HomeMy WebLinkAboutNC0000752_Wasteload Allocation_19881205NPDES DOCIMENT :;CANNING: COVER SHEET
NPDES Permit:
NC0000752
Roanoke Rapids Mill WWTP
Document Type:
Permit Issuance
(V---Vasteload Allocation
Authorization to Construct (AtC)
Permit Modification
Complete File - Historical
Engineering Alternatives (EAA)
Correspondence
Instream Assessment (67b)
Speculative Limits
Environmental Assessment (EA)
Permit
History
Document Date:
December 5, 1988
This document is printed on rexime paper - ignore any
content on time reYerse 1side
•
DIVISION OF ENVIRONMENTAL MANAGEMENT
December 5, 1988
MEMORANDUM
TO: Champion WLA file
THROUGH: Trevor Clements
Randy Dodd
FROM: Thomas Stockton
SUBJECT: Champion International -Roanoke WLA
This memo is an update on the recently completed Champion -Roanoke WLA
prompted by questions posed by1r y) Nisely of Champion -Roanoke and several spe-
cial interest groups.
Champion is planning to m machinery to increase production by 150
tons/day. The maximum daily production rate of the past year was 1500 tons/day
and Champion is predicting a maximum daily production rate of 1650 tons/day for
the coming year. Production of 1650 tons/day was used to develop the BCT limi-
tations for BODS of 9240 lbs/day (40 CFR 430.13, Subpart A). Champion's existing
permit was developed based on production of 1256 tons/day which resulted in( h
effluent guidelines BODS limit of 6852 lbs/day. It appears Champion's production
during the past year exceeded the production assumptions made in development of
the existing permit limitations.
The Environmental Defense Fund noted a discrepancy between flow rates pre-
sented in the permit application and the design capacity in the draft permit.
The permit application lists 19.5 mgd as the flow for pipe 001. Subsequent to
the submittal of the permit application Champion requested the flow be increased
to 28 mgd to provide increase treatment efficiency by reducing the hydraulic
level in the stabilization pond. Since the wasteflow is insignificant in compari-
son to the minimum release streamflow changes in design capacity do not affect
the modeling analysis. 41 ., .. r_ c»p+CC k'.
Mr. Nisely noted that the initial DO in the predicted DO profiles with the
Champion discharge included was approximately 1 mg/1 lower than background. This
proved to be an error in which background deficit was double counted. The cor-
rected predicted DO profiles are provided in the attached graphs. The difference
is significant however the conclusion is the same: expanded BCT production limits
will not protect the DO standard. Standard violations are not predicted at
existing permitted loading conditions.
Mr. Nisely felt the NBOD loading was too high. Initially, the loading used
was based on an incomplete long-term BOD analysis. The assumption was made that
all the initial TKN would be converted to NH3 and would result in an oxygen
demand. The long-term analysis has since been completed, however, only 20 day
nitrogen samples were analyzed. Using the oxidized nitrogen portion to calculate
NBOD results in an NBOD loading rate of 3053 lbs/day for this composite sample.
This should be considered the minimum NBOD load associated with this composite
sample. From monthly total nitrogen data a median total nitrogen of 5.3 mg/1 for
the period 11/87-10/88 was calculated. Assuming that all the total nitrogen is
composed of TKN (as in the long-term BOD sample) and that all but 1 mg/1 of TKN
will result in an oxygen demand (typically the case as noted by Howard Byrant),
at 28 mgd the expected NBOD loading rate is 4519 lbs/day ((5.3 - 1.0
mg/1)(4.5)(28 mgd)(8.34)). At the expanded BCT CBOD loadings the predicted DO
minimum with NBOD loadings of 3053 and 4519 lbs/day are 4.84 and 4.78, respec-
tively. In summary, within a reasonable range of expected NBOD loading DO stan-
dard violations are predicted.
State of North Carolina
Department of Natural Resources and Community Development
Division of Environmental Management
512 North Salisbury Street • Raleigh, North Carolina 27611
James G. Martin, Governor R. Paul Wilms
S. Thomas Rhodes, Secretary December. 5, 1988.Director
Mr. Myrl Nisely
Champion International
North Roanoke Avenue
Roanoke Rapids, NC 27870
Subject: Champion NPDES wasteload allocation
Dear Mr. Nisely:
Per your request, please find enclosed documentation for the Roanoke River.
"Level B" model and a copy of the Division's desktop modeling procedure. Also
enclosed is an example of the model output from the wasteload allocation analysis
recently performed for Champion's NPDES permit renewal, statistical summaries
of Roanoke River ambient data gathered by the Division, and results of a long-
term BOD analysis performed by the Division on Champion's effluent.
Your observation regarding the initial dissolved oxygen predicted for the
Champion existing and expanded loading scenarios was correct. The initial dis-
solved oxygen concentration was approximately 1 mg/1 too low due to a double
counting of the background dissolved oxygen deficit. The attached figure pre-
sents results of a revised analysis. As can be seen the magnitude of the pre-
dicted dissolved oxygen sag is significantly reduced, however, the conclusions
drawn from .the initial analysis still apply. Dissolved oxygen standard (5 mg/1)
violations are predicted at the expanded production BCT loadings. The Division's
position will remain that the existing BOD, limit of 6852 lbs/day should apply to
future expansions.
To address your concerns regarding the initial assumption that all TKN gener-
ates an oxygen demand an informal sensitivity analysis of the impact of the NBOD
loading rate on dissolved oxygen was performed. Two measurements of the NBOD
loading are available, a long-term BOD composite sample collected by the Division
in May of 1988 and total nitrogen self -monitoring data submitted by Champion.
Using the gain in the oxidized nitrogen from the long term BOD analysis the NBOD
loading for this composite sample was estimated as 3053 lbs/day. The median
total nitrogen from Champion's self -monitoring data for the past year was esti-
mated as 5.3 mg/l. Assuming that all the total nitrogen is composed of TKN
(as indicated by the long-term BOD sample) and that all but 1 mg/1 of TKN will
result in an oxygen demand (as is typically the case as noted by Divisional per-
sonnel) at 28 mgd the expected NBOD loading rate is 4519 lbs/day. The predicted
minimum dissolved oxygen at the NBOD loading rates of 3053 and 4519 lbs/day is
4.84 and 4.78 mg/1, respectively. This indicates that within a'reasonable range
of anticipated NBOD loading dissolved oxygen standard violations are expected.
Pollution Prevention Pays
P.O. Box 27687, Raleigh, North Carolina 27611-7687 Telephone 919-733-7015
An Equal Opportunity Affirmative Action Employer
The Division does not anticipate that the Roanoke River will be targeted for
extensive field studies in the coming year. If you feel assumptions made in the
modeling analysis are inappropriate I would encourage Champion to conduct field
studies to clarify those issues. If Champion chooses this path I would also
encourage you to work closely with the Division in planning and conducting any
field studies to ensure data is collected and analyzed in/under a standardized
and mutually acceptable methodology.
Please let me know if I can be of further assistance.
Sincerely,
Thomas Stockton
Environmental Modeler II
Roanoke River Predicted Dissolved Oxygen: components of the deficit at BCT limits
for Champion's proposed production expansion
8.5 —
8 . 0 DO Saturation @ 27°C
7.5-<
7.0-
6.5 —
6.0 —
5.5 — L++::•��-.•
4.5 —
Mininum = 4.78 mg/1
4.0
0 5 9 14 19 24 32 42 52 62 72 80 90 100 110 117
Rivermile
Background deficit
Deficit due to dischargers other than Champion
Deficit due to CBOD decay from Champion's load (9240 lbs/day of BOD5)
Deficit due to NBOD decay from Champion's load (4519 lbs/day)
Vepco - Roanoke Rapids Dam
Mile :
•
' Roanoke Rapids Sanitary Dist.
• f
Mile 2. S, Q� 8.65
Champion International Paper
Mile o . o, Qw2R21
02.0805.00
DA• 8384
Mlle_
U56.5 645e.
Proposed Champion Int.
Mile 15., Qw• 25
Ambient Station
Point Source Discharger •
Mile - River mile from Batchelor Bay
Qw= Wasteflow ( million gallons per day)
DA= Drainage Area ( square mile)
Weldon WW1?
Mile S. S . Qw• 0.5
DOC - Odom
Mile 22.5'., Qw• 0.07
FIGURE 1
AMBIENT STATIONS AND DISCHARGERS
TO THE ROANOKE RIVER
DOC • Calendonia
Mfle zs.S, Qw- 0.0125
02.0810.00
DM 8671
Mile
Hamilton WWI?
Mile 7 i , Qw• 0.08
West Point Pepperell
Mile7+- <, Qw• 1.54
Perdue Farm Inc.
Mile 49 , Qw• 1.5
02.0810.22
DAB 8813
Mile
024810.54
DM 9070
Mlle
Town of Wflliamston
MO el; , Qw'u 1.06
PlYmaoth WW'IP
10fQvra0.8
Wcyerhanser
Mile/Qws SS
Penn Elastic
Mflelo4, Qw! 0.01
• BATCHELOR
▪ :BAY▪ •
02.0811.41
Mil
02.0811.35
DA- 9296
Mile _
Jame:►Ole WWIP
Mflelo1, Qw• 0.15
8 .5 —
8.0 —
5.5 —
5.0
4.5 —
4.0
Roanoke River Predicted Dissolved Oxygen: components of the deficit at BCT limits
for Champion's proposed production expansion
DO Sa[uration @ 27°C
Mininum = 4.78 mg/1
0 5 9 14 19 24 32 42 52 62 72 80 90 100 110 117
Rivermile
Background deficit
Deficit due to dischargers other than Champion
Deficit due to CBOD decay from Champion's load (9240 Ibs/day of BOD5)
Deficit due to NBOD decay from Champion's load (4519 lbs/day)
Champion International - Roanoke River
30 BOD5 mass loading vs discharge
]].:
Ju]'86 Oct'86 Jan'87
BOD5
discharge
— 10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
(ICEP/sqI) SQOi
7.3
ROANOKE RIVER AMBIENT DATA'
DISSOLVED OXYGEN (MG/L)
1
855 9 96
UCH DEFICIT (MG/L)
r 1
.-r;� f .1
.i
AMBIENT STATION NUMBER
I 1 !
\ • j [•
`30 - -Rakv,06
920 - +IW,) 2s? hr tlle_ck
v 3o - qwy i I Kr Le.westoh
B5 J _ e ,J,ll,aw�stc,�
Z 5— A�•,� v(r,{-�c �. c, C c e lc.
h r r! 1 OA
r i h
&�% - N y u f
cility: Champion
Date: 880512
Observed
Day BOD
(mg/1)
5
10
15
20
25
30
35
40
45
50
55
60
34
48
65
78
83
88
92
95
98
100
103
105
International
composite
Observed Observed
NO2+NO3 TKN
(mg/1) (mg/1)
0.01
0.01
0.03
1.30
3.40
4.20
5.10
3.50
2.10
1.20
sample
Predicted
BOD
(mg/1)
29.00
49.95
65.07
75.98
83.87
89.56
93.67
96.64
98.78
100.32
101.44
102.25
Flow: 24 mgd
kd: 0.0651 /day
BOD ult: 104.34 mg/1
TKN Method
TKN NBOD:
NBOD:
CBOD:
CBOD/BOD5:
13.5 mg/1
2702.2 lbs/day
90.8 mg/1
2.7 mg/1
NOx Method
NOx NBOD: 15.3 mg/1
NBOD: 3053.4 lbs/day
CBOD: 89.1 mg/1
CBOD/BOD5: 2.6 mg/1
14
7.2
ROANOKE RIVER AMBIENT DATA'
DISSOLVED OXYGEN (MG/L)
r
a
a
730 B2) 830
SJJ
DO DEFICIT (MG/L)
925 960
1
T eX et4. Ja
cISK pevce,A
130 - 9) g-Rockm06,
9zo - tikvi 2-5 v+r Sc o1-\o ittEc
- qv,/ �� Let�3(Si-oh
� �30
B55 — N 13-(1 Q !�J�tt,aw�s v►�
'12 5 — A60q.c. C,t ee
h r pt,VvnOt.
-i q& ( - KO L( IA( Dativt5 50u c
OJJ
AMBIENT STATION NUMBER
925 960
7.7
bUYD l rN/ L)
5.7
3.7
1.7
0.2
0.152
0.104
O.056
v
Ili
730 820 830 855 925 960
AMBIENT STATION NUMBER
NH3 (MG/L)
7
N
RE-3 •
-0.04
H
730 820 830
GJJ
AMBIENT STATION NUMBER
925 960
Jan'86
Champion International - Roanoke River
BOD5 mass loading vs discharge
Apr'86 Ju1'86
Oct'86
Jan'87 Apr'87 Ju1'87
BOD5 3 discharge
Oct'87
Jan'88
7000
L 6000
5000
4000
3000
2000
1000
Apr 88
(i(EP/sql) sclog
Champion Long term BOD (880512 - grab)
100
80
50
40
•
• ,r
.ff .
.r
r
r •
a1
20 — I
v•
RF
I
i 1 1 1 I 1 I 1 1_11 1 1 1 1 I 1 1 1 1 I 1 1 1
0 10 20 30 40 50
days
BOD utlimate 99.6119629
bottle decay rate .0732703
100
8
60
40
20
Ccw1-J1t
101J. 3g
� 011
Champion Long term BOD (composite)
1 1 1 1
1 1 1( 1 1 1 1
N
f
1
1 1 1 1 1 1 -1 , 1 1
•
v
I
v.
v l
9•
r
0
1 i 1 1 I 1 1 1 1 I 1_ 1 1 1 I 1 1 1 1 I 1 1 1 1
0
10
20
days
30
40
PERMIT NO.:
NCO() 001 52
FACILITY NAME.
NPDES WASTE LOAD ALLOCATION
C i'�av►•piov� T la 1OkCQ (_.orp
Drainage Area (miZ)
Facility Status: Ea 1STUIO PROPOSED i g: °
(circle one) - S
LS Winter (cfs) 30Q2 (cfs)
Permit Status RiTVE'W , 1100�1C.A � S�i9 19 �
(circle Ono) Toxicity Limits: IWC X (clrcls on.) Acute /
Major Minor, °E PJEITS £: E lGII'� -<< !,; r, ,
OO GxG2 Uv 3
Pipe No:
Design Capacity (MGD)• u►oK 'cntt k I" cox, -a •.„ F . Parameters2S C rocs
God.nn
Domestic (% of Flow):
Industrial (% of Flow)*
Comments -
Modeler
`lc3S
Date Rec.
6/f/Sq67-J
(A3a,c.
Avg. Streamflow (cfs)•
RECEIVING STREAM:
k oawo6 Z tve'r
Class -
Sub -Basin:
c,3-oz. -oz
Reference USGS Quad: 2C-5 N ►'V (please attach)
County. <
Regional Office: As Fa Mo . Ra Wa Wi WS
(circle ...)
Requested By: naVtd t� 54-er Date: 5-L5-SO
Prepared By: Date-
9/8/86
Reviewed By: , ��� G2 Date- c—/6 `W
00ago5OO
Upstream
Instream Monitoring: 1
6/ TeNtAp ,vu11. ,re 5
e_trAcJMc.ttvi "gots
Location goy cJQp-
Downstream Location
0(
W Zl cioN , k U
hronic
Effluent
Characteristics
; �"
O 0 2= =
UCH 3
BODs (ild
)
W50 i3a-ov
NHa N (mg/1)
-- —
TDS.°S1(735//1)661)
- 11 ?"6.0 -31.b°0‘
F. Col. (/100m1)
pH (SU)
(o -ct
(Q-9.
Co`9
-1-
cast
H.o- ca.U.S.
, Pe.r(krcufe,
„Qi 1L
t 1
•, a
' t r , cl '� k',
f { s, 0�,
e X c om i�
t,J a ie-wkQ,
c 0,60, w+
11 win KQ ca.,-
.... ^^,
...... _
CO.M-SC reciltr4..4.0 W attA-S
A c.e,ed 326'-•
teJ
-Q
Comments- 't�c-1, does Aok rlvotnc.-aa
co44wPMe
d— -,�(tL Scre'rtlK� riuT (er{to n1�r kAs rlas`�CG TS
4a7 d ed
Y ��
FOR APPROPRIATE DISCHARGERS. LIST COMPLETE GUIDELINE LIMITATIONS BELOW
Effluent Characteristics
Monthly
Average
Daily
Maximum
Comments
'Bob s 2.45 tb/da•.8. x 3,300 0 igo.,3
qt " c6/d
t `( S3 0 1p ldo
%C.'T (e s S'T�
-rSS (0.0 lbitioz
VI, caw Lb/dog
Ci
3a (ooG ao%
scw�,-e-
P H
(,-q 5c
G- ask
S CA" 62
Type of Product Produced
Lbs/Day Produced
Effluent Guideline Reference .
?v\p zr>rr L 6tv, bL C. d kaaf-►-p
�`
3, &Dc3,)ax0 tios/
yU c - � • 13
4a
1' A - LoAinlcAc Lect
s bC ban
d .
a).-r - `�r
•
Go4mso4 li.e,6aa,a. %Act,
u u. c s a,(4- A - Luktola ocL cA .
Request No.:4674 a,b,c
WASTELOAD ALLOCATION APPROVAL FORM
Facility Name: Champion International Corp
NPDES No.: NC0000752
Type of Waste: 001 - process water 002 & 003 - non -contact
Status: Expansion cooling water
Receiving Stream: Roanoke
Classification: C Regulated
Subbasin: 030208 Summer minium: 1500 cfs
County: Halifax Winter mini um: 1000 cfs
Regional Office: RaRO L �E�����
Requestor: Foster 1�
Date of Request: 5/31/88 CrP
Quad: B28NW 2 iyet,
RECOMMENDED EFFLUENT LIMITS --- --PE-RMLTSAlAIMn ERING
001 1 002 003 ;:
Monthly Avg Daily Max
Wasteflow (mgd): 28.00 6.60 1.60
BOD5 (lbs/day) : 6850 13700 469/21-
TSS ( lbs/day) : 1458lr&O 64 3ij (000
pH (su): 6-9 6-9 6-9 6-9
The discharge shall not cause the receiving water's
temperature to exceed 2.8°C above background and
in no case cause it to exceed 32°C
Quarterly
Chronic toxicity target: 4% (see attached)
MONITORING
Upstream (Y/N): Y Location: Hwy 48 bridge
Downstream (Y/N): Y Location: @ Weldon, NC
Parameters: DO, temperature, conductivity, & BOD5.
COMMENTS Noi1%�,rtr�-.'t7s
Effluent limits are water quality based and are the existing limits.
��
WQ impacts are predicted at higher loadings. ( ice a�>
Facility does not use biocides in its non -contact cooling water,
toxicty screening and toxicity permit reopener is recommmended.
Instream monitoring data do not indicate local WQ impacts, however,
modelinynalysis indicates discharge contributes to downstream WQ problems.
Recommended by: Date:
Reviewed by
r'
Tech Support Supervisor: -tom. _' Date:
Regional Supervisor: /,A .�` !�.� Date:
Permits & Engineering: � _ �_ Date:
RETURN TO TECHNICAL SERVICES BY: SEP 0 3 1988
.l.
Facility Name C, 6, nnpIov111A-1611/10ACPYS (o&vok Permit # ? C 00061 5 2
1 .
CHRONIC TOXICITY TESTING REQUIREMENT (QRTRLY)
The effluent discharge shall at.no-time exhibit chronic toxicity using test procedures outlined in:
1.) The North Carolina Ceriodaphnia chronic effluent bioassay procedure (North Carolina Chronic
Bioassay Procedure - Revised *February 1987) or subsequent versions.
The effluent concentration at which there may be no observable inhibition of reproduction or
significant mortality is `{ % (defined as treatment two in the North Carolina procedure
document). The permit holder shall perform quarterly monitoring using this procedure to establish
compliance with the permit condition. .The first test will be performed after thirty days from
issuance of this permit during the months of Mc-, See - D e c— • . Effluent
sampling for this testing shall be performed at the NPDES• permitted final effluent discharge below
all treatment processes.
All toxicity testing results required as part of this permit condition will be entered on the Effluent
Discharge Monitoring Form (MR-1) for the month in which:it was performed, using the parameter
code TGP3B. Additionally, DEM Form AT-1 (original) is to be sent to the following address:
Attention: Technical Services Branch
North Carolina Division of
Environmental Management
P.O. Box 27687 •
Raleigh, N.C. 27611
Test data shall be complete and accurate and include all supporting chemical/physical measurements
performed in association with the toxicity tests, as well as all dose/response data. Total residual
chlorine of the effluent toxicity sample must be measured and reported if chlorine is employed for
disinfection of the waste stream.
Should any test data from this monitoring requirement or tests performed by the North Carolina
Division of Environmental Management indicate potential impacts to the receiving stream, this
permit may be re -opened and modified to include alternate monitoring requirements or limits.
NOTE: Failure to achieve test conditions as specified in the cited document, such as minimum
control organism survival and appropriate environmental controls, shall constitute an invalid test
and will require immediate retesting(within 30 days of initial monitoring event). Failure to submit
suitable test results will constitute a failure of permit condition.
VVI. Wk rC.ttate
2Q4-6 U000 cfs
Permited Flow 2 (6 MGD Recommended by:
IWC% ''1• t 5
Basin & Sub -basin 03 6ZOS J
Receiving Stream 2 oan o(cn `(�.ve r %�e-rn o•� �1J�
County Hatt. -�'ay Date 2 5, e4 Si,
**Chronic Toxicity (Ceriodaphnia) P/F at 4- %, irikaZ my cat , See Part 3 , Condition rr .
8
7
6
5
4
3
1
00
+ With loading
Roanoke River Predicted CBOD
.. :sue:=:
6.5 14.0 21.0 32.0 47.0 62.0
Miles from Roanoke Rapids Dam
o Champion -proposed
Champion
►0 i
Vepco - Roanoke Rapids Dam
Mile _:
02.0805.00
DA= 8384
Mile
VS&
45e
Proposed Champion Int
Mile I , Qw• 25
• Ambient Station
Point Source Discharger .
