02 1583.30 0.02 1584.15 0.02 1585.00 0.01 1585.85 0.01 1586.70 0.01 1587.55 0.01 1588.40 0.01 1589.25 0.01 1590.10 0.01 1590.95 0.01 1591.80 0.01 1591.80 0.01 1592.22 0.01 1592.65 0.01 1592.65 0.01 1593.50 0.01 1594.35 0"01 1595.20 0.01 1596.05 0.01 1596.90 0"01 1597.75 0.01 1598.60 0.01 1599.45 NBOD Flow | ~ , ^ ° - � � »«' ' SUMMER ROANOKE RIVER CHAMPION EXISTING PERMIT LOADS MODEL RESULTS /"Discharger : . Receiving Stream' x ROANOKE RIVER The End D.O. is 6.26 mg/l. The End CBOD is 0.87 mg/l. The End NBOD is 0.01 mg/l. WLA WLA WLA DO Min CBOD NBOD DO Waste Flow (mg/l) Milepoint Reach # (mg/1) (mg/l) (mg/l) (mgd) Segment 1 6.19 21.50 4 Reach 1 20550.00 2363.00 0.00 0"12000 Reach 2 60.00 90.00 0.00 0"00000 Reach 3 45.00 90.00 0.00 0"00000 Reach 4 10000.00 2000"00 0"00 0.00000 Segment 2 6"06 17.00 2 Reach 1 45.00 90.00 0 " 0 0 0.0O000 Reach 2 45"00 90.00 0"00 0.00000 Reach 3 2445.00 1818"00 0"00 0.00000 Reach 4 45"00 90.00 0�00 0.00000 Segment 3 6"00 18.00 1 Reach 1 656.00 169.00 0"00 0.00000 Reach 2 45.00 90.00 0.00 0.00000 Reach 3 180"00 14.00 0.00 0.00000 Reach 4 45.00 90.00 0.00 0.00000 *** MODEL. SUMMARY DATA Discharger u Subbasin R 070208 Receiving Stream a ROANOKE RIVER Stream Class: C . Summer 7010 1500.0 Design Temperature: 27.0 Winter 701.0 1000„c) ;LENGTH; SLOPE: VELOCITY 1 DEPTH; Kd 1 Kd 1 Ka 1 Ka 1 KN 1 KN KNR KNR 1 SOD 1 SOD 1 1 mile 1 ft/mil fps 1 ft :design: @20° design; 020° ;design; @20° ;design; @20° ;design; O20° 1 I 1 1 1 1 1 Segment 1 1 3.501 0.321 1.010 1 2.00 1 0.14 1 0.10 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 1 i 1 1 1 1 1 1 1 1 1 1 Segment 1 1 2,001 0.321 1.010 1 2.00 1 0.14 1 0.10 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 2 1 1 1 1 1 1 1 1 1 1 1 Segment 1 1 9.501 0.321 1.010 1 3.00 1 0.14 1 0.10 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 3 1 1 1 1 1 1 1 1 1 1 1 Segment 1 1 6.501 0.321 1.010 1 4.00 1 0.14 1 0.10 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0,00 1 0.00 1 0.00 1 Reach 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Segment 2 1 2.001 0.321 1.010 1 5.00 1 0.14 1 0,10 1 0.33 1 0.28: 0.51 1 0.30 1 0,51 1 0,00 1 0.00 1 0.00 1 Reach 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I Segment 2 1 20.001 0.321 1.010 1 5.00 1 0.14 1 0.10 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0,00 1 Reach 2 1 1 1 1 1 1 1 1 Segment 2 1 27.001 0.321 1.010 1 5.00 1 0.14 1 0.10 : 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 3 1 1 1 1 1 1 1 1 1 1 1 1 Segment 2 1 0,501 0.321 0.370 1 9.00 1 0,14 1 0.10 1 0.12 1 0.101 0.51 1 0.30 1 0,51 1 0.00 1 0.00 1 0.00 1 Reach 4 1 I 1 1 1 1 1 1 1 1 1 1 1 Segment 3 1 22.001 0.321 0.370 1 9.00 1 0.14 1 0.10 1 0.12 1 0.101 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 1 1 1 1 1 1 1 1 1 1 1 1 Segment 3 1 15.001 0.321 0.370 1 9.00 1 0.14 1 0.10 1 0.12 1 0.101 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1 Reach 2 1 1 1 E E 1 1 1 I 1 1 1 1 Segment 3 1 1.001 0.321 0.370 1 9.00 1 0.14 1 0.10 1 0.12 1 0.101 0.51 1 0,30 1 0.51 1 0,00 1 0.00 1 0.00 1 Reach 3 1 1 1 1 1 1 1 1 1 Segment 3 1 8.001 0.321 0.370 1 9.00 1 0.14 1 0.10 1 0.12 1 0.101 0.51 1 0.30 : 0,51 1 0,00 1 0.00 1 0.00 1 Reach 4 1 1 1 1 1 1 1 1 1 1 Flow ; CI3OD NBOD ; D.O. cfs ; mg/1 ; mg/1 ; mg/1 Segment 1 Reach 1 Waste ; 0.186 ; 20550 . c_)00 ; 2363; . i i00 ; 0.000 Headwaters ; 1500.000 ; 2.000 ; 1.000 : 6.900 Tributary ; 0.000 : 0.000 : 0.000 ; 0.000 * Runoff ; 0.850 ; 2.000 ; 1.000 : 6.900 Segment 1 Reach 2 Waste ; 0.000 60.000 90.000 ; 0.000 Tributary , 0.000 0.000 ; 0.000 ; 0.000 * Runoff ; C)nB50 ; 2n000 ; 1«0n:0 ; 6.900 Segment 1 Reach 3 Waste ; 0.000 1 45.000 : 90.000 F 0.000 Tributary ; 0.000 0.000 : 0.000 ; 0.000 * Runoff ; 0.850 ; 2.000 ; 1.000 ; 6.900 Segment 1 Reach 4 Waste ; 0.000 ; i.00c 0 4 00t„} ; 2000 „ 000 ; 0.000 Tributary ; 0„000 0a000 : 0„000 ; c),.000 * Runoff ; 0.850 ; 2.000 ; 1.000 ; 6.900 Segment 2 Reach 1 Waste ; 0.000 ; 45.000 ; 0 0 0 0 0.000 Headwaters ; 0.000 ; 0.000 ; 0.000 0.000 Tributary ; 0.000 ; 0„000 ; 0„000 0.000 * Runoff ; 0.850 ; 2.000 ; 1.000 ; 0.000 Segment 2 Reach Waste ; 0.000 Tributary ; 0.000 * Runoff ; 0.850 45nc)c:x) ; 90.000 0.000 : 0.000 2.000 i 1.000 0„0t„)i„) c_) ., 000 6.900 Segment 2 Reach 3 Waste ; 0.000 ; 244 b n 000 ; 1818 n 000 ; 0.000 Tributary ; 0.000 ; 0.000 ; 0.000 ; 0.000 * Runoff : 0.850 ; 2.000 ; 1.000 : 6.900 Segment 2 Reach 4 Waste ; 0.000 ; 45.000 90.000 0.000 Tributary ; 0.000 ; 0.000 ; 0.000 ; 0.000 * Runoff ; 0.850 ; 2.000 ; 1.000 6.900 Segment 3 Reach 1 Waste ; 0.000 ; 656 u 000 ; 1.69 „ 00t;) ; 0.000 Headwaters: 0.000 0.000 : 0.000 ; 0.000 Tributary ; 0.000 ; 0,000 ; c)„000 ! c)„000 * Runoff ; 0.850 ; 2.000 ; 1.000 ; 6.900 Segment 3 Reach 2 Waste ; 0.000 ; 45.000 ; 90.000 Tributary r1butary ; 0.000 1 0.000 ; 0.000 * Runoff ; 0.850 ; 2.0C)0 ; 1.000 0.000 0.000 6.900 Segment 3 Reach 3 Waste 0.000 ; 18c) n 000 ; 14.000 0.000 Tributary ! 0,000 ; 0.000 : 0a00x 0.000 * Runoff 0n85c0 : 2o000 ; 1.000 ; 6.900 Segment 3 Reach 4 Waste 0.000 ; 45.000 Tributary ; 0.000 ; 0.000 * Runoff 0.850 2.000 * Runoff flow is in cfs/mile 90„00 0„000 1.000 0.000 0.000 6.900 Geg # | Reach # Seg Mi D.O. 1 1 0.00 6.90 1 1 0.50 6.87 1 1 1.00 6.84 1 1 1.50 6.82 1 1 2"00 6.79 1 1 2.50 6.77 1 1 3.00 6.74 1 1 3.50 6.72 1 2 3.50 6.72 1 2 4.00 6"70 1 2 4.50 6.67 1 2 5.00 6.65 1 2 5.50 6.63 1 3 5.50 6.63 1 3 6.00 6.61 1 3 8.50 6"59 1 3 7.00 6.57 1 3 7.50 6.55 1 3 8.00 6.53 1 3 8.50 6.51 1 3 9.00 6"49 1 3 9.50 6"48 1 3 10.00 6.46 1 3 10.50 6.44 1 3 11.00 6.43 1 3 11.50 6.41 1 3 12.00 6.40 1 3 12.50 6.38 1 3 13.00 6.37 1 3 13.50 6.36 1 3 14.00 6.34 1 3 14.50 6.33 1 3 15.00 6.32 1 4 15.00 6.32 1 4 15.50 6.30 1 4 16.00 6.29 1 4 16"50 6.28 1 4 17.00 6.27 1 4 17.50 6.26 1 4 18.00 6.25 1 4 18"50 6.24 1 4 19"00 6.23 1 4 19.50 6.22 1 4 20.00 6.21 1 A. 20.50 6.20 1 4 21.00 6.20 1 4 21.50 6.19 2 1 0.00 6.19 2 l 0.50 6.18 2 1 1.00 6"17 2 1 1"50 6.16 2 1 2.00 6.15 2 2 2.00 6.15 2 2 3.00 6.14 2 2 4.00 6.13 2 2 5.00 6.12 2 2 6.00 6.11 2 2 7.00 6.10 2 2 8"00 6.09 2 2 9.00 6.09 GUMMER ROANOKE RIVER CHAMPION EXISTING PERMIT LOADS CBOD NBOD | Flow | 4.55 1.29 1500.19 4.53 1.27 1500.61 4.51 1.25 1501.04 4.49 1.23 1501.46 4.47 1,21 1501.89 4.45 1.20 1502.31 4.43 1.18 1502.74 4.41 1.16 1503.16 4.41 1.16 1503.16 4.39 1.14 1503.59 4.37 1,12 1504.01 4.35 1.11 1504.44 4.34 1.09 1504.86 4.34 1.09 1504.86 4.32 1.07 1505.29 4.30 1.06 1505.71 4.28 1.04 1506.14 4.26 1.02 1506"56 4.24 1.01 1506.99 4.23 0.99 1507.41 4.21 0.98 1507.84 4.19 0.96 1508"26 4.17 0.95 1508.69 4.15 0.93 1509.11 4.13 0"92 1509.54 4.12 0.90 1509.96 4.10 0.89 1510.39 4.08 0.88 1510.81 4.06 0.86 1511.24 4.05 0.85 1511.66 4.03 0.84 1512.A9 4.01 0.82 1512.51 3.99 0.81 1512.94 3.99 0"81 1512.94 3.98 0.80 1513.36 3.96 0.79 1513.79 3.94 0.77 1514.21 3.93 0.76 1514.64 3.91 0.75 1515.06 3.89 0.74 1515.49 3"88 0.73 1515.91 3.86 0.72 1516.34 3.84 0.71 1516.76 3.83 0.69 1517.19 3.81 0.68 1517.61 3.79 0.67 1518.04 3.78 0.66 1518.46 3"78 0.66 1518.46 3.76 0.65 1518.89 3"74 0.84 1519.31 3"73 0.63 1519.74 3.71 0.62 1520.16 3.71 0.62 1520.16 3.68 0.60 1521.01 3.65 0.59 1521.86 3.62 0.57 1522.71 3.59 0.55 1523.56 3.56 0.53 1524.41 3.53 0.52 1525.26 3.50 0.50 1526.11 'r x-/ o :o ,=nL 0Z- r•} 2 11.00 00 6 a 08 �• a 44 0.47 1527.81 I _ - 2 12.00 . 6 n 07 3 . 41 c_} .46 1528.66 :2 1 nfir}fir} 6.07 3.38 0.45 1529.5.L 2 14.00 6.07 7.35 0.43 1570.76 2 2 15.00 6.06 3tl:�^ 0R4 1531.21 2 2 16.00 6a06 3n29 0.41 1532.06 . 17n00 6.063[[26 {r}q•r� 1532.91 18.00 6.06 3.24 0.78 1533.76 ,-) 2 19=00 6.06 3=i1 c_}a 7 1534a61 20.00 6.06 3.18 0.76 1535.46 2 2 2 22.0021a00 6.07 ?R1.5 0.75 15:�6. 1 .1:� 6.07 3.13 0.34 1537.16 2 3 22.00 6.07 3.13 0.34 1537.16 27a0��} 6.07 3.10 0.00 1538.01 2 0 24.00 6.07 3.07 0.72 1538.86 ,2 T 25n00 6.08 7.05 0n71 1539.71 2 0 26.00 6.08 3.02 0a70 1540.56 :m7Rc:}c:} 6.097R�:}c�} c_}a9 1541.41 2 3 78.00 6.09 2.97 0.28 1542.26 2 3 29.00 6.10 2.95 0.28 1543.11 2 mac:}q{=}��} 6a1c�}R9 ��}q^7 154�"R96 2 0 31.00 6.11 2.90 0.26 1544.81 0 72.00 6.12 2.87 0.25 1545.66 2 «i 77.00 6.12 2.85 0.24 1546.51 3 34.00 6.13 2.82 0.24 1547.36 .w. 375.00«6.14 2.80 0.23 1548.21 2 0 36.00 6.14 2.78 0.22 1549.06 2 3 37.00 6.15 2.75 0.22 1549.91 wBAcr}} 6.16 2.73 it?tl 21 1550a76 . 0 79.00 6.17 2.71 0.21 1551.61 2 0 4c:} 00 6.17 2.68 0.20 1552 46 .ti.. r.[ q n A .1:.. 5.. tr .t:.. n 2 41.00 6.18 2.66 0.19 1553.31 2 .0 42.00 6.19 2.64 0.19 1554.16 0 47.00 6.20 2.62 0.18 1555.01 2 0 44.00 6.21 2.59 0.18 1555.86 rT h ,« q•ync:Ic�} 6q��� � 2q57 i:fa17 1556.71 3 46.00 6.23 2� 5, 0.17 1557 56 .I:r q q .Lr •« .tr i[ 5r �.. q Sr 1.. A M .i:.. 747.00 6.24 2.53 0.16 1558.41 •«• 4edoo 6.25 2.51 0.16 1559.26 n 3 �" 49a { }�=} 2.49 0.15 156c:}a 11 .tom. 6.26 2 4 49.00 6.26 2.49 0.15 1560.11 2 4 49R50 6.24 2.46 0.15 1560.54 3 1 0.00 6.24 2.46 0.15 1560.54 "t 1 1.00 6.21 2.40 0.14 1561.39 0 1 2.00 6.18 2.75 0.17 1562.24 01563.09 4 = q 00 . . 5 2 . 29 0 A i. 3 1 4.00 6.13 2.24 0.11 1563.94 0 01 5.00 6.11 2.19 0.10 1564.79 3 1 6.006.09 2.14 0.09 1565.64 0 1 7.00 6.07 2.09 0.08 1566.49 1 8.00 6.06 2.05 0 A 08 1567.34 1 9.00 6R05 2.00 0a07 1568.19 1 10.00 6.07 1.96 0.07 1569.04 3 1 11.00 6.02 1.91 0.06 1569.89 0 1 12.00 6A02 1.87 0.06 1570.74 0 1 13.00 6.01 1.83 0.05 1571.59 '' 01 14.00 6.01 1.79 0.05 1572.44 3 1 15.00 6.00 1.75 0.05 1573.29 0 1 16.00 6.00 1.71 0.04 1574.14 .mot 0 1 17.00 6.00 1.67 0.04 1574.99 3 1 18 .00 6.00 1.63 0.04 1575.84 7 1 19.00 6.00 1.59 0.07 1576.69 3 1. 2c:}A0c) 6.00 1.56 0R0 3 :L577n54 1 21.00 6.00 1.52 0.07 1578.39 1 22.00 6.01 1a49 0.07 1579.24 .7 ''+ '"ti''} rrt r t L. r"% 1 1 n_ C? rti n -1. 1 "7 D ',A 1 34 34 4 w 4 3 4 4 4 4 4 Seg # Reach' # 23 00 6.01 1.46 0.0 24.00 6.02 1.42 0.02 25R00 6.02 1.39 0.0'2 26.00 6#03 1.36 0.02 27.00 6.04 1.33 0.02 28.00 6.04 1.30 0.02 29.00 6.05 1.27 0.02 7 c_0 a c_00 6.06 1.24 0.02 7.1. 