Loading...
HomeMy WebLinkAboutNC0020338_Speculative Limits_19940513NPDES DOCIMENT SCANNING COVER SHEET NC0020338 Yadkinville NPDES Permit: WWTP Document Type: Permit Issuance Wasteload Allocation Authorization to Construct (AtC) Permit Modification Speculative Limits •'f -' �,.-..;"'e'`t.`,,..,.riinn.".+...d:_-._witia:.. Correspondence Instream Assessment (67B) Environmental Assessment (EA) Permit History Document Date: May 13, 1994 This document is printed on reuse paper - ignore any content on the reYerse aside State of North Carolina Department of Environment, Health and Natural Resources Division f Environmental Management James B. Hunt, Jr., Governor Jonathan B. Howes, Secretary A. Preston Howard, Jr., P.E., Director May 13, 1994 The Honorable Donald G. Dunn, Mayor Town of Yadkinville Post Office Drawer 816 Yadkinville, North Carolina 27055-0816 SUBJE NITTIFTA EDE-iNJ F Speculative Limits for Town of Yadkinville WWTP Expansion NPDES Permit No. NC0020338 Yadkin County Dear May Dunn: Y ur request for speculative effluent limits for the proposed expansion of the Yadkin ' e WWTP to 1.15 MGD has been completed by the Technical Support Branch. In order to receive final permit limits, a formal application will have to be submitted to the Division's Permits and Engineering Unit. pue to the request for an increase in waste flow, the flow estimates at the discharge ocation were reevaluated using the USGS Report, "Low -Flow Characteristics of Streams in North Carolina (1991)". The flow estimates are as follows: (nv , 0,1 -7t,0 3.91 i,c� iv 7q l u 10. 03 c/H- 3o6(Z : 2,35 c01 Based on available information the tentative limits for conventional constituents are: Drainage Area = 35.9 Average Flow = 35.9 Summer 7Q10 = 5.77 Winter 7Q10 = 8.73 30Q2 = 12.35 Wasteflow (MGD) BOD5 (mg/1) NH3-N (mg/1) DO (mom) TSS (mg/1) Fecal Coliform (#/100m1) 200 pH (SU) 6-9 Chlorine (µg/1) 28 Summer 1.15 30 4 5 30 Winter 1.15 30 10 5 30 200 6-9 28 Ck, tom It should be noted that the tentative NH3N limits were evaluated and are based on the protection of North Deep Creek against instream toxicity. North Carolina it currently evaluating all NPDES dischargers for ammonia toxicity and following EPA guidance to protect the waters for an instream criteria of 1 mg/1 in the summer and 1.8 mg/1 in the winter, under 7Q10 flow conditions. P.O. Box 29535, Raleigh, North Carolina 27626-0535 Telephone 919-733-7015 FAX 919-733-2496 An Equal !Opportunity Affirmative Action Employer 50% recycled/ 10% post -consumer paper P Letter to -p yor Dunn ge2- In ' 'tion, under current Division of Environmental Management (DEM) procedure, dechlorination and chlorine limits are now recommended for all new or expanding dischargers proposing the use of chlorine for disinfection. An acceptable level of chlorin in your effluent is 28 µg/1 to ensure protection against acute toxicity. The process of hlorination/dechlorination or an alternate form of disinfection, such as ultraviolet ation, should allow the facility to comply with the total residual chlorine limit. The instream waste concentration at 1.15 MGD is 24%. A chronic toxicity testing requirement with quarterly monitoring will remain a condition of the NPDES permit A complete evaluation of limits and monitoring requirements for metals and other toxicants will have to be addressed at the time of formal NPDES application. Information concerning these constituents is not readily available but the Town can assume that effluent limits and/or monitoring for cadmium, chromium, nickel, lead, cyanide, arsenic, mercury, aluminum phenols, copper, zinc, selenium and silver should be included. D for imple address restore w may be technolo M is planning a basinwide water quality management initiative. Our schedule entation in the Yadkin River Basin is set for 1999. The plan will attempt to sources of point and nonpoint pollutants where deemed necessary to protect or quality standards. In addressing interaction of sources, wasteload allocations ted. Those facilities that already have committed to high levels of treatment are least likely to be affected. This information should provide some assistance in your planning endeavors. As previously mentioned, final NPDES effluent limitations will be determined after a formal permit application has been submitted to the Division. If there are any additional questions concerning this matter, please feel free to contact Ruth Swanek or Michelle Wilson of my staff at (919) 733-5083. Sincerely, Donald L. Safrit, P.E. Assistant Chief for Technical Support Water Quality Section DLS cc: Wton-Salem Regional Office Permits and Engineering Unit Mr. Harry Dail, PE, Municipal Engineering Services Co., PA Central Files TOWN OF YADKINVILLE Post. Office Drawer 816 Yadkinville, North Carolina 27055 — 0816 Telephone (919) 679-8732 March 7, 1994 Mr. Donald Safrit, PE Assistant Chief Water Quality Section State of North Carolina Department of Environment, Health & Natural Resources Division of Environmental Management P. O. Box 29536 Raleigh, NC 27626-0535 Re: Speculative Limit