Loading...
HomeMy WebLinkAbout20071503 Ver 4_(2012-11-1)Final Stormwater Management Plan Design Calculations_20121113Strickland, Bev From: Yates, Kevin [yates @johnrmcadams.com] Sent: Thursday, November 08, 2012 4:42 PM To: Strickland, Bev Subject: RE: 07 -1503 Ver 4 Parkside Town Commons Beverly, The Parkside stormwater plans /information is a 90 MB file, so I uploaded it our FTP site. Instructions below, let me know if you have problems accessing it. ftp: / /www.mrmcadams.com (use internet explorer and paste link from here, do not click on link) User: temp Pass: temp (Enter both user and password in lower case) Thanks, Kevin From: Strickland, Bev [ mai Ito: bev.strickland(a) ncdenr.gov] Sent: Wednesday, November 07, 2012 3:22 PM To: Yates, Kevin Subject: 07 -1503 Ver 4 Parkside Town Commons Mr. Yates, Could you please email me an electronic cops of the stormwater information? Thanks Bev Be�-erly Suichland, Achn"stratiw Officer Division of Water Quality - Progr<mi Dewlopment N.C. Depauthnent of FAwi oinnent and Nathnal Resoinces Mail Senice Center 1650, Raleigh, N(' 97699 -1650 Phone= 919$07 -6350 Entail Address: Be�-.Shicldand'Oncdein Phone = (919) 807-6350 E- rllarl colt esporlderlce to atld lionl this addi css illar he sul?yctto tht- Nolrli Calolihd PUNIC Recolzls Larr-3r1d miiJ- be disclosed to tjli zd pamcs. PARKSIDE TOWN COMMONS Cary, North Carolina Final Stormwater Management Plan Design Calculations -11�.��-----: 4�lot _ Project Number: By: Date: KRG -12000 Beth Ihnatolya, PE Jeremy Finch, PE November 2012 4 � A v i z' EcoEngineering A division of The John It. McAdams Company, Inc. RESEARCH TRIANGLI: PARK P. 0. Box 14005 Research Triangle Park, NC 27709 919- 287 -4262 FAX 919- 361 -2269 www.ecoengr.com L EcolEngineering A division of The John R. McAdams Company, Inc. PARKSIDE TOWN COMMONS CARY, NORTH CAROLINA FINAL STORMWA TER MANAGEMENT PLAN DESIGN CALCULATIONS KRG -12000 N November 2012 33755 a .... Research Triangle Park, NC Post Office Box 14005 Research Triangle Park, North Carolina 27709 2905 Meridian Parkway D North Carolina 27713 80, 1 -5646 919 - 287 -4262 919- 361 -2269 Fax Beth Ihnatolya, PE Stormwater Project Engineer Jeremy Finch, PE Stormwater Project Manager www.ecoengr.com I Design Services Focused On Client Success PARKSIDE TOWN COMMONS Stormwater Management Plan Design Proiect Descrintion and Summar Located in the northeast quadrant of the interchange of NC Highway 55 and I -540 in Cary, North Carolina, is the proposed mixed -use development currently known as Parkside Town Commons. Proposed development on this approximately 123 -acre site ultimately consists of the construction of a mix of residential, apartments, office as well as big box retailers, junior anchors, retail shops and outparcels, along with the associated infrastructure, utility, and stormwater management improvements. Proposed for construction at this time is Phase 1 of the project only, which consists of a Target store and several commercial /retail buildings, along with the necessary street/parking /sidewalk/utility infrastructure. Also proposed for construction as part of Phase 1 are the various offsite roadway improvements to the NC Highway 55 corridor and the extension of O'Kelly Chapel Road through the project. Parkside Town Commons is located within the Cape Fear River basin and inside the Jordan Lake watershed. The proposed site will be subject to the stormwater management requirements set forth in Section 7.3 of the Town of Cary Land Development Ordinance (LDO). This ordinance requires that development properly manage stormwater runoff rate and pollutants as necessary to protect the environment, property, health, safety, and welfare of the Town's citizens. This report contains the final design calculations detailing the expected stormwater impacts as a result of the proposed development of Phase 1, along with the final designs of only the proposed stormwater management facilities that are located within Phase 1 (SWMF #1, #2, #3, and #4) that will be used to mitigate the impacts. Current Applicable Stormwater Management Regulations More specifically, stormwater management for the proposed development shall be designed in accordance with the following: 1. 7.3.3 Peak Runoff Control There shall be no net increase in peak stormwater run -off flow leaving a development from pre- development conditions for the one (1) year design storm. New developments are required to minimize damage to subject streams caused by storm flows. (A) Calculation of Peak Flow Acceptable methodologies for computing pre- and post- development conditions for the one (1) year design storm include: 1. The Rational Method (used when the drainage area is two hundred (200) acres or less) 2. The Peak Discharge Method as described in USDA Technical Release Number 55 (TR -55) (drainage area is 2, 000 acres or less) 3. The Putnam Method (drainage area is greater than 2, 000 acres) 4. USGS Regression Equations, where applicable The same method must be used for both the pre- and post- development conditions. (B) Exceptions to Peak Flow Control Developments with less than ten (10) percent net increase in peak flow of the one (1) year design storm are not required to control peak flow from the site. However, if the net increase in peak flow from the new development is greater than ten (10) percent, the entire net increase from pre- development one (])-year design storm peak flow must be controlled. (C) Downstream Impact Analysis A Downstream Impact Analysis shall be supplied for all new proposed developments that require site/ subdivision plan approval. Site/ subdivision plans which are not subject to the stormwater management regulations are exempt from the Downstream Impact Analysis requirements. Each development plan shall: 1. Calculate the pre- and post- development discharges for each discharge point from the site. If the post- development calculated discharge is equal to or less than a ten (10) percent increase for the two (2), five (5) and ten (10) year peak discharges at each discharge point, then no further analysis is needed. If the post- development peak discharge at any discharge point is greater than forty (40) cubic feet per second (cfs) then further analysis is needed and shall be treated as in Section 7.3.3(C)(2) below. In lieu of the ten (10) percent increase in off -site run -off the engineer shall limit run -off to the extent that downstream conveyance systems can accommodate the run -off increase without causing any propert damage. 2. If the post- development discharge for the two (2), five (5) and ten (10) year discharges at any discharge point is greater than ten (10) percent of the pre- development discharge, then additional analysis is needed for that discharge point. Identify the point downstream where the impacts become less than a ten (10) percent increase. Analyze the impacts of the increase on the stormwater conveyance system(s) (pipes, culverts, ditches, swales, etc) between the discharge point and the point where the impact becomes less than ten (10) percent. Identify negative impacts on all improvements (businesses, homes, lawns, streets, pipes, ditches, swales, etc.) through the use of inlet and outlet control calculations and backwater analyses for culverts, channel capacity calculations for swales and ditches. Construct on -site detention, off -site improvements, or make a payment -in -lieu for inadequate downstream conveyance systems to fully mitigate all impacts created by the proposed development. Requests for payment -in -lieu must be approved by Town Council. Payment -in -lieu shall be based on the sealed, approved estimate of one hundred (100) percent of the costs to construct the appropriate mitigation facility. Those costs shall include design, land costs, construction, and a fifty (50) year cycle of maintenance. The chosen facility has to be a facility that is capable of obtaining all permits required by all appropriate state and federal agencies. 3. If on -site detention is the chosen mitigation, limit the peak discharge at all discharge points to what would be expected from an R -40 zoning condition for the two (2), five (5) and ten Ll0) year storm events, not to exceed a ten (10) percent increase over the pre - development conditions. 2. 7.3.2(D) Nitrogen Export Standards All developments must achieve a nitrogen export of less than or equal to 3.6 pounds per acre per year. If the development contributes greater than 3.6 pounds per acre per year of nitrogen, then the table below explains the options available depending whether the development is residential or non - residential. The offset payment option shown below is only available for developments within the Neuse River basin. TABLE 7.3-1: RO RESIDENTIAL If the computed export is less than 6.0 lbs/ac/yr, then the owner may either: • Install BMPs to remove enough nitrogen to bring the development down to 3.6 lbs/ac/yr. • Pay a one -time offset payment to the UTB Restoration Fund to bring the nitrogen down to 3.6 lbs/ac/yr • Do a combination of BMPs and offset payment to achieve a 3.6 lbs/ac/yr export If the computed export is greater than 6.0 lbs/ac/yr, the owner must use on -site BMPs to bring the development's export down to 6.0 lbs/ac/yr. Then, the owner must use one of the three options above to achieve the reduction between 6.0 and 3.6 lbs/ac/yr. COMMERCIAL / INDUSTRIAL If the computed export is less than 10.0 lbs /ac/yr, then the owner may either: • Install BMPs to remove enough nitrogen to bring the development down to 3.6 lbs /ac/yr. • Pay a one -time offset payment to the UTB Restoration Fund to bring the nitrogen down to 3.6 lbs /ac/yr • Do a combination of BMPs and offset payment to achieve a 3.6 lbs /ac/yr export If the computed export is greater than 10.0 lbs/ac/yr, the owner must use on- site BMPs to bring the development's export down to 10.0 lbs /ac/yr. Then, the owner must use one of the three options above to achieve the reduction between 10.0 and 3.6 lbs /ac/yr. Once it has been determined that an offset payment is forthcoming, the owner shall furnish the Town with evidence that the North Carolina Division of Water Quality has received payment prior to the Town's issuance of a grading permit. For developments outside of the Neuse River Basin, the owner must provide evidence of intent to reduce nitrogen export to the levels required by this section to the maximum extent practicable. Addressing Current Stormwater Management Regulations The proposed stormwater management plan for Parkside Town Commons -Phase 1 will be designed to protect the downstream environment. The plan incorporates biologically based stormwater management techniques to manage both water quantity and quality aspects of site runoff. As can be seen in this report, stormwater management for Parkside Town Commons -Phase 1 will be accomplished by incorporating engineered stormwater best management practice facilities throughout the phase to capture and treat the stormwater runoff from developed areas. Specific stormwater treatment devices that will be used are level spreaders in conjunction with vegetated filter strips, which are designed to remove a minimum of 40% average annual total suspended solids (TSS), and provide 30% total nitrogen and 35% total phosphorus removal, and extended detention stormwater wetlands designed to remove a minimum of 85% average annual total suspended solids (TSS), provide slow release (i.e. 2 to 5 days) of the difference in pre- to post - development peak runoff rate for the 1 -, 2 -, 5 -, and 10 -year, 24 -hour storms, and provide 40% total nitrogen and 40% total phosphorus removal. The stormwater wetlands will serve the dual purpose of water quality and water quantity (ie. detention) control. Discussion of Nutrient Export Calculations The current Town of Cary ordinance requires developments located in the Cape Fear River basin to reduce nitrogen export levels to the maximum extent practicable. In order to do this, stormwater wetlands will discharge to level spreader /vegetated filter strip systems to provide additional nutrient removal. For the purpose of nitrogen export computations, a 44.11 -acre total nitrogen analysis area was created that encompasses all of Phase 1, excluding the O'Kelly Chapel Road extension right -of -way (see nitrogen exhibit for a graphic representation of the total nitrogen analysis area). The remaining portions of the project (i.e. future phases) were not included in the nitrogen export calculations and will be required, at the time of their development, to update these nitrogen export calculations to incorporate their particular phases into the nitrogen calculations. In the event these phases are never developed, the attached calculations show that Phase 1 stands alone with respect to meeting the applicable nitrogen export regulations. Discussion of Pre -Post Analysis As you can see from the report, the post - development peak flow rates have been detained back to pre - development peak flow rates in the 1 -year, 2 -year, 5 -year, and 10 -year storm events for POA #1, POA #3, POA #4, and POA #5. SWMF #1 and SWMF #2 were designed to aid in detaining post - development flows back to pre - development rates for POA #3. SWMF #3 and SWMF #4 aided in detaining post- development flows back to pre - development rates for POA #1. Calculation Methodolo • Rainfall data for the Cary, NC region is from NOAA Atlas 14, with a partial duration series assumption for the 1 -year, 2 -year, 5 -year, and 10 -year storms and annual duration assumption for the 100 -year storm. The 1- year /24 -hour rainfall depth is 2.86 inches, the 2- year /24 -hour rainfall depth is 3.45 inches, the 5- year /24 -hour rainfall depth is 4.32 inches, the 10- year /24 -hour rainfall depth is 4.99 inches, and the 100 - year /24 -hour rainfall depth is 7.33 inches. These rainfall depths were input into the meteorological model within PondPack for peak flow rate calculations. Please reference the rainfall data section within this report for additional information. Existing topographic information is a combination of surveys by Mulkey Engineers & Consultants, The John R. McAdams Company, Inc., and Wake County GIS. • Using maps contained within the Wake County Soil Survey, the on- and off -site soils were determined to be from hydrologic soil groups (HSG) `C' and `D' soils. Since the method chosen to compute both pre- and post - development peak flow rates and runoff volumes is dependent upon the soil type, care was taken when selecting the appropriate Soil Conservation Service Curve Number (SCS CN). a) Within each sub - basin, a proportion of each soil group was determined using NRCS Soil Survey Maps. Once a proportion was determined, a composite SCS CN was computed for each cover condition. For example, the pre - development condition of Sub - basin #1 consists of approximately 48.6% HSG `C' soils and 51.4% HSG `D' soils. Therefore, for the open area cover condition, the composite SCS CN is computed as follows (assuming good condition): Composite Open SCS CN = (0.486 *74) + (0.514 *80) = 77 b) This type of calculation was done for each of the studied sub - basins in the pre- and post - development condition in an effort to accurately account for the difference in runoff between HSG `C' soils and HSG `D' soils. A composite SCS Curve Number was calculated for both the pre- and post - development condition using SCS curve numbers and land cover conditions. Land cover conditions for the pre - development condition were taken from a survey by Mulkey Engineers & Consultants and aerial photography. Land cover conditions for the post - development condition were taken from the proposed development plan. • The time of concentration was calculated using SCS TR -55 (Segmental Approach, 1986). The Tc flow path was divided into three segments: overland flow, concentrated flow, and channel flow. The travel time was then computed for each segment, from which the overall time of concentration was determined by taking the sum of each segmental time. • The post - development time of concentration to the stormwater facilities is assumed to be 5 minutes in the post- development condition. This provides a conservative estimate of facility size for site planning purposes. • PondPack Version V8i was used in determining the pre- & post- development peak flow rates for the 1 -, 2 -, 5 -, 10 -, and 100 -year storm events, as well as routing calculations for the proposed stormwater management facilities. • The stage- storage functions for the proposed stormwater management facilities were all generated outside of PondPack and then input into PondPack for final routing calculations. • Water quality sizing calculations for each facility were performed in accordance with the N.C. Stormwater Best Management Practices manual (NCDENR July 2007). The normal pool surface area for each wetland facility was sized using the runoff volume computed using the Simple Method and a maximum ponding depth of 12- inches. • Velocity dissipaters will be provided at the stormwater management facility principal spillway outlets to prevent erosion and scour in these areas. The dissipaters are constructed using rip rap, underlain with a woven geotextile filter fabric. The filter fabric is used to minimize the loss of soil particles beneath the rip rap apron. The dissipaters are sized for the 10 -year storm event using the NYDOT method. It is a permanent feature of the outlet structures. • For 100 -year storm routing calculations, a "worst case condition" was modeled in order to insure the proposed BMP would safely pass the 100 -year storm event. The assumptions used in this scenario are as follows: 1. The starting water surface elevation in the facility, just prior to the 100 - year storm event, is at the top of riser elevation. This scenario could occur as a result of a clogged orifice or a rainfall event that lingers for several days. This could also occur as a result of several rainfall events in a series, before the orifice has an opportunity to draw down the storage pool. 2. An attempt was made to achieve a minimum of approximately 1.0 -ft of freeboard between the peak elevation during the "worst case" scenario and the top of the dam for the facility. This goal was achieved for the proposed wetlands. Conclusion If the development on this tract is built as proposed within this report, then the requirements set forth in Section 7.3 of the Town of Cary Land Development Ordinance will be met with the proposed stormwater management facilities. However, modifications to the proposed development may require that this analysis be revised. Some modifications that would require this analysis to be revised include: 1. The proposed site impervious surface exceeds the amount accounted for in this report. 2. The post - development watershed breaks change significantly from those used to prepare this report. The above modifications may result in the assumptions within this report becoming invalid. The computations within this report will need to be revisited if any of the above conditions become apparent as development of the proposed site moves forward. PARKSIDE TOWN COMMONS SUMMARY OF RESULTS KRG -12000 = => RELEASE RATE MANAGEMENT RESULTS POINT OF ANALYSIS #1 B. IHNATOLYA, PE 9/11/2012 Return Period Pre - Development Pre - Development Post - Development [ %] Increase % Increase [cfs] [ %] 1 -Year [cfs] [cfs] 0.0 0% [cfs] [ %] 1 -Year -0.2 -6% �-11% 14.1 8.9 4.0 -5.2 -37% 2 -Year 4.6 21.5 14.3 -7.2 -33% 5 -Year 31.5 20.4 -11.1 -35% 10 -Year 39.4 24.6 -14.8 -38% POINT OF ANALYSIS #3 Return Period Pre - Development Pre - Development Post - Development [ %] Increase % Increase [cfs] [ %] 1 -Year [cfs] [cfs] 0.0 0% [cfs] [ %] 1 -Year -0.2 -6% �-11% 27.2 16.0 4.0 -11.2 -41% 2 -Year 4.6 39.0 23.2 -15.8 -41% 5-Year_ 54.8 31.0 -23.8 -43% q 10 -Year 67.1 _ 37.8 �p -29.3 � -� -44% POINT OF ANALYSIS #4 Return Period Pre - Development Post - Development Increase % Increase [ %] [cfs] [cfs] [cfs] [ %] 1 -Year 2.6 2.6 0.0 0% 2 -Year 3.5 3.3 -0.2 -6% �-11% 5 -Year 4.5 4.0 -0.5 10 -Year 5.3 4.6 -0.7 -13% POINT OF ANALYSIS #5 Return Period Pre - Development Post - Development Increase % Increase [cfs] [cfs] [cfs] [ %] 1 -Year 9.9 6.0 -3.9 -39% 2 -Year 13.7 7.9 -5.8 -42% 5 -Year 18.6 10.2 -8.4 -45% 10 -Year 22.4 11.9 -10.5 -47% PARKSIDE TOWN COMMONS SUMMARY OF RESULTS - SWMF B. IHNATOLYA, PE KRG -12000 9/11/2012 STORMWATER MANAGEMENT FACILITY #1 Return Period 8.7 Inflow Outflow Max. WSE Freeboard Top of Dam = 307.00 [cfs] [cfs] [ft] IN 1 -Year 23581 34.6 4.1 303.66 3.34 2 -Year _ 4 41.5 5.1 304.01 2.99 5 -Year 304.50 48.7 6.1 304.50 2.50 10 -Year l 54.5 11.3 304.70 2.30 100 -Year (Siphon Unclogged) 298.00 F18.3 8.3 T:: 28.6 305.11 - 1.89 100 -Year (Siphon Clogged) 0.0222 ft/ft _ 29.2 305.13 1.87 Drainage Area = 8.7 acres _Design ►esign Impervious Area = 6.42 acres Top of Dam = 307.00 ft Pool Elevation = 302.00 ft _Normal Surface Area at NWSE = 23581 sf Surface Area at NWSE = 22553 sf Riser Length = 4 ft Riser Width = 4 ft Riser Crest = 304.50 ft Barrel Diameter = 24 inches # of Barrels = l Invert In = 299.00 feet Invert Out = 298.00 feet Length = 45 feet Slobe = 0.0222 ft/ft _ PARKSIDE TOWN COMMONS SUMMARY OF RESULTS - SWMF B. IHNATOLYA, PE KRG -12000 9/1 1/2012 STORMWATER MANAGEMENT FACILITY #2 Return Period Inflow Outflow Max. WSE Freeboard [cfs] [cfs] [ft] [ft] 1 -Year 15.8 2.0 302.28 3.72 2 -Year 20.3 3.5 302.53 3.47 5 -Year 25.5 4.9 302.97 3.03 10 -Year 29.4 5.7 303.36 2.64_ 100 -Year (Siphon Unclogged) �39.51 8.8 2.11 100 -Year (Siphon Clogged) 9.1 _303.89 30 3.90 2.10 Design Drainage Area = 5.48 acres Design Impervious Area = 2.1 acres of Dam = 306.00 ft _Top Normal Pool Elevation = 301.00 ft_ Surface Area at NWSE = 12263_ sf Required Surface Area at SE= 7855 sf Riser Length = 4 ft� Riser Width = 4 It Riser Crest = 303.50 ft Barrel Diameter = 24 inches mm # of Barrels = 1 Invert In = 298.50 feet Invert Out = 298.00 feet Length = 36 feet Slone T-0.0-39 ft/ft PARKSIDE TOWN COMMONS SUMMARY OF RESULTS - SWMF KRG -12000 STORMWATER MANAGEMENT FACILITY #3 Return Period Inflow Outflow Max. WSE [cfs] [cfs] [ft] 1 -Year 101.8 5.3 305.90 2 -Year 124.1_ 6.4 306.38 5 -Year 147.7 7.8 307.06 10 -Year 166.4 17.8 307.48 100 -Yea�_(Siphon on Unclogged) 211.6 59.0 308.09 100 -Ye Clogged) 211.6 60.9 308.13 Design Drainage Area = 27.36 acres Design Impervious Area = 17.85 acres Top of Dam = 310.00 ft Normal Pool Elevation = 304.00 ft Surface Area at NWSE _ 65834 sf Required Surface Area at NWSE = 63282 sf Riser Length = �5 ft Riser Width = 5 ft Riser Crest = 307.20 ft Barrel Diameter = 36 inches # of Barrels = 1 Invert In = 301.00 feet_ Invert Out = 300.00 feet Length = 49 feet Slope = 0.0204 ft/ft B. IfINATOLYA, PE 9/11/2012 Freeboard 4.10 3.62 2.94 2.52 1.91 1.87 PARKSIDE TOWN COMMONS SUMMARY OF RESULTS - SWMF Design Drainage Area = )esign Impervious Area = _ Top of Dam = Normal Pool Elevation = Surface Area at NWSE = Surface Area at NWSE = Riser Length = Riser Width = Riser Crest = Barrel Diameter = # of Barrels = Invert In = Invert Out = Length = 011- -- = [cfs] [cfs 22.7 0.1 28.6 0.1 35.2 0.6 40.4 1.1 53.1 3.8 53.1 3.8 7.17 acres 2.45 acres 302.00 ft 296.00 ft 60906 sf 9306 sf 5 ft 299.20 _ ft 36 inches 1 293.00 feet 292.00 feet 52 feet 0.0192 lft /ft Max. WSE [ft] 296.74 296.95 297.07 297.15 297.60 297.61 B. IHNATOLYA, PE 9/11/2012 Freeboard [ft] 5.26 5.05 4.93 4.85 4.40 4.39 1 MISCELLANEOUS SITE DATA 2 PRECIPITATION DATA 3 SOILS DATA PRE - DEVELOPMENT 4 HYDROLOGIC CALCULATIONS POST - DEVELOPMENT 5 HYDROLOGIC CALCULATIONS SWMF #1 FINAL DESIGN 6 CALCULATIONS SWMF #2 FINAL DESIGN 7 CALCULATIONS SWMF #3 FINAL DESIGN 8 CALCULATIONS SWMF #4 FINAL DESIGN 9 CALCULATIONS LEVEL SPREADER 10 CALCULATIONS NUTRIENT EXPORT 11 CALCULATIONS MISCELLANEOUS SITE DATA PARKSIDE TOWN COMMONS KRG -12000 illm \ i +� , r -. f % •'�� � � - gip. " `�-:y r +6.i4� `� _ � � % J�~,�= `1 r�;�J I Co 10 (� �'�/�} 1 ter!} r '� '� • y /� � i.- t� `• � _ i ��xy�{' ° �� '✓'��� ."1 \� � � "-� 4! Creek will rN � .,�.J v �� i "• i _ -'� -1 �, i � �. ���� tip"'" . `,� �` I, �j t ,, Bra nr.h 1\ ('\ \V �\ �-350 1�'r'1 may-' L m:_; ',I�. • _' S5 yp_ _ _ • _ rf�Tf_ ' �✓ / ' SCALE 1:24000 0 1 MILES 0 1000 YARDS 0 1 KILOMETER 9' W r a copyngrht (c) 1998, Maptecn, Inc. STATE OF NORTH CAROLINA FIRM PANEL LOCATOR DIAGRAM DATUM INFORMATION The projection used in the preparation of this map was the North Carolina State Plane (FIPSZONE 3200). The horizontal datum was the North American Datum of 1983, GRS80 ellipsoid. Differences in datum, ellipsoid, projection, or Universal Transverse Mercator zones used in the production of FIRMS for adjacent jurisdictions may result in slight positional differences in map features across jurisdictional boundaries. These differences do not affect the accuracy of this FIRM. All coordinates on this map are in U.S. Survey Feet, where 1 U.S. Survey Foot = 1200/3937 Meters. Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD 88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. An average offset between NAVD 88 and the National Geodetic Vertical Datum of 1929 (NGVD 29) has been computed for each North Carolina county. This offset was then applied to the NGVD 29 flood elevations that were not revised during the creation of this statewide format FIRM. The offsets for each county shown on this FIRM panel are shown in the vertical datum offset table below. Where a county boundary and a flooding source with unrevised NGVD 29 flood elevations are coincident, an individual offset has been calculated and applied during the creation of this statewide format FIRM. See Section 6.1 of the accompanying Flood Insurance Study report to obtain further information on the conversion of elevations between NAVD 88 and NGVD 29. To obtain current elevation, description, and /or location information for bench marks shown on this map, please contact the North Carolina Geodetic Survey at the address shown below. You may also contact the Information Services Branch of the National Geodetic Survey at (301) 713 -3242, or visit its website at.www.ngs.noaa.go . North Carolina Geodetic Survey County Average Vertical Datum Offset Table 121 West Jones Street County Vertical Datum Offset (ft) Raleigh, INC 27601 Wake - 0.88 (919) 733 -3836 www. ncgs. state. nc. us Example: NAVD 88 = NGVD 29 + ( -0.88) All streams listed in the Flood Hazard Data Table below were studied by detailed methods using field survey. Other flood hazard data shown on this map may have been derived using either a coastal analysis or limited detailed riverine analysis. More information on the flooding sources studied by these analyses is contained in the Flood Insurance Study report. FLOOD HAZARD DATA TABLE Floodway Width (feet) Left/Right Distance From the Center of Stream to Encroachment Boundary (Looking Downstream) or Total Floodway Width Cross Section Stream Station' Flood Discharge (cfs) 1 % Annual Chance (100 -year) Water -Surface Elevation (feet NAVD 88) G ANVILLE ODD NA 250.6 200 152 15,160 NA 252.0 140 163 16,250 NA 256.7 80 166 16,600 NA 257.1 150 150 14,961 2,955 257.1 75/75 166 16,644 2,295 260.4 19/86 173 17,259 2,295 4, , 177 17,732 2,295 260.7 90/120 189 18,868 1,755 261.4 35 / 177 192 19,236 1,755 262.0 50/60 06� �f � 1�ry 1�ry 16ryry � .y 166ry 70/25 213 21,264 1,755 266.8 65/30 DUR14ANI 21,735 1,755 268.4 65/30 228 22,754 1,755 287.8 1119, 1101 23,193 �� v 210/265 237 FRANKLIN 1,755 287.8 340/200 241 24,109 1,755 287.8 260/160 246 24,575 1,755 elT' y�o 1e le 0, le le 1011�1,�0 024 2,373 560 262.6 19/122 029 2,900 560 264.0 4 o.? 1 01fP 0'199 1\11, 110 l y ,�'`i 1\0 16°j 1R 1m9 1Alp \1e 186/152 054 5,434 1,305 283.4 195/171 067 6,667 1,305 283.4 0.166 6^9 6'1� 0199 1 ^� 119 1'1ry9 11`r 1,10 1� .