HomeMy WebLinkAbout20071503 Ver 4_(2012-11-1)Final Stormwater Management Plan Design Calculations_20121113Strickland, Bev
From: Yates, Kevin [yates @johnrmcadams.com]
Sent: Thursday, November 08, 2012 4:42 PM
To: Strickland, Bev
Subject: RE: 07 -1503 Ver 4 Parkside Town Commons
Beverly,
The Parkside stormwater plans /information is a 90 MB file, so I uploaded it our FTP site. Instructions below, let me know if
you have problems accessing it.
ftp: / /www.mrmcadams.com
(use internet explorer and paste link from here, do not click on link)
User: temp
Pass: temp
(Enter both user and password in lower case)
Thanks,
Kevin
From: Strickland, Bev [ mai Ito: bev.strickland(a) ncdenr.gov]
Sent: Wednesday, November 07, 2012 3:22 PM
To: Yates, Kevin
Subject: 07 -1503 Ver 4 Parkside Town Commons
Mr. Yates,
Could you please email me an electronic cops of the stormwater information?
Thanks
Bev
Be�-erly Suichland, Achn"stratiw Officer
Division of Water Quality - Progr<mi Dewlopment
N.C. Depauthnent of FAwi oinnent and Nathnal Resoinces
Mail Senice Center 1650, Raleigh, N(' 97699 -1650
Phone= 919$07 -6350
Entail Address: Be�-.Shicldand'Oncdein
Phone = (919) 807-6350
E- rllarl colt esporlderlce to atld lionl this addi css illar he sul?yctto tht- Nolrli Calolihd PUNIC Recolzls Larr-3r1d miiJ- be disclosed to tjli zd pamcs.
PARKSIDE TOWN COMMONS
Cary, North Carolina
Final Stormwater Management Plan Design Calculations
-11�.��-----:
4�lot _
Project Number:
By:
Date:
KRG -12000
Beth Ihnatolya, PE
Jeremy Finch, PE
November 2012
4 �
A
v
i
z'
EcoEngineering
A division of The John It. McAdams Company, Inc.
RESEARCH TRIANGLI: PARK
P. 0. Box 14005 Research Triangle Park, NC 27709
919- 287 -4262 FAX 919- 361 -2269
www.ecoengr.com
L
EcolEngineering
A division of The John R. McAdams Company, Inc.
PARKSIDE TOWN COMMONS
CARY, NORTH CAROLINA
FINAL STORMWA TER MANAGEMENT PLAN DESIGN
CALCULATIONS
KRG -12000
N
November 2012
33755 a
....
Research Triangle Park, NC
Post Office Box 14005
Research Triangle Park,
North Carolina 27709
2905 Meridian Parkway
D North Carolina 27713
80, 1 -5646
919 - 287 -4262
919- 361 -2269 Fax
Beth Ihnatolya, PE
Stormwater Project Engineer
Jeremy Finch, PE
Stormwater Project Manager
www.ecoengr.com I Design Services Focused On Client Success
PARKSIDE TOWN COMMONS
Stormwater Management Plan Design
Proiect Descrintion and Summar
Located in the northeast quadrant of the interchange of NC Highway 55 and I -540 in
Cary, North Carolina, is the proposed mixed -use development currently known as
Parkside Town Commons. Proposed development on this approximately 123 -acre site
ultimately consists of the construction of a mix of residential, apartments, office as well
as big box retailers, junior anchors, retail shops and outparcels, along with the associated
infrastructure, utility, and stormwater management improvements. Proposed for
construction at this time is Phase 1 of the project only, which consists of a Target store
and several commercial /retail buildings, along with the necessary
street/parking /sidewalk/utility infrastructure. Also proposed for construction as part of
Phase 1 are the various offsite roadway improvements to the NC Highway 55 corridor
and the extension of O'Kelly Chapel Road through the project.
Parkside Town Commons is located within the Cape Fear River basin and inside the
Jordan Lake watershed. The proposed site will be subject to the stormwater management
requirements set forth in Section 7.3 of the Town of Cary Land Development Ordinance
(LDO). This ordinance requires that development properly manage stormwater runoff
rate and pollutants as necessary to protect the environment, property, health, safety, and
welfare of the Town's citizens. This report contains the final design calculations
detailing the expected stormwater impacts as a result of the proposed development of
Phase 1, along with the final designs of only the proposed stormwater management
facilities that are located within Phase 1 (SWMF #1, #2, #3, and #4) that will be used to
mitigate the impacts.
Current Applicable Stormwater Management Regulations
More specifically, stormwater management for the proposed development shall be
designed in accordance with the following:
1. 7.3.3 Peak Runoff Control
There shall be no net increase in peak stormwater run -off flow leaving a
development from pre- development conditions for the one (1) year design storm.
New developments are required to minimize damage to subject streams caused by
storm flows.
(A) Calculation of Peak Flow
Acceptable methodologies for computing pre- and post- development
conditions for the one (1) year design storm include:
1. The Rational Method (used when the drainage area is two hundred
(200) acres or less)
2. The Peak Discharge Method as described in USDA Technical
Release Number 55 (TR -55) (drainage area is 2, 000 acres or less)
3. The Putnam Method (drainage area is greater than 2, 000 acres)
4. USGS Regression Equations, where applicable
The same method must be used for both the pre- and post- development
conditions.
(B) Exceptions to Peak Flow Control
Developments with less than ten (10) percent net increase in peak flow of
the one (1) year design storm are not required to control peak flow from
the site. However, if the net increase in peak flow from the new
development is greater than ten (10) percent, the entire net increase from
pre- development one (])-year design storm peak flow must be controlled.
(C) Downstream Impact Analysis
A Downstream Impact Analysis shall be supplied for all new proposed
developments that require site/ subdivision plan approval. Site/
subdivision plans which are not subject to the stormwater management
regulations are exempt from the Downstream Impact Analysis
requirements.
Each development plan shall:
1. Calculate the pre- and post- development discharges for each
discharge point from the site.
If the post- development calculated discharge is equal to or less
than a ten (10) percent increase for the two (2), five (5) and ten
(10) year peak discharges at each discharge point, then no further
analysis is needed.
If the post- development peak discharge at any discharge point is
greater than forty (40) cubic feet per second (cfs) then further
analysis is needed and shall be treated as in Section 7.3.3(C)(2)
below. In lieu of the ten (10) percent increase in off -site run -off the
engineer shall limit run -off to the extent that downstream
conveyance systems can accommodate the run -off increase without
causing any propert damage.
2. If the post- development discharge for the two (2), five (5) and ten
(10) year discharges at any discharge point is greater than ten (10)
percent of the pre- development discharge, then additional analysis
is needed for that discharge point.
Identify the point downstream where the impacts become less than
a ten (10) percent increase.
Analyze the impacts of the increase on the stormwater conveyance
system(s) (pipes, culverts, ditches, swales, etc) between the
discharge point and the point where the impact becomes less than
ten (10) percent.
Identify negative impacts on all improvements (businesses, homes,
lawns, streets, pipes, ditches, swales, etc.) through the use of inlet
and outlet control calculations and backwater analyses for culverts,
channel capacity calculations for swales and ditches.
Construct on -site detention, off -site improvements, or make a
payment -in -lieu for inadequate downstream conveyance systems to
fully mitigate all impacts created by the proposed development.
Requests for payment -in -lieu must be approved by Town Council.
Payment -in -lieu shall be based on the sealed, approved estimate of
one hundred (100) percent of the costs to construct the appropriate
mitigation facility. Those costs shall include design, land costs,
construction, and a fifty (50) year cycle of maintenance. The chosen
facility has to be a facility that is capable of obtaining all permits
required by all appropriate state and federal agencies.
3. If on -site detention is the chosen mitigation, limit the peak
discharge at all discharge points to what would be expected from
an R -40 zoning condition for the two (2), five (5) and ten Ll0) year
storm events, not to exceed a ten (10) percent increase over the pre -
development conditions.
2. 7.3.2(D) Nitrogen Export Standards
All developments must achieve a nitrogen export of less than or equal to 3.6
pounds per acre per year. If the development contributes greater than 3.6 pounds
per acre per year of nitrogen, then the table below explains the options available
depending whether the development is residential or non - residential. The offset
payment option shown below is only available for developments within the Neuse
River basin.
TABLE 7.3-1: RO
RESIDENTIAL
If the computed export is less than
6.0 lbs/ac/yr, then the owner may
either:
• Install BMPs to remove
enough nitrogen to bring
the development down to 3.6
lbs/ac/yr.
• Pay a one -time offset
payment to the UTB
Restoration Fund to bring
the nitrogen down to 3.6
lbs/ac/yr
• Do a combination of BMPs
and offset payment to
achieve a 3.6 lbs/ac/yr
export
If the computed export is greater
than 6.0 lbs/ac/yr, the owner must
use on -site BMPs to bring the
development's export down to 6.0
lbs/ac/yr. Then, the owner must use
one of the three options above to
achieve the reduction between 6.0
and 3.6 lbs/ac/yr.
COMMERCIAL / INDUSTRIAL
If the computed export is less than 10.0
lbs /ac/yr, then the owner may either:
• Install BMPs to remove enough
nitrogen to bring the
development down to 3.6
lbs /ac/yr.
• Pay a one -time offset payment to
the UTB Restoration Fund to
bring the nitrogen down to 3.6
lbs /ac/yr
• Do a combination of BMPs and
offset payment to achieve a 3.6
lbs /ac/yr export
If the computed export is greater than
10.0 lbs/ac/yr, the owner must use on-
site BMPs to bring the development's
export down to 10.0 lbs /ac/yr. Then, the
owner must use one of the three options
above to achieve the reduction between
10.0 and 3.6 lbs /ac/yr.
Once it has been determined that an offset payment is forthcoming, the owner
shall furnish the Town with evidence that the North Carolina Division of Water
Quality has received payment prior to the Town's issuance of a grading permit.
For developments outside of the Neuse River Basin, the owner must provide
evidence of intent to reduce nitrogen export to the levels required by this section
to the maximum extent practicable.
Addressing Current Stormwater Management Regulations
The proposed stormwater management plan for Parkside Town Commons -Phase 1 will be
designed to protect the downstream environment. The plan incorporates biologically
based stormwater management techniques to manage both water quantity and quality
aspects of site runoff. As can be seen in this report, stormwater management for Parkside
Town Commons -Phase 1 will be accomplished by incorporating engineered stormwater
best management practice facilities throughout the phase to capture and treat the
stormwater runoff from developed areas. Specific stormwater treatment devices that will
be used are level spreaders in conjunction with vegetated filter strips, which are designed
to remove a minimum of 40% average annual total suspended solids (TSS), and provide
30% total nitrogen and 35% total phosphorus removal, and extended detention
stormwater wetlands designed to remove a minimum of 85% average annual total
suspended solids (TSS), provide slow release (i.e. 2 to 5 days) of the difference in pre- to
post - development peak runoff rate for the 1 -, 2 -, 5 -, and 10 -year, 24 -hour storms, and
provide 40% total nitrogen and 40% total phosphorus removal. The stormwater wetlands
will serve the dual purpose of water quality and water quantity (ie. detention) control.
Discussion of Nutrient Export Calculations
The current Town of Cary ordinance requires developments located in the Cape Fear
River basin to reduce nitrogen export levels to the maximum extent practicable. In order
to do this, stormwater wetlands will discharge to level spreader /vegetated filter strip
systems to provide additional nutrient removal.
For the purpose of nitrogen export computations, a 44.11 -acre total nitrogen analysis area
was created that encompasses all of Phase 1, excluding the O'Kelly Chapel Road
extension right -of -way (see nitrogen exhibit for a graphic representation of the total
nitrogen analysis area). The remaining portions of the project (i.e. future phases) were not
included in the nitrogen export calculations and will be required, at the time of their
development, to update these nitrogen export calculations to incorporate their particular
phases into the nitrogen calculations. In the event these phases are never developed, the
attached calculations show that Phase 1 stands alone with respect to meeting the
applicable nitrogen export regulations.
Discussion of Pre -Post Analysis
As you can see from the report, the post - development peak flow rates have been detained
back to pre - development peak flow rates in the 1 -year, 2 -year, 5 -year, and 10 -year storm
events for POA #1, POA #3, POA #4, and POA #5. SWMF #1 and SWMF #2 were
designed to aid in detaining post - development flows back to pre - development rates for
POA #3. SWMF #3 and SWMF #4 aided in detaining post- development flows back to
pre - development rates for POA #1.
Calculation Methodolo
• Rainfall data for the Cary, NC region is from NOAA Atlas 14, with a partial
duration series assumption for the 1 -year, 2 -year, 5 -year, and 10 -year storms and
annual duration assumption for the 100 -year storm. The 1- year /24 -hour rainfall
depth is 2.86 inches, the 2- year /24 -hour rainfall depth is 3.45 inches, the 5-
year /24 -hour rainfall depth is 4.32 inches, the 10- year /24 -hour rainfall depth is
4.99 inches, and the 100 - year /24 -hour rainfall depth is 7.33 inches. These rainfall
depths were input into the meteorological model within PondPack for peak flow
rate calculations. Please reference the rainfall data section within this report for
additional information.
Existing topographic information is a combination of surveys by Mulkey
Engineers & Consultants, The John R. McAdams Company, Inc., and Wake
County GIS.
• Using maps contained within the Wake County Soil Survey, the on- and off -site
soils were determined to be from hydrologic soil groups (HSG) `C' and `D' soils.
Since the method chosen to compute both pre- and post - development peak flow
rates and runoff volumes is dependent upon the soil type, care was taken when
selecting the appropriate Soil Conservation Service Curve Number (SCS CN).
a) Within each sub - basin, a proportion of each soil group was
determined using NRCS Soil Survey Maps. Once a proportion was
determined, a composite SCS CN was computed for each cover
condition. For example, the pre - development condition of Sub -
basin #1 consists of approximately 48.6% HSG `C' soils and
51.4% HSG `D' soils. Therefore, for the open area cover condition,
the composite SCS CN is computed as follows (assuming good
condition):
Composite Open SCS CN = (0.486 *74) + (0.514 *80) = 77
b) This type of calculation was done for each of the studied sub -
basins in the pre- and post - development condition in an effort to
accurately account for the difference in runoff between HSG `C'
soils and HSG `D' soils.
A composite SCS Curve Number was calculated for both the pre- and post -
development condition using SCS curve numbers and land cover conditions.
Land cover conditions for the pre - development condition were taken from a
survey by Mulkey Engineers & Consultants and aerial photography. Land cover
conditions for the post - development condition were taken from the proposed
development plan.
• The time of concentration was calculated using SCS TR -55 (Segmental Approach,
1986). The Tc flow path was divided into three segments: overland flow,
concentrated flow, and channel flow. The travel time was then computed for each
segment, from which the overall time of concentration was determined by taking
the sum of each segmental time.
• The post - development time of concentration to the stormwater facilities is
assumed to be 5 minutes in the post- development condition. This provides a
conservative estimate of facility size for site planning purposes.
• PondPack Version V8i was used in determining the pre- & post- development
peak flow rates for the 1 -, 2 -, 5 -, 10 -, and 100 -year storm events, as well as
routing calculations for the proposed stormwater management facilities.
• The stage- storage functions for the proposed stormwater management facilities
were all generated outside of PondPack and then input into PondPack for final
routing calculations.
• Water quality sizing calculations for each facility were performed in accordance
with the N.C. Stormwater Best Management Practices manual (NCDENR July
2007). The normal pool surface area for each wetland facility was sized using the
runoff volume computed using the Simple Method and a maximum ponding depth
of 12- inches.
• Velocity dissipaters will be provided at the stormwater management facility
principal spillway outlets to prevent erosion and scour in these areas. The
dissipaters are constructed using rip rap, underlain with a woven geotextile filter
fabric. The filter fabric is used to minimize the loss of soil particles beneath the
rip rap apron. The dissipaters are sized for the 10 -year storm event using the
NYDOT method. It is a permanent feature of the outlet structures.
• For 100 -year storm routing calculations, a "worst case condition" was modeled in
order to insure the proposed BMP would safely pass the 100 -year storm event.
The assumptions used in this scenario are as follows:
1. The starting water surface elevation in the facility, just prior to the 100 -
year storm event, is at the top of riser elevation. This scenario could occur
as a result of a clogged orifice or a rainfall event that lingers for several
days. This could also occur as a result of several rainfall events in a series,
before the orifice has an opportunity to draw down the storage pool.
2. An attempt was made to achieve a minimum of approximately 1.0 -ft of
freeboard between the peak elevation during the "worst case" scenario and
the top of the dam for the facility. This goal was achieved for the
proposed wetlands.
Conclusion
If the development on this tract is built as proposed within this report, then the
requirements set forth in Section 7.3 of the Town of Cary Land Development Ordinance
will be met with the proposed stormwater management facilities. However,
modifications to the proposed development may require that this analysis be revised.
Some modifications that would require this analysis to be revised include:
1. The proposed site impervious surface exceeds the amount accounted for in this
report.
2. The post - development watershed breaks change significantly from those used to
prepare this report.
The above modifications may result in the assumptions within this report becoming
invalid. The computations within this report will need to be revisited if any of the above
conditions become apparent as development of the proposed site moves forward.
PARKSIDE TOWN COMMONS SUMMARY OF RESULTS
KRG -12000
= => RELEASE RATE MANAGEMENT RESULTS
POINT OF ANALYSIS #1
B. IHNATOLYA, PE
9/11/2012
Return Period
Pre - Development
Pre - Development
Post - Development
[ %]
Increase
% Increase
[cfs] [ %]
1 -Year
[cfs]
[cfs]
0.0 0%
[cfs]
[ %]
1 -Year
-0.2 -6%
�-11%
14.1
8.9
4.0
-5.2
-37%
2 -Year
4.6
21.5
14.3
-7.2
-33%
5 -Year
31.5
20.4
-11.1
-35%
10 -Year
39.4
24.6
-14.8
-38%
POINT OF ANALYSIS #3
Return Period
Pre - Development
Pre - Development
Post - Development
[ %]
Increase
% Increase
[cfs] [ %]
1 -Year
[cfs]
[cfs]
0.0 0%
[cfs]
[ %]
1 -Year
-0.2 -6%
�-11%
27.2
16.0
4.0
-11.2
-41%
2 -Year
4.6
39.0
23.2
-15.8
-41%
5-Year_
54.8
31.0
-23.8
-43% q
10 -Year
67.1 _
37.8 �p
-29.3 �
-� -44%
POINT OF ANALYSIS #4
Return Period
Pre - Development
Post - Development
Increase % Increase
[ %]
[cfs]
[cfs]
[cfs] [ %]
1 -Year
2.6
2.6
0.0 0%
2 -Year
3.5
3.3
-0.2 -6%
�-11%
5 -Year
4.5
4.0
-0.5
10 -Year
5.3
4.6
-0.7 -13%
POINT OF ANALYSIS #5
Return Period Pre - Development Post - Development Increase % Increase
[cfs]
[cfs]
[cfs]
[ %]
1 -Year
9.9
6.0
-3.9
-39%
2 -Year
13.7
7.9
-5.8
-42%
5 -Year
18.6
10.2
-8.4
-45%
10 -Year
22.4
11.9
-10.5
-47%
PARKSIDE TOWN COMMONS SUMMARY OF RESULTS - SWMF B. IHNATOLYA, PE
KRG -12000 9/11/2012
STORMWATER MANAGEMENT FACILITY #1
Return Period
8.7
Inflow
Outflow
Max. WSE
Freeboard
Top of Dam =
307.00
[cfs]
[cfs]
[ft]
IN
1 -Year
23581
34.6
4.1
303.66
3.34
2 -Year _
4
41.5
5.1
304.01
2.99
5 -Year
304.50
48.7
6.1
304.50
2.50
10 -Year
l
54.5
11.3
304.70
2.30
100 -Year (Siphon Unclogged)
298.00
F18.3 8.3
T:: 28.6
305.11
- 1.89
100 -Year (Siphon Clogged)
0.0222
ft/ft _
29.2
305.13
1.87
Drainage Area =
8.7
acres
_Design
►esign Impervious Area =
6.42
acres
Top of Dam =
307.00
ft
Pool Elevation =
302.00
ft
_Normal
Surface Area at NWSE =
23581
sf
Surface Area at NWSE =
22553
sf
Riser Length =
4
ft
Riser Width =
4
ft
Riser Crest =
304.50
ft
Barrel Diameter =
24
inches
# of Barrels =
l
Invert In =
299.00
feet
Invert Out =
298.00
feet
Length =
45
feet
Slobe =
0.0222
ft/ft _
PARKSIDE TOWN COMMONS SUMMARY OF RESULTS - SWMF B. IHNATOLYA, PE
KRG -12000 9/1 1/2012
STORMWATER MANAGEMENT FACILITY #2
Return Period
Inflow
Outflow
Max. WSE
Freeboard
[cfs]
[cfs]
[ft]
[ft]
1 -Year
15.8
2.0
302.28
3.72
2 -Year
20.3
3.5
302.53
3.47
5 -Year
25.5
4.9
302.97
3.03
10 -Year
29.4
5.7
303.36
2.64_
100 -Year (Siphon Unclogged)
�39.51
8.8
2.11
100 -Year (Siphon Clogged)
9.1
_303.89
30 3.90
2.10
Design Drainage Area =
5.48
acres
Design Impervious Area =
2.1
acres
of Dam =
306.00
ft
_Top
Normal Pool Elevation =
301.00
ft_
Surface Area at NWSE =
12263_
sf
Required Surface Area at SE=
7855
sf
Riser Length =
4
ft�
Riser Width =
4
It
Riser Crest =
303.50
ft
Barrel Diameter =
24
inches mm
# of Barrels =
1
Invert In =
298.50
feet
Invert Out =
298.00
feet
Length =
36
feet
Slone
T-0.0-39
ft/ft
PARKSIDE TOWN COMMONS SUMMARY OF RESULTS - SWMF
KRG -12000
STORMWATER MANAGEMENT FACILITY #3
Return Period
Inflow
Outflow
Max. WSE
[cfs]
[cfs]
[ft]
1 -Year
101.8
5.3
305.90
2 -Year
124.1_
6.4
306.38
5 -Year
147.7
7.8
307.06
10 -Year
166.4
17.8
307.48
100 -Yea�_(Siphon on Unclogged)
211.6
59.0
308.09
100 -Ye Clogged)
211.6
60.9
308.13
Design Drainage Area =
27.36
acres
Design Impervious Area =
17.85
acres
Top of Dam =
310.00
ft
Normal Pool Elevation =
304.00
ft
Surface Area at NWSE _
65834
sf
Required Surface Area at NWSE =
63282
sf
Riser Length =
�5
ft
Riser Width =
5
ft
Riser Crest =
307.20
ft
Barrel Diameter =
36
inches
# of Barrels =
1
Invert In =
301.00
feet_
Invert Out =
300.00
feet
Length =
49
feet
Slope =
0.0204
ft/ft
B. IfINATOLYA, PE
9/11/2012
Freeboard
4.10
3.62
2.94
2.52
1.91
1.87
PARKSIDE TOWN COMMONS SUMMARY OF RESULTS - SWMF
Design Drainage Area =
)esign Impervious Area =
_ Top of Dam =
Normal Pool Elevation =
Surface Area at NWSE =
Surface Area at NWSE =
Riser Length =
Riser Width =
Riser Crest =
Barrel Diameter =
# of Barrels =
Invert In =
Invert Out =
Length =
011- -- =
[cfs]
[cfs
22.7
0.1
28.6
0.1
35.2
0.6
40.4
1.1
53.1
3.8
53.1
3.8
7.17
acres
2.45
acres
302.00
ft
296.00
ft
60906
sf
9306
sf
5
ft
299.20 _
ft
36
inches
1
293.00
feet
292.00
feet
52
feet
0.0192 lft /ft
Max. WSE
[ft]
296.74
296.95
297.07
297.15
297.60
297.61
B. IHNATOLYA, PE
9/11/2012
Freeboard
[ft]
5.26
5.05
4.93
4.85
4.40
4.39
1
MISCELLANEOUS SITE DATA
2
PRECIPITATION DATA
3
SOILS DATA
PRE - DEVELOPMENT
4
HYDROLOGIC CALCULATIONS
POST - DEVELOPMENT
5
HYDROLOGIC CALCULATIONS
SWMF #1 FINAL DESIGN
6
CALCULATIONS
SWMF #2 FINAL DESIGN
7
CALCULATIONS
SWMF #3 FINAL DESIGN
8
CALCULATIONS
SWMF #4 FINAL DESIGN
9
CALCULATIONS
LEVEL SPREADER
10
CALCULATIONS
NUTRIENT EXPORT
11
CALCULATIONS
MISCELLANEOUS SITE DATA
PARKSIDE TOWN COMMONS
KRG -12000
illm
\ i +� , r -.
f
% •'�� � � - gip. " `�-:y r +6.i4� `� _ � � % J�~,�= `1 r�;�J
I Co
10 (�
�'�/�} 1 ter!} r '� '� • y /� � i.- t� `• � _ i ��xy�{' ° �� '✓'��� ."1 \� � � "-� 4!
Creek
will
rN
� .,�.J v �� i "• i _ -'� -1 �, i � �. ���� tip"'" . `,� �`
I,
�j t ,,
Bra nr.h
1\ ('\ \V �\ �-350
1�'r'1
may-' L m:_; ',I�. • _' S5 yp_
_ _ • _ rf�Tf_ ' �✓ / ' SCALE 1:24000
0 1 MILES
0 1000 YARDS
0 1 KILOMETER
9' W r a
copyngrht (c) 1998, Maptecn, Inc.
STATE OF NORTH CAROLINA FIRM PANEL LOCATOR DIAGRAM
DATUM INFORMATION
The projection used in the preparation of this map was the North Carolina
State Plane (FIPSZONE 3200). The horizontal datum was the North American
Datum of 1983, GRS80 ellipsoid. Differences in datum, ellipsoid, projection, or
Universal Transverse Mercator zones used in the production of FIRMS for adjacent
jurisdictions may result in slight positional differences in map features across
jurisdictional boundaries. These differences do not affect the accuracy of this
FIRM. All coordinates on this map are in U.S. Survey Feet, where
1 U.S. Survey Foot = 1200/3937 Meters.
Flood elevations on this map are referenced to the North American Vertical
Datum of 1988 (NAVD 88). These flood elevations must be compared to structure
and ground elevations referenced to the same vertical datum. An average
offset between NAVD 88 and the National Geodetic Vertical Datum of 1929
(NGVD 29) has been computed for each North Carolina county. This offset was
then applied to the NGVD 29 flood elevations that were not revised during the
creation of this statewide format FIRM. The offsets for each county shown on
this FIRM panel are shown in the vertical datum offset table below. Where a
county boundary and a flooding source with unrevised NGVD 29 flood elevations
are coincident, an individual offset has been calculated and applied during the
creation of this statewide format FIRM. See Section 6.1 of the accompanying
Flood Insurance Study report to obtain further information on the conversion
of elevations between NAVD 88 and NGVD 29. To obtain current elevation,
description, and /or location information for bench marks shown on this map,
please contact the North Carolina Geodetic Survey at the address shown below.
You may also contact the Information Services Branch of the National Geodetic
Survey at (301) 713 -3242, or visit its website at.www.ngs.noaa.go .
North Carolina Geodetic Survey County Average Vertical Datum Offset Table
121 West Jones Street County Vertical Datum Offset (ft)
Raleigh, INC 27601 Wake - 0.88
(919) 733 -3836
www. ncgs. state. nc. us
Example: NAVD 88 = NGVD 29 + ( -0.88)
All streams listed in the Flood Hazard Data Table below were studied by
detailed methods using field survey. Other flood hazard data shown on this
map may have been derived using either a coastal analysis or limited detailed
riverine analysis. More information on the flooding sources studied by these
analyses is contained in the Flood Insurance Study report.
FLOOD HAZARD DATA TABLE
Floodway Width (feet)
Left/Right Distance From
the Center of Stream to
Encroachment Boundary
(Looking Downstream) or
Total Floodway Width
Cross
Section
Stream
Station'
Flood Discharge
(cfs)
1 % Annual Chance
(100 -year)
Water -Surface Elevation
(feet NAVD 88)
G
ANVILLE
ODD
NA
250.6
200
152
15,160
NA
252.0
140
163
16,250
NA
256.7
80
166
16,600
NA
257.1
150
150
14,961
2,955
257.1
75/75
166
16,644
2,295
260.4
19/86
173
17,259
2,295
4,
,
177
17,732
2,295
260.7
90/120
189
18,868
1,755
261.4
35 / 177
192
19,236
1,755
262.0
50/60
06�
�f
�
1�ry
1�ry
16ryry
�
.y
166ry
70/25
213
21,264
1,755
266.8
65/30
DUR14ANI
21,735
1,755
268.4
65/30
228
22,754
1,755
287.8
1119,
1101
23,193
��
v
210/265
237
FRANKLIN
1,755
287.8
340/200
241
24,109
1,755
287.8
260/160
246
24,575
1,755
elT'
y�o
1e
le
0,
le
le
1011�1,�0
024
2,373
560
262.6
19/122
029
2,900
560
264.0
4
o.?
1
01fP
0'199
1\11,
110
l y
,�'`i
1\0
16°j
1R
1m9
1Alp
\1e
186/152
054
5,434
1,305
283.4
195/171
067
6,667
1,305
283.4
0.166
6^9
6'1�
0199
1 ^�
119
1'1ry9
11`r
1,10
1�
.`'�°
1'` •�
(��
,��1
'��
257.22
120
009
900
NA
257.22
90
016
1,600
NA
257.22
019^
022
2,160
NA
258.1
80
030
3,000
NA
261.0
80
040
4,000
,
263.9
80
046
4,600
NA
265.3
75
051
5,140
NA
266.9
75
' Feet above mouth
2 Elevation includes backwater effects from Kit Creek (Basin 29, Stream 7)
4"
1\41
^0
\O
\10
1 ^ ^y
1 ^4'
1 ^10
ry ^�
ry ^1�
ry ^ryy
Z
01ry�
01�
01�
01�
o ^�
01^�
01�
o'\�
•�'��
'�'`'`
1'��'
1�n�.
•�'���n.
1'Y°Ja�'
D
0117
o'1ti�'A
",
010
0'1�'
'A"
1
ep
O'19P
1°�
11^�
11P
JJ�++��
1'r
1•\0
1`r''
161
1,1.13
!��
1�
• `
JA
IA19
0
o'1ry
O,5
\I
o1y
o16
0'`'
019
019
19ry
11ry
1� V
O9
1'� k
1�ry
1�
0 ^l1
O,I N,
0^,�1'Aljl
1 #1
o ^y1
0^t
001
4 ^1
411
1A&
.`.
,10�
,110
g'
^moo
0(ry�
,,'P
0��9
'��
0
'gyp
0��i
,(10
0
,160
0�i
,190
,100
1,p
,110
1
,1ryo
1
169
1,0
'1PO''169
1,g
1
OU
d°
of°h9
ow
0°19
da'
do'
1H'
10`•19
1689
1,6!/
^F3"
Vv
00^6
e
e1e
e,�e,�"
e
dv
off^
06 ^^
d°9^
cSp�y9 ^�'
1�1
161/
16ry1
J
H N
T
N
HARN
y
��p
/
d0
DATUM INFORMATION
The projection used in the preparation of this map was the North Carolina
State Plane (FIPSZONE 3200). The horizontal datum was the North American
Datum of 1983, GRS80 ellipsoid. Differences in datum, ellipsoid, projection, or
Universal Transverse Mercator zones used in the production of FIRMS for adjacent
jurisdictions may result in slight positional differences in map features across
jurisdictional boundaries. These differences do not affect the accuracy of this
FIRM. All coordinates on this map are in U.S. Survey Feet, where
1 U.S. Survey Foot = 1200/3937 Meters.
Flood elevations on this map are referenced to the North American Vertical
Datum of 1988 (NAVD 88). These flood elevations must be compared to structure
and ground elevations referenced to the same vertical datum. An average
offset between NAVD 88 and the National Geodetic Vertical Datum of 1929
(NGVD 29) has been computed for each North Carolina county. This offset was
then applied to the NGVD 29 flood elevations that were not revised during the
creation of this statewide format FIRM. The offsets for each county shown on
this FIRM panel are shown in the vertical datum offset table below. Where a
county boundary and a flooding source with unrevised NGVD 29 flood elevations
are coincident, an individual offset has been calculated and applied during the
creation of this statewide format FIRM. See Section 6.1 of the accompanying
Flood Insurance Study report to obtain further information on the conversion
of elevations between NAVD 88 and NGVD 29. To obtain current elevation,
description, and /or location information for bench marks shown on this map,
please contact the North Carolina Geodetic Survey at the address shown below.
You may also contact the Information Services Branch of the National Geodetic
Survey at (301) 713 -3242, or visit its website at.www.ngs.noaa.go .
North Carolina Geodetic Survey County Average Vertical Datum Offset Table
121 West Jones Street County Vertical Datum Offset (ft)
Raleigh, INC 27601 Wake - 0.88
(919) 733 -3836
www. ncgs. state. nc. us
Example: NAVD 88 = NGVD 29 + ( -0.88)
All streams listed in the Flood Hazard Data Table below were studied by
detailed methods using field survey. Other flood hazard data shown on this
map may have been derived using either a coastal analysis or limited detailed
riverine analysis. More information on the flooding sources studied by these
analyses is contained in the Flood Insurance Study report.
FLOOD HAZARD DATA TABLE
Floodway Width (feet)
Left/Right Distance From
the Center of Stream to
Encroachment Boundary
(Looking Downstream) or
Total Floodway Width
Cross
Section
Stream
Station'
Flood Discharge
(cfs)
1 % Annual Chance
(100 -year)
Water -Surface Elevation
(feet NAVD 88)
KIT CREEK (BASIN 29, STREAM 7)
141
14,060
NA
250.6
200
152
15,160
NA
252.0
140
163
16,250
NA
256.7
80
166
16,600
NA
257.1
150
150
14,961
2,955
257.1
75/75
166
16,644
2,295
260.4
19/86
173
17,259
2,295
260.6
25/185
177
17,732
2,295
260.7
90/120
189
18,868
1,755
261.4
35 / 177
192
19,236
1,755
262.0
50/60
203
20,296
1,755
265.0
25/70
208
20,775
1,755
266.1
70/25
213
21,264
1,755
266.8
65/30
217
21,735
1,755
268.4
65/30
228
22,754
1,755
287.8
185/350
232
23,193
1,755
287.8
210/265
237
23,674
1,755
287.8
340/200
241
24,109
1,755
287.8
260/160
246
24,575
1,755
287.8
200/220
KIT CREEK TRIBUTARY 1 (BASIN 29, STREAM 11 )
020
2,042
560
262.0
56/17
024
2,373
560
262.6
19/122
029
2,900
560
264.0
87/87
033
3,338
960
265.2
59/59
041
4,051
1 960
267.0
40/35
050
4,993
1,305
283.4
186/152
054
5,434
1,305
283.4
195/171
067
6,667
1,305
283.4
65/65
071
7,076
1,305
1 283.4
1 75/75
074
1 7,444
1 1,305
1 283.5
1 120/120
KIT CREEK TRIBUTARY 2 (BASIN 29, STREAM 8)
003
345
NA
257.22
120
009
900
NA
257.22
90
016
1,600
NA
257.22
85
022
2,160
NA
258.1
80
030
3,000
NA
261.0
80
040
4,000
NA
263.9
80
046
4,600
NA
265.3
75
051
5,140
NA
266.9
75
' Feet above mouth
2 Elevation includes backwater effects from Kit Creek (Basin 29, Stream 7)
y,J � � Ate' � � 1 • III • �/ %' �\ �. �YA�� T
b o
�,aw,NVx� FEMA'SCOOPERATING TECHNICAL PARTNER �✓.�{, G,�~
ewe AND SE
This digital Flood Insurance Rate Map (FIRM) was produced through a unique
cooperative partnership between the State of North Carolina and the Federal
Emergency Management Agency (FEMA). The State of North Carolina has
implemented a long term approach of floodplain management to decrease
the costs associated with flooding. This is demonstrated b the State's com-
mitment to ma floodplain areas at the local level. As art of this effort the
P P P
State of North Carolina has joined in a Cooperating Technical State agreement
1 P 9 9
with FEMA to produce and maintain this digital FIRM.
www.ncfloodmaps.com
770 DOC
3971
Wake County
Unincorporated A
370368
35
Town of Cary
Extraterritoria:
Jurisdiction
370238
3970
35°`.
3969
762 50C
35 °!
760 OOC
This map is for use in administering the National Flood Insurance Program. It does not
necessarily identify all areas subject to flooding, particularly from local drainage sources
of small size. The community map repository should be consulted for possible
updated or additional flood hazard information.
To obtain more detailed information in areas where Base Flood Elevations (BFEs)
and /or floodways have been determined, users are encouraged to consult the Flood
Profiles, Floodway Data, Limited Detailed Flood Hazard Data, and /or Summary of Stillwater
Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies
this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded
whole -foot elevations. These BFEs are intended for flood insurance rating purposes
only and should not be used as the sole source of flood elevation information. Accordingly,
flood elevation data presented in the FIS report should be utilized in conjunction with
the FIRM for purposes of construction and /or floodplain management.
Boundaries of regulatory floodwa s shown on the FIRM for flooding sources studied
9 Y Y 9
b detailed methods were computed at cross sections and interpolated between cross
Y P P
sections. The floodwa s were based on hydraulic considerations with regard to requirements
Y Y g q
of the National Flood Insurance Program. Floodway widths and other pertinent floodway
data for flooding sources studied by detailed methods as well as non - encroachment widths
for flooding sources studied by limited detailed methods are provided in the FIS report
for this jurisdiction. The FIS report also provides instructions for determining a floodway
using non - encroachment widths for flooding sources studied by limited detailed methods.
NOTES TO USERS
Certain areas not in Special Flood Hazard Areas may be protected by flood control
structures. Refer to Section 4.4 "Flood Protection Measures" of the Flood Insurance
Study report for information on flood control structures in this jurisdiction.
Base map information and geospatial data used to develop this FIRM were obtained from
various organizations, including the participating local community(ies), state and federal
agencies, and /or other sources. The primary base for this FIRM is aerial imagery acquired by
Wake County. The time period of collection for the imagery is 1999. Information and
geospatial data supplied by the local community(ies) that met FEMA base map specifications
were considered the preferred source for development of the base map. See geospatial
metadata for the associated digital FIRM for additional information about base map
preparation.
Base map features shown on this map, such as corporate limits, are based on the
most up -to -date data available at the time of publication. Changes in the corporate
limits may have occurred since this ma was published. Ma users should
Y p p P
consult the appropriate community official or website to verify current conditions of
jurisdictional boundaries and base ma features. This ma may contain roads that were
1 P P Y
not considered in the hydraulic analysis of streams where no new hydraulic model was
created during the production of this statewide format FIRM.
370238
This map reflects more detailed and up -to -date stream channel configurations than
those shown on the previous FIRM for this jurisdiction. The floodplains and floodways
that were transferred from the previous FIRM may have been adjusted to conform to
these new stream channel configurations. As a result, the Flood Profiles and Floodway
Data tables in the Flood Insurance Study report (which contains authoritative hydraulic
data) may reflect stream channel distances that differ from what is shown on this map.
Please refer to the separately printed Map Index for an overview map of the county
showing the layout of map panels, community map repository addresses, and a Listing of
Communities table containing National Flood Insurance Program dates for each community
as well as a listing of the panels on which each community is located.
If you have questions about this map, or questions concerning the National Flood
Insurance Program in general, please call 1- 877 -FEMA MAP (1- 877 - 336 -2627) or visit the
FEMA website at www.fema.gov.
An accompanying Flood Insurance Study report, Letter of Map Revision LOMR or Letter
of Ma Amendment LOMA revising portions of this panel, and digital versions of this
P ( 1 9 P P g
FIRM may be available. Visit the North Carolina Floodplain Mapping Program website
at www.ncfloodmaps.com, or contact the FEMA Map Service Center at 1- 800-358 -9616
for information on all related products associated with this FIRM. The FEMA Map Service
Center may also be reached by Fax at 1- 800 - 358 -9620 and its website at www.mse.fema.gov.
370242
7 500 FEET
°51'30"
3970 000 M
°51'00"
3969 000 M
° 50' 30 "
.own of Cary
;xtraterritorial
Jurisdiction
370238
0 000 FEET
=EET
orial Jurisdiction
MAP REPOSITORY
Refer to listing of Map Repositories on Map Index or visit www.ncfloodmaps.com.
EFFECTIVE DATE OF FLOOD INSURANCE RATE MAP PANEL
MAY 2, 2006
EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL
For community map revision history prior to statewide mapping, refer to the Community Map
History able located in the Flood Insurance Stud report for this jurisdiction.
rY Y P 1
To determine if flood insurance is available in this communi ty, contact your insurance agent, the
North Carolina Division of Emergency Management or the National Flood Insurance Program at the
following phone numbers or websites:
NC Division of Emergency Management National Flood Insurance Program
( 919) 715 -8000 www.nccrimecontrol.org /nfip 1- 800 - 638 -6620 www.fema.gov/nfip
FLOODWAY AREAS IN ZONE AE
The floodway is the channel of a stream plus any adjacent floodplain areas that must be
kept free of encroachment so that the 1% annual chance flood can be carried without
substantial increases in flood heights.
OTHER FLOOD AREAS
ZONE X Areas of 0.2 % annual chance flood; areas of future conditions 1% annual
chance flood; areas of 1% annual chance flood with average depths of less
than 1 foot or with drainage areas less than 1 square mile; and areas
protected by levees from 1% annual chance flood.
OTHER AREAS
ZONE X Areas determined to be outside the 0.2% annual chance and future
conditions 1 % annual chance floodplain.
ZONE D Areas in which flood hazards are undetermined, but possible.
COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS
OTHERWISE PROTECTED AREAS (OPAs)
CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.
1% annual chance floodplain boundary
0.2% annual chance floodplain boundary and future
conditions 1% annual chance floodplain boundary
Floodway boundary
- - Zone D Boundary
•••••••••••••••••••• CBRS and OPA boundary
Boundary dividing Special Flood Hazard Area Zones and
4 boundary dividing Special Flood Hazard Areas of different
Base Flood Elevations, flood depths or flood velocities.
513 Base Flood Elevation line and value; elevation in feet*
(EL 987) Base Flood Elevation value where uniform within zone;
elevation in feet*
*Referenced to the North American Vertical Datum of 1988
8 ' Cross section line
23 - - - - - - 23 Transect line
97 °07' 30 ", 32 °22' 30" Geographic coordinates referenced to the North American
Datum of 1983 (NAD 83)
4276000M 1000 -meter Universal Transverse Mercator grid ticks, zone 17
1 477 500 FEET 2500 foot grid values: North Carolina State Plane coordinate
system (FIPSZONE 3200, State Plane NAD 83 feet)
BM5510 North Carolina Geodetic Survey bench mark (see explanation
X in the Datum Information section of this FIRM panel).
BM5510 National Geodetic Survey bench mark (see explanation in
(9 the Datum Information section of this FIRM panel).
s M1.5 River Mile
Z&
GRID NORTE
MAP SCALE 1" = 500' (1 : 6,000)
250 0 500 1000
FEET
METERS
150 0 150 300
LEGEND
=EET
SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT TO
0 000 FEET
INUNDATION BY THE 1 % ANNUAL CHANCE FLOOD
The 1 % annual chance flood (100 year flood), also known as the base flood, is the flood
that has a 1 % chance of being equaled or exceeded in any given year. The Special
Flood Hazard Area is the area subject to flooding by the 1 % annual chance flood. Areas
of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base
®
Flood Elevation is the water - surface elevation of the 1% annual chance flood.
ZONE A No Base Flood Elevations determined.
3971 000 M
ZONE AE Base Flood Elevations determined.
ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood
Elevations determined.
ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain);
average depths determined. For areas of alluvial fan flooding, velocities
also determined.
ZONE AR Special Flood Hazard Area formerly protected from the 1% annual
®
chance flood by a flood control system that was subsequently
decertified. Zone AR indicates that the former flood control system is
being restored to provide protection from the 1% annual chance or
m
greater flood.
ZONE A99 Area to be protected from 1 % annual chance flood by a Federal
flood protection system under construction; no Base Flood Elevations
m
determined.
ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevations
determined.
7 500 FEET
°51'30"
3970 000 M
°51'00"
3969 000 M
° 50' 30 "
.own of Cary
;xtraterritorial
Jurisdiction
370238
0 000 FEET
=EET
orial Jurisdiction
MAP REPOSITORY
Refer to listing of Map Repositories on Map Index or visit www.ncfloodmaps.com.
EFFECTIVE DATE OF FLOOD INSURANCE RATE MAP PANEL
MAY 2, 2006
EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL
For community map revision history prior to statewide mapping, refer to the Community Map
History able located in the Flood Insurance Stud report for this jurisdiction.
rY Y P 1
To determine if flood insurance is available in this communi ty, contact your insurance agent, the
North Carolina Division of Emergency Management or the National Flood Insurance Program at the
following phone numbers or websites:
NC Division of Emergency Management National Flood Insurance Program
( 919) 715 -8000 www.nccrimecontrol.org /nfip 1- 800 - 638 -6620 www.fema.gov/nfip
FLOODWAY AREAS IN ZONE AE
The floodway is the channel of a stream plus any adjacent floodplain areas that must be
kept free of encroachment so that the 1% annual chance flood can be carried without
substantial increases in flood heights.
OTHER FLOOD AREAS
ZONE X Areas of 0.2 % annual chance flood; areas of future conditions 1% annual
chance flood; areas of 1% annual chance flood with average depths of less
than 1 foot or with drainage areas less than 1 square mile; and areas
protected by levees from 1% annual chance flood.
OTHER AREAS
ZONE X Areas determined to be outside the 0.2% annual chance and future
conditions 1 % annual chance floodplain.
ZONE D Areas in which flood hazards are undetermined, but possible.
COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS
OTHERWISE PROTECTED AREAS (OPAs)
CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.
1% annual chance floodplain boundary
0.2% annual chance floodplain boundary and future
conditions 1% annual chance floodplain boundary
Floodway boundary
- - Zone D Boundary
•••••••••••••••••••• CBRS and OPA boundary
Boundary dividing Special Flood Hazard Area Zones and
4 boundary dividing Special Flood Hazard Areas of different
Base Flood Elevations, flood depths or flood velocities.
