HomeMy WebLinkAbout20211827 Ver 1_Public Notice Comments_20211221 (2)USDA united states
Department of
Agriculture
N RCS
Natural
Resources
Conservation
Service
A product of the National
Cooperative Soil Survey,
a joint effort of the United
States Department of
Agriculture and other
Federal agencies, State
agencies including the
Agricultural Experiment
Stations, and local
participants
Custom Soil Resource
Report for
Wake County,
North Carolina
October 9, 2021
Preface
Soil surveys contain information that affects land use planning in survey areas.
They highlight soil limitations that affect various land uses and provide information
about the properties of the soils in the survey areas. Soil surveys are designed for
many different users, including farmers, ranchers, foresters, agronomists, urban
planners, community officials, engineers, developers, builders, and home buyers.
Also, conservationists, teachers, students, and specialists in recreation, waste
disposal, and pollution control can use the surveys to help them understand,
protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose
special restrictions on land use or land treatment. Soil surveys identify soil
properties that are used in making various land use or land treatment decisions.
The information is intended to help the land users identify and reduce the effects of
soil limitations on various land uses. The landowner or user is responsible for
identifying and complying with existing laws and regulations.
Although soil survey information can be used for general farm, local, and wider area
planning, onsite investigation is needed to supplement this information in some
cases. Examples include soil quality assessments (http://www.nres.usda.gov/wps/
portal/nres/main/soils/health/) and certain conservation and engineering
applications. For more detailed information, contact your local USDA Service Center
(https:Hoffices.sc.egov.usda.gov/locator/app?agency=nres) or your NRCS State Soil
Scientist (http://www.nres.usda.gov/wps/portal/nres/detail/soils/contactus/?
cid=nres142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are
seasonally wet or subject to flooding. Some are too unstable to be used as a
foundation for buildings or roads. Clayey or wet soils are poorly suited to use as
septic tank absorption fields. A high water table makes a soil poorly suited to
basements or underground installations.
The National Cooperative Soil Survey is a joint effort of the United States
Department of Agriculture and other Federal agencies, State agencies including the
Agricultural Experiment Stations, and local agencies. The Natural Resources
Conservation Service (NRCS) has leadership for the Federal part of the National
Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available
through the NRCS Web Soil Survey, the site for official soil survey information.
The U.S. Department of Agriculture (USDA) prohibits discrimination in all its
programs and activities on the basis of race, color, national origin, age, disability,
and where applicable, sex, marital status, familial status, parental status, religion,
sexual orientation, genetic information, political beliefs, reprisal, or because all or a
part of an individual's income is derived from any public assistance program. (Not
all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print,
audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice
and TDD). To file a complaint of discrimination, write to USDA, Director, Office of
Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or
call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity
provider and employer.
Contents
Preface....................................................................................................................
2
How Soil Surveys Are Made..................................................................................5
SoilMap..................................................................................................................
8
SoilMap................................................................................................................9
Legend................................................................................................................10
MapUnit Legend................................................................................................
11
MapUnit Descriptions.........................................................................................11
Wake County, North Carolina..........................................................................13
DoB—Dothan loamy sand, 2 to 6 percent slopes .......................................
13
FrB—Fuquay loamy sand, 0 to 6 percent slopes ........................................
14
GoA—Goldsboro sandy loam, 0 to 2 percent slopes ..................................
15
GrC—Gritney sandy loam, 6 to 10 percent slopes......................................16
RaA—Rains sandy loam, 0 to 2 percent slopes..........................................18
W—Water....................................................................................................
20
WeC—Wedowee sandy loam, 6 to 10 percent slopes ................................
20
WeD—Wedowee sandy loam, 10 to 15 percent slopes ..............................
21
References............................................................................................................
24
How Soil Surveys Are Made
Soil surveys are made to provide information about the soils and miscellaneous
areas in a specific area. They include a description of the soils and miscellaneous
areas and their location on the landscape and tables that show soil properties and
limitations affecting various uses. Soil scientists observed the steepness, length,
and shape of the slopes; the general pattern of drainage; the kinds of crops and
native plants; and the kinds of bedrock. They observed and described many soil
profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The
profile extends from the surface down into the unconsolidated material in which the
soil formed or from the surface down to bedrock. The unconsolidated material is
devoid of roots and other living organisms and has not been changed by other
biological activity.