`'�° 1'` •� (�� ,��1 '�� 257.22 120 009 900 NA 257.22 90 016 1,600 NA 257.22 019^ 022 2,160 NA 258.1 80 030 3,000 NA 261.0 80 040 4,000 , 263.9 80 046 4,600 NA 265.3 75 051 5,140 NA 266.9 75 ' Feet above mouth 2 Elevation includes backwater effects from Kit Creek (Basin 29, Stream 7) 4" 1\41 ^0 \O \10 1 ^ ^y 1 ^4' 1 ^10 ry ^� ry ^1� ry ^ryy Z 01ry� 01� 01� 01� o ^� 01^� 01� o'\� •�'�� '�'`'` 1'��' 1�n�. •�'���n. 1'Y°Ja�' D 0117 o'1ti�'A ", 010 0'1�' 'A" 1 ep O'19P 1°� 11^� 11P JJ�++�� 1'r 1•\0 1`r'' 161 1,1.13 !�� 1� • ` JA IA19 0 o'1ry O,5 \I o1y o16 0'`' 019 019 19ry 11ry 1� V O9 1'� k 1�ry 1� 0 ^l1 O,I N, 0^,�1'Aljl 1 #1 o ^y1 0^t 001 4 ^1 411 1A& .`. ,10� ,110 g' ^moo 0(ry� ,,'P 0��9 '�� 0 'gyp 0��i ,(10 0 ,160 0�i ,190 ,100 1,p ,110 1 ,1ryo 1 169 1,0 '1PO''169 1,g 1 OU d° of°h9 ow 0°19 da' do' 1H' 10`•19 1689 1,6!/ ^F3" Vv 00^6 e e1e e,�e,�" e dv off^ 06 ^^ d°9^ cSp�y9 ^�' 1�1 161/ 16ry1 J H N T N HARN y ��p / d0 DATUM INFORMATION The projection used in the preparation of this map was the North Carolina State Plane (FIPSZONE 3200). The horizontal datum was the North American Datum of 1983, GRS80 ellipsoid. Differences in datum, ellipsoid, projection, or Universal Transverse Mercator zones used in the production of FIRMS for adjacent jurisdictions may result in slight positional differences in map features across jurisdictional boundaries. These differences do not affect the accuracy of this FIRM. All coordinates on this map are in U.S. Survey Feet, where 1 U.S. Survey Foot = 1200/3937 Meters. Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD 88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. An average offset between NAVD 88 and the National Geodetic Vertical Datum of 1929 (NGVD 29) has been computed for each North Carolina county. This offset was then applied to the NGVD 29 flood elevations that were not revised during the creation of this statewide format FIRM. The offsets for each county shown on this FIRM panel are shown in the vertical datum offset table below. Where a county boundary and a flooding source with unrevised NGVD 29 flood elevations are coincident, an individual offset has been calculated and applied during the creation of this statewide format FIRM. See Section 6.1 of the accompanying Flood Insurance Study report to obtain further information on the conversion of elevations between NAVD 88 and NGVD 29. To obtain current elevation, description, and /or location information for bench marks shown on this map, please contact the North Carolina Geodetic Survey at the address shown below. You may also contact the Information Services Branch of the National Geodetic Survey at (301) 713 -3242, or visit its website at.www.ngs.noaa.go . North Carolina Geodetic Survey County Average Vertical Datum Offset Table 121 West Jones Street County Vertical Datum Offset (ft) Raleigh, INC 27601 Wake - 0.88 (919) 733 -3836 www. ncgs. state. nc. us Example: NAVD 88 = NGVD 29 + ( -0.88) All streams listed in the Flood Hazard Data Table below were studied by detailed methods using field survey. Other flood hazard data shown on this map may have been derived using either a coastal analysis or limited detailed riverine analysis. More information on the flooding sources studied by these analyses is contained in the Flood Insurance Study report. FLOOD HAZARD DATA TABLE Floodway Width (feet) Left/Right Distance From the Center of Stream to Encroachment Boundary (Looking Downstream) or Total Floodway Width Cross Section Stream Station' Flood Discharge (cfs) 1 % Annual Chance (100 -year) Water -Surface Elevation (feet NAVD 88) KIT CREEK (BASIN 29, STREAM 7) 141 14,060 NA 250.6 200 152 15,160 NA 252.0 140 163 16,250 NA 256.7 80 166 16,600 NA 257.1 150 150 14,961 2,955 257.1 75/75 166 16,644 2,295 260.4 19/86 173 17,259 2,295 260.6 25/185 177 17,732 2,295 260.7 90/120 189 18,868 1,755 261.4 35 / 177 192 19,236 1,755 262.0 50/60 203 20,296 1,755 265.0 25/70 208 20,775 1,755 266.1 70/25 213 21,264 1,755 266.8 65/30 217 21,735 1,755 268.4 65/30 228 22,754 1,755 287.8 185/350 232 23,193 1,755 287.8 210/265 237 23,674 1,755 287.8 340/200 241 24,109 1,755 287.8 260/160 246 24,575 1,755 287.8 200/220 KIT CREEK TRIBUTARY 1 (BASIN 29, STREAM 11 ) 020 2,042 560 262.0 56/17 024 2,373 560 262.6 19/122 029 2,900 560 264.0 87/87 033 3,338 960 265.2 59/59 041 4,051 1 960 267.0 40/35 050 4,993 1,305 283.4 186/152 054 5,434 1,305 283.4 195/171 067 6,667 1,305 283.4 65/65 071 7,076 1,305 1 283.4 1 75/75 074 1 7,444 1 1,305 1 283.5 1 120/120 KIT CREEK TRIBUTARY 2 (BASIN 29, STREAM 8) 003 345 NA 257.22 120 009 900 NA 257.22 90 016 1,600 NA 257.22 85 022 2,160 NA 258.1 80 030 3,000 NA 261.0 80 040 4,000 NA 263.9 80 046 4,600 NA 265.3 75 051 5,140 NA 266.9 75 ' Feet above mouth 2 Elevation includes backwater effects from Kit Creek (Basin 29, Stream 7) y,J � � Ate' � � 1 • III • �/ %' �\ �. �YA�� T b o �,aw,NVx� FEMA'SCOOPERATING TECHNICAL PARTNER �✓.�{, G,�~ ewe AND SE This digital Flood Insurance Rate Map (FIRM) was produced through a unique cooperative partnership between the State of North Carolina and the Federal Emergency Management Agency (FEMA). The State of North Carolina has implemented a long term approach of floodplain management to decrease the costs associated with flooding. This is demonstrated b the State's com- mitment to ma floodplain areas at the local level. As art of this effort the P P P State of North Carolina has joined in a Cooperating Technical State agreement 1 P 9 9 with FEMA to produce and maintain this digital FIRM. www.ncfloodmaps.com 770 DOC 3971 Wake County Unincorporated A 370368 35 Town of Cary Extraterritoria: Jurisdiction 370238 3970 35°`. 3969 762 50C 35 °! 760 OOC This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information. To obtain more detailed information in areas where Base Flood Elevations (BFEs) and /or floodways have been determined, users are encouraged to consult the Flood Profiles, Floodway Data, Limited Detailed Flood Hazard Data, and /or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole -foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and /or floodplain management. Boundaries of regulatory floodwa s shown on the FIRM for flooding sources studied 9 Y Y 9 b detailed methods were computed at cross sections and interpolated between cross Y P P sections. The floodwa s were based on hydraulic considerations with regard to requirements Y Y g q of the National Flood Insurance Program. Floodway widths and other pertinent floodway data for flooding sources studied by detailed methods as well as non - encroachment widths for flooding sources studied by limited detailed methods are provided in the FIS report for this jurisdiction. The FIS report also provides instructions for determining a floodway using non - encroachment widths for flooding sources studied by limited detailed methods. NOTES TO USERS Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 4.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures in this jurisdiction. Base map information and geospatial data used to develop this FIRM were obtained from various organizations, including the participating local community(ies), state and federal agencies, and /or other sources. The primary base for this FIRM is aerial imagery acquired by Wake County. The time period of collection for the imagery is 1999. Information and geospatial data supplied by the local community(ies) that met FEMA base map specifications were considered the preferred source for development of the base map. See geospatial metadata for the associated digital FIRM for additional information about base map preparation. Base map features shown on this map, such as corporate limits, are based on the most up -to -date data available at the time of publication. Changes in the corporate limits may have occurred since this ma was published. Ma users should Y p p P consult the appropriate community official or website to verify current conditions of jurisdictional boundaries and base ma features. This ma may contain roads that were 1 P P Y not considered in the hydraulic analysis of streams where no new hydraulic model was created during the production of this statewide format FIRM. 370238 This map reflects more detailed and up -to -date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels, community map repository addresses, and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located. If you have questions about this map, or questions concerning the National Flood Insurance Program in general, please call 1- 877 -FEMA MAP (1- 877 - 336 -2627) or visit the FEMA website at www.fema.gov. An accompanying Flood Insurance Study report, Letter of Map Revision LOMR or Letter of Ma Amendment LOMA revising portions of this panel, and digital versions of this P ( 1 9 P P g FIRM may be available. Visit the North Carolina Floodplain Mapping Program website at www.ncfloodmaps.com, or contact the FEMA Map Service Center at 1- 800-358 -9616 for information on all related products associated with this FIRM. The FEMA Map Service Center may also be reached by Fax at 1- 800 - 358 -9620 and its website at www.mse.fema.gov. 370242 7 500 FEET °51'30" 3970 000 M °51'00" 3969 000 M ° 50' 30 " .own of Cary ;xtraterritorial Jurisdiction 370238 0 000 FEET =EET orial Jurisdiction MAP REPOSITORY Refer to listing of Map Repositories on Map Index or visit www.ncfloodmaps.com. EFFECTIVE DATE OF FLOOD INSURANCE RATE MAP PANEL MAY 2, 2006 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL For community map revision history prior to statewide mapping, refer to the Community Map History able located in the Flood Insurance Stud report for this jurisdiction. rY Y P 1 To determine if flood insurance is available in this communi ty, contact your insurance agent, the North Carolina Division of Emergency Management or the National Flood Insurance Program at the following phone numbers or websites: NC Division of Emergency Management National Flood Insurance Program ( 919) 715 -8000 www.nccrimecontrol.org /nfip 1- 800 - 638 -6620 www.fema.gov/nfip FLOODWAY AREAS IN ZONE AE The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights. OTHER FLOOD AREAS ZONE X Areas of 0.2 % annual chance flood; areas of future conditions 1% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood. OTHER AREAS ZONE X Areas determined to be outside the 0.2% annual chance and future conditions 1 % annual chance floodplain. ZONE D Areas in which flood hazards are undetermined, but possible. COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS OTHERWISE PROTECTED AREAS (OPAs) CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas. 1% annual chance floodplain boundary 0.2% annual chance floodplain boundary and future conditions 1% annual chance floodplain boundary Floodway boundary - - Zone D Boundary •••••••••••••••••••• CBRS and OPA boundary Boundary dividing Special Flood Hazard Area Zones and 4 boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities. 513 Base Flood Elevation line and value; elevation in feet* (EL 987) Base Flood Elevation value where uniform within zone; elevation in feet* *Referenced to the North American Vertical Datum of 1988 8 ' Cross section line 23 - - - - - - 23 Transect line 97 °07' 30 ", 32 °22' 30" Geographic coordinates referenced to the North American Datum of 1983 (NAD 83) 4276000M 1000 -meter Universal Transverse Mercator grid ticks, zone 17 1 477 500 FEET 2500 foot grid values: North Carolina State Plane coordinate system (FIPSZONE 3200, State Plane NAD 83 feet) BM5510 North Carolina Geodetic Survey bench mark (see explanation X in the Datum Information section of this FIRM panel). BM5510 National Geodetic Survey bench mark (see explanation in (9 the Datum Information section of this FIRM panel). s M1.5 River Mile Z& GRID NORTE MAP SCALE 1" = 500' (1 : 6,000) 250 0 500 1000 FEET METERS 150 0 150 300 LEGEND =EET SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT TO 0 000 FEET INUNDATION BY THE 1 % ANNUAL CHANCE FLOOD The 1 % annual chance flood (100 year flood), also known as the base flood, is the flood that has a 1 % chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1 % annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base ® Flood Elevation is the water - surface elevation of the 1% annual chance flood. ZONE A No Base Flood Elevations determined. 3971 000 M ZONE AE Base Flood Elevations determined. ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined. ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined. ZONE AR Special Flood Hazard Area formerly protected from the 1% annual ® chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or m greater flood. ZONE A99 Area to be protected from 1 % annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations m determined. ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined. 7 500 FEET °51'30" 3970 000 M °51'00" 3969 000 M ° 50' 30 " .own of Cary ;xtraterritorial Jurisdiction 370238 0 000 FEET =EET orial Jurisdiction MAP REPOSITORY Refer to listing of Map Repositories on Map Index or visit www.ncfloodmaps.com. EFFECTIVE DATE OF FLOOD INSURANCE RATE MAP PANEL MAY 2, 2006 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL For community map revision history prior to statewide mapping, refer to the Community Map History able located in the Flood Insurance Stud report for this jurisdiction. rY Y P 1 To determine if flood insurance is available in this communi ty, contact your insurance agent, the North Carolina Division of Emergency Management or the National Flood Insurance Program at the following phone numbers or websites: NC Division of Emergency Management National Flood Insurance Program ( 919) 715 -8000 www.nccrimecontrol.org /nfip 1- 800 - 638 -6620 www.fema.gov/nfip FLOODWAY AREAS IN ZONE AE The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights. OTHER FLOOD AREAS ZONE X Areas of 0.2 % annual chance flood; areas of future conditions 1% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood. OTHER AREAS ZONE X Areas determined to be outside the 0.2% annual chance and future conditions 1 % annual chance floodplain. ZONE D Areas in which flood hazards are undetermined, but possible. COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS OTHERWISE PROTECTED AREAS (OPAs) CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas. 1% annual chance floodplain boundary 0.2% annual chance floodplain boundary and future conditions 1% annual chance floodplain boundary Floodway boundary - - Zone D Boundary •••••••••••••••••••• CBRS and OPA boundary Boundary dividing Special Flood Hazard Area Zones and 4 boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities. 513 Base Flood Elevation line and value; elevation in feet* (EL 987) Base Flood Elevation value where uniform within zone; elevation in feet* *Referenced to the North American Vertical Datum of 1988 8 ' Cross section line 23 - - - - - - 23 Transect line 97 °07' 30 ", 32 °22' 30" Geographic coordinates referenced to the North American Datum of 1983 (NAD 83) 4276000M 1000 -meter Universal Transverse Mercator grid ticks, zone 17 1 477 500 FEET 2500 foot grid values: North Carolina State Plane coordinate system (FIPSZONE 3200, State Plane NAD 83 feet) BM5510 North Carolina Geodetic Survey bench mark (see explanation X in the Datum Information section of this FIRM panel). BM5510 National Geodetic Survey bench mark (see explanation in (9 the Datum Information section of this FIRM panel). s M1.5 River Mile Z& GRID NORTE MAP SCALE 1" = 500' (1 : 6,000) 250 0 500 1000 FEET METERS 150 0 150 300 PANEL 0736) FIRM ® FLOOD INSURANCE RATE MAP NORTH CAROLINA ® m m PANEL 0736 (SEE LOCATOR DIAGRAM OR MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS: COMMUNITY CID No. PANEL SUFFIX ® CARY, TOWN OF 370238 0736 J m cz MORRISVILLE, TOWN OF 370242 0736 J WAKE COUNTY 370368 0736 J Notice to User: The Map Number shown below should be used when placing map orders; the Community Number shown above should be used on insurance applications for the subject community. ® EFFECTIVE DATE MAP NUMBER MAY 2, 2006 37200736001 C:D „s STAlE n �yPdt 0' O �• b V F S, g ® State of North Carolina �L 777 Federal Emergency Management Agency PRECIPITATION DATA PARKSIDE TOWN COMMONS KRG -12000 Precipitation Frequency Data Server Pagel of 4 NOAA Atlas 14, Volume 2, Version 3 Y Location name: Cary, North Carolina, US* Coordinates: 35.8452, - 78.8885 Elevation: 307ft' "source: Google Maps p POINT PRECIPITATION FREQUENCY ESTIMATES G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAH, National Weather Service, Silver Spring, Maryland PF tabular I PF graphical I Maps & aerials PF tabular PDS -based point precipitation frequency estimates with 90% confidence intervals (in inches)' Average recurrence interval(years) Duration 1 2 00��-00�0� 5 10 25 50 100 200 500 1000 0.400 0.468 0.537 0.595 0.655 0.698 0.737 0.769 0.803 0.831 5 -min (0.367 - 0.436) (0.429 - 0.511) (0.493 - 0.585) (0.545 - 0.648) (0.597- 0.713) (0.634- 0.760) (0.665- 0.801) (0.690 - 0.837) (0.716 - 0.876) (0.734 - 0.907) 0.638 0.748 0.860 0.952 1.04 1.11 -1-1-7­177-22--IF-T-27 1.31 10 -min (0.585- 0.696) (0.686 - 0.817) (0.789 - 0.937) (0.872 -1.04) (0.952 -1.14) (1.01 -1.21) (1.06 -1.27) (1.09 -1.33) (1.13 -1.39 ) ( 1.16 -1.43 ) 0.798 0.941 1.09 1.20 1.32 1.41 1.48 1.54 1.60 1.64 15 -min 1(0.732-0.870)1(0.863-1.03) (0.998 -1.19) (1.10 -1.31) (1.21 -1.44) (1.28 -1.53) (1.34 -1.61) (1.38 -1.68 ) ( 1.43 -1.74) 1 (1.45 -1.79) 1.09 1.30 1.55 -17-5-T--1-9-6--1F-2-.1 2 2.27 2.39 2.55 2.66 30 -min (1.00 -1.19) (1.19 -1.42) (1.42 -1.69) (1.60 -1.90) (1.79 -2.13) (1.93 -2.31) (2.05 -2.47) (2.15 -2.61 ) ( 2.27 -2.77) 1 (2.35 -2.90 ) 1.36 -1.-63-T- 1.98 2.27 2.61 2.87 3.12 3.36 3.65 3.88 60 -min .63 (1.25 -1.49) (1.50 -1.78) (1.82 -2.16) (2.08 -2.48) (2.38 -2.84) (2.61 -3.13) (2.82 -3.40) (3.02 -3.66) (3.25 -3.98 ) ( 3.43 -4.24 ) 1.59 1.91 2.34 2.70 3.15 3.51 3.85 4.19 4.62 4.97 2 -hr (1.45 -1.75) (1.74 -2.09) (2.13 -2.57) (2.46 -2.96) (2.84 -3.44) (3.16 -3.84) (3.44 -4.21) (3.72 -4.58) (4.07 -5.06 ) ( 4.34 -5.45 ) F-1-6-9---]F--2-02 2.49 2.90 3.41 383 IF-4- 4.25 4.67 5.23 5.70 3 -hr (1.55 -1.85) 1 (1.86 -2.22) 1 (2.28 -2.74) 1 (2.64 -3.18) 1 (3.09 -3.73) 1 (3.45 -4.19) 1 (3.80 -4.64) 1 (4.15 -5.10) 1 (4.59 -5.72) 1 (4.95 -6.24) 2.04 2.44 3.01 3.50 4.14 4.67 5.20 5.75 6.48 7.10 6 -hr (1.88 -2.23) (2.25 -2.67) (2.76 -3.29) (3.21 -3.82) (3.77 -4.50) (4.22 -5.07) (4.67 -5.64) (5.11 -6.23 ) ( 5.68 -7.02 ) ( 6.15 -7.71) 2.41 2.89 3.58 4.19 4.99 5.67 6.36 7.09 8.08 8.93 12 -hr (2.23 -2.63) 1 (2.67 -3.15) 1 (3.30 -3.90) 1 (3.85 -4.56) 1 (4.55 -5.41) 1 (5.13 -6.12) 1 (5.69 -6.86) 1 (6.27 -7.63) 1 (7.03 -8.69) 1 (7.65 -9.62) 2.86 3.45 4.32 4.99 5.90 6.63 7.36 8.11 9.13 9.92 24 -hr (2.68 -3.07) (3.24 -3.70) (4.04 -4.62) (4.66 -5.34) (5.50 -6.32) (6.15 -7.09) (6.81 -7.89) (7.49 -8.70 ) (8.39-9.81) ) ( 9.09 -10.7 ) 131 3.98 4.93 5.67 6.66 7.44 8.22 9.02 10.1 10.9 2 -day (3.08-3,55) (3.72 -4.27) (4.60 -5.30) (5.28 -6.08) (6.18 -7.15) (6.89 -7.98) (7.59 -8.84) 1 (8.30 -9.70) 1 (9.26 -10.9) (9.99 -11.8 ) 3.49 4.19 5.17 5.94 6.97 7.78 8.61 9.44 10.6 11 3 -day (3.2 6 -3.74) (3.92 -4.50) (4.83 -5.55) (5.54 -6.37) (6.48 -7.48) (7.22 -8.35) (7.95 -9.24) (8.70 -10.2) (9.70 -11.4 ) .5 (10.5 -12.4) 3.68 4.40 5.42 6.21 7.29 8.13 8.99 9.87 11.1 12.0 4 -day (144 -3.94) 1 (4.12 -4.72) 1 (5.07 -5.80) 1 (5.80 -6.65) 1 (6.78 -7.81) 1 (7.55 -8.72) 1 (8.32 -9.65) 1 (9.10 -10.6) t (10.1 -11.9) 1 (11.0 -12.9 ) 4.24 5.06 6.14 7.00 8.17 9.09 10.0 11.0 12.3 13 3.12.2 7 -day (3.99 -4.53) (4.75 -5.40) (5.77 -6.56) (6.57 -7.47) (7.64 -8.71) (8.47 -9.70) (9.32 -10.7) (10.2 -11.8) (11.3 -13.2 ) ( -14.3 ) 4.83 5.74 6.89 7.79 9.00 9.95 10.9 11.9 13.2 14.2 10 -day (4.55 -5.15) 1 (5.40 -6.12) 1 (6.47 -7.34) 1 (7.31 -8.30) 1 (8.42 -9.59) 1 (9.29 -10.6) 1 (10.2 -11.7) 1 (11.0 -12.7) 1 (12.2 -14.1) 1 (13.1 -15.2) 6.44 7.59 896 101 11.5 12.7 1F--13-9---IF-15 20 -day (6.06 -6.86) 1 (7.15 -8.09) 1 (8.43 -9.54) 1 (9.43 -10.7) 1 (11.8 -13.5) 1 (12.9 -14.8) .-1-1F--1-67--T--17-9---j 1 (13.9 -16.1) 1 (15.4 -17.8) 1 (16.4 -19.2) 7.98 9-39---]F-10-9--- 39 109 12.1 13.6 14.8 16.0 17.2 18.8 19.9 30 -day (7.54 -8.49) (8.85 -9.97) (10.3 -11.6) (11.4 -12.8) (12.8 -14.5) (13.9 -15.8) (15.0 -17.1) (16.0 -18.3) (17.4 -20.1 ) ( 18.5 -21.4 ) 10.2 11.9 13.7 15.0 16.7 18.0 ] F--19-.3-7F--20-6-]F-22-3--]F-2-3.5-7 45 -day (9.69 -10.8) 1 (11.3 -12.6) 1 (13.0 -14.4) 1 (14.2 -15.8) 1 (15.8 -17.6) 1 (17.0 -19.1) 1 (18.2 -20.4) 1 (19.4 -21.8) 1 (20.8 -23.6) 1 (22.0 -25.0 ) 12.2 14.3 16.1 17.5 19.3 20.7 22.0 23.3 24.9 26.1 60 -day (11.7 -12.9) (13.6 -15.0) (15.3 -16.9) (16.6 -18.4) (18.3 -20.3) (19.6 -21.8) (20.8 -23.2) (21.9 -24.6) (23.4 -26.3 ) ( 24.5 -27.7 ) Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5 %. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Top http: // hdsc. nws. noaa. gov /hdsc /pfds /pfds _printpage.html ?lat =3 5.8452 &lon =- 78.8885 &data =... 5/1/2012 Precipitation Frequency Data Server PF graphical PDS -based depth-duration-frequency (DDF) curves Coordinates: 35.8452.-78.8885 30 25 c a 20 a 'a 0 15 ro .Q z 10 a 60 1 25 = 20 C CL a c 15 0 10 r.. aL 5 0 1 2 5 10 25 50 100 200 500 1000 Average recurrence interval (years) NDAAINW51OHD{HDSC Create! {GMT): Tue May 1 19:56:56 2012 Back to Top w Maps & aerials Page 2 of 4 Average recurrence interval (y-ears) — 1 2 5 10 — 25 50 100 — 200 — 500 — 1000 Duration -- 5-min — 2-day — 10-min — 3-day 15-min — 4-day — 30-min — 7-day — 60-min — 10-de — 2-hr — 20-da — 3-hr — 30-da — 6-hr — 45-di — 12-hr — 60-dF Its Otn O O Dale City Waldorf ri N r, , r , 4 .d IO ton N m -0 %a Ulratran ow' 25 = 20 C CL a c 15 0 10 r.. aL 5 0 1 2 5 10 25 50 100 200 500 1000 Average recurrence interval (years) NDAAINW51OHD{HDSC Create! {GMT): Tue May 1 19:56:56 2012 Back to Top w Maps & aerials Page 2 of 4 Average recurrence interval (y-ears) — 1 2 5 10 — 25 50 100 — 200 — 500 — 1000 Duration -- 5-min — 2-day — 10-min — 3-day 15-min — 4-day — 30-min — 7-day — 60-min — 10-de — 2-hr — 20-da — 3-hr — 30-da — 6-hr — 45-di — 12-hr — 60-dF — 24-br O O Dale City Waldorf http: / /hdsc.nws.noaa.gov /hdsc /pfds /pfds _printpage.html ?lat =3 5.8452 &lon =- 78.8885 &data =... 5/1/2012 AA� Small scale terrain "C o 7 'Anim le r 4- r O O Dale City Waldorf + + ton ow' (.a Foft" e>OWiK � r AhO"V :eensboro 'AR Di -�.. Hoot Valley http: / /hdsc.nws.noaa.gov /hdsc /pfds /pfds _printpage.html ?lat =3 5.8452 &lon =- 78.8885 &data =... 5/1/2012 Precipitation Frequency Data Server MtAiqy=�, -- ­­v v —j- 46M� �=Ml_ 0ECkn Rap& Kingspl:irl I . - Aw 4 Elzawh Heodemn OReHds, le I S,Q.ovn Ahask C.gy M'WWnstW alem -Greensboro K) DeW, 0 Rocky MI Mir QnYNt His High Point 0 Z' '" is'" - S Head Knoxville R Our tnivl ;wtfli 01 D 0 inta -Athens, 12km 12mi F �Ole lice _' 0 0 Le-and' Loris Myrlle Oak Isla * .d (',"e Myrtle, 0 D A—rh 0" R.er "W'On Rh C" Mornsvii Carpen-x., Map data V2012 Goggle Large scale map pa eid Audubon Park SS it .COV 40 (;rove j r �i� RkNellod MccnMmori Faar* At The Path > > Carpenter 4- 2 21,+ + 1 moo d Ella Q2012 Bogle 9 lale aerial WAMW wo V Page 3 of 4 http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=3 5.8452&lon=-78.8 8 85 &data=... 5/1/2012 umb!a South on Carolina en Cc n ✓fange Macon 0 _4 ,anr.ah c 12km 12mi F �Ole lice _' 0 0 Le-and' Loris Myrlle Oak Isla * .d (',"e Myrtle, 0 D A—rh 0" R.er "W'On Rh C" Mornsvii Carpen-x., Map data V2012 Goggle Large scale map pa eid Audubon Park SS it .COV 40 (;rove j r �i� RkNellod MccnMmori Faar* At The Path > > Carpenter 4- 2 21,+ + 1 moo d Ella Q2012 Bogle 9 lale aerial WAMW wo V Page 3 of 4 http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=3 5.8452&lon=-78.8 8 85 &data=... 5/1/2012 Precipitation Frequency Data Server Page 4 of 4 http : / /hdsc.nws.noaa.gov /hdsc /pfds /pfds _printpage.html ?lat = 35.8452 &lon =- 78.8885 &data =... 5/l/2012 Precipitation Frequency Data Server Page 1 of 4 (D NOAA Atlas 14, Volume 2, Version 3 Location name: Cary, North Carolina, US* Coordinates: 35.8452, -78.8885 i Elevation:307ft* � f source: Google Maps POINT PRECIPITATION FREQUENCY ESTIMATES G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland PF tabular I PF graphical I Maps & aerials PF tabular AMS -based point precipitation frequency estimates with 90% confidence intervals (in inches)1 Dur��0��0I Annual exceedance probability(1 /years) 1 /10 1 /25 1 /50 1 /100 1 /200 F 1/2 1 /500 1 /1000 0.430 0.524 0.589 0.652 0.695 0.734 0.765 0.799 0.827 5 -min (0.395 - 0.470) (0.481 - 0.571) (0.539 - 0.641) (0.594 - 0.710) (0.631 - 0.756) (0.662 - 0.797) (0.687- 0.833) (0.713 - 0.872) (0.731 - 0.903) 0.688 0.-84o--T--o942-7F---1-04 1.11 1.17 1.21 1.-27---]F-1-3-0 10 min . . 