513 Base Flood Elevation line and value; elevation in feet*
(EL 987) Base Flood Elevation value where uniform within zone;
elevation in feet*
*Referenced to the North American Vertical Datum of 1988
8 ' Cross section line
23 - - - - - - 23 Transect line
97 °07' 30 ", 32 °22' 30" Geographic coordinates referenced to the North American
Datum of 1983 (NAD 83)
4276000M 1000 -meter Universal Transverse Mercator grid ticks, zone 17
1 477 500 FEET 2500 foot grid values: North Carolina State Plane coordinate
system (FIPSZONE 3200, State Plane NAD 83 feet)
BM5510 North Carolina Geodetic Survey bench mark (see explanation
X in the Datum Information section of this FIRM panel).
BM5510 National Geodetic Survey bench mark (see explanation in
(9 the Datum Information section of this FIRM panel).
s M1.5 River Mile
Z&
GRID NORTE
MAP SCALE 1" = 500' (1 : 6,000)
250 0 500 1000
FEET
METERS
150 0 150 300
PANEL 0736)
FIRM
®
FLOOD INSURANCE RATE MAP
NORTH CAROLINA
®
m
m
PANEL 0736
(SEE LOCATOR DIAGRAM OR MAP INDEX FOR FIRM
PANEL LAYOUT)
CONTAINS:
COMMUNITY CID No. PANEL SUFFIX
®
CARY, TOWN OF 370238 0736 J
m cz
MORRISVILLE, TOWN OF 370242 0736 J
WAKE COUNTY 370368 0736 J
Notice to User: The Map Number shown below should be used
when placing map orders; the Community Number shown
above should be used on insurance applications for the subject
community.
®
EFFECTIVE DATE MAP NUMBER
MAY 2, 2006 37200736001
C:D
„s STAlE n �yPdt
0' O
�• b
V F S,
g
®
State of North Carolina
�L
777
Federal Emergency Management Agency
PRECIPITATION DATA
PARKSIDE TOWN COMMONS
KRG -12000
Precipitation Frequency Data Server
Pagel of 4
NOAA Atlas 14, Volume 2, Version 3
Y Location name: Cary, North Carolina, US*
Coordinates: 35.8452, - 78.8885
Elevation: 307ft'
"source: Google Maps p
POINT PRECIPITATION FREQUENCY ESTIMATES
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley
NOAH, National Weather Service, Silver Spring, Maryland
PF tabular I PF graphical I Maps & aerials
PF tabular
PDS -based point precipitation frequency estimates with 90% confidence intervals (in inches)'
Average recurrence interval(years)
Duration
1 2
00��-00�0�
5
10
25
50
100
200
500
1000
0.400 0.468
0.537
0.595
0.655
0.698
0.737
0.769
0.803
0.831
5 -min
(0.367 - 0.436) (0.429 - 0.511)
(0.493 - 0.585)
(0.545 - 0.648)
(0.597- 0.713)
(0.634- 0.760)
(0.665- 0.801)
(0.690 - 0.837)
(0.716 - 0.876)
(0.734 - 0.907)
0.638 0.748
0.860
0.952
1.04
1.11
-1-1-7177-22--IF-T-27
1.31
10 -min
(0.585- 0.696) (0.686 - 0.817)
(0.789 - 0.937)
(0.872 -1.04)
(0.952 -1.14)
(1.01 -1.21)
(1.06 -1.27)
(1.09 -1.33)
(1.13 -1.39 )
( 1.16 -1.43 )
0.798 0.941
1.09
1.20
1.32
1.41
1.48
1.54
1.60
1.64
15 -min
1(0.732-0.870)1(0.863-1.03)
(0.998 -1.19)
(1.10 -1.31)
(1.21 -1.44)
(1.28 -1.53)
(1.34 -1.61)
(1.38 -1.68 )
( 1.43 -1.74)
1 (1.45 -1.79)
1.09 1.30
1.55
-17-5-T--1-9-6--1F-2-.1
2
2.27
2.39
2.55
2.66
30 -min
(1.00 -1.19) (1.19 -1.42)
(1.42 -1.69)
(1.60 -1.90)
(1.79 -2.13)
(1.93 -2.31)
(2.05 -2.47)
(2.15 -2.61 )
( 2.27 -2.77)
1 (2.35 -2.90 )
1.36 -1.-63-T-
1.98
2.27
2.61
2.87
3.12
3.36
3.65
3.88
60 -min
.63
(1.25 -1.49) (1.50 -1.78)
(1.82 -2.16)
(2.08 -2.48)
(2.38 -2.84)
(2.61 -3.13)
(2.82 -3.40)
(3.02 -3.66)
(3.25 -3.98 )
( 3.43 -4.24 )
1.59 1.91
2.34
2.70
3.15
3.51
3.85
4.19
4.62
4.97
2 -hr
(1.45 -1.75) (1.74 -2.09)
(2.13 -2.57)
(2.46 -2.96)
(2.84 -3.44)
(3.16 -3.84)
(3.44 -4.21)
(3.72 -4.58)
(4.07 -5.06 )
( 4.34 -5.45 )
F-1-6-9---]F--2-02
2.49
2.90
3.41
383 IF-4-
4.25
4.67
5.23
5.70
3 -hr
(1.55 -1.85) 1 (1.86 -2.22)
1 (2.28 -2.74)
1 (2.64 -3.18)
1 (3.09 -3.73)
1 (3.45 -4.19)
1 (3.80 -4.64)
1 (4.15 -5.10)
1 (4.59 -5.72)
1 (4.95 -6.24)
2.04 2.44
3.01
3.50
4.14
4.67
5.20
5.75
6.48
7.10
6 -hr
(1.88 -2.23) (2.25 -2.67)
(2.76 -3.29)
(3.21 -3.82)
(3.77 -4.50)
(4.22 -5.07)
(4.67 -5.64)
(5.11 -6.23 )
( 5.68 -7.02 )
( 6.15 -7.71)
2.41 2.89
3.58
4.19
4.99
5.67
6.36
7.09
8.08
8.93
12 -hr
(2.23 -2.63) 1 (2.67 -3.15)
1 (3.30 -3.90)
1 (3.85 -4.56)
1 (4.55 -5.41)
1 (5.13 -6.12)
1 (5.69 -6.86)
1 (6.27 -7.63)
1 (7.03 -8.69)
1 (7.65 -9.62)
2.86 3.45
4.32
4.99
5.90
6.63
7.36
8.11
9.13
9.92
24 -hr
(2.68 -3.07) (3.24 -3.70)
(4.04 -4.62)
(4.66 -5.34)
(5.50 -6.32)
(6.15 -7.09)
(6.81 -7.89)
(7.49 -8.70 )
(8.39-9.81)
)
( 9.09 -10.7 )
131 3.98
4.93
5.67
6.66
7.44
8.22
9.02
10.1
10.9
2 -day
(3.08-3,55) (3.72 -4.27)
(4.60 -5.30)
(5.28 -6.08)
(6.18 -7.15)
(6.89 -7.98)
(7.59 -8.84)
1 (8.30 -9.70)
1 (9.26 -10.9)
(9.99 -11.8 )
3.49 4.19
5.17
5.94
6.97
7.78
8.61
9.44
10.6
11
3 -day
(3.2 6 -3.74) (3.92 -4.50)
(4.83 -5.55)
(5.54 -6.37)
(6.48 -7.48)
(7.22 -8.35)
(7.95 -9.24)
(8.70 -10.2)
(9.70 -11.4 )
.5 (10.5 -12.4)
3.68 4.40
5.42
6.21
7.29
8.13
8.99
9.87
11.1
12.0
4 -day
(144 -3.94) 1 (4.12 -4.72)
1 (5.07 -5.80)
1 (5.80 -6.65)
1 (6.78 -7.81)
1 (7.55 -8.72)
1 (8.32 -9.65)
1 (9.10 -10.6)
t (10.1 -11.9)
1 (11.0 -12.9 )
4.24 5.06
6.14
7.00
8.17
9.09
10.0
11.0
12.3
13
3.12.2
7 -day
(3.99 -4.53) (4.75 -5.40)
(5.77 -6.56)
(6.57 -7.47)
(7.64 -8.71)
(8.47 -9.70)
(9.32 -10.7)
(10.2 -11.8)
(11.3 -13.2 )
( -14.3 )
4.83 5.74
6.89
7.79
9.00
9.95
10.9
11.9
13.2
14.2
10 -day
(4.55 -5.15) 1 (5.40 -6.12)
1 (6.47 -7.34)
1 (7.31 -8.30)
1 (8.42 -9.59)
1 (9.29 -10.6)
1 (10.2 -11.7)
1 (11.0 -12.7)
1 (12.2 -14.1)
1 (13.1 -15.2)
6.44 7.59
896
101
11.5
12.7 1F--13-9---IF-15
20 -day
(6.06 -6.86) 1 (7.15 -8.09)
1 (8.43 -9.54)
1 (9.43 -10.7)
1 (11.8 -13.5)
1 (12.9 -14.8)
.-1-1F--1-67--T--17-9---j
1 (13.9 -16.1)
1 (15.4 -17.8)
1 (16.4 -19.2)
7.98 9-39---]F-10-9---
39
109
12.1
13.6
14.8
16.0
17.2
18.8
19.9
30 -day
(7.54 -8.49) (8.85 -9.97)
(10.3 -11.6)
(11.4 -12.8)
(12.8 -14.5)
(13.9 -15.8)
(15.0 -17.1)
(16.0 -18.3)
(17.4 -20.1 )
( 18.5 -21.4 )
10.2 11.9
13.7
15.0
16.7
18.0 ]
F--19-.3-7F--20-6-]F-22-3--]F-2-3.5-7
45 -day
(9.69 -10.8) 1 (11.3 -12.6)
1 (13.0 -14.4)
1 (14.2 -15.8)
1 (15.8 -17.6)
1 (17.0 -19.1)
1 (18.2 -20.4)
1 (19.4 -21.8)
1 (20.8 -23.6)
1 (22.0 -25.0 )
12.2 14.3
16.1
17.5
19.3
20.7
22.0
23.3
24.9
26.1
60 -day
(11.7 -12.9) (13.6 -15.0)
(15.3 -16.9)
(16.6 -18.4)
(18.3 -20.3)
(19.6 -21.8)
(20.8 -23.2)
(21.9 -24.6)
(23.4 -26.3 )
( 24.5 -27.7 )
Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given
duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5 %. Estimates at upper bounds are not checked against
probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
Please refer to NOAA Atlas 14 document for more information.
Back to Top
http: // hdsc. nws. noaa. gov /hdsc /pfds /pfds _printpage.html ?lat =3 5.8452 &lon =- 78.8885 &data =... 5/1/2012
Precipitation Frequency Data Server
PF graphical
PDS -based depth-duration-frequency (DDF) curves
Coordinates: 35.8452.-78.8885
30
25
c
a 20
a
'a
0 15
ro
.Q
z 10
a
60
1
25
= 20
C
CL
a
c 15
0
10
r..
aL
5
0 1 2 5 10 25 50 100 200 500 1000
Average recurrence interval (years)
NDAAINW51OHD{HDSC Create! {GMT): Tue May 1 19:56:56 2012
Back to Top
w Maps & aerials
Page 2 of 4
Average recurrence
interval
(y-ears)
— 1
2
5
10
— 25
50
100
— 200
— 500
— 1000
Duration
-- 5-min
— 2-day
— 10-min
— 3-day
15-min
— 4-day
— 30-min
— 7-day
— 60-min
— 10-de
— 2-hr
— 20-da
— 3-hr
— 30-da
— 6-hr
— 45-di
— 12-hr
— 60-dF
Its Otn
O O
Dale City Waldorf
ri
N
r, ,
r ,
4
.d
IO
ton
N m
-0 %a
Ulratran
ow'
25
= 20
C
CL
a
c 15
0
10
r..
aL
5
0 1 2 5 10 25 50 100 200 500 1000
Average recurrence interval (years)
NDAAINW51OHD{HDSC Create! {GMT): Tue May 1 19:56:56 2012
Back to Top
w Maps & aerials
Page 2 of 4
Average recurrence
interval
(y-ears)
— 1
2
5
10
— 25
50
100
— 200
— 500
— 1000
Duration
-- 5-min
— 2-day
— 10-min
— 3-day
15-min
— 4-day
— 30-min
— 7-day
— 60-min
— 10-de
— 2-hr
— 20-da
— 3-hr
— 30-da
— 6-hr
— 45-di
— 12-hr
— 60-dF
— 24-br
O O
Dale City Waldorf
http: / /hdsc.nws.noaa.gov /hdsc /pfds /pfds _printpage.html ?lat =3 5.8452 &lon =- 78.8885 &data =... 5/1/2012
AA�
Small scale
terrain
"C o
7
'Anim le
r 4- r
O O
Dale City Waldorf
+
+
ton
ow'
(.a Foft"
e>OWiK �
r AhO"V
:eensboro
'AR Di
-�..
Hoot Valley
http: / /hdsc.nws.noaa.gov /hdsc /pfds /pfds _printpage.html ?lat =3 5.8452 &lon =- 78.8885 &data =... 5/1/2012
Precipitation Frequency Data Server
MtAiqy=�, -- v v —j-
46M� �=Ml_ 0ECkn Rap&
Kingspl:irl I . - Aw 4 Elzawh
Heodemn
OReHds, le
I
S,Q.ovn Ahask C.gy
M'WWnstW alem
-Greensboro K)
DeW,
0
Rocky MI
Mir QnYNt His
High Point 0
Z' '" is'" - S Head
Knoxville R
Our tnivl
;wtfli 01
D
0
inta -Athens,
12km
12mi
F �Ole lice _' 0
0 Le-and'
Loris Myrlle
Oak Isla * .d (',"e
Myrtle, 0 D
A—rh 0" R.er
"W'On Rh
C"
Mornsvii
Carpen-x.,
Map data V2012 Goggle
Large scale map
pa eid Audubon
Park
SS it
.COV
40 (;rove
j r �i�
RkNellod MccnMmori
Faar* At The Path
> > Carpenter 4-
2
21,+ + 1 moo d Ella Q2012 Bogle
9 lale aerial
WAMW wo V
Page 3 of 4
http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=3 5.8452&lon=-78.8 8 85 &data=... 5/1/2012
umb!a
South
on
Carolina
en
Cc
n ✓fange
Macon
0
_4
,anr.ah c
12km
12mi
F �Ole lice _' 0
0 Le-and'
Loris Myrlle
Oak Isla * .d (',"e
Myrtle, 0 D
A—rh 0" R.er
"W'On Rh
C"
Mornsvii
Carpen-x.,
Map data V2012 Goggle
Large scale map
pa eid Audubon
Park
SS it
.COV
40 (;rove
j r �i�
RkNellod MccnMmori
Faar* At The Path
> > Carpenter 4-
2
21,+ + 1 moo d Ella Q2012 Bogle
9 lale aerial
WAMW wo V
Page 3 of 4
http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=3 5.8452&lon=-78.8 8 85 &data=... 5/1/2012
Precipitation Frequency Data Server Page 4 of 4
http : / /hdsc.nws.noaa.gov /hdsc /pfds /pfds _printpage.html ?lat = 35.8452 &lon =- 78.8885 &data =... 5/l/2012
Precipitation Frequency Data Server
Page 1 of 4
(D NOAA Atlas 14, Volume 2, Version 3
Location name: Cary, North Carolina, US*
Coordinates: 35.8452, -78.8885 i
Elevation:307ft* � f
source: Google Maps
POINT PRECIPITATION FREQUENCY ESTIMATES
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley
NOAA, National Weather Service, Silver Spring, Maryland
PF tabular I PF graphical I Maps & aerials
PF tabular
AMS -based point precipitation frequency estimates with 90% confidence intervals (in inches)1
Dur��0��0I
Annual exceedance probability(1 /years)
1 /10
1 /25
1 /50
1 /100
1 /200
F 1/2
1 /500
1 /1000
0.430 0.524
0.589
0.652
0.695
0.734
0.765
0.799
0.827
5 -min
(0.395 - 0.470) (0.481 - 0.571)
(0.539 - 0.641)
(0.594 - 0.710)
(0.631 - 0.756)
(0.662 - 0.797)
(0.687- 0.833)
(0.713 - 0.872)
(0.731 - 0.903)
0.688 0.-84o--T--o942-7F---1-04
1.11
1.17
1.21
1.-27---]F-1-3-0
10 min
.
.
1(0.631-0.752)1(0.771-0.915)1(0.863-1.03)
(0.948 -1.13)
1 (1.01 -1.21)
1 (1.05 -1.27)
1 (1.09 -1.32)
1 (1.13 -1.38)
1 (1.15 -1.42)
0.866 1.06
1.19
1.32
1.40
1.47
1.53
1.59
1.64
15 -min
1(0.794-0.945)1(0.975-1.16)
(1.09 -1.30)
(1.20 -1.43)
(1.27 -1.53)
(1.33 -1.60)
(1.38 -1.67)
(1.42 -1.74 )
( 1.45 -1.78 )
1.20 1.51
1.73
1.95
2.11
2.26
2.38
2.53
2.65
30 -min
(1.10 -1.31) 1 (1.39 -1.65)
1 (1.58 -1.88)
1 (1.78 -2.13)
1 (1.92 -2.30)
1 (2.04 -2.46)
1 (2.14 -2.60)
(2.26 -2.76)
1 (2.34 -2.89 )
1.50 1.94
2.25
2.60
2.86
3.11
3.34
3.64
3.87
60 -min
(1.38 -1.64) (1.78 -2.11)
1 (2.06 -2.45)
(2.37 -2.83)
(2.60 -3.11)
1 (2.81 -3.38)
1 (3.00 -3.64)
(3.24 -3.96)
(3.42 -4.22)
1.75 --2-29---IF--2-
29
2.68
3.13
3.49
3.83
4.17
4.61
4.95
2 -hr
(1.60 -1.92) (2.09 -2.51)
1 (2.43 -2.93)
(2.83 -3.43)
(3.14 -3.82)
(3.43 -4.19)
(3.71 -4.56)
1 (4.05 -5.03 )
( 4.33 -5.43 )
1.86 2.44
2.87
3.39
3.82
4.23
4.65
5.21
5.67
3 -hr
(1.71 -2.05) (2.23 -2.67)
1 (2.62 -3.14)
1 (3.07 -3.71)
(3.44 -4.17)
(3.78 -4.62)
(4.13 -5.08)
(4.58 -5.69)
1 (4.93 -6.21 )
2.25 2.94
3.47
4.12
4.65
5.18
5.72
6.45
7.07
6 -hr
(2.07 -2.46) 1 (2.70 -3.21)
1 (3.18 -3.78)
(3.75 -4.48)
(4.21 -5.05)
(4.65 -5.62)
(5.09 -6.21)
1 (5.66 -7.00)
1 (6.12 -7.68)
2.66 3.50
4.15
4.97
5.65
-----T-706
8.04
8.89
12 -hr
(2.46 -2.90) 1 (3.22 -3.81)
1 (3.81 -4.51)
(4.53 -5.38)
(5.11 -6.10)
(5.67 -6.83)
(6.24 -7.60)
(7.00 -8.66)
(7.62 -9.58)
3.18 4.22
--]F
5.88
6.60
7.33
8.07
9.09
9.88
24 -hr
(2.98 -3.41) (3.95 -4.52)
(4.62 -5.29)
(5.47 -6.30)
(6.13 -7.06)
(6.79 -7.85)
(7.46 -8.67 )
( 8.36 -9.77 )
( 9.05 -10.6 )
3.66 4.82
5.62
6.63
7.41
8.19
8.98
10.9
2 -day
(3.42 -3.93) 1 (4.50 -5.18)
(5.23 -6.02)
(6.16 -7.12)
(6.86 -7.95)
(7.56 -8.80)
(8.27 -9.66)
(9.22 -10.8)
(9.95 -11.7 )
3.86 5.06
5.88
6.94
7.75
8.57
9.41
10.5
11.4
3 -day
(3.61 -4.14) (4.72 -5.42)
(5.49 -6.30)
(6.45 -7.45)
(7.19 -8.31)
(7.92 -9.21)
(8.66 -10.1)
(9.66 -11.3)
(10.4 -12.3)
4.06 5.29
6.15
7.26
8.10
8.96
9.83
11.0
11.9
4 -day
(3.80 -4.34) (4.95 -5.66)
(5.74 -6.58)
(6.75 -7.77)
(7.52 -8.68)
(8.28 -9.61)
(9.06 -10.6)
(10.1 -11.9)
(10.9 -12.9 )
4.66 6.01
6.93
8.13
9.05
9.99
10.9
12.2
13.2
7 -day
(4.38-4.97) 1 (5.64 -6.41)
(6.50 -7.40)
(7.61 -8.68)
(8.44-966)
(928-107)
(10.1 -11.7)
(11.3 -13.1)
(12.1 -14.2 )
5.28 6.73
7.71
8.96
9.91
10.9
11.8
13.1
14.1
10 -day
(4.97 -5.63) (6.32 -7.17)
(7.23 -8.21)
(8.39 -9.55)
(9.25 -10.6)
(10.1 -11.6)
(11.0 -12.7)
(12.1 -14.1)
(13.0 -15.2 )
6.99 8.76
9.95
11.5
12.6
13.8
15.0
16.6
17.8
20 -day
(6.58 -7.44) (8.24 -9.33)
(9.34 -10.6)
(10.7 -12.2)
(11.8 -115)
(12.8 -14.7)
(13.9 -16.0)
(15.3 -17.8)
(16.4 -19.1)
8.65 10.7 IF-1-2.6-71-36
14.8
15.9
17.1
18.7
19.9
30 -da y
.
(8.15 -9.18) 1 (10.0 -11.3)
(11.2 -12.7)
(12.7 -14.4)
(13.8 -15.7)
(14.9 -17.0)
(16.0 -18.3)
(17.3 -20.0)
(18.4 -21.3)
11.0 13.3
14.8
16.7
18.0
19.2
20.5
22.2
23.4
45 -day
(10.4-11.6) (12.7 -14.1)
(14.1 -15.7)
(15.8 -17.6)
(17.0 -19.0)
(18.1 -20.4)
1 (19.3 -21.7)
(20.8 -23.5)
(21.9 -24.9)
13.1 15.7
17.3
19.2
20.6
21.9
23.2
24.8
26.0
60 -day
(12 5 13.8) (15.0 -16.5)
(16.5 -18.2)
(18.2 -20.3)
(19.5 -21.7)
(20.7 -23.1)
(21.9 -24.5 )
( 23.3 -26.2 )
( 24.4 -27.5 )
Precipitation frequency (PF) estimates in this table are based on frequency analysis of annual maxima series (AMS).
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency
estimates (for a given duration and annual exceedance probability) will be greater than the upper bound (or less than the lower bound) is 5 %. Estimates
at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
Please refer to NOAA Atlas 14 document for more information.
Back to Tor)
http: / /hdsc,nws.noaa.gov/ hdsc /pfds /pfds _printpagc.html ?lat = 35.8452 &lon =- 78.8885 &data =... 5/1/2012
Precipitation Frequency Data Server
OW-14l
25
c
L 20
CL
'tz
� 15
0
�u 10
PF graphical
AMS- based depth- duration - frequency (DDF) curves
Coordinates: 35.8452, 78.8885
30
25
C
� 24
n.
w
9 15
EL
m
10
ra.
5
9, 0 Pgo a—. 0 low 0 0
() I —o -- -- 11- - -. r--- -- t I -- - -_r_. -.. -.. 1
1,12 115 11+10 1/25 1/50 1/100 1/200 V500 1/1000
Annual exceedance probability (1 /years)
NRAA.°NW5 /QHDIHD5C Created {GMTy Tue May 1 20:04:55 2012
Back to Top
*► Maps & aerials
Small scale terrain y,
+ +
Page 2 of 4
Annual exo
probab
(1/yea
2
-- 5
.� 2:
— 5
— t
— 2!
-- 5
Durati
5-min
— 10-min
15-mm
-- 30-min
-- 60-mm
2-hr
3-hr
6-hr
12-hr
-- 24-hr
http: / /hdse.nws.noaa.gov/ hdsc /pfds /pfds _printpage.html ?lat = 35.8452 &lon =- 78.8885 &data =... 5/1/2012
t v t� L7 N
r-4
N N
m h
n
Duration
30
25
C
� 24
n.
w
9 15
EL
m
10
ra.
5
9, 0 Pgo a—. 0 low 0 0
() I —o -- -- 11- - -. r--- -- t I -- - -_r_. -.. -.. 1
1,12 115 11+10 1/25 1/50 1/100 1/200 V500 1/1000
Annual exceedance probability (1 /years)
NRAA.°NW5 /QHDIHD5C Created {GMTy Tue May 1 20:04:55 2012
Back to Top
*► Maps & aerials
Small scale terrain y,
+ +
Page 2 of 4
Annual exo
probab
(1/yea
2
-- 5
.� 2:
— 5
— t
— 2!
-- 5
Durati
5-min
— 10-min
15-mm
-- 30-min
-- 60-mm
2-hr
3-hr
6-hr
12-hr
-- 24-hr
http: / /hdse.nws.noaa.gov/ hdsc /pfds /pfds _printpage.html ?lat = 35.8452 &lon =- 78.8885 &data =... 5/1/2012
Precipitation Frequency Data Server Page 3 of 4
Iji A:l-y
Eden Henderson F!'7abeth
ORe dwile A,osk.e C-ly
Li FoRelle 0 Q 0 Q sown j, Oxfc-td Kill Devil
Greensboro f-d"
G,ee Winston-SalemO ,
Knoxville 0 Rocky Mt
0 r-011
High Point 0 'shape( Hill 0 0
:L.�Ieigh Nags Head
Seviefv,'e 0 1 saftsbilly N o r t h 0
0 I'VISon
H, r 0 0
kory Carolina AP IX
two - Hunlersvige Greenville
wsynes% 0 0 Concord Santora 0
Gastonia C-rin Goldsboro
KmSton
Charlotte Fayette•iiie
Inbu 0 rg 0 Ne. Berra
on_
Gr 0 Montoe
Rock Hill Jacksonville
U 0,
1
PneyG,eer, Morehead
GatY
lewille
ainesville 0 F forenoe mbrn.wigt.
0 Tabor C "'Y L-'and
0
iwell .oiurnbla OLor;s M.
0 S o u t h Oak Isla 0 mg-w I m C, Gtove
Inta Athens C a r o I i n a yrile .
Pwor
Redan
J11cDonough Wen
a
Clegg
Macon 56
0
On Va4ey 0 Georgia
I peirry
pmkp�i* Ewman
m eful
' 4k"RF aniezurril
Me,Dws
dannah C
Morrisvill
Carpenter
2 k
2 mi Map data 02012 Google
Lame scale map
"30 Audu,')On
4 Park
HOW"' qft
t 4
C"O
1 `Noll Grove
A Ridgefield @) MeViMMM
Famm At The Pwk
A
I V > — "y > Cwwter
C
+
+
Map date 02012 GoogJe!
-7
L [ale aerial
http://hdsc.nws.noaa. gov/hdsc/Pfds/pfds_printpage.html?lat=3 5.8452&lon=-7 8.8 8 8 5 &data--... 5/1/2012
Precipitation Frequency Data Server Page 4 of 4
'
http : / /hdsc.nws.noaa.gov /hdsc/ pfds/ pfds_printpage.html?lat= 35.8452&lon =- 78.8885 &data =... 5/l/2012
Center Weighted Storm Computation - Based on NOAA Atlas 14 Results
Copy input data from NOAA Atlas 14:
1) Have NOAA Atlas 14 results in Internet Explorer Window
2) Copy from ARI of one year to 1000 year, 60 day precipitation value. Do not include column headings, "1" will be in upper left of selection, 1000 -yr; 60 -day result in lower right of selection.
3) Paste with starting point at ARI of 1 year (first cell in the ARI column, cell Al2). Cannot paste special to preserve format, fonnat is via macro in next step
4) Place cursor on ARI of 1 year (cell Al2), and press CTRL +f for format - make sure that Al2 is the only cell selected before running the format macro.
5) Copy results of output data (below rainfall input) into PondPack
AR1
(years)
5
min
10
min
15
min
30
min
60
min
120
min
3
hours
6
hours
12
hours
24
hours
48
hours
4
days
7
days
10
days
20
days
30
days
45
days
60
days
1
0.4
0.638
0.798
1.09
1.36
1.59
1.69
2.04
2.41
2.86
3.31
3.68
4.24
4.83
6.44
7.98
10.2
12.2
2
0.468
0.748
0.941
1.3
1.63
1.91
2.02
2.44
2.89
3.45
3.98
4.4
5.06
5.74
7.59
9.39
11.9
14.3
5
0.537
0.86
1.09
1.55
1.98
2.34
2.49
3.01
3.58
4.32
4.93
5.42
6.14
6.89
8.96
10.9
13.7
16.1
10
0.595
0.952
1.2
1.75
2.27
2.7
2.9
3.5
4.19
4.99
5.67
6.21
7
7.79
10.1
12.1
15
17.5
25
0.652
1.04
1.32
1.95
2.6
3.13
3.39
4.12
4.97
5.88
6.63
7.26
8.13
8.96
11.5
13.6
16.7
19.2
50
0.695
1.11
1.4
2.11
2.86
3.49
3.82
4.65
5.65
6.6
7.41
8.1
9.05
9.91
12.6
14.8
18
20.6
100
0.734
1.17
1.47
2.26
3.11
3.83
4.23
5.18
6.34
7.33
8.19
8.96
9.99
10.9
13.8
15.9
19.2
21.9
200
0.765
1.21
1.53
2.38
3.34
4.17
4.65
5.72
7.06
8.07
8.98
9.83
10.9
11.8
15
17.1
20.5
23.2
500
0.799
1.27
1.59
2.53
3.64
4.61
5.21
6.45
8.04
9.09
10.1
11
12.2
13.1
16.6
18.7
22.2
24.8
1000
0.827
1.3
1.64
2.65
3.87
4.95
5.67
7.07
8.89
9.88
10.9
11.9
13.2
14.1
17.8
19.9
23.4
26
Output Data to Export to PondPack, 5 minute intervals
Time Time 1 year 2 year 5 year 10 year 25 year 50 year 100 year 500 year
(min) (hours) (min) (min) (min) (min) (min) (min) (min) (min)
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.083 0.003 0.004 0.005 0.006 0.006 0.007 0.007 0.007
10 0.167 0.006 0.008 0.010 0.011 0.013 0.013 0.014 0.015
15 0.250 0.009 0.012 0.015 0.017 0.019 0.020 0.021 0.022
20 0.333 0.013 0.016 0.021 0.022 0.025 0.026 0.027 0.029
25 0.417 0.016 0.019 0.026 0.028 0.032 0.033 0.034 0.036
30 0.500 0.019 0.023 0.031 0.033 0.038 0.040 0.041 0.044
35 0.583 0.022 0.027 0.036 0.039 0.044 0.046 0.048 0.051
40 0.667 0.025 0.031 0.041 0.044 0.051 0.053 0.055 0.058
45 0.750 0.028 0.035 0.046 0.050 0.057 0.059 0.062 0.066
50 0.833 0.031 0.039 0.051 0.056 0.063 0.066 0.069 0.073
55 0.917 0.034 0.043 0.057 0.061 0.070 0.073 0.076 0.080
60 1.000 0.038 0.047 0.062 0.067 0.076 0.079 0.082 0.087
65 1.083 0.041 0.051 0.067 0.072 0.082 0.086 0.089 0.095
70 1.167 0.044 0.054 0.072 0.078 0.088 0.092 0.096 0.102
75 1.250 0.047 0.058 0.077 0.083 0.095 0.099 0.103 0.109
80 1.333 0.050 0.062 0.082 0.089 0.101 0.106 0.110 0.117
85 1.417 0.053 0.066 0.087 0.094 0.107 0.112 0.117 0.124
90 1.500 0.056 0.070 0.093 0.100 0.114 0.119 0.124 0.131
95 1.583 0.059 0.074 0.098 0.106 0.120 0.125 0.131 0.139
3
100 1.667 0.063 0.078 0.103 0.111 0.126 0.132 0.138 0.146
105 1.750 0.066 0.082 0.108 0.117 0.133 0.139 0.144 0.153
110 1.833 0.069 0.086 0.113 0.122 0.139 0.145 0.151 0.160
115 1.917 0.072 0.089 0.118 0.128 0.145 0.152 0.158 0.168
120 2.000 0.075 0.093 0.123 0.133 0.152 0.158 0.165 0.175
125 2.083 0.078 0.097 0.128 0.139 0.158 0.165 0.172 0.182
Depth (inches)
10.000
9.000
8.000
7.000
6.000
5.000
4.000
3.000
2.000
1.000
0.000
Cumulative Rainfall Distribution
-�- 1 year storm
-11-2 year stone
5 year storm
-x-10 year storm
year storm
-x-50 year storm
- 4--100 year storm
-500 ear storm
0.000 4.000 8.000 12.000 16.000 20.000 24.000
Time (Hours)
Output Data to Export to PondPack,5 minute intervals
Time Time I year 2 year 5 year 10 year 25 year 50 year 100 year 500 year
(ruin) (hours) (min) (min) (min) (min) (min) (min) (min) (min)
2.167 0,081 0.101 0 1.3-4- 0 1-441 0'..164 01.1172 0 179 0 190
2,250. -0.1084-1 1-0.110-51 0.139 0.150 0-17,11, 0.178 0:186 0.197
140 2333 0088 0.109 0.144
0.177 0.195 0.193 0.204
145 2A 17 0.091 0.113 0.149 0.161 0.183 0.191 0199 0.211
150 2500 0094 0.1 1 7 0.154 0.167 0 1 90
0.198 0.206 0.219
2.583 0.097 0.121 0.159 0.172 0.196 0205 0.213 0.226
160 2.667 0.100 0�124 0.164 0.178 0.202 0.211 0:220 0.233
165 Z 750 -0-J03 0.128 0.170 0.183 0.209 0.218 0.227 0.241
170 1833 0,106 0.132 0.175 0.189
...... 0.224 _0.234 0.248
2.9-1-7 O�1019.-.1--l-0.1.1-3-6- 0.180 0.194 0.221 0.231 0.241 0.255
----------
130 3.000 0�113 0.140 0.185 0.200 0.228 0.237 0,247
------ __O.262
185 3.083 0.116 0.144 0.190 0.206 0.234 0.244 0.254
--------------- 0.270
190 3.1167 .0.119 01�114-8-.--., 0.195 0 211 .0.240 0.251 0.261 0.277
195 3.250 0.122 0.152 0.200 0.217 0.246 0.257 0.268 0.284
3.1333. 0125 0156 01.20,6 0.222 0.253 0.264 0.275 0292
205 x.417 0 128 0 159 0-21.11-11110.228 0:2591 0.2.701 0.282 0.299
210 3.500 0.131 0.163 0.216 0.233
0.265 0.277 0.289 0.306
215 3.583 0.134 0.167 0.221 0,239 0.272 0.284 0.296 0.314
3.667 01-11-13-811, -0,11-71111--,0:226 0.244 0.2718 0,2910 0.303 0.321
22-51 3.1750 10.14.11 0A715 0.231 0.284 0.1309 0328
230 3.833 0.144 0.179 0.236 0.256 0,291 0.303 0.316 0.335
235 3.917 0.147 0,183 0242 0.261 0.297
............ --- 0.310 0.323 0.343
240 4.000 0.-150 0:187 0.247 0.267 0.303 0.317 0.330 0.350
245 4.083 0.153 0.191 0.252 0.272 0.310 0.323 0.337 0.357
-25'0'-'- 4,16-7- -0-.-156 --0-.194,-, 0�2'-7 -0,.2,--7-8-- 0.3--1-6
0.330 0.344 0.365
.......... .........
255 4.250 0,159 0.198 0:262 0.283 0.322 0.336 0.351 0.372
----------
-4.313.31 01-.1.63 0,202_ 0.267 0.289 0.329 0.343 0.358 0.379
265 4 417 0-.-1-6-6- ..-0..2.06- 0.272 -0.294 033511.110.350 0.364 0.386
4.500 0.169 0.210 0.278 0.300 0.341 0.356 0.371 0.394
-0.172 0`2111-4, 0,28.3-1-1.1-0.30.161--.--0.3481- 0.363 0.373 .0.401
.-4.1667 0.175 0.218, -0-288- 0.3111111 0.354 0.3.85- 0A.0-81
285 4.750 0.178 0.222 0.293 0:317 0.360 0.376 0.392
2 4.533 O�'S 0.226 0.298 0.322 0.367 0.333 039 0.423
1-11-11 , - , __ 1-- 11 .1-1- --11-11-11 -1-1-1--l-, -.11, 1 1"..,-I- .-..9 A---"
295 4. 17 0.184 0.229 0.303 0.328 0.373 0.399 0.406 0.430
300 5 coo 0.188 0.23 3 0.308 0.3 3 3 0.379 0.396 0.413
0.437
5.083 0)91 0.237 0.313 0.339 0.385 0.402 0.419 0.445
31.0 5167 0.194 0.241 0.344 0.409 9.426 0,452
315 5.250 0.197 0.245 0.324 0.350 0.398 0.416 0.433 0.459
320 5.333 0.200 0.249 0.329 0.356 0.404 0.422 0.440 0.467
325 5,417 0.203 0.253 0.334 0.361 0,411 0.429 0.4
-- -,-------- 47 0.474
330 5.500 0.206 0,257 0.339 0.367 0:417 0.435, 0.454 0.481
335 5.583 0.209 0.261 0.344 0.372 0.423 0.442 0.461 0.489
340 5667 0:213 0.264 0.349 0.378 0.430 0449 0.468 0.496
- .-.-.......... ----------
345 5.750 0.216 0.268 0.355 0,383 0.436 0.455 0,474 0 503
350 5.833 0.219 0.272 0,360 0.389 0.442 0.462 0.481 0.510
5.91-7 0.222 0,365 0.394 0.449 0-468 0.488 0.518
6.000 0.225 0,280 0.370 0.400 0.455 0.475 0.495 0.525
36-51 6.019.3- .01,230, 0.286 10.317-81 0.410 0.4617, 0.48119 0.511 0.547
370 6.167 _0.235 0.293 0.386 0.419 0.479 0,503 0,527 0.569
Output Data to Export to PondPaek,5 minute intervals
Time Time 1 year 2 year 5 year 10 year 25 year 50 year 100 year 500 year
(min) (hours) (min) (min) (min) (min) (min) (min) (min),.
375 6.250 0.240 0 299 0.394 0.429 0.490 0.517 0.543 0,591
380 61,333-111-111 0 246 -----0...-3,05- 0.402 0.433 0.502 0.531 0.559 0.613
385 6.417 0.251 0.311 0.410 0.448 0.514 0.544 0.576 0.635
390 6.500 0:256 0.318 0.418 0.458 0.526 0.558 0.592 0.658
395 6 583 0 261 0 X24 0.425
--.0-.467-- 0.538 0.572 0.608 0.630
400 6.667 0,266 0.330 0.433 0.477 0.549 0.586 0.624 0.702
405
6-.71501. 0 271 0 336 0.441 0.486 0.561 0.600 0.640 0.724
410 6.833 0.276 0.343 0.449 0.496 0.573 0.614 0.656 0.746
415 6 917 0 232 0 349 0 457 0.505 0.585 0.628 0.672 0.768
._ ___ __... _.__._._
420 71.909-1 0 237 9.3-5-5-11 0.465 0.515 0.597 0.642 011.688
0.790
425 7 083 0 292 0 361 0.473 0 525 0.608 0.656 0.704 0.812
_ _ _ .. ............. ...__--
4�0 7 167 0 297 0 368 0.481 0.5----- ___-__.. __._ __._.___.
435 7.250 0.302 0 374 0.489 0.544 0.632 0.633 0.737 0.856
440 7.333 0.307 0.380 0.497 0.553 0.644 0.697 0.753 0.878
445 7.417 0.312 0.386 0 505 0.563 0.656 0.711 0.769 0.900
450 7 500 0 317 0.393 0.513 0.572 0.668 0.725 0.785 0.923
455 7.583 0.323 0.399 0:520 0.582 0.679 0.739 0.801 0.945
460 7.667 0.328 0.405 0.528 0.592 0.691 0.753 0.817 0.967
465 7.-..751 0 0 333 0 411 0.536 0.601 0.703 0.767 O.II33 0.989
470 7 833 0338.11. 0.418 0.544 0,61,1 0.715 0.781 0.849 1.9,11
475 7 917 0.343 0.424 0.552 0.620 0.727 0.794 0.866 1.033
480 3.000 0.348 0.430 0.560 0.630 0.738 0.808 0.882 1.055
435 3 083 0 353 0.436 0.568 0.640 0.750 0.822 0.398 1.077
490 3 1G7 0 359 0 443 0.576 0.649 0.762 0.836 0.914 1.099
495 8.250 0.364 0.449 0.584 0.659 0.774 0.850 0.930 1.121
500 3 33� 0 369
-0-4-5.5-1-1 0.592 0,668- -0,7816 0.864 0.946 1.143
-5-015-1-11181.41.7, 0:.3-7-4- 0 461 0.6,00----0.6.78 0.797 0.878 0.962 1.165
510 II 500 0.379 0.467 0.608 0.687 0.809 0.892 0.978 1.188
515 8583 0 384 0.474 0.615 0 697 0.821 0.906 0.994 1.210
-- ._ --------. ._. ..... -----
520 8.667 0 339 0 480 0.623 0.707 0.833 0.919 1.011 1.232
_._..--.__.. ..__._.._,_
525 II 750
0-39-5-- 0.486 0.631 0.716 0.845 0.933 1.027 1.254
530 8.833 0.400 0.493 0.639 0.726 0.856 0.947 1.043 1.276
535 8.917 0.405 0.499 0.647 0.735 0.868 0-961 1.059 1.298
540 9.000 0 410 0.505 0.655 0.745 0.380 0.975 1.075 1.320
545 9M3 0,420 0.517 0.669 0.762 0.900 0.998 1.101 1.354
550 9.167 0 429 0.528 0:684 0.778 0.921 1.021 1.128 1.389
555
9.250 0.439 0.540 0.698 0.795 0.941 1.044 1.154 1.423
560 9.333 0.449 0.552 0.713 0-812 0.961 1.067 1.181 1.458
565 9 417 0.459 0.563 0.727 0.828 0.981 1.090 1207 1.492
570 9.500 0.468 0.575 0.742 0.845 1.002 1.113 1.233 1.527
-51-1 9 533 0 478 0.587 0.756 0.862 1.022 1.136 1.260 1.561
580 9.667 0.483 0.598 0.771 0.878 1.042 1.159 1.286 1.596
585 9.750 0.497 0.610 0.785 0.895 1.063 1.183 1.313 1.630
590 9.833 0 507 0.622 0.799 0.912 1.083 1.206 1.339 1.664
595 9.917 0.517 0.633 0.314 0.928 1.103 1.229 1.365 1.699
600 10 000 0.527 0.645 0.828 0.945 1.123 1.252 1.392 1.733
_ _. - . ___.-_. _._..._ --- __.._. -__--
605 10.083 0.536 0.657 0.843 0.962 1.144 1.275 1.418 1.768
610 10.167 0.546 0:668 0.857 0.978 1.164 1.298 1.444 1.802
615 10.250 0.556 0.680 0.372 0.995 1.184 1.321 1.471 1.837
Output Data to Export to PondPack,5 minute intervals
Time Time 1 year 2 year 5 year 10 year 25 year 50 year 100 year 500 year
(min) (hours) (min) (min) (min) (min)
(min) (min) (min) (min)
_620 10.333 0.566 0.692 0.836_ 1.012 1.204 1.344 1.497 1.871
-- _.. . -
625 10.407 0.575 0.703 0.901
1.028 1.225 1.367 1.524 1.906
630 10.500 0.585 0 715 0.915 1..045 1.245 1.390
1:550, 1.940„
635 10.583 0.593 0.724 0.928 1.062 1.267 1.418 1.583 1.990
___.. .
640 10 667 0 602 0.7 3 3 0 940 1 073 1.288 1 445 1.617 2040.
645 10.750 0.610 0.742 0 953 1.095 1.310 1.473 1.650 2.090
650 10.933 0.618 0,752 0 965 1 112" 1.332 1.500 1.683 2.140
_..
655 10.917 0.627 0.761 0.978 1.128 1,353 1.528 1.717 2.190
660 11.000 0.635 0.770 0 990 1 145_. 1.375 _1.555 1.750_ 2.240
_
665 I 1 033 0 654 0 793 1:020 1,181 1.419 1.608 1.810 2:321
670 11 167 0 673 0 817
1,051-01-...- 1 217 1 463 1 660 1.II70 2.402
._..__. _.0... ----
675 11 250 0 692 0 840 1 080 -253 1.508" 1.713 1.930 2.483
630 11 333 0 712 0 863 1 110 1.288 1.552 1765 1.990 2.563
_. _ _.. .. .__.2.-_
685 11 417 0 731 0 887 1.1 40 1.324 1.596 1.813 2.050 2.644
_ _ _... _
690 11 500 0 750 -.0.2-1-0 1 170 1.360 1.640_ 1.870 2.110 2.725
695 11.583 0 812 0 987 1.2 69 1 479 1 782_ 2.032 2.292 2.953
_. _.....