Request Town of Yadkinville, Yadkin County NPDES Permit No. NC0020338 Dear Mr. Safrit: q04-, of .0 The Town of Yadkinville is considering modifying the flow component of their NPDES Permit from 1.0 to 1.15 MGD. For the purpose of evaluating the impacts of this modification, please provide the Town of Yadkinville Speculative NPDES Permit Limits for their wastewater treatment facility at a new flow of a 1.15 MGD. The Town of Yadkinville does not intend to make any structural modifications to their waste treatment facility to accommodate this increase. It is anticipated that the increase can be accommodated by a re -rating process through their consulting engineer. This advance planning offered to the Town by DEM and the technical support Branch will be extremely beneficial to the Town's Consultant in determing the likelihood of a favorable re -rating review by the Permits and Engineering Section. We appre•iate your time and consideration in this matter. Should you have any questions sr comments, please feel free to call our consulting engineer, Mr. Harry Dail, PE, Muni ipal Engineering Services Co., PA, Garner, NC at 919-772-5393. Very truly i ours, Donald G. Copy: Ms. Mr Dunn, Mayor Coleen Sullins Hany Dail Yadkir�ville WWTP NC0020338 N. Deep Creek Residual) Chlorine 7Q10 (C S) DESIGN LOW (MGD) DESIGN LOW (CFS) STREAM STD (UG/L) UPS BA KGROUND LEVEL (UG/L) IWC (%) Allowable Concentration (ug/I) Fecal Limit Ratio of 3.2 :1 Ammonia as NH3 (summer) 5.77 7010 (CFS) 1.15 DESIGN FLOW (MGD) 1.7825 DESIGN FLOW (CFS) 17.0 STREAM STD (MG/L) 0 UPS BACKGROUND LEVEL (MG/L) 23.6 % IWC (%) 72 Allowable Concentration (mg/1) Ammonia as NH3 (winter) 7010 (CFS) 200/100m1 DESIGN FLOW (MGD) DESIGN FLOW (CFS) STREAM STD (MG/L) UPS BACKGROUND LEVEL (MG/L) IWC (%) Allowable Concentration (mg/1) 5.77 1.15 1.7825 1.0 0.22 23.6 % 4 8.73 1.15 1.7825 1.8 0.22 17.0 % 10 Discharger MODEL RESULTS : YADKINVILLE WWTP Receiving Stream : NORTH DEEP CREEK SUMMER SPECULATIVE 1.0 TO 1.15 MGD NH3N=4 BOD5=30 The End D.O. is 7.56 mg/l. The End CBOD is 13.49 mg/l. The End NBOD is 4.46 mg/l. WLA WLA WLA DO Min CBOD NBOD DO Waste Flo (mg/1) Milepoint Reach # (mg/1) (mg/1) (mg/1) (mgd) Segment 1 6.86 0.00 1 Reach 1 Reach 2 Reach 3 Reach 4 co udklh 60.00 18.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 titilbh Level 8 mmt(i 1.15000 0.00000 0.00000 0.00000 *** MODEL SUMMARY DATA *** Discharger YADKINVILLE WWTP Subbasin :.0307 Receiving Stre m : NORTH DEEP CREEK Stream Class: C Summer 7Q10 : 5.77 Winter 7Q10 : 8.736 Design Temperature: 25.0 'LENGTH' SL0 El VELOCITY I DEPTH' Kd I Kd I Ka 1 Ka 1 KN I KN _1 KNR I KNR I SOD I SOD I mile I ft/ it fps 1 ft 'design' @20 Idesignl @20 'design' @20 Idesign' @20 'design' @20 Segment 1 1.30 9.10 1.377 0.61 0.87 0.69 125.15 22.56 0.44 0.30 0.44 0.00 0.00 0.00 Reach 1 1 1 1 1 1 1 1 1 I 1 1 1 I I Segment 1 1 0.851 9.101 0.732 10.86 1 0.48 1 0.38 113.37 111.991 0.44 1 0.30 1 0.44 1 0.00 1 0.00 10.00 Reach 2 1 I I I I I I I I I I I I 1I I 1 1 1 1 1 I I 1 I Segment 1 1 1.951 30. 01 0.960 10.76 1 0.97 1 0.77 155.75 150.001 0.73 1 0.50 10.73 1 0.00 1 0.00 1 0.00 Reach 3 1 I I I I I I I I I I I I 1 1 I 1 1 I I I 1 1 I I I I Segment 1 1. 2.001 4.401 0.503 11.06 1 0.34 1 0.27 14.44 I 3.991 0.44 1 0.30 10.44 1 0.00 10.00 1 0.00 Reach 4 1 I I I I 1 I I I I I I I I Flow 1 CBOD I NBOD I D.O. I I cfs I mg/1 I mg/1 I mg/1 I Segment 1 Reach 1 Waste I 1.782 1 60.000 1 18.000 1 5.000 Headwaters) 5.770 1 2.000 I 1.000 I 7.440 Tributary I 0.000 I 2.000 1 1.000 I 7.440 * Runoff I 0.123 1 2.000 I 1.000 I 7.440 Segment 1 Reach 2 W ste 1 0.000 I 0.000 1 0.000 I 0.000 T ibutary 1 0.330 I 2.000 I 1.000 1 7.440 * Runoff 1 0.133 I 2.000 1 1.000 1 7.440 Segment 1 Reach 3 Waste I 0.000 I 0.000 I 0.000 I 0.000 Tributary 1 0.000 1 2.000 I 1.000 I 7.440 * Runoff 1 0.133 I 2.000 1 1:000 I 7.440 Segment 1 Reach 4 Waste I 0.000 I 0.000 1 0.000 I 0.000 Tributary 1 0.000 I' 2.000 I 1.000 1 7.440 * Runoff 1 0.133 I 2.000.1 1.000 I 7.440 • I Seg # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I Seg # I Reach 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4, 4 4 I Reach SUMMER SPECULATIVE 1.0 TO 1.15 MGD NH3-N=4 AND BOD5=30 # I Seg Mi I D.O. I CBOD I NBOD I Flow I 0.00 6.86 15.69 5.01 7.55 0.13 6.97 15.58 4.99 7.57 0.26 7.06 15.48 4.97 7.58 0.39 7.14 15.37 4.95 7.60 0.52 7.21 15.26 4.93 7.62 0.65 7.27 15.16 4.91 7.63 0.78 7.32 15.06 4.89 7.65 0.91 7.37 14.96 4.87 7.66 1.04 7.41 14.85 4.85 7.68 1.17 7.44 14.75 4.83 7.70 1.30 7.47 14.65 4.81 7.71 1.30 7.47 14.13 4.65 8.04 1.38 7.48 14.07 4.63 8.05 1.47 7.49 14.00 4.61 8.07 1.55 7.50 13.94 4.59 8.08 1.64 7.51 13.87 4.57 8.09 1.72 7.52 13.81 4.55 8.10 1.81 7.53 13.75 4.53 8.11 1.89 7.54 13.68 4.51 8.12 1.98 7.54 13.62 4.49 8.13 2.06 7.55 13.56 4.48 8.14 2.15 7.56 13.49 4.46 8.16 2.15 7.56 13.49 4.46 8.16 2.34 7.76 13.30 4.41 8.18 2.54 7.87 13.10 4.36 8.21 2.73 7.92 12.91 4.31 8.23 2.93 7.95 12.73 4.26 8.26 3.12 7.97 12.54 4.21 8.29 3.32 7.98 12.36 4.16 8.31 3.51 7.98 12.18 4.11 8.34 3.71 7.99 12.00 4.06 8.36 3.90 7.99 11.83 4.02 8.39 4.10 8.00 11.66 3.97 8.41 4.10 8.00 11.66 3.97 8.41 4.30 7.89 11.53 3.92 8.44 4.50 7.80 11.41 3.87 8.47 4.70 7.72 11.29 3.82 8.49 4.90 7.65 11.17 3.77 8.52 5.10 7.59 11.05 3.72 8.55 5.30 7.54 10.93 3.67 8.57 5.50 7.49 10.82 3.63 8.60 5.70 7.45 10.70 3.58 8.63 5.90 7.41 10.59 3.53 8.65 6.10 7.38 10.48 3.49 8.68 # I Seg Mi I D.O. I CBOD I NBOD I Flow I MODEL RESULTS Discharger : YADKINVILLE WWTP Receiving Stream : NORTH DEEP CREEK WINTER SPECULATIVE 1.0 TO 1.15 MGD NH3-N=10 BOD5=30 The End D.O. is 9.39 mg/1. The End CBOD is 8.62 mg/l. The End NBOD is 6.11 mg/l. WLA WLA WLA DO Min CBOD NBOD DO Waste Flo (mg/1) Milepoint Reach # (mg/1) (mg/1) (mg/1) (mgd) Segment 1 8.72 0.00 1 Reach 1 Reach 2 Reach 3 Reach 4 60.00 45.