Loading...
HomeMy WebLinkAboutSW5210201_Revised calculations_20210623Stormwater Management Report ESSEX VILLAGE AND ESSEX TOWNES Franklinton, North Carolina January 8, 2021 Revised June 22, 2021 Y\ CA•ROC AL z 2 642 = C' (� : '9 Prepared By: The Nau Company, PLLC PO Box 810 Rolesville, North Carolina, 27571 (919) 625-3090 tnau@thenauco.com NCBELS License # P-0751 Stormwater Management Report June 22, 2021 Essex Village/Essex Townes INTRODUCTION This report presents the stormwater management design for the proposed improvements at the Essex Village and Essex Townes subdivisions located on parcels south of the existing Essex Place subdivision and bounded by US1 and Main Street in Franklinton, North Carolina. BACKGROUND The Essex Village is a proposed 18.95 acre development that will consist of 93 single family lots. Essex Townes is a proposed 18.41 acre development that will consist of 157 townhome lots. There is an additional 8.67 acres of land that will be used for the main access road from the existing Essex Place subdivision to Main Street/US1A and proposed stormwater control measures. The total area for Essex Village, Essex Townes, the main access road and stormwater control measures is 46.03 acres. The two subdivisions will each have a separate recreation area. Water and sewer services will be provided by Franklin County. The proposed subdivision will have two stormwater control measures (SCMs) that will meet State requirements for stormwater quality. Only one road, Road A will be accepted into NCDOT maintenance. All other roads will be Town maintained roads. The proposed roads will utilize storm sewer piping to convey runoff to the SCMs. The purpose of this report is to present the calculations for the SCMs that will serve the Essex Village and Essex Townes projects REQUIREMENTS Stormwater Permits for the Town of Franklinton are issued by the North Carolina Division of Environmental Quality (NCDEQ). The relevant NCDEQ requirements for high density projects found in 15A NCAC 02H .1003 (3) are summarized below: • Treatment requirements - SCMs shall be designed, constructed, and maintained so that the project achieves either "runoff treatment" or "runoff volume match" as those terms are defined in Rule .1002 of this Section. • On -site stormwater - Stormwater runoff from off -site areas and existing development shall not be required to be treated in the SCM. Runoff from off -site areas or existing development that is not bypassed shall be included in the sizing of on -site SCMs at its full built -out potential. • MDC for SCMs - SCMs shall meet the relevant MDC set forth in Rules .1050 through .1062 of this Section except in accordance with Item (6) of this Rule. The relevant MDC for wet ponds in 15A NCAC 02H .1053 are summarized below: Stormwater Management Report June 22, 2021 Essex Village/Essex Townes • Main Pool Surface Area and Volume - The main pool of the wet pond shall be sized using either: o the Hydraulic Retention Time (HRT) Method; or o the SA/DA and Average Depth Method. • Main Pool Depth - The average depth of the main pool shall be three to eight feet below the permanent pool elevation. The applicant shall have the option of excluding the submerged portion of the vegetated shelf from the calculation of average depth. • Sediment Storage - The forebay and main pool shall have a minimum sediment storage depth of six inches. • Location of inlet(s) and outlet - The inlet(s) and outlet shall be located in a manner that avoids short circuiting. • Forebay - A forebay that meets the following specifications shall be included; o Forebay volume shall be 15 to 20 percent of the volume in the main pool; o The forebay entrance shall be deeper than the forebay exit; o The water flowing over or through the structure that separates the forebay from the main pool shall flow at a nonerosive velocity; and o If sediment accumulates in the forebay in a manner that reduces its depth to less than 75 percent of its design depth, then the forebay shall be cleaned out and returned to its design state. • Vegetated shelf - The main pool shall be equipped with a vegetative shelf around its perimeter. The minimum width of the vegetated shelf shall be six feet and the slope shall be no steeper than 6:1 (horizontal to vertical). • Drawdown time - The design volume shall draw down to the permanent pool level between two and five days. • Protection of the receiving stream - The wet pond shall discharge the runoff from the one- year, 24-hour storm in a manner that minimizes hydrologic impacts to the receiving channel. • Trash rack - A trash rack or other device shall be provided to prevent large debris from entering the outlet system. • Vegetation - The following criteria apply to vegetation in and around the wet pond: o The dam structure, including front and back embankment slopes, of the pond shall be vegetated with non -clumping turf grass; trees and woody shrubs shall not be allowed; and o The vegetated shelf shall be planted with a minimum of three diverse species of herbaceous, native vegetation at a minimum density of 50 plants per 200 square feet of shelf area. The design storm for this project is the one inch 24-hour rainfall. It should be noted that limiting post -development runoff to pre -development rates is not required by NCDEQ. However, this report presents the results of pre -development and post -development runoff calculations for each analysis point for reference. Stormwater Management Report June 22, 2021 Essex Village/Essex Townes PROPOSED STORMWATER CONTROL MEASURE Two wet ponds are proposed to meet the State stormwater requirements. Refer to the construction drawings for details of each SCM. METHODOLOGY Drainage Areas and SCS Curve Numbers Drainage areas were delineated based on proposed and existing topography using CAD software. Land use types were measured using CAD software and SCS curve numbers were applied to each land use type within the drainage area to calculate a weighted, composite SCS Curve Number. Curve numbers for the various land use types were taken from NRCS TR-55 and are included as an appendix to this report. Times of Concentration The minimum time of concentration used for calculation of peak flows was 5 minutes. For times of concentration more than 5 minutes, a simplified TR-55 method was used. The simplified method calculates the time of concentration only using sheet flow time and channel flow time — shallow concentrated flow time is disregarded. Since channel dimensions vary along the channel flow path, channel parameters were selected for the entire length of channel flow that yield a flow velocity of approximately 4.5 feet per second. A flow velocity of 4.5 feet per second is greater than or equal to actual flow velocities expected in the pipes or open channels along the flow path and therefore will yield a runoff higher that what would be expected at the analysis point. Runoff and Pond Routing Runoff flowrates and volumes for the proposed SCM were calculated using the Hydrology Studio software program. The software utilizes the SCS Methodology to determine peak flow rates and performs routing calculations to determine detention results by the Storage -Indication method. Rainfall Depths The following rainfall depths used in the calculations for this report were taken from the NOAA Precipitation Frequency Data Server (PFDS). A printout of this rainfall data is included as an appendix to this report. Rainfall event Rainfall Depth (inches) Design storm 1.00 1-year, 24-hour 2.83 2-year, 24-hour 3.42 10-year, 24-hour 4.94 25-year, 24-hour 5.84 100-year, 24-hour 7.27 Stormwater Management Report June 22, 2021 Essex Village/Essex Townes Pre -Development and Post -Development Drainage Areas Drainage area maps showing the pre -development and post -development drainage areas are included as an attachment to this report. Note that the drainage areas are based field topography where available and GIS topography outside the limits of field topography. ANALYSIS POINTS Analysis points for the project were selected based on locations where surface flow leaves the site. Three analysis points were identified for this project and are summarized below: • Analysis Point 1—flow leaves the site at analysis point 1 on the northwest portion of the site. Runoff from this location flows along the east side of US1 and into Cedar Creek, which is on the southern portion of the site near analysis point 2 • Analysis Point 2 —flow leaves the site at analysis point 2 on the southern portion of the site. This analysis point is where Cedar Creek flows south under Main Street • Analysis Point 3 —flow leaves the site at analysis point 3 on the southeastern portion of the site where a buffered stream flows under Main Street and eventually flows into Cedar Creek. RESULTS Runoff Volume The runoff volume for this project was calculated by the simple method. The runoff volume for each pond is summarized below. Pond ID Drainage area Impervious area Impervious % Runoff volume North Pond 18.20 AC 10.02 AC 55.1 36,039 CF South Pond 16.35 AC 8.93 AC 54.6 32,142 CF Peak Flow Attenuation Although peak flow attenuation is not required for this project, pre -development and post - development flows were calculated for several storm events for reference. The tables below summarize the pre -development and post -development data for selected storm events. Detailed routing information can be found in the appendix to this report. ANALYSIS POINT 1 DRAINAGE AND RUNOFF DATA Development Condition Drainage area SCS CN Time of concentration Q(1) Q(2) Q(10) Pre -Development 13.11 acres 56 14.0 min. 0.8 cfs 3.3 cfs 15.3 cfs Post -Development 9.45 acres 61 14.0 min. 2.1 cfs 5.1 cfs 15.8 cfs 21 Stormwater Management Report June 22, 2021 Essex Village/Essex Townes ANALYSIS POINT 2 DRAINAGE AND RUNOFF DATA Development Condition Drainage area SCS CN Time of Q(1) Q(2) Q(10) concentration Pre -Development 62.55 acres 55 19.5 minutes 2.4 cfs 10.7 cfs 55.5 cfs Post -Development to 18.20 acres 81 10.0 minutes 34.6 cfs 48.0 cfs 84.9 cfs North SCM Post -Development to 16.35 81 10.0 minutes 31.1 cfs 43.1 cfs 76.3 cfs South SCM Post -Development SCM 30.73 61 15.0 minutes 7.0 cfs 16.7 cfs 51.5 cfs bypass Post -Development 0.4 cfs 0.5 cfs 0.6 cfs North SCM outfall flowrate Post -Development 0.3 cfs 0.3 cfs 3.7 cfs South SCM outfall flowrate Post -Development 7.5 cfs 17.3 cfs 52.3 cfs ANALYSIS POINT 3 AND RUNOFF DRAINAGE DATA Development Condition Drainage area SCS CN Time of concentration Q(1) Q(2) Q(10) Pre -Development 13.48 acres 55 20.1 min 0.5 cfs 2.3 cfs 12.0 cfs Post -Development 12.59 acres 69 20.1 min 7.0 cfs 12.0 cfs 27.4 cfs Pond Surface Area The required pond surface area was determined based on NCDEQ Stormwater Design Manual for the Piedmont and Mountain area. The impervious percentage of the drainage area was used to determine the required surface area. The pond surface area data is summarized in the table below. North Pond Drainage area 18.20 acres Impervious area 10.02 acres Impervious percentage 55.1% Pond average depth 3.0 feet Required surface area 15,393 square feet Surface area provided 17,462 square feet South Pond Drainage area 16.35 acres Impervious area 8.93 acres Impervious percentage 54.6% Pond