00 6.07 1.29 0.02 :7 `r00 6.08 1.19 0.02 7;«00 6A09 1.16 0.01 34.00 6.10 1.14 0.01 7:5.00 6.12 laic 0.01 36.00 6.13 1.09 0.01 7,7.00 6.14 1.06 0.01 :7 .00 6.14 1.06 0.01 7.7.50 6.15 1.05 0„01 7.8.00 6.15 1.04 0.01 7.8.00 6.15 1.04 0,01 79Ac)0 6.17 1.02 0.01 40400 6.18 0e99 0A01 41.00 6.19 0.97 0.01 42.00 6.21 0.95 0.01 4:7.00 6R22 c)a93 0.01 44.00 6.23 0.91 0.01 45.00 6.25 0.89 0.01 46.00 6.26 0.87 0.01 Seg Mi D.O. CBOD NBOD 1580.09 1580.94 1581.79 � J 1582a64 1583.49 1584.34 1585.19 1586.04 1586.89 1587.74 1588.59 1589.44 1590.29 1591.14 1591.99 1591.99 1592.41 1592.84 1592.84 1593.69 1594.54 1595.39 1596.24 1597.09 1597.94 1598.79 1599.64 Flow ' - • SUMMER ROANOKE RIVER CHAMPION LOADS ONLY MODEL RESULTS :'Discharger p . Receiving Stream a ROANOKE RIVER The End D.O. is 6.01 mg / 1 The End CBOD is 1e03 mg/1 u The End NBOD is 0.01 mg/1. WLA WLA WLA DO Min CBOD NBOD DO Waste Flow (mg/1) Milepaint Reach 1* (mg/1) (mg/1) (mg/1) (mgd) Segment 1 6.07 21.50 4 Reach 1 27720.00 2 7.6 „ 00 0.00 0.12000 Reach 60.00 90.00 0.00 0.00000 Reach 3 45.00 90.00 0.00 0.00000 Reach 4 10000.00 2000.00 0.00 0.00000 Segment 2 Reach 1 Reach 2 Reach 3 Reach 4 Segment Reach 1 Reach 2 Retch 3 Reach 4 5.90 20.00 y 5.73 19.00 1 45.00 45.00 2445„00 45.00 656.00 45.00 180.00 45.00 90p00 0.00 0„00000 90.00 0.00 0.00000 1818.00 0.00 0.00000 90.00 0.00 0.00000 169.00 0.00 0.00000 90.00 0,00 0a00000 14.00 0.00 0.00000 90.00 0.00 0.00000 *** MODEL SUMMARY DATA *** , Discharger- Subbasin n (:}30208 Receiving Stream 2 RO NOKE RIVER Stream Class: C Summer 7010 n 1500.0 Design Temperature: 27.0 Winter 7010 n 1000.0 :LENGTH: SLOPE: VELOCITY : DEPTH: Kd : Kd : Ka : Ka : KN KN : KNR KNR : SOD : SOD : : mile : ftlmi: fps : ft :design: @20° :design: @20° :design: @20° :design: @20° :design: @20° Segment 1 : 3.50: 0.32: 1.010 : 2,00 : 0.14 : 0.10 : 0.33 : 0,28: 0.51 : 0,30 : 0.51 : 0.00 : 0,00 : 0.00 : Reach 1 Segment 1 Reach 2 : 2.00: 0.32: 1.010 : 2,00 : 0.14 : 0.10 : 0.33 : 0.28; 0.51 : 0.30 : 0.51 : 0,00 : 0.00 : 0.00 : , , , , 1 , Segment 1 : 9,50: 0.32: 1.010 : 3.00 : 0.14 : 0,10 : 0.33 : 0.28: 0.51 : 0.30 : 0.51 : 0,00 : 0.00 : 0,00 : Reach 3 : , Segment 1 : 6.50: 0,32: 1.010 : 4.00 : 0.14 : 0.10 : 0,33 : 0,28: 0.51 : 0.30 : 0.51 : 0.00 : 0.00 : 0.00 : Reach 4 : , Segment 2 : 2.00: 0.32: 1,010 : 5.00 : 0.14 : 0.10 : 0,33 : 0.28: 0.51 : 0.30 : 0,51 : 0.00 : 0.00 : 0.00 : Reach 1 : Segment 2 : 20.00: 0.32: 1,010 : 5.00 : 0.14 : 0.10 : 0,33 : 0,28: 0.51 : 0.30 : 0.51 : 0,00 : 0.00 : 0.00 : Reach 2 : Segment 2 : 27.00: 0.32: 1.010 : 5.00 : 0.14 : 0,10 : 0.33 : 0.28: 0.51 : 0.30 : 0.51 : 0,00 : 0.00 : 0.00 : Reach 3 : , Segment 2 : 0,50: 0.32: 0.370 : 9.00 : 0.14 : 0.10 : 0.12 : 0.10: 0.51 : 0.30 : 0,51 : 0,00 : 0.00 : 0.00 : Reach 4 Segment 3 : 22.00: 0.32: 0.370 : 9.00 : 0.14 : 0.10 : 0.12 : 0.10: 0.51 : 0.30 : 0.51 : 0.00 : 0.00 : 0.00 : Reach 1 : Segment 3 : 15.00: 0.32: 0.370 : 9.00 : 0,14 : 0,10 : 0.12 : 0.10: 0.51 : 0.30 : 0.51 : 0.00 : 0.00 : 0.00 : Reach 2 Segment 3 : 1.00: 0.32: 0.370 : 9.00 : 0,14 : 0,10 : 0.12 : 0,10: 0.51 : 0.30 : 0.51 : 0.00 : 0.00 : 0.00 : Reach 3 : Segment 3 : 8,00: 0.32: 0.370 : 9,00 : 0.14 : 0.10 : 0.12 : 0.10: 0.51 : 0,30 : 0.51 : 0.00 : 0.00 : 0.00 : Reach 4 : Flow ; IMOD ; l\1BOD ; D.O. cfs ; mg/1 ; mg/1 ; mg/1 Segment 1 Reach 1 Waste ; 0.186 ; 27720 „ 00(_) ; ,63.0(_)0 Headwaters ; 15(_)(_) a 00(_) : 2.000 ; 1.000 ; Tributary ; 0.000 ; 0.000 ; 0.000 * Runoff ; 0.850 : 2 „ (_7 (_7 (_) : 1.000 ; Segment 1 Reach 2 Waste ; 0.000 Tributary ; 0.000 * Runoff ; 0.850 Segment 1 Reach 3 Waste ; 0.000 Tributary ; (_).(_)(_)(_) * Runoff ; 0085(:) Segment 1 Reach 4 Waste ; 0.000 0.000 * Runoff : 0n850 Tributary Segment 2 Reach 1 Waste : 0.000 Headwaters; 0.000 Tributary ; 0.000 * Runoff ; 0.850 Segment 2 Reach Waste ; 0.000 Tributary ; 0.000 * Runoff ; 0.850 Segment 2 Reach 3 Waste 0.000 0.000 t_)a850 Tributary * Runoff Segment 2 Reach 4 Waste ; 0.000 Tributary , 0.000 * Runoff ; 0.850 Segment 3 Reach 1 Waste ; 0.000 Headwaters ; 0.000 Tributary ; 0.000 * Runoff ; 0.850 Segment 3 Reach Waste ; 0.000 Tributary ; 0.000 * Runoff ; 0.850 60.000 0.000 ; 2.000 45.000 0.000 2.000 90.000 ; ; 0.000 ; i 1.000 ; 10 C (_)(_) . 000 i 0.000 I 2.000 ! 45.000 0.000 0.000 2.000 45.000 0.000 2nt_)00 90.000 0.000 1.000 i 0.000 6.900 0.000 6.900 0.000 0.000 6.9(_)0 0.000 0.000 6.900 (_) (_) (_) o (_) (_) 0 ; 0.000 0.000 ; 0.000 1.000 ; 6.900 90.000 0.000 0.000 1.000 90.000 ; 0.000 1.000 2 4 4 5 n 0 0 0 ; 1818 n (_) (_) (_7 ; 0.000 0.000 ; 2.000 ; 1.000 ; 4 5 w 0 (_) 0; 90.000 0.000 : 0.000 17'a000 ; 1.000 6 56 « (_)(_)(_) ; 0.000 ; 0.000 2.000 16 9 . (_) 0 (_) 0.000 ; 0.000 1.000 ; 45.000 i 90.000 0.000 ; 0.000 ; 2.000 ; 1.000 (_) „ (_) (_) (_) 0.000 0.000 0.000 0.000 0.000 6.900 0.000 0.000 6.900 0.000 0.000 6.900 0.000 0.000 0.000 6.900 0.000 0.000 6.9t_)t_) Segment 3 Reach 3 t 'Waste 0.000 ' 180 000 14.000 ' 0.000 Tributary : 0.000 ; 0.000 0.000 0.000 * Runoff 0.850 ; 2.000 1.000 6n900 Segment 3 Reach 4 Waste ; 0.000 ; 45.000 Tributary : 0.000 ; 0.000 Runoff 0.850 ; 2.000 * Runoff flow is in cfs/mile 90.000 0.000 1.000 0.000 0.000 6.900 r r SUMMER • ROP NO KF RIVER .= R CHAMPION LOADS ONLY Beg # Reach # 8eq Mi D.O. CBOD NBOD : Flow ; 1 1 0tl0,a 6.90 5.44 1.29 1500.19 1 1 0.50 6.87 5.41 1.27 1500.61 1 1 1.00 6.84 5.39 1.25 1501.04 1 1 1.50 6.81 5.37 1.23 1501.46 1 1 2.00 6.78 5.34 1.21 1501.89 1 1 2.50 6.75 5.32 1.20 15O2 b 1 1 1 7.00 6.72 5.30 1.18 1502.74 1 1 7C„5O 6.69 5.27 1.16 1503.16 1 2 7% 50 6.69 5.27 1.16 1503.16 .»s 1 2 4.00 6.67 5.25 1.14 1507..59 1 2 4.50 6.64 5 b 2? 1.12 1504.01 1 2 5.00 6.62 5.21 1.11 1504.44 1 5.50 6.59 5.18 12209 15c»y4n86 1 3 5.50 6.59 5.18 1.09 15c_�4 22 86 1 6.00 6.57 5.16 1.07 15052229 1 6.50 6.54 5.14 1.06 1505.71 1 3 7.00 6.52 5.12 1.04 1506n14 1 3 7.50 6.50 5.09 1.02 1506.56 1 8.00 6.48 5.07 1.01 1506.99 1 8.50 6.46 5.05 0.99 1507.41 1 3 9.00 6.44 5.07; 0.98 1507.84 1 3 9.50 6.42 5.01 0.96 1508.26 1 W. 10.00 6.40 4.98 0.95 1508.69 1 3 10.50 6.38 4.96 0.93 1509.11 1 :'; 11.00 6.36 4.94 0.92 1509.54 1 3 11.50 6.34 4.92 0.90 1509.96 1 3 12.00 6.32 4.90 0.89 1510.39 1 3 12.50 6.31 4.88 0.88 1510.81 1 3 17tic»0 6.29 4.86 0.86 1511.24 1 13.50 6.27 4.83 0.85 1511.66 1 3 14.00 6.26 4.81 0.84 1512.09 1 14.50 6.24 4.79 0.82 1512.51 1 15.00 6.23 4.77 0.81 1512.94 1 4 15.00 6.23 4.77 0.81 1512.94 1 4 15.50 6.21 4.75 0.80 1513.36 1 4 16.00 6.20 4.73 0.79 1513.79 1 4 16.50 6.19 4.71 0.77 1514.21 1 4 17.00 6.17 4.69 0.76 1514.64 1 4 17.50 6.16 4.67 0tl75 1515.06 1 4 18tl00 6.15 4.65 0.74 1515.49 1 4 18.50 6.14 4.63 0.73 1515.91 1 4 19.00 6tl 12 4.61 0.72 1516.34 1 4 19.50 6.11 4.59 0.71 1516.76 1 4 20p00 6.10 4.57 0.69 1517b 19 1 4 20.50 6.09 4.55 0.68 1517.61 1 4 21.00 6.08 4.53 0.67 1518.04 1 4 21.50 6.07 4.51 0.66 1518.46 2 1 0.00 6.07 4.51 0.66 1518.46 1 0.50 6.06 4.49 c»ap65 1518.89 2 1 1.00 6.05 4.47 c_� n b4 1519.31 1 1.50 6.04 4.45 0.63 1519.74 .4 1 2.00 6tl03 4.43 0.62 1520n16 2.00 6.07. 4.43 0.62 1520.16 2 2 3tl00 6.01 4.40 0,60 1521.01 4.00 6.00 4.36 0.59 1521.86 2 5.00 5.98 4.32 0p57 1522.71 .2 .6.00 5.97 4.28 0.55 .ti..23n 5 2 .:' 7.00 5.96 4.25 0 tl 5: 1524.41 2 2 8.00 5.95 4.21 0.52 1525.26 2 9.00 5.94 4.17 0.50 1526.11 r•ti 4,-, rie% 1 en•T /I i /1 /. An 1 rni.. C)L. �►- r-i • 1 s 414 4, 4. 11.00 5.97 4.10 0.47 1527.81 • 2 12.00 5R9.2 4.07 0.46 1528.66 •2 17R{_i0 5.91 4.07 0.45 1529.51 .1 a 2 14.00 5.91 4a00 0.47 i5:";0a ;6 15a00 5.91 3.96 042 1531.21 4. 16R00 5.90 3.93 0R41 .1532R06 t„) 0 M �y ,. 17.5.90 {�� •w1 A S -7 0.39 1532.91 4. 18.00 5.90 3.86 0.78 1533.76 a a '7� .4. 19a{�%{..� 5u9{_i •.ia8•...i {..�a I 1 4R61 2 20a00 5.90 3.80 0.76 1535R46 4. 21 R00 5.90 3.76 0.75 1536a31 -..r:..ano 5.90 3n73 0.74 1537.16 -•" 22.00 5.90 7 4 1537.16 -" 27t y �v a00 5490 3870 0.77 1538.01 24.00 5.90 3.67 0.72 1538.86 3 25400 5.90 3864 0.71 1539.71 3 26.00 5.91 3.60 0.70 1540a56 3 27400 5.91 3.57 0.29 1541.41 3 28.00 5.91 3.54 0.28 1542.26 29.00 5.92 3.51 0.28 1543.11 _} ..:r0 a 00 5 a 92 �; .48 0.27 1543.96 3 71800 5893 3.45 0.26 1544.81 ,:, .;}2 a 00 5 R 93 »� .42 0.25 1545.66 7.00 5.94 3.39 0.24 1546.51 r; .34800 5.94 3.37 0424 1547836 3 75400 5.95 3.34 0a23 1548.21 3 6800 5.96 3.31 092"-, 1549806 37.00 5.96.,.,�3A.r.8 0R2._:.. 1549.91 7.;.i 8 a 0 0 5 R 9/ �; .25 0.21 1550.76 3 y 5.98 �'S 1 1��y w�9R{..�{.,• .r1a.4..r 0a21 155. a 40.00 5.99 7a20 0920 1552946 3 41800 5.99 3.17 04.19 1553.31 7 42.00 6.00 3.14 0.19 1554.16 3 47.00 6.01 3.12 0.18 1555.01 0 44400 6402 3.09 0.18 1555.86 ✓ 45.00 6.07 3.06 0.17 1556.71 3 46.00 6.04 7.04 0.17 1557.56 47.00 6805 7.01 0.16 1558.41 48.00 6.06 2.99 0.16 1559.26 3 49800 6807 2896 0.15 1560.11 4 49.00 6.07 2.96 0.15 1560.11 4 49.50 6.05 2.93 0.15 1560.54 1 0900 6.05 2.93 0.15 1560454 1. 1.00 6.01 2.86 0.14 1561.39 1 .00 5.97 2.80 0.17 1562.24 1 7.00 5.94 2.73 0.12 1563809 1 4.00 5.91 2.67 0.11 1563.94 1 5.00 5889 2861 0.10 1564479 1 6.00 5.86 2.55 0.09 1565.64 1 7.00 5884 2.49 0R08 1566449 1 8.00 Mtr r... .. 82 2 n 44 0.08 1 9.00 5.81 2.38 0.07 1568.19 1 10.00 5.79 .�1.. a 0.07 1569.04 1 11.00 5.78 2.27 0.06 1569.89 1 12.00 5.77 2.22 0.06 1570.74 1 17800 5876 2.17 0.05 1571.59 1 14a00 5.75 2.12 0.05 1572.44 1 15.00 5.74 2.08 0.05 1573.29 1 16.00 5.74 2.03 0.04 1574.14 1 17.00 5.74 1.98 0.04 1574.99 1 18.00 5.73 1494 0.04 1575884 1 19.00 5.73 1.90 0.07 1576.69 1 20800 55473 1.85 0807 1577.54 1 21.00 5.74 1.81 0.07 1578.39 1 22.00 5.74 1.77 0.07 1579.24 3 4 4 4 ` 4 4 3 4 3 4 4 4 Seg # Reach 2700 5.74 1.73 0807; 1580809 24.00 5.75 1.69 0.02 1580.94 25.00 5.75 1.65 0.02 1581.79 26.00 5.76 1.62 0.02 158264 27.00 5 .77 1 .r 158 0.02 1583.49 28.00 5.77 7 1.55 0.02 1584.34 29.00 5..78 1851 0it02 1585a19 30.00 5.79 1.48 0.02 1586804 31.00 5.80 1.44 0.02 1586.89 72w00 5''.81 1.41 0.0.021587S.74 ,.3 .00 5 . 82 1.38 0.01 1588.59 34.00 5.84 1.35 0.01 1589.,44 35.00 5.85 1.32 0.01 1590.29 36.00 5.86 1.29 0.01 1591.14 7;7800 5.87 1.26 0.01 1591.99 737.00 5.87 1.26 0.01 1591.99 37.50 5.88 1.25 0801 1592n 41 7;8.00 5.89 1.23 0.01 1592.84 38.00 5.89 1.23 0.01 1592.84 79.00 5.90 1.21 0.01 1593.69 40.00 5.92 1.18 0.01 1594.54 41800 5493 1.15 0801 1595.39 42.00 .=5W95 11: 0.01 1596.24 4 c_a0 5a96 1810 0801 1597.09 44.00 5.98 1.08 0.01 1597.94 45.00 5.99 1.05 0.01 1598.79 46.00 6.01 1. 03 0.01 1599.64 Sect Mi : D.O. CF3OD NBOD Flow -- r _ "' SUMMER j' ROANOKE -- 1988 OLD CHAMPION LOADS ---------- MODEL RESULTS -------.---__--..... Discharger Receiving Stream : ROANO E RIVER The End D.O. is 5.68 mg/i. The End LI3OD is 0.25 mg/1 . The End NBOD is 0.05 mg/ i . WLA WLA WLA DO Min CE0D NDOD DO Waste Flow (mg/1) Milepoint Reach # (mcj/1) (mg/1) (mg/1) (mgd) Segment 1 5.04 21.50 4 Reach 1 20544.80 L 6'ti . 0t:) 0.00 0.12000 Reach 2 60.00 90.00 0.00 8.34000 Reach 3 45.00 90.00 0.00 0.50000 Reach 4 10000.00 ;:?000.00 0.00 0.00000 Segment 2 4.81 16.00 2 Reach 1. 45.00 90.00 0.00 0.07000 Reach 2 45.00 90.00 0.00 0.01250 Reach h wr 2445.00 1818.00 0.00 0.12000 Reach 4 45.00 90.00 o . 