Currently, soils are mapped according to the boundaries of major land resource
areas (MLRAs). MLRAs are geographically associated land resource units that
share common characteristics related to physiography, geology, climate, water
resources, soils, biological resources, and land uses (USDA, 2006). Soil survey
areas typically consist of parts of one or more MLRA.
The soils and miscellaneous areas in a survey area occur in an orderly pattern that
is related to the geology, landforms, relief, climate, and natural vegetation of the
area. Each kind of soil and miscellaneous area is associated with a particular kind
of landform or with a segment of the landform. By observing the soils and
miscellaneous areas in the survey area and relating their position to specific
segments of the landform, a soil scientist develops a concept, or model, of how they
were formed. Thus, during mapping, this model enables the soil scientist to predict
with a considerable degree of accuracy the kind of soil or miscellaneous area at a
specific location on the landscape.
Commonly, individual soils on the landscape merge into one another as their
characteristics gradually change. To construct an accurate soil map, however, soil
scientists must determine the boundaries between the soils. They can observe only
a limited number of soil profiles. Nevertheless, these observations, supplemented
by an understanding of the soil -vegetation -landscape relationship, are sufficient to
verify predictions of the kinds of soil in an area and to determine the boundaries.
Soil scientists recorded the characteristics of the soil profiles that they studied. They
noted soil color, texture, size and shape of soil aggregates, kind and amount of rock
fragments, distribution of plant roots, reaction, and other features that enable them
to identify soils. After describing the soils in the survey area and determining their
properties, the soil scientists assigned the soils to taxonomic classes (units).
Taxonomic classes are concepts. Each taxonomic class has a set of soil
characteristics with precisely defined limits. The classes are used as a basis for
comparison to classify soils systematically. Soil taxonomy, the system of taxonomic
classification used in the United States, is based mainly on the kind and character
of soil properties and the arrangement of horizons within the profile. After the soil
Custom Soil Resource Report
scientists classified and named the soils in the survey area, they compared the
individual soils with similar soils in the same taxonomic class in other areas so that
they could confirm data and assemble additional data based on experience and
research.
The objective of soil mapping is not to delineate pure map unit components; the
objective is to separate the landscape into landforms or landform segments that
have similar use and management requirements. Each map unit is defined by a
unique combination of soil components and/or miscellaneous areas in predictable
proportions. Some components may be highly contrasting to the other components
of the map unit. The presence of minor components in a map unit in no way
diminishes the usefulness or accuracy of the data. The delineation of such
landforms and landform segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, onsite
investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map.
The frequency of observation is dependent upon several factors, including scale of
mapping, intensity of mapping, design of map units, complexity of the landscape,
and experience of the soil scientist. Observations are made to test and refine the
soil -landscape model and predictions and to verify the classification of the soils at
specific locations. Once the soil -landscape model is refined, a significantly smaller
number of measurements of individual soil properties are made and recorded.
These measurements may include field measurements, such as those for color,
depth to bedrock, and texture, and laboratory measurements, such as those for
content of sand, silt, clay, salt, and other components. Properties of each soil
typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of
characteristics for the components. The aggregated values are presented. Direct
measurements do not exist for every property presented for every map unit
component. Values for some properties are estimated from combinations of other
properties.
While a soil survey is in progress, samples of some of the soils in the area generally
are collected for laboratory analyses and for engineering tests. Soil scientists
interpret the data from these analyses and tests as well as the field -observed
characteristics and the soil properties to determine the expected behavior of the
soils under different uses. Interpretations for all of the soils are field tested through
observation of the soils in different uses and under different levels of management.
Some interpretations are modified to fit local conditions, and some new
interpretations are developed to meet local needs. Data are assembled from other
sources, such as research information, production records, and field experience of
specialists. For example, data on crop yields under defined levels of management
are assembled from farm records and from field or plot experiments on the same
kinds of soil.
Predictions about soil behavior are based not only on soil properties but also on
such variables as climate and biological activity. Soil conditions are predictable over
long periods of time, but they are not predictable from year to year. For example,
soil scientists can predict with a fairly high degree of accuracy that a given soil will
have a high water table within certain depths in most years, but they cannot predict
that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the
survey area, they drew the boundaries of these bodies on aerial photographs and
Custom Soil Resource Report
identified each as a specific map unit. Aerial photographs show trees, buildings,
fields, roads, and rivers, all of which help in locating boundaries accurately.