average depth 3.0 feet Required surface area 13.735 square feet Surface area provided 16,196 square feet Pond surface area calculations are included in the Appendix to this report. Stormwater Management Report June 22, 2021 Essex Village/Essex Townes SCM Dewatering Time The required pond dewatering time was based on the NCDEQ Stormwater Design Manual and was calculated using the falling head equation assuming vertical pond sides. The pond dewatering time is summarized in the table below. North Pond Required dewatering time 2 to 5 days Design storm 1 inch Calculated dewatering time 2.3 days South Pond Required dewatering time 2 to 5 days Design storm 1 inch Calculated dewatering time 3.0 days Pond dewatering time calculations are included in the Appendix to this report. Pond Average Depth and Forebay Volume Pond average depth was calculated using equations 2 and 3 in the NCDEQ Stormwater Design Manual for Wet Ponds. The interior of the ponds were graded so that the forebays are between 15% and 20% of the main pool volume. The results of the average depth and forebay volume calculations are summarized below. Calculations are included in the appendix to the report. Pond Average Depth Pond ID Average Depth North Pond 3.5 feet (by equation 3) South Pond 3.0 feet (by equation 3) Pond Forebay Volumes Pond ID Forebay Volume North Pond 19.4% South Pond 16.3% Stormwater Management Report June 22, 2021 Essex Village/Essex Townes Erosion at Pond Inlets and Outlets Flows into and out of the stormwater control measures should not produce erosion for the 10-year storm. Riprap energy dissipaters are used to eliminate erosion at the pond inlets and outlets. Data for the riprap dissipaters are summarized below. Calculations are included in the appendix to the report. Location Length Width Thickness Riprap size North Pond inlet 21' 10.5' 22" NCDOT Class B North Pond outlet 8' 6' 9" NCDOT Class A South Pond inlet 21' 10.5' 22" NCDOT Class B South Pond outlet 6' 4.5' 9" NCDOT Class A Pond Freeboard The pond is required to have at least 1 foot of freeboard between the 100-year water surface elevation in the pond and the top of the embankment. The table below summarizes the freeboard for each pond. Pond ID Top of berm elevation 100-year WSEL Freeboard North Pond 384.0 381.2 2.8 feet South Pond 326.0 324.6 1.4 feet Riser Anti -Flotation Device An anti -flotation device was designed to counteract the buoyant forces on the pond riser. The riser anti -flotation block was sized to provide a factor of safety for buoyancy of at least 1.5. Calculations for the anti -flotation block are included in the Appendix to the report. Stormwater Management Report June 22, 2021 Essex Village/Essex Townes Nutrient Loading Nutrient loading calculations for this project were performed with the SNAP Tool provided by NCDEQ. The output from this tool is included in the appendix to this report. The output calculated by the spreadsheet for nutrient loading is summarized in the table below: Project area 46.02 acres Post-BMP TN Loading 4.80 Ib/ac/yr Post-BMP TP Loading 0.69 Ib/ac/yr CONCLUSION Based on the results of this analysis and design data contained in the construction drawings, we believe that the NCDEQ requirements will be met for the proposed development. Additional details can be found in the Appendix. APPENDICES Appendix A Drainage Area Maps Appendix B Hydrology Studio Output Appendix C Pond Surface Area Calculations Appendix D Pond Average Depth and Forebay Volume Calculations Appendix E Pond Dewatering Time Calculations Appendix F Riprap Outlet Protection Calculations Appendix G Anti -Flotation Block Calculations Appendix H SNAP Tool Output Appendix I Supporting Documentation APPENDIX A DRAINAGE AREA MAPS \ \\\\\ �, �`°__i1___-:`- `- ``_\ �`\ \ \` \`\' \ Y -- --\ \\\ \ \ \ \\ - _- `\\ \ \`�\� \ \ \\� \\ \\\�\\\�\\ -_- �\ ` \ \I _ -\`\ � \\\\\\ \ \ \ \\ I \ \\1 \\\\ \\ \ \\\ \\11 1\1I \\\\ I \ I111 I\\II\\ 1 1 I \ 1\ I \ 1 1 1 I I I I 1\\\ � \I �' ..\ -/ I II 11 / I I I // I I, I I 1 I 1 11 11 I 'I1 1 \ I I I I I 11 11\ I I I I I 11 II\ 111 V< d0 1 �+'!@ , e "' // I I III ` 11 I I I I I I I� 11 I I 1 �- j /' "/ / / I 111'1//) 11. / //// ----' "/ i / / /I %/// // / fylt / 1 j / //I /// ( \II I1 I 1 --ice-i _,j/ �'i i' �\1 ( (\e -_-_- "%' "/_%%' 'i tip/' \ tIl 1I-\ 1l \ 1\\ _---" = ANALYSIS I✓--- - ^ -- — P T 2\\ I / / - \� -'III I I l / ' _-- - - v \\ \ \`\`�/ `\ . 1 I I I 1 / - \ \ \ \ \ \_ -_ - \ \ I / / , I \ �I / 1 / / / /'I �,11*' ) 1/111 1 / 1 / ' - \ \\\ \ \ \ I I I I I I I 1 I 1 / / ,� - \ \ \ \ \ \ \ \ C / / 1 ^ 1 / �/ - ii , l \` I I1/ I / / ,' 1 \\_l II J 111 1 1 / I / /--1 --\\ -\\\ \\ \ \\ \ \ - - 1 \ l l l 1 \ \ �\ \ \ \ \ \ _-\\\ / / I / / / �� �/ _ / \ I\ \ \ I 1 I \ \ \ I / / / / _/'// / ���--- = \_-- \/ 1 11 l l 1 / 1 / / /' _ \\ \\\ \ \ \\ \ \� \ \\ 1 1 \ 1 \ \ \ \ \ \ 1 i 1 1 I /'--- ---�\ `\ \� \ \\\ \ I I �� --' I I �,/ / / /' /' -- / / ' 1 1) I 1 i \ / ---- - `\ \ / I 11 11 Ill I l /- \\ \ \ 1 \ \ \\ \ \\ / J \ \ \ \ \ I \ _ I !/ 1 / / / / \\\\ \ `; I 1 `---\ \\ --' / f I I 1 I , / / ----\\ \ \ v` \ \ \ \ 1 \ \ \ 1 1 1 / ♦'" ---_ \ \ \ \-\ _ \111 I/ ♦' I / '' t�--- / I _ 1 f 1 1 1 I I I I / \ \ \ \� `\ I� / __ \ \ 1 I I ' '----- Il I ^ I \\ \� \ \ -j -_---- ` `�_�' 1 I I1 11 \ I / 1 I /I --\\`\ \\ \\ j\\\ \ ' v \ \` � � 1 1 � I 1 � / /' \\\ \\\ \ \ � \ \ I l j 1 � I � 1 � j 1 \ e` \ I //' � -- c 1 j \ \ \ \\ \ \� �' \ I I 11 II \ 1 1 1 I I I f \\\\\\ \ Y \ \ \ \ \\ \ \\I I 1 1 I I I II I I I / \ \ - t \ \ / 1 1 \ \\ \ I I 1 I \ \ \ \ 1\ \ \ \ \ \\ \ �/ \ 1 1 I I I I I / / �- `�\ \\\ `\\\\ \\------\\\ 1 IIII I 1 1 t- =- / \ -�� \ 1 I I ! // -_ - ' I // I \ \\ \\ \\\\ \ \_/ 1 \\ \ \ \ \ \ ( _ \ \ \ \ \_� \ I 1 I I I I I I 1 / - \ \ --- \ 11 1 1 1 / ---� - \ -TT -/ %`11 ---- -- --- / / / -- \� \ / \\ \ \ 1 \ \ \ \ \\ \\ 1 I / \ \ \ - -� II I I \ \ \\\ -_\ \ _/ I \\ \ \ \ \ \ \ \ 1 /l \ \ \ \ \ \ \ \ \ \ 1 l l I 1 I I I I 1 \ / I \ \ `- \ I11 I I I --------/ 1 I I I I , ------ �- I / / X/ / / / I \ \ \ \�` \ - \\\ \\\\ \ \J ( \ \ \`I\ \\\\ \ \ /' \\ 111 I \ \ \ \ \ 1III1 I / , ! 1 I I I / _ \ / / - / / / / \ \ \ \ \ \ \ \ \ \ I \ \ \ \ \ \ --- 1 1 1 1 I I \ \ \ 1 1 1 \\ -\ I Ili I I I / 1 I I 1 -, __/ / �' / / / / \ \ \ \ 1 11 ) \ \ \\ \ \ \ \ \ \ \ \ \ \ 1 \ \ \ \\ \ \ - \ \ 1 1 ( I 1 \ 1 \ \ 1 I I \ \ --_- \I\I\ (1 I l // 1 I I I /�. .\ _ ---- / // / / I \ I I \ \ \ \ \ \1 \ \ \ v \ \\ \ \ \ \\ 1 1 I \ \ \ \ Ib I \ `. \ \\\\\\I \ \ I 1 I I I I I I I / ,/ / / / -- �� .�/ /' / / 1 \\ _/ I I I I \ \ \ \ \ I \ \ \ \ \ \\,\\ \\- \\ \\ I 1 \ \ \ \ \ 1 1 1 I I - \\ - , \\\ \\\ /I 1 \ \ \ r---_'' I I I �-_' Z11\I-,`- � / / / ) /^-`-- _ I I I I I I 1 \ I \ \ I\ \ \ \ \\ \�\ ` \ \ \\ II\\\ \ \ \ \ 1 I I 11 I -\ \ \\ \ \\ 1 \ \ \ 1 I I I I I 1 - ,/ / -/ \ 1 \ / I /-- \ \ \ \ \\\ \\\ 1 \ \ ( / I I I I I / / / / / 1 _ I I \ \ \ \ \\\\ -\ \ \ \ \ \ \ 1 1 1 I I / \ \ \ \\\ \\ \ \ \ I ♦ / / l 1 1 I 1 I \ \ \ \ \ \\ \`\ \ \ \ \'I I \ \ \ \ 1 I I I I / I / \� \ ` \ \ \\\\ \\ 1 \ \ I I I I / /' ti.,� \ \ \ _�/ / I / i----' , I 1 1 1 III 1\ \\ \ `\`\\\ \`, \-\ \ \ \ / I 1 \ \ 1 I I I � / / I I / \ `\ `\ \ \ \\\\ \ \ I I I \ \ \ / I I I / I I I lc-, -___/ //6� )) - �// / / I �/ I 1 I \ \\ I \\ \\\\`� \ `\ \\ \\ \'1 �/ 1 1 I I I / / 1 1 / '-`-_\\-\\ `\\\ \ \\\\\ \e I I \\\ `�' -'� / // 1 1 1 1_-- /1 / \ , \\ \ ) / / / / / / / �- \ \I\ / f / lI I I I / //r/ __� / / / /I1 \ \ 1 - \ \ \ I I I l / / / l 1 / ---\\\ \ \\ \ \ \ I 11 1 '-/ lr` --' ` \ \ \ ,, \ \ l / l / ------ --- \ \ \\ , \ \\ \ / 1 /1 1 I I I -- //- I\�/) %✓) \ <.. ' / I 1 1 1 \ \ -\ ` \ \� \\ \\'\\�✓/I / / l I j / I I % \\ \ \ \\ \/ \ \\ / 1 I I 1 _ /) / . \ // I / I I 1 \\ \ J_---- \\\\,\\ \ 1 I I / / l / / /'' \- , \\ \ \-, \ \ I I I -- / / I r `�/ /`- \�-� \ \ \ \ \� /_ \\\ \ \ _ / 1 /^ /' -�/ / - \\ \ \\\ \ \ \\_ \ \ \ \ \ / / / / I I 1 1 1 I I , �_------------ // I // ! 1 % `/ a _ i ) 1 \ ` \\\\\ I - \\ \\ `� \\\ \\ +' / /' / 111 1 / % / / j / ♦ /'--\ - \ \ \ \ \ \ \\\ \t\\ \ `\ \ \\ \ / / / 1 I 1 I I I / �/ / /(/ r f !el /-/ - r -' _` ��� _// 1 \ \ - \t -----_ - \ \\\\ 1 / I1 1 / / / / / -\ - \ \ \ \ , 1 / I I f ., r - 1 \ - \ \ \ \ \\ \ \ \ \ / 1 / / / \ - \ \ \ 1 1 \ I I 1 r-, ✓) !< \! 1 \� ��_ / I \ V V AVA vAv A -VAVAV AVA\ V ` A V 1 I / / / ( l l / / / 1 / / / /' \\ v\ \\ \ VA \\VAVA _�--- - -y�1 I I A I I I 1 1 1 / > /r- ^_I J/ O 11 , v A vv v� - vvVAV AVA\ v v A V I I I / / l l l / /1 I / / �' __ v A v ` �' \ \ I r- __L 1 1 I / i ( // ,° I_)\V I ,/, /( <� -- C A \ \ \ "`� `vv / \ \\ �v// / / / / / / --v \\ \ \ \\ \ \ VA A \ / I / T---i�--�_-- _ \ /I /. r/ err I `�' �^ —^� ) C�y�t ..`"\ ( a, 1 / \ \ �\\\`�\>` t \\ \\ \ \\ \\ 1 I I l l I //-\ \ \\ \\ \ \\ \\ \ \\ \ \ \_/ 1i--\- \I \\ II l I I I / I I \ ?�-- _ --' ''^ 1 //- i r/ / ) rl ) cr .- ( JJg?! r \\ i -� / \ - l ! \ \ \ \ \ \ l 1 I l 1 1 / / / \ \ ` \ \ \ \ \ \ \ 1 \� 1 \ \ \ \ \ I I I I II \ \\ I //` \ / /� r " ., / �/ // ` /" ^ %- / -.\.,� I I - \ \ \ \ \ ` 1 1 Ill / 1 \ \ \ 1 - \ \ \ \ \ \ I I I I / r', / i !.-r - / rJP:\r^- t 1 C';t.r c- ^ - J / \ \ \\C `\ \ 1 I I l I / 1 / I l 1 1 \ \ \ \ \ I I I \ \ \_1 / \\ \ \ \ \ \ \ \ 1 I I I 1 I I ------- ! / r -/ / ) \, f -) , o -� / \ `\ \\\\ �\ `i \� I / 1/ / / / 1 1 1 I / `\ \ \\ \ \ 1 1 \ \/ 1 I ,� �'\ y \ \ I \ I \ \ \ \ \ \ 1 / rI J 1 ! // // / % L<\ / 0 1^ ate. / �r -, _1 1 \ - \\ I 1 / / 1 / / / 1 \ \ 1 1 a \ I I I l / \ \ I I \ \ 1 \\ 1 1 I I I ( /------ ___ \ I � - \\\ \ _i I / 1/ / \ 4 SJ 1 /r <// tn1�� rJ I ! c �aJ !�\� It� i -_-/ I - \�\\`__ l 1 / / j / // / / _-- / \ \ \ \ I I I \ \vi / - \ \-� \ \ \ I / L / / \ I ! 1 _ /- `` - I I / l l / / / I 1\ \\ \\ -- - 11 \ \\ 1 l \ 1 1 I /-- \I \ i ° ? / - .. i\! /-- ) a- I / _ _- \\ I I I I / 1 / / _/ 1 I \ \ / \ \ \ \ \ 1 I / \ 1 / � \ .-^ \ ) , `I 1 ^ / \ f c> \_- ! .' - \: `- l I / / I l / / / / /' \ \ \ \ \ �i / - = \ \ \ \ \ \ , \ \ \ I I 1 )\ �, 1\14.c._, \L_ t- �l✓&, \ /) .. _Jv 1 IL { ( ( \°t i� \\\\ /' / \\-\`� _ I / I / / / / // // \ \ \ \ \ \ \ � \ \ \ \ / - --- = � _- \ \ \\ \ \ \ \ I I I I / \ / /<�_____ / / \ \\ \ \ \ // _ J� \ I 1 .._ �.�_ \\ = `� - --�- \ ) I. �r 1 1 ! \`` _ \ \ , / a-i \ ` _/----''� , I / / l / , _ \ \ \ \ \\ \ 1 \ \\ ` \I I \ / /// / \- - \ \\ \ \I I l /1 / / / / / // % / // / - ___ - \1 =� c �-_•.a \ ej\\\ ` \� \ 1 \, r .r ) .\ /� / J // --\ \ \ ``\` I / / _ - \\ \ \ I 1 I 1 / / / ` �'_ --' _ `\ ` Q%^t� \` Q♦♦\'F\ 1( l � /-...v `� r 1 ? \� ----- / / 1 _ � - - / _ \ \ \ a 1 1_ / / / _,�_ - \ \ I 1 / / // /' / / // "^ - \ *\ �" / _�- _ y-� -- _+ \ \ / ti-% \ ZI." ) \- ra. r ��.-� / / \ \ p� / / �/ I I . / / / / - \ \ \ I TI / /-- / -/ / - / -. r \ // r-J,,, '`\`\t�•N, l~`_ / ` S w---------' / `\ \ \ \ / \ \ \ \ \ 1 1 I I / / /I - \\ \ \ / I 1 / / \ \/ _-- �. �. \,--''_.--.���♦ \ \\ \\ \ )t \ I s \ ` <\ 11\` / l \ \ \ \ I I I/ / /' ,/ - \ \ I / / , 1 �v �-- / \ \ \ \ \ \ \ \ I I / / / / / -\ \ \\\\ x I I I II I 1 I I -�>� -•- \ - -Az) t'/ ✓mot( /., - _- r--� \ \1\ \\\I\ \ \\ o I. r r ! - / \ \\ \ \ \ I I \/ / 1 I I 1 / / // l I I I 1 \" \ 1 \\ \r L:SI ) c _ I \\ \/-` \ \ \ \ I I I / / / / / 1 11 1 I 1 I I /11 / // /- . . \ \ I. \\ \ ll r„ 1ti per- j �� --- ♦ I \ \\ �\ \ \ \ \ \ I I / /// / /' __ ` I / II 1 / \ \ I / / I I r ✓- r / / /Z=� -- ^-. \ \ \ \\ \ \ \ \ \ �.+, `� \ / \ \ \\ \ l \ \ \ \ I I I / / /�``,� _ \ I \� \ \ \ I / / / / / / \ 1 ✓ r' .,� r r.. '' / i ... 