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 " YA At ii Le ve ( 8 `Yli'i& 1.15000 0.00000 0.00000 0.00000 *** MODEL SUMMARY DATA *** Discharger Receiving Stre Summer 7Q10 Design Tempera Subbasin : 0307 Stream Class: C Winter 7Q10 : 8.736 �5.1 V na"� )0/5 (LENGTH' SLOPE' VELOCITY 1 DEPTH' Kd I Kd I I KN I KN I KNR 1 KNR 1 SOD 1 SOD I I mile I ft/mil fps 1 ft 'design' @20 'design l @20 'design' @20 'design) @20 (design l @20 I A' AA : YADKINVILLE WWTP m : NORTH DEEP CREEK : 5.77 ure: 14.0 I Ka Ka 1 1 1 1 I I Segment 1 I 1.351 9.101 0.394 1 1.34 1 0.20 1 0.26 1 4.09 I 4.661 0.19 10.30 1 0.19 1 0.00 1 0.00 10.00 Reach 1 1 I I I I I I I I I I I I I I 1 1 1 1 I 1 1 1 I I I Segment 1 I 0.851 9.101 0.403 1 1.37 1 0.20 10.26 14.18 1 4.761 0.19 10.30 10.19 1 0.00 1 0.00 1 0.00 Reach 2 1 I I I I I I I I I I I I I 1• 1 1 1 1 1 1 1 I 1 I I I Segment 1 1 1.951 30. 0 I 0.578 1 1.16 1 0.32 1 0.42 120.31 1 23.141 0.32 10.50 10.32 1 0.00 1 0.00 1 0.00 Reach 3 1 1 1 1 1 1 1 I 1 1 1 I I I I I I I I I I 1 1 1 I I I Segment 1 I 2.001 4.401 0.332 11.55 10.17 1 0.23 1 1.67 1 1.901 0.19 1 0.30 10.19 10.00 10.00 1 0.00 Reach 4 1 1 1 1 I 1 1 1 1 1 1 1 I Flow 1 CBOD 1 NBOD I D.O. I I cfs 1 mg/1 1 mg/1 1 mg/1 I Segment 1 Reach 1 Waste 1 1.782 1 60.000 1 45.000 1 6.000 Hedwatersl 8.730 I 2.000 1 1.000 1 9.280 Tributary 1 0.000 I 2.000 1 1.000 1 9.280 * Runoff 1 0.185 1 2.000 1 1.000 1 9.280 Segment 1 Reach 2 Waste 1 0.000 1 0.000 1 0.000 1 0.000 Tributary 1 0.530 I 2.000 1 1.000 1 9.280 * Runoff I 0.190 1 2.000 1 1.000 1 9.280 Segment 1 Reach 3 Waste I 0.000 I 0.000 1 0.000 1 0.000 Tributary 1 0.000 1 2.000 1 1.000 1 9.280 * Runoff 1 0.190 1 2.000 1 1.000 1 9.280 Se ment 1 Reach 4 Waste 1 0.000 1 0.000 1 0.000 1 0.000 Tributary 1 0.000 I 2.000 1 1.000 1 9.280 * Runoff 1 0.190 1 2.000 1 1.000 1 9.280 WINTER SPECULATIVE 1.0 TO 1.15 MGD NH3-N=10 BOD5=30 I Seg # I Reach # I Seg Mi I D.O. I CBOD I NBOD I Flow I 1 1 0.00 8.72 11.83 8.46 10.51 1 1 0.13 8.77 11.76 8.41 10.54 1 1 0.26 8.82 11.69 8.36 10.56 1 1 0.39 8.86 11.63 8.31 10.58 1 1 0.52 8.90 11.56 8.27 10.61 1 1 0.65 8.94 11.49 8.22 10.63 1 1 0.78 8.98 11.42 8.17 10.66 1 1 0.91 9.01 11.35 8.12 10.68 1 1 1.04 9.04 11.29 8.08 10.70 1 1 1.17 9.07 11.22 8.03 10.73 1 1 1.30 9.09 11.16 7.98 10.75 1 2 1.30 9.10 10.73 7.66 11.28 1 2 1.38 9.12 10.69 7.63 11.30 1 21 1.47 9.14 10.65 7.60 11.32 1 2 1.55 9.16 10.61 7.57 11.33 1 2 1.64 9.17 10.57 7.54 11.35 1 2 1.72 9.19 10.53 7.52 11.36 1 2 1.81 9.20 10.49 7.49 11.38 1 2 1.89 9.22 10.45 7.46 11.40 1 2 1.98 9.23 10.41 7.43 11.41 1 2 2.06 9.24 10.37 7.41 11.43 1 2 2.15 9.26 10.33 7.38 11.44 1 3 2.15 9.26 10.33 7.38 11.44 1 3 2.34 9.52 10.24 7.31 11.48 1 3 2.54 9.70 10.14 7.24 11.52 1 3 2.73 9.81 10.05 7.18. 11.56 1 3 2.93 9.89 9.96 7.11 11.59 1 3 3.12 9.94 9.87 7.05 11.63 1 3 3.32 9.98 9.78 6.98 11.67 1 3 3.51 10.00 9.69 6.92 11.70 1 3 3.71 10.02 9.60 6.85 11.74 1 3 3.90 10.03 9.51 6.79 11.78 1 3 4.10 10.03 9.43 6.73 11.82 1 4 4.10 10.03 9.43 6.73 11.82 1 4 4.30 9.95 9.34 6.66 11.85 1 4 4.50 9.86 9.26 6.60 11.89 1 4 4.70 9.79 9.18 6.54 11.93 1 4 4.90 9.71 9.10 6.47 11.97 1 4 5.10 9.65 9.02 6.41 12.01 1 4 5.30 9.59 8.94 6.35 12.04 1 4 5.50 9.53 8.86 6.29 12.08 1 4 5.70 9.48 8.78 6.23 12.12 1 4 5.90 9.43 8.70 6.17 12.16 1 4 6.10 9.39 8.62 6.11 12.20 V r D�1S( �) t 35,1 Oisdtar (1 DLD VS 42( jUd{ I� plropoli -Ho d e1erm! _ `%t Dr iNtU t./1"U 07( //r/ Z r-,-1-0m )4,ds) C SR 1710 Sh cZ4Wn ,/✓. • \ M A %ij /' 2- Pe Si / 710 • l ` ! a o %-2 2, "2.€4./ / ' ? /1? / Z' C HI r4 o ,4 l ✓n,1014 . SAY n// m a ( t!"MO) Gcxc.iC 2-7) t),m ymou-ki, s, eAtat p/gik7 k5 U Gt , G f) 0 V € D 17/' U [ sc, � v ZI o , �5C o-1 FLOWEST Wark-S t v s-e d.. W f b - mr7 R= o,' i. 0 s-e Q H- s 7 0 10 {-� } s VSe d %b 0-tALa crow 0 t cY VYY,d�J l A Ca l c v tG 3, 1p f as l✓,bu+ J o ve.e7(A 5 . /-7,‹ oIS DefCk urn (eG Ciis) -1 S L. 3qzo cel^f‘ USGS weighted low flow estimate procedure FacilitytYadknville WWTP NPDES # .(NC0020338I Region DA LFPR s7010_LFPR DA new MAR QA eq [.....±1h10 0 0 ;.-.._. 77.4 _.._..I 0.99 76.63 sq mile cfs sq mile cfs/sq mile cfs STEP 1 calculate drainage area ratio Stream=N:Deep Cree NOTE: procedure applies for regions HA3, HA5, HA9, and HA10, else see flow SOP ry w v d -c Si # I ;•' RATIO = new drainage area drainage area at gage IF 0.25 < RATIO < 4, CONTINUE to STEP 2, ELSE too far from gage #D/0! STEP 2 determine weight of gage (weight_LFPR) A. RATIO < 1 B. RATIO > 1 weight Mill weight Iati4 0 1 r 0 _1 #DIV/0! i #DIV/0! I •� #DIV/0! 