HomeMy WebLinkAboutSW5210201_Revised calculations_20210623Stormwater Management Report
ESSEX VILLAGE AND
ESSEX TOWNES
Franklinton, North Carolina
January 8, 2021
Revised June 22, 2021
Y\ CA•ROC
AL z
2 642
= C' (� :
'9
Prepared By:
The Nau Company, PLLC
PO Box 810
Rolesville, North Carolina, 27571
(919) 625-3090
tnau@thenauco.com
NCBELS License # P-0751
Stormwater Management Report
June 22, 2021
Essex Village/Essex Townes
INTRODUCTION
This report presents the stormwater management design for the proposed improvements at the
Essex Village and Essex Townes subdivisions located on parcels south of the existing Essex Place
subdivision and bounded by US1 and Main Street in Franklinton, North Carolina.
BACKGROUND
The Essex Village is a proposed 18.95 acre development that will consist of 93 single family lots.
Essex Townes is a proposed 18.41 acre development that will consist of 157 townhome lots. There
is an additional 8.67 acres of land that will be used for the main access road from the existing Essex
Place subdivision to Main Street/US1A and proposed stormwater control measures. The total area
for Essex Village, Essex Townes, the main access road and stormwater control measures is 46.03
acres.
The two subdivisions will each have a separate recreation area. Water and sewer services will be
provided by Franklin County. The proposed subdivision will have two stormwater control measures
(SCMs) that will meet State requirements for stormwater quality. Only one road, Road A will be
accepted into NCDOT maintenance. All other roads will be Town maintained roads. The proposed
roads will utilize storm sewer piping to convey runoff to the SCMs.
The purpose of this report is to present the calculations for the SCMs that will serve the Essex Village
and Essex Townes projects
REQUIREMENTS
Stormwater Permits for the Town of Franklinton are issued by the North Carolina Division of
Environmental Quality (NCDEQ).
The relevant NCDEQ requirements for high density projects found in 15A NCAC 02H .1003 (3) are
summarized below:
• Treatment requirements - SCMs shall be designed, constructed, and maintained so that the
project achieves either "runoff treatment" or "runoff volume match" as those terms are
defined in Rule .1002 of this Section.
• On -site stormwater - Stormwater runoff from off -site areas and existing development shall
not be required to be treated in the SCM. Runoff from off -site areas or existing
development that is not bypassed shall be included in the sizing of on -site SCMs at its full
built -out potential.
• MDC for SCMs - SCMs shall meet the relevant MDC set forth in Rules .1050 through .1062 of
this Section except in accordance with Item (6) of this Rule.
The relevant MDC for wet ponds in 15A NCAC 02H .1053 are summarized below:
Stormwater Management Report
June 22, 2021
Essex Village/Essex Townes
• Main Pool Surface Area and Volume - The main pool of the wet pond shall be sized using
either:
o the Hydraulic Retention Time (HRT) Method; or
o the SA/DA and Average Depth Method.
• Main Pool Depth - The average depth of the main pool shall be three to eight feet below the
permanent pool elevation. The applicant shall have the option of excluding the submerged
portion of the vegetated shelf from the calculation of average depth.
• Sediment Storage - The forebay and main pool shall have a minimum sediment storage
depth of six inches.
• Location of inlet(s) and outlet - The inlet(s) and outlet shall be located in a manner that
avoids short circuiting.
• Forebay - A forebay that meets the following specifications shall be included;
o Forebay volume shall be 15 to 20 percent of the volume in the main pool;
o The forebay entrance shall be deeper than the forebay exit;
o The water flowing over or through the structure that separates the forebay from the
main pool shall flow at a nonerosive velocity; and
o If sediment accumulates in the forebay in a manner that reduces its depth to less
than 75 percent of its design depth, then the forebay shall be cleaned out and
returned to its design state.
• Vegetated shelf - The main pool shall be equipped with a vegetative shelf around its
perimeter. The minimum width of the vegetated shelf shall be six feet and the slope shall be
no steeper than 6:1 (horizontal to vertical).
• Drawdown time - The design volume shall draw down to the permanent pool level between
two and five days.
• Protection of the receiving stream - The wet pond shall discharge the runoff from the one-
year, 24-hour storm in a manner that minimizes hydrologic impacts to the receiving
channel.
• Trash rack - A trash rack or other device shall be provided to prevent large debris from
entering the outlet system.
• Vegetation - The following criteria apply to vegetation in and around the wet pond:
o The dam structure, including front and back embankment slopes, of the pond shall
be vegetated with non -clumping turf grass; trees and woody shrubs shall not be
allowed; and
o The vegetated shelf shall be planted with a minimum of three diverse species of
herbaceous, native vegetation at a minimum density of 50 plants per 200 square
feet of shelf area.
The design storm for this project is the one inch 24-hour rainfall.
It should be noted that limiting post -development runoff to pre -development rates is not required
by NCDEQ. However, this report presents the results of pre -development and post -development
runoff calculations for each analysis point for reference.
Stormwater Management Report
June 22, 2021
Essex Village/Essex Townes
PROPOSED STORMWATER CONTROL MEASURE
Two wet ponds are proposed to meet the State stormwater requirements. Refer to the construction
drawings for details of each SCM.
METHODOLOGY
Drainage Areas and SCS Curve Numbers
Drainage areas were delineated based on proposed and existing topography using CAD software.
Land use types were measured using CAD software and SCS curve numbers were applied to each land
use type within the drainage area to calculate a weighted, composite SCS Curve Number. Curve
numbers for the various land use types were taken from NRCS TR-55 and are included as an appendix
to this report.
Times of Concentration
The minimum time of concentration used for calculation of peak flows was 5 minutes. For times of
concentration more than 5 minutes, a simplified TR-55 method was used. The simplified method
calculates the time of concentration only using sheet flow time and channel flow time — shallow
concentrated flow time is disregarded. Since channel dimensions vary along the channel flow path,
channel parameters were selected for the entire length of channel flow that yield a flow velocity of
approximately 4.5 feet per second. A flow velocity of 4.5 feet per second is greater than or equal to
actual flow velocities expected in the pipes or open channels along the flow path and therefore will
yield a runoff higher that what would be expected at the analysis point.
Runoff and Pond Routing
Runoff flowrates and volumes for the proposed SCM were calculated using the Hydrology Studio
software program. The software utilizes the SCS Methodology to determine peak flow rates and
performs routing calculations to determine detention results by the Storage -Indication method.
Rainfall Depths
The following rainfall depths used in the calculations for this report were taken from the NOAA
Precipitation Frequency Data Server (PFDS). A printout of this rainfall data is included as an
appendix to this report.
Rainfall event
Rainfall Depth (inches)
Design storm
1.00
1-year, 24-hour
2.83
2-year, 24-hour
3.42
10-year, 24-hour
4.94
25-year, 24-hour
5.84
100-year, 24-hour
7.27
Stormwater Management Report
June 22, 2021
Essex Village/Essex Townes
Pre -Development and Post -Development Drainage Areas
Drainage area maps showing the pre -development and post -development drainage areas are
included as an attachment to this report. Note that the drainage areas are based field topography
where available and GIS topography outside the limits of field topography.
ANALYSIS POINTS
Analysis points for the project were selected based on locations where surface flow leaves the site.
Three analysis points were identified for this project and are summarized below:
• Analysis Point 1—flow leaves the site at analysis point 1 on the northwest portion of the site.
Runoff from this location flows along the east side of US1 and into Cedar Creek, which is on the
southern portion of the site near analysis point 2
• Analysis Point 2 —flow leaves the site at analysis point 2 on the southern portion of the site.
This analysis point is where Cedar Creek flows south under Main Street
• Analysis Point 3 —flow leaves the site at analysis point 3 on the southeastern portion of the site
where a buffered stream flows under Main Street and eventually flows into Cedar Creek.
RESULTS
Runoff Volume
The runoff volume for this project was calculated by the simple method. The runoff volume for each
pond is summarized below.
Pond ID
Drainage area
Impervious area
Impervious %
Runoff volume
North Pond
18.20 AC
10.02 AC
55.1
36,039 CF
South Pond
16.35 AC
8.93 AC
54.6
32,142 CF
Peak Flow Attenuation
Although peak flow attenuation is not required for this project, pre -development and post -
development flows were calculated for several storm events for reference. The tables below
summarize the pre -development and post -development data for selected storm events. Detailed
routing information can be found in the appendix to this report.
ANALYSIS POINT 1 DRAINAGE AND RUNOFF DATA
Development Condition
Drainage area
SCS CN
Time of
concentration
Q(1)
Q(2)
Q(10)
Pre -Development
13.11 acres
56
14.0 min.
0.8 cfs
3.3 cfs
15.3 cfs
Post -Development
9.45 acres
61
14.0 min.
2.1 cfs
5.1 cfs
15.8 cfs
21
Stormwater Management Report
June 22, 2021
Essex Village/Essex Townes
ANALYSIS POINT 2 DRAINAGE
AND RUNOFF
DATA
Development Condition
Drainage area
SCS CN
Time of
Q(1)
Q(2)
Q(10)
concentration
Pre -Development
62.55 acres
55
19.5 minutes
2.4 cfs
10.7 cfs
55.5 cfs
Post -Development to
18.20 acres
81
10.0 minutes
34.6 cfs
48.0 cfs
84.9 cfs
North SCM
Post -Development to
16.35
81
10.0 minutes
31.1 cfs
43.1 cfs
76.3 cfs
South SCM
Post -Development SCM
30.73
61
15.0 minutes
7.0 cfs
16.7 cfs
51.5 cfs
bypass
Post -Development
0.4 cfs
0.5 cfs
0.6 cfs
North SCM outfall
flowrate
Post -Development
0.3 cfs
0.3 cfs
3.7 cfs
South SCM outfall
flowrate
Post -Development
7.5 cfs
17.3 cfs
52.3 cfs
ANALYSIS POINT 3 AND RUNOFF DRAINAGE DATA
Development Condition
Drainage area
SCS CN
Time of
concentration
Q(1)
Q(2)
Q(10)
Pre -Development
13.48 acres
55
20.1 min
0.5 cfs
2.3 cfs
12.0 cfs
Post -Development
12.59 acres
69
20.1 min
7.0 cfs
12.0 cfs
27.4 cfs
Pond Surface Area
The required pond surface area was determined based on NCDEQ Stormwater Design Manual for
the Piedmont and Mountain area. The impervious percentage of the drainage area was used to
determine the required surface area. The pond surface area data is summarized in the table below.
North Pond
Drainage area
18.20 acres
Impervious area
10.02 acres
Impervious percentage
55.1%
Pond average depth
3.0 feet
Required surface area
15,393 square feet
Surface area provided
17,462 square feet
South Pond
Drainage area
16.35 acres
Impervious area
8.93 acres
Impervious percentage
54.6%
Pond average depth
3.0 feet
Required surface area
13.735 square feet
Surface area provided
16,196 square feet
Pond surface area calculations are included in the Appendix to this report.
Stormwater Management Report
June 22, 2021
Essex Village/Essex Townes
SCM Dewatering Time
The required pond dewatering time was based on the NCDEQ Stormwater Design Manual and was
calculated using the falling head equation assuming vertical pond sides. The pond dewatering time
is summarized in the table below.
North Pond
Required dewatering time
2 to 5 days
Design storm
1 inch
Calculated dewatering time
2.3 days
South Pond
Required dewatering time
2 to 5 days
Design storm
1 inch
Calculated dewatering time
3.0 days
Pond dewatering time calculations are included in the Appendix to this report.
Pond Average Depth and Forebay Volume
Pond average depth was calculated using equations 2 and 3 in the NCDEQ Stormwater Design
Manual for Wet Ponds. The interior of the ponds were graded so that the forebays are between
15% and 20% of the main pool volume. The results of the average depth and forebay volume
calculations are summarized below. Calculations are included in the appendix to the report.
Pond Average Depth
Pond ID
Average Depth
North Pond
3.5 feet (by equation 3)
South Pond
3.0 feet (by equation 3)
Pond Forebay Volumes
Pond ID
Forebay Volume
North Pond
19.4%
South Pond
16.3%
Stormwater Management Report
June 22, 2021
Essex Village/Essex Townes
Erosion at Pond Inlets and Outlets
Flows into and out of the stormwater control measures should not produce erosion for the 10-year
storm. Riprap energy dissipaters are used to eliminate erosion at the pond inlets and outlets. Data
for the riprap dissipaters are summarized below. Calculations are included in the appendix to the
report.
Location
Length
Width
Thickness
Riprap size
North Pond inlet
21'
10.5'
22"
NCDOT Class B
North Pond outlet
8'
6'
9"
NCDOT Class A
South Pond inlet
21'
10.5'
22"
NCDOT Class B
South Pond outlet
6'
4.5'
9"
NCDOT Class A
Pond Freeboard
The pond is required to have at least 1 foot of freeboard between the 100-year water surface
elevation in the pond and the top of the embankment. The table below summarizes the freeboard
for each pond.
Pond ID
Top of berm elevation
100-year WSEL
Freeboard
North Pond
384.0
381.2
2.8 feet
South Pond
326.0
324.6
1.4 feet
Riser Anti -Flotation Device
An anti -flotation device was designed to counteract the buoyant forces on the pond riser. The riser
anti -flotation block was sized to provide a factor of safety for buoyancy of at least 1.5. Calculations
for the anti -flotation block are included in the Appendix to the report.
Stormwater Management Report
June 22, 2021
Essex Village/Essex Townes
Nutrient Loading
Nutrient loading calculations for this project were performed with the SNAP Tool provided by
NCDEQ. The output from this tool is included in the appendix to this report.
The output calculated by the spreadsheet for nutrient loading is summarized in the table below:
Project area
46.02 acres
Post-BMP TN Loading
4.80 Ib/ac/yr
Post-BMP TP Loading
0.69 Ib/ac/yr
CONCLUSION
Based on the results of this analysis and design data contained in the construction drawings, we
believe that the NCDEQ requirements will be met for the proposed development. Additional details
can be found in the Appendix.