1(0.631-0.752)1(0.771-0.915)1(0.863-1.03) (0.948 -1.13) 1 (1.01 -1.21) 1 (1.05 -1.27) 1 (1.09 -1.32) 1 (1.13 -1.38) 1 (1.15 -1.42) 0.866 1.06 1.19 1.32 1.40 1.47 1.53 1.59 1.64 15 -min 1(0.794-0.945)1(0.975-1.16) (1.09 -1.30) (1.20 -1.43) (1.27 -1.53) (1.33 -1.60) (1.38 -1.67) (1.42 -1.74 ) ( 1.45 -1.78 ) 1.20 1.51 1.73 1.95 2.11 2.26 2.38 2.53 2.65 30 -min (1.10 -1.31) 1 (1.39 -1.65) 1 (1.58 -1.88) 1 (1.78 -2.13) 1 (1.92 -2.30) 1 (2.04 -2.46) 1 (2.14 -2.60) (2.26 -2.76) 1 (2.34 -2.89 ) 1.50 1.94 2.25 2.60 2.86 3.11 3.34 3.64 3.87 60 -min (1.38 -1.64) (1.78 -2.11) 1 (2.06 -2.45) (2.37 -2.83) (2.60 -3.11) 1 (2.81 -3.38) 1 (3.00 -3.64) (3.24 -3.96) (3.42 -4.22) 1.75 --2-29---IF--2- 29 2.68 3.13 3.49 3.83 4.17 4.61 4.95 2 -hr (1.60 -1.92) (2.09 -2.51) 1 (2.43 -2.93) (2.83 -3.43) (3.14 -3.82) (3.43 -4.19) (3.71 -4.56) 1 (4.05 -5.03 ) ( 4.33 -5.43 ) 1.86 2.44 2.87 3.39 3.82 4.23 4.65 5.21 5.67 3 -hr (1.71 -2.05) (2.23 -2.67) 1 (2.62 -3.14) 1 (3.07 -3.71) (3.44 -4.17) (3.78 -4.62) (4.13 -5.08) (4.58 -5.69) 1 (4.93 -6.21 ) 2.25 2.94 3.47 4.12 4.65 5.18 5.72 6.45 7.07 6 -hr (2.07 -2.46) 1 (2.70 -3.21) 1 (3.18 -3.78) (3.75 -4.48) (4.21 -5.05) (4.65 -5.62) (5.09 -6.21) 1 (5.66 -7.00) 1 (6.12 -7.68) 2.66 3.50 4.15 4.97 5.65 -----T-706 8.04 8.89 12 -hr (2.46 -2.90) 1 (3.22 -3.81) 1 (3.81 -4.51) (4.53 -5.38) (5.11 -6.10) (5.67 -6.83) (6.24 -7.60) (7.00 -8.66) (7.62 -9.58) 3.18 4.22 --]F 5.88 6.60 7.33 8.07 9.09 9.88 24 -hr (2.98 -3.41) (3.95 -4.52) (4.62 -5.29) (5.47 -6.30) (6.13 -7.06) (6.79 -7.85) (7.46 -8.67 ) ( 8.36 -9.77 ) ( 9.05 -10.6 ) 3.66 4.82 5.62 6.63 7.41 8.19 8.98 10.9 2 -day (3.42 -3.93) 1 (4.50 -5.18) (5.23 -6.02) (6.16 -7.12) (6.86 -7.95) (7.56 -8.80) (8.27 -9.66) (9.22 -10.8) (9.95 -11.7 ) 3.86 5.06 5.88 6.94 7.75 8.57 9.41 10.5 11.4 3 -day (3.61 -4.14) (4.72 -5.42) (5.49 -6.30) (6.45 -7.45) (7.19 -8.31) (7.92 -9.21) (8.66 -10.1) (9.66 -11.3) (10.4 -12.3) 4.06 5.29 6.15 7.26 8.10 8.96 9.83 11.0 11.9 4 -day (3.80 -4.34) (4.95 -5.66) (5.74 -6.58) (6.75 -7.77) (7.52 -8.68) (8.28 -9.61) (9.06 -10.6) (10.1 -11.9) (10.9 -12.9 ) 4.66 6.01 6.93 8.13 9.05 9.99 10.9 12.2 13.2 7 -day (4.38-4.97) 1 (5.64 -6.41) (6.50 -7.40) (7.61 -8.68) (8.44-966) (928-107) (10.1 -11.7) (11.3 -13.1) (12.1 -14.2 ) 5.28 6.73 7.71 8.96 9.91 10.9 11.8 13.1 14.1 10 -day (4.97 -5.63) (6.32 -7.17) (7.23 -8.21) (8.39 -9.55) (9.25 -10.6) (10.1 -11.6) (11.0 -12.7) (12.1 -14.1) (13.0 -15.2 ) 6.99 8.76 9.95 11.5 12.6 13.8 15.0 16.6 17.8 20 -day (6.58 -7.44) (8.24 -9.33) (9.34 -10.6) (10.7 -12.2) (11.8 -115) (12.8 -14.7) (13.9 -16.0) (15.3 -17.8) (16.4 -19.1) 8.65 10.7 IF-1-2.6-7­1-36 14.8 15.9 17.1 18.7 19.9 30 -da y . (8.15 -9.18) 1 (10.0 -11.3) (11.2 -12.7) (12.7 -14.4) (13.8 -15.7) (14.9 -17.0) (16.0 -18.3) (17.3 -20.0) (18.4 -21.3) 11.0 13.3 14.8 16.7 18.0 19.2 20.5 22.2 23.4 45 -day (10.4-11.6) (12.7 -14.1) (14.1 -15.7) (15.8 -17.6) (17.0 -19.0) (18.1 -20.4) 1 (19.3 -21.7) (20.8 -23.5) (21.9 -24.9) 13.1 15.7 17.3 19.2 20.6 21.9 23.2 24.8 26.0 60 -day (12 5 13.8) (15.0 -16.5) (16.5 -18.2) (18.2 -20.3) (19.5 -21.7) (20.7 -23.1) (21.9 -24.5 ) ( 23.3 -26.2 ) ( 24.4 -27.5 ) Precipitation frequency (PF) estimates in this table are based on frequency analysis of annual maxima series (AMS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and annual exceedance probability) will be greater than the upper bound (or less than the lower bound) is 5 %. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Tor) http: / /hdsc,nws.noaa.gov/ hdsc /pfds /pfds _printpagc.html ?lat = 35.8452 &lon =- 78.8885 &data =... 5/1/2012 Precipitation Frequency Data Server OW-14l 25 c L 20 CL 'tz � 15 0 �u 10 PF graphical AMS- based depth- duration - frequency (DDF) curves Coordinates: 35.8452, 78.8885 30 25 C � 24 n. w 9 15 EL m 10 ra. 5 9, 0 Pgo a—. 0 low 0 0 () I —o -- -- 11- - -. r--- -- t I -- - -_r_. -.. -.. 1 1,12 115 11+10 1/25 1/50 1/100 1/200 V500 1/1000 Annual exceedance probability (1 /years) NRAA.°NW5 /QHDIHD5C Created {GMTy Tue May 1 20:04:55 2012 Back to Top *► Maps & aerials Small scale terrain y, + + Page 2 of 4 Annual exo probab (1/yea 2 -- 5 .� 2: — 5 — t — 2! -- 5 Durati 5-min — 10-min 15-mm -- 30-min -- 60-mm 2-hr 3-hr 6-hr 12-hr -- 24-hr http: / /hdse.nws.noaa.gov/ hdsc /pfds /pfds _printpage.html ?lat = 35.8452 &lon =- 78.8885 &data =... 5/1/2012 t v t� L7 N r-4 N N m h n Duration 30 25 C � 24 n. w 9 15 EL m 10 ra. 5 9, 0 Pgo a—. 0 low 0 0 () I —o -- -- 11- - -. r--- -- t I -- - -_r_. -.. -.. 1 1,12 115 11+10 1/25 1/50 1/100 1/200 V500 1/1000 Annual exceedance probability (1 /years) NRAA.°NW5 /QHDIHD5C Created {GMTy Tue May 1 20:04:55 2012 Back to Top *► Maps & aerials Small scale terrain y, + + Page 2 of 4 Annual exo probab (1/yea 2 -- 5 .� 2: — 5 — t — 2! -- 5 Durati 5-min — 10-min 15-mm -- 30-min -- 60-mm 2-hr 3-hr 6-hr 12-hr -- 24-hr http: / /hdse.nws.noaa.gov/ hdsc /pfds /pfds _printpage.html ?lat = 35.8452 &lon =- 78.8885 &data =... 5/1/2012 Precipitation Frequency Data Server Page 3 of 4 Iji A:l-y Eden Henderson F!'7abeth ORe dwile A,osk.e C-ly Li FoRelle 0 Q 0 Q sown j, Oxfc-td Kill Devil Greensboro f-d" G,ee Winston-SalemO , Knoxville 0 Rocky Mt 0 r-011 High Point 0 'shape( Hill 0 0 :L.�Ieigh Nags Head Seviefv,'e 0 1 saftsbilly N o r t h 0 0 I'VISon H, r 0 0 kory Carolina AP IX two - Hunlersvige Greenville wsynes% 0 0 Concord Santora 0 Gastonia C-rin Goldsboro KmSton Charlotte Fayette•iiie Inbu 0 rg 0 Ne. Berra on_ Gr 0 Montoe Rock Hill Jacksonville U 0, 1 PneyG,eer, Morehead GatY lewille ainesville 0 F forenoe mbrn.wigt. 0 Tabor C "'Y L-'and 0 iwell .oiurnbla OLor;s M. 0 S o u t h Oak Isla 0 mg-w I m C, Gtove Inta Athens C a r o I i n a yrile . Pwor Redan J11cDonough Wen a Clegg Macon 56 0 On Va4ey 0 Georgia I peirry pmkp�i* Ewman m eful ' 4k"RF aniezurril Me,Dws dannah C Morrisvill Carpenter 2 k 2 mi Map data 02012 Google Lame scale map "30 Audu,')On 4 Park HOW"' qft t 4 C"O 1 `Noll Grove A Ridgefield @) MeViMMM Famm At The Pwk A I V > — "y > Cwwter C + + Map date 02012 GoogJe! -7 L [ale aerial http://hdsc.nws.noaa. gov/hdsc/Pfds/pfds_printpage.html?lat=3 5.8452&lon=-7 8.8 8 8 5 &data--... 5/1/2012 Precipitation Frequency Data Server Page 4 of 4 ' http : / /hdsc.nws.noaa.gov /hdsc/ pfds/ pfds_printpage.html?lat= 35.8452&lon =- 78.8885 &data =... 5/l/2012 Center Weighted Storm Computation - Based on NOAA Atlas 14 Results Copy input data from NOAA Atlas 14: 1) Have NOAA Atlas 14 results in Internet Explorer Window 2) Copy from ARI of one year to 1000 year, 60 day precipitation value. Do not include column headings, "1" will be in upper left of selection, 1000 -yr; 60 -day result in lower right of selection. 3) Paste with starting point at ARI of 1 year (first cell in the ARI column, cell Al2). Cannot paste special to preserve format, fonnat is via macro in next step 4) Place cursor on ARI of 1 year (cell Al2), and press CTRL +f for format - make sure that Al2 is the only cell selected before running the format macro. 5) Copy results of output data (below rainfall input) into PondPack AR1 (years) 5 min 10 min 15 min 30 min 60 min 120 min 3 hours 6 hours 12 hours 24 hours 48 hours 4 days 7 days 10 days 20 days 30 days 45 days 60 days 1 0.4 0.638 0.798 1.09 1.36 1.59 1.69 2.04 2.41 2.86 3.31 3.68 4.24 4.83 6.44 7.98 10.2 12.2 2 0.468 0.748 0.941 1.3 1.63 1.91 2.02 2.44 2.89 3.45 3.98 4.4 5.06 5.74 7.59 9.39 11.9 14.3 5 0.537 0.86 1.09 1.55 1.98 2.34 2.49 3.01 3.58 4.32 4.93 5.42 6.14 6.89 8.96 10.9 13.7 16.1 10 0.595 0.952 1.2 1.75 2.27 2.7 2.9 3.5 4.19 4.99 5.67 6.21 7 7.79 10.1 12.1 15 17.5 25 0.652 1.04 1.32 1.95 2.6 3.13 3.39 4.12 4.97 5.88 6.63 7.26 8.13 8.96 11.5 13.6 16.7 19.2 50 0.695 1.11 1.4 2.11 2.86 3.49 3.82 4.65 5.65 6.6 7.41 8.1 9.05 9.91 12.6 14.8 18 20.6 100 0.734 1.17 1.47 2.26 3.11 3.83 4.23 5.18 6.34 7.33 8.19 8.96 9.99 10.9 13.8 15.9 19.2 21.9 200 0.765 1.21 1.53 2.38 3.34 4.17 4.65 5.72 7.06 8.07 8.98 9.83 10.9 11.8 15 17.1 20.5 23.2 500 0.799 1.27 1.59 2.53 3.64 4.61 5.21 6.45 8.04 9.09 10.1 11 12.2 13.1 16.6 18.7 22.2 24.8 1000 0.827 1.3 1.64 2.65 3.87 4.95 5.67 7.07 8.89 9.88 10.9 11.9 13.2 14.1 17.8 19.9 23.4 26 Output Data to Export to PondPack, 5 minute intervals Time Time 1 year 2 year 5 year 10 year 25 year 50 year 100 year 500 year (min) (hours) (min) (min) (min) (min) (min) (min) (min) (min) 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5 0.083 0.003 0.004 0.005 0.006 0.006 0.007 0.007 0.007 10 0.167 0.006 0.008 0.010 0.011 0.013 0.013 0.014 0.015 15 0.250 0.009 0.012 0.015 0.017 0.019 0.020 0.021 0.022 20 0.333 0.013 0.016 0.021 0.022 0.025 0.026 0.027 0.029 25 0.417 0.016 0.019 0.026 0.028 0.032 0.033 0.034 0.036 30 0.500 0.019 0.023 0.031 0.033 0.038 0.040 0.041 0.044 35 0.583 0.022 0.027 0.036 0.039 0.044 0.046 0.048 0.051 40 0.667 0.025 0.031 0.041 0.044 0.051 0.053 0.055 0.058 45 0.750 0.028 0.035 0.046 0.050 0.057 0.059 0.062 0.066 50 0.833 0.031 0.039 0.051 0.056 0.063 0.066 0.069 0.073 55 0.917 0.034 0.043 0.057 0.061 0.070 0.073 0.076 0.080 60 1.000 0.038 0.047 0.062 0.067 0.076 0.079 0.082 0.087 65 1.083 0.041 0.051 0.067 0.072 0.082 0.086 0.089 0.095 70 1.167 0.044 0.054 0.072 0.078 0.088 0.092 0.096 0.102 75 1.250 0.047 0.058 0.077 0.083 0.095 0.099 0.103 0.109 80 1.333 0.050 0.062 0.082 0.089 0.101 0.106 0.110 0.117 85 1.417 0.053 0.066 0.087 0.094 0.107 0.112 0.117 0.124 90 1.500 0.056 0.070 0.093 0.100 0.114 0.119 0.124 0.131 95 1.583 0.059 0.074 0.098 0.106 0.120 0.125 0.131 0.139 3 100 1.667 0.063 0.078 0.103 0.111 0.126 0.132 0.138 0.146 105 1.750 0.066 0.082 0.108 0.117 0.133 0.139 0.144 0.153 110 1.833 0.069 0.086 0.113 0.122 0.139 0.145 0.151 0.160 115 1.917 0.072 0.089 0.118 0.128 0.145 0.152 0.158 0.168 120 2.000 0.075 0.093 0.123 0.133 0.152 0.158 0.165 0.175 125 2.083 0.078 0.097 0.128 0.139 0.158 0.165 0.172 0.182 Depth (inches) 10.000 9.000 8.000 7.000 6.000 5.000 4.000 3.000 2.000 1.000 0.000 Cumulative Rainfall Distribution -�- 1 year storm -11-2 year stone 5 year storm -x-10 year storm year storm -x-50 year storm - 4--100 year storm -500 ear storm 0.000 4.000 8.000 12.000 16.000 20.000 24.000 Time (Hours) Output Data to Export to PondPack,5 minute intervals Time Time I year 2 year 5 year 10 year 25 year 50 year 100 year 500 year (ruin) (hours) (min) (min) (min) (min) (min) (min) (min) (min) 2.167 0,081 0.101 0 1.3-4- 0 1-441 0'..164 01.1172 0 179 0 190 2,250. -0.1084-1 1-0.110-51 0.139 0.150 0-17,11, 0.178 0:186 0.197 140 2333 0088 0.109 0.144 0.177 0.195 0.193 0.204 145 2A 17 0.091 0.113 0.149 0.161 0.183 0.191 0199 0.211 150 2500 0094 0.1 1 7 0.154 0.167 0 1 90 0.198 0.206 0.219 2.583 0.097 0.121 0.159 0.172 0.196 0205 0.213 0.226 160 2.667 0.100 0�124 0.164 0.178 0.202 0.211 0:220 0.233 165 Z 750 -0-J03 0.128 0.170 0.183 0.209 0.218 0.227 0.241 170 1833 0,106 0.132 0.175 0.189 ...... 0.224 _0.234 0.248 2.9-1-7 O�1019.-.1--l-0.1.1-3-6- 0.180 0.194 0.221 0.231 0.241 0.255 ---------- 130 3.000 0�113 0.140 0.185 0.200 0.228 0.237 0,247 ------ __O.262 185 3.083 0.116 0.144 0.190 0.206 0.234 0.244 0.254 --------------- 0.270 190 3.1167 .0.119 01�114-8-.--., 0.195 0 211 .0.240 0.251 0.261 0.277 195 3.250 0.122 0.152 0.200 0.217 0.246 0.257 0.268 0.284 3.1333. 0125 0156 01.20,6 0.222 0.253 0.264 0.275 0292 205 x.417 0 128 0 159 0-21.11-11110.228 0:2591 0.2.701 0.282 0.299 210 3.500 0.131 0.163 0.216 0.233 0.265 0.277 0.289 0.306 215 3.583 0.134 0.167 0.221 0,239 0.272 0.284 0.296 0.314 3.667 01-11-13-811, -0,11-71111--,0:226 0.244 0.2718 0,2910 0.303 0.321 22-51 3.1750 10.14.11 0A715 0.231 0.284 0.1309 0328 230 3.833 0.144 0.179 0.236 0.256 0,291 0.303 0.316 0.335 235 3.917 0.147 0,183 0242 0.261 0.297 ............ --- 0.310 0.323 0.343 240 4.000 0.-150 0:187 0.247 0.267 0.303 0.317 0.330 0.350 245 4.083 0.153 0.191 0.252 0.272 0.310 0.323 0.337 0.357 -25'0'-'- 4,16-7- -0-.-156 --0-.194,-, 0�2'-7 -0,.2,--7-8-- 0.3--1-6 0.330 0.344 0.365 .......... ......... 255 4.250 0,159 0.198 0:262 0.283 0.322 0.336 0.351 0.372 ---------- -4.313.31 01-.1.63 0,202_ 0.267 0.289 0.329 0.343 0.358 0.379 265 4 417 0-.-1-6-6- ..-0..2.06- 0.272 -0.294 033511.110.350 0.364 0.386 4.500 0.169 0.210 0.278 0.300 0.341 0.356 0.371 0.394 -0.172 0`2111-4, 0,28.3-1-1.1-0.30.161--.--0.3481- 0.363 0.373 .0.401 .-4.1667 0.175 0.218, -0-288- 0.3111111 0.354 0.3.85- 0A.0-81 285 4.750 0.178 0.222 0.293 0:317 0.360 0.376 0.392 2 4.533 O�'S 0.226 0.298 0.322 0.367 0.333 039 0.423 1-11-11 , - , __ 1-- 11 .1-1- --11-11-11 -1-1-1--l-, -.11, 1 1"..,-I- .-..9 A---" 295 4. 17 0.184 0.229 0.303 0.328 0.373 0.399 0.406 0.430 300 5 coo 0.188 0.23 3 0.308 0.3 3 3 0.379 0.396 0.413 0.437 5.083 0)91 0.237 0.313 0.339 0.385 0.402 0.419 0.445 31.0 5167 0.194 0.241 0.344 0.409 9.426 0,452 315 5.250 0.197 0.245 0.324 0.350 0.398 0.416 0.433 0.459 320 5.333 0.200 0.249 0.329 0.356 0.404 0.422 0.440 0.467 325 5,417 0.203 0.253 0.334 0.361 0,411 0.429 0.4 -- -,-------- 47 0.474 330 5.500 0.206 0,257 0.339 0.367 0:417 0.435, 0.454 0.481 335 5.583 0.209 0.261 0.344 0.372 0.423 0.442 0.461 0.489 340 5667 0:213 0.264 0.349 0.378 0.430 0449 0.468 0.496 - .-.-.......... ---------- 345 5.750 0.216 0.268 0.355 0,383 0.436 0.455 0,474 0 503 350 5.833 0.219 0.272 0,360 0.389 0.442 0.462 0.481 0.510 5.91-7 0.222 0,365 0.394 0.449 0-468 0.488 0.518 6.000 0.225 0,280 0.370 0.400 0.455 0.475 0.495 0.525 36-51 6.019.3- .01,230, 0.286 10.317-81 0.410 0.4617, 0.48119 0.511 0.547 370 6.167 _0.235 0.293 0.386 0.419 0.479 0,503 0,527 0.569 Output Data to Export to PondPaek,5 minute intervals Time Time 1 year 2 year 5 year 10 year 25 year 50 year 100 year 500 year (min) (hours) (min) (min) (min) (min) (min) (min) (min),. 375 6.250 0.240 0 299 0.394 0.429 0.490 0.517 0.543 0,591 380 61,333-111-111 0 246 -----0...-3,05- 0.402 0.433 0.502 0.531 0.559 0.613 385 6.417 0.251 0.311 0.410 0.448 0.514 0.544 0.576 0.635 390 6.500 0:256 0.318 0.418 0.458 0.526 0.558 0.592 0.658 395 6 583 0 261 0 X24 0.425 --.0-.467-- 0.538 0.572 0.608 0.630 400 6.667 0,266 0.330 0.433 0.477 0.549 0.586 0.624 0.702 405 6-.71501. 0 271 0 336 0.441 0.486 0.561 0.600 0.640 0.724 410 6.833 0.276 0.343 0.449 0.496 0.573 0.614 0.656 0.746 415 6 917 0 232 0 349 0 457 0.505 0.585 0.628 0.672 0.768 ._ ___ __... _.__._._ 420 71.909-1 0 237 9.3-5-5-11 0.465 0.515 0.597 0.642 011.688 0.790 425 7 083 0 292 0 361 0.473 0 525 0.608 0.656 0.704 0.812 _ _ _ .. ............. ...__-- 4�0 7 167 0 297 0 368 0.481 0.5----- ___-__.. __._ __._.___. 435 7.250 0.302 0 374 0.489 0.544 0.632 0.633 0.737 0.856 440 7.333 0.307 0.380 0.497 0.553 0.644 0.697 0.753 0.878 445 7.417 0.312 0.386 0 505 0.563 0.656 0.711 0.769 0.900 450 7 500 0 317 0.393 0.513 0.572 0.668 0.725 0.785 0.923 455 7.583 0.323 0.399 0:520 0.582 0.679 0.739 0.801 0.945 460 7.667 0.328 0.405 0.528 0.592 0.691 0.753 0.817 0.967 465 7.-..751 0 0 333 0 411 0.536 0.601 0.703 0.767 O.II33 0.989 470 7 833 0338.11. 0.418 0.544 0,61,1 0.715 0.781 0.849 1.9,11 475 7 917 0.343 0.424 0.552 0.620 0.727 0.794 0.866 1.033 480 3.000 0.348 0.430 0.560 0.630 0.738 0.808 0.882 1.055 435 3 083 0 353 0.436 0.568 0.640 0.750 0.822 0.398 1.077 490 3 1G7 0 359 0 443 0.576 0.649 0.762 0.836 0.914 1.099 495 8.250 0.364 0.449 0.584 0.659 0.774 0.850 0.930 1.121 500 3 33� 0 369 -0-4-5.5-1-1 0.592 0,668- -0,7816 0.864 0.946 1.143 -5-015-1-11181.41.7, 0:.3-7-4- 0 461 0.6,00----0.6.78 0.797 0.878 0.962 1.165 510 II 500 0.379 0.467 0.608 0.687 0.809 0.892 0.978 1.188 515 8583 0 384 0.474 0.615 0 697 0.821 0.906 0.994 1.210 -- ._ --------. ._. ..... ----- 520 8.667 0 339 0 480 0.623 0.707 0.833 0.919 1.011 1.232 _._..--.__.. ..__._.._,_ 525 II 750 0-39-5-- 0.486 0.631 0.716 0.845 0.933 1.027 1.254 530 8.833 0.400 0.493 0.639 0.726 0.856 0.947 1.043 1.276 535 8.917 0.405 0.499 0.647 0.735 0.868 0-961 1.059 1.298 540 9.000 0 410 0.505 0.655 0.745 0.380 0.975 1.075 1.320 545 9M3 0,420 0.517 0.669 0.762 0.900 0.998 1.101 1.354 550 9.167 0 429 0.528 0:684 0.778 0.921 1.021 1.128 1.389 555 9.250 0.439 0.540 0.698 0.795 0.941 1.044 1.154 1.423 560 9.333 0.449 0.552 0.713 0-812 0.961 1.067 1.181 1.458 565 9 417 0.459 0.563 0.727 0.828 0.981 1.090 1207 1.492 570 9.500 0.468 0.575 0.742 0.845 1.002 1.113 1.233 1.527 -51-1 9 533 0 478 0.587 0.756 0.862 1.022 1.136 1.260 1.561 580 9.667 0.483 0.598 0.771 0.878 1.042 1.159 1.286 1.596 585 9.750 0.497 0.610 0.785 0.895 1.063 1.183 1.313 1.630 590 9.833 0 507 0.622 0.799 0.912 1.083 1.206 1.339 1.664 595 9.917 0.517 0.633 0.314 0.928 1.103 1.229 1.365 1.699 600 10 000 0.527 0.645 0.828 0.945 1.123 1.252 1.392 1.733 _ _. - . ___.-_. _._..._ --- __.._. -__-- 605 10.083 0.536 0.657 0.843 0.962 1.144 1.275 1.418 1.768 610 10.167 0.546 0:668 0.857 0.978 1.164 1.298 1.444 1.802 615 10.250 0.556 0.680 0.372 0.995 1.184 1.321 1.471 1.837 Output Data to Export to PondPack,5 minute intervals Time Time 1 year 2 year 5 year 10 year 25 year 50 year 100 year 500 year (min) (hours) (min) (min) (min) (min) (min) (min) (min) (min) _620 10.333 0.566 0.692 0.836_ 1.012 1.204 1.344 1.497 1.871 -- _.. . - 625 10.407 0.575 0.703 0.901 1.028 1.225 1.367 1.524 1.906 630 10.500 0.585 0 715 0.915 1..045 1.245 1.390 1:550, 1.940„ 635 10.583 0.593 0.724 0.928 1.062 1.267 1.418 1.583 1.990 ___.. . 640 10 667 0 602 0.7 3 3 0 940 1 073 1.288 1 445 1.617 2040. 645 10.750 0.610 0.742 0 953 1.095 1.310 1.473 1.650 2.090 650 10.933 0.618 0,752 0 965 1 112" 1.332 1.500 1.683 2.140 _.. 655 10.917 0.627 0.761 0.978 1.128 1,353 1.528 1.717 2.190 660 11.000 0.635 0.770 0 990 1 145_. 1.375 _1.555 1.750_ 2.240 _ 665 I 1 033 0 654 0 793 1:020 1,181 1.419 1.608 1.810 2:321 670 11 167 0 673 0 817 1,051-01-...- 1 217 1 463 1 660 1.II70 2.402 ._..__. _.0... ---- 675 11 250 0 692 0 840 1 080 -253 1.508" 1.713 1.930 2.483 630 11 333 0 712 0 863 1 110 1.288 1.552 1765 1.990 2.563 _. _ _.. .. .__.2.-_ 685 11 417 0 731 0 887 1.1 40 1.324 1.596 1.813 2.050 2.644 _ _ _... _ 690 11 500 0 750 -.0.2-1-0 1 170 1.360 1.640_ 1.870 2.110 2.725 695 11.583 0 812 0 987 1.2 69 1 479 1 782_ 2.032 2.292 2.953 _. _..... 700 11.667 0 875 1 063 1 368 1 598 1 924 2.194 2.474 3.181 -__ - 705 11.750 0.937 1.140 1 467 _1.717 2.067 2357 1657 3.408 710 1 i.S33 1 000 1 216 1 566 1.836 2 209 2.519 2.839_ 3.636 71S 11917 1.199 1453 1842 2138 2.543 2.871 3.207 4.032 720 12.000 1.599 1.921 2.379 2.733 3.195 3.566_ 1941 4.831 725 12.033 1-.7981-1-2.1571 2.656 3.-03-6 3.529 3.919 4.309 5.226 730 12.167 1.860 2.234 2.754 3.154 3.671 4.081 4.491 5.454 735 12 2-5.0 L-9-23-1 2.13-101 2 353 3.273 3.813 4.243 4.673 5.682 740 12 333 ".,1,.-9'8'-5 2 31817111 2 952 3.392 3.956 4.406 4.856 57909 745 12 417 2.0 48 2 463 3 051 3 511 4.098 4.565 5.038 6.137 ._ _ _..__ --- --- 750 12.500 2.110 2-540 3.150_ 3.630 4.240 4.730 5.220 6.365 755 12 583 2 129 2 563 3.180 3 666 4 284 4.783 5.280 6.446 __.-__. . 760 12.667 2.148 2.587 3.210 3.702 4.328 4.835 5.340 6.527 765 12.750 2.168 2.610 3 240 3.738 4.373 4.888 5.400 6.608 770 12.833 2.187 2 633 3.270 3.773 4.417 4.940 5.460 6.688 775 12'..91,71, -21.206 2 657 3 300 3 809 4.461 -4-1.9-93, 5.520 6.769 780 13.000 2.225 1 21.63R 3 330 3,.,84-5--,.-- 4.505 5.045 5.580 6.850 735 13 033 2.233 2.689 33413, 3.862 4.527_ 5.073 5.613 6.900 790 13 1G7 2,2,4,2 2:698 3.355 3.878 4.548 5.100 5.647 6.950 795 l�250 2,250 2.708 3.368 3.895 4.570 _ 5.128 5.680 7.000 800 13 X33 2.2.581- 2 717 3 380 3 912 4.592 5.155 5.713 7.050 305 13 417 2267 21.1721611 3 393 _ 3 928 4.613 5.183 5.747 7.100 310 1 500 2 275 2 7,35 3 405 3.945 4.635 5.210 5.780 7.150 111.815 13.583 2 23-- 2 747 3 419---3.962 4.655 5.233 5.806 7.184 320 11.667 2 294 21.758 434 3.978 4.676 5.256 5.833 7.219 825 13 750 2-,30-4-- 2 770 3.4-48--13.199.5 4.696 5.279_ _ 5:159 7.253 830 13.833 2.314 2.782 3.463 4,012 4.716 5.302 5.886 7.288 835 13.917 2.324 2.793 3.477 4.028 4.736 5.325 5.912 7.322 840 14 000 2 333 2 805 3 492 4 045 4 757 5 348 5 938 7.357 _-- _.. -_._ __._ __-- __._ 845 14.083 2.343 2.817 3.506 4.062 4.777 5.371 5.965 7.391 11 850 14 167 2:353 2.828 3.521 4.078 4.797 5.394 5.991 7.426 355 14 250 2.363 2 840 3.535 4.095 4 818 5.418 6.018 7.460 _ _ ___,. 860 14.333 2.372 1852 3.549 4 112 4.838 5.441 67044 7.494 Output Data to Export to PondPack,5 minute intervals Time Time I year 2 year 5 year 10 year 25 year 50 year 100 year 500 year (min) (min) (min) (min) (min) (min) (min) (min) (min) 865 14,417 2.382 2.863 3.564 4.128 4.858 5.464 6.070 7.529 870 14.500 2.i92 2.875- 3.578 4.145-1- 4.8 78 5.1.497 6.097-1 1- 7.,5 63- 14.583 2.401 2.887 3.593 4.162 4.899 5.510 6,123 7.598 88-6-- 14.667 1,-- 2-.8-98 3.60-7 4.1,78 -- -- .......... ...4.919 5.533 6.149 7.632 885 14.750 2.421 2.910 3.622 4.195 4.939 5.556 6.176 7.667 890 14.833 2 431 2.922 3.636 4.212 4.959 5.579 6.202 7.701 ------------------- 14.9.17--2,44-0 4,980 5,602 6.229 7.736 -------------------- 1-5..000.1 2.415-0---"-2,.9-4,5l-- 3 665 4.245- 5.000 6.255 7.770 905 15.083 2.455 2.951 3.673 4.255 5:012 5.639 6,271 7.792 --------------- .......... 910 15.167 2.460 2.958 3.681 4.264 5.024 5.653 6.287 7.814 ---------- 915 15.250 2.465 2.964 3.689 4.274 - 5.035 5.667 6.303 7.836 920 15.333 2.1471 2.970 3.619-71 4.28311, 6.319 7:858, 925 15.417 .2476 2�976 3.705 4.293 5.059 5.694 6.336 7.880 9113-01-1.- 5...5100. 2,4811 2 933 3.713 4,393 5.071 5.708 6.352 7.903 935 15.533 -2.4-816 2.9.89, 3.712,01 4.312 5.083 5.722 6.368 7.925 940 15.667 2.491 2.995 3.728 4.322 5.094 5.736 6.384 7.947 945 15.750 .2.4961- 5.750 6.400 7.969 950 15.833 2.501 3.008 3.744 4.341 5.118 5.764 6.416 7,991 955 15.917 2.507 3.014 3.752 4.350 5:130 5.778 6.432 8.013 960 16.000 2.512 3.020 3.760 4,360 5.142 5.792 6.448 8-:03.5- 965- -,-16--08-3- 3--.0-26-- -3.-76-8- -4.3,70- ----------- 5.153 5.806 6.464 8.057 970 16.167 2522 3.033 3.776 4379 5,165 5.819 6.481 -------------- 8.079 975 16.250 2.527 3.039 3.784 4.389 -----------------------.......-,---5.177_ ___5.833 6,497 8.101 980 16.333 2.532 3.045 3.792 4.398 5.189 5.847 6.513 8.123 ----------------------------- 985 16 417 2.537 3.051 3.800 4.408 5.201 5861 6.529 8.145 990 16.500 2.543 3.058 3.808 4.418 5.213 5.875 6.545 8.168 ------------ 995 16 533 2 548 3.064 3.315 4.427 -51�2214 5.889 6.561 8.190 1000 16 667 1,5151.3-1- 3.1070 823 .4.437 8.212 1005 16 750 2558 .3.0-761. 3.331 4.446 5:248 5.917 6.593 8:234 1010 16.833 2.563 ,3.033 3.839 4.456 5.260 5.931 6:609 8.256 1015 16.917 2.568 1089 3.847 4.465 5.272 5.944 6.626 8.278 _1920_ 17.000 2.573 3.095 3.855 4.475 5.283 5.958 6.642 8.300 -1-0.251 -1117.983 21..57-81-1-11.3..1101 ......4.185 5.295 -5.97-2-1-- 6.658 8.322 1030 17.167 2.584 3.108 3.871 4.494 5.307 5.986 6.674 8.344 1035 17250 1589 3.114 3879 4.504 5.319 6.000 6.690 8.366 ]040 17 333 2 594 3 120 3.857 4.513 5.331 6.014 6 706 8.388 1045 17.417 2.599 3.126 3.895 4523 ------- ----�--.--,--.-.,.-�"----�........... 6.028 6.722 8.410 1050 17.500 2.604 3.133 3:903 4.533 5.354 6.042 6.738 8.433 1055 17 583 2 609 3 139 3.910 4.542 5.366 6.056 61754 8.455 1060 17.667 2.614 3.145 3.918 4.552 5.378 6.069 6.771 8.477 1065 l7 750 ------------ 2:1620---13.15J, 3.912.61 4.561 6 083 6.787 8.499 1070 17.833 2.625 3.158 3.934 4.571 5.401 6.097 6.803 8.521 1075 17.917 2.630 3.164 3.942 4.580 5.413 6:111 6.819 8.543 1080 18.000 2.635 3.170 3.950 4.590 5.425 6.125 6.835 8.565 18.083 2:638 3.174 3.955 4.596 5.431 6.132 6,842 8.572 1090 18.167 2.641 3,178 3.960 4.601 5.438 6.138 6.849 8.580 1095 18.250 2.644 3.182 3.965 4.607 5:444 6.145 6.856 8.587 18 333 2.648 3.186. 3.971 4.612 5.450 6.151 6.863 8.594 1-8.A.17-1 . 1.65.1 -.5.45-7 6.158 6.869 8.601 Output Data to Export to PondPack 5 minute intervals Time Time 1 year 2 year 5 year 10 year 25 year 50 year 100 year 500 year (mite) (hours) (min) (min) (min) (min) (min) (min) (min) (min) 1110 13.500_ _2_654 __3_193 3.981 4.623_ 5.463 6.165 6.876 8.609 - _ _._ .. 11 IS 18 533 2.657 3.197 3.9.86-- 4.629 5.469 6.171 6 883 8.616 _ ..._ -...--_------- - --__.__ . 1120 18.667 2,660 3.201 3.991 4.634 5.476 6.178 6.890 5.623 1125 18.750 2.663 3.205 3.996 4.640 5.482 6.184 6.897 8.631 _.__ .8.-_._. 1130 18-833 2 666 3.209 4.001 4.646 5.488 6.191 _ 6.904_ 8.638 _.-. _._ 1135 18-917 2.669 3.213 4.007 4.651 5.495 6.193 6.911 8.645 1140 19.000 2.673 3.217 4.012 4.657 5.501 6.204 6.918 3.653 1145 19.083 27,6716 3.221 4.101,7111111 4.662 5.507 6.211 6.924 8.660 1150 19.167 2.679 3.224 4.022 4.668 5.513 6.217 6.931 8.667 1.5-51. 1,91,.2501.1 -2.6-8-2 3.228 4.027 4.673 5.520 6.224 6.938 8.674 1160 19133 2.655 3.232 4.032 4.679 5.526 6.231 6.945 8.632 1165 19 417 2.688 3.236 4.037 4.684 5.532 6.237 6.952 8.689 1 170 19,50-0, 2 691 3 240 4.043 --4-6.9..0.--,-.,.,5.539 6.244 6.959 8.696 1175 19.583 2.694 3.244 4 048 4.696 5.545 6.250 6.966 3.704 1180 19.667 2.698 3.248 4.053 4.701 5.551 6.257 6.973 8.71 I 1185 19.750 2.701 3.252 4.058 4.707 5.558 6.264 6.979 8.718 1190 19 833 2.704 3.256 4.063 4.712 5.564 6.270 6.986_ 8.725 1195 19 917 2 707 3259 4.063 4.718 5.570 6.277 6.993 8.733 1200 20.000 2.710 3.263 4.073 4.723 -,5.57-7 6.283 7.000 &740 1205 -20.08113. 2.17.11.3-1---l-26-7- 4.078 4.729 .5583 6.290 7.007 8.747 1210 -2-0-111,67 21.7.1.6 3 271 4.084 4 734 5.589 6.297 7.014 8.755 1215 20250 719 3 275 4.039 4.740 5.596 6.303 1 7.021 87762_ 1220 20.333 2.723 3.279 4.094 4.746 5.602 6.310 7.028 8.769 1225 'i6.'4'1 7 -2.726'- 726 3 283 4.099 4.751 5.608 6.316 7.034 8.776 1230 20.500 2.729 3.287 4.104 4.757 5.615 6.323 7.041 8.784 1235 210.583 __2:7131.2 3.291 4.109 4.762 1-11 6.330 7.048 8.791 1240 20 667 1735 3..2194..---4.11-4-.1 4.768 5.627 6.336 7.055 8.798 1245 20.750 2.738 3.298 4.120 4.773 5.634 6.343 7.062 8.806 1250 20.833 2.741 3.302 4.125 4.779 5.640 6.349 7.069 8.813 1255 20 917 2 744 >306 4.130 4 784 5.646 6.356 7.076 8.820 _. -- _-- _._ _. -- _.._. 1260 21.000 2.748 3.310 4 135 4.790 5.653 6.363 7 083 3.328 1265 21 083 2 751 3 314 4 140 4.796 5.659 6.369 7.039 8.835 1270 21.167 2.754 3.318 4.145 4.801 5.665 6.376 7.096 8.842 1275 21.250 2.757 3.322 4.150 4.807 5.671 6.382 7.103 3.849 1280 21.333 2.760 3.326 4.156 4.812 5.673 6.389 7.110 8.857 1285 21 417 2 763 3 329 4.161 4.818 5.684 6.395 7.117 8.864 1290 2l 500 2 766 3 333 4.166 4.823 5.690 6.402 7.124 8.871 _... _-_ ._. _ _.. . _. ._.._._. 1 95 21 583 2 769 -3.313.71- 4 171 4.829 51697111.--6.409 7 131 3.879 1300 21.667 2:773 3 341 4.176 4.834 5.703 6.415 7.138 8.886 1305 21750 2.776 3.345 4.181 4.840 5.709 6.422 7.144 8.893 1310 21 833 .2.J79.1 3 349 4.186 4.846 5.716 6.428 7.151 8.900 11 1315 21.917 2.782 3.353 4.192 4.851 5.722 6.435 7.153 8.908 1320 22.000 2.785 3.357 4.197 4.857 5.728 6.442 7.165 8.915 1325 22.083 2.788 3.361 4.202 4.862 5.735 6.448 7.172 8.922 1330 22.167 2:7 1 3 364 4 207 4.868 5.741 6.455 7.179 8.930 1»5 22 250 2.794 3.368 4 212 4.873 5.747 6.461 7.186 8.937 13.40 22.333- .1 2 798 11 3372 4 217 4.879 5.754 6.468 7.193 8.944 1345 22.4 t7 2.801 3 376 4.222 4 884 5.760 6.475 7.199 8.95] -- _._._. ._.__..... ----._... - ... . 