700 11.667 0 875 1 063 1 368 1 598 1 924 2.194 2.474 3.181
-__ -
705 11.750 0.937 1.140 1 467
_1.717 2.067 2357 1657 3.408
710 1 i.S33 1 000 1 216 1 566 1.836 2 209 2.519 2.839_ 3.636
71S 11917 1.199 1453 1842 2138 2.543 2.871 3.207 4.032
720 12.000 1.599 1.921 2.379 2.733 3.195 3.566_ 1941 4.831
725 12.033 1-.7981-1-2.1571 2.656 3.-03-6 3.529 3.919 4.309 5.226
730 12.167 1.860 2.234 2.754 3.154 3.671 4.081 4.491 5.454
735 12 2-5.0 L-9-23-1 2.13-101 2 353 3.273 3.813 4.243 4.673 5.682
740 12 333 ".,1,.-9'8'-5 2 31817111 2 952 3.392 3.956 4.406 4.856 57909
745 12 417 2.0 48 2 463 3 051 3 511 4.098 4.565 5.038 6.137
._ _ _..__
--- ---
750 12.500 2.110 2-540 3.150_ 3.630
4.240 4.730 5.220 6.365
755 12 583 2 129 2 563 3.180
3 666 4 284 4.783 5.280 6.446
__.-__. .
760 12.667 2.148 2.587 3.210 3.702 4.328 4.835 5.340 6.527
765 12.750 2.168 2.610 3 240 3.738 4.373 4.888 5.400 6.608
770 12.833 2.187 2 633 3.270 3.773 4.417 4.940 5.460 6.688
775
12'..91,71, -21.206 2 657 3 300 3 809 4.461 -4-1.9-93, 5.520 6.769
780 13.000 2.225 1 21.63R 3 330 3,.,84-5--,.-- 4.505 5.045 5.580 6.850
735 13 033
2.233 2.689 33413, 3.862 4.527_ 5.073 5.613 6.900
790 13 1G7
2,2,4,2 2:698 3.355 3.878 4.548 5.100 5.647 6.950
795 l�250
2,250 2.708 3.368 3.895 4.570 _ 5.128 5.680 7.000
800 13 X33
2.2.581- 2 717 3 380 3 912 4.592 5.155 5.713 7.050
305 13 417 2267 21.1721611 3 393 _ 3 928 4.613 5.183 5.747 7.100
310 1 500 2 275 2 7,35 3 405 3.945 4.635 5.210 5.780 7.150 111.815 13.583 2 23-- 2 747 3 419---3.962 4.655 5.233 5.806 7.184
320
11.667 2 294 21.758 434 3.978 4.676 5.256 5.833 7.219
825 13 750
2-,30-4-- 2 770 3.4-48--13.199.5 4.696 5.279_ _ 5:159 7.253
830 13.833 2.314 2.782 3.463 4,012 4.716 5.302 5.886 7.288
835 13.917 2.324 2.793 3.477 4.028 4.736 5.325 5.912 7.322
840 14 000 2 333 2 805 3 492 4 045 4 757 5 348 5 938 7.357
_-- _.. -_._ __._ __-- __._
845 14.083 2.343 2.817 3.506 4.062 4.777 5.371 5.965 7.391 11 850 14 167 2:353 2.828 3.521 4.078 4.797 5.394 5.991 7.426
355 14 250 2.363 2 840 3.535 4.095 4 818 5.418 6.018 7.460
_ _ ___,.
860 14.333 2.372 1852 3.549 4 112 4.838 5.441 67044 7.494
Output Data to Export to PondPack,5 minute intervals
Time Time I year 2 year 5 year 10 year 25 year 50 year 100 year 500 year
(min) (min) (min) (min) (min) (min) (min) (min) (min)
865 14,417 2.382 2.863 3.564 4.128
4.858 5.464 6.070 7.529
870 14.500 2.i92 2.875- 3.578 4.145-1- 4.8 78 5.1.497 6.097-1 1- 7.,5 63-
14.583 2.401 2.887 3.593 4.162 4.899 5.510 6,123 7.598
88-6-- 14.667 1,-- 2-.8-98 3.60-7 4.1,78 -- --
.......... ...4.919 5.533 6.149 7.632
885 14.750 2.421 2.910 3.622 4.195 4.939 5.556 6.176 7.667
890 14.833 2 431 2.922 3.636 4.212 4.959 5.579 6.202 7.701
-------------------
14.9.17--2,44-0 4,980 5,602 6.229 7.736
--------------------
1-5..000.1 2.415-0---"-2,.9-4,5l-- 3 665 4.245- 5.000 6.255 7.770
905 15.083 2.455 2.951 3.673 4.255 5:012 5.639 6,271 7.792
--------------- ..........
910 15.167 2.460 2.958 3.681 4.264 5.024 5.653 6.287 7.814
----------
915 15.250 2.465 2.964 3.689 4.274
- 5.035 5.667 6.303 7.836
920 15.333 2.1471 2.970 3.619-71 4.28311, 6.319 7:858,
925 15.417 .2476 2�976 3.705 4.293 5.059 5.694 6.336 7.880
9113-01-1.- 5...5100. 2,4811 2 933 3.713 4,393 5.071 5.708 6.352 7.903
935 15.533 -2.4-816 2.9.89, 3.712,01 4.312 5.083 5.722 6.368 7.925
940 15.667 2.491 2.995 3.728 4.322 5.094 5.736 6.384 7.947
945 15.750 .2.4961- 5.750 6.400 7.969
950 15.833 2.501 3.008 3.744 4.341 5.118 5.764 6.416 7,991
955 15.917 2.507 3.014 3.752 4.350 5:130 5.778 6.432
8.013
960 16.000 2.512 3.020 3.760 4,360 5.142 5.792 6.448 8-:03.5-
965- -,-16--08-3- 3--.0-26-- -3.-76-8- -4.3,70-
----------- 5.153 5.806 6.464 8.057
970 16.167 2522 3.033 3.776 4379 5,165 5.819 6.481
-------------- 8.079
975 16.250 2.527 3.039 3.784 4.389
-----------------------.......-,---5.177_ ___5.833 6,497 8.101
980 16.333 2.532 3.045 3.792 4.398 5.189 5.847 6.513 8.123
-----------------------------
985 16 417 2.537 3.051 3.800 4.408 5.201 5861 6.529 8.145
990 16.500 2.543 3.058 3.808 4.418 5.213 5.875 6.545 8.168
------------
995 16 533 2 548 3.064 3.315 4.427 -51�2214 5.889 6.561 8.190
1000 16 667 1,5151.3-1- 3.1070 823 .4.437 8.212
1005 16 750 2558 .3.0-761. 3.331 4.446 5:248 5.917 6.593 8:234
1010 16.833 2.563 ,3.033 3.839 4.456 5.260 5.931 6:609 8.256
1015 16.917 2.568 1089 3.847 4.465 5.272 5.944 6.626 8.278
_1920_ 17.000 2.573 3.095 3.855 4.475 5.283 5.958 6.642 8.300
-1-0.251 -1117.983 21..57-81-1-11.3..1101 ......4.185 5.295 -5.97-2-1-- 6.658 8.322
1030 17.167 2.584 3.108 3.871 4.494 5.307 5.986 6.674 8.344
1035 17250 1589 3.114 3879 4.504 5.319 6.000 6.690 8.366
]040 17 333 2 594 3 120 3.857 4.513 5.331 6.014 6 706 8.388
1045 17.417 2.599 3.126 3.895 4523
------- ----�--.--,--.-.,.-�"----�........... 6.028 6.722 8.410
1050 17.500 2.604 3.133 3:903 4.533 5.354 6.042 6.738 8.433
1055 17 583 2 609 3 139 3.910 4.542 5.366 6.056 61754 8.455
1060 17.667 2.614 3.145 3.918 4.552 5.378 6.069 6.771 8.477
1065 l7 750 ------------
2:1620---13.15J, 3.912.61 4.561 6 083 6.787 8.499
1070 17.833 2.625 3.158 3.934 4.571 5.401 6.097 6.803 8.521
1075 17.917 2.630 3.164 3.942 4.580 5.413 6:111 6.819 8.543
1080 18.000 2.635 3.170 3.950 4.590 5.425 6.125 6.835 8.565
18.083 2:638 3.174 3.955 4.596 5.431 6.132 6,842 8.572
1090 18.167 2.641 3,178 3.960 4.601 5.438 6.138 6.849 8.580
1095 18.250 2.644 3.182 3.965 4.607 5:444 6.145 6.856 8.587
18 333 2.648 3.186. 3.971 4.612 5.450 6.151 6.863 8.594
1-8.A.17-1 . 1.65.1 -.5.45-7 6.158 6.869 8.601
Output Data to Export to PondPack 5 minute intervals
Time Time 1 year 2 year 5 year 10 year 25 year 50 year 100 year 500 year
(mite) (hours) (min) (min) (min) (min) (min) (min) (min) (min)
1110 13.500_ _2_654 __3_193 3.981 4.623_ 5.463 6.165 6.876 8.609
- _ _._ ..
11 IS 18 533 2.657 3.197 3.9.86-- 4.629 5.469 6.171 6 883 8.616
_ ..._ -...--_------- - --__.__ .
1120 18.667 2,660 3.201 3.991 4.634 5.476 6.178 6.890 5.623
1125 18.750 2.663 3.205 3.996 4.640 5.482 6.184 6.897 8.631
_.__ .8.-_._.
1130 18-833 2 666 3.209 4.001 4.646 5.488 6.191 _ 6.904_ 8.638
_.-. _._
1135 18-917 2.669 3.213 4.007 4.651 5.495 6.193 6.911 8.645
1140 19.000 2.673 3.217 4.012 4.657
5.501 6.204 6.918 3.653
1145 19.083 27,6716 3.221 4.101,7111111 4.662 5.507 6.211 6.924 8.660
1150 19.167 2.679 3.224 4.022 4.668 5.513 6.217 6.931 8.667
1.5-51. 1,91,.2501.1 -2.6-8-2 3.228 4.027 4.673 5.520 6.224 6.938 8.674
1160 19133 2.655 3.232 4.032 4.679 5.526 6.231 6.945 8.632
1165 19 417
2.688 3.236 4.037 4.684 5.532 6.237 6.952 8.689
1 170
19,50-0, 2 691 3 240 4.043 --4-6.9..0.--,-.,.,5.539 6.244 6.959 8.696
1175 19.583 2.694 3.244 4 048 4.696 5.545 6.250 6.966 3.704
1180 19.667 2.698 3.248 4.053 4.701 5.551 6.257 6.973 8.71 I
1185 19.750 2.701 3.252 4.058 4.707 5.558 6.264 6.979 8.718
1190 19 833 2.704 3.256 4.063 4.712 5.564 6.270 6.986_ 8.725
1195 19 917 2 707 3259 4.063 4.718 5.570 6.277 6.993 8.733
1200 20.000 2.710 3.263 4.073 4.723
-,5.57-7 6.283 7.000 &740
1205
-20.08113. 2.17.11.3-1---l-26-7- 4.078 4.729 .5583 6.290 7.007 8.747
1210 -2-0-111,67 21.7.1.6 3 271 4.084 4 734 5.589 6.297 7.014 8.755
1215 20250 719 3 275 4.039 4.740 5.596 6.303 1 7.021 87762_
1220
20.333 2.723 3.279 4.094 4.746 5.602 6.310 7.028 8.769
1225 'i6.'4'1 7 -2.726'-
726 3 283 4.099 4.751 5.608 6.316 7.034 8.776
1230 20.500 2.729 3.287 4.104 4.757 5.615 6.323 7.041 8.784
1235 210.583 __2:7131.2 3.291 4.109 4.762 1-11 6.330 7.048 8.791
1240 20 667
1735 3..2194..---4.11-4-.1 4.768 5.627 6.336 7.055 8.798
1245 20.750 2.738 3.298 4.120 4.773 5.634 6.343 7.062 8.806
1250 20.833 2.741 3.302 4.125 4.779 5.640 6.349 7.069 8.813
1255 20 917 2 744 >306 4.130 4 784 5.646 6.356 7.076 8.820
_. -- _-- _._ _. -- _.._.
1260 21.000 2.748 3.310 4 135 4.790 5.653 6.363 7 083 3.328
1265 21 083 2 751 3 314 4 140 4.796 5.659 6.369 7.039 8.835
1270 21.167 2.754 3.318 4.145 4.801 5.665 6.376 7.096 8.842
1275 21.250 2.757 3.322 4.150 4.807 5.671 6.382 7.103 3.849
1280 21.333 2.760 3.326 4.156 4.812 5.673 6.389 7.110 8.857
1285 21 417 2 763 3 329 4.161 4.818 5.684 6.395 7.117 8.864
1290 2l 500 2 766 3 333 4.166 4.823 5.690 6.402 7.124 8.871
_... _-_ ._. _ _.. . _. ._.._._.
1 95 21 583 2 769
-3.313.71- 4 171 4.829 51697111.--6.409 7 131 3.879
1300 21.667 2:773 3 341 4.176 4.834 5.703 6.415 7.138 8.886
1305 21750 2.776 3.345 4.181 4.840 5.709 6.422 7.144 8.893
1310 21 833 .2.J79.1 3 349 4.186 4.846 5.716 6.428 7.151 8.900 11
1315 21.917 2.782 3.353 4.192 4.851 5.722 6.435 7.153 8.908
1320 22.000 2.785 3.357 4.197 4.857 5.728 6.442 7.165 8.915
1325 22.083 2.788 3.361 4.202 4.862 5.735 6.448 7.172 8.922
1330 22.167 2:7 1 3 364 4 207 4.868 5.741 6.455 7.179 8.930
1»5 22 250 2.794 3.368 4 212 4.873 5.747 6.461 7.186 8.937
13.40 22.333- .1 2 798 11 3372 4 217 4.879 5.754 6.468 7.193 8.944
1345 22.4 t7 2.801 3 376 4.222 4 884 5.760 6.475 7.199 8.95]
-- _._._. ._.__..... ----._... - ... .
1350 21500 2.804 3.380 4.228 4.890 5.766 6.431 7.206 8.959
Output Data to Export to PondPack,5 minute intervals
Time Time I year 2 year 5 year 10 year 25 year 50 year 100 year 500 year
(min) (hours) (min) (min) (min) (min) (min) (min) (min) (min)
-.135-51--.22,5813 2.307 3.384 4.233 ---7.11213-11 11 -8-,9-66-
1360 22.667 2.810 3.388 4.238 4.901 5.779 6.494 7.220 8.973
1365 22.750 2.813 3.392 41..2-41131 4.9,07 5.7185 6.501 7.227
1370 22.833 2.816 3:396 4:248 4.912 5.792 6.508 7.234 8.988
1375 22.917 2.819 3.399 4.253 4,918 5.798 6.514 7.241 8.995
1380 23.000 2.823 3.403 4.258 4.923 5.804 6.521 7.248 9.003
1385 23 083 l 2.826 3.407 4.263 4 9 29 5.810 6.527 7.254 9.01 0
1390 23.167 2.829 3.411 4.269 4.934 5.817 6.534 7.261 9.017
1395 23.250 2.832 3.415 4.274 4.940 5.823 6.541 7.268 9.024
1400 23.333 2.835 3.419 4.279 4.946 5.829 6.547 7.275 9.032
----------
1405 23.417 2.838 3.423 4.284 4.951 5.836 6.554 7.282 9.039
1410 23.500 2,841 3.427 4.289 4.957 5.842 6.560 7.289 9.046
1415 23.583 2.844 3.431 4.294 4.962 5.848 6.567 7.296 9.054
1420 23.667 2.848 3.434 4.299 4.968 5.855 6.574 7.303 9.061
1425 23.750 2.851 3.438 4.305 4.973 5.861 6.580 7.309 9.068
1430 23.833 2.854 3.442 4.310 4.979 5.867 6.587 7:316 9.075
1435 23.917 2.857 3.446 4315 4.984 5.874 6.593 7.323 9.083
1440 24.000 2.860 3.450 4.320 4.990 5.880 6.600 7.330 9.090
SOILS DATA
PARKSIDE TOWN COMMONS
KRG -12000
WAKE COUNTY, NORTH CAROLINA — SHEET NUMBER 35
35
0
a
m
U. S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE WAKE COUNTY, NORTH CAROLINA NORTH CAROLINA AGRICULTURAL EXPERIMENT STATION
SOIL LEGEND
The first capitol letter is the initial one of the soil name,
A second capital letter, A, B, C, D, E, or F, shows the
slope. Most symbols without a slope letter are those of
nearly level soils or land types, but some are for land
types that have a considerable range of slope. The number,
2 or 3, in a symbol shows that the soil is eroded or severely
eroded.
SYMBOL
NAME
SYMBOL
NAME
SYMBOL
NAME
AfA
Altavista fine sandy loom, 0 to 4 percent slopes
GeB
Georgeville silt loam, 2 to 6 percent slopes
NoA
Norfolk loamy sand, 0 to 2 percent slopes
AqB
Appilrig gravelly sandy loam, 2 to 6 percent slopes
GeB2
Georgeville silt loom, 2 to 6 percent slopes, eroded
NoB
Norfolk loamy sand, 2 to 6 percent slopes
AgB2
Appling gravelly sandy loam, 2 to 6 percent slopes, eroded
GeC
Georgeville silt loom, 6 to 10 percent slopes
NoB2
Norfolk loamy sand, 2 to 6 slopes, eroded
AgC
Appling gravelly sandy loam, 6 to 10 percent slopes
GeC2
Georgeville silt loam, 6 to 10 percent slopes, eroded
NoC
percent
Norfolk loamy sand, 6 to 10 percent slopes
AgC2
Appling gravelly sandy loam, 6 to 10 percent slopes, eroded
GeD2
Georgeville silt loam, 10 to 15 percent slopes, eroded
NoC2
Norfolk loamy sand, 6 to 10 percent slopes, eroded
Apo
Appling sandy loom, 2 to 6 percent slopes
Go
Goldsboro sandy loom
ApB2
Appling sandy loom, 2 to 6 percent slopes, eroded
GrB
Granville sandy loam, 2 to 6 percent slopes
OrB
Orangeburg loamy sand, 2 to 6 percent slopes
ApC
Appling sandy loam, 6 to 10 percent slopes
GrB2
Granville sandy loam, 2 to 6 percent slopes, eroded
OrB2
Orangeburg loamy sand, 2 to 6 percent slopes, eroded
ApC2
Appling sandy loam, 6 to 10 percent slopes, eroded
GrC
Granville sandy loom, 6 to 10 percent slopes
OrC2
Orangeburg loamy sand, 6 to 10 percent slopes, eroded
ApD
Appling sandy loom, 10 to IF, percent slopes
GrC2
Granville sandy loam, 6 to 10 percent slopes, eroded
As8
Appling Fine sandy loom, 2 to 6 percent slopes
GrD
Granville sandy loam, 10 to 15 percent slopes
PkC
Pinkston sandy loom, 0 to 10 percent slopes
AsB2
Appling fine sandy loom, 2 to 6 percent slopes, eroded
Go
Gullied land
PkF
Pinkston sandy loam, 10 to 45 percent slopes
AsC
Appling fine sandy loom, 6 to 10 percent slopes
Ps
Plummer sand
AsC2
Appling Fine sandy loam, 6 to 10 percent slopes, eroded
HeB
Helena sandy loam, 2 to 6 percent slopes
Au
Augusta fine sandy loam
He132
Helena sandy loom, 2 to 6 percent slopes, eroded
Ro
Rains fine sandy loam
HeC
Helena sandy loam, 6 to 10 percent slopes
Ro
Roonoke fine sandy loam
Bo
Buncombe soils
HeC2
Helena sandy loom, 6 to 10 percent slopes, eroded
HeD
Helena sandy loom, 10 to 15 percent slopes
$w
Swurnp
CeB
_
Cecil sandy loam, 2 to 6 porcenr slopes
HrB
Herndon silt loom, 2 to 6 percent slopes
CeB2
Cecil sandy loam, 2 to 6 percent slopes, eroded
H, B2
Herndon silt loam, 2 to 6 percent slopes, eroded
VaB
Vance sandy loam, 2 to 6 percent slopes
CeC
Cecil sandy loom, 6 to 10 percent slopes
HrC
Herndon silt loam, 6 to 10 percent slopes
VaB2
Vance sandy loom, 2 to 6 percent slopes, eroded
CeC2
Cecil sandy loom, 6 to 10 percent slopes, eroded
HrC2
Herndon silt Zoom, 6 to 10 percent slopes, eroded
VaC2
Vance sandy loam, 6 to 10 slopes, eroded
CeD
Cecil sandy loom, 10 to 15 percent slopes
HrD2
Herndon slit loam, 10 to 15 percent slopes, eroded
percent
CeF
Cecil sandy loam, 15 to 45 percent slopes
HrE
Herndon silt loam, 15 to 25 percent slopes
WoA
Wagrarrt loamy sand, 0 to 2 percent slopes
CgB
Cecil gravelly sandy loam, 2 to 6 percent slopes
W.B
Wagrom loamy sand, 2 to 6 percent slopes
CyB 2
Cecil gravelly sandy loam, 2 to 6 percent slopes, eroded
LdB2
Lloyd loom, 2 to 6 percent slopes, eroded
W.0
Wagrom loamy sand, 6 to 10 percent slopes
CqC
Cecil gravelly sandy loom, 6 to 10 percent slopes
LdC2
Lloyd loam, 6 to 10 percent slopes, eroded
NgA
Wagram —Troup sands, 0 to 4 percent slopes
CgC2
Cecil gravelly sandy loom, 6 to 10 percent slopes, eroded
LdD2
Lloyd loam, 10 to 15 percent slopes, eroded
4hh
Wahee Fine sandy loam
CIB3
Cecil clay loam, 2 to 6 percent slopes, severely eroded
LoB
Louisburg loamy sand, 2 to 6 percent slopes
WkC
Wake soils, 2 to 10 percent slopes
CIC3
Cecil clay loam, 6 to 10 percent slopes, severely eroded
LoC
Louisburg loamy sand, 6 to 10 percent slopes
Wk
Wake soils, 10 to 25 percent slopes
CIE3
Cecil clay loam, 10 to 20 percent slopes, severely eroded
LoD
Louisburg loamy sand, 10 to 15 percent slopes
WmB
Wedowee sandy loam, 2 to 6 percent slopes
Cm
Chewaclo soils
LwB
Louisburg— Wedowee complex, 2 to 6 percent slopes
Win B2
Wedowee sandy loom, 2 to 6 percent slopes, eroded
Cn
Colfax sandy loom
LwB2
Louisburg- 49edowee complex, 2 to 6 percent slopes, eroded
WmC
`'Wedowee sandy loam., 6 to 10 percent slopes
Co
Congaree fine sandy loam
LwC
Louisburg — Wedowee complex, 6 to 10 percent slopes
WmC2
Wedowee sandy loam, 6 to 10 percent slopes, eroded
Cp
Congaree silt loam
LwC2
Louisburg — Wedowee complex, 6 to 10 percent slopes, eroded
WmD2
Wedowee sandy loam, 10 to 15 percent slopes, eroded
C,B
Creedmoor sandy loam, 2 to 6 percent slopes
Ly
Lynchburg sandy loam
Vim
Wedowee sandy loam, 15 to 25 percent slopes
Cr62
Creedmoor sandy loam, 2 to 6 percent slopes, eroded
Wn
Wehodkee silt loam
CrC
Creedmoor sandy loam, 6 to 10 percent slopes
Ma
Made land
Wo
Wehadkee and Bibb soils
Crr2
Creedmoor sandy loom, 6 to 10 percent slopes, eroded
MdB2
Madison sandy loam, 2 to 6 percent slopes, eroded
WsB
White Store sandy loam, 2to 6 percent slopes
CrE
Creedmoor sandy loom, 10 to 20 percent slopes
MdC2
Madison sandy loom, 6 to 10 percent slopes, eroded
WsB2
White Store sandy loom, 2 t 6 percent slopes, eroded
CtB
Creedmoor silt loam, 2 to 6 percent slopes
MdD2
Madison sandy loam, 10 to 15 percent slopes, eroded
W5C
White Store sandy loam, 6 to 10 percent slopes
CrC
Creedmoor silt loom, 6 to 10 percent slopes
MdE2
Madison sandy loom, 15 to 25 percent slopes, eroded
WcC2
White Store sandy loam, 6 to 10 percent slopes, eroded
Me
Mantachie soils
WsE
White Store sandy loom, 10 to 20 percent slopes
Do
Durham loamy sand, 2 to 6 percent slopes
MfB
Mayodan sandy loom, 2 to 6 percent slopes
WtB
White Store silt loam, 2 to 6 percent slopes
Du B2
Durham loarny sand, 2 to 6 percent slopes, eroded
MfB2
Mayodan sandy loom, 2 to 6 percent slopes, eroded
WvD3
White Stare clay loam, 2 to 15 percent slopes,
DuC
Durham loamy sand, 6 to 10 percent slopes
We
Mayodan sandy loam, 6 to 10 percent slopes
severely eroded
OuC.2
Durham loamy sand, 6 to 10 percent slopes, eroded
MFC2
Mayodon sandy loam, 6 to 10 percent slopes, eroded
WwC
Wilkes soils, 2 to 10 percent slopes
MFD2
ibkryodan sandy loom, 10 to 15 percent slopes, eroded
WwE
Wilkes soils, 10 to 20 percent slopes
EnB
Enon fine sandy loam, 2 to 6 percent slopes
WE
Mayodan sandy loam, 15 to 25 percent slopes
WwF
Wilkes soils, 20 to 45 percent slopes
EnB2
Enon fine sandy loam, 2 to 6 percent slopes, eroded
Mg8
Mayodon gravelly sandy loom, 2 to 6 percent slopes
WxE
P'ilkes stony soils, 15 to '25 percent slopes
EnC
Enan fine sandy loam, 6 to 10 percent slopes
MgB2
Mayodan gravelly sandy loam, 2 to 6 percent slopes, eroded
Wy
Worsham sandy loom
EnC2
Enon fine sandy loam, 6 to 10 percent slopes, eroded
MgC
Mayadan gravelly sandy loam, 6 to 10 percent slopes
En D2
Enon fine sandy loam, 10 to 15 percent slopes, eroded
Mg C2
Mayodan gravelly sandy loam, 6 to 10 percent slopes, eroded
MyB
Mayodan silt loom, thin, 2 to 6 percent slopes
FaB
Faceville sandy loom, 2 to 6 percent slopes
MyB2
Mayodan silt loam, thin, 2 to 6 percent slopes, eroded
FaB2
Faceville sandy loom, 2 to 6 percent slopes, eroded
MyC
Mayodon silt loam, thin, 6 to 10 percent slopes
FaC2
Faceville sandy loom, 6 to 10 percent slopes, eroded
MyC2
Mayodon silt loam, thin, 6 to 10 percent slopes, eroded
MyD
Mayodan silt loom, thin, 10 to 15 percent slopes
Soil map constructed 1967 by Cartographic Division,
Soil Conservation Service, USDA, from 1965 aerial
photographs. Controlled mosaic based an North
Carolina plane coordinate system, Lambert conformal
conic projection, 1927 North American datum,
PAFKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 5/1/2012
PRE- DEVELOPMENT - SUBBASIN #1
__> Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
CrE Creedmoor Sandy Loam C
Ws132 White Store Sandy Loam D
WsC2 White Store Sandy Loam D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 5/1/2012
PRE- DEVELOPMENT - SUBBASIN #2
__> Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
CrE Creedmoor Sandy Loam C
WsB2 White Store Sandy Loam D
WsC2 White Store Sandy Loam _ D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 5/1/2012
PRE- DEVELOPMENT - SUBBASIN #3
Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
WsB2 _White Store Sandy Loam D
WsC2 White Store Sandy Loam D
WsE White Store Sandy Loam _ D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 5/1/2012
PRE- DEVELOPMENT - SUBBASIN #4
Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
WsB2 White Store Sandy Loam D
WsC2 White Store Sandy Loam
x
WsE White Store Sandy Loam D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 5/1/2012
PRE- DEVELOPMENT - SUBBASIN 95
Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
WsB2 White Store Sandy Loam D
WsC2 White Store Sandy Loam D w
WsE White Store Sandy Loam D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 5/3/2012
PRE- DEVELOPMENT - SUBBASIN #6
= => Site soils from the Wake County Soil Survey
Symbol
Name
Soil Classification
CrE
Creedmoor Sandy Loam
C
CrC2
Creedmoor Sandy Loam
C
WsB2
White Store Sandy Loam
D
WsC2
White Store Sandy Loam
D
References:
1 SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 5/3/2012
PRE- DEVELOPMENT- SUBBASIN #7
Site soils from the Wake County Soil Survey
Symbol
Name
Soil Classification
CrE
Creedmoor Sandy Loam
C
WsB2
White Store Sandy Loam
D
WsC2
White Store Sandy Loam
D
WsE
White Store Sandy Loam
D
References:
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 5/3/2012
PRE- DEVELOPMENT - SUBBASIN #8
= => Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
WsB2 White Store Sandy Loam D
WsE White Store Sandy Loam D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
References:
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 5/3/2012
PRE- DEVELOPMENT - SUBBASIN #10A
Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
WsB2 White Store Sandy Loam D
WsC2 White Store Sandy Loam D
WsE White Store Sandy Loam D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 5/3/2012
PRE - DEVELOPMENT - SUBBASIN 410B
Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
WsB2 White Store Sandy Loam D
WsC2 White Store Sandy Loam D
WsE White Store Sandy Loam D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 5/3/2012
PRE- DEVELOPMENT - SUBBASIN #11
Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
WsB2 White Store Sandy Loam D
WsC2 White Store Sandy Loam D
WsE White Store Sandy Loam D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 5/3/2012
PRE- DEVELOPMENT - SUBBASIN #12
Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
WsB2 White Store Sandy Loam D
WsE White Store Sandy Loam D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 9/10/2012
POST - DEVELOPMENT - SUBBASIN #1 -TO SWMF 93
= => Site soils from the Wake County Soil Survey
Symbol
Name
Soil Classification
CrE
Creedmoor Sandy Loam
C_
WsB2
White Store Sandy Loam �
� D
WsC2
White Store Sandy Loam
D
WsE
White Store Sandy Loam
D
References:
I SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 9/10/2012
POST - DEVELOPMENT- SUBBASIN #I -TO SWMF #4
__> Site soils from the Wake County Soil Survey
Symbol Name Soil Classification
CrE Creedmoor Sandy Loam C
WSB2 White Store Sandy Loam _D �m
WsC2 White Store Sandy Loam D
References:
I SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 9/10/2012
POST - DEVELOPMENT - SUBBASIN #1- BYPASS
__> Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
CrE Creedmoor Sandy Loam C
WsC2� White Store Sandy Loam � D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 9/10/2012
POST - DEVELOPMENT - SUBBASIN #3 -TO SWMF #I
= => Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
Ws132 White Store Sandy Loam D
WsC2 White Store Sandy Loam D
WsE White Store Sandy Loam D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 9/10/2012
POST - DEVELOPMENT - SUBBASIN #3 -TO SWMF 92
= => Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
WsB2 White Store Sandy Loam D
WsC2 _White Store _Sandy _Loam � D
WsE � White Store Sandy Loam D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 9/10/2012
POST - DEVELOPMENT- SUBBASIN #3- BYPASS
= => Site soils from the Wake County Soil Survey
References:
Symbol Name Soil Classification
WsB2 _ White Store Sandy Loam_
WsC2_ White Store Sandy Loam D _ M
WsE White Store Sandy Loam D
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 9/10/2012
POST - DEVELOPMENT - SUBBASIN #4
Site soils from the Wake County Soil Survey
Symbol Name Soil Classification
WsB2 White Store Sandy Loam D
WsC2� White Store Sandy Loam D
�WsE�White Store Sandy Loam D
References:
SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE
KRG -12000 INFORMATION 9/10/2012
POST - DEVELOPMENT - SUBBASIN #5
= => Site soils from the Wake County Soil Survey
Symbol Name Soil Classification
WsB_2 White Store Sandy Loam D
WsC2 _White Store Sandy Loam — D
WsE � White Store Sandy Loam�—�m����mD
References:
1 SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES
DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN
COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT
STATION).
2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL
CONSERVATION SERVICE. 1986.
PRE DEVELOPMENT HYDROLOGIC
CALCULATIONS
PARKSIDE TOWN COMMONS
KRG -12000
SUB —BASIN #lOB
AREA = 6.18 ac.
.�
+a ,
,¢ , ,
a '
j
.�
- - --%
°���,
- ��.��
��� � ��,
�� �
�'� �
_�� � I�
�,
�� ����,
`�;,
;, i � 1
�!�
�_
�`' `` ��
., ,�
`,�t 1
POA X11
-,,� ��
-� �, ,,
SUB —BASIN #11
AREA = 12.66 ac.
SUB —BASIN #l0A
AREA = 14.07 ac.
SUB —BASIN #9
AREA = 12.16 ac.
POA �9
,,
POA �8
SUB —BASIN #8
AREA = 3.54 ac.
SUB —BASIN #7
AREA = 10.67 ac.
POA �7
POA �6
SUB —BASIN # 12 '� ������.�'�� � � � �� •' ;;- ,� � ����_�� i �--- �__ - =� _ �� ��� �' ��l(���r � u���� -�� `�. �i �� �� ,, ��� ,� r
�_ r �, ! � -'�' T , �`ti , � � --� — �� � At ��� `
AREA = 3.47 ac . � � �' �,e `�, �`��` � -_ %;�� °" i��'' �'' � ',,�r - ` v '�' � �, �`�' ��� - `�,, ', , ; I ' ,� �` � / }�
P OA 12 -- -� � � �" V ���� ��A� -- _,_ -- - ��� _� � � - -- � � �V�� f_:, � i I � � ��, A ., - -- _ - -- � �� l � I� I �� � �^ _
i _
i _s' __ � A �___ _' � �` i � _� � � � i �i ` � �
,n s 1 as `� � � — _ � , � i � �� � - - -_ � �`i �` � c I i � i � i
i // � -�` � �V � _ c
� � � ` �' � \
n —_— _.
__ :_.
..
,_ ,
��
�`��`WSJ ; �' � :X .
� - .fi
SUB —BASIN #3
AREA = 29.93 ac.
. � . -'�
SUB —BASIN #4
AREA = 1.44 ac.
� POA #5
SUB —BASIN #5
AREA = 7.49 ac.
- ���
� �i,,
�J � �
. ��/1i�1
�.
��
� � -':
��� � -
SUB —BASIN #6
AREA = 6.32 ac.
SUB —BASIN #2
AREA = 12.33 ac.
� POA �2
i�,
'ti �I P OA � 1
�i
SUB —BASIN #1
AREA = 18.07 ac.
GRAPHIC SCALE �9
200 0 100 200 400 c
1 inch = 200 ft. �
d1f2V 1fT1F2dVdTTN� — N6l'lf' 1I21F'T.1F'A�1F'lf� FGTT2 �"GTN�'lf'lf
F
•
W w
._ � �
L � o °
�+ U
��+ a w ..
o � Fez
W Oa � a
■ �+ �' �
dz�
.� v� x
a+ U ■
■� � 0 � � �
o
�+ A v
� a ��
� � ��
W � . za
O o W E" o
z x��
p U rd
;5 � ��m
0
W� �' W��
� U] �' c�
W o
z `°
z
w
z
0
w
a a
a
w
z
O
z
� O �
Z � Z
U
O � O
A
�z
�-+ � w
� a
w U
M�
Z W
A
a
a
PROJECT N0. KRG -12000
FILENAME: KRG12000 -PRE
DESIGNED BY: BI
DRAWN HY: BI
SCALE: 1 �� =200
DATE: 05 -22 -2012
SHEET N0. w
�� � � � 1
!lam?" �tt'R,..�_._'^'. ._ , t'�," , �- _ ,. �'�' =""';4.. _. _..a:��.,. r.
I -
,- _ _�,. •
�r" - SUB —BASIN l0A
`� � _ AREA = 14.07 ac. .
�. �.
i
..
- -
.. .. �i - .. - � -
POA 10 -
- .. n . ,. .
;. .
x
,
.. � _.
,. ;rs ■ a.g.�
_; � - -
, -
��
- .... _ -. .- '.p.
";1
'al
�>�� ,�... .�._ SUB —BASIN #9
�:.. -
�` - -.� AREA = 12.16 ac.
;.
- .. _ _. ... - _ - _. - ... • • SUB —BASIN 8 ,.�� � � :��xb •�
..
�:�'.... ,- ..
.�i.. �' -
�, ,
'.;
.. -,:.
.-
- AREA 3.54 ac. �•�� �; ; '
..:'.
. .._
. .
.-
,�
..•.. -.
. .. �. :� �yy y
^Xi- �- ���:..
`'
F _ --
a
'�c ,
.- •:
P OA 8 ,. ; ..
-
—
... �,:.
SUB BASIN #7
.. ..
��: �::� :;�-^ �' �� .. �G � AREA = 10.6 7 a c . � � .. � � .. .:
.. ..., -
�= eta.. .� e, r'��t•- �.s � .r M1 .{-
•�� .os., r; $- �... S�s.�F:t'' � T/� � 4"o- � � .q�
SUB —BASIN l OB, - � y�� �/1 � T
,� AREA = 6.18 ac. : �= �':�� - �,.�� - �,� ...��. .. . - -.. - .
`.�, ,'fir ,•� -, '1 : _ �`�'� ,s.` I� � � � ¢.
.... ij. _ �`.
',ti { V',•
r -
,� ...
:.
� � �s �n � �
_ . .���: = u�yW � SUB BASIN 6 � � ' .
- ;��:�. �•w. ��� �� . - AREA = 6.32 ac.
E �. t.� - ti5� � y;
;r, � � � - ice:::`° �; � - .� • epath �±" �:" ' � :�_ _ .�
- �..
�� �,
. ��' - -p4.� �,� Y:�.- �- _ ;a � , . tP' � ��� � :� SUB BASIN 2 � , - -- - .
:.� _ .Y�� �� - i � _ � :;';.: • . `�. � AREA — 12.33 ac. ��
.. ,
. � ;
- � ky { �^
� f ix .
'� � f � Titi `:� •'�' .� "•�r��,i � Imo. C� 'SG t�� � � � - �,�,{,
� f - (� . 4� ,• "; is ti �F. ,�� ,� � - � +� _ -�"rF �e�" . �` �::
SUB —BASIN #11 t:;�., � ,:_; �- �:�:: �.,��, •' � � ..- � -Y.�,� ,.� �'.7
�� to �. t� a , _ _ r .W � � Y -
�•.�., -�t, �. AREA — 12.66 ac. �• �. ,.�;�`�'�,�,,�� �,� '�.'�.''. � ��:. � .�° ; ~�� " rc .. =;.ti.
�. ,w >�::. ..
.�
�s - � �Y: :F � POA 2 �r .
.� ��; � ��
. Tj � � T ..E. '�� ql]'�,. L " +'' y may,, s6. , M { X ,.S'sue � �. � �
..$ , ` +
" `
j, ::
— 0.e, .,� `.� .i�•'�� :.� .N '; :�$� r -..r. �.�,. - - �'s .
. SUB BASIN 12 � A '♦ � x �`"'
�• ��� '� �- � AREA = 3 47 ac ]]����• 1•� � � _:4 ..��; � ^��� :�; � _� _�� -.� f _ � � � � � . .
Y �
F L. '. '$ Y.'' T � F'
,tir k
;.
. -
'i
,, .�.t
..
�.
::
j�
-- .r. .
. .. I
k �-
.. .. y,
. .. - .. '.
,� _ ..
_ �.
� •:
.. w.
......
-- . -. .-
.-
: ..
.. 'tom
4 ..
- � �.
�i
�@ J=
..�
• J �.,.
p� , � rR
[' "lam
'S -. -.-�l� '
'�Y'
- �.
` .:
:. R
'_ s,:
,.,
,
:...� +� Ira ai�. r �- -a � - -. �' -
�`
� .a.- `R^ �..
.aS Vii. � : 4
� �Yy �: S �� SUB BASIN 1
ri`*
ti �('` 3
''�: �.:.
G
,.�..
- _
�, '�=�
_ .. ,�
�3 �,�.
1:':' • \'
�'�
F
�.
.� � -y� _ � AREA 18.07 ac.
�.:;.
i
'4
:. • "
.. .
• r.
�r
..
:•:
�. .
w' r �, y'
.`
,b
�: • A
?'
-....
,.
....
::�. -::.
--
y;.
.- .. , .,
.� -
..
,,, , .
.. , . .;
.� :.� s:�r �,
�': w
4 c
).. ,y' .
- ..
_-
- �'
r. •
�^ ,
��
�r .: �"
..
'� - �1 � �:
.:.
.. r ,7 -�-Y. ..c . � .. " .. � �.. >, �4"s�
� . P•. -
.:�... '. �n �¢ .�.
t. Y:. •5
� �„
- � r. '
L � wI
�'� -.x
Y
_ , . .� �
V ^3 R.
-•
. -7 J - �� 1'�. �'..,. �.
..^ s'. �\
•k P �
i - �;
w-i•�. - t .c _ F
'rti � ''�: -� .i
:. �.-
y:.
"f
h � '; �:
�'' iG
•�
- 'a.:... -1k..
�:.L::
� �' � '�
�� _
�.
..�...;: r -.
- .
:�
� �� -
�>. -
�.
..� 4
Y
r � �
x TT��
- - �1
� f -
— y�P � �-.
F
.r `.K; � a
- - ..
�+ -
`.d �;�.
r
SUB BASIN 3 �.4
�. �:
s
���� � AREA 29.93 ac. ,�r -. '�'�
k.
y �
yy
_,.
., "4 � -
k �:, �} �.
_ �: � XI
,.:� ` - � i
��
�.
- ��
�,,
� •�..
.��
■ �:
���: � - '�
�, . r.� , �x ,.�. .� . .Y `_
. •,• ♦ _
�• .e ,:�. .�:w..
r` �
-:•x � i F 4
��•� POA 4
.a. ,
A L
-
� � a
t
t � � • `r.
' ♦ �.;%
s: �•` 5%.
����
�.
- :� I
�•
u
- �:;..
;�,:
��.:
'�
��`
�� � � ..� _
I. �.•
v.
i. _ :a:.
�F
� � n �. .
1
..;;
4 ,.
�•
F
� -
�` ♦ ,
,,
r � r
.
,�'�
• � ��'
�� >�. � �
,�
_ �-
� ;� ♦ � .
ti , r <�, �� =�: :,
�.
� !� F .: �s
� - :, �,
::Y . ♦ _ � _
!, :: ,�
' � m:
.� *.
x�
,..: ..,
i
.� i� 4 \
�: •�
]y i 41
'�' � ,.
� -
,�, .�y A
��
■. �'
-' .. �r � i _ .� � � _ .
_ ,
• _ SUB BASIN 4 �, r.. _ y
� 1 ;' ._3 u ..'.Z ? a - ¢� � a � :1 �`'�. � .... � 1! k � - �- x. r5. i .{'tti�- -
+!
.. ' 1 . ' i � :�r:. �.
— trid'�':.��"
�: �:. �. -: :: AREA 1.44 ac. ,F. .
,. ,:
e -
�, • a . .
R, ,. .
• -
• �
-
• .,.,
`� .:.
J, .. '.
,^
:...
r
_ .
-. . �.�
- � Y
a. i #�� !
i.� VII
•. •• ,; ., ,. , ,:k.....: ... _,�, °,.x;,.,'::, III► H� �
'� 'w � `� - ,r'' r ° ti .. I� VII�IIIIIIIIIIIIIIIIIII�II .
P OA 5 _ _ ���
L •Y •:�: Z.. ��. .:� , ,• .. L
•� � �
- �^ -
-
.� wr
j�s..- Q
�y.
��
• ...
.. .. ... y
S
�� r � -1 • •�: 4
�. �.:
.�:.
:�i+ �d Mme'
7 a �. s .
- I�
..
� • ^..
.:.. ..
..
.... - e..
=4.
�� -
'"a W .
f�
. •r ,. #.
n '`K '
'�-
- Y°�:, rte. -..
�.. 4 ..
• .,
- � '� � � r SUB —BASIN 5 .:� `�� �. � �� � � '"`.',` - -
# �� _
�; r � E
,. �� _ � -
4 �'
��
AREA 7.49 ac. - �� � �£
.� _ ,��
.�
� ��'
,.
-:�..
:� ..
a:,
x :�
_. � ��,
:;� ;�
:� ��� -
.,
- "- F � � '
y� r
r � '
' MS . ...
.. t }F
I n '
1
i '
..�, :. '
' �. �::
�-• -
',...
... -
.�5 r
. , ' "�
_,
.:
.: -
• n.:
..
n
-:;'
G...
r- ''' "
� I ��
x
�.., '`
.�.�:: �
x {erg � iJ .
��.... l �•. :� � 5 � - �ZY VY�. 1 .i!'� ��at+. � r� y n .trr
` ' � - � �:w= -,�,. ` "� `� : �. � GRAPHIC SCALE
.•` ...
•��
�•
�r
� r �..
_. _ •r.,
z 4'
r'
4' '
Y. � \�� •'M e.
�ryr,
,_
is �:�' - :� .� • �oo o ioo 20
•�` � .. - -
�� . �
�. �� -
;Y � - �F
K
k
..,� . 4.r : �.J. -..�.: - -: .
�.
• f. ,�•
-J � S
� ��
�.
�.�
..
4 .3 .
� '/
,�c - n .
':r ,
r•
. .
ti
,.
�-
k
p y.. - �.
4 3
4.
� �
I
l.:
F
..
- r` '
�,.
. .
::. .
...
,.�
r.
_ .
... �.
. -r
• :..2:
.- ,
..
...
•:.:
w r'
.. -� . _ .. w. a. ,. ..
._ ._ _ _
.._
..
,_
�_- ., , ;�< '`�;>� �'� 1 inch 200 ft.
r �` - 'B -
§ t
Y 4 : t
w,_
,
� t _ - -
�.
's.. �, r
;.
;:.
..
�.
.
..
:,
F
_ r ..�
1 r
i' F'
s• r
C��
z
IH � �
O 0
U
Q.I �'j W ..
o �eF-I�z
w Oa `� a
■ a'+ �' y
� �z�
� a ��.
� o ���
� � �A
�'�
.� Ri W �
� a .�
� � ��
�' � Z a
a�
O w E-1 b
z x��
p U rd
:5 � ��m
0
p" w`��
� P: c:+
� � �
W o
z `°
z
W
W
� a
z
O
O
� 1,
_ I
O
F
��
W
a
O
V
U �
U Z
--+
P� A
O O 0
�z
W
F
U
a
Q
F--�i
��
� W
A
�WNr�
!�
a
a
PROJECT N0. KRG -12000
FILENAME: KRG12000 —PRE
DESIGNED BY: BI
DRAWN HY: BI
SCALE:
/1 1
1 =200
DATE: —
05 22 -2012
SHEET N0.