APPENDICES
Appendix A
Drainage Area Maps
Appendix B
Hydrology Studio Output
Appendix C
Pond Surface Area Calculations
Appendix D
Pond Average Depth and Forebay Volume Calculations
Appendix E
Pond Dewatering Time Calculations
Appendix F
Riprap Outlet Protection Calculations
Appendix G
Anti -Flotation Block Calculations
Appendix H
SNAP Tool Output
Appendix I
Supporting Documentation
APPENDIX A
DRAINAGE AREA MAPS
\ \\\\\ �, �`°__i1___-:`-
`- ``_\ �`\ \ \` \`\' \
Y
-- --\ \\\ \ \ \ \\ -
_- `\\ \ \`�\� \ \ \\�
\\
\\\�\\\�\\
-_- �\ ` \ \I
_ -\`\ � \\\\\\
\ \
\ \\ I \ \\1 \\\\ \\
\ \\\ \\11 1\1I \\\\
I
\ I111 I\\II\\ 1
1
I \ 1\ I \ 1 1 1 I I I I 1\\\ �
\I
�'
..\
-/ I II 11
/ I I I
// I I,
I I 1 I 1 11 11 I 'I1
1 \ I
I I I I 11 11\ I
I I I I 11 II\ 111
V<
d0
1
�+'!@
,
e
"' // I I III ` 11 I I I I I I I� 11 I I 1 �- j /'
"/ / / I 111'1//) 11. / ////
----' "/ i / / /I %/// // / fylt / 1 j /
//I /// ( \II I1 I 1
--ice-i _,j/ �'i i' �\1 ( (\e
-_-_- "%' "/_%%' 'i tip/' \ tIl 1I-\ 1l \ 1\\
_---" = ANALYSIS
I✓--- - ^
-- — P T 2\\
I / / - \� -'III I I l / ' _-- - - v \\ \ \`\`�/ `\ . 1 I I I 1 / - \ \ \ \ \ \_ -_ - \ \ I / / , I \ �I / 1
/ / / /'I �,11*'
) 1/111 1 / 1 / ' - \ \\\ \ \ \ I I I I I I I 1 I 1 / / ,� - \ \ \ \ \ \ \ \ C / / 1 ^ 1 / �/ - ii , l \` I I1/ I / / ,' 1 \\_l II J 111 1 1 / I / /--1 --\\ -\\\ \\ \ \\ \ \ - - 1 \ l l l 1 \ \ �\ \ \ \ \ \ _-\\\ / / I / / / �� �/ _ / \ I\ \ \ I 1 I \ \ \ I / / / / _/'// / ���--- = \_-- \/ 1 11 l l 1 / 1 / / /' _ \\ \\\ \ \ \\ \ \� \ \\ 1 1 \ 1 \ \ \ \ \ \ 1 i 1 1 I /'--- ---�\ `\ \� \ \\\ \ I I �� --' I I �,/ / / /' /' -- / / ' 1 1) I 1 i
\ / ---- - `\ \ / I 11 11 Ill I l /- \\ \ \ 1 \ \ \\ \ \\ / J \ \ \ \ \ I \ _ I !/ 1 / / / /
\\\\ \ `; I 1 `---\ \\ --' / f I I 1 I , / / ----\\ \ \ v` \ \ \ \ 1 \ \ \ 1 1 1 / ♦'" ---_ \ \ \ \-\ _ \111 I/ ♦' I / '' t�--- / I
_ 1 f 1 1 1 I I I I / \ \ \ \� `\ I� / __ \ \ 1 I I ' '----- Il I ^ I
\\ \� \ \ -j -_---- ` `�_�' 1 I I1 11 \ I / 1 I /I --\\`\ \\ \\ j\\\ \ ' v \ \` � � 1 1 � I 1 � / /' \\\ \\\ \ \ � \ \ I l j 1 � I � 1 � j 1 \ e` \ I //' � -- c 1 j
\ \ \ \\ \ \� �' \ I I 11 II \ 1 1 1 I I I f \\\\\\ \ Y \ \ \ \ \\ \ \\I I 1 1 I I I II I I I /
\ \ - t \ \ / 1 1 \ \\ \ I I 1 I \ \ \ \ 1\ \ \ \ \ \\ \ �/ \ 1 1 I I I I I / / �- `�\ \\\ `\\\\ \\------\\\ 1 IIII I 1 1 t- =- / \ -�� \ 1 I I ! // -_ - ' I
// I \ \\ \\ \\\\ \ \_/ 1 \\ \ \ \ \ \ ( _ \ \ \ \ \_� \ I 1 I I I I I I 1 / - \ \ --- \ 11 1 1 1 / ---� - \ -TT -/ %`11
---- -- --- / / / --
\� \ / \\ \ \ 1 \ \ \ \ \\ \\ 1 I / \ \ \ - -� II I
I \ \ \\\ -_\ \ _/ I \\ \ \ \ \ \ \ \ 1 /l \ \ \ \ \ \ \ \ \ \ 1 l l I 1 I I I I 1 \ / I \ \ `- \ I11 I I I --------/ 1 I I I I , ------ �- I / / X/
/ / / I \ \ \ \�` \ - \\\ \\\\ \ \J ( \ \ \`I\ \\\\ \ \ /' \\ 111 I \ \ \ \ \ 1III1 I / , ! 1 I I I / _ \ / / -
/ / / / \ \ \ \ \ \ \ \ \ \ I \ \ \ \ \ \ --- 1 1 1 1 I I \ \ \ 1 1 1 \\ -\ I Ili I I I / 1 I I 1 -, __/ /
�' / / / / \ \ \ \ 1 11 ) \ \ \\ \ \ \ \ \ \ \ \ \ \ 1 \ \ \ \\ \ \ - \ \ 1 1 ( I 1 \ 1 \ \ 1 I I \ \ --_- \I\I\ (1 I l // 1 I I I /�. .\ _ ---- / //
/ / I \ I I \ \ \ \ \ \1 \ \ \ v \ \\ \ \ \ \\ 1 1 I \ \ \ \ Ib I \ `. \ \\\\\\I \ \ I 1 I I I I I I I / ,/ / / /
-- �� .�/ /' / / 1 \\ _/ I I I I \ \ \ \ \ I \ \ \ \ \ \\,\\ \\- \\ \\ I 1 \ \ \ \ \ 1 1 1 I I - \\ - , \\\ \\\ /I 1 \ \ \ r---_'' I I I �-_'
Z11\I-,`- � / / / ) /^-`-- _ I I I I I I 1 \ I \ \ I\ \ \ \ \\ \�\ ` \ \ \\ II\\\ \ \ \ \ 1 I I 11 I -\ \ \\ \ \\ 1 \ \ \ 1 I I I I I 1 - ,/ / -/
\ 1 \ / I /-- \ \ \ \ \\\ \\\ 1 \ \ ( / I I I I I / /
/ / / 1 _ I I \ \ \ \ \\\\ -\ \ \ \ \ \ \ 1 1 1 I I / \ \ \ \\\ \\ \ \ \ I
♦ / / l 1 1 I 1 I \ \ \ \ \ \\ \`\ \ \ \ \'I I \ \ \ \ 1 I I I I / I / \� \ ` \ \ \\\\ \\ 1 \ \ I I I I / /'
ti.,� \ \ \ _�/ / I / i----' , I 1 1 1 III 1\ \\ \ `\`\\\ \`, \-\ \ \ \ / I 1 \ \ 1 I I I � / / I I / \ `\ `\ \ \ \\\\ \ \ I I I \ \ \ / I I I / I I I lc-,
-___/ //6� )) - �// / / I �/ I 1 I \ \\ I \\ \\\\`� \ `\ \\ \\ \'1 �/ 1 1 I I I / / 1 1 / '-`-_\\-\\ `\\\ \ \\\\\ \e I I \\\ `�' -'� / // 1 1 1 1_-- /1 / \ , \\ \ ) / / / / / / / �- \ \I\ / f / lI I I I / //r/ __� / / / /I1 \ \ 1 - \ \ \ I I I l / / / l 1 / ---\\\ \ \\ \ \ \ I 11 1 '-/ lr` --' ` \ \ \ ,, \ \ l / l / ------ --- \ \ \\ , \ \\ \ / 1 /1 1 I I I -- //- I\�/) %✓) \ <.. ' / I 1 1 1 \ \ -\ ` \ \� \\ \\'\\�✓/I / / l I j / I I % \\ \ \ \\ \/ \ \\ / 1 I I 1 _ /) / . \ // I / I I 1 \\ \ J_---- \\\\,\\ \ 1 I I / / l / / /'' \- , \\ \ \-, \ \ I I I -- / / I
r `�/ /`- \�-� \ \ \ \ \� /_ \\\ \ \ _ / 1 /^ /' -�/ / - \\ \ \\\ \ \ \\_ \ \ \ \ \ / / / / I I 1 1 1 I I , �_------------ // I
// ! 1 % `/ a _ i ) 1 \ ` \\\\\ I - \\ \\ `� \\\ \\ +' / /' / 111 1 / % / / j / ♦ /'--\ - \ \ \ \ \ \ \\\ \t\\ \ `\ \ \\ \ / / / 1 I 1 I I I / �/ /
/(/ r f !el /-/ - r -' _` ��� _// 1 \ \ - \t -----_ - \ \\\\ 1 / I1 1 / / / / / -\ - \ \ \ \ , 1 / I I f
., r - 1 \ - \ \ \ \ \\ \ \ \ \ / 1 / / / \ - \ \ \ 1 1 \ I I 1
r-, ✓) !< \! 1 \� ��_ / I \ V V AVA vAv A -VAVAV AVA\ V ` A V 1 I / / / ( l l / / / 1 / / / /' \\ v\ \\ \ VA \\VAVA _�--- - -y�1 I I A I I I 1 1 1 /
> /r- ^_I J/ O 11 , v A vv v� - vvVAV AVA\ v v A V I I I / / l l l / /1 I / / �' __ v A v ` �' \ \ I r- __L 1 1 I / i
( // ,° I_)\V I ,/, /( <� -- C A \ \ \ "`� `vv / \ \\ �v// / / / / / / --v \\ \ \ \\ \ \ VA A \ / I / T---i�--�_-- _ \ /I
/. r/ err I `�' �^ —^� ) C�y�t ..`"\ ( a, 1 / \ \ �\\\`�\>` t \\ \\ \ \\ \\ 1 I I l l I //-\ \ \\ \\ \ \\ \\ \ \\ \ \ \_/ 1i--\- \I \\ II l I I I / I I \ ?�-- _ --' ''^ 1
//- i r/ / ) rl ) cr .- ( JJg?! r \\ i -� / \ - l ! \ \ \ \ \ \ l 1 I l 1 1 / / / \ \ ` \ \ \ \ \ \ \ 1 \� 1 \ \ \ \ \ I I I I II \ \\ I //` \ /
/� r " ., / �/ // ` /" ^ %- / -.\.,� I I - \ \ \ \ \ ` 1 1 Ill / 1 \ \ \ 1 - \ \ \ \ \ \ I I I I /
r', / i !.-r - / rJP:\r^- t 1 C';t.r c- ^ - J / \ \ \\C `\ \ 1 I I l I / 1 / I l 1 1 \ \ \ \ \ I I I \ \ \_1 / \\ \ \ \ \ \ \ \ 1 I I I 1 I I -------
! / r -/ / ) \, f -) , o -� / \ `\ \\\\ �\ `i \� I / 1/ / / / 1 1 1 I / `\ \ \\ \ \ 1 1 \ \/ 1 I ,� �'\
y \ \ I \ I \ \ \ \ \ \ 1 /
rI J 1 ! // // / % L<\ / 0 1^ ate. / �r -, _1 1 \ - \\ I 1 / / 1 / / / 1 \ \ 1 1
a \ I I I l / \ \ I I \ \ 1 \\ 1 1 I I I ( /------ ___ \ I
� - \\\ \ _i I / 1/ /
\ 4 SJ 1 /r <// tn1�� rJ I ! c �aJ !�\� It� i -_-/ I - \�\\`__ l 1 / / j / // / / _-- / \ \ \ \ I I I \ \vi / - \ \-� \ \ \ I / L
/ / \ I ! 1 _ /- `` - I I / l l / / / I 1\ \\ \\ -- - 11 \ \\ 1 l \ 1 1 I /-- \I
\ i ° ? / - .. i\! /-- ) a- I / _ _- \\ I I I I / 1 / / _/ 1 I \ \ / \ \ \ \ \ 1 I / \ 1 /
� \ .-^ \ ) , `I 1 ^ / \ f c> \_- ! .' - \: `- l I / / I l / / / / /' \ \ \ \ \ �i / - = \ \ \ \ \ \ , \ \ \ I I
1 )\ �, 1\14.c._, \L_ t- �l✓&, \ /) .. _Jv 1 IL { ( ( \°t i� \\\\ /' / \\-\`� _ I / I / / / / // // \ \ \ \ \ \ \ � \ \ \ \ / - --- = � _- \ \ \\ \ \ \ \ I I I I / \ /
/<�_____
/ / \ \\ \ \ \ // _ J� \ I 1
.._ �.�_ \\ = `� - --�- \ ) I. �r 1 1 ! \`` _ \ \ , / a-i \ ` _/----''� , I / / l / , _ \ \ \ \ \\ \ 1 \ \\ ` \I I \ / /// / \- - \ \\ \ \I I l /1 / / / / / // % / // / - ___ - \1
=� c �-_•.a \ ej\\\ ` \� \ 1 \, r .r ) .\ /� / J // --\ \ \ ``\` I / / _ - \\ \ \ I 1 I 1 / /
/ ` �'_ --' _ `\ ` Q%^t� \` Q♦♦\'F\ 1( l � /-...v `� r 1 ? \� ----- / / 1 _ � - - / _ \ \ \ a 1 1_ / / / _,�_ - \ \ I 1 / / // /' / / // "^ - \ *\
�" / _�- _ y-� -- _+ \ \ / ti-% \ ZI." ) \- ra. r ��.-� / / \ \ p� / / �/ I I . / / / / - \ \ \ I TI / /-- / -/ / -
/ -. r \ // r-J,,, '`\`\t�•N, l~`_ / ` S w---------' / `\ \ \ \ / \ \ \ \ \ 1 1 I I / / /I - \\ \ \ / I 1 / / \ \/
_-- �. �. \,--''_.--.���♦ \ \\ \\ \ )t \ I s \ ` <\ 11\` / l \ \ \ \ I I I/ / /' ,/ - \ \ I / / , 1
�v �-- / \ \ \ \ \ \ \ \ I I / / / / / -\ \ \\\\ x I I I II I 1 I
I -�>� -•- \ - -Az) t'/ ✓mot( /., - _- r--� \ \1\ \\\I\ \ \\ o I. r r ! - / \ \\ \ \ \ I I \/ / 1 I I 1 / / // l I I I 1 \"
\ 1 \\ \r L:SI ) c _ I \\ \/-` \ \ \ \ I I I / / / / / 1 11 1 I 1 I I
/11 / // /- . . \ \ I. \\ \ ll r„ 1ti per- j �� --- ♦ I \ \\ �\ \ \ \ \ \ I I / /// / /' __ ` I / II 1 / \ \ I / / I I
r ✓- r / / /Z=� -- ^-. \ \ \ \\ \ \ \ \ \ �.+, `� \ / \ \ \\ \ l \ \ \ \ I I I / / /�``,� _ \ I \� \ \ \ I / / / / / / \ 1
✓ r' .,� r r.. '' / i ... 1 \ \ M-� t \ \ \\ \ \ \ \ \ 1 I I I / / / / , ` I I / / I I �_�__ /
'� -J_= ------ \ 1 / / // r ^! r� r /ar.�� _� --^ 11 \\ \ \ \ ^ \ \ \ / f=1 \l \� t u 1 . - \ ` Iil��% \ \ \\ \� \ \ \ \ \ I I / / / / ♦ " \ \ 1 I 1 1 1 \ \ \C� 1 I / / / I 1 / \
%/ ♦' --- _ ��1 1 ♦._ / r� i'ir � f �� �\\11 \1\t \ \ \ \ \- ( \ 11 S t �\ \ \\.\\ \ \ 1 I I111 I / /l / // / / \ \ \ \ ) I I / )� / / \
\ \ I -- _
1 / / '%�'' -- / # \) , /� f/L- / tr--/r / / ^.. ��� ) l \> \ \\ V \ `� `( I \ [ ! ^- \ 1 f�� \ \ \\\ ��� \ \ \ \ I 1 / / / // / // / / \ \ \ 1 - l __ / �, / \ \
/ / •/ .// I ! �... ! Il 1 \ ♦ e^\) ►, ) t_ - ) t ) \ \ - - \ \ \ \ I I / 1 f / \ \ \ I I I YI \ I / / T / / \ "
l I �� ! / ) /J/ I/f1/ / / ! r -^/- -- \} I 1\\ \ \ \` ` v \ l 1+ _ \ , \ / _-._/ \ -\- \\\� - \ \ \ I I I l 1_/ l l I I l / / - 1J\) 1 I 1 I 1 I 1 / / � �/
l 1 / / t r// / / / / /ii \.^� - .�\ \\\\\ \ ` f 1 \ f �i��` \ 1 rf w \ \\ \\- \ I I I 1//1 /,/1 1 1 - t 1 1 I IIII I I I / / �� `�`T \ I
/ I ( fj ��� ,/ s• t+� r / /! / r� /!//J f �/ \� l` \�i\\\\\ `\ 1`\\ ♦ y(1 \ \\\ tR ) ��r! , `\\!�� \ \ ! ..y Z \ \\ \ \ - `- I I I 1 / / / / 1 / I I li / b t i
1 / 1 / Il 11 1 �' 1
l I I /� -__?{I r } r I/ //ii// !///� \/J i.+�� \\�., \ \♦\\ \\\�\ t`4 \ 7\ \ l` , I a^� \ _/ `I ` \- I I / / / 11 1 -� ///i //l l/ 7'� I I I I I I /1 %' �' �\� I
f / '1 S (ram I /) / / / / r C�/r% / r-1_ \ \\ \ \ 1 / \ \ 1 C a `1 l �..� \ \ \ /1 \ _ \\ \- _ < I 1 111/ I / 1 \ / / / / ' 7�\ / 1 I I I I J / / I\
I I t^�� . - \\ \ \\ \\ \ _ \\ /� \ S - ^ ♦ I, \ I III l // / / I 1 I // / / -� 1 I I 1 I /
I J / / ! / ( r / / ! -/:. \\\ \ \ �-\ \\ \\ \ \ ♦ \ l r ! ! - ^ ) \ 1 l \'^ \ \ f .,/ \ 1 \ --, / l / / / / \ i I I I /
I I I P / ��---- . -r\! \Jt /I I / / / I /�. pl'- .1 - \ .. \(:- \ - \ \\ \�11 \ l_ </"1\• t \ L , - 1 ) \ \ \ / � _ \ L111 I(I - // / / / 1 //,/, , /I t \ 1 I II I ,I / / I \