1 0.25 1 4 weight = #DIV/0! STEP 3 calculate 7010_EQ using regional equation HA3 HA5 HA9 HA10 STEP 4 20.68 1.96 1.96 12.40 cfs cfs cfs cfs 7Q10 EQ = 12.40 cfs calculate 7010 yield using weighted equation 7Q10yield = [weight_LFPR * 7010 LFPR] + [weight EQ * 70310 EQ] DA_LFPR DA new (19t.e.iX L19LJ yield = #DIV/01 + #DIV/0! = #DIV/01 cfs/sq mile STEP 5 calcul to s7010 7010 = 7010yield * DA new summer 7010 = #DIV/0! cfs USGS weighted low flow estimate procedure FacilitylYadkhville WWTP NPDES # [NC0020338 StreamsN. Deep Cree N_N_..r.._..N .._. »N.Ha. Region DA_LFPR w7Q1O_LFPR DA new MAR QA eq HA10 0 +sq mile 0 cfs ...�77 4 ._N_._.00•.., 0.99 76.63 sq mile cfs/sq mile cfs STEP 1 calculate drainage area ratio NOTE: procedure applies for regions HA3, HAS, HA9, and HA10, else see flow SOP RATIO = new drainage area drainage area at gage IF 0.25 < RATIO 4, CONTINUE to STEP 2, ELSE too far from gage #D V/0! STEP 2 determine weight of gage (weight_LFPR) A. RATIO < 1 B. RATIO > 1 weight ratio weight ratio 0 1 0 1 ..NMN_� f#Dw/0fJ #DIV/0! f#DIV/o!! #DIV/0! 1 0 ,25 1 4 weight = #DIV/0! STEP 3 calcul to 7010_EQ using regional equation HA3 HA5 HA9 HA10 STEP 4 39.53 8.38 8.38 18.49 cfs cfs cfs cfs 7Q10 EQ= calculate 7010 yield using weighted equation 18.49 cfs/sq mile 7Q10ield = [weight LFPR * 7Q10 LFPR] + [weight_EQ * 7Q10 EQ] DA LFPR DA new yield = #DIV/0! STEP 5 calculate w7Q10 7010 = 7Q10yield * DA_new winter 7010 = #DIV/01 cfs + #DIV/0! #DIV/0! cfs/mile USGS weighted low flow estimate procedure FacilityLYadkwville WWTP Region DA LFPR 3002_LFPR DA new MAR QA eq STEP 1 NPDES # [NC0020338 J StreamLN. Deep Cree .N.N_..MN•.._.._ S._N_.N•N_.. N_.N•NM I. •._,. HA10,_„_ 0 sq mile ...� _N ....••._cfs _N_ � ,N_.•�N_... 0.99� 76.63 sq mile cfs/sq mile cfs calculate drainage area ratio NOTE: procedure applies for regions HA3, HA5, HA9, and HA10, else see flow SOP RATIO = new drainage area drainage area at gage IF 0.25 < RATIO < 4, CONTINUE to STEP 2, ELSE too far from gage #DV/0! STEP 2 determine weight of gage (weight_LFPR) A. RATIO < 1 B. RATIO > 1 weight Islikl weight r 0 1 0 1 N.N_N_N_.NNN f#DIWO!1#DIV/0! 1--IFCiiall #DIV/0! 1 0.25 1 4 STEP 3 HA3 HA5 HA9 HA10 weight = #DIV/0! calcul to 3002_EQ using regional equation 44.48 11.68 11.68 26.36 cfs cfs cfs cfs 30Q2 EQ = 26.36 cfs/sq mile STEP 4 calculate 3002 yield using weighted equation 3002yield = [weight LFPR * 3002 LFPR] + [weight EQ * 3002 EQ] DA_LFPR DA_new 's JDIV/0!N_. ield = #DIV/0! + #DIV/0! = #DIV/0! cfs/sq mile STEP 5 calcul to 3002 30Q2 = 3002yield * DA_new 3002 = #DIV/0! cfs MODEL RESULTS Discharger : YADKINVILLE WWTP Receiving Stream : NORTH DEEP CREEK SUMMER EXTENDED MODEL ASSUME S. DEEP CK D.O. ARE OK The End D.O. is 7.20 mg/1. The End CBOD is 4.42 mg/1. The End NBOD is 1.32 mg/1. Segment 1 Reach 1 Reach 2 Reach 3 Reach 4 Reach 5 WLA WLA WLA DO Min CBOD NBOD DO Waste Flo (mg/1) Milepoint Reach # (mg/1) (mg/1) (mg/1) (mgd) 6.86 0.00 1 to-e_0( ccs 60.00 0.00 0.00 0.00 0.00 18.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 aTh Yci It Lf tif ( //loaf 1.15000 0.00000 0.00000 0.00000 0.00000 *** MODEL SUMMARY DATA *** Discharger : YADKINVILLE WWTP Subbasin : 0307 Receiving Stream : NORTH DEEP CREEK Stream Class: C Summer 7Q10 : 5.77 Winter 7Q10 : 8.736 Design Temperature: 25.0 ILENGTHI SL PEI VELOCITY 1 DEPTH' Kd 1 Kd 1 Ka 1 Ka 1 KN 1 KN I KNR 1 KNR 1 SOD 1 SOD 1 mile 1 ft mil fps I ft 'design' @20 Idesign' @20 'design l @20 Idesign' @20 'design l @20 I• I 1 1 1 1 1 1 1 1 1 I I Segment 1 1 1.301 9.101 0.307 11.29 1 0.32 1 0. 25 1 5.61 I 5.031 0.44 1 0.30 1 0.44 1 0. 00 10.00 10.00 Reach 1 1 1 I I I I I I I I I I I 1 Segment 1 1 0.851 9 Reach 2 1 I 101 0.312 1 1.31 1 0.32 1 0.25 1 5.70 1 5.121 0.44 1 0.30 1 0.44 1 0.00 1 0.00 1 0.00 1 I 1 1 1 1 1 1 1 1 1 1 I I Segment 1 1 1.951 30 801 0.448 1 1.11 1 0.48 1 0.38 127.69 1 24.841 0.73 1 0.50 1 0.73 10.00 1 0.00 1 0.00 Reach 3 I 1 I I I I I I I I I I I 1 Segment 1 I 2.001 4 Reach 4 1 I 401 0.257 1 1.49 1 0.28 1 0.22 1 2.27 1 2.041 0.44 1 0.30 1 0.44 10.00 10.00 1 0.00 1 Segment 1 1 2.501 3 Reach 5 1 I 601 0.332 1 2.06 1 0.28 1 0.22 1 1.73 1 1.561 0.44 1 0.30 1 0.44 1 0.00 1 0.00 1 0.00 I Flow 1 CBOD 1 NBOD 1 D.O. I I cfs 1 mg/1 1 mg/1 1 mg/1 I Segment 1 Reach 1 Waste 1 1.782 1 60.000 118.000 1 5.000 Headwaters) 5.770 I 2.000 1 1.000 I 7.440 Trlibutary I 0.000 I 2.000 1 1.000 1 7.440 * Runoff 1 0.123 1 2.000 1 1.000 1 7.440 Segment 1 Reach 2 Waste 1 0.000 1 0.000 1 0.000 1 0.000 Tributary 1 0.330 1 2.000 1 1.000 I 7.440 * Runoff 1 0.133 1 2.000 1 1.000 1 7.440 Segment 1 Reach 3 Waste 1 0.000 1 0.000 1 0.000 1 0.000 Tributary I 0.000 I 2.000 1 1.000 I 7.440 * unoff 1 0.133 1 2.000 1 1.000 1 7.440 Segment 1 Reach 4 Waste 1 0.000 1 0.000 1 0.000 1 0.000 Tributary 1 0.000 1 2.000 I 1.000 I 7.440 * Runoff 1 0.133 1 2.000 1 1.000 1 7.440 Segment 1 Reach 5 WAste 1 0.000 I 0.000 I 0.000 I 0.000 Tributary 1 12.400 I 2.000 1 1.000 1 7.440 * Runoff I 0.080 I 2.000 1 1.000 1 7.440 Runoff flow is in cfs/mile