PRE
�� � � � 1
PARKS TOWN COMMONS
KRG -12000
PRE - DEVELOPMENT ,_ __ DROLOGY SUMMARY
Onsite Area [acres] Offsite Area [acres[
Total Area
Sub -basin ID Transportation `Non- transportation; Transportation, Non-transportation [acres]
Impervious Impervious Open Wooded ;; Pond Total Impervious Impervious Open i Wooded Pond Total
0.00 0.00 0.01
15 71 0 00
15 7� 0 22 0.00 1 64 0 49 0 00 2 35 18.07
0.00 0.00 0.06 12.27 0.00 12.33 0.00 0.00 0.00 0.00 0.00 0.00 12.33
0.13 0.00 2.59 25.74 0.32 r 28.78 0.73 0.00 ! 0.42 : 0.00 0.00 1.15 3. 29.93
0.00 0.00 0.47 0.38 0.00 0.85 0.37 0.00 ' 0.22 ; 0.00 ! 0.00 r 0 59 4 1.44
0.00 0.00 0.66 4.12 0.00 4.78 0.56 0.00 1 69 0.46 0.00 i 2 71 7.49
0.00 0.00 0.00 6.27 0.00 ' 6.27 , 0.00 1 0.00 0.00 0.05 0.00 ` 0.05 6.32
0.00 0.00 0.00 10.63 0.00
10.63 0.00 - 0 00 0 00 0 04 : 0 00 0 04 10.67
0.00........._.. _ _ .._0.00 � - - --. -_ __ 0.00 3.54 -__ _ . _, _, _ ____... ___ _ . _ ,_____._ . __.- . _., _
54 0.00 3.54 0.00 0.00 0.00 ; 0.00 : 0.00 0 00 r 3.54
0.19 0.00 0.19 11.78 : 0.00 12.16 0.00 0.00 0.00
0.00 ; 0.00 0.00 3 12.16
10A 0.00 0.00 1.86 8.29 ' 0.00 10.15 2.27 0.00 1A4 0.21 0.00 3.92 14.07
10B 0.00 0.00 0.00 0.00 ; 0.00 0.00 0.00 0.00 1.61 4.57 - 0.00 6.18 6.18
11 0.11 0.00 0.75 11.00 0.00 ' 11.86 0.38 0.00 • 0.42 0.00 0.00 0.80 3 12.66
12 0.16 0.15 1.63 0.49 0.00 ; 2.43 0.76 0.00 0.28 , 0.00 0.00 1.04 3.47 r
Totals = 0.15 -- 110.22 __ 119.50 5.29 0.00 7.72 5.82 0.00 18.83 ? 138.33 1
B. IHN. _,YA, PE
6/7/2012
0.59
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre- development - Subbasin #1 6/7/2012
I. SCS CARVE NUMBERS
Assume:
HSG
A
Impervious
98
Open
39
Wooded
30
B
98
61
51.4%
C
98
�
70
D
98
80
77
Cover Condition
Wooded
II. PRE - DEVELOPMENT
A. Watershed Breakdown
HSG'A' =
0.0%
HSG'B' =
0.0%
HSG'C'=
48.6%
HSG'D' =
51.4%
S CN Comments
77 __.... T Assume good condition
74 Assume eood condition
Total area =
18.07
acres
Comments
Contributing Area
SCS CN
Area [acres]
74
Onsite transportation impervious
98
0.00
T
_
Onsite nontransportation impervious
98
0.00
** *Time of concentration is calculated using the SCS Segmental Approach (TR -55).
Onsite open
_
77 _
0.01
—_ Assume good condition
Onsite wooded
74
15.71
Assume good condition
_ _ Onsite pond _ ..___._
100____
–._._ 0.00
ft/ft
Offsite transportation imnervious__
98
0.22
P (2- year /24 -hour) =
Offsite nontransPortation impervious
98
0.00
-
Offsite open _
77
1.64
Assume good condition
Offsite wooded
74
0.49
Assume good condition_
_._i4
and
.__
100
0.00
-
Total area =
18.07
acres
ft
0.0282
sq.mi.
Composite SCS CN =
74
0.1214
% Impervious =
1.2%
No
B. Time of Concentration Information
Velocity =
5.63
** *Time of concentration is calculated using the SCS Segmental Approach (TR -55).
Segment 1: Overland Flow
0.53
minutes
Length =
100.0
ft
Height =
4.12
ft
Slope =
0.0412
ft/ft
Manning's n =
0.40
Woods -Light Underbrush
P (2- year /24 -hour) =
3.45
inches (Wake County, NC)
Segment Time =
15.49
minutes
Segment 2: Concentrated Flow
Length =
179.2
ft
Height =
21.75
ft
Slope =
0.1214
ft /ft
Paved ? =
No
Velocity =
5.63
ft/sec
Segment Time =
0.53
minutes
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre- development - Subbasin #1 6/7/2012
Segment 3: Channel Flow
Length =
Height =
Slope =
Manning's n =
Flow Area =
Wetted Perimeter =
Channel Velocity =
Segment Time =
870.9
ft
39.56
ft
0.0454
ft/ft
0.045
Natural Channel
4.00
sf (Assume 2'x 2' Channel)
6.00
ft (Assume 2'x 2' Channel)
5.39
ft/sec
2.70 minutes
Time of Concentration = 18.71 minutes
SCS Lag Time = 11.23 minutes (SCS Lag = 0.6* Tc)
Time Increment = 3.26 minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG-12000 Pre-development - Subbasin #2
1. SCS CURVE NUMBERS
HSG
A
Tm
Open
Wooded
0
30
B
98
61
55
C
98
74
70
D
98
80
77
Assume:
HSG'A'=
0.0%
ft
Height =
HSG'B'=
0.0%
Slope =
Onsite transportation impervious
HSG'C'=
17.2%
No
Onsite nontransportation impervious
HSG'D'=
82.8%
ft/sec
Cover Condition
79
SCS CN
Comments
Impervious
76
98
As
Open
100
79
Assume good condition
Wooded
98
76
Assume good condition
11. PRE-DEVELOPMENT
A. Watershed Breakdown
Contributing Area j
SCS CN
I Area [acres]
ft
Height =
16.83
ft
Slope =
Onsite transportation impervious
98
0.00
No
Onsite nontransportation impervious
98
0.00
ft/sec
Onsite open
79
0.06
As
Onsite wooded
76
12.27
As
Onsite pond
100
0.00
Offsite transportation impervious
98
0.00
Offsite nontransportation impervious
98
0.00
Offsite open
79
0.00
I As
Offsite wooded
76
0.00
Offsite pond L_-j-___
100
0.00
Total area =
12.33
acres
0.0193
sq.mi.
Composite SCS CN =
76
% Impervious =
0.0%
B. Time of Concentration Information
***Time of concentration is calculated using the SCS Segmental
Approach (TR-55).
Segment 1: Overland F/mv
Length =
100.0
ft
Height =
2.1
ft
Slope =
0.0210
ft/ft
Manning's n =
0.40
Woods-Light Underbrush
P (2-year/24-hour) =
3.45
inches (Wake County, NQ
Segment Time =
20.28
minutes
Comments
to good condition
ie good condition
ie good condition
ie good condition
B. IHNATOLYA, PE
6/7/2012
Segment 2: Concentrated Flow
Length =
211.0
ft
Height =
16.83
ft
Slope =
0.0798
ft/ft
Paved ? =
No
Velocity =
4.56
ft/sec
Segment Time =
0.77
minutes
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre - development - Subbasin #2 6/7/2012
Segment 3: Channel Flow
Length =
Height =
Slope =
Manning's n =
Flow Area =
Wetted Perimeter =
Channel Velocity =
Segment Time =
719.81
ft
39
ft
0.0542
ft/ft
0.045
Natural Channel
4.00
sf (Assume 2'x 2' Channel)
6.00
ft (Assume 2'x 2' Channel)
5.88
ft/sec
2.04 minutes
Time of Concentration = 23.09 minutes
SCS Lag Time = 13.85 minutes (SCS Lag = 0.6* Tc)
Time Increment = 4.02 minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre- development - Subbasin #3 6/7/2012
I. SCS CURVE NUMBERS
Assume:
HSG
Impervious
Open
Wooded
A
98
39
30
B
98
61
_
C
98
74
70
D
98
80
77
HSG'A' =
0.0%
HSG 'B' =
0.0%
HSG'C'=
0.0%
HSG'D' =
100.0%
80 Assume good condition
Wooded 77 Assume good condition
II. PRE- DEVELOPMENT
A. Watershed Breakdown
Contributing Area
SCS CN7Area
[acres]
Comments
Onsite transportation impervious �l
98
T 0_.13_
-
Onsite nontransportation impervious
98
0.00
_
Onsite openv_
80
2.59
Assume good condition
Onsite wooded _.. .-
77
m25.74
Assume good condition
Onsite pond
100
0.32
0.40
Offsite transportation impervious
98
_.__-_ _._— _.- ..__-_...-
0.73
._..__.._.___.
___..._..___.._- .___...._..____ __........___
_ Offsit_e nontransportation impervious
_ 98�
0.00
Velocity =
_Offsite open
80
0.42_ -
Assume good condition
wooded
77_
0.00
Assume good condition
_ _Offsite
_ - Offsite one d�
100
0.00
yp
Total area =
Composite SCS CN =
% Impervious =
B. Time of Concentration Information
** *Time of concentration is calculated using the S
29.93 acres
0.0468 sq.mi.
78
2.9%
CS Segmental Approach (TR -SS)
Segment 1: Overland Flow
Segment 2: Concentrated Flow
Length =
100.0
ft
Length =
223.3
ft
Height =
2.60
ft
Height =
19.90
ft
Slope =
0.0260
ft/ft
Slope =
0.0891
ft/ft
Manning's n =
0.40
Woods -Light Underbrush
Paved ? =
No
P (2- year /24 -hour) =
3.45
inches (Wake County, NC)
Velocity =
4.82
ft/sec
Segment Time =
18.62
minutes Segment Time =
0.77
minutes
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre - development - Subbasin #3 6/7/2012
Segment 3: Channel Flow
Length =
Height =
Slope =
Manning's n =
Flow Area =
Wetted Perimeter =
Channel Velocity =
Segment Time =
Time of Concentration = 23.62 minutes
SCS Lag Time = 14.17 minutes (SCS Lag = 0.6* Tc)
Time Increment = 4.11 minutes (= 0.29 *SCS Lag)
Segment 4: Channel Flow
631.6
ft
Length =
718.7
ft
13.23
ft
Height =
22.77
ft
0.0209
ft/ft
Slope =
0.0317
ft/ft
0.045
Natural Channel
Manning's n =
0.045
Natural Channel
9.00
sf (Assume 3' x 3' Channel)
Flow Area =
9.00
sf (Assume 3' x 3' Channel)
9.00
ft (Assume 3' x 3' Chamlbl$tted Perimeter =
9.00
ft (Assume 3' x 3' Channel)
4.79
ft/sec
Channel Velocity =
5.89
ft/sec
2.20
minutes
Segment Time =
2.03
minutes
Time of Concentration = 23.62 minutes
SCS Lag Time = 14.17 minutes (SCS Lag = 0.6* Tc)
Time Increment = 4.11 minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Pre- development - Subbasin #4
L SCS CURVE NUMBERS
HSG
A
Impervious
98
Open
39
Wooded
30
0.0%
61
100.0%
C
98
80
_ _ . 70 _._..
D _ .__
_
98
80
_ 77
Assume: HSG'A' =
0.0%
HSG'B' =
0.0%
HSG'C' =
0.0%
HSG'D' =
100.0%
_ Cover Condition _ SCS CN Comments
M, Impervious N -- ,-
___..._.._..__ Open _ .__._ _.. 80 _ Ass_ume good condition
Wooded 77 Assume good condition
II. PRE - DEVELOPMENT
A. Watershed Breakdown
Contributing Area
SCS CN
Area [acres]
impervious_
98
0.00
O_Onsit_e_transpo_rtation
nsite nontransportation impervious
98�
0.00
Onsite open
80
0.47
Onsite wooded
77
0.38
_ _. Onsite pond
11.86
_Off_site transportation impervious m
98
(� 0.37
Offsite nontran portation impervious
98
i 0.00
Offsite men
80
0.22
Offsite _woo_ded ___
77
0.00
r„ Offsitepond. _T
0.00
Total area =
1.44
acres
0.0023
sq.mi.
Composite SCS CN =
84
% Impervious =
25.7%
B. Time of Concentration Information
** *Time of concentration is calculated using the SCS Segmental Approach (TR -55).
Segment 1: Overland Flow
Length =
100.0
ft
Height =
6.5
ft
Slope =
0.0650
ft/ft
Manning's n =
0.36
Dense Grasses/Woods
P (2- year /24 -hour) =
3.45
inches (RDU, NC)
Segment Time =
11.86
minutes
Comments
Assume good condition
Assume good condition
Assume good condition
Assume good condition
B. IHNATOLYA, PE
6/7/2012
Segment 2: Concentrated Flow
Length =
139.5
ft
Height =
12
ft
Slope =
0.0860
ft/ft
Paved ? =
No
Velocity =
4.73
ft/sec
Segment Time =
0.49
minutes
Time of Concentration = 12.35 minutes
SCS Lag Time = 7.41 minutes (SCS Lag = 0.6* Tc)
Time Increment = 2.15 minutes = 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre- development - Subbasin #5 6/7/2012
L SCS CURVE NUMBERS
Assume:
HSG
Impervious
Open
Wooded
A
B
98
98
39
61
30
55
C
98
74
70
D
98
80
77
Cover
HSG'A' = 0.0%
HSG'B'= 0.0%
HSG'C'= 0.0%
HSG'D'= 100.0%
- Wooded
II. PRE-DEVELOPMENT
A. Watershed Breakdown
Contributing Area
Onsite transportation impervious
Onsite_n_on_trans_portation imperviou
Onsite open m.
Onsite wooded
Offsite,open
Offsite wooded
98
80 Assume good condition
77 Assume good condition
SCS CN
Area [acres]
a 98
�..98 - - --
0.00
_..._._..0.00._._..
._go____
80
% Impervious =
7.5%
-
77
4.12
100
0.00
Manning's n =
X 0.56 --
�98
98
_
0.00
-. .__._._._
80
_.._.___._. -__.__
L69
77
0.46
Total area =
7.49 acres
ft
0.0117 sq.mi.
Composite SCS CN =
80
% Impervious =
7.5%
B. Time of Concentration Information
** *Time of concentration is calculated using the SCS Segmental Approach (TR -55)
Comments
Assume good condition
Assume ggood condition
Assume good condition
Segment 1: Overland Flow
100
ft
Length =
100
ft
Height =
4.54
ft
Slope =
0.0454
ft/ft
Manning's n =
0.36
Dense Grasses /Woods
P (2- year /24 -hour) =
3.45
inches (Wake County, NC)
Segment Time =
13.69
minutes
Segment 3: Channel Flow
Length =
100
ft
Height =
4
ft
Slope =
0.0400
ft/ft
Manning's n =
0.045
Natural Channel
Flow Area =
4.00
sf (Assume 2'x 2' Channel)
Wetted Perimeter =
6.00
ft (Assume 2'x 2' Channel)
Channel Velocity =
5.05
ft /sec
Segment Time =
0.33
minutes
Segment 2: Concentrated Flow
Length =
98.4 ft
Height =
7.96 ft
Slope =
0.0809 ft/ft
Paved ? =
No
Velocity =
4.60 ft /sec
Segment Time =
0.36 minutes
Segment 4: Channel Flow
Length =
251.4
ft
Height =
12
ft
Slope =
0.0477
ft/ft
Manning's n =
0.045
Natural Channel
Flow Area =
4.00
sf (Assume 2'x 2' Channel)
Wetted Perimeter =
6.00
ft (Assume 2'x 2' Channel)
Channel Velocity =
5.52
ft /sec
Segment Time =
0.76
minutes
PARKSME TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre- development - Subbasin #5 6/7/2012
Time of Concentration = 15.14 minutes
SCS Lag Time = 9.08 minutes (SCS Lag = 0.6* Tc)
Time Increment = 2.63 minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Pre- development - Subbasin #6
I. SCS CURVE NUMBERS
Assume:
HSG
A
Impervious
98
Open
39
Wooded
30
HSG'C'=
73.1%
61
_ _M
C _
98
_._
70J_
D _
98
80
77
Cover Condition
Wooded
II. PRE - DEVELOPMENT
A. Watershed Breakdown
HSG'A'
= 0.0%
HSG'B'
= 0.0%
HSG'C'=
73.1%
HSG'D'
= 26.9%
Onsite nontransportation impervious
SCS CN
98
0.00
-
— _—
------- _ 72_
Assume good condition
Assume good condition
Contributing Area
SCS CN
Area [acres]
Comments
Onsite transportation impervious
100
ft
Length = 579.1 ft
Onsite nontransportation impervious
98
0.00
-
Onsite open
76
0.00
Assume good condition
_.�
Onsite wooded
72
6.27
Assume good condition
Onsite pond
100
0.00
� µ
Offsite tranortation impervious _
_.___ _.
Offsite nontransportation impervious
98
98
0.00
0.00
O_ffsite open
76_
0.00
Assume good condition
Offsite wooded_ �` _
Offsite
72
100
_0.05 _
_ 0.00
me g000ndition
Assu d c
��, ���
pond �
Total area =
6.32
acres
0.0099
sq.mi.
Composite SCS CN =
72
% Impervious =
0.0%
B. Time of Concentration Information
** *Time of concentration is calculated using the SCS Segmental Approach (TR -55)
B. IHNATOLYA, PE
6/7/2012
Segment 1: Overland Flow
Segment 2: Concentrated Flow
Length =
100
ft
Length = 579.1 ft
Height =
2.4
ft
Height = 43.1 ft
Slope =
0.0240
ft/ft
Slope = 0.0744 ft/ft
Manning's n =
0.40
Woods -Light Underbrush
Paved ? = No
P (2- year /24 -hour) =
3.45
inches (Wake County, NC)
Velocity = 4.41 ft/sec
Segment Time =
19.23
minutes
Segment Time = 2.19 minutes
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Pre- development - Subbasin #6
B. IHNATOLYA, PE
6/7/2012
Time of Concentration = 21.42 minutes
SCS Lag Time = 12.85 minutes (SCS Lag = 0.6* Tc)
Time Increment = 3.73 minutes = 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG-12000 Pre-development - Subbasin #7
1. SCS CURVE NUMBERS
HSG
A
mpervious
98
Open
39
Wooded
30
B
98
61
55
C
98
74
70
D
98
80
77
Assume:
HSG'A'=
0.0%
Height =
HSG'B'=
0.0%
Slope =
HSG'C'=
22.1%
Manning's n =
HSG'D'=
77.9%
Cover Condition
SCS CN Comments
Impervious
Segment Time =
98
Open
79 _.-Assunie good condition
Wooded
75 Assume good condition
11. PRE-DEVELOPMENT
A. Watershed Breakdown
Contributing Area SCS CN Area [acres] Comments
Onsite transportation impervious 98:____
Onsite nontransportation impervious a 98 0.00
Onsite open 79 0.00 ---- Assume good condition
Onsite wooded 75 10.63 Assume good condition
Onsite pond e 100 0.00
Offsite transportation i 98 0.00
iM_PTD29uS___ - - -------
Offsite jnontr4nsp iRri impervious_ 98 0.00
.qqa( jTy�L
Offsite open _0_. 0 Assume good condition
---- ------- .......
Offsite wooded 75 i 0.04 Assume good condition
Offsite pond 100 "o
Total area = 10.67 acres
0.0167 sq.mi.
Composite SCS CN = 75
% Impervious = 0.0%
B. Time of Concentration Information
*Time of concentration is calculated using the SCS Segmental Approach (TR-55).
Segment 1: Overland Flow
Length =
100
ft
Height =
4.35
ft
Slope =
0.0435
ft/ft
Manning's n =
0.40
Woods-Light Underbrush
P (2-year/24-hour) =
3.45
inches (Wake County, NQ
Segment Time =
15.16
minutes
Segment 2: Co,
Length =
Height =
Slope =
Paved ? =
Velocity =
Segment Time =
B. IHNATOLYA, PE
6/7/2012
7centrated
177.9
19.65
0.1105
No
5.37
0.55
1710w
ft
ft
ft/ft
ft/sec
minutes
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre - development - Subbasin #7 6/7/2012
Segment 3: Channel Flow
Length =
Height =
Slope =
Manning's n =
Flow Area =
Wetted Perimeter =
Channel Velocity =
Segment Time =
613
ft
35
ft
0.0571
ft/ft
0.045
Natural Channel
2.00
sf (Assume 2'x F Channel)
4.00
ft (Assume 2' x P Channel)
4.98
ft/sec
2.05 minutes
Time of Concentration = 17.76 minutes
SCS Lag Time = 10.65 minutes (SCS Lag = 0.6* Tc)
Time Increment = 3.09 minutes (= 0.29 *SCS Lag)
PARKSME TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre - development - Subbasin #8 6/7/2012
I SCS CURVE NUMBERS
HSG I
Impervious O
Open W
Wooded
_ A d 9
98 3
39 _
_30
Assume: HSG'A'= 0.0%
HSG'B'= 0.0%
HSG'C'= 0.0%
HSG'D'= 100.0%
Cover Condition SCS CN
Wooded
II. PRE - DEVELOPMENT
A. Watershed Breakdown
Contributing Area
Onsite transportation impen
Onsite nontransportation impe
.._.- Onsite open _ __.
_Offsite qpen_
Offsite wooded
Total area =
Composite SCS CN =
% Impervious =
77
Comments
_Assume good condition
Assume Qood condition
SCS CN Area nacres)
98 _ 0.00 _._.
98 0.00
80 0.00
77 ` 3.54
0.00
0.00 .�.
80 0.00
77 - --0.00 -.
100 0.00
3.54 acres
0.0055 sq.mi
77
0.0%
B. Time of Concentration Information
** *Time of concentration is calculated using the SCS Segmental Approach (TR -55)
Comments
Assume good condition
Assume good condition
As_s - um e good condition
Assume eood condition
Segment 1: Overland Flow
Length = 100 ft
Height = 9.9 ft
Slope = 0.0990 ft/ft
Manning's n = 0.40 Woods -Light Underbrush
P (2- year /24 -hour) = 3.45 inches (Wake County, NC)
Segment Time = 10.91 minutes
Segment 3: Channel Flow
Length = 138.6 ft
Height = 17.5 ft
Slope = 0.1263 ft/ft
Manning's n = 0.045 Natural Channel
Flow Area = 2.00 sf (Assume 2'x 1' Channel)
Wetted Perimeter = 4.00 ft (Assume 2'x I' Channel)
Channel Velocity = 7.41 ft /sec
Segment Time = 0.31 minutes
Segment 2: Concentrated Flow
Length = 121.4 ft
Height = 22.6 ft
Slope = 0.1862 ft/ft
Paved ? = No
Velocity = 6.97 ft /sec
Segment Time = 0.29 minutes
Segment 4: Channel Flow
Length = 111.8 ft
Height = 15 ft
Slope = 0.1342 ft/ft
Manning's n = 0.045 Natural Channel
Flow Area = 2.00 sf (Assume 2'x 1' Channel)
Wetted Perimeter = 4.00 ft (Assume 2'x P Channel)
Channel Velocity = 7.64 ft /sec
Segment Time = 0.24 minutes
3.54 acres
0.0055 sq.mi
77
0.0%
B. Time of Concentration Information
** *Time of concentration is calculated using the SCS Segmental Approach (TR -55)
Comments
Assume good condition
Assume good condition
As_s - um e good condition
Assume eood condition
Segment 1: Overland Flow
Length = 100 ft
Height = 9.9 ft
Slope = 0.0990 ft/ft
Manning's n = 0.40 Woods -Light Underbrush
P (2- year /24 -hour) = 3.45 inches (Wake County, NC)
Segment Time = 10.91 minutes
Segment 3: Channel Flow
Length = 138.6 ft
Height = 17.5 ft
Slope = 0.1263 ft/ft
Manning's n = 0.045 Natural Channel
Flow Area = 2.00 sf (Assume 2'x 1' Channel)
Wetted Perimeter = 4.00 ft (Assume 2'x I' Channel)
Channel Velocity = 7.41 ft /sec
Segment Time = 0.31 minutes
Segment 2: Concentrated Flow
Length = 121.4 ft
Height = 22.6 ft
Slope = 0.1862 ft/ft
Paved ? = No
Velocity = 6.97 ft /sec
Segment Time = 0.29 minutes
Segment 4: Channel Flow
Length = 111.8 ft
Height = 15 ft
Slope = 0.1342 ft/ft
Manning's n = 0.045 Natural Channel
Flow Area = 2.00 sf (Assume 2'x 1' Channel)
Wetted Perimeter = 4.00 ft (Assume 2'x P Channel)
Channel Velocity = 7.64 ft /sec
Segment Time = 0.24 minutes
Segment 3: Channel Flow
Length = 138.6 ft
Height = 17.5 ft
Slope = 0.1263 ft/ft
Manning's n = 0.045 Natural Channel
Flow Area = 2.00 sf (Assume 2'x 1' Channel)
Wetted Perimeter = 4.00 ft (Assume 2'x I' Channel)
Channel Velocity = 7.41 ft /sec
Segment Time = 0.31 minutes
Segment 2: Concentrated Flow
Length = 121.4 ft
Height = 22.6 ft
Slope = 0.1862 ft/ft
Paved ? = No
Velocity = 6.97 ft /sec
Segment Time = 0.29 minutes
Segment 4: Channel Flow
Length = 111.8 ft
Height = 15 ft
Slope = 0.1342 ft/ft
Manning's n = 0.045 Natural Channel
Flow Area = 2.00 sf (Assume 2'x 1' Channel)
Wetted Perimeter = 4.00 ft (Assume 2'x P Channel)
Channel Velocity = 7.64 ft /sec
Segment Time = 0.24 minutes
Segment 2: Concentrated Flow
Length = 121.4 ft
Height = 22.6 ft
Slope = 0.1862 ft/ft
Paved ? = No
Velocity = 6.97 ft /sec
Segment Time = 0.29 minutes
Segment 4: Channel Flow
Length = 111.8 ft
Height = 15 ft
Slope = 0.1342 ft/ft
Manning's n = 0.045 Natural Channel
Flow Area = 2.00 sf (Assume 2'x 1' Channel)
Wetted Perimeter = 4.00 ft (Assume 2'x P Channel)
Channel Velocity = 7.64 ft /sec
Segment Time = 0.24 minutes
Segment 4: Channel Flow
Length = 111.8 ft
Height = 15 ft
Slope = 0.1342 ft/ft
Manning's n = 0.045 Natural Channel
Flow Area = 2.00 sf (Assume 2'x 1' Channel)
Wetted Perimeter = 4.00 ft (Assume 2'x P Channel)
Channel Velocity = 7.64 ft /sec
Segment Time = 0.24 minutes
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre- development - Subbasin #8 6/7/2012
Time of Concentration = 11.75 minutes
SCS Lag Time = 7.05 minutes (SCS Lag = 0.6* Tc)
Time Increment = 2.05 minutes = 0.29 *SCS La
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre- development - Subbasin #9 6/7/2012
I SCS CURVE NUMBERS
Assume:
a HSG
fm- ervious
Open
Wooded _
A
98
39
30 w
_
11/11
_
98_
74
P (2- year /24 -hour) =
D
98
80
77
HSG'A'= 0.0%
HSG'B'= 0.0%
HSG'C'= 0.0%
HSG'D'= 100.0%
Cover
Wooded
IL PRE - DEVELOPMENT -
A. Watershed Breakdown
Contributing Area
Onsite
Onsite open
Onsite wooded
Offsite open
Offsite wooded
Total area =
Composite SCS CN =
% Impervious =
S CN Comments
80 Assume good condition
77 Assume good condition
SCS CN Area [acres]
98 0.19_
_ 98,.__.__.. _ 0.00
77 11.78_,_
100 0.00
98 �0.00
0.00
80 0.00
77 0.00 „
100¢0.00
12.16 acres
0.0190 sq.mi.
77
1.6%
B. Time of Concentration Information
** *Time of concentration is calculated using the SCS Segmental Approach (TR -55)
Comments
Assume good condition
Assume good condition
Assume good con dition T
Assume good condition „
Segment 1: Overland Flow
196.9
ft
Length =
100
ft
Height =
6.9
ft
Slope =
0.0690
11/11
Manning's n =
0.40
Woods -Light Underbrush
P (2- year /24 -hour) =
3.45
inches (Wake County, NC)
Segment Time =
12.60
minutes
Segment 3: Channel Flow
Length =
196.9
ft
Height =
15
ft
Slope =
0.0762
ft/ft
Manning's n =
0.045
Natural Channel
Flow Area =
2.00
sf (Assume 2'x P Channel)
Wetted Perimeter =
4.00
ft (Assume 2'x 1' Channel)
Channel Velocity =
5.76
ft /sec
Segment Time =
0.57
minutes
Segment 2: Concentrated Flow
Length =
217.1 ft
Height =
21.6 ft
Slope =
0.0995 JIM
Paved ? =
No
Velocity=
5.10 fl/sec
Segment Time =
0.71 minutes
Segment 4: Channel Flow
Length =
374.9
ft
Height =
24
ft
Slope =
0.0640
ft/ft
Manning's n =
0.045
Natural Channel
Flow Area =
2.00
sf (Assume Tx I' Channel)
Wetted Perimeter =
4.00
ft (Assume 2'x 1' Channel)
Channel Velocity=
5.28
ft/sec
Segment Time =
1.18
minutes
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B.IHNATOLYA, PE
KRG -12000 Pre- development - Subbasin #9 6/7/2012
Time of Concentration = 15.07 minutes
SCS Lag Time = 9.04 minutes (SCS Lag = 0.6* Tc)
Time Increment = 2.62 minutes = 0.29 *SCS La
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Pre- development - Subbasin #I OA
L SCS CURVE NUMBERS
HSG
A
Impervious
98
Open
39
Wooded
30
B
98
61
55
C
98
74
0
D -
98
80
7
Assume:
HSG'A' =
0.0%
Comments
HSG'B' =
0.0%
0.00
HSG'C' =
0.0%
98
HSG'D' =
100.0%
Cover Condition
SCS CN Comments
_
Impervious
Assume good condition
98 -
_
_.
80
Assume good condition
w _Open
Wooded
... 0.00
77
Assume good condition
II. PRE - DEVELOPMENT
A. Watershed Breakdown
Contributing Area
SCS CN
Area [acres]
Comments
Onsite transportation impervious
98
0.00
Length = 544 ft
Onsite nontransportation impervious
98
0.00
-
Onsite open
80
1.8._.__
Assume good condition
f _
Onsite wooded
77
8.29 _
NmmmAssume good condition
Onsite. °_. _.. ._. _...v.
100.
... 0.00
-
Offsite transportation impervious
98
2.27
-
Offsite nontransportation impervious
98
0.00
-
Offsite open
80
1.44
Assume good condition
Offsite wooded
0.21
Assume good condition
_
z Offsite pond
_ _77 _
100
_ _
1 0.00
Total area =
14.07
acres
0.0220
sq.mi.
Composite SCS CN =
81
% Impervious =
16.1%
B. Time of Concentration Information
** *Time of concentration is calculated using the SCS Segmental Approach (TR -55).
B. IHNATOLYA, PE
6/7/2012
Segment 1: Overland Flow
Segment 2: Concentrated Flow
Length =
100
ft
Length = 544 ft
Height =
5.2
ft
Height = 66 ft
Slope =
0.0520
ft/ft
Slope = 0.1213 ft/ft
Manning's n =
0.40
Woods -Light Underbrush
Paved ? = No
P (2- year /24 -hour) =
3.45
inches (Wake County, NC)
Velocity = 5.63 ft/sec
Segment Time =
14.11
minutes
Segment Time = 1.61 minutes
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Pre - development - Subbasin #I OA
B. IHNATOLYA, PE
6/7/2012
Time of Concentration = 15.72 minutes
SCS Lag Time = 9.43 minutes (SCS Lag = 0.6* Tc)
Time Increment = 2.74 minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Pre - development - Subbasin #10B
I. SCS CURVE NUMBERS
Assume:
HSG
A
Impervious
98
Open
39
Wooded
30
HSG'C' =
0.0%
61
C._
98 mm
0.0180
_w 70
w
98
80
77
HSG'A' =
0.0%
HSG'B' =
0.0%
HSG'C' =
0.0%
HSG'D' =
100.0%
SCS CN
Wooded __..77_.__
II. PRE - DEVELOPMENT
A. Watershed Breakdown
Contributing Area
Onsite transportation impervio
Onsite nontransportation impery
-� Onsite open
_Onsite wooded_
Onsite pond
Off site transportation im
Offsite nontran�ortation i
Offsite_o_p_en
Offsite_wooded
Offsite pond
Total area =
Composite SCS CN =
% Impervious =
Assume good condition
Assume good condition
SCS CN Area [acres]
0.
6.18 acres
0.0097 sq.mi.
78
0.0%
98
Length =
-0.00
_
p98
100
ft
80
1.8
0.00
_.__.77_._-
0.0180
0.00
100
0.40
0.00
98
3.45
0.00
��..98
21.57
minutes
80
77
4.57
100
0.00
B. Time of Concentration Information
** *Time of concentration is calculated using the SCS Segmental Approach (TR -55).
Comments
Assume good_ condition
Assume good condition
Assume good condition
Assume good condition
Segment 1: Overland Flow
Length =
273.8
Length =
100
ft
Height =
1.8
ft
Slope =
0.0180
ft/ft
Manning's n =
0.40
Woods -Light Underbrush
P (2- year /24 -hour) =
3.45
inches (Wake County, NC)
Segment Time =
21.57
minutes
B. IHNATOLYA, PE
6/7/2012
Segment 2: Concentrated Flow
Length =
273.8
ft
Height =
36.1
ft
Slope =
0.1318
ft/ft
Paved ? =
No
Velocity =
5.87
ft/sec
Segment Time =
0.78
minutes
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre- development - Subbasin #IOB 6/7/2012
Segment 3: Channel Flaw
Length =
Height =
Slope =
Manning's n =
Flow Area =
Wetted Perimeter =
Channel Velocity=
Segment Time =
86.9
ft
4
ft
0.0460
ft/ft
0.045
Natural Channel
4.00
sf (Assume 2'x 2' Channel)
6.00
ft (Assume 2'x 2' Channel)
5.42
ft/sec
0.27 minutes
Time of Concentration = 22.62 minutes
SCS Lag Time = 13.57 minutes (SCS Lag = 0.6* Tc)
Time Increment = 3.94 minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Pre- development - Subbasin #11
I. SCS CURVE NUMBERS
HSG
A
Impervious
98
Open
39
Wooded
30 _
_ _
B
_
98
61
55
M
0.00 -
98
74
70
D
- 98
80
77
Assume:
HSG'A' =
0.0%
Onsite transportation impervious_
98
HSG'B' =
0.0%
98
M
0.00 -
HSG'C' =
0.0%
0.75 Assume good condition
Onsite wooded
HSG'D' =
100.0%
Onsite pond __..._ ,
Cover Condition
Offsite transportation iervious98
SCS CN
Comments
Impervious._
98
0.00
µ - Offsite open
Offsite wooded
Open _
0.42M y M - T Assume good condition
0.00 Assume good condition
80
Assume good condition_
Wooded
i
77
Assume good condition
II. PRE- DEVELOPMENT
A. Watershed Breakdown
Contributing Area
SCS CN
Area [acres] Comments
Onsite transportation impervious_
98
� 0.11
_
Onsite nontransportation impervious
98
M
0.00 -
Onsite open
80
0.75 Assume good condition
Onsite wooded
77
11.00 Assume good condition
Onsite pond __..._ ,
100 ._._ 000.__..,.__
Offsite transportation iervious98
Segment Time =
0.38_ -
Offsite nontraortation impervious
98
0.00
µ - Offsite open
Offsite wooded
80
0.42M y M - T Assume good condition
0.00 Assume good condition
7 Offsite pond
_77
1000.00
Total area =
12.66
acres
0.0198
sq.mi.
Composite SCS CN =
78
% Impervious =
3.9%
B. Time of Concentration Information
** *Time of concentration is calculated using the SCS Segmental Approach (TR -55).
Segment 1: Overland Flow
Length =
147.3
Length =
100
ft
Height =
2.9
ft
Slope =
0.0290
ft/ft
Manning's n =
0.40
Woods -Light Underbrush
P (2- year /24 -hour) =
3.45
inches (Wake County, NC)
Segment Time =
17.82
minutes
B. IHNATOLYA, PE
6/7/2012
Segment 2: Concentrated Flow
Length =
147.3
ft
Height =
8.6
ft
Slope =
0.0584
ft/ft
Paved ? =
No
Velocity =
3.91
ft/sec
Segment Time =
0.63
minutes
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre- development - Subbasin #11 6/7/2012
Segment 3: Channel Flow
Length =
Height =
Slope =
Manning's n =
Flow Area =
Wetted Perimeter =
Channel Velocity =
Segment Time =
747.1
ft
37
ft
0.0495
ft/ft
0.045
Natural Channel
4.00
sf (Assume 2'x 2' Channel)
6.00
ft (Assume 2'x 2' Channel)
5.62
ft/sec
2.21 minutes
Time of Concentration = 20.67 minutes
SCS Lag Time = 12.40 minutes (SCS Lag = 0.6* Tc)
Time Increment = 3.60 minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Pre- development - Subbasin #12
I. SCS CURVE NUMBERS-
HSG
A
Impervious
98
Open
39
Wooded
30
61
_
C
98
70
D
98
80
77
B. IHNATOLYA, PE
6/7/2012
Assume: HSG'A' = 0.0%
HSG'B' = 0.0%
HSG'C' = 0.0%
HSG'D' = 100.0%
Cover Condition SCS CN Comments _
- ____._._..__....._._.Impervious ...____._ 98 -
__ 80 Assume good condition m m
Wooded 77 Assume good condition
IL PRE- DEVELOPMENT
A. Watershed Breakdown
_�
Contributing Area SCS CN Area [acres] Comments
_Onsite transportation impervious 98 _ _ 0.16
_
_Onsite nontransportahon impervious 98 0.15 -
Onsite open 80 1.63 Assume good condition
Onsite wooded 77T 0.49 Assume good condition
Onsite pond _ 100 0.00 -
_ Offsite tran�rt
oation impervious _ _ 98 0.76_ _._____..___.� _._.._�..____._.._ ............. .._.._
Offsite nonh•ansportathon impervious 98 0.00 - y
Offsite open _80 0.28 Assume good condition
Offsite wooded_ _ _ 77 0.00 _ Assu_me good condition
Offsite pond q� _.__.
Total area = 3.47 acres
0.0054 sq.mi.
Composite SCS CN = 85
% Impervious = 30.8%
B. Time of Concentration Information
** *Time of concentration is calculated using the SCS Segmental Approach (TR -55).
Segment 1: Overland Flow Segment 2: Concentrated Flow
Length = 100 ft Length = 194.1 ft
Height = 1.7 ft Height = 14.3 ft
Slope = 0.0170 ft/ft Slope = 0.0737 ft/ft
Manning's n = 0.40 Woods -Light Underbrush Paved ? = No
P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Velocity = 4.39 ft /sec
Segment Time = 22.07 minutes Segment Time = 0.74 minutes
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Pre - development - Subbasin #12 6/7/2012
Segment 3: Channel Flow
Length =
Height =
Slope =
Manning's n =
Flow Area =
Wetted Perimeter =
Channel Velocity =
Segment Time =
241.8
ft
18
ft
0.0744
ft/ft
0.045
Natural Channel
2.00
sf (Assume 2' x P Channel)
4.00
ft (Assume 2'x 1' Channel)
5.69
ft/sec
0.71 minutes
Time of Concentration = 23.52 minutes
SCS Lag Time = 14.11 minutes (SCS Lag = 0.6* Tc)
Time Increment = 4.09 minutes (= 0.29 *SCS Lag)
• - r - - • •
POA #10
POA tt9
ssc>
PoA an
POA #11
sue 1: 5v9C3
POA #12 P AO
SUS12
POA #3 POA #6
SUB03 'J ^c�6
POA #4 POA N2
SUB04 SU &32
POA a6 POA #i
aUBOf
SUB05
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
5/22/2012 27 Siemon Company Drive Suite 200 W Page 1 of 1
Watertown, C7 06795 USA t1- 203 -755 -1666
Subsection: Master Network Summary
Catchments Summary
Label Scenario Return Hydrograph Time to Peak Peak Flow
Event Volume (min) W /s)
(years) (ac -ft)
SUB01
Pre - Development 1-
1
1.227
731.000
14.14
Year
SUB01
Pre- Development 2-
2
1.803
731.000
21.45
Year
SUBO1
Pre- Development 5-
5
2.746
731.000
31.53
Year
SUB01
Pre- Development 10-
10
3.528
731.000
39.39
Year
SUB02
Pre - Development 1-
1
0.940
733.000
9.82
Year
SUB02
Pre - Development 2-
2
1.355
733.000
14.51
Year
SUB02
Pre - Development 5-
5
2.027
733.000
20.94
Year
SUB02
Pre - Development 10-
10
2.579
733.000
25.96
Year
SUB03
Pre-Development 1-
1
2.550
734.000
27.23
Year
SUB03
Pre - Development 2-
2
3.612
734.000
39.00
Year
SUB03
Pre - Development 5-
5
5.311
734.000
54.80
Year
SUB03
Pre - Development 10-
10
6.698
734.000
67.06
Year
SUB04
Pre - Development 1-
1
0.168
726.000
2.62
Year
SUB04
Pre - Development 2-
2
0.226
726.000
3.48
Year
SUB04
Pre - Development 5-
5
0.318
726.000
4.53
Year
SUB04
Pre - Development 10-
10
0.390
726.000
5.32
Year
SUB05
Pre - Development 1-
1
0.712
729.000
9.91
Year
SUB05
Pre - Development 2-
2
0.992
729.000
13.73
Year
SUB05
Pre - Development 5-
5
1.435
728.000
18.64
Year
SUB05
Pre - Development 10-
10
1.793
728.000
22.39
Year
SUB06
Pre - Development 1-
1
0.379
734.000
3.88
Year
SUB06
Pre- Development 2-
2
0.569
734.000
6.09
Year
SUB06
Pre - Development 5-
5
0.883
732.000
9.23
Year
SUB06
Pre - Development 10-
10
1.146
732.000
11.76
Year
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V81
Parkside.ppc Center [08.11.01.51]
6/7/2012 27 Siemon Company Drive Suite 200 W Page 1 of 5
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Master Network Summary
Catchments Summary
Label
Scenario
Return
Hydrograph
Time to Peak
Peak Flow
Event
Volume
(min)
(ft3 /s)
(years)
(ac -ft)
SUB07
Pre - Development 1-
1
0.769
731.000
9.25
Year
SUB07
Pre - Development 2-
2
1.119
730.000
13.79
Year
SUB07
Pre - Development 5-
5
1.689
730.000
19.99
Year
SUB07
Pre - Development 10-
10
2.159
730.000
24.81
Year
SUB08
Pre - Development 1-
1
0.287
727.000
4.36
Year
SUB08
Pre - Development 2-
2
0.409
727.000
6.24
Year
SUB08
Pre - Development 5-
5
0.607
726.000
8.72
Year
SUB08
Pre - Development 10-
10
0.769
726.000
10.64
Year
SUB09
Pre - Development 1-
1
0.983
729.000
13.30
Year
SUB09
Pre - Development 2-
2
1.405
729.000
19.13
Year
SUB09
Pre - Development 5-
5
2.083
728.000
26.88
Year
SUB09
Pre - Development 10-
10
2.638
728.000
32.87
Year
SUB10A
Pre - Development 1-
1
1.408
729.000
19.39
Year
SUB10A
Pre - Development 2-
2
1.946
729.000
26.60
Year
SUB10A
Pre- Development 5-
5
2.793
729.000
35.74
Year
SUB10A
Pre- Development 10-
10
3.475
729.000
42.66
Year
SUB10B
Pre - Development 1-
1
0.527
733.000
5.76
Year
SUB10B
Pre - Development 2-
2
0.746
733.000
8.26
Year
SUB106
Pre- Development 5-
5
1.097
733.000
11.60
Year
SUB1013
Pre - Development 10-
10
1.383
733.000
14.18
Year
SUB11
Pre- Development 1-
1
1.080
733.000
12.44
Year
SUB11
Pre - Development 2-
2
1.529
733.000
17.73
Year
SUB11
Pre - Development 5-
5
2,249
731.000
24.80
Year
SUB11
Pre- Development 10-
10
2.835
731.000
30.31
Year
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center (08.11.01.51]
6/7/2012 27 Siemon Company Drive Suite 200 W Page 2 of 5
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection:
Master Network Summary
Catchments
Summary
Label
Scenario
(min)
Pre - Development 1-
SUB12
(ac -ft)
Year
1
Pre - Development 2-
SUB12
4.76
Year
0.567
734.000
Pre - Development 5-
SUB12
0.789
Year
8.22
10
Pre - Development 10-
SUB12
9.68
Year
Node Summary
Label Scenario
Return
Hydrograph
Time to Peak
Peak Flow
Event
Volume
(min)
(ft3 /s)
(years)
(ac -ft)
1
0.423
734.000
4.76
2
0.567
734.000
6.30
5
0.789
734.000
8.22
10
0.966
734.000
9.68
Return Hydrograph Time to Peak Peak Flow
Event Volume (min) (ft3 /s)
(years) (ac -ft)
POA #1
Pre - Development 1-
1
1.227
731.000
14.14
Year
POA #1
Pre- Development 2-
2
1.803
731.000
21.45
Year
POA #1
Pre - Development 5-
5
2.746
731.000
31.53
Year
POA #1
Pre - Development 10-
10
3.528
731.000
39.39
Year
POA #2
Pre- Development 1-
1
0.940
733.000
9.82
Year
POA #2
Pre - Development 2-
2
1.355
733.000
14.51
Year
POA #2
Pre - Development 5-
5
2.027
733.000
20.94
Year
POA #2
Pre - Development 10-
10
2.579
733.000
25.96
Year
POA #5
Pre - Development 1-
1
0.712
729.000
9.91
Year
POA #5
Pre - Development 2-
2
0,992
729.000
13.73
Year
POA #5
Pre - Development 5-
5
1.435
728.000
18.64
Year
POA #5
Pre - Development 10-
10
1.793
728.000
22.39
Year
POA #4
Pre - Development 1-
1
0.168
726.000
2.62
Year
POA #4
Pre - Development 2-
2
0.226
726.000
3.48
Year
POA #4
Pre - Development 5-
5
0.318
726.000
4.53
Year
POA #4
Pre - Development 10-
10
0.390
726.000
5.32
Year
POA #3
Pre - Development 1-
1
2.550
734.000
27.23
Year
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
6/7/2012 27 Siemon Company Drive Suite 200 W Page 3 of 5
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Master Network Summary
Node Summary
Label
Scenario
Return
Hydrograph
Time to Peak
Peak Flow
Event
Volume
(min)
(ft3 /s)
(years)
(ac -ft)
POA #3
Pre - Development 2-
2
3.612
734.000
39.00
Year
POA #3
Pre - Development 5-
5
5.311
734,000
54.80
Year
POA #3
Pre - Development 10-
10
6.698
734.000
67.06
Year
POA #6
Pre- Development 1-
1
0.379
734.000
3.88
Year
POA #6
Pre - Development 2-
2
0.569
734.000
6.09
Year
POA #6
Pre - Development 5-
5
0.883
732.000
9.23
Year
POA #6
Pre - Development 10-
10
1.146
732.000
11.76
Year
POA #7
Pre - Development 1-
1
0.769
731.000
9.25
Year
POA #7
Pre - Development 2-
2
1,119
730.000
13.79
Year
POA #7
Pre - Development 5-
5
1.689
730.000
19.99
Year
POA #7
Pre - Development 10-
10
2.159
730,000
24.81
Year
POA #8
Pre - Development 1-
1
0.287
727.000
4.36
Year
POA #8
Pre- Development 2-
2
0.409
727.000
6.24
Year
POA #8
Pre - Development 5-
5
0.607
726.000
8.72
Year
POA #8
Pre - Development 10-
10
0.769
726.000
10.64
Year
POA #9
Pre - Development 1-
1
0.983
729.000
13.30
Year
POA #9
Pre - Development 2-
2
1.405
729.000
19.13
Year
POA #9
Pre - Development 5-
5
2.083
728.000
26.88
Year
POA #9
Pre - Development 10-
10
2.638
728.000
32.87
Year
POA #10
Pre - Development 1-
1
1.935
730.000
24.55
Year
POA #10
Pre - Development 2-
2
2.693
729.000
34.05
Year
POA #10
Pre - Development 5-
5
3.890
729.000
46.39
Year
POA #10
Pre - Development 10-
10
4.859
729.000
55.80
Year
POA #11
Pre - Development 1-
1
1.080
733.000
12.44
Year
Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i
Parkside.ppc Center [08.11.01.51]
617/2012 27 Siemon Company Drive Suite 200 W Page 4 of 5
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Master Network Summary
Node Summary
Label
Scenario
Return
Hydrograph
Time to Peak
Peak Flow
Event
Volume
(min)
(ft3 /s)
(years)
(ac -ft)
POA #11
Pre - Development 2-
2
1.529
733.000
17.73
Year
POA #11
Pre - Development 5-
5
2.249
731.000
24.80
Year
POA #11
Pre - Development 10-
10
2.835
731.000
30.31
Year
POA #12
Pre - Development 1-
1
0.423
734.000
4.76
Year
POA #12
Pre - Development 2-
2
0.567
734.000
6.30
Year
POA #12
Pre - Development 5-
5
0.789
734.000
8.22
Year
POA #12
Pre - Development 10-
10
0.966
734.000
9.68
Year
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
6/7/2012 27 Siemon Company Drive Suite 200 W Page 5 of 5
Watertown, CT 06795 USA +1- 203 - 755 -1666
POST - DEVELOPMENT HYDROLOGIC
CALCULATIONS
PARKSIDE TOWN COMMONS
KRG -12000
r- \\ \ --- , ,,' /',' ��\��� J " „� `� \"I - -'\ \> � l ',I\'\ I IIII I [ / -\�\\- _ \ - -__ I /, //i/ / > / / > ` '\ \ \ \\
` /, / - \ - -'// ,/ \ \\ \ I \,1\ 1, 1 r / //, 1 \ \ \ V`\ti
/\\\\\\,�1-�-------7--- / / -- -_ )ii \ \\ \ \ \ \y,J,�., � `,� 111;1\ / / \ \ \ \ \ \atON
V,' /, / , , / - -/� ///, v A �/Y- - - �/ I , , AA'v�vvvv
/ I° , ,v I v A v vv A
I / , , / / / , - - _- v A / I // _ ---- - v A v - / / I I 1 vv
-,/ / vA A "Itl I � �� / v A A A vvv
i - _ / - , Ib - v / I / \ \ v
/, , / / / - '� - v, / v r - vvv -/ / , v\
/ v �rct/ /,[ vv r/ i/, I / v A \vy
-" -' , , / / / / - -, i ,, =Ill v v l %,7%- ��,,` /i_= - --� . _� ; ``:-" /// / , �'�' r v A V 1 ;�
- �, / /II 1'1 - - - -�/ //'/ /',',' /' -- -v A A A v v 1111 -�� -- -A �� V'� Avv_�v����v,'� // /�j I, `v v v ` 1 1 1 1 1 A 1,I,VVV�\,
v ` - - - -- �' / / / ,I / ---- ',/ , , , / / V A v v� 1 , , ,/, - l v - v��vv vA // /(, // %,, ^v v A A A I I I 1 > V III I A VvA
// '/ '/ - - -- / - \\ \ \ 11 1 :\ II / /,,, / , '� \ \ \ I I I I I 1 \ \ \ \,
i / , / // \ \I/ , ,- \ /li- - \ 1 \ \\
/ , / /, - ', , , / \ \ \ 1111,,- _x\11\ I,,,.� \ 1 / 11\,1 % '�\ \ \ I I I I I I \ \ \ \ \ \` \\
\ - - -- ^i ,, / / / / / / _ \ \,,�: _ -- � \ x'--11 -% /,l r \ \ , , IIIIII \ I , , \
- - - / / // / - S , /, / / , _1\ \ )III i/ ,,\ - \� \� \\ lIl` it \ '1114 '- - \ \, \ \ \ \ \ \\ \ \` \\ `\ I III �� - -_ �'' / / / IIII / , / / ' / / / I - - �\ \ - \ \\ ���� \ -- /,%/i'� -\ \ \ \ \ \ , \ \ \ \ \ \ \ \ \ \ \\ \\ `\ I -- _ \ \\\ �\`__ \ \ \ \ \\ \ \ I / / / / - - , v v v- -- A A A V A \ v A AA , ` v V I A
/' / -r' / / / , / , r - - v A - - v � -_ _ w V `v , A v v v v vvv l v v `v v A I I v `l V`: v
/ / / / / / , __ v vvv - ^ v v v I 1 1 A 1 A A v v
- -------- _- , / / / / / / 1 f / _ - -_ - AA v vv � A - - -- v v \ v I l I\ � 1 A \V I A � I l l AV , A A\ A A\ \ > l \ l V vv vv Av��
,- ' , - A / 1 I ( tom- _______ vA ` , v v A- v v V A 1 v , v v Ivv
__ v ' AI \ vv v v11 vvv
- ------ - - - `/ / II ,' \ \ \ I , 1 11 ' - - -- �\ \ r -\ - \ \� , \\ \ \ \\ `\ \ \ \ \\ 1 \ \ \ / \ \ \\ \\ \1 \ \ \ \ \\ \ \ \ l I \& \ \
-- / , , A v / �` v A A V v A 1 A V A , V A V A l A V A A I I , vv .