1 \ \ M-� t \ \ \\ \ \ \ \ \ 1 I I I / / / / , ` I I / / I I �_�__ / '� -J_= ------ \ 1 / / // r ^! r� r /ar.�� _� --^ 11 \\ \ \ \ ^ \ \ \ / f=1 \l \� t u 1 . - \ ` Iil��% \ \ \\ \� \ \ \ \ \ I I / / / / ♦ " \ \ 1 I 1 1 1 \ \ \C� 1 I / / / I 1 / \ %/ ♦' --- _ ��1 1 ♦._ / r� i'ir � f �� �\\11 \1\t \ \ \ \ \- ( \ 11 S t �\ \ \\.\\ \ \ 1 I I111 I / /l / // / / \ \ \ \ ) I I / )� / / \ \ \ I -- _ 1 / / '%�'' -- / # \) , /� f/L- / tr--/r / / ^.. ��� ) l \> \ \\ V \ `� `( I \ [ ! ^- \ 1 f�� \ \ \\\ ��� \ \ \ \ I 1 / / / // / // / / \ \ \ 1 - l __ / �, / \ \ / / •/ .// I ! �... ! Il 1 \ ♦ e^\) ►, ) t_ - ) t ) \ \ - - \ \ \ \ I I / 1 f / \ \ \ I I I YI \ I / / T / / \ " l I �� ! / ) /J/ I/f1/ / / ! r -^/- -- \} I 1\\ \ \ \` ` v \ l 1+ _ \ , \ / _-._/ \ -\- \\\� - \ \ \ I I I l 1_/ l l I I l / / - 1J\) 1 I 1 I 1 I 1 / / � �/ l 1 / / t r// / / / / /ii \.^� - .�\ \\\\\ \ ` f 1 \ f �i��` \ 1 rf w \ \\ \\- \ I I I 1//1 /,/1 1 1 - t 1 1 I IIII I I I / / �� `�`T \ I / I ( fj ��� ,/ s• t+� r / /! / r� /!//J f �/ \� l` \�i\\\\\ `\ 1`\\ ♦ y(1 \ \\\ tR ) ��r! , `\\!�� \ \ ! ..y Z \ \\ \ \ - `- I I I 1 / / / / 1 / I I li / b t i 1 / 1 / Il 11 1 �' 1 l I I /� -__?{I r } r I/ //ii// !///� \/J i.+�� \\�., \ \♦\\ \\\�\ t`4 \ 7\ \ l` , I a^� \ _/ `I ` \- I I / / / 11 1 -� ///i //l l/ 7'� I I I I I I /1 %' �' �\� I f / '1 S (ram I /) / / / / r C�/r% / r-1_ \ \\ \ \ 1 / \ \ 1 C a `1 l �..� \ \ \ /1 \ _ \\ \- _ < I 1 111/ I / 1 \ / / / / ' 7�\ / 1 I I I I J / / I\ I I t^�� . - \\ \ \\ \\ \ _ \\ /� \ S - ^ ♦ I, \ I III l // / / I 1 I // / / -� 1 I I 1 I / I J / / ! / ( r / / ! -/:. \\\ \ \ �-\ \\ \\ \ \ ♦ \ l r ! ! - ^ ) \ 1 l \'^ \ \ f .,/ \ 1 \ --, / l / / / / \ i I I I / I I I P / ��---- . -r\! \Jt /I I / / / I /�. pl'- .1 - \ .. \(:- \ - \ \\ \�11 \ l_ </"1\• t \ L , - 1 ) \ \ \ / � _ \ L111 I(I - // / / / 1 //,/, , /I t \ 1 I II I ,I / / I \ / sL 1� \ \\ l)\ \ \ \\ l \ \ \ \ \ \ 1 \ \ _ -1,1 \ / / I I I / r I I I i I / ---- / / / l \ 1. / / J// !1: r --1 1 / _ / / / / \ - / / / \ t I / /----- 1 1 / \ ! l)1 // ) 1 - ./ \\ l \\ �\ \ I. \\ti\• \ . l \ \ ,._ r 1 r,. r _ / S- / / \_/ 1 I I 1 / / \ I t f ) .. r \ 1\ l I\ \ \0 I ►t1'� \C tt\ `� t r- . / \\\\ / / / 1 , / /1i / /� l _- / I I I , --- / / / ) 11 ! I / 1 \ p\\ \ .\\ ►� \ ., I J` , \ , ! ! ^ <j--_--'' \���--= /'/' /' /, /� // I /\=/ i / \ \ 1 / I I I II l / \ \ / r 1 I / 1 1 �___-- -- fw! / // / / //•, \^`i// //t / �,-. I f J J t'�`�\_ \\\t \ \\ . I r ♦ / r ) )w.\ 1 J / I I / / - 1 / I _/ I I I I / 1 `` AP2 , t, ,_\ 1 - r f yZR / ``\\ `, • .) ( lr --� / / / / --' • I I I 1 / \ / 111 I / // ! ///h ////1 t1 , ! / /r \l \� \ f \/ t \ . ) s / / 1 - - / /, !I , I I 1 1 1 r \ >,s: t L \ \— J �_ .—_J ANALYSIS / / __—___ _ I I 1 I ��� \, I 1 \ 1 1 1 / �_ �` (1 . ) I / ! / Ij \/j /f I I 11 1 \ ( / \ \\ a. ti . \ ° / l ( ' (/ //1 1\\\♦ \\, \ \'i / t-. .,r / , --_ / / I \ _�� I It I I I 1 I I / / \ __ 2 724 700 SF -- / l / ! / ; / / / / /f / / / [ /1 () J l I ! 1 \ \ > \ > > 1 C t I 1 ti -/\ 1 l / \\ \ ` / / �r 1 > \ \ / --- `-\- l (\ - t �- l I ��` --- \ 1 \ \ I I I ------ , J //// 1 ! 11 \\ 1 \ / \ o.. I / %" / / ) \ ( / ♦ e \� - / f \ t I I 1, 1 1 / 1 \ /-- f - / r J / 1 / \ \ ( \ \ /J111� v \� \\ 1 (\ \ 1 ^\ \ r rJ \ / // \ \ ♦ - \ \ �- / I '__� \ \ \ I I I / - f / / /// / / / !I 1\ \ \ ) 1 \ \ JR 1 \\ �\ \ \ ) / ) / \\ \ ( \ lrr- / ` /--____ - I \1 - - \_/ / I 1 I f \ 1 ------,�\ / 1 1 •�) ` 62.55 AC \ 1,. /� J 1S/ / ( \ I POINT l 1 \ l \ \ ,� `_- \ / I _ , / I 1 -\\`-- I \ I\ 1 /_ * I r/ / //// /�// r / / / I \ ( \ 1 - ! (\ \ t >7� \ (\\\ \\ \\ \ `^-�_-- a� / / \\ \ I \ \ \ \ / 1 -1 I 1 1 \\ -_J \ \1 \ I ( / ----- // / /i / !/// /// J /! ti 1 \ \ t 1 !'Is '-ri,\ \ \ \ l ♦\ `� ' j \\ 1\ \\ \\ 1 \\4\ /S% // \\ ) _1 \1 / ^' eat- / / \ `-- ' \ \ \�: "" _ \-__�' / I 1 / J I 1 I 1 I r` ,r1 \ /- \ 1 \ I I /' \� ! ///r/ /// !! l ) t 1 \\ I--^�`V\` \ , \ \ \, \ 1 \ \ \ \ \ `l`-a h\T1 >-� ! / ( / 1 -.- / / / \ 1/ / -./' /- - \ \ - - 1 / I I -- -\ \ \ \ I / --\ vJ / /// ! \ \ � l ) -- \^ -1 I \ \ \\ r-, \ 1 1 ♦ \ 1 \ -� I• / \ -ri // \\ J% l/�`;I_. ! 1 41 \ . / I \ __ �/ - __'�' I \ / 1 / I 1 �� I \ - \\ \`\ \ 1 ( /' \\ h f /// / / / 1 c \✓ 1 ) 1 J 1 J ,I+r� ` \ \ \ \` ,\ 1 1 ; 1 \ \\ \\\ \ l - C r - , Jam/ // l\ // ,__=--^- `\ - `-\� > 1 \ / c \ _-\ -_ \ / III / l 1 1 1 1 1 /\ 1 -- \ \ �\ \\ \ \\ \ f r/ / / / /// ) 1 r✓ i ; (x \ \ \ 1 `\ )\ f f J \ l\ \\ -% o %/ % r> .- - \ ! t - t t lr✓ \ �/^ - - \ \ / I I I ) I % \\ - ' \ \ \ \ \ \ \ f_5 i / / /J / / 1 C l \ , \ •;:,-I r r.. 1 \ 1f \ \ / / /J / 1 .. -%__ • ( (tF \J ) l(\ 1 -,- I I I 1 / 1 b -- 1 \ \ / \ \ 1 `�/ \ -'`\ \ \ \ \ \ \\ \ \ /- ( / / - ✓ / / // r^ ./ 1 / 1 f \ -� \ `_� y IIC \ \I \ / J[_- / < 1 / 1 r -��I I , r\ \ / -�i/ - \ I 1 I I / / / / I \ `-\ , - \ \ \\ \\ \ \ 1 \ 1 t .. / / - /r f / // / - -r- / / 1 \ \ 1 \ c ) \ 1 I ) 1 .< \ / - _-- - \ \ I I _ -_- \ \ \ \ \ \\ \ \ \ ..r / / / / / /•- 1 //-r 1 ) / 1 \ �`' .\ l � \ / 1 J I\�l I I l l //„ / ,`� ! 1 j / < . ),-'.. \ \ 1 __ - -\\ \ I I / \`\ \ \ \- ` \ \\ \ \ l \ , / / ! / r / / >; / 1 - \ fLN.II 1 r / !11( \ \ ` / _ \ - I 1 I I I I // / `` J I .-�---`--- ., \II -\/ \)\\\ \\\\\\ \\ \k )w`/6C /!1 /r / f / f / / f \ \ --.a)1 \ / )) -- -i ,.1�- /- / / 1 • \ III \ \ z '- r -- - -__�I/ I I l I 1 I/ 1 \ I ' 1 \ \ \ \ \\ \ \ \ 1 �\ rI / /o l /r 1 l.. -- < f t ` \ /� - r \ !f\\ /- l r a .a /l�,�i ="'-\ [ / r .- \r/ l I \\ \\ \\ I --` -_'l/ 1 1 1 1 1 \ I r -----`__ \, \\ -- \ \ \ \\ \ \\ ( f'�t ! /..) !„)\ -J / ! ) 1 / .._^ I / `\ \- \ ^- \ II n l ..-) )� I r- l - \\ / r , I Ill \\ `\ \ / \ \ \ I \ 1� --\ \ \ - \ \ \ I \ / f 3)t J ! ) C / \_- \ \ ✓\\ f \ I \ t 1 l I I /\`✓r--ti! \\j 1 i ^ /_ \ / -- --- 1 C / 1 / S . \ 1\ 1 \ \ i- - ---\� - \ \ \` \\ \ \ )J .i✓- r C l f <-�_� �. _ .. ` '♦. \ \ i \ \ I / ' - - \ - - \ \\ \ ~` ( __ : ! ) 11 ( /�`I. I1 f 1 1 \ 1 \_� III /\ \_�/ \ -. \\ / _ \ - \ \ / \\ , / \ G I i� \ \ / 1 ---\ - v I 1 / - - - \ \ \\ \ JO ti '/ __" /) / <J% Jlr -t^' \� \ `Sao_ S//.. J-, 1 1 \ ( 1 \( / J) � \^ \ \ �_ \I 1 / `- - \ `_ \\ \ \ \ \ / // —}5/ / /! / !/-/ / 8,%,c <^ -", ' )% C- L! ! / 7 < " ` , rI I / Iv J / r/ J (_ 1 I [ \ / d `\ \\ \/ I --` "„ l l 1 ___\------__- -` \ - \ \ i C ! )[1 . / / / t) �`y,{�_ -/^. ^\ 1r\ v%l \ \ / \ ! / \ ' 1b 1\/ - \ 1 \ 1 `_ `` \ \ / I 1 I --`-_x 1 I --\ -� -�-�\ \\\\\ \ ! I "I/�-`„ �•/ .-) / /r vl+_� /- -^\ ._� t 1 r - \ >� 1 ( t ) ( I. ✓z- \ \ ` \ \ \ I /' / / \ \ / ! ! .. -/ \ \-- \ ` -- S _ f 1 ) \ l 1 \ I I 1 / \ \\ \ \\ \ i I / / / ' - _// ` d% I I '----------- - \\\`\ \ \\\ \ \1\\\ I - l 1 i AP1 �\ \� \\\ 1 \\\ \1\ \A' .1( /\� \\l% - r\- 11 \, \ - 1 \��� [ \ I J \ I J / /^ f l f ..1. - \1 \ , / / / \ \ __ / -- - \ \ \ \ \\ \ \ \\ \\\ �V //. ` \\ \ \ \- _ `= -a a 1 \-,_ \% `- \ r- / \r J / C 1 ., ( f \ / !/ 571 016 SF / 1 \ \_ ` / (-/ / / ,/ i � - \ l I / ------------`-- \\\ \ \ \- \ I \\ \ \\: \ \\ `i-! 1 __ - \ \ � ` \\ r� j- J ( r- f f I� I \ -✓ ( - \ __\ - - \ l / - \\ \\ / \ -� \ . \ \ \ `\ \ \\ ,.y �\ IL , \ . y1` \ � �' ( / '\ [I 13.11 AC ` 1 _ ` , I . , \ \) / __ ___ _ __ \ \ \\ \ \\\ \ \ \ \ \�\\ \\\\ \ \-- - - ` tl�Jti.. \- ✓�, �•\ `�.. `\ ii✓� / / / //\ rJ /( ) I ( / _) [ 1 S f S j__^r -- `\,.r.`/ _ 1 / \ \ \ / / I I / \I \\ \\./ / I -// \\-- --- \ \\ \\\\\� \� -- \ \ ��\\ \\\`^ \..\- ..� `--_- - (\lj/J 4 \- \-- -\ L �. ' //% r C l - i 1 11 1 ti! J l \I \-( I \ / / i \ / 1' - \ \ ` \. i, .-,l \ \ L \ / -\ Q \\vn \/ ! / r , 1 .� / I f - 'I-- _. r --- _ _ -\ ` \ \ \\ \\ \ \ \ \ 1 \ \\`\ 1 �� �- ` --- \_ _-- i I , \\\\ ^\ 1t - /` \ - -/- -r^rrJ� /! \/ t ( . - / f J�- / I) `-\_ / -� 1 \ \\ / / / / I i I 1 1 / L_/-\ - \ \ \ \ \ / I \� -� \ -mow ... -_ ✓-[ 1 ,-n\ - \ �.i---. --r ✓ !`r.+.�- --\ \\I \ \ \ 1 \\\�s \\ /J -`--- ^` - '- r/!1 s\\ \t\/l( \ t r ti 1\ \ i / // //` /� // rt ^ ( j f /j r `fit Z`-^ ��-_ _ \ \ , //\// /1 \ - / \ \ \ \ \\ \ \ \ \ 1 ) -�i.._�-_-^ ti\l\ % 1 \ - \�-\ \- .- / r / ) \! _ I / - �a J I f - ,If / / I - ------ -\\\ \ \\\\\ \ \ / \ - �' \^�\``` i\\\ \�\ \\fit/ Y\\ \ l l `^-\\^ \\` N /Jlr % ) r % l / , /- / % rJ l .. /r.1 \ \\ / / / , ti • --- \ \ \ \ \ \ \ \-/' Y:� \ -\w �_ � -\ \ \.., \ A 11\ w\ \ \ It \ \ > \-�-_�`` / � !\^ /__✓ r � < 1 � Ct I / 6t \ \ - I -- / / � \ `\ \\ \ \ . .`N �a - _ r \ .� \�- \ \� �.t\� \. `a t \\ -. l/� - ..-/-/ /////.._, r t. ( \ t /"r / -r/ f =i '{l 1`^`` \ `^_.`` /! �f ` ' / / \ , 1 \ \ \ J 1 k_� / I \- \ \ _� _ ea �e ,\\ \ \ \\\ \ \ \\ \ - - ,, \ L \ \ \ v"`\ __ �.r- ! f r-! 1 \\ \ r-. --_J C S r , r/ \ J./Yi • i �" J\ i -- __\ \ I \ \ \ \\ \ \\ \ _�, ., ` ( , ) \ �) I }•�� ._ .. \ ,-_ /-' ✓/ e„//// -.. f\\`-- I- ____ r/ -1 1 ! ✓, `\ _ \�,, /f t--- r S. Ott / y / v. la\� 1 - \ -- --\\ 1\ I \\\\\\\�\ \ \ ANALYSIS `,\ '` \%�' ,,,Z\i ( tI) ` \r�\\ +..w� r � Q r.-J\r t \\\1" - �^_.r/ /" /r /' / _-ems ' -.f J f < r � - /------\ -`\ l 1 I I \ \ \ \ \ \ \ \ I `� \ < J/ )! l t �, \ , \ 1 __ ._ , - _/^ - / -_. ../ .t a o I -?I I I I i / / 1 I 1 1 \\ \\ / \ \- p t n \ ri -�,-., ary 1 \ I i \i -.-ti / / I 1 \ I / \ \ 1 1 \ 1 \\\, \ \ POINT 3 ) ` I -r -- I I ! 1 1 / \ \ \ \ 1,! n / \ I \ \ V 1 eX _--- % - n..-i - - 111 I I I 1 �`•� � P -/- \ r / / / J-�`- 1 i I 1 `\ \ \ f\ K, I \ \ r t , , \ II '� !if 1 \ 1 /'-- \ \ \ \ \ \ \ \ \ \ \ \ \ I , I , r i ) AP3 \ \ \ \ - �- !^ v `1. - --� I� T \ ` l;Irk 1 .I -/ / r- I' \ \ \ O �+ }r\ I I / ! !< 1 ?�---1 I I I I 1_ I rr i `- -"'` \ / C �. \ ' / I \ \ \ - r 587 000 SF \ _ I I 1 / 1 11 I I I I; 1==--I 1w-1 / / \ \ \ \ \ \ \ I \\ \ \ \ , \\ \ \ \\ \ I /---__/ / / // I / - � ,,- ,�- l \ -1 \ \\ -_ \\ I \-- \ \ ( -. _ --- I i I ""�..c i i I i `i `� o r /-- // rr^' \ I j ) !_/ // \__`�- / \ \ \ \\ \ I \ \\\\\ \\\\ \ / / / / \ \ \ �- \ - I \ \I I / \\I� 1 I / \\ \ \ 1 1 I I I \ \ \ \\ \\ \ \ \ �\\ / __ _-/ / , / � \(> 1� \ \ \ - = \ 1 1 I I 1 1 I / I I I i i ' � _ -'� /�'_ ) \ / < f 1.:♦ ,\-_,, / / // / .. P - s : \ \ \ ^ - `\ 1\ 1 I \ --1--_ I .� // h�III -�11 �� I / -----i I I --� , ```I `� `04 ^r ••-•- IIIl l- _ --/ J t 1 I I \ \ \ 1 I I I II \\ \, \ \ \ \ \ \ \ / / /' \ \ ,% 1\ \-- \ \` \'=1 �__- \ I \ \ \ I \ 1 1 i� II II I I I I I 1 1-- I ' r/ I\� %\\� I L17 ,JI r\ y __ __ I \ \ \ - \ \ / / \, - \ \ \ -\_ I \ _ ----- I I 1 ( �I ' I \ / ^ V / \ I I \ \ \ \ 1 I \ \ \_ -- \\ \\ \ \ \\ //// / / -- r \ / 1 \ \ \ 1 \ \ \ \\ \- \ -\ I\ \ 1 \ _ _ /- ---III i i -- r----- i 'l f, ., 1 C \r 1,1 / '-_- _— __ �, I I \ \ \' \ \ \ / / / / I I I /�\ \ I, \ \ \\\ , \\ `---\ \ \ \ \ / / / -�.z._ /Sl� \ \ \ \ - 1 -- I-----�- \ \\ -- I ____ _-�I '- i ''i--- - I , , I , i 1 ' I------J 1 i �\ \ `�-._-.�-I r \ I \ I \ \ \ \ / _----_ t \ \ \ - I - -�- _ I 1 i 1 -1 / `l t - \ J,n.- , -------__- L_ I I 1 1 I \ \ ` \ \ \ \ - / / "/- / I \ 1\ \ I \ \\ \ / / /' l- II I\--- I 1 _I - ----J - ,- r�/ f I \ - - -' - - - - r-----, \ 1 I I I I 1 I I \\ \ \\ `\ \` \ \ \\- // // // / `-= -�� a� / / r/ \ ;\ 1\ \ 1 \ \ \ \- L__ / - - - l / _ ' 1 \ T I I I --1 I I / __ _ a - \\ / / , I 1 1 1 I I 1 \ \ \ \ \ \- \ -_ / i _ / I /" _I_ / I i _ I I 1 1 I I I 1 ` i � � \ - -_� \ \ I \ \ \ \ `\ \I \\ \\\ \\`- ----'____ /_'''--_____/ ------ - - / - - ---1 I I '------II 1 ---i i i `-----' r- -J I % J-- _n11 f / /\ `\ \ \ \ 1 I 11 \\ \\ II I \\ `\- __ / -- -- -- _ / 1 ---- - \ - / I / / / / II I I I /I - I , i I I I 1 f ' I I 1 �. ,, I / - \ \ \ \ / I 1 I \ - - - '�� --- // / _ / 1 ' _-\- - - - - _ - \ / / / >.