SUMMER EXTENDED MODEL ASSUME S. DEEP CK D.O. ARE OK Seg # I Reah # I Seg Mi I D.O. I CBOD I NBOD I Flow I 1 1 0.00 6.86 15.69 5.01 7.55 1 1 0.13 6.88 15.53 4.95 7.57 1 1 0.26 6.90 15.38 4.88 7.58 1 1 0.39 6.92 15.22 4.82 7.60 1 1 0.52 6.93 15.07 4.76 7.62 1 4 0.65 6.95 14.92 4.69 7.63 1 1 0.78 6.96 14.77 4.63 7.65 1 0.91 6.98 14.63 4.57 7.66 1 1 1.04 6.99 14.48 4.51 7.68 1 1 1.17 7.01 14.34 4.46 7.70 1 1 1.30 7.02 14.19 4.40 7.71 1 2 1.30 7.04 13.69 4.26 8.04 1 2 1.38 7.05 13.61 4.22 8.05 1 2 1.47 7.06 13.52 4.19 8.07 1 2 1.55 7.08 13.43 4.15 8.08 1 1.64 7.09 13.35 4.12 8.09 1 `1 1.72 7.10 13.26 4.08 8.10 1 2 1.81 7.11 13.17 4.05 8.11 1 2 1.89 7.12 13.09 4.02 8.12 1 2 1.98 7.13 13.01 3.98 8.13 1 2 2.06 7.14 12.92 3.95 8.14 1 2 2.15 7.15 12.84 3.92 8.16 1 3 2.15 7.15 12.84 3.92 8.16 1 3 2.34 7.56 12.64 3.83 8.18 1 3 2.54 7.76 12.45 3.75 8.21 1 3 2.73 7.86 12.26 3.67 8.23 1 3 2.93 7.91 12.07 3.59 8.26 1 3 3.12 7.93 11.89 3.51 8.29 1 3 3.32 7.95 11.71 3.44 8.31 1 3 3.51 7.96 11.53 3.36 8.34 1 3 3.71 7.97 11.35 3.29 8.36 1 3 3.90 7.97 11.18 3.22 8.39 1 3 4.10 7.98 11.01 3.15 8.41 1 4 4.10 7.98 11.01 3.15 8.41 1 4 4.30 7.80 10.84 3.08 8.44 1 4 4.50 7.65 10.66 3.01 8.47 1 4 4.70 7.52 10.50 2.94 8.49 1 4 4.90 7.41 10.33 2.87 8.52 1 4 5.10 7.31 10.17 2.81 8.55 1 4 5.30 7.22 10.01 2.74 8.57 1 4 5.50 7.15 9.85 2.68 8.60 1 4 5.70 7.09 9.69 2.62 8.63 1 4 5.90 7.04 9.54 2.56 8.65 1 4 6.10 6.99 9.39 2.50 8.68 1 5 6.10 7.26 5.04 1.62 21.08 1 5 6.35 7.24 4.98 1.59 21.10 1 5 6.60 7.23 4.91 1.55 21.12 1 5 6.85 7.22 4.85 1.52 21.14 1 5 7.10 7.21 , 4.78 1.49 21.16 1 5 7.35 7.20 4.72 1.46 21.18 1 5 7.60 7.20 4.66 1.43 21.20 1 5 7.85 7.20 4.60 1.40 21.22 1 5 8.10 7.19 4.54 1.37 21.24 1 5 8.35 7.20 4.48 1.35 21.26 1 5 8.60 7.20 4.42 1.32 21.28 Seg # I Reach # I Seg Mi I D.O. I CBOD I NBOD I Flow I old Flows Yadkinville WWTP NC0020338 N. Deep Creek Residual Chlorine 7010 (CFS) DESIGN FLOW (MGD) DESIGN FLOW (CFS) STREAM STD (UG/L) UPS BACKGROUND LEVEL (UG/L) IWC (%) Allowable Concentration (ug/I) Fecal Limit Ratio of 2.2 :1 Ammonia as NH3 (summer) 3.9 7010 (CFS) 1.15 DESIGN FLOW (MGD) 1.7825 DESIGN FLOW (CFS) 17.0 STREAM STD (MG/L) 0 UPS BACKGROUND LEVEL (MG/L) 31.4 % IWC (%) 54 Allowable Concentration (mg/I) Ammonia as NH3 (winter) 7010 (CFS) 200/l0om1 DESIGN FLOW (MGD) DESIGN FLOW (CFS) STREAM STD (MG/L) UPS BACKGROUND LEVEL (MG/L) IWC (%) Allowable Concentration (mg/I) 3.9 1.15 1.7825 1.0 0.22 31.4 3 10 1.15 1.7825 1.8 0.22 15.1 clo 11 4/18/94 MODEL RESULTS Discharger : YADKINVILLE WWTP Receiving Stream : NORTH DEEP CREEK o';d F o, 91 /g191, SUMMER 4 hem f,w SPECULATIVE 1.0MGD TO 1.15 MGD NH3N=3 BOD5=30 The End D.O. is 7.15 mg/l. The End CBOD is 4.80 mg/1. The End NBOD is 1.13 mg/1. WLA WLA WLA DO Min CBOD NBOD DO Waste Flo (mg/1) Milepoint Reach # (mg/1) (mg/1) (mg/1) (mgd) Segment 1 6.51 6.15 4 Reach 1 Reach 2 Reach 3 Reach 4 Reach 5 60.00 13.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 Sa v-ec as Spd krh an Level )74(1km mono Wr h tC� s a Vfe a S 4 elki h o n Sa"Pit oir�. y 1.15000 0.00000 0.00000 0.00000 0.00000 *** MODEL SUMMARY DATA *** Discharger : YADKINVILLE WWTP Subbasin : 0307 Receiving Stream : NORTH DEEP CREEK Stream Class: C Summer 7Q10 : 3.9 Winter 7Q10 : 10.0 Design Temperature: 25.0 ILENGTHI SLOPEI VELOCITY 1 DEPTH' Kd I Kd I Ka 1 Ka I KN I KN 1 KNR 1 KNR I SOD 1 SOD 1 mile I fqmil fps 1 ft 'design) @20 'design) @20 'design' @20 Idesign l @20 Idesignl @20 Segment 1 I 1.351 9.101 0.240 1 1.26 1 0.30 1 0.24 14.38 1 3.92) 0.44 1 0.30 10.44 10.00 1 0.00 10.00 Reach 1 1 I I I I I I I I I I I Segment 1 1 0.851 9. Reach 2 I I 101 0.243 11.29 1 0.30 1 0.24 14.43 I 3.971 0.44 1 0.30 1 0.44 10.00 1 0.00 1 0.00 I 1 1 1 I I I I 1 1 I I I Segment 1 1 1.951 30.801 0.349 11.08 10.43 1 0.34 121.60 119.371 0.73 1 0.50 10.73 10.00 10.00 10.00 Reach 3 1 I I 1 1 1 I 1 1 1 1 I I I I Segment 1 I 2.001 4. Reach 4 I I 01 0.202 1 1.44 1 0.28 1 0.22 1 1.78 1 1.601 0.44 1 0.30 1 0.44 1 0.00 1 0.00 1 0.00 I I I I I I I I I I I I I Segment 1 I 2.501 4.401 0.289 1 1.95 1 0.28 1 0.22 1 1.84 1 1.651 0.44 1 0.30 10.44 1 0.00 10.00 1 0.00 Reach 5 1 I I I I I I I I I I I I Flow I CBOD 1 NBOD I D.O. I cfs I mg/1 1 mg/1 I mg/1 Se ent 1 Reach 1 Wate I 1.782 160.000 113.500 1 5.000 Headwaters) 3.900 I 2.000 I 1.000 I 7.440 Tributary I 0.000 I 2.000 I 1.000 1 7.440 * Runoff I 0.070 1 2.000 I 1.000 I 7.440 Segment 1 Reach 2 Waste I 0.000 I 0.000 1 0.000 I 0.000 Tributary I 0.230 I 2.000 I 1.000 I 7.440 * Runoff I 0.080 I 2.000 I 1.000 I 7.440 Se ent 1 Reach 3 Wa to I 0.000 I 0.000 1 0.000 I 0.000 Tributary I 0.000 I 2.000 1 1.000 1 7.440 * Runoff I 0.080 1 2.000 I 1.000 I 7.440 Segment 1 Reach 4 Waste 1 0.000 1 0.000 1 0.000 I 0.000 Tributary I 0.000 I 2.000 I 1.000 I 7.440 * Runoff I 0..080 I 2.000 I 1.000 I 7.440 s W T gment 1 Reach 5 ste I 0.000 I 0.000 I 0.000 I 0.000 ibutary 110.000 I 2.000 I ,1.000 I 7.440 Runoff I 0.080 I 2.000 I 1.000 I 7.440 Runoff flow is in cfs/mile I Seg # I Reach 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 3 1 3'1 1 3 1 3 1 3 1 3 1 3 1 3 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 