Mile - River mile from Batchelor Bay
Qw= Wasteflow ( million gallons per day)
DA= Drainage Area ( square mile)
Champion International Paper
Mlle oo, _Qw=21
Roanoke Rapids Sanitary Dist
Mile 2. 5, Qw= 8.65
Weldon WWTP
Mile 5. C ., Qw= 0.5
DOC - Odom
Mile 2 .5 ., Qw= 0.07
FIGURE 1
AMBIENT STATIONS AND DISCHARGERS
TO THE ROANOKE RIVER
DOC - Calendonia
Mile za.S, Qw= 0.0125
02.0810.00
DA= 8671
Mile
Hamilton WWTP
Mile ! , Qw= 0.08
West Point Pepperell
Milo7�. <; Qw- 1.54
Perdue Farm Inc.
Mlle I i Qw= 1.5
02.0810.22
DA= 8813
Mile
02.0810.54
DA= 9070
Mile
Town of Williamaton
Miles Qw• 1.06
i
Plymouth WWTP
Mile ins Qw= 0.8
Weyerhauser
Mile'ta.'sQw= 55
Penn Elastic
Mile l2 Qw= 0.01
•BATCHELOR
7 _ BAY
02.0811.41
M17e
02.0811.35
DA= 9296
Mile
Jamesrine WWTP
Milelcl, Qw= 0.15
Al c 0000 75
Ck4, P1A-% . c.co„.0 so-1z
w1t.lue.41
"To.V , RNto
3L(
Lj
g
(5
is 3
9 2.
q5
° 3
/01
I ..'"L• 4 .1/ < . 0 I
5, 1
Z.?, 3
, 33
tlk.t eh u
S.
3,5
'2) 41)5 i VOriA0 k"C4)
Coll ft-c.,tuJ I v(G 4
CT-4:-.1 fit
•.sem
t 5
1
3s g
sz.S
7
5
5
5
5
5
log, 2. — 10635
00o 51,
Ck 6 11, r 4v, -P
%.1c.ytCR.90,491
bb 1.4•N fKN
0
5
I
15
214. 11
S3
30
35
tic),qs
45 91/
eol
55
to()
i7 I
tr4
LS
1‘1 3%c
2.s L(Lf
is
SIsuCti,
N 04
C64 La -Bobs 2.4
Cavi Ldo "(lobs ittili.(0%-0
3 41-- 33.
3
3
3
3
3
)06 Z
104,2-
3
3
3
Facility: Champion International
Date: 880512 composite sample
Observed
Day BOD
(mg/1)
5 34
10 48
15 65
20 78
25 83
30 88
35 92
40 95
45 98
50 100
55 103
60 105
Observed
NO2+NO3
(mg/1)
0.01
0.01
0.03
1.30
3.40
Observed Predicted
TKN BOD
(mg/1) (mg/1)
4.20
5.10
3.50
2.10
1.20
29.00
49.95
65.07
75.98
83.87
89.56
93.67
96.64
98.78
100.32
101.44
102.25
Flow: 24 mgd
kd: 0.0651 /day
BOD ult: 104.34 mg/1
TKN Method
TKN NBOD:
NBOD:
CBOD:
CBOD/BOD5:
NOx Method
NOx NBOD:
NBOD:
CBOD:
CBOD/BOD5:
13.5 mg/1
2702.2 lbs/day
90.8 mg/1
2.7 mg/1
15.3 mg/1
3053.4 lbs/day
89.1 mg/1
2.6 mg/1
0
I.
a,g8
5
/0
i3
/5
i7
2� f
2�
3D
35
Ck;i
ot,‘ vv‘9,.4
fkl 3 1 1< N
I. v 11.z
1.9
a !_a b I'� O� 5
1-0-6) 19iiqtrk,-1
5.1
3z
0,o .
= 100.4
LI
oS
C o aIiS 0 51 1- cu s3.)
` °4-- 1.1 tZ I. za
�-v
o ► S,
3.
�-r
9
9
9
7
7
7
5
5
5
6
1.5 4 ,7
3 ZSS
33; S 1."7 3.1'
37. 3
f 3 la Ca L( 2.5
5a. 2-
1 5 6. 0
I1 7s'I
77,
Z54 83. a
.35 !�2
7s.a
/
Ca-1—iL. ra s 2-9
,)11„sp11s I.
,.7 Y
5gosi 2
�1'5
pnt.ct
� _ o t L./„ 7
v G
5
3.ZY 5
3
3
3
3
3
3
Ckikreltifh- Roo,dla.
Upstream Downstream
Site: Hwy 48 Site: Halifax
Date DO Temp Salin. X Sat DO Temp Salin. X Sat Flow DOD apOD
(ig11) (xC) (ppt) (mg/1) (mg/1) (xC) (ppt) (mg/1) (mgd) (mg/1) rlbs/day)
Jan 86 11.60 5.4 0 92X 11.70 5.1 0 92X 20.4 54.7 9.3
Feb 86 12.1 5.9 0 97% 12.2 5.1 0 96X 11.1 60.3 5.6
Mar 86 12.3 9.4 0 107% 11.7 9.2 0 102X 9.8 83.6 6.8
Apr 86 14.5 52.3 6.3
May 86 8.8 19.8 0 96X 8 19.4 0 87X 20.4 33.3 5.7
Jun 86 7.5 24.4 0 90X 6.6 25.3 0 BOX 24.4 26.7 5.4
Jul 86 6.8 26.7 0 85X 6.4 28 0 82X 19.4 23.7 3.8
Aug 86 6.9 26.3 0 86X 6.1 26.8 0 76X 20.7 24.6 4.2
Sep 86 7.6 23.6 0 90% 7 23.6 0 83X 18.1 34.1 5.1
Oct 86 8.7 20.8 0 97X 7.8 21.1 0 BBX 15.8 39.6 5.2
Nov 86 9.9 15.7 0 100X 8.1 14.8 0 80X 12.8 57.4 6.1
Dec 87 11 11.6 0 101% 10.1 10.5 0 91X 15.3 48.8 6.2
Jan 87 12.1 7.6 0 101% 11.3 6.9 0 93X 17.6 43 6.3
Feb 87 13.5 6.2 0 109X 12.2 5.7 0 97X 13.2 57.6 6.3
Mar 87 10.8 7.4 0 90X 10.6 7.7 0 89X 12.2 62 6.3
Apr 87 9.1 12.3 0 85X 9.2 12.2 0 86X 21.5 37.3 6.7
May 87 8.9 17.3 0 93X 8.8 12.4 0 82X 27.3 18.3 4.2
Jun 87 8.3 23.3 0 97X 8.2 23.7 0 97X 24.8 22.3 4.6
Jul 87 24.7 20.3 4.2
Aug 87 8.4 27.3 0 106X 8.4 26.8 0 105X 21.3 19.5 3.5
Sep 87 8.4 27.3 0 106X 8.4 26.8 0 105X 19.6 26.4 4.3
Oct 87 8.9 18.5 0 95X 8.9 18.1 0 94X 16.7 46.1 6.4
Nov 87 8.6 14.4 0 84X 8.8 13.5 0 84X 14.4 53.1 6.4
Dec 87 8.6 10 0 76X 9 9.8 0 79X 12.2 63.4 6.5
Jan 88 8,7 4.9 0 68X 9.2 5.2 0 72X 12.1 65.7 6.6
Feb 88 9 6.2 0 73X 9.3 6.1 0 75X 11.3 72.2 6.B
Mar 88 8.8 9 0 76X 8.7 9.4 0 76X 10.7 72.3 6.5
Apr 88 8.3 14.7 0 82X 8.3 14.5 0 81X 21.1 29 5.1
May BB 8.5 19.3 0 92X 8.5 19.2 0 92X
C_(eimAiltz;1,, gocLAALle keftOs
,nre-r 6_=t(637 — Cool
-ai) 'huiFot vwj
Qoace, tc‘c(c,
40c-
orMA AiccertAk
Of,Adno,ov, -
SUMMER
ROANOKE RIVER
W/O CHAMPION
MODEL RESULTS -----------•--
• D:L.::7chargM.r
. Receiving Stream a ROANOKE: RIVER
The End D.O. is 6.31 mg/l.
The End CBOD is t_)o i8 mg/l
The End NBOD is 0.05 mg/ l n
WLA WLA WLA
DO Min CBOD NBOD DO Waste Flow
(mg/1) Milepoint Reach # (mg/1) (mg/1) (mg/1) (mgd)
Segment 1 5.90 21.50 4
Reach 1 27720.00
Reach 4.. 60.00
Reach 3 45.00
Reach 4 10000.00
Segment 5.79 13.004.
Reach 1 45.00
Reach 3 2445.00
Reach 4 45.00
Segment 3 5.89 9.00 1
Reach 1 656.00
Reach 2 45.00
Reach 7, 180.00
Reach 4 45„00
23 3 00
90.00
90.00
,^• c;) 0 0 , t_) 0
90„c:x)
90„00
1818.00
90.00
169.00
9t_).00
14.00
90.00
0.00 0.00000
0.00 8.7'4000
0.00 0.50000
0.00 0.00000
0.00 0.07000
0„00 0u()125c)
0.00 0.12000
0.00 0.08000
0.00 0.12000
0.00 3.00000
0.00 0.08000
0.00 0.15000
* * * MODEL SUMMARY DATA * * *
. Discharger 3 Subbasin c:)302c:) 3
Receiving Stream p ROANOKE RIVER Stream Class: C
. s
Summer 70:Lc) v 1500.0 Winter 701') u 1000.0
Design Temperature: 27.0
:LENGTH: SLOPE: VELOCITY 1 DEPTH; Kd 1 Kd 1 Ka Ka 1 KN KN KNR KNR 1 SOD : SOD 1
1 mile 1 ft/mil fps 1 ft ;design, @20° ;design; @20° ;design; @20° ;design; @20° ;design; @20°
1
Segment 1 1 3,501 0.321 1.010 1 2.00 1 0,35 1 0.25 1 0.33 1 0.28: 0.51 1 0.30 0.51 1 0.00 1 0.00 1 0.00 1
Reach 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Segment 1 1 2.00: 0.321 1.010 1 2.00 1 0.35 1 0.25 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 2 E t 1 I 1 1 I 1 ! 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1
Segment 1 1 9.501 0.321 1.010 3,00 1 0.32 1 0.23 1 0.33 1 0.28: 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 3 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
Segment 1 1 6.501 0,32: 1.010 1 4.00 1 0.31 1 0.23 1 0.33 1 0.281 0.51 1.0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 4 1 1 1 1 1 1 ! 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
Segment 2 1 2.00: 0.321 1.010 1 5.00 1 0.30 1 0.22 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 1 1
Segment 2 1 20.001 0.32: 1.010 1 5.00 1 0.30 1 0.22 1 0.33 1 0.281 0,51 1 0,30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 2 1 1 1 1 1 1 1 1 1 1 1 1 1
Segment 2 1 27.001 0.32: 1.010 1 5.00 1 0.30 1 0.22 1 0.33 1 0.28: 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 3 I ! 1 t I 1 1 1 1 1 1 I 1
1 1 1 ,I t 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I 1 I 1 I I I 1 1
Segment 2 1 0,501 0.32, 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.10: 0.51 1 0.30 1 0,51 1 0.00 1 0.00 1 0.00 1
Reach 4 1 E I 1111111111
1 1 1 1 I 1 1 1 1 1
1
Segment 3 1 22.001 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.101 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 1 1 11
11
11
1 1 1 1 11
Segment 3 1 15.001 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.101 0,51 1 0,30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 2
1
Segment 3 1 1.001 0.321 0.370 1 9.00 1 0.28 1 0,20 1 0.12 1 0.101 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 3 1 1 1 1 1 1 1 1 1 1 1 ;
Segment 3 1 8.001 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.101 0.51 1 0.30 1 0,51 1 0.00 1 0.00 1 0.00 1
Reach 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Flow CBOD ; Nr30D D.O.
cfs mg/1 mg/1 mg/1
Segment 1 Reach 1
Waste 0.000 ; 27720 „ t )c_)c_) :27.67..000
Headwaters : 15c_)c_) „ c_)c 0 1 2.000 ; 1.000
Tributary 0.000 ; 0.000 ; 0.000 ;
* Runoff 0.850 ; 2.000 ; 1.000 ;
Segment 1 Reach 2
Waste ; 12.927
Tributary ; c_)„t_)c_)c_)
* Runoff 0.850 ;
Segment 1 Reach
Waste 0.775
Tributary ; 0.000
* Runoff 0.850
Segment 1 Reach 4
Waste 1 0.000
Tributary ; 0.000
* Runoff 0.850
Segment 2 Reach 1
Waste 0.109
Headwaters: 0.000
Tributary ; c)„c_)c_)c_)
* Runoff 0„850
Segment 2 Reach 2
Waste 0.019
Tributary ; 0.000
* Runoff 0.850
60.000 90.000
0.000 : 0.000
2.000 , 1.000
1 45.000
0.000
„ c_)c_)c_)
i 90.000
0.000
1.000
1 c_) c_) c_) t_) „ c_) 0 t_)
0.000 ;
2 „ c_)t_)c_} i
45.000
0.000
0.000
2.000
0.000
6„900
0.000
6.900
0.000
0.000
6.900
0„t)c_)c_)
0.000
6„9_)
' c_) c_) c_) „ c_) c_) t_) ; 0.000
0.000 ; 0.000
1.000 ; 6.900
90.000
0.000
0.000
1.000
45.000 ; 90.000
0.000 ; 0.000
2.000 ; 1.000
Segment 2 Reach 3
Waste ; 0.186 ; 244 5 „ c_)c_)c_) ; 1818 . c_)c_) c_)
0.000 ; 0.000 ;
2.000 ; 1.000
Tributary ; 0„0)00 ;
Runoff j 0„850 1
Segment 2 Reach 4
0.124
0„0tom)0
Waste
Tributary ;
* Runoff 0.850
Segment 3 Reach 1
Waste 0.186
Headwaters ; 0.000
Tributary ; 0.000
* Runoff ; 0.850
Segment 3 Reach
Waste 4.650
Tributary ; 0.000
* Runoff 0.850
45.000
0.000
F 2„00t)
6 56 „ c_)c_)c_)
0.000
0.000
i 2.000
45.000
1 0.000
1 2.000
90.000
0.000
1.000
169 „ c_)c_)c_)
0.000
0„00t„)
1.000
90.000
0„000
1.000
0.000
0.000
0.000
0.000
0.000
0.000
6.900
0.000
0.000
6.900
0.000
0.000
6.900
0„000
0.000
0.000
6„9c_0
0.000
0.000
6.900
Segment 3 Reach 3
Waste 0.124 ; 1.80.O00 ; 14.000
Tributary ; 0.000 ; 0.000 : 0.000.
* Runoff 0.850 ; 2 a c.)00: 1.000
0.000
0.000
ice) . 0 0 0
6.900
Segment 3 Reach 4
Waste 45.000 90.000
Tributary ; 0a()(n) ; 0.000 ; 0.000
* Runoff 00850 : 2.000 : 1.000
* Runoff flow is in cfs/mile
0.000
0.000
6.900
y SUMMER
ROANOKE RIVER
•' ° W/a CHAMPION
Seg # Reach # Beg Ni D.O. ; C%OD NBOD Flow
1 1 0n00 6.90 2.00 1.00 1500.00
• 1 1 0.50 6.87 1.98 0.98 1500.42
1 1 1.00 6.85 1.96 0.97 1500.85
1 1 1.50 6.83 1.94 0.95 1501.27
1 1 2.00 6.80 1.92 0.94 1501.70
1 1 2.50 6.78 1.90 0.97; 1502.12
1 1 .00 6.76 1.88 0.91 1502.55
1 1 3 a 50 6.74 1.86 0.90 1502.97
1 2 7.a 50 6268 2.35 1.66 1515n90
1 t 4.00 6.64 . 3 1.63 1516.7.7.
1 4.50 6.61 2.31 1.61 1516.75
2 5.00 6.57 2.28 1.58 1517.18
1 2 5.50 6.54 2.26 1.56 1517.60
3 5.50 6.54 2.28 1.60 1518.3B
1 3 6.00 6.51 2.26 1.58 1518.80
1 3 6.50 6.47 2.24 1.55 1519.27
1 0 7.00 6.44 2.21 1.53 1519.65
1 3 7.50 6.42 2.19 1.50 1520.08
1 3 8.00 6.39 2.17 1.48 1520.50
1 W 8.50 6.36 2.15 1.46 1520.93
1 3 9.00 6.33 2.17 1.44 1521.7.5
1 3 9.50 6.31 2.11 1.41 1521.78
0 10.00 6.28 2.09 1.39 1522g20
1 0 10.50 6.26 2.07 1.37 1522n63
1 77. 11.00 6.23 2.05 1.35 1523.05
1 .:. 11.50 6.21 2.07. 1.33 1523.48
1 :'. 12.00 6.19 2.01 1.31 1523.90
1 3 12.50 6.17 1.99 1.29 1524.=
1 3 17% 00 6.15 1.97 1.27 1524.75
1 3 17.50 6.13 1.95 1.25 1525.18
1. 3 14.00 6.11 1.93
1.23 1525.60
1 3 14.50 6.09 1.91 1.21 1 526 n 0 M
1 3 15.00 6.07 1.89 1.19 1526.45
1 4 15.00 6.07 1.89 1.19 1526.45
1 4 1.5.50 6.06 1.88 1.17 1526.88
1 4 16.00 6.04 1 .86 1.15 15 27 a 0
1 4 16.50 6.03 1.84 1.14 1527a73
1 4 17.00 6.01 1.82 1.12 1528.15
1 4 17.50 6.00 1.81 1..10 1528.58
1 4 18.00 5.98 1.79 1.08 1529.00
1 4 18.50 5.97 1.77 1.07 1529.43
1 4 19.00 5.96 1.76 1.05 1529.85
1 4 19.50 5.95 1.74 1.07 1570.28
1 4 20.00 5.93 1.72 1.02 15 70.70
1 4 20.50 5.92 1.71 1.00 1531.13
1 4 21g0x0 5.91 1.69 0.99 1531.55
1 4 21.50 5.90 1.68 0.97 1531.98
.1 0.00 5.90 1.68 0.98 1532.09
1 0.50 5.89 1.66 0.96 1532.51
-7v 1 1.00 5.88 1.65 0.95 1532.94
1 1n50 5.87 1.63 0a9 1533.36
2 1 2.00 5.86 1.62 0.92 1533.79
. i 2.00 5.86 0.92 1533.80
a. 7.a 00 5.85 1.59 0.89 1534.65
2 4.00 5.825a84 1n56 {��a8615 5n5{y
2 •, 5.00 1 a 5� »� 0.84 1536.35
5 5
.i:.. d'+' 6.00
5.82 1.51 0.81 1 5 3 7 n .� 0
. 2 7.00 5.81 1.48 0.79 1538.05
8.00 5.80 1.45 0.76 1538.90
2 9.00 5.80 1 n 43 0.74 1539.75
) - . •1 r't r"t CI I: »7 C? 1 /1 ri r ti "7' 1 /In L. (
.i... 11.00 5.79 1.38 0.70 1541.45
4.
' 12.00 5.79 1.35 0A68 1542.30
2 17%00 5.79 1.33 0.65 1543.15
14.00 5.79 inw;(;) 0.67; 1544.00
ae' a a t«a i..a L� e: 7 9 1.28 {..} .62 1544.85
4.
16.00 5.79 1.26 0.60 1545.70
4.17.0c:a 5.80 1.23 0.58 1546.55
2 18.00 5.80 1.21 0.56 1547.40
a4.l 19x00 5w81 1.19 0a54 1548a25
5.81 4. «a i o {..a»� 1.17 0 n 5 •»r 1549.10
al 21.00 5.82 1.15 0a51 1549.95
4.5.83
1A1x0�0.50 1550.80
3 4., a00 5.83 1.42 0.71 1550.99
3 23.00 5.82 1.40 0.69 1551.84
3 24''„00 5.82 1.37 0a6i'` 1552.69
3 25 x 00 5 A 82 1 w 35 t..a .65 1553.54
3 26.00 5.82 1.32 0 . 6L; 1554.39
27.00 5182 1a30 0.61 1555.24
28w00 5.82 1.27 0.59 1556.09
3 29.00 L a82 1.25 0.58 1556.94
3 7;0.00 5.83 1.23 0.56 1557.79
3 31.00 5.83 1.21 0.54 1558.64
3 :72 . 00 5.84 1.19
.19 0 . 57; 1559.49
033n00 5.84 1n16 0.51 1560.34
3 34a00 5.85 1.14 0.49 1561.19
3 735„00 5.86 1.12 0.48 1562.04
= 6 „ 0c_a 5.87 1.10 0.46 1562.89
.,.:r 7,7.00 5.88 1 x08 0A45 1563.74
3 8 a c_ 0 5.89 1.06 0.44 1564.59
7; 7.9.00 5.90 1.05 0.42 1565.44
40.00 5.91 1.03 0.41 1566.29
3 41a00 5.92 1A01 0.40 1567.14
42.003
5.930g99 0x79 1567.99
3 47% 00 5.94 0.97 0.38 1568.84
44.00 5.95 0.96 0.36 1569.69
7; 45.00 5.97 0.94 0x75 1570.54
46.00 5.98 0.92 0.34 1571.39
47.00 5.99 0.91 0x3 ; 1572.24
48.00 6.01 0.89 0 tt 72 1573.09
3 49trE_ai«a bat«ar: 0.88 s_aa: 1 i57 a94
4 49.00 6n02 0.88 0n32 1574.06
4 49.50 6.01 0.86 0.31 1574.49
1 0.00 6.01 0w94 0a 7;^; 1574.68
1 1.00 5.98 0.89 0 . 0 157 5. 5:
1 .r... x 00 5.95 0.85 8, 0.28 L 28 1576w •. 38
1 .00 5.93 0.82 0.25 1577.23
1 4.00 5.92 0.78 0.27 1578.08
1 5.00 5.91 n 91 0 74 0q ^'1578.93 .L..1 :.