� I �a�--1 i--- I ; - ; ------, r- - i , I % % . `y' ' J // / \ `� 1 I 1 I \,_--�' \\ - /'/'-------_- // --// -_��'� \\ I 1t `-� _ _- -\ -\\ l 1 I / / / I �'`------- 1 1 I I I 1 I I Y----,-1 I I • , I i �/'!!- �� / ,/ / / \-\- \---_ / 1 ) 1 I -- _i, /// --_-/ ___ //- 1 ---- I 1I_ -I i ' i L I `\ ,, , ,I' ; / / / / -\- _ I II I i i I \ ,, \ `�- -_-' / ) / - / / i-''" --- --- - `\ �-- ` T - _i l l I / l I 1 \ ------I I - 1 -----� 1 `` -� r` / / / / \ /' - a^_c� / 1 -`---' ' / /---- -\ / --- --_- f/ _' �`-� -\\ ) /--- //`� / / I / , I l I ( \, �i - i i i-----i -- I -�1 \ % - / I / _ " _ _ s ' _ I / j1 K ---' _ - \ '-_----/' / / /' \ \ \ I I -_ / / / / /' \I `� \ / /� / Y l 1 1 I 1 1 I I il 1 I i ; I 1 I 1 1 <�!% f' ! ,% JI1�_ - / I I 1 / `-- `-_--_ ) �'/ /- / / / \ \\ \\ I \ / / // / 1 ) \ / / ♦-- -/ / /' I I , / I I I I --_-_---I I I 1 i i I ' `, It _ / I I 1 1 ( / /--\ - - i� / / \\ /' \ / 1 / / ��/ / \ \I 11 1 I I _ i /' i' / // J I `�� ' I --- ' 1 1 --J I I 1 -� �� \ 1 1 1 \ \ I / \ \ \ - \ 1 / / 1 / r / / / / / \ I ---, 1 L-------J ----- \ \ 1 I / / / \ \ \-'' / I /1 / --\ \ 1 x / - / / --/ r / / / 1 I /� -- ----- r---� \ \ 1 \ \ \ \ 1 \ \ \\ `- --- --- \\ `. , / // / I \ \ \ I \\ \ \\ // ^ / / / I 1 / / ' 1 1 I 1 1 I - i 11 i I, \ \I \ 1 \ \ \\ \ \\ `\ _I 1 `- - - \ `� / / / \ 1 I / \ / \ \ 1 - / / / I I r 1 I I I `, 1 I 11VV�� i 1 �' / / ♦ / I I / 1 i`�� `` i i 1 i i i i t 1 1 I I , ,% \ I 1 \ \ \ \ / - \\ `^� \\ I / / \\ / 1 / / / \ \ / I / / /li___ 1I _� / / 1 / 1 1 \ i ' ' 11 '11-----111 ili__ `, ` \ I 1 \ \ \ \ / \ \ ) \ ` I I I \ / / / / - \ \ \ - / / / / _ / \ \\ 11 1 11 / / / / / / / / ' 1\ 11 \ ♦� ----- L---- L J --- L J I , 1 / / 1 11 ( \ \ `- ` \ I\ - \_-' / / __-�' /'"' �_'/i{_ 1 ) I / / / / /I / / / I 1 i I I i`��. `fit _ ! r ^` / __ i - - \ \ - j \ I 1- - / \ \----- "_�_ _'i - / / / l / i/ / I I 1 ! i iI I �t _— _—__ ----- ' '\ / aL \ \ - - - - ��� ccc - - - - - - _ _ _ _- _ _ /J / / _ - - - / / / ,, / / / /' / / 1 1 ! \`-- - ( f i i i ----- i i ----- i i -----� r-----� r-----i I ---i r------ r-----I r----- �\ / \`\ , \, , _- \ - / / / ---_ �_'' _ / __ _1 / __ - _ I 11 I I I I 1 1 111 111 111 I 1 I I , , ' ` , / \ \ _ / / / / / / / / / 1 \ /� 1 I I I I I I I I I I I I '' � ---_' _ - I/ I 1 1 1 1 -_ - -- _ _ / / / // / / / /� I I I I 1 I I I I I 1 1 I I I I 111 111 \� \\� \ \� `-_-``--'"' _�' _ \ Q- \ _ - _ i/ / i-- i� �--- -' �- i / ' -\ _ - / __ / l I / --- / _ ___ I 111 111 111 111 111 I I I 1 111 111 111 1 1 I I ` `, `` � %N / // I - __ _- -- -- _ / / / / / I /� //,- ____/ I I I I 1 1 I I I I I I 1 1 1 1 1 \ \ \ \ - _ ' - `- _ _ �' - _ - - \ \\ \ - - i / "- i _ i _ _ = _ _ — - - _ / / / �_ / _ i /' / I 1 / - I / _ J \ \� ------ I L`---J L----J L-----� L-----' '------' I-----' �-----' L-----J L----J L-`- 1 1 . / / _ _11 II ` ` \ \ \ ____ _Is I \ \---- �`\ / / / ---- '-'' ---- / , // ' / / / i / // _i _ / / 1 / / / / // _''� . /� \\\\ _ I / l 1 \-- __ _J L-----J L------- -\�a ( I l- \ \ \ \ /' / / 1 / / / / / / / 1 ♦ \ \ \ \\ \ -_- _ i'- -- -- --- _- -�- -�\ ��\\- / / / / / 1' ///////' �'' / /�_ '/// // / ' ' ` �`` \;\` I 1 I l- - - 1 \\ "� _-- '/ \ \\1 1 I \ \\\ I V- 1 ' `�--�- r- `---------- _-- ----_ ---- - _--- _ ,---- \ \ \ -\ - �\\ � ,v,-_ I I \ I1 - _ --___-____-- \\ \� \ I I I _ -- \ \ \ \ \ \-- ----- - _ - ----- ------ --'i' --- \\` \�"\ - - �1 I / \ \ \ / / / / / / _� ' _---- -- 1 1 I \ 1__ - -- \ \ \ \ \- -__------- ---' i-----------_--i'_i- > ` \\\� \ \ -- �- - I -) I / I\ \ \ \ I / ( 1 / / / 1 / I \ ( If \ I / /'- --\ \ -''-_` 1 1 I \ 1 \ \ I 1 I --- -- -- \ \ \ \ ` - '---------- -- I 1 \ \ \\ \\\\ `- / I I \ 1 / / / 1 ( I / I / / I \ \ \ / �__-- \ \ i ��- - I --_ \ I I `-_ -- - -\\ \\\ \ \ --------'------ -'_�-------------- I I 1 \ \ \`\ \\\ \-�- ` ---- / / \ \ \ 1 / / / I 1 I I 1 I \ \ \ \ 1 / \ / / 1 - \ __' "---- I- - __�-_ \ __ \ I - \ \ \ \ \ \ ` --- _-- -__-- --- /�' ------ -\ I 1 \ \ \ \\\ \ \- - _ \ \ \ \ \ 1 I / I I 1 �. k \ \ / / / \ �\ 1\ I -- - \ \ \ - -- - _ '/ _ -- I \ \\\\\ \\ \ \ \ \ \ I I I 1 1 1 1 1 --/ I \ \ / �� // - \ \\ I \ J- I \ I 1 i' I - \ \ \`\ \\\\ - -- -_--' _/ /_ ------ - - - I \ \ \ \ \\ < 1 \ \ \ I I 1 1 1 1 1 \ 1 1 �. \ / , / \ I / \� \ 1 1 1 I -- \ \ --_ --- /_ - -\ \ \ \ \ \ \ \\ \ `�--_ >1 \ \ \ I I 1 J \_ \ \ / ---- \ i ` ` \ \ \ \ -� - - _ //_i' __-- -- \ \ \ I\ I\ \ \ `\ \\ \ \` - \I - \ \ \\ \ I I 1 / 1 I 1 I \\ _ice' \ I-` - - j �'� 1 \`J i \ \ - \ I\\--- --��--------- i__/-, /'\\ \ 1 \ \ \ \ \\\\\ \\\\`\ \ 11 \ \\\\ 1 / I I 1 II I - __ I� -\\ - / '� \1\ \\ _ ".1 \I \\ \\ I 1 \I I \\\\\ \\ \ _ --- / -' i / - . / / � / _ \ \ \ \ \ ` \ \ -� \ \ 1 1 / 1 I I 1 I I 1 - /' i - \. --'I __ \ --- -- __ \ / 1 I ,1 \ \ - \ -- _ / / / / / /--- \ \ \ \ \ - ��- \ \\ \ 1 1 I / 1 1 II _ __ - \ I /---- \ <= / \ / / / 1 II 1 / / I / \ \ \ \ \ --_ ` --- _ =/ / / / ,, ,, _ / - / \ \_ \ \ \ I \ \ \ \ \ \ \ �_ \ \ / / -- / _-' -\ \ \ , � \ / / / / / I 1 1 \ \ '/ // / / / \ \ \`\ \ \ \\ \\ I I 1 /// I / I I 1 \ \ \ \ ---- --'� / /' / // ' ' %' _-_ \ \__, \ \ \ \ \ \ \ I 1 \ \ \ \%\ \ \ �J`_---\ / / _--- -- \ \ ----- . d- 1 I 1 1\ \ \ \ \ / /_ _ \ \ \ / / / 4 ,�t / 1 1 I \ I \ ` 1 / / / / / \ \ \ \ \ \ \ \ -♦ \\ \\ 1\ / / \ \ 1 \ / T - 1 \ / / / /' \ - \ \ \ \ 1 \\ \ - - I/ j11111 1 1 1 /i / / /'' / ) \ /� / / / / / / 1 1 _/ \\ I I i 1--- _/ // // / / / _---' _ ----- ` ---` -� \\ \\\ \ \ \ \\ \- -- ---- 111II 1�` / / / / / 1 / / : / _ // i/ /; / I l -�- \ \ / I I I I / , / / \ /, /., I / , / . 1 1 1 / /- \ \ -- \\ \ \-- `\ `\`,\ ` `\-� I \ -,:Z---------\•. \\\\\� - _//r' / / // / I / j i % / / __ i _ / / / / I I ) ! \ I 2 ,_ a Lk z O Lu >.1 i r-I ti Lo 0 au N E.= z r_I O W U= e Lp = o =U U) a Z =c (n = � C W r) M , . G ,_1 , 00L� o O�J W 1m I 0) m a 01) z Z L„ aw wZ V �: ao W W L/) V) W W w J or a U H H O U In u z z 0 z J z a w LJ_ PROJECT NO: DESIGN BY: JPE DRAWN BY: JPE SCALE: 1"=200' DATE: 2020-04-20 SHEET NO: SCM1.1 PRELIMINARY DRAWING -NOT RELEASED FOR CONSTRUCTION 1 / �' '--�- � \ -\ \ > \ '\ -� \ I I I 1 I , I / /� \ \ \ \\ �_ _ \ \ l \�- \�` / \ \ 11 (1 - -�� (' / ) \ ( `\ % 1 III I 1 / l l / / I` \\\\ \ \ \\ ' \ 1 \ I\ \ \ \ \ \ 11 -_-- \ \ / r \ 1 I / , 1 1 1 / / - \ \ \ \ \ \\ \ \ \ 1 / - \ I \ \ \\ \ �`�� /' \ \ \ ( / / ---`-\ / /l1 1 1 1 1 / \ \ \ \ \\ >,/ 1 \ \ \ 1 I j / /� \ \ \ \ \ \ _ \\\)\ I I \\ \ / / ��-----_ \ \ \ 1 v \ \ \ \ \ I -- ` \ \ \ \ _ - I I ' \ \ 11 1 \ I / _ \� \ \� \ 4". .`\ \ �♦ I / \\`\ \\ ��\�. r \ \ / 111 \ \ \ \ \ 1 I \ \ \ \ \ \-\ `l 1 l l 1 I I I II I I I I/ \ 1 I t- - -- -�--------__-- \ \) � \\ \ \ \ \ \ \ \ � • . 1'^ '. �'T � Q I \ \ \ \ �-�� \\ -/ / I 1 \\ \ \\ \ \ \ l __ \ \ \ \ \\ \ \ \ \_' \ 11 1 1 I I I 1 / 1 \ -TT / / \ \ \ \ \ \\ \ 1 / \ \ \ II I _ \\\\ \ \ 1 / \ \ \\ \\\\ \ 111 I 1\ \ / �� ` \ 1 IIII 11 / --------/ 1 1 I I I I I I // _------ - `` \ 1 \ \ \ \ \ \ \ _- 1 1 1 I I \ \ l ` \\IIII IIII I I I /- - \\ I I 1 \ \ \ \ \ \ `� \\\\\\\ ,\\ \\ '\ \+�♦it / // / / 1 / - 1 , I ( 1 \I 1 \ 1 \\ \\\ \ ---\ \ \ II\\ AA \\\\ \\ \\ \ I Il / 1 I I \\ \\ \ \\\ \\\ \\ \ \.- \ \ \ \ \ 1 I 1 / I / \ \ \ \\\ \\ 1 \ \ \ \ I 1 � \ \ \ \ \ \ \ \ \ \ \ \\\\ \. \\ e \ c) t� r 7 ( 1,J �.i �) � � ` ''/ / / / /� 1 1 \ 1\ II \\- \`\ `���\ `�� \ `\ \\ \\ / � / I I I 1 / � / / i � � /�' -----\�\ \ \ \ \ \\\ \ I \ 1 \ \ \ \ \ 1 1 1 1 1 1\\ 1 1 _ � +� \` !{\ i / / % /` � �♦ 1 � �-' I 1 \ \ \ \ � \ - , _- `\\\\ \ \ \ \ \ d / / / / 1 1 / / / � / / / / /'-`\ \ \ \\ \\ \\ \ \ \ \ ♦ / I 1 1 I / -- / / \ \ 1 / I I f - If / _ _ /�---------AA- - , T ♦ \ \ \ \ 1 / / \ \ \ \ < A, - -A / I I 1 1 11 \ 1\ ' // ,l,/ /„ / / / / // J -♦ `\.-+_..-.... / 1 \ \ \ \ \`\ \ : ,-�\\\\ \\\\ \ \ \ \ 1 / / / 1 1 1 / , / � / / � \ \ \ \ --� _/ \ \ \\ ``�J \\ / --- \ \ \ \\y \ \\\\\ ) r- I _1 I I l 1 / / / / I I 1 I 1 1 I I III 1 11 I ♦ / // r/ / / // / /i ' ` ♦r \ 11 ) ) \ \\\\ \\\\ \\\\ \ \\ \ \ \ \\ / l l l / l l 1 / / / / l / l / /� —�\ \\ \ \ \\ \�\ \ \\ \ \-// /-\ I \ \ 1 I I I / r--�---�--- I - \ \ \` \_.�,yJ1 \\\\ \ 1\/ / 1 I f /� I / / / / / / \ \ \ \ \ \\ \ 1 \ l / / I I \ ?�-- - __ _ _ ' //,/ / , 1 I I / /� l// l l � ,; � ) ) / // / / 1 //- i ♦ i �•! ri' �J vl „\ a� w_ 1 / \ \ \ , l 1 / l / l / / f / --� ` \ \ \ \ \ � \ \ \ I � 1 1 \ 1\ I\ I\ I \ - -`__ _----- \y/ - / -yam.. ( S JJ \♦ / / I \ \\ `� � J \� \ \\ 1 / / � \ \ \ � \ \ \ 1 \� \ f / I I 1 \ \ I /, �_-_- _-_-' \ \ \�� \ 1 / ,l / 1 / / I l l 1 1 // \\ `\ \ \ \ \ ) 1 \\ \_I \ � \\ 1 1 I \ / \ 1 1 \ / \ \ \ \ ---' -_____'' '''/ ,///// / /// / / / 1 y \ t / (! f / ♦ r .�/ i -)' '' t/ .) � � ) o -^� _�/ \ \ \ \ \\may �.\ \, / , I 1 / / / / , / 1 I /'- / '-` `\ \\ \ \ \ 1 III 1 \ \\ I \ \/ \ \ \ \ ♦ \ \ 1 ( I \ I I I f ,'\ / \\ 1 I ------ I - -' �' / // / / /// / / / i � I I )! t / / // rl 1 1 ♦ ) l�e -1 I , \\� \\\ \__/ I / 1/ / / / / /---/ 1 `\ \ \ \ \ \ 1 1 1 I 1 \ \ / /"\` \`_: \ \ \ \ \\ \ \ I I 1I / -----'/ i/i/ j/ j/ /�/ b S s\\ 1 i t ( 1/ 1 % ( + ! iJ �� i -_-// I \ 1 1 1 � I ' �. /,/ /,/ / ! t\ !r t \t �\, ! I I / POND BYPASS r ` ) ) ' / I 1 // / / / / \ \ \ 1 1 1 / \ \ \ \ \ I \ r:-! 1,338,650 SF y l / c> J _ - / / / / / / / / \ \ 1 \ \ 11 \ \ \ \\ \/ \\ \` \ \\ \ \ .� . ANALYSIS � 30.73 AC �^`�^ -'�� ` `� '� C \�` � / V 1\ `mil ) \^ ��` /) i \``== �`/ / /1 / / // / // / / `\ \\ \\ \\ \ \ \1\\ \ ` \ \ \ / /// /i'_�-=�`� \` \ \\ \\ 1 \I / / / / / / / ----_- ✓ -- __ POINT 2 - --_ _ \ , - 1 ftq• tee. ✓� \ ..:� \ ..� !\ IS J / / .1 ` '�-. .. / \ate ra..a r_� / / \ / , / \ \ \ \ \ AtIIA/// \ ;/ _. r �.... \,--- '- \\♦ \ \\ , tc \ 1 e ti\� J L \ �\ / ) S / /'^^-------- / \ \ \ / \ \ \ \ ------ \ \ \ \ 1 J t \ / r.. y / �� _ \ \ \ \ IIII I \ / / / , / `\ \ \\\)\ , I I I I I / i / 1 I \ 0 `: /� I \ ` \� ( �i--\\ \ \\ \ \ I I / , // / /// �^`\ `\ 1 11 1 \ I 1 1 I I I / / I I 1 \ i _ \' \ \ \ + ♦ M ` \ ♦ \ �\ \ \ \ / \\ \ �\ \\ \ \ \ � ) -•� \\ \\ \ \ \ \ \ \ \ IIII I / /// � ___ 1 \ - •� \ 1 1 ♦ \ �) (l \ 1 cl �� \ �. \ \\ \\ � \ \ \ \ \ I I / // \ ♦,,. \ / ` \ \ \ \ \ \ 1 I I / , I 11 �-__' � • ' - ,`'l \� ♦ \\\\ ♦ ,`\\ \ ` \\ �` �,,r! ��`/�, \ \ / ..y L� , ^ `\ \\ 1 , \ \ . \ . - - \ \ `__< III I 1 \`�. �,., � c � \ r\ \ \ ♦ . � � yJ , ` 1 ` `�. I III I I /l � , / I 1 / -1 /i/// ( I I I / '`\. I r, � � \\ \\ \ ♦♦ + !/� � ♦ 1 ♦ �--- \ � III / / / / 1 / // / � \ / , I I I I � I � , � \ I // �1 1 1 1 1 / / - / 1�., �a \l� ,\♦ / fi ` t\ \ ♦ ) S / / / - / / l l I i I I 1 I / \ \i \ ANALYS S r� / . / _ / I \ . _ I I I I , 1 I , , , , 1 \ \ 1 I-------- 1 !' " ,�\ \ 1 J v \ % / A ) \\ 1 + + `\ \ /\ \♦�� / -- _`` I !_ \ /� �j/ f \'/ 11 I / ----- i Ir , i �I \ _ ! 1 / / t \ 1 / 1 f \ t ♦ ♦ / / l _ - \ / / I I I \\\\ IA1\ , .- . , , , // (, \, ti POINT 1 _-\\ V I � ✓ � � , � \ ��1 � �\ � / / / / 1 1 -_ � /I / J e•„ 1 . % I � / `\� �� ' � \\ / 1 I l / I I I 1 A \ \\\ \ 1\ (\ I \� I �„- I \\I �� �� / ^ J` \ � / // f \ \ \♦� /- i ,�-\-`` ` `` `_- _ \\ / ( I I I / / / I 1 / \1 \ II \ `\ DA TO SOUTH POND ,! \ - J ) ll♦ ) \ \ / `�_ __-\\ _/ i I I 1 I I / / I `/\( I b -- -__ 1 / I\ 1 I 1 .� .+. r / / ! \ \ ♦+ -. ---�\ \ I 1 I // / / / I� 712,300 SF ` `- t 16.35 AC /a, Y= _ ,— / )` u \ \♦ / / ' I I l / I ( \/ / 1 1 ) !~ v cr � ^I- ; \ Wjll ` �` ♦ \ I �\�\\ __= 1\ 1\ \ 1 I1 . ." AP 1 I z �„ I l I , \\\ \ � 1 1 ! r 411 728 SF _ \ \ \\ \\. \ \\ \C\ wy //I I JI \\\ —1 792,950 SF _ �` / / / l Ai ``\\ \\ ,' \ ----------------` \ \ \ \ \ \ \\ \ \ \ / 1 ss. a.�a / -...