Soil Map
The soil map section includes the soil map for the defined area of interest, a list of
soil map units on the map and extent of each map unit, and cartographic symbols
displayed on the map. Also presented are various metadata about data used to
produce the map, and a description of each soil map unit.
Custom Soil Resource Report
Soil Map
706400 706500 70660D 706700 7068D0 706900 707000 707100 707200
707300
g
35° 36' 22" N
-
35° 36' 22" N
j
y
\7
MUM
tb
a��a
u`S
.V.�F
Soil MaN may not he valiel at thisscale.
F
_
/ �j'r.
''I
350 35' 37" N
I
350 35' 37" N
706400 706500 7066DO 706700 706800 706900 707000 707100 707200
707300 707400
-
m
Map Scale: 1:6,820 if printed on A portrait (8.5" x 11") sheet.
`
Meters
`
N 0 100 200 400 600
Feet
0 300 600 1200 1800
Map projection: Web Mercator Comer000rdinates: WGS84 Edge tics: UTM Zone 17N WGS84
9
N '0 N
oU)
N
N
_
U
N
7 U)i
(6 p N
U
y m y
O
u!
O
a) O
`p
N
E U O
O_
'�
N U O
U
�
�
a) p 0
a)mo
O O
E
a)
a) _0 U) '6
+�
U)U
CL
O)oN
O
C
.S
O
m
— U N
Z
N
N
O_
O N
N O
C
E
U
N-0 O
N y
O
N
U
N
CL 'O N
m E c
N
L
N
L
O_ y 7
C p p p
U
O N
O
..-� C
N
N
y
E N y3:
U)
a)
O�L�2
Z
N O
O 0)
mO
a.
a) -O (OA mQ
U N
O
N
N
CQ
O
E
U W
Q N Q
O
N
O-
O p
G
�y
Q
O
O_ O
V N N
L
tll
t
C tll O
O Q
p
p
0 O a
O
O
N
N E U)
N
O
U (6
(6 .0 O O
)§
> (n
N
O
CL 0 tlj N
>+
(n
N
>
N
p O N
— O N
.O
O
O U
y O
>, O� U
O O U C
6 N
O
E a)
C _
7 N
N
y
L
E �, N N
Q E N
Z
O
N O
N
N 2
N
y U O
O-0
O O
N
p_
a)
N N
CL
O
N p CL
N
N
>
) O CL
_ _
-0
N 2
Y
N
N
0 70
N O
Q
Q
O
U
(6
.L.- O p
J>
O a) O_ E 0
N—
>
N
t
N -O O O
(6
E
Q D N
N
-0
(6 �
Z E
Q Q U C
CL
a) Utl)
N
a)
O N p
-E
O_
O)
N
N N N O
N N
N
N
m
a)
p -p
O y
O_ N >•
a) U N N 7
,y 'O
N Q
U) N
._
T
O -6 (6 0_
7
O
(n
C% N w
N jp E O
0 0
�'
3 (n
�
2� C N (6
3
U .O
7
Q N
N
'C
7 0
�
L O N E
O- (6
y
O
C
E N .�
N 'O y
N E
0— (6
O C
E (6 O
O a
O p U p ""
'O N
O>
CL 0
O O
N
N
O 'O
a)
O O
y
E
(6
C (6
Q N
N 7
y y
O
p (n 'O
y U C N
fl- N
7 >,
(n N
E O
O
O)
O p_ N C
L N
O 'U) C O U
N N
p g p
N O y �_ U
Q 'O
L
0 7
O N
N W
C O O L
W E— U y
a. E
(n > U
Q (6
H O
(n (n
(n
N
H U U)
Q
y
d y
R O
(i U
R
L
L
Q
Q
>.