I Seg # I Reach SUMMER SPECULATIVE 1.0MGD TO 1.15 MGD NH3N=3 BOD5=30 # I Seg Mi I D.O. I CBOD I NBOD 1 Flow I 0.00 6.67 20.19 4.92 5.68 0.14 6.63 19.95 4.84 5.69 0.27 6.60 19.72 4.76 5.70 0.41 6.58 19.48 4.68 5.71 0.54 6.56 19.25 4.61 5.72 0.68 6.55 19.02 4.53 5.73 0.81 6.55 18.80 4.46 5.74 0.95 6.54 18.58 4.38 5.75 1.08 6.54 18.36 4.31 5.76 1.22 6.55 18.14 4.24 5.77 1.35 6.56 17.92 4.17 5.78 1.35 6.59 17.31 4.05 6.01 1.43 6.60 17.19 4.01 6.01 1.52 6.61 17.06 3.97 6.02 1.60 6.62 16.93 3.93 6.03 1.69 6.63 16.80 3.89 6.03 1.77 6.64 16.68 3.85 6.04 1.86 6.65 16.55 3.81 6.05 1.94 6.66 16.43 3.77 6.05 2.03 6.67 16.31 3.73 6.06 2.11 6.68 16.19 3.69 6.07 2.20 6.69 16.07 3.66 6.08 2.20 6.69 16.07 3.66 6.08 2.39 7.28 15.80 3.56 6.09 2.59 7.57 15.53 3.47 6.11 2.78 7.71 15.27 3.37 6.12 2.98 7.78 15.01 3.28 6.14 3.17 7.82 14.76 3.20 6.15 3.37 7.84 14.51 3.11 6.17 3.56 7.85 14.26 3.03 6.18 3.76 7.86 14.02 2.95 6.20 3.95 7.87 13.79 2.87 6.22 4.15 7.88 13.56 2.80 6.23 4.15 7.88 13.56 2.80 6.23 4.35 7.64 13.30 2.72 6.25 4.55 7.42 13.05 2.64 6.26 4.75 7.24 12.81 2.57 6.28 4.95 7.08 12.57 2.50 6.30 5.15 6.94 12.33 2.43 6.31 5.35 6.82 12.10 2.36 6.33 5.55 6.72 11.88 2.29 6.34 5.75 6.64 11.66 2.23 6.36 5.95 6.57 11.44 2.17 6.38 6.15 6.51 11.23 2.11 6.39 6.15 7.08 5.60 1.43 16.39 6.40 7.08 5.51 1.40 16.41 6.65 7.08 5.43 1.37 16.43 6.90 7.09 5.34 1.33 16.45 7.15 7.09 5.26 1.30 16.47 7.40 7.10 5.18 1.27 16.49 7.65 7.11 5.10 1.24 16.51 7.90 7.12 5.02 1.21 16.53 8.15 7.13 4.95 1.19 16.55 8.40 7.14 4.87 1.16 16.57 8.65 7.15 4.80 1.13 16.59 # I Seg Mi I D.Q. I CBOD I NBOD I Flow I -r Ano...lo,n • A I. E 'E. Nq .. cC)9( e Qksc,ttay- okK a• , 2.0 fb.. ,b- jro .° .,•,/, f ' 1 sluMrnwibr� LE MEW 4/,/ • i e•4� HEALTH AND NA1'ut r al� 1/0s Me=' fr I 1 ea 1.1/,/,/ soon 1a M /{y) 0 .R L. • �e l R jr C.,. , 0 N D /14 oA2\C)0 Tv vacii aid Nat" i AL\Uk in moCle �1t .e.f 4 Or 1 N. Ziy c((hR) a�e on a k e o f reo --'Vc UT ft. ()veel C�isc1 ar f iS vT cf (7(f/ti /(f Ui.LS -Ea 0h &1 oof &uL TP la°0a gels O0 a_ cde�,� lfzb r4is e;4,5 w.01 s/W/A//G Z/ 9 /q ��. G W= o. 0 /e0 >d C /0774eri7L I'? ZPvo i10k/ .r�rPl[ li1iZ //,/4 Bo Ps 30 IDD. 6 7Ss 3 0 , /oop sec( ply G -5 �R dKrn 6dn/rr] ab 7 it46D 30 3d ao 0 NCb0 giw /0. 20 cloyyzes G 1,liL19 /002. 2 en) 7 l 0 S yr , /llh y (t G q aS a 7L'ra rh (iG h /V - O/e'l /93 k f /f a KeC O /011.-L2Ovt 74r 4 C/#ffi/c 1-1 imtit/ . . DePrJ e`re� s�4 We'- 1/n a/ 14 / fJDh /Gt I v-v„, ( p r a d; S/ a �r< e oi r c Q' v- 0. l/ J+.I fr/ s���t �r""DO,O' -At I b /.0 (7 a iS/k /CP e a-14-7 e.f 11/ Sa /i � a �D�1w/. DA =35.9 35,1 ST?ko 5, '77 4-73 DA, 10 Los 0,33 Lf 7,910.0. 0,53 30‘12.. _0,93 Dr-) 3 Pf4 No( 1 S7Q10 xv 700 = 717 300 2_ UL nmk 2 tH4/avd,t CiA u I a 11 -g lo Los ; -147is 'Pork] ROGt14_.--( --1) /, 2037410 (ri /3 - )‘ 3 R)Vi ( 0+, 7 - t,3 Pigg d a Yo hecd___40__1(ecotcvtai-e -cis _ u_c, s ov_e e k beCCLS-Qn2rn QCf1)OUQS IA, 0 CIO WY1 Sikta tie 4--10 vvs co • IV\ ; k 0 cvn = Po5960o ko7(0 !LH — + 4.1 196 1 lWC r-aac • .5.77+ caft_i, 1-) ualduL _ _ —124 thirpilemc D 7- I /6do 6,7 Coo , 30(‘ 14 .76 °'/-4 efr. 4 eek der 4 USGS weighted low flow estimate procedure Facility LYadknville WWTP NPDES # Region DA LFPR s7Q10 LFPR DA new MAR QA_eq STEP 1 HA10 H_ _ ... 0 sq mile .._.._.-. o.NO.._.•••. cfs .35.9 35.90 sq mile cfs/sq mile cfs calculate drainage area ratio NC0020338 Stream'N. Deep Cree NOTE: procedure applies for regions HA3, HA5, HA9, and HA10, else see flow SOP RATIO = new drainage area drainage area at gage IF 0.25 < RATIO 4 4, CONTINUE to STEP 2, ELSE too far from gage #DV/O! STEP 2 dete ine weight of gage (weight_LFPR) A. RATIO < 1 B. RATIO > 1 weight raft weight ratio 0 _ 1 0 1 #DIV/01 I IiV/0r!#DIV/0! 1 0.25 1 4 STEP 3 HA3 HA5 HA9 HA10 STEP 4 calcu weight = #DIV/0! calculate 7Q10 EQ using regional equation 10.44 1.31 1.31 5.77 cfs cfs cfs cfs 7Q10 EQ= ate 7Q10 yield using weighted equation #DIV/0! 5.77 7Q10yield = [weight_LFPR * 7Q10 LFPR] + [weight EQ * 7010_EQ] cfs DA LFPR DA new yield = #DIV/01 + #DIV/0! = #DIV/01 cfs/sq mile STEP 5 calculate s7Q10 7010 = 7Q10yield * DA new summer 7010 = #DIV/0! cfs USGS weighted low flow estimate procedure FacilityLYadknville WWTP NPDES # iNC0020338 StreamIN. Deep Cree Region DA LFPR w7010_LFPR DA new MAR QA eq HA10 0 0 35.9 1 35.90 sq mile cfs sq mile cfs/sq mite cfs STEP 1 calculate drainage area ratio NOTE: procedure applies for regions HA3, HA5, HA9, and HA10, else see flow SOP RATIO = new drainage area drainage area at gage IF 0.25 < RATIO 4, CONTINUE to STEP 2, ELSE too far from gage #DV/01 STEP 2 determine weight of gage (weight_LFPR) A. RATIO < 1 B. RATIO > 1 weight ratio weight rAIQ 0 1 0 1 I#DIVIO!i #DIV/0! 1 f#Div/oii #DIV/0! 1 0.25 1 4 STEP 3 HA3 HA5 HA9 HA10 STEP 4 eight = #DIV/0! calculate 7Q10 EQ using regional equation 19.80 4.57 4.57 8.73 cfs cfs cfs cfs 7Q10 EQ= calculate 7010 yield using weighted equation 8.73 = L. cfs/sq mile 7Q10ield = [weight_LFPR * 7010_LFPR] + [weight_EQ * 7010_EQ] DA LFPR DA_new STEP 5 calcu 7010 yield = #DIV/01 + #DIV/0! = #DIV/0! cfs/mile ate w7010 = 7010yield * DA_new winter 7Q10 = #DIV/0! cfs USGS weighted low flow estimate procedure FacilitylYadknville WWTP NPDES # NC0020338J Stream N. Deep Cree .»N« N)N�»N .MNN_NM.w.wM1N »N_.._.._. .._. Region DA LFPR 30Q2 LFPR DA_new MAR QA eq STEP 1 __._�HA10. 