� 1 00, ) / 1 , 1 i �^ _/ \ 1 \ `mac / 1 ► \ / \ ` ---------------\ \ \ \ \ \ \ \ \ \\ \ \ as �. I < .- i --------------- \ \\\ \ \ \ ♦ \ \ \ �`/ry ----------- -`� \ \ \ \\ \ \ \ \-i/ �� ---------------\\\ \ \\\\ \\\\ -----\ \ 1 \ \\\\ \\ \ \ \ r \a_ }a\. .. ^\ r / // 1/ % \ f\ - / 1 a ) \ y t�i f\ /1 ,W, /„.. /xAAA \ ANALYSIS - - rr J _ '" , \ I I I \ \ \ \ \ � \ � 1 \ _* 2 y 1' � \ \ �-,/SI ✓.,, tJ/^'i`'`^. / \ \ \ \ 1 �\ \ \ � \ \ \\ \ \ I \ 1 \ \ \ \ \ \ \\ \ / / / / -_- -- I I- 548 450 SF If \ \ \` /------' // / / / \ --+ 12.59 AC ----� \ 1 1 I 1 , I I I 1 \ \ \ \ \ \ \ \ SINGLE FAMILY 1\ 1 ' 11 If i /1 - - i \ / \1 ^ l/ S I \ \ \ \ I I \ \ \ \ \ \ \ \ \ / ` � - dy \ \I \ \ \ \`�_ I -_- i ^- -- fill � ' _x I i'-----i I I � , -_ I I 4 / 1 l I I \ \ I I I \ \ \ \ \ / / , RECREATION �, \-\.-�-- \ 1 \\ \ \\ --\ \ \ \ \ \ \\ \ �/ / //�.�` -\\ \\\ \\ -- -- -/ -- / \ \ \ \ \ \ \ ------ �/ , /' /' `� _ / l� \ \ I 43,467 SF `\ - 1 `\1 \ -- _-_, 1 'll--- ----- I 1 I -----' 11 \ \ - ) I I I ---- r' I i , \ \ \ \ \ \ \ \ \ \ \ \ \\ \_-_- '� ' '/ ----=\ )/ 1 1, -'` T `\ \ \ \ ` \` /' ------ III I I - - - -'-- --- --- I AA \ \ �/ �i'- `+�_ L _ \ \ \ I I 1 I _ � I 1 1 1 I \ \\ \ \ \/'/ ---^- -' �. � � / 1 \\ 1\ \ \ / _-`I\ `` \` - 1 / / /i /� \1- \--- I � , _- ' -- ' i L I -� J \\ \ \\ `\ \ \\\\\ // // \- _ 1\ \ 1 \ \ `--i ' - II --a- I I 1/i-----, i i / I \ \ \ \ \ \\ , / \ I l �\ l i� _` N 11 I ______ 1 I \ \ \ 1 __- ' I �- I� I I ,I I i , i I� I I i `/ •__---/ / / / \ \ \ I i' / / , / /' \I `� \ / /�-- , Y l 1 1 I I I I I I I i ; I I I I I <' 1 f' 1 I 1 I ( / /-`\ t� , / \\ /' \ / 1 , , 1 �/, / \ \I 11 1 I I _ f /' i' / // ' J I `__ I --- ' 1 I --J 1 __ �� _ \ 1 11V1�� i 1 �' / / ♦ / , I / 1 i i i i 1 I I 1 I , , \ 11 /� / / 1 / 1 1 \ �, ' ' 11 III -----III ili_- ', ' \ I \\ 1\ 1 / / / / / / / / / 1\ 11 \ \��rt , '--------- L-----J --- J I 1 I II 11 \ \ - - / , /' / / I 1 / i i ----- i i ----- i i -----� r-----� r-----i r-----i r----- r-----� r----- �\ / 11 I I 1 I I I 111 111 111 I I I 1 , , ' AAJ I I I I I I I I I I I I I I I 1 I I I I I 1 1 I I I I 111 11' , _ �---_---�-- �— i / —\ 'i - / l l / _-- / _ —_— 1 , , 111 III 111 111 111 1 1 1 I 111 III III I I 1 1 \ -- —_ __ __ � / '/" �/ , / / I ///�_ ____ �/ I I I I I 1 I I I I I I 1 I 1 1 ' \ \\ \ \ _ _ / _ — i _ _ _ _ = _ _ _ _ / / / �/ / i /' / l 1 / i , , — , \ \� ------ I L`---J L----J L-----� L-`--J L-----' L-----' �-----' L-----J L----J L---- 1 1 __ ,\)------------- - —=ram-- \ -- \ c� \ ��------ Is \\\ \\\\ - ----' -i /i -- - _ \ 1 \ \ \ \ \\ < 1 \ \ \ 1 I I 1 1 1 1 \ \ \ -----'/i' /--\ ---- \ \ \ I\ I\ \ \ \\ \\ \ \\ - `�i.- \ \ \\ \ i I I / 1 I 1 \ \\ _�' \ lam` \ \ j ' / /_' \ \ - \ --`--------------'i /i, i-\\ \ 1 \ \ \ \\\\\\\ \\ 1 /__ - / '/ \1\ \\ _ / \1 \\ \\ —77 , ---- / i % / /' / i,i/'/ /' _'i' �'� -- \� I \ \\ \ 1 \ \ I\ \ I I / / / , �'--- _ i �- ---� --'� \ \ \ / / / /' / �� 1 \ \ \ \ \ \ \ `\!. \ ' /i^ ' \ it \\ \ \ \\ \\ I I I /// I / AA 4, / If �\ \-J 1 l I (--_--'-'%'--------/ / /j/// ///i/' __�'�'/--\ \\ \-- \ `--✓� \ \ \`�\ \\\\%\ \\ \ \ _ -` - I III , /'\ I - / / J / / / \ \\ I I i l--_ _/ // // / / ' _---' - ----- ` \_ -J \\ \\\ \ \ \ \\ \\ - I IIII 1`` / / / / ✓ 1 / / : _ /' ,' /; / \ ) rAl ' ✓ / // / ./ / j i % / l --� i / / / / I 1 ! \ I LO au CD N 1� z -I O W U .� =U o a c C Z }I CT)ai Lm !_ c M Q) 00Lr)� 0— O�J W CD , � m CLQ'iz w J a U H H O U In Z L„ aw ,Lu Z V a0 w W L/) V) Lu W U z z 0 z J z a LL PROJECT NO: DESIGN BY: JPE DRAWN BY: JPE SCALE: 1"=200' DATE: 2021-01-08 SHEET NO: SCM2.1 PRELIMINARY DRAWING - NOT RELEASED FOR CONSTRUCTION APPENDIX C POND SURFACE AREA CALCULATIONS The Nau Company GnnsullingMil Engineers ESSEX PLACE/ESSEX TOWNES November 20, 2020 POND SURFACE AREA REQUIREMENTS - PIEDMONT/MOUNTAIN Location ID North Pond Drainage area 18.20 acres Percent impervious 55.1% Permanent pool depth 3.0 ft Required pond surface area 0.35 acres Required pond surface area 15,393 sq. ft. Imperv. Permanent Pool Average Depth (ft) 3.0 4.0 5.0 6.0 7.0 8.0 10 0.51 0.43 0.37 0.30 0.27 0.25 20 0.84 0.69 0.61 0.51 0.44 0.40 30 1.17 0.94 0.84 0.72 0.61 0.56 40 1.51 1.24 1.09 0.91 0.78 0.71 50 1.79 1.51 1.31 1.13 0.95 0.87 60 2.09 1.77 1.49 1.31 1.12 1.03 70 2.51 2.09 1.80 1.56 1.34 1.17 80 2.92 2.41 2.07 1.82 1.62 1.40 90 3.25 2.64 2.31 2.04 1.84 1.59 100 3.55 2.79 2.52 2.34 2.04 1.75 Interpolation Impervious 3.0 Average Depth 3 3.0 50 1.79 1.79 1.79 55.05494505 1.94 1.94 1.94 60 2.09 2.09 2.09 Note: SA/DA values taken from NCDEQ Stormwater Design Manual Section C-3, page 7 (revised 4/18/2017) The Nau Company GnnsullingMil Engineers ESSEX PLACE/ESSEX TOWNES January 4, 2021 POND SURFACE AREA REQUIREMENTS - PIEDMONT/MOUNTAIN Location ID South Pond Drainage area 16.35 acres Percent impervious 54.6% Permanent pool depth 3.0 ft Required pond surface area 0.32 acres Required pond surface area 13,735 sq. ft. Imperv. Permanent Pool Average Depth (ft) 3.0 4.0 5.0 6.0 7.0 8.0 10 0.51 0.43 0.37 0.30 0.27 0.25 20 0.84 0.69 0.61 0.51 0.44 0.40 30 1.17 0.94 0.84 0.72 0.61 0.56 40 1.51 1.24 1.09 0.91 0.78 0.71 50 1.79 1.51 1.31 1.13 0.95 0.87 60 2.09 1.77 1.49 1.31 1.12 1.03 70 2.51 2.09 1.80 1.56 1.34 1.17 80 2.92 2.41 2.07 1.82 1.62 1.40 90 3.25 2.64 2.31 2.04 1.84 1.59 100 3.55 2.79 2.52 2.34 2.04 1.75 Interpolation Impervious 3.0 Average Depth 3 3.0 50 1.79 1.79 1.79 54.617737 1.93 1.93 1.93 60 2.09 2.09 2.09 Note: SA/DA values taken from NCDEQ Stormwater Design Manual Section C-3, page 7 (revised 4/18/2017) APPENDIX D POND AVERAGE DEPTH AND FOREBAY VOLUME CALCULATIONS The Nau Company Consulting Civil Ertoneers AVERAGE POND DEPTH AND FOREBAY VOLUME CALCULATIONS Location ID North Pond Main Pool Data Elev Area Incr vol E vol [sf] [cu ft] [cu ft] CIO 0 v 0 0 a c 367 4,515 0 0 368 5,633 5,074 5,074 370 8,043 13,676 18,750 372 10,687 18,730 37,480 ttomof shelf 372 15,222 0 37,480 rmanent pool ITo 373 18,350 16,786 54,266 p of shelf 373 18,350 0 54,266 Project Name January 6, 2021 Average Depth by Equation 2 Volume of perm pool 54,266 cu ft Surface area of perm pool 18,350 SF Average Depth 3.0 feet Average Depth by Equation 3 Perimeter of perm pool 540.0 feet Width of shelf 6.0 feet Max depth over shelf 1.00 feet Volume of shelf 1,620 cu ft Average depth 3.5 feet Forebay #1 Area Incr Vol Elev [sf] [cu ft] Forebay #2 Area Incr Vol Elev [sf] [cu ft] Forebay #3 Area Incr Vol Elev [sf] [cu ft] Forebay #4 Area Incr Vol Elev [sf] [cu ft] 368 1,535 0 370 2,588 4,123 372 3,825 6,413 Total 10,536 ITotal 0 ITotal 0 ITotal 0 Total volume of forebays 10,536 cubic feet Main pool volume 54,266 cubic feet of main pool volume 19.4 Notes 1. The permanent pool volume can be at the bottom of the shelf, the top of the shelf, or anywhere between the two 2. Per the NCDEQ Stormwater Design Manual, only the main pool is considered for the average depth calculation. The forebays are excluded 3. The volume of the forebay shall be between 15% and 20% of the volume in the main pool The Nau Company Consulting Civil Ertoneers AVERAGE POND DEPTH AND FOREBAY VOLUME CALCULATIONS Location ID South Pond Main Pool Data Elev Area Incr vol E vol [sf] [cu ft] [cu ft] CIO 3 0 v 0 0 a c 313 3,076 0 0 314 4,425 3,751 3,751 316 7,182 11,607 15,358 ttom of shelf 317 12,401 9,792 25,149 rmanent pool ITo 318 16,197 14,299 39,448 pp of shelf 318 16,197 0 39,448 Project Name January 6, 2021 Average Depth by Equation 2 Volume of perm pool 39,448 cu ft Surface area of perm pool 16,197 SF Average Depth 2.4 feet Average Depth by Equation 3 Perimeter of perm pool 653.0 feet Width of shelf 6.0 feet Max depth over shelf 1.00 feet Volume of shelf 1,959 cu ft Average depth 3.0 feet Forebay #1 Area Incr Vol Elev [sf] [cu ft] Forebay #2 Area Incr Vol Elev [sf] [cu ft] Forebay #3 Area Incr Vol Elev [sf] [cu ft] Forebay #4 Area Incr Vol Elev [sf] [cu ft] 314 1,237 0 316 2,427 3,664 317 3,100 2,764 Total 6,428 ITotal 0 ITotal 0 ITotal 0 Total volume of forebays 6,428 cubic feet Main pool volume 39,448 cubic feet of main pool volume 16.3 Notes 1. The permanent pool volume can be at the bottom of the shelf, the top of the shelf, or anywhere between the two 2. Per the NCDEQ Stormwater Design Manual, only the main pool is considered for the average depth calculation. The forebays are excluded 3. The volume of the forebay shall be between 15% and 20% of the volume in the main pool APPENDIX E POND DEWATERING TIME CALCULATIONS The Nau Company GonsultingCivil Engineers Location ID Input Data RUNOFF VOLUME (NCDENR SIMPLE METHOD) South SCM Drainage area A 18.20 acres Impervious area 10.02 acres Impervious fraction la 0.551 Design storm rainfall depth Rd 1.00 inches Output Runoff coefficient Rv 0.55 Runoff volume V 36,039 cubic feet R„=0.05+0.9X A V = 3630 x Ro x Rv XA Calculations based on NCDEMLR Stormwater Design Manual Part B Essex Townes/Essex Village January 4, 2021 The Nau Company GonsultingCivil Engineers Location ID Input Data RUNOFF VOLUME (NCDENR SIMPLE METHOD) South SCM Drainage area A 16.35 acres Impervious area 8.93 acres Impervious fraction la 0.546 Design storm rainfall depth Rd 1.00 inches Output Runoff coefficient Rv 0.54 Runoff volume V 3Z142 cubic feet R„=0.05+0.9X A V = 3630 x Ro x Rv XA Calculations based on NCDEMLR Stormwater Design Manual Part B Essex Townes/Essex Village January 4, 2021 The Nau Company Consulting Ciuil Engineers Location ID North SCM POND VOLUME CALCULATIONS Essex South January 4, 2021 Contour Contour area Stage Incremental volume Cumulative Volume 373.0 18,350 sf 0.0 0 CF 0 374.0 20,000 sf 1.0 19,175 CF 19,175 CF 376.0 23,468 sf 3.0 43,468 CF 62,643 CF 378.0 27,162 sf 5.0 50,630 CF 113,273 CF 380.0 31,082 sf 7.0 58,244 CF 171,517 CF 382.0 35,229 sf 9.0 66,311 CF 237,828 CF 384.0 39,602 sf 11.0 74,831 CF 312,659 CF Interpolate Area and Volume Elevation ID 1 inch rainfall elevation Elevation 374.80 Calculated area 21,387sf Calculated volume 36,562 sf The Nau Company Consulting Ciuil Engineers Location ID South SCM POND VOLUME CALCULATIONS Essex South January 4, 2021 Contour Contour area Stage Incremental volume Cumulative Volume 318.0 16,196 sf 0.0 0 CF 0 320.0 20,226 sf 2.0 36,422 CF 36,422 CF 322.0 24,483 sf 4.0 44,709 CF 81,131 CF 324.0 28,985 sf 6.0 53,468 CF 134,599 CF 326.0 33,674 sf 8.0 62,659 CF 197,258 CF Interpolate Area and Volume Elevation ID 1 inch rainfall elevation Elevation 319.77 Calculated area 19,763 sf Calculated volume 32,233 sf Project Name The Nau Company June 21, 2021 GonsultingCivil Engineers POND DEWATERING TIME - ORIFICE EQUATION Location ID North Pond Input Data Design volume 36,039 cu. ft. Orifice diameter 3.00 in. Orifice coefficient 0.60 Initial elevation 374.80 Final elevation 373.00 Results Driving head Adjusted head Area of orifice Discharge Dewatering time Dewatering time Dewatering time Dewatering time 1.80 ft. 0.60 ft. due to falling water surface elevation 0.0491 sq. ft. 0.18 cfs 196,848.9 sec. 3,280.8 min. 54.7 hours 2.3 days Per Section B page 9 of the NCDEQ Stormwater Design Manual, the head on the orifice should be adjusted to 1/3 H to account for the head is decreasing as drawdown occurs Project Name The Nau Company June 21, 2021 GonsultingCivil Engineers POND DEWATERING TIME - ORIFICE EQUATION Location ID South Pond Input Data Design volume 32,142 cu. ft. Orifice diameter 2.50 in. Orifice coefficient 0.60 Initial elevation 319.77 Final elevation 318.00 Results Driving head Adjusted head Area of orifice Discharge Dewatering time Dewatering time Dewatering time Dewatering time 1. 