00 o „ 08000 Segment :3 4.95 9.00 1 - Reach 1 656.00 169.00 0.00 0.12000 Reach 2 45.00 90.00 0.00 3.00000 Reach 3 180.00 14.00 0.00 0.08000 Reach 4 45.00 90.00 ' 0.00 0.15000 ~ `« ' ' " Geg # | Reach # | Geg Mi | D.O. 1 1 0"00 6.71 1 1 0"50 6.65 1 1 1.00 8"60 1 1 1"50 6.55 1 1 2.00 6"51 1 1 2"50 6"46 1 1 3.00 6"41 1 1 3"50 8.37 1 2 3"50 6.32 1 2 4.00 6"26 1 2 4"50 6"20 1 2 5"00 6"14 1 2 5.50 6.09 1 3 5"50 6"09 1 3 6"00 6"04 l 3 6.50 5"99 1 3 7"00 5.94 1 3 7"50 5.89 1 3 8"00 5"85 1 3 8"50 5.80 1 3 9.00 5.78 1 3 9.50 5"72 1 3 10"00 5"68 1 3 10"50 5"64 1 3 11"00 5.60 | CBOQ 4"42 4"37 4"33 4.28 4.24 4.19 4.15 4.10 4.57 4"52 4.47 4.42 4.38 4"40 4.35 4"31 4.27 4.23 4.19 4,14 4"10 4.06 4"02 3.98 3.94 7.. pI SUMMER ROANOKE - 1988 OLD CHAMPION LOADS NBOD | Flow | 1.26 1543"49 1"24 1543.91 1"22 1544.34 1"20 1544"76 1.18 1545.19 1"16 1545.61 1.14 1546.04 1"13 1546.48 1.86 1559.39 1.83 1559"81 1"81 1560.24 1"78 1560.66 1"75 1561.09 1"79 1561"86 1"77 1562"29 1.74 1562.71 1.71 1563.14 1"68 1563"56 1"66 1563.99 1.63 1564"41 1"61 1564.84 1.58 1565"26 1.56 1565.69 1.53 1586.11 1"51 1566.54 1 49 19AA'9A 1 3 12.00 5. 5 3 3.87 1.46 1567.39 1 3 12.50 5.49 3.83 1.44 1567.81 1 3 13.00 5.46 3.79 1.42 1568.24 1 3 . 50 5.43 3.75 1.40 1568.66 1 3 14.00 5.39 3.72 1.37 1569.09 1 3 14.50 5.36 3.68 1.35 1569.51 1 3 15.00 5.33 3.64 1.33 1569.94 1 4 15.00 5.33 3.64 1.33 1569.94 1 4 15.50 5.31 3w61 1.31 1570.36 1 4 16.00 5.28 3.58 1.29 1570.79 1 4 16.50 5.25 3.54 1.27 1571.21 1 4 17.00 5.23 3.51 1.25 1571.64 1 4 17.50 5.21 3.47 1.23 1572.06 1 4 18.00 5.18 3.44 1.21 1572.49 1 4 18.50 5.16 3.41 1.19 1572.91 1 4 19.00 5.14 3.38 1.18 1573.34 1 4 19.50 5.12 3.35 1.16 1573.76 1 4 20.00 .5.10 3.31 1.14 1574.19 1 4 20.50 5.08 3.28 1.12 1574.61 1 4 21.00 5.06 3.25 1.10 1575.04 1 4 21.50 5.04 3r22 1.09 1575.46 2 1 0.00 5.04 3.22 1.09 1575.57 2 1 0.50 5.03 3.19 1.08 1576.00 2 1 1.00 5.01 3.16 1.06 1576.42 2 1 1.50 4.99 3.13 1.04 1576.85 2 1 2.00 4.98 3.11 1.03 1577.27 2 2 2.00 4.98 3.11 1.03 1577.29 2 2 3.00 4.95 3.05 1.00 1578.14 2 2 4.00 4.93 2.99 0.97 1578.99 2 2 5.00 4.91 2.94 0.94 1579.84 2 6 a ���� 4 a 89 2 a 88 0.91 1580.69 2 2 7.00 4.87 2.83 0.88 1581.54 2 2 8.00 4.86 2.78 0.85 1582.39 2 2 9■c_�c_� 4.84 2r73=�r83 1583.24 2 2 1 � , Clta 4.83 2.68 0.80 1584.09 2 2 11.00 4.82 2.63 0.78 1584.94 2 2 12.00 4.82 2.58 0.75 1585.79 2 2 13.00 4.81 2w5; 0.73 1586.64 2 2 14.00 4.81 2.49 0.71 1587.49 2 2 15.00 4.81 2.44 0.69 1588.34 2 2 16.00 4.81 2.40 0.67 1589.19 2 2 17.00 4.81 2.35 0.65 1590.04 2 2 18.00 4.81 2.31 0.63 1590.89 in 2 2 19.00 4.81 2.27 0.61 1591.74 2 2 20.00 4.82 2.23 0.59 1592.59 2 2 21.00 4.82 2. 19 0.57 1593.44 2 2 22.00 4.83 2.15 0.55 1594.29 2 3 22.00 4.83 2.43 0.77 1594.48 2 3 23.00 4.83 2.39 0.74 1595.33 2 3 24.00 4.83 2.34 0.72 1596.18 2 3 25.00 4.83 2.30 0.70 1597.03 2 3 26.00 4.83 2.26 0.68 1597.88 2 3 27.00 4.83 2.22 0.66 1598.73 2 3 28.00 4.83 2.18 0.64 1599.58 2 3 29.00 4.84 2.14 0.62 1600.43 2 3 30.00 4.85 2.10 0.60 1601.28 2 3 31 ■00 4.85 2.06 0.58 1602.13 2 3 32.00 4.86 2.02 0.56 1602.98 2 3 33.00 4.87 1.98 0.55 1603.83 2 3 34.00 4.88 1.95 0.53 1604.68 2, 3 35.00 4.90 1.91 0.51 1605.53 2 3 36.00 4.91 1.88 0.50 1606.38 2 3 37.00 4.92 1.84 0.48 1607.23 w 38.00 4.94 1.81 0.47 1608.08 -�.' . 'a= 3 39.00 4.95 1.78 0.45 1608.93 .-, -x An n n 11 CD-7 1 7 R n AA 1 A t`1 U __ 7 A 2 ; 41.00 4.98 1.71 0.43 1610.63 s ' - �� '. 2 . 3 42.00 5.00 1.68 0.41 1611.48 2 3 43.00 5.02 1.65 0.40 1612.33 . 2 3 44.00 5.04 1.62 0.39 1613.18 2 45.00 5.05 1.59 0.38 1614.03 3 46.00 5.07 1.56 0.37 1614.88 ' 2 3 47.00 5.09 1.54 0.36 1615.73 2 3 48.00 5.11 1.51 0.35 1616.58 2 3 49.00 5.13 1.48 0.34 1617.43 2 4 49.00 5.13 1.48 0.34 1617.55 2 4 49.50 5.11 1.45 0.33 1617.98 3 1 0.00 5.11 1.53 0.5 1618.16 3 1 1.00 5.07 1.46 0.32 1619.01 3 1 2.00 5.04 1.39 0.29 1619.86 1 3.00 5.02 1.33 0.27 1620.71 3 1 4.00 4.99 1.27 0.25 1621.56 1 5.00 4.98 1.21 0.23 1622.41 3 1 6.00 4.97 1.16 0.21 1623.26 3 1 7.00 4.96 1.10 0.19 1624.11 1 8.00 4.95 1.05 0.18 1624.96 3 1 9.00 4.95 1.01 0.16 1625.81 1 10.00 4.96 0.96 0.15 1626.66 3 1 11.00 4.96 0.92 0.14 1627.51 3 1 12.00 4.97 0.88 0.13 1628.36 3 117.00 4.98 0.84 0.12 1629.21 3 1 14.00 5.00 0.80 0.11 1630.06 3 1 15.00 5.01 0.76 0.10 1630.91 3 1 16.00 5.03 0.73 0.09 1631.76 3 1 17.00 5.05 0.70 0.09 1632.61 3 1 18.00 5.07 0.67 0.08 1633.46 3 1 19.00 5.09 0.64 0.07 1634.31 3 1 20.00 5.12 0.61 0.07 1635.16 1 21.00 5.14 0.58 0.06 1636.01 3 1 22.00 5.17 0.56 0.06 1636.86 -3. 2 22.00 5.15 0.68 0.31 1641.51 3 2 23.00 5.15 0.65 0.29 1642.36 3 2 24.00 5.16 0.62 0.26 1643.21 3 2 25.00 5.17 0.60 0.24 1644.06 3 2 26.00 5.18 0.57 0.22 1644.91 3 2 27.00 5.19 0.54 0.21 1645.76 3 2 28.00 5.21 0.52 0.19 1646.61 3 2 29.00 5.22 0.50 0.17 1647.46 3 2 30.00 5.24 0.48 0.16 1648.31 3 2 71.00 5.26 0.45 0.15 1649.16 3 32 ..2.00 5.29 0.40.14 1650.01 3 2 33.00 5.31 0.42 0.13 1650.86 3 2 34.00 5.34 0.40 0.12 1651.71 3 2 7;5.00 5.36 0.18 0.11 1652.56 .. 3 2 36.00 5.39 0.76 0.10 1653.41 3 2 37.00 5.42 0.35 0.09 1654.26 3 3 37.00 5.42 0.36 0.09 1654.39 3 3 37.50 5.43 0.35 0.09 1654.81 3 3 38.00 5.45 0.35 0.09 1655.24 3 4 38.00 5.45 0.35 0.10 1655.47 3 4 39.00 5.47 0.34 0.09 1656.32 3 4 40.00 5.50 0.32 0.08 1657.17 3 4 41.00 5.53 0.31 0.08 1658.02 3 4 42.00 5.56 0.30 0 .=�7 1658.87 3 4 43.00 5.59 0.28 0.07 1659.72 3 4 44.00 5.62 0.27 0.06 1660.57 3 4 45.00 5.65 0.26 0.06 1661.42 4 46.00 5.68 0.25 0.05 1662.27 Seg # ; Reach # ; Seg Mi : D.O. ; CBOD NBOD Flow *** MODEL SUMMARY DATA **fit Discharger : Subbasin : 07.0208 Receiving Stream : ROANOKE RIVER Stream Class: C Summer 7010 : 1500. Winter 7010 : 1000. Design Temperature: 27e :LENGTH; SLOPE: VELOCITY : DEPTH; Kd ; Kd ; Ka ; Ka ; KN : KN ; KNR : KNR ; mile ; ft/mi; fps ; ft ;design; @20x :design; O20x :design: @20x ;design; @20x ; Segment 1 ; 3.50: 0.32: 1.010 ; 2.00 : 0.35 ; 0.25 ; 0.33 ; 0.28: 0.51 ; 0.30 : 0.51 : 0.00 ; Reach 1 , : ' 11' ' ' ` 1 ' 1 1 Segment 1 ; 2.00: 0.32: 1.010 ; 2.00 ; 0.35 ; 0.25 : 0.33 ; 0.28: 0.51 ; 0.30 ; 0.51 ; 0.00 Reach 2 ; i 1 Segment 1 ; 9.50: 0.32: 1.010 ; 3.00 ; 0.32 ; 0.23 : 0.33 ; 0.28: 0.51 ; 0.30 ; 0.51 ; 0.00 Reach 3; 1 1 1 1 1 1 1 1 1 Segment 1 ; 6.50: 0.32: 1.010 ; 4.00 : 0.31 : 0.23 : 0.33 ; 0.28: 0.51 ; 0.30 : 0.51 : 0.00 111 Reach 4; 1 1 1 1 1 1 11111 Segment 2 ; 2.00: 0.32: 1.010 : 5.00 : 0.30 ; 0.22 ; 0.33 , 0.28: 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 1; I I 1 1 1 1 1 Segment 2 ; 20.00: 0.32: 1.010 ; 5.00 ; 0.30 ; 0.22 ; 0.33 $ 0.28: 0.51 : 0.30 ; 0.51 1 0.00 ; Reach 2$ 1 1 1 1 1 Segment 2 $ 27.00: 0.32: 1.010 ; 5.00 ; 0.30 ; 0.22 ; 0.33 ; 0.28: 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 3 ; 1 1 Segment 2 1 0.50: 0.321 0.370 1 9.00 : 0.28 : 0.20 0.12 1 0.10: 0.51 0.30 ; 0.51 0.00 ; Reach 4; Segment 3 1 22.00: 0.321 0.370 ; 9.00 ; 0.28 ; 0.20 0.12 : 0.101 0.51 0.30 : 0.51 0.00 1 Reach 1 Segment 3 1 15.00: 0.32: 0.370 1 9.00 : 0.28 1 0.20 0.12 1 0.10: 0.51 0.30 1 0.51 0.00 1 Reach 2 1 1 Segment 3 1 1.001 0.32: 0.370 1 9.00 1 0.28 1 0.20 0.12 1 0.10: 0.51 0.30 1 0.51 0.00 1 Reach 3 1 1 1 1 1 1 1 Segment 3 1 8.00: 0.32: 0.370 1 9.00 ; 0.28 1 0.20 0.12 1 0.10: 0.51 0.30 ; 0.51 0.00 Reach 4; 1 1 1 1 1 1 1 1 Flow C8OD NE(OD D. O. cfs mg/1 1 mg/1 1 mg/1 Segment 1 Reach 1 Waste 1 0.186 ; 20544.800 Headwaters 1 1500.000 ; 2.000 1 Tributary 1 43.300 ; 0.000 * Runoff 1 0.850 ; 2.000 1 12: 63.000 ; 0.000 1 .000 : 6.900 0.000 ; 0.000 1 .000 ; 6.900 Segment 1 Reach 2 Waste 1 12.927 1 60.000 1 90.000 ; Tributary ; 0.000 1 0.000 : 0.000 ; * Runoff 0.850 ; 2.000 : 1.000 1 Segment 1 Reach 3 Waste 1 0.775 Tributary : 0.000 * Runoff 1 C).850 Segment 1 Reach 4 Waste 0.000 Tributary 1 0.000 * Runoff 0.850 Segment 2 Reach 1 Waste 1 0.109 Headwaters 1 0.000 Tributary 1 0.000 * Runoff 0.850 Segment 2 Reach 2 Waste 0.019 Tributary 1 0.000 * Runoff 1 0.850 1 45.000 0.000 2.000 : 90.000 ; 1 0.C)00 ; 1.000 0.000 0.000 6.900 0.000 0.000 6.900 110000.000 12000. C)C )0 1 0.000 0.000 , 0.000 : 0.000 1 2.000 1 1 .000 ; 6.900 45.000 0.000 0.000 2.000 90.000 0.000 0.000 1.000 1 45 . tx )0 ' ; 90.000 0.000 1 0.000 1 2.000 : 1.000 0.000 0.000 0.000 0.000 0.000 0.000 6.900 Segment 2 Reach 3 i,) l_ 1RA !944F1_fl0C) ! 1R1R_t)C)C) ! 0e000 Tributary ; 0.000 ; 04t:0I: : 0.c:00 : 0„000 * Runoff 0.850 : 2.000 : 1oc:)00 ; 6D900 Segment 2 Reach 4 Waste 0.124 ; 45.000 90.000 : 0.000 Tributary ; 0.000 : 0.000 : 0.000 : 0.000 * Runoff ; 0.850 ; 2.000 ; 1.000 6.900 Segment 3 Reach 1 Waste 0.186 ; 656 N 000 ; 169.000 : 0.000 Headwaters: 0.000 0.000 : 0.000 ; 0.000 Tributary ; 0.000 ; 0d000 : 0.000 : 0.000 * Runoff 0.850 2.000 ; 1.000 ; 6.900 Segment 3 Reach Waste 4.650 ; 45.000 : 90.000 0.000 Tributary : 0.000 0.000 : 0.000 ; 0.000 * Runoff 0 850 2 000 ; 1.000 ; 6.900 Segment 3 Reach 3 Waste 0.124 : 180 n 000 ; 14.000 : 0.000 Tributary ; 0„000 0.000 ; 0.000 ; 0.000 * Runoff 0.850 : 2.000 : 1.000 1 6.900 Segment 3 Reach 4 Waste 0.2 2 , 45.000 ; 90.000 0.000 Tributary ► 0.000 : 0.000 ; 0.000 ; 0.000 * Runoff 0.850 ; 2.000 ; 1.000 ; 6.900 * Runoff flow is in cfs/mile Discharger Receiving Stream MODEL RESULTS M ROANOKE RIVER The End D.O. is The End CBOD is The End NBOD is 5.47 mg/l. 0.27 mg/1. 0.05 mg/1. SUMMER ROANOKE RIVER - 1988 NEW CHAMPION LOADS Segmen t Reach Reach Reach Reach Segment Reach Reach Reach Reach Segment Reach Reach Reach Reach I r 41 IA t31-' -A (.1 I%) µ f.4 DO Min (mg/1) Milepoint Reach # 4.81 21.50 4 4.52 17.00 4.66 9.00 1 WLA CBOD (mg/1) 27720.00 60.00 45.00 10000.00 WLA NBOD (mg/1) 2363.00 90.00 90.00 2000.00 45.00 90.00 45.00 90.00 2445.00 1818.00 45.00 90.00 656.00 169.00 45„00 90.00 180.00 14.00 45.00 90.00 WLA DO Waste Flow (mg/1) (mgd) 0.00 0.12000 0.00 8.34000 0.00 0.50000 0.00 0.00000 0.00 0.07000 0.00 0.01250 0.00 0.12000 0.00 0.08000 0.00 0.12000 0.00 3.00000 0.00 0.08000 0.00 0.15000 1 L *** MODEL SUMMARY DATA *** Discharger : Subbasin : 07.0208 Receiving Stream : ROANOKE RIVER Stream Class: C Summer 7010 : 1500. Winter 7010 : 1000. Design Temperature: 27. :LENGTH; SLOPE; VELOCITY ; DEPTH; Kd Kd ; Ka ; Ka ; KN KN ; KNR ; KNR ; mile ; ft/mi; fps ; ft ;design; @20x ;design; @20x ;design; @20x ;design; @20x Segment 1 ; 3.50; 0.32: 1.010 ; 2.00 ; 0.35 ; 0.25 ; 0.33 ; 0.28; 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 1 ; Segment 1 ; 2.00: 0.32; 1.010 ; 2.00 : 0.35 ; 0.25 ; 0.33 ; 0.28; 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 2 ; ; ; 11 1111111 1 Segment 1 ; 9.50: 0.32: 1.010 ; 3.00 ; 0.32 ; 0.23 ; 0.33 ; 0.28; 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 3 ; Segment 1 ; 6.50; 0.32: 1.010 ; 4.00 : 0.31 ; 0.23 ; 0.33 ; 0.28; 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 4 ; Segoent 2 : 2.00; 0.32: 1.010 ; 5.00 : 0.30 ; 0.22 ; 0.33 ; 0.28; 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 1 ; Segment 2 ; 20.00; 0.32: 1.010 : 5.00 : 0.30 : 0.22 ; 0.33 ; 0.28; 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 2 ; Segment 2 ; 27.00; 0.32; 1.010 ; 5.00 : 0.30 ; 0.22 ; 0.33 : 0.28: 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 3 Segment 2 ; 0.50; 0.32: 0.370 ; 9.00 ; 0.28 ; 0.20 ; 0.12 ; 0.10: 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 4 ; Segment 3 ; 22.00: 0.32; 0.370 ; 9.00 ; 0.28 ; 0.20 ; 0.12 ; 0.10: 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 1 ; Segment 3 ; 15.00; 0.32; 0.370 ; 9.00 ; 0.28 ; 0.20 ; 0.12 ; 0.10; 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 2 ; Segoent 3 ; 1.00: 0.32; 0.370 ; 9.00 ; 0.28 ; 0.20 ; 0.12 ; 0.10; 0.51 ; 0.30 ; 0.51 ; 0.00 ; Reach 3 ; ; ; $ ; ; ; $ ; ; $ 1 Segment 3 ; 8.00: 0.32: 0.370 ; 9.00 ; 0.28 ; 0.20 ; 0.12 ; 0.10; 0.51 ; 0.30 ; 0.51 ; 0.00 $ Reach 4 ; Seg 1 1 1 1 1 1 1 i i 1 i 1 1 1 1 1 1 1 i 1 1 i i i i 1 1 1 i 1 1 1 2 2 2 h 2 2 2 2 .