/ sL 1� \ \\ l)\ \ \ \\ l \ \ \ \ \ \ 1 \ \ _ -1,1 \ / / I I I / r I
I I i I / ---- / / / l \ 1. / / J// !1: r --1 1 / _ / / / / \ - / / / \ t
I / /----- 1 1 / \ ! l)1 // ) 1 - ./ \\ l \\ �\ \ I. \\ti\• \ . l \ \ ,._ r 1 r,. r _ / S- / / \_/ 1 I I 1 /
/ \ I t f ) .. r \ 1\ l I\ \ \0 I ►t1'� \C tt\ `� t r- . / \\\\ / / / 1 , / /1i / /� l _-
/ I I I , --- / / / ) 11 ! I / 1 \ p\\ \ .\\ ►� \ ., I J` , \ , ! ! ^ <j--_--'' \���--= /'/' /' /, /� // I /\=/ i / \ \ 1 / I I I II l / \ \
/ r 1 I / 1 1 �___-- -- fw! / // / / //•, \^`i// //t / �,-. I f J J t'�`�\_ \\\t \ \\ . I r ♦ / r ) )w.\ 1 J / I I / / - 1
/ I _/ I I I I / 1
`` AP2 , t, ,_\ 1 - r f yZR / ``\\ `, • .) ( lr --� / / / / --' • I I I 1 / \
/ 111 I / // ! ///h ////1 t1 , ! / /r \l \� \ f \/ t \ . ) s / / 1 - - / /, !I , I I 1 1 1 r \
>,s: t L \ \— J �_ .—_J ANALYSIS / / __—___ _ I I 1 I ��� \,
I 1 \ 1 1 1 / �_ �` (1 . ) I / ! / Ij \/j /f I I 11 1 \ ( / \ \\ a. ti . \ ° / l ( ' (/ //1 1\\\♦ \\, \ \'i / t-. .,r / , --_ / / I \ _�� I It I I I 1 I I / / \
__ 2 724 700 SF
-- / l / ! / ; / / / / /f / / / [ /1 () J l I ! 1 \ \ > \ > > 1 C t I 1 ti -/\ 1 l / \\ \ ` / / �r 1 > \ \ / --- `-\- l (\ - t �- l I ��` --- \
1 \ \ I I I ------ , J //// 1 ! 11 \\ 1 \ / \ o.. I / %" / / ) \ ( / ♦ e \� - / f \ t I I 1, 1 1 / 1 \
/-- f - / r J / 1 / \ \ ( \ \ /J111� v \� \\ 1 (\ \ 1 ^\ \ r rJ \ / // \ \ ♦ - \ \ �- / I
'__� \ \ \ I I I / - f / / /// / / / !I 1\ \ \ ) 1 \ \ JR 1 \\ �\ \ \ ) / ) / \\ \ ( \ lrr- / ` /--____ - I \1 - - \_/ / I 1 I f \ 1
------,�\ / 1 1 •�) ` 62.55 AC \ 1,. /� J 1S/ / ( \ I POINT l 1 \ l \ \ ,� `_- \ / I _ , / I 1
-\\`-- I \ I\ 1 /_ * I r/ / //// /�// r / / / I \ ( \ 1 - ! (\ \ t >7� \ (\\\ \\ \\ \ `^-�_-- a� / / \\ \ I \ \ \ \ / 1 -1 I 1 1
\\ -_J \ \1 \ I ( / ----- // / /i / !/// /// J /! ti 1 \ \ t 1 !'Is '-ri,\ \ \ \ l ♦\ `� ' j \\ 1\ \\ \\ 1 \\4\ /S% // \\ ) _1 \1 / ^' eat- / / \ `-- ' \ \ \�: "" _ \-__�' / I 1 / J I 1 I 1 I r` ,r1 \
/- \ 1 \ I I /' \� ! ///r/ /// !! l ) t 1 \\ I--^�`V\` \ , \ \ \, \ 1 \ \ \ \ \ `l`-a h\T1 >-� ! / ( / 1 -.- / / / \ 1/ / -./' /- - \ \ - - 1 / I I --
-\ \ \ \ I / --\ vJ / /// ! \ \ � l ) -- \^ -1 I \ \ \\ r-, \ 1 1 ♦ \ 1 \ -� I• / \ -ri // \\ J% l/�`;I_. ! 1 41 \ . / I \ __ �/ - __'�' I \ / 1 / I 1 �� I \
-
\\ \`\ \ 1 ( /' \\ h f /// / / / 1 c \✓ 1 ) 1 J 1 J ,I+r� ` \ \ \ \` ,\ 1 1 ; 1 \ \\ \\\ \ l - C r - , Jam/ // l\ // ,__=--^- `\ - `-\� > 1 \ / c \ _-\ -_ \ / III / l 1 1 1 1 1 /\ 1 --
\ \ �\ \\ \ \\ \ f r/ / / / /// ) 1 r✓ i ; (x \ \ \ 1 `\ )\ f f J \ l\ \\ -% o %/ % r> .- - \ ! t - t t lr✓ \ �/^ - - \ \ / I I I ) I % \\ -
' \ \ \ \ \ \ \ f_5 i / / /J / / 1 C l \ , \ •;:,-I r r.. 1 \ 1f \ \ / / /J / 1 .. -%__ • ( (tF \J ) l(\ 1 -,- I I I 1 / 1 b --
1 \ \ / \ \ 1 `�/ \
-'`\ \ \ \ \ \ \\ \ \ /- ( / / - ✓ / / // r^ ./ 1 / 1 f \ -� \ `_� y IIC \ \I \ / J[_- / < 1 / 1 r -��I I , r\ \ / -�i/ - \ I 1 I I / / / / I
\ `-\ , - \ \ \\ \\ \ \ 1 \ 1 t .. / / - /r f / // / - -r- / / 1 \ \ 1 \ c ) \ 1 I ) 1 .< \ / - _-- - \ \ I I
_ -_- \ \ \ \ \ \\ \ \ \ ..r / / / / / /•- 1 //-r 1 ) / 1 \ �`' .\ l � \ / 1 J I\�l I I l l //„ / ,`� ! 1 j / < . ),-'.. \ \ 1 __ - -\\ \ I I / \`\ \ \ \- ` \ \\ \ \ l \ , / / ! / r / / >; / 1 - \ fLN.II 1 r / !11( \ \ ` / _ \ - I 1 I I I I // / `` J I
.-�---`--- ., \II -\/ \)\\\ \\\\\\ \\ \k )w`/6C /!1 /r / f / f / / f \ \ --.a)1 \ / )) -- -i ,.1�- /- / / 1 • \ III \ \ z '- r -- - -__�I/ I I l I 1 I/ 1 \ I ' 1
\ \ \ \ \\ \ \ \ 1 �\ rI / /o l /r 1 l.. -- < f t ` \ /� - r \ !f\\ /- l r a .a /l�,�i ="'-\ [ / r .- \r/ l I \\ \\ \\ I --` -_'l/ 1 1 1 1 1 \ I r
-----`__ \, \\ -- \ \ \ \\ \ \\ ( f'�t ! /..) !„)\ -J / ! ) 1 / .._^ I / `\ \- \ ^- \ II n l ..-) )� I r- l - \\ / r , I Ill \\ `\ \ / \ \ \ I \ 1�
--\ \ \ - \ \ \ I \ / f 3)t J ! ) C / \_- \ \ ✓\\ f \ I \ t 1 l I I /\`✓r--ti! \\j 1 i ^ /_ \ / -- ---
1 C / 1 / S . \ 1\ 1 \ \
i- - ---\� - \ \ \` \\ \ \ )J .i✓- r C l f <-�_� �. _ .. ` '♦. \ \ i \ \ I /
' - - \ - - \ \\ \ ~` ( __ : ! ) 11 ( /�`I. I1 f 1 1 \ 1 \_� III /\ \_�/ \ -. \\ / _ \ - \ \ / \\ , /
\ G I i� \ \ / 1 ---\ - v I 1 /
- - - \ \ \\ \ JO ti '/ __" /) / <J% Jlr -t^' \� \ `Sao_ S//.. J-, 1 1 \ ( 1 \( / J) � \^ \ \ �_ \I 1 /
`- - \ `_ \\ \ \ \ \ / // —}5/ / /! / !/-/ / 8,%,c <^ -", ' )% C- L! ! / 7 < " ` , rI I / Iv J / r/ J (_ 1 I [ \ / d `\ \\ \/ I --` "„ l l 1
___\------__- -` \ - \ \ i C ! )[1 . / / / t) �`y,{�_ -/^. ^\ 1r\ v%l \ \ / \ ! / \ ' 1b 1\/ - \ 1 \ 1 `_ `` \ \ / I 1 I --`-_x 1 I
--\ -� -�-�\ \\\\\ \ ! I "I/�-`„ �•/ .-) / /r vl+_� /- -^\ ._� t 1 r - \ >� 1 ( t ) ( I. ✓z- \ \ ` \ \ \ I /' / /
\ \ / ! ! .. -/ \ \-- \ ` -- S _ f 1 ) \ l 1 \ I I 1 / \ \\ \ \\ \ i I / / / ' - _// ` d% I I
'----------- - \\\`\ \ \\\ \ \1\\\ I - l 1 i AP1
�\ \� \\\ 1 \\\ \1\ \A' .1( /\� \\l% - r\- 11 \, \ - 1 \��� [ \ I J \ I J / /^ f l f ..1. - \1 \ , / / / \ \ __ /
-- - \ \ \ \ \\ \ \ \\ \\\ �V //. ` \\ \ \ \- _ `= -a a 1 \-,_ \% `- \ r- / \r J / C 1 ., ( f \ / !/ 571 016 SF / 1 \ \_ ` / (-/ / / ,/ i � - \ l I /
------------`-- \\\ \ \ \- \ I \\ \ \\: \ \\ `i-! 1 __ - \ \ � ` \\ r� j- J ( r- f f I� I \ -✓ ( - \ __\ - - \ l / - \\ \\ / \ -�
\ . \ \ \ `\ \ \\ ,.y �\ IL , \ . y1` \ � �' ( / '\ [I 13.11 AC ` 1 _ ` , I . , \ \) /
__ ___ _ __ \ \ \\ \ \\\ \ \ \ \ \�\\ \\\\ \ \-- - - ` tl�Jti.. \- ✓�, �•\ `�.. `\ ii✓� / / / //\ rJ /( ) I ( / _) [ 1 S f S j__^r -- `\,.r.`/ _ 1 / \ \ \ / / I I / \I \\ \\./ / I -// \\--
--- \ \\ \\\\\� \� -- \ \ ��\\ \\\`^ \..\- ..� `--_- - (\lj/J 4 \- \-- -\ L �. ' //% r C l - i 1 11 1 ti! J l \I \-( I \ / / i \ / 1' -
\ \ ` \. i, .-,l \ \ L \ / -\ Q \\vn \/ ! / r , 1 .� / I f - 'I-- _. r
--- _ _ -\ ` \ \ \\ \\ \ \ \ \ 1 \ \\`\ 1 �� �- ` --- \_ _-- i I , \\\\ ^\ 1t - /` \ - -/- -r^rrJ� /! \/ t ( . - / f J�- / I) `-\_ / -� 1 \ \\ / / / / I i I 1 1 / L_/-\ -
\ \ \ \ \ / I \� -� \ -mow ... -_ ✓-[ 1 ,-n\ - \ �.i---. --r ✓ !`r.+.�-
--\ \\I \ \ \ 1 \\\�s \\ /J -`--- ^` - '- r/!1 s\\ \t\/l( \ t r ti 1\ \ i / // //` /� // rt ^ ( j f /j r `fit Z`-^ ��-_ _ \ \ , //\// /1 \ - / \
\ \ \ \\ \ \ \ \ 1 ) -�i.._�-_-^ ti\l\ % 1 \ - \�-\ \- .- / r / ) \! _ I / - �a J I f - ,If / / I
- ------ -\\\ \ \\\\\ \ \ / \ - �' \^�\``` i\\\ \�\ \\fit/ Y\\ \ l l `^-\\^ \\` N /Jlr % ) r % l / , /- / % rJ l .. /r.1 \ \\ / / / , ti •
--- \ \ \ \ \ \ \ \-/' Y:� \ -\w �_ � -\ \ \.., \ A 11\ w\ \ \ It \ \ > \-�-_�`` / � !\^ /__✓ r � < 1 � Ct I / 6t \ \ - I -- / / � \ `\
\\ \ \ . .`N �a - _ r \ .� \�- \ \� �.t\� \. `a t \\ -. l/� - ..-/-/ /////.._, r t. ( \ t /"r / -r/ f =i '{l 1`^`` \ `^_.`` /! �f ` ' / / \ , 1
\ \ \ J 1 k_� / I \- \ \ _� _ ea �e
,\\ \ \ \\\ \ \ \\ \ - - ,, \ L \ \ \ v"`\ __ �.r- ! f r-! 1 \\ \ r-. --_J C S r , r/ \ J./Yi • i �" J\ i --
__\ \ I \ \ \ \\ \ \\ \ _�, ., ` ( , ) \ �) I }•�� ._ .. \ ,-_ /-' ✓/ e„//// -.. f\\`-- I- ____ r/ -1 1 ! ✓, `\ _ \�,, /f t--- r S. Ott / y / v. la\� 1 - \
-- --\\ 1\ I \\\\\\\�\ \ \ ANALYSIS `,\ '` \%�' ,,,Z\i ( tI) ` \r�\\ +..w� r � Q r.-J\r t \\\1" - �^_.r/ /" /r /' / _-ems ' -.f J f < r � -
/------\ -`\ l 1 I I \ \ \ \ \ \ \ \ I `� \ < J/ )! l t �, \ , \ 1 __ ._ , - _/^ - / -_. ../ .t a o I -?I I I I i / / 1 I 1 1 \\ \\ / \ \- p t n \ ri -�,-., ary 1 \ I i \i -.-ti / / I 1 \
I / \ \ 1 1 \ 1 \\\, \ \ POINT 3 ) ` I -r -- I I ! 1 1
/ \ \ \ \ 1,! n / \ I \ \ V 1 eX _--- % - n..-i - - 111 I I I 1 �`•� � P -/- \ r / / / J-�`- 1 i I 1 `\ \
\ f\ K, I \ \ r t , , \ II '� !if 1 \ 1
/'-- \ \ \ \ \ \ \ \ \ \ \ \ \ I , I , r i ) AP3 \ \ \ \ - �- !^ v `1. - --� I� T \ ` l;Irk 1 .I -/ / r-
I' \ \ \ O �+ }r\ I I / ! !< 1 ?�---1 I I I I 1_ I rr i `- -"'` \ / C �. \
' / I \ \ \ - r 587 000 SF \ _ I I 1 / 1 11 I I I I; 1==--I 1w-1
/ / \ \ \ \ \ \ \ I \\ \ \ \ , \\ \ \ \\ \ I /---__/ / / // I / - � ,,- ,�- l \ -1 \ \\ -_ \\ I \-- \ \ ( -. _ --- I i I ""�..c i i I i `i `� o r /-- // rr^' \ I j ) !_/ // \__`�- /
\ \ \ \\ \ I \ \\\\\ \\\\ \ / / / / \ \ \ �- \ - I \ \I I / \\I�
1 I / \\ \ \ 1 1 I I I \ \ \ \\ \\ \ \ \ �\\ / __ _-/ / , / � \(> 1� \ \ \ - = \ 1 1 I I 1 1 I / I I I i i ' � _ -'� /�'_ ) \ / < f 1.:♦
,\-_,, / / // / .. P - s : \ \ \ ^ - `\ 1\ 1 I \ --1--_ I .� // h�III -�11 �� I / -----i I I --� , ```I `� `04 ^r ••-•- IIIl l- _ --/ J t 1
I I \ \ \ 1 I I I II \\ \,
\ \ \ \ \ \ \ / / /' \ \ ,% 1\ \-- \ \` \'=1 �__- \ I \ \ \ I \ 1 1 i� II II I I I I I 1 1-- I ' r/ I\� %\\� I L17 ,JI r\ y __ __
I \ \ \ - \ \ / / \, - \ \ \ -\_ I \ _ ----- I I 1 ( �I ' I \ / ^ V / \
I I \ \ \ \ 1 I \ \ \_ -- \\ \\ \ \ \\ //// / / -- r \ / 1 \ \ \ 1 \ \ \ \\ \- \ -\ I\ \ 1 \ _ _ /- ---III i i -- r----- i 'l f, ., 1 C \r 1,1 / '-_-
_— __ �,
I I \ \ \' \ \ \ / / / /
I I I /�\ \ I, \ \ \\\ , \\ `---\ \ \ \ \ / / / -�.z._ /Sl� \ \ \ \ - 1 -- I-----�- \ \\ -- I ____ _-�I '- i ''i--- - I , , I , i 1 ' I------J 1 i �\ \ `�-._-.�-I r \ I \
I \ \ \ \ / _----_ t \ \ \ - I - -�- _ I 1 i 1 -1 /
`l t - \ J,n.-
,
-------__- L_
I I 1 1 I \ \ ` \ \ \ \ - / / "/- / I \ 1\ \ I \ \\ \ / / /' l- II I\--- I 1 _I - ----J - ,- r�/ f I \
- - -' - - - - r-----, \
1 I I I I 1 I I \\ \ \\ `\ \` \ \ \\- // // // / `-= -�� a� / / r/ \ ;\ 1\ \ 1 \ \ \ \- L__ / - - - l / _ ' 1 \ T I I I --1 I I /
__ _ a -
\\ / / , I
1 1 1 I I 1 \ \ \ \ \ \- \ -_ / i _ / I /" _I_ / I i _ I I 1 1 I I I 1 ` i � � \ - -_�
\ \ I \ \ \ \ `\ \I \\ \\\ \\`- ----'____ /_'''--_____/ ------ - - / - - ---1 I I '------II 1 ---i i i `-----' r- -J I % J-- _n11 f / /\
`\ \ \ \ 1 I 11 \\ \\ II I \\ `\- __ / -- -- -- _ / 1 ---- - \ - / I / / / / II I I I /I - I , i I I I 1 f ' I I 1 �. ,, I / -
\ \ \ \ / I 1 I \ - - - '�� --- // / _ / 1 ' _-\- - - - - _ - \ / / / >.� I �a�--1 i--- I ; - ; ------, r- - i , I % % . `y' ' J // /
\ `� 1 I 1 I \,_--�' \\ - /'/'-------_- // --// -_��'� \\ I 1t `-� _ _- -\ -\\ l 1 I / / / I �'`------- 1 1 I I I 1 I I Y----,-1 I I • , I i �/'!!- �� / ,/ / /