77ft. 0.59 ft. due to falling water surface elevation 0.0341 sq. ft. 0.13 cfs 254,944.3 sec. 4,249.1 min. 70.8 hours 3.0 days Per Section B page 9 of the NCDEQ Stormwater Design Manual, the head on the orifice should be adjusted to 1/3 H to account for the head is decreasing as drawdown occurs APPENDIX F RIPRAP OUTLET PROTECTION CALCULATIONS ESSEX VILLAGE/ESSEX TOWNES DESIGN OF RIPRAP OUTLET PROTECTION OUTLET FLOWRATE PIPE DIAMETER OUTLET PIPE SLOPE NUMBER OF PIPES PIPE SEPARATION ZONE FROM GRAPH PIPE AREA FLOW VELOCITY MATERIAL LENGTH WIDTH STONE DIAMETER THICKNESS 71.0 cfs 42 inches 1.00 1 0 feet 2 9.62 sq. ft. 7.4 ft/sec NCDOT Class B riprap 21.00 feet 10.50 feet 6 inches 22 inches Q10 INTO NORTH POND May 3, 2021 Zone Material Diameter Thickness Length Width 1 Class A 3 9 4 x D(o) 3 x D(o) 2 Class B 6 22 6 x D(o) 3 x D(o) 3 Class 1 13 22 8 x D(o) 3 x D(o) 4 Class 1 13 22 8 x D(o) 3 x D(o) 5 Class 11 23 27 10 x D(o) 3 x D(o) 6 Class 11 23 27 10 x D(o) 3 x D(o) 7 Special study required 1. Calculations based on NY DOT method - Pages 8.06.05 through 8.06.06 in NC Erosion Control Manual 2. Outlet velocity based on full -flow velocity ss i S rd+■®mn.r.���r low I �� i�lr]l1�a+ ='m := a�rtv�;a� a �rye ri �1i�11Y •a�as�as" rrRma� �IP�AIR�farlaao4 _ roa�.rrar r■' Ydrz+o ri0�= iAl7.�7�laua� r�s awpm la ■■�S7 a� wpw�am 0' 15' 10' 15' al' 25' 01AMETER (Ft) ESSEX VILLAGE/ESSEX TOWNES DESIGN OF RIPRAP OUTLET PROTECTION OUTLET FLOWRATE PIPE DIAMETER OUTLET PIPE SLOPE NUMBER OF PIPES PIPE SEPARATION ZONE FROM GRAPH PIPE AREA FLOW VELOCITY MATERIAL LENGTH WIDTH STONE DIAMETER THICKNESS 1.0 cfs 24 inches 1.00 1 0 feet 1 3.14 sq. ft. 0.3 ft/sec NCDOT Class A riprap 8.00 feet 6.00 feet 3 inches 9 inches Q10 FROM NORTH POND May 3, 2021 Zone Material Diameter Thickness Length Width 1 Class A 3 9 4 x D(o) 3 x D(o) 2 Class B 6 22 6 x D(o) 3 x D(o) 3 Class 1 13 22 8 x D(o) 3 x D(o) 4 Class 1 13 22 8 x D(o) 3 x D(o) 5 Class 11 23 27 10 x D(o) 3 x D(o) 6 Class 11 23 27 10 x D(o) 3 x D(o) 7 Special study required 1. Calculations based on NY DOT method - Pages 8.06.05 through 8.06.06 in NC Erosion Control Manual 2. Outlet velocity based on full -flow velocity ss i S rd+■®mn.r.���r low I �� i�lr]l1�a+ ='m := a�rtv�;a� a �rye ri �1i�11Y •a�as�as" rrRma� �IP�AIR�farlaao4 _ roa�.rrar r■' Ydrz+o ri0�= iAl7.�7�laua� r�s awpm la ■■�S7 a� wpw�am 0' 15' 10' 15' al' 25' 01AMETER (Ft) ESSEX VILLAGE/ESSEX TOWNES DESIGN OF RIPRAP OUTLET PROTECTION OUTLET FLOWRATE PIPE DIAMETER OUTLET PIPE SLOPE NUMBER OF PIPES PIPE SEPARATION ZONE FROM GRAPH PIPE AREA FLOW VELOCITY MATERIAL LENGTH WIDTH STONE DIAMETER THICKNESS 77.0 cfs 42 inches 1.00 1 0 feet 2 9.62 sq. ft. 8.0 ft/sec NCDOT Class B riprap 21.00 feet 10.50 feet 6 inches 22 inches Q10 INTO SOUTH POND May 3, 2021 Zone Material Diameter Thickness Length Width 1 Class A 3 9 4 x D(o) 3 x D(o) 2 Class B 6 22 6 x D(o) 3 x D(o) 3 Class 1 13 22 8 x D(o) 3 x D(o) 4 Class 1 13 22 8 x D(o) 3 x D(o) 5 Class 11 23 27 10 x D(o) 3 x D(o) 6 Class 11 23 27 10 x D(o) 3 x D(o) 7 Special study required 1. Calculations based on NY DOT method - Pages 8.06.05 through 8.06.06 in NC Erosion Control Manual 2. Outlet velocity based on full -flow velocity ss i S rd+■®mn.r.���r low I �� i�lr]l1�a+ ='m := a�rtv�;a� a �rye ri �1i�11Y •a�as�as" rrRma� �IP�AIR�farlaao4 _ roa�.rrar r■' Ydrz+o ri0�= iAl7.�7�laua� r�s awpm la ■■�S7 a� wpw�am 0' 15' 10' 15' al' 25' 01AMETER (Ft) ESSEX VILLAGE/ESSEX TOWNES DESIGN OF RIPRAP OUTLET PROTECTION OUTLET FLOWRATE PIPE DIAMETER OUTLET PIPE SLOPE NUMBER OF PIPES PIPE SEPARATION ZONE FROM GRAPH PIPE AREA FLOW VELOCITY MATERIAL LENGTH WIDTH STONE DIAMETER THICKNESS 3.6 cfs 18 inches 1.00 1 0 feet 1 1.77 sq. ft. 2.0 ft/sec NCDOT Class A riprap 6.00 feet 4.50 feet 3 inches 9 inches Q10 FROM SOUTH POND May 3, 2021 Zone Material Diameter Thickness Length Width 1 Class A 3 9 4 x D(o) 3 x D(o) 2 Class B 6 22 6 x D(o) 3 x D(o) 3 Class 1 13 22 8 x D(o) 3 x D(o) 4 Class 1 13 22 8 x D(o) 3 x D(o) 5 Class 11 23 27 10 x D(o) 3 x D(o) 6 Class 11 23 27 10 x D(o) 3 x D(o) 7 Special study required 1. Calculations based on NY DOT method - Pages 8.06.05 through 8.06.06 in NC Erosion Control Manual 2. Outlet velocity based on full -flow velocity ss i S rd+■®mn.r.���r low I �� i�lr]l1�a+ ='m := a�rtv�;a� a �rye ri �1i�11Y •a�as�as" rrRma� �IP�AIR�farlaao4 _ roa�.rrar r■' Ydrz+o ri0�= iAl7.�7�laua� r�s awpm la ■■�S7 a� wpw�am 0' 15' 10' 15' al' 25' 01AMETER (Ft) APPENDIX G ANTI -FLOTATION BLOCK CALCULATIONS Project Name The Nau Company January 6, 2021 GonsultingCivil Engineers RISER ANTI -FLOTATION BLOCK CALCULATIONS Location ID North Pond Riser Rectangular riser Length Width Area Inside dimensions 4.00 ft 4.00 ft 16.0 sf Outside dimensions 5.00 ft 5.00 ft 25.0 sf Cross sectional riser area Riser inside height Volume of concrete in riser Riser base area Riser base thickness Volue of concrete in base Total concrete volume in riser Unit weight of concrete Unit weight of water Total bouyant weight of riser Water displaced by riser Unit weight of water Weight of water displaced Anti -Flotation Block Length of anti -flotation block Width of anti -flotation block Thickness of anti -flotation block Volume of anti -flotation block Unit weight of concrete Total weight of anti -flotation block Factor of Safety 9.00 square feet 13.00 feet 117 cubic feet 25 square feet (same as riser outside dimensions) 0.5 feet 12.5 cubic feet 129.5 cubic feet 144 pounds per cubic foot 62.4 pounds per cubic foot 10567.2 pounds 325 cubic feet 62.4 pounds per cubic foot 20280 pounds 8.00 feet 8.00 feet 2.50 feet 160 cubic feet 144 pounds per cubic foot 23040 pounds Weight of rise r+anti-flotation block 33,607 pounds Weight of water displaced by riser 20,280 pounds Factor of safety against flotation 1.66 Project Name The Nau Company January 6, 2021 GonsultingCivil Engineers RISER ANTI -FLOTATION BLOCK CALCULATIONS Location ID South Pond Riser Rectangular riser Length Width Area Inside dimensions 4.00 ft 4.00 ft 16.0 sf Outside dimensions 5.00 ft 5.00 ft 25.0 sf Cross sectional riser area Riser inside height Volume of concrete in riser Riser base area Riser base thickness Volue of concrete in base Total concrete volume in riser Unit weight of concrete Unit weight of water Total bouyant weight of riser Water displaced by riser Unit weight of water Weight of water displaced Anti -Flotation Block Length of anti -flotation block Width of anti -flotation block Thickness of anti -flotation block Volume of anti -flotation block Unit weight of concrete Total weight of anti -flotation block Factor of Safety 9.00 square feet 8.00 feet 72 cubic feet 25 square feet (same as riser outside dimensions) 0.5 feet 12.5 cubic feet 84.5 cubic feet 144 pounds per cubic foot 62.4 pounds per cubic foot 6895.2 pounds 200 cubic feet 62.4 pounds per cubic foot 12480 pounds 8.00 feet 8.00 feet 1.50 feet 96 cubic feet 144 pounds per cubic foot 13824 pounds Weight of rise r+anti-flotation block 20,719 pounds Weight of water displaced by riser 12,480 pounds Factor of safety against flotation 1.66 APPENDIX H SNAP TOOL OUTPUT Project Information Project Name: Essex Townes/Essex Village Submission Date: 01/08/2021 Project Area (ft): 2,004,752 ft2 Disturbed Area (ft): 1,844,833 ft2 Development Land Use Type: Single Family Residential Development Activity Type: Development - New no Designated Downtown Area? Project Location/Address: Franklinton, NC County: Franklin Local Jurisdiction: Franklinton 36.090241 N Project Latitude Coordinates: Project Longitude Coordinates:-78.469833 W Precipitation Station: Raleigh Physiographic Region: Piedmont Nutrient Management Watershed: Tar -Pamlico Subwatershed: Tar -Pamlico - 03020101 Phosphorus Delivery Zone: A]Tar Upper Nitrogen Delivery Zone: Tar - Upper Project Designer and Contact Phone Number / Email: Jon Eakins/919.616.4716/jeakins@thenauco.com Part of Common Development Plan? no Project Owner Type: Private Project Description: R = 0.05 + (0.009 *1) where I = percent impervious (%) Average Annual Pollutant Load, L L=(Pj*RR *(P/12))*(C*A*2.72) where C = event mean concentration (mg/L) Project Area Land Cover Characteristics PROJECT AREA LAND COVERS Roof Pre- ! Post - Project Project Area (ft) Area (ft) TN EMC (mg/L) TP EMC (mg/L) 1.18 1.64 0.11 0.34 394,330 311,536 Roadway Parking/Driveway/Sidewalk 1.42 0.18 200,518 Protected Forest 0.97 0.03 2,004,752 66,084 Other Pervious/Landscaping 2.48 1.07 993,708 CUSTOM LAND COVER 1 CUSTOM LAND COVER 2 CUSTOM LAND COVER 3 LAND TAKEN UP BY SCM 1.18 0.11 38,576 LAND COVER AREA CHECK Net Change of Land Covers (ft): 1,938,668 Total Project Area Entered (ft): 2,004,752 Total Pre -Project Calculated Area (ft): 2,004,752 Total Post -Project Calculated Area (ft): 2,004,752 Equations Used and Proiect Area Calculations SIMPLE METHOD Stormwater Runoff Volume Generated, V Runoff Coefficient R v V = Pi * Rv * (P/12) * A where A = drainage area (ft) Pj = fraction of rain events with runoff P = average annual rainfall depth (in) A = 46.0228 ac A = 46.0228 ac P = 46.22 in. P = 46.22 in. V = 347474 ft3 V = 3302293 ft3 1= 0% 1= 47% R = 0.05 Rv = 0.48 Pi = 0.9 Pi = 0.9 CTN = 0.97 mg/L CTN = 1.44 mg/L CTP = 0.03 mg/L CTP = 0.25 mg/L LTN = 21.05 Ib/yr LTN = 296.52 Ib/yr LTP = 0.65 Ib/yr LTP = 50.57 Ib/yr 3. SCM Characteristics SCM Characteristics Catchment ID SCM ID Type of SCM Predominant hydrologic soil group at SCM location SCM Description Design Storm Size (inches/24hrs) Percent of Full Size Hydrologic Value - Percent Annual Effluent Hydrologic Value - Percent Annual Overflow Hydrologic Value - Percent Annual ET/Infiltrated SCM Effluent TP EMC (mg/L) SCM Effluent TN EMC (mg/L) SCM Land Cover TP EMC (mg/L) SCM Land Cover TN EMC (mg/L) Drains to SCM ID 1 101 Wet Pond per MDC C North Pond 1.00 1 1 102 103 Wet Pond per MDC C South Pond 1.00 100 % 100 72% 72% 16 % 16 13 % 13 0.15 0.15 1.22 1.22 0.11 0.11 1.18 1.18 102 0 3. SCM Characteristics Catchment Routing Catchments Draining to Catchments Draining to Catchments Draining to (Source Catchment) SCM 101 SCM 102 SCM 103 Catchment 1 Catchment 2 Catchment 3 Catchment 4 Catchment 5 Catchment 6 SCM ID: 101 102 103 Area Draining Directly to Area Draining Directly to Area Draining Directly to IL SCM Drainage Area Land Covers SCM 101 (ft2) SCM 102 (ft2) SCM 103 (ft2) Roof 204,414 173,665 Roadway 139,103 144,217 Parking/Driveway/Sidewalk 93,161 71,241 Protected Forest 0 0 Other Pervious/Landscaping 337,922 306,881 CUSTOM LAND COVER 1 CUSTOM LAND COVER 2 CUSTOM LAND COVER 3 LAND TAKEN UP BY SCM 18,350 16,296 TOTAL AREA DRAINING TO SCM (ft): 792,950 712,300 0 CATCHMENT AREA (ft2): 1,505,250 3. SCM Characteristics SCM Characteristics Catchment ID SCM ID Type of SCM Predominant hydrologic soil group at SCM location SCM Description Design Storm Size (inches/24hrs) Percent of Full Size Hydrologic Value - Percent Annual Effluent Hydrologic Value - Percent Annual Overflow Hydrologic Value - Percent Annual ET/Infiltrated SCM Effluent TP EMC (mg/L) SCM Effluent TN EMC (mg/L) SCM Land Cover TP EMC (mg/L) SCM Land Cover TN EMC (mg/L) Drains to SCM ID 3. SCM Characteristics Catchment Routing (Source