00
0
0
d
Q
0 J N
CL m E
U)CL
m o
a
0 O
U) (n
Z
>
N L_ y
O (n (n
�
O
a)
S Z) :E
U
3 a Q
0
R
N
R
O
C
p
O
Z
WR
< " }{
fVn
4
�
R5
F
R
m
W
J
y
CL
QCL
p
y
o
o
U)
w
a
a
y
E
y
Q
o
a
U
C
>
C C a)
> >
CL CLR
w
3 y
`o
O >
>
°
w o
CL
°
0 w
CL
Q
_
0
o
a R
R
R R y
LL 3
3
O T
a
w > >
=
a R w o
E
coi
O
a)
>
o o
Y o
U)
a
y
Q
0
(n
0 0 o
(n (n o m
o R
m U
O
U (7 (7
> R
J J E
y N
O m
R
a
o
w
a
R ❑
■
y0 ❑ a i/
®
�ap�
<> { �
y�p�
"V
`}
!
}�
y
Q
y
0
r
Custom Soil Resource Report
Map Unit Legend
Map Unit Symbol
Map Unit Name
Acres in AOI
Percent of AOI
DoB
Dothan loamy sand, 2 to 6
percent slopes
7.1
3.4%
FrB
Fuquay loamy sand, 0 to 6
percent slopes
115.6
54.7%
GoA
Goldsboro sandy loam, 0 to 2
percent slopes
3.6
1.7%
GrC
Gritney sandy loam, 6 to 10
percent slopes
38.1
18.0%
RaA
Rains sandy loam, 0 to 2
percent slopes
15.0
7.1 %
W
Water
2.9
1.4%
WeC
Wedowee sandy loam, 6 to 10
percent slopes
5.3
2.5%
WeD
Wedowee sandy loam, 10 to 15
percent slopes
23.7
11.2%
Totals for Area of Interest
211.3
100.0%
Map Unit Descriptions
The map units delineated on the detailed soil maps in a soil survey represent the
soils or miscellaneous areas in the survey area. The map unit descriptions, along
with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more
major kinds of soil or miscellaneous areas. A map unit is identified and named
according to the taxonomic classification of the dominant soils. Within a taxonomic
class there are precisely defined limits for the properties of the soils. On the
landscape, however, the soils are natural phenomena, and they have the
characteristic variability of all natural phenomena. Thus, the range of some
observed properties may extend beyond the limits defined for a taxonomic class.
Areas of soils of a single taxonomic class rarely, if ever, can be mapped without
including areas of other taxonomic classes. Consequently, every map unit is made
up of the soils or miscellaneous areas for which it is named and some minor
components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the
map unit, and thus they do not affect use and management. These are called
noncontrasting, or similar, components. They may or may not be mentioned in a
particular map unit description. Other minor components, however, have properties
and behavioral characteristics divergent enough to affect use or to require different
management. These are called contrasting, or dissimilar, components. They
generally are in small areas and could not be mapped separately because of the
scale used. Some small areas of strongly contrasting soils or miscellaneous areas
are identified by a special symbol on the maps. If included in the database for a
11
Custom Soil Resource Report
given area, the contrasting minor components are identified in the map unit
descriptions along with some characteristics of each. A few areas of minor
components may not have been observed, and consequently they are not
mentioned in the descriptions, especially where the pattern was so complex that it
was impractical to make enough observations to identify all the soils and
miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the
usefulness or accuracy of the data. The objective of mapping is not to delineate
pure taxonomic classes but rather to separate the landscape into landforms or
landform segments that have similar use and management requirements. The
delineation of such segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous
areas.
An identifying symbol precedes the map unit name in the map unit descriptions.
Each description includes general facts about the unit and gives important soil
properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for
differences in texture of the surface layer, all the soils of a series have major
horizons that are similar in composition, thickness, and arrangement.
Soils of one series can differ in texture of the surface layer, slope, stoniness,
salinity, degree of erosion, and other characteristics that affect their use. On the
basis of such differences, a soil series is divided into soil phases. Most of the areas
shown on the detailed soil maps are phases of soil series. The name of a soil phase
commonly indicates a feature that affects use or management. For example, Alpha
silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.
Some map units are made up of two or more major soils or miscellaneous areas.
These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate
pattern or in such small areas that they cannot be shown separately on the maps.
The pattern and proportion of the soils or miscellaneous areas are somewhat similar
in all areas. Alpha -Beta complex, 0 to 6 percent slopes, is an example.
An association is made up of two or more geographically associated soils or
miscellaneous areas that are shown as one unit on the maps. Because of present
or anticipated uses of the map units in the survey area, it was not considered
practical or necessary to map the soils or miscellaneous areas separately. The
pattern and relative proportion of the soils or miscellaneous areas are somewhat
similar. Alpha -Beta association, 0 to 2 percent slopes, is an example.