1350 21500 2.804 3.380 4.228 4.890 5.766 6.431 7.206 8.959 Output Data to Export to PondPack,5 minute intervals Time Time I year 2 year 5 year 10 year 25 year 50 year 100 year 500 year (min) (hours) (min) (min) (min) (min) (min) (min) (min) (min) -.135-51--.22,5813 2.307 3.384 4.233 ---7.11213-11 11 -8-,9-66- 1360 22.667 2.810 3.388 4.238 4.901 5.779 6.494 7.220 8.973 1365 22.750 2.813 3.392 41..2-41131 4.9,07 5.7185 6.501 7.227 1370 22.833 2.816 3:396 4:248 4.912 5.792 6.508 7.234 8.988 1375 22.917 2.819 3.399 4.253 4,918 5.798 6.514 7.241 8.995 1380 23.000 2.823 3.403 4.258 4.923 5.804 6.521 7.248 9.003 1385 23 083 l 2.826 3.407 4.263 4 9 29 5.810 6.527 7.254 9.01 0 1390 23.167 2.829 3.411 4.269 4.934 5.817 6.534 7.261 9.017 1395 23.250 2.832 3.415 4.274 4.940 5.823 6.541 7.268 9.024 1400 23.333 2.835 3.419 4.279 4.946 5.829 6.547 7.275 9.032 ---------- 1405 23.417 2.838 3.423 4.284 4.951 5.836 6.554 7.282 9.039 1410 23.500 2,841 3.427 4.289 4.957 5.842 6.560 7.289 9.046 1415 23.583 2.844 3.431 4.294 4.962 5.848 6.567 7.296 9.054 1420 23.667 2.848 3.434 4.299 4.968 5.855 6.574 7.303 9.061 1425 23.750 2.851 3.438 4.305 4.973 5.861 6.580 7.309 9.068 1430 23.833 2.854 3.442 4.310 4.979 5.867 6.587 7:316 9.075 1435 23.917 2.857 3.446 4315 4.984 5.874 6.593 7.323 9.083 1440 24.000 2.860 3.450 4.320 4.990 5.880 6.600 7.330 9.090 SOILS DATA PARKSIDE TOWN COMMONS KRG -12000 WAKE COUNTY, NORTH CAROLINA — SHEET NUMBER 35 35 0 a m U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE WAKE COUNTY, NORTH CAROLINA NORTH CAROLINA AGRICULTURAL EXPERIMENT STATION SOIL LEGEND The first capitol letter is the initial one of the soil name, A second capital letter, A, B, C, D, E, or F, shows the slope. Most symbols without a slope letter are those of nearly level soils or land types, but some are for land types that have a considerable range of slope. The number, 2 or 3, in a symbol shows that the soil is eroded or severely eroded. SYMBOL NAME SYMBOL NAME SYMBOL NAME AfA Altavista fine sandy loom, 0 to 4 percent slopes GeB Georgeville silt loam, 2 to 6 percent slopes NoA Norfolk loamy sand, 0 to 2 percent slopes AqB Appilrig gravelly sandy loam, 2 to 6 percent slopes GeB2 Georgeville silt loom, 2 to 6 percent slopes, eroded NoB Norfolk loamy sand, 2 to 6 percent slopes AgB2 Appling gravelly sandy loam, 2 to 6 percent slopes, eroded GeC Georgeville silt loom, 6 to 10 percent slopes NoB2 Norfolk loamy sand, 2 to 6 slopes, eroded AgC Appling gravelly sandy loam, 6 to 10 percent slopes GeC2 Georgeville silt loam, 6 to 10 percent slopes, eroded NoC percent Norfolk loamy sand, 6 to 10 percent slopes AgC2 Appling gravelly sandy loam, 6 to 10 percent slopes, eroded GeD2 Georgeville silt loam, 10 to 15 percent slopes, eroded NoC2 Norfolk loamy sand, 6 to 10 percent slopes, eroded Apo Appling sandy loom, 2 to 6 percent slopes Go Goldsboro sandy loom ApB2 Appling sandy loom, 2 to 6 percent slopes, eroded GrB Granville sandy loam, 2 to 6 percent slopes OrB Orangeburg loamy sand, 2 to 6 percent slopes ApC Appling sandy loam, 6 to 10 percent slopes GrB2 Granville sandy loam, 2 to 6 percent slopes, eroded OrB2 Orangeburg loamy sand, 2 to 6 percent slopes, eroded ApC2 Appling sandy loam, 6 to 10 percent slopes, eroded GrC Granville sandy loom, 6 to 10 percent slopes OrC2 Orangeburg loamy sand, 6 to 10 percent slopes, eroded ApD Appling sandy loom, 10 to IF, percent slopes GrC2 Granville sandy loam, 6 to 10 percent slopes, eroded As8 Appling Fine sandy loom, 2 to 6 percent slopes GrD Granville sandy loam, 10 to 15 percent slopes PkC Pinkston sandy loom, 0 to 10 percent slopes AsB2 Appling fine sandy loom, 2 to 6 percent slopes, eroded Go Gullied land PkF Pinkston sandy loam, 10 to 45 percent slopes AsC Appling fine sandy loom, 6 to 10 percent slopes Ps Plummer sand AsC2 Appling Fine sandy loam, 6 to 10 percent slopes, eroded HeB Helena sandy loam, 2 to 6 percent slopes Au Augusta fine sandy loam He132 Helena sandy loom, 2 to 6 percent slopes, eroded Ro Rains fine sandy loam HeC Helena sandy loam, 6 to 10 percent slopes Ro Roonoke fine sandy loam Bo Buncombe soils HeC2 Helena sandy loom, 6 to 10 percent slopes, eroded HeD Helena sandy loom, 10 to 15 percent slopes $w Swurnp CeB _ Cecil sandy loam, 2 to 6 porcenr slopes HrB Herndon silt loom, 2 to 6 percent slopes CeB2 Cecil sandy loam, 2 to 6 percent slopes, eroded H, B2 Herndon silt loam, 2 to 6 percent slopes, eroded VaB Vance sandy loam, 2 to 6 percent slopes CeC Cecil sandy loom, 6 to 10 percent slopes HrC Herndon silt loam, 6 to 10 percent slopes VaB2 Vance sandy loom, 2 to 6 percent slopes, eroded CeC2 Cecil sandy loom, 6 to 10 percent slopes, eroded HrC2 Herndon silt Zoom, 6 to 10 percent slopes, eroded VaC2 Vance sandy loam, 6 to 10 slopes, eroded CeD Cecil sandy loom, 10 to 15 percent slopes HrD2 Herndon slit loam, 10 to 15 percent slopes, eroded percent CeF Cecil sandy loam, 15 to 45 percent slopes HrE Herndon silt loam, 15 to 25 percent slopes WoA Wagrarrt loamy sand, 0 to 2 percent slopes CgB Cecil gravelly sandy loam, 2 to 6 percent slopes W.B Wagrom loamy sand, 2 to 6 percent slopes CyB 2 Cecil gravelly sandy loam, 2 to 6 percent slopes, eroded LdB2 Lloyd loom, 2 to 6 percent slopes, eroded W.0 Wagrom loamy sand, 6 to 10 percent slopes CqC Cecil gravelly sandy loom, 6 to 10 percent slopes LdC2 Lloyd loam, 6 to 10 percent slopes, eroded NgA Wagram —Troup sands, 0 to 4 percent slopes CgC2 Cecil gravelly sandy loom, 6 to 10 percent slopes, eroded LdD2 Lloyd loam, 10 to 15 percent slopes, eroded 4hh Wahee Fine sandy loam CIB3 Cecil clay loam, 2 to 6 percent slopes, severely eroded LoB Louisburg loamy sand, 2 to 6 percent slopes WkC Wake soils, 2 to 10 percent slopes CIC3 Cecil clay loam, 6 to 10 percent slopes, severely eroded LoC Louisburg loamy sand, 6 to 10 percent slopes Wk Wake soils, 10 to 25 percent slopes CIE3 Cecil clay loam, 10 to 20 percent slopes, severely eroded LoD Louisburg loamy sand, 10 to 15 percent slopes WmB Wedowee sandy loam, 2 to 6 percent slopes Cm Chewaclo soils LwB Louisburg— Wedowee complex, 2 to 6 percent slopes Win B2 Wedowee sandy loom, 2 to 6 percent slopes, eroded Cn Colfax sandy loom LwB2 Louisburg- 49edowee complex, 2 to 6 percent slopes, eroded WmC `'Wedowee sandy loam., 6 to 10 percent slopes Co Congaree fine sandy loam LwC Louisburg — Wedowee complex, 6 to 10 percent slopes WmC2 Wedowee sandy loam, 6 to 10 percent slopes, eroded Cp Congaree silt loam LwC2 Louisburg — Wedowee complex, 6 to 10 percent slopes, eroded WmD2 Wedowee sandy loam, 10 to 15 percent slopes, eroded C,B Creedmoor sandy loam, 2 to 6 percent slopes Ly Lynchburg sandy loam Vim Wedowee sandy loam, 15 to 25 percent slopes Cr62 Creedmoor sandy loam, 2 to 6 percent slopes, eroded Wn Wehodkee silt loam CrC Creedmoor sandy loam, 6 to 10 percent slopes Ma Made land Wo Wehadkee and Bibb soils Crr2 Creedmoor sandy loom, 6 to 10 percent slopes, eroded MdB2 Madison sandy loam, 2 to 6 percent slopes, eroded WsB White Store sandy loam, 2to 6 percent slopes CrE Creedmoor sandy loom, 10 to 20 percent slopes MdC2 Madison sandy loom, 6 to 10 percent slopes, eroded WsB2 White Store sandy loom, 2 t 6 percent slopes, eroded CtB Creedmoor silt loam, 2 to 6 percent slopes MdD2 Madison sandy loam, 10 to 15 percent slopes, eroded W5C White Store sandy loam, 6 to 10 percent slopes CrC Creedmoor silt loom, 6 to 10 percent slopes MdE2 Madison sandy loom, 15 to 25 percent slopes, eroded WcC2 White Store sandy loam, 6 to 10 percent slopes, eroded Me Mantachie soils WsE White Store sandy loom, 10 to 20 percent slopes Do Durham loamy sand, 2 to 6 percent slopes MfB Mayodan sandy loom, 2 to 6 percent slopes WtB White Store silt loam, 2 to 6 percent slopes Du B2 Durham loarny sand, 2 to 6 percent slopes, eroded MfB2 Mayodan sandy loom, 2 to 6 percent slopes, eroded WvD3 White Stare clay loam, 2 to 15 percent slopes, DuC Durham loamy sand, 6 to 10 percent slopes We Mayodan sandy loam, 6 to 10 percent slopes severely eroded OuC.2 Durham loamy sand, 6 to 10 percent slopes, eroded MFC2 Mayodon sandy loam, 6 to 10 percent slopes, eroded WwC Wilkes soils, 2 to 10 percent slopes MFD2 ibkryodan sandy loom, 10 to 15 percent slopes, eroded WwE Wilkes soils, 10 to 20 percent slopes EnB Enon fine sandy loam, 2 to 6 percent slopes WE Mayodan sandy loam, 15 to 25 percent slopes WwF Wilkes soils, 20 to 45 percent slopes EnB2 Enon fine sandy loam, 2 to 6 percent slopes, eroded Mg8 Mayodon gravelly sandy loom, 2 to 6 percent slopes WxE P'ilkes stony soils, 15 to '25 percent slopes EnC Enan fine sandy loam, 6 to 10 percent slopes MgB2 Mayodan gravelly sandy loam, 2 to 6 percent slopes, eroded Wy Worsham sandy loom EnC2 Enon fine sandy loam, 6 to 10 percent slopes, eroded MgC Mayadan gravelly sandy loam, 6 to 10 percent slopes En D2 Enon fine sandy loam, 10 to 15 percent slopes, eroded Mg C2 Mayodan gravelly sandy loam, 6 to 10 percent slopes, eroded MyB Mayodan silt loom, thin, 2 to 6 percent slopes FaB Faceville sandy loom, 2 to 6 percent slopes MyB2 Mayodan silt loam, thin, 2 to 6 percent slopes, eroded FaB2 Faceville sandy loom, 2 to 6 percent slopes, eroded MyC Mayodon silt loam, thin, 6 to 10 percent slopes FaC2 Faceville sandy loom, 6 to 10 percent slopes, eroded MyC2 Mayodon silt loam, thin, 6 to 10 percent slopes, eroded MyD Mayodan silt loom, thin, 10 to 15 percent slopes Soil map constructed 1967 by Cartographic Division, Soil Conservation Service, USDA, from 1965 aerial photographs. Controlled mosaic based an North Carolina plane coordinate system, Lambert conformal conic projection, 1927 North American datum, PAFKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 5/1/2012 PRE- DEVELOPMENT - SUBBASIN #1 __> Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification CrE Creedmoor Sandy Loam C Ws132 White Store Sandy Loam D WsC2 White Store Sandy Loam D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 5/1/2012 PRE- DEVELOPMENT - SUBBASIN #2 __> Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification CrE Creedmoor Sandy Loam C WsB2 White Store Sandy Loam D WsC2 White Store Sandy Loam _ D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 5/1/2012 PRE- DEVELOPMENT - SUBBASIN #3 Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification WsB2 _White Store Sandy Loam D WsC2 White Store Sandy Loam D WsE White Store Sandy Loam _ D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 5/1/2012 PRE- DEVELOPMENT - SUBBASIN #4 Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification WsB2 White Store Sandy Loam D WsC2 White Store Sandy Loam x WsE White Store Sandy Loam D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 5/1/2012 PRE- DEVELOPMENT - SUBBASIN 95 Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification WsB2 White Store Sandy Loam D WsC2 White Store Sandy Loam D w WsE White Store Sandy Loam D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 5/3/2012 PRE- DEVELOPMENT - SUBBASIN #6 = => Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrE Creedmoor Sandy Loam C CrC2 Creedmoor Sandy Loam C WsB2 White Store Sandy Loam D WsC2 White Store Sandy Loam D References: 1 SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 5/3/2012 PRE- DEVELOPMENT- SUBBASIN #7 Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrE Creedmoor Sandy Loam C WsB2 White Store Sandy Loam D WsC2 White Store Sandy Loam D WsE White Store Sandy Loam D References: SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 5/3/2012 PRE- DEVELOPMENT - SUBBASIN #8 = => Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification WsB2 White Store Sandy Loam D WsE White Store Sandy Loam D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. References: SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 5/3/2012 PRE- DEVELOPMENT - SUBBASIN #10A Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification WsB2 White Store Sandy Loam D WsC2 White Store Sandy Loam D WsE White Store Sandy Loam D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 5/3/2012 PRE - DEVELOPMENT - SUBBASIN 410B Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification WsB2 White Store Sandy Loam D WsC2 White Store Sandy Loam D WsE White Store Sandy Loam D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 5/3/2012 PRE- DEVELOPMENT - SUBBASIN #11 Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification WsB2 White Store Sandy Loam D WsC2 White Store Sandy Loam D WsE White Store Sandy Loam D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 5/3/2012 PRE- DEVELOPMENT - SUBBASIN #12 Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification WsB2 White Store Sandy Loam D WsE White Store Sandy Loam D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 9/10/2012 POST - DEVELOPMENT - SUBBASIN #1 -TO SWMF 93 = => Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrE Creedmoor Sandy Loam C_ WsB2 White Store Sandy Loam � � D WsC2 White Store Sandy Loam D WsE White Store Sandy Loam D References: I SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 9/10/2012 POST - DEVELOPMENT- SUBBASIN #I -TO SWMF #4 __> Site soils from the Wake County Soil Survey Symbol Name Soil Classification CrE Creedmoor Sandy Loam C WSB2 White Store Sandy Loam _D �m WsC2 White Store Sandy Loam D References: I SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 9/10/2012 POST - DEVELOPMENT - SUBBASIN #1- BYPASS __> Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification CrE Creedmoor Sandy Loam C WsC2� White Store Sandy Loam � D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 9/10/2012 POST - DEVELOPMENT - SUBBASIN #3 -TO SWMF #I = => Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification Ws132 White Store Sandy Loam D WsC2 White Store Sandy Loam D WsE White Store Sandy Loam D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 9/10/2012 POST - DEVELOPMENT - SUBBASIN #3 -TO SWMF 92 = => Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification WsB2 White Store Sandy Loam D WsC2 _White Store _Sandy _Loam � D WsE � White Store Sandy Loam D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 9/10/2012 POST - DEVELOPMENT- SUBBASIN #3- BYPASS = => Site soils from the Wake County Soil Survey References: Symbol Name Soil Classification WsB2 _ White Store Sandy Loam_ WsC2_ White Store Sandy Loam D _ M WsE White Store Sandy Loam D SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 9/10/2012 POST - DEVELOPMENT - SUBBASIN #4 Site soils from the Wake County Soil Survey Symbol Name Soil Classification WsB2 White Store Sandy Loam D WsC2� White Store Sandy Loam D �WsE�White Store Sandy Loam D References: SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PARKSIDE TOWN COMMONS WATERSHED SOIL B. IHNATOLYA, PE KRG -12000 INFORMATION 9/10/2012 POST - DEVELOPMENT - SUBBASIN #5 = => Site soils from the Wake County Soil Survey Symbol Name Soil Classification WsB_2 White Store Sandy Loam D WsC2 _White Store Sandy Loam — D WsE � White Store Sandy Loam�—�m����mD References: 1 SOIL SURVEY: WAKE COUNTY NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT STATION). 2 SCS TR -55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. PRE DEVELOPMENT HYDROLOGIC CALCULATIONS PARKSIDE TOWN COMMONS KRG -12000 SUB —BASIN #lOB AREA = 6.18 ac. .� +a , ,¢ , , a ' j .� - - --% °���, - ��.�� ��� � ��, �� � �'� � _�� � I� �, �� ����, `�;, ;, i � 1 �!� �_ �`' `` �� ., ,� `,�t 1 POA X11 -,,� �� -� �, ,, SUB —BASIN #11 AREA = 12.66 ac. SUB —BASIN #l0A AREA = 14.07 ac. SUB —BASIN #9 AREA = 12.16 ac. POA �9 ,, POA �8 SUB —BASIN #8 AREA = 3.54 ac. SUB —BASIN #7 AREA = 10.67 ac. POA �7 POA �6 SUB —BASIN # 12 '� ������.�'�� � � � �� •' ;;- ,� � ����_�� i �--- �__ - =� _ �� ��� �' ��l(���r � u���� -�� `�. �i �� �� ,, ��� ,� r �_ r �, ! � -'�' T , �`ti , � � --� — �� � At ��� ` AREA = 3.47 ac . � � �' �,e `�, �`��` � -_ %;�� °" i��'' �'' � ',,�r - ` v '�' � �, �`�' ��� - `�,, ', , ; I ' ,� �` � / }� P OA 12 -- -� � � �" V ���� ��A� -- _,_ -- - ��� _� � � - -- � � �V�� f_:, � i I � � ��, A ., - -- _ - -- � �� l � I� I �� � �^ _ i _ i _s' __ � A �___ _' � �` i � _� � � � i �i ` � � ,n s 1 as `� � � — _ � , � i � �� � - - -_ � �`i �` � c I i � i � i i // � -�` � �V � _ c � � � ` �' � \ n —_— _. __ :_. .. ,_ , �� �`��`WSJ ; �' � :X . � - .fi SUB —BASIN #3 AREA = 29.93 ac. . � . -'� SUB —BASIN #4 AREA = 1.44 ac. � POA #5 SUB —BASIN #5 AREA = 7.49 ac. - ��� � �i,, �J � � . ��/1i�1 �. �� � � -': ��� � - SUB —BASIN #6 AREA = 6.32 ac. SUB —BASIN #2 AREA = 12.33 ac. � POA �2 i�, 'ti �I P OA � 1 �i SUB —BASIN #1 AREA = 18.07 ac. GRAPHIC SCALE �9 200 0 100 200 400 c 1 inch = 200 ft. � d1f2V 1fT1F2dVdTTN� — N6l'lf' 1I21F'T.1F'A�1F'lf� FGTT2 �"GTN�'lf'lf F • W w ._ � � L � o ° �+ U ��+ a w .. o � Fez W Oa � a ■ �+ �' � dz� .� v� x a+ U ■ ■� � 0 � � � o �+ A v � a �� � � �� W � . za O o W E" o z x�� p U rd ;5 � ��m 0 W� �' W�� � U] �' c� W o z `° z w z 0 w a a a w z O z � O � Z � Z U O � O A �z �-+ � w � a w U M� Z W A a a PROJECT N0. KRG -12000 FILENAME: KRG12000 -PRE DESIGNED BY: BI DRAWN HY: BI SCALE: 1 �� =200 DATE: 05 -22 -2012 SHEET N0. w �� � � � 1 !lam?" �tt'R,..�_._'^'. ._ , t'�," , �- _ ,. �'�' =""';4.. _. _..a:��.,. r. I - ,- _ _�,. • �r" - SUB —BASIN l0A `� � _ AREA = 14.07 ac. . �. �. i .. - - .. .. �i - .. - � - POA 10 - - .. n . ,. . ;. . x , .. � _. ,. ;rs ■ a.g.� _; � - - , - �� - .... _ -. .- '.p. ";1 'al �>�� ,�... .�._ SUB —BASIN #9 �:.. - �` - -.� AREA = 12.16 ac. ;. - .. _ _. ... - _ - _. - ... • • SUB —BASIN 8 ,.�� � � :��xb •� .. �:�'.... ,- .. .�i.. �' - �, , '.; .. -,:. .- - AREA 3.54 ac. �•�� �; ; ' ..:'. . .._ . . .- ,� ..•.. -. . .. �. :� �yy y ^Xi- �- ���:.. `' F _ -- a '�c , .- •: P OA 8 ,. ; .. - — ... �,:. SUB BASIN #7 .. .. ��: �::� :;�-^ �' �� .. �G � AREA = 10.6 7 a c . � � .. � � .. .: .. ..., - �= eta.. .� e, r'��t•- �.s � .r M1 .{- •�� .os., r; $- �... S�s.�F:t'' � T/� � 4"o- � � .q� SUB —BASIN l OB, - � y�� �/1 � T ,� AREA = 6.18 ac. : �= �':�� - �,.�� - �,� ...��. .. . - -.. - . `.�, ,'fir ,•� -, '1 : _ �`�'� ,s.` I� � � � ¢. .... ij. _ �`. ',ti { V',• r - ,� ... :. � � �s �n � � _ . .���: = u�yW � SUB BASIN 6 � � ' . - ;��:�. �•w. ��� �� . - AREA = 6.32 ac. E �. t.� - ti5� � y; ;r, � � � - ice:::`° �; � - .� • epath �±" �:" ' � :�_ _ .� - �.. �� �, . ��' - -p4.� �,� Y:�.- �- _ ;a � , . tP' � ��� � :� SUB BASIN 2 � , - -- - . :.� _ .Y�� �� - i � _ � :;';.: • . `�. � AREA — 12.33 ac. �� .. , . � ; - � ky { �^ � f ix . '� � f � Titi `:� •'�' .� "•�r��,i � Imo. C� 'SG t�� � � � - �,�,{, � f - (� . 4� ,• "; is ti �F. ,�� ,� � - � +� _ -�"rF �e�" . �` �:: SUB —BASIN #11 t:;�., � ,:_; �- �:�:: �.,��, •' � � ..- � -Y.�,� ,.� �'.7 �� to �. t� a , _ _ r .W � � Y - �•.�., -�t, �. AREA — 12.66 ac. �• �. ,.�;�`�'�,�,,�� �,� '�.'�.''. � ��:. � .�° ; ~�� " rc .. =;.ti. �. ,w >�::. .. .� �s - � �Y: :F � POA 2 �r . .� ��; � �� . Tj � � T ..E. '�� ql]'�,. L " +'' y may,, s6. , M { X ,.S'sue � �. � � ..$ , ` + " ` j, :: — 0.e, .,� `.� .i�•'�� :.� .N '; :�$� r -..r. �.�,. - - �'s . . SUB BASIN 12 � A '♦ � x �`"' �• ��� '� �- � AREA = 3 47 ac ]]����• 1•� � � _:4 ..��; � ^��� :�; � _� _�� -.� f _ � � � � � . . Y � F L. '. '$ Y.'' T � F' ,tir k ;. . - 'i ,, .�.t .. �. :: j� -- .r. . . .. I k �- .. .. y, . .. - .. '. ,� _ .. _ �. � •: .. w. ...... -- . -. .- .- : .. .. 'tom 4 .. - � �. �i �@ J= ..� • J �.,. p� , � rR [' "lam 'S -. -.-�l� ' '�Y' - �. ` .: :. R '_ s,: ,., , :...� +� Ira ai�. r �- -a � - -. �' - �` � .a.- `R^ �.. .aS Vii. � : 4 � �Yy �: S �� SUB BASIN 1 ri`* ti �('` 3 ''�: �.:. G ,.�.. - _ �, '�=� _ .. ,� �3 �,�. 1:':' • \' �'� F �. .� � -y� _ � AREA 18.07 ac. �.:;. i '4 :. • " .. . • r. �r .. :•: �. . w' r �, y' .` ,b �: • A ?' -.... ,. .... ::�. -::. -- y;. .- .. , ., .� - .. ,,, , . .. , . .; .� :.� s:�r �, �': w 4 c ).. ,y' . - .. _- - �' r. • �^ , �� �r .: �" .. '� - �1 � �: .:. .. r ,7 -�-Y. ..c . � .. " .. � �.. >, �4"s� � . P•. - .:�... '. �n �¢ .�. t. Y:. •5 � �„ - � r. ' L � wI �'� -.x Y _ , . .� � V ^3 R. -• . -7 J - �� 1'�. �'..,. �. ..^ s'. �\ •k P � i - �; w-i•�. - t .c _ F 'rti � ''�: -� .i :. �.- y:. "f h � '; �: �'' iG •� - 'a.:... -1k.. �:.L:: � �' � '� �� _ �. ..�...;: r -. - . :� � �� - �>. - �. ..� 4 Y r � � x TT�� - - �1 � f - — y�P � �-. F .r `.K; � a - - .. �+ - `.d �;�. r SUB BASIN 3 �.4 �. �: s ���� � AREA 29.93 ac. ,�r -. '�'� k. y � yy _,. ., "4 � - k �:, �} �. _ �: � XI ,.:� ` - � i �� �. - �� �,, � •�.. .�� ■ �: ���: � - '� �, . r.� , �x ,.�. .� . .Y `_ . •,• ♦ _ �• .e ,:�. .�:w.. r` � -:•x � i F 4 ��•� POA 4 .a. , A L - � � a t t � � • `r. ' ♦ �.;% s: �•` 5%. ���� �. - :� I �• u - �:;.. ;�,: ��.: '� ��` �� � � ..� _ I. �.• v. i. _ :a:. �F � � n �. . 1 ..;; 4 ,. �• F � - �` ♦ , ,, r � r . ,�'� • � ��' �� >�. � � ,� _ �- � ;� ♦ � . ti , r <�, �� =�: :, �. � !� F .: �s � - :, �, ::Y . ♦ _ � _ !, :: ,� ' � m: .� *. x� ,..: .., i .� i� 4 \ �: •� ]y i 41 '�' � ,. � - ,�, .�y A �� ■. �' -' .. �r � i _ .� � � _ . _ , • _ SUB BASIN 4 �, r.. _ y � 1 ;' ._3 u ..'.Z ? a - ¢� � a � :1 �`'�. � .... � 1! k � - �- x. r5. i .{'tti�- - +! .. ' 1 . ' i � :�r:. �. — trid'�':.��" �: �:. �. -: :: AREA 1.44 ac. ,F. . ,. ,: e - �, • a . . R, ,. . • - • � - • .,., `� .:. J, .. '. ,^ :... r _ . -. . �.� - � Y a. i #�� ! i.� VII •. •• ,; ., ,. , ,:k.....: ... _,�, °,.x;,.,'::, III► H� � '� 'w � `� - ,r'' r ° ti .. I� VII�IIIIIIIIIIIIIIIIIII�II . P OA 5 _ _ ��� L •Y •:�: Z.. ��. .:� , ,• .. L •� � � - �^ - - .� wr j�s..- Q �y. �� • ... .. .. ... y S �� r � -1 • •�: 4 �. �.: .�:. :�i+ �d Mme' 7 a �. s . - I� .. � • ^.. .:.. .. .. .... - e.. =4. �� - '"a W . f� . •r ,. #. n '`K ' '�- - Y°�:, rte. -.. �.. 4 .. • ., - � '� � � r SUB —BASIN 5 .:� `�� �. � �� � � '"`.',` - - # �� _ �; r � E ,. �� _ � - 4 �' �� AREA 7.49 ac. - �� � �£ .� _ ,�� .� � ��' ,. -:�.. :� .. a:, x :� _. � ��, :;� ;� :� ��� - ., - "- F � � ' y� r r � ' ' MS . ... .. t }F I n ' 1 i ' ..�, :. ' ' �. �:: �-• - ',... ... - .�5 r . , ' "� _, .: .: - • n.: .. n -:;' G... r- ''' " � I �� x �.., '` .�.�:: � x {erg � iJ . ��.... l �•. :� � 5 � - �ZY VY�. 1 .i!'� ��at+. � r� y n .trr ` ' � - � �:w= -,�,. ` "� `� : �. � GRAPHIC SCALE .•` ... •�� �• �r � r �.. _. _ •r., z 4' r' 4' ' Y. � \�� •'M e. �ryr, ,_ is �:�' - :� .� • �oo o ioo 20 •�` � .. - - �� . � �. �� - ;Y � - �F K k ..,� . 4.r : �.J. -..�.: - -: . �. • f. ,�• -J � S � �� �. �.� .. 4 .3 . � '/ ,�c - n . ':r , r• . . ti ,. �- k p y.. - �. 4 3 4. � � I l.: F .. - r` ' �,. . . ::. . ... ,.� r. _ . ... �. . -r • :..2: .- , .. ... •:.: w r' .. -� . _ .. w. a. ,. .. ._ ._ _ _ .._ .. ,_ �_- ., , ;�< '`�;>� �'� 1 inch 200 ft. r �` - 'B - § t Y 4 : t w,_ , � t _ - - �. 's.. �, r ;. ;:. .. �. . .. :, F _ r ..� 1 r i' F' s• r C�� z IH � � O 0 U Q.I �'j W .. o �eF-I�z w Oa `� a ■ a'+ �' y � �z� � a ��. � o ��� � � �A �'� .� Ri W � � a .� � � �� �' � Z a a� O w E-1 b z x�� p U rd :5 � ��m 0 p" w`�� � P: c:+ � � � W o z `° z W W � a z O O � 1, _ I O F �� W a O V U � U Z --+ P� A O O 0 �z W F U a Q F--�i �� � W A �WNr� !� a a PROJECT N0. KRG -12000 FILENAME: KRG12000 —PRE DESIGNED BY: BI DRAWN HY: BI SCALE: /1 1 1 =200 DATE: — 05 22 -2012 SHEET N0. PRE �� � � � 1 PARKS TOWN COMMONS KRG -12000 PRE - DEVELOPMENT ,_ __ DROLOGY SUMMARY Onsite Area [acres] Offsite Area [acres[ Total Area Sub -basin ID Transportation `Non- transportation; Transportation, Non-transportation [acres] Impervious Impervious Open Wooded ;; Pond Total Impervious Impervious Open i Wooded Pond Total 0.00 0.00 0.01 15 71 0 00 15 7� 0 22 0.00 1 64 0 49 0 00 2 35 18.07 0.00 0.00 0.06 12.27 0.00 12.33 0.00 0.00 0.00 0.00 0.00 0.00 12.33 0.13 0.00 2.59 25.74 0.32 r 28.78 0.73 0.00 ! 0.42 : 0.00 0.00 1.15 3. 29.93 0.00 0.00 0.47 0.38 0.00 0.85 0.37 0.00 ' 0.22 ; 0.00 ! 0.00 r 0 59 4 1.44 0.00 0.00 0.66 4.12 0.00 4.78 0.56 0.00 1 69 0.46 0.00 i 2 71 7.49 0.00 0.00 0.00 6.27 0.00 ' 6.27 , 0.00 1 0.00 0.00 0.05 0.00 ` 0.05 6.32 0.00 0.00 0.00 10.63 0.00 10.63 0.00 - 0 00 0 00 0 04 : 0 00 0 04 10.67 0.00........._.. _ _ .._0.00 � - - --. -_ __ 0.00 3.54 -__ _ . _, _, _ ____... ___ _ . _ ,_____._ . __.- . _., _ 54 0.00 3.54 0.00 0.00 0.00 ; 0.00 : 0.00 0 00 r 3.54 0.19 0.00 0.19 11.78 : 0.00 12.16 0.00 0.00 0.00 0.00 ; 0.00 0.00 3 12.16 10A 0.00 0.00 1.86 8.29 ' 0.00 10.15 2.27 0.00 1A4 0.21 0.00 3.92 14.07 10B 0.00 0.00 0.00 0.00 ; 0.00 0.00 0.00 0.00 1.61 4.57 - 0.00 6.18 6.18 11 0.11 0.00 0.75 11.00 0.00 ' 11.86 0.38 0.00 • 0.42 0.00 0.00 0.80 3 12.66 12 0.16 0.15 1.63 0.49 0.00 ; 2.43 0.76 0.00 0.28 , 0.00 0.00 1.04 3.47 r Totals = 0.15 -- 110.22 __ 119.50 5.29 0.00 7.72 5.82 0.00 18.83 ? 138.33 1 B. IHN. _,YA, PE 6/7/2012 0.59 PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre- development - Subbasin #1 6/7/2012 I. SCS CARVE NUMBERS Assume: HSG A Impervious 98 Open 39 Wooded 30 B 98 61 51.4% C 98 � 70 D 98 80 77 Cover Condition Wooded II. PRE - DEVELOPMENT A. Watershed Breakdown HSG'A' = 0.0% HSG'B' = 0.0% HSG'C'= 48.6% HSG'D' = 51.4% S CN Comments 77 __.... T Assume good condition 74 Assume eood condition Total area = 18.07 acres Comments Contributing Area SCS CN Area [acres] 74 Onsite transportation impervious 98 0.00 T _ Onsite nontransportation impervious 98 0.00 ** *Time of concentration is calculated using the SCS Segmental Approach (TR -55). Onsite open _ 77 _ 0.01 —_ Assume good condition Onsite wooded 74 15.71 Assume good condition _ _ Onsite pond _ ..___._ 100____ –._._ 0.00 ft/ft Offsite transportation imnervious__ 98 0.22 P (2- year /24 -hour) = Offsite nontransPortation impervious 98 0.00 - Offsite open _ 77 1.64 Assume good condition Offsite wooded 74 0.49 Assume good condition_ _._i4 and .__ 100 0.00 - Total area = 18.07 acres ft 0.0282 sq.mi. Composite SCS CN = 74 0.1214 % Impervious = 1.2% No B. Time of Concentration Information Velocity = 5.63 ** *Time of concentration is calculated using the SCS Segmental Approach (TR -55). Segment 1: Overland Flow 0.53 minutes Length = 100.0 ft Height = 4.12 ft Slope = 0.0412 ft/ft Manning's n = 0.40 Woods -Light Underbrush P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Segment Time = 15.49 minutes Segment 2: Concentrated Flow Length = 179.2 ft Height = 21.75 ft Slope = 0.1214 ft /ft Paved ? = No Velocity = 5.63 ft/sec Segment Time = 0.53 minutes PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre- development - Subbasin #1 6/7/2012 Segment 3: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = 870.9 ft 39.56 ft 0.0454 ft/ft 0.045 Natural Channel 4.00 sf (Assume 2'x 2' Channel) 6.00 ft (Assume 2'x 2' Channel) 5.39 ft/sec 2.70 minutes Time of Concentration = 18.71 minutes SCS Lag Time = 11.23 minutes (SCS Lag = 0.6* Tc) Time Increment = 3.26 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG-12000 Pre-development - Subbasin #2 1. SCS CURVE NUMBERS HSG A Tm Open Wooded 0 30 B 98 61 55 C 98 74 70 D 98 80 77 Assume: HSG'A'= 0.0% ft Height = HSG'B'= 0.0% Slope = Onsite transportation impervious HSG'C'= 17.2% No Onsite nontransportation impervious HSG'D'= 82.8% ft/sec Cover Condition 79 SCS CN Comments Impervious 76 98 As Open 100 79 Assume good condition Wooded 98 76 Assume good condition 11. PRE-DEVELOPMENT A. Watershed Breakdown Contributing Area j SCS CN I Area [acres] ft Height = 16.83 ft Slope = Onsite transportation impervious 98 0.00 No Onsite nontransportation impervious 98 0.00 ft/sec Onsite open 79 0.06 As Onsite wooded 76 12.27 As Onsite pond 100 0.00 Offsite transportation impervious 98 0.00 Offsite nontransportation impervious 98 0.00 Offsite open 79 0.00 I As Offsite wooded 76 0.00 Offsite pond L_-j-___ 100 0.00 Total area = 12.33 acres 0.0193 sq.mi. Composite SCS CN = 76 % Impervious = 0.0% B. Time of Concentration Information ***Time of concentration is calculated using the SCS Segmental Approach (TR-55). Segment 1: Overland F/mv Length = 100.0 ft Height = 2.1 ft Slope = 0.0210 ft/ft Manning's n = 0.40 Woods-Light Underbrush P (2-year/24-hour) = 3.45 inches (Wake County, NQ Segment Time = 20.28 minutes Comments to good condition ie good condition ie good condition ie good condition B. IHNATOLYA, PE 6/7/2012 Segment 2: Concentrated Flow Length = 211.0 ft Height = 16.83 ft Slope = 0.0798 ft/ft Paved ? = No Velocity = 4.56 ft/sec Segment Time = 0.77 minutes PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre - development - Subbasin #2 6/7/2012 Segment 3: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = 719.81 ft 39 ft 0.0542 ft/ft 0.045 Natural Channel 4.00 sf (Assume 2'x 2' Channel) 6.00 ft (Assume 2'x 2' Channel) 5.88 ft/sec 2.04 minutes Time of Concentration = 23.09 minutes SCS Lag Time = 13.85 minutes (SCS Lag = 0.6* Tc) Time Increment = 4.02 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre- development - Subbasin #3 6/7/2012 I. SCS CURVE NUMBERS Assume: HSG Impervious Open Wooded A 98 39 30 B 98 61 _ C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG 'B' = 0.0% HSG'C'= 0.0% HSG'D' = 100.0% 80 Assume good condition Wooded 77 Assume good condition II. PRE- DEVELOPMENT A. Watershed Breakdown Contributing Area SCS CN7Area [acres] Comments Onsite transportation impervious �l 98 T 0_.13_ - Onsite nontransportation impervious 98 0.00 _ Onsite openv_ 80 2.59 Assume good condition Onsite wooded _.. .