\-\- \---_ / 1 ) 1 I -- _i, /// --_-/ ___ //- 1 ---- I 1I_ -I i ' i L I `\ ,, , ,I' ; / / / /
-\-
_ I II I i i I
\ ,, \ `�- -_-' / ) / - / / i-''" --- --- - `\ �-- ` T - _i l l I / l I 1 \ ------I I - 1 -----� 1 `` -� r` / / / /
\ /' - a^_c� / 1 -`---' ' / /---- -\ / --- --_- f/ _' �`-� -\\ ) /--- //`� / / I / , I l I ( \, �i - i i i-----i -- I -�1 \ % - / I / _ "
_ _ s ' _ I /
j1 K ---' _ -
\ '-_----/' / / /' \ \ \ I I -_ / / / / /' \I `� \ / /� / Y l 1 1 I 1 1 I I il 1 I i ; I 1 I 1 1 <�!% f' ! ,% JI1�_ - /
I I 1 / `-- `-_--_ ) �'/ /- / / / \ \\ \\ I \ / / // / 1 ) \ / / ♦-- -/ / /' I I , / I I I I --_-_---I I I 1 i i I ' `, It _ /
I I 1 1 ( / /--\ - - i� / / \\ /' \ / 1 / / ��/ / \ \I 11 1 I I _ i /' i' / // J I `�� ' I --- ' 1 1 --J I I 1 -� �� \ 1
1 1 \ \ I / \ \ \ - \ 1 / / 1 / r / / / / / \ I ---, 1 L-------J ----- \ \ 1
I / / / \ \ \-'' / I /1 / --\ \ 1 x / - / / --/ r / / / 1 I /� -- ----- r---� \ \
1 \ \ \ \ 1 \ \ \\ `- --- --- \\ `. , / // / I \ \ \ I \\ \ \\ // ^ / / / I 1 / / ' 1 1 I 1 1 I - i 11 i I, \ \I \
1 \ \ \\ \ \\ `\ _I 1 `- - - \ `� / / / \ 1 I / \ / \ \ 1 - / / / I I r 1 I I I `, 1 I
11VV�� i 1 �' / / ♦ / I I / 1 i`�� `` i i 1 i i i i t 1 1 I I , ,% \
I 1 \ \ \ \ / - \\ `^� \\ I / / \\ / 1 / / / \ \ / I / / /li___ 1I _� / / 1 / 1 1 \ i ' ' 11 '11-----111 ili__ `, ` \ I
1 \ \ \ \ / \ \ ) \ ` I I I \ / / / / - \ \ \ - / / / / _ / \ \\ 11 1 11 / / / / / / / / ' 1\ 11 \ ♦� ----- L---- L J --- L J I , 1 / / 1
11
( \ \ `- ` \ I\ - \_-' / / __-�' /'"' �_'/i{_ 1 ) I / / / / /I / / / I 1 i I I i`��. `fit _ ! r ^` / __
i - -
\ \ - j \ I 1- - / \ \----- "_�_ _'i - / / / l / i/ / I I 1 ! i iI I �t _— _—__ ----- ' '\ /
aL
\ \ - - - - ��� ccc - - - - - - _ _ _ _- _ _ /J / / _ - - - / / / ,, / / / /' / / 1 1 ! \`-- - ( f i i i ----- i i ----- i i -----� r-----� r-----i I ---i r------ r-----I r----- �\ /
\`\ , \, , _- \ - / / / ---_ �_'' _ / __ _1 / __ - _ I 11 I I I I 1 1 111 111 111 I 1 I I , , ' ` , /
\ \ _ / / / / / / / / / 1 \ /� 1 I I I I I I I I I I I I
'' � ---_' _ - I/ I 1 1 1 1
-_ - -- _ _ / / / // / / / /� I I I I 1 I I I I I 1 1 I I I I 111 111
\� \\� \ \� `-_-``--'"' _�' _ \ Q- \ _ - _ i/ / i-- i� �--- -' �- i / ' -\ _ - / __ / l I / --- / _ ___ I 111 111 111 111 111 I I I 1 111 111 111 1 1 I I ` `, `` � %N / // I
- __ _- -- -- _ / / / / / I /� //,- ____/ I I I I 1 1 I I I I I I 1 1 1 1 1
\ \ \ \ - _ ' - `- _ _ �' - _ - - \ \\ \ - - i / "- i _ i _ _ = _ _ — - - _ / / / �_ / _ i /' / I 1 / - I / _ J \ \� ------ I L`---J L----J L-----� L-----' '------' I-----' �-----' L-----J L----J L-`- 1 1 . / / _ _11 II
` ` \ \ \ ____ _Is I
\ \---- �`\ / / / ---- '-'' ---- / , // ' / / / i / // _i _ / / 1 / / / / // _''� . /� \\\\ _ I / l 1 \-- __ _J L-----J L------- -\�a ( I l-
\ \ \ \ /' / / 1 / / / / / / / 1 ♦ \
\ \ \\ \ -_- _ i'- -- -- --- _- -�- -�\ ��\\- / / / / / 1' ///////' �'' / /�_ '/// // / ' ' ` �`` \;\` I 1 I l- - - 1 \\ "� _-- '/ \ \\1 1 I \ \\\ I V- 1 '
`�--�- r-
`---------- _-- ----_ ---- - _--- _ ,----
\ \ \ -\ - �\\ � ,v,-_ I I \ I1 -
_ --___-____-- \\ \� \ I I I _ -- \
\ \ \ \ \-- ----- - _ - ----- ------ --'i' --- \\` \�"\ - - �1 I / \ \ \ / / / / / / _� ' _---- -- 1 1 I \ 1__ - --
\ \ \ \ \- -__------- ---' i-----------_--i'_i- > ` \\\� \ \ -- �- - I -) I / I\ \ \ \ I / ( 1 / / / 1 / I \ ( If \ I / /'- --\ \ -''-_` 1 1 I \ 1 \ \ I 1 I --- -- --
\ \ \ \ ` - '---------- -- I 1 \ \ \\ \\\\ `- / I I \ 1 / / / 1 ( I / I / / I \ \ \ / �__-- \ \ i
��- - I --_ \ I I `-_ -- - -\\
\\\ \ \ --------'------ -'_�-------------- I I 1 \ \ \`\ \\\ \-�- ` ---- / / \ \ \ 1 / / / I 1 I I 1 I \ \ \ \ 1 / \ / / 1 - \ __' "---- I- - __�-_ \ __ \ I - \ \
\ \ \ \ ` --- _-- -__-- --- /�' ------ -\ I 1 \ \ \ \\\ \ \- - _ \ \ \ \ \ 1 I / I I 1 �. k \ \ / / / \ �\ 1\ I -- - \ \
\ - -- - _ '/ _ -- I \ \\\\\ \\ \ \ \ \ \ I I I 1 1 1 1 1 --/ I \ \ / �� // - \ \\ I \ J- I \ I 1 i' I - \ \
\`\ \\\\ - -- -_--' _/ /_ ------ - - - I \ \ \ \ \\ < 1 \ \ \ I I 1 1 1 1 1 \ 1 1 �. \ / , / \ I / \� \ 1 1 1 I -- \ \
--_ --- /_ - -\ \ \ \ \ \ \ \\ \ `�--_ >1 \ \ \ I I 1 J \_ \ \ / ---- \ i ` `
\ \ \ \ -� - - _ //_i' __-- -- \ \ \ I\ I\ \ \ `\ \\ \ \` - \I - \ \ \\ \ I I 1 / 1 I 1 I \\ _ice' \ I-` - - j �'� 1 \`J i \ \ - \
I\\--- --��--------- i__/-, /'\\ \ 1 \ \ \ \ \\\\\ \\\\`\ \ 11 \ \\\\ 1 / I I 1 II I - __ I� -\\ - / '� \1\ \\ _ ".1 \I \\ \\ I 1 \I I \\\\\ \\
\ _ --- / -' i / - . / / � / _ \ \ \ \ \ ` \ \ -� \ \ 1 1 / 1 I I 1 I I 1 - /' i - \. --'I __ \ --- -- __ \ / 1 I ,1 \ \
- \ -- _ / / / / / /--- \ \ \ \ \ - ��- \ \\ \ 1 1 I / 1 1 II _ __ - \ I /---- \
<= / \ / / / 1 II 1 / / I / \
\ \ \ \ --_ ` --- _ =/ / / / ,, ,, _ / - / \ \_ \ \ \ I \ \ \ \ \ \ \ �_ \ \ / / -- / _-' -\ \ \ , � \ / / / / / I 1 1 \ \
'/ // / / / \ \ \`\ \ \ \\ \\ I I 1 /// I / I I 1 \
\ \ \ ---- --'� / /' / // ' ' %' _-_ \ \__, \ \ \ \ \ \ \ I 1 \ \ \ \%\ \ \ �J`_---\ / / _--- -- \ \ ----- . d- 1 I 1 1\ \ \
\ \ / /_ _ \ \ \ / / / 4 ,�t / 1 1 I \ I \ `
1 / / / / / \ \ \ \ \ \ \ \ -♦ \\ \\ 1\ / / \ \ 1 \ / T - 1 \
/ / / /' \ - \ \ \ \ 1 \\ \ - - I/ j11111 1 1 1 /i / / /'' / ) \ /� / / / / / / 1 1 _/
\\ I I i 1--- _/ // // / / / _---' _ ----- ` ---` -� \\ \\\ \ \ \ \\ \- -- ---- 111II 1�` / / / / / 1 / / : / _ // i/ /; / I l -�-
\ \ / I I I I / , / / \ /, /., I / , / . 1 1 1 / /- \ \ -- \\ \ \-- `\ `\`,\ ` `\-� I \ -,:Z---------\•. \\\\\� - _//r' / / // / I / j i % / / __ i _ / / / / I I ) ! \ I
2
,_
a
Lk
z
O
Lu
>.1
i
r-I
ti
Lo
0 au
N
E.=
z r_I
O W
U=
e Lp
= o
=U
U) a
Z
=c
(n
= � C
W r)
M ,
.
G
,_1 ,
00L�
o
O�J
W
1m I
0) m
a 01) z
Z L„
aw
wZ
V
�:
ao
W
W L/)
V) W
W
w
J
or
a
U
H
H
O
U
In
u
z
z
0
z
J
z
a
w
LJ_
PROJECT NO:
DESIGN BY:
JPE
DRAWN BY:
JPE
SCALE:
1"=200'
DATE:
2020-04-20
SHEET NO:
SCM1.1
PRELIMINARY DRAWING -NOT RELEASED FOR CONSTRUCTION
1 / �' '--�- � \ -\ \ > \ '\ -� \
I I I 1 I , I / /� \ \ \ \\ �_ _ \ \ l
\�- \�` /
\ \ 11 (1 - -�� (' / ) \ ( `\ % 1 III I 1 / l l / / I` \\\\ \ \ \\ ' \ 1 \ I\ \ \ \ \ \ 11 -_-- \ \ / r
\ 1 I / , 1 1 1 / / - \ \ \ \ \ \\ \ \ \ 1 / - \ I
\ \ \\ \ �`�� /' \ \ \ ( / / ---`-\ / /l1 1 1 1 1 / \ \ \ \ \\ >,/ 1 \ \ \ 1 I j / /� \ \ \ \ \ \ _ \\\)\
I I \\ \ / / ��-----_ \ \ \ 1 v \ \ \ \ \ I -- ` \ \ \ \ _ - I I '
\
\ 11 1 \ I /
_ \� \ \� \ 4". .`\ \ �♦ I / \\`\ \\ ��\�. r \ \ / 111 \ \ \ \ \ 1 I \ \ \ \ \ \-\ `l 1 l l 1 I I I II I I I I/ \ 1 I t- - -- -�--------__-- \ \)
� \\ \ \ \ \ \ \ \ � • . 1'^ '. �'T � Q I \ \ \ \ �-�� \\ -/ / I 1 \\ \ \\ \ \ \ l __ \ \ \ \ \\ \ \ \ \_' \ 11 1 1 I I I 1 / 1 \ -TT / /
\ \ \ \ \ \\ \ 1 / \ \ \ II I _
\\\\ \ \ 1 / \ \ \\ \\\\ \ 111 I 1\ \ / �� ` \ 1 IIII 11 / --------/ 1 1 I I I I I I // _------ -
`` \ 1 \ \ \ \ \ \ \ _- 1 1 1 I I \ \ l ` \\IIII IIII I I I /- -
\\ I I 1 \ \ \ \
\ \
`� \\\\\\\ ,\\ \\ '\ \+�♦it / // / / 1 / - 1 , I ( 1 \I 1 \ 1 \\ \\\ \ ---\ \ \ II\\
AA
\\\\ \\ \\ \ I Il / 1 I I \\ \\ \ \\\ \\\ \\ \ \.-
\ \ \ \ \ 1 I 1 / I / \ \ \ \\\ \\ 1 \ \ \
\ I 1 �
\ \ \ \ \ \ \ \ \ \ \ \\\\ \. \\ e \ c) t� r 7 ( 1,J �.i �) � � ` ''/ / / / /� 1 1 \ 1\ II \\- \`\ `���\ `�� \ `\ \\ \\ / � / I I I 1 / � / / i � � /�' -----\�\ \ \ \ \ \\\ \
I \ 1 \ \ \ \ \ 1 1 1 1 1 1\\ 1 1 _ � +� \` !{\ i / / % /` � �♦ 1 � �-' I 1 \ \ \ \ � \ - , _- `\\\\ \ \ \ \ \ d / / / / 1 1 / / / � / / / / /'-`\ \ \ \\ \\ \\ \ \ \ \ ♦ / I 1 1 I / -- / /
\ \ 1 / I I f -
If
/ _ _
/�---------AA-
- ,
T ♦ \ \ \ \ 1 / / \ \ \ \ <
A, -
-A
/ I I 1 1 11 \ 1\ ' // ,l,/ /„ / / / / // J -♦ `\.-+_..-.... / 1 \ \ \ \ \`\ \ : ,-�\\\\ \\\\ \ \ \ \ 1 / / / 1 1 1 / , / � / / � \ \ \ \ --�
_/
\ \ \\ ``�J \\ / --- \ \ \ \\y \ \\\\\ ) r- I _1 I I l 1 /
/ / / I I 1 I 1 1 I I III 1 11 I ♦ / // r/ / / // / /i ' ` ♦r \ 11 ) ) \ \\\\ \\\\ \\\\ \ \\ \ \ \ \\ / l l l / l l 1 / / / / l / l / /� —�\ \\ \ \ \\ \�\ \ \\ \ \-// /-\ I \ \ 1 I I I / r--�---�--- I -
\ \ \` \_.�,yJ1 \\\\ \ 1\/ / 1 I f /� I / / / / / / \ \ \ \ \ \\ \ 1 \ l / / I I \ ?�-- - __ _
_ ' //,/ / , 1 I I / /� l// l l � ,; � ) ) / // / / 1 //- i ♦ i �•! ri' �J vl „\ a� w_ 1 / \ \ \ , l 1 / l / l / / f / --� ` \ \ \ \ \ � \ \ \ I � 1 1 \ 1\ I\ I\ I \ - -`__ _----- \y/
- / -yam.. ( S JJ \♦ / / I \ \\ `� � J \� \ \\ 1 / / � \ \ \ � \ \ \ 1 \� \ f / I I 1 \ \ I /, �_-_-
_-_-' \ \ \�� \ 1 / ,l / 1 / / I l l 1 1 // \\ `\ \ \ \ \ ) 1 \\ \_I \ � \\ 1 1 I \ /
\ 1 1 \ / \ \ \ \ ---'
-_____'' '''/ ,///// / /// / / / 1 y \ t / (! f / ♦ r .�/ i -)' '' t/ .) � � ) o -^� _�/ \ \ \ \ \\may �.\ \, / , I 1 / / / / , / 1 I /'- / '-` `\ \\ \ \ \ 1 III 1 \ \\ I \ \/ \ \ \ \ ♦ \ \ 1 ( I \ I I I f ,'\ /
\\ 1 I ------ I
- -' �' / // / / /// / / / i � I I )! t / / // rl 1 1 ♦ ) l�e -1 I , \\� \\\ \__/ I / 1/ / / / / /---/ 1 `\ \ \ \ \ \ 1 1 1 I 1 \ \ / /"\` \`_: \ \ \ \ \\ \ \ I I 1I /
-----'/ i/i/ j/ j/ /�/ b S s\\ 1 i t ( 1/ 1 % ( + ! iJ �� i -_-// I
\ 1 1 1 � I '
�. /,/ /,/ / ! t\ !r t \t �\, ! I I / POND BYPASS r ` ) ) ' / I 1 // / / / / \ \ \ 1 1 1 / \ \ \ \ \ I \
r:-! 1,338,650 SF y l / c> J _ - / / / / / / / / \ \ 1 \ \ 11 \ \ \ \\ \/ \\ \` \ \\ \ \
.� . ANALYSIS � 30.73 AC
�^`�^ -'�� ` `� '� C \�` � / V 1\ `mil ) \^ ��` /) i \``== �`/ / /1 / / // / // / / `\ \\ \\ \\ \ \ \1\\ \ ` \ \ \ / /// /i'_�-=�`� \` \ \\ \\ 1 \I / / / / / / / ----_- ✓
-- __ POINT 2 - --_ _ \ , -
1 ftq• tee. ✓� \ ..:� \ ..� !\ IS J / / .1 ` '�-. .. / \ate ra..a r_� / / \ / , / \ \ \ \ \ AtIIA/// \
;/ _. r �.... \,--- '- \\♦ \ \\ , tc \ 1 e ti\� J L \ �\ / ) S / /'^^-------- / \ \ \ / \ \ \ \
------ \ \ \ \ 1 J t \ / r.. y / �� _ \ \ \ \ IIII I \ / / / , / `\ \ \\\)\ , I I I I I / i / 1 I \
0 `: /� I \ ` \� ( �i--\\ \ \\ \ \ I I / , // / /// �^`\ `\ 1 11 1 \ I 1 1 I I I / / I I 1 \
i _ \' \ \ \ + ♦ M ` \ ♦ \ �\ \ \ \ / \\
\ �\ \\ \ \ \ � ) -•� \\ \\ \ \ \ \ \ \ \ IIII I / /// � ___
1 \ - •� \ 1 1 ♦ \ �) (l \ 1 cl �� \ �. \ \\ \\ � \ \ \ \ \ I I / //
\ ♦,,. \ / ` \ \ \ \ \ \ 1 I I
/ , I 11 �-__' � • ' - ,`'l \� ♦ \\\\ ♦ ,`\\ \ ` \\ �` �,,r! ��`/�, \ \ / ..y L�
, ^ `\ \\ 1 , \ \ . \ . - - \ \ `__< III I 1 \`�.