0� sq mile ..� .__. ....._. cfs ._N_ 35.90 sq mile cfs/sq mile cfs calculate drainage area ratio NOTE: procedure applies for regions HA3, HA5, HA9, and HA10, else see flow SOP RATIO = new drainage area drainage area at gage IF 0.25 < RATIO < 4, CONTINUE to STEP 2, ELSE too far from gage #D V10! ter ine STEP 2 de weight of gage (weight_LFPR) A. RATIO < 1 weight 0 I' 12 EIv7oi #DIV/0! 1 0.25 STEP 3 HA3 HA5 HA9 HA10 weight = B. RATIO > 1 weighl tatiQ _ 0 1 #DIV/0! #DIV/01 1 4 #DIV/0! calculate 3002_EQ using regional equation 22.11 6.17 6.17 12.35 cfs cfs cfs cfs 3002_EQ = 12.35 cfs/sq mile STEP 4 calculate 3002 yield using weighted equation 3002yield = [weight LFPR * 3002 LFPR] + [weight EQ * 3002 EQ] DA LFPR DA new LiPJ.LQL..J yield = #DIV/0! + #DIV/0! = #DIV/01 cfs/sq mile STEP 5 calcul to 3002 30Q = 3002yield * DA new 3002 = #DIV/01 cfs USGS weighted low flow estimate procedure FacilitylYadknville WWTP NPDES # NC.0020338_j StreamiN_Deep Cree Region DA LFPR s7Q10_LFPR DA new MAR QA eq STEP 1 ._. HA10 » I 0 sq mile ._.o_ ...._.._.cfs .._.._. .._.._. 36.9 36.90 sq mile cfs/sq mile cfs calculate drainage area ratio NOTE: procedure applies for regions HA3, HA5, HA9, and HA10, else see flow SOP T vv»1 d ct(/V )11 u RATIO = new drainage area drainage area at gage IF 0.25 < RATIO < 4, CONTINUE to STEP 2, ELSE too far from gage #DIV/0! STEP 2 determine weight of gage (weight_LFPR) A. RATIO < 1 B. RATIO > 1 weight weight Lao _#oiwoi j #orvio! I weight = #DIV/0! #DIV/0! #DI m 1 4 STEP 3 calculate 7Q10 EQ using regional equation HA3 HA5 HA9 HA10 STEP 4 10.69 1.33 1.33 5.93 cfs cfs cfs cfs 7Q10 EQ= calculate 7010 yield using weighted equation 5.93 7Q10yield = [weight_LFPR * 7Q10 LFPR] + [weight_EQ * 7010_EQ] cfs DA LFPR DA new yield = #DIV/0! + #DIV/0! STEP 5 calculate s7Q10 7010 = 7010yield * DA new summer 7010 = #DIV/0! cfs L.JPIYLQ.L..I #DIV/0! cfs/sq mile USGS weighted low flow estimate procedure FacilityYadknville WWTP NPDES # Region DA LFPR w7010_LFPR DA new MAR QA eq STEP 1 HA1 0 0 sq mile .._o___ ...... cfs _�� 1 36.90 sq mile cfs/sq mile cfs calculate drainage area ratio s N00020338 l Stream N. Deep Cree NOTE: procedure applies for regions HA3, HA5, HA9, and HA10, else see flow SOP RATIO = new drainage area drainage area at gage IF 0.25 < RATIO 4, CONTINUE to STEP 2, ELSE too far from gage #D /0! STEP 2 determine weight of gage (weight_LFPR) A. RATIO < 1 B. RATIO > 1 weight weight r to #DIV/O! #DIV/0! I #DIV/O! 1 0 ,25 1 4 STEP 3 HA3 HA5 HA9 HA10 STEP 4 %Tight = #DIV/01 calculate 7010_EQ using regional equation 20.30 4.67 4.67 8.97 cfs cfs cfs cfs 7Q10 EQ = calculate 7010 yield using weighted equation 8.97 cfs/sq mile 7Q10yield = [weight_LFPR * 7010_LFPRJ + [weight EQ * 7010_EQJ DA LFPR DA new L1YLQL.J yield = #DIV/0! + #DIV/0! = #DIV/0! cfs/mile STEP 5 calcu to w7Q10 7Q10 = 7Q10yield * DA_new winter 7010 = #DIV/01 cfs USGS weighted low flow estimate procedure FacilityLYadknville WWTP NPDES # Region L.J'19. NOTE: procedure applies for regions HA3, HAS, DALFPR � 0 sq mile HA9, and HA10, else see flow SOP 30Q2 LFPR0cfs _._.._.._..._.._.. ._. DA new sq mile MAR cfs/sq mile QA eq cfs STEP 1 36.9 36.90 calculate drainage area ratio NC0020338 l RATIO = new drainage area drainage area at gage IF 0.25 < RATIO <4, CONTINUE to STEP 2, ELSE too far from gage #D /0! STEP 2 determine weight of gage (weight_LFPR) A. RATIO < 1 B. RATIO > 1 weight faii,Q weight Q rii5vii 0 1 0 1 #DIV/0! ( 1---i-Ewoy-1#DIV/0. 1 0.25 1 4 weight = #DIV/0! STEP 3 calculete 3002_EQ using regional equation HA3 HA5 HA9 HA10 22.67 6.31 6.31 12.69 cfs cfs cfs cfs 3002_EQ = STEP 4 calculate 3002 yield using weighted equation 30Q STEP 5 calculi 3002 StreamiN. Deep Cree ._..#D1V/01.._..] 12.69 cfs/sq mile ield = [weight LFPR * 30Q2 LFPR] + [weight_EQ * 30Q2_EQ] DA LFPR DA new field = #DIV/0! + #DIV/0! = #DIV/0! cfs/sq mile ate 3002 = 3002yield * DA new 3002 = #DIV/0! cfs USGS weighted low flow estimate procedure FacilitylYadknville VIIWTP NPDES # N _.._N_ _N_.NN_N Region DA LFPR s7Q10_LFPR DA new MAR QA eq STEP 1 1. HA1 0 NN._NN._NM._.-. 0 sq mile 0 cfs 2.11 sq mile cfs/sq mile cfs calculate drainage area ratio i NC0020338 Stream l N. Deep Cree NOTE: procedure applies for regions HA3, HA5, HA9, and HA10, else see flow SOP RATIO = new drainage area drainage area at gage IF 0.25 < RATIO < 4, CONTINUE to STEP 2, ELSE too far from gage #D /0! STEP 2 determine weight of gage (weight_LFPR) A. RATIO < 1 weight _ • #DIV/01 1 #D;IV/0! 