- 77 m25.74 Assume good condition Onsite pond 100 0.32 0.40 Offsite transportation impervious 98 _.__-_ _._— _.- ..__-_...- 0.73 ._..__.._.___. ___..._..___.._- .___...._..____ __........___ _ Offsit_e nontransportation impervious _ 98� 0.00 Velocity = _Offsite open 80 0.42_ - Assume good condition wooded 77_ 0.00 Assume good condition _ _Offsite _ - Offsite one d� 100 0.00 yp Total area = Composite SCS CN = % Impervious = B. Time of Concentration Information ** *Time of concentration is calculated using the S 29.93 acres 0.0468 sq.mi. 78 2.9% CS Segmental Approach (TR -SS) Segment 1: Overland Flow Segment 2: Concentrated Flow Length = 100.0 ft Length = 223.3 ft Height = 2.60 ft Height = 19.90 ft Slope = 0.0260 ft/ft Slope = 0.0891 ft/ft Manning's n = 0.40 Woods -Light Underbrush Paved ? = No P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Velocity = 4.82 ft/sec Segment Time = 18.62 minutes Segment Time = 0.77 minutes PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre - development - Subbasin #3 6/7/2012 Segment 3: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = Time of Concentration = 23.62 minutes SCS Lag Time = 14.17 minutes (SCS Lag = 0.6* Tc) Time Increment = 4.11 minutes (= 0.29 *SCS Lag) Segment 4: Channel Flow 631.6 ft Length = 718.7 ft 13.23 ft Height = 22.77 ft 0.0209 ft/ft Slope = 0.0317 ft/ft 0.045 Natural Channel Manning's n = 0.045 Natural Channel 9.00 sf (Assume 3' x 3' Channel) Flow Area = 9.00 sf (Assume 3' x 3' Channel) 9.00 ft (Assume 3' x 3' Chamlbl$tted Perimeter = 9.00 ft (Assume 3' x 3' Channel) 4.79 ft/sec Channel Velocity = 5.89 ft/sec 2.20 minutes Segment Time = 2.03 minutes Time of Concentration = 23.62 minutes SCS Lag Time = 14.17 minutes (SCS Lag = 0.6* Tc) Time Increment = 4.11 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Pre- development - Subbasin #4 L SCS CURVE NUMBERS HSG A Impervious 98 Open 39 Wooded 30 0.0% 61 100.0% C 98 80 _ _ . 70 _._.. D _ .__ _ 98 80 _ 77 Assume: HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 0.0% HSG'D' = 100.0% _ Cover Condition _ SCS CN Comments M, Impervious N -- ,- ___..._.._..__ Open _ .__._ _.. 80 _ Ass_ume good condition Wooded 77 Assume good condition II. PRE - DEVELOPMENT A. Watershed Breakdown Contributing Area SCS CN Area [acres] impervious_ 98 0.00 O_Onsit_e_transpo_rtation nsite nontransportation impervious 98� 0.00 Onsite open 80 0.47 Onsite wooded 77 0.38 _ _. Onsite pond 11.86 _Off_site transportation impervious m 98 (� 0.37 Offsite nontran portation impervious 98 i 0.00 Offsite men 80 0.22 Offsite _woo_ded ­___ 77 0.00 r„ Offsitepond. _T 0.00 Total area = 1.44 acres 0.0023 sq.mi. Composite SCS CN = 84 % Impervious = 25.7% B. Time of Concentration Information ** *Time of concentration is calculated using the SCS Segmental Approach (TR -55). Segment 1: Overland Flow Length = 100.0 ft Height = 6.5 ft Slope = 0.0650 ft/ft Manning's n = 0.36 Dense Grasses/Woods P (2- year /24 -hour) = 3.45 inches (RDU, NC) Segment Time = 11.86 minutes Comments Assume good condition Assume good condition Assume good condition Assume good condition B. IHNATOLYA, PE 6/7/2012 Segment 2: Concentrated Flow Length = 139.5 ft Height = 12 ft Slope = 0.0860 ft/ft Paved ? = No Velocity = 4.73 ft/sec Segment Time = 0.49 minutes Time of Concentration = 12.35 minutes SCS Lag Time = 7.41 minutes (SCS Lag = 0.6* Tc) Time Increment = 2.15 minutes = 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre- development - Subbasin #5 6/7/2012 L SCS CURVE NUMBERS Assume: HSG Impervious Open Wooded A B 98 98 39 61 30 55 C 98 74 70 D 98 80 77 Cover HSG'A' = 0.0% HSG'B'= 0.0% HSG'C'= 0.0% HSG'D'= 100.0% - Wooded II. PRE-DEVELOPMENT A. Watershed Breakdown Contributing Area Onsite transportation impervious Onsite_n_on_trans_portation imperviou Onsite open m. Onsite wooded Offsite,open Offsite wooded 98 80 Assume good condition 77 Assume good condition SCS CN Area [acres] a 98 �..98 - - -- 0.00 _..._._..0.00._._.. ._go____ 80 % Impervious = 7.5% - 77 4.12 100 0.00 Manning's n = X 0.56 -- �98 98 _ 0.00 -. .__._._._ 80 _.._.___._. -__.__ L69 77 0.46 Total area = 7.49 acres ft 0.0117 sq.mi. Composite SCS CN = 80 % Impervious = 7.5% B. Time of Concentration Information ** *Time of concentration is calculated using the SCS Segmental Approach (TR -55) Comments Assume good condition Assume ggood condition Assume good condition Segment 1: Overland Flow 100 ft Length = 100 ft Height = 4.54 ft Slope = 0.0454 ft/ft Manning's n = 0.36 Dense Grasses /Woods P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Segment Time = 13.69 minutes Segment 3: Channel Flow Length = 100 ft Height = 4 ft Slope = 0.0400 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 4.00 sf (Assume 2'x 2' Channel) Wetted Perimeter = 6.00 ft (Assume 2'x 2' Channel) Channel Velocity = 5.05 ft /sec Segment Time = 0.33 minutes Segment 2: Concentrated Flow Length = 98.4 ft Height = 7.96 ft Slope = 0.0809 ft/ft Paved ? = No Velocity = 4.60 ft /sec Segment Time = 0.36 minutes Segment 4: Channel Flow Length = 251.4 ft Height = 12 ft Slope = 0.0477 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 4.00 sf (Assume 2'x 2' Channel) Wetted Perimeter = 6.00 ft (Assume 2'x 2' Channel) Channel Velocity = 5.52 ft /sec Segment Time = 0.76 minutes PARKSME TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre- development - Subbasin #5 6/7/2012 Time of Concentration = 15.14 minutes SCS Lag Time = 9.08 minutes (SCS Lag = 0.6* Tc) Time Increment = 2.63 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Pre- development - Subbasin #6 I. SCS CURVE NUMBERS Assume: HSG A Impervious 98 Open 39 Wooded 30 HSG'C'= 73.1% 61 _ _M C _ 98 _._ 70J_ D _ 98 80 77 Cover Condition Wooded II. PRE - DEVELOPMENT A. Watershed Breakdown HSG'A' = 0.0% HSG'B' = 0.0% HSG'C'= 73.1% HSG'D' = 26.9% Onsite nontransportation impervious SCS CN 98 0.00 - — _— ------- _ 72_ Assume good condition Assume good condition Contributing Area SCS CN Area [acres] Comments Onsite transportation impervious 100 ft Length = 579.1 ft Onsite nontransportation impervious 98 0.00 - Onsite open 76 0.00 Assume good condition _.� Onsite wooded 72 6.27 Assume good condition Onsite pond 100 0.00 � µ Offsite tranortation impervious _ _.___ _. Offsite nontransportation impervious 98 98 0.00 0.00 O_ffsite open 76_ 0.00 Assume good condition Offsite wooded_ �` _ Offsite 72 100 _0.05 _ _ 0.00 me g000ndition Assu d c ��, ��� pond � Total area = 6.32 acres 0.0099 sq.mi. Composite SCS CN = 72 % Impervious = 0.0% B. Time of Concentration Information ** *Time of concentration is calculated using the SCS Segmental Approach (TR -55) B. IHNATOLYA, PE 6/7/2012 Segment 1: Overland Flow Segment 2: Concentrated Flow Length = 100 ft Length = 579.1 ft Height = 2.4 ft Height = 43.1 ft Slope = 0.0240 ft/ft Slope = 0.0744 ft/ft Manning's n = 0.40 Woods -Light Underbrush Paved ? = No P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Velocity = 4.41 ft/sec Segment Time = 19.23 minutes Segment Time = 2.19 minutes PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Pre- development - Subbasin #6 B. IHNATOLYA, PE 6/7/2012 Time of Concentration = 21.42 minutes SCS Lag Time = 12.85 minutes (SCS Lag = 0.6* Tc) Time Increment = 3.73 minutes = 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG-12000 Pre-development - Subbasin #7 1. SCS CURVE NUMBERS HSG A mpervious 98 Open 39 Wooded 30 B 98 61 55 C 98 74 70 D 98 80 77 Assume: HSG'A'= 0.0% Height = HSG'B'= 0.0% Slope = HSG'C'= 22.1% Manning's n = HSG'D'= 77.9% Cover Condition SCS CN Comments Impervious Segment Time = 98 Open 79 _.-Assunie good condition Wooded 75 Assume good condition 11. PRE-DEVELOPMENT A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite transportation impervious 98:____ Onsite nontransportation impervious a 98 0.00 Onsite open 79 0.00 ---- Assume good condition Onsite wooded 75 10.63 Assume good condition Onsite pond e 100 0.00 Offsite transportation i 98 0.00 iM_PTD29uS___ - - ------- Offsite jnontr4nsp iRri impervious_ 98 0.00 .qqa( jTy�L Offsite open _0_. 0 Assume good condition ---- ------- ....... Offsite wooded 75 i 0.04 Assume good condition Offsite pond 100 "o Total area = 10.67 acres 0.0167 sq.mi. Composite SCS CN = 75 % Impervious = 0.0% B. Time of Concentration Information *Time of concentration is calculated using the SCS Segmental Approach (TR-55). Segment 1: Overland Flow Length = 100 ft Height = 4.35 ft Slope = 0.0435 ft/ft Manning's n = 0.40 Woods-Light Underbrush P (2-year/24-hour) = 3.45 inches (Wake County, NQ Segment Time = 15.16 minutes Segment 2: Co, Length = Height = Slope = Paved ? = Velocity = Segment Time = B. IHNATOLYA, PE 6/7/2012 7centrated 177.9 19.65 0.1105 No 5.37 0.55 1710w ft ft ft/ft ft/sec minutes PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre - development - Subbasin #7 6/7/2012 Segment 3: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = 613 ft 35 ft 0.0571 ft/ft 0.045 Natural Channel 2.00 sf (Assume 2'x F Channel) 4.00 ft (Assume 2' x P Channel) 4.98 ft/sec 2.05 minutes Time of Concentration = 17.76 minutes SCS Lag Time = 10.65 minutes (SCS Lag = 0.6* Tc) Time Increment = 3.09 minutes (= 0.29 *SCS Lag) PARKSME TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre - development - Subbasin #8 6/7/2012 I SCS CURVE NUMBERS HSG I Impervious O Open W Wooded _ A d 9 98 3 39 _ _30 Assume: HSG'A'= 0.0% HSG'B'= 0.0% HSG'C'= 0.0% HSG'D'= 100.0% Cover Condition SCS CN Wooded II. PRE - DEVELOPMENT A. Watershed Breakdown Contributing Area Onsite transportation impen Onsite nontransportation impe .._.- Onsite open _ __. _Offsite qpen_ Offsite wooded Total area = Composite SCS CN = % Impervious = 77 Comments _Assume good condition Assume Qood condition SCS CN Area nacres) 98 _ 0.00 _._. 98 0.00 80 0.00 77 ` 3.54 0.00 0.00 .�. 80 0.00 77 - --0.00 -. 100 0.00 3.54 acres 0.0055 sq.mi 77 0.0% B. Time of Concentration Information ** *Time of concentration is calculated using the SCS Segmental Approach (TR -55) Comments Assume good condition Assume good condition As_s - um e good condition Assume eood condition Segment 1: Overland Flow Length = 100 ft Height = 9.9 ft Slope = 0.0990 ft/ft Manning's n = 0.40 Woods -Light Underbrush P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Segment Time = 10.91 minutes Segment 3: Channel Flow Length = 138.6 ft Height = 17.5 ft Slope = 0.1263 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 2.00 sf (Assume 2'x 1' Channel) Wetted Perimeter = 4.00 ft (Assume 2'x I' Channel) Channel Velocity = 7.41 ft /sec Segment Time = 0.31 minutes Segment 2: Concentrated Flow Length = 121.4 ft Height = 22.6 ft Slope = 0.1862 ft/ft Paved ? = No Velocity = 6.97 ft /sec Segment Time = 0.29 minutes Segment 4: Channel Flow Length = 111.8 ft Height = 15 ft Slope = 0.1342 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 2.00 sf (Assume 2'x 1' Channel) Wetted Perimeter = 4.00 ft (Assume 2'x P Channel) Channel Velocity = 7.64 ft /sec Segment Time = 0.24 minutes 3.54 acres 0.0055 sq.mi 77 0.0% B. Time of Concentration Information ** *Time of concentration is calculated using the SCS Segmental Approach (TR -55) Comments Assume good condition Assume good condition As_s - um e good condition Assume eood condition Segment 1: Overland Flow Length = 100 ft Height = 9.9 ft Slope = 0.0990 ft/ft Manning's n = 0.40 Woods -Light Underbrush P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Segment Time = 10.91 minutes Segment 3: Channel Flow Length = 138.6 ft Height = 17.5 ft Slope = 0.1263 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 2.00 sf (Assume 2'x 1' Channel) Wetted Perimeter = 4.00 ft (Assume 2'x I' Channel) Channel Velocity = 7.41 ft /sec Segment Time = 0.31 minutes Segment 2: Concentrated Flow Length = 121.4 ft Height = 22.6 ft Slope = 0.1862 ft/ft Paved ? = No Velocity = 6.97 ft /sec Segment Time = 0.29 minutes Segment 4: Channel Flow Length = 111.8 ft Height = 15 ft Slope = 0.1342 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 2.00 sf (Assume 2'x 1' Channel) Wetted Perimeter = 4.00 ft (Assume 2'x P Channel) Channel Velocity = 7.64 ft /sec Segment Time = 0.24 minutes Segment 3: Channel Flow Length = 138.6 ft Height = 17.5 ft Slope = 0.1263 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 2.00 sf (Assume 2'x 1' Channel) Wetted Perimeter = 4.00 ft (Assume 2'x I' Channel) Channel Velocity = 7.41 ft /sec Segment Time = 0.31 minutes Segment 2: Concentrated Flow Length = 121.4 ft Height = 22.6 ft Slope = 0.1862 ft/ft Paved ? = No Velocity = 6.97 ft /sec Segment Time = 0.29 minutes Segment 4: Channel Flow Length = 111.8 ft Height = 15 ft Slope = 0.1342 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 2.00 sf (Assume 2'x 1' Channel) Wetted Perimeter = 4.00 ft (Assume 2'x P Channel) Channel Velocity = 7.64 ft /sec Segment Time = 0.24 minutes Segment 2: Concentrated Flow Length = 121.4 ft Height = 22.6 ft Slope = 0.1862 ft/ft Paved ? = No Velocity = 6.97 ft /sec Segment Time = 0.29 minutes Segment 4: Channel Flow Length = 111.8 ft Height = 15 ft Slope = 0.1342 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 2.00 sf (Assume 2'x 1' Channel) Wetted Perimeter = 4.00 ft (Assume 2'x P Channel) Channel Velocity = 7.64 ft /sec Segment Time = 0.24 minutes Segment 4: Channel Flow Length = 111.8 ft Height = 15 ft Slope = 0.1342 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 2.00 sf (Assume 2'x 1' Channel) Wetted Perimeter = 4.00 ft (Assume 2'x P Channel) Channel Velocity = 7.64 ft /sec Segment Time = 0.24 minutes PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre- development - Subbasin #8 6/7/2012 Time of Concentration = 11.75 minutes SCS Lag Time = 7.05 minutes (SCS Lag = 0.6* Tc) Time Increment = 2.05 minutes = 0.29 *SCS La PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre- development - Subbasin #9 6/7/2012 I SCS CURVE NUMBERS Assume: a HSG fm- ervious Open Wooded _ A 98 39 30 w _ 11/11 _ 98_ 74 P (2- year /24 -hour) = D 98 80 77 HSG'A'= 0.0% HSG'B'= 0.0% HSG'C'= 0.0% HSG'D'= 100.0% Cover Wooded IL PRE - DEVELOPMENT - A. Watershed Breakdown Contributing Area Onsite Onsite open Onsite wooded Offsite open Offsite wooded Total area = Composite SCS CN = % Impervious = S CN Comments 80 Assume good condition 77 Assume good condition SCS CN Area [acres] 98 0.19_ _ 98,.__.__.. _ 0.00 77 11.78_,_ 100 0.00 98 �0.00 0.00 80 0.00 77 0.00 „ 100¢0.00 12.16 acres 0.0190 sq.mi. 77 1.6% B. Time of Concentration Information ** *Time of concentration is calculated using the SCS Segmental Approach (TR -55) Comments Assume good condition Assume good condition Assume good con dition T Assume good condition „ Segment 1: Overland Flow 196.9 ft Length = 100 ft Height = 6.9 ft Slope = 0.0690 11/11 Manning's n = 0.40 Woods -Light Underbrush P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Segment Time = 12.60 minutes Segment 3: Channel Flow Length = 196.9 ft Height = 15 ft Slope = 0.0762 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 2.00 sf (Assume 2'x P Channel) Wetted Perimeter = 4.00 ft (Assume 2'x 1' Channel) Channel Velocity = 5.76 ft /sec Segment Time = 0.57 minutes Segment 2: Concentrated Flow Length = 217.1 ft Height = 21.6 ft Slope = 0.0995 JIM Paved ? = No Velocity= 5.10 fl/sec Segment Time = 0.71 minutes Segment 4: Channel Flow Length = 374.9 ft Height = 24 ft Slope = 0.0640 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 2.00 sf (Assume Tx I' Channel) Wetted Perimeter = 4.00 ft (Assume 2'x 1' Channel) Channel Velocity= 5.28 ft/sec Segment Time = 1.18 minutes PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B.IHNATOLYA, PE KRG -12000 Pre- development - Subbasin #9 6/7/2012 Time of Concentration = 15.07 minutes SCS Lag Time = 9.04 minutes (SCS Lag = 0.6* Tc) Time Increment = 2.62 minutes = 0.29 *SCS La PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Pre- development - Subbasin #I OA L SCS CURVE NUMBERS HSG A Impervious 98 Open 39 Wooded 30 B 98 61 55 C 98 74 0 D - 98 80 7 Assume: HSG'A' = 0.0% Comments HSG'B' = 0.0% 0.00 HSG'C' = 0.0% 98 HSG'D' = 100.0% Cover Condition SCS CN Comments _ Impervious Assume good condition 98 - _ _. 80 Assume good condition w _Open Wooded ... 0.00 77 Assume good condition II. PRE - DEVELOPMENT A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite transportation impervious 98 0.00 Length = 544 ft Onsite nontransportation impervious 98 0.00 - Onsite open 80 1.8._.__ Assume good condition f _ Onsite wooded 77 8.29 _ NmmmAssume good condition Onsite. °_. _.. ._. _...v. 100. ... 0.00 - Offsite transportation impervious 98 2.27 - Offsite nontransportation impervious 98 0.00 - Offsite open 80 1.44 Assume good condition Offsite wooded 0.21 Assume good condition _ z Offsite pond _ _77 _ 100 _ _ 1 0.00 Total area = 14.07 acres 0.0220 sq.mi. Composite SCS CN = 81 % Impervious = 16.1% B. Time of Concentration Information ** *Time of concentration is calculated using the SCS Segmental Approach (TR -55). B. IHNATOLYA, PE 6/7/2012 Segment 1: Overland Flow Segment 2: Concentrated Flow Length = 100 ft Length = 544 ft Height = 5.2 ft Height = 66 ft Slope = 0.0520 ft/ft Slope = 0.1213 ft/ft Manning's n = 0.40 Woods -Light Underbrush Paved ? = No P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Velocity = 5.63 ft/sec Segment Time = 14.11 minutes Segment Time = 1.61 minutes PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Pre - development - Subbasin #I OA B. IHNATOLYA, PE 6/7/2012 Time of Concentration = 15.72 minutes SCS Lag Time = 9.43 minutes (SCS Lag = 0.6* Tc) Time Increment = 2.74 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Pre - development - Subbasin #10B I. SCS CURVE NUMBERS Assume: HSG A Impervious 98 Open 39 Wooded 30 HSG'C' = 0.0% 61 C._ 98 mm 0.0180 _w 70 w 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 0.0% HSG'D' = 100.0% SCS CN Wooded __..77_.__ II. PRE - DEVELOPMENT A. Watershed Breakdown Contributing Area Onsite transportation impervio Onsite nontransportation impery -� Onsite open _Onsite wooded_ Onsite pond Off site transportation im Offsite nontran�ortation i Offsite_o_p_en Offsite_wooded Offsite pond Total area = Composite SCS CN = % Impervious = Assume good condition Assume good condition SCS CN Area [acres] 0. 6.18 acres 0.0097 sq.mi. 78 0.0% 98 Length = -0.00 _ p98 100 ft 80 1.8 0.00 _.__.77_._- 0.0180 0.00 100 0.40 0.00 98 3.45 0.00 ��..98 21.57 minutes 80 77 4.57 100 0.00 B. Time of Concentration Information ** *Time of concentration is calculated using the SCS Segmental Approach (TR -55). Comments Assume good_ condition Assume good condition Assume good condition Assume good condition Segment 1: Overland Flow Length = 273.8 Length = 100 ft Height = 1.8 ft Slope = 0.0180 ft/ft Manning's n = 0.40 Woods -Light Underbrush P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Segment Time = 21.57 minutes B. IHNATOLYA, PE 6/7/2012 Segment 2: Concentrated Flow Length = 273.8 ft Height = 36.1 ft Slope = 0.1318 ft/ft Paved ? = No Velocity = 5.87 ft/sec Segment Time = 0.78 minutes PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre- development - Subbasin #IOB 6/7/2012 Segment 3: Channel Flaw Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity= Segment Time = 86.9 ft 4 ft 0.0460 ft/ft 0.045 Natural Channel 4.00 sf (Assume 2'x 2' Channel) 6.00 ft (Assume 2'x 2' Channel) 5.42 ft/sec 0.27 minutes Time of Concentration = 22.62 minutes SCS Lag Time = 13.57 minutes (SCS Lag = 0.6* Tc) Time Increment = 3.94 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Pre- development - Subbasin #11 I. SCS CURVE NUMBERS HSG A Impervious 98 Open 39 Wooded 30 _ _ _ B _ 98 61 55 M 0.00 - 98 74 70 D - 98 80 77 Assume: HSG'A' = 0.0% Onsite transportation impervious_ 98 HSG'B' = 0.0% 98 M 0.00 - HSG'C' = 0.0% 0.75 Assume good condition Onsite wooded HSG'D' = 100.0% Onsite pond __..._ , Cover Condition Offsite transportation iervious98 SCS CN Comments Impervious._ 98 0.00 µ - Offsite open Offsite wooded Open _ 0.42M y M - T Assume good condition 0.00 Assume good condition 80 Assume good condition_ Wooded i 77 Assume good condition II. PRE- DEVELOPMENT A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite transportation impervious_ 98 � 0.11 _ Onsite nontransportation impervious 98 M 0.00 - Onsite open 80 0.75 Assume good condition Onsite wooded 77 11.00 Assume good condition Onsite pond __..._ , 100 ._._ 000.__..,.__ Offsite transportation iervious98 Segment Time = 0.38_ - Offsite nontraortation impervious 98 0.00 µ - Offsite open Offsite wooded 80 0.42M y M - T Assume good condition 0.00 Assume good condition 7 Offsite pond _77 1000.00 Total area = 12.66 acres 0.0198 sq.mi. Composite SCS CN = 78 % Impervious = 3.9% B. Time of Concentration Information ** *Time of concentration is calculated using the SCS Segmental Approach (TR -55). Segment 1: Overland Flow Length = 147.3 Length = 100 ft Height = 2.9 ft Slope = 0.0290 ft/ft Manning's n = 0.40 Woods -Light Underbrush P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Segment Time = 17.82 minutes B. IHNATOLYA, PE 6/7/2012 Segment 2: Concentrated Flow Length = 147.3 ft Height = 8.6 ft Slope = 0.0584 ft/ft Paved ? = No Velocity = 3.91 ft/sec Segment Time = 0.63 minutes PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre- development - Subbasin #11 6/7/2012 Segment 3: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = 747.1 ft 37 ft 0.0495 ft/ft 0.045 Natural Channel 4.00 sf (Assume 2'x 2' Channel) 6.00 ft (Assume 2'x 2' Channel) 5.62 ft/sec 2.21 minutes Time of Concentration = 20.67 minutes SCS Lag Time = 12.40 minutes (SCS Lag = 0.6* Tc) Time Increment = 3.60 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Pre- development - Subbasin #12 I. SCS CURVE NUMBERS- HSG A Impervious 98 Open 39 Wooded 30 61 _ C 98 70 D 98 80 77 B. IHNATOLYA, PE 6/7/2012 Assume: HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 0.0% HSG'D' = 100.0% Cover Condition SCS CN Comments _ - ____._._..__....._._.Impervious ...____._ 98 - __ 80 Assume good condition m m Wooded 77 Assume good condition IL PRE- DEVELOPMENT A. Watershed Breakdown _� Contributing Area SCS CN Area [acres] Comments _Onsite transportation impervious 98 _ _ 0.16 _ _Onsite nontransportahon impervious 98 0.15 - Onsite open 80 1.63 Assume good condition Onsite wooded 77T 0.49 Assume good condition Onsite pond _ 100 0.00 - _ Offsite tran�rt oation impervious _ _ 98 0.76_ _._____..___.� _._.._�..____._.._ ............. .._.._ Offsite nonh•ansportathon impervious 98 0.00 - y Offsite open _80 0.28 Assume good condition Offsite wooded_ _ _ 77 0.00 _ Assu_me good condition Offsite pond q� _.