An undifferentiated group is made up of two or more soils or miscellaneous areas
that could be mapped individually but are mapped as one unit because similar
interpretations can be made for use and management. The pattern and proportion
of the soils or miscellaneous areas in a mapped area are not uniform. An area can
be made up of only one of the major soils or miscellaneous areas, or it can be made
up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil
material and support little or no vegetation. Rock outcrop is an example.
12
Custom Soil Resource Report
Wake County, North Carolina
DoB—Dothan loamy sand, 2 to 6 percent slopes
Map Unit Setting
National map unit symbol: 2sppl
Elevation: 70 to 560 feet
Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F
Frost -free period: 200 to 250 days
Farmland classification: All areas are prime farmland
Map Unit Composition
Dothan and similar soils: 92 percent
Minor components: 8 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Dothan
Setting
Landform: Imerfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Linear
Parent material: Loamy marine deposits
Typical profile
Ap - 0 to 12 inches: loamy sand
Bt - 12 to 40 inches: sandy clay loam
Btv - 40 to 80 inches: sandy clay loam
Properties and qualities
Slope: 2 to 6 percent
Depth to restrictive feature: 35 to 43 inches to plinthite
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to
moderately high (0.06 to 0.60 in/hr)
Depth to water table: About 34 to 40 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2e
Hydrologic Soil Group: C
Hydric soil rating: No
Minor Components
Fuquay
Percent of map unit. 4 percent
Landform: I me rfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
13
Custom Soil Resource Report
Down -slope shape: Convex
Across -slope shape: Linear
Hydric soil rating: No
Gritney
Percent of map unit. 4 percent
Landform: Imerfluves
Landform position (two-dimensional): Summit, shoulder
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Linear
Hydric soil rating: No
FrB—Fuquay loamy sand, 0 to 6 percent slopes
Map Unit Setting
National map unit symbol: 2xn6k
Elevation: 70 to 560 feet
Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F
Frost -free period: 200 to 250 days
Farmland classification: Farmland of statewide importance
Map Unit Composition
Fuquay and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Fuquay
Setting
Landform: Imerfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Linear
Parent material: Loamy marine deposits
Typical profile
Ap - 0 to 28 inches: loamy sand
Bt - 28 to 44 inches: sandy clay loam
Btv - 44 to 80 inches: sandy clay loam
Properties and qualities
Slope: 0 to 6 percent
Depth to restrictive feature: 40 to 48 inches to plinthite
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.20 to 1.98 in/hr)
Depth to water table: About 34 to 40 inches
Frequency of flooding: None
14
Custom Soil Resource Report
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 8.8 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2s
Hydrologic Soil Group: A
Hydric soil rating: No
Minor Components
Dothan
Percent of map unit. 6 percent
Landform: Imerfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Linear
Hydric soil rating: No
Gritney
Percent of map unit. 4 percent
Landform: Imerfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Linear
Hydric soil rating: No
GoA—Goldsboro sandy loam, 0 to 2 percent slopes
Map Unit Setting
National map unit symbol: 2gglj
Elevation: 30 to 560 feet
Mean annual precipitation: 39 to 55 inches
Mean annual air temperature: 55 to 70 degrees F
Frost -free period: 200 to 280 days
Farmland classification: All areas are prime farmland
Map Unit Composition
Goldsboro and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Goldsboro
Setting
Landform: Imerfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
15
Custom Soil Resource Report
Across -slope shape: Linear
Parent material: Loamy marine deposits
Typical profile
Ap - 0 to 10 inches: sandy loam
Btg - 10 to 80 inches: sandy clay loam
Properties and qualities
Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.20 to 1.98 in/hr)
Depth to water table: About 24 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.0 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2w
Hydrologic Soil Group: C
Hydric soil rating: No
Minor Components
Lynchburg
Percent of map unit. 6 percent
Landform: I me rfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Linear
Hydric soil rating: No
Rains, drained
Percent of map unit. 4 percent
Landform: Broad interstream divides on marine terraces, carolina bays on marine
terraces, flats on marine terraces
Landform position (three-dimensional): Dip, talf
Down -slope shape: Linear
Across -slope shape: Linear
Hydric soil rating: Yes
GrC—Gritney sandy loam, 6 to 10 percent slopes
Map Unit Setting
National map unit symbol: 2xh9x
Elevation: 70 to 560 feet
Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F
it.