�,., � c � \ r\ \ \ ♦ . � � yJ , ` 1 ` `�. I III I I /l � , / I 1 / -1 /i/// ( I I I / '`\.
I r, � � \\ \\ \ ♦♦ + !/� � ♦ 1 ♦ �--- \ � III / / / / 1 / // / � \ / , I I I I � I � , � \ I
// �1 1 1 1 1 / / - / 1�., �a \l� ,\♦ / fi ` t\ \ ♦ ) S / / / - / / l l I i I I 1 I / \ \i \
ANALYS S r� / . / _ / I \ . _ I I I I , 1 I , , , ,
1 \ \ 1 I-------- 1 !' " ,�\ \ 1 J v \ % / A ) \\ 1 + + `\ \ /\ \♦�� / -- _`` I !_ \ /� �j/ f \'/ 11
I / ----- i Ir , i �I \ _ ! 1 / / t \ 1 / 1 f \ t ♦ ♦ / / l _ - \ / / I I I
\\\\ IA1\ , .- . , , , // (, \, ti POINT 1
_-\\ V I � ✓ � � , � \ ��1 � �\ � / / / / 1 1 -_ � /I / J e•„ 1 . % I � / `\� �� ' � \\ / 1 I l / I I I 1 A \
\\\ \ 1\ (\ I \� I �„- I \\I �� �� / ^ J` \ � / // f \ \ \♦� /- i ,�-\-`` ` `` `_- _ \\ / ( I I I / / / I 1 / \1 \ II \ `\
DA TO SOUTH POND ,!
\ - J ) ll♦ ) \ \ / `�_ __-\\ _/ i I I 1 I I / / I `/\( I b -- -__
1 / I\ 1 I 1 .� .+. r / / ! \ \ ♦+ -. ---�\ \ I 1 I // / / / I�
712,300 SF ` `- t
16.35 AC /a, Y= _ ,— / )` u \ \♦ / / ' I I l / I ( \/
/ 1 1 ) !~ v cr � ^I- ; \ Wjll ` �` ♦ \ I �\�\\ __= 1\ 1\ \ 1 I1
. ." AP 1 I z �„ I l I ,
\\\ \ � 1 1 ! r 411 728 SF _ \ \
\\ \\.
\ \\ \C\ wy //I I JI
\\\ —1 792,950 SF _ �` / / / l Ai ``\\ \\ ,' \
----------------` \ \ \ \ \ \ \\ \ \ \ / 1 ss. a.�a / -...� 1 00, ) / 1 , 1 i �^ _/ \ 1 \ `mac / 1 ► \ / \ `
---------------\ \ \ \ \ \ \ \ \ \\ \ \ as �. I < .- i
--------------- \ \\\ \ \ \ ♦ \ \ \ �`/ry
----------- -`� \ \ \ \\ \ \ \ \-i/ ��
---------------\\\ \ \\\\ \\\\
-----\ \ 1 \ \\\\ \\ \ \ \ r \a_ }a\. .. ^\ r / // 1/ % \ f\ - / 1 a ) \ y t�i f\ /1 ,W, /„.. /xAAA
\ ANALYSIS - - rr J _ '" ,
\ I I I \ \ \ \ \ � \ � 1 \ _* 2 y 1' � \ \ �-,/SI ✓.,, tJ/^'i`'`^.
/ \ \ \ \ 1 �\ \ \ � \ \ \\ \ \ I
\ 1 \ \ \ \ \ \ \\ \ / / / /
-_- -- I I-
548 450 SF
If \ \ \` /------' // / / / \ --+ 12.59 AC ----� \ 1 1 I 1 ,
I I I 1 \ \ \ \ \ \ \ \ SINGLE FAMILY 1\ 1 ' 11 If i /1 - - i \ / \1 ^ l/ S I \ \ \ \ I I \ \ \ \ \ \ \ \ \ / ` � - dy \ \I \ \ \ \`�_ I -_- i ^- -- fill
� ' _x I i'-----i I I � , -_ I I 4 / 1 l
I I \ \ I I I \ \ \ \ \ / / , RECREATION �, \-\.-�--
\ 1 \\ \ \\ --\ \ \ \ \ \ \\ \ �/ / //�.�` -\\ \\\ \\ -- -- -/ --
/ \ \ \ \ \ \ \ ------ �/ , /' /' `� _ / l� \ \ I 43,467 SF `\ - 1 `\1 \ -- _-_, 1 'll--- ----- I 1 I -----'
11
\ \ - ) I I I ---- r'
I i , \ \ \ \ \ \ \ \ \ \ \ \ \\ \_-_- '� ' '/ ----=\ )/ 1 1, -'` T `\ \ \ \ ` \` /' ------ III I I - - - -'-- --- ---
I AA \ \ �/ �i'- `+�_ L
_ \ \ \ I I 1 I _ � I
1 1 1 I \ \\ \ \ \/'/ ---^- -' �. � � / 1 \\ 1\ \ \ / _-`I\ `` \` - 1 / / /i /� \1- \--- I � , _- ' -- ' i L I -� J
\\ \ \\ `\ \ \\\\\ // // \- _ 1\ \ 1 \ \ `--i ' - II --a- I I 1/i-----, i i / I \ \ \ \ \ \\ , / \ I l �\ l
i� _` N 11 I ______ 1 I \ \ \ 1
__- ' I �- I� I I ,I I i , i I� I I i
`/
•__---/ / / / \ \ \ I i' / / , / /' \I `� \ / /�-- , Y l 1 1 I I I I I I I i ; I I I I I <' 1 f'
1 I 1 I ( / /-`\ t� , / \\ /' \ / 1 , , 1 �/, / \ \I 11 1 I I _ f /' i' / // ' J I `__ I --- ' 1 I --J 1 __ �� _ \ 1
11V1�� i 1 �' / / ♦ / , I / 1 i i i i 1 I I 1 I , , \
11 /� / / 1 / 1 1 \ �, ' ' 11 III -----III ili_- ', ' \ I
\\ 1\ 1 / / / / / / / / / 1\ 11 \ \��rt , '--------- L-----J --- J I 1
I II 11
\ \ - - / , /' / / I 1 / i i ----- i i ----- i i -----� r-----� r-----i r-----i r----- r-----� r----- �\ /
11 I I 1 I I I 111 111 111 I I I 1 , , '
AAJ
I I I I I I I I I I I I
I I I 1 I I I I I 1 1 I I I I 111 11' ,
_ �---_---�-- �— i / —\ 'i - / l l / _-- / _ —_— 1 , , 111 III 111 111 111 1 1 1 I 111 III III I I 1 1
\ -- —_ __ __ � / '/" �/ , / / I ///�_ ____ �/ I I I I I 1 I I I I I I 1 I 1 1 '
\ \\ \ \ _ _ / _ — i _ _ _ _ = _ _ _ _ / / / �/ / i /' / l 1 / i , , — , \ \� ------ I L`---J L----J L-----� L-`--J L-----' L-----' �-----' L-----J L----J L---- 1 1
__ ,\)------------- - —=ram-- \ -- \ c� \ ��------
Is
\\\ \\\\ - ----' -i /i -- - _ \ 1 \ \ \ \ \\ < 1 \ \ \ 1 I I 1 1 1 1 \
\ \ -----'/i' /--\ ---- \ \ \ I\ I\ \ \ \\ \\ \ \\ - `�i.- \ \ \\ \ i I I / 1 I 1 \ \\ _�' \ lam` \ \ j ' / /_' \ \ - \
--`--------------'i /i, i-\\ \ 1 \ \ \ \\\\\\\ \\ 1 /__ - / '/ \1\ \\ _ / \1 \\ \\
—77
,
---- / i % / /' / i,i/'/ /' _'i' �'� -- \� I \ \\ \ 1 \ \ I\ \ I I / / / , �'--- _ i �- ---� --'� \ \ \ / / / /' / �� 1 \ \ \ \ \ \ \ `\!. \ ' /i^ ' \ it
\\ \ \ \\ \\ I I I /// I /
AA
4, /
If
�\ \-J 1 l I (--_--'-'%'--------/ / /j/// ///i/' __�'�'/--\ \\ \-- \ `--✓� \ \ \`�\ \\\\%\ \\ \ \ _ -` - I III , /'\ I - / / J / / / \
\\ I I i l--_ _/ // // / / ' _---' - ----- ` \_ -J \\ \\\ \ \ \ \\ \\ - I IIII 1`` / / / / ✓ 1 / / : _ /' ,' /; /
\
)
rAl
' ✓ / // / ./ / j i % / l --� i / / / / I 1 ! \ I
LO
au
CD
N
1�
z -I
O W
U
.�
=U
o
a
c C
Z }I
CT)ai
Lm !_
c M Q)
00Lr)�
0—
O�J
W
CD ,
� m
CLQ'iz
w
J
a
U
H
H
O
U
In
Z L„
aw
,Lu Z
V
a0
w
W L/)
V) Lu
W
U
z
z
0
z
J
z
a
LL
PROJECT NO:
DESIGN BY:
JPE
DRAWN BY:
JPE
SCALE:
1"=200'
DATE:
2021-01-08
SHEET NO:
SCM2.1
PRELIMINARY DRAWING - NOT RELEASED FOR CONSTRUCTION
APPENDIX C
POND SURFACE AREA CALCULATIONS
The Nau Company
GnnsullingMil Engineers
ESSEX PLACE/ESSEX TOWNES
November 20, 2020
POND SURFACE AREA REQUIREMENTS - PIEDMONT/MOUNTAIN
Location ID North Pond
Drainage area
18.20 acres
Percent impervious
55.1%
Permanent pool depth
3.0 ft
Required pond surface area
0.35 acres
Required pond surface area
15,393 sq. ft.
Imperv.
Permanent Pool Average Depth (ft)
3.0 4.0 5.0 6.0 7.0 8.0
10
0.51
0.43
0.37
0.30
0.27
0.25
20
0.84
0.69
0.61
0.51
0.44
0.40
30
1.17
0.94
0.84
0.72
0.61
0.56
40
1.51
1.24
1.09
0.91
0.78
0.71
50
1.79
1.51
1.31
1.13
0.95
0.87
60
2.09
1.77
1.49
1.31
1.12
1.03
70
2.51
2.09
1.80
1.56
1.34
1.17
80
2.92
2.41
2.07
1.82
1.62
1.40
90
3.25
2.64
2.31
2.04
1.84
1.59
100
3.55
2.79
2.52
2.34
2.04
1.75
Interpolation
Impervious
3.0
Average Depth
3
3.0
50
1.79
1.79
1.79
55.05494505
1.94
1.94
1.94
60
2.09
2.09
2.09
Note: SA/DA values taken from NCDEQ Stormwater Design Manual Section C-3, page 7 (revised 4/18/2017)
The Nau Company
GnnsullingMil Engineers
ESSEX PLACE/ESSEX TOWNES
January 4, 2021
POND SURFACE AREA REQUIREMENTS - PIEDMONT/MOUNTAIN
Location ID South Pond
Drainage area
16.35 acres
Percent impervious
54.6%
Permanent pool depth
3.0 ft
Required pond surface area
0.32 acres
Required pond surface area
13,735 sq. ft.
Imperv.
Permanent Pool Average Depth (ft)
3.0 4.0 5.0 6.0 7.0 8.0
10
0.51
0.43
0.37
0.30
0.27
0.25
20
0.84
0.69
0.61
0.51
0.44
0.40
30
1.17
0.94
0.84
0.72
0.61
0.56
40
1.51
1.24
1.09
0.91
0.78
0.71
50
1.79
1.51
1.31
1.13
0.95
0.87
60
2.09
1.77
1.49
1.31
1.12
1.03
70
2.51
2.09
1.80
1.56
1.34
1.17
80
2.92
2.41
2.07
1.82
1.62
1.40
90
3.25
2.64
2.31
2.04
1.84
1.59
100
3.55
2.79
2.52
2.34
2.04
1.75
Interpolation
Impervious
3.0
Average Depth
3
3.0
50
1.79
1.79
1.79
54.617737
1.93
1.93
1.93
60
2.09
2.09
2.09
Note: SA/DA values taken from NCDEQ Stormwater Design Manual Section C-3, page 7 (revised 4/18/2017)
APPENDIX D
POND AVERAGE DEPTH AND FOREBAY VOLUME
CALCULATIONS
The Nau Company
Consulting Civil Ertoneers
AVERAGE POND DEPTH AND FOREBAY VOLUME CALCULATIONS
Location ID North Pond
Main Pool Data
Elev
Area
Incr vol
E vol
[sf]
[cu ft]
[cu ft]
CIO
0
v
0
0
a
c
367
4,515
0
0
368
5,633
5,074
5,074
370
8,043
13,676
18,750
372
10,687
18,730
37,480
ttomof shelf
372
15,222
0
37,480
rmanent pool
ITo
373
18,350
16,786
54,266
p of shelf
373
18,350
0
54,266
Project Name
January 6, 2021
Average Depth by Equation 2
Volume of perm pool 54,266 cu ft
Surface area of perm pool 18,350 SF
Average Depth 3.0 feet
Average Depth by Equation 3
Perimeter of perm pool
540.0 feet
Width of shelf
6.0 feet
Max depth over shelf
1.00 feet
Volume of shelf
1,620 cu ft
Average depth
3.5 feet
Forebay #1
Area Incr Vol
Elev [sf] [cu ft]
Forebay #2
Area Incr Vol
Elev [sf] [cu ft]
Forebay #3
Area Incr Vol
Elev [sf] [cu ft]
Forebay #4
Area Incr Vol
Elev [sf] [cu ft]