1 6.00 5.90 0.71 0.20 1579.70
1 7.00 5a89 c�ax68 =yni8 1580.63
1 8.00 5.89 0.65 0.17 1581.48
;1 rl
1 9.00 5 w 8 9 0 g 6 2 0 a 16 1 L 2 n•„:-T•:�-
1 10.00 5.89 0.59 0.14 1583.18
1 11.00 5.89 0.57 0A17; 1584.03
1 12.00 5.90 0.54 0.12 1584.88
1 17;n00 5.91 0.52 0.11 1585.73
1 14.00 5.92 0.50 0.10 1586.58
1 15.00 5.93 0.47 0.10 1587.43
1. 16.00 5.94 0.45 0.09 1588.28
1 17.00 5.95 0.43 0.08 1589.13
1 18.00 5.97 0.41 0.08 1589.98
1. 19ac_a') 5.99 t�ag4c�a 0.07 1590.83
1 20.00 6.00 0w38 0.06 1591.68
1 21a00 6ac_a.� 0.36 0.06 1592.53
1 .c�ac:a 6.04 0.7.5 0.06 1593.38
2
� r,
r,
r1
; .4.
~r 4
4
4
3 4
4
4
4
4
4
5eq # Reach
%00 6.01 0.46 0.29
24.00 6.01=fp44 0.27
25.00 6.01 0.42 0.25
26.00 6.01 0.40 0.2
27n00 6.01 0.7C8 0•21
28.00 6.02 0 n 77 0.19
29.00 6.03 0.75 0.18
c��nt�)0 6n���4 0. .� 0.16
� 1. 00 6.05 0 . ' c_y n :L
32.00 6n06 0n 7.1 0.14
7.3.00 6.07 0.29 0.13
4n00 6.09 0.28 0n12
5a00 6.11 0.27 0.11
7,6.00 6.12 0.26 0.10
37.00 6.14 0.25 `w�A09
7 n 0 0 6.14 0.26 c�' n c) 9
37.50 6.15 0.26 0.09
38.00 6.16 ().25 0.09
38.00 6.16 0.26 0.10
9n00 6.17 0.25 0.09
40.00 6•19 0.,24 0.08
41.00 6.21 c:) . 2; 0.08
42.00 6.23 0.22 0.07
47.00 6.25 0.21 (�1n07
44n00 6.27 caR c�f �_?p=�}6
45.00 6.29 0019 0.06
46.00 6.31 0.18 0.05
Seg Mi D.O. ; CBOD NBOD
1 5»• / 8 . 8 8
1599.73
1600.58
1601.43
1602.28
1603.13
1603.98
1604.83
1605.68
16c:6n53
1607.38
1608.23
1609.08
1609.93
1610.78
1610.90
1611.32
1611.75
1611.98
1612.83
1613.68
1614.53
1615.38
1616.23
1617.08
1617.93
1618.78
Flow
SUMMER
•x ROANOKE RIVER MODEL
NO DISCHARGERS
MODEL RESULTS
`Discharger
Receiving Stream n ROANOKE RIVER
The End D.O. is 7.12 mg/ i n
The End CLOD is 0.0B mg / 1 n
The End NE{OD is 0.01 mg/1 n
Segment 1
Reach
Reach 2
Reach
Reach 4
Segment 2
Reach 1
Reach
Reach 3
Reach 4
Segment
Reach 1
Reach .2
Reach
Reach 4
WLA WLA WLA
DO Min CL3OD NBOD DO Waste Flow
(mg/1) Milepaint Reach * (mg/1) (mg/1) (mg/1) (mgd)
6.35 21.50 4
6u:52 7n00
6nI 6 5.00 1
27720.00
60.00
45at_0
10000.00
27,67..00
90.00
90.00
2000.00
0.00 0.00000
0.00 0.0000
�„)
0.00 0 n 00000
0.00 0.00000
45.00 90.00 0.00 0.00000
0.00000
(//
45.00 90.00 0.00 0 n c: L„)000
2445.00 1818n0ice) 0.00 0.00000
45„00 90„00 0.00 0.00000
656.00 169.00 0.00 0.00000
45.00 90.00 0.00 0.00000
180.00 14n00 0.00 0.00000
45a00 90.00 0.00 0.00000
* * * MODEL_ SUMMARY DATA * * *
Discharger a Cubbasin a 030 08
a
Receiving Stream : ROANOKE R]:vER Stream Class: C
Summer 7010 2 1500.0
Design Temperature: 27.0
Winter 7010 2 1000„0
;LENGTH; SLOPE; VELOCITY 1 DEPTH; Kd 1 Kd 1 Ka 1 Ka 1 KN 1 KN KNR KNR 1 SOD 1 SOD 1
1 mile 1 ft/Mi1 fps 1 ft ;design; O20° ;design; 020° ;design; 020° ;design, @20° ;design, 020°
Segment 1 1 3.501 0.321 1.010 1 2.00 1 0.35 1 0.25 1 0.33 1 0.281 0.51 1 0.30 1 0,51 1 0.00 1 0.00 1 0,00 1
Reach 1 , t I 1 1 1 1 1 1 t 1 1 1
Segment 1 1 2.001 0.321 1.010 1 2.00 1 0.35 1 0.25 1 0.33 1 0.281 0.51 1 0,30 1 0,51 1 0.00 1 0.00 1 0.00 1
Reach 2 1 1 1 1 1 1 1 1 1 1 1 1
! i F 1 1 1 1 1 1 1 1 1 I
Segment 1 1 9.501 0.321 1.010 1 3.00 1 0.32 1 0.23 1 0.33 1 0.281 0,51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
1 1 1 1 1 1 1 1 1 1
Reach 3 t 1 1
t i 1 i I i t 1 1 t ! t 1
Segment 1 1 6.501 0.321 1.010 1 4.00 1 0.31 1 0.23 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Segment 2 1 2.001 0.32: 1.010 1 5.00 1 0.30 1 0.22 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0,00 1 0.00 1 0,00 1
Reach 11 1 1 1 1 1 1 1 1 1 1 1 1
Segment 2 1 20.001 0.32: 1.010 1 5.00 1 0.30 1 0.22 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
1 I 1 1 1 1 1 1 1 1 t 1
Reach 2 1 1
Segment 2 1 27,001 0.321 1.010 1 5.00 1 0.30 1 0.22 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 3 1 1 1 1 1 1 1 1 1 1 1
1 ! , 1 ! i 1 1 1 1 ! 1
Segment 2 1 0.501 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.101 0.51 1 0.30 1 0,51 1 0.00 1 0.00 1 0,00 1
Reach 4 1 1 1 1 1 1 1 1 1 1 1 1 1
Segment 3 1 22.001 0.321 0.370 1 9,00 1 0.28 1 0.20 1 0.12 1 0.10: 0.51 1 0.30 1 0.51 1 0,00 1 0.00 1 0,00 1
Reach 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Segment 3 1 15.001 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.101 0.51 1 0.30 1 0.51 1 0,00 1 0.00 1 0.00 1
Reach 2 1 1 1 1 1 1 1 1 1 1 1 1 1
Segment 3 1 1.001 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.10: 0.51 1 0.30 1 0,51 1 0.00 1 0.00 1 0.00 1
Reach 3 1 1 1 1 1 1 1 1 1 1 1 1 1
Segment 3 1 8.00: 0.321 0.370 1 9.00 1 0.28 1 0.20 1 0.12 1 0.101 0.51 1 0,30 1 0.51 1 0.00 1 0.00 1 0.00
Reach 4 1 1 1 1 1 1 1 1 1 F 1 1 1
FIcaw CBOD NBOD D.O.
cfs mg/1 mg/1 rng/I
Segment 1 Reach 1
Waste 0.000 ; 277 2 c.) p c:)00 ; 2: 6 3 „ 000
Headwaters:1500.000 ; 2.000 ; 1.000
Tributary ; 0.000 ; 0„0c)0 ; c:)„000
* Runoff 0„850 2.000 ; 1.000
Segment 1 Reach 2
Waste i 0.000
Tributary ; 0„000
* Runoff 0„85c)
Segment 1 Reach 7.
Waste : 0.000
Tributary ; 0.000
* Runoff 0.850
Segment 1 Reach 4
Waste , 0.000
Tributary ; C)„000
* Runoff 0„850
Segment 2 Reach 1
Waste ; 0.000
Headwaters ; 0.000
Tributary ; 0„000
* Runoff ; 0.850
Segment 2 Reach 2
Waste i 0.000
Tributary ; 0.000
* Runoff ; C)„850
Segment 2 Reach 3
Waste : 0.000
Tributary ; 0„000
* Runoff ; 0.850
Segment 2 Reach 4
Waste ; 0.000
Tributary 0.000
* Runoff 0.850
Segment 3 Reach 1
Waste ; 0.000
Headwaters ; 0.000
Tributary ; 0„0(:)0
* Runoff ; 0.850
Segment 3 Reach 2
Waste 0.000
Tributary ; 0„000
* Runoff 0.850
60.000 ; 90.000
1 0.000 1 0.000
i 2.000 1 1.000
i 45.000
0.000
1 2„00c:)
i 90.000
i 0.000
1.000
10000 p 00C)
0p00C 1
l 2„00c) 1
45.000
0.000
0.000
2.000
45.000
(:)„0c_)0
C) (:) ()
0.000
6„9c)c:)
0.000
6„9c')0
c)p(:)(:)c)
0.000
6„900
0.000
c)p(:)0(:)
6.900
0.000 ; 0.000
1.000 , 6.900
90„c:0c))
0.000
0.000
0 „ („) 0 0
1.000
0.000
1 0 p 000
0.000
90„00c) t
0„000
1 1.000 1
(:)„000
0.000
6.900
244 5 „ 000 : 1818 „ 000 0.000
0p000 1 0.000 1 0.000
'„(^)c:)(:) ; 1.000 : 6„90c:)
45.000
i 2.000
6 5 6 p 0 0 0
0.000
v
1 2 (:)c )0
,
45.000
c:)„C)C0
2.000
90.000 ;
1 0p(:)00 i
:169„000
0.000
l 1 1.000
90.000
c:)„c (:)(:)
1.000
()„0c:)c:)
0.000
6.900
0.000
0.000
0.000
6.900
c:)„c:)00
0.000
6„900
Segment 3 Reach 3
Waste 0.000 : 180 Q 000 : 14.000 ; 0.000
Tributary ; 0.000 ; 0.000 : 0.000 ; 0.000
* Runoff ; 0.850 ; 2.000 ; 1.000 ; 6.900
Segment 3 Reach 4
Waste , 0.000 ( 45.000 : 90.000 , 0o 00t )
Tributary 0a0c 0 : 0v000 : 0n000 0n000
* Runoff C)085() ; ;?.0t 0 : 1.000 ; 6.900
* Runoff flow is in cfs/mile
�P,
/S
/
,
Geg # |
1
" 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
n
Reach
1
1
1
1
1
1
1
1
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
�
3
3
3
3
3
3
3
4
4
4
4
4
4
4
A.
4
4
4
4
4
4
1
1
1
1
1
2
2
2
2
2
2
2
2
�
#
Geg Mi | D.O.
0.00 6.90
0.50 6"87
1.00 6"85
1.50 6.E0
2.00 6.80
2.50 6.78
3.00 6.76
3.50 6.74
3.50 6"74
4.00 6.72
4.50 6.70
5.00 6"68
5.50 6.66
5.50 6"66
6.00 6.64
6.50 6.63
7.A0 6.61
7.50 6.60
8.00 6.58
8.50 6.57
9.00 6.55
9.50 6.54
10.00 6.53
10.50 6.52
11"00 6.50
11.50 6.49
12.00 6.48
12.50 6"47
13"0O 6"46
13.50 6.45
14.00 6.44
14.50 6.43
15.00 6"43
15.00 6.43
15.50 6.42
16.00 6.41
16.50 6.40
17.00 6.40
l7.50 6.39
18.00 6.38
18.50 6.38
19.00 6.37
19"50 6.37
20.00 6"36
20"5O 6"36
21.00 6.36
21.50 6.35
0.00 6.35
0.50 6.35
1.00 6.34
1.50 6.34
2.00 6.33
2.00 6"33
3.00 6.33
4.00 6.33
5.00 6.32
6.00 6.32
7.00 6.32
8.00 6.32
9.00 6.32
,o o^ I- `rn
| CBOD
2.00
1.98
1.96
1.94
1.92
1.90
1.88
1.86
1.88
1.84
1.82
1"80
1.78
1.78
1.77
1.75
1.73
1.72
1.70
1.68
1.67
1.65
1.63
1.62
1.60
1.59
1.57
1.56
1.54
1.53
1.51
1.50
1.48
1.48
1.47
1.46
1.44
1.43
1.42
1.40
1.39
1.38
1.36
1.35
1"34
1.33
1.31
1.31
1.3O
1.29
1.28
1.27
1.27
1.25
1.22
1.20
1.18
1.16
1.14
1.12
SUMMER
ROANOKE RIVER MODEL
NO DI8CHAR8ERS
NBOD | Flow |
1.00 1500.00
0.98 1500.42
0.97 1500.85
0.95 1501.27
0.94 1501.70
0.93 1502.12
0.91 1502.55
0.90 1502.97
0.90 1502.97
0.88 1503.40
0.87 1503.82
0.86 1504.25
0.84 1504.67
0.84 1504.67
0.83 1505.10
0.82 1505.52
0.80 1505.95
0.79 1506.37
0.78 1506.80
0.77 1507.22
0.76 1507.65
0.74 1508.07
0.73 1508.50
0"72 1508.92
0.71 1509.35
0.70 1509.77
0.69 1510.20
0.68 1510.62
0.67 1511.05
0.66 1511.47
0.65 1511.90
0.64 1512.32
0.63 1512.75
0.63 1512.75
0.62 1513.17
0.61 1513.60
0.60 1514.02
0.59 1514.45
0.58 1514.87
0.57 1515.30
0.56 1515.72
0.56 1516.15
0.55 1516.57
0.54 1517.00
0.53 1517.42
0.52 1517.85
0.51 1518.27
0.51 1518.27
0.51 1518.70
0.50 1519.12
0.49 1519.55
0.48 1519.97
0"48 1519.97
0.47 1520.82
0.46 1521.67
0"44 1522.52
0.43 1523.37
0.42 1524.22
0.40 1525.07
0.39 1525.92
o "'o ,=n/- �*7
d2 2 i 1 a 00 b a 3•.: 1.08 0.37 1527.62
«
2 2 12.00 6.33 1.06 0. 36 1529.32 6 a1 528.47
k '' ;i -:1a (�} { } •..t 1.04 t«) n W: +..' 1
2 14.00 6.34 1.02 0.34 1530.17
2 15.00 6.34 1.00 (�} a 1531.02
2 16.00 6.35 0.99 0 a ti:2• 1531.87
471
17.00 6.35 0.97 0n 7:1 1532.72
2 R57
6.36 0.94 0.29 154a42
2
� .:
2 _a««0a92 0a28 1535.27i ti
7
2 21a00 6.38 0.90 0.27 1536.12
2 2 22.00 6.39 0.89 0.27 1536.97
3 22.00 6.39 0.89 0.27 1536.97
2 W° 1
0.87
'' " (�}t�} t�} 0.268 •...t 27..a 6p aL7 2 a
2. 3 24.00 6.40 0.86 0.25 1538.67
2 0 25.00 6.41 0.84 0.24 1539.52
2 0 0 26.00 6.42 0 a 8 ti 0.24 1540.37
.' 327.00 6.43 0.81 0.2y 1541.22
3 .t_. +« 28.00 6.44 tt tt 1542.07
2 29.00 6.45 0.78 O ?? 1542.92
2 0 30.00 6.46 0.77 0.21 1543a77
2 0 31.00 6.47 0.76 0.20 1544.62
2 •mo3t 7...2 tt0_6.48 0.74 0.20 1545.47
33a00 6.49 0.77; 0.19 1546a32
4 n tt L 0(_} 6 ,0 0.72 72 0.19 1547.17
2 0 7;5 tt 00 6.52 0.71 0.18 1548.02
2 0 736a00 6.53 0.69 0.18 1548.87
77.00 6.54 0.68 0.17 1549.72
2 8a00 6.55 0.67 0.17 1550.57
7;9 a(«)(«} 6 a 560.66 0.16 1551.42
+-. 3tt 6.57 R L 0.16 1552.27
+:. 3 41.00 6.59 0.64 0.15 1553.12
42.00 6.60 0.6 3 0.15 1553.97
�« 34..tRt")t«} ba6.1 t_}R61 0.14 1554n82
,..:1 3 44.00 6.62 0.60 0.14 1555.67
45R00 6.63 0.59 0.14 1556.52
2 7. 46.00 6.65 0.58 0.13 1557.37
.t�i.. 3 47.00 6.66 0.57 0.13 1558.22
3 48.00 6.67 0.56 0.13 1559.07
a:.. �t 49.00 6.680.55 L u 2 1559.92 4 49R0} 6a68 0.55 0.12 1559tt92
4 49a50 6a68 0.54 0.12 1560a:5
0 1 0.00 6.68 0.54 0.12 1560.35
3 1 1.00 6.67 0a5 0.11 1561.20
0 1 2.00 6.67 0.50 0.10 1562.05
3 1 a00 6.66 0.47 0.09 1562.90
3 1 4.00 6.66 0.45 0.09 1563.75
�.; 1 5.00 6.66 0.43 0.08 1564.60
0 01 6.00 6.66 0.41 0.07 1565.45
1 7.00 6.66 0.40 0.07 1566.30
.0 1 8n00 6.67 On W8 0.06 1567.15
0 1 9.00 6.67 0.7.6 0a06 1568.00
0 1 10.00 6.68 0 n W 5 0.05 1568.85
1 11.00 6.68 0.77. 7: 0.05 1569.70
0 1 12.00 6.69 0 n 7:2 0.05 1570.55
0 1 17..00 6.70 0 a 0 0.04 1571.40
3 1 14.00 6.71 0.29 0.04 1572.25
1 15.00 6.72 0.28 0.04 1573.10
0 1 16.00 6.73 0.27 0.07; 1573.95
�.� 1 17a00 6.74 0.26 0.07. 1574.80
0 1 18n00 6.75 0a25 0.07; 1575.65
1 19.00 6.76 0.24 0.07; 1576.50
O 1 20.00 6.77 0 R ^:': 0.07. 1577.35
1 21 00 6 78 (�) 22 0.02 1578 20
• .t .s:.. a n ,r i+« ,.. a .�..
3
1 22.00 6.79 0.21 0.02 1579.05
"1 r"tr"% L -70 n ,71 i t r'ti' 1 •7r r"�_,
.
3 2 23.00 6"81 0.20
2 24"00 6,82 0.19
2 25.00 6.83 0.18
~'3 2 26.00 6.85 0"18
3 2 27.00 6.86 0.17
3 2 28.00 6.87 0.16
3 2 29.00 6.89 0.16
3 2 30.O0 6.90 0.15
3 2 31.00 6"92 0.14
3 2 32.00 6.93 0.14
3 2 33.00 6.94 0.13
3 2 34.00 6.96 0.13
3 2 35.00 6.97 0"12
3 2 36.00 6.98 0"12
3 2 37.00 7,00 0.11
3 3 37.00 7.00 0"11
3 3 37"50 7"01 0.11
3 3 38.00 7.01 0.11
3 4 38.00 7.01 0.11
3 4 39"00 7"03 0.11
3 4 40.00 7.04 0"10
3 4 41.00 7.05 0"10
3 4 42.00 7.07 0.09
3 4 43.00 7.08 0.09
3 4 44.00 7.09 0"09
3 4 45.00 7.11 0.08
3 4 46.00 7.12 0.08
Geg # Reach # | Geg Mi D.O. | CBOD
0.02 1579.90
0.02 1580"75
0.02 1581.60
0.02 1582.45
0.02 1583.30
0.02 1584.15
0.02 1585.00
0.01 1585.85
0.01 1586.70
0.01 1587.55
0.01 1588.40
0.01 1589.25
0.01 1590.10
0.01 1590.95
0.01 1591.80
0.01 1591.80
0.01 1592.22
0.01 1592.65
0.01 1592.65
0.01 1593.50
0.01 1594.35
0"01 1595.20
0.01 1596.05
0.01 1596.90
0"01 1597.75
0.01 1598.60
0.01 1599.45
NBOD Flow |
~ ,
^ °
- �
� »«' '
SUMMER
ROANOKE RIVER
CHAMPION EXISTING PERMIT LOADS
MODEL RESULTS
/"Discharger :
. Receiving Stream' x ROANOKE RIVER
The End D.O. is 6.26 mg/l.
The End CBOD is 0.87 mg/l.
The End NBOD is 0.01 mg/l.