0.25 weight = #DIV/01 B. RATIO > 1 weight ratiQ 0 1 #DIV/01 #DIV/01 1 4 STEP 3 calcu ate 7010_EQ using regional equation HA3 HA5 HA9 HA10 STEP 4 0.84 0.29 0.29 0.33 cfs cfs cfs cfs 7Q10 EQ= calculate 7010 yield using weighted equation 0.33 7Q10yield = [weight LFPR * 7010_LFPR] + [weight_EQ * 7010 EQ] cfs DA LFPR DA_new !..JQIYLQLJ yield = #DIV/01 + #DIV/01 = #DIV/01 cfs/sq mile STEP 5 cal late s7010 7Q1 = 7010yield * DA_new summer 7010 = #DIV/01 cfs USGS weighted low flow estimate procedure FacilityLYadknville WWTP NPDES # NC0020338J Stream! N. Deep,Cree Region DA LFPR w7Q10 LFPR DA new MAR QA eq STEP 1 ._,_HA1 0,_.._ NOTE: procedure applies for regions HA3, HA5, 0 sq mile HA9, and HA10, else see flow SOP 0 cfs 2.11 sq mile cfs/sq mile cfs calculate drainage area ratio RATIO = new drainage area drainage area at gage IF 0.25 < RATIO 4, CONTINUE to STEP 2, ELSE too far from gage #DIV/0! STEP 2 determine weight of gage (weight_LFPR) A. RATIO < 1 B. RATIO > 1 weight t weight ratio 0 1 0 1 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 1 4 1 0 25 weight = #DIV/0! STEP 3 calculate 7010 EQ using regional equation HA3 HA5 HA9 HA10 1.55 0.49 0.49 0.53 cfs cfs cfs cfs 7Q10 EQ= STEP 4 calculate 7Q10 yield using weighted equation 0.53 cfs/sq mile 7Q10yield = [weight_LFPR * 7Q10 LFPR] + [weight EQ * 7010 EQ] DALFPR DAnew yield = #DIV/0! + #DIV/0! = #DIV/01 cfs/mile STEP 5 calcul to w7010 7010 7010yield * DA new winter 7010 = #DIV/0! cfs USGS weighted low flow estimate procedure FacilitylYadknviile WWTP NPDES # INC002Eg8.1 StreamN. Deed Cree Region DA LFPR 3002_LFPR DA_new MAR QA eq STEP 1 1. HA10 0 0 2.11 sq mile cfs sq mile cfs/sq mile cfs calculate drainage area ratio NOTE: procedure applies for regions HA3, HA5, HA9, and HA10, else see flow SOP RATIO = new drainage area drainage area at gage IF 0.25 < RATIO 4, CONTINUE to STEP 2, ELSE too far from gage #D V/O! STEP 2 determine weight of gage (weight_LFPR) A. RATIO < 1 B. RATIO > 1 weight Lati2 weight Q 0 1 0 1 I« #DIV/0! 1 #DIV/0! I [1F1 #DIV/0! 1 0125 1 4 weight = #DIV/0! STEP 3 calculate 30Q2 EQ using regional equation HA3 HA5 HA9 HA10 1.68 0.59 0.59 0.73 cfs cfs cfs cfs 30Q2 EQ = 0.73 cfs/sq mile STEP 4 calculate 3002 yield using weighted equation 30Q2yield = [weight_LFPR * 3002 LFPR] + [weight_EQ * 3002 EQ] DALFPR DA_new i #DIV/O! yield = #DIV/0! + #DIV/0! = #DIV/0! cfs/sq mile STEP 5 calcu to 3002 30Q = 3002yield * DA_new 30Q2 = #DIV/0! cfs . USGS weighted low flow estimate procedure Facility iYadknville WWTP NPDES # Region DA LFPR s7Q10 LFPR DA new MAR QA eq STEP 1 HA10 0 0 sq mile .._.._.�.o.._.._.OW.. cfs 1 42.90 sq mile cfs/sq mile cfs calculate drainage area ratio i NC0020338 i StreamlN. Deep Cree NOTE: procedure applies for regions HA3, HA5, HA9, and HA10, else see flow SOP d 0I iiki RATIO = new drainage area ift drainage area at gage IF 0.25 < RATIO < 4, CONTINUE to STEP 2, ELSE too far from gage #DIV/0! STEP 2 determine weight of gage (weight_LFPR) A. RATIO < 1 weight talk 0 1 • #DIV/O! #DIV/0! 1 d.25 STEP 3 HA3 HA5 HA9 HA10 STEP 4 weight = #DIV/0! B. RATIO > 1 wwei ht rata 0 1 #DIV/0! #DIV/0! 1 4 calculate 7010_EQ using regional equation 12.23 1.44 1.44 6.90 cfs cfs cfs cfs 7010_EQ.= calculate 7010 yield using weighted equation 6.90 7Q10yield = [weight_LFPR * 7Q10 LFPR] + [weight EQ * 7010 EQ] STEP 5 calcu yield = #DIV/0! ate s7Q10 cfs DA_LFPR DA new 7010 = 7Q10yield * DA new summer 7Q10 = #DIV/0! cfs + #DIV/0! = #DIV/01 cfs/sq mile USGS weighted low flow estimate procedure Facility Yadknville WWTP NPDES # NC00203381 Stream IN. DeepCree Region DA LFPR w7Q10_LFPR DA new MAR QAeq STEP 1 0 sq mile 0 cfs 42.9 42.90 sq mile cfs/sq mile cfs calculate drainage area ratio NOTE: procedure applies for regions HA3, HA5, HA9, and HA10, else see flow SOP RATIO = new drainage area drainage area at gage IF 0.25 < RATIO <4, CONTINUE to STEP 2, ELSE too far from gage #DIV/0! STEP 2 determine weight of gage (weight_LFPR) A. RATIO < 1 B. RATIO > 1 weight .QMidi latiQ riis7�T1 0 1 0 1 #DIV/0! I I#DIViO!! #DIV/01 1 0.25 1 4 STEP 3 HA3 HA5 HA9 HA10 weight = #DIV/0! calculate 7010_EQ using regional equation 23.24 5.26 5.26 10.41 STEP 4 calcula cfs cfs cfs cfs 7010_EQ = e 7Q10 yield using weighted equation 10.41 cfs/sq mile 7Q10yisfald = [weight_LFPR * 7Q10 LFPR] + [weight EQ * 7010 EQ] DA LFPR DA new yield = #DIV/0! STEP 5 calculat w7Q10 7010 = 7010yield * DA new winter 7Q10 = #DIV/01 cfs L..iPiY0L.i + #DIV/0! - #DIV/0! cfs/mile USGS weighted low flow estimate procedure FacilitylYadkr1vi11e WWTP NPDES # Region DA LFPR 30Q2_LFPR DA new MAR QA eq STEP 1 ,_.. HA10,_.._ 0 sq mile .._...._. �__ ...._.... cfs _ 42.90 sq mile cfs/sq mile cfs calculate drainage area ratio NC0020338 StreamlN. Deep Cree NOTE: procedure applies for regions HA3, HA5, HA9, and HA10, else see flow SOP RATIO = new drainage area drainage area at gage IF 0.25 < RATIO < 4, CONTINUE to STEP 2, ELSE too far from gage #Df 10! STEP 2 detenr}ine weight of gage (weight_LFPR) A. RATIO < 1 weight 0 #DIV/0! 1 STEP 3 HA3 HA5 HA9 HA10 1 1 #DIV/O! I 0.25 weight = #DIV/0! B. RATIO > wei ht L3ti4 0 1 #DIV/0! #DIV/0! 1 4 calculate 30Q2 EQ using regional equation 6.00 7.16 7.16 14.76 cfs cfs cfs cfs 3002_EQ = 14.76 cfs/sq mile STEP 4 calculate 3002 yield using weighted equation 3002yield = [weight_LFPR 30Q2 LFPR] + [weight_EQ 3002 EQ] DA_LFPR DA new yield = #DIV/0! + #DIV/0! STEP 5 calculat 3002 3002 3002yield * DA new 3002 = cfs #DIV/0! #DIV/0! #DIV/01.�.J cfs/sq mile