368
1,535
0
370
2,588
4,123
372
3,825
6,413
Total
10,536
ITotal
0
ITotal 0
ITotal 0
Total volume of forebays
10,536 cubic feet
Main pool volume
54,266 cubic feet
of main pool volume
19.4
Notes
1. The permanent pool volume can be at the bottom of the shelf, the top of the shelf, or anywhere between the
two
2. Per the NCDEQ Stormwater Design Manual, only the main pool is considered for the average depth calculation.
The forebays are excluded
3. The volume of the forebay shall be between 15% and 20% of the volume in the main pool
The Nau Company
Consulting Civil Ertoneers
AVERAGE POND DEPTH AND FOREBAY VOLUME CALCULATIONS
Location ID South Pond
Main Pool Data
Elev
Area
Incr vol
E vol
[sf]
[cu ft]
[cu ft]
CIO
3
0
v
0
0
a
c
313
3,076
0
0
314
4,425
3,751
3,751
316
7,182
11,607
15,358
ttom of shelf
317
12,401
9,792
25,149
rmanent pool
ITo
318
16,197
14,299
39,448
pp of shelf
318
16,197
0
39,448
Project Name
January 6, 2021
Average Depth by Equation 2
Volume of perm pool 39,448 cu ft
Surface area of perm pool 16,197 SF
Average Depth 2.4 feet
Average Depth by Equation 3
Perimeter of perm pool
653.0 feet
Width of shelf
6.0 feet
Max depth over shelf
1.00 feet
Volume of shelf
1,959 cu ft
Average depth
3.0 feet
Forebay #1
Area Incr Vol
Elev [sf] [cu ft]
Forebay #2
Area Incr Vol
Elev [sf] [cu ft]
Forebay #3
Area Incr Vol
Elev [sf] [cu ft]
Forebay #4
Area Incr Vol
Elev [sf] [cu ft]
314
1,237
0
316
2,427
3,664
317
3,100
2,764
Total
6,428
ITotal
0
ITotal 0
ITotal 0
Total volume of forebays
6,428 cubic feet
Main pool volume
39,448 cubic feet
of main pool volume
16.3
Notes
1. The permanent pool volume can be at the bottom of the shelf, the top of the shelf, or anywhere between the
two
2. Per the NCDEQ Stormwater Design Manual, only the main pool is considered for the average depth calculation.
The forebays are excluded
3. The volume of the forebay shall be between 15% and 20% of the volume in the main pool
APPENDIX E
POND DEWATERING TIME CALCULATIONS
The Nau Company
GonsultingCivil Engineers
Location ID
Input Data
RUNOFF VOLUME (NCDENR SIMPLE METHOD)
South SCM
Drainage area A 18.20 acres
Impervious area 10.02 acres
Impervious fraction la 0.551
Design storm rainfall depth Rd 1.00 inches
Output
Runoff coefficient Rv 0.55
Runoff volume V 36,039 cubic feet
R„=0.05+0.9X A
V = 3630 x Ro x Rv XA
Calculations based on NCDEMLR Stormwater Design Manual Part B
Essex Townes/Essex Village
January 4, 2021
The Nau Company
GonsultingCivil Engineers
Location ID
Input Data
RUNOFF VOLUME (NCDENR SIMPLE METHOD)
South SCM
Drainage area A 16.35 acres
Impervious area 8.93 acres
Impervious fraction la 0.546
Design storm rainfall depth Rd 1.00 inches
Output
Runoff coefficient Rv 0.54
Runoff volume V 3Z142 cubic feet
R„=0.05+0.9X A
V = 3630 x Ro x Rv XA
Calculations based on NCDEMLR Stormwater Design Manual Part B
Essex Townes/Essex Village
January 4, 2021
The Nau Company
Consulting Ciuil Engineers
Location ID North SCM
POND VOLUME CALCULATIONS
Essex South
January 4, 2021
Contour
Contour area
Stage
Incremental volume
Cumulative Volume
373.0
18,350 sf
0.0
0 CF
0
374.0
20,000 sf
1.0
19,175 CF
19,175 CF
376.0
23,468 sf
3.0
43,468 CF
62,643 CF
378.0
27,162 sf
5.0
50,630 CF
113,273 CF
380.0
31,082 sf
7.0
58,244 CF
171,517 CF
382.0
35,229 sf
9.0
66,311 CF
237,828 CF
384.0
39,602 sf
11.0
74,831 CF
312,659 CF
Interpolate Area and Volume
Elevation ID 1 inch rainfall elevation
Elevation
374.80
Calculated area 21,387sf
Calculated volume 36,562 sf
The Nau Company
Consulting Ciuil Engineers
Location ID South SCM
POND VOLUME CALCULATIONS
Essex South
January 4, 2021
Contour
Contour area
Stage
Incremental volume
Cumulative Volume
318.0
16,196 sf
0.0
0 CF
0
320.0
20,226 sf
2.0
36,422 CF
36,422 CF
322.0
24,483 sf
4.0
44,709 CF
81,131 CF
324.0
28,985 sf
6.0
53,468 CF
134,599 CF
326.0
33,674 sf
8.0
62,659 CF
197,258 CF
Interpolate Area and Volume
Elevation ID 1 inch rainfall elevation
Elevation
319.77
Calculated area 19,763 sf
Calculated volume 32,233 sf
Project Name
The Nau Company June 21, 2021
GonsultingCivil Engineers
POND DEWATERING TIME - ORIFICE EQUATION
Location ID
North Pond
Input Data
Design volume
36,039 cu. ft.
Orifice diameter
3.00 in.
Orifice coefficient
0.60
Initial elevation
374.80
Final elevation
373.00
Results
Driving head
Adjusted head
Area of orifice
Discharge
Dewatering time
Dewatering time
Dewatering time
Dewatering time
1.80 ft.
0.60 ft. due to falling water surface elevation
0.0491 sq. ft.
0.18 cfs
196,848.9 sec.
3,280.8 min.
54.7 hours
2.3 days
Per Section B page 9 of the NCDEQ Stormwater Design Manual, the head on the orifice should be adjusted
to 1/3 H to account for the head is decreasing as drawdown occurs
Project Name
The Nau Company June 21, 2021
GonsultingCivil Engineers
POND DEWATERING TIME - ORIFICE EQUATION
Location ID
South Pond
Input Data
Design volume
32,142 cu. ft.
Orifice diameter
2.50 in.
Orifice coefficient
0.60
Initial elevation
319.77
Final elevation
318.00
Results
Driving head
Adjusted head
Area of orifice
Discharge
Dewatering time
Dewatering time
Dewatering time
Dewatering time
1. 77ft.
0.59 ft. due to falling water surface elevation
0.0341 sq. ft.
0.13 cfs
254,944.3 sec.
4,249.1 min.
70.8 hours
3.0 days
Per Section B page 9 of the NCDEQ Stormwater Design Manual, the head on the orifice should be adjusted
to 1/3 H to account for the head is decreasing as drawdown occurs
APPENDIX F
RIPRAP OUTLET PROTECTION CALCULATIONS
ESSEX VILLAGE/ESSEX TOWNES
DESIGN OF RIPRAP OUTLET PROTECTION
OUTLET FLOWRATE
PIPE DIAMETER
OUTLET PIPE SLOPE
NUMBER OF PIPES
PIPE SEPARATION
ZONE FROM GRAPH
PIPE AREA
FLOW VELOCITY
MATERIAL
LENGTH
WIDTH
STONE DIAMETER
THICKNESS
71.0 cfs
42 inches
1.00
1
0 feet
2
9.62 sq. ft.
7.4 ft/sec
NCDOT Class B riprap
21.00 feet
10.50 feet
6 inches
22 inches
Q10 INTO NORTH POND
May 3, 2021
Zone
Material
Diameter
Thickness
Length
Width
1
Class A
3
9
4 x D(o)
3 x D(o)
2
Class B
6
22
6 x D(o)
3 x D(o)
3
Class 1
13
22
8 x D(o)
3 x D(o)
4
Class 1
13
22
8 x D(o)
3 x D(o)
5
Class 11
23
27
10 x D(o)
3 x D(o)
6
Class 11
23
27
10 x D(o)
3 x D(o)
7
Special
study required
1. Calculations based on NY DOT method - Pages 8.06.05 through 8.06.06 in NC Erosion Control Manual
2. Outlet velocity based on full -flow velocity
ss
i
S
rd+■®mn.r.���r
low I
��
i�lr]l1�a+ ='m :=
a�rtv�;a� a �rye
ri
�1i�11Y •a�as�as"
rrRma�
�IP�AIR�farlaao4 _
roa�.rrar r■'
Ydrz+o ri0�=
iAl7.�7�laua�
r�s
awpm la
■■�S7
a�
wpw�am
0' 15' 10' 15' al' 25'
01AMETER (Ft)
ESSEX VILLAGE/ESSEX TOWNES
DESIGN OF RIPRAP OUTLET PROTECTION
OUTLET FLOWRATE
PIPE DIAMETER
OUTLET PIPE SLOPE
NUMBER OF PIPES
PIPE SEPARATION
ZONE FROM GRAPH
PIPE AREA
FLOW VELOCITY
MATERIAL
LENGTH
WIDTH
STONE DIAMETER
THICKNESS
1.0 cfs
24 inches
1.00
1
0 feet
1
3.14 sq. ft.
0.3 ft/sec
NCDOT Class A riprap
8.00 feet
6.00 feet
3 inches
9 inches
Q10 FROM NORTH POND
May 3, 2021
Zone
Material
Diameter
Thickness
Length
Width
1
Class A
3
9
4 x D(o)
3 x D(o)
2
Class B
6
22
6 x D(o)
3 x D(o)
3
Class 1
13
22
8 x D(o)
3 x D(o)
4
Class 1
13
22
8 x D(o)
3 x D(o)
5
Class 11
23
27
10 x D(o)
3 x D(o)
6
Class 11
23
27
10 x D(o)
3 x D(o)
7
Special
study required
1. Calculations based on NY DOT method - Pages 8.06.05 through 8.06.06 in NC Erosion Control Manual
2. Outlet velocity based on full -flow velocity
ss
i
S
rd+■®mn.r.���r
low I
��
i�lr]l1�a+ ='m :=
a�rtv�;a� a �rye
ri
�1i�11Y •a�as�as"
rrRma�
�IP�AIR�farlaao4 _
roa�.rrar r■'
Ydrz+o ri0�=
iAl7.�7�laua�
r�s
awpm la
■■�S7
a�
wpw�am
0' 15' 10' 15' al' 25'
01AMETER (Ft)
ESSEX VILLAGE/ESSEX TOWNES
DESIGN OF RIPRAP OUTLET PROTECTION
OUTLET FLOWRATE
PIPE DIAMETER
OUTLET PIPE SLOPE
NUMBER OF PIPES
PIPE SEPARATION
ZONE FROM GRAPH
PIPE AREA
FLOW VELOCITY
MATERIAL
LENGTH
WIDTH
STONE DIAMETER
THICKNESS
77.0 cfs
42 inches
1.00
1
0 feet
2
9.62 sq. ft.
8.0 ft/sec
NCDOT Class B riprap
21.00 feet
10.50 feet
6 inches
22 inches
Q10 INTO SOUTH POND
May 3, 2021
Zone
Material
Diameter
Thickness
Length
Width
1
Class A
3
9
4 x D(o)
3 x D(o)
2
Class B
6
22
6 x D(o)
3 x D(o)
3
Class 1
13
22
8 x D(o)
3 x D(o)
4
Class 1
13
22
8 x D(o)
3 x D(o)
5
Class 11
23
27
10 x D(o)
3 x D(o)
6
Class 11
23
27
10 x D(o)
3 x D(o)
7
Special
study required
1. Calculations based on NY DOT method - Pages 8.06.05 through 8.06.06 in NC Erosion Control Manual
2. Outlet velocity based on full -flow velocity
ss
i
S
rd+■®mn.r.���r
low I
��
i�lr]l1�a+ ='m :=
a�rtv�;a� a �rye
ri
�1i�11Y •a�as�as"
rrRma�
�IP�AIR�farlaao4 _
roa�.rrar r■'
Ydrz+o ri0�=
iAl7.�7�laua�
r�s
awpm la
■■�S7
a�
wpw�am
0' 15' 10' 15' al' 25'
01AMETER (Ft)
ESSEX VILLAGE/ESSEX TOWNES
DESIGN OF RIPRAP OUTLET PROTECTION
OUTLET FLOWRATE
PIPE DIAMETER
OUTLET PIPE SLOPE
NUMBER OF PIPES
PIPE SEPARATION
ZONE FROM GRAPH
PIPE AREA
FLOW VELOCITY
MATERIAL
LENGTH
WIDTH
STONE DIAMETER
THICKNESS
3.6 cfs
18 inches
1.00
1
0 feet
1
1.77 sq. ft.
2.0 ft/sec
NCDOT Class A riprap
6.00 feet
4.50 feet
3 inches
9 inches
Q10 FROM SOUTH POND
May 3, 2021
Zone
Material
Diameter
Thickness
Length
Width
1
Class A
3
9
4 x D(o)
3 x D(o)
2
Class B
6
22
6 x D(o)
3 x D(o)
3
Class 1
13
22
8 x D(o)
3 x D(o)
4
Class 1
13
22
8 x D(o)
3 x D(o)
5
Class 11
23
27
10 x D(o)
3 x D(o)
6
Class 11
23
27
10 x D(o)
3 x D(o)
7
Special
study required
1. Calculations based on NY DOT method - Pages 8.06.05 through 8.06.06 in NC Erosion Control Manual
2. Outlet velocity based on full -flow velocity
ss
i
S
rd+■®mn.r.���r
low I
��
i�lr]l1�a+ ='m :=
a�rtv�;a� a �rye
ri
�1i�11Y •a�as�as"
rrRma�
�IP�AIR�farlaao4 _
roa�.rrar r■'
Ydrz+o ri0�=
iAl7.�7�laua�
r�s
awpm la
■■�S7
a�
wpw�am
0' 15' 10' 15' al' 25'
01AMETER (Ft)
APPENDIX G
ANTI -FLOTATION BLOCK CALCULATIONS
Project Name
The Nau Company January 6, 2021
GonsultingCivil Engineers
RISER ANTI -FLOTATION BLOCK CALCULATIONS
Location ID North Pond
Riser
Rectangular riser
Length
Width
Area
Inside dimensions
4.00 ft
4.00 ft
16.0 sf
Outside dimensions
5.00 ft
5.00 ft
25.0 sf
Cross sectional riser area
Riser inside height
Volume of concrete in riser
Riser base area
Riser base thickness
Volue of concrete in base
Total concrete volume in riser
Unit weight of concrete
Unit weight of water
Total bouyant weight of riser
Water displaced by riser
Unit weight of water
Weight of water displaced
Anti -Flotation Block
Length of anti -flotation block
Width of anti -flotation block
Thickness of anti -flotation block
Volume of anti -flotation block
Unit weight of concrete
Total weight of anti -flotation block
Factor of Safety
9.00 square feet
13.00 feet
117 cubic feet
25 square feet (same as riser outside dimensions)
0.5 feet
12.5 cubic feet
129.5 cubic feet
144 pounds per cubic foot
62.4 pounds per cubic foot
10567.2 pounds
325 cubic feet
62.4 pounds per cubic foot
20280 pounds
8.00 feet
8.00 feet
2.50 feet
160 cubic feet
144 pounds per cubic foot
23040 pounds
Weight of rise r+anti-flotation block 33,607 pounds
Weight of water displaced by riser 20,280 pounds
Factor of safety against flotation 1.66
Project Name
The Nau Company January 6, 2021
GonsultingCivil Engineers
RISER ANTI -FLOTATION BLOCK CALCULATIONS
Location ID South Pond
Riser
Rectangular riser
Length
Width
Area
Inside dimensions
4.00 ft
4.00 ft
16.0 sf
Outside dimensions
5.00 ft
5.00 ft
25.0 sf
Cross sectional riser area
Riser inside height
Volume of concrete in riser
Riser base area
Riser base thickness
Volue of concrete in base
Total concrete volume in riser
Unit weight of concrete
Unit weight of water
Total bouyant weight of riser
Water displaced by riser
Unit weight of water
Weight of water displaced
Anti -Flotation Block
Length of anti -flotation block
Width of anti -flotation block
Thickness of anti -flotation block
Volume of anti -flotation block
Unit weight of concrete
Total weight of anti -flotation block
Factor of Safety
9.00 square feet
8.00 feet
72 cubic feet
25 square feet (same as riser outside dimensions)
0.5 feet
12.5 cubic feet
84.5 cubic feet
144 pounds per cubic foot
62.4 pounds per cubic foot
6895.2 pounds
200 cubic feet
62.4 pounds per cubic foot
12480 pounds
8.00 feet
8.00 feet
1.50 feet
96 cubic feet
144 pounds per cubic foot
13824 pounds
Weight of rise r+anti-flotation block 20,719 pounds
Weight of water displaced by riser 12,480 pounds
Factor of safety against flotation 1.66
APPENDIX H
SNAP TOOL OUTPUT
Project Information
Project Name:
Essex Townes/Essex Village
Submission Date:
01/08/2021
Project Area (ft):
2,004,752 ft2
Disturbed Area (ft):
1,844,833 ft2
Development Land Use Type:
Single Family Residential
Development Activity Type:
Development - New
no
Designated Downtown Area?