WLA WLA WLA
DO Min CBOD NBOD DO Waste Flow
(mg/l) Milepoint Reach # (mg/1) (mg/l) (mg/l) (mgd)
Segment 1 6.19 21.50 4
Reach 1 20550.00 2363.00 0.00 0"12000
Reach 2 60.00 90.00 0.00 0"00000
Reach 3 45.00 90.00 0.00 0"00000
Reach 4 10000.00 2000"00 0"00 0.00000
Segment 2 6"06 17.00 2
Reach 1 45.00 90.00 0 " 0 0 0.0O000
Reach 2 45"00 90.00 0"00 0.00000
Reach 3 2445.00 1818"00 0"00 0.00000
Reach 4 45"00 90.00 0�00 0.00000
Segment 3 6"00 18.00 1
Reach 1 656.00 169.00 0"00 0.00000
Reach 2 45.00 90.00 0.00 0.00000
Reach 3 180"00 14.00 0.00 0.00000
Reach 4 45.00 90.00 0.00 0.00000
*** MODEL. SUMMARY DATA
Discharger u Subbasin R 070208
Receiving Stream a ROANOKE RIVER Stream Class: C
. Summer 7010 1500.0
Design Temperature: 27.0
Winter 701.0 1000„c)
;LENGTH; SLOPE: VELOCITY 1 DEPTH; Kd 1 Kd 1 Ka 1 Ka 1 KN 1 KN KNR KNR 1 SOD 1 SOD 1
1 mile 1 ft/mil fps 1 ft :design: @20° design; 020° ;design; @20° ;design; @20° ;design; O20° 1
I 1 1 1 1 1
Segment 1 1 3.501 0.321 1.010 1 2.00 1 0.14 1 0.10 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 1 i 1 1 1 1 1 1 1 1 1 1
Segment 1 1 2,001 0.321 1.010 1 2.00 1 0.14 1 0.10 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 2 1 1 1 1 1 1 1 1 1 1 1
Segment 1 1 9.501 0.321 1.010 1 3.00 1 0.14 1 0.10 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 3 1 1 1 1 1 1 1 1 1 1 1
Segment 1 1 6.501 0.321 1.010 1 4.00 1 0.14 1 0.10 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0,00 1 0.00 1 0.00 1
Reach 4 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
Segment 2 1 2.001 0.321 1.010 1 5.00 1 0.14 1 0,10 1 0.33 1 0.28: 0.51 1 0.30 1 0,51 1 0,00 1 0.00 1 0.00 1
Reach 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 I
Segment 2 1 20.001 0.321 1.010 1 5.00 1 0.14 1 0.10 1 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0,00 1
Reach 2 1 1 1 1 1 1 1 1
Segment 2 1 27.001 0.321 1.010 1 5.00 1 0.14 1 0.10 : 0.33 1 0.281 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 3 1 1 1 1 1 1 1 1 1 1 1 1
Segment 2 1 0,501 0.321 0.370 1 9.00 1 0,14 1 0.10 1 0.12 1 0.101 0.51 1 0.30 1 0,51 1 0.00 1 0.00 1 0.00 1
Reach 4 1 I 1 1 1 1 1 1 1 1 1 1 1
Segment 3 1 22.001 0.321 0.370 1 9.00 1 0.14 1 0.10 1 0.12 1 0.101 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 1 1 1 1 1 1 1 1 1 1 1 1
Segment 3 1 15.001 0.321 0.370 1 9.00 1 0.14 1 0.10 1 0.12 1 0.101 0.51 1 0.30 1 0.51 1 0.00 1 0.00 1 0.00 1
Reach 2 1 1 1 E E 1 1 1 I 1 1 1 1
Segment 3 1 1.001 0.321 0.370 1 9.00 1 0.14 1 0.10 1 0.12 1 0.101 0.51 1 0,30 1 0.51 1 0,00 1 0.00 1 0.00 1
Reach 3 1 1 1 1 1 1 1 1 1
Segment 3 1 8.001 0.321 0.370 1 9.00 1 0.14 1 0.10 1 0.12 1 0.101 0.51 1 0.30 : 0,51 1 0,00 1 0.00 1 0.00 1
Reach 4 1 1 1 1 1 1 1 1 1 1
Flow ; CI3OD NBOD ; D.O.
cfs ; mg/1 ; mg/1 ; mg/1
Segment 1 Reach 1
Waste ; 0.186 ; 20550 . c_)00 ; 2363; . i i00 ; 0.000
Headwaters ; 1500.000 ; 2.000 ; 1.000 : 6.900
Tributary ; 0.000 : 0.000 : 0.000 ; 0.000
* Runoff ; 0.850 ; 2.000 ; 1.000 : 6.900
Segment 1 Reach 2
Waste ; 0.000 60.000 90.000 ; 0.000
Tributary , 0.000 0.000 ; 0.000 ; 0.000
* Runoff ; C)nB50 ; 2n000 ; 1«0n:0 ; 6.900
Segment 1 Reach 3
Waste ; 0.000 1 45.000 : 90.000 F 0.000
Tributary ; 0.000 0.000 : 0.000 ; 0.000
* Runoff ; 0.850 ; 2.000 ; 1.000 ; 6.900
Segment 1 Reach 4
Waste ; 0.000 ; i.00c 0 4 00t„} ; 2000 „ 000 ; 0.000
Tributary ; 0„000 0a000 : 0„000 ; c),.000
* Runoff ; 0.850 ; 2.000 ; 1.000 ; 6.900
Segment 2 Reach 1
Waste ; 0.000 ; 45.000 ; 0 0 0 0 0.000
Headwaters ; 0.000 ; 0.000 ; 0.000 0.000
Tributary ; 0.000 ; 0„000 ; 0„000 0.000
* Runoff ; 0.850 ; 2.000 ; 1.000 ; 0.000
Segment 2 Reach
Waste ; 0.000
Tributary ; 0.000
* Runoff ; 0.850
45nc)c:x) ; 90.000
0.000 : 0.000
2.000 i 1.000
0„0t„)i„)
c_) ., 000
6.900
Segment 2 Reach 3
Waste ; 0.000 ; 244 b n 000 ; 1818 n 000 ; 0.000
Tributary ; 0.000 ; 0.000 ; 0.000 ; 0.000
* Runoff : 0.850 ; 2.000 ; 1.000 : 6.900
Segment 2 Reach 4
Waste ; 0.000 ; 45.000 90.000 0.000
Tributary ; 0.000 ; 0.000 ; 0.000 ; 0.000
* Runoff ; 0.850 ; 2.000 ; 1.000 6.900
Segment 3 Reach 1
Waste ; 0.000 ; 656 u 000 ; 1.69 „ 00t;) ; 0.000
Headwaters: 0.000 0.000 : 0.000 ; 0.000
Tributary ; 0.000 ; 0,000 ; c)„000 ! c)„000
* Runoff ; 0.850 ; 2.000 ; 1.000 ; 6.900
Segment 3 Reach 2
Waste ; 0.000 ; 45.000 ; 90.000
Tributary
r1butary ; 0.000 1 0.000 ; 0.000
* Runoff ; 0.850 ; 2.0C)0 ; 1.000
0.000
0.000
6.900
Segment 3 Reach 3
Waste 0.000 ; 18c) n 000 ; 14.000 0.000
Tributary ! 0,000 ; 0.000 : 0a00x 0.000
* Runoff 0n85c0 : 2o000 ; 1.000 ; 6.900
Segment 3 Reach 4
Waste 0.000 ; 45.000
Tributary ; 0.000 ; 0.000
* Runoff 0.850 2.000
* Runoff flow is in cfs/mile
90„00
0„000
1.000
0.000
0.000
6.900
Geg # | Reach # Seg Mi D.O.
1 1 0.00 6.90
1 1 0.50 6.87
1 1 1.00 6.84
1 1 1.50 6.82
1 1 2"00 6.79
1 1 2.50 6.77
1 1 3.00 6.74
1 1 3.50 6.72
1 2 3.50 6.72
1 2 4.00 6"70
1 2 4.50 6.67
1 2 5.00 6.65
1 2 5.50 6.63
1 3 5.50 6.63
1 3 6.00 6.61
1 3 8.50 6"59
1 3 7.00 6.57
1 3 7.50 6.55
1 3 8.00 6.53
1 3 8.50 6.51
1 3 9.00 6"49
1 3 9.50 6"48
1 3 10.00 6.46
1 3 10.50 6.44
1 3 11.00 6.43
1 3 11.50 6.41
1 3 12.00 6.40
1 3 12.50 6.38
1 3 13.00 6.37
1 3 13.50 6.36
1 3 14.00 6.34
1 3 14.50 6.33
1 3 15.00 6.32
1 4 15.00 6.32
1 4 15.50 6.30
1 4 16.00 6.29
1 4 16"50 6.28
1 4 17.00 6.27
1 4 17.50 6.26
1 4 18.00 6.25
1 4 18"50 6.24
1 4 19"00 6.23
1 4 19.50 6.22
1 4 20.00 6.21
1 A. 20.50 6.20
1 4 21.00 6.20
1 4 21.50 6.19
2 1 0.00 6.19
2 l 0.50 6.18
2 1 1.00 6"17
2 1 1"50 6.16
2 1 2.00 6.15
2 2 2.00 6.15
2 2 3.00 6.14
2 2 4.00 6.13
2 2 5.00 6.12
2 2 6.00 6.11
2 2 7.00 6.10
2 2 8"00 6.09
2 2 9.00 6.09
GUMMER
ROANOKE RIVER
CHAMPION EXISTING PERMIT LOADS
CBOD NBOD | Flow |
4.55 1.29 1500.19
4.53 1.27 1500.61
4.51 1.25 1501.04
4.49 1.23 1501.46
4.47 1,21 1501.89
4.45 1.20 1502.31
4.43 1.18 1502.74
4.41 1.16 1503.16
4.41 1.16 1503.16
4.39 1.14 1503.59
4.37 1,12 1504.01
4.35 1.11 1504.44
4.34 1.09 1504.86
4.34 1.09 1504.86
4.32 1.07 1505.29
4.30 1.06 1505.71
4.28 1.04 1506.14
4.26 1.02 1506"56
4.24 1.01 1506.99
4.23 0.99 1507.41
4.21 0.98 1507.84
4.19 0.96 1508"26
4.17 0.95 1508.69
4.15 0.93 1509.11
4.13 0"92 1509.54
4.12 0.90 1509.96
4.10 0.89 1510.39
4.08 0.88 1510.81
4.06 0.86 1511.24
4.05 0.85 1511.66
4.03 0.84 1512.A9
4.01 0.82 1512.51
3.99 0.81 1512.94
3.99 0"81 1512.94
3.98 0.80 1513.36
3.96 0.79 1513.79
3.94 0.77 1514.21
3.93 0.76 1514.64
3.91 0.75 1515.06
3.89 0.74 1515.49
3"88 0.73 1515.91
3.86 0.72 1516.34
3.84 0.71 1516.76
3.83 0.69 1517.19
3.81 0.68 1517.61
3.79 0.67 1518.04
3.78 0.66 1518.46
3"78 0.66 1518.46
3.76 0.65 1518.89
3"74 0.84 1519.31
3"73 0.63 1519.74
3.71 0.62 1520.16
3.71 0.62 1520.16
3.68 0.60 1521.01
3.65 0.59 1521.86
3.62 0.57 1522.71
3.59 0.55 1523.56
3.56 0.53 1524.41
3.53 0.52 1525.26
3.50 0.50 1526.11
'r x-/ o :o ,=nL 0Z-
r•} 2 11.00 00 6 a 08 �• a 44 0.47 1527.81
I _
- 2 12.00 . 6 n 07 3 . 41 c_} .46 1528.66
:2 1 nfir}fir} 6.07 3.38 0.45 1529.5.L
2
14.00 6.07 7.35 0.43 1570.76
2 2 15.00 6.06 3tl:�^ 0R4 1531.21
2 2 16.00 6a06 3n29 0.41 1532.06
. 17n00 6.063[[26 {r}q•r� 1532.91
18.00 6.06 3.24 0.78 1533.76
,-) 2 19=00 6.06 3=i1 c_}a 7 1534a61
20.00 6.06 3.18 0.76 1535.46
2 2 2 22.0021a00 6.07 ?R1.5 0.75 15:�6. 1
.1:� 6.07 3.13 0.34 1537.16
2 3 22.00 6.07 3.13 0.34 1537.16
27a0��} 6.07 3.10 0.00 1538.01
2 0 24.00 6.07 3.07 0.72 1538.86
,2 T 25n00 6.08 7.05 0n71 1539.71
2 0 26.00 6.08 3.02 0a70 1540.56
:m7Rc:}c:} 6.097R�:}c�} c_}a9 1541.41
2 3 78.00 6.09 2.97 0.28 1542.26
2 3 29.00 6.10 2.95 0.28 1543.11
2 mac:}q{=}��} 6a1c�}R9 ��}q^7 154�"R96
2 0 31.00 6.11 2.90 0.26 1544.81
0 72.00 6.12 2.87 0.25 1545.66
2 «i 77.00 6.12 2.85 0.24 1546.51
3 34.00 6.13 2.82 0.24 1547.36
.w. 375.00«6.14 2.80 0.23 1548.21
2 0 36.00 6.14 2.78 0.22 1549.06
2 3 37.00 6.15 2.75 0.22 1549.91
wBAcr}} 6.16 2.73 it?tl 21 1550a76
. 0 79.00 6.17 2.71 0.21 1551.61
2 0 4c:} 00 6.17 2.68 0.20 1552 46
.ti.. r.[ q n A .1:.. 5.. tr .t:.. n
2 41.00 6.18 2.66 0.19 1553.31
2 .0 42.00 6.19 2.64 0.19 1554.16
0 47.00 6.20 2.62 0.18 1555.01
2 0 44.00 6.21 2.59 0.18 1555.86
rT h
,« q•ync:Ic�} 6q��� � 2q57 i:fa17 1556.71
3 46.00 6.23 2� 5, 0.17 1557 56
.I:r q q .Lr •« .tr i[ 5r �.. q Sr 1.. A M
.i:.. 747.00 6.24 2.53 0.16 1558.41
•«• 4edoo 6.25 2.51 0.16 1559.26
n 3 �" 49a { }�=} 2.49 0.15 156c:}a 11
.tom. 6.26
2 4 49.00 6.26 2.49 0.15 1560.11
2 4 49R50 6.24 2.46 0.15 1560.54
3 1 0.00 6.24 2.46 0.15 1560.54
"t 1 1.00 6.21 2.40 0.14 1561.39
0 1 2.00 6.18 2.75 0.17 1562.24
01563.09 4 = q 00 . . 5 2 . 29 0 A i.
3 1 4.00 6.13 2.24 0.11 1563.94
0 01 5.00 6.11 2.19 0.10 1564.79
3 1 6.006.09 2.14 0.09 1565.64
0 1 7.00 6.07 2.09 0.08 1566.49
1 8.00 6.06 2.05 0 A 08 1567.34
1 9.00 6R05 2.00 0a07 1568.19
1 10.00 6.07 1.96 0.07 1569.04
3 1 11.00 6.02 1.91 0.06 1569.89
0 1 12.00 6A02 1.87 0.06 1570.74
0 1 13.00 6.01 1.83 0.05 1571.59
''
01 14.00 6.01 1.79 0.05 1572.44
3 1 15.00 6.00 1.75 0.05 1573.29
0 1 16.00 6.00 1.71 0.04 1574.14
.mot
0 1 17.00 6.00 1.67 0.04 1574.99
3 1 18 .00 6.00 1.63 0.04 1575.84
7 1 19.00 6.00 1.59 0.07 1576.69
3 1. 2c:}A0c) 6.00 1.56 0R0 3 :L577n54
1 21.00 6.00 1.52 0.07 1578.39
1 22.00 6.01 1a49 0.07 1579.24
.7 ''+ '"ti''} rrt r t L. r"% 1 1 n_ C? rti n -1. 1 "7 D ',A
1
34
34
4
w 4
3 4
4
4
4
4
Seg # Reach' #
23 00 6.01 1.46 0.0
24.00 6.02 1.42 0.02
25R00 6.02 1.39 0.0'2
26.00 6#03 1.36 0.02
27.00 6.04 1.33 0.02
28.00 6.04 1.30 0.02
29.00 6.05 1.27 0.02
7 c_0 a c_00 6.06 1.24 0.02
7.1. 00 6.07 1.29 0.02
:7 `r00 6.08 1.19 0.02
7;«00 6A09 1.16 0.01
34.00 6.10 1.14 0.01
7:5.00 6.12 laic 0.01
36.00 6.13 1.09 0.01
7,7.00 6.14 1.06 0.01
:7 .00 6.14 1.06 0.01
7.7.50 6.15 1.05 0„01
7.8.00 6.15 1.04 0.01
7.8.00 6.15 1.04 0,01
79Ac)0 6.17 1.02 0.01
40400 6.18 0e99 0A01
41.00 6.19 0.97 0.01
42.00 6.21 0.95 0.01
4:7.00 6R22 c)a93 0.01
44.00 6.23 0.91 0.01
45.00 6.25 0.89 0.01
46.00 6.26 0.87 0.01
Seg Mi D.O. CBOD NBOD
1580.09
1580.94
1581.79 � J
1582a64
1583.49
1584.34
1585.19
1586.04
1586.89
1587.74
1588.59
1589.44
1590.29
1591.14
1591.99
1591.99
1592.41
1592.84
1592.84
1593.69
1594.54
1595.39
1596.24
1597.09
1597.94
1598.79
1599.64
Flow
' - •
SUMMER
ROANOKE RIVER
CHAMPION LOADS ONLY
MODEL RESULTS
:'Discharger p
. Receiving Stream a ROANOKE RIVER
The End D.O. is 6.01 mg / 1
The End CBOD is 1e03 mg/1 u
The End NBOD is 0.01 mg/1.
WLA WLA WLA
DO Min CBOD NBOD DO Waste Flow
(mg/1) Milepaint Reach 1* (mg/1) (mg/1) (mg/1) (mgd)
Segment 1 6.07 21.50 4
Reach 1 27720.00 2 7.6 „ 00 0.00 0.12000
Reach 60.00 90.00 0.00 0.00000
Reach 3 45.00 90.00 0.00 0.00000
Reach 4 10000.00 2000.00 0.00 0.00000
Segment 2
Reach 1
Reach 2
Reach 3
Reach 4
Segment
Reach 1
Reach 2
Retch 3
Reach 4
5.90 20.00 y
5.73 19.00 1
45.00
45.00
2445„00
45.00
656.00
45.00
180.00
45.00
90p00 0.00 0„00000
90.00 0.00 0.00000
1818.00 0.00 0.00000
90.00 0.00 0.00000
169.00 0.00 0.00000
90.00 0,00 0a00000
14.00 0.00 0.00000
90.00 0.00 0.00000
*** MODEL SUMMARY DATA ***
, Discharger- Subbasin n (:}30208
Receiving Stream 2 RO NOKE RIVER Stream Class: C
Summer 7010 n 1500.0
Design Temperature: 27.0
Winter 7010 n 1000.0
:LENGTH: SLOPE: VELOCITY : DEPTH: Kd : Kd : Ka : Ka : KN KN : KNR KNR : SOD : SOD :
: mile : ftlmi: fps : ft :design: @20° :design: @20° :design: @20° :design: @20° :design: @20°
Segment 1 : 3.50: 0.32: 1.010 : 2,00 : 0.14 : 0.10 : 0.33 : 0,28: 0.51 : 0,30 : 0.51 : 0.00 : 0,00 : 0.00 :
Reach 1
Segment 1
Reach 2
: 2.00: 0.32: 1.010 : 2,00 : 0.14 : 0.10 : 0.33 : 0.28; 0.51 : 0.30 : 0.51 : 0,00 : 0.00 : 0.00 :
, , ,
, 1 ,
Segment 1 : 9,50: 0.32: 1.010 : 3.00 : 0.14 : 0,10 : 0.33 : 0.28: 0.51 : 0.30 : 0.51 : 0,00 : 0.00 : 0,00 :
Reach 3 : ,
Segment 1 : 6.50: 0,32: 1.010 : 4.00 : 0.14 : 0.10 : 0,33 : 0,28: 0.51 : 0.30 : 0.51 : 0.00 : 0.00 : 0.00 :
Reach 4 : ,
Segment 2 : 2.00: 0.32: 1,010 : 5.00 : 0.14 : 0.10 : 0,33 : 0.28: 0.51 : 0.30 : 0,51 : 0.00 : 0.00 : 0.00 :
Reach 1 :
Segment 2 : 20.00: 0.32: 1,010 : 5.00 : 0.14 : 0.10 : 0,33 : 0,28: 0.51 : 0.30 : 0.51 : 0,00 : 0.00 : 0.00 :
Reach 2 :
Segment 2 : 27.00: 0.32: 1.010 : 5.00 : 0.14 : 0,10 : 0.33 : 0.28: 0.51 : 0.30 : 0.51 : 0,00 : 0.00 : 0.00 :
Reach 3 : ,
Segment 2 : 0,50: 0.32: 0.370 : 9.00 : 0.14 : 0.10 : 0.12 : 0.10: 0.51 : 0.30 : 0,51 : 0,00 : 0.00 : 0.00 :
Reach 4
Segment 3 : 22.00: 0.32: 0.370 : 9.00 : 0.14 : 0.10 : 0.12 : 0.10: 0.51 : 0.30 : 0.51 : 0.00 : 0.00 : 0.00 :
Reach 1 :
Segment 3 : 15.00: 0.32: 0.370 : 9.00 : 0,14 : 0,10 : 0.12 : 0.10: 0.51 : 0.30 : 0.51 : 0.00 : 0.00 : 0.00 :
Reach 2
Segment 3 : 1.00: 0.32: 0.370 : 9.00 : 0,14 : 0,10 : 0.12 : 0,10: 0.51 : 0.30 : 0.51 : 0.00 : 0.00 : 0.00 :
Reach 3 :
Segment 3 : 8,00: 0.32: 0.370 : 9,00 : 0.14 : 0.10 : 0.12 : 0.10: 0.51 : 0,30 : 0.51 : 0.00 : 0.00 : 0.00 :
Reach 4 :
Flow ; IMOD ; l\1BOD ; D.O.
cfs ; mg/1 ; mg/1 ; mg/1
Segment 1 Reach 1
Waste ; 0.186 ; 27720 „ 00(_) ; ,63.0(_)0
Headwaters ; 15(_)(_) a 00(_) : 2.000 ; 1.000 ;
Tributary ; 0.000 ; 0.000 ; 0.000
* Runoff ; 0.850 : 2 „ (_7 (_7 (_) : 1.000 ;
Segment 1 Reach 2
Waste ; 0.000
Tributary ; 0.000
* Runoff ; 0.850
Segment 1 Reach 3
Waste ; 0.000
Tributary ; (_).(_)(_)(_)
* Runoff ; 0085(:)
Segment 1 Reach 4
Waste ; 0.000
0.000
* Runoff : 0n850
Tributary
Segment 2 Reach 1
Waste : 0.000
Headwaters; 0.000
Tributary ; 0.000
* Runoff ; 0.850
Segment 2 Reach
Waste ; 0.000
Tributary ; 0.000
* Runoff ; 0.850
Segment 2 Reach 3
Waste 0.000
0.000
t_)a850
Tributary
* Runoff
Segment 2 Reach 4
Waste ; 0.000
Tributary , 0.000
* Runoff ; 0.850
Segment 3 Reach 1
Waste ; 0.000
Headwaters ; 0.000
Tributary ; 0.000
* Runoff ; 0.850
Segment 3 Reach
Waste ; 0.000
Tributary ; 0.000
* Runoff ; 0.850
60.000
0.000
; 2.000
45.000
0.000
2.000
90.000 ;
; 0.000 ;
i 1.000 ;
10 C (_)(_) . 000
i 0.000
I 2.000 !