- v v v /� -- : -� v V v v v v \ v, \, 1, „ v A v v A f /
--77:77-77-:� _- ----_v ,/ V , , /^ / - - A \ V 1 1 A V A A V, ( 1 I I I I /, ,� vvv
1 - \ \vv A 1,, /v.y�
- - -- - -- , - \ \ � \ \ \ \ \ I \ \ \ I I \ \ I \\�
V �A V A A A , I v v V A V v ,\ V A� A 1 I , I I \\ V A \ V A A V A A A A,, A V A\ , A I I� ,
- - - -- - v , v C v I- v v v\ l I I 1 1 v/ \, v I , I �� ,,-
__,,���__ ,' - - v v A A \ A \ \ ' ` \ ``; A A V v A AV v� A \ V A A I A A ` V A r V A v A V 1 1, \, r '1 , 1 A \, 1\ A V I I AA� \\V, "I;,v
\ / -, = -__ / ------ - �`\ ` ^\ \ ` ` A V A ' ` \ A ' V A A A 1\ A \ V A I 1 A ,- A , , I V, 1 I A A \ I A A \ \ I V /I \`\ V •
,__ - A A A A 1 v I ' v,.v V v v A , A V A I I I 1 1 I l 1, A,,, V A A I\ 1 A , I I I AAA,I , l`��, A
-- - -- v v v v v v vv v v 1 v 11 I' vv vv v v `v v\ v v vv , 1 ; 1 � \ I I I vv\ ,', 1 v I v I , A v v ,, V v, v v\ 1 1 111 I I \II( /v vy��
v -\ ', , -- -\V A 2\ \V A A A A V A I A A A A A V A A A V A A \, A ` V 1 A \ V A I 1 A \
/ - -- v v v I I v \ v v v v v \ `I 1 1, 1,A 11 1 I „` 1 1 1 vv(, )vv \S,I
/ --- - - - -,v \ I, v v A v v I I v v vv v v v v vA \ v vvI / 1, A 1 III 'v =vP t/ y�
✓ \ „ v \ _`
\ v 1 A, 1 , 1 ,,I1 I, ,lvv , /,, -- \
\-'' , / �� - A A AV A V A A r , I V A v, A AV ) A \V `V ` A\ V A\ \ , V 1 / I I I , \V A I I A ' // v
/ S , - - - -\ \\ \ \ < \ \ \ \ \ \ \ \ \ \ \ I \
v v ^v v v \vvv l, ,v, �„ „1 )/
-- - - -- - - - \ \ r \ I \
_ - - -- , /,/ - -- v v v z v v \ \ v v v v v v A A „III 1 1 1 1 / lln� ^ �:,.
- - -- __ „// -- vvvv \ \vvvA I Iv vv v vA vvv v \vvv A vv v, v.vI rl 1[Ij1 II I(,I "I - -' \v > »>,
- -- - - - - -- - / /, V ; - \ V A A V , A I A \ V I A \ V I V A\ A A V A A V A V V A I A A \ A I I I I A
v I I v yvv
\ 1 \ \ \ \ \ \ \ \ \ \ \ \ , 1 I \ \ \ \ \ I, \ , 1 I \ \ \ \ , \ \ \ \ 1 \\ I I I I I I 1 I I I 1 , / / ' '\ �,, /,•,,, ��,.\ ��\
\ \ ,/
--------- - - - , , / -- - -\ \ \ \ \ \ \ I \ \ \ I \ \ \ \ / I IIII I I I I 1 1 I I I 1 , / ; I - --`\';� \
- ^/ - - - -, \ \ \ \ \ \ \ \ \\ \ \ \ \\I , \ I I I I I I I 1 I I I 1 ;' "111,1, ! -, III -.l\
\ - \�\
//J \ \\ ` \ 1 \ \ \111\ \ \1 \ IIIIIIIIII 111j ' % /� /;l/ /111 ` \�`�\ \
\ \ \ ,\ I ,I III I I I %// \\ \.
'- - \ \ \ \ \ \ \\ \\ \ ` \ \\ `\ \ \\ \ \ \ I I , 1 1 I I I , I I 1 1 1 ' i,' /;/ '`i,'',' \\ - --
GRAPHIC SCALE - - - -� -- - -�- ,_;',;,, / 1 v v v \vvv ^v v v v v v v \vvvv A °I 1 1 , // v / / / , )
, I v v v v vv v -v II \ , A , r I I I I I I -,/ /,,- vv �`I, A I
100 0 50 100 200 - -- _ - �' '', vv v` 1 v I , \\ v v v v`v v - \ v v v v t „ 1 v I I v r 1 1 1 1 1 / v v , r '/, , - -- / // / / /' / \ \v v
�„ ``vv �, ,v��` , „ \ v .vvA vv11 1v111 11j1 v vvv "/, „'� yy`:v�
- \ \ I \\ \ \\ \ \\ , \` \\ \ \I„ \ \\ \ /1111111 , I III I 1 1111 // / - \ \`,\ I IIIIIIIIIIIIIIIIIIIII 15iiiiiiiiii -- - -- - - ''% `\ \ \ \ \ - ` \ \ \ \ \\ \ \\ \ \ I\ l 1 , 1 1 r1 11 \ ` /' /' < / // / /// / ; - - �' /' /'' / /, - -- _ �\
\ \ \ \ \ \ \ \\ \ 11111 \ \\ /„ \
1 inch = 100 ft. \ -_ _ -__- ,/\ \ \\ \\ \ \\ \ \ \ \ \ ; -- \\ \\ \\ \ \\ \\ ` \ \ \\ ` \ \\ \\ ` \ I\ `\ \ f \\ \ III l l \ \ \\ \ \ \ , \// j / / / __.�\ \\
\\ \\
// / / , , 1Vvvvvv\v
-- - ;�11`vvA v ,v�`� , „A� �`�` v 11 vv <<1v1vly\ - ,'1111 / ,; _�' v`Iv\v�Avvvv
- - - -- - -, %,�yvv� `;vv�„� v„ �v \ v v V v v I I ",vv\ v v v A v v y1 \\I\\ v \� -'; ' /'/ /,', ,' /, vw���w ♦♦
-- - ,, vvv vAv- `w� v A `� vvI v v , , v `v v v v , / I v v V vv v v v v \ v vvvA v v v v v v , , - -- -- , /'' / // / ' / / , ''� - -- A v, �1vvAw�\o
I -- - -' /,� v v v vvvv - - l l v v v c Z / V v 1 , v \ V A vv vvvvv A ` v v v \vvvv A v v - ; / / , / / / / ,' / " - \ v v` \v iAy` ` \
-- v - ' / -1`,v vv Av`,'� `v - - - ' A I A \ \ V AA 'V A I A A V A V A A V \ A VA V A V A A V / , / / , , / / , ' , 1AAAA A
1 // , , « vvv, I ' -/, _A A - - _ -- - , V A A A V I A A A V I v V A V v A A V A V 1 I v `v // /
�� - -/- - �. -,, /- / / /vim- eL - V- - --,'- , A V A C I A / A A V AA A \ ,\ LV AAA AA \,A \ VA , / , / /,,, V AA,A, -A
J �,_- � i / // / / /,, - -- - l _- '/ VAA A A V A v A A , A I 1/ ` \A VAA v v / A \ VAA V l l v V A A v A AI , 1 , 1 v V `v ` v ' 1 ' / / / ' / / , / / / / , r- I I wvv, vv\ v
V A v I r , / I v� `vvA
/ _ --(1/( ,, _- G _ -_ / _ -= ,/ A v v A 1 v\ v v v v\ V A \ v - I v i 1 1 ,// /// I I v v
/ - - - ' ' // „ //I__�1'_ //l A - -�A /I� I A AA A \ \ I 1 1 J\__ A 1 ( ' , , _ / I I A -I ,-��
- -I I l / / _ _lIr "_ - -- v 1' \ = � ` v v v v - -- - vv `vA `v`� v vv v v v v v v v v A r ', I,', ',', I, I A v v `v w \ v III ' ,' / / / / // 1 v A.
- -- // „v // /'= - - -'II - -__'' = %� /, „ "vAv ;, ��v �Vv vvvv \ v v 'v v vvv w v v v v / / / -_/ vv ,v \�
-_ �' % �� °',/ i/ / / ^,' // - i v v A �/- v v A A A A V A \ V A v\ V A V A A\ I /,, I v A A A\ V v I IIIIII 1' r /' , 1 vA v v V.v
/ A V A v v „11,,', A v I I `, �,y
/, , -I = -, -/ - - �� v A „ / / J vvv
^ -�� // /// r _ -- - -f V A \vvvv I 1vv`,`I v
v -� V v I,, __ ' - - - - -- .,- _,„ / // ,/ /, /,'/,/ /'/ ' ^�� ��/ (- ' I -� A A V A A A, I A �V ` VA V AA A V v A\ V I A \� I A\ A 1, „ A I V A l I I I „ 1// / , , 1 1 I 1` / A
A - // l // //,/, /� %1 /- -) //- _' ' v ` i li v A �v vvvv vv vA Av v v II I vvv vv \vvvv v , / /' /i,l I / / / '` / i I /' 111 "�
_ _ I I r / / / / / / / I I v o
r // ,/, /// A V A I v A A A V A V l / I
V - - - v A VA I)1�� - - - - //- A -/ /, , , S //, ' ' /,- -/ -, _ -- - - -- - ��, -- - __„ / A v A 1 I I A A A A 1 I I V / / I 1 / , / / I / l l l l / If \ %
vA� v - , - - ' -- , vv I \ v \ / /
v v \ v v vv Vv - / r .Ji r> / / / ,, ,/ >, /,� /,, - - i - - v" ' , v c A , ,/ , V v v v v V A v v v v A IIII r A A \ v v ,./ / / /, '' I I / / / I / / / / / A v I \ V A V AAV AA - - -� -� �� ,// / / / - // ,,/,/, // / ' - / - <'''' -'' , I I , ' v v A V A A A , I I l v / / A /
vv
-y - - - - -- v A , / / / / / /, , - - ' v A A\ \\ V A A \ V \ I I I v v A /' l l l / / /; 1 \1 v
✓ / ✓ 'i ^ v v
\vv '' -- I A v v v v
J11 I I vv vv /
1 I V I I / /, / I ,
vv v vvv // % -y vvv \ // <' I 11 1V I ll/ i i r'/ �y�yvvv \
v v vv v\ v� I r N ,/' / / \vv v v I 1 / I / / / vvv
`- - - - - -- vvvv v vv v - / s ,- - - , / - - - / ' , I
-- - - - - -- :y \v \\ !` V vv vvv 1 X ,a1 / ' / ; / / / I ' I / // / ;
PARK. TOWN COMMONS POST-DEVELOPMENT _ DROLOGY SUMMARY B.IHNi, _LYA,PE
KRG-12uvJ
9/10/2012
Onsite Area acres I Offsite Area acres
Sub-basin ID Total Area
Transportation Non-transportation Transportation Non-transportation (acres)
Impervious Impervious Open Wooded Pond Total Impervious Impervious Open Wooded Pond Total
1-To SWMF#3 11.13 6.52 5.63 0.11 1.51 24.90 0.20 0.00 2.26 0.00 0.00 2.46 27.36
1-To SWMF#4 2.04 0.32 3.24 0.00 1.40 6.99 0.08 0.01 0.09 0.00 0.00 0.18 7.17
I-Bypass 0.00 0.00 2.59 1.27 0.00 3.86 0.01 0.00 0.98 0.00 0.00 1 0.99 4.85
3-To SWMF#1 3.02 2.45 1.63 0.00 0.54 7.64 0.94 0.01 0.11 0.00 0.00 1.06 8.70
3-To SWMF#2 1.83 0.27 1.17 1.93 0.28 5.48 0.00 0.00 0.00 0.00 0.00 0.00 5.48
3-Bypass 1.12 0.20 2.50 4.60 0.00 8.42 0.26 0.00 0.00 0.00 0.00 0.26 8.68
4 0.00 0.00 0.26 0.00 0.00 0.26 0.42 0.04 0.08 0.00 0.00 0.54 1 0.80
5 0.00 0.00 0.78 0.00 0.00 0.78 0.58 1 0.01 1.03 0.00 1 0.00 1.62 2.40
Totals= 19.14 9.75 17.80 7.91 3.73 58.34 2.49 0.07 4.55 0.00 0.00 7.11 65.45
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Post- development- Subbasin #1- To SWMF #3 9/10/2012
Assume:
HSG
Impervious
Open
Wooded
A
98
39
30
B
98
61
55
C
98
74
70
D
98
80
77
HSG'A' =
0.0%
HSG'B' =
0.0%
HSG'C' =
18.2%
HSG'D' =
81.8%
Cover Condition
SCS CN
Comments
Im ervious
98
98
Open
79
Assume good condition
Wooded
76
Assume good condition
A. Watershed Breakdown
Measured Onsite Transportation Impervious = 10.60 acres
Additional 5% Onsite Transportation Impervious = 0.53 acres
Total Onsite Transportation Impervious = 11.13 acres
Measured Onsite Nontransportation Impervious = 6.21 acres
Additional 5% Onsite Nontransportation Impervious = 0.31 acres
Total Onsite Nontransportation Impervious = 6.52 acres
Contributing Area
SCS CN
Area [acres]
Comments
Onsite transportation impervious
98
11.13
-
Onsite nontransportation impervious
98
6.52
-
Onsite open
79
5.63
Assume good condition
Onsite wooded
76
0.11
Assume good condition
Onsite pond
100
1.51
-
Offsite transportation impervious
98
0.20
-
Offsite nontrans ortation impervious
98
0.00
-
Offsite open
79
2.26
Assume good condition
Offsite wooded
76
1 0.00
Assume good condition
Offsite 2ond
100
0.00
-
Total area =
27.36 acres
0.0428 sq.mi.
Composite SCS CN =
93
% Impervious =
65.2%
B. Time of Concentration Information
Time of concentration was conservatively assumed to be 5 minutes.
Time of Concentration = 5.00 minutes
SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc)
0.0500 hours
Time Increment = 0.87 minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Post- development- Subbasin #1 -To SWMF #4 9/10/2012
Assume:
HSG
Impervious
Open
Wooded
A
98
39
30
B
98
61
55
C
98
74
70
D
98
80
77
HSG'A'=
0.0%
HSG'B'=
0.0%
HSG'C' =
33.8%
HSG'D' =
66.2%
Cover Condition
SCS CN
Comments
Impervious
98
-
Open
78
Assume good condition
Wooded
75
Assume good condition
Measured Onsite Transportation Impervious =
1.94
acres
Additional 5% Onsite Transportation Impervious =
0.10
acres
Total Onsite Transportation Impervious =
2.04
acres
Measured Onsite Nontransportation Impervious =
0.3
acres
iditional 5% Onsite Nontransportation Impervious =
0.02
acres
Total Onsite Nontransportation Impervious =
0.32
acres
A. Watershed Breakdown
Contributing Area
SCS CN
Area [acres]
Comments
Onsite transportation impervious
98
2.04
-
Onsite nontransportation impervious
98
0.32
-
Onsite open
78
3.24
Assume good condition
Onsite wooded
75
0.00
Assume good condition
Onsite pond
100
1.40
-
Offsite transportation impervious
98
0.08
-
Offsite nontrans ortation impervious
98
0.01
-
Offsite open
78
0.09
Assume good condition
Offsite wooded
75
0.00
Assume good condition
Offsite and
100
0.00
-
Total area = 7.17 acres
0.0112 sq.mi.
Composite SCS CN = 89
% Impervious = 34.0%
B. Time of Concentration Information
Time of concentration was conservatively assumed to be 5 minutes.
Time of Concentration = 5.00 minutes
SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc)
= 0.0500 hours
Time Increment = 0.87 minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Post- development - Subbasin #1- Bypass
Assume:
HSG
Impervious
Open
Wooded
A
98
39
30
B
98
61
55
C
98
74
70
D
98
80
77
HSG'A' = 0.0%
HSG'B' = 0.0%
HSG'C' = 52.2%
HSG'D' = 47.8%
Cover Condition
SCS CN
Comments
Impervious
98
98
Open
77
Assume good condition
Wooded
73
Assume good condition
A. Watershed Breakdown
B. IHNATOLYA, PE
9/10/2012
Contributing Area
SCS CN
Area [acres]
Comments
Onsite transportation impervious
98
0.00
-
Onsite nontransportation impervious
98
0.00
-
Onsite open
77
2.59
Assume good condition
Onsite wooded
73
1.27
Assume good condition
Onsite pond
100
0.00
-
Offsite transportation impervious
98
0.01
-
Offsite nontrans ortation impervious
98
0.00
-
Offsite open
77
0.98
Assume good condition
Offsite wooded
73
0.00
1 Assume good condition
Offsite pond
100
0.00
1 -
Total area = 4.85 acres
0.0076 sq.mi.
Composite SCS CN = 76
% Impervious = 0.2%
B. Time of Concentration Information
Time of concentration was conservatively assumed to be 5 minutes.
Time of Concentration = 5.00 minutes
SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc)
0.0500 hours
Time Increment = 0.87 minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Post- development- Subbasin #3 -To SWMF #1 9/10/2012
Assume:
HSG
Impervious
Open
Wooded
A
98
39
30
B
98
61
55
C
98
74
70
D
98
80
77
HSG'A' =
0.0%
HSG'B' =
0.0%
HSG'C' =
0.0%
HSG'D' =
100.0%
Cover Condition SCS CN Comments
Impervious 98 -
Open 80 Assume good condition
Wooded 77 Assume eood condition
zi< rtsT DEUi+;Lb�m>ErIT
A. Watershed Breakdown
Measured Onsite Transportation Impervious =
2.88
acres
Additional 5% Onsite Transportation Impervious =
0.14
acres
Total Onsite Transportation Impervious =
3.02
acres
Measured Onsite Nontransportation Impervious =
2.33
acres
Additional 5% Onsite Nontransportation Impervious =
0.12
acres
Total Onsite Nontransportation Impervious =
2.45
acres
Contributing Area
Onsite transportation impervious
SCS CN
98
Area [acres]
3.02
Comments
-
Onsite nontransportation impervious
98
2.45
73.8%
Onsite open
80
1.63
Assume good condition
Onsite wooded
77
0.00
Assume good condition
Onsite pond
100
0.54
-
Offsite trans ortation impervious
98
0.94
-
Offsite nontransportation impervious
98
0.01
Offsite open
80
0.11
Assume good condition
Offsite wooded
77
0.00
Assume good condition
Offsite pond
100
0.00
-
Total area =
8.70 acres
minutes
0.0136 sq.mi.
Composite SCS CN =
95
% Impervious =
73.8%
B. Time of Concentration Information
Time of concentration was conservatively assumed to be 5 minutes.
Time of Concentration =
5.00
minutes
SCS Lag Time =
3.00
minutes (SCS Lag = 0.6* Tc)
=
0.0500
hours
Time Increment =
0.87
minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Post- development- Subbasin #3 -To SWMF #2
�E
Assume:
HSG
Impervious
Open
Wooded
A
98
39
30
B
98
61
55
C
98
74
70
D
98
80
77
HSG'A' =
0.0%
HSG 'B' =
0.0%
HSG 'C' =
0.0%
HSG'D' =
100.0%
Cover Condition
SCS CN
Comments
Impervious
98
98
Open
80
Assume good condition
Wooded
77
Assume good condition
Measured Onsite Transportation Impervious =
Additional 5% Onsite Transportation Impervious =
Total Onsite Transportation Impervious =
Measured Onsite Nontransportation Impervious =
Additional 5% Onsite Nontransportation Impervious =
Total Onsite Nontransportation Impervious =
A. Watershed Breakdown
1.74 acres
0.09 acres
1.83 acres
0.26 acres
0.01 acres
0.27 acres
B. IHNATOLYA, PE
9/10/2012
Contributing Area
SCS CN
Area [acres]
Comments
Onsite transportation impervious
98
1.83
-
Onsite nontransportation impervious
98
0.27
-
Onsite open
80
1.17
Assume good condition
Onsite wooded
77
1.93
Assume good condition
Onsite pond
100
0.28
-
Offsite transportation impervious
98
0.00
-
Offsite nontrans ortation impervious
98
0.00
-
Offsite open
80
0.00
Assume good condition
Offsite wooded
77
0.00
Assume good condition
Offsite pond
100
0.00
-
Total area = 5.48 acres
0.0086 sq.mi.
Composite SCS CN = 87
% Impervious = 38.3%
B. Time of Concentration Information
Time of concentration was conservatively assumed to be 5 minutes.
Time of Concentration =
5.00
minutes
SCS Lag Time =
3.00
minutes (SCS Lag = 0.6* Tc)
=
0.0500
hours
Time Increment =
0.87
minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Post- development - Subbasin #3- Bypass
HSG
Impervious
Open
Wooded
A
98
39
30
B
98
61
55
C
98
74
70
D
98
80
77
ssume: HSG 'A' =
0.0%
HSG'B'=
0.0%
HSG'C' =
0.0%
HSG 'D' =
100.0%
Cover Condition SCS CN Comments
Impervious 98 -
Open 80 Assume good condition
Wooded 77 Assume good condition
A.-
POST D�ELOPI;1� i
A. Watershed Breakdown
Measured Onsite Transportation Impervious = 1.07 acres
Additional 5% Onsite Transportation Impervious = 0.05 acres
Total Onsite Transportation Impervious = 1.12 acres
Measured Onsite Nontransportation Impervious = 0.19 acres
Additional 5% Onsite Nontransportation Impervious = 0.01 acres
Total Onsite Nontransportation Impervious = 0.20 acres
Contributing Area
Onsite transportation impervious
SCS CN
98
Area [acres]
1.12
Comments
-
Onsite nontransportation impervious
98
0.20
Onsite open
80
2.50
Assume good condition
Onsite wooded
77
4.60
Assume good condition
Onsite pond
100
0.00
-
Offsite transportation impervious
98
0.26
-
Offsite nontransportation impervious
98
0.00
-
Offsite open
80
0.00
Assume good condition
Offsite wooded
77
0.00
Assume good condition
Offsite pond
100
0.00
-
Total area = 8.68 acres
0.0136 sq.mi.
Composite SCS CN = 82
% Impervious = 18.2%
B. IHNATOLYA, PE
9/10/2012
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Post - development - Subbasin #3- Bypass 9/10/2012
R. Time of Concentration Information
*Time of concentration is calculated using the SCS Segmental Approach (TR -55).
Segment 1: Overland Flow
200
ft
Segment 2: Concentrated Flow
Length =
100
ft
Length =
179.8
ft
Height =
3.78
ft
Height =
15.68
ft
Slope =
0.0378
ft/ft
Slope =
0.0872
ft/ft
Manning's n =
0.40
Woods -Light Underbrush
Paved ? =
No
9.00
P (2- year /24 -hour) =
3.45
inches (Wake County, NC)
Velocity =
4.77
ft/sec
Segment Time =
16.03
minutes
Segment Time =
0.63
minutes
Segment 3: Channel Flow
minutes Segment Time =
0.24
Segment 4: Channel Flow
Length =
177.9
ft
Length =
239.1
ft
Height =
14
ft
Height =
8
ft
Slope =
0.0787
ft/ft
Slope =
0.0335
ft/ft
Manning's n =
0.045
Natural Channel
Manning's n =
0.045
Natural Channel
Flow Area =
2.00
sf (Assume 2'x 1' Channel)
Flow Area =
4.00
sf (Assume 2' x 2' Channel)
Wetted Perimeter =
4.00
ft (Assume 2'x 1' Channel)Wetted Perimeter =
6.00
ft (Assume 2'x 2' Channel)
Channel Velocity =
5.85
ft /sec Channel Velocity =
4.62
ft/sec
Segment Time = 0.51 minutes
Segment 5: Channel Flow
Length =
200
ft
Height =
2
ft
Slope =
0.0100
ft/ft
Manning's n =
0.013
Assume 24" RCP Culvert
Flow Area =
3.14
sf (Assume 24" RCP)
Wetted Perimeter =
6.28
ft (Assume 24" RCP)
Channel Velocity =
7.22
ft/sec
Segment Time = 0.46 minutes
Segment Time = 0.86 minutes
Segment 6: Channel Flow
Length =
47.9
ft
Height =
8
ft
Slope =
0.1670
ft/ft
Manning's n =
0.045
Natural Channel
Flow Area =
4.00
sf (Assume 2' x 2' Channel)
Wetted Perimeter =
6.00
ft (Assume 2'x 2' Channel)
Channel Velocity =
10.33
ft/sec
Segment Time = 0.08 minutes
Segment 7. Channel Flow
Segment 8: Channel Flow
Length =
39.5
ft Length =
61.8
ft
Height =
2
ft Height =
1
ft
Slope =
0.0506
ft/ft Slope =
0.0162
ft/ft
Manning's n =
0.045
Natural Channel Manning's n =
0.045
Natural Channel
Flow Area =
4.00
sf (Assume 2'x 2' Channel) Flow Area =
9.00
sf (Assume Y x 3' Channel)
Wetted Perimeter =
6.00
ft (Assume 2'x 2' Channel)Wetted Perimeter =
9.00
ft (Assume 3' x 3' Channel)
Channel Velocity =
5.69
ft /sec Channel Velocity =
4.21
ft/sec
Segment Time =
0.12
minutes Segment Time =
0.24
minutes
Time of Concentration = 18.93 minutes
SCS Lag Time = 11.36 minutes (SCS Lag = 0.6* Tc)
Time Increment = 3.29 minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Post- development - Subbasin #4 9/10/2012
Assume:
HSG
Impervious
Open
Wooded
A
98
39
30
B
98
61
55
C
98
74
70
D
98
80
77
HSG'A' =
0.0%
HSG'B' =
0.0%
HSG'C' =
0.0%
HSG'D' =
100.0%
Cover Condition
SCS CN
Comments
Impervious
98
-
Open
80
Assume good condition
Wooded
77
Assume good condition
A. Watershed Breakdown
Contributing Area
SCS CN
Area [acres]
Comments
Onsite transportation impervious
98
0.00
-
Onsite nontransportation impervious
98
0.00
-
Onsite open
80
0.26
Assume good condition
Onsite wooded
77
0.00
Assume good condition
Onsite pond
100
0.00
-
Offsite transportation impervious
98
0.42
-
Offsitc nontrans ortation impervious
98
0.04
-
Offsite open
80
0.08
Assume good condition
Offsite wooded
77
0.00
Assume good condition
Offsite pond
100
0.00
_
-
Total area = 0.80 acres
0.0013 sq.mi.
Composite SCS CN = 90
% Impervious = 57.5%
B. Time of Concentration Information
Time of concentration was conservatively assumed to be 5 minutes.
Time of Concentration = 5.00
minutes
SCS Lag Time = 3.00
minutes (SCS Lag = 0.6* Tc)
= 0:0500
hours
Time Increment = 0.87
minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Post- development - Subbasin #5
�� � �MW E
Assume:
HSG
Impervious
Open
Wooded
A
98
39
30
B
98
61
55
C
98
74
70
D
98
80
77
HSG'A' =
0.0%
HSG 'B' =
0.0%
HSG 'C' =
0.0%
HSG'D' =
100.0%
Cover Condition
SCS CN
Comments
Impervious
98
-
Open
80
Assume good condition
Wooded
77
Assume good condition
A. Watershed Breakdown
B. IHNATOLYA, PE
9/10/2012
Contributing Area
SCS CN
Area [acres]
Comments
Onsite transportation impervious
98
0.00
-
Onsite nontransportation impervious
98
0.00
-
Onsite open
80
0.78
Assume good condition
Onsite wooded
77
0.00
Assume good condition
Onsite pond
100
0.00
-
Offsite transportation impervious
98
0.58
-
Offsite nontrans ortation impervious
98
0.01
-
Offsite open
80
1.03
Assume good condition
Offsite wooded
77
0.00
Assume good condition
Offsite 2ond
100
1 0.00
-
Total area = 2.40 acres
0.0038 sq.mi.
Composite SCS CN = 84
% Impervious = 24.6%
B. Time of Concentration Information
Time of concentration was conservatively assumed to be S minutes.