__. Total area = 3.47 acres 0.0054 sq.mi. Composite SCS CN = 85 % Impervious = 30.8% B. Time of Concentration Information ** *Time of concentration is calculated using the SCS Segmental Approach (TR -55). Segment 1: Overland Flow Segment 2: Concentrated Flow Length = 100 ft Length = 194.1 ft Height = 1.7 ft Height = 14.3 ft Slope = 0.0170 ft/ft Slope = 0.0737 ft/ft Manning's n = 0.40 Woods -Light Underbrush Paved ? = No P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Velocity = 4.39 ft /sec Segment Time = 22.07 minutes Segment Time = 0.74 minutes PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Pre - development - Subbasin #12 6/7/2012 Segment 3: Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = 241.8 ft 18 ft 0.0744 ft/ft 0.045 Natural Channel 2.00 sf (Assume 2' x P Channel) 4.00 ft (Assume 2'x 1' Channel) 5.69 ft/sec 0.71 minutes Time of Concentration = 23.52 minutes SCS Lag Time = 14.11 minutes (SCS Lag = 0.6* Tc) Time Increment = 4.09 minutes (= 0.29 *SCS Lag) • - r - - • • POA #10 POA tt9 ssc> PoA an POA #11 sue 1: 5v9C3 POA #12 P AO SUS12 POA #3 POA #6 SUB03 'J ^c�6 POA #4 POA N2 SUB04 SU &32 POA a6 POA #i aUBOf SUB05 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 5/22/2012 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, C7 06795 USA t1- 203 -755 -1666 Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) W /s) (years) (ac -ft) SUB01 Pre - Development 1- 1 1.227 731.000 14.14 Year SUB01 Pre- Development 2- 2 1.803 731.000 21.45 Year SUBO1 Pre- Development 5- 5 2.746 731.000 31.53 Year SUB01 Pre- Development 10- 10 3.528 731.000 39.39 Year SUB02 Pre - Development 1- 1 0.940 733.000 9.82 Year SUB02 Pre - Development 2- 2 1.355 733.000 14.51 Year SUB02 Pre - Development 5- 5 2.027 733.000 20.94 Year SUB02 Pre - Development 10- 10 2.579 733.000 25.96 Year SUB03 Pre-Development 1- 1 2.550 734.000 27.23 Year SUB03 Pre - Development 2- 2 3.612 734.000 39.00 Year SUB03 Pre - Development 5- 5 5.311 734.000 54.80 Year SUB03 Pre - Development 10- 10 6.698 734.000 67.06 Year SUB04 Pre - Development 1- 1 0.168 726.000 2.62 Year SUB04 Pre - Development 2- 2 0.226 726.000 3.48 Year SUB04 Pre - Development 5- 5 0.318 726.000 4.53 Year SUB04 Pre - Development 10- 10 0.390 726.000 5.32 Year SUB05 Pre - Development 1- 1 0.712 729.000 9.91 Year SUB05 Pre - Development 2- 2 0.992 729.000 13.73 Year SUB05 Pre - Development 5- 5 1.435 728.000 18.64 Year SUB05 Pre - Development 10- 10 1.793 728.000 22.39 Year SUB06 Pre - Development 1- 1 0.379 734.000 3.88 Year SUB06 Pre- Development 2- 2 0.569 734.000 6.09 Year SUB06 Pre - Development 5- 5 0.883 732.000 9.23 Year SUB06 Pre - Development 10- 10 1.146 732.000 11.76 Year Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V81 Parkside.ppc Center [08.11.01.51] 6/7/2012 27 Siemon Company Drive Suite 200 W Page 1 of 5 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Master Network Summary Catchments Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) (years) (ac -ft) SUB07 Pre - Development 1- 1 0.769 731.000 9.25 Year SUB07 Pre - Development 2- 2 1.119 730.000 13.79 Year SUB07 Pre - Development 5- 5 1.689 730.000 19.99 Year SUB07 Pre - Development 10- 10 2.159 730.000 24.81 Year SUB08 Pre - Development 1- 1 0.287 727.000 4.36 Year SUB08 Pre - Development 2- 2 0.409 727.000 6.24 Year SUB08 Pre - Development 5- 5 0.607 726.000 8.72 Year SUB08 Pre - Development 10- 10 0.769 726.000 10.64 Year SUB09 Pre - Development 1- 1 0.983 729.000 13.30 Year SUB09 Pre - Development 2- 2 1.405 729.000 19.13 Year SUB09 Pre - Development 5- 5 2.083 728.000 26.88 Year SUB09 Pre - Development 10- 10 2.638 728.000 32.87 Year SUB10A Pre - Development 1- 1 1.408 729.000 19.39 Year SUB10A Pre - Development 2- 2 1.946 729.000 26.60 Year SUB10A Pre- Development 5- 5 2.793 729.000 35.74 Year SUB10A Pre- Development 10- 10 3.475 729.000 42.66 Year SUB10B Pre - Development 1- 1 0.527 733.000 5.76 Year SUB10B Pre - Development 2- 2 0.746 733.000 8.26 Year SUB106 Pre- Development 5- 5 1.097 733.000 11.60 Year SUB1013 Pre - Development 10- 10 1.383 733.000 14.18 Year SUB11 Pre- Development 1- 1 1.080 733.000 12.44 Year SUB11 Pre - Development 2- 2 1.529 733.000 17.73 Year SUB11 Pre - Development 5- 5 2,249 731.000 24.80 Year SUB11 Pre- Development 10- 10 2.835 731.000 30.31 Year Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center (08.11.01.51] 6/7/2012 27 Siemon Company Drive Suite 200 W Page 2 of 5 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Master Network Summary Catchments Summary Label Scenario (min) Pre - Development 1- SUB12 (ac -ft) Year 1 Pre - Development 2- SUB12 4.76 Year 0.567 734.000 Pre - Development 5- SUB12 0.789 Year 8.22 10 Pre - Development 10- SUB12 9.68 Year Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) (years) (ac -ft) 1 0.423 734.000 4.76 2 0.567 734.000 6.30 5 0.789 734.000 8.22 10 0.966 734.000 9.68 Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) (years) (ac -ft) POA #1 Pre - Development 1- 1 1.227 731.000 14.14 Year POA #1 Pre- Development 2- 2 1.803 731.000 21.45 Year POA #1 Pre - Development 5- 5 2.746 731.000 31.53 Year POA #1 Pre - Development 10- 10 3.528 731.000 39.39 Year POA #2 Pre- Development 1- 1 0.940 733.000 9.82 Year POA #2 Pre - Development 2- 2 1.355 733.000 14.51 Year POA #2 Pre - Development 5- 5 2.027 733.000 20.94 Year POA #2 Pre - Development 10- 10 2.579 733.000 25.96 Year POA #5 Pre - Development 1- 1 0.712 729.000 9.91 Year POA #5 Pre - Development 2- 2 0,992 729.000 13.73 Year POA #5 Pre - Development 5- 5 1.435 728.000 18.64 Year POA #5 Pre - Development 10- 10 1.793 728.000 22.39 Year POA #4 Pre - Development 1- 1 0.168 726.000 2.62 Year POA #4 Pre - Development 2- 2 0.226 726.000 3.48 Year POA #4 Pre - Development 5- 5 0.318 726.000 4.53 Year POA #4 Pre - Development 10- 10 0.390 726.000 5.32 Year POA #3 Pre - Development 1- 1 2.550 734.000 27.23 Year Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 6/7/2012 27 Siemon Company Drive Suite 200 W Page 3 of 5 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Master Network Summary Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) (years) (ac -ft) POA #3 Pre - Development 2- 2 3.612 734.000 39.00 Year POA #3 Pre - Development 5- 5 5.311 734,000 54.80 Year POA #3 Pre - Development 10- 10 6.698 734.000 67.06 Year POA #6 Pre- Development 1- 1 0.379 734.000 3.88 Year POA #6 Pre - Development 2- 2 0.569 734.000 6.09 Year POA #6 Pre - Development 5- 5 0.883 732.000 9.23 Year POA #6 Pre - Development 10- 10 1.146 732.000 11.76 Year POA #7 Pre - Development 1- 1 0.769 731.000 9.25 Year POA #7 Pre - Development 2- 2 1,119 730.000 13.79 Year POA #7 Pre - Development 5- 5 1.689 730.000 19.99 Year POA #7 Pre - Development 10- 10 2.159 730,000 24.81 Year POA #8 Pre - Development 1- 1 0.287 727.000 4.36 Year POA #8 Pre- Development 2- 2 0.409 727.000 6.24 Year POA #8 Pre - Development 5- 5 0.607 726.000 8.72 Year POA #8 Pre - Development 10- 10 0.769 726.000 10.64 Year POA #9 Pre - Development 1- 1 0.983 729.000 13.30 Year POA #9 Pre - Development 2- 2 1.405 729.000 19.13 Year POA #9 Pre - Development 5- 5 2.083 728.000 26.88 Year POA #9 Pre - Development 10- 10 2.638 728.000 32.87 Year POA #10 Pre - Development 1- 1 1.935 730.000 24.55 Year POA #10 Pre - Development 2- 2 2.693 729.000 34.05 Year POA #10 Pre - Development 5- 5 3.890 729.000 46.39 Year POA #10 Pre - Development 10- 10 4.859 729.000 55.80 Year POA #11 Pre - Development 1- 1 1.080 733.000 12.44 Year Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Parkside.ppc Center [08.11.01.51] 617/2012 27 Siemon Company Drive Suite 200 W Page 4 of 5 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Master Network Summary Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) (years) (ac -ft) POA #11 Pre - Development 2- 2 1.529 733.000 17.73 Year POA #11 Pre - Development 5- 5 2.249 731.000 24.80 Year POA #11 Pre - Development 10- 10 2.835 731.000 30.31 Year POA #12 Pre - Development 1- 1 0.423 734.000 4.76 Year POA #12 Pre - Development 2- 2 0.567 734.000 6.30 Year POA #12 Pre - Development 5- 5 0.789 734.000 8.22 Year POA #12 Pre - Development 10- 10 0.966 734.000 9.68 Year Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 6/7/2012 27 Siemon Company Drive Suite 200 W Page 5 of 5 Watertown, CT 06795 USA +1- 203 - 755 -1666 POST - DEVELOPMENT HYDROLOGIC CALCULATIONS PARKSIDE TOWN COMMONS KRG -12000 r- \\ \ --- , ,,' /',' ��\��� J " „� `� \"I - -'\ \> � l ',I\'\ I IIII I [ / -\�\\- _ \ - -__ I /, //i/ / > / / > ` '\ \ \ \\ ` /, / - \ - -'// ,/ \ \\ \ I \,1\ 1, 1 r / //, 1 \ \ \ V`\ti /\\\\\\,�1-�-------7--- / / -- -_ )ii \ \\ \ \ \ \y,J,�., � `,� 111;1\ / / \ \ \ \ \ \atON V,' /, / , , / - -/� ///, v A �/Y- - - �/ I , , AA'v�vvvv / I° , ,v I v A v vv A I / , , / / / , - - _- v A / I // _ ---- - v A v - / / I I 1 vv -,/ / vA A "Itl I � �� / v A A A vvv i - _ / - , Ib - v / I / \ \ v /, , / / / - '� - v, / v r - vvv -/ / , v\ / v �rct/ /,[ vv r/ i/, I / v A \vy -" -' , , / / / / - -, i ,, =Ill v v l %,7%- ��,,` /i_= - --� . _� ; ``:-" /// / , �'�' r v A V 1 ;� - �, / /II 1'1 - - - -�/ //'/ /',',' /' -- -v A A A v v 1111 -�� -- -A �� V'� Avv_�v����v,'� // /�j I, `v v v ` 1 1 1 1 1 A 1,I,VVV�\, v ` - - - -- �' / / / ,I / ---- ',/ , , , / / V A v v� 1 , , ,/, - l v - v��vv vA // /(, // %,, ^v v A A A I I I 1 > V III I A VvA // '/ '/ - - -- / - \\ \ \ 11 1 :\ II / /,,, / , '� \ \ \ I I I I I 1 \ \ \ \, i / , / // \ \I/ , ,- \ /li- - \ 1 \ \\ / , / /, - ', , , / \ \ \ 1111,,- _x\11\ I,,,.� \ 1 / 11\,1 % '�\ \ \ I I I I I I \ \ \ \ \ \` \\ \ - - -- ^i ,, / / / / / / _ \ \,,�: _ -- � \ x'--11 -% /,l r \ \ , , IIIIII \ I , , \ - - - / / // / - S , /, / / , _1\ \ )III i/ ,,\ - \� \� \\ lIl` it \ '1114 '- - \ \, \ \ \ \ \ \\ \ \` \\ `\ I III �� - -_ �'' / / / IIII / , / / ' / / / I - - �\ \ - \ \\ ���� \ -- /,%/i'� -\ \ \ \ \ \ , \ \ \ \ \ \ \ \ \ \ \\ \\ `\ I -- _ \ \\\ �\`__ \ \ \ \ \\ \ \ I / / / / - - , v v v- -- A A A V A \ v A AA , ` v V I A /' / -r' / / / , / , r - - v A - - v � -_ _ w V `v , A v v v v vvv l v v `v v A I I v `l V`: v / / / / / / , __ v vvv - ^ v v v I 1 1 A 1 A A v v - -------- _- , / / / / / / 1 f / _ - -_ - AA v vv � A - - -- v v \ v I l I\ � 1 A \V I A � I l l AV , A A\ A A\ \ > l \ l V vv vv Av�� ,- ' , - A / 1 I ( tom- _______ vA ` , v v A- v v V A 1 v , v v Ivv __ v ' AI \ vv v v11 vvv - ------ - - - `/ / II ,' \ \ \ I , 1 11 ' - - -- �\ \ r -\ - \ \� , \\ \ \ \\ `\ \ \ \ \\ 1 \ \ \ / \ \ \\ \\ \1 \ \ \ \ \\ \ \ \ l I \& \ \ -- / , , A v / �` v A A V v A 1 A V A , V A V A l A V A A I I , vv . - v v v /� -- : -� v V v v v v \ v, \, 1, „ v A v v A f / --77:77-77-:� _- ----_v ,/ V , , /^ / - - A \ V 1 1 A V A A V, ( 1 I I I I /, ,� vvv 1 - \ \vv A 1,, /v.y� - - -- - -- , - \ \ � \ \ \ \ \ I \ \ \ I I \ \ I \\� V �A V A A A , I v v V A V v ,\ V A� A 1 I , I I \\ V A \ V A A V A A A A,, A V A\ , A I I� , - - - -- - v , v C v I- v v v\ l I I 1 1 v/ \, v I , I �� ,,- __,,���__ ,' - - v v A A \ A \ \ ' ` \ ``; A A V v A AV v� A \ V A A I A A ` V A r V A v A V 1 1, \, r '1 , 1 A \, 1\ A V I I AA� \\V, "I;,v \ / -, = -__ / ------ - �`\ ` ^\ \ ` ` A V A ' ` \ A ' V A A A 1\ A \ V A I 1 A ,- A , , I V, 1 I A A \ I A A \ \ I V /I \`\ V • ,__ - A A A A 1 v I ' v,.v V v v A , A V A I I I 1 1 I l 1, A,,, V A A I\ 1 A , I I I AAA,I , l`��, A -- - -- v v v v v v vv v v 1 v 11 I' vv vv v v `v v\ v v vv , 1 ; 1 � \ I I I vv\ ,', 1 v I v I , A v v ,, V v, v v\ 1 1 111 I I \II( /v vy�� v -\ ', , -- -\V A 2\ \V A A A A V A I A A A A A V A A A V A A \, A ` V 1 A \ V A I 1 A \ / - -- v v v I I v \ v v v v v \ `I 1 1, 1,A 11 1 I „` 1 1 1 vv(, )vv \S,I / --- - - - -,v \ I, v v A v v I I v v vv v v v v vA \ v vvI / 1, A 1 III 'v =vP t/ y� ✓ \ „ v \ _` \ v 1 A, 1 , 1 ,,I1 I, ,lvv , /,, -- \ \-'' , / �� - A A AV A V A A r , I V A v, A AV ) A \V `V ` A\ V A\ \ , V 1 / I I I , \V A I I A ' // v / S , - - - -\ \\ \ \ < \ \ \ \ \ \ \ \ \ \ \ I \ v v ^v v v \vvv l, ,v, �„ „1 )/ -- - - -- - - - \ \ r \ I \ _ - - -- , /,/ - -- v v v z v v \ \ v v v v v v A A „III 1 1 1 1 / lln� ^ �:,. - - -- __ „// -- vvvv \ \vvvA I Iv vv v vA vvv v \vvv A vv v, v.vI rl 1[Ij1 II I(,I "I - -' \v > »>, - -- - - - - -- - / /, V ; - \ V A A V , A I A \ V I A \ V I V A\ A A V A A V A V V A I A A \ A I I I I A v I I v yvv \ 1 \ \ \ \ \ \ \ \ \ \ \ \ , 1 I \ \ \ \ \ I, \ , 1 I \ \ \ \ , \ \ \ \ 1 \\ I I I I I I 1 I I I 1 , / / ' '\ �,, /,•,,, ��,.\ ��\ \ \ ,/ --------- - - - , , / -- - -\ \ \ \ \ \ \ I \ \ \ I \ \ \ \ / I IIII I I I I 1 1 I I I 1 , / ; I - --`\';� \ - ^/ - - - -, \ \ \ \ \ \ \ \ \\ \ \ \ \\I , \ I I I I I I I 1 I I I 1 ;' "111,1, ! -, III -.l\ \ - \�\ //J \ \\ ` \ 1 \ \ \111\ \ \1 \ IIIIIIIIII 111j ' % /� /;l/ /111 ` \�`�\ \ \ \ \ ,\ I ,I III I I I %// \\ \. '- - \ \ \ \ \ \ \\ \\ \ ` \ \\ `\ \ \\ \ \ \ I I , 1 1 I I I , I I 1 1 1 ' i,' /;/ '`i,'',' \\ - -- GRAPHIC SCALE - - - -� -- - -�- ,_;',;,, / 1 v v v \vvv ^v v v v v v v \vvvv A °I 1 1 , // v / / / , ) , I v v v v vv v -v II \ , A , r I I I I I I -,/ /,,- vv �`I, A I 100 0 50 100 200 - -- _ - �' '', vv v` 1 v I , \\ v v v v`v v - \ v v v v t „ 1 v I I v r 1 1 1 1 1 / v v , r '/, , - -- / // / / /' / \ \v v �„ ``vv �, ,v��` , „ \ v .vvA vv11 1v111 11j1 v vvv "/, „'� yy`:v� - \ \ I \\ \ \\ \ \\ , \` \\ \ \I„ \ \\ \ /1111111 , I III I 1 1111 // / - \ \`,\ I IIIIIIIIIIIIIIIIIIIII 15iiiiiiiiii -- - -- - - ''% `\ \ \ \ \ - ` \ \ \ \ \\ \ \\ \ \ I\ l 1 , 1 1 r1 11 \ ` /' /' < / // / /// / ; - - �' /' /'' / /, - -- _ �\ \ \ \ \ \ \ \ \\ \ 11111 \ \\ /„ \ 1 inch = 100 ft. \ -_ _ -__- ,/\ \ \\ \\ \ \\ \ \ \ \ \ ; -- \\ \\ \\ \ \\ \\ ` \ \ \\ ` \ \\ \\ ` \ I\ `\ \ f \\ \ III l l \ \ \\ \ \ \ , \// j / / / __.�\ \\ \\ \\ // / / , , 1Vvvvvv\v -- - ;�11`vvA v ,v�`� , „A� �`�` v 11 vv <<1v1vly\ - ,'1111 / ,; _�' v`Iv\v�Avvvv - - - -- - -, %,�yvv� `;vv�„� v„ �v \ v v V v v I I ",vv\ v v v A v v y1 \\I\\ v \� -'; ' /'/ /,', ,' /, vw���w ♦♦ -- - ,, vvv vAv- `w� v A `� vvI v v , , v `v v v v , / I v v V vv v v v v \ v vvvA v v v v v v , , - -- -- , /'' / // / ' / / , ''� - -- A v, �1vvAw�\o I -- - -' /,� v v v vvvv - - l l v v v c Z / V v 1 , v \ V A vv vvvvv A ` v v v \vvvv A v v - ; / / , / / / / ,' / " - \ v v` \v iAy` ` \ -- v - ' / -1`,v vv Av`,'� `v - - - ' A I A \ \ V AA 'V A I A A V A V A A V \ A VA V A V A A V / , / / , , / / , ' , 1AAAA A 1 // , , « vvv, I ' -/, _A A - - _ -- - , V A A A V I A A A V I v V A V v A A V A V 1 I v `v // / �� - -/- - �. -,, /- / / /vim- eL - V- - --,'- , A V A C I A / A A V AA A \ ,\ LV AAA AA \,A \ VA , / , / /,,, V AA,A, -A J �,_- � i / // / / /,, - -- - l _- '/ VAA A A V A v A A , A I 1/ ` \A VAA v v / A \ VAA V l l v V A A v A AI , 1 , 1 v V `v ` v ' 1 ' / / / ' / / , / / / / , r- I I wvv, vv\ v V A v I r , / I v� `vvA / _ --(1/( ,, _- G _ -_ / _ -= ,/ A v v A 1 v\ v v v v\ V A \ v - I v i 1 1 ,// /// I I v v / - - - ' ' // „ //I__�1'_ //l A - -�A /I� I A AA A \ \ I 1 1 J\__ A 1 ( ' , , _ / I I A -I ,-�� - -I I l / / _ _lIr "_ - -- v 1' \ = � ` v v v v - -- - vv `vA `v`� v vv v v v v v v v v A r ', I,', ',', I, I A v v `v w \ v III ' ,' / / / / // 1 v A. - -- // „v // /'= - - -'II - -__'' = %� /, „ "vAv ;, ��v �Vv vvvv \ v v 'v v vvv w v v v v / / / -_/ vv ,v \� -_ �' % �� °',/ i/ / / ^,' // - i v v A �/- v v A A A A V A \ V A v\ V A V A A\ I /,, I v A A A\ V v I IIIIII 1' r /' , 1 vA v v V.v / A V A v v „11,,', A v I I `, �,y /, , -I = -, -/ - - �� v A „ / / J vvv ^ -�� // /// r _ -- - -f V A \vvvv I 1vv`,`I v v -� V v I,, __ ' - - - - -- .,- _,„ / // ,/ /, /,'/,/ /'/ ' ^�� ��/ (- ' I -� A A V A A A, I A �V ` VA V AA A V v A\ V I A \� I A\ A 1, „ A I V A l I I I „ 1// / , , 1 1 I 1` / A A - // l // //,/, /� %1 /- -) //- _' ' v ` i li v A �v vvvv vv vA Av v v II I vvv vv \vvvv v , / /' /i,l I / / / '` / i I /' 111 "� _ _ I I r / / / / / / / I I v o r // ,/, /// A V A I v A A A V A V l / I V - - - v A VA I)1�� - - - - //- A -/ /, , , S //, ' ' /,- -/ -, _ -- - - -- - ��, -- - __„ / A v A 1 I I A A A A 1 I I V / / I 1 / , / / I / l l l l / If \ % vA� v - , - - ' -- , vv I \ v \ / / v v \ v v vv Vv - / r .Ji r> / / / ,, ,/ >, /,� /,, - - i - - v" ' , v c A , ,/ , V v v v v V A v v v v A IIII r A A \ v v ,./ / / /, '' I I / / / I / / / / / A v I \ V A V AAV AA - - -� -� �� ,// / / / - // ,,/,/, // / ' - / - <'''' -'' , I I , ' v v A V A A A , I I l v / / A / vv -y - - - - -- v A , / / / / / /, , - - ' v A A\ \\ V A A \ V \ I I I v v A /' l l l / / /; 1 \1 v ✓ / ✓ 'i ^ v v \vv '' -- I A v v v v J11 I I vv vv / 1 I V I I / /, / I , vv v vvv // % -y vvv \ // <' I 11 1V I ll/ i i r'/ �y�yvvv \ v v vv v\ v� I r N ,/' / / \vv v v I 1 / I / / / vvv `- - - - - -- vvvv v vv v - / s ,- - - , / - - - / ' , I -- - - - - -- :y \v \\ !` V vv vvv 1 X ,a1 / ' / ; / / / I ' I / // / ; PARK. TOWN COMMONS POST-DEVELOPMENT _ DROLOGY SUMMARY B.IHNi, _LYA,PE KRG-12uvJ 9/10/2012 Onsite Area acres I Offsite Area acres Sub-basin ID Total Area Transportation Non-transportation Transportation Non-transportation (acres) Impervious Impervious Open Wooded Pond Total Impervious Impervious Open Wooded Pond Total 1-To SWMF#3 11.13 6.52 5.63 0.11 1.51 24.90 0.20 0.00 2.26 0.00 0.00 2.46 27.36 1-To SWMF#4 2.04 0.32 3.24 0.00 1.40 6.99 0.08 0.01 0.09 0.00 0.00 0.18 7.17 I-Bypass 0.00 0.00 2.59 1.27 0.00 3.86 0.01 0.00 0.98 0.00 0.00 1 0.99 4.85 3-To SWMF#1 3.02 2.45 1.63 0.00 0.54 7.64 0.94 0.01 0.11 0.00 0.00 1.06 8.70 3-To SWMF#2 1.83 0.27 1.17 1.93 0.28 5.48 0.00 0.00 0.00 0.00 0.00 0.00 5.48 3-Bypass 1.12 0.20 2.50 4.60 0.00 8.42 0.26 0.00 0.00 0.00 0.00 0.26 8.68 4 0.00 0.00 0.26 0.00 0.00 0.26 0.42 0.04 0.08 0.00 0.00 0.54 1 0.80 5 0.00 0.00 0.78 0.00 0.00 0.78 0.58 1 0.01 1.03 0.00 1 0.00 1.62 2.40 Totals= 19.14 9.75 17.80 7.91 3.73 58.34 2.49 0.07 4.55 0.00 0.00 7.11 65.45 PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Post- development- Subbasin #1- To SWMF #3 9/10/2012 Assume: HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 18.2% HSG'D' = 81.8% Cover Condition SCS CN Comments Im ervious 98 98 Open 79 Assume good condition Wooded 76 Assume good condition A. Watershed Breakdown Measured Onsite Transportation Impervious = 10.60 acres Additional 5% Onsite Transportation Impervious = 0.53 acres Total Onsite Transportation Impervious = 11.13 acres Measured Onsite Nontransportation Impervious = 6.21 acres Additional 5% Onsite Nontransportation Impervious = 0.31 acres Total Onsite Nontransportation Impervious = 6.52 acres Contributing Area SCS CN Area [acres] Comments Onsite transportation impervious 98 11.13 - Onsite nontransportation impervious 98 6.52 - Onsite open 79 5.63 Assume good condition Onsite wooded 76 0.11 Assume good condition Onsite pond 100 1.51 - Offsite transportation impervious 98 0.20 - Offsite nontrans ortation impervious 98 0.00 - Offsite open 79 2.26 Assume good condition Offsite wooded 76 1 0.00 Assume good condition Offsite 2ond 100 0.00 - Total area = 27.36 acres 0.0428 sq.mi. Composite SCS CN = 93 % Impervious = 65.2% B. Time of Concentration Information Time of concentration was conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.87 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Post- development- Subbasin #1 -To SWMF #4 9/10/2012 Assume: HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A'= 0.0% HSG'B'= 0.0% HSG'C' = 33.8% HSG'D' = 66.2% Cover Condition SCS CN Comments Impervious 98 - Open 78 Assume good condition Wooded 75 Assume good condition Measured Onsite Transportation Impervious = 1.94 acres Additional 5% Onsite Transportation Impervious = 0.10 acres Total Onsite Transportation Impervious = 2.04 acres Measured Onsite Nontransportation Impervious = 0.3 acres iditional 5% Onsite Nontransportation Impervious = 0.02 acres Total Onsite Nontransportation Impervious = 0.32 acres A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite transportation impervious 98 2.04 - Onsite nontransportation impervious 98 0.32 - Onsite open 78 3.24 Assume good condition Onsite wooded 75 0.00 Assume good condition Onsite pond 100 1.40 - Offsite transportation impervious 98 0.08 - Offsite nontrans ortation impervious 98 0.01 - Offsite open 78 0.09 Assume good condition Offsite wooded 75 0.00 Assume good condition Offsite and 100 0.00 - Total area = 7.17 acres 0.0112 sq.mi. Composite SCS CN = 89 % Impervious = 34.0% B. Time of Concentration Information Time of concentration was conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Post- development - Subbasin #1- Bypass Assume: HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 52.2% HSG'D' = 47.8% Cover Condition SCS CN Comments Impervious 98 98 Open 77 Assume good condition Wooded 73 Assume good condition A. Watershed Breakdown B. IHNATOLYA, PE 9/10/2012 Contributing Area SCS CN Area [acres] Comments Onsite transportation impervious 98 0.00 - Onsite nontransportation impervious 98 0.00 - Onsite open 77 2.59 Assume good condition Onsite wooded 73 1.27 Assume good condition Onsite pond 100 0.00 - Offsite transportation impervious 98 0.01 - Offsite nontrans ortation impervious 98 0.00 - Offsite open 77 0.98 Assume good condition Offsite wooded 73 0.00 1 Assume good condition Offsite pond 100 0.00 1 - Total area = 4.85 acres 0.0076 sq.mi. Composite SCS CN = 76 % Impervious = 0.2% B. Time of Concentration Information Time of concentration was conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.87 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Post- development- Subbasin #3 -To SWMF #1 9/10/2012 Assume: HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 0.0% HSG'D' = 100.0% Cover Condition SCS CN Comments Impervious 98 - Open 80 Assume good condition Wooded 77 Assume eood condition zi< rtsT DEUi+;Lb�m>ErIT A. Watershed Breakdown Measured Onsite Transportation Impervious = 2.88 acres Additional 5% Onsite Transportation Impervious = 0.14 acres Total Onsite Transportation Impervious = 3.02 acres Measured Onsite Nontransportation Impervious = 2.33 acres Additional 5% Onsite Nontransportation Impervious = 0.12 acres Total Onsite Nontransportation Impervious = 2.45 acres Contributing Area Onsite transportation impervious SCS CN 98 Area [acres] 3.02 Comments - Onsite nontransportation impervious 98 2.45 73.8% Onsite open 80 1.63 Assume good condition Onsite wooded 77 0.00 Assume good condition Onsite pond 100 0.54 - Offsite trans ortation impervious 98 0.94 - Offsite nontransportation impervious 98 0.01 Offsite open 80 0.11 Assume good condition Offsite wooded 77 0.00 Assume good condition Offsite pond 100 0.00 - Total area = 8.70 acres minutes 0.0136 sq.mi. Composite SCS CN = 95 % Impervious = 73.8% B. Time of Concentration Information Time of concentration was conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Post- development- Subbasin #3 -To SWMF #2 �E Assume: HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG 'B' = 0.0% HSG 'C' = 0.0% HSG'D' = 100.0% Cover Condition SCS CN Comments Impervious 98 98 Open 80 Assume good condition Wooded 77 Assume good condition Measured Onsite Transportation Impervious = Additional 5% Onsite Transportation Impervious = Total Onsite Transportation Impervious = Measured Onsite Nontransportation Impervious = Additional 5% Onsite Nontransportation Impervious = Total Onsite Nontransportation Impervious = A. Watershed Breakdown 1.74 acres 0.09 acres 1.83 acres 0.26 acres 0.01 acres 0.27 acres B. IHNATOLYA, PE 9/10/2012 Contributing Area SCS CN Area [acres] Comments Onsite transportation impervious 98 1.83 - Onsite nontransportation impervious 98 0.27 - Onsite open 80 1.17 Assume good condition Onsite wooded 77 1.93 Assume good condition Onsite pond 100 0.28 - Offsite transportation impervious 98 0.00 - Offsite nontrans ortation impervious 98 0.00 - Offsite open 80 0.00 Assume good condition Offsite wooded 77 0.00 Assume good condition Offsite pond 100 0.00 - Total area = 5.48 acres 0.0086 sq.mi. Composite SCS CN = 87 % Impervious = 38.3% B. Time of Concentration Information Time of concentration was conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Post- development - Subbasin #3- Bypass HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 ssume: HSG 'A' = 0.0% HSG'B'= 0.0% HSG'C' = 0.0% HSG 'D' = 100.0% Cover Condition SCS CN Comments Impervious 98 - Open 80 Assume good condition Wooded 77 Assume good condition A.- POST D�ELOPI;1� i A. Watershed Breakdown Measured Onsite Transportation Impervious = 1.07 acres Additional 5% Onsite Transportation Impervious = 0.05 acres Total Onsite Transportation Impervious = 1.12 acres Measured Onsite Nontransportation Impervious = 0.19 acres Additional 5% Onsite Nontransportation Impervious = 0.01 acres Total Onsite Nontransportation Impervious = 0.20 acres Contributing Area Onsite transportation impervious SCS CN 98 Area [acres] 1.12 Comments - Onsite nontransportation impervious 98 0.20 Onsite open 80 2.50 Assume good condition Onsite wooded 77 4.60 Assume good condition Onsite pond 100 0.00 - Offsite transportation impervious 98 0.26 - Offsite nontransportation impervious 98 0.00 - Offsite open 80 0.00 Assume good condition Offsite wooded 77 0.00 Assume good condition Offsite pond 100 0.00 - Total area = 8.68 acres 0.0136 sq.mi. Composite SCS CN = 82 % Impervious = 18.2% B. IHNATOLYA, PE 9/10/2012 PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Post - development - Subbasin #3- Bypass 9/10/2012 R. Time of Concentration Information *Time of concentration is calculated using the SCS Segmental Approach (TR -55). Segment 1: Overland Flow 200 ft Segment 2: Concentrated Flow Length = 100 ft Length = 179.8 ft Height = 3.78 ft Height = 15.68 ft Slope = 0.0378 ft/ft Slope = 0.0872 ft/ft Manning's n = 0.40 Woods -Light Underbrush Paved ? = No 9.00 P (2- year /24 -hour) = 3.45 inches (Wake County, NC) Velocity = 4.77 ft/sec Segment Time = 16.03 minutes Segment Time = 0.63 minutes Segment 3: Channel Flow minutes Segment Time = 0.24 Segment 4: Channel Flow Length = 177.9 ft Length = 239.1 ft Height = 14 ft Height = 8 ft Slope = 0.0787 ft/ft Slope = 0.0335 ft/ft Manning's n = 0.045 Natural Channel Manning's n = 0.045 Natural Channel Flow Area = 2.00 sf (Assume 2'x 1' Channel) Flow Area = 4.00 sf (Assume 2' x 2' Channel) Wetted Perimeter = 4.00 ft (Assume 2'x 1' Channel)Wetted Perimeter = 6.00 ft (Assume 2'x 2' Channel) Channel Velocity = 5.85 ft /sec Channel Velocity = 4.62 ft/sec Segment Time = 0.51 minutes Segment 5: Channel Flow Length = 200 ft Height = 2 ft Slope = 0.0100 ft/ft Manning's n = 0.013 Assume 24" RCP Culvert Flow Area = 3.14 sf (Assume 24" RCP) Wetted Perimeter = 6.28 ft (Assume 24" RCP) Channel Velocity = 7.22 ft/sec Segment Time = 0.46 minutes Segment Time = 0.86 minutes Segment 6: Channel Flow Length = 47.9 ft Height = 8 ft Slope = 0.1670 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 4.00 sf (Assume 2' x 2' Channel) Wetted Perimeter = 6.00 ft (Assume 2'x 2' Channel) Channel Velocity = 10.33 ft/sec Segment Time = 0.08 minutes Segment 7. Channel Flow Segment 8: Channel Flow Length = 39.5 ft Length = 61.8 ft Height = 2 ft Height = 1 ft Slope = 0.0506 ft/ft Slope = 0.0162 ft/ft Manning's n = 0.045 Natural Channel Manning's n = 0.045 Natural Channel Flow Area = 4.00 sf (Assume 2'x 2' Channel) Flow Area = 9.00 sf (Assume Y x 3' Channel) Wetted Perimeter = 6.00 ft (Assume 2'x 2' Channel)Wetted Perimeter = 9.00 ft (Assume 3' x 3' Channel) Channel Velocity = 5.69 ft /sec Channel Velocity = 4.21 ft/sec Segment Time = 0.12 minutes Segment Time = 0.24 minutes Time of Concentration = 18.93 minutes SCS Lag Time = 11.36 minutes (SCS Lag = 0.6* Tc) Time Increment = 3.29 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Post- development - Subbasin #4 9/10/2012 Assume: HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG'B' = 0.0% HSG'C' = 0.0% HSG'D' = 100.0% Cover Condition SCS CN Comments Impervious 98 - Open 80 Assume good condition Wooded 77 Assume good condition A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite transportation impervious 98 0.00 - Onsite nontransportation impervious 98 0.00 - Onsite open 80 0.26 Assume good condition Onsite wooded 77 0.00 Assume good condition Onsite pond 100 0.00 - Offsite transportation impervious 98 0.42 - Offsitc nontrans ortation impervious 98 0.04 - Offsite open 80 0.08 Assume good condition Offsite wooded 77 0.00 Assume good condition Offsite pond 100 0.00 _ - Total area = 0.80 acres 0.0013 sq.mi. Composite SCS CN = 90 % Impervious = 57.5% B. Time of Concentration Information Time of concentration was conservatively assumed to be 5 minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0:0500 hours Time Increment = 0.87 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Post- development - Subbasin #5 �� � �MW E Assume: HSG Impervious Open Wooded A 98 39 30 B 98 61 55 C 98 74 70 D 98 80 77 HSG'A' = 0.0% HSG 'B' = 0.0% HSG 'C' = 0.0% HSG'D' = 100.0% Cover Condition SCS CN Comments Impervious 98 - Open 80 Assume good condition Wooded 77 Assume good condition A. Watershed Breakdown B. IHNATOLYA, PE 9/10/2012 Contributing Area SCS CN Area [acres] Comments Onsite transportation impervious 98 0.00 - Onsite nontransportation impervious 98 0.00 - Onsite open 80 0.78 Assume good condition Onsite wooded 77 0.00 Assume good condition Onsite pond 100 0.00 - Offsite transportation impervious 98 0.58 - Offsite nontrans ortation impervious 98 0.01 - Offsite open 80 1.03 Assume good condition Offsite wooded 77 0.00 Assume good condition Offsite 2ond 100 1 0.00 - Total area = 2.40 acres 0.0038 sq.mi. Composite SCS CN = 84 % Impervious = 24.6% B. Time of Concentration Information Time of concentration was conservatively assumed to be S minutes. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29 *SCS Lag) PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS KRG -12000 Reaches III. CHANNEI. ;€TEACH ®ATA __> Reach #1- SWMF #1 Channel Flow Length = 289 ft Height = 11 ft Slope = 0.0381 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 9.00 sf (Assume Y x Y Channel) Wetted Perimeter = 9.00 ft (Assume Y x Y Channel) Channel Velocity = 6.46 ft /sec Segment Time = 0.75 minutes Reach #1 Total Time = 0.75 minutes Reach #2- SWMF #2 Channel Flow Length = 352 ft Height = 11 ft Slope = 0.0313 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 9.00 sf (Assume 3' x 3' Channel) Wetted Perimeter = 9.00 ft (Assume Y x 3' Channel) Channel Velocity = 5.85 ft /sec Segment Time = 1.00 minutes Reach #2 Total Time = 1.00 minutes Reach #3- SWMF #3 Channel Flow Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = 85.9 ft 13 ft 0.1513 ft/ft 0.045 Natural Channel 0.50 sf (Assume 0.5'x 1' Channel) 2.00 ft (Assume 0.5' x F Channel) 5.11 ft /sec Segment Time = 0.28 minutes Length = 83.7 ft Height = 3.5 ft Slope = 0.0418 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 4.00 sf (Assume 2'x 2' Channel) Wetted Perimeter = 6.00 ft (Assume 2'x 2' Channel) Channel Velocity = 5.17 ft /sec Segment Time = 0.27 minutes Reach #3 Total Time = 0.55 minutes B. IHNATOLYA, PE 9/10/2012 PARKSIDE TOWN COMMONS HYDROLOGIC CALCULATIONS B. IHNATOLYA, PE KRG -12000 Reaches 9/10/2012 __> Reach #4- SWMF #4 Channel Flow Channel Flow Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = Length = Height = Slope = Manning's n = Flow Area = Wetted Perimeter = Channel Velocity = Segment Time = 78.2 ft 7 ft 0.0895 ft/ft 0.045 Natural Channel 1.00 sf (Assume 1' x 1' Channel) 3.00 ft (Assume F x 1' Channel) 4.76 ft /sec 0.27 minutes 37.5 ft 1.5 ft 0.0400 ft/ft 0.045 Natural Channel 4.00 sf (Assume 2'x 2' Channel) 6.00 ft (Assume 2' x 2' Channel) 5.05 ft/sec Ol12 minutes Reach #4 Total Time = O 40 minutes POA Scenario: Post - Development POA #5 SUB01- BYPASS SUB05 SU601 TOSW'OF-#3 SWMF #4 �vl /P�4 J -1 RF 9Oti POA #1 G� P� J -2 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1- 203 - 755 -1666 SUB03- TOSWh1F #1 POA #4 SUB04 SUB01- TOSWMF #4 POA #5 SUB01- BYPASS SUB05 SU601 TOSW'OF-#3 SWMF #4 �vl /P�4 J -1 RF 9Oti POA #1 G� P� J -2 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Master Network Summary Catchments Summary Label Scenario SUB01- TOSWMF #4 SUB01- TOSWMF #4 SUB01- TOSWMF #4 SUB01- TOSWMF #4 SUB01- TOSWMF #4 SUB01- BYPASS SUB01- BYPASS SUB01- BYPASS SUB01- BYPASS SUB01- BYPASS SUB01- TOSWMF #3 SUB01- TOSWMF #3 SUB01- TOSWMF #3 SUB01- TOSWMF #3 SUB01- TOSWMF #3 SUB05 SUB05 SUB05 SUB05 SUB05 SUB04 SUB04 SUB04 SUB04 Post - Development 1- Year Post - Development 2- Year Post - Development 5- Year Post - Development 10 -Year Post - Development 100 -Year Post - Development 1- Year Post - Development 2- Year Post - Development 5- Year Post - Development 10 -Year Post - Development 100 -Year Post - Development 1- Year Post - Development 2- Year Post - Development 5- Year Post - Development 10 -Year Post - Development 100 -Year Post - Development 1- Year Post - Development 2- Year Post - Development 5- Year Post - Development 10 -Year Post - Development 100 -Year Post - Development 1- Year Post - Development 2- Year Post- Development 5- Year Post- Development 10 -Year Return Event (years) 1( 10( 1( IN 1( 10( 1( 10( 1( Hydrograph Time to Peak Peak Flow Volume (min) MIN (ac -ft) 1.059 721.000 22.70 1.379 721.000 28.62 1.865 721.000 35.22 2.245 721.000 40.35 3.600 721.000 53.06 0.372 722.000 7.48 0.536 722.000 10.79 0.802 721.000 15.12 1.020 721.000 18.60 1.838 721.000 28.29 4.829 721.000 101.81 6.119 721.000 124.06 8.044 721.000 147.73 9.538 721.000 166.35 14.803 721.000 211.55 0.280 721.000 5.96 0.378 721.000 7.87 0.530 721.000 10.15 0.651 721.000 11.92 1.090 721.000 16.48 0.124 721.000 2.65 0.160 721.000 3.31 0.215 721.000 4.03 0.257 721.000 4.60 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 7 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Master Network Summary Catchments Summary Label Scenario SUB04 SUB03- TOSWMF #2 SUB03- TOSWMF #2 SUB03- TOSWMF #2 SUB03- TOSWMF #2 SUB03- TOSWMF #2 SUB03- BYPASS SUB03- BYPASS SUB03- BYPASS SUB03- BYPASS SUB03- BYPASS SUB03- TOSWMF #1 SUB03- TOSWMF #1 SUB03 -TOSW MF# 1 SUB03 -TOSW MF# 1 SUB03- TOSWMF #1 Node Summary Label Post - Development 100 -Year Post - Development 1- Year Post - Development 2- Year Post - Development 5- Year Post - Development 10 -Year Post - Development 100 -Year Post - Development 1- Year Post - Development 2- Year Post - Development 5- Year Post - Development 10 -Year Post - Development 100 -Year Post - Development 1- Year Post - Development 2- Year Post - Development 5- Year Post - Development 10 -Year Post - Development 100 -Year Scenario Return Event (years) 10( 1( 10( 1 2 5 1C 10C 1 2 5 10 100 Hydrograph Volume (ac -ft) 0.409 0.738 0.975 1.337 1.623 2.646 0.913 1.253 1.783 2.210 3.766 1.675 2.093 2.714 3.194 4.878 Time to Peak (min) 721.000 721.000 721.000 721.000 721.000 721.000 731.000 730.000 730.000 730.000 730.000 721.000 721.000 721.000 721.000 721.000 Peak Flow MIN 5.99 15.82 20.31 25.45 29.43 39.46 11.38 15.52 20.79 24.79 35.86 34.60 41.51 48.73 54.47 68.34 Return Hydrograph Time to Peak Peak Flow Event Volume (min) MIN (years) (ac -ft) POA #1 Post - Development 1- 1 3.593 723.000 8.93 Year POA #1 Post- Development 2- 2 4.935 722.000 14.34 Year POA #1 Post - Development 5- 5 7.147 722.000 20.37 Year POA #1 Post- Development 10 10 8.996 722.000 24.62 -Year POA #1 Post - Development 100 -Year 100 15.887 750.000 71.22 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center (08.11.01.513 9/10/2012 27 Siemon Company Drive Suite 200 W Page 2 of 7 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Master Network Summary Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) (years) (ac -ft) POA #5 Post- Development 1- 1 0.280 721.000 5.96 Year POA #5 Post - Development 2- 2 0.378 721.000 7.87 Year POA #5 Post - Development 5- 5 0,530 721.000 10.15 Year POA #5 Post - Development 10 10 0.651 721.000 11.92 -Year POA #5 Post - Development 100 1.090 721.000 16.48 100 -Year POA #4 Post - Development 1- 1 0.124 721.000 2.65 Year POA #4 Past- Development 2- 2 0.160 721.000 3.31 Year POA #4 Post - Development 5- 5 0.215 721.000 4.03 Year POA #4 Post - Development 10 10 0.257 721.000 4.60 -Year POA #4 Post- Development 100 0.409 721.000 5.99 100 -Year POA #3 Post - Development 1- 1 2.466 732.000 15.95 Year POA #3 Post- Development 2- 2 3.450 732.000 23.15 Year POA #3 Post - Development 5- 5 4.948 731.000 30.96 Year POA #3 Post - Development 10 10 6.134 732.000 37.82 -Year POA #3 Post - Development 100 10.380 730.000 83.17 100 -Year 3-1 Post - Development 1- 1 0.062 1,440.000 0.07 Year J -1 Post - Development 2- 2 0.073 1,440.000 0.08 Year J -1 Post - Development 5- 5 0.405 1,083.000 0.57 Year 1-1 Post - Development 10 10 0.770 903.000 1.13 -Year J -1 Post- Development 100 2.072 784.000 3.81 100 -Year J -2 Post - Development 1- 1 3.160 782.000 5.27 Year J -2 Post - Development 2- 2 4.329 782.000 6.44 Year 1-2 Post - Development 5- 5 5.946 783.000 7.81 Year J -2 Post - Development 10 10 7,212 755.000 17.77 -Year Bentley Systems, Inc. Haestad Methods Solution Bentley Pond°ack V.Ii Parkside. ppc Center (08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 3 of 7 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Master Network Summary Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) 721.000 15.82 (years) (ac -ft) 1 -Year J -2 Post - Development 100 -Year 100 11.985 750.000 59.00 J -3 Post - Development 1- 1 1.121 754.000 4.11 Year (OUT) Development 1 0.432 J -3 Post - Development 2- 2 1.532 754.000 5.07 Year 3-3 Post - Development 5- 5 2.141 754.000 6.14 Year (IN) Development 2 0.975 3-3 Post - Development 10 10 2.617 752.000 11.28 -Year J -3 Post - Development 100 -Year 100 4.288 729.000 28.64 1-4 Post - Development 1- 1 0.432 754.000 2.01 753.000 Year 302.53 0.476 2 -Year J -4 Post - Development 2- 2 0.667 753.000 3.45 SWMF #2 Year J -4 Post - Development 5- 5 1.025 752.000 4.85 721.000 Year (N /A) (N /A) 5 -Year J -4 Post- Development 10 10 1.309 753.000 5.70 SWMF #2 -Year J -4 Post - Development 100 2.327 728.000 18.79 752.000 100 -Year 302.97 0.629 5 -Year Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3 /s) Water Pond Storage (years) (ac -ft) Surface (ac -ft) Elevation (ft) SWMF #2 Post - (IN) Development 1 0.738 721.000 15.82 (N /A) (N /A) 1 -Year SWMF #2 Post- (OUT) Development 1 0.432 754.000 2.01 302.28 0.394 1 -Year SWMF #2 Post - (IN) Development 2 0.975 721.000 20.31 (N /A) (N /A) 2 -Year SWMF #2 Post - (OUT) Development 2 0.667 753.000 3.45 302.53 0.476 2 -Year SWMF #2 Post - (IN) Development 5 1.337 721.000 25.45 (N /A) (N /A) 5 -Year SWMF #2 Post - (OUT) Development 5 1.025 752.000 4.85 302.97 0.629 5 -Year Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 4 of 7 Watertown, CT 06795 USA +1 -203- 755 -1666 Subsection: Master Network Summary Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3 /s) Water Pond Storage (years) (ac -ft) Surface (ac -ft) Elevation (ft) SWMF #2 Post - (IN) Development 10 1.623 721.000 29.43 (N /A) (N /A) 10 -Year SWMF #2 Post - (OUT) Development 10 1.309 753.000 5.70 303.36 0.763 10 -Year SWMF #2 Post - (IN) Development 100 2.646 721.000 39.46 (N /A) (N /A) 100 -Year SWMF #2 Post - (OUT) Development 100 2.327 728.000 18.79 303.89 0.954 100 -Year SWMF #1 Post - (IN) Development 1 1.675 721.000 34.60 (N /A) (N /A) 1 -Year SWMF #1 Post - (OUT) Development 1 1.121 754.000 4.11 303.66 0.956 1 -Year SWMF #1 Post - (IN) Development 2 2.093 721.000 41.51 (N /A) (N /A) 2 -Year SWMF #1 Post- (OUT) Development 2 1.532 754.000 5.07 304.01 1.186 2 -Year SWMF #1 Post - (IN) Development 5 2.714 721.000 48.73 (N /A) (N /A) 5 -Year SWMF #1 Post - (OUT) Development 5 2.141 754.000 6.14 304.50 1.512 5 -Year SWMF #1 Post - (IN) Development 10 3.194 721.000 54.47 (N /A) (N /A) 10 -Year SWMF #1 Post - (OUT) Development 10 2.617 752.000 11.28 304.70 1.653 10 -Year 5WMF #1 Post - (IN) Development 100 4.878 721.000 68.34 (N /A) (N /A) 100 -Year SWMF #1 Post- 'OUT) Development 100 4.288 729.000 28.64 305.11 1.937 100 -Year 3WMF #4 Post - JN) Development 1 1.059 721.000 22.70 (N /A) (N /A) 1 -Year Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.511 9/10/2012 27 Siemon Company Drive Suite 200 W Page 5 of 7 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Master Network Summary Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3 /s) Water Pond Storage (years) (ac -ft) Surface (ac -ft) Elevation (ft) SWMF #4 Post - (OUT) Development 1 0.062 1,440.000 0.07 296.74 0.996 1 -Year SWMF #4 Post - (IN) Development 2 1.379 721.000 28.62 (N /A) (N /A) 2 -Year SWMF #4 Post - (OUT) Development 2 0.073 1,440.000 0.08 296.95 1.306 2 -Year SWMF #4 Post - (IN) Development 5 1.865 721.000 35.22 (N /A) (N /A) 5 -Year SWMF #4 Post - (OUT) Development 5 0.405 1,083.000 0.57 297.07 1.490 5 -Year SWMF #4 Post - (IN) Development 10 2.245 721.000 40.35 (N /A) (N /A) 10 -Year SWMF #4 Post - (OUT) Development 10 0.770 903.000 1.13 297.15 1.614 10 -Year SWMF #4 Post - (IN) Development 100 3.600 721.000 53.06 (N /A) (N /A) 100 -Year SWMF #4 Post - (OUT� Development 100 2.072 784.000 3.81 297.60 -2.301 100 -Year SWMF #3 Post - (IN) Development 1 4.829 721.000 101.81 (N /A) (N /A) 1 -Year SWMF #3 Post - (OUT) Development 1 3.160 782.000 5.27 305.90 3.009 1 -Year SWMF #3 Post - (IN) Development 2 6.119 721.000 124.06 (N /A) (N /A) 2 -Year SWMF #3 Post - (OUT) Development 2 4.329 782.000 6.44 306.38 3.840 2 -Year SWMF #3 Post - (IN) Development 5 8.044 721.000 147.73 (N /A) (N /A) 5 -Year SWMF #3 Post - (OUT) Development 5 5.946 783.000 7.81 307.06 5.055 5 -Year Bentley Systems, inc. Haestad Methods Solution. Bentley Pond°ack V81 Pa rkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 6 of 7 Watertown, CT 06795 USA +1 -203- 755 -1666 Subsection: Master Network Summary Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Maximum Maximum Event Volume (min) (ft3 /s) Water Pond Storage (years) (ac -ft) Surface (ac -ft) Elevation (ft) SWMF #3 Post - (IN) Development 10 9.538 721.000 166.35 (N /A) (N /A) 10 -Year SWMF #3 Post- (OUT) Development 10 7.212 755.000 17.77 307.48 5.803 10 -Year SWMF #3 Post - (IN) Development 100 14.803 721.000 211.55 (N /A) (N /A) 100 -Year SWMF #3 Post - (OUT) Development 100 11.985 750.000 59.00 308.09 6.923 100 -Year Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11,01.51 ] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 7 of 7 Watertown, CT 06795 USA +1- 203 - 755 -1666 POP Scenario: 100 -Yr WC POA #4 SUB04 POA #5 SU805 SU603- TOSWMFA1 SWMF #4 %! OGNef v J1 SU8O1- TOSN {MF#4 taw &9 SUBOI- BYPASS 0" a- J-2 SU801- TOSWMFM3 POA #1 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center 108.11.01.61] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Master Network Summary Catchments Summary Label Scenario 160-1/R 0000]es-r CASE HQ! 0 :6 n Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) (years) (ac -ft) SUB01- BYPASS 100 -Yr WC 100 1.838 721.000 28.29 SUB01- TOSWMF #3 100 -Yr WC 100 14.803 721.000 211.55 SUB01- TOSWMF #4 100 -Yr WC 100 3.600 721.000 53.06 SUB03- BYPASS 100 -Yr WC 100 3.766 730.000 35.86 SU603- TOSWMF #1 100 -Yr WC 100 4.878 721.000 68.34 SUB03- TOSWMF #2 100 -Yr WC 100 2.646 721.000 39.46 SUB04 100 -Yr WC 100 0.409 721.000 5.99 SUB05 100 -Yr WC 100 1.090 721.000 16.48 Node Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) Nears) (ac -ft) J -1 100 -Yr WC 100 2.054 784.000 3.75 3-2 100 -Yr WC 100 11.587 734.000 60.92 J -3 100 -Yr WC 100 4.274 729.000 29.21 J -4 100 -Yr WC 100 2.324 728.000 19.08 POA #1 100 -Yr WC 100 15.470 750.000 72.21 POA #3 100 -Yr WC 100 10.363 730.000 83.97 POA #4 100 -Yr WC 100 0.409 721.000 5.99 POA #5 1 100 -Yr WC 1 1001 1.0901 721.0001 16.48 Pond Summary Label Scenario Return Hydrograph Time to Peak Peak Flow Event Volume (min) (ft3 /s) (years) (ac -ft) Maximum Maximum Water Pond Storage Surface (ac -ft) Elevation (N /A) (ft) SWMF #1 100 -Yr WC 100 4.878 721.000 68.34 (N /A) (N /A) (IN) SWMF #1 100 -Yr WC 100 4.274 729.000 29.21 305.13 1.951 (OUT) SWMF #2 100 -Yr WC 100 2.646 721.000 39.46 (N /A) (N /A) (IN) SWMF #2 100 -Yr WC 100 2.324 728.000 19.08 303.90 0.958 (OUT) SWMF #3 100 -Yr WC 100 14.803 721.000 211.55 (N /A) (N /A) (IN) SWMF #3 100 -Yr WC 100 11.587 734.000 60.92 308.13 6.995 (OUT) SWMF #4 100 -Yr WC 100 3.600 721.000 53.06 (N /A) (N /A) (IN) SWMF #4 100 -Yr WC 100 2.054 784.000 3.75 297.61 2.318 (OUT) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 1 Watertown, CT 06795 USA +1- 203 - 755 -1666 SWMF #1 FINAL DESIGN CALCULATIONS PARKSIDE TOWN COMMONS KRG -12000 PARKSIDE TOWN COMMONS WETLAND B. IHNATOLYA, PE KRG -12000 SWMF #1 9/10/2012 State- Storage Function Project Name: Parkside Town Commons Designer: B. Ilmatolya, PE Job Number: KRG -12000 Date: 9/10/2012 Average Incremental Accumulated Estimated Contour Contour Contour Contour Volume Contour Stage Area Area Volume Volume w/ S -S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (CF) 302.00 0.0 23,581 304.00 2.0 27,812 25697 306.00 4.0 32,205 30009 33404 307.00 5.0 34,603 51393 51393 2.00 60017 111410 3.98 33404 144814 5.02 - Storage vs. Stage 160000 - 140000 120000 y = 23493x1.127 RI = 0.999 U 100000 a 80000 0 in 60000 40000 20000 0 0.0 1.0 2.0 Stage ({get) 4.0 5.0 6.0 Ks = 23493 b = 1.127 PARKSIDE TOWN COMMONS WETLAND B. IHNATOLYA, PE KRG -12000 SWMF #1 9/10/2012 Stage - Storage Function Ks = 23493 b = 1.127 Zo = 302.00 Elevation Storage [feet] [cq [acre -feet _302.00 _0_ 0.000 _302.20 3830 30 0.0_88 2.40 8365 0.192_ _30_ 69 0.2.60 13210 _0.303 302.80 _18241_9_ 303.00 23_493 0.539 �303.20�mmtl 28852 �._ N� 0.662 303.40_ 34326 mm 303.60_ � 39901 I� 0.916_ 30_3.8045565 1.046_ 304.00 51310 W 1.178 304.20_ 57128 1.311 304.40 63014n� 1.447 _ 68963 � 1.583_ 304.80_ _ 74970 1.721 305.00 8103_2 _ _1.860 _3_0_5.20 _ 8714_5_ 2.001_ 305.40 93307 u 2.142 305.60 _99516 2.285 _'3 05.80_ - 105_768 2.428 � _306.00 112062 2.573 _ 30620 118397 2.718— 306.40_ 124770 2.864 306.60 1131180 3.011 306.80 137625 3.159 307.00 144105 3.308 Subsection: Outlet Input Data Label: SWMF #1 Requested Pond Water Surface Elevations Minimum (Headwater) 302.00 ft Increment (Headwater) 0.20 ft Maximum (Headwater) 307.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall El E2 (ft) (ft) Inlet Box Riser - 1 Forward Culvert - 1 304.50 307.00 Orifice -Area Orifice - 2 Forward Culvert - 1 303.00 307.00 Culvert- Circular Culvert - 1 Forward TW 299.00 307.00 Orifice - Circular Orifice - 1 Forward TW 302.00 307.00 Tailwater Settings Tailwater (N /A) (N /A) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9110/2012 27 Siemon Company Drive Suite 200 W Page 1 of 27 Watertown. CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #1 Structure ID: Riser- 1 Structure Type: Inlet Box Number of Openings 1 Elevation 304.50 ft Orifice Area 16.0 ftz Orifice Coefficient 0.600 Weir Length 16.00 ft Weir Coefficient 3.00 (ft ^0.5) /s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest False Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 2 of 27 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #1 Structure ID: Culvert - 1 Structure Type: Culvert- Circular Number of Barrels 1 Diameter 24.0 in Length 45.00 ft Length (Computed Barrel) 45.01 ft Slope (Computed) 0.022 ft /ft Outlet Control Data Manning's n 0.013 Ke 0.500 Kb 0.012 Kr 0.500 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0098 M 2.0000 C 0.0398 Y 0.6700 T1 ratio (HW /D) 0.000 T2 ratio (HW /D) 1.296 Slope Correction Factor -0.500 Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... T1 Elevation 299.00 ft TI Flow 15.55 ft3 /s T2 Elevation 301.59 ft T2 Flow 17.77 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 3 of 27 Watertown, CT 06795 USA +1 -203- 755 -1666 Subsection: Outlet Input Data Label: SWMF #1 Structure ID: Orifice - 1 Structure Type: Orifice- Circular Number of Openings 1 Elevation 302.00 ft Orifice Diameter 2.5 in Orifice Coefficient 0.600 Structure ID: Orifice - 2 Structure Type: Orifice -Area Number of Openings 1 Elevation 303.00 ft Orifice Area 1.0 ftz Top Elevation 303.50 ft Datum Elevation 303.00 ft Orifice Coefficient 0.600 Structure ID: TW Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3 /s Flow Tolerance (Maximum) 10.000 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 4 of 27 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #1 Composite Outflow Summary Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3 /s) (ft) (ft) (ft) 302.00 0.00 (N /A) 0.00 302.20 0.05 (N /A) 0.00 302.40 0.09 (N /A) 0.00 302.60 0.12 (N /A) 0.00 302.80 0.14 (N /A) 0.00 303.00 0.16 (N /A) 0.00 303.20 1.53 (N /A) 0.00 303.40 2.91 (N /A) 0.00 303.60 3.93 (N /A) 0.00 303.80 4.52 (N /A) 0.00 304.00 5.04 (N /A) 0.00 304.20 5.51 (N /A) 0.00 304.40 5.94 (N /A) 0.00 304.50 6.15 (N /A) 0.00 304.60 7.86 (N /A) 0.00 304.80 14.61 (N /A) 0.00 305.00 24.06 (N /A) 0.00 305.20 32.46 (N /A) 0.00 305.40 35.80 (N /A) 0.00 305.60 36.50 (N /A) 0.00 305.80 37.19 (N /A) 0.00 306.00 37.86 (N /A) 0.00 306.20 38.53 (N /A) 0.00 306.40 39.18 (N /A) 0.00 306.60 39.82 (N /A) 0.00 306.80 40.45 (N /A) 0.00 307.001 41.07 (N /A) 1 0.00 Contributing Structures (no Q: Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 5 of 27 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #1 Composite Outflow Summary Contributing Structures Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 6 of 27 Watertown, CT 06795 USA +1- 203 - 755 -1666 jj0 -`IR ��RST CASE SCErJ ��I o Subsection: Outlet Input Data Return Event: 100 years Label: SWMF #1 -WC Storm Event: 100 -Year Storm Requested Pond Water Surface Elevations Minimum (Headwater) 302.00 ft Increment (Headwater) 0.20 ft Maximum (Headwater) 307.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall El E2 (ft) (ft) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Inlet Box Riser - 1 Forward Culvert - 1 304.50 307.00 Orifice -Area Orifice - 2 Forward Culvert - 1 303.00 307.00 Culvert- Circular Culvert - 1 Forward TW 299.00 307.00 Tailwater Settings Tailwater (N /A) (N /A) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #1 -WC Return Event: 100 years Storm Event: 100 -Year Storm Structure ID: Riser- 1 Structure Type: Inlet Box Number of Openings 1 Elevation 304.50 ft Orifice Area 16.0 ft2 Orifice Coefficient 0.600 Weir Length 16.00 ft Weir Coefficient 3.00 (ft ^0.5) /s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest False Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51) 9/10/2012 27 Siemon Company Drive Suite 200 W Page 2 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #1 -WC Return Event: 100 years Storm Event: 100 -Year Storm Structure ID: Culvert- 1 Form 1 Structure Type: Culvert- Circular 0.0098 Number of Barrels 1 Diameter 24.0 in Length 45.00 ft Length (Computed Barrel) 45.01 ft Slope (Computed) 0.022 ft /ft Slope Correction Factor -0.500 Outlet Control Data Manning's n 0.013 Ke 0.500 Kb 0.012 Kr 0.500 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0098 M 2.0000 C 0.0398 Y 0.6700 T1 ratio (HW /D) 1.149 T2 ratio (HW /D) 1.296 Slope Correction Factor -0.500 Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... TI Elevation 301.30 ft T1 Flow 15.55 ft3 /s T2 Elevation 301.59 ft T2 Flow 17.77 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 3 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #1 -WC Return Event: 100 years Storm Event: 100 -Year Storm Structure ID: Orifice - 2 30 Structure Type: Orifice -Area 0.01 ft Number of Openings 1 Elevation 303.00 ft Orifice Area 1.0 ftz Top Elevation 303.50 ft Datum Elevation 303.00 ft Orifice Coefficient 0.600 (Maximum) Structure ID: TW 0.001 ft3 /s Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3 /s Flow Tolerance (Maximum) 10.000 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 4 of 25 Watertown, CT 06795 USA +1 -203- 755 -1666 Subsection: Composite Rating Curve Label: SWMF #1 -WC Composite Outflow Summary Water Surface Flow Elevation (ft3 /s) (ft) Return Event: 100 years Storm Event: 100 -Year Storm Tailwater Elevation Convergence Error (ft) (ft) 302.00 0.00 (N /A) 0.00 302.20 0.00 (N /A) 0.00 302.40 0.00 (N /A) 0.00 302.60 0.00 (N /A) 0.00 302.80 0.00 (N /A) 0.00 303.00 0.00 (N /A) 0.00 303.20 1.36 (N /A) 0.00 303.40 2.72 (N /A) 0.00 303.60 3.73 (N /A) 0.00 303.80 4.31 (N /A) 0.00 304.00 4.81 (N /A) 0.00 304.20 5.27 (N /A) 0.00 304.40 5.69 (N /A) 0.00 304.50 5.90 (N /A) 0.00 304.60 7.60 (N /A) 0.00 304.80 14.34 (N /A) 0.00 305.00 23.78 (N /A) 0.00 305.20 32.17 (N /A) 0.00 305.40 35.50 (N /A) 0.00 305.60 36.19 (N /A) 0.00 305.80 36.87 (N /A) 0.00 306.00 37.54 (N /A) 0.00 306.20 38.19 (N /A) 0.00 306.40 38.84 (N /A) 0.00 306.60 39.47 (N /A) 0.00 306.80 40.09 (N /A) 0.00 307.001 40.71 (N /A) 1 0.00 Contributing Structures (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,0rifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 5 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #1 -WC Composite Outflow Summary Contributing Structures Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no 0: Orifice - 2) Return Event: 100 years Storm Event: 100 -Year Storm Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 6 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 PARKSIDE TOWN COMMONS STORMWATER WETLAND B. IFINATOLYA, PE KRG-12000 SIZING CALCULATIONS - SWMF#1 9/10/2012 WQ v = (P) (R v) (A)II 2 where, WQv = water quality volume (in acre-ft) Rv = 0.05+0.009(l) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 8.70 acres Impervious area = 6.42 acres Percent impervious cover, I = 73.8 % Rainfall, P = 1.0 inches Calculated values: Rv = 0.71 WQv = 0.52 acre-ft = 22553 cf. Starmwater Wetland Required Surface Area Calculation WQ Volume = 22553 cf. Maximum Pending Depth = 12 inches 53 SF Associated Pond Depth in Stormwater Welland Ks= 23493 b = 1.127 V = 22553 Normal Pool Elevation = 302.0 feet WQ Elevation 302.96 feet PARKSIDE TOWN COMMONS WQ VOLUME KRG -12000 SIPHON DESIGN D orifice = 2.5 inch # orifices = 1 Ks= 23493 b = 1.127 Cd siphon = 0.60 0.5' x 2.0' Orifice Invert Elevation = 303.00 feet Normal Pool Elevation = 302.00 feet WQ Volume = 22553 cf Temporary Pool W.S. Elev. = 303.00 feet Using the average head over the orifice (assuming average head is one -third the total depth), the result would be: Average driving head on orifice = 0.333 feet Orifice composite loss coefficient= 0.600 Cross - sectional area of 0.75" orifice = 0.034 sf Q= 0.0948 cfs Drawdown Time = Volume / Flowrate / 86400 (sec /day) Drawdown Time = 2.75 days Conclusion : Use 1- 2.5" Diameter PVC inverted siphon to drawdown the accumulated volume from the 1" storm runoff, with a required time of about 2.75 days. B. IHNATOLYA, PE 9/10/2012 o r` I VON ME, LIM w DESCRIPTION AREA (SF) PERCENTAGE DEEP POOL 2,614 11% DEEP POOL 2,528 11% (NON-FOREBAY) GRAPHIC SCALE 0 15 30 60 SHALLOW WATER 9,374 40% I'll" ELI SHALLOW LAND 9,065 38% v) A 0 C��5zw Z . z x n W M R, aa° W � <n z�a� O�az�N x C) HUWuo;; z w ad W Vf z O �z O�l Uo U� w o� �z� W� A� U O X N O 3: ON 0 O N M I O II N N Of C9 I Y (o c Y O z F W PARKSIDE TOWN COMMONS SWMF #1 B. IHNATOLYA, PE KRG -12000 9/11/2012 PARKSIDE TOWN COMMONS I. WETLAND POOL CHECK' Per NCDENR "Stormwater Best Management Practices ", the permanent pool needs to be designed with various water depths to support plant and animal populations. The wetland should consist of deep pools, shallow water, and shallow land with the deep pools being broken down to forebay pools and non - forebay pools. Approximately 5 -10% of the wetland surface area should be non - forebay deep pools. Approximately 10% of the suface area should be forebay deep pools. Approximately 40% of the surface area should be shallow water, and the remaining 30 -40 %of the surface area should be shallow land. A. Total Wetland Surface Area (Elev. 302.0) B. Wetland Surface Area: Deep Pools (18 " -36" deep) Non - Forebay Forebay C. Wetland Surface Area: Shallow Water (3" -6" deep) D. Wetland Surface Area: Shallow Land (12 "+ -3" deep) Area = 23581 sf Area = 2528 sf Area = 2614 sf Area = 9374 sf Area = 9065 sf Deep Pools- Non- Foreba 11% Deep Pools- Foreba 11% Shallow Water 40% Shallow Land 38% Parkside Town Commons — SWMF #1 Project # KRG -12000 VELOCITY DISSIPATOR DESIGN Designed By: B. Ihnatolya Velocity Dissipator — SWMF #1 NRCD Land Quality Section Pipe Design Entering the following values will provide you with the expected outlet velocity and depth of flow in a pipe, assuming the Mannings roughness number is constant over the entire length of the pipe. flow Q in cfs : 11.28 Flow depth (ft) = 0.80 slope S in %: 2.22 Outlet velocity (fps) = 9.663 pipe diameter D in in.: 24 Manning number n : 0.013 NRCD Land Quality Section NYDOT Dissipator Design Results Pipe diameter (ft) 2.00 Outlet velocity (fps) 9.66 Apron length (ft) 12.00 AVG DIAM STONE THICKNESS (inches) CLASS (inches) -- - - - - -- - - - -- 3 A --- - - - - -- 9 »6 B 22« 13 B or 1 22 23 2 27 Width Calculation WIDTH = La + Do WIDTH =12.00 + 2.00 WIDTH = 14.0 FEET CONCLUSION Use 8" DIA NCDOT Class `B' Rip Rap 12'L x 141W x 22" Thick ABE VOLUME CALCULATORS, PYRAMIDLONG Page 1 of 1 CALCULATE VOLUME OF PYRAMID WITH INDIVIDUAL WIDTHS AND LENGTHS Enter all known values in the form below and press the "CALCULATE" button. ART, WIDTHI(WI) LENGTH I(L1) WIDTH2 LENGTH2 HEIGHT VOLUME (W2) (L2) I (h) SELECT ANOTHER SHAPE Go to Unit Conversion Page http: / /www.abe.msstate.edu /—fto /tools /vol /pyramidlong.html 6/12/2012 PARKSIDE TOWN COMMONS SWMF #1 B. IHNATOLYA, PE KRG -12000 8/27/2012 Input Data =_> Square Riser/Barrel Anti - Flotation Calculation Sheet Inside length of riser = 4.00 feet Inside width of riser = 4.00 feet Wall thickness of riser = 6.00 inches Base thickness of riser = 8.00 inches Base length of riser = 5.00 feet Base width of riser = 5.00 feet Inside height of Riser = 5.50 feet Concrete unit weight = 142.0 PCF OD of barrel exiting manhole = 31.50 inches Size of drain pipe (if present) = 8.0 inches Number of detention orifices (if present) = I Area of detention orifice (if present) = 0.034 SQFT Number of detention orifices (if present) = 1 Area of detention orifice (if present) = 1.000 SQFT Trash Rack water displacement = 38.00 CF Concrete Present in Riser Structure =_> Total amount of concrete: Base of Riser = 16.667 CF Riser Walls = 49.500 CF Adjust for openings: Opening for barrel = 2.706 CF Opening for drain pipe = 0.175 CF Opening for detention orifice = 0.517 CF Note: NC Products lists unit wt. of manhole concrete at 142 PCF. Total Concrete present, adjusted for openings = 62.769 CF Weight of concrete present = 8913 lbs Amount of water displaced by Riser Structure =_> Displacement by concrete = 62.769 CF Displacement by open air in riser = 88.000 CF Displacement by trash rack = 38.000 CF Total water displaced by riser/barrel structure = 188.769 CF Weight of water displaced = 11779 lbs PARKSIDE TOWN COMMONS SWMF 91 B. II NATOLYA, PE KRG -12000 8/27/2012 Calculate amount of concrete to be added to riser = => Safety factor to use = 1.25 (recommend 1.25 or higher) Must add = 5811 lbs concrete for buoyancy Concrete unit weight for use = 142 PCF (note above observation for NCP concrete) Buoyant weight of this concrete = 79.60 PCF Buoyant, with safety factor applied = 63.68 PCF Therefore, must add = 91.250 CF of concrete Standard base described above = 16.667 CF of concrete Therefore, base design must have = 107.916 CF of concrete Calculate size of base for riser assembly = => Length = 8.000 feet Width = 8.000 feet Thickness = 21.0 inches Concrete Present = 112.000 CF OK Check validity of base as designed = => Total Water Displaced = 284.103 CF Total Concrete Present = 158.103 CF Total Water Displaced = 17728 lbs Total Concrete Present = 22451 lbs Actual safety factor = 1.27 OK Results of design = => Base length = 8.00 feet Base width = 8.00 feet Base Thickness = 21.00 inches CY of concrete total in base = 4.15 CY Concrete unit weight in added base >= 142 PCF SWMF #2 FINAL DESIGN CALCULATIONS PARKSIDE TOWN COMMONS KRG -12000 PARKSIDE TOWN COMMONS WETLAND KRG -12000 SWMF #2 Stage - Storage Function Project Name: Parkside Town Commons Designer: B. Ihnatolya, PE Job Number: KRG -12000 Date: 9/10/2012 B. IHNATOLYA, PE 9/10/2012 Average Incremental Accumulated Estimated Contour Contour Contour Contour Volume Contour Stage Area Area Volume Volume w/ S -S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (CF) 301.00 0.0 12,263 60000 y = 13055x'.090 302.00 1.0 13,938 13101 13101 13101 1.00 304.00 3.0 15,739 14839 29677 42778 2.97 306.00 5.0 17,544 16642 33283 76061 5.04 80000 70000 Storage vs. Stage 60000 y = 13055x'.090 RI = 0.999 U 50000 rn 40000 m 30000 v7 20000 10000 0 0.0 1.0 2.0 Stage (fit) 4.0 5.0 6.0 Ks = 13055 b = 1.09 PARKSIDE TOWN COMMONS WETLAND B. IHNATOLYA, PE KRG -12000 S W MF #2 9/10/2012 Stage - Storage Function Ks = 13055 b = 1.09 Zo = 301.00 Elevation Storage feet [clI [acre -feet 301.00 0 0.000 301.20 29 m 25 0.052 301.40 4809 0.110 7481 0.172 _301.60 301.80 10236 0.235 302.00 13055_ 0.300 302.20 15925 0.366 302.40 18839 0.432 302.60 _ 2179 1 _ 0.500 _ 24776 0.569 _302.80 27791 0.638 _303.00 303.20 30833 _ 008 303.40 33901 0.778 303.60 a 36991 _0.849 303.80 _ 40103_ 0.921_ 304.00 43235 0.993 304.20 46386 565 304.40 W 49555 1.138_ 304.60 52741 1.211 304.80 55942 1.284 305.00 59159 1.358 305.20 62391 1.432 305.40 65636 1.507 305.60 68894 1.582 305.80 72166 1.657_ 306.00 75449 1.732 Subsection: Outlet Input Data Label: SWMF #2 Requested Pond Water Surface Elevations Minimum (Headwater) 301.00 ft Increment (Headwater) 0.20 ft Maximum (Headwater) 306.