Custom Soil Resource Report
Frost -free period: 200 to 250 days
Farmland classification: Farmland of statewide importance
Map Unit Composition
Gritney and similar soils: 94 percent
Minor components: 6 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Gritney
Setting
Landform: Imerfluves
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Linear
Parent material: Loamy marine deposits
Typical profile
Ap - 0 to 5 inches: sandy loam
Bt - 5 to 43 inches: clay
BC - 43 to 50 inches: sandy clay loam
C - 50 to 80 inches: sandy loam
Properties and qualities
Slope: 6 to 10 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to
moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 8.0 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: D
Hydric soil rating: No
Minor Components
Dothan
Percent of map unit. 6 percent
Landform: I me rfluves
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Linear
Hydric soil rating: No
17
Custom Soil Resource Report
RaA—Rains sandy loam, 0 to 2 percent slopes
Map Unit Setting
National map unit symbol. 2ggm0
Elevation: 30 to 330 feet
Mean annual precipitation: 40 to 55 inches
Mean annual air temperature: 59 to 70 degrees F
Frost -free period: 200 to 280 days
Farmland classification: Prime farmland if drained
Map Unit Composition
Rains, undrained, and similar soils: 58 percent
Rains, drained, and similar soils: 24 percent
Minor components: 18 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Rains, Undrained
Setting
Landform: Carolina bays on marine terraces, flats on marine terraces, broad
interstream divides on marine terraces
Landform position (three-dimensional): Dip, talf
Down -slope shape: Linear
Across -slope shape: Linear
Parent material: Loamy marine deposits
Typical profile
A - 0 to 6 inches: sandy loam
Eg - 6 to 12 inches: sandy loam
Btg - 12 to 65 inches: sandy clay loam
BCg - 65 to 80 inches: sandy clay loam
Properties and qualities
Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.20 to 1.98 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.9 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: A/D
Hydric soil rating: Yes
18
Custom Soil Resource Report
Description of Rains, Drained
Setting
Landform: Flats on marine terraces, broad interstream divides on marine terraces,
carolina bays on marine terraces
Landform position (three-dimensional): Dip, talf
Down -slope shape: Linear
Across -slope shape: Linear
Parent material: Loamy marine deposits
Typical profile
Ap - 0 to 6 inches: sandy loam
Eg - 6 to 12 inches: sandy loam
Btg - 12 to 65 inches: sandy clay loam
BCg - 65 to 80 inches: sandy clay loam
Properties and qualities
Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.20 to 1.98 in/hr)
Depth to water table: About 12 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.9 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: B
Hydric soil rating: Yes
Minor Components
Lynchburg
Percent of map unit. 10 percent
Landform: Broad interstream divides on marine terraces, flats on marine terraces
Landform position (three-dimensional): Talf
Down -slope shape: Linear
Across -slope shape: Linear
Hydric soil rating: No
Pantego, undrained
Percent of map unit. 8 percent
Landform: Broad interstream divides, flats, stream terraces
Landform position (three-dimensional): Tread, talf
Down -slope shape: Linear
Across -slope shape: Concave
Hydric soil rating: Yes
19
Custom Soil Resource Report
Map Unit Setting
National map unit symbol: 2ggjv
Elevation: 70 to 450 feet
Mean annual precipitation: 39 to 51 inches
Mean annual air temperature: 55 to 63 degrees F
Frost -free period: 200 to 250 days
Farmland classification: Not prime farmland
Map Unit Composition
Water: 100 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Water
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8
Hydric soil rating: No
WeC—Wedowee sandy loam, 6 to 10 percent slopes
Map Unit Setting
National map unit symbol: 2xn41
Elevation: 70 to 560 feet
Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F
Frost -free period: 200 to 250 days
Farmland classification: Farmland of statewide importance
Map Unit Composition
Wedowee and similar soils: 94 percent
Minor components: 6 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Wedowee
Setting
Landform: Imerfluves
Landform position (two-dimensional): Shoulder, backslope
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Convex
20
Custom Soil Resource Report
Parent material: Saprolite residuum weathered from granite and gneiss and/or
saprolite residuum weathered from schist
Typical profile
Ap - 0 to 4 inches: sandy loam
E - 4 to 7 inches: sandy loam
Bt - 7 to 23 inches: clay
BC - 23 to 35 inches: clay loam
C - 35 to 80 inches: sandy clay loam
Properties and qualities
Slope: 6 to 10 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately
low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 8.6 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: D
Hydric soil rating: No
Minor Components
Appling
Percent of map unit. 4 percent
Landform: I me rfluves
Landform position (two-dimensional): Shoulder, backslope
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Convex
Hydric soil rating: No
Pacolet
Percent of map unit. 2 percent
Landform: Imerfluves
Landform position (two-dimensional): Shoulder, backslope
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Convex
Hydric soil rating: No
WeD—Wedowee sandy loam, 10 to 15 percent slopes
Map Unit Setting
National map unit symbol. 2xn3y
21
Custom Soil Resource Report
Elevation: 70 to 560 feet
Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F
Frost -free period: 200 to 250 days
Farmland classification: Farmland of statewide importance
Map Unit Composition
Wedowee and similar soils: 94 percent
Minor components: 6 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Wedowee
Setting
Landform: Imerfluves
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Convex
Parent material: Saprolite residuum weathered from granite and gneiss and/or
saprolite residuum weathered from schist
Typical profile
Ap - 0 to 4 inches: sandy loam
E - 4 to 7 inches: sandy loam
Bt - 7 to 23 inches: clay
BC - 23 to 35 inches: clay loam
C - 35 to 80 inches: sandy clay loam
Properties and qualities
Slope: 10 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately
low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 8.6 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: D
Hydric soil rating: No
Minor Components
Saw
Percent of map unit. 4 percent
Landform: I me rfluves
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Convex
Hydric soil rating: No
22
Custom Soil Resource Report
Pacolet
Percent of map unit: 2 percent
Landform: Imerfluves
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Interfluve
Down -slope shape: Convex
Across -slope shape: Convex
Hydric soil rating: No
23
References
American Association of State Highway and Transportation Officials (AASHTO).
2004. Standard specifications for transportation materials and methods of sampling
and testing. 24th edition.
American Society for Testing and Materials (ASTM). 2005. Standard classification of
soils for engineering purposes. ASTM Standard D2487-00.
Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of
wetlands and deep -water habitats of the United States. U.S. Fish and Wildlife
Service FWS/OBS-79/31.
Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric
soils in the United States.
National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service.
U.S. Department of Agriculture Handbook 18. http://www.nres.usda.gov/wps/portal/
n res/d eta i I/n ati o n a I/s o i Is/?cid = n res 142 p2_0 54262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for
making and interpreting soil surveys. 2nd edition. Natural Resources Conservation
Service, U.S. Department of Agriculture Handbook 436. http://
www. nres. usda.gov/wps/portal/nres/detail/national/soils/?cid=nres142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of
Agriculture, Natural Resources Conservation Service. http://
www. nres. usda.gov/wps/portal/nres/detail/national/soils/?cid=nres142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and
Delaware Department of Natural Resources and Environmental Control, Wetlands
Section.
United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of
Engineers wetlands delineation manual. Waterways Experiment Station Technical
Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service.
National forestry manual. http://www.nres.usda.gov/wps/portal/nres/detail/soils/
home/?cid=nres142p2_053374
United States Department of Agriculture, Natural Resources Conservation Service.
National range and pasture handbook. http://www.nres.usda.gov/wps/portal/nres/
detail/national/landuse/rangepastu re/?cid=stelprdb1043084
24
Custom Soil Resource Report
United States Department of Agriculture, Natural Resources Conservation Service.
National soil survey handbook, title 430-VI. http://www.nres.usda.gov/wps/portal/
n res/d eta i I/so i Is/scie ntists/?cid=n res 142 p2_054242
United States Department of Agriculture, Natural Resources Conservation Service.
2006. Land resource regions and major land resource areas of the United States,
the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook
296. http://www.nres.usda.gov/wps/portal/nres/detail/national/soils/?
cid = n res 142 p2_05 3624
United States Department of Agriculture, Soil Conservation Service. 1961. Land
capability classification. U.S. Department of Agriculture Handbook 210. http:H
www.nrcs.usda.gov/lnternet/FSE—DOCUMENTS/nrcsl 42p2_052290. pdf
25