Catchment) Catchment 1 Catchment 2 Catchment 3 Catchment 4 Catchment 5 Catchment 6 SCM ID: SCM Drainage Area Land Covers Roof Roadway Parking/Driveway/Sidewalk Protected Forest Other Pervious/Landscaping CUSTOM LAND COVER 1 CUSTOM LAND COVER 2 CUSTOM LAND COVER 3 LAND TAKEN UP BY SCM "TOTATAREA DRAINING TO SCM (ft): CATCHMENT AREA (ft2): Total Land Use Area Treated By All SCMs (ftZ) 378,079 283,320 Allowable Total Land Use Area to be Treated Based on Post -Project Areas ft Z Post -Project Untreated Land Area (ftZ) 16,251 28,216 394,330 311,536 164,402 200,518 36,116 0 66,084 66,084 644,803 993,708 348,905 0 0 0 0 0 0 0 34,646 0 0 3,930 38,576 1,505,250 2,004,752 499,502 Project Summary[ Project Name: Essex Townes/Essex Village 2,004,752 ft 46.0228 acres Submission Date: 1,844,833 ft2 42.3515 acres January 8, 2021 Project Area (ft ): Disturbed Area (ft): County: Franklin Local Jurisdiction: Franklinton Development Land Use Type: Single Family Residential Owner Type: Private Development Activity Type: Development - New Designated Downtown Area? no Nutrient Management Watershed: Tar -Pamlico Subwatershed: Tar -Pamlico - 03020101 Phosphorus Delivery Zone: Tar - Upper Nitrogen Delivery Zone: Tar - Upper Phosphorus Delivery Factor (%): 100% Nitrogen Delivery Factor (%): 100% Phosphorus Loading Rate Target (Ib/ac/yr): 1.10 Nitrogen Loading Rate Target (Ib/ac/yr): 6.44 Phosphorus Load Target at Site (lb/yr): 50.57 Nitrogen Load Target at Site (lb/yr): 296.52 Phosphorus Load Leaving Site w/SCMs (lb/yr): 31.66 Nitrogen Load Leaving Site w/SCMs (lb/yr): 221.10 P Offsite Buy -Down Threshold Loading Rate (lb/ac/yr): N/A N Offsite Buy -Down Threshold Loading Rate N/A Total P Load Reduction Needed (lb/yr): 0.00 Total N Load Reduction Needed (lb/yr): 0.00 P Load Treatment Balance at Site (lb/yr): -18.91 N Load Treatment Balance at Site (lb/yr): -75.42 P Load Treatment Balance at Lake (lb/yr): -18.91 N Load Treatment Balance at Lake (lb/yr): -75.42 Net land use change is greater than Disturbed Area. Verify Disturbed Area. Nutrient Export Summar p � Pre -Project Post -Project Post -Project Whole Site Whole Site Whole Site with Conditions without SCMs SCMs 0.0% 47.1% 47.1% 0.0% 45.2% 45.2% Post -Project SCM-Treated Post -Project Untreated Area Area 57.2% 16.9% 54.9% 16.1% Percent Impervious (for runoff calculation) (%) Percent Built -Upon Area (BUA) (%) Annual Runoff Volume W/ r 347,474 3,302,293 2,756,007 2,405,082 350,925 Annual Runoff % Change (relative to re-D) 0% 850% 693% Total Nitrogen EMC (mg/L) 0.97 1.44 1.29 1.24 1.60 Total Nitrogen Load Leaving Site (lb/yr) 21.05 296.52 221.10 186.04 35.06 Total Nitrogen Loading Rate (Ib/ac/yr) 0.46 6.44 4.80 5.38 3.06 Total Nitrogen % Change (relative to pre-D) 0% 1309% 951% Total Phosphorus EMC (mg/L) 0.03 0.25 0.18 0.16 0.36 Total Phosphorus Load Leaving Site (lb/yr) 0.65 50.57 31.66 23.83 7.83 Total Phosphorus Loading Rate (Ib/ac/yr) 0.01 1.10 0.69 0.69 0.68 Total Phosphorus % Change (relative to pre-D) 0% 7669% 4764% SCM/Catchment Summary[ SCM ID and Type Catchment 1 Volume Reduction % ( ) TN Out (mg/L) 1.24 TTN Out TP Out TN Reduction TIP Out (mg/L) (Ibs/ac/yr) (Ibs/ac/yr) N 0.16 5.38 0.69 28.83% TIP Reduction (%) 18.517 44.22% 101: Wet Pond per MDC 12.66% 1.25 0.16 5.85 0.76 22.54% 37.20% 102: Wet Pond per MDC 12.66% 1.24 0.16 5.38 0.69 19.26% 30.90% 103: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% Catchment 2 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 201: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 202: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 203: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% Catchment 3 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 301: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 302: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 303: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% Catchment 4 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 401: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 402: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 403: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% Catchment 5 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 501: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 502: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 503: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% Catchment 6 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 601: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 602: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% 603: NA 0.00% 0.00 0.00 0.00 0.00 0.00% 0.00% SCM rows in red have a data entry error for the SCM that makes an error in the calculation. Supporting Calculations R, = 0.05 + (0.009 *1), where I = percent impervious (%) V=Pi* Rv*A*(P/12), where A = area of catchment (ft) P = average annual rainfall depth (in) L=((P*Pi*Rj-(12))*(C*A*2.72) where L = annual pollutant loading (Ibs) Pi = fraction of rain events that produce runoff (dec) C = event mean concentration of pollutant (mg/L) Vo t = V;,, * (1- Red) where V;,, = inflow volume (ft3) Red = volume reduction by SCM (%) L., = Vo t * EMCO t * 6.243E-5 where Vo t = outflow volume (ft3), EMCO t = effluent median concentration (mg/L) CATCHMENT 1, SCM 101 Type of SCM: Wet Pond per MDC Area Treated by SCM (ft): 792,950 Percent Impervious of Contributing Watershed (%): 57% Runoff Coefficient, Rv: 0.57 Inflow Volume (ft): 1,560,238 Incoming Total Nitrogen Concentration (mg/L): 1.41 Annual Incoming Total Nitrogen Load (Ibs): 137.44 Incoming Total Phosphorus Concentration (mg/L): 0.23 Annual Incoming Total Phosphorus Load (Ibs): 22.14 Total Volume Leaving SCM (ft): 1,362,665 Outgoing Total Nitrogen Concentration (mg/L): 1.25 Annual Outgoing Total Nitrogen Load (Ibs): 106.46 Outgoing Total Phosphorus Concentration (mg/L): 0.16 Annual Outgoing Total Phosphorus Load (Ibs): 13.90 Annual Volume Reduction by SCM (ft): 197,573 Annual Volume Reduction by SCM (%): 13% Annual Total Nitrogen Reduction by SCM (%): 22.54% Annual Total Nitrogen Reduction by SCM (lb): 30.98 Annual Total Phosphorus Reduction by SCM (%): 37.20% Annual Total Phosphorus Reduction by SCM (lb): 8.24 Supporting Calculations R, = 0.05 + (0.009 *1), where I = percent impervious (%) V=Pi* Rv*A*(P/12), where A = area of catchment (ft) P = average annual rainfall depth (in) L=((P*Pi*Rj-(12))*(C*A*2.72) where L = annual pollutant loading (Ibs) Pi = fraction of rain events that produce runoff (dec) C = event mean concentration of pollutant (mg/L) Vo t = V;,, * (1- Red) where V;,, = inflow volume (ft3) Red = volume reduction by SCM (%) L., = Vo t * EMCO t * 6.243E-5 where Vo t = outflow volume (ft3), EMCO t = effluent median concentration (mg/L) CATCHMENT 1, SCM 102 Type of SCM: Wet Pond per MDC Area Treated by SCM (ft2): 1,505,250 Percent Impervious of Contributing Watershed (%): 57% Runoff Coefficient, Rv: 0.56 Inflow Volume (ft): 2,753,795 Incoming Total Nitrogen Concentration (mg/L): 1.34 Annual Incoming Total Nitrogen Load (Ibs): 230.41 Incoming Total Phosphorus Concentration (mg/L): 0.20 Annual Incoming Total Phosphorus Load (Ibs): 34.49 Total Volume Leaving SCM (ft): 2,405,082 Outgoing Total Nitrogen Concentration (mg/L): 1.24 Annual Outgoing Total Nitrogen Load (Ibs): 186.04 Outgoing Total Phosphorus Concentration (mg/L): 0.16 Annual Outgoing Total Phosphorus Load (Ibs): 23.83 Annual Volume Reduction by SCM (ft): 348,713 Annual Volume Reduction by SCM (%): 13% Annual Total Nitrogen Reduction by SCM (%): 19.26% Annual Total Nitrogen Reduction by SCM (lb): 44.37 Annual Total Phosphorus Reduction by SCM (%): 30.90% Annual Total Phosphorus Reduction by SCM (lb): 10.66 Nutrient Management Strategy Watershed - Nutrient Offset Credit Reporting Form Please complete and submit the following information to the local government permitting your development project to characterize it and assess the need to purchase nutrient offset credits. Contact and rule implementation information can be found online at. http://deg.nc.gov/about/divisions/water-resources/planning/nonpoint-source-management/nutrient-offset- information PROJECT INFORMATION Applicant Name: Jon Eakins I The Nau Company, PLLC Project Name: Essex Townes/Essex Village Project Address: Franklinton, NC Date: (mm/dd/yyyy) 8-1 Development Land Use Type: Single Family Residential County: Franklin Development Activity Type: Development - New Pre -Project Built -Upon Area %: 0.00% Project Latitude: 36.090241 Post -Project Built -Upon Area %: 45.21% Project Longitude: -78.469833 WATERSHED INFORMATION Nutrient Management Watershed: Tar -Pamlico N Offsite Threshold Rate (lb/ac/yr): N/A Subwatershed: Tar -Pamlico - 03020101 P Offsite Threshold Rate (lb/ac/yr): N/A Nitrogen Delivery Zone: Tar - Upper Nitrogen Delivery Factor: 100% Phosphorus Delivery Zone: Tar - Upper Phosphorus Delivery Factor: 100% NUTRIENT OFFSET REQUEST Nitrogen Load Offset Needs (A) (B) (C) (D) (E) (F) (G) (H) (L) (Where Applicable) Untreated Treated Loading Rate Reduction Project Size Offset Delivery State Buy Local Gov't Loading Rate Loading Rate Target Need (ac) Duration (yrs) Factor (/o) Down Amount Buy Down (Ibs/ac/yr) (Ibs/ac/yr) (Ibs/ac/yr) (Ibs/ac/yr) (Ibs) Amount (Ibs) B-C D"E"F"G 6.44 1 4.80 1 6.44 1 -1.64 46.0228 30 100% 0.00 Phosphorus Load Offset Needs (A) (B) (C) (D) (E) (F) (G) (H) (L) (Where Applicable) Untreated Treated Load Loading Rate Reduction Project Size Offset Delivery State Buy Local Gov't Load Rate Rate Target Need (ac) Duration (yrs) Factor (/o) Down Amount Buy Down (Ibs/ac/yr) (Ibs/ac/yr) (Ibs/ac/yr) (Ibs/ac/yr) (Ibs) Amount (Ibs) B-C D-E-F-G 1.10 1 0.69 1 1.10 1 -0.41 46.0228 30 100% 0.00 LOCAL GOVERNMENT AUTHORIZATION Local Government Name: Franklinton Staff Name: Phone: Staff Email: Date: Local Government Authorizing Signature: APPENDIX I SUPPORTING DOCUMENTATION NOAA PFDS RAINFALL DATA 8/16/2019 Precipitation Frequency Data Server NOAA Atlas 14, Volume 2, Version 3 RALEIGH DURHAM WSFO AP Station ID: 9 Location name: Morrisville,, North Carolina, USA* Latitude: 35.8706*, Longitude:-78.7864* Elevation: na Elevation (station metadata): 416 ft** 'source: ESRI Maps "source: USGS POINT PRECIPITATION FREQUENCY ESTIMATES G.M. Bonnin, D. Martin, B. Lin, T. Partybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland PF tabular I PF graphical I Maps & aerials PF tabular PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches)1 Duration Average recurrence interval (years) 1 2 5 10 ������� 25 50 100 200 500 1000 5-min 0.362-0 429 0.423-0 503 0.487---0 577 0.539-0 639 0.591---0.703 0.626-0..748 0.657-0.789 0.682-0 825 0.707-0 862 0.724-0 892 0.630 0.738 0.848 0.939 1.03 1.10 1.16 1.20 1.25 1.29 10-min (0.578-0.686) (0.677-0.804) (0.780-0.924) (0.861-1.02) (0.941-1.12) (0.998-1.19) (1.04-1.25) ( 1.08-1.31) ( 1.12-1.36) ( 1.14-1.41) 0.787 0.927 1.07 1.19 1.31 1.39 1.46 1.52 1.58 1.62 15-min (0.723-0.857) (0.850-1.01) (0.987-1.17) 1 1 (1.19-1.42) 1 (1.26-1.51) 1 (1.32-1.59) 1 (1.36-1.65) 1 (1.41-1.72) 1 (1.43-1.76) 1.9 30-min 0.991---18.18 1. 821840 1. 05366 1.58�?87 1.77 2410 1. 00.27 2.02 2 43 2. 