45.000
0.000
0.000
2.000
45.000
0.000
2nt_)00
90.000
0.000
1.000
i 0.000
6.900
0.000
6.900
0.000
0.000
6.9(_)0
0.000
0.000
6.900
(_) (_) (_) o (_) (_) 0 ; 0.000
0.000 ; 0.000
1.000 ; 6.900
90.000
0.000
0.000
1.000
90.000 ;
0.000
1.000
2 4 4 5 n 0 0 0 ; 1818 n (_) (_) (_7
; 0.000 0.000
; 2.000 ; 1.000 ;
4 5 w 0 (_) 0; 90.000
0.000 : 0.000
17'a000 ; 1.000
6 56 « (_)(_)(_)
; 0.000
; 0.000
2.000
16 9 . (_) 0 (_)
0.000
; 0.000
1.000
; 45.000 i 90.000
0.000 ; 0.000
; 2.000 ; 1.000
(_) „ (_) (_) (_)
0.000
0.000
0.000
0.000
0.000
6.900
0.000
0.000
6.900
0.000
0.000
6.900
0.000
0.000
0.000
6.900
0.000
0.000
6.9t_)t_)
Segment 3 Reach 3
t 'Waste 0.000 ' 180 000 14.000 ' 0.000
Tributary : 0.000 ; 0.000 0.000 0.000
* Runoff 0.850 ; 2.000 1.000 6n900
Segment 3 Reach 4
Waste ; 0.000 ; 45.000
Tributary : 0.000 ; 0.000
Runoff 0.850 ; 2.000
* Runoff flow is in cfs/mile
90.000
0.000
1.000
0.000
0.000
6.900
r r SUMMER
• ROP NO KF RIVER
.= R CHAMPION LOADS ONLY
Beg # Reach # 8eq Mi D.O. CBOD NBOD : Flow ;
1 1 0tl0,a 6.90 5.44 1.29 1500.19
1 1 0.50 6.87 5.41 1.27 1500.61
1 1 1.00 6.84 5.39 1.25 1501.04
1 1 1.50 6.81 5.37 1.23 1501.46
1 1 2.00 6.78 5.34 1.21 1501.89
1 1 2.50 6.75 5.32 1.20 15O2 b 1
1 1 7.00 6.72 5.30 1.18 1502.74
1 1 7C„5O 6.69 5.27 1.16 1503.16
1 2 7% 50 6.69 5.27 1.16 1503.16
.»s
1 2 4.00 6.67 5.25 1.14 1507..59
1 2 4.50 6.64 5 b 2? 1.12 1504.01
1 2 5.00 6.62 5.21 1.11 1504.44
1 5.50 6.59 5.18 12209 15c»y4n86
1 3
5.50 6.59 5.18 1.09
15c_�4 22 86
1 6.00 6.57 5.16 1.07 15052229
1 6.50 6.54 5.14 1.06 1505.71
1 3 7.00 6.52 5.12 1.04 1506n14
1 3 7.50 6.50 5.09 1.02 1506.56
1 8.00 6.48 5.07 1.01 1506.99
1 8.50 6.46 5.05 0.99 1507.41
1 3 9.00 6.44 5.07; 0.98 1507.84
1 3 9.50 6.42 5.01 0.96 1508.26
1 W. 10.00 6.40 4.98 0.95 1508.69
1 3 10.50 6.38 4.96 0.93 1509.11
1 :'; 11.00 6.36 4.94 0.92 1509.54
1 3 11.50 6.34 4.92 0.90 1509.96
1 3 12.00 6.32 4.90 0.89 1510.39
1 3 12.50 6.31 4.88 0.88 1510.81
1 3 17tic»0 6.29 4.86 0.86 1511.24
1 13.50 6.27 4.83 0.85 1511.66
1 3 14.00 6.26 4.81 0.84 1512.09
1 14.50 6.24 4.79 0.82 1512.51
1 15.00 6.23 4.77 0.81 1512.94
1 4 15.00 6.23 4.77 0.81 1512.94
1 4 15.50 6.21 4.75 0.80 1513.36
1 4 16.00 6.20 4.73 0.79 1513.79
1 4 16.50 6.19 4.71 0.77 1514.21
1 4 17.00 6.17 4.69 0.76 1514.64
1 4 17.50 6.16 4.67 0tl75 1515.06
1 4 18tl00 6.15 4.65 0.74 1515.49
1 4 18.50 6.14 4.63 0.73 1515.91
1 4 19.00 6tl 12 4.61 0.72 1516.34
1 4 19.50 6.11 4.59 0.71 1516.76
1 4 20p00 6.10 4.57 0.69 1517b 19
1 4 20.50 6.09 4.55 0.68 1517.61
1 4 21.00 6.08 4.53 0.67 1518.04
1 4 21.50 6.07 4.51 0.66 1518.46
2 1 0.00 6.07 4.51 0.66 1518.46
1 0.50 6.06 4.49 c»ap65 1518.89
2 1 1.00 6.05 4.47 c_� n b4 1519.31
1 1.50 6.04 4.45 0.63 1519.74
.4 1 2.00 6tl03
4.43 0.62 1520n16
2.00 6.07. 4.43 0.62 1520.16
2 2 3tl00 6.01 4.40 0,60 1521.01
4.00 6.00 4.36 0.59 1521.86
2 5.00 5.98 4.32 0p57 1522.71
.2 .6.00 5.97 4.28 0.55 .ti..23n 5
2 .:' 7.00 5.96 4.25 0 tl 5: 1524.41
2 2 8.00 5.95 4.21 0.52 1525.26
2 9.00 5.94 4.17 0.50 1526.11
r•ti 4,-, rie% 1 en•T /I i /1 /. An 1 rni.. C)L.
�►- r-i • 1 s
414 4,
4. 11.00 5.97 4.10 0.47 1527.81
•
2 12.00 5R9.2 4.07 0.46 1528.66
•2 17R{_i0 5.91 4.07 0.45 1529.51
.1 a
2 14.00 5.91 4a00 0.47 i5:";0a ;6
15a00 5.91 3.96 042 1531.21
4. 16R00 5.90 3.93 0R41 .1532R06
t„) 0 M �y
,. 17.5.90 {�� •w1 A S -7 0.39 1532.91
4. 18.00 5.90 3.86 0.78 1533.76
a a '7�
.4. 19a{�%{..� 5u9{_i •.ia8•...i {..�a I 1 4R61
2 20a00 5.90 3.80 0.76 1535R46
4.
21 R00 5.90 3.76 0.75 1536a31
-..r:..ano 5.90 3n73 0.74 1537.16
-•" 22.00 5.90 7 4 1537.16
-" 27t y �v
a00 5490 3870 0.77 1538.01
24.00 5.90 3.67 0.72 1538.86
3 25400 5.90 3864 0.71 1539.71
3 26.00 5.91 3.60 0.70 1540a56
3 27400 5.91 3.57 0.29 1541.41
3 28.00 5.91 3.54 0.28 1542.26
29.00 5.92 3.51 0.28 1543.11
_} ..:r0 a 00 5 a 92 �; .48 0.27 1543.96
3 71800 5893 3.45 0.26 1544.81
,:, .;}2 a 00 5 R 93 »� .42 0.25 1545.66
7.00 5.94 3.39 0.24 1546.51
r; .34800 5.94 3.37 0424 1547836
3 75400 5.95 3.34 0a23 1548.21
3 6800 5.96 3.31 092"-, 1549806
37.00 5.96.,.,�3A.r.8 0R2._:.. 1549.91
7.;.i 8 a 0 0 5 R 9/ �; .25 0.21 1550.76
3 y 5.98 �'S 1 1��y
w�9R{..�{.,• .r1a.4..r 0a21 155. a
40.00 5.99 7a20 0920 1552946
3 41800 5.99 3.17 04.19 1553.31
7 42.00 6.00 3.14 0.19 1554.16
3 47.00 6.01 3.12 0.18 1555.01
0 44400 6402 3.09 0.18 1555.86
✓ 45.00 6.07 3.06 0.17 1556.71
3 46.00 6.04 7.04 0.17 1557.56
47.00 6805 7.01 0.16 1558.41
48.00 6.06 2.99 0.16 1559.26
3 49800 6807 2896 0.15 1560.11
4 49.00 6.07 2.96 0.15 1560.11
4 49.50 6.05 2.93 0.15 1560.54
1 0900 6.05 2.93 0.15 1560454
1. 1.00 6.01 2.86 0.14 1561.39
1 .00 5.97 2.80 0.17 1562.24
1 7.00 5.94 2.73 0.12 1563809
1 4.00 5.91 2.67 0.11 1563.94
1 5.00 5889 2861 0.10 1564479
1 6.00 5.86 2.55 0.09 1565.64
1 7.00 5884 2.49 0R08 1566449
1 8.00 Mtr r... .. 82 2 n 44 0.08
1 9.00 5.81 2.38 0.07 1568.19
1 10.00 5.79 .�1.. a 0.07 1569.04
1 11.00 5.78 2.27 0.06 1569.89
1 12.00 5.77 2.22 0.06 1570.74
1 17800 5876 2.17 0.05 1571.59
1 14a00 5.75 2.12 0.05 1572.44
1 15.00 5.74 2.08 0.05 1573.29
1 16.00 5.74 2.03 0.04 1574.14
1 17.00 5.74 1.98 0.04 1574.99
1 18.00 5.73 1494 0.04 1575884
1 19.00 5.73 1.90 0.07 1576.69
1 20800 55473 1.85 0807 1577.54
1 21.00 5.74 1.81 0.07 1578.39
1 22.00 5.74 1.77 0.07 1579.24
3 4
4
4
` 4
4
3 4
3 4
4
4
Seg # Reach
2700 5.74 1.73 0807; 1580809
24.00 5.75 1.69 0.02 1580.94
25.00 5.75 1.65 0.02 1581.79
26.00 5.76 1.62 0.02 158264
27.00 5 .77 1 .r 158 0.02 1583.49
28.00 5.77 7 1.55 0.02 1584.34
29.00 5..78 1851 0it02 1585a19
30.00 5.79 1.48 0.02 1586804
31.00 5.80 1.44 0.02 1586.89
72w00 5''.81 1.41 0.0.021587S.74
,.3 .00 5 . 82 1.38 0.01 1588.59
34.00 5.84 1.35 0.01 1589.,44
35.00 5.85 1.32 0.01 1590.29
36.00 5.86 1.29 0.01 1591.14
7;7800 5.87 1.26 0.01 1591.99
737.00 5.87 1.26 0.01 1591.99
37.50 5.88 1.25 0801 1592n 41
7;8.00 5.89 1.23 0.01 1592.84
38.00 5.89 1.23 0.01 1592.84
79.00 5.90 1.21 0.01 1593.69
40.00 5.92 1.18 0.01 1594.54
41800 5493 1.15 0801 1595.39
42.00 .=5W95 11: 0.01 1596.24
4 c_a0 5a96 1810 0801 1597.09
44.00 5.98 1.08 0.01 1597.94
45.00 5.99 1.05 0.01 1598.79
46.00 6.01 1. 03 0.01 1599.64
Sect Mi : D.O. CF3OD NBOD Flow
-- r _ "' SUMMER
j'
ROANOKE -- 1988
OLD CHAMPION LOADS
---------- MODEL RESULTS -------.---__--.....
Discharger
Receiving Stream : ROANO E RIVER
The End D.O. is 5.68 mg/i.
The End LI3OD is 0.25 mg/1 .
The End NBOD is 0.05 mg/ i .
WLA WLA WLA
DO Min CE0D NDOD DO Waste Flow
(mg/1) Milepoint Reach # (mcj/1) (mg/1) (mg/1) (mgd)
Segment 1 5.04 21.50 4
Reach 1 20544.80 L 6'ti . 0t:) 0.00 0.12000
Reach 2 60.00 90.00 0.00 8.34000
Reach 3 45.00 90.00 0.00 0.50000
Reach 4 10000.00 ;:?000.00 0.00 0.00000
Segment 2 4.81 16.00 2
Reach 1. 45.00 90.00 0.00 0.07000
Reach 2 45.00 90.00 0.00 0.01250
Reach h wr 2445.00 1818.00 0.00 0.12000
Reach 4 45.00 90.00 o . 00 o „ 08000
Segment :3 4.95 9.00 1 -
Reach 1 656.00 169.00 0.00 0.12000
Reach 2 45.00 90.00 0.00 3.00000
Reach 3 180.00 14.00 0.00 0.08000
Reach 4 45.00 90.00 ' 0.00 0.15000
~ `«
'
'
"
Geg # | Reach # | Geg Mi | D.O.
1 1 0"00 6.71
1 1 0"50 6.65
1 1 1.00 8"60
1 1 1"50 6.55
1 1 2.00 6"51
1 1 2"50 6"46
1 1 3.00 6"41
1 1 3"50 8.37
1 2 3"50 6.32
1 2 4.00 6"26
1 2 4"50 6"20
1 2 5"00 6"14
1 2 5.50 6.09
1 3 5"50 6"09
1 3 6"00 6"04
l 3 6.50 5"99
1 3 7"00 5.94
1 3 7"50 5.89
1 3 8"00 5"85
1 3 8"50 5.80
1 3 9.00 5.78
1 3 9.50 5"72
1 3 10"00 5"68
1 3 10"50 5"64
1 3 11"00 5.60
| CBOQ
4"42
4"37
4"33
4.28
4.24
4.19
4.15
4.10
4.57
4"52
4.47
4.42
4.38
4"40
4.35
4"31
4.27
4.23
4.19
4,14
4"10
4.06
4"02
3.98
3.94
7.. pI
SUMMER
ROANOKE - 1988
OLD CHAMPION LOADS
NBOD | Flow |
1.26 1543"49
1"24 1543.91
1"22 1544.34
1"20 1544"76
1.18 1545.19
1"16 1545.61
1.14 1546.04
1"13 1546.48
1.86 1559.39
1.83 1559"81
1"81 1560.24
1"78 1560.66
1"75 1561.09
1"79 1561"86
1"77 1562"29
1.74 1562.71
1.71 1563.14
1"68 1563"56
1"66 1563.99
1.63 1564"41
1"61 1564.84
1.58 1565"26
1.56 1565.69
1.53 1586.11
1"51 1566.54
1 49 19AA'9A
1 3 12.00 5. 5 3 3.87 1.46 1567.39
1 3 12.50 5.49 3.83 1.44 1567.81
1 3 13.00 5.46 3.79 1.42 1568.24
1 3 . 50 5.43 3.75 1.40 1568.66
1 3 14.00 5.39 3.72 1.37 1569.09
1 3 14.50 5.36 3.68 1.35 1569.51
1 3 15.00 5.33 3.64 1.33 1569.94
1 4 15.00 5.33 3.64 1.33 1569.94
1 4 15.50 5.31 3w61 1.31 1570.36
1 4 16.00 5.28 3.58 1.29 1570.79
1 4 16.50 5.25 3.54 1.27 1571.21
1 4 17.00 5.23 3.51 1.25 1571.64
1 4 17.50 5.21 3.47 1.23 1572.06
1 4 18.00 5.18 3.44 1.21 1572.49
1 4 18.50 5.16 3.41 1.19 1572.91
1 4 19.00 5.14 3.38 1.18 1573.34
1 4 19.50 5.12 3.35 1.16 1573.76
1 4 20.00 .5.10 3.31 1.14 1574.19
1 4 20.50 5.08 3.28 1.12 1574.61
1 4 21.00 5.06 3.25 1.10 1575.04
1 4 21.50 5.04 3r22 1.09 1575.46
2 1 0.00 5.04 3.22 1.09 1575.57
2 1 0.50 5.03 3.19 1.08 1576.00
2 1 1.00 5.01 3.16 1.06 1576.42
2 1 1.50 4.99 3.13 1.04 1576.85
2 1 2.00 4.98 3.11 1.03 1577.27
2 2 2.00 4.98 3.11 1.03 1577.29
2 2 3.00 4.95 3.05 1.00 1578.14
2 2 4.00 4.93 2.99 0.97 1578.99
2 2 5.00 4.91 2.94 0.94 1579.84
2 6 a ���� 4 a 89 2 a 88 0.91 1580.69
2 2 7.00 4.87 2.83 0.88 1581.54
2 2 8.00 4.86 2.78 0.85 1582.39
2 2 9■c_�c_� 4.84 2r73=�r83 1583.24
2 2 1 � , Clta 4.83 2.68 0.80 1584.09
2 2 11.00 4.82 2.63 0.78 1584.94
2 2 12.00 4.82 2.58 0.75 1585.79
2 2 13.00 4.81 2w5; 0.73 1586.64
2 2 14.00 4.81 2.49 0.71 1587.49
2 2 15.00 4.81 2.44 0.69 1588.34
2 2 16.00 4.81 2.40 0.67 1589.19
2 2 17.00 4.81 2.35 0.65 1590.04
2 2 18.00 4.81 2.31 0.63 1590.89
in 2 2 19.00 4.81 2.27 0.61 1591.74
2 2 20.00 4.82 2.23 0.59 1592.59
2 2 21.00 4.82 2. 19 0.57 1593.44
2 2 22.00 4.83 2.15 0.55 1594.29
2 3 22.00 4.83 2.43 0.77 1594.48
2 3 23.00 4.83 2.39 0.74 1595.33
2 3 24.00 4.83 2.34 0.72 1596.18
2 3 25.00 4.83 2.30 0.70 1597.03
2 3 26.00 4.83 2.26 0.68 1597.88
2 3 27.00 4.83 2.22 0.66 1598.73
2 3 28.00 4.83 2.18 0.64 1599.58
2 3 29.00 4.84 2.14 0.62 1600.43
2 3 30.00 4.85 2.10 0.60 1601.28
2 3 31 ■00 4.85 2.06 0.58 1602.13
2 3 32.00 4.86 2.02 0.56 1602.98
2 3 33.00 4.87 1.98 0.55 1603.83
2 3 34.00 4.88 1.95 0.53 1604.68
2, 3 35.00 4.90 1.91 0.51 1605.53
2 3 36.00 4.91 1.88
0.50 1606.38
2 3 37.00 4.92 1.84 0.48 1607.23
w 38.00 4.94 1.81
0.47 1608.08
-�.' . 'a= 3 39.00 4.95 1.78 0.45 1608.93
.-, -x An n n 11 CD-7 1 7 R n AA 1 A t`1 U __ 7 A
2 ; 41.00 4.98 1.71 0.43 1610.63
s ' - �� '. 2 . 3 42.00 5.00 1.68 0.41 1611.48
2 3 43.00 5.02 1.65 0.40 1612.33
. 2 3 44.00 5.04 1.62 0.39 1613.18
2 45.00 5.05 1.59 0.38 1614.03
3 46.00 5.07 1.56 0.37 1614.88
' 2 3 47.00 5.09 1.54 0.36 1615.73
2 3 48.00 5.11 1.51 0.35 1616.58
2 3 49.00 5.13 1.48 0.34 1617.43
2 4 49.00 5.13 1.48 0.34 1617.55
2 4 49.50 5.11 1.45 0.33 1617.98
3 1 0.00 5.11 1.53 0.5 1618.16
3 1 1.00 5.07 1.46 0.32 1619.01
3 1 2.00 5.04 1.39 0.29 1619.86
1 3.00 5.02 1.33 0.27 1620.71
3 1 4.00 4.99 1.27 0.25 1621.56
1 5.00 4.98 1.21 0.23 1622.41
3 1 6.00 4.97 1.16 0.21 1623.26
3 1 7.00 4.96 1.10 0.19 1624.11
1 8.00 4.95 1.05 0.18 1624.96
3 1 9.00 4.95 1.01 0.16 1625.81
1 10.00 4.96 0.96 0.15 1626.66
3 1 11.00 4.96 0.92 0.14 1627.51
3 1 12.00 4.97 0.88 0.13 1628.36
3 117.00 4.98 0.84 0.12 1629.21
3 1 14.00 5.00 0.80 0.11 1630.06
3 1 15.00 5.01 0.76 0.10 1630.91
3 1 16.00 5.03 0.73 0.09 1631.76
3 1 17.00 5.05 0.70 0.09 1632.61
3 1 18.00 5.07 0.67 0.08 1633.46
3 1 19.00 5.09 0.64 0.07 1634.31
3 1 20.00 5.12 0.61 0.07 1635.16
1 21.00 5.14 0.58 0.06 1636.01
3 1 22.00 5.17 0.56 0.06 1636.86
-3. 2 22.00 5.15 0.68 0.31 1641.51
3 2 23.00 5.15 0.65 0.29 1642.36
3 2 24.00 5.16 0.62 0.26 1643.21
3 2 25.00 5.17 0.60 0.24 1644.06
3 2 26.00 5.18 0.57 0.22 1644.91
3 2 27.00 5.19 0.54 0.21 1645.76
3 2 28.00 5.21 0.52 0.19 1646.61
3 2 29.00 5.22 0.50 0.17 1647.46
3 2 30.00 5.24 0.48 0.16 1648.31
3 2 71.00 5.26 0.45 0.15 1649.16
3
32 ..2.00 5.29 0.40.14 1650.01
3 2 33.00 5.31 0.42 0.13 1650.86
3 2 34.00 5.34 0.40 0.12 1651.71
3 2 7;5.00 5.36 0.18 0.11 1652.56
.. 3 2 36.00 5.39 0.76 0.10 1653.41
3 2 37.00 5.42 0.35 0.09 1654.26
3 3 37.00 5.42 0.36 0.09 1654.39
3 3 37.50 5.43 0.35 0.09 1654.81
3 3 38.00 5.45 0.35 0.09 1655.24
3 4 38.00 5.45 0.35 0.10 1655.47
3 4 39.00 5.47 0.34 0.09 1656.32
3 4 40.00 5.50 0.32 0.08 1657.17
3 4 41.00 5.53 0.31 0.08 1658.02
3 4 42.00 5.56 0.30 0 .=�7 1658.87
3 4 43.00 5.59 0.28 0.07 1659.72
3 4 44.00 5.62 0.27 0.06 1660.57
3 4 45.00 5.65 0.26 0.06 1661.42
4 46.00 5.68 0.25 0.05 1662.27
Seg # ; Reach # ; Seg Mi : D.O. ; CBOD NBOD Flow
*** MODEL SUMMARY DATA **fit
Discharger : Subbasin : 07.0208
Receiving Stream : ROANOKE RIVER Stream Class: C
Summer 7010 : 1500. Winter 7010 : 1000.