-ti Seg M 0.00 0.50 1.00 1.50 2.00 2.50 3.00 1 p 5' ) 3.50 4.00 4.50 2 5.00 n 2 5.50 3 5.50 0 6.00 3 6.50 7.00 0 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 3 13.00 17...50 14.00 :i 14.5c.) 15.00 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 20.50 21 .0 i_) 21.50 0.00 0.50 1.00 1.50 2.00 2.00 •.,.00 4.00 5.00 2 6.00 7.00 8.00 # ; Reach # 1 1 1 1 1 1 1 1 2 en 3 r Li , 3 ti? 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 '7 2 i ; D.O. 6.71 6.64 6.59 6.53 6.47 6.42 6.36 -ti 6.31 6.26 6.19 6.13 6.06 6.C)0 6.00 5.94 5.89 5.83 5.78 5.73 5.68 5.63 5.58 5.54 5.49 5.45 5.41 5.37 5.33 5.29 5.25 5.21 5.18 5.15 5.15 5.11 5.08 5.05 5.03 5.00 4.97 4.95 4.92 4.90 4.88 4.85 4.83 4.81 4.81 4.79 4.77 4.75 4.73 4.73 4.70 4.67 4.65 4.63 4.61 4.59 n =-7 CBOD 5�y . 2 8 5.17 5.12 5.06 5.01 4.96 4.91 5.36 5.31 5.25 5.19 5.14 5.16 5.11 5.06 5.01 4.96 4.91 4.86 4.81 4.77 4.72 4.67 4.63 4.58 4.54 4.49 4.45 4.40 4.36 4.32 4.27 4.27 4.23 4.19 4.15 4.11 4.07 4.04 4.00 3.96 3.92 3.89 3.85 3.81 3.78 M� .� O78 3.74 0.71 3.67 3.64 p64 3.64 _.57 3.51 3.44 3.38 3.32 3.26 -x 1.-, SUMMER ROANOKE RIVER - 1988 NEW CHAMPION LOADS NBOD ; 1.26 1.24 1.?'' 1.20 1.18 1.16 1.14 1.13 r� 1.86 1.83 1.81 1.78 1.75 1.79 1.77 1.74 1.71 1.68 1.66 1.63 1.61 1.58 1.56 ieti.3 1.51 1.49 1.46 1.44 1.42 1.40 1.37 1.35 1.33 1.33 1.31 1.29 1.27 1.25 1.23 1.21 1.19 1.18 1.16 1.14 1.12 1.10 1.09 1.09 1.08 1.06 1.04 1.03 1.07. 1.00 0.97 0.94 0.91 0.88 0.85 r", 0.7 Plow 1543.49 1543.91 1544.34 1544.76 1545.19 1545.61 1546.04 1546.46 1559.39 1559.81 1560.24 1560.66 1561.09 1561.86 1562.29 1562.71 1563.14 1563.56 1563.99 1564.41 1564.84 1565.26 1565.69 1566.11 1566.54 1566.96 1567.39 1567.81 1568.24 1568.66 1569.09 1569.51 1569.94 1569.94 1570.36 1570.79 1571.21 1571.64 1572.06 1572.49 1572.91 1573.34 1573.76 1574.19 1574.61 1575.04 1575.46 1575.57 1576.00 1576.42 1576.85 1577.27 1577.29 1578.14 1578.99 1579.84 1580.69 1581.54 1582.39 i RQ7 1,11 2 2 10.00 4.56 3.14 0.80 1584.09 2 2 11.00 4.55 3.08 0.78 1584.94 2 2 12.00 4.54 3.02 0.75 1585.79 2 4 13.00 4.53 2.97 0.73 1586.64 2 14.00 4a53 2.91 0a71 1587.49 2 15.00 4.52 2.86 0.69 1588.34 2 2 16.00 4.52 2.81 0.67 1589.19 2 2 17.00 4.52 2.76 0.65 1590.04 2 2 18.00 4.52 2.70 0.63 1590.89 2 2 19.00 4.52 2.66 0.61 1591.74 2 2 20.00 4.53 2.61 0.59 1592.59 C: .4. 1 a t.�tj 4.53 2 . 56 �� .57 1593.44 2 2 22.00 4.54 2.51 0.55 1594.29 2 3 22.00 4.54 2.80 0.77 1594.48 2 3 23.00 4.53 2.75 0.74 1595.33 2 3 24.00 4.53 2.70 0.72 1596.18 2 3 25.00 4.53 2.65 0.70 1597.03 2 3 26.00 4.53 2.60 0.68 1597.88 2 3 27.00 4.54 2.55 0.66 1598.73 2 28.00 4.54 2 50 0.64 1599 58 .4. 3 p n 4. .tom M {.. q t� p V 2 3 29.00 4.55 2.46 0.62 1600.43 .4L L; i 0.0 4.55 2.41 0.60 1601.28 2 31.00 4.56 2.37 0.58 1602.13 2 3 7.2.00 4.57 2.32 0.56 1602.98 2 3 +3.00 4.58 2.28 0.55 1603.83 2 3 34.00 4.59 2.24 0.53 1604.68 2 3 �.. a r 00 4 60 .20 0n.. 51 1605.53 ..a:.. 2 3 36.00 4.62 2.16 0.50 1606.38 2 3 37.00 4.63 2.12 0.48 1607.23 2 3 78.00 4.65 2.08 0.47 1608.08 2 M 39.00 4.66 2.04 0.45 1608.93 2 3 40.00 4.68 2.01 0.44 1609.78 4-3 ti 41.00 4.70 1.97 0.43 1610.63 2 3 42.00 4.71 1.93 0.41 1611.48 2 43.00 4.73 1.90 0.40 1612.33 2 3 44.00 4.75 1.86 0. =9 1613.18 2 3 45.00 4.77 1.83 0.38 1614.03 2 3 46.00 4.79 1.80 0.37 1614.88 2 747.00 4.81 1.76 0.36 1615.73 2 48.00 4.84 1.73 0.35 1616.58 2 7 49.00 4.86 1.70 0.34 1617.43 2 4 49.00 4.86 1.70 0.34 1617.55 2 4 49.50 4.84 1.67 0.33 1617.98 1 0.00 4.84 1.74 0.35 1618.16 ; , 1 1.00 4.79 1.66 0.32 1619.01 3 1 2.00 4.76 1.59 0.29 1619.86 :� 1 3.00 4.73 1.51 0.27 1620.71 3 1 4.00 4.70 1.45 0.25 1621.56 3 1 5.00 4.69 1.38 0.23 1622.41 3 1 6.00 4.67 1.32 0.21 1623.26 1 7.00 4.66 1.26 0.19 1624.11 1 8.00 4.66 1.20 0.18 1624.96 3 1 9.00 4.66 1.15 0.16 1625.81 3 i 10.00 4.66 1.10 0.15 1626.66 1 11.00 4.67 1.05 0.14 1627.51 L 1 12.00 4.67 1.00 0.13 1628.36 3 1 13.00 4.69 0.95 0.12 1629.21 1 14.00 4.70 0.91 0.11 1630.06 L 1 15.00 4.72 0.87 0.10 1630.91 1 16.00 4.74 0.83 0.09 1631.76 1 17.000 4.76 0.79 0.09 1632.61 1 18.00 4.78 0.76 0.08 1633.46 3 1 19.00 4.80 0.73 0.07 1634.31 , 1 20.00 4.83 0.69 0.07 1635.16 .. 1 21.00 4.86 0.66 0.06 1636.01 w` v , ^ . | 3 3 3 3 3 3 3 3 3 3 � 3 Seg 3 3 3 3 �5 �5 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 # Reach 22.AA 23"00 24"0A 25"00 26.00 27"00 28"00 29"0A 30"0A 31"AA 32"A0 33"A0 34"0<} 35.00 36.00 37"{)0 37"00 37.50 38.00 38.A0 39.00 40"AA 41"0A 42"00 43"00 44"00 45.00 46"0A 4.87 4"88 4.88 4"89 4.91 4"92 4"94 4"96 4.98 5.01 5"03 5"06 5"09 5"12 5.15 5.18 5"18 5.19 5.21 5"21 5"24 5"27 5"3{) 5"34 5.37 5"4A 5.44 5.47 D"O" 0.76 0"72 0"69 ()"66 0"63 A"60 0"58 0.55 0.53 0.50 0.48 0.46 A"44 0"42 0.40 0"39 0.40 A"39 0.38 0"39 A"37 A"35 0.34 0"33 0.31 0"30 0"29 0.27 CBOD 0.31 0.29 0.26 0"24 0.22 O"21 A"19 0"17 0.16 0"15 0.14 0"13 0.12 0"11 0.10 0"09 0"09 0"A9 0.09 0"10 0.09 0"A8 0.08 0.07 0"07 0"A6 0.06 0.05 | NBOD 1641.51 1642.36 164:3"21 1644"06 1644.91 1645"76 1646"61 1647"46 1648"31 1649.16 165A"01 1650"86 1651"71 1652"56 1653"41 1654.26 1654"39 1654.81 1655"24 1655.47 1656"32 1657"17 1658.02 1658.87 1659.72 166A"57 1661.42 1662"27 Flow | 4 i-,t 0 Flow CBOD NisOD cfs mg/1 mg/1 ; Segment 1 Reach 1 Waste 0.186 ; 27720.000 ; 2 6: 3 . i )00 Headwaters ; 15c, 0 , 0c_)0 ; 2.000 ; 1.000 ; Tributary ; 43.300 : 0.000 ; 0.000 * Runoff 0.850 ; 2.000 ; 1.000 ; Segment 1 Reach 2 Waste ; 12.927 Tributary ; 0.000 * Runoff 0.850 Segment 1 Reach 3 Waste 0.775 Tributary ; 0.000 * Runoff C).850 60.000 ; 90.000 0.000 1 0„000 2.000 : 1.000 45.000 0.000 2.000 90.000 0.000 ; 1.000 D.O. mg/1 0.0c_)c_) 6.900 0.000 6.9c_)0 0.000 0.000 6.900 0.000 0.000 6.900 Segment 1 Reach 4 Waste 0.000 : 10C)C)C) . 0cx:) : 2000.000 0.000 Tributary ; 0.000 : 0.000 : 0.000 : 0.000 * Runoff 0.850 ; 2.000 ; 1.000 ; 6.90C) Segment 2 Reach 1 Waste 0.109 Headwaters: 0.000 Tributary ; 0.000 * Runoff 0.850 45.000 0.000 0.000 2.000 90.000 0.000 0.000 1.000 Segment 2 Reach 2 Waste 0.019 ; 45.000 ; 90.000 ; Tributary ; 0.000 ; 0.000 ; 0.000 ; * Runoff 0.850 ; 2.000 ; 1 .000 ; Segment 2 Reach 3 Waste 0.186 Tributary ; 0.00)0 * Runoff ; 0.850 2445.000 ; 1818 . D0C) 0.000 1 0.000 1 .000 ; 1.000 Segment 2 Reach 4 Waste ; 0.124 ; 45.000 Tributary ; 0.000 ; 0.000 * Runoff 0.850 ; 2.000 Segment 3 Reach 1 Waste 0.186 Headwaters ; 0.000 Tributary ; 0„00() * Runoff 0.850 Segment 3 Reach 2 Waste 4.650 Tributary ; 0.000 * Runoff 0.850 6 56.000 1 0.000 0.000 2.000 45.000 0.000 00 , ' 90.000 0.000 1.000 169 . 000 0.000 1 i_)„000 1.000 90.000 0.cx)cr) 1.000 0.000 0.000 0.000 ().000 0.000 () . 000 6.900 0.000 0.000 6.900 0.0C)0 0.000 6.900 0.000 0.000 0.000 6.900 0.000 0.000 6.900 Segment 3 Reach 3 , Waste ; 0.124 ; 180 a c_}00 : 14.000 : 0.000 Tributary ; 0„000 : 0,000 : 0.000 ; 0,000 * Runoff 0.650 : 2.000 ; 1.000 ; 6.900 Segment 3 Reach 4 Waste ; 45.000 ; 90.000 ; 0.000 Tributary ; 0.000 ; 0.000 ; 0.000 0.000 * Runoff 0.650 ; 2.000 : 1.000 : 6.900 * Runoff flow is in cfs/mile PERMIT NO.: NCOO OD 1 5 2. FACILITY NAME• C 6-vtA fliovt Facility Status: (circle ore) Permit Status, RENEWAL MODIFICATION UNPERMITTED NEW (circle ono?` - - Major Minor Pipe No - Design Capacity (MGD): 29 (P'ace55� Domestic (% of Flow): Industrial (X of Flow): Comments: NPDES WASTE LOAD ALLOCATION TeWlaloa_ EXISTING PROPOSED Do( OC.22. (o•(v oo ),` µ(.,- tool•t� RECEIVING STREAM: R0a of Z LV Class Sub -Basin• e'3-bL--c' Reference USGS Quad: County- ited t Regional Office: As (clydls ono) (please attach) Fa Mo (Ra, Wa WI WS Requested By: naockt3• 5�er �J� Prepared By: / �0 Reviewed By: ,Date - Date: 5-z.5-�5 `/O/U6 Date: q—/cD -W. Drainage Area (mi2 ) Sty ov.A_ 1-0--(cfs) L5 Winter 1-Q1O (cfs) 30Q2 (cfs) - Toxicity Limits: IWC 14 X (circle one) Acute / Modeler (c3S Date Rec. Avg. Streamflow (cfs)• Instream Monitoring: ll )0j -lemA en rey CDvlc�t1vih 3 t5 Parameters Upstream Downstream Location Location v0( liUUl 1B brtc1¢ w2Uon. , M hronI5 Effluent Characteristics W1oxLlelva tv.. u a, - 00 2'-- 1 -` =00S RODis60v50 13q-C7 NHs N (mg/I) — D.O. (mg/I) — -- TSS /YSO Z 221611 F. Col. (/100m1) pH (SU) Co-9 (o- t (,1 visa vfe- rI(tsC S ,,,,INA CGWS (ecteUt W46tS \p pu exceed Z. `d (,) Ala °c- a6o0e_A-V k� : tN C4S- COAAfa�. rectQW c.ee Ct . 1"2_ to,e.EU S ' le C._ Comments: b�sc-K- dne-S hot (ins.oc-:dl.s rvo"kt/Cax�t `Re corvlw.�-em.d- l.let-j Sc.reev1tvn i permil {to ,r bbtQ.%0.auer_�Das��fG�IcQh oz _ FOR APPROPRIATE DISCHARGERS, LIST COMPLETE GUIDELINE LIMITATIONS BELOW Effluent Characteristics Monthly Average Daily Maximum Comments Bob. 2.e, tb/ X 3,30ofoo 1)40,3 ci24(v ly/d IZ`(8o I4'tdo„ 1 C.`( (eois t3?•-n �55 (o.d l.6/ lci, caco lb/de., sa60c) Gb14,1 sa -e_ PN s 6, -gs� L-ask s wQ Type of Product Produced Lbs/Day Produced Effluent Guideline Reference PuNr ; lAstvt� Lkt c LQot kraal-Q(occ. 3, )o� tlos/ «A LIP- 2 c L(' . (3 5� I � A - 1tnc Loci 1� safer pa• is bF baix vr U bwcE , '&•.7 = 3,T 1�r. g o '-+s 04 � IKe e• boar' . Ak .« ) Lt An L�4Ap i' . 5 uA - LuA_ ice ...ell 4. t Request No.:4674 a,b,c WASTELOAD ALLOCATION APPROVAL FORM Facility Name: NPDES No.: Type of Waste: Status: Receiving Stream: Classification: Subbasin: County: Regional Office: Requestor: Date of Request: Quad: Champion International Corp NC0000752 001 - process water 002 & 003 - Expansion Roanoke C 030208 Summer Halifax Winter RaRO Foster 5/31/88 B28NW RECOMMENDED EFFLUENT LIMITS Wasteflow (mgd): BOD5 (lbs/day): TSS (lbs/day): pH (su): 001 Monthly Avg 28.00 6850 14582 6-9 Daily Max 13700 29164 6-9 minium: mini um: non -contact cooling water Regulated 1500 cfs 1000 cfs RECEIVED SEP 2 PE_ MEIS A -Et GlN! rRING. 