Time of Concentration =
5.00
minutes
SCS Lag Time =
3.00
minutes (SCS Lag = 0.6* Tc)
=
0.0500
hours
Time Increment =
0.87
minutes (= 0.29 *SCS Lag)
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS
KRG -12000 Reaches
III. CHANNEI. ;€TEACH ®ATA
__> Reach #1- SWMF #1
Channel Flow
Length =
289
ft
Height =
11
ft
Slope =
0.0381
ft/ft
Manning's n =
0.045
Natural Channel
Flow Area =
9.00
sf (Assume Y x Y Channel)
Wetted Perimeter =
9.00
ft (Assume Y x Y Channel)
Channel Velocity =
6.46
ft /sec
Segment Time = 0.75 minutes
Reach #1 Total Time = 0.75 minutes
Reach #2- SWMF #2
Channel Flow
Length =
352
ft
Height =
11
ft
Slope =
0.0313
ft/ft
Manning's n =
0.045
Natural Channel
Flow Area =
9.00
sf (Assume 3' x 3' Channel)
Wetted Perimeter =
9.00
ft (Assume Y x 3' Channel)
Channel Velocity =
5.85
ft /sec
Segment Time = 1.00 minutes
Reach #2 Total Time = 1.00 minutes
Reach #3- SWMF #3
Channel Flow
Channel Flow
Length =
Height =
Slope =
Manning's n =
Flow Area =
Wetted Perimeter =
Channel Velocity =
85.9
ft
13
ft
0.1513
ft/ft
0.045
Natural Channel
0.50
sf (Assume 0.5'x 1' Channel)
2.00
ft (Assume 0.5' x F Channel)
5.11
ft /sec
Segment Time = 0.28 minutes
Length =
83.7
ft
Height =
3.5
ft
Slope =
0.0418
ft/ft
Manning's n =
0.045
Natural Channel
Flow Area =
4.00
sf (Assume 2'x 2' Channel)
Wetted Perimeter =
6.00
ft (Assume 2'x 2' Channel)
Channel Velocity =
5.17
ft /sec
Segment Time = 0.27 minutes
Reach #3 Total Time = 0.55 minutes
B. IHNATOLYA, PE
9/10/2012
PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE
KRG -12000 Reaches 9/10/2012
__> Reach #4- SWMF #4
Channel Flow
Channel Flow
Length =
Height =
Slope =
Manning's n =
Flow Area =
Wetted Perimeter =
Channel Velocity =
Segment Time =
Length =
Height =
Slope =
Manning's n =
Flow Area =
Wetted Perimeter =
Channel Velocity =
Segment Time =
78.2
ft
7
ft
0.0895
ft/ft
0.045
Natural Channel
1.00
sf (Assume 1' x 1' Channel)
3.00
ft (Assume F x 1' Channel)
4.76
ft /sec
0.27 minutes
37.5
ft
1.5
ft
0.0400
ft/ft
0.045
Natural Channel
4.00
sf (Assume 2'x 2' Channel)
6.00
ft (Assume 2' x 2' Channel)
5.05
ft/sec
Ol12 minutes
Reach #4 Total Time = O 40 minutes
POA
Scenario: Post - Development
POA #5
SUB01- BYPASS
SUB05
SU601 TOSW'OF-#3
SWMF #4
�vl /P�4
J -1
RF
9Oti
POA #1
G�
P�
J -2
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 1
Watertown, CT 06795 USA +1- 203 - 755 -1666
SUB03- TOSWh1F #1
POA #4
SUB04
SUB01- TOSWMF #4
POA #5
SUB01- BYPASS
SUB05
SU601 TOSW'OF-#3
SWMF #4
�vl /P�4
J -1
RF
9Oti
POA #1
G�
P�
J -2
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 1
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Master Network Summary
Catchments Summary
Label Scenario
SUB01- TOSWMF #4
SUB01- TOSWMF #4
SUB01- TOSWMF #4
SUB01- TOSWMF #4
SUB01- TOSWMF #4
SUB01- BYPASS
SUB01- BYPASS
SUB01- BYPASS
SUB01- BYPASS
SUB01- BYPASS
SUB01- TOSWMF #3
SUB01- TOSWMF #3
SUB01- TOSWMF #3
SUB01- TOSWMF #3
SUB01- TOSWMF #3
SUB05
SUB05
SUB05
SUB05
SUB05
SUB04
SUB04
SUB04
SUB04
Post - Development 1-
Year
Post - Development 2-
Year
Post - Development 5-
Year
Post - Development 10
-Year
Post - Development
100 -Year
Post - Development 1-
Year
Post - Development 2-
Year
Post - Development 5-
Year
Post - Development 10
-Year
Post - Development
100 -Year
Post - Development 1-
Year
Post - Development 2-
Year
Post - Development 5-
Year
Post - Development 10
-Year
Post - Development
100 -Year
Post - Development 1-
Year
Post - Development 2-
Year
Post - Development 5-
Year
Post - Development 10
-Year
Post - Development
100 -Year
Post - Development 1-
Year
Post - Development 2-
Year
Post- Development 5-
Year
Post- Development 10
-Year
Return
Event
(years)
1(
10(
1(
IN
1(
10(
1(
10(
1(
Hydrograph Time to Peak Peak Flow
Volume (min) MIN
(ac -ft)
1.059
721.000
22.70
1.379
721.000
28.62
1.865
721.000
35.22
2.245
721.000
40.35
3.600
721.000
53.06
0.372
722.000
7.48
0.536
722.000
10.79
0.802
721.000
15.12
1.020
721.000
18.60
1.838
721.000
28.29
4.829
721.000
101.81
6.119
721.000
124.06
8.044
721.000
147.73
9.538
721.000
166.35
14.803
721.000
211.55
0.280
721.000
5.96
0.378
721.000
7.87
0.530
721.000
10.15
0.651
721.000
11.92
1.090
721.000
16.48
0.124
721.000
2.65
0.160
721.000
3.31
0.215
721.000
4.03
0.257
721.000
4.60
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 7
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Master Network Summary
Catchments Summary
Label Scenario
SUB04
SUB03- TOSWMF #2
SUB03- TOSWMF #2
SUB03- TOSWMF #2
SUB03- TOSWMF #2
SUB03- TOSWMF #2
SUB03- BYPASS
SUB03- BYPASS
SUB03- BYPASS
SUB03- BYPASS
SUB03- BYPASS
SUB03- TOSWMF #1
SUB03- TOSWMF #1
SUB03 -TOSW MF# 1
SUB03 -TOSW MF# 1
SUB03- TOSWMF #1
Node Summary
Label
Post - Development
100 -Year
Post - Development 1-
Year
Post - Development 2-
Year
Post - Development 5-
Year
Post - Development 10
-Year
Post - Development
100 -Year
Post - Development 1-
Year
Post - Development 2-
Year
Post - Development 5-
Year
Post - Development 10
-Year
Post - Development
100 -Year
Post - Development 1-
Year
Post - Development 2-
Year
Post - Development 5-
Year
Post - Development 10
-Year
Post - Development
100 -Year
Scenario
Return
Event
(years)
10(
1(
10(
1
2
5
1C
10C
1
2
5
10
100
Hydrograph
Volume
(ac -ft)
0.409
0.738
0.975
1.337
1.623
2.646
0.913
1.253
1.783
2.210
3.766
1.675
2.093
2.714
3.194
4.878
Time to Peak
(min)
721.000
721.000
721.000
721.000
721.000
721.000
731.000
730.000
730.000
730.000
730.000
721.000
721.000
721.000
721.000
721.000
Peak Flow
MIN
5.99
15.82
20.31
25.45
29.43
39.46
11.38
15.52
20.79
24.79
35.86
34.60
41.51
48.73
54.47
68.34
Return Hydrograph Time to Peak Peak Flow
Event Volume (min) MIN
(years) (ac -ft)
POA #1
Post - Development 1-
1
3.593
723.000
8.93
Year
POA #1
Post- Development 2-
2
4.935
722.000
14.34
Year
POA #1
Post - Development 5-
5
7.147
722.000
20.37
Year
POA #1
Post- Development 10
10
8.996
722.000
24.62
-Year
POA #1
Post - Development
100 -Year
100
15.887
750.000
71.22
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center (08.11.01.513
9/10/2012 27 Siemon Company Drive Suite 200 W Page 2 of 7
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Master Network Summary
Node Summary
Label
Scenario
Return
Hydrograph
Time to Peak
Peak Flow
Event
Volume
(min)
(ft3 /s)
(years)
(ac -ft)
POA #5
Post- Development 1-
1
0.280
721.000
5.96
Year
POA #5
Post - Development 2-
2
0.378
721.000
7.87
Year
POA #5
Post - Development 5-
5
0,530
721.000
10.15
Year
POA #5
Post - Development 10
10
0.651
721.000
11.92
-Year
POA #5
Post - Development
100
1.090
721.000
16.48
100 -Year
POA #4
Post - Development 1-
1
0.124
721.000
2.65
Year
POA #4
Past- Development 2-
2
0.160
721.000
3.31
Year
POA #4
Post - Development 5-
5
0.215
721.000
4.03
Year
POA #4
Post - Development 10
10
0.257
721.000
4.60
-Year
POA #4
Post- Development
100
0.409
721.000
5.99
100 -Year
POA #3
Post - Development 1-
1
2.466
732.000
15.95
Year
POA #3
Post- Development 2-
2
3.450
732.000
23.15
Year
POA #3
Post - Development 5-
5
4.948
731.000
30.96
Year
POA #3
Post - Development 10
10
6.134
732.000
37.82
-Year
POA #3
Post - Development
100
10.380
730.000
83.17
100 -Year
3-1
Post - Development 1-
1
0.062
1,440.000
0.07
Year
J -1
Post - Development 2-
2
0.073
1,440.000
0.08
Year
J -1
Post - Development 5-
5
0.405
1,083.000
0.57
Year
1-1
Post - Development 10
10
0.770
903.000
1.13
-Year
J -1
Post- Development
100
2.072
784.000
3.81
100 -Year
J -2
Post - Development 1-
1
3.160
782.000
5.27
Year
J -2
Post - Development 2-
2
4.329
782.000
6.44
Year
1-2
Post - Development 5-
5
5.946
783.000
7.81
Year
J -2
Post - Development 10
10
7,212
755.000
17.77
-Year
Bentley Systems, Inc. Haestad Methods Solution Bentley Pond°ack V.Ii
Parkside. ppc Center (08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 3 of 7
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Master Network Summary
Node Summary
Label
Scenario
Return
Hydrograph
Time to Peak
Peak Flow
Event
Volume
(min)
(ft3 /s)
721.000
15.82
(years)
(ac -ft)
1 -Year
J -2
Post - Development
100 -Year
100
11.985
750.000
59.00
J -3
Post - Development 1-
1
1.121
754.000
4.11
Year
(OUT)
Development
1
0.432
J -3
Post - Development 2-
2
1.532
754.000
5.07
Year
3-3
Post - Development 5-
5
2.141
754.000
6.14
Year
(IN)
Development
2
0.975
3-3
Post - Development 10
10
2.617
752.000
11.28
-Year
J -3
Post - Development
100 -Year
100
4.288
729.000
28.64
1-4
Post - Development 1-
1
0.432
754.000
2.01
753.000
Year
302.53
0.476
2 -Year
J -4
Post - Development 2-
2
0.667
753.000
3.45
SWMF #2
Year
J -4
Post - Development 5-
5
1.025
752.000
4.85
721.000
Year
(N /A)
(N /A)
5 -Year
J -4
Post- Development 10
10
1.309
753.000
5.70
SWMF #2
-Year
J -4
Post - Development
100
2.327
728.000
18.79
752.000
100 -Year
302.97
0.629
5 -Year
Pond Summary
Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum
Event Volume (min) (ft3 /s) Water Pond Storage
(years) (ac -ft) Surface (ac -ft)
Elevation
(ft)
SWMF #2
Post -
(IN)
Development
1
0.738
721.000
15.82
(N /A)
(N /A)
1 -Year
SWMF #2
Post-
(OUT)
Development
1
0.432
754.000
2.01
302.28
0.394
1 -Year
SWMF #2
Post -
(IN)
Development
2
0.975
721.000
20.31
(N /A)
(N /A)
2 -Year
SWMF #2
Post -
(OUT)
Development
2
0.667
753.000
3.45
302.53
0.476
2 -Year
SWMF #2
Post -
(IN)
Development
5
1.337
721.000
25.45
(N /A)
(N /A)
5 -Year
SWMF #2
Post -
(OUT)
Development
5
1.025
752.000
4.85
302.97
0.629
5 -Year
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 4 of 7
Watertown, CT 06795 USA +1 -203- 755 -1666
Subsection: Master Network Summary
Pond Summary
Label
Scenario
Return
Hydrograph
Time to Peak
Peak Flow
Maximum
Maximum
Event
Volume
(min)
(ft3 /s)
Water
Pond Storage
(years)
(ac -ft)
Surface
(ac -ft)
Elevation
(ft)
SWMF #2
Post -
(IN)
Development
10
1.623
721.000
29.43
(N /A)
(N /A)
10 -Year
SWMF #2
Post -
(OUT)
Development
10
1.309
753.000
5.70
303.36
0.763
10 -Year
SWMF #2
Post -
(IN)
Development
100
2.646
721.000
39.46
(N /A)
(N /A)
100 -Year
SWMF #2
Post -
(OUT)
Development
100
2.327
728.000
18.79
303.89
0.954
100 -Year
SWMF #1
Post -
(IN)
Development
1
1.675
721.000
34.60
(N /A)
(N /A)
1 -Year
SWMF #1
Post -
(OUT)
Development
1
1.121
754.000
4.11
303.66
0.956
1 -Year
SWMF #1
Post -
(IN)
Development
2
2.093
721.000
41.51
(N /A)
(N /A)
2 -Year
SWMF #1
Post-
(OUT)
Development
2
1.532
754.000
5.07
304.01
1.186
2 -Year
SWMF #1
Post -
(IN)
Development
5
2.714
721.000
48.73
(N /A)
(N /A)
5 -Year
SWMF #1
Post -
(OUT)
Development
5
2.141
754.000
6.14
304.50
1.512
5 -Year
SWMF #1
Post -
(IN)
Development
10
3.194
721.000
54.47
(N /A)
(N /A)
10 -Year
SWMF #1
Post -
(OUT)
Development
10
2.617
752.000
11.28
304.70
1.653
10 -Year
5WMF #1
Post -
(IN)
Development
100
4.878
721.000
68.34
(N /A)
(N /A)
100 -Year
SWMF #1
Post-
'OUT)
Development
100
4.288
729.000
28.64
305.11
1.937
100 -Year
3WMF #4
Post -
JN)
Development
1
1.059
721.000
22.70
(N /A)
(N /A)
1 -Year
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.511
9/10/2012 27 Siemon Company Drive Suite 200 W Page 5 of 7
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection:
Master Network Summary
Pond Summary
Label
Scenario
Return
Hydrograph
Time to Peak
Peak Flow
Maximum
Maximum
Event
Volume
(min)
(ft3 /s)
Water
Pond Storage
(years)
(ac -ft)
Surface
(ac -ft)
Elevation
(ft)
SWMF #4
Post -
(OUT)
Development
1
0.062
1,440.000
0.07
296.74
0.996
1 -Year
SWMF #4
Post -
(IN)
Development
2
1.379
721.000
28.62
(N /A)
(N /A)
2 -Year
SWMF #4
Post -
(OUT)
Development
2
0.073
1,440.000
0.08
296.95
1.306
2 -Year
SWMF #4
Post -
(IN)
Development
5
1.865
721.000
35.22
(N /A)
(N /A)
5 -Year
SWMF #4
Post -
(OUT)
Development
5
0.405
1,083.000
0.57
297.07
1.490
5 -Year
SWMF #4
Post -
(IN)
Development
10
2.245
721.000
40.35
(N /A)
(N /A)
10 -Year
SWMF #4
Post -
(OUT)
Development
10
0.770
903.000
1.13
297.15
1.614
10 -Year
SWMF #4
Post -
(IN)
Development
100
3.600
721.000
53.06
(N /A)
(N /A)
100 -Year
SWMF #4
Post -
(OUT�
Development
100
2.072
784.000
3.81
297.60
-2.301
100 -Year
SWMF #3
Post -
(IN)
Development
1
4.829
721.000
101.81
(N /A)
(N /A)
1 -Year
SWMF #3
Post -
(OUT)
Development
1
3.160
782.000
5.27
305.90
3.009
1 -Year
SWMF #3
Post -
(IN)
Development
2
6.119
721.000
124.06
(N /A)
(N /A)
2 -Year
SWMF #3
Post -
(OUT)
Development
2
4.329
782.000
6.44
306.38
3.840
2 -Year
SWMF #3
Post -
(IN)
Development
5
8.044
721.000
147.73
(N /A)
(N /A)
5 -Year
SWMF #3
Post -
(OUT)
Development
5
5.946
783.000
7.81
307.06
5.055
5 -Year
Bentley Systems, inc. Haestad Methods Solution. Bentley Pond°ack V81
Pa rkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 6 of 7
Watertown, CT 06795 USA +1 -203- 755 -1666
Subsection:
Master Network Summary
Pond Summary
Label
Scenario
Return
Hydrograph
Time to Peak
Peak Flow
Maximum
Maximum
Event
Volume
(min)
(ft3 /s)
Water
Pond Storage
(years)
(ac -ft)
Surface
(ac -ft)
Elevation
(ft)
SWMF #3
Post -
(IN)
Development
10
9.538
721.000
166.35
(N /A)
(N /A)
10 -Year
SWMF #3
Post-
(OUT)
Development
10
7.212
755.000
17.77
307.48
5.803
10 -Year
SWMF #3
Post -
(IN)
Development
100
14.803
721.000
211.55
(N /A)
(N /A)
100 -Year
SWMF #3
Post -
(OUT)
Development
100
11.985
750.000
59.00
308.09
6.923
100 -Year
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11,01.51 ]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 7 of 7
Watertown, CT 06795 USA +1- 203 - 755 -1666
POP
Scenario: 100 -Yr WC
POA #4
SUB04
POA #5
SU805
SU603- TOSWMFA1
SWMF #4
%! OGNef
v J1
SU8O1- TOSN {MF#4
taw &9
SUBOI- BYPASS 0"
a-
J-2
SU801- TOSWMFM3
POA #1
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center 108.11.01.61]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 1
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Master Network Summary
Catchments Summary
Label Scenario
160-1/R 0000]es-r CASE HQ! 0 :6 n
Return Hydrograph Time to Peak Peak Flow
Event Volume (min) (ft3 /s)
(years) (ac -ft)
SUB01- BYPASS
100 -Yr WC
100
1.838
721.000
28.29
SUB01- TOSWMF #3
100 -Yr WC
100
14.803
721.000
211.55
SUB01- TOSWMF #4
100 -Yr WC
100
3.600
721.000
53.06
SUB03- BYPASS
100 -Yr WC
100
3.766
730.000
35.86
SU603- TOSWMF #1
100 -Yr WC
100
4.878
721.000
68.34
SUB03- TOSWMF #2
100 -Yr WC
100
2.646
721.000
39.46
SUB04
100 -Yr WC
100
0.409
721.000
5.99
SUB05
100 -Yr WC
100
1.090
721.000
16.48
Node Summary
Label Scenario Return Hydrograph Time to Peak Peak Flow
Event Volume (min) (ft3 /s)
Nears) (ac -ft)
J -1
100 -Yr WC
100
2.054
784.000
3.75
3-2
100 -Yr WC
100
11.587
734.000
60.92
J -3
100 -Yr WC
100
4.274
729.000
29.21
J -4
100 -Yr WC
100
2.324
728.000
19.08
POA #1
100 -Yr WC
100
15.470
750.000
72.21
POA #3
100 -Yr WC
100
10.363
730.000
83.97
POA #4
100 -Yr WC
100
0.409
721.000
5.99
POA #5
1 100 -Yr WC
1 1001
1.0901
721.0001
16.48
Pond Summary
Label Scenario Return Hydrograph Time to Peak Peak Flow
Event Volume (min) (ft3 /s)
(years) (ac -ft)
Maximum
Maximum
Water
Pond Storage
Surface
(ac -ft)
Elevation
(N /A)
(ft)
SWMF #1
100 -Yr WC
100
4.878
721.000
68.34
(N /A)
(N /A)
(IN)
SWMF #1
100 -Yr WC
100
4.274
729.000
29.21
305.13
1.951
(OUT)
SWMF #2
100 -Yr WC
100
2.646
721.000
39.46
(N /A)
(N /A)
(IN)
SWMF #2
100 -Yr WC
100
2.324
728.000
19.08
303.90
0.958
(OUT)
SWMF #3
100 -Yr WC
100
14.803
721.000
211.55
(N /A)
(N /A)
(IN)
SWMF #3
100 -Yr WC
100
11.587
734.000
60.92
308.13
6.995
(OUT)
SWMF #4
100 -Yr WC
100
3.600
721.000
53.06
(N /A)
(N /A)
(IN)
SWMF #4
100 -Yr WC
100
2.054
784.000
3.75
297.61
2.318
(OUT)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 1
Watertown, CT 06795 USA +1- 203 - 755 -1666
SWMF #1 FINAL DESIGN CALCULATIONS
PARKSIDE TOWN COMMONS
KRG -12000
PARKSIDE TOWN COMMONS WETLAND B. IHNATOLYA, PE
KRG -12000 SWMF #1 9/10/2012
State- Storage Function
Project Name:
Parkside Town Commons
Designer:
B. Ilmatolya, PE
Job Number:
KRG -12000
Date:
9/10/2012
Average
Incremental
Accumulated
Estimated
Contour Contour
Contour
Contour
Volume
Contour Stage Area Area
Volume
Volume
w/ S -S Fxn
(feet) (feet) (SF) (SF)
(CF)
(CF)
(CF)
302.00
0.0
23,581
304.00
2.0
27,812
25697
306.00
4.0
32,205
30009
33404
307.00
5.0
34,603
51393 51393 2.00
60017 111410 3.98
33404 144814 5.02 -
Storage vs. Stage
160000 -
140000
120000 y = 23493x1.127
RI = 0.999
U 100000
a
80000
0
in 60000
40000
20000
0
0.0 1.0 2.0 Stage ({get) 4.0 5.0 6.0
Ks = 23493
b = 1.127
PARKSIDE TOWN COMMONS WETLAND B. IHNATOLYA, PE
KRG -12000 SWMF #1 9/10/2012
Stage - Storage Function
Ks = 23493
b = 1.127
Zo = 302.00
Elevation Storage
[feet] [cq [acre -feet
_302.00 _0_ 0.000
_302.20 3830 30 0.0_88
2.40 8365 0.192_
_30_ 69 0.2.60 13210 _0.303
302.80 _18241_9_
303.00 23_493 0.539
�303.20�mmtl 28852 �._ N� 0.662
303.40_ 34326 mm
303.60_ � 39901 I� 0.916_
30_3.8045565 1.046_
304.00 51310 W 1.178
304.20_ 57128 1.311
304.40 63014n� 1.447
_ 68963 � 1.583_
304.80_ _ 74970 1.721
305.00 8103_2 _ _1.860
_3_0_5.20 _ 8714_5_ 2.001_
305.40 93307 u 2.142
305.60 _99516 2.285
_'3 05.80_ - 105_768 2.428 �
_306.00 112062 2.573
_ 30620 118397 2.718—
306.40_ 124770 2.864
306.60 1131180 3.011
306.80 137625 3.159
307.00 144105 3.308
Subsection: Outlet Input Data
Label: SWMF #1
Requested Pond Water Surface Elevations
Minimum (Headwater) 302.00 ft
Increment (Headwater) 0.20 ft
Maximum (Headwater) 307.00 ft
Outlet Connectivity
Structure Type Outlet ID Direction Outfall El E2
(ft) (ft)
Inlet Box
Riser - 1
Forward
Culvert - 1
304.50
307.00
Orifice -Area
Orifice - 2
Forward
Culvert - 1
303.00
307.00
Culvert- Circular
Culvert - 1
Forward
TW
299.00
307.00
Orifice - Circular
Orifice - 1
Forward
TW
302.00
307.00
Tailwater Settings
Tailwater
(N /A)
(N /A)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9110/2012 27 Siemon Company Drive Suite 200 W Page 1 of 27
Watertown. CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #1
Structure ID: Riser- 1
Structure Type: Inlet Box
Number of Openings
1
Elevation
304.50 ft
Orifice Area
16.0 ftz
Orifice Coefficient
0.600
Weir Length
16.00 ft
Weir Coefficient
3.00 (ft ^0.5) /s
K Reverse
1.000
Manning's n
0.000
Kev, Charged Riser
0.000
Weir Submergence
False
Orifice H to crest
False
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 2 of 27
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #1
Structure ID: Culvert - 1
Structure Type: Culvert- Circular
Number of Barrels
1
Diameter
24.0 in
Length
45.00 ft
Length (Computed Barrel)
45.01 ft
Slope (Computed)
0.022 ft /ft
Outlet Control Data
Manning's n
0.013
Ke
0.500
Kb
0.012
Kr
0.500
Convergence Tolerance
0.00 ft
Inlet Control Data
Equation Form
Form 1
K
0.0098
M
2.0000
C
0.0398
Y
0.6700
T1 ratio (HW /D)
0.000
T2 ratio (HW /D)
1.296
Slope Correction Factor
-0.500
Use unsubmerged inlet control 0 equation below T1
elevation.
Use submerged inlet control 0 equation above T2
elevation
In transition zone between unsubmerged and submerged
inlet control,
interpolate between flows at T1 & T2...
T1 Elevation 299.00 ft TI Flow
15.55 ft3 /s
T2 Elevation 301.59 ft T2 Flow
17.77 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 3 of 27
Watertown, CT 06795 USA +1 -203- 755 -1666
Subsection: Outlet Input Data
Label: SWMF #1
Structure ID: Orifice - 1
Structure Type: Orifice- Circular
Number of Openings
1
Elevation
302.00 ft
Orifice Diameter
2.5 in
Orifice Coefficient
0.600
Structure ID: Orifice - 2
Structure Type: Orifice -Area
Number of Openings
1
Elevation
303.00 ft
Orifice Area
1.0 ftz
Top Elevation
303.50 ft
Datum Elevation
303.00 ft
Orifice Coefficient
0.600
Structure ID: TW
Structure Type: TW Setup, DS Channel
Tailwater Type
Free Outfall
Convergence Tolerances
Maximum Iterations
30
Tailwater Tolerance
0.01 ft
(Minimum)
Tailwater Tolerance
0.50 ft
(Maximum)
Headwater Tolerance
0.01 ft
(Minimum)
Headwater Tolerance
0.50 ft
(Maximum)
Flow Tolerance (Minimum)
0.001 ft3 /s
Flow Tolerance (Maximum)
10.000 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 4 of 27
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #1
Composite Outflow Summary
Water Surface Flow Tailwater Elevation Convergence Error
Elevation (ft3 /s) (ft) (ft)
(ft)
302.00
0.00
(N /A)
0.00
302.20
0.05
(N /A)
0.00
302.40
0.09
(N /A)
0.00
302.60
0.12
(N /A)
0.00
302.80
0.14
(N /A)
0.00
303.00
0.16
(N /A)
0.00
303.20
1.53
(N /A)
0.00
303.40
2.91
(N /A)
0.00
303.60
3.93
(N /A)
0.00
303.80
4.52
(N /A)
0.00
304.00
5.04
(N /A)
0.00
304.20
5.51
(N /A)
0.00
304.40
5.94
(N /A)
0.00
304.50
6.15
(N /A)
0.00
304.60
7.86
(N /A)
0.00
304.80
14.61
(N /A)
0.00
305.00
24.06
(N /A)
0.00
305.20
32.46
(N /A)
0.00
305.40
35.80
(N /A)
0.00
305.60
36.50
(N /A)
0.00
305.80
37.19
(N /A)
0.00
306.00
37.86
(N /A)
0.00
306.20
38.53
(N /A)
0.00
306.40
39.18
(N /A)
0.00
306.60
39.82
(N /A)
0.00
306.80
40.45
(N /A)
0.00
307.001
41.07
(N /A)
1 0.00
Contributing Structures
(no Q: Riser - 1,Orifice - 2,Culvert -
1,Orifice - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 5 of 27
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #1
Composite Outflow Summary
Contributing Structures
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 6 of 27
Watertown, CT 06795 USA +1- 203 - 755 -1666
jj0 -`IR ��RST CASE
SCErJ ��I o
Subsection: Outlet Input Data Return Event: 100 years
Label: SWMF #1 -WC Storm Event: 100 -Year Storm
Requested Pond Water Surface Elevations
Minimum (Headwater) 302.00 ft
Increment (Headwater) 0.20 ft
Maximum (Headwater) 307.00 ft
Outlet Connectivity
Structure Type Outlet ID Direction Outfall El E2
(ft) (ft)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Inlet Box
Riser - 1
Forward
Culvert - 1
304.50
307.00
Orifice -Area
Orifice - 2
Forward
Culvert - 1
303.00
307.00
Culvert- Circular
Culvert - 1
Forward
TW
299.00
307.00
Tailwater Settings
Tailwater
(N /A)
(N /A)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #1 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Structure ID: Riser- 1
Structure Type: Inlet Box
Number of Openings
1
Elevation
304.50 ft
Orifice Area
16.0 ft2
Orifice Coefficient
0.600
Weir Length
16.00 ft
Weir Coefficient
3.00 (ft ^0.5) /s
K Reverse
1.000
Manning's n
0.000
Kev, Charged Riser
0.000
Weir Submergence
False
Orifice H to crest
False
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51)
9/10/2012 27 Siemon Company Drive Suite 200 W Page 2 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #1 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Structure ID: Culvert- 1
Form 1
Structure Type: Culvert- Circular
0.0098
Number of Barrels
1
Diameter
24.0 in
Length
45.00 ft
Length (Computed Barrel)
45.01 ft
Slope (Computed)
0.022 ft /ft
Slope Correction Factor
-0.500
Outlet Control Data
Manning's n
0.013
Ke
0.500
Kb
0.012
Kr
0.500
Convergence Tolerance
0.00 ft
Inlet Control Data
Equation Form
Form 1
K
0.0098
M
2.0000
C
0.0398
Y
0.6700
T1 ratio (HW /D)
1.149
T2 ratio (HW /D)
1.296
Slope Correction Factor
-0.500
Use unsubmerged inlet control 0 equation below T1
elevation.
Use submerged inlet control 0 equation above T2
elevation
In transition zone between unsubmerged and submerged
inlet control,
interpolate between flows at T1 & T2...
TI Elevation 301.30 ft T1 Flow 15.55 ft3 /s
T2 Elevation 301.59 ft T2 Flow 17.77 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 3 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #1 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Structure ID: Orifice - 2
30
Structure Type: Orifice -Area
0.01 ft
Number of Openings
1
Elevation
303.00 ft
Orifice Area
1.0 ftz
Top Elevation
303.50 ft
Datum Elevation
303.00 ft
Orifice Coefficient
0.600
(Maximum)
Structure ID: TW
0.001 ft3 /s
Structure Type: TW Setup, DS Channel
Tailwater Type
Free Outfall
Convergence Tolerances
Maximum Iterations
30
Tailwater Tolerance
0.01 ft
(Minimum)
Tailwater Tolerance
0.50 ft
(Maximum)
Headwater Tolerance
0.01 ft
(Minimum)
Headwater Tolerance
0.50 ft
(Maximum)
Flow Tolerance (Minimum)
0.001 ft3 /s
Flow Tolerance (Maximum)
10.000 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 4 of 25
Watertown, CT 06795 USA +1 -203- 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #1 -WC
Composite Outflow Summary
Water Surface Flow
Elevation (ft3 /s)
(ft)
Return Event: 100 years
Storm Event: 100 -Year Storm
Tailwater Elevation Convergence Error
(ft) (ft)
302.00
0.00
(N /A)
0.00
302.20
0.00
(N /A)
0.00
302.40
0.00
(N /A)
0.00
302.60
0.00
(N /A)
0.00
302.80
0.00
(N /A)
0.00
303.00
0.00
(N /A)
0.00
303.20
1.36
(N /A)
0.00
303.40
2.72
(N /A)
0.00
303.60
3.73
(N /A)
0.00
303.80
4.31
(N /A)
0.00
304.00
4.81
(N /A)
0.00
304.20
5.27
(N /A)
0.00
304.40
5.69
(N /A)
0.00
304.50
5.90
(N /A)
0.00
304.60
7.60
(N /A)
0.00
304.80
14.34
(N /A)
0.00
305.00
23.78
(N /A)
0.00
305.20
32.17
(N /A)
0.00
305.40
35.50
(N /A)
0.00
305.60
36.19
(N /A)
0.00
305.80
36.87
(N /A)
0.00
306.00
37.54
(N /A)
0.00
306.20
38.19
(N /A)
0.00
306.40
38.84
(N /A)
0.00
306.60
39.47
(N /A)
0.00
306.80
40.09
(N /A)
0.00
307.001
40.71
(N /A) 1
0.00
Contributing Structures
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,0rifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Orifice - 2,Culvert - 1
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 5 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #1 -WC
Composite Outflow Summary
Contributing Structures
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no 0: Orifice - 2)
Return Event: 100 years
Storm Event: 100 -Year Storm
Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 6 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
PARKSIDE TOWN COMMONS STORMWATER WETLAND B. IFINATOLYA, PE
KRG-12000 SIZING CALCULATIONS - SWMF#1 9/10/2012
WQ v = (P) (R v) (A)II 2
where,
WQv = water quality volume (in acre-ft)
Rv = 0.05+0.009(l) where I is percent impervious cover
A = area in acres
P = rainfall (in inches)
Input data:
Total area, A =
8.70
acres
Impervious area =
6.42
acres
Percent impervious cover, I =
73.8
%
Rainfall, P =
1.0
inches
Calculated values:
Rv =
0.71
WQv =
0.52
acre-ft
=
22553
cf.
Starmwater Wetland Required Surface Area Calculation
WQ Volume = 22553 cf.
Maximum Pending Depth = 12 inches
53 SF
Associated Pond Depth in Stormwater Welland
Ks=
23493
b =
1.127
V =
22553
Normal Pool Elevation =
302.0 feet
WQ Elevation 302.96 feet
PARKSIDE TOWN COMMONS WQ VOLUME
KRG -12000
SIPHON DESIGN
D orifice =
2.5 inch
# orifices =
1
Ks=
23493
b =
1.127
Cd siphon =
0.60
0.5' x 2.0' Orifice Invert Elevation =
303.00 feet
Normal Pool Elevation =
302.00 feet
WQ Volume =
22553 cf
Temporary Pool W.S. Elev. =
303.00 feet
Using the average head over the orifice (assuming average head is
one -third the total depth), the result would be:
Average driving head on orifice = 0.333 feet
Orifice composite loss coefficient= 0.600
Cross - sectional area of 0.75" orifice = 0.034 sf
Q= 0.0948 cfs
Drawdown Time = Volume / Flowrate / 86400 (sec /day)
Drawdown Time = 2.75 days
Conclusion : Use 1- 2.5" Diameter PVC inverted siphon to drawdown the accumulated volume
from the 1" storm runoff, with a required time of about 2.75 days.
B. IHNATOLYA, PE
9/10/2012
o
r`
I
VON
ME,
LIM
w
DESCRIPTION AREA (SF) PERCENTAGE
DEEP POOL 2,614 11%
DEEP POOL 2,528 11%
(NON-FOREBAY) GRAPHIC SCALE
0 15 30 60
SHALLOW WATER 9,374 40% I'll" ELI
SHALLOW LAND 9,065 38%
v)
A
0
C��5zw
Z . z x n W
M
R, aa°
W � <n
z�a�
O�az�N
x C)
HUWuo;;
z
w ad W
Vf
z
O
�z
O�l
Uo
U�
w
o�
�z�
W�
A�
U
O X N
O 3: ON 0 O N
M I
O II N
N
Of C9 I
Y (o
c Y O
z
F W
PARKSIDE TOWN COMMONS SWMF #1 B. IHNATOLYA, PE
KRG -12000 9/11/2012
PARKSIDE TOWN COMMONS
I. WETLAND POOL CHECK'
Per NCDENR "Stormwater Best Management Practices ", the permanent pool needs to be designed with various water depths to
support plant and animal populations. The wetland should consist of deep pools, shallow water, and shallow land with the deep
pools being broken down to forebay pools and non - forebay pools. Approximately 5 -10% of the wetland surface area should be
non - forebay deep pools. Approximately 10% of the suface area should be forebay deep pools. Approximately 40% of the
surface area should be shallow water, and the remaining 30 -40 %of the surface area should be shallow land.
A. Total Wetland Surface Area (Elev. 302.0)
B. Wetland Surface Area: Deep Pools (18 " -36" deep)
Non - Forebay
Forebay
C. Wetland Surface Area: Shallow Water (3" -6" deep)
D. Wetland Surface Area: Shallow Land (12 "+ -3" deep)
Area =
23581 sf
Area =
2528 sf
Area =
2614 sf
Area =
9374 sf
Area = 9065 sf
Deep Pools- Non- Foreba
11%
Deep Pools- Foreba
11%
Shallow Water
40%
Shallow Land
38%
Parkside Town Commons — SWMF #1
Project # KRG -12000
VELOCITY DISSIPATOR DESIGN
Designed By: B. Ihnatolya
Velocity Dissipator — SWMF #1
NRCD Land Quality Section
Pipe Design
Entering the following values will provide you with
the expected outlet velocity and depth of flow in a
pipe, assuming the Mannings roughness number is
constant over the entire length of the pipe.
flow Q in cfs : 11.28 Flow depth (ft) = 0.80
slope S in %: 2.22 Outlet velocity (fps) = 9.663
pipe diameter D in in.: 24
Manning number n : 0.013
NRCD Land Quality Section
NYDOT Dissipator Design Results
Pipe diameter (ft)
2.00
Outlet velocity (fps) 9.66
Apron length (ft)
12.00
AVG DIAM STONE
THICKNESS
(inches) CLASS
(inches)
-- - - - - -- - - - --
3 A
--- - - - - --
9
»6 B
22«
13 B or 1
22
23 2
27
Width Calculation
WIDTH = La + Do
WIDTH =12.00 + 2.00
WIDTH = 14.0 FEET
CONCLUSION
Use 8" DIA NCDOT Class `B' Rip Rap
12'L x 141W x 22" Thick
ABE VOLUME CALCULATORS, PYRAMIDLONG
Page 1 of 1
CALCULATE VOLUME OF PYRAMID WITH INDIVIDUAL WIDTHS AND LENGTHS
Enter all known values in the form below and press the "CALCULATE" button.
ART,
WIDTHI(WI) LENGTH I(L1) WIDTH2 LENGTH2 HEIGHT VOLUME
(W2) (L2) I (h)
SELECT ANOTHER SHAPE
Go to Unit Conversion Page
http: / /www.abe.msstate.edu /—fto /tools /vol /pyramidlong.html 6/12/2012
PARKSIDE TOWN COMMONS SWMF #1 B. IHNATOLYA, PE
KRG -12000 8/27/2012
Input Data =_>
Square Riser/Barrel Anti - Flotation Calculation Sheet
Inside length of riser =
4.00 feet
Inside width of riser =
4.00 feet
Wall thickness of riser =
6.00 inches
Base thickness of riser =
8.00 inches
Base length of riser =
5.00 feet
Base width of riser =
5.00 feet
Inside height of Riser =
5.50 feet
Concrete unit weight =
142.0 PCF
OD of barrel exiting manhole =
31.50 inches
Size of drain pipe (if present) =
8.0 inches
Number of detention orifices (if present) =
I
Area of detention orifice (if present) =
0.034 SQFT
Number of detention orifices (if present) =
1
Area of detention orifice (if present) =
1.000 SQFT
Trash Rack water displacement =
38.00 CF
Concrete Present in Riser Structure =_>
Total amount of concrete:
Base of Riser = 16.667 CF
Riser Walls = 49.500 CF
Adjust for openings:
Opening for barrel = 2.706 CF
Opening for drain pipe = 0.175 CF
Opening for detention orifice = 0.517 CF
Note: NC Products lists unit wt. of
manhole concrete at 142 PCF.
Total Concrete present, adjusted for openings = 62.769 CF
Weight of concrete present = 8913 lbs
Amount of water displaced by Riser Structure =_>
Displacement by concrete = 62.769 CF
Displacement by open air in riser = 88.000 CF
Displacement by trash rack = 38.000 CF
Total water displaced by riser/barrel structure = 188.769 CF
Weight of water displaced = 11779 lbs
PARKSIDE TOWN COMMONS SWMF 91 B. II NATOLYA, PE
KRG -12000 8/27/2012
Calculate amount of concrete to be added to riser = =>
Safety factor to use = 1.25 (recommend 1.25 or higher)
Must add = 5811 lbs concrete for buoyancy
Concrete unit weight for use = 142 PCF (note above observation for NCP concrete)
Buoyant weight of this concrete = 79.60 PCF
Buoyant, with safety factor applied = 63.68 PCF
Therefore, must add = 91.250 CF of concrete
Standard base described above = 16.667 CF of concrete
Therefore, base design must have = 107.916 CF of concrete
Calculate size of base for riser assembly = =>
Length = 8.000 feet
Width = 8.000 feet
Thickness = 21.0 inches
Concrete Present = 112.000 CF OK
Check validity of base as designed = =>
Total Water Displaced =
284.103 CF
Total Concrete Present =
158.103 CF
Total Water Displaced =
17728 lbs
Total Concrete Present =
22451 lbs
Actual safety factor =
1.27 OK
Results of design = =>
Base length =
8.00 feet
Base width =
8.00 feet
Base Thickness =
21.00 inches
CY of concrete total in base =
4.15 CY
Concrete unit weight in added base >=
142 PCF
SWMF #2 FINAL DESIGN CALCULATIONS
PARKSIDE TOWN COMMONS
KRG -12000
PARKSIDE TOWN COMMONS WETLAND
KRG -12000 SWMF #2
Stage - Storage Function
Project Name:
Parkside Town Commons
Designer:
B. Ihnatolya, PE
Job Number:
KRG -12000
Date:
9/10/2012
B. IHNATOLYA, PE
9/10/2012
Average
Incremental
Accumulated
Estimated
Contour Contour
Contour
Contour
Volume
Contour Stage Area Area
Volume
Volume
w/ S -S Fxn
(feet) (feet) (SF) (SF)
(CF)
(CF)
(CF)
301.00
0.0
12,263
60000
y = 13055x'.090
302.00
1.0
13,938
13101
13101
13101
1.00
304.00
3.0
15,739
14839
29677
42778
2.97
306.00
5.0
17,544
16642
33283
76061
5.04
80000
70000
Storage vs. Stage
60000
y = 13055x'.090
RI = 0.999
U 50000
rn 40000
m
30000
v7
20000
10000
0
0.0
1.0 2.0 Stage (fit) 4.0 5.0 6.0
Ks = 13055
b = 1.09
PARKSIDE TOWN COMMONS WETLAND B. IHNATOLYA, PE
KRG -12000 S W MF #2 9/10/2012
Stage - Storage Function
Ks = 13055
b = 1.09
Zo = 301.00
Elevation
Storage
feet
[clI
[acre -feet
301.00
0
0.000
301.20
29 m
25
0.052
301.40
4809
0.110
7481
0.172
_301.60
301.80
10236
0.235
302.00
13055_
0.300
302.20
15925
0.366
302.40
18839
0.432
302.60 _
2179 1
_ 0.500
_ 24776
0.569
_302.80
27791
0.638
_303.00
303.20
30833
_ 008
303.40
33901
0.778
303.60
a 36991
_0.849
303.80
_ 40103_
0.921_
304.00
43235
0.993
304.20
46386
565
304.40
W 49555
1.138_
304.60
52741 1.211
304.80
55942
1.284
305.00
59159
1.358
305.20
62391
1.432
305.40
65636
1.507
305.60
68894
1.582
305.80
72166
1.657_
306.00
75449
1.732
Subsection: Outlet Input Data
Label: SWMF #2
Requested Pond Water Surface Elevations
Minimum (Headwater) 301.00 ft
Increment (Headwater) 0.20 ft
Maximum (Headwater) 306.00 ft
Outlet Connectivity
Structure Type Outlet ID Direction Outfall El E2
(ft) (ft)
Inlet Box
Riser - 1
Forward
Culvert - 1
303.50
306.00
Orifice -Area
Orifice - 2
Forward
Culvert - 1
302.00
306.00
Culvert- Circular
Culvert - 1
Forward
TW
298.50
306.00
Orifice - Circular
Orifice - 1
Forward
TW
301.00
306.00
Tailwater Settings
Tailwater
(N /A)
(N /A)
Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 14
Watertown, CT 06795 USA +1 -203- 755 -1666
Subsection: Outlet Input Data
Label: SWMF #2
Structure ID: Riser - 1
Structure Type: Inlet Box
Number of Openings
1
Elevation
303.50 ft
Orifice Area
16.0 ftz
Orifice Coefficient
0.600
Weir Length
16.00 ft
Weir Coefficient
3.00 (ft ^0.5) /s
K Reverse
1.000
Manning's n
0.000
Kev, Charged Riser
0.000
Weir Submergence
False
Orifice H to crest
False
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V81
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 2 of 14
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #2
Structure ID: Culvert - 1
Structure Type: Culvert- Circular
Number of Barrels
1
Diameter
24.0 in
Length
36.00 ft
Length (Computed Barrel)
36.00 ft
Slope (Computed)
0.014 ft /ft
Outlet Control Data
Manning's n
0.013
Ke
0.500
Kb
0.012
Kr
0.500
Convergence Tolerance
0.00 ft
Inlet Control Data
Equation Form
Form 1
K
0.0098
M
2.0000
C
0.0398
Y
0.6700
Ti ratio (HW /D)
1.153
T2 ratio (HW /D)
1.300
Slope Correction Factor
-0.500
Use unsubmerged inlet control 0 equation below T1
elevation.
Use submerged inlet control 0 equation above T2
elevation
In transition zone between unsubmerged and submerged
inlet control,
interpolate between flows at T1 & T2...
T1 Elevation 300.81 ft T1 Flow
15.55 ft3 /s
T2 Elevation 301.10 ft T2 Flow
17.77 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 3 of 14
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #2
Structure ID: Orifice - 1
Structure Type: Orifice- Circular
Number of Openings
1
Elevation
301.00 ft
Orifice Diameter
1.5 in
Orifice Coefficient
0.600
Structure ID: Orifice -2
Structure Type: Orifice -Area
Number of Openings
1
Elevation
302.00 ft
Orifice Area
1.0 ftz
Top Elevation
302.50 ft
Datum Elevation
302.00 ft
Orifice Coefficient
0.600
Structure ID: TW
Structure Type: TW Setup, DS Channel
Tailwater Type
Free Outfall
Convergence Tolerances
Maximum Iterations
30
Tailwater Tolerance
(Minimum)
0.01 ft
Tailwater Tolerance
(Maximum)
0.50 ft
Headwater Tolerance
(Minimum)
0.01 ft
Headwater Tolerance
(Maximum)
0.50 ft
Flow Tolerance (Minimum)
0.001 ft3 /s
Flow Tolerance (Maximum)
10.000 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i
Pa rkside. ppc Center 108.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 4 of 14
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #2
Composite Outflow Summary
Water Surface Flow Tailwater Elevation Convergence Error
Elevation (ft3 /s) (ft) (ft)
(ft)
301.00
0.00
(N /A)
0.00
301.20
0.02
(N /A)
0.00
301.40
0.03
(N /A)
0.00
301.60
0.04
(N /A)
0.00
301.80
0.05
(N /A)
0.00
302.00
0.06
(N /A)
0.00
302.20
1.43
(N /A)
0.00
302.40
2.79
(N /A)
0.00
302.60
3.81
(N /A)
0.00
302.80
4.39
(N /A)
0.00
303.00
4.92
(N /A)
0.00
303.20
5.36
(N /A)
0.00
303.40
5.79
(N /A)
0.00
303.50
5.98
(N /A)
0.00
303.60
7.70
(N /A)
0.00
303.80
14.45
(N /A)
0.00
304.00
23.78
(N /A)
0.00
304.20
31.37
(N /A)
0.00
304.40
33.78
(N /A)
0.00
304.60
34.51
(N /A)
0.00
304.80
35.23
(N /A)
0.00
305.00
35.94
(N /A)
0.00
305.20
36.62
(N /A)
0.00
305.40
37.30
(N /A)
0.00
305.60
37.96
(N /A)
0.00
305.80
38.62
(N /A)
0.00
306.001
39.26
(N /A)
0.00
Contributing Structures
(no Q: Riser - 1,Orifice - 2,Culvert -
1,Orifice - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 5 of 14
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #2
Composite Outflow Summary
Contributing Structures
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 6 of 14
Watertown, CT 06795 USA +1- 203 - 755 -1666
I n _yre 00115T M sE
SCEtilaI D
SIPHoN ct- 0616CO,
Subsection: Outlet Input Data
Label: SWMF #2 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Requested Pond Water Surface Elevations
Minimum (Headwater) 301.00 ft
Increment (Headwater) 0.20 ft
Maximum (Headwater) 306.00 ft
Outlet Connectivity
Structure Type Outlet ID Direction Outfall E1 E2
(ft) (ft)
Inlet Box
Riser - 1
Forward
Culvert - 1
303.50
306.00
Orifice -Area
Orifice - 2
Forward
Culvert - 1
302.00
306.00
Culvert- Circular
Culvert - 1
Forward
TW
298.50
306.00
Tailwater Settings
Tailwater
(N /A)
(N /A)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Pa rkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 7 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #2 -WC
Structure ID: Riser- 1
Structure Type: Inlet Box
Return Event: 100 years
Storm Event: 100 -Year Storm
Number of Openings
1
Elevation
303.50 ft
Orifice Area
16.0 ftz
Orifice Coefficient
0.600
Weir Length
16.00 ft
Weir Coefficient
3.00 (ft ^0.5) /s
K Reverse
1.000
Manning's n
0.000
Kev, Charged Riser
0.000
Weir Submergence
False
Orifice H to crest
False
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 8 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #2 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Structure ID: Culvert- 1
Structure Type: Culvert- Circular
Number of Barrels
1
Diameter
24.0 in
Length
36.00 ft
Length (Computed Barrel)
36.00 ft
Slope (Computed)
0.014 ft /ft
Outlet Control Data
Manning's n
0.013
Ke
0.500
Kb
0.012
Kr
0.500
Convergence Tolerance
0.00 ft
Inlet Control Data
Equation Form
Form 1
K
0.0098
M
2.0000
C
0.0398
Y
0.6700
T1 ratio (HW /D)
1.153
T2 ratio (HW /D)
1.300
Slope Correction Factor
-0.500
Use unsubmerged inlet control 0 equation below T1
elevation.
Use submerged inlet control 0 equation above T2
elevation
In transition zone between unsubmerged and submerged
inlet control,
interpolate between flows at T1 & T2...
T1 Elevation 300.81 ft T1 Flow 15.55 ft3 /s
T2 Elevation 301.10 ft T2 Flow 17.77 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 9 of 25
Watertown, CT 06795 USA +1 -203- 755 -1666
Subsection: Outlet Input Data
Label: SWMF #2 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Structure ID: Orifice - 2
Structure Type: Orifice -Area
Number of Openings
1
Elevation
302.00 ft
Orifice Area
1.0 ftz
Top Elevation
302.50 ft
Datum Elevation
302.00 ft
Orifice Coefficient
0.600
Structure ID: TW
Structure Type: TW Setup, DS Channel
Tailwater Type
Free Outfall
Convergence Tolerances
Maximum Iterations
30
Tailwater Tolerance
0.01 ft
(Minimum)
Tailwater Tolerance
0.50 ft
(Maximum)
Headwater Tolerance
0.01 ft
(Minimum)
Headwater Tolerance
0.50 ft
(Maximum)
Flow Tolerance (Minimum)
0.001 ft3 /s
Flow Tolerance (Maximum)
10.000 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 10 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #2 -WC
Composite Outflow Summary
Water Surface Flow
Elevation (ft3 /s)
(ft)
Return Event: 100 years
Storm Event: 100 -Year Storm
Tailwater Elevation Convergence Error
(ft) (ft)
301.00
0.00
(N /A)
0.00
301.20
0.00
(N /A)
0.00
301.40
0.00
(N /A)
0.00
301.60
0.00
(N /A)
0.00
301.80
0.00
(N /A)
0.00
302.00
0.00
(N /A)
0.00
302.20
1.36
(N /A)
0.00
302.40
2.72
(N /A)
0.00
302.60
3.73
(N /A)
0.00
302.80
4.30
(N /A)
0.00
303.00
4.81
(N /A)
0.00
303.20
5.28
(N /A)
0.00
303.40
5.70
(N /A)
0.00
303.50
5.89
(N /A)
0.00
303.60
7.61
(N /A)
0.00
303.80
14.35
(N /A)
0.00
304.00
23.63
(N /A)
0.00
304.20
31.26
(N /A)
0.00
304.40
33.68
(N /A)
0.00
304.60
34.40
(N /A)
0.00
304.80
35.12
(N /A)
0.00
305.00
35.82
(N /A)
0.00
305.20
36.50
(N /A)
0.00
305.40
37.18
(N /A)
0.00
305.60
37.84
(N /A)
0.00
305.80
38.49
(N /A)
0.00
306.001
39.13
(N /A)
1 0.00
Contributing Structures
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Orifice - 2,Culvert - 1
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 11 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #2 -WC
Composite Outflow Summary
Contributing Structures
Riser - 1,Orifice -
2,Culvert - 1
Riser - 1,Orifice -
2,Culvert - 1
Riser - 1,Culvert
- 1 (no Q: Orifice - 2)
Riser - 1,Culvert
- 1 (no Q: Orifice - 2)
Riser - 1,Culvert
- 1 (no Q: Orifice - 2)
Riser - 1,Culvert
- 1 (no Q: Orifice - 2)
Riser - 1,Culvert
- 1 (no Q: Orifice - 2)
Riser - 1,Culvert
- 1 (no Q: Orifice - 2)
Riser - 1,Culvert
- 1 (no Q: Orifice - 2)
Riser - 1,Culvert
- 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no 0: Orifice -
Return Event: 100 years
Storm Event: 100 -Year Storm
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 12 of 25
Watertown, CT 06795 USA +1 -203- 755 -1666
PARKSIDE TOWN COMMONS STORMWATER WETLAND
KRG -12000 SIZING CALCULATIONS - SWMF #2
= => Determination of Water Quality Volume (WQ I j
WQ v = (P) (R v)(A) /12
where,
WQv = water quality volume (in acre -ft)
Rv = 0.05 +0.009(I) where I is percent impervious cover
A = area in acres
P = rainfall (in inches)
Input data:
13055
b =
Total area, A =
5.48
acres
Impervious area =
2.10
acres
Percent impervious cover, I =
38.3
%
Rainfall, P =
1.0
inches
Calculated values:
Rv =
0.39
WQv=
0.18
acre -ft
=
7855
cf.
= => Storunvater Wetland Required Surface Area Calculation
WQ Volume = 7855 cf
Maximum Ponding Depth = 12 inches
Surface Area Required at Normal Pool = 7855 SF
==> Associated Pond Depth in Storm water Wetland
Ks =
13055
b =
1.09
V =
7855
Normal Pool Elevation =
301.0 feet
I WQ Elevation = 301.63 feet
B. IHNATOLYA, PE
9/10/2012
PARKSIDE TOWN COMMONS WQ VOLUME
KRG -12000
SIPHON DESIGN
D orifice =
1.5 inch
# orifices =
1
Ks =
13055
b =
1.09
Cd siphon =
0.60
0.5' x 2.0' Orifice Invert Elevation =
302.00 feet
Normal Pool Elevation =
301.00 feet
WQ Volume =
7855 cf
Temporary Pool W.S. Elev. =
302.00 feet
Using the average head over the orifice (assuming average head is
one -third the total depth), the result would be:
Average driving head on orifice =
0.333 feet
Orifice composite loss coefficient =
0.600
Cross - sectional area of 0.75" orifice =
0.012 sf
Q=
0.0341 cfs
Drawdown Time = Volume / Flowrate / 86400 (sec /day)
Drawdown Time = 2.66 days
Conclusion : Use 1 -1.5" Diameter PVC inverted siphon to drawdown the accumulated volume
from the 1" storm runoff, with a required time of about 2.66 days.
B. IHNATOLYA, PE
9/10/2012
®M s
PARKSIDE TOWN COMMONS SWMF #2 B. IHNATOLYA, PE
KRG -12000 9/11/2012
PARKSIDE TOWN COMMONS
L WETLAND POOL CHECK
Per NCDENR "Stormwater Best Management Practices ", the permanent pool needs to be designed with various water depths to
support plant and animal populations. The wetland should consist of deep pools, shallow water, and shallow land with the deep
pools being broken down to forebay pools and non - forebay pools. Approximately 5 -10% of the wetland surface area should be
non - forebay deep pools. Approximately 10% of the suface area should be forebay deep pools. Approximately 40% of the
surface area should be shallow water, and the remaining 30 -40 %of the surface area should be shallow land.