Design Temperature: 27e
:LENGTH; SLOPE: VELOCITY : DEPTH; Kd ; Kd ; Ka ; Ka ; KN : KN ; KNR : KNR ;
mile ; ft/mi; fps ; ft ;design; @20x :design; O20x :design: @20x ;design; @20x ;
Segment 1 ; 3.50: 0.32: 1.010 ; 2.00 : 0.35 ; 0.25 ; 0.33 ; 0.28: 0.51 ; 0.30 : 0.51 : 0.00 ;
Reach 1 , : ' 11' ' ' ` 1 ' 1 1
Segment 1 ; 2.00: 0.32: 1.010 ; 2.00 ; 0.35 ; 0.25 : 0.33 ; 0.28: 0.51 ; 0.30 ; 0.51 ; 0.00
Reach 2 ; i 1
Segment 1 ; 9.50: 0.32: 1.010 ; 3.00 ; 0.32 ; 0.23 : 0.33 ; 0.28: 0.51 ; 0.30 ; 0.51 ; 0.00
Reach 3; 1 1 1 1 1 1 1 1 1
Segment 1 ; 6.50: 0.32: 1.010 ; 4.00 : 0.31 : 0.23 : 0.33 ; 0.28: 0.51 ; 0.30 : 0.51 : 0.00
111
Reach 4; 1 1 1 1 1 1 11111
Segment 2 ; 2.00: 0.32: 1.010 : 5.00 : 0.30 ; 0.22 ; 0.33 , 0.28: 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 1; I I 1 1 1 1 1
Segment 2 ; 20.00: 0.32: 1.010 ; 5.00 ; 0.30 ; 0.22 ; 0.33 $ 0.28: 0.51 : 0.30 ; 0.51 1 0.00 ;
Reach 2$ 1 1 1 1 1
Segment 2 $ 27.00: 0.32: 1.010 ; 5.00 ; 0.30 ; 0.22 ; 0.33 ; 0.28: 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 3 ; 1 1
Segment 2 1 0.50: 0.321 0.370 1 9.00 : 0.28 : 0.20 0.12 1 0.10: 0.51 0.30 ; 0.51 0.00 ;
Reach 4;
Segment 3 1 22.00: 0.321 0.370 ; 9.00 ; 0.28 ; 0.20 0.12 : 0.101 0.51 0.30 : 0.51 0.00 1
Reach 1
Segment 3 1 15.00: 0.32: 0.370 1 9.00 : 0.28 1 0.20 0.12 1 0.10: 0.51 0.30 1 0.51 0.00 1
Reach 2 1 1
Segment 3 1 1.001 0.32: 0.370 1 9.00 1 0.28 1 0.20 0.12 1 0.10: 0.51 0.30 1 0.51 0.00 1
Reach 3 1 1 1 1 1 1 1
Segment 3 1 8.00: 0.32: 0.370 1 9.00 ; 0.28 1 0.20 0.12 1 0.10: 0.51 0.30 ; 0.51 0.00
Reach 4; 1 1 1 1 1 1 1
1 Flow C8OD NE(OD D. O.
cfs mg/1 1 mg/1 1 mg/1
Segment 1 Reach 1
Waste 1 0.186 ; 20544.800
Headwaters 1 1500.000 ; 2.000 1
Tributary 1 43.300 ; 0.000
* Runoff 1 0.850 ; 2.000 1
12: 63.000 ; 0.000
1 .000 : 6.900
0.000 ; 0.000
1 .000 ; 6.900
Segment 1 Reach 2
Waste 1 12.927 1 60.000 1 90.000 ;
Tributary ; 0.000 1 0.000 : 0.000 ;
* Runoff 0.850 ; 2.000 : 1.000 1
Segment 1 Reach 3
Waste 1 0.775
Tributary : 0.000
* Runoff 1 C).850
Segment 1 Reach 4
Waste 0.000
Tributary 1 0.000
* Runoff 0.850
Segment 2 Reach 1
Waste 1 0.109
Headwaters 1 0.000
Tributary 1 0.000
* Runoff 0.850
Segment 2 Reach 2
Waste 0.019
Tributary 1 0.000
* Runoff 1 0.850
1 45.000
0.000
2.000
: 90.000 ;
1 0.C)00 ;
1.000
0.000
0.000
6.900
0.000
0.000
6.900
110000.000 12000. C)C )0 1 0.000
0.000 , 0.000 : 0.000
1 2.000 1 1 .000 ; 6.900
45.000
0.000
0.000
2.000
90.000
0.000
0.000
1.000
1 45 . tx )0 ' ; 90.000
0.000 1 0.000
1 2.000 : 1.000
0.000
0.000
0.000
0.000
0.000
0.000
6.900
Segment 2 Reach 3
i,) l_ 1RA !944F1_fl0C) ! 1R1R_t)C)C) ! 0e000
Tributary ; 0.000 ; 04t:0I: : 0.c:00 : 0„000
* Runoff 0.850 : 2.000 : 1oc:)00 ; 6D900
Segment 2 Reach 4
Waste 0.124 ; 45.000 90.000 : 0.000
Tributary ; 0.000 : 0.000 : 0.000 : 0.000
* Runoff ; 0.850 ; 2.000 ; 1.000 6.900
Segment 3 Reach 1
Waste 0.186 ; 656 N 000 ; 169.000 : 0.000
Headwaters: 0.000 0.000 : 0.000 ; 0.000
Tributary ; 0.000 ; 0d000 : 0.000 : 0.000
* Runoff 0.850 2.000 ; 1.000 ; 6.900
Segment 3 Reach
Waste 4.650 ; 45.000 : 90.000 0.000
Tributary : 0.000 0.000 : 0.000 ; 0.000
* Runoff 0 850 2 000 ; 1.000 ; 6.900
Segment 3 Reach 3
Waste 0.124 : 180 n 000 ; 14.000 : 0.000
Tributary ; 0„000 0.000 ; 0.000 ; 0.000
* Runoff 0.850 : 2.000 : 1.000 1 6.900
Segment 3 Reach 4
Waste 0.2 2 , 45.000 ; 90.000 0.000
Tributary ► 0.000 : 0.000 ; 0.000 ; 0.000
* Runoff 0.850 ; 2.000 ; 1.000 ; 6.900
* Runoff flow is in cfs/mile
Discharger
Receiving Stream
MODEL RESULTS
M ROANOKE RIVER
The End D.O. is
The End CBOD is
The End NBOD is
5.47 mg/l.
0.27 mg/1.
0.05 mg/1.
SUMMER
ROANOKE RIVER - 1988
NEW CHAMPION LOADS
Segmen t
Reach
Reach
Reach
Reach
Segment
Reach
Reach
Reach
Reach
Segment
Reach
Reach
Reach
Reach
I r
41 IA t31-'
-A (.1 I%) µ f.4
DO Min
(mg/1) Milepoint Reach #
4.81 21.50 4
4.52 17.00
4.66 9.00
1
WLA
CBOD
(mg/1)
27720.00
60.00
45.00
10000.00
WLA
NBOD
(mg/1)
2363.00
90.00
90.00
2000.00
45.00 90.00
45.00 90.00
2445.00 1818.00
45.00 90.00
656.00 169.00
45„00 90.00
180.00 14.00
45.00 90.00
WLA
DO Waste Flow
(mg/1) (mgd)
0.00 0.12000
0.00 8.34000
0.00 0.50000
0.00 0.00000
0.00 0.07000
0.00 0.01250
0.00 0.12000
0.00 0.08000
0.00 0.12000
0.00 3.00000
0.00 0.08000
0.00 0.15000
1 L
*** MODEL SUMMARY DATA ***
Discharger : Subbasin : 07.0208
Receiving Stream : ROANOKE RIVER Stream Class: C
Summer 7010 : 1500. Winter 7010 : 1000.
Design Temperature: 27.
:LENGTH; SLOPE; VELOCITY ; DEPTH; Kd Kd ; Ka ; Ka ; KN KN ; KNR ; KNR
; mile ; ft/mi; fps ; ft ;design; @20x ;design; @20x ;design; @20x ;design; @20x
Segment 1 ; 3.50; 0.32: 1.010 ; 2.00 ; 0.35 ; 0.25 ; 0.33 ; 0.28; 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 1 ;
Segment 1 ; 2.00: 0.32; 1.010 ; 2.00 : 0.35 ; 0.25 ; 0.33 ; 0.28; 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 2 ; ; ; 11
1111111
1
Segment 1 ; 9.50: 0.32: 1.010 ; 3.00 ; 0.32 ; 0.23 ; 0.33 ; 0.28; 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 3 ;
Segment 1 ; 6.50; 0.32: 1.010 ; 4.00 : 0.31 ; 0.23 ; 0.33 ; 0.28; 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 4 ;
Segoent 2 : 2.00; 0.32: 1.010 ; 5.00 : 0.30 ; 0.22 ; 0.33 ; 0.28; 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 1 ;
Segment 2 ; 20.00; 0.32: 1.010 : 5.00 : 0.30 : 0.22 ; 0.33 ; 0.28; 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 2 ;
Segment 2 ; 27.00; 0.32; 1.010 ; 5.00 : 0.30 ; 0.22 ; 0.33 : 0.28: 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 3
Segment 2 ; 0.50; 0.32: 0.370 ; 9.00 ; 0.28 ; 0.20 ; 0.12 ; 0.10: 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 4 ;
Segment 3 ; 22.00: 0.32; 0.370 ; 9.00 ; 0.28 ; 0.20 ; 0.12 ; 0.10: 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 1 ;
Segment 3 ; 15.00; 0.32; 0.370 ; 9.00 ; 0.28 ; 0.20 ; 0.12 ; 0.10; 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 2 ;
Segoent 3 ; 1.00: 0.32; 0.370 ; 9.00 ; 0.28 ; 0.20 ; 0.12 ; 0.10; 0.51 ; 0.30 ; 0.51 ; 0.00 ;
Reach 3 ; ; ; $ ; ; ; $ ; ; $ 1
Segment 3 ; 8.00: 0.32: 0.370 ; 9.00 ; 0.28 ; 0.20 ; 0.12 ; 0.10; 0.51 ; 0.30 ; 0.51 ; 0.00 $
Reach 4 ;
Seg
1
1
1
1
1
1
1
i
i
1
i
1
1
1
1
1
1
1
i
1
1
i
i
i
i
1
1
1
i
1
1
1
2
2
2
h
2
2
2
2
.-ti
Seg M
0.00
0.50
1.00
1.50
2.00
2.50
3.00
1 p 5' )
3.50
4.00
4.50
2 5.00
n
2 5.50
3 5.50
0 6.00
3 6.50
7.00
0 7.50 8.00
8.50
9.00
9.50
10.00
10.50
11.00
11.50
12.00
12.50
3 13.00
17...50
14.00
:i 14.5c.)
15.00
15.00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20.00
20.50
21 .0 i_)
21.50
0.00
0.50
1.00
1.50
2.00
2.00
•.,.00
4.00
5.00
2 6.00
7.00
8.00
# ; Reach #
1
1
1
1
1
1
1
1
2
en
3
r
Li
,
3
ti?
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1
1
1
1
1
'7
2
i ; D.O.
6.71
6.64
6.59
6.53
6.47
6.42
6.36
-ti
6.31
6.26
6.19
6.13
6.06
6.C)0
6.00
5.94
5.89
5.83
5.78
5.73
5.68
5.63
5.58
5.54
5.49
5.45
5.41
5.37
5.33
5.29
5.25
5.21
5.18
5.15
5.15
5.11
5.08
5.05
5.03
5.00
4.97
4.95
4.92
4.90
4.88
4.85
4.83
4.81
4.81
4.79
4.77
4.75
4.73
4.73
4.70
4.67
4.65
4.63
4.61
4.59
n =-7
CBOD
5�y
. 2 8
5.17
5.12
5.06
5.01
4.96
4.91
5.36
5.31
5.25
5.19
5.14
5.16
5.11
5.06
5.01
4.96
4.91
4.86
4.81
4.77
4.72
4.67
4.63
4.58
4.54
4.49
4.45
4.40
4.36
4.32
4.27
4.27
4.23
4.19
4.15
4.11
4.07
4.04
4.00
3.96
3.92
3.89
3.85
3.81
3.78
M�
.� O78
3.74
0.71
3.67
3.64
p64
3.64
_.57
3.51
3.44
3.38
3.32
3.26
-x 1.-,
SUMMER
ROANOKE RIVER - 1988
NEW CHAMPION LOADS
NBOD ;
1.26
1.24
1.?''
1.20
1.18
1.16
1.14
1.13 r�
1.86
1.83
1.81
1.78
1.75
1.79
1.77
1.74
1.71
1.68
1.66
1.63
1.61
1.58
1.56
ieti.3
1.51
1.49
1.46
1.44
1.42
1.40
1.37
1.35
1.33
1.33
1.31
1.29
1.27
1.25
1.23
1.21
1.19
1.18
1.16
1.14
1.12
1.10
1.09
1.09
1.08
1.06
1.04
1.03
1.07.
1.00
0.97
0.94
0.91
0.88
0.85
r", 0.7
Plow
1543.49
1543.91
1544.34
1544.76
1545.19
1545.61
1546.04
1546.46
1559.39
1559.81
1560.24
1560.66
1561.09
1561.86
1562.29
1562.71
1563.14
1563.56
1563.99
1564.41
1564.84
1565.26
1565.69
1566.11
1566.54
1566.96
1567.39
1567.81
1568.24
1568.66
1569.09
1569.51
1569.94
1569.94
1570.36
1570.79
1571.21
1571.64
1572.06
1572.49
1572.91
1573.34
1573.76
1574.19
1574.61
1575.04
1575.46
1575.57
1576.00
1576.42
1576.85
1577.27
1577.29
1578.14
1578.99
1579.84
1580.69
1581.54
1582.39
i RQ7 1,11
2 2 10.00 4.56 3.14 0.80 1584.09
2 2 11.00 4.55 3.08 0.78 1584.94
2 2 12.00 4.54 3.02 0.75 1585.79
2 4 13.00 4.53 2.97 0.73 1586.64
2 14.00 4a53 2.91 0a71 1587.49
2 15.00 4.52 2.86 0.69 1588.34
2 2 16.00 4.52 2.81 0.67 1589.19
2 2 17.00 4.52 2.76 0.65 1590.04
2 2 18.00 4.52 2.70 0.63 1590.89
2 2 19.00 4.52 2.66 0.61 1591.74
2 2 20.00 4.53 2.61 0.59 1592.59
C: .4. 1 a t.�tj 4.53 2 . 56 �� .57 1593.44
2 2 22.00 4.54 2.51 0.55 1594.29
2 3 22.00 4.54 2.80 0.77 1594.48
2 3 23.00 4.53 2.75 0.74 1595.33
2 3 24.00 4.53 2.70 0.72 1596.18
2 3 25.00 4.53 2.65 0.70 1597.03
2 3 26.00 4.53 2.60 0.68 1597.88
2 3 27.00 4.54 2.55 0.66 1598.73
2 28.00 4.54 2 50 0.64 1599 58
.4. 3 p n 4. .tom M {.. q t� p V
2 3 29.00 4.55 2.46 0.62 1600.43
.4L L; i 0.0 4.55 2.41 0.60 1601.28
2 31.00 4.56 2.37 0.58 1602.13
2 3 7.2.00 4.57 2.32 0.56 1602.98
2 3 +3.00 4.58 2.28 0.55 1603.83
2 3 34.00 4.59 2.24 0.53 1604.68
2 3 �.. a r 00 4 60 .20 0n.. 51 1605.53
..a:..
2 3 36.00 4.62 2.16 0.50 1606.38
2 3 37.00 4.63 2.12 0.48 1607.23
2 3 78.00 4.65 2.08 0.47 1608.08
2 M 39.00 4.66 2.04 0.45 1608.93
2 3 40.00 4.68 2.01 0.44 1609.78
4-3 ti 41.00 4.70 1.97 0.43 1610.63
2 3 42.00 4.71 1.93 0.41 1611.48
2 43.00 4.73 1.90 0.40 1612.33
2 3 44.00 4.75 1.86 0. =9 1613.18
2 3 45.00 4.77 1.83 0.38 1614.03
2 3 46.00 4.79 1.80 0.37 1614.88
2 747.00 4.81 1.76 0.36 1615.73
2 48.00 4.84 1.73 0.35 1616.58
2 7 49.00 4.86 1.70 0.34 1617.43
2 4 49.00 4.86 1.70 0.34 1617.55
2 4 49.50 4.84 1.67 0.33 1617.98
1 0.00 4.84 1.74 0.35 1618.16
; , 1 1.00 4.79 1.66 0.32 1619.01
3 1 2.00 4.76 1.59 0.29 1619.86
:� 1 3.00 4.73 1.51 0.27 1620.71
3 1 4.00 4.70 1.45 0.25 1621.56
3 1 5.00 4.69 1.38 0.23 1622.41
3 1 6.00 4.67 1.32 0.21 1623.26
1 7.00 4.66 1.26 0.19 1624.11
1 8.00 4.66 1.20 0.18 1624.96
3 1 9.00 4.66 1.15 0.16 1625.81
3 i 10.00 4.66 1.10 0.15 1626.66
1 11.00 4.67 1.05 0.14 1627.51
L 1 12.00 4.67 1.00 0.13 1628.36
3 1 13.00 4.69 0.95 0.12 1629.21
1 14.00 4.70 0.91 0.11 1630.06
L 1 15.00 4.72 0.87 0.10 1630.91
1 16.00 4.74 0.83 0.09 1631.76
1 17.000 4.76 0.79 0.09 1632.61
1 18.00 4.78 0.76 0.08 1633.46
3 1 19.00 4.80 0.73 0.07 1634.31
,
1 20.00 4.83 0.69 0.07 1635.16
..