002 003 6.60 1.60 6-9 6-9 The discharge shall not cause the receiving water's temperature to exceed 2.8°C above background and in no case cause it to exceed 32°C Quarterly Chronic toxicity target: 4% (see attached) MONITORING Upstream (Y/N): Y Location: Hwy 48 bridge Downstream (Y/N): Y Location: @ Weldon, NC Parameters: D0, temperature, conductivity, & BOD5. COMMENTS u.o - v ag — Effluent limits are water quality based and are the existing limits. +�U WQ impacts are predicted at higher loadings. Facility does not use biocides in its non -contact cooling water toxicity screening and toxicity permit reopener is recommmended. Instream monitoring data do not indicate local WQ impacts, hover --, modeling analysis indicates discharge contributes to downstreWO problems-: flu Recommended by: Skeil‘ Date Reviewed by l Tech Support Supervisor: \ �� Date: ,�! 45W Regional Supervisor: VO.E.)Date: Permits & Engineering: i� ��._ � ��-- Date: RETURN TO TECHNICAL SERVICES BY: `-'`' Facility Name C k(impjoV1 _lM Ar10 -141/0 (o'avi Permit # iV . 006 ? 5 7- CHRONIC TOXICITY TESTING REQUIREMENT (QRTRLY) The effluent discharge shall at.no time exhibit chronic toxicity using test procedures outlined in: 1.) The North Carolina Ceriodaphnia chronic effluent bioassay procedure (North Carolina Chronic Bioassay Procedure - Revised *February 1987) or subsequent versions. The effluent concentration at which there may be no observable inhibition of reproduction or significant mortality is `1 % (defined as treatment two in the North Carolina procedure document). The permit holder shall perform quarterly monitoring using this procedure to establish compliance with the permit condition. The first test will be performed after thirty days from issuance of this permit during the months of IAA ck, See Dec, . Effluent sampling for this testing shall be performed at the NPDES permitted final effluent discharge below all treatment processes. All toxicity testing results required as part of this permit condition will be entered on the Effluent Discharge Monitoring Form (MR-1) for the month in which it was performed, using the parameter code TGP3B. Additionally, DEM Form AT-1 (original) is to be sent to the following address: Attention: Technical Services Branch North Carolina Division of Environmental Management P.O. Box 27687 Raleigh, N.C. 27611 Test data shall be complete and accurate and include all supporting chemical/physical measurements performed in association with the toxicity tests, as well as all dose/response data. Total residual chlorine of the effluent toxicity sample must be measured and reported if chlorine is employed for disinfection of the waste stream. Should any test data from this monitoring requirement or tests performed by the North Carolina Division of Environmental Management indicate potential impacts to the receiving stream, this permit may be re -opened and modified to include alternate monitoring requirements or limits. NO 1'h: Failure to achieve test conditions as specified in the cited document, such as minimum control organism survival and appropriate environmental controls, shall constitute an invalid test and will require immediate retesting(within 30 days of initial monitoring event). Failure to submit suitable test results will constitute a failure of permit condition. 1,01.1tn yvktA rthase 7QA woo cfs Permited Flow z MGD Recommended by: IWC% 5 Basin & Sub -basin c,3 GZo0 Receiving Stream 'Roanak,g (`ever County H6,1% cLy Date J4cicAL 25 tqEfi3, **Chronic Toxicity (Ceriodaphnia) P/F at + %, tree_ , See Part 3 , Condition . DIVISION OF ENVIRONMENTAL MANAGEMENT July 25, 1988 MEMORANDUM TO: Trevor Clements THROUGH: Randy Dodd FROM: Thomas Stockton SUBJECT: Champion International WLA Champion International has requested a permit modification to increase their design capacity from 25 to 28 mgd. Federal guidelines 40 CFR 430.13 subpart A apply to Champion's production process. Ch pion a 11 be producing approximately 3,300,000 lbs/day which results in a B0D5ett 11mit of 9240 lbs/day; the existing B0D5 limit is 6852 lbs/day. When the new production figures were input into the Roanoke River Level B model dissolved oxygen violations were predicted, therefore, a more indepth modeling analysis was undertaken. Modeling Analysis Assuming the mill's withdrawal of water from the river is equal to the dis- charge of waste water and since the summer minimum release at Roanoke Rapids is fairly large (1500 efs), the wasteflow can be considered inconsequential in comparison to the river flow and loads for Champion can be input to the Level B pro- gram as mass loads. This assumption precludes the need for specifying permit limits in terms of concentration as well as mass. Long-term BOD analysis is in progress, however enough data is available from this analysis to predict the ultimate BOD and, subsequently, the CBOD/BOD5 ratio. For the grab and composite samples the bottle decay rate was estimated as 0.07 day-1 and the ultimate BOD was estimated as approximately 100 mg/1 (see attached). A conservative CBOD/B0D5 ratio of 3 was used based on these restl,lts. The discharge appears to have a fairly large organic nitrogen component, but , since the long-term analysis is still running an accurate measure"ofWBWD is nqt available. Assuming TKN provides a measure of potential NBOD, the NBOD.].oad dir- ing the time of sampling was 3,783 lbs/day (24 mgd * 4.2 mg TKN/1 * 4::5 8.34). u, Champion's instream DMR data do not indicate water quality problems are' occurring due to Champion's discharge. However, due to the recalcitrant nature of pulp and paper mill process waste, water quality problems may not be evident in the upper reaches of the Roanoke River. The discharge may be exacerbating water quality problems in the lower reaches of the river as waste from several other discharges compile. To investigate this hypothesis the Roanoke River Level B model was run under four loading scenarios: 1) No loading from any discharges; i.e., background; 2) The currently permitted discharges, excluding Champion, run with the Level B rates equations; 3) Champion's existing production based permit limits, excluding all other dischargers, run with the BOD decay rates set at 0.1 day-1; 4) Champion's new production based permit limits, excluding all other dischargers, run with the BOD decay rates set at O. day-1; o%lae,t` Results Based on the theory of superposition the water quality profiles from the two model runs including the Champion discharges can be added to the profiles from the model run with the currently permitted dischargers to determine the contribu- tion of the Champion discharge to dissolved oxygen deficit in all reaches of the river. As evidenced by the attached graphs of predicted dissolved oxygen and CBOD, Champion's discharge is predicted to be the major contributor to the dissolved oxygen deficit in the lower reaches of the Roanoke River. This area of the river is historically the area which has experienced the most severe water quality problems. Weyerhaeuser also operates a pulp and paper mill with a discharge to the Roanoke River. This discharge is located in the tidally influenced sections of the lower Roanoke River. The Level B model for the Roanoke River can not ade- quately model tidal mixing, therefore, the current model ends where the river becomes tidally influenced. The interaction of the waste from these two mills needs to be investigated further. Effluent data show an interesting relationship between BOD5 mass loading and discharge (see attached). Loading appears to go down as flow goes up. As you suggested this may be a result of production increases in the spring when warmer temperatures are improving the efficiency of the biological treatment system. It also appears that Champion can not meet much more stringent limits thOn are cur- rently permitted. a' Recommendations 1) Champion's existing permit limits should apply for the e patided des' capacity. Dissolved oxygen violations are predicted at this loading,:hTdw yer with the high level of model uncertainty, reduction in existink. elgt,! ,n can not be justified. 03 <).• 2) A longitudinal long-term BOD study of instream samples should" ba'aer'� �`'� formed, preferably using slug sampling with a dye study, to determine the amount of residual BOD from Champion's discharge that is reaching the tidally influenced reaches of the Roanoke River. Due to the reduction in the Striped Bass resource over the last several years this could be a fairly high priority study. Oh e4t piet° August 11, 1988 REF: 4WM-FP UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION IV 345 COURTLAND STREET ATLANTA. GEORGIA 30365 Mr. Charles Wakild Water Quality Section Division of Environmental Management NC Department of Natural Resources and Community Development P. 0. Box 27687 Raleigh, NC 27611-7867 RE: 316 Guidance for Permit Reissiiance Dear Mr. Wakild: v 1),)\fr (xi\ Questions have arisen as to what procedures and activities are necessary in reissuing a permit for a facility which has thermal limitations based on a previous variance granted under Section 316(a) of the Clean Water Act. The following is provided as a follow-up to information provided at the February 1988, EPA/State meeting in Destin, Florida. A thermal variance granted under S316(a) terminates on expiration of the NPDES permit of which it is a part (Attachment A) . Procedures for a reissuance are virtually unchanged from an initial determination. The amount of data necessary to support the variance at the time of reissuance will probably be minimal. However, if conditions have changed materially, a significant quantity of informa- tion may be needed. NOTE: To the extent that permittees are unaware of these requirements, they should be notified of them expeditiously so that they can be prepared. The general procedure is as follows: 1. The permittee must request that the variance be continued, preferably at the time of permit application. At that time, he should provide a basis for that continuance. The basis could be as simple as: (a) plant operating conditions and load factors are unchanged and are expected to remain so for the tern of the reissued permit, (b) there are no changes (to his knowledge) to plant discharges or other discharges in the plant site area which could interact with the thermal discharges, and (c) there are no changes (to his knowledge) to the biotic community of the receiving water body which would impact the previous 316 determinations. 