Project Location/Address:
Franklinton, NC
County:
Franklin
Local Jurisdiction:
Franklinton
36.090241 N
Project Latitude Coordinates:
Project Longitude Coordinates:-78.469833 W
Precipitation Station: Raleigh
Physiographic Region: Piedmont
Nutrient Management Watershed: Tar -Pamlico
Subwatershed: Tar -Pamlico - 03020101
Phosphorus Delivery Zone: A]Tar Upper
Nitrogen Delivery Zone: Tar - Upper
Project Designer and Contact Phone
Number / Email:
Jon Eakins/919.616.4716/jeakins@thenauco.com
Part of Common Development Plan?
no
Project Owner Type:
Private
Project Description:
R = 0.05 + (0.009 *1)
where I = percent impervious (%)
Average Annual Pollutant Load, L
L=(Pj*RR *(P/12))*(C*A*2.72)
where C = event mean concentration (mg/L)
Project Area Land Cover Characteristics
PROJECT AREA LAND COVERS
Roof
Pre- ! Post -
Project Project
Area (ft) Area (ft)
TN
EMC
(mg/L)
TP
EMC
(mg/L)
1.18
1.64
0.11
0.34
394,330
311,536
Roadway
Parking/Driveway/Sidewalk
1.42
0.18
200,518
Protected Forest
0.97
0.03
2,004,752
66,084
Other Pervious/Landscaping
2.48
1.07
993,708
CUSTOM LAND COVER 1
CUSTOM LAND COVER 2
CUSTOM LAND COVER 3
LAND TAKEN UP BY SCM
1.18
0.11
38,576
LAND COVER AREA CHECK
Net Change of Land Covers (ft): 1,938,668
Total Project Area Entered (ft): 2,004,752
Total Pre -Project Calculated Area (ft): 2,004,752
Total Post -Project Calculated Area (ft): 2,004,752
Equations Used and Proiect Area Calculations
SIMPLE METHOD Stormwater Runoff Volume Generated, V
Runoff Coefficient R v V = Pi * Rv * (P/12) * A
where A = drainage area (ft)
Pj = fraction of rain events with runoff
P = average annual rainfall depth (in)
A =
46.0228 ac
A =
46.0228 ac
P =
46.22 in.
P =
46.22 in.
V =
347474 ft3
V =
3302293 ft3
1=
0%
1=
47%
R =
0.05
Rv =
0.48
Pi =
0.9
Pi =
0.9
CTN = 0.97
mg/L
CTN = 1.44
mg/L
CTP = 0.03
mg/L
CTP = 0.25
mg/L
LTN = 21.05
Ib/yr
LTN = 296.52
Ib/yr
LTP = 0.65
Ib/yr
LTP = 50.57
Ib/yr
3. SCM Characteristics
SCM Characteristics
Catchment ID
SCM ID
Type of SCM
Predominant hydrologic soil
group at SCM location
SCM Description
Design Storm Size (inches/24hrs)
Percent of Full Size
Hydrologic Value - Percent
Annual Effluent
Hydrologic Value - Percent
Annual Overflow
Hydrologic Value - Percent
Annual ET/Infiltrated
SCM Effluent TP EMC (mg/L)
SCM Effluent TN EMC (mg/L)
SCM Land Cover TP EMC (mg/L)
SCM Land Cover TN EMC (mg/L)
Drains to SCM ID
1
101
Wet Pond per MDC
C
North Pond
1.00
1 1
102 103
Wet Pond per MDC
C
South Pond
1.00
100 %
100
72%
72%
16 %
16
13 %
13
0.15
0.15
1.22
1.22
0.11
0.11
1.18
1.18
102
0
3. SCM Characteristics
Catchment Routing
Catchments Draining to Catchments Draining to Catchments Draining to
(Source Catchment)
SCM 101 SCM 102 SCM 103
Catchment 1
Catchment 2
Catchment 3
Catchment 4
Catchment 5
Catchment 6
SCM ID: 101 102 103
Area Draining Directly to Area Draining Directly to Area Draining Directly to
IL SCM Drainage Area Land Covers SCM 101 (ft2) SCM 102 (ft2) SCM 103 (ft2)
Roof 204,414 173,665
Roadway 139,103 144,217
Parking/Driveway/Sidewalk 93,161 71,241
Protected Forest 0 0
Other Pervious/Landscaping 337,922 306,881
CUSTOM LAND COVER 1
CUSTOM LAND COVER 2
CUSTOM LAND COVER 3
LAND TAKEN UP BY SCM 18,350 16,296
TOTAL AREA DRAINING TO SCM
(ft): 792,950 712,300 0
CATCHMENT AREA (ft2): 1,505,250
3. SCM Characteristics
SCM Characteristics
Catchment ID
SCM ID
Type of SCM
Predominant hydrologic soil
group at SCM location
SCM Description
Design Storm Size (inches/24hrs)
Percent of Full Size
Hydrologic Value - Percent
Annual Effluent
Hydrologic Value - Percent
Annual Overflow
Hydrologic Value - Percent
Annual ET/Infiltrated
SCM Effluent TP EMC (mg/L)
SCM Effluent TN EMC (mg/L)
SCM Land Cover TP EMC (mg/L)
SCM Land Cover TN EMC (mg/L)
Drains to SCM ID
3. SCM Characteristics
Catchment Routing
(Source Catchment)
Catchment 1
Catchment 2
Catchment 3
Catchment 4
Catchment 5
Catchment 6
SCM ID:
SCM Drainage Area Land Covers
Roof
Roadway
Parking/Driveway/Sidewalk
Protected Forest
Other Pervious/Landscaping
CUSTOM LAND COVER 1
CUSTOM LAND COVER 2
CUSTOM LAND COVER 3
LAND TAKEN UP BY SCM
"TOTATAREA DRAINING TO SCM
(ft):
CATCHMENT AREA (ft2):
Total Land Use Area
Treated By All SCMs (ftZ)
378,079
283,320
Allowable Total Land Use
Area to be Treated Based
on Post -Project Areas ft Z
Post -Project Untreated
Land Area (ftZ)
16,251
28,216
394,330
311,536
164,402
200,518
36,116
0
66,084
66,084
644,803
993,708
348,905
0
0
0
0
0
0
0
34,646
0
0
3,930
38,576
1,505,250
2,004,752
499,502
Project Summary[
Project Name:
Essex Townes/Essex Village
2,004,752 ft 46.0228 acres Submission Date:
1,844,833 ft2 42.3515 acres January 8, 2021
Project Area (ft ):
Disturbed Area (ft):
County:
Franklin
Local Jurisdiction:
Franklinton
Development Land Use Type:
Single Family Residential
Owner Type:
Private
Development Activity Type:
Development - New
Designated Downtown Area?
no
Nutrient Management Watershed:
Tar -Pamlico
Subwatershed:
Tar -Pamlico - 03020101
Phosphorus Delivery Zone:
Tar -
Upper
Nitrogen Delivery Zone:
Tar -
Upper
Phosphorus Delivery
Factor (%):
100%
Nitrogen Delivery Factor (%):
100%
Phosphorus Loading Rate Target (Ib/ac/yr):
1.10
Nitrogen Loading Rate Target (Ib/ac/yr):
6.44
Phosphorus Load Target at Site (lb/yr):
50.57
Nitrogen Load Target at Site (lb/yr):
296.52
Phosphorus Load Leaving Site w/SCMs (lb/yr):
31.66
Nitrogen Load Leaving Site w/SCMs (lb/yr):
221.10
P Offsite Buy -Down Threshold Loading Rate (lb/ac/yr):
N/A
N Offsite Buy -Down Threshold Loading Rate
N/A
Total P Load Reduction Needed (lb/yr):
0.00
Total N Load Reduction Needed (lb/yr):
0.00
P Load Treatment Balance at Site (lb/yr):
-18.91
N Load Treatment Balance at Site (lb/yr):
-75.42
P Load Treatment Balance at Lake (lb/yr):
-18.91
N Load Treatment Balance at Lake (lb/yr):
-75.42
Net land use change is greater
than Disturbed Area. Verify
Disturbed Area.
Nutrient Export Summar
p �
Pre -Project Post -Project Post -Project
Whole Site Whole Site Whole Site with
Conditions without SCMs SCMs
0.0% 47.1% 47.1%
0.0% 45.2% 45.2%
Post -Project
SCM-Treated Post -Project
Untreated Area
Area
57.2% 16.9%
54.9% 16.1%
Percent Impervious (for runoff calculation) (%)
Percent Built -Upon Area (BUA) (%)
Annual Runoff Volume W/ r
347,474
3,302,293
2,756,007
2,405,082
350,925
Annual Runoff % Change (relative to re-D)
0%
850%
693%
Total Nitrogen EMC (mg/L)
0.97
1.44
1.29
1.24
1.60
Total Nitrogen Load Leaving Site (lb/yr)
21.05
296.52
221.10
186.04
35.06
Total Nitrogen Loading Rate (Ib/ac/yr)
0.46
6.44
4.80
5.38
3.06
Total Nitrogen % Change (relative to pre-D)
0%
1309%
951%
Total Phosphorus EMC (mg/L)
0.03
0.25
0.18
0.16
0.36
Total Phosphorus Load Leaving Site (lb/yr)
0.65
50.57
31.66
23.83
7.83
Total Phosphorus Loading Rate (Ib/ac/yr)
0.01
1.10
0.69
0.69
0.68
Total Phosphorus % Change (relative to pre-D)
0%
7669%
4764%
SCM/Catchment Summary[
SCM ID and Type
Catchment 1
Volume
Reduction %
( )
TN Out (mg/L)
1.24
TTN Out TP Out TN Reduction
TIP Out (mg/L) (Ibs/ac/yr) (Ibs/ac/yr) N
0.16 5.38 0.69 28.83%
TIP Reduction (%)
18.517
44.22%
101: Wet Pond per MDC
12.66%
1.25
0.16
5.85
0.76
22.54%
37.20%
102: Wet Pond per MDC
12.66%
1.24
0.16
5.38
0.69
19.26%
30.90%
103: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
Catchment 2
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
201: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
202: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
203: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
Catchment 3
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
301: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
302: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
303: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
Catchment 4
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
401: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
402: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
403: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
Catchment 5
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
501: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
502: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
503: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
Catchment 6
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
601: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
602: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
603: NA
0.00%
0.00
0.00
0.00
0.00
0.00%
0.00%
SCM rows in red have a data entry error for the SCM that makes an error in the calculation.
Supporting Calculations
R, = 0.05 + (0.009 *1),
where I = percent impervious (%)
V=Pi* Rv*A*(P/12),
where A = area of catchment (ft)
P = average annual rainfall depth (in)
L=((P*Pi*Rj-(12))*(C*A*2.72)
where L = annual pollutant loading (Ibs)
Pi = fraction of rain events that produce runoff (dec)
C = event mean concentration of pollutant (mg/L)
Vo t = V;,, * (1- Red)
where V;,, = inflow volume (ft3)
Red = volume reduction by SCM (%)
L., = Vo t * EMCO t * 6.243E-5
where Vo t = outflow volume (ft3),
EMCO t = effluent median concentration (mg/L)
CATCHMENT 1, SCM 101
Type of SCM:
Wet Pond per MDC
Area Treated by SCM (ft):
792,950
Percent Impervious of Contributing Watershed (%):
57%
Runoff Coefficient, Rv:
0.57
Inflow Volume (ft):
1,560,238
Incoming Total Nitrogen Concentration (mg/L):
1.41
Annual Incoming Total Nitrogen Load (Ibs):
137.44
Incoming Total Phosphorus Concentration (mg/L):
0.23
Annual Incoming Total Phosphorus Load (Ibs):
22.14
Total Volume Leaving SCM (ft):
1,362,665
Outgoing Total Nitrogen Concentration (mg/L):
1.25
Annual Outgoing Total Nitrogen Load (Ibs):
106.46
Outgoing Total Phosphorus Concentration (mg/L):
0.16
Annual Outgoing Total Phosphorus Load (Ibs):
13.90
Annual Volume Reduction by SCM (ft):
197,573
Annual Volume Reduction by SCM (%):
13%
Annual Total Nitrogen Reduction by SCM (%):
22.54%
Annual Total Nitrogen Reduction by SCM (lb):
30.98
Annual Total Phosphorus Reduction by SCM (%):
37.20%
Annual Total Phosphorus Reduction by SCM (lb):
8.24
Supporting Calculations
R, = 0.05 + (0.009 *1),
where I = percent impervious (%)
V=Pi* Rv*A*(P/12),
where A = area of catchment (ft)
P = average annual rainfall depth (in)
L=((P*Pi*Rj-(12))*(C*A*2.72)
where L = annual pollutant loading (Ibs)
Pi = fraction of rain events that produce runoff (dec)
C = event mean concentration of pollutant (mg/L)
Vo t = V;,, * (1- Red)
where V;,, = inflow volume (ft3)
Red = volume reduction by SCM (%)
L., = Vo t * EMCO t * 6.243E-5
where Vo t = outflow volume (ft3),
EMCO t = effluent median concentration (mg/L)
CATCHMENT 1, SCM 102
Type of SCM:
Wet Pond per MDC
Area Treated by SCM (ft2):
1,505,250
Percent Impervious of Contributing Watershed (%):
57%
Runoff Coefficient, Rv:
0.56
Inflow Volume (ft):
2,753,795
Incoming Total Nitrogen Concentration (mg/L):
1.34
Annual Incoming Total Nitrogen Load (Ibs):
230.41
Incoming Total Phosphorus Concentration (mg/L):
0.20
Annual Incoming Total Phosphorus Load (Ibs):
34.49
Total Volume Leaving SCM (ft):
2,405,082
Outgoing Total Nitrogen Concentration (mg/L):
1.24
Annual Outgoing Total Nitrogen Load (Ibs):
186.04
Outgoing Total Phosphorus Concentration (mg/L):
0.16
Annual Outgoing Total Phosphorus Load (Ibs):
23.83
Annual Volume Reduction by SCM (ft):
348,713
Annual Volume Reduction by SCM (%):
13%
Annual Total Nitrogen Reduction by SCM (%):
19.26%
Annual Total Nitrogen Reduction by SCM (lb):
44.37
Annual Total Phosphorus Reduction by SCM (%):
30.90%
Annual Total Phosphorus Reduction by SCM (lb):
10.66
Nutrient Management Strategy Watershed - Nutrient Offset Credit Reporting Form
Please complete and submit the following information to the local government permitting your development project
to characterize it and assess the need to purchase nutrient offset credits. Contact and rule implementation
information can be found online at.