1 21.00 4.86 0.66 0.06 1636.01
w`
v
,
^
.
|
3
3
3
3
3
3
3
3
3
3
�
3
Seg
3
3
3
3
�5
�5
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
4
4
4
4
4
4
4
4
4
# Reach
22.AA
23"00
24"0A
25"00
26.00
27"00
28"00
29"0A
30"0A
31"AA
32"A0
33"A0
34"0<}
35.00
36.00
37"{)0
37"00
37.50
38.00
38.A0
39.00
40"AA
41"0A
42"00
43"00
44"00
45.00
46"0A
4.87
4"88
4.88
4"89
4.91
4"92
4"94
4"96
4.98
5.01
5"03
5"06
5"09
5"12
5.15
5.18
5"18
5.19
5.21
5"21
5"24
5"27
5"3{)
5"34
5.37
5"4A
5.44
5.47
D"O"
0.76
0"72
0"69
()"66
0"63
A"60
0"58
0.55
0.53
0.50
0.48
0.46
A"44
0"42
0.40
0"39
0.40
A"39
0.38
0"39
A"37
A"35
0.34
0"33
0.31
0"30
0"29
0.27
CBOD
0.31
0.29
0.26
0"24
0.22
O"21
A"19
0"17
0.16
0"15
0.14
0"13
0.12
0"11
0.10
0"09
0"09
0"A9
0.09
0"10
0.09
0"A8
0.08
0.07
0"07
0"A6
0.06
0.05
| NBOD
1641.51
1642.36
164:3"21
1644"06
1644.91
1645"76
1646"61
1647"46
1648"31
1649.16
165A"01
1650"86
1651"71
1652"56
1653"41
1654.26
1654"39
1654.81
1655"24
1655.47
1656"32
1657"17
1658.02
1658.87
1659.72
166A"57
1661.42
1662"27
Flow |
4 i-,t
0
Flow CBOD NisOD
cfs mg/1 mg/1 ;
Segment 1 Reach 1
Waste 0.186 ; 27720.000 ; 2 6: 3 . i )00
Headwaters ; 15c, 0 , 0c_)0 ; 2.000 ; 1.000 ;
Tributary ; 43.300 : 0.000 ; 0.000
* Runoff 0.850 ; 2.000 ; 1.000 ;
Segment 1 Reach 2
Waste ; 12.927
Tributary ; 0.000
* Runoff 0.850
Segment 1 Reach 3
Waste 0.775
Tributary ; 0.000
* Runoff C).850
60.000 ; 90.000
0.000 1 0„000
2.000 : 1.000
45.000
0.000
2.000
90.000
0.000 ;
1.000
D.O.
mg/1
0.0c_)c_)
6.900
0.000
6.9c_)0
0.000
0.000
6.900
0.000
0.000
6.900
Segment 1 Reach 4
Waste 0.000 : 10C)C)C) . 0cx:) : 2000.000 0.000
Tributary ; 0.000 : 0.000 : 0.000 : 0.000
* Runoff 0.850 ; 2.000 ; 1.000 ; 6.90C)
Segment 2 Reach 1
Waste 0.109
Headwaters: 0.000
Tributary ; 0.000
* Runoff 0.850
45.000
0.000
0.000
2.000
90.000
0.000
0.000
1.000
Segment 2 Reach 2
Waste 0.019 ; 45.000 ; 90.000 ;
Tributary ; 0.000 ; 0.000 ; 0.000 ;
* Runoff 0.850 ; 2.000 ; 1 .000 ;
Segment 2 Reach 3
Waste 0.186
Tributary ; 0.00)0
* Runoff ; 0.850
2445.000 ; 1818 . D0C)
0.000 1 0.000 1
.000 ; 1.000
Segment 2 Reach 4
Waste ; 0.124 ; 45.000
Tributary ; 0.000 ; 0.000
* Runoff 0.850 ; 2.000
Segment 3 Reach 1
Waste 0.186
Headwaters ; 0.000
Tributary ; 0„00()
* Runoff 0.850
Segment 3 Reach 2
Waste 4.650
Tributary ; 0.000
* Runoff 0.850
6 56.000
1 0.000
0.000
2.000
45.000
0.000
00
, ' 90.000
0.000
1.000
169 . 000
0.000
1 i_)„000
1.000
90.000
0.cx)cr)
1.000
0.000
0.000
0.000
().000
0.000
() . 000
6.900
0.000
0.000
6.900
0.0C)0
0.000
6.900
0.000
0.000
0.000
6.900
0.000
0.000
6.900
Segment 3 Reach 3 ,
Waste ; 0.124 ; 180 a c_}00 : 14.000 : 0.000
Tributary ; 0„000 : 0,000 : 0.000 ; 0,000
* Runoff 0.650 : 2.000 ; 1.000 ; 6.900
Segment 3 Reach 4
Waste ; 45.000 ; 90.000 ; 0.000
Tributary ; 0.000 ; 0.000 ; 0.000 0.000
* Runoff 0.650 ; 2.000 : 1.000 : 6.900
* Runoff flow is in cfs/mile
PERMIT NO.: NCOO OD 1 5 2.
FACILITY NAME• C 6-vtA fliovt
Facility Status:
(circle ore)
Permit Status, RENEWAL MODIFICATION UNPERMITTED NEW
(circle ono?` - -
Major Minor
Pipe No -
Design Capacity (MGD): 29 (P'ace55�
Domestic (% of Flow):
Industrial (X of Flow):
Comments:
NPDES WASTE LOAD ALLOCATION
TeWlaloa_
EXISTING
PROPOSED
Do(
OC.22.
(o•(v
oo
),` µ(.,-
tool•t�
RECEIVING STREAM: R0a of Z LV
Class
Sub -Basin•
e'3-bL--c'
Reference USGS Quad:
County- ited t
Regional Office: As
(clydls ono)
(please attach)
Fa Mo (Ra, Wa WI WS
Requested By: naockt3• 5�er
�J�
Prepared By: / �0
Reviewed By:
,Date -
Date:
5-z.5-�5
`/O/U6
Date: q—/cD -W.
Drainage Area (mi2 )
Sty ov.A_
1-0--(cfs) L5 Winter 1-Q1O (cfs) 30Q2 (cfs) -
Toxicity Limits: IWC 14 X (circle one) Acute /
Modeler
(c3S
Date Rec.
Avg. Streamflow (cfs)•
Instream Monitoring: ll
)0j -lemA en rey CDvlc�t1vih 3 t5
Parameters
Upstream
Downstream
Location
Location
v0(
liUUl 1B brtc1¢
w2Uon. , M
hronI5
Effluent
Characteristics
W1oxLlelva tv..
u a, -
00 2'--
1
-` =00S
RODis60v50
13q-C7
NHs N (mg/I)
—
D.O. (mg/I)
— --
TSS
/YSO Z 221611
F. Col. (/100m1)
pH (SU)
Co-9
(o- t
(,1
visa vfe-
rI(tsC S
,,,,INA CGWS
(ecteUt W46tS
\p
pu
exceed Z. `d
(,) Ala
°c- a6o0e_A-V k�
: tN C4S-
COAAfa�. rectQW
c.ee Ct . 1"2_
to,e.EU S '
le
C._
Comments: b�sc-K- dne-S hot (ins.oc-:dl.s rvo"kt/Cax�t
`Re corvlw.�-em.d- l.let-j Sc.reev1tvn i permil {to ,r bbtQ.%0.auer_�Das��fG�IcQh
oz _
FOR APPROPRIATE DISCHARGERS, LIST COMPLETE GUIDELINE LIMITATIONS BELOW
Effluent Characteristics
Monthly
Average
Daily
Maximum
Comments
Bob.
2.e, tb/
X 3,30ofoo 1)40,3
ci24(v ly/d
IZ`(8o I4'tdo„
1 C.`(
(eois
t3?•-n
�55
(o.d l.6/
lci, caco lb/de.,
sa60c) Gb14,1
sa
-e_
PN
s
6, -gs�
L-ask
s
wQ
Type of Product Produced
Lbs/Day Produced
Effluent Guideline Reference
PuNr ; lAstvt� Lkt c LQot kraal-Q(occ.
3,
)o� tlos/ «A
LIP- 2 c
L(' . (3 5�
I
� A - 1tnc Loci
1�
safer
pa• is bF baix vr
U
bwcE
,
'&•.7 = 3,T
1�r.
g o '-+s 04 � IKe e• boar' . Ak .«
)
Lt An L�4Ap i' . 5 uA - LuA_ ice ...ell 4. t
Request No.:4674 a,b,c
WASTELOAD ALLOCATION APPROVAL FORM
Facility Name:
NPDES No.:
Type of Waste:
Status:
Receiving Stream:
Classification:
Subbasin:
County:
Regional Office:
Requestor:
Date of Request:
Quad:
Champion International Corp
NC0000752
001 - process water 002 & 003 -
Expansion
Roanoke
C
030208 Summer
Halifax Winter
RaRO
Foster
5/31/88
B28NW
RECOMMENDED EFFLUENT LIMITS
Wasteflow (mgd):
BOD5 (lbs/day):
TSS (lbs/day):
pH (su):
001
Monthly Avg
28.00
6850
14582
6-9
Daily Max
13700
29164
6-9
minium:
mini um:
non -contact
cooling water
Regulated
1500 cfs
1000 cfs
RECEIVED
SEP 2
PE_ MEIS A -Et GlN! rRING.
002 003
6.60 1.60
6-9 6-9
The discharge shall not cause the receiving water's
temperature to exceed 2.8°C above background and
in no case cause it to exceed 32°C
Quarterly
Chronic toxicity target: 4% (see attached)
MONITORING
Upstream (Y/N): Y Location: Hwy 48 bridge
Downstream (Y/N): Y Location: @ Weldon, NC
Parameters: D0, temperature, conductivity, & BOD5.
COMMENTS u.o - v ag —
Effluent limits are water quality based and are the existing limits. +�U
WQ impacts are predicted at higher loadings.
Facility does not use biocides in its non -contact cooling water
toxicity screening and toxicity permit reopener is recommmended.
Instream monitoring data do not indicate local WQ impacts, hover --,
modeling analysis indicates discharge contributes to downstreWO problems-:
flu
Recommended by: Skeil‘
Date
Reviewed by l
Tech Support Supervisor: \ �� Date:
,�! 45W Regional Supervisor: VO.E.)Date:
Permits & Engineering: i� ��._ � ��-- Date:
RETURN TO TECHNICAL SERVICES BY: `-'`'
Facility Name C k(impjoV1 _lM Ar10 -141/0 (o'avi Permit # iV . 006 ? 5 7-
CHRONIC TOXICITY TESTING REQUIREMENT (QRTRLY)
The effluent discharge shall at.no time exhibit chronic toxicity using test procedures outlined in:
1.) The North Carolina Ceriodaphnia chronic effluent bioassay procedure (North Carolina Chronic
Bioassay Procedure - Revised *February 1987) or subsequent versions.
The effluent concentration at which there may be no observable inhibition of reproduction or
significant mortality is `1 % (defined as treatment two in the North Carolina procedure
document). The permit holder shall perform quarterly monitoring using this procedure to establish
compliance with the permit condition. The first test will be performed after thirty days from
issuance of this permit during the months of IAA ck, See Dec, . Effluent
sampling for this testing shall be performed at the NPDES permitted final effluent discharge below
all treatment processes.
All toxicity testing results required as part of this permit condition will be entered on the Effluent
Discharge Monitoring Form (MR-1) for the month in which it was performed, using the parameter
code TGP3B. Additionally, DEM Form AT-1 (original) is to be sent to the following address:
Attention: Technical Services Branch
North Carolina Division of
Environmental Management
P.O. Box 27687
Raleigh, N.C. 27611
Test data shall be complete and accurate and include all supporting chemical/physical measurements
performed in association with the toxicity tests, as well as all dose/response data. Total residual
chlorine of the effluent toxicity sample must be measured and reported if chlorine is employed for
disinfection of the waste stream.
Should any test data from this monitoring requirement or tests performed by the North Carolina
Division of Environmental Management indicate potential impacts to the receiving stream, this
permit may be re -opened and modified to include alternate monitoring requirements or limits.
NO 1'h: Failure to achieve test conditions as specified in the cited document, such as minimum
control organism survival and appropriate environmental controls, shall constitute an invalid test
and will require immediate retesting(within 30 days of initial monitoring event). Failure to submit
suitable test results will constitute a failure of permit condition.
1,01.1tn yvktA rthase
7QA woo cfs
Permited Flow z MGD Recommended by:
IWC% 5
Basin & Sub -basin c,3 GZo0
Receiving Stream 'Roanak,g (`ever
County H6,1% cLy
Date
J4cicAL
25 tqEfi3,
**Chronic Toxicity (Ceriodaphnia) P/F at + %, tree_ , See Part 3 , Condition .
DIVISION OF ENVIRONMENTAL MANAGEMENT
July 25, 1988
MEMORANDUM
TO: Trevor Clements
THROUGH: Randy Dodd
FROM: Thomas Stockton
SUBJECT: Champion International WLA
Champion International has requested a permit modification to increase their
design capacity from 25 to 28 mgd. Federal guidelines 40 CFR 430.13 subpart A
apply to Champion's production process. Ch pion a 11 be producing approximately
3,300,000 lbs/day which results in a B0D5ett 11mit of 9240 lbs/day; the
existing B0D5 limit is 6852 lbs/day. When the new production figures were input
into the Roanoke River Level B model dissolved oxygen violations were predicted,
therefore, a more indepth modeling analysis was undertaken.
Modeling Analysis
Assuming the mill's withdrawal of water from the river is equal to the dis-
charge of waste water and since the summer minimum release at Roanoke Rapids is
fairly large (1500 efs), the wasteflow can be considered inconsequential in
comparison to the river flow and loads for Champion can be input to the Level B pro-
gram as mass loads. This assumption precludes the need for specifying permit
limits in terms of concentration as well as mass.
Long-term BOD analysis is in progress, however enough data is available from
this analysis to predict the ultimate BOD and, subsequently, the CBOD/BOD5 ratio.
For the grab and composite samples the bottle decay rate was estimated as 0.07
day-1 and the ultimate BOD was estimated as approximately 100 mg/1 (see
attached). A conservative CBOD/B0D5 ratio of 3 was used based on these restl,lts.
The discharge appears to have a fairly large organic nitrogen component, but ,
since the long-term analysis is still running an accurate measure"ofWBWD is nqt
available. Assuming TKN provides a measure of potential NBOD, the NBOD.].oad dir-
ing the time of sampling was 3,783 lbs/day (24 mgd * 4.2 mg TKN/1 * 4::5 8.34).
u,
Champion's instream DMR data do not indicate water quality problems are'
occurring due to Champion's discharge. However, due to the recalcitrant nature
of pulp and paper mill process waste, water quality problems may not be evident
in the upper reaches of the Roanoke River. The discharge may be exacerbating
water quality problems in the lower reaches of the river as waste from several
other discharges compile. To investigate this hypothesis the Roanoke River Level
B model was run under four loading scenarios:
1) No loading from any discharges; i.e., background;
2) The currently permitted discharges, excluding Champion, run with the Level
B rates equations;
3) Champion's existing production based permit limits, excluding all other
dischargers, run with the BOD decay rates set at 0.1 day-1;
4) Champion's new production based permit limits, excluding all other
dischargers, run with the BOD decay rates set at O. day-1;
o%lae,t`
Results
Based on the theory of superposition the water quality profiles from the two
model runs including the Champion discharges can be added to the profiles from
the model run with the currently permitted dischargers to determine the contribu-
tion of the Champion discharge to dissolved oxygen deficit in all reaches of the
river.
As evidenced by the attached graphs of predicted dissolved oxygen and CBOD,
Champion's discharge is predicted to be the major contributor to the dissolved
oxygen deficit in the lower reaches of the Roanoke River. This area of the river
is historically the area which has experienced the most severe water quality
problems. Weyerhaeuser also operates a pulp and paper mill with a discharge to
the Roanoke River. This discharge is located in the tidally influenced sections
of the lower Roanoke River. The Level B model for the Roanoke River can not ade-
quately model tidal mixing, therefore, the current model ends where the river
becomes tidally influenced. The interaction of the waste from these two mills
needs to be investigated further.
Effluent data show an interesting relationship between BOD5 mass loading and
discharge (see attached). Loading appears to go down as flow goes up. As you
suggested this may be a result of production increases in the spring when warmer
temperatures are improving the efficiency of the biological treatment system. It
also appears that Champion can not meet much more stringent limits thOn are cur-
rently permitted. a'
Recommendations
1) Champion's existing permit limits should apply for the e patided des'
capacity. Dissolved oxygen violations are predicted at this loading,:hTdw yer
with the high level of model uncertainty, reduction in existink. elgt,! ,n
can not be justified. 03 <).•
2) A longitudinal long-term BOD study of instream samples should" ba'aer'� �`'�
formed, preferably using slug sampling with a dye study, to determine the amount
of residual BOD from Champion's discharge that is reaching the tidally influenced
reaches of the Roanoke River. Due to the reduction in the Striped Bass resource
over the last several years this could be a fairly high priority study.
Oh
e4t piet°
August 11, 1988
REF: 4WM-FP
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
REGION IV
345 COURTLAND STREET
ATLANTA. GEORGIA 30365
Mr. Charles Wakild
Water Quality Section
Division of Environmental Management
NC Department of Natural Resources
and Community Development
P. 0. Box 27687
Raleigh, NC 27611-7867
RE: 316 Guidance for Permit Reissiiance
Dear Mr. Wakild:
v 1),)\fr
(xi\
Questions have arisen as to what procedures and activities are necessary in
reissuing a permit for a facility which has thermal limitations based on a
previous variance granted under Section 316(a) of the Clean Water Act. The
following is provided as a follow-up to information provided at the February
1988, EPA/State meeting in Destin, Florida.
A thermal variance granted under S316(a) terminates on expiration of the NPDES
permit of which it is a part (Attachment A) . Procedures for a reissuance are
virtually unchanged from an initial determination. The amount of data necessary
to support the variance at the time of reissuance will probably be minimal.
However, if conditions have changed materially, a significant quantity of informa-
tion may be needed.
NOTE: To the extent that permittees are unaware of these requirements, they
should be notified of them expeditiously so that they can be prepared.
The general procedure is as follows:
1. The permittee must request that the variance be continued, preferably at the
time of permit application. At that time, he should provide a basis for that
continuance. The basis could be as simple as: (a) plant operating conditions
and load factors are unchanged and are expected to remain so for the tern of
the reissued permit, (b) there are no changes (to his knowledge) to plant
discharges or other discharges in the plant site area which could interact
with the thermal discharges, and (c) there are no changes (to his knowledge)
to the biotic community of the receiving water body which would impact the
previous 316 determinations.
2. If the permitting authority agrees with the basis, appropriate permit condi-
tions would be developed; otherwise, additional data would be requested as
needed. Request for additional data must be made within 60 days of receipt of
the application (Answer to Question 7, Attachment Al. Additional studies can
be made a permit requirement if needed (Answer to Question 7).
Page 2
August 11, 1988
3. The Fact Sheet/Rationale should contain a summary of 316 variance activities
from the previous permits (dates, determinations, limitations, etc.) and an
indication of the proposed basis for continuing the 316 variance. Sample
language is included in Attachment B.
4. The Public notice requirements are contained in S124.75(a).
is also included in Attachment B.
Should you have have questions or need assistance, feel free
404/347-3012.
Sincerely yours,
Cif
Charles H. Kaplan, P.E.
National Expert Steam Electric/Water
Enclosures
cc: Five copies for distribution
Identical letters sent to all states in Region IV
Sample language
to contact me at
A Ira
et
A Pad
11NrED STATE':. r - f.. NIENT. I 7 ' :'PION ;
WASHINGTON. D.C. 20460
FEB Zd132
MEMORANDUM
SUBJECT: Legal Opinion on 5316 of the Clean Water Act
FROM: Gail B. Cooper, Attorney
Water & Solid Waste Divi
TO:
Joseph J. Zedrosser
Regional Counsel
Region II
THRU: Bruce M. Diamond
Acting Associate General Counsel
Office of General Counsel (A-131)
• / .%.ie - - --`
OFFICE OF
GENERAL COUNSEL
You requested that this office prepare a legal opinion on
several permit -related issues pertaining to §316 of th•e Clean
Water Act (CWA). This memorandum is our response to your request.
A previous draft was discussed with Wendy Fodge of your staff.
Richard Stoll has left EPA so you should address any future
§316 questions to me. My number is FTS 426-3246.
QUESTION 1
Where a permittee requests and is granted a thermal variance
--- pursuant to §316(a) of the Clean Water Act does the variance
terminate upon expiration of the NPDES permit tern during which
it was granted?
Does the response to this question differ depending on whether
the permittee had to alter its operation to meet the requirements
of the variance?
-2-
If the variance does not terminate, and the variance carries
over into future renewal permits, does the variance remain in
effect
(a) for an indefinite period of time through all _future
renewal permits?
(b) until the .permit issuing authority independently deter-
mines that there has occurred a significant biological
change affecting the assurance of a balanced, indigenous
population of shellfish, fish and wildlife in and on
the body of water into which the discharge is to be
made?
(c) until the permit issuing authority independently deter-
mines that a significant change has occurred with
respect to the thermal loading of the receiving water
body (i.e., independent of any biological determination
concerning balanced, indigenous populations)?
(d) until a change occurs in the State thermal criteria
for the receiving water body as a result of a.valid .
review of State Water Quality Standards pursuant
to 5303(c) of the Clean Water Act? •
(e) until the permit issuing authority becomes aware that
the effective operating life of the facility from which
the thermal discharge emanates will exceed the
effective operating life assumed by the permit issuing
authority in formulating its decision to initially
grant the requested variance?
ANSWER
A 5316(a) thermal variance is a permit condition and it
terminates at the same time as the NPDES permit of which it
is a part expires. This is the rule for all variances and
there is nothing in the CWA to suggest a different result
for a S 316 (e.) variance. In fact, the Agency's regulations
establish procedures for renewal of a 5316 variance at the
expiration of the permit. See 40 CFR 5125.72(c) and the
note after 5125.72(f ). As explained in response to questions
6 and 7, however, there is no requirement that EPA, the
State, or applicant start from scratch when renewing a permit.
The response to the question does not differ depending on
whether the discharger had to alter its operation to meet the
requirements of the variance. Section 5316(c) of the statute
provides that .EPA cannot impose more _stringent thermal effluent
_limitations for certain point source . fora ten year _period
but these restrictions -affect -the substantive requirements
that can be imposed in a new permit, and not the requirement
to renew a permit after five years.
3 -
QUESTION 2
If the granting of a variance under 5316(a) of the Act remains
effective for more than a single permit term, what circumstances
other than those indicated in Question 1.(b)-(e) would allow
the permit issuing authority to impose different and/or
stricter thermal effluent limitations than those allowed in
the variance? -
ANSWER
There is no need to answer this question.
QUESTION 3
If the duration of a 5316(a) variance is limited to
asingle
permit term, or if changed circumstances can resultin
te
imposition of stricter thermal effluent limitations after the
granting of'a thermal variance.request, maythe new thermal
effluent limitations be proposed for a permit only during the
permit issuance comment period?
ANSWER
A public comment period is always necessary when a new or
modified thermal variance is proposed. However, as discussed
below, a variance may be proposed before, after, or in conjunc-
tion with the issuance of a permit.