2. If the permitting authority agrees with the basis, appropriate permit condi- tions would be developed; otherwise, additional data would be requested as needed. Request for additional data must be made within 60 days of receipt of the application (Answer to Question 7, Attachment Al. Additional studies can be made a permit requirement if needed (Answer to Question 7). Page 2 August 11, 1988 3. The Fact Sheet/Rationale should contain a summary of 316 variance activities from the previous permits (dates, determinations, limitations, etc.) and an indication of the proposed basis for continuing the 316 variance. Sample language is included in Attachment B. 4. The Public notice requirements are contained in S124.75(a). is also included in Attachment B. Should you have have questions or need assistance, feel free 404/347-3012. Sincerely yours, Cif Charles H. Kaplan, P.E. National Expert Steam Electric/Water Enclosures cc: Five copies for distribution Identical letters sent to all states in Region IV Sample language to contact me at A Ira et A Pad 11NrED STATE':. r - f.. NIENT. I 7 ' :'PION ; WASHINGTON. D.C. 20460 FEB Zd132 MEMORANDUM SUBJECT: Legal Opinion on 5316 of the Clean Water Act FROM: Gail B. Cooper, Attorney Water & Solid Waste Divi TO: Joseph J. Zedrosser Regional Counsel Region II THRU: Bruce M. Diamond Acting Associate General Counsel Office of General Counsel (A-131) • / .%.ie - - --` OFFICE OF GENERAL COUNSEL You requested that this office prepare a legal opinion on several permit -related issues pertaining to §316 of th•e Clean Water Act (CWA). This memorandum is our response to your request. A previous draft was discussed with Wendy Fodge of your staff. Richard Stoll has left EPA so you should address any future §316 questions to me. My number is FTS 426-3246. QUESTION 1 Where a permittee requests and is granted a thermal variance --- pursuant to §316(a) of the Clean Water Act does the variance terminate upon expiration of the NPDES permit tern during which it was granted? Does the response to this question differ depending on whether the permittee had to alter its operation to meet the requirements of the variance? -2- If the variance does not terminate, and the variance carries over into future renewal permits, does the variance remain in effect (a) for an indefinite period of time through all _future renewal permits? (b) until the .permit issuing authority independently deter- mines that there has occurred a significant biological change affecting the assurance of a balanced, indigenous population of shellfish, fish and wildlife in and on the body of water into which the discharge is to be made? (c) until the permit issuing authority independently deter- mines that a significant change has occurred with respect to the thermal loading of the receiving water body (i.e., independent of any biological determination concerning balanced, indigenous populations)? (d) until a change occurs in the State thermal criteria for the receiving water body as a result of a.valid . review of State Water Quality Standards pursuant to 5303(c) of the Clean Water Act? • (e) until the permit issuing authority becomes aware that the effective operating life of the facility from which the thermal discharge emanates will exceed the effective operating life assumed by the permit issuing authority in formulating its decision to initially grant the requested variance? ANSWER A 5316(a) thermal variance is a permit condition and it terminates at the same time as the NPDES permit of which it is a part expires. This is the rule for all variances and there is nothing in the CWA to suggest a different result for a S 316 (e.) variance. In fact, the Agency's regulations establish procedures for renewal of a 5316 variance at the expiration of the permit. See 40 CFR 5125.72(c) and the note after 5125.72(f ). As explained in response to questions 6 and 7, however, there is no requirement that EPA, the State, or applicant start from scratch when renewing a permit. The response to the question does not differ depending on whether the discharger had to alter its operation to meet the requirements of the variance. Section 5316(c) of the statute provides that .EPA cannot impose more _stringent thermal effluent _limitations for certain point source . fora ten year _period but these restrictions -affect -the substantive requirements that can be imposed in a new permit, and not the requirement to renew a permit after five years. 3 - QUESTION 2 If the granting of a variance under 5316(a) of the Act remains effective for more than a single permit term, what circumstances other than those indicated in Question 1.(b)-(e) would allow the permit issuing authority to impose different and/or stricter thermal effluent limitations than those allowed in the variance? - ANSWER There is no need to answer this question. QUESTION 3 If the duration of a 5316(a) variance is limited to asingle permit term, or if changed circumstances can resultin te imposition of stricter thermal effluent limitations after the granting of'a thermal variance.request, maythe new thermal effluent limitations be proposed for a permit only during the permit issuance comment period? ANSWER A public comment period is always necessary when a new or modified thermal variance is proposed. However, as discussed below, a variance may be proposed before, after, or in conjunc- tion with the issuance of a permit. There is no distinction between the procedures for issuance and renewal of a permit. Therefore, the procedures for renewal of a permit and variance are those appearing in 40 CFR 5124 for a new permit. 40 CFR 55124.6 and 124.10 specifically require a public comment period on draft permits. and 40 CFR 5124.57(a) requires that public noticefor oft a 5316(a) draft permit contain information about requests variance. Normally, a variance request is noticed for public 0 comment at the same time as the draft permit. However, and CFR 5124.66(a), a permit applicant mayrequest a final decision on a S 316 (a) variance before the final permit is issued. An early variance decision is considered as ermitnissuance and is subject to the same requirements of public ce and comment. If there is no early variance decision in a Regional state where erisEPAtor is the permit issuing authority 3 the determines under 40 CFR S12 delay the processing of the rest of the permit to process the variance request simultaneously, the variance request may be separated from the rest of the permit. In this case, the Regional Administrator is required to prepare a new • --4- draft permit and give public notice of his tentative determination on the variance. 40 CFR §124.63(a) (3) states that the only matters to be considered at that time are those relating to the variance; thus, issues pertaining to other aspects of the permit are not to be reopened. The Administrator also may modify a permit during its term if the proposed modification is consistent with 40 CFR S122.15. In such cases, 40 CFR 5124.5 (c) requires thCppermit issuing authority to prepare a draft permit under 40F R S1 24.6 and give public notice. It is important to remember that S 316 (c) of the statute restricts the issuance of more stringent thermal effluent limitations for a ten year period if the discharger modified the point source after 1972, is currently in compliance with effluent limitations issued under sections 301 and 303, and is discharging at a level which assures the protection and -propagation of a balanced, ind igeneous 'population of shellfish, fish, and wildlife. QUESTION 4 Where an EPA -issued permit for which the permittee has timely requested a variance under 5 316 (a) of the Clean Water Act has expired prior to the Regional Administrator's determination, and where EPA has retained permit issuing authority, may EPA grant the requested variance prior to the effective date of a subsequently issued permit (e.g., where significant delay is contemplated prior to issuance of the subsequent permit) ? If so, must any special procedure be followed? ANSWER EPA may grant a 5316(a) variance prior to a final agency decision on a permit application. 40 CFR S§124.63, 124.66, and 125.72(f) establish specific procedures for early decisions on 5316 (a) variances. QUESTION 5 Where an EPA -issued permit for which the permittee has timely requested a variance under 5316 (a) of the Clean Water Act has expired prior to the Regional Administrator's determination and where permit issuing authority has been assumed by a State during the term of the EPA -issued permit, (a) may EPA grant the requested variaicsuprior rrtothe effective date of a subsequently permit? If so, must any special , procedure be followed? (b) may only the permit issuing State issue the determination with respect to the requested variance? -5- if (b), then (c) may the State make a determination with respect to the requested variance prior to the effective date of the permit which it issues? If so, must any special procedure be followed? ANSWER (a) The answer to your question depends upon what dEEPA thas arranged with the State. 40 CFR S123.71(d) pro after an NPDES program is approved, EPA retains jurisdiction over any permit it has issued unless the e Memorandum tate ol assume Agreement with the State provides thatthe responsibility. This retention of jurisdiction includes the processing of variance requests. Even where the EPA At permit has expired (as in the example resolved iftheState agrees you EPA may ain jurisdiction until the matter is to that approach. (b) The answer depends on the terms of the Memorandum of Agreement between EPA and the State. 40 CFR S123.71(d) allows the division of responsibility to be worked out on a state -by-state basis. (c) The State's own laws. or regulations determine whether the State can make a vC�Rance 124a661sion prior to the procedures are not binding date of a permit. 40 S124.66 States. QUESTION 6 If a determination applying the criteria of §316(b) of the Clean Water Act is made by the permit issuing authority, (a) does that determination control S316(b)-related issued in subsequently permits? (b) must the permit issuing authority make a new S 316 (b)-based determination with respect to each permit by considering best cooling water intake structure technology available for minimizing adverse environmental impact as it exists aat the time of formulating conditions issuaapply thro gh the term of each subsequently P -6- (c) ma the permit issuing authority, at its option, make a new 5316(b)-based determination with respect to a particular permit by considering best cooling water intake structure technology available for minimizing adverse environmental impact as it exists at the time of formulating conditions to apply through the term of the renewal permit being considered? ANSWER This question appears to ask whether EPA is permanently bound by the first determination applying 5316(b), particularly with respect to whether the cooling water intake structure reflects the best technology available for minimizing adverse environmental impact. As a general matter, we are aware of nothing in the Act or its legislative history that would indicate that § 316 (b) determinations are exempt from the general rule that in issuing a new NPDES permit, the expiring permit conditions may be adjusted. Where appropriate 1/, permit conditions can be made more stringent or less stringent. 