http://deg.nc.gov/about/divisions/water-resources/planning/nonpoint-source-management/nutrient-offset-
information
PROJECT INFORMATION
Applicant Name: Jon Eakins I The Nau Company, PLLC
Project Name: Essex Townes/Essex Village
Project Address: Franklinton, NC
Date: (mm/dd/yyyy) 8-1
Development Land Use Type:
Single Family Residential
County: Franklin
Development Activity Type:
Development - New
Pre -Project Built -Upon Area %:
0.00%
Project Latitude:
36.090241
Post -Project Built -Upon Area %:
45.21%
Project Longitude:
-78.469833
WATERSHED INFORMATION
Nutrient Management Watershed:
Tar -Pamlico
N Offsite Threshold Rate (lb/ac/yr):
N/A
Subwatershed:
Tar -Pamlico - 03020101
P Offsite Threshold Rate (lb/ac/yr):
N/A
Nitrogen Delivery Zone:
Tar - Upper
Nitrogen Delivery Factor:
100%
Phosphorus Delivery Zone:
Tar - Upper
Phosphorus Delivery Factor:
100%
NUTRIENT OFFSET REQUEST
Nitrogen Load Offset Needs
(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H) (L) (Where
Applicable)
Untreated
Treated
Loading Rate
Reduction
Project Size
Offset
Delivery
State Buy Local Gov't
Loading Rate
Loading Rate
Target
Need
(ac)
Duration (yrs)
Factor (/o)
Down Amount Buy Down
(Ibs/ac/yr)
(Ibs/ac/yr)
(Ibs/ac/yr)
(Ibs/ac/yr)
(Ibs) Amount (Ibs)
B-C
D"E"F"G
6.44
1 4.80
1 6.44
1 -1.64
46.0228
30
100%
0.00
Phosphorus Load Offset Needs
(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H) (L) (Where
Applicable)
Untreated
Treated Load
Loading Rate
Reduction
Project Size
Offset
Delivery
State Buy Local Gov't
Load Rate
Rate
Target
Need
(ac)
Duration (yrs)
Factor (/o)
Down Amount Buy Down
(Ibs/ac/yr)
(Ibs/ac/yr)
(Ibs/ac/yr)
(Ibs/ac/yr)
(Ibs) Amount (Ibs)
B-C
D-E-F-G
1.10
1 0.69
1 1.10
1 -0.41
46.0228
30
100%
0.00
LOCAL GOVERNMENT AUTHORIZATION
Local Government Name: Franklinton
Staff Name: Phone:
Staff Email: Date:
Local Government Authorizing Signature:
APPENDIX I
SUPPORTING DOCUMENTATION
NOAA PFDS RAINFALL DATA
8/16/2019
Precipitation Frequency Data Server
NOAA Atlas 14, Volume 2, Version 3 RALEIGH
DURHAM WSFO AP
Station ID: 9
Location name: Morrisville,, North Carolina, USA*
Latitude: 35.8706*, Longitude:-78.7864*
Elevation: na
Elevation (station metadata): 416 ft**
'source: ESRI Maps
"source: USGS
POINT PRECIPITATION FREQUENCY ESTIMATES
G.M. Bonnin, D. Martin, B. Lin, T. Partybok, M.Yekta, and D. Riley
NOAA, National Weather Service, Silver Spring, Maryland
PF tabular I PF graphical I Maps & aerials
PF tabular
PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches)1
Duration
Average
recurrence interval (years)
1
2
5
10
�������
25
50
100
200
500
1000
5-min
0.362-0 429
0.423-0 503
0.487---0 577
0.539-0 639
0.591---0.703
0.626-0..748
0.657-0.789
0.682-0 825
0.707-0 862
0.724-0 892
0.630
0.738
0.848
0.939
1.03
1.10
1.16
1.20
1.25
1.29
10-min
(0.578-0.686)
(0.677-0.804)
(0.780-0.924)
(0.861-1.02)
(0.941-1.12)
(0.998-1.19)
(1.04-1.25)
( 1.08-1.31)
( 1.12-1.36)
( 1.14-1.41)
0.787
0.927
1.07
1.19
1.31
1.39
1.46
1.52
1.58
1.62
15-min
(0.723-0.857)
(0.850-1.01)
(0.987-1.17) 1
1 (1.19-1.42)
1 (1.26-1.51)
1 (1.32-1.59)
1 (1.36-1.65)
1 (1.41-1.72)
1 (1.43-1.76)
1.9
30-min
0.991---18.18
1. 821840
1. 05366
1.58�?87
1.77 2410
1. 00.27
2.02 2 43
2. 2 2657
2.24 2173
2.32 2?86
60-min
1.35
1.61
(1.47-1.75)
1.96
(1.80-2.13)
2.24
(2.06-2.44)
2.58
(2.35-2.80)
2.84
(2.58-3.08)
3.08
(2.78-3.35)
3.31
(2.98-3.60)
3.60
(3.21-3.92)
3.83
(3.38-4.17)
1.56
1.86
2.29
2.65
3.08
3.43
3.76
4.09
4.51
4.84
2-hr
(1.42-1.71)
(1.71-2.04)
(2.09-2.51)
(2.40-2.90)
(2.78-3.36)
(3.09-3.74)
(3.36-4.11)
(3.64-4.46)
(3.97-4.92)
(4.23-5.29)
3-hr
1.5161581
1.81 2817
2.23 2468
2.59 3410
3.02 3364
3.38 4509
3.741 4553
4.06 4697
4. 915.57
4.83 6506
2.00
2.39
2.95
3.44
4.06
4.57
5.09
5.62
6.33
6.92
6-hr
1
( .84-2.18)
(2.20-2.61)
(2.72-3.22)
(3.15-3.74)
(3.70-4.40)
(4.14-4.96)
(4.57-5.51)
(5.00-6.08)
(5.56-6.85)
(6.01-7.50 )
2.37
2.84
3.52
4.11
4.89
5.56
6.22
6.93
7.88
8.69
12-hr
(2.19-2.58)
(2.62-3.09)
(3.24-3.82)
(3.78-4.47)
(4.46-5.30)
(5.03-5.98)
(5.58-6.70)
1 (6.13-7.45)
(6.87-8.47)
(7.46-9.35)
2.83
3.42
4.27
4.94
5.84
6.55
7.27
8.01
9.01
9.79
24-hr
(2.65-3.04)
(3.20-3.67)
(3.99-4.58)
(4.61-5.29)
(5.43-6.25)
(6.08-7.01)
(6.73-7.80)
(7.39-8.60)
(8.28-9.69)
(8.97-10.6 )
2-day
3.26
(3.04-3.50)
3.92
(3.66-4.22)
4.86
(4.53-5.23)
5.58
(5.19-6.00)
6.55
(6.08-7.05)
7.31
(6.76-7.86)
8.07
(7.45-8.70)
8.85
(8.14-9.54)
9.90
(9.06-10.7)
10.7
(9.77-11.6)
3.45
4.14
5.10
5.86
6.87
7.67
8.47
9.29
10.4
11.2
3-day
(3.22-3.70)
(3.86-4.44)
(4.76-5.48)
(5.46-6.29)
(6.38-7.38)
(7.11-8.24)
(7.83-9.12)
(8.55-10.0)
(9.53-11.2)
(10.3-12.1)
4-day
3.63
(3.40-3.90)
(4.07-4.67)
(5.00-5.73)
F 6.13
(5.73-6.58)
7.19
(6.69-7.72)
8.03
(7.45-8.61)
8.88
(8.21-9.54)
9.73
(8.97-10.5)
10.9 )
(9.99-11.7
( 11.8
10.8-12.7)
7-day
4.21
(3.96-4.50)
5.02
(4.72-5.36)
6.10
(5.73-6.51)
6.95
(6.52-7.42)
8.10
(7.57-8.65)
9.01
(8.40-9.63)
9.94
(9.23-10.6)
10.9
( 10.1-11.7)
12.2
( 11.2-13.1)
13.2
( 12.1-14.2)
4.79
5.69
6.83
7.72
8.92
9.86
10.8
11.8
13.1
14.1
10-day
(4.50-5.11)
(5.35-6.07)
(6.41-7.29)
(7.24-8.23)
(8.35-9.52)
(9.20-10.5)
(10.1-11.6)
(10.9-12.6)
(12.1-14.0)
(12.9-15.1)
6.39
F 8.90
9.98
11.5
12.6
13.8
15.0
16.6
17.8
20-day
(6.01-6.82)
(7.09-8.04)
(8.36-9.50)
(9.36-10.7)
(10.7-12.2)
(11.8-13.5)
1 (12.8-14.8)
(13.9-16.0)
(15.3-17.8)
(16.3-19.2)
7.93
9.33
10.8
12.0
13.5
14.7
15.9
17.1
18.6
19.8
30-day
(7.48-8 44) 11
(8.78-9.92) 11
(10.2-11.5)
(11.3-12.8)
(12.7-14.4)
(13.8-15.7)
(14.8-17.0)
(15.9-18.2)
(17.3-20.0)
(18.3-21.3)
10.1
11.8F
13.6
14.9
16.6
17.9
19.2
20.5
22.1
23.4
45-day
(9.61-10.7)
(11.3-12.5)
(12.9-14.3)
(14.1-15.7)
(15.7-17.5)
(16.9-18.9)
(18.1-20.4)
(19.2-21.7)
(20.7-23.5)
(21.8-24.9)
16.019.2
20.5
21.8F;M]F;M]F
60-day
(15.2-16.8)
(16.5-18.3)
(18.2-20.2)
(19.4-21.7)
(20.6-23.1)
(21.8-24.4)
(23.2-26.2)
(24.3-27.5)
Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a
given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not
checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
Please refer to NOAA Atlas 14 document for more information.
Back to Top
hftps://hdsc. nws.noaa.gov/hdsctpfds/pfds_printpage.html?st=nc&sta=31-7069&data=depth&units=english&series=pds 1 /4
8/16/2019 Precipitation Frequency Data Server
PF graphical
PDS-based depth -duration -frequency (DDF) curves
Latitude- 35-8706', Longitude:-78.7864'
111111116'.11
010.
t 20
41
iZ
15
49
i3
10
a
5
0
r s s m ro m M m ra ra 'Qru
N A ib
u'S O
,� Iq m in rw m v V rk O 0 0 l a, O
� Ln
Duration
30
25
C-
0
1 2 5 10 25 50 100 200 500 1000
Average recurrence interval (years)
NOAA Atlas 14, Volume 2, Version 3 Created {GMTY Fri Aug 16 18:48-37 2019
Back to Top
Maps & aerials
Small scale terrain
Average recurrence
interval
(years}
— 1
. 2
— 5
10
— 25
50
100
200
500
1000
Duration
5-nm
— 2-day
— 10-min
— 3-day
15-mrn
— 4-day
- 30--min
— 7-day
— 60-mm
— 10-0ay
- 2fir
— 20-day
— 3-1r
— Jo -day
— 6-nr
— 45-day
-- 12-hr
— 60-day
— 24fir
https://hdsc. nws.noaa.gov/hdsctpfds/pfds_printpage.html?st=nc&sta=31-7069&data=depth&units=english&series=pds
2/4
8/16/2019
Precipitation Frequency Data Server
arclzTriangie Park
AMMfk
,
540 J7JILMH
WRHAM UJTL
�JRPORr f
1
Ralf iam
InYla rport
Ah -
3km s
2ml
91 ?
Large scale terrain
�r ffi 43anoKe
Nc
nston-sal en)
• • ourllaii7
Greensboro ' , Rocky Mount
—i�lleic�h
R T H C A R O L I N A 'Greenville
Charlotte +
Fayetteville.
Jacksonville
mi
Large scale map
I
instonl3`�lem Greensboro
r1100km
Rock; Nount
leigh
NorthCarolina
F etteville
Jacksonville
mi
Large scale aerial
https://hdsc.nws.noaa.gov/hdsctpfds/pfds_printpage.html?st=nc&sta=31-7069&data=depth&units=english&series=pds 3/4
8/16/2019
Precipitation Frequency Data Server
Back to Top
US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov
Disclaimer
https://hdsc.nws.noaa.gov/hdsctpfds/pfds_printpage.html?st=nc&sta=31-7069&data=depth&units=english&series=pds 4/4
NRCS DOCUMENTATION
Chapter 2 Estimating Runoff Technical Release 55
Urban Hydrology for Small Watersheds
Table 2-2a Runoff curve numbers for urban areas ii
Cover description
Cover type and hydrologic condition
Fully developed urban areas (vegetation establisbed)
Curve numbers for
------hydrologic soil group
Average percent
impervious area 2/ A
Open space (lawns, parks, golf courses, cemeteries, etc.) 3/:
Poor condition (grass cover < 50%)..........................................
Fair condition (grass cover 50% to 75%)..................................
Good condition (grass cover > 75%).........................................
Impervious areas:
Paved parking lots, roofs, driveways, etc.
(excluding right-of-way).............................................................
Streets and roads:
Paved; curbs and storm sewers (excluding
right-of-way)................................................................................
Paved; open ditches (including right-of-way) ..........................
Gravel (including right -of -way) .................................................
Dirt (including right -of -way) ......................................................
Western desert urban areas:
Natural desert landscaping (pervious areas only) v .....................
Artificial desert landscaping (impervious weed barrier,
desert shrub with 1- to 2-inch sand or gravel mulch
and basin borders)......................................................................
Urban districts:
Commercial and business.................................................................
Industrial.............................................................................................
Residential districts by average lot size:
1/8 acre or less (town houses)..........................................................
1/4 acre................................................................................................
1/3 acre................................................................................................
1/2 acre................................................................................................
1 acre...................................................................................................
2 acres..................................................................................................
Developing urban areas
Newly graded areas
(pervious areas only, no vegetation) 5/
Idle lands (CN's are determined using cover types
similar to those in table 2-2c).
68
49
39
B
C
D
79
86
89
69
79
84
61
74
80
98
98
98
98
98
98
98
98
83
89
92
93
76
85
89
91
72
82
87
89
63
77
85
88
96
96
96
96
85
89
92
94
95
72
81
88
91
93
65
77
85
90
92
38
61
75
83
87
30
57
72
81
86
25
54
70
80
85
20
51
68
79
84
12
46
65
77
82
77 86 91 94
1 Average runoff condition, and Ia = 0.2S.
2 The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are
directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in
good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.
3 CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space
covertype.
4 Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage
(CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.
5 Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 24
based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.
(210-VI-TR-55, Second Ed., June 1986) 2-5
Chapter 2 Estimating Runoff Technical Release 55
Urban Hydrology for Small Watersheds
Table 2-2c Runoff curve numbers for other agricultural lands _v
Curve numbers for
----------------------- Cover description ----------------------
-------
hydrologic
soil group -------
Hydrologic
Cover type
condition
A
B
C
D
Pasture, grassland, or range —continuous
Poor
68
79
86
89
forage for grazing. 2i
Fair
49
69
79
84
Good
39
61
74
80
Meadow —continuous grass, protected from
—
30
58
71
78
grazing and generally mowed for hay.
Brush —brush -weed -grass mixture with brush
Poor
48
67
77
83
the major element. 3/
Fair
35
56
70
77
Good
30 v
48
65
73
Woods —grass combination (orchard
Poor
57
73
82
86
or tree farm). 5/
Fair
43
65
76
82
Good
32
58
72
79
Woods. sl
Poor
45
66
77
83
Fair
36
60
73
79
Good
30 v
55
70
77
Farmsteads —buildings, lanes, driveways, — 59 74 82 86
and surrounding lots.
1 Average runoff condition, and Ia = 0.25.
2 Poor. <50%) ground cover or heavily grazed with no mulch.
Fair: 50 to 75% ground cover and not heavily grazed.
Good: > 75% ground cover and lightly or only occasionally grazed.
3 Poor. <50%ground cover.
Fair: 50 to 75% ground cover.
Good: >75%ground cover.
4 Actual curve number is less than 30; use CN = 30 for runoff computations.
5 CN's shown were computed for areas with 50%woods and 50%grass (pasture) cover. Other combinations of conditions may be computed
from the CN's for woods and pasture.
6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.
Fair: Woods are grazed but not burned, and some forest litter covers the soil.
Good: Woods are protected from grazing, and litter and brush adequately cover the soil.
(210-VI-TR-55, Second Ed., June 1986) 2-7
Chapter 3 Time of Concentration and Travel Time Technical Release 55
Sheet flow
Sheet flow is flow over plane surfaces. It usually
occurs in the headwater of streams. With sheet flow,
the friction value (Manning's n) is an effective rough-
ness coefficient that includes the effect of raindrop
impact; drag over the plane surface; obstacles such as
litter, crop ridges, and rocks; and erosion and trans-
portation of sediment. These n values are for very
shallow flow depths of about 0.1 foot or so. Table 3-1
gives Manning's n values for sheet flow for various
surface conditions.
Table 3-1 Roughness coefficients (Manning's n) for
sheet flow
Surface description n I/
Smooth surfaces (concrete, asphalt,
gravel, or bare soil) ..........................................
0.011
Fallow (no residue) ..................................................
0.05
Cultivated soils:
Residue cover <_20%.........................................
0.06
Residue cover >20%.........................................
0.17
Grass:
Short grass prairie ............................................
0.15
Dense grasses 2/................................................
0.24
Bermudagrass..................................................
0.41
Range (natural).........................................................
0.13
Woods:3/
Light underbrush ..............................................
0.40
Dense underbrush ............................................
0.80
1 The n values are a composite of information compiled by Engman
(1986).
2 Includes species such as weeping lovegrass, bluegrass, buffalo
grass, blue grama grass, and native grass mixtures.
3 When selecting n, consider cover to a height of about 0.1 ft. This
is the only part of the plant cover that will obstruct sheet flow.
Urban Hydrology for Small Watersheds
For sheet flow of less than 300 feet, use Manning's
kinematic solution (Overtop and Meadows 1976) to
compute Tt:
_ 0.007(nL)0.8
Tt — (P )0.5 S0.4 [eq. 3-3]
2
where:
Tt = travel time (hr),
n = Manning's roughness coefficient (table 3-1)
L = flow length (ft)
P2 = 2-year, 24-hour rainfall (in)
s = slope of hydraulic grade line
(land slope, ft/ft)
This simplified form of the Manning's kinematic solu-
tion is based on the following: (1) shallow steady
uniform flow, (2) constant intensity of rainfall excess
(that part of a rain available for runoff), (3) rainfall
duration of 24 hours, and (4) minor effect of infiltra-
tion on travel time. Rainfall depth can be obtained
from appendix B.
Shallow concentrated flow
After a maximum of 300 feet, sheet flow usually be-
comes shallow concentrated flow. The average veloc-
ity for this flow can be determined from figure 3-1, in
which average velocity is a function of watercourse
slope and type of channel. For slopes less than 0.005
ft/ft, use equations given in appendix F for figure 3-1.
Tillage can affect the direction of shallow concen-
trated flow. Flow may not always be directly down the
watershed slope if tillage runs across the slope.
After determining average velocity in figure 3-1, use
equation 3-1 to estimate travel time for the shallow
concentrated flow segment.
Open channels
Open channels are assumed to begin where surveyed
cross section information has been obtained, where
channels are visible on aerial photographs, or where
blue lines (indicating streams) appear on United States
Geological Survey (LJSGS) quadrangle sheets.
Manning's equation or water surface profile informa-
tion can be used to estimate average flow velocity.
Average flow velocity is usually determined for bank -
full elevation.
(210-VI-TR-55, Second Ed., June 1986) 3-3