2 2657 2.24 2173 2.32 2?86 60-min 1.35 1.61 (1.47-1.75) 1.96 (1.80-2.13) 2.24 (2.06-2.44) 2.58 (2.35-2.80) 2.84 (2.58-3.08) 3.08 (2.78-3.35) 3.31 (2.98-3.60) 3.60 (3.21-3.92) 3.83 (3.38-4.17) 1.56 1.86 2.29 2.65 3.08 3.43 3.76 4.09 4.51 4.84 2-hr (1.42-1.71) (1.71-2.04) (2.09-2.51) (2.40-2.90) (2.78-3.36) (3.09-3.74) (3.36-4.11) (3.64-4.46) (3.97-4.92) (4.23-5.29) 3-hr 1.5161581 1.81 2817 2.23 2468 2.59 3410 3.02 3364 3.38 4509 3.741 4553 4.06 4697 4. 915.57 4.83 6506 2.00 2.39 2.95 3.44 4.06 4.57 5.09 5.62 6.33 6.92 6-hr 1 ( .84-2.18) (2.20-2.61) (2.72-3.22) (3.15-3.74) (3.70-4.40) (4.14-4.96) (4.57-5.51) (5.00-6.08) (5.56-6.85) (6.01-7.50 ) 2.37 2.84 3.52 4.11 4.89 5.56 6.22 6.93 7.88 8.69 12-hr (2.19-2.58) (2.62-3.09) (3.24-3.82) (3.78-4.47) (4.46-5.30) (5.03-5.98) (5.58-6.70) 1 (6.13-7.45) (6.87-8.47) (7.46-9.35) 2.83 3.42 4.27 4.94 5.84 6.55 7.27 8.01 9.01 9.79 24-hr (2.65-3.04) (3.20-3.67) (3.99-4.58) (4.61-5.29) (5.43-6.25) (6.08-7.01) (6.73-7.80) (7.39-8.60) (8.28-9.69) (8.97-10.6 ) 2-day 3.26 (3.04-3.50) 3.92 (3.66-4.22) 4.86 (4.53-5.23) 5.58 (5.19-6.00) 6.55 (6.08-7.05) 7.31 (6.76-7.86) 8.07 (7.45-8.70) 8.85 (8.14-9.54) 9.90 (9.06-10.7) 10.7 (9.77-11.6) 3.45 4.14 5.10 5.86 6.87 7.67 8.47 9.29 10.4 11.2 3-day (3.22-3.70) (3.86-4.44) (4.76-5.48) (5.46-6.29) (6.38-7.38) (7.11-8.24) (7.83-9.12) (8.55-10.0) (9.53-11.2) (10.3-12.1) 4-day 3.63 (3.40-3.90) (4.07-4.67) (5.00-5.73) F 6.13 (5.73-6.58) 7.19 (6.69-7.72) 8.03 (7.45-8.61) 8.88 (8.21-9.54) 9.73 (8.97-10.5) 10.9 ) (9.99-11.7 ( 11.8 10.8-12.7) 7-day 4.21 (3.96-4.50) 5.02 (4.72-5.36) 6.10 (5.73-6.51) 6.95 (6.52-7.42) 8.10 (7.57-8.65) 9.01 (8.40-9.63) 9.94 (9.23-10.6) 10.9 ( 10.1-11.7) 12.2 ( 11.2-13.1) 13.2 ( 12.1-14.2) 4.79 5.69 6.83 7.72 8.92 9.86 10.8 11.8 13.1 14.1 10-day (4.50-5.11) (5.35-6.07) (6.41-7.29) (7.24-8.23) (8.35-9.52) (9.20-10.5) (10.1-11.6) (10.9-12.6) (12.1-14.0) (12.9-15.1) 6.39 F 8.90 9.98 11.5 12.6 13.8 15.0 16.6 17.8 20-day (6.01-6.82) (7.09-8.04) (8.36-9.50) (9.36-10.7) (10.7-12.2) (11.8-13.5) 1 (12.8-14.8) (13.9-16.0) (15.3-17.8) (16.3-19.2) 7.93 9.33 10.8 12.0 13.5 14.7 15.9 17.1 18.6 19.8 30-day (7.48-8 44) 11 (8.78-9.92) 11 (10.2-11.5) (11.3-12.8) (12.7-14.4) (13.8-15.7) (14.8-17.0) (15.9-18.2) (17.3-20.0) (18.3-21.3) 10.1 11.8F 13.6 14.9 16.6 17.9 19.2 20.5 22.1 23.4 45-day (9.61-10.7) (11.3-12.5) (12.9-14.3) (14.1-15.7) (15.7-17.5) (16.9-18.9) (18.1-20.4) (19.2-21.7) (20.7-23.5) (21.8-24.9) 16.019.2 20.5 21.8F;M]F;M]F 60-day (15.2-16.8) (16.5-18.3) (18.2-20.2) (19.4-21.7) (20.6-23.1) (21.8-24.4) (23.2-26.2) (24.3-27.5) Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Top hftps://hdsc. nws.noaa.gov/hdsctpfds/pfds_printpage.html?st=nc&sta=31-7069&data=depth&units=english&series=pds 1 /4 8/16/2019 Precipitation Frequency Data Server PF graphical PDS-based depth -duration -frequency (DDF) curves Latitude- 35-8706', Longitude:-78.7864' 111111116'.11 010. t 20 41 iZ 15 49 i3 10 a 5 0 r s s m ro m M m ra ra 'Qru N A ib u'S O ,� Iq m in rw m v V rk O 0 0 l a, O � Ln Duration 30 25 C- 0 1 2 5 10 25 50 100 200 500 1000 Average recurrence interval (years) NOAA Atlas 14, Volume 2, Version 3 Created {GMTY Fri Aug 16 18:48-37 2019 Back to Top Maps & aerials Small scale terrain Average recurrence interval (years} — 1 . 2 — 5 10 — 25 50 100 200 500 1000 Duration 5-nm — 2-day — 10-min — 3-day 15-mrn — 4-day - 30--min — 7-day — 60-mm — 10-0ay - 2fir — 20-day — 3-1r — Jo -day — 6-nr — 45-day -- 12-hr — 60-day — 24fir https://hdsc. nws.noaa.gov/hdsctpfds/pfds_printpage.html?st=nc&sta=31-7069&data=depth&units=english&series=pds 2/4 8/16/2019 Precipitation Frequency Data Server arclzTriangie Park AMMfk , 540 J7JILMH WRHAM UJTL �JRPORr f 1 Ralf iam InYla rport Ah - 3km s 2ml 91 ? Large scale terrain �r ffi 43anoKe Nc nston-sal en) • • ourllaii7 Greensboro ' , Rocky Mount —i�lleic�h R T H C A R O L I N A 'Greenville Charlotte + Fayetteville. Jacksonville mi Large scale map I instonl3`�lem Greensboro r1100km Rock; Nount leigh NorthCarolina F etteville Jacksonville mi Large scale aerial https://hdsc.nws.noaa.gov/hdsctpfds/pfds_printpage.html?st=nc&sta=31-7069&data=depth&units=english&series=pds 3/4 8/16/2019 Precipitation Frequency Data Server Back to Top US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: HDSC.Questions@noaa.gov Disclaimer https://hdsc.nws.noaa.gov/hdsctpfds/pfds_printpage.html?st=nc&sta=31-7069&data=depth&units=english&series=pds 4/4 NRCS DOCUMENTATION Chapter 2 Estimating Runoff Technical Release 55 Urban Hydrology for Small Watersheds Table 2-2a Runoff curve numbers for urban areas ii Cover description Cover type and hydrologic condition Fully developed urban areas (vegetation establisbed) Curve numbers for ------hydrologic soil group Average percent impervious area 2/ A Open space (lawns, parks, golf courses, cemeteries, etc.) 3/: Poor condition (grass cover < 50%).......................................... Fair condition (grass cover 50% to 75%).................................. Good condition (grass cover > 75%)......................................... Impervious areas: Paved parking lots, roofs, driveways, etc. (excluding right-of-way)............................................................. Streets and roads: Paved; curbs and storm sewers (excluding right-of-way)................................................................................ Paved; open ditches (including right-of-way) .......................... Gravel (including right -of -way) ................................................. Dirt (including right -of -way) ...................................................... Western desert urban areas: Natural desert landscaping (pervious areas only) v ..................... Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders)...................................................................... Urban districts: Commercial and business................................................................. Industrial............................................................................................. Residential districts by average lot size: 1/8 acre or less (town houses).......................................................... 1/4 acre................................................................................................ 1/3 acre................................................................................................ 1/2 acre................................................................................................ 1 acre................................................................................................... 2 acres.................................................................................................. Developing urban areas Newly graded areas (pervious areas only, no vegetation) 5/ Idle lands (CN's are determined using cover types similar to those in table 2-2c). 68 49 39 B C D 79 86 89 69 79 84 61 74 80 98 98 98 98 98 98 98 98 83 89 92 93 76 85 89 91 72 82 87 89 63 77 85 88 96 96 96 96 85 89 92 94 95 72 81 88 91 93 65 77 85 90 92 38 61 75 83 87 30 57 72 81 86 25 54 70 80 85 20 51 68 79 84 12 46 65 77 82 77 86 91 94 1 Average runoff condition, and Ia = 0.2S. 2 The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4. 3 CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space covertype. 4 Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition. 5 Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 24 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas. (210-VI-TR-55, Second Ed., June 1986) 2-5 Chapter 2 Estimating Runoff Technical Release 55 Urban Hydrology for Small Watersheds Table 2-2c Runoff curve numbers for other agricultural lands _v Curve numbers for ----------------------- Cover description ---------------------- ------- hydrologic soil group ------- Hydrologic Cover type condition A B C D Pasture, grassland, or range —continuous Poor 68 79 86 89 forage for grazing. 2i Fair 49 69 79 84 Good 39 61 74 80 Meadow —continuous grass, protected from — 30 58 71 78 grazing and generally mowed for hay. Brush —brush -weed -grass mixture with brush Poor 48 67 77 83 the major element. 3/ Fair 35 56 70 77 Good 30 v 48 65 73 Woods —grass combination (orchard Poor 57 73 82 86 or tree farm). 5/ Fair 43 65 76 82 Good 32 58 72 79 Woods. sl Poor 45 66 77 83 Fair 36 60 73 79 Good 30 v 55 70 77 Farmsteads —buildings, lanes, driveways, — 59 74 82 86 and surrounding lots. 1 Average runoff condition, and Ia = 0.25. 2 Poor. <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed. Good: > 75% ground cover and lightly or only occasionally grazed. 3 Poor. <50%ground cover. Fair: 50 to 75% ground cover. Good: >75%ground cover. 4 Actual curve number is less than 30; use CN = 30 for runoff computations. 5 CN's shown were computed for areas with 50%woods and 50%grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture. 6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil. (210-VI-TR-55, Second Ed., June 1986) 2-7 Chapter 3 Time of Concentration and Travel Time Technical Release 55 Sheet flow Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective rough- ness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and trans- portation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions. Table 3-1 Roughness coefficients (Manning's n) for sheet flow Surface description n I/ Smooth surfaces (concrete, asphalt, gravel, or bare soil) .......................................... 0.011 Fallow (no residue) .................................................. 0.05 Cultivated soils: Residue cover <_20%......................................... 0.06 Residue cover >20%......................................... 0.17 Grass: Short grass prairie ............................................ 0.15 Dense grasses 2/................................................ 0.24 Bermudagrass.................................................. 0.41 Range (natural)......................................................... 0.13 Woods:3/ Light underbrush .............................................. 0.40 Dense underbrush ............................................ 0.80 1 The n values are a composite of information compiled by Engman (1986). 2 Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures. 3 When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow. Urban Hydrology for Small Watersheds For sheet flow of less than 300 feet, use Manning's kinematic solution (Overtop and Meadows 1976) to compute Tt: _ 0.007(nL)0.8 Tt — (P )0.5 S0.4 [eq. 3-3] 2 where: Tt = travel time (hr), n = Manning's roughness coefficient (table 3-1) L = flow length (ft) P2 = 2-year, 24-hour rainfall (in) s = slope of hydraulic grade line (land slope, ft/ft) This simplified form of the Manning's kinematic solu- tion is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltra- tion on travel time. Rainfall depth can be obtained from appendix B. Shallow concentrated flow After a maximum of 300 feet, sheet flow usually be- comes shallow concentrated flow. The average veloc- ity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concen- trated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope. After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment. Open channels Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (LJSGS) quadrangle sheets. Manning's equation or water surface profile informa- tion can be used to estimate average flow velocity. Average flow velocity is usually determined for bank - full elevation. (210-VI-TR-55, Second Ed., June 1986) 3-3