40 CFR 5122.62(1). Therefore, it is not accurate to conclude that a determination made under 5316(b) is permanently binding. At the same time, there is no requirement that either the permit issuing authority or the applicant start from scratch every time a NPDES permit containing 5316(b) limitations expires. Indeed, with regard to 5 316 (a) decisions, neither 40 CFR 5125.72(c) nor the note after 5125.72(f) (the provisions covering the kinds of data to be collected under §316(a) ), suggest or require that the application and review process proceed as if there had not been a previous 5316 (a) variance determination. Presumably, the same would hold true under 5316(b). Language in the preamble to the final 1979 NPDES regulations clarifies EPA's intent in regard to §316(a): 1/ Both §316(c) and 5306(d) impose limits on the permit issuing authority's ability to require compliance with stricter standards within ten years of the time a facility is modified or constructed. -7- The regulations have also been revised to provide that the specific forms of studies prescribed apply only to the initial grant of a section 316(a) variance. In many cases, neither the nature of the thermal discharge nor the aquatic population will" have changed since a variance was initially granted. It would therefore be an unnecessary and costly burden on the Agency and dischargers alike to require a full section 316(a) demonstration for each renewal. Section 125.72 accordingly gives the Director the flexibility to require substantially less information in the case of renewal requests. This does not mean, however, that the Director may not require a full demonstration for a renewal in cases where he has reason to believe that circumstances have changed, that the initial variance may have been improperly granted, or that some adjustment .in the terms of the initial variance may be warranted. Persons holding such a variance should, of course, be prepared to justify its continuation with studies based on actual operating experience, and a comment has been added to that effect. 44 FR 32894 (June 7, 1979). The same logic applies to S316(b). QUESTION 7 Under what circumstances, if any, may EPA or a NPDES State be barred from requiring a permittee to perform additional or updated biological monitoring or studies (with respect to S316(b) of the Act), or thermal modeling, monitoring, or studies (with respect to S316(a) of. the Act) as a condition of subsequently issued permit? ANSWER Neither EPA nor the NPDES state is barred from requiring additional 5316 studies as a condition to renewing a variance or permit. 40 CFR S125.72(c) specifically authorizes the permit issuing authority to require applicants for variance renewals to submit the types of information described in 40 CFR 5125.72(a) and (b) and S124.73(c) (1). Further, the note at the end of 40 CFR S125.72 states that a discharger seeking to renew a S316(a) variance should be prepared to support continuance of the variance with studies based on the discharger's actual operating experience. Thus, while applicants are not required to submit the detailed plan of study required by 40 CFR S125.72 (b) , EPA can request information and studies it believes are necessary for a . " S316(a) demonstration. However, requests for information must be made within 60 days of receipt of the application. With respect to 5316 (b) determinations, there is no specific provision addressing EPA's ability to obtain additional data. EPA would have the authority to obtain information to the extent authorized by 5308 of the Act.40 CFRS122.7(h)faalso sh allows EPA or the NPDES State to require permittees permit -related information upon request. Since variances are incorporated into permits, this can be construed to cover information pertinent to renewal of the variance. cc: Wendy Fodge, Region II Bill Jordan, Office of Water Enforcement and Permits POINT SOURCE VARIANCE MECHANISMS 1O—i—Bs All dischargers are required to assure that adopted eater quality standards are maintained in receiving streams. There are, however, some situations where a discharger can be allowed a variance or deviation from this requirement. State law and regulations provide several mechanisms which can achieve the same or similar results. The purpose of this paper is to outline the various mechanisms and define how they differ and how they can be used. Some actions especially long-term deviations, must be approved by EPA. Therefore in determining if a certain state procedure is appropriate for a discharger, the generally more stringent requirements of EPA must be a major consideration. (See "EPA Approval for Removing a Use" in the attachment.) The following mechanisms are available through state laws and regulations: 1) Variance - NCGS 143-21 S .3 (e) . The variance is available to all permitted dischargers and can apply to stream standards, effluent limits or any control applied by the Division. It can be for a fixed or indefinite time period. The EMC must find that the assigned standards or conditions cannot be met by application of "best available technology found to be economically reasonable" and that meeting the standards or conditions "would produce serious hardships without equal or greater benefits to the public." There is no definition for "best available treatment economically reasonable nor any guidance on "serious hardships." The EMC decides each one on a case -by -case basis after an administrative hearing. The variance mechanism could be more frequently used if the EPA criteria set forth in 40 CFR 131 . 10 (g) did not have to be met. All variances mustibe approved by EPA and must satisfy those conditions. (See "EPA Approval for Removing a Use" in Attachment.) 2) Revision to Water Quality Standard NCGS 143-214.3 The "Revision" statute can be used in a manner similar to the "Variance." It is not as broad in that it only applies to revisions to an established water quality standard. It allows revisions because of various natural and irretrievable man --induced background conditions or because of economic impacts. The conditions to be met if using the economic criteria alone appear in theory to be easier than the "variance" to achieve. It requires that the basic technology -based conditions in Section 301 of the Act (BPT and Secondary) be met but that more restrictive limitation "would result in adverse social and economic impact disproportionate to the benefits." The differences are minor and have little practical significance since the more stringent EPA conditions of "substantial and widespread -1- economic and social impact" (40 CFR 131.10(g)) prevail as long as EPA approval is needed. In any deviation allowed by this statute, the petitioner must also show that there exists no reasonable relationship between the costs to achieve the limits to the benefits to be obtained. 3) Revision to Dissolved Oxygen Standards - NCAC 2B .0213 The State regulations establish a mechanism where a petitioner can achieve a revision to a D.O. standard for a stream segment through the rule -making process. It only applies to "C" and "SC" streams and stipulates that meeting the 5 D.O. requirement would result in "substantial adverse economic and social impact" and that the D.O. level should be set at the "highest level economically attainable." This regulation has never been used, basically because of the difficulty in establishing what the D.O. level "economically attainable" might be and in meeting the "substantial adverse" economic criteria. A change made under this regulation could be made by a rule -making hearing which would be simpler than an administrative hearing. A small discharge using the "background conditions" argument might find this method desirable. A discharger using economics as a justification would appear to have equally difficult conditions as found in the "variance" or "standards revision" procedures. The EPA criteria (see appendix) would still have to be met in a revision of this type. 4) Segment -wide Revision to a Standard According to NCGS 143-214.1 The General Statutes do allow in 143-214.1 for different standards to be applied on specific stream segments. No regulations are provided stipulating conditions to be considered and it has very seldom been used. A revision of this type would involve a rulemaking hearing but if it involved an "adversarial" case, such as one specific discharge, the 143-214.3 "Revision to Water Quality Standard" or the 143-215.3 "Variance" would probably be better to use. Changes in the standards made according to this regulation have traditionally been called "exceptions" although there are now no "excepted" streams. EPA would also have to approve any changes made by this mechanism. 5) Water Quality Special Order (Also Water Quality Special Order by Consent) - NCGS 143-215.2 The General Statutes authorize the EMC to issue Special Orders which direct a person to "take or refrain from taking action or to achieve such results within a period of time specified by such order as the EMC deems necessary." This. gives the Commission broad authority to direct a discharger to take certain actions or enter into a mutual agreement (Special Order by Consent) allowing establishment of a schedule to achieve certain results. EPA does not usually approve nor disapprove these actions as they do a permanent modification of a water quality standard or classification. (EPA has traditionally differentiated between temporary and permanent exemptions from meeting water quality -2- requirements.) The EMC decides each SOC on a case--by-case basis. If the action taken is by mutual agreement, no hearing is held. 6 ) 67(b) Special Order by Consent - NCGS 143-215.67 (b ) The General Statutes stipulate in 143.215.67(a) that no person shall willfully cause waste to go into a treatment system in excess of its capacity. Subsection 143.215.67(b) authorizes a unit to government to accept additional wastes if: (1) the government has secured financing for planning, design, or construction of a system which will treat the wastes and (2) the additional wastes will not result in any significant degradation in the quality of the receiving waters. The Director makes decisions on when a unit of government can receive a 67(b) SOC. The EMC is informed each month of pending and approved requests. The 67(b) SOC is used only when there is a request for increase in volume to the sewage system. The staff evaluates each request to determine if "significant degradation" would occur if the special order were allowed. SOC's are set for a specific time period but can be renewed by the Director. No hearing nor public involvement requirements are stipulated in the statutes. 