A. Total Wetland Surface Area (Elev. 301.0)
Area = 12263 sf
B. Wetland Surface Area: Deep Pools (18 " -36" deep)
Non - Forebay Area = 1220 sf
Forebay Area = 1153 sf
C. Wetland Surface Area: Shallow Water (3" -6" deep)
Area = 5014 sf
D. Wetland Surface Area: Shallow Land (12 "+ -3" deep)
Area = 4876 sf
Deep Pools- Non - Foreba
10%
Deep Pools- Foreba
9%
Shallow Water
41%
Shallow Land
40%
Parkside Town Commons — SWMF #2
Project # KRG -12000
VELOCITY DISSIPATOR DESIGN
Designed By: B. Ihnatolya
Velocity Dissipator — SWMF #2
NRCD Land Quality Section
Pipe Design
Entering the following values will provide you with
the expected outlet velocity and depth of flow in a
pipe, assuming the Mannings roughness number is
constant over the entire length of the pipe.
flow Q in cfs : 5.70 Flow depth (ft) = 0.63
slope Sin % : 1.39 Outlet velocity (fps) = 6.754
pipe diameter D in in.: 24
Manning number n : 0.013
NRCD Land Quality Section
NYDOT Dissipator Design Results
Pipe diameter (ft)
2.00
Outlet velocity (fps) 6.75
Apron length (ft)
12.00
AVG DIAM STONE
THICKNESS
(inches) CLASS
(inches)
-- - - - - -- - - - --
3 A
--- - - - - --
9
»6 B
22«
13 B or 1
22
23 2
27
Width Calculation
WIDTH = La + Do
WIDTH = 12.00 + 2.00
WIDTH = 14.0 FEET
CONCLUSION
Use 8" DIA NCDOT Class `B' Rip Rap
12'L x 14'W x 22" Thick
ABE VOLUME CALCULATORS, PYRAMIDLONG
Page 1 of I
CALCULATE VOLUME OF PYRAMID WITH INDIVIDUAL WIDTHS AND LENGTHS
Enter all known values in the form below and press the "CALCULATE" button.
Aar,
WIDTHI(WI) LENGTHI(LI) WIDTH2 IFLENGTH21 HEIGHT VOLUME
(W2) I (L2) (h)
7 7 F
IThe answer that you jPn copy for other use 38
CALCULATE RESET
SELECT ANOTHER SHAPE
Go to Unit Conversion Paize
http: / /www.abe.msstate.edu / —fto /tools /vol /pyramidlong.html 6/12/2012
PARKSIDE TOWN COMMONS SWMF 42 B. IHNATOLYA, PE
KRG -12000 8/27/2012
Input Data =_>
Square Riser /Barrel Anti - Flotation Calculation Sheet
Inside length of riser =
4.00 feet
Inside width of riser =
4.00 feet
Wall thickness of riser =
6.00 inches
Base thickness of riser =
8.00 inches
Base length of riser =
5.00 feet
Base width of riser =
5.00 feet
Inside height of Riser =
5.00 feet
Concrete unit weight =
142.0 PCF
OD of barrel exiting manhole =
31.50 inches
Size of drain pipe (if present) =
8.0 inches
Number of detention orifices (if present) =
1
Area of detention orifice (if present) =
0.022 SQFT
Number of detention orifices (if present) =
1
Area of detention orifice (if present) =
1.000 SQFT
Trash Rack water displacement =
38.00 CF
Concrete Present in Riser Structure =_>
Total amount of concrete:
Base of Riser = 16.667 CF
Riser Walls = 45.000 CF
Adjust for openings:
Opening for barrel = 2.706 CF
Opening for drain pipe = 0.175 CF
Opening for detention orifice = 0.511 CF
Note: NC Products lists unit wt. of
manhole concrete at 142 PCF.
Total Concrete present, adjusted for openings = 58.275 CF
Weight of concrete present = 8275 lbs
Amount of water displaced by Riser Structure =_>
Displacement by concrete = 58.275 CF
Displacement by open air in riser = 80.000 CF
Displacement by trash rack = 38.000 CF
Total water displaced by riser/barrel structure = 176.275 CF
Weight of water displaced = 11000 lbs
PARKSIDE TOWN COMMONS SWMF #2 B. IHNATOLYA, PE
KRG -12000 8/27/2012
Calculate amount of'concrete to be added to riser = =>
Safety factor to use = 1.25 (recommend 1.25 or higher)
Must add = 5474 lbs concrete for buoyancy
Concrete unit weight for use = 142 PCF (note above observation for NCP concrete)
Buoyant weight of this concrete = 79.60 PCF
Buoyant, with safety factor applied = 63.68 PCF
Therefore, must add = 85.967 CF of concrete
Standard base described above = 16.667 CF of concrete
Therefore, base design must have = 102.634 CF of concrete
Calculate size of base for riser assembly = =>
Length = 8.000 feet
Width = 8.000 feet
Thickness = 20.0 inches
Concrete Present = 106.667 CF OK
Check validity of base as designed =>
Total Water Displaced =
266.275 CF
Total Concrete Present =
148.275 CF
Total Water Displaced =
16616 lbs
Total Concrete Present =
21055 lbs
Actual safety factor =
1.27 OK
Results of design = =>
Base length =
8.00 feet
Base width =
8.00 feet
Base Thickness =
20.00 inches
CY of concrete total in base =
3.95 CY
Concrete unit weight in added base >=
142 PCF
SWMF #3 FINAL DESIGN CALCULATIONS
PARKSIDE TOWN COMMONS
KRG -12000
PARKSIDE TOWN COMMONS WETLAND
KRG -12000 SWMF #3
Stale- Storage Function
B. IHNATOLYA, PE
9/10/2012
Project Name:
Parkside Town Commons
65,834
Designer:
B. Ilmatolya, PE
306.00
R�2.0
Job Number:
KRG -12000
138830
138830
R 2.01
Date:
9/10/2012
80,394
76695
153390
292220 �-
3.97
310.00
6.0
88,001
Average
Incremental
Accumulated
Estimated
Contour
Contour
Contour
Contour
Volume
Contour Stage Area
Area
Volume
Volume
w/ S -S Fxn
(feet) (feet) (SF)
(SF)
(CF)
(CF)
(CF)
304.00
0.0
65,834
500000 _•
— - - - -�_ , _.�,e,_.�
306.00
R�2.0
72,996
69415
138830
138830
R 2.01
308.00
4.0
80,394
76695
153390
292220 �-
3.97
310.00
6.0
88,001
84198
168395
460615
6.04�T
Ks = 65034
b = 1.089
Storage vs. Stage
500000 _•
— - - - -�_ , _.�,e,_.�
450000
400000
y = 65034x'.089
350000
R = 0.999
LL
�
�?
300000
m
250000
°
200000
150000
100000
}
50000
f
0
0.0
1.0 2.0 Stoge (feet)4.0 5.0 6.0 7.0
Ks = 65034
b = 1.089
PARKSIDE TOWN COMMONS WETLAND B. H-INATOLYA, PE
KRG-12000 SWMF#3 9/10/2012
Stage - Storage Function
Ks = 65034
b = 1.089
Zo = 304.00
Elevation
Storage
feet
[cf] [acre-feet
304*00 0 0.000
11271 j
0.259
304.40
23976
-- ,,—,--
0.550
37286
304.80
51004 1
1.171
305.00
65034
1.493
305.20 i
79317
11.821
305_40
r
93815
305.60
168449
2.491
305.80
123348
2.832
306.00
138345
3.176
30C207
153475.__'x,. ._..._..3.523
168729 4
3.873
306.60
184097l
4.22 6
306.80
199570 1
, --
4.582
307.00
215142 i
4.939
307.20
230807 1
5.299
307.40
I-- __ ------ 4-.-----,,,-
246559 1
5.660
307.60
262394
0
278307
6.389
308.00
294296
6.756
308.20
310355 4
7.125
308.40 I
326483
7.495
308.60
342676 1 7.867
308.80
358932
8.240
309.00
375248
8.615
309.20 1
391623
8.990
309.40
408054
9.368
- _"'��q�..46 __'4__2'4__5_3_9__tF
"_9_._7__4_6_'_
309.80
441076
10.126
310.00 1
457664
10.507
Subsection: Outlet Input Data
Label: SWMF #3
Requested Pond Water Surface Elevations
Minimum (Headwater) 304.00 ft
Increment (Headwater) 0.20 ft
Maximum (Headwater) 310.00 ft
Outlet Connectivity
Structure Type Outlet ID Direction Outfall El E2
(ft) (ft)
Inlet Box
Riser - 1
Forward
Culvert - 1
307.20
310.00
Orifice -Area
Orifice - 2
Forward
Culvert - 1
305.00
310.00
Culvert- Circular
Culvert - 1
Forward
TW
301.00
310.00
Orifice - Circular
Orifice - 1
Forward
TW
304.00
310.00
Tailwater Settings
Tailwater
(N /A)
(N /A)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 13 of 27
Watertown, CT 06795 USA +1 -203- 755 -1666
Subsection: Outlet Input Data
Label: SWMF #3
Structure ID: Riser- 1
Structure Type: Inlet Box
Number of Openings
1
Elevation
307.20 ft
Orifice Area
25.0 ftz
Orifice Coefficient
0.600
Weir Length
20.00 ft
Weir Coefficient
3.00 (ft ^0.5) /s
K Reverse
1.000
Manning's n
0.000
Kev, Charged Riser
0.000
Weir Submergence
False
Orifice H to crest
False
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 14 of 27
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #3
Structure ID: Culvert - 1
Structure Type: Culvert- Circular
Number of Barrels
1
Diameter
36.0 in
Length
49.00 ft
Length (Computed Barrel)
49.01 ft
Slope (Computed)
0.020 ft /ft
Outlet Control Data
Manning's n
0.013
Ke
0.500
Kb
0.007
Kr
0.500
Convergence Tolerance
0.00 ft
Inlet Control Data
Equation Form
Form 1
K
0.0098
M
2.0000
C
0.0398
Y
0.6700
T1 ratio (HW /D)
1.150
T2 ratio (HW /D)
1.297
Slope Correction Factor
-0.500
Use unsubmerged inlet control 0 equation below T1
elevation.
Use submerged inlet control 0 equation above T2
elevation
In transition zone between unsubmerged and submerged
inlet control,
interpolate between flows at T1 & T2...
T1 Elevation 304.45 ft TI Flow
42.85 ft3 /s
T2 Elevation 304.89 ft T2 Flow
48.97 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 15 of 27
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #3
Structure ID: Orifice - 1
Structure Type: Orifice- Circular
Number of Openings
1
Elevation
304.00 ft
Orifice Diameter
4.5 in
Orifice Coefficient
0.600
Structure ID: Orifice - 2
Structure Type: Orifice -Area
Number of Openings
1
Elevation
305.00 ft
Orifice Area
1.0 ftz
Top Elevation
305.50 ft
Datum Elevation
305.00 ft
Orifice Coefficient
0.600
Structure ID: TW
Structure Type: TW Setup, DS Channel
Tailwater Type
Free Outfall
Convergence Tolerances
Maximum Iterations
30
Tailwater Tolerance
0.01 ft
(Minimum)
Tailwater Tolerance
0.50 ft
(Maximum)
Headwater Tolerance
0.01 ft
(Minimum)
Headwater Tolerance
0.50 ft
(Maximum)
Flow Tolerance (Minimum)
0.001 ft3 /s
Flow Tolerance (Maximum)
10.000 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 16 of 27
Watertown. CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #3
Composite Outflow Summary
Water Surface Flow Tailwater Elevation Convergence Error
Elevation (ft3 /s) (ft) (ft)
(ft)
304.00
0.00
(N /A)
0.00
304.20
0.07
(N /A)
0.00
304.40
0.25
(N /A)
0.00
304.60
0.34
(N /A)
0.00
304.80
0.42
(N /A)
0.00
305.00
0.48
(N /A)
0.00
305.20
1.90
(N /A)
0.00
305.40
3.31
(N /A)
0.00
305.60
4.36
(N /A)
0.00
305.80
4.98
(N /A)
0.00
306.00
5.53
(N /A)
0.00
306.20
6.03
(N /A)
0.00
306.40
6.49
(N /A)
0.00
306.60
6.92
(N /A)
0.00
306.80
7.32
(N /A)
0.00
307.00
7.70
(N /A)
0.00
307.20
8.06
(N /A)
0.00
307.40
13.78
(N /A)
0.00
307.60
23.93
(N /A)
0.00
307.80
36.94
(N /A)
0.00
308.00
52.14
(N /A)
0.00
308.20
67.32
(N /A)
0.00
308.40
82.05
(N /A)
0.00
308.60
85.11
(N /A)
0.00
308.80
86.63
(N /A)
0.00
309.00
88.11
(N /A)
0.00
309.20
89.56
(N /A)
0.00
309.40
90.99
(N /A)
0.00
309.60
92.41
(N /A)
0.00
309.80
93.79
(N /A)
0.00
310.001
95.16
(N /A)
1 0.00
Contributing Structures
(no Q: Riser - 1,Orifice - 2,Culvert -
1,Orifice - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 17 of 27
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #3
Composite Outflow Summary
Contributing Structures
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 18 of 27
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #3
Composite Outflow Summary
Contributing Structures
IRiser - 1,Culvert - l,Oribce - 1 (no Q:
Orifice - 2)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 19 of 27
Watertown, CT 06795 USA +1- 203 - 755 -1666
100 -yR worSt eMC'
SeEN )+rJ 0
sipfffig et_0446b
Subsection: Outlet Input Data
Label: SWMF #3 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Requested Pond Water Surface Elevations
Minimum (Headwater) 304.00 ft
Increment (Headwater) 0.20 ft
Maximum (Headwater) 310.00 ft
Outlet Connectivity
Structure Type Outlet ID Direction Outfall E1 E2
(ft) (ft)
Inlet Box
Riser - 1
Forward
Culvert - 1
307.20
310.00
Orifice -Area
Orifice - 2
Forward
Culvert - 1
305.00
310.00
Culvert - Circular
Culvert - 1
Forward
—1W
301.0000
310.00
Tailwater Settings
Tailwater
(N /A)
(N /A)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 13 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #3 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Structure ID: Riser- 1
Structure Type: Inlet Box
Number of Openings
1
Elevation
307.20 ft
Orifice Area
25.0 ft2
Orifice Coefficient
0.600
Weir Length
20.00 ft
Weir Coefficient
3.00 (ft ^0.5) /s
K Reverse
1.000
Manning's n
0.000
Kev, Charged Riser
0.000
Weir Submergence
False
Orifice H to crest
False
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 14 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #3 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Structure ID: Culvert - 1
Structure Type: Culvert- Circular
Number of Barrels
1
Diameter
36.0 in
Length
49.00 ft
Length (Computed Barrel)
49.01 ft
Slope (Computed)
0.020 ft /ft
Outlet Control Data
Manning's n
0.013
Ke
0.500
Kb
0.007
Kr
0.500
Convergence Tolerance
0.00 ft
Inlet Control Data
Equation Form
Form 1
K
0.0098
M
2.0000
C
0.0398
Y
0.6700
T1 ratio (HW /D)
1.150
T2 ratio (HW /D)
1.297
Slope Correction Factor
-0.500
Use unsubmerged inlet control 0 equation below T1
elevation.
Use submerged inlet control 0 equation above T2
elevation
In transition zone between unsubmerged and submerged
inlet control,
interpolate between flows at T1 & T2...
T1 Elevation 304.45 ft Ti Flow 42.85 ft3 /s
T2 Elevation 304.89 ft T2 Flow 48.97 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 15 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #3 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Structure ID: Orifice - 2
Structure Type: Orifice -Area
Number of Openings
1
Elevation
305.00 ft
Orifice Area
1.0 ft2
Top Elevation
305.50 ft
Datum Elevation
305.00 ft
Orifice Coefficient
0.600
Structure ID: TW
Structure Type: TW Setup, DS Channel
Tailwater Type
Free Outfall
Convergence Tolerances
Maximum Iterations
30
Tailwater Tolerance
0.01 ft
(Minimum)
Tailwater Tolerance
0.50 ft
(Maximum)
Headwater Tolerance
0.01 ft
(Minimum)
Headwater Tolerance
0.50 ft
(Maximum)
Flow Tolerance (Minimum)
0.001 ft3 /s
Flow Tolerance (Maximum)
10.000 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 16 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #3 -WC
Composite Outflow Summary
Water Surface Flow Tailwater Elevation
Elevation (ft3 /s) (ft)
(ft)
Return Event: 100 years
Storm Event: 100 -Year Storm
Convergence Error
(ft)
304.00
0.00
(N /A)
0.00
304.20
0.00
(N /A)
0.00
304.40
0.00
(N /A)
0.00
304.60
0.00
(N /A)
0.00
304.80
0.00
(N /A)
0.00
305.00
0.00
(N /A)
0.00
305.20
1.36
(N /A)
0.00
305.40
2.72
(N /A)
0.00
305.60
3.73
(N /A)
0.00
305.80
4.31
(N /A)
0.00
306.00
4.81
(N /A)
0.00
306.20
5.27
(N /A)
0.00
306.40
5.70
(N /A)
0.00
306.60
6.09
(N /A)
0.00
306.80
6.46
(N /A)
0.00
307.00
6.80
(N /A)
0.00
307.20
7.14
(N /A)
0.00
307.40
12.82
(N /A)
0.00
307.60
22.95
(N /A)
0.00
307.80
35.93
(N /A)
0.00
308.00
51.10
(N /A)
0.00
308.20
66.26
(N /A)
0.00
308.40
80.96
(N /A)
0.00
308.60
83.99
(N /A)
0.00
308.80
85.48
(N /A)
0.00
309.00
86.94
(N /A)
0.00
309.20
88.37
(N /A)
0.00
309.40
89.78
(N /A)
0.00
309.60
91.17
(N /A)
0.00
309.80
92.53
(N /A)
0.00
310.001
93.88
(N /A)
1 0.00
Contributing Structures
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 17 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #3 -WC
Composite Outflow Summary
Contributing Structures
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Orifice - 2,Culvert - 1
Riser - l,Orif]ce - 2,Culvert - 1
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no 0: Orifice - 2)
Return Event: 100 years
Storm Event: 100 -Year Storm
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 18 of 25
Watertown, CT 06795 USA +1 -203- 755 -1666
PARKSIDE TOWN COMMONS STORMWATER WETLAND
KRG -12000 SIZING CALCULATIONS - SWMF #3
_> Determination of Water Quality Volume (WQ Ij
WQ v = (P) (R v)(A) /12
where,
WQv = water quality volume (in acre -ft)
Rv = 0.05 +0.009(I) where I is percent impervious cover
A = area in acres
P = rainfall (in inches)
Input data:
Total area, A =
Impervious area =
Percent impervious cover, I =
Rainfall, P =
Calculated values:
27.36 acres
17.85 acres
65.2 %
1.0 inches
Rv = 0.64
WQv = 1.45 acre -ft
= 63282 cf.
>`Stormwater Wetland Required Surface Area Calculation
WQ Volume = 63282 cf.
Maximum Ponding Depth = 12 inches
Surface Area Required at Normal Pool = 63282 SF
=> Associated Pond Depth in Stormwater Weiland
Ks=
65034
b =
1.089
V =
63282
Normal Pool Elevation =
304.0 feet
�� WQ Elevation = 304.98 feet
B. IHNATOLYA, PE
9/10/2012
PARKSIDE TOWN COMMONS WQ VOLUME
KRG -12000
SIPHON DESIGN
D orifice =
4.5 inch
# orifices =
1
Ks=
65034
b =
1.089
Cd siphon =
0.60
0.5'x 2.0' Orifice Invert Elevation =
305.00 feet
Normal Pool Elevation =
304.00 feet
WQ Volume =
63282 cf
Temporary Pool W.S. Elev. =
305.00 feet
Using the average head over the orifice (assuming average head is
one -third the total depth), the result would be:
Average driving head on orifice =
0.333 feet
Orifice composite loss coefficient =
0.600
Cross - sectional area of 0.75" orifice =
0.110 sf
Q=
0.3070 cfs
Drawdown Time = Volume / Flowrate / 86400 (sec /day)
Drawdown Time = 2.39 days
Conclusion : Use 1- 4.5" Diameter PVC inverted siphon to drawdown the accumulated volume
from the 1" storm runoff, with a required time of about 2.39 days.
B. IHNATOLYA, PE
9/10/2012
X
Vi
\ \ GRAPHIC SCALE >��ll/
\ Z 50 0 25 50 100
$E-4 a
\\ \ \\ I / J IIJ�I IIII Ill — �__– ✓_� / /�i/ //v /� \ z�N
E-4U
rA
rlfr
z aa�
ol
i
/ � / � � / l �/ / 1 � l � // I / /� / / VA r ✓�i% '���i i /� r„� � / i / ,,a�il/// ' ' � � \
/O�i� / /j/
\
r ry
DESCRIPTION AREA (SF) PERCENTAGE
DEEP POOL 6,496 10% °O 3
- Lo
DEEP POOL 6,765 10% / cD cv II N
(NON— FOREBAY) / s Ir co
SHALLOW WATER 27,150 41%
SHALLOW LAND 25,423 39% a a
[dYIcADAYIS
PARKSIDE TOWN COMMONS SWMF #3 B. IHNATOLYA, PE
KRG -12000 9/11/2012
PARKSIDE TOWN COMMONS
Per NCDENR "Stormwater Best Management Practices ", the permanent pool needs to be designed with various water depths to
support plant and animal populations. The wetland should consist of deep pools, shallow water, and shallow land with the deep
pools being broken down to forebay pools and non - forebay pools. Approximately 5 -10% of the wetland surface area should be
non - forebay deep pools. Approximately 10% of the suface area should be forebay deep pools. Approximately 40% of the
surface area should be shallow water, and the remaining 30 -40 %of the surface area should be shallow land.
A. Total Wetland Surface Area (Elev. 304.0)
B. Wetland Surface Area: Deep Pools (18 " -36" deep)
Non - Forebay
Forebay
C. Wetland Surface Area: Shallow Water (3" -6" deep)
D. Wetland Surface Area: Shallow Land (12 "+ -3" deep)
Area =
65834 sf
Area =
6765 sf
Area =
6496 sf
Area =
27150 sf
Area = 25423 sf
Deep Pools - Non - Foreba
10%
Deep Pools- Foreba
10%
Shallow Water
41%
Shallow Land
39%
Parkside Town Commons — SWMF #3
Project # KRG -12000
VELOCITY DISSIPATOR DESIGN
Designed By: B. Ihnatolya
Velocity Dissipator — SWMF #3
NRCD Land Quality Section
Pipe Design
Entering the following values will provide you with
the expected outlet velocity and depth of flow in a
pipe, assuming the Mannings roughness number is
constant over the entire length of the pipe.
flow Q in cfs : 17.77 Flow depth (ft) = 0.88
slope S in %: 2.04 Outlet velocity (fps) = 10.320
pipe diameter D in in.: 36
Manning number n : 0.013
NRCD Land Quality Section
NYDOT Dissipator Design Results
Pipe diameter (ft)
3.00
Outlet velocity (fps)
10.32
Apron length (ft)
24.00
AVG DIAM STONE
THICKNESS
(inches) CLASS
(inches)
-- - - - - -- - - - -- ---
3 A
- - - - --
9
6 B
22
»13 Bor1
22«
23 2
27
Width Calculation
WIDTH = La + Do
WIDTH = 24.00 + 3.00
WIDTH = 27.0 FEET
CONCLUSION
Use 10" DIA NCDOT Class `1' Rip Rap
24'L x 27'W x 22" Thick
ABE VOLUME CALCULATORS, PYRAMIDLONG
http://www.abe.msstate.edtV—fto/tools/vol/pyran idlong.htrr.
CALCULATE VOLUME OF PYRAMID WITH INDIVIDUAL WIDTHS AND LENGTHS
Enter all known values in the form below and press the "CALCULATE" button.
A&IF
WIDTHI(wi) E-N GTH I (L 1) WIDTH2(W2) '-.NGTH2(t. HEIGHT(h) VOLUME
ji4 t:21 =61.74
7 ---
The answer that can you can copy for other use
CALCULATE RESET
SELECT ANOTHER SHAPE
Go to Unit Conversion Page
1 of 1 9/11/2012 11:46 AN
PARKSIDE TOWN COMMONS SWMF #3 B. IHNATOLYA, PE
KRG -12000 9/11/2012
Input Data =_>
Square Riser/Barrel Anti - Flotation Calculation Sheet
Inside length of riser =
5.00 feet
Inside width of riser =
5.00 feet
Wall thickness of riser =
6.00 inches
Base thickness of riser =
8.00 inches
Base length of riser =
6.00 feet
Base width of riser =
6.00 feet
Inside height of Riser =
6.20 feet
Concrete unit weight =
142.0 PCF
OD of barrel exiting manhole =
45.50 inches
Size of drain pipe (if present) =
8.0 inches
Number of detention orifices (if present) =
1
Area of detention orifice (if present) =
0.110 SQFT
Number of detention orifices (if present) =
1
Area of detention orifice (if present) =
1.000 SQFT
Trash Rack water displacement =
61.74 CF
Concrete Present in Riser Structure =_>
Total amount of concrete:
Base of Riser = 24.000 CF
Riser Walls = 68.200 CF
Adjust for openings:
Opening for barrel = 5.646 CF
Opening for drain pipe = 0.175 CF
Opening for detention orifice = 0.555 CF
Note: NC Products lists unit wt. of
manhole concrete at 142 PCF.
Total Concrete present, adjusted for openings = 85.825 CF
Weight of concrete present = 12187 Ibs
Amount of water displaced by Riser Structure =_>
Displacement by concrete = 85.825 CF
Displacement by open air in riser = 155.000 CF
Displacement by trash rack = 61.740 CF
Total water displaced by riser/barrel structure = 302.565 CF
Weight of water displaced = 18880 lbs
PARKSIDE TOWN COMMONS SWMF #3 B. 1HNATOLYA, PE
KRG -12000 9/11/2012
Calculate amount of concrete to be added to riser = =>
Safety factor to use = 1.25 (recommend 1.25 or higher)
Must add = 11413 lbs concrete for buoyancy
Concrete unit weight for use = 142 PCF (note above observation for NCP concrete)
Buoyant weight of this concrete = 79.60 PCF
Buoyant, with safety factor applied = 63.68 PCF
Therefore, must add = 179.223 CF of concrete
Standard base described above = 24.000 CF of concrete
Therefore, base design must have = 203.223 CF of concrete
Calculate size of base for riser assembly = =>
Length = 9.000 feet
Width = 9.000 feet
Thickness = 31.0 inches
Concrete Present = 209.250 CF OK
Check validity of base as designed = =>
Total Water Displaced =
487.815 CF
Total Concrete Present =
271.075 CF
Total Water Displaced =
30440 lbs
Total Concrete Present =
38493 lbs
Actual safety factor =
1.26 OK
Results of design = =>
Base length =
9.00 feet
Base width =
9.00 feet
Base Thickness =
31.00 inches
CY of concrete total in base =
7.75 CY
Concrete unit weight in added base >=
142 PCF
PARKSIDE TOWN COMMONS Anti- Flotation Block Calculation B. I14NATOLYA, PE
KRG -12000 Anti- Flotation Block Steel 10/17/2012
II. CALCULATION FOR RISER ANTI - FLOTATION STEEL
Input Data -*
Anti - Floatation Block Length = 9.0 feet
Anti - Floatation Block Width = 9.0 feet
Anti - Floatation Block Thickness= 31.0 inches
Minimum Asteel to Aconcrete Ratio = 0.0018
Cross - Section Calculations --->
Cross - Section Area* = 23.25 SF
Minimum Steel Area Required = 0.042 SF
6.03 SI
*Note: Assumes a "square" x -sec (L and W same)
Steel Area Calculations -->
Bar Size =
4
5
6
7
8
Diameter [in] =
0.500
0.625
0.750
0.875
1.000
X -Sec Area [in ^2] =
0.196
0.307
0.442
0.601
0.785
Number of Bars
1
0.196
0.307
0.442
0.601
0.785
2
0.393
0.614
0.884
1.203
1.571
3
0.589
0.920
1.325
1.804
2.356
4
0.785
1.227
1.767
2.405
3.142
5
0.982
1.534
2.209
3.007
3.927
6
1.178
1.841
2.651
3.608
4.712
7
1.374
2.148
3.093
4.209
5.498
8
1.571
2.454
3.534
4.811
6.283
10
1.963
3.068
4.418
6.013
7.854
12
2.356
3.682
5.301
7.216
9.425
14
2.749
4.295
6.185
8.418
10.996
16
3.142
4.909
7.069
9.621
12.566
18
3.534
5.522
7.952
10.824
14.137
20
3.927
6.136
8.836
12.026
15.708
22
4.320
6.750
9.719
13.229
17.279
24
4.712
7.363
10.603
14.432
18.850
26
5.105
7.977
11.486
15.634
20.420
28
5.498
8.590
12.370
16.837
21.991
30
5.890
9.204
13.254
18.040
23.562
32
6.283
9.817
14.137
19.242
25.133
34
6.676
10.431
15.021
20.445
26.704
36
7.069
11.045
15.904
21.648
28.274
38
7.461
11.658
16.788
22.850
29.845
40
7.854
12.272
17.671
24.053
31.416
42
8.247
12.885
18.555
25.255
32.987
44
8.639
13.499
19.439
26.458
34.558
46
9.032
14.113
20.322
27.661
36.128
48
9.425
14.726
21.206
28.863
37.699
50
9.817
15.340
22.089
30.066
39.270
52
10.210
15.953
22.973
31.269
40.841
54
10.603
16.567
23.856
32.471
42.412
56
10.996
17.181
24.740
33.674
43.982
X:\Projects\KRG \KRG- 12000 \Storm \Site Plan Submittal \Design Files \Outlet - Anti -Float Block Steel Calcs.XLS Page 1
PARKSIDE TOWN COMMONS Anti- Flotation Block Calculation
KRG -12000 Anti - Flotation Block Steel
58
11.388 17.794 25.624
34.877 45.553
60
11.781 18.408 26.507
36.079
47.124
62
12.174 19.021 27.391
37.282
48.695
64
12.566 19.635 28.274
38.485
50.265
66
12.959 20.249 29.158
39.687
51.836
68
13.352 20.862 30.041
40.890
53.407
70
13.744 21.476 30.925
42.092
54.978
72
14.137 22.089 31.809
43.295
56.549
74
14.530 22.703 32.692
44.498
58.119
76
14.923 23.317 33.576
45.700
59.690
78
15.315 23.930 34.459
46.903
61.261
80
15.708 24.544 35.343
48.106
62.832
82
16.101 25.157 36.226
49.308
64.403
84
16.493 25.771 37.110
50.511
65.973
86
16.886 26.384 37.994
51.714
67.544
88
17.279 26.998 38.877
52.916
69.115
90
17.671 27.612 39.761
54.119
70.686
92
18.064 28.225 40.644
55.321
72.257
94
18.457 28.839 41.528
56.524
73.827
96
18.850 29.452 42.412
57.727
75.398
98
19.242 30.066 43.295
58.929
76.969
100
19.635 30.680 44.179
60.132
78.540
Conclusion --).
Use 2 grids of #5 bars with 5 bars in each direction
Total Number of #5 bars = 20
Total cross - sectional area of steel = 6.136 in ^2
B. I14NATOLYA, PE
10/17/2012
X:\ Projects \KRG \KRG- 12000 \Storm \Site Plan Submittal\Design Files \Outlet - Anti -Float Block Steel Calcs.XLS Page 2
SWVIF #4 FINAL DESIGN CALCULATIONS
PARKSIDE TOWN COMMONS
KRG -12000
PARKSIDE TOWN COMMONS WETLAND B. II-INATOLYA, PE
KRG-12000 SWMF#4 9/10/2012
State- Storage Function
Project Name:
Parkside Town Commons
Designer:
B. Ihnatolya, PE
Job Number:
KRG-12000
Date:
9/10/2012
Storage vs. Stage
500000
450000
400000
y = 601 09X1.093
350000 R 2 0.999
300000
250000
200000
150000
100000
50000
0
0.0 1.0 2.0 SNge (feet)4.0 5,0 6.0 7.0
Ks = 60109
1 b = 1.093
Average
Incremental
Accumulated
Estimhted
Contour
Contour
Contour
Contour
Volume
Contour
Stage
Area
Area
Volume
Volume
w/ S-S Fxn
(feet)
(feet)
(SF)
(SF)
(CF)
(CF)
(CF)
296 00 0.0- i 60 906 ... .......
677768
1 64337
128674
128674 1
2.01
00
—4-. 6
�11-74,94-1
71355
142709
271383
3.97
Storage vs. Stage
500000
450000
400000
y = 601 09X1.093
350000 R 2 0.999
300000
250000
200000
150000
100000
50000
0
0.0 1.0 2.0 SNge (feet)4.0 5,0 6.0 7.0
Ks = 60109
1 b = 1.093
PARKSIDE TOWN COMMONS WETLAND B. IIINATOLYA, PE
KRG -12000 SWIV F #4 9/10/2012
Stage - Storage Function
Ks = 60109
b = 1.093
Zo = 296.00
Elevation
Storage
fee
(eft
[acre -feet
HI u
296.00 _0
0_000
296.2_0
10351
0_238
296.40
22080
0.507
296.60 j
34392
0.79_0
296.80_^ j
_47100Y�
_
x__1.081__ Y
� 60109
1.380
2_97.20
73364
1.684
297.40
86828
1_.9_93��
297.60
100471
4 2.307
297.80 1
114275
2.623
298.00 j
128223
2.944
298.20
142301
3.267
298.40
156499
3.593
298.60 X170807
3.921
_ 298.80 _�
1852_18
� 4.252
299.00
..� .._ ._
199725
4.585 _
299.20 1
214323
' 4.920
2_99.4_0
229006
5.257
2_99.60 {
243769
5.596
299.80
258609
5.937
273521
6.279_
_300.00 3
300.20 I
288503
6.623
300.40
300.60
30_3552
318665
6.969
7.316
300.80 ]
333838
i 7.664
_301.00 1�
349071
8.014
301.20 1
364360
8.365
301.40
379705
8.717
301.60_
395102
_ 9.070
301.80
410550
' 9.425
302.00
426048
9.781
Subsection: Outlet Input Data
Label: SWMF #4
Requested Pond Water Surface Elevations
Minimum (Headwater) 296.00 ft
Increment (Headwater) 0.20 ft
Maximum (Headwater) 302.00 ft
Outlet Connectivity
Structure Type Outlet ID Direction Outfall E1 E2
(ft) (ft)
Inlet Box
Riser - 1
Forward
Culvert - 1
299.20
302.00
Orifice -Area
Orifice - 2
Forward
Culvert - 1
297.00
302.00
Culvert- Circular
Culvert - 1
Forward
TW
293.00
302.00
Orifice - Circular
Orifice - 1
Forward
TW
296.00
302.00
Tailwater Settings
Tailwater
(N /A)
(N /A)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9110/2012 27 Siemon Company Drive Suite 200 W Page 7 of 14
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #4
Structure ID: Riser- 1
Structure Type: Inlet Box
Number of Openings
1
Elevation
299.20 ft
Orifice Area
25.0 ftz
Orifice Coefficient
0.600
Weir Length
20.00 ft
Weir Coefficient
3.00 (ft^0.5) /s
K Reverse
1.000
Manning's n
0.000
Kev, Charged Riser
0.000
Weir Submergence
False
Orifice H to crest
False
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/1012012 27 Siemon Company Drive Suite 200 W Page 8 of 14
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #4
Structure ID: Culvert - 1
Structure Type: Culvert- Circular
Number of Barrels
1
Diameter
36.0 in
Length
52.00 ft
Length (Computed Barrel)
52.01 ft
Slope (Computed)
0.019 ft /ft
Outlet Control Data
Manning's n
0.013
Ke
0.500
Kb
0.007
Kr
0.500
Convergence Tolerance
0.00 ft
Inlet Control Data
Equation Form
Form 1
K
0.0098
M
2.0000
C
0.0398
Y
0.6700
T1 ratio (HW /D)
1.151
T2 ratio (HW /D)
1.297
Slope Correction Factor
-0.500
Use unsubmerged inlet control 0 equation below T1
elevation.
Use submerged inlet control 0 equation above T2
elevation
In transition zone between unsubmerged and submerged
inlet control,
interpolate between flows at T1 & T2...
TI Elevation 296.45 ft T1 Flow 42.85 ft3 /s
T2 Elevation 296.89 ft T2 Flow 48.97 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 9 of 14
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #4
Structure ID: Orifice - 1
Structure Type: Orifice- Circular
Number of Openings
1
Elevation
296.00 ft
Orifice Diameter
1.8 in
Orifice Coefficient
0.600
Structure ID: Orifice - 2
Structure Type: Orifice -Area
Number of Openings
1
Elevation
297.00 ft
Orifice Area
1.0 ft2
Top Elevation
297.50 ft
Datum Elevation
297.00 ft
Orifice Coefficient
0.600
Structure ID: TW
Structure Type: TW Setup, DS Channel
Tailwater Type
Free Outfall
Convergence Tolerances
Maximum Iterations
30
Tailwater Tolerance
0.01 ft
(Minimum)
Tailwater Tolerance
0.50 ft
(Maximum)
Headwater Tolerance
0.01 ft
(Minimum)
Headwater Tolerance
0.50 ft
(Maximum)
Flow Tolerance (Minimum)
0.001 ft3 /s
Flow Tolerance (Maximum)
10.000 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 10 of 14
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #4
Composite Outflow Summary
Water Surface Flow Tailwater Elevation Convergence Error
Elevation (ft3 /s) (ft) (ft)
(ft)
296.00
0.00
(N /A)
0.00
296.20
0.03
(N /A)
0.00
296.40
0.05
(N /A)
0.00
296.60
0.06
(N /A)
0.00
296.80
0.07
(N /A)
0.00
297.00
0.08
(N /A)
0.00
297.20
1.45
(N /A)
0.00
297.40
2.82
(N /A)
0.00
297.60
3.83
(N /A)
0.00
297.80
4.42
(N /A)
0.00
298.00
4.92
(N /A)
0.00
298.20
5.39
(N /A)
0.00
298.40
5.81
(N /A)
0.00
298.60
6.22
(N /A)
0.00
298.80
6.59
(N /A)
0.00
299.00
6.94
(N /A)
0.00
299.20
7.28
(N /A)
0.00
299.40
12.97
(N /A)
0.00
299.60
23.08
(N /A)
0.00
299.80
36.10
(N /A)
0.00
300.00
51.28
(N /A)
0.00
300.20
66.42
(N /A)
0.00
300.40
81.11
(N /A)
0.00
300.60
84.17
(N /A)
0.00
300.80
85.65
(N /A)
0.00
301.00
87.11
(N /A)
0.00
301.20
88.54
(N /A)
0.00
301.40
89.95
(N /A)
0.00
301.60
91.35
(N /A)
0.00
301.80
92.71
(N /A)
0.00
302.001
94.06
(N /A) 1
0.00
Contributing Structures
(no Q: Riser - 1,Orifice - 2,Culvert -
1,Orifice - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice - 1 (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice -I (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice -I (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Orifice -I (no Q: Riser - 1,Orifice -
2,Culvert - 1)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 11 of 14
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #4
Composite Outflow Summary
Contributing Structures
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Orifice - 2,Culvert - 1,Orifice - 1 (no
Q: Riser - 1)
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Orifice - 2,Culvert - 1,Orifice -
1
Riser - 1,Culvert - 1,Orifice - 1
(no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1
(no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1
(no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1
(no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1
(no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1
(no Q:
Orifice - 2)
Riser - 1,Culvert - 1,Orifice - 1
(no Q:
Orifice - 2)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center 108.11.01.511
9/10/2012 27 Siemon Company Drive Suite 200 W Page 12 of 14
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #4
Composite Outflow Summary
Contributing Structures
IRiser - 1,Culvert - 1,Orifice - 1 (no Q:
Orifice - 2)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Pa rkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 13 of 14
Watertown, CT 06795 USA +1- 203 - 755 -1666
l � seem
�i ��sE
S Jplt&t c1_0 Q(r f+D
Subsection: Outlet Input Data
Label: SWMF #4 -WC
Requested Pond Water Surface Elevations
Minimum (Headwater)
296.00 ft
Increment (Headwater) 0.20 ft
Maximum (Headwater) 302.00 ft
Return Event: 100 years
Storm Event: 100 -Year Storm
Outlet Connectivity
Structure Type Outlet ID Direction Outfall E1 E2
(ft) (ft)
Inlet Box
Riser - 1
Forward
Culvert - 1
299.20
302.00
Orifice -Area
Orifice - 2
Forward
Culvert - 1
297.00
302.00
Culvert- Circular
Culvert - 1
Forward
TW
293.00
302.00
Tailwater Settings
Tailwater
(N /A)
(N /A)
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 19 of 25
Watertown, CT 06795 USA +1 -203- 755 -1666
Subsection: Outlet Input Data
Label: SWMF #4 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Structure ID: Riser- 1
Structure Type: Inlet Box
Number of Openings
1
Elevation
299.20 ft
Orifice Area
25.0 ftz
Orifice Coefficient
0.600
Weir Length
20.00 ft
Weir Coefficient
3.00 (ft^0.5) /s
K Reverse
1.000
Manning's n
0.000
Kev, Charged Riser
0.000
Weir Submergence
False
Orifice H to crest
False
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 20 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #4 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Structure ID: Culvert - 1
Form 1
Structure Type: Culvert- Circular
0.0098
Number of Barrels
1
Diameter
36.0 in
Length
52.00 ft
Length (Computed Barrel)
52.01 ft
Slope (Computed)
0.019 ft/ft
Slope Correction Factor
-0.500
Outlet Control Data
Manning's n
0.013
Ke
0.500
Kb
0.007
Kr
0.500
Convergence Tolerance
0.00 ft
Inlet Control Data
Equation Form
Form 1
K
0.0098
M
2.0000
C
0.0398
Y
0.6700
TI ratio (HW /D)
1.151
T2 ratio (HW /D)
1.297
Slope Correction Factor
-0.500
Use unsubmerged inlet control 0 equation below T1
elevation.
Use submerged inlet control 0 equation above T2
elevation
In transition zone between unsubmerged and submerged
inlet control,
interpolate between flows at T1 & T2...
T1 Elevation 296.45 ft T1 Flow 42.85 ft3 /s
T2 Elevation 296.89 ft T2 Flow 48.97 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/1012012 27 Siemon Company Drive Suite 200 W Page 21 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Outlet Input Data
Label: SWMF #4 -WC
Return Event: 100 years
Storm Event: 100 -Year Storm
Structure ID: Orifice - 2
Structure Type: Orifice -Area
Number of Openings
1
Elevation
297.00 ft
Orifice Area
1.0 ft2
Top Elevation
297.50 ft
Datum Elevation
297.00 ft
Orifice Coefficient
0.600
Structure ID: TW
Structure Type: TW Setup, DS Channel
Tailwater Type
Free Outfall
Convergence Tolerances
Maximum Iterations
30
Tailwater Tolerance
0.01 ft
(Minimum)
Tailwater Tolerance
0.50 ft
(Maximum)
Headwater Tolerance
0.01 ft
(Minimum)
Headwater Tolerance
0.50 ft
(Maximum)
Flow Tolerance (Minimum)
0.001 ft3 /s
Flow Tolerance (Maximum)
10.000 ft3 /s
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 22 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #4 -WC
Composite Outflow Summary
Water Surface Flow Tailwater Elevation
Elevation (ft3 /s) (ft)
(ft)
Return Event: 100 years
Storm Event: 100 -Year Storm
Convergence Error
(ft)
296.00
0.00
(N /A)
0.00
296.20
0.00
(N /A)
0.00
296.40
0.00
(N /A)
0.00
296.60
0.00
(N /A)
0.00
296.80
0.00
(N /A)
0.00
297.00
0.00
(N /A)
0.00
297.20
1.36
(N /A)
0.00
297.40
2.73
(N /A)
0.00
297.60
3.73
(N /A)
0.00
297.80
4.30
(N /A)
0.00
298.00
4.81
(N /A)
0.00
298.20
5.28
(N /A)
0.00
298.40
5.69
(N /A)
0.00
298.60
6.09
(N /A)
0.00
298.80
6.45
(N /A)
0.00
299.00
6.80
(N /A)
0.00
299.20
7.14
(N /A)
0.00
299.40
12.82
(N /A)
0.00
299.60
22.93
(N /A)
0.00
299.80
35.94
(N /A)
0.00
300.00
51.13
(N /A)
0.00
300.20
66.26
(N /A)
0.00
300.40
80.94
(N /A)
0.00
300.60
83.99
(N /A)
0.00
300.80
85.47
(N /A)
0.00
301.00
86.93
(N /A)
0.00
301.20
88.36
(N /A)
0.00
301.40
89.76
(N /A)
0.00
301.60
91.16
(N /A)
0.00
301.80
92.52
(N /A)
0.00
302.001
93.87
(N /A) 1
0.00
Contributing Structures
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
(no Q: Riser - 1,Orifice - 2,Culvert - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i
Parkside.ppc Center (08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 23 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Composite Rating Curve
Label: SWMF #4 -WC
Composite Outflow Summary
Contributing Structures
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Orifice - 2,Culvert - 1 (no Q: Riser - 1)
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Orifice - 2,Culvert - 1
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Riser - 1,Culvert - 1 (no Q: Orifice - 2)
Return Event: 100 years
Storm Event: 100 -Year Storm
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 24 of 25
Watertown, CT 06795 USA +1- 203 - 755 -1666
PARKSIDE TOWN COMMONS STORMWATER WETLAND
KRG -12000 SIZING CALCULATIONS - SWMF #4
== l etermination of Water Quality volume (WQ v)
WQ v = (P) (R v) (A) /12
where,
WQv = water quality volume (in acre -ft)
Rv = 0.05 +0.009(I) where I is percent impervious cover
A = area in acres
P = rainfall (in inches)
Total area, A =
7.17
acres
Impervious area =
2.45
acres
Percent impervious cover, I —
34.2
%
Rainfall, P =
1.0
inches
Calculated values:
Rv=
0.36
WQv =
0.21
acre -ft
=
9306
cf
tf > .Stormwater Wedaud Required Surface Area Calculation
WQ Volume = 9306 cf.