There is no distinction between the procedures for issuance
and renewal of a permit. Therefore, the procedures
for renewal of a permit and variance are those appearing in
40 CFR 5124 for a new permit. 40 CFR 55124.6 and 124.10
specifically require a public comment period on draft permits.
and 40 CFR 5124.57(a) requires that public noticefor oft
a 5316(a)
draft permit contain information about requests
variance.
Normally, a variance request is noticed for public 0 comment at
the same time as the draft permit. However, and
CFR
5124.66(a), a permit applicant mayrequest a final decision
on a S 316 (a) variance before the final permit is issued.
An early variance decision is considered as ermitnissuance
and is subject to the same requirements of public
ce and
comment.
If there is no early variance decision in a Regional
state where
erisEPAtor
is the permit issuing authority
3 the
determines under 40 CFR S12
delay the processing of the rest of the permit to process
the variance request simultaneously, the variance request
may be separated from the rest of the permit. In this case,
the Regional Administrator is required to prepare a new
•
--4-
draft permit and give public notice of his tentative
determination on the variance. 40 CFR §124.63(a) (3) states
that the only matters to be considered at that time are those
relating to the variance; thus, issues pertaining to other
aspects of the permit are not to be reopened.
The Administrator also may modify a permit during its
term if the proposed modification is consistent with 40 CFR
S122.15. In such cases, 40 CFR 5124.5 (c) requires thCppermit
issuing authority to prepare a draft permit under 40F
R
S1 24.6 and give public notice. It is important to remember
that S 316 (c) of the statute restricts the issuance of more
stringent thermal effluent limitations for a ten year period
if the discharger modified the point source after 1972, is
currently in compliance with effluent limitations issued
under sections 301 and 303, and is discharging at a level
which assures the protection and -propagation of a balanced,
ind igeneous 'population of shellfish, fish, and wildlife.
QUESTION 4
Where an EPA -issued permit for which the permittee has timely
requested a variance under 5 316 (a) of the Clean Water Act has
expired prior to the Regional Administrator's determination,
and where EPA has retained permit issuing authority, may EPA
grant the requested variance prior to the effective date of a
subsequently issued permit (e.g., where significant delay is
contemplated prior to issuance of the subsequent permit) ? If
so, must any special procedure be followed?
ANSWER
EPA may grant a 5316(a) variance prior to a final agency
decision on a permit application. 40 CFR S§124.63,
124.66, and 125.72(f) establish specific procedures for
early decisions on 5316 (a) variances.
QUESTION 5
Where an EPA -issued permit for which the permittee has timely
requested a variance under 5316 (a) of the Clean Water Act has
expired prior to the Regional Administrator's determination
and where permit issuing authority has been assumed by a
State during the term of the EPA -issued permit,
(a) may EPA grant the requested variaicsuprior
rrtothe
effective date of a subsequently permit?
If so, must any special , procedure be followed?
(b) may only the permit issuing State issue the
determination with respect to the requested
variance?
-5-
if (b), then
(c) may the State make a determination with respect
to the requested variance prior to the effective
date of the permit which it issues? If so,
must any special procedure be followed?
ANSWER
(a) The answer to your question depends upon what
dEEPA
thas
arranged with the State. 40 CFR S123.71(d) pro
after an NPDES program is approved, EPA retains jurisdiction
over any permit it has issued unless the e Memorandum
tate ol assume
Agreement with the State provides thatthe
responsibility. This retention of jurisdiction includes the
processing of variance requests. Even where the EPA
At permit
has expired (as in the example resolved iftheState agrees
you
EPA
may
ain
jurisdiction until the matter is
to that approach.
(b) The answer depends on the terms of the Memorandum of
Agreement between EPA and the State. 40 CFR S123.71(d)
allows the division of responsibility to be worked out on a
state -by-state basis.
(c) The State's own laws. or regulations determine whether
the State can make a vC�Rance 124a661sion prior to the procedures are not binding
date of a permit. 40 S124.66
States.
QUESTION 6
If a determination applying the criteria of §316(b) of the
Clean Water Act is made by the permit issuing authority,
(a) does that determination control S316(b)-related
issued in subsequently permits?
(b) must the permit issuing authority make a new
S 316 (b)-based determination with respect to each
permit by considering best cooling water intake
structure technology available for minimizing
adverse environmental impact as it exists aat the
time of formulating conditions issuaapply
thro gh
the term of each subsequently P
-6-
(c) ma the permit issuing authority, at its option,
make a new 5316(b)-based determination with respect
to a particular permit by considering best cooling
water intake structure technology available for
minimizing adverse environmental impact as it exists
at the time of formulating conditions to apply
through the term of the renewal permit being
considered?
ANSWER
This question appears to ask whether EPA is permanently
bound by the first determination applying 5316(b), particularly
with respect to whether the cooling water intake structure
reflects the best technology available for minimizing adverse
environmental impact. As a general matter, we are aware of
nothing in the Act or its legislative history that would
indicate that § 316 (b) determinations are exempt from the
general rule that in issuing a new NPDES permit, the expiring
permit conditions may be adjusted. Where appropriate 1/,
permit conditions can be made more stringent or less stringent.
40 CFR 5122.62(1). Therefore, it is not accurate to conclude
that a determination made under 5316(b) is permanently binding.
At the same time, there is no requirement that either the
permit issuing authority or the applicant start from scratch
every time a NPDES permit containing 5316(b) limitations
expires. Indeed, with regard to 5 316 (a) decisions, neither
40 CFR 5125.72(c) nor the note after 5125.72(f) (the provisions
covering the kinds of data to be collected under §316(a) ),
suggest or require that the application and review process
proceed as if there had not been a previous 5316 (a) variance
determination. Presumably, the same would hold true under
5316(b).
Language in the preamble to the final 1979 NPDES regulations
clarifies EPA's intent in regard to §316(a):
1/ Both §316(c) and 5306(d) impose limits on the permit issuing
authority's ability to require compliance with stricter
standards within ten years of the time a facility is modified
or constructed.
-7-
The regulations have also been revised to provide
that the specific forms of studies prescribed apply
only to the initial grant of a section 316(a)
variance. In many cases, neither the nature of the
thermal discharge nor the aquatic population will" have
changed since a variance was initially granted. It
would therefore be an unnecessary and costly burden
on the Agency and dischargers alike to require a full
section 316(a) demonstration for each renewal.
Section 125.72 accordingly gives the Director the
flexibility to require substantially less information
in the case of renewal requests. This does not
mean, however, that the Director may not require a
full demonstration for a renewal in cases where he has
reason to believe that circumstances have changed,
that the initial variance may have been improperly
granted, or that some adjustment .in the terms of the
initial variance may be warranted. Persons holding
such a variance should, of course, be prepared to
justify its continuation with studies based on actual
operating experience, and a comment has been added
to that effect. 44 FR 32894 (June 7, 1979).
The same logic applies to S316(b).
QUESTION 7
Under what circumstances, if any, may EPA or a NPDES State be
barred from requiring a permittee to perform additional or
updated biological monitoring or studies (with respect to
S316(b) of the Act), or thermal modeling, monitoring, or
studies (with respect to S316(a) of. the Act) as a condition
of subsequently issued permit?
ANSWER
Neither EPA nor the NPDES state is barred from requiring
additional 5316 studies as a condition to renewing a variance
or permit. 40 CFR S125.72(c) specifically authorizes the
permit issuing authority to require applicants for variance
renewals to submit the types of information described in
40 CFR 5125.72(a) and (b) and S124.73(c) (1). Further, the
note at the end of 40 CFR S125.72 states that a discharger
seeking to renew a S316(a) variance should be prepared to
support continuance of the variance with studies based on
the discharger's actual operating experience. Thus, while
applicants are not required to submit the detailed plan of
study required by 40 CFR S125.72 (b) , EPA can request
information and studies it believes are necessary for a
. " S316(a) demonstration. However, requests for information
must be made within 60 days of receipt of the application.
With respect to 5316 (b) determinations, there is no specific
provision addressing EPA's ability to obtain additional data.
EPA would have the authority to obtain information to the
extent authorized by 5308 of the Act.40 CFRS122.7(h)faalso
sh
allows EPA or the NPDES State to require permittees
permit -related information upon request. Since variances
are incorporated into permits, this can be construed to
cover information pertinent to renewal of the variance.
cc: Wendy Fodge, Region II
Bill Jordan, Office of Water Enforcement
and Permits
POINT SOURCE VARIANCE MECHANISMS
1O—i—Bs
All dischargers are required to assure that adopted eater
quality standards are maintained in receiving streams. There
are, however, some situations where a discharger can be allowed a
variance or deviation from this requirement. State law and
regulations provide several mechanisms which can achieve
the same or similar results. The purpose of this paper is to
outline the various mechanisms and define how they differ and how
they can be used.
Some actions especially long-term deviations, must be
approved by EPA. Therefore in determining if a certain state
procedure is appropriate for a discharger, the generally more
stringent requirements of EPA must be a major consideration.
(See "EPA Approval for Removing a Use" in the attachment.)
The following mechanisms are available through state laws
and regulations:
1) Variance - NCGS 143-21 S .3 (e) .
The variance is available to all permitted dischargers and
can apply to stream standards, effluent limits or any control
applied by the Division. It can be for a fixed or indefinite
time period. The EMC must find that the assigned standards
or conditions cannot be met by application of "best available
technology found to be economically reasonable" and that
meeting the standards or conditions "would produce serious
hardships without equal or greater benefits to the public."
There is no definition for "best available treatment
economically reasonable nor any guidance on "serious
hardships." The EMC decides each one on a case -by -case basis
after an administrative hearing. The variance mechanism
could be more frequently used if the EPA criteria set forth
in 40 CFR 131 . 10 (g) did not have to be met. All variances
mustibe approved by EPA and must satisfy those conditions.
(See "EPA Approval for Removing a Use" in Attachment.)
2) Revision to Water Quality Standard NCGS 143-214.3
The "Revision" statute can be used in a manner similar to the
"Variance." It is not as broad in that it only applies to
revisions to an established water quality standard. It
allows revisions because of various natural and irretrievable
man --induced background conditions or because of economic
impacts. The conditions to be met if using the economic
criteria alone appear in theory to be easier than the
"variance" to achieve. It requires that the basic
technology -based conditions in Section 301 of the Act (BPT
and Secondary) be met but that more restrictive limitation
"would result in adverse social and economic impact
disproportionate to the benefits." The differences are
minor and have little practical significance since the more
stringent EPA conditions of "substantial and widespread
-1-
economic and social impact" (40 CFR 131.10(g)) prevail as
long as EPA approval is needed. In any deviation allowed by
this statute, the petitioner must also show that there exists
no reasonable relationship between the costs to achieve the
limits to the benefits to be obtained.
3) Revision to Dissolved Oxygen Standards - NCAC 2B .0213
The State regulations establish a mechanism where a
petitioner can achieve a revision to a D.O. standard for a
stream segment through the rule -making process. It only
applies to "C" and "SC" streams and stipulates that meeting
the 5 D.O. requirement would result in "substantial adverse
economic and social impact" and that the D.O. level should be
set at the "highest level economically attainable." This
regulation has never been used, basically because of the
difficulty in establishing what the D.O. level "economically
attainable" might be and in meeting the "substantial adverse"
economic criteria. A change made under this regulation could
be made by a rule -making hearing which would be simpler than
an administrative hearing. A small discharge using the
"background conditions" argument might find this method
desirable. A discharger using economics as a justification
would appear to have equally difficult conditions as found in
the "variance" or "standards revision" procedures. The EPA
criteria (see appendix) would still have to be met in a
revision of this type.
4) Segment -wide Revision to a Standard According to NCGS
143-214.1
The General Statutes do allow in 143-214.1 for different
standards to be applied on specific stream segments. No
regulations are provided stipulating conditions to be
considered and it has very seldom been used. A revision of
this type would involve a rulemaking hearing but if it
involved an "adversarial" case, such as one specific
discharge, the 143-214.3 "Revision to Water Quality Standard"
or the 143-215.3 "Variance" would probably be better to use.
Changes in the standards made according to this regulation
have traditionally been called "exceptions" although there
are now no "excepted" streams. EPA would also have to
approve any changes made by this mechanism.
5) Water Quality Special Order (Also Water Quality Special Order
by Consent) - NCGS 143-215.2
The General Statutes authorize the EMC to issue Special
Orders which direct a person to "take or refrain from taking
action or to achieve such results within a period of time
specified by such order as the EMC deems necessary." This.
gives the Commission broad authority to direct a discharger
to take certain actions or enter into a mutual agreement
(Special Order by Consent) allowing establishment of a
schedule to achieve certain results. EPA does not usually
approve nor disapprove these actions as they do a permanent
modification of a water quality standard or classification.
(EPA has traditionally differentiated between temporary and
permanent exemptions from meeting water quality
-2-
requirements.) The EMC decides each SOC on a case--by-case
basis. If the action taken is by mutual agreement, no
hearing is held.
6 ) 67(b) Special Order by Consent - NCGS 143-215.67 (b )
The General Statutes stipulate in 143.215.67(a) that no
person shall willfully cause waste to go into a treatment
system in excess of its capacity. Subsection 143.215.67(b)
authorizes a unit to government to accept additional wastes
if: (1) the government has secured financing for planning,
design, or construction of a system which will treat the
wastes and (2) the additional wastes will not result in any
significant degradation in the quality of the receiving
waters. The Director makes decisions on when a unit of
government can receive a 67(b) SOC. The EMC is informed
each month of pending and approved requests. The 67(b) SOC
is used only when there is a request for increase in volume
to the sewage system. The staff evaluates each request to
determine if "significant degradation" would occur if the
special order were allowed. SOC's are set for a specific
time period but can be renewed by the Director. No hearing
nor public involvement requirements are stipulated in the
statutes.
7) Effluent Channel 15 NCAC 2B .0215
The regulations allow for designation of a stream as an
"effluent channel" if the stream does "not contain natural
waters except when such waters occur in direct response to
rainfall events by overland runoff" (2B .0202(8)) and meet
other conditions such as ownership and protection of health.
This has not received much widespread use because of the "dry
stream" and ownership (or control) requirements. EPA must
also approve changes made by this procedure.
8) Other Variance Mechanisms
The Clean Water Act allows for variances from several
technology based requirements. These variances are
specifically outlined in several sections including sections
301(d), 301(g), 301(k), 316(a), and 316(b). Although they
appear to only allow variances from technology based effluent
limits, the allowance for a temperature variance (Section
316) has been used by the EPA to grant a deviation from the
state -adopted temperature standard.
The Department's regulations provide for applying different
temperature standards at specific sites (15 NCAC 2B
.0208Cc)). There are no specifications as to the type of
procedural mechanisms to be used although a public hearing
would certainly be required as well as documentation showing
that the "maintenance of the designated best use" would be
protected "throughout a reasonable portion of the waterbody."
There has been some confusion over what type of variances are
allowed in cases where pollutant background levels are high.
The State regulation 2B .0205 provide that a discharger will
-3-
"not be considered a contributor to substandard conditions
(in the stream) provided maximum treatment in compliance
with permit requirements is maintained." Although the text
,of the regulations is not clear, the apparent intent was to
inform the discharger that he would not be held responsible
for "occasional" downstream violations of water- quality
standards if the cause was due to natural stream
characteristics. There has been interest in giving credit to
discharges which have high pollutant levels in their water
supply. It does not appear this regulation allows for this
type of variance and would need to be modified before it
could be granted. The federal regulations allow in 40 CFR
122.45(g) variances from technology -based effluent limits for
pollutants in the intake water. This mechanism is not
intended to provide a variance from water quality standards.
VARIANCE.DOC
BD -Vol 2
ATTACHMENT
RELIEF MECHANISM
FOR POINT SOURCES
I. Variances - N.C.G.S. 143-215.3(e)
▪ Anyone subject to a permit under 143-215.1 (all
discharge and non -discharge permits) may apply for a
variance from:
1) Rules
2) Regulations
3) Standards or
4) Limitations "established pursuant to GS 143-214.1
(W.Q. Standards and Classifications) or 143-215 (any
effluent standards or limits or waste treatment
management practices)"
▪ The variance essentially applies to any limit or control
applied by the DEM or EMC.
▪ Applies for "fixed or indefinite" time periods.
▪ Can be implemented for 90 days without a hearing or
notice if necessary.
▪ The EMC must find that:
1) Waste discharges do not endanger human health.
2) Compliance with the original conditions cannot be
achieved by application of
▪ "best available technology found to be
economically reasonable" ..and they
"▪ would produce serious hardship without equal or
greater benefits to the public".
II. Revision to Water Quality Standard - N.C.G.S. 143-214.3
▪ Any person subject to permitting regulations 143-215.1
can request a revision in the standards applied to the
specific segment.
▪ Applies only to a revision of a water quality standard
(for that segment) developed through 143-214.1
(standards and classifications sections).
▪ The EMC must find that
1) "Natural background conditions... preclude the
attainment of the applicable W.Q. Standards" OR
2) "Irretrievable and uncontrollable man -induced
conditions' preclude the attainment" of the
standard OR
A-1
3) "Application of effluent limits for existing
sources more restrictive than those effluent
standards and limitations...promulgated by the U.S.
EPA pursuant to Section 301... in order to achieve
and maintain applicable W.Q. Standards would result
in adverse social and economic impact,
disproportionate to the benefits to public health
safety or welfare" AND
Note: Section 301 deals with technology based
effluent limits in 301(b)(1)(A) and (B) but also
requires water quality limits in 301(b)(1)(C).
This is confusing, but referring to 40 CFR 131.2,
it is obvioys the reference to 301 is to its
technology -based requirements.
4) "There exists no reasonable relationship between the
cost to the petitioner of achieving the effluent
limitation necessary to comply with the W.Q.
Standards to the benefits, including incremental
benefits to the receiving waters, to be obtained
from application of said effluent limits".
There has been some question on whether the
"Revision" applies to the entire segment. The
clause indicating that the EMC may revise a
standard "as such standard may apply to the
petitioner" seems to indicate the earlier clause
"as such standards may apply to a specific stream
segment" is not controlling in deciding the
extent of the issued standard revision. It
appears (and the AG's office concurs) that the
revision only applies to the one petitioner.
According to the statutes, the revised standard
shall be "no less stringent than that which can
be achieved by the application of the highest
level of treatment which will result in
benefits... (including incremental water quality
benefits) having a reasonable relationship to the
cost to the petitioner to apply such treatment".
III. Differences Between "Variances" and "Revision to Water
Quality Standard"
Variances can apply to requirements provided by rules,
regulations, water quality standards, or effluent
limitations. Standard revisions apply to standards
developed pursuant to 143-214.1. Variances do not
actually result in a standard change, while revisions
do.
A-2
▪ The economic comparisons are similar and can be compared
by evaluating a few key statements. It appears that the
Standard Revision economic condition would be easier to
meet since it does not require a "serious hardship."
This is probably not important since EPA economic tests
are much more stringent than these two.
Variance - "would produce serious hardships without
equal or greater benefits to the public"
Standard Revision - "there exists no reasonable
relationship between the cost.. necessary to comply with
applicable standards to the benefits."
▪ They both require meeting some basic, reasonable minimun
level of treatment.
Variance Must meet an undefined "best available
technology found to be economically reasonable" (this
was changed from an earlier "economically achievable").
Standard Revision - Must meet the technology -based
Section 301 Clean Water Act BPT and BAT requirements.
These could be similarly compared to the "best available
technology economically reasonable" conditions of the
variance clause.
▪ If a town were trying to get a variance from a
requirement more stringent than secondary, it could use
the variance statute and claim that anything higher than
secondary was not "economically reasonable" and would
produce "serious hardships without equal or greater
benefits to the public" OR, they could use the Standard
Revision clause and claim they are meeting the 301
requirements for secondary treatment and show that there
was "no reasonable relationship between the costs and
the benefits."
IV. EPA Approval for Removing a Use (40 CFR 131.10)
▪ EPA requires that all treatment controls be based on
achieving water quality standards. Any controls less
than that are considered by EPA to not protect the uses
in the stream. EPA will allow a state to adopt
site -specific standards and accordingly relax treatment
requirements if it can be shown that the use will still
be protected. But any other relaxation of a
water -quality based treatment requirement is considered
by EPA as "removing a use." EPA will not allow removing
a use that is an existing use but under certain
situations allow removing a designated use that is no
longer being attained. (see 40 CFR 131.10(g)).
A3
Therefore any time the State allows meeting a less
stringent standard which would not protect the
designated use, it must demonstrate that attaining the
use is not feasible because:
1) Naturally occurring pollutant concentrations prevent
attainment, OR
2) Natural stream flow conditions prevent attainment, OR
3) Irretrievable man -induced conditions prevent
attainment, OR
4) Dams or diversions which cannot be operated to allow
attainment, OR
5) Physical conditions on the stream such as pools, lack
of proper substrate, cover, depth and etc. which
preclude attainment, OR
6) "Controls more stringent than those required by
sections 301(b) and 306 of the Act would result in
substantial and widespread economic and social
impact, (306 deals with new source performance
standard and 301b refers to the technology -based
requirements) .
▪ Since EPA must approve all variance or standards
revisions, their requirements control. In requests
based on criteria 1-5 above, revisions would be easy.
However, most requests the State receives are based on
economic impacts.
SUMMARY
▪ If stream conditions preclude attainment of a standard,
the Revision to Standard statue is probably easiest to
use.
▪ If economics are the basis for the request for a
relaxation, the Revision to a Standard statue appears to
be theoretically easier to meet. However, the more
stringent, and more difficult to meet conditions are
those found in the EPA regulations 131.10(g).
Rel ief.Doc
BD/Vol-2
A-4