7) Effluent Channel 15 NCAC 2B .0215 The regulations allow for designation of a stream as an "effluent channel" if the stream does "not contain natural waters except when such waters occur in direct response to rainfall events by overland runoff" (2B .0202(8)) and meet other conditions such as ownership and protection of health. This has not received much widespread use because of the "dry stream" and ownership (or control) requirements. EPA must also approve changes made by this procedure. 8) Other Variance Mechanisms The Clean Water Act allows for variances from several technology based requirements. These variances are specifically outlined in several sections including sections 301(d), 301(g), 301(k), 316(a), and 316(b). Although they appear to only allow variances from technology based effluent limits, the allowance for a temperature variance (Section 316) has been used by the EPA to grant a deviation from the state -adopted temperature standard. The Department's regulations provide for applying different temperature standards at specific sites (15 NCAC 2B .0208Cc)). There are no specifications as to the type of procedural mechanisms to be used although a public hearing would certainly be required as well as documentation showing that the "maintenance of the designated best use" would be protected "throughout a reasonable portion of the waterbody." There has been some confusion over what type of variances are allowed in cases where pollutant background levels are high. The State regulation 2B .0205 provide that a discharger will -3- "not be considered a contributor to substandard conditions (in the stream) provided maximum treatment in compliance with permit requirements is maintained." Although the text ,of the regulations is not clear, the apparent intent was to inform the discharger that he would not be held responsible for "occasional" downstream violations of water- quality standards if the cause was due to natural stream characteristics. There has been interest in giving credit to discharges which have high pollutant levels in their water supply. It does not appear this regulation allows for this type of variance and would need to be modified before it could be granted. The federal regulations allow in 40 CFR 122.45(g) variances from technology -based effluent limits for pollutants in the intake water. This mechanism is not intended to provide a variance from water quality standards. VARIANCE.DOC BD -Vol 2 ATTACHMENT RELIEF MECHANISM FOR POINT SOURCES I. Variances - N.C.G.S. 143-215.3(e) ▪ Anyone subject to a permit under 143-215.1 (all discharge and non -discharge permits) may apply for a variance from: 1) Rules 2) Regulations 3) Standards or 4) Limitations "established pursuant to GS 143-214.1 (W.Q. Standards and Classifications) or 143-215 (any effluent standards or limits or waste treatment management practices)" ▪ The variance essentially applies to any limit or control applied by the DEM or EMC. ▪ Applies for "fixed or indefinite" time periods. ▪ Can be implemented for 90 days without a hearing or notice if necessary. ▪ The EMC must find that: 1) Waste discharges do not endanger human health. 2) Compliance with the original conditions cannot be achieved by application of ▪ "best available technology found to be economically reasonable" ..and they "▪ would produce serious hardship without equal or greater benefits to the public". II. Revision to Water Quality Standard - N.C.G.S. 143-214.3 ▪ Any person subject to permitting regulations 143-215.1 can request a revision in the standards applied to the specific segment. ▪ Applies only to a revision of a water quality standard (for that segment) developed through 143-214.1 (standards and classifications sections). ▪ The EMC must find that 1) "Natural background conditions... preclude the attainment of the applicable W.Q. Standards" OR 2) "Irretrievable and uncontrollable man -induced conditions' preclude the attainment" of the standard OR A-1 3) "Application of effluent limits for existing sources more restrictive than those effluent standards and limitations...promulgated by the U.S. EPA pursuant to Section 301... in order to achieve and maintain applicable W.Q. Standards would result in adverse social and economic impact, disproportionate to the benefits to public health safety or welfare" AND Note: Section 301 deals with technology based effluent limits in 301(b)(1)(A) and (B) but also requires water quality limits in 301(b)(1)(C). This is confusing, but referring to 40 CFR 131.2, it is obvioys the reference to 301 is to its technology -based requirements. 4) "There exists no reasonable relationship between the cost to the petitioner of achieving the effluent limitation necessary to comply with the W.Q. Standards to the benefits, including incremental benefits to the receiving waters, to be obtained from application of said effluent limits". There has been some question on whether the "Revision" applies to the entire segment. The clause indicating that the EMC may revise a standard "as such standard may apply to the petitioner" seems to indicate the earlier clause "as such standards may apply to a specific stream segment" is not controlling in deciding the extent of the issued standard revision. It appears (and the AG's office concurs) that the revision only applies to the one petitioner. According to the statutes, the revised standard shall be "no less stringent than that which can be achieved by the application of the highest level of treatment which will result in benefits... (including incremental water quality benefits) having a reasonable relationship to the cost to the petitioner to apply such treatment". III. Differences Between "Variances" and "Revision to Water Quality Standard" Variances can apply to requirements provided by rules, regulations, water quality standards, or effluent limitations. Standard revisions apply to standards developed pursuant to 143-214.1. Variances do not actually result in a standard change, while revisions do. A-2 ▪ The economic comparisons are similar and can be compared by evaluating a few key statements. It appears that the Standard Revision economic condition would be easier to meet since it does not require a "serious hardship." This is probably not important since EPA economic tests are much more stringent than these two. Variance - "would produce serious hardships without equal or greater benefits to the public" Standard Revision - "there exists no reasonable relationship between the cost.. necessary to comply with applicable standards to the benefits." ▪ They both require meeting some basic, reasonable minimun level of treatment. Variance Must meet an undefined "best available technology found to be economically reasonable" (this was changed from an earlier "economically achievable"). Standard Revision - Must meet the technology -based Section 301 Clean Water Act BPT and BAT requirements. These could be similarly compared to the "best available technology economically reasonable" conditions of the variance clause. ▪ If a town were trying to get a variance from a requirement more stringent than secondary, it could use the variance statute and claim that anything higher than secondary was not "economically reasonable" and would produce "serious hardships without equal or greater benefits to the public" OR, they could use the Standard Revision clause and claim they are meeting the 301 requirements for secondary treatment and show that there was "no reasonable relationship between the costs and the benefits." IV. EPA Approval for Removing a Use (40 CFR 131.10) ▪ EPA requires that all treatment controls be based on achieving water quality standards. Any controls less than that are considered by EPA to not protect the uses in the stream. EPA will allow a state to adopt site -specific standards and accordingly relax treatment requirements if it can be shown that the use will still be protected. But any other relaxation of a water -quality based treatment requirement is considered by EPA as "removing a use." EPA will not allow removing a use that is an existing use but under certain situations allow removing a designated use that is no longer being attained. (see 40 CFR 131.10(g)). A3 Therefore any time the State allows meeting a less stringent standard which would not protect the designated use, it must demonstrate that attaining the use is not feasible because: 1) Naturally occurring pollutant concentrations prevent attainment, OR 2) Natural stream flow conditions prevent attainment, OR 3) Irretrievable man -induced conditions prevent attainment, OR 4) Dams or diversions which cannot be operated to allow attainment, OR 5) Physical conditions on the stream such as pools, lack of proper substrate, cover, depth and etc. which preclude attainment, OR 6) "Controls more stringent than those required by sections 301(b) and 306 of the Act would result in substantial and widespread economic and social impact, (306 deals with new source performance standard and 301b refers to the technology -based requirements) . ▪ Since EPA must approve all variance or standards revisions, their requirements control. In requests based on criteria 1-5 above, revisions would be easy. However, most requests the State receives are based on economic impacts. SUMMARY ▪ If stream conditions preclude attainment of a standard, the Revision to Standard statue is probably easiest to use. ▪ If economics are the basis for the request for a relaxation, the Revision to a Standard statue appears to be theoretically easier to meet. However, the more stringent, and more difficult to meet conditions are those found in the EPA regulations 131.10(g). Rel ief.Doc BD/Vol-2 A-4