Maximum Ponding Depth = 12 inches
Surface Area Required at Normal Pool = 9306 SF
==> Associated Pond Depth in Storm water Wetland
Ks= 60109
b = 1.093
V = 9306
Normal Pool Elevation = 296.0 feet
WQ Elevation = 296.1 feet
R. H- JNATOLYA, PE
9/10/2012
PARKSIDE TOWN COMMONS WQ VOLUME
KRG -12000
SIPHON DESIGN
D orifice =
1.75 inch
# orifices =
1
Ks =
60109
b =
1.093
Cd siphon =
0.60
0.5'x 2.0' Orifice Invert Elevation =
297.00 feet
Normal Pool Elevation =
296.00 feet
WQ Volume =
9306 cf
Temporary Pool W.S. Elev. =
297.00 feet
Using the average head over the orifice (assuming average head is
one -third the total depth), the result would be:
Average driving head on orifice = 0.333 feet
Orifice composite loss coefficient = 0.600
Cross - sectional area of 0.75" orifice = 0.017 sf
Q= 0.0464 cfs
Drawdown Time = Volume / Flowrate / 86400 (sec /day)
Drawdown Time = 2.32 days
Conclusion : Use 1- 1.75" Diameter PVC inverted siphon to drawdown the accumulated volume
from the 1" storm runoff, with a required time of about 2.32 days.
B. IHNATOLYA, PE
9/10/2012
A
U
Z zw
M
w� boo
HUo
w
z wda
w rx d w
T
O
O
C
Q
00
N
r
et
n�
Y
Y
U
a�
.a
z
0
�6
00
z
A>4
0 3 N
0
o V) o
N 00 0 CV
� �
oN II N I
rr 5 I
Y [f fO
Y 0
w
2
c, to A
McADAMS
PARKSIDE TOWN COMMONS SWMF #4 B. IHNATOLYA, PE
KRG -12000 9/11/2012
PARKSIDE TOWN COMMONS
Per NCDENR "Stormwater Best Management Practices ", the permanent pool needs to be designed with various water depths to
support plant and animal populations. The wetland should consist of deep pools, shallow water, and shallow land with the deep
pools being broken down to forebay pools and non - forebay pools. Approximately 5 -10% of the wetland surface area should be
non - forebay deep pools. Approximately 10% of the suface area should be forebay deep pools. Approximately 40% of the
surface area should be shallow water, and the remaining 30 -40 %of the surface area should be shallow land.
A. Total Wetland Surface Area (Elev. 296.0)
B. Wetland Surface Area: Deep Pools (18 " -36" deep)
Non- Forebay
Forebay
C. Wetland Surface Area: Shallow Water (3" -6" deep)
D. Wetland Surface Area: Shallow Land (12 "+ -3" deep)
Area =
60906 sf
Area =
5608 sf
Area =
6055 sf
Area =
24606 sf
Area = 24637 sf
Deep Pools- Non - Foreba
9.2%
Deep Pools-Forebay
9.9%
Shallow Water
40.4%
Shallow Land
40.5%
Parkside Town Commons — SWMF #4
Project # KRG -12000
VELOCITY DISSIPATOR DESIGN
Designed By: B. Ihnatolya
Velocity Dissipator — SWMF #4
NRCD Land Quality Section
Pipe Design
Entering the following values will provide you with
the expected outlet velocity and depth of flow in a
pipe, assuming the Mannings roughness number is
constant over the entire length of the pipe.
flow Q in cfs : 1.13 Flow depth (ft) = 0.23
slope S in %: 1.92 Outlet velocity (fps) = 4.472
pipe diameter D in in.: 36
Manning number n: 0.013
NRCD Land Quality Section
NYDOT Dissipator Design Results
Pipe diameter (ft)
3.00
Outlet velocity (fps)
4.47
Apron length (ft)
18.00
AVG DIAM STONE
THICKNESS
(inches) CLASS
(inches)
-- - - - - -- - - - -- ---
3 A
- - - - --
9
»6 B
22«
13 B or 1
22
23 2
27
Width Calculation
WIDTH = La + Do
WIDTH = 18.00 + 3.00
WIDTH = 21.0 FEET
CONCLUSION
Use 8" DIA NCDOT Class `B' Rip Rap
18'L x 21'W x 22" Thick
ABE VOLUME CALCULATORS, PYRAMIDLONG
http://www.abe.msstate.edu/—fto/tools/vol/pyraniidlong.htrr
CALCULATE VOLUME OF PYRAMID WITH INDIVIDUAL WIDTHS AND LENGTHS
Enter all known values in the form below and press the "CALCULATE" button.
Aar
WIDTH I (W 1)
LENGTH I (L 1) vVI DTH2(W2), LENGTH2(L2)�
HEIGHT(h),
VOLUME
,8 .4
FL2-- ! —21
can copy for other use
!61.74
The answer that YOU
CALCULATE I RESET
SELECT ANOTHER SHAPE
Go to Unit Conversion Pace
1 of 1 9/11/2012 11:46 AM
PARKSIDE TOWN COMMONS SWMF #4 B. IHNATOLYA, PE
KRG -12000 9/11/2012
Input Data =_>
Square Riser/Barrel Anti - Flotation Calculation Sheet
Inside length of riser =
5.00 feet
Inside width of riser =
5.00 feet
Wall thickness of riser =
6.00 inches
Base thickness of riser =
8.00 inches
Base length of riser =
6.00 feet
Base width of riser =
6.00 feet
Inside height of Riser =
6.20 feet
Concrete unit weight =
142.0 PCF
OD of barrel exiting manhole =
45.50 inches
Size of drain pipe (if present) =
8.0 :riches
Number of detention orifices (if present) =
1
Area of detention orifice (if present) =
0.017 SQFT
Number of detention orifices (if present) =
1
Area of detention orifice (if present) =
1.000 SQFT
Trash Rack water displacement =
61.74 CF
Concrete Present in Riser Structure =_>
Total amount of concrete:
Base of Riser = 24.000 CF
Riser Walls = 68.200 CF
Adjust for openings:
Opening for barrel = 5.646 CF
Opening for drain pipe = 0.175 CF
Opening for detention orifice = 0.508 CF
Note: NC Products lists unit wt. of
manhole concrete at 142 PCF.
Total Concrete present, adjusted for openings = 85.871 CF
Weight of concrete present = 12194 lbs
Amount of water displaced by Riser Structure =_>
Displacement by concrete = 85.871 CF
Displacement by open air in riser = 155.000 CF
Displacement by trash rack = 61.740 CF
Total water displaced by riseribarrel structure = 302.611 CF
Weight of water displaced = 18883 Ibs
PARKSIDE TOWN COMMONS SWMF #4 B. IHNATOLYA, PE
KRG -12000 9/11/2012
Calculate amount of concrete to be added to riser =_>
Safety factor to use = 1.25 (recommend 1.25 or higher)
Must add = 11410 lbs concrete for buoyancy
Concrete unit weight for use = 142 PCF (note above observation for NCP concrete)
Buoyant weight of this concrete = 79.60 PCF
Buoyant, with safety factor applied = 63.68 PCF
Therefore, must add = 179.176 CF of concrete
Standard base described above = 24.000 CF of concrete
Therefore, base design must have = 203.176 CF of concrete
Calculate size of base for riser assembly =_>
Length = 9.000 feet
Width = 9.000 feet
Thickness = 31.0 inches
Concrete Present = 209.250 CF OK
Check validity of base as designed =_>
Total Water Displaced = 487.861 CF
Total Concrete Present = 271.121 CF
Total Water Displaced = 30443 lbs
Total Concrete Present = 38499 lbs
Actual safety factor = 1.26 OK
Results of design =_>
Base length =
9.00 feet
Base width =
9.00 feet
Base Thickness =
31.00 inches
CY of concrete total in base =
7.75 CY
Concrete unit weight in added base >=
142 PCF
PARKSIDE TOWN COMMONS Anti- Flotation Block Calculation B. IHNATOLYA, PE
KRG -12000 Anti- Flotation Block Steel 10/17/2012
IL CALCULATION FOR RISER ANTI - FLOTATION STEEL
Input Data --->
Anti - Floatation Block Length = 9.0 feet
Anti - Floatation Block Width = 9.0 feet
Anti - Floatation Block Thickness= 31.0 inches
Minimum Asteel to Aconcrete Ratio = 0.0018
Cross - Section Calculations -->
Cross - Section Area* = 23.25 SF
Minimum Steel Area Required = 0.042 SF
6.03 SI
*Note: Assumes a "square" x -sec (L and W same)
Steel Area Calculations -->
Bar Size =
4
5
6
7
8
Diameter [in] =
0.500
0.625
0.750
0.875
1.000
X -Sec Area [in ^2] =
0.196
0.307
0.442
0.601
0.785
Number of Bars
1
0.196
0.307
0.442
0.601
0.785
2
0.393
0.614
0.884
1.203
1.571
3
0.589
0.920
1.325
1.804
2.356
4
0.785
1.227
1.767
2.405
3.142
5
0.982
1.534
2.209
3.007
3.927
6
1.178
1.841
2.651
3.608
4.712
7
1.374
2.148
3.093
4.209
5.498
8
1.571
2.454
3.534
4.811
6.283
10
1.963
3.068
4.418
6.013
7.854
12
2.356
3.682
5.301
7.216
9.425
14
2.749
4.295
6.185
8.418
10.996
16
3.142
4.909
7.069
9.621
12.566
18
3.534
5.522
7.952
10.824
14.137
20
3.927
6.136
8.836
12.026
15.708
22
4.320
6.750
9.719
13.229
17.279
24
4.712
7.363
10.603
14.432
18.850
26
5.105
7.977
11.486
15.634
20.420
28
5.498
8.590
12.370
16.837
21.991
30
5.890
9.204
13.254
18.040
23.562
32
6.283
9.817
14.137
19.242
25.133
34
6.676
10.431
15.021
20.445
26.704
36
7.069
11.045
15.904
21.648
28.274
38
7.461
11.658
16.788
22.850
29.845
40
7.854
12.272
17.671
24.053
31.416
42
8.247
12.885
18.555
25.255
32.987
44
8.639
13.499
19.439
26.458
34.558
46
9.032
14.113
20.322
27.661
36.128
48
9.425
14.726
21.206
28.863
37.699
50
9.817
15.340
22.089
30.066
39.270
52
10.210
15.953
22.973
31.269
40.841
54
10.603
16.567
23.856
32.471
42.412
56
10.996
17.181
24.740
33.674
43.982
X:\ Projects \KRG \KRG -12000 \Storm \Site Plan Submittal \Design Files \Outlet - Anti -Float Block Steel Calcs.XLS Page 1
PARKSIDE TOWN COMMONS Anti - Flotation Block Calculation
KRG -12000 Anti - Flotation Block Steel
58
11.388 17.794
25.624
34.877
45.553
60
11.781 18.408
26.507
36.079
47.124
62
12.174 19.021
27.391
37.282
48.695
64
12.566 19.635
28.274
38.485
50.265
66
12.959 20.249
29.158
39.687
51.836
68
13.352 20.862
30.041
40.890
53.407
70
13.744 21.476
30.925
42.092
54.978
72
14.137 22.089
31.809
43.295
56.549
74
14.530 22.703
32.692
44.498
58.119
76
14.923 23.317
33.576
45.700
59.690
78
15.315 23.930
34.459
46.903
61.261
80
15.708 24.544
35.343
48.106
62.832
82
16.101 25.157
36.226
49.308
64.403
84
16.493 25.771
37.110
50.511
65.973
86
16.886 26.384
37.994
51.714
67.544
88
17.279 26.998
38.877
52.916
69.115
90
17.671 27.612
39.761
54.119
70.686
92
18.064 28.225
40.644
55.321
72.257
94
18.457 28.839
41.528
56.524
73.827
96
18.850 29.452
42.412
57.727
75.398
98
19.242 30.066
43.295
58.929
76.969
100
19.635 30.680
44.179
60.132
78.540
Conclusion -->
Use 2 grids of #5 bars with 5 bars in each direction
Total Number of #5 bars = 20
Total cross - sectional area of steel = 6.136 in ^2
B. IHNATOLYA, PE
10/17/2012
X:\Projects \KRG \KRG- 12000 \Storm \Site Plan Submittal \Design Files \Outlet - Anti -Float Block Steel Calcs.XLS Page 2
LEVEL SPREADER CALCULATIONS
PARKSIDE TOWN COMMONS
KRG -12000
Subsection: Individual Outlet Curves
Label: SWMF #1
[Structure ID = Orifice - 1 (Orifice- Circular) I
Upstream ID = (Pond Water Surface)
Downstream ID = Tailwater (Pond Outfall)
Return Event: 10 years
Storm Event: 10 -Year Storm
Water Surface Flow Tailwater Elevation Convergence Error
Elevation (ft3 /s) (ft) (ft)
(ft)
302.00
0.00
(N /A)
0.00
302.20
0.05
(N /A)
0.00
302.40
0.09
(N /A)
0.00
302.60
0.12
(N /A)
0.00
302.80
0.14
(N /A)
0.00
303.00
0.16
(N /A)
0.00
303.20
0.17
(N /A)
0.00
303.40
0.19
(N /A)
0.00
303.60
0.20
(N /A)
0.00
303.80
0.21
(N /A)
0.00
304.00
0.23
(N /A)
0.00
304.20
0.24
(N /A)
0.00
304.40
0.25
(N /A)
0.00
304.50
0.25
(N /A)
0.00
304.60
0.26
(N/A)
0.00
0.27
(N /A)
0.00
304.80
0.28
(N /A)
0.00
305.00
305.20
0.29
(N /A)
0.00
305.40
0.30
(N /A)
0.00
305.60
0.31
(N /A)
0.00
305.80
0.32
(N /A)
0.00
306.00
0.32
(N /A)
0.00
306.20
0.33
(N /A)
0.00
306.40
0.34
(N /A)
0.00
306.60
0.35
(N /A)
0.00
306.80
0.36
(N /A)
0.00
307.001
0.36
(N /A)
1 0.00
Computation Messages
WS below an invert; no flow.
CRIT.DEPTH CONTROL Vh= .060ft
Dcr=
.140ft CRIT.DEPTH Hev= .00ft
H =.30
H =.50
H =.70
H =.90
H =1.10
H =1.30
H =1.50
H =1.70
C&4-rN : /0 µle.fs * e. 27 c Fs 1 2.7.F!-.
GS LENGTH PRO VIPE;D OR.
ejobv
S 1motj PIPE
'ir V"Srt 1 f pm D; USE
qs DESIGjj FLOW FOR
t fVrL SPREfIDE'R.
Mill. 0 cEtJc7T. + =io 'q,d
FLOW - 0, 77CfS
Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i
Parkside. ppc Center [08.11.01.51)
9/10/2012 27 Siemon Company Drive Suite 200 W Page 5 of 35
Watertown, CT 06796 USA +1- 203 - 755 -1666
Subsection: Individual Outlet Curves
Label: SWMF #1
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = Orifice - 1 (Orifice - Circular)
Upstream ID = (Pond Water Surface)
Downstream ID = Tailwater (Pond Outfall)
Computation Messages
H =1.90
H =2.10
H =2.30
H =2.40
H =2.50
H =2.70
H =2.90
H =3.10
H =3.30
H =3.50
H =3.70
H =3.90
H =4.10
H =4.30
H =4.50
H =4.70
H =4.90
Return Event: 10 years
Storm Event: 10 -Year Storm
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 6 of 35
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Individual Outlet Curves
Label: SWMF #2
Return Event: 10 years
Storm Event: 10 -Year Storm
-RATING TABLE FOR ONE OUTLET TYPE
Structure ID = Orifice - 1 (Orifice Circular) 7 S (PH04 PIPE
--------------------------------- - - - - --
Upstream ID = (Pond Water Surface)
Downstream ID = Tailwater (Pond Outfall)
Water Surface Flow Tailwater Elevation Convergence Error
Elevation (ft3 /s) (ft) (ft)
(ft)
301.00
0.00
(N /A)
0.00
301.20
0.02
(N /A)
0.00
301.40
0.03
(N /A)
0.00
301.60
0.04
(N /A)
0.00
301.80
0.05
(N /A)
0.00
302.00
0.06
(N /A)
0.00
302.20
0.06
(N /A)
0.00
302.40
0.07
(N /A)
0.00
302.60
0.07
(N /A)
0.00
302.80
0.08
(N /A)
0.00
303.00
0.08
(N /A)
0.00
303.20
0.09
(N/A
0.09
(N/A)
0.00
303.40
0.09
(N /A)
0.00
303.50
303.60
0.09
(N /A)
0.00
303.80
0.10
(N /A)
0.00
304.00
0.10
(N /A)
0.00
304.20
0.10
(N /A)
0.00
304.40
0.11
(N /A)
0.00
304.60
0.11
(N /A)
0.00
304.80
0.11
(N /A)
0.00
305.00
0.12
(N /A)
0.00
305.20
0.12
(N /A)
0.00
305.40
0.12
(N /A)
0.00
305.60
0.13
(N /A)
0.00
305.80
0.13
(N /A)
0.00
306.001
0.13
(N /A) 1
0.00
Computation Messages
WS below an invert; no flow.
H
=.14
H
=.34
H
=.54
H
=.74
H
=.94
H
=1.14
H
=1.34
H
=1.54
H
=1.74
H
=1.94
--�i /0 - yR oSet mi poAl0� USE
AS �ESIGrt F1.00 For-
L,vVEC SPREADE2•
11 /11 LS o9�s /o�` /cfs
FLOW 0
a C7TH- /0 �4Cfs * U.01 cis L p,9 •
GS t6wegFf �ROV,DED to �f.
&MI'l
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 13 of 35
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Individual Outlet Curves
Label: SWMF #2
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = Orifice - 1 (Orifice- Circular)
---------------------------------------
Upstream ID = (Pond Water Surface)
Downstream ID = Tailwater (Pond Outfall)
Computation Messages
H =2.14
H =2.34
H =2.44
H =2.54
H =2.74
H =2.94
H =3.14
H =3.34
H =3.54
H =3.74
H =3.94
H =4.14
H =4.34
H =4.54
H =4.74
H =4.94
Return Event: 10 years
Storm Event: 10 -Year Storm
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 14 of 35
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Individual Outlet Curves
Label: SWMF #3
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = Orifice - 1 (Orifice- Circular)
Upstream ID = (Pond Water Surface)
Downstream ID = Tailwater (Pond Outfall)
Return Event: 10 years
Storm Event: 10 -Year Storm
Water Surface Flow Tailwater Elevation Convergence Error
Elevation (ft3 /s) (ft) (ft)
(ft)
304.00
0.00
(N /A)
0.00
304.20
0.07
(N /A)
0.00
304.40
0.25
(N /A)
0.00
304.60
0.34
(N /A)
0.00
304.80
0.42
(N /A)
0.00
305.00
0.48
(N /A)
0.00
305.20
0.53
(N /A)
0.00
305.40
0.59
(N /A)
0.00
305.60
0.63
(N /A)
0.00
305.80
0.68
(N /A)
0.00
306.00
0.72
(N /A)
0.00
306.20
0.75
(N /A)
0.00
306.40
0.79
(N /A)
0.00
306.60
0.83
(N /A)
0.00
306.80
0.86
(N /A)
0.00
307.00
0.89
(N /A)
0.00
307.20
0.92
(N /A)
0.00
307.40
0.95
(N /A)
0.00
307.60
0.98
(N /A)
0.00
307.80
1.01
v !(N /A)
0.00
308.00
1.04
(N /A)
0.00
308.20
1.06
(N /A)
0.00
308.40
1.09
(N /A)
0.00
308.60
1.12
(N /A)
0.00
308.80
1.14
(N /A)
0.00
309.00
1.17
(N /A)
0.00
309.20
1.19
(N /A)
0.00
309.40
1.21
(N /A)
0.00
309.60
1.24
(N /A)
0.00
309.80
1.26
(N /A)
0.00
310.001
1.28
(N /A) 1
0.00
WS below an invert; no flow.
CRIT.DEPTH CONTROL Vh= .054ft
Dcr= .145ft CRIT.DEPTH Hev= .00ft
H =.21
H =.41
H =.61
H =.81
LE*7W = /0 " /cfs U 0.9P r- /S
CS C 0477H FROVIbE>7 = 10
clop.b
s(FHorl PIPrr
AS DES 16,0 FLOW rok
(- rl SPR ,rADM.
M iN• r,s tE467* /0
Flog '0' If cfs
Bentley Systems, Inc. Haestad !Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 22 of 35
Watertown, CT 06795 USA t1- 203 - 755 -1666
Subsection: Individual Outlet Curves
Label: SWMF #3
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = Orifice - 1 (Orifice- Circular)
Upstream ID = (Pond Water Surface)
Downstream ID = Tailwater (Pond Outfall)
Computation Messages
H =1.01
H =1.21
H =1.41
H =1.61
H =1.81
H =2.01
H =2.21
H =2.41
H =2.61
H =2.81
H =3.01
H =3.21
H =3.41
H =3.61
H =3.81
H =4.01
H =4.21
H =4.41
H =4.61
H =4.81
H =5.01
H =5.21
H =5.41
H =5.61
H =5.81
Return Event: 10 years
Storm Event: 10 -Year Storm
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside. ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 23 of 35
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Individual Outlet Curves
Label: SWMF #4
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = Orifice - 1 (Orifice- Circular)
Upstream ID = (Pond Water Surface)
Downstream ID = Tailwater (Pond Outfall)
Return Event: 10 years
Storm Event: 10 -Year Storm
Water Surface Flow Tailwater Elevation Convergence Error
Elevation (ft3 /s) (ft) (ft)
(ft)
296.00
296.20
296.40
296.60
296.80
297.00
297.20
0.00
0.03
0.05
0.06
0.07
0.08
(N /A)
(N /A)
(N /A)
(N /A)
(N /A)
(N /A)
0.00
02110
0.00
0.00
0.00
0.00
0.09
N/A
0.00
0.09
(N /A)
0.00
297.40
297.60
0.10
(N /A)
0.00
297.80
0.11
(N /A)
0.00
298.00
0.11
(N /A)
0.00
298.20
0.12
(N /A)
0.00
298.40
0.12
(N /A)
0.00
298.60
0.13
(N /A)
0.00
298.80
0.13
(N /A)
0.00
299.00
0.14
(N /A)
0.00
299.20
0.14
(N /A)
0.00
299.40
0.15
(N /A)
0.00
299.60
0.15
(N /A)
0.00
299.80
0.16
(N /A)
0.00
300.00
0.16
(N /A)
0.00
300.20
0.16
(N /A)
0.00
300.40
0.17
(N /A)
0.00
300.60
0.17
(N /A)
0.00
300.80
0.17
(N /A)
0.00
301.00
0.18
(N /A)
0.00
301.20
0.18
(N /A)
0.00
301.40
0.19
(N /A)
0.00
301.60
0.19
(N /A)
0.00
301.80
0.19
(N /A)
0.00
302.001
0.20 1
(N /A) 1
0.00
Computation Messa,
WS below an invert; no flow.
H =.13
H =.33
H =.53
H =.73
H =.93
H =1.13
leA1C77H- l0 >c/e FS '
CS L�NH7N P12OMED=
�Oa D V/
SIPNDtj PIPE
1--� 10-Y2 WsEL ml PoNOj us
AS pES1AN FLOW FOX
LEWL SPREADER.
Merl. L9. & EW47 -H z /00
FaW -- 0.09 C.As.
0.09 eIs - D. 9 //_
to H.
Qentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 31 of 35
Watertown, CT 06795 USA +1- 203 - 755 -1666
Subsection: Individual Outlet Curves
Label: SWMF #4
RATING TABLE FOR ONE OUTLET TYPE
Structure ID = Orifice - 1 (Orifice- Circular)
Upstream ID = (Pond Water Surface)
Downstream ID = Tailwater (Pond Outfall)
Computation Messages
H =1.33
H =1.53
H =1.73
H =1.93
H =2.13
H =2.33
H =2.53
H =2.73
H =2.93
H =3.13
H =3.33
H =3.53
H =3.73
H =3.93
H =4.13
H =4.33
H =4.53
H =4.73
H =4.93
H =5.13
H =5.33
H =5.53
H =5.73
H =5.93
Return Event: 10 years
Storm Event: 10 -Year Storm
Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i
Parkside.ppc Center [08.11.01.51]
9/10/2012 27 Siemon Company Drive Suite 200 W Page 32 of 35
Watertown, CT 06795 USA +1 -203- 755 -1666
SPUTTER BOX
This splitter box does not include an internal weir to control flow. The separation of flow is achieved
by strategically setting outlet inverts and pipe sizes leaving the structure.
Spliiter Box Name:
Primary Outlet Pipe
By -Pass Outlet Pipe
Inlet Pipe:
Flow from Site:
Flow to Level Spreader (1 " /hr)
By -Pass flow:
HGL in JB -100A for 12" Outlet:
Invert Elev. For By -Pass Pipe:
JB -100A
12" RCP flowing to Level Spreader and Vegetated Filter Strip
24" RCP flowing FES 100
24" RCP
10.28 CFS
1.51 CFS
8.77 CFS
302.98 FT
302.98 FT
CENG -W 5 offs : 75�'F.
LS LENCzT 1 P9DVIDED : %S" 4
C10D ✓
Spliiter Box Data (2).xlsx The John R. McAdams Company, Inc. 10/18/2012
NUTRIENT EXPORT CALCULATIONS
PARKSIDE TOWN COMMONS
KRG -12000
0) E
•
W �
L z °
U
W
U z Fez°
v, W �4 M2 m
a
d
� � a
O`~ E ;a °•
Luo W
z x��
p U �
W c
W o
z
c�
z
w
0
y
w aa
U E-4
►-a W
►-a W d4
P4 O
F, C2
Q � O
Q O
w w a
ao Q
z p� o
0
xco
Z
V
0z
QA
u O
o
z
w
Q o t�
z o
wo z
A�
�w
A4
a
PROJECT NO KRG -1 2000
FILENAME: KRG12000SWX— TNCalcs
DESIGNED BY: JF
DRAWN BY: JF
SCALE: 1"=100'
DATE: —12
SHEET NO. TN
[jMcADAMS
PARK -PHASE 1 PHASE 1 POST-DEVELO. .ENT NITROGEN EXPORT NCH,PE
KRG-12000 CALCULATIONS 9/11/2012
TN-Loading Input Data
Phase 1 Nitrogen Analysis Area acres
Sub-basin ID
open Wooded Im ervious Pond ; Total
To SWMF#1 1.45 0.00 3.54 0.54 5.53
To SWMF#2 0.45 0.00 0.26 0.28 0.99
To SWMF#3 5.90 0.00 16.13 1.51 23.54
To SWMF#4 2.50 0.00 1 0.80 1.40 4.70
B ass Area 5.37 1.88 0.10 0.00 7.35
Totals= 15.67 1.88 20.83 3.73 42.11
TN-Loading Output Data
Sub-basin ID Nitrogen Analysis TN-Load Before %Removal TN-Load After 1st 1st BMP Type %Removal TN-Load After 2nd BMP Type
Area acres Treatment lbs/ r Device Ibs/ r 2nd Device Ibs/ r
To SWMF#1 5.53 77.44 40% 46.46 3 SW Wetland 30% 32.52 LSNFS
To SWMF#2 0.99 6.39 40% 3.83 SW Wetland 30% 2.68 LS/VFS
To SWMF#3 23.54 350.85 40% 210.51 SW Wetland 30% 147.36 LS/VFS
To SWMF#4 4.70 21.64 40% 12.98 SW Wetland 30% 9.09 LS/VFS
B ass Areas 7.35 9.69 0% 9.69 1 0% 9.69
Totals= 42.11 466.00 283.48 201.34
TN-Load After Treatment= 201.34 lbs/yr
4.78 lbs/ac/yr
PAR_ E-PHASE 1 PRE-DEVELOPMENT TI, ,XPORT CALCULATIONS J._ CH,PE
KRG-12000 Phase I Total 9/11/2012
METHOD 2:
Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all
Impervious Surfaces are shown.
STEP 1: Determine the area for each type of land use and enter in Column (2).
STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2).
STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4).
STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4).
STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of
Column (4) by the total area at the bottom of Column (2).
(1) 1 (2) (3) (4)
Type of Land Cover Area TN export coeff. TN export from use
[acres] (lbs/ac/yr) (lbs/yr)
Permanently protected undisturbed
39.69 0.6 23.81
_q pen space (forest, unmown meadow)
Permanently protected managed
2.41 1.2 � 2.89
open space ( rass, landscaping, etc.)
Impervious surfaces (roads,parking
lots, driveways, roofs,paved storage 0.01 21.2 0.21
areas, etc.)
TOTAL 42.11 --- 26.92
Total TN Export= 0.64 lbs/ac/yr
% impervious = 0.0%
PARK E-PHASE 1 POST-DEVELOPMENT T _�XPORT CALCULATIONS J._ CH,PE
KRG-12000 Phase I Total 9/11/2012
METHOD 2:
Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all
Impervious Surfaces are shown.
STEP l: Determine the area for each type of land use and enter in Column (2).
STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2).
STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4).
STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4).
STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of
Column (4) by the total area at the bottom of Column (2).
(1) (2) (3) (4)
Type of Land Cover Area TN export coeff. TN export from use
[acres] (Ibs/ac/yr) (Ibs/yr)
Permanently protected undisturbed 1.88 0.6 1.13
open space (forest, unmown meadow)
Permanently protected managed 19.40 1.2 23.28
o en space ( rass, landscaping, etc.)
Impervious surfaces (roads,parking 1
lots, driveways, roofs,paved storage 20.83 21.2 441.60
areas, etc.)
TOTAL 42.11 --- 466.00
Total TN Export= 11.07 lbs/ac/yr
% impervious = 49.5%
PARIS E-PHASE 1 POST-DEVELOPMENT T� .:XPORT CALCULATIONS J., CH,PE
KRG-12000 Subbasin#To SWMF#1 9/11/2012
METHOD 2:
Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all
Impervious Surfaces are shown.
STEP 1: Determine the area for each type of land use and enter in Column (2).
STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2).
STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4).
STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4).
STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of
Column (4) by the total area at the bottom of Column (2).
(1) (2) (3) (4)
Type of Land Cover Area TN export coeff. TN export from use
[acres] (lbs/ac/yr) (lbs/yr)
Permanently protected undisturbed 0.00 0.6 0.00
open space (forest, unmown meadow) .
Permanently protected managed 1.99 i 1.2 2.39
open space ( rass, landscaping, etc.) 9
Impervious surfaces (roads,parking
lots, driveways, roofs,paved storage 3.54 21.2 75.05
areas, etc.)
TOTAL 5.53 --- 77.44
Total TN Export= 14.0 lbs/ac/yr
% impervious= 64.0%
PARR E-PHASE 1 POST-DEVELOPMENT T, _�'XPORT CALCULATIONS J. CH,PE
KRG-12000 Subbasin#To SWMF#2 9/11/2012
METHOD 2:
Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all
Impervious Surfaces are shown.
STEP 1: Determine the area for each type of land use and enter in Column (2).
STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2).
STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4).
STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4).
STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of
Column (4) by the total area at the bottom of Column (2).
(1) (2) (3) (4)
Type of Land Cover Area 1 TN export coeff. TN export from use
[acres] ' (lbs/ac/yr) (lbs/yr)
Permanently protected undisturbed
0.00 0.6 0.00
open s ace 6orest, unmown meadow)
Permanently protected managed 0.73 1.2 0.88
Ten ace ( rass, landsca in , etc.)
Impervious surfaces (roads,parking
lots, driveways, roofs,paved storage 0.26 21.2 5.51
areas, etc.)
TOTAL 0.99 --- 6.39
Total TN Export= 6.5 lbs/ac/yr
% impervious = 26.3%
PARF E-PHASE 1 POST-DEVELOPMENT I- i:XPORT CALCULATIONS J. _ACH,PE
KRG-12000 Subbasin#To SWMF 43 9/11/2012
METHOD 2:
Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all
Impervious Surfaces are shown.
STEP l: Determine the area for each type of land use and enter in Column (2).
STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2).
STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4).
STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4).
STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of
Column (4) by the total area at the bottom of Column (2).
(1) (2) (3) (4)
Type of Land Cover Area TN export coeff. TN export from use
[acres] (lbs/ac/yr) (lbs/yr)
Permanently protected undisturbed 0.00 0.6 0.00
open s ace (forest, unmown meadow
Permanently protected managed
open s ace (grass, landsca in g, etc.) 7.41 1.2 8.89
Impervious surfaces (roads,parking
lots, driveways, roofs,paved storage 16.13 21.2 341.96
areas, etc.)
TOTAL 23.54 --- 350.85
Total TN Export= 14.9 lbs/ac/yr
% impervious = 68.5%
PARK E-PHASE 1 POST-DEVELOPMENT T� .:XPORT CALCULATIONS J._ CH,PE
KRG-12000 Subbasin#To SWMF#4 9/11/2012
METHOD 2:
Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all
Impervious Surfaces are shown.
STEP 1: Determine the area for each type of land use and enter in Column (2).
STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2).
STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4).
STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4).
STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of
Column (4) by the total area at the bottom of Column (2).
(1) (2) (3) (4)
Type of Land Cover Area TN export coeff. TN export from use
[acres] (lbs/ac/yr) (lbs/yr)
Permanently protected undisturbed 0.00 0.6 0.00
open space (forest, unmown meadow)
Permanently protected managed 3.90 1.2 4.68
open s ace mss, landsca in g, etc.)
Impervious surfaces (roads,parking
lots, driveways, roofs,paved storage 0.80 21.2 16.96
areas, etc.)
TOTAL 4.70 --- 21.64
Total TN Export= 4.6 lbs/ac/yr
% impervious = 17.0%
PARR E-PHASE 1 POST-DEVELOPMENT T .:XPORT CALCULATIONS J._ CH,PE
KRG-12000 Subbasin#Bypass 9/11/2012
METHOD 2:
Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all
Impervious Surfaces are shown.
STEP 1: Determine the area for each type of land use and enter in Column (2).
STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2).
STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4).
STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4).
STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of
Column (4) by the total area at the bottom of Column (2).
(1) (2) (3) (4)
Type of Land Cover Area TN export coeff. TN export from use
[acres] (lbs/ac/yr) (lbs/yr)
Permanently protected undisturbed
1.88 0.6 1.13
open s ace 6orest, unmown meadow
Permanently protected managed 5.37 1.2 6.44
open space ( rass, landsca in , etc.)
Impervious surfaces (roads,parking
lots, driveways, roofs,paved storage 0.10 21.2 2.12
areas, etc.)
TOTAL 7.35 --- 9.69
Total TN Export= 1.3 lbs/ac/yr
% impervious= 1.4%
Nitrogen Control Plan
Commercial / Industrial / Residential Sites with Known Impervious Area
Project Title: PA1ZalL)E TIIWAI CQWm,6NS hI
Type of Project N New [ ] Expansion [ ]Exempt ��`�(N
Basis for exemption WA a��zi_4cE
Part I. Riparian Buffers`W$�t� v`
Area includes riparian buffers? [ ] No Yes [ ]Exempt f `; 3375-51, ; a
If yes, [4 50 foot [ ] 100 foot =yz• •; .r
River Basin? [ ] Neuse b4 Cape Fear 'Az% *.%Jt Eti.•
Basis for exemption NlAO�•••••••' P
Show buffers on site plan. ~•'•�,� E.
Part II. Nitrogen Calculations (Method 2, Appendix C):
a. Site Information
Total area of property incl. R/W l/2, // QwPS - llvlfy,ewf AViQlyys�rs AVaL (ex C10(yes 0 Kelly
Denuded Area yy 5�aevcs C�►apef Rd • eX{cosiovi ROW)
Impervious Area incl. R/W 20,g Q ye�
Managed open space /q, �% aeyes (InelUdes Bmpaveas)
Protected open space �, 88 awes
b. Pre - development loading:
Type of Land Cover
Permanently protected undisturbed open
space (forest, unmown meadow)
Permanently protected managed open space
(grass, landscaping, etc.)
Impervious Area
TOTAL
Nitrogen Loading Rate (Ibs /ac /yr) = 0,6
c. Post - development loading:
Type of Land Cover
Permanently protected undisturbed open
space (forest, unmown meadow)
Permanently protected managed open space
(grass, landscaping, etc.)
Impervious Area
TN export
Area TN export coeff. from use
(acres) (Ibs /ac /yr) (Ibs /yr)
3 ,6
0.60
2 3, 8
0
1.20
Z • 89
0,0/
21.20
y /,60
Z/2. //
26.9z
TOTAL
Nitrogen Loading Rate (Ibs /ac /yr) = //. 07
TN export
Area TN export coeff. from use
(acres) (Ibs /ac /yr) (Ibs /yr)
98
0.60
US
0
1.20
2 3, Z 8
20,83
21.20
y /,60
z, //
W('(0,00
Proposed BMP(s) sloyrniyakv Wega 0,, level spy- eadevsll/eyea" rilkt' Sf v`ps
Nitrogen Load after BMPs = JZ 78 /b/A�
Nitrogen Load Offset by Payments
Net change in on -site N Load
Part III. Control of Peak Stormwater Flow (for 1 year, design storm
Calculated Pre - development Peak Flow �.� etcI Covevshee
Calculated Post - development Peak Flow covwshee4
Proposed BMP(s) SWmr- 41 SWrhF�t z S�S�,UvnG (WeHa ads) levy I SP✓ dev�V t✓5�
Post BMP Peak Flow
I, the undersigned, certify to the best of my knowledge that the above information is correct (affix seal)
Supply notes & details showing control of Nitrogen and peak stormwater runoff. 31812006
EcoEngineering
A division of The John R. McAdams Company, Inc.
MEMORANDUM
Date: June 11, 2012
To: Jeremy Finch, PE
From: George Buchholz, REM, PWS
Re: Parkside Town Commons — SWMF #1, #2, #3, & #4
Seasonal High Water Table
KRG -12000
A field investigation was conducted on June 05 and 06, 2012 at the proposed
location of four stormwater management facilities (SWMF) associated with
the Parkside Town Commons development. A soil boring was established
within each SWMF to determine the approximate seasonal high water table
depth from the soil surface. Below is a brief summary of the soil type(s) and
i the approximate seasonal high water table depth.
SWMF #1
Soil Ty- e(s):
White Store sandy loam, 6 to 10 percent slopes: located on narrow side slopes,
moderately deep, well drained, with slow permeability.
White Store sandy loam, 2 to 6 percent slopes: located on narrow side slopes,
moderately deep, well drained, with slow permeability.
I
I Soil Boring Results:
It is anticipated that the approximate seasonal high water table depth from the
soil surface for this SWMF is 5 inches.
General Soil Boring Observations
r
In general, the profile of the soil borings graded from dark brown silt loams
near the surface to yellowish brown that are sandy at lower elevations and
then finally grayish sands at lower elevations. Below is a photograph of a
sample boring.
Research Triangle Park, NC
Post Office Box 14005
Reseadr Triangle Park,
North Carolina 27709
2905 Mericlian Parkway
Durham, North Carolina 27713
800. 733 -5646
919- 287 -4262
919.361 -2269 Fax
w".ecoengr.com
Design Services Focused On Client Success
EcoEngineering
A division of The John R. McAdams Company, Inc.
Photo 1. Soil boring profile located within SWMF #1.
SWMF #2
Soil Type(s):
White Store sandy loam, 6 to 10 percent slopes: located on narrow side slopes,
moderately deep, well drained, with slow permeability.
Soil Boring Results:
It is anticipated that the approximate seasonal high water table depth from the
soil surface for this SWMF is 4 inches.
General Soil Boring Observations
In general, the profile of the soil borings graded from dark brown silt loams
near the surface to grayish sands. Below is a photograph of a sample boring.
EcoEngineering
A division of The John R. McAdams Company, Inc.
Photo 2. Soil boring profile located within SWMF #2.
SWMF #3
Soil Type(s):
Creedmoor sandy loam, 10 to 20 percent slopes: located on narrow side
slopes, slightly eroded, moderately well drained, with slow permeability.
White Store sandy loam, 6 to 10 percent slopes: located on narrow side slopes,
moderately deep, well drained, with slow permeability.
Soil Boring Results:
It is anticipated that the approximate seasonal high water table depth from the
soil surface for this SWMF is 19 inches.
General Soil Boring Observations
In general, the profile of the soil borings graded from dark brown silt loams
near the surface to yellowish brown that are sandy at lower elevations and
then finally grayish silts at lower elevations. Below is a photograph of a
sample boring.
Nitrogen Control Plan
Commercial / Industrial / Residential Sites with Known Impervious Area
Project Title: PA1ZalL)E TIIWAI CQWm,6NS hI
Type of Project N New [ ] Expansion [ ]Exempt ��`�(N
Basis for exemption WA a��zi_4cE
Part I. Riparian Buffers`W$�t� v`
Area includes riparian buffers? [ ] No Yes [ ]Exempt f `; 3375-51, ; a
If yes, [4 50 foot [ ] 100 foot =yz• •; .r
River Basin? [ ] Neuse b4 Cape Fear 'Az% *.%Jt Eti.•
Basis for exemption NlAO�•••••••' P
Show buffers on site plan. ~•'•�,� E.
Part II. Nitrogen Calculations (Method 2, Appendix C):
a. Site Information
Total area of property incl. R/W l/2, // QwPS - llvlfy,ewf AViQlyys�rs AVaL (ex C10(yes 0 Kelly
Denuded Area yy 5�aevcs C�►apef Rd • eX{cosiovi ROW)
Impervious Area incl. R/W 20,g Q ye�
Managed open space /q, �% aeyes (InelUdes Bmpaveas)
Protected open space �, 88 awes
b. Pre - development loading:
Type of Land Cover
Permanently protected undisturbed open
space (forest, unmown meadow)
Permanently protected managed open space
(grass, landscaping, etc.)
Impervious Area
TOTAL
Nitrogen Loading Rate (Ibs /ac /yr) = 0,6
c. Post - development loading:
Type of Land Cover
Permanently protected undisturbed open
space (forest, unmown meadow)
Permanently protected managed open space
(grass, landscaping, etc.)
Impervious Area
TN export
Area TN export coeff. from use
(acres) (Ibs /ac /yr) (Ibs /yr)
3 ,6
0.60
2 3, 8
0
1.20
Z • 89
0,0/
21.20
y /,60
Z/2. //
26.9z
TOTAL
Nitrogen Loading Rate (Ibs /ac /yr) = //. 07
TN export
Area TN export coeff. from use
(acres) (Ibs /ac /yr) (Ibs /yr)
98
0.60
US
0
1.20
2 3, Z 8
20,83
21.20
y /,60
z, //
W('(0,00
Proposed BMP(s) sloyrniyakv Wega 0,, level spy- eadevsll/eyea" rilkt' Sf v`ps
Nitrogen Load after BMPs = JZ 78 /b/A�
Nitrogen Load Offset by Payments
Net change in on -site N Load
Part III. Control of Peak Stormwater Flow (for 1 year, design storm
Calculated Pre - development Peak Flow �.� etcI Covevshee
Calculated Post - development Peak Flow covwshee4
Proposed BMP(s) SWmr- 41 SWrhF�t z S�S�,UvnG (WeHa ads) levy I SP✓ dev�V t✓5�
Post BMP Peak Flow
I, the undersigned, certify to the best of my knowledge that the above information is correct (affix seal)
Supply notes & details showing control of Nitrogen and peak stormwater runoff. 31812006
EcoEngineering
A division of The John R. McAdams Company, Inc.
Photo 2. Soil boring profile located within SWMF #2.
SWMF #3
Soil Type(s):
Creedmoor sandy loam, 10 to 20 percent slopes: located on narrow side
slopes, slightly eroded, moderately well drained, with slow permeability.
White Store sandy loam, 6 to 10 percent slopes: located on narrow side slopes,
moderately deep, well drained, with slow permeability.
Soil Boring Results:
It is anticipated that the approximate seasonal high water table depth from the
soil surface for this SWMF is 19 inches.
General Soil Boring Observations
In general, the profile of the soil borings graded from dark brown silt loams
near the surface to yellowish brown that are sandy at lower elevations and
then finally grayish silts at lower elevations. Below is a photograph of a
sample boring.
EcoEngineering
A division of The Jahn R. McAdams Company, Inc.
Photo 3. Soil boring profile located within SWMF #3.
SWMF #4
Soil Type(s):
Creedmoor sandy loam, 10 to 20 percent slopes: located on narrow side
slopes, slightly eroded, moderately well drained, with slow permeability.
White Store sandy loam, 6 to 10 percent slopes: located on narrow side slopes,
moderately deep, well drained, with slow permeability.
White Store sandy loam, 2 to 6 percent slopes: located on narrow side slopes,
moderately deep, well drained, with slow permeability.
Soil Boring Results:
It is anticipated that the approximate seasonal high water table depth from the
soil surface for this SWMF is 22 inches.
General Soil Boring Observations
In general, the profile of the soil borings graded from dark brown silt loams
near the surface to yellowish brown that are sandy at lower elevations and
then finally grayish clays with reddish brown mottles greater than 20%
abundance at lower elevations. Below is a photograph of a sample boring.
EcoEngineering
A division of The John R. McAdams Company, Inc.
Photo 4. Soil boring profile located within SWMF #4.
EcoEngineering
A division of The Jahn R. McAdams Company, Inc.
Photo 3. Soil boring profile located within SWMF #3.
SWMF #4
Soil Type(s):
Creedmoor sandy loam, 10 to 20 percent slopes: located on narrow side
slopes, slightly eroded, moderately well drained, with slow permeability.
White Store sandy loam, 6 to 10 percent slopes: located on narrow side slopes,
moderately deep, well drained, with slow permeability.
White Store sandy loam, 2 to 6 percent slopes: located on narrow side slopes,
moderately deep, well drained, with slow permeability.
Soil Boring Results:
It is anticipated that the approximate seasonal high water table depth from the
soil surface for this SWMF is 22 inches.
General Soil Boring Observations
In general, the profile of the soil borings graded from dark brown silt loams
near the surface to yellowish brown that are sandy at lower elevations and
then finally grayish clays with reddish brown mottles greater than 20%
abundance at lower elevations. Below is a photograph of a sample boring.
EcoEngineering
A division of The John R. McAdams Company, Inc.
Photo 4. Soil boring profile located within SWMF #4.