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall El E2 (ft) (ft) Inlet Box Riser - 1 Forward Culvert - 1 303.50 306.00 Orifice -Area Orifice - 2 Forward Culvert - 1 302.00 306.00 Culvert- Circular Culvert - 1 Forward TW 298.50 306.00 Orifice - Circular Orifice - 1 Forward TW 301.00 306.00 Tailwater Settings Tailwater (N /A) (N /A) Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 1 of 14 Watertown, CT 06795 USA +1 -203- 755 -1666 Subsection: Outlet Input Data Label: SWMF #2 Structure ID: Riser - 1 Structure Type: Inlet Box Number of Openings 1 Elevation 303.50 ft Orifice Area 16.0 ftz Orifice Coefficient 0.600 Weir Length 16.00 ft Weir Coefficient 3.00 (ft ^0.5) /s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest False Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V81 Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 2 of 14 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #2 Structure ID: Culvert - 1 Structure Type: Culvert- Circular Number of Barrels 1 Diameter 24.0 in Length 36.00 ft Length (Computed Barrel) 36.00 ft Slope (Computed) 0.014 ft /ft Outlet Control Data Manning's n 0.013 Ke 0.500 Kb 0.012 Kr 0.500 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0098 M 2.0000 C 0.0398 Y 0.6700 Ti ratio (HW /D) 1.153 T2 ratio (HW /D) 1.300 Slope Correction Factor -0.500 Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... T1 Elevation 300.81 ft T1 Flow 15.55 ft3 /s T2 Elevation 301.10 ft T2 Flow 17.77 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 3 of 14 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #2 Structure ID: Orifice - 1 Structure Type: Orifice- Circular Number of Openings 1 Elevation 301.00 ft Orifice Diameter 1.5 in Orifice Coefficient 0.600 Structure ID: Orifice -2 Structure Type: Orifice -Area Number of Openings 1 Elevation 302.00 ft Orifice Area 1.0 ftz Top Elevation 302.50 ft Datum Elevation 302.00 ft Orifice Coefficient 0.600 Structure ID: TW Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance (Minimum) 0.01 ft Tailwater Tolerance (Maximum) 0.50 ft Headwater Tolerance (Minimum) 0.01 ft Headwater Tolerance (Maximum) 0.50 ft Flow Tolerance (Minimum) 0.001 ft3 /s Flow Tolerance (Maximum) 10.000 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Pa rkside. ppc Center 108.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 4 of 14 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #2 Composite Outflow Summary Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3 /s) (ft) (ft) (ft) 301.00 0.00 (N /A) 0.00 301.20 0.02 (N /A) 0.00 301.40 0.03 (N /A) 0.00 301.60 0.04 (N /A) 0.00 301.80 0.05 (N /A) 0.00 302.00 0.06 (N /A) 0.00 302.20 1.43 (N /A) 0.00 302.40 2.79 (N /A) 0.00 302.60 3.81 (N /A) 0.00 302.80 4.39 (N /A) 0.00 303.00 4.92 (N /A) 0.00 303.20 5.36 (N /A) 0.00 303.40 5.79 (N /A) 0.00 303.50 5.98 (N /A) 0.00 303.60 7.70 (N /A) 0.00 303.80 14.45 (N /A) 0.00 304.00 23.78 (N /A) 0.00 304.20 31.37 (N /A) 0.00 304.40 33.78 (N /A) 0.00 304.60 34.51 (N /A) 0.00 304.80 35.23 (N /A) 0.00 305.00 35.94 (N /A) 0.00 305.20 36.62 (N /A) 0.00 305.40 37.30 (N /A) 0.00 305.60 37.96 (N /A) 0.00 305.80 38.62 (N /A) 0.00 306.001 39.26 (N /A) 0.00 Contributing Structures (no Q: Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 5 of 14 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #2 Composite Outflow Summary Contributing Structures Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 6 of 14 Watertown, CT 06795 USA +1- 203 - 755 -1666 I n _yre 00115T M sE SCEtilaI D SIPHoN ct- 0616CO, Subsection: Outlet Input Data Label: SWMF #2 -WC Return Event: 100 years Storm Event: 100 -Year Storm Requested Pond Water Surface Elevations Minimum (Headwater) 301.00 ft Increment (Headwater) 0.20 ft Maximum (Headwater) 306.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall E1 E2 (ft) (ft) Inlet Box Riser - 1 Forward Culvert - 1 303.50 306.00 Orifice -Area Orifice - 2 Forward Culvert - 1 302.00 306.00 Culvert- Circular Culvert - 1 Forward TW 298.50 306.00 Tailwater Settings Tailwater (N /A) (N /A) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Pa rkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 7 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #2 -WC Structure ID: Riser- 1 Structure Type: Inlet Box Return Event: 100 years Storm Event: 100 -Year Storm Number of Openings 1 Elevation 303.50 ft Orifice Area 16.0 ftz Orifice Coefficient 0.600 Weir Length 16.00 ft Weir Coefficient 3.00 (ft ^0.5) /s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest False Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 8 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #2 -WC Return Event: 100 years Storm Event: 100 -Year Storm Structure ID: Culvert- 1 Structure Type: Culvert- Circular Number of Barrels 1 Diameter 24.0 in Length 36.00 ft Length (Computed Barrel) 36.00 ft Slope (Computed) 0.014 ft /ft Outlet Control Data Manning's n 0.013 Ke 0.500 Kb 0.012 Kr 0.500 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0098 M 2.0000 C 0.0398 Y 0.6700 T1 ratio (HW /D) 1.153 T2 ratio (HW /D) 1.300 Slope Correction Factor -0.500 Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... T1 Elevation 300.81 ft T1 Flow 15.55 ft3 /s T2 Elevation 301.10 ft T2 Flow 17.77 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 9 of 25 Watertown, CT 06795 USA +1 -203- 755 -1666 Subsection: Outlet Input Data Label: SWMF #2 -WC Return Event: 100 years Storm Event: 100 -Year Storm Structure ID: Orifice - 2 Structure Type: Orifice -Area Number of Openings 1 Elevation 302.00 ft Orifice Area 1.0 ftz Top Elevation 302.50 ft Datum Elevation 302.00 ft Orifice Coefficient 0.600 Structure ID: TW Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3 /s Flow Tolerance (Maximum) 10.000 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 10 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #2 -WC Composite Outflow Summary Water Surface Flow Elevation (ft3 /s) (ft) Return Event: 100 years Storm Event: 100 -Year Storm Tailwater Elevation Convergence Error (ft) (ft) 301.00 0.00 (N /A) 0.00 301.20 0.00 (N /A) 0.00 301.40 0.00 (N /A) 0.00 301.60 0.00 (N /A) 0.00 301.80 0.00 (N /A) 0.00 302.00 0.00 (N /A) 0.00 302.20 1.36 (N /A) 0.00 302.40 2.72 (N /A) 0.00 302.60 3.73 (N /A) 0.00 302.80 4.30 (N /A) 0.00 303.00 4.81 (N /A) 0.00 303.20 5.28 (N /A) 0.00 303.40 5.70 (N /A) 0.00 303.50 5.89 (N /A) 0.00 303.60 7.61 (N /A) 0.00 303.80 14.35 (N /A) 0.00 304.00 23.63 (N /A) 0.00 304.20 31.26 (N /A) 0.00 304.40 33.68 (N /A) 0.00 304.60 34.40 (N /A) 0.00 304.80 35.12 (N /A) 0.00 305.00 35.82 (N /A) 0.00 305.20 36.50 (N /A) 0.00 305.40 37.18 (N /A) 0.00 305.60 37.84 (N /A) 0.00 305.80 38.49 (N /A) 0.00 306.001 39.13 (N /A) 1 0.00 Contributing Structures (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 11 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #2 -WC Composite Outflow Summary Contributing Structures Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no 0: Orifice - Return Event: 100 years Storm Event: 100 -Year Storm Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 12 of 25 Watertown, CT 06795 USA +1 -203- 755 -1666 PARKSIDE TOWN COMMONS STORMWATER WETLAND KRG -12000 SIZING CALCULATIONS - SWMF #2 = => Determination of Water Quality Volume (WQ I j WQ v = (P) (R v)(A) /12 where, WQv = water quality volume (in acre -ft) Rv = 0.05 +0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: 13055 b = Total area, A = 5.48 acres Impervious area = 2.10 acres Percent impervious cover, I = 38.3 % Rainfall, P = 1.0 inches Calculated values: Rv = 0.39 WQv= 0.18 acre -ft = 7855 cf. = => Storunvater Wetland Required Surface Area Calculation WQ Volume = 7855 cf Maximum Ponding Depth = 12 inches Surface Area Required at Normal Pool = 7855 SF ==> Associated Pond Depth in Storm water Wetland Ks = 13055 b = 1.09 V = 7855 Normal Pool Elevation = 301.0 feet I WQ Elevation = 301.63 feet B. IHNATOLYA, PE 9/10/2012 PARKSIDE TOWN COMMONS WQ VOLUME KRG -12000 SIPHON DESIGN D orifice = 1.5 inch # orifices = 1 Ks = 13055 b = 1.09 Cd siphon = 0.60 0.5' x 2.0' Orifice Invert Elevation = 302.00 feet Normal Pool Elevation = 301.00 feet WQ Volume = 7855 cf Temporary Pool W.S. Elev. = 302.00 feet Using the average head over the orifice (assuming average head is one -third the total depth), the result would be: Average driving head on orifice = 0.333 feet Orifice composite loss coefficient = 0.600 Cross - sectional area of 0.75" orifice = 0.012 sf Q= 0.0341 cfs Drawdown Time = Volume / Flowrate / 86400 (sec /day) Drawdown Time = 2.66 days Conclusion : Use 1 -1.5" Diameter PVC inverted siphon to drawdown the accumulated volume from the 1" storm runoff, with a required time of about 2.66 days. B. IHNATOLYA, PE 9/10/2012 ®M s PARKSIDE TOWN COMMONS SWMF #2 B. IHNATOLYA, PE KRG -12000 9/11/2012 PARKSIDE TOWN COMMONS L WETLAND POOL CHECK Per NCDENR "Stormwater Best Management Practices ", the permanent pool needs to be designed with various water depths to support plant and animal populations. The wetland should consist of deep pools, shallow water, and shallow land with the deep pools being broken down to forebay pools and non - forebay pools. Approximately 5 -10% of the wetland surface area should be non - forebay deep pools. Approximately 10% of the suface area should be forebay deep pools. Approximately 40% of the surface area should be shallow water, and the remaining 30 -40 %of the surface area should be shallow land. A. Total Wetland Surface Area (Elev. 301.0) Area = 12263 sf B. Wetland Surface Area: Deep Pools (18 " -36" deep) Non - Forebay Area = 1220 sf Forebay Area = 1153 sf C. Wetland Surface Area: Shallow Water (3" -6" deep) Area = 5014 sf D. Wetland Surface Area: Shallow Land (12 "+ -3" deep) Area = 4876 sf Deep Pools- Non - Foreba 10% Deep Pools- Foreba 9% Shallow Water 41% Shallow Land 40% Parkside Town Commons — SWMF #2 Project # KRG -12000 VELOCITY DISSIPATOR DESIGN Designed By: B. Ihnatolya Velocity Dissipator — SWMF #2 NRCD Land Quality Section Pipe Design Entering the following values will provide you with the expected outlet velocity and depth of flow in a pipe, assuming the Mannings roughness number is constant over the entire length of the pipe. flow Q in cfs : 5.70 Flow depth (ft) = 0.63 slope Sin % : 1.39 Outlet velocity (fps) = 6.754 pipe diameter D in in.: 24 Manning number n : 0.013 NRCD Land Quality Section NYDOT Dissipator Design Results Pipe diameter (ft) 2.00 Outlet velocity (fps) 6.75 Apron length (ft) 12.00 AVG DIAM STONE THICKNESS (inches) CLASS (inches) -- - - - - -- - - - -- 3 A --- - - - - -- 9 »6 B 22« 13 B or 1 22 23 2 27 Width Calculation WIDTH = La + Do WIDTH = 12.00 + 2.00 WIDTH = 14.0 FEET CONCLUSION Use 8" DIA NCDOT Class `B' Rip Rap 12'L x 14'W x 22" Thick ABE VOLUME CALCULATORS, PYRAMIDLONG Page 1 of I CALCULATE VOLUME OF PYRAMID WITH INDIVIDUAL WIDTHS AND LENGTHS Enter all known values in the form below and press the "CALCULATE" button. Aar, WIDTHI(WI) LENGTHI(LI) WIDTH2 IFLENGTH21 HEIGHT VOLUME (W2) I (L2) (h) 7 7 F IThe answer that you jPn copy for other use 38 CALCULATE RESET SELECT ANOTHER SHAPE Go to Unit Conversion Paize http: / /www.abe.msstate.edu / —fto /tools /vol /pyramidlong.html 6/12/2012 PARKSIDE TOWN COMMONS SWMF 42 B. IHNATOLYA, PE KRG -12000 8/27/2012 Input Data =_> Square Riser /Barrel Anti - Flotation Calculation Sheet Inside length of riser = 4.00 feet Inside width of riser = 4.00 feet Wall thickness of riser = 6.00 inches Base thickness of riser = 8.00 inches Base length of riser = 5.00 feet Base width of riser = 5.00 feet Inside height of Riser = 5.00 feet Concrete unit weight = 142.0 PCF OD of barrel exiting manhole = 31.50 inches Size of drain pipe (if present) = 8.0 inches Number of detention orifices (if present) = 1 Area of detention orifice (if present) = 0.022 SQFT Number of detention orifices (if present) = 1 Area of detention orifice (if present) = 1.000 SQFT Trash Rack water displacement = 38.00 CF Concrete Present in Riser Structure =_> Total amount of concrete: Base of Riser = 16.667 CF Riser Walls = 45.000 CF Adjust for openings: Opening for barrel = 2.706 CF Opening for drain pipe = 0.175 CF Opening for detention orifice = 0.511 CF Note: NC Products lists unit wt. of manhole concrete at 142 PCF. Total Concrete present, adjusted for openings = 58.275 CF Weight of concrete present = 8275 lbs Amount of water displaced by Riser Structure =_> Displacement by concrete = 58.275 CF Displacement by open air in riser = 80.000 CF Displacement by trash rack = 38.000 CF Total water displaced by riser/barrel structure = 176.275 CF Weight of water displaced = 11000 lbs PARKSIDE TOWN COMMONS SWMF #2 B. IHNATOLYA, PE KRG -12000 8/27/2012 Calculate amount of'concrete to be added to riser = => Safety factor to use = 1.25 (recommend 1.25 or higher) Must add = 5474 lbs concrete for buoyancy Concrete unit weight for use = 142 PCF (note above observation for NCP concrete) Buoyant weight of this concrete = 79.60 PCF Buoyant, with safety factor applied = 63.68 PCF Therefore, must add = 85.967 CF of concrete Standard base described above = 16.667 CF of concrete Therefore, base design must have = 102.634 CF of concrete Calculate size of base for riser assembly = => Length = 8.000 feet Width = 8.000 feet Thickness = 20.0 inches Concrete Present = 106.667 CF OK Check validity of base as designed => Total Water Displaced = 266.275 CF Total Concrete Present = 148.275 CF Total Water Displaced = 16616 lbs Total Concrete Present = 21055 lbs Actual safety factor = 1.27 OK Results of design = => Base length = 8.00 feet Base width = 8.00 feet Base Thickness = 20.00 inches CY of concrete total in base = 3.95 CY Concrete unit weight in added base >= 142 PCF SWMF #3 FINAL DESIGN CALCULATIONS PARKSIDE TOWN COMMONS KRG -12000 PARKSIDE TOWN COMMONS WETLAND KRG -12000 SWMF #3 Stale- Storage Function B. IHNATOLYA, PE 9/10/2012 Project Name: Parkside Town Commons 65,834 Designer: B. Ilmatolya, PE 306.00 R�2.0 Job Number: KRG -12000 138830 138830 R 2.01 Date: 9/10/2012 80,394 76695 153390 292220 �- 3.97 310.00 6.0 88,001 Average Incremental Accumulated Estimated Contour Contour Contour Contour Volume Contour Stage Area Area Volume Volume w/ S -S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (CF) 304.00 0.0 65,834 500000 _• — - - - -�_ , _.�,e,_.� 306.00 R�2.0 72,996 69415 138830 138830 R 2.01 308.00 4.0 80,394 76695 153390 292220 �- 3.97 310.00 6.0 88,001 84198 168395 460615 6.04�T Ks = 65034 b = 1.089 Storage vs. Stage 500000 _• — - - - -�_ , _.�,e,_.� 450000 400000 y = 65034x'.089 350000 R = 0.999 LL � �? 300000 m 250000 ° 200000 150000 100000 } 50000 f 0 0.0 1.0 2.0 Stoge (feet)4.0 5.0 6.0 7.0 Ks = 65034 b = 1.089 PARKSIDE TOWN COMMONS WETLAND B. H-INATOLYA, PE KRG-12000 SWMF#3 9/10/2012 Stage - Storage Function Ks = 65034 b = 1.089 Zo = 304.00 Elevation Storage feet [cf] [acre-feet 304*00 0 0.000 11271 j 0.259 304.40 23976 -- ,,—,-- 0.550 37286 304.80 51004 1 1.171 305.00 65034 1.493 305.20 i 79317 11.821 305_40 r 93815 305.60 168449 2.491 305.80 123348 2.832 306.00 138345 3.176 30C20­7 153475.__'x,. ._..._..3.523 168729 4 3.873 306.60 184097l 4.22 6 306.80 199570 1 , -- 4.582 307.00 215142 i 4.939 307.20 230807 1 5.299 307.40 I-- __­­ ------ 4-­.----­-­,,,- 246559 1 5.660 307.60 262394 0 278307 6.389 308.00 294296 6.756 308.20 310355 4 7.125 308.40 I 326483 7.495 308.60 342676 1 7.867 308.80 358932 8.240 309.00 375248 8.615 309.20 1 391623 8.990 309.40 408054 9.368 - _"'��q�..46­ __'4__2'4__5_3_9­__tF "_9_._7__4_6_'_ 309.80 441076 10.126 310.00 1 457664 10.507 Subsection: Outlet Input Data Label: SWMF #3 Requested Pond Water Surface Elevations Minimum (Headwater) 304.00 ft Increment (Headwater) 0.20 ft Maximum (Headwater) 310.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall El E2 (ft) (ft) Inlet Box Riser - 1 Forward Culvert - 1 307.20 310.00 Orifice -Area Orifice - 2 Forward Culvert - 1 305.00 310.00 Culvert- Circular Culvert - 1 Forward TW 301.00 310.00 Orifice - Circular Orifice - 1 Forward TW 304.00 310.00 Tailwater Settings Tailwater (N /A) (N /A) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 13 of 27 Watertown, CT 06795 USA +1 -203- 755 -1666 Subsection: Outlet Input Data Label: SWMF #3 Structure ID: Riser- 1 Structure Type: Inlet Box Number of Openings 1 Elevation 307.20 ft Orifice Area 25.0 ftz Orifice Coefficient 0.600 Weir Length 20.00 ft Weir Coefficient 3.00 (ft ^0.5) /s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest False Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 14 of 27 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #3 Structure ID: Culvert - 1 Structure Type: Culvert- Circular Number of Barrels 1 Diameter 36.0 in Length 49.00 ft Length (Computed Barrel) 49.01 ft Slope (Computed) 0.020 ft /ft Outlet Control Data Manning's n 0.013 Ke 0.500 Kb 0.007 Kr 0.500 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0098 M 2.0000 C 0.0398 Y 0.6700 T1 ratio (HW /D) 1.150 T2 ratio (HW /D) 1.297 Slope Correction Factor -0.500 Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... T1 Elevation 304.45 ft TI Flow 42.85 ft3 /s T2 Elevation 304.89 ft T2 Flow 48.97 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 15 of 27 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #3 Structure ID: Orifice - 1 Structure Type: Orifice- Circular Number of Openings 1 Elevation 304.00 ft Orifice Diameter 4.5 in Orifice Coefficient 0.600 Structure ID: Orifice - 2 Structure Type: Orifice -Area Number of Openings 1 Elevation 305.00 ft Orifice Area 1.0 ftz Top Elevation 305.50 ft Datum Elevation 305.00 ft Orifice Coefficient 0.600 Structure ID: TW Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3 /s Flow Tolerance (Maximum) 10.000 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 16 of 27 Watertown. CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #3 Composite Outflow Summary Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3 /s) (ft) (ft) (ft) 304.00 0.00 (N /A) 0.00 304.20 0.07 (N /A) 0.00 304.40 0.25 (N /A) 0.00 304.60 0.34 (N /A) 0.00 304.80 0.42 (N /A) 0.00 305.00 0.48 (N /A) 0.00 305.20 1.90 (N /A) 0.00 305.40 3.31 (N /A) 0.00 305.60 4.36 (N /A) 0.00 305.80 4.98 (N /A) 0.00 306.00 5.53 (N /A) 0.00 306.20 6.03 (N /A) 0.00 306.40 6.49 (N /A) 0.00 306.60 6.92 (N /A) 0.00 306.80 7.32 (N /A) 0.00 307.00 7.70 (N /A) 0.00 307.20 8.06 (N /A) 0.00 307.40 13.78 (N /A) 0.00 307.60 23.93 (N /A) 0.00 307.80 36.94 (N /A) 0.00 308.00 52.14 (N /A) 0.00 308.20 67.32 (N /A) 0.00 308.40 82.05 (N /A) 0.00 308.60 85.11 (N /A) 0.00 308.80 86.63 (N /A) 0.00 309.00 88.11 (N /A) 0.00 309.20 89.56 (N /A) 0.00 309.40 90.99 (N /A) 0.00 309.60 92.41 (N /A) 0.00 309.80 93.79 (N /A) 0.00 310.001 95.16 (N /A) 1 0.00 Contributing Structures (no Q: Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 17 of 27 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #3 Composite Outflow Summary Contributing Structures Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 18 of 27 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #3 Composite Outflow Summary Contributing Structures IRiser - 1,Culvert - l,Oribce - 1 (no Q: Orifice - 2) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 19 of 27 Watertown, CT 06795 USA +1- 203 - 755 -1666 100 -yR worSt eMC' SeEN )+rJ 0 sipfffig et_0446b Subsection: Outlet Input Data Label: SWMF #3 -WC Return Event: 100 years Storm Event: 100 -Year Storm Requested Pond Water Surface Elevations Minimum (Headwater) 304.00 ft Increment (Headwater) 0.20 ft Maximum (Headwater) 310.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall E1 E2 (ft) (ft) Inlet Box Riser - 1 Forward Culvert - 1 307.20 310.00 Orifice -Area Orifice - 2 Forward Culvert - 1 305.00 310.00 Culvert - Circular Culvert - 1 Forward —1W 301.0000 310.00 Tailwater Settings Tailwater (N /A) (N /A) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 13 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #3 -WC Return Event: 100 years Storm Event: 100 -Year Storm Structure ID: Riser- 1 Structure Type: Inlet Box Number of Openings 1 Elevation 307.20 ft Orifice Area 25.0 ft2 Orifice Coefficient 0.600 Weir Length 20.00 ft Weir Coefficient 3.00 (ft ^0.5) /s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest False Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 14 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #3 -WC Return Event: 100 years Storm Event: 100 -Year Storm Structure ID: Culvert - 1 Structure Type: Culvert- Circular Number of Barrels 1 Diameter 36.0 in Length 49.00 ft Length (Computed Barrel) 49.01 ft Slope (Computed) 0.020 ft /ft Outlet Control Data Manning's n 0.013 Ke 0.500 Kb 0.007 Kr 0.500 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0098 M 2.0000 C 0.0398 Y 0.6700 T1 ratio (HW /D) 1.150 T2 ratio (HW /D) 1.297 Slope Correction Factor -0.500 Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... T1 Elevation 304.45 ft Ti Flow 42.85 ft3 /s T2 Elevation 304.89 ft T2 Flow 48.97 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 15 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #3 -WC Return Event: 100 years Storm Event: 100 -Year Storm Structure ID: Orifice - 2 Structure Type: Orifice -Area Number of Openings 1 Elevation 305.00 ft Orifice Area 1.0 ft2 Top Elevation 305.50 ft Datum Elevation 305.00 ft Orifice Coefficient 0.600 Structure ID: TW Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3 /s Flow Tolerance (Maximum) 10.000 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 16 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #3 -WC Composite Outflow Summary Water Surface Flow Tailwater Elevation Elevation (ft3 /s) (ft) (ft) Return Event: 100 years Storm Event: 100 -Year Storm Convergence Error (ft) 304.00 0.00 (N /A) 0.00 304.20 0.00 (N /A) 0.00 304.40 0.00 (N /A) 0.00 304.60 0.00 (N /A) 0.00 304.80 0.00 (N /A) 0.00 305.00 0.00 (N /A) 0.00 305.20 1.36 (N /A) 0.00 305.40 2.72 (N /A) 0.00 305.60 3.73 (N /A) 0.00 305.80 4.31 (N /A) 0.00 306.00 4.81 (N /A) 0.00 306.20 5.27 (N /A) 0.00 306.40 5.70 (N /A) 0.00 306.60 6.09 (N /A) 0.00 306.80 6.46 (N /A) 0.00 307.00 6.80 (N /A) 0.00 307.20 7.14 (N /A) 0.00 307.40 12.82 (N /A) 0.00 307.60 22.95 (N /A) 0.00 307.80 35.93 (N /A) 0.00 308.00 51.10 (N /A) 0.00 308.20 66.26 (N /A) 0.00 308.40 80.96 (N /A) 0.00 308.60 83.99 (N /A) 0.00 308.80 85.48 (N /A) 0.00 309.00 86.94 (N /A) 0.00 309.20 88.37 (N /A) 0.00 309.40 89.78 (N /A) 0.00 309.60 91.17 (N /A) 0.00 309.80 92.53 (N /A) 0.00 310.001 93.88 (N /A) 1 0.00 Contributing Structures (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 17 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #3 -WC Composite Outflow Summary Contributing Structures Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Riser - l,Orif]ce - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no 0: Orifice - 2) Return Event: 100 years Storm Event: 100 -Year Storm Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 18 of 25 Watertown, CT 06795 USA +1 -203- 755 -1666 PARKSIDE TOWN COMMONS STORMWATER WETLAND KRG -12000 SIZING CALCULATIONS - SWMF #3 _> Determination of Water Quality Volume (WQ Ij WQ v = (P) (R v)(A) /12 where, WQv = water quality volume (in acre -ft) Rv = 0.05 +0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = Impervious area = Percent impervious cover, I = Rainfall, P = Calculated values: 27.36 acres 17.85 acres 65.2 % 1.0 inches Rv = 0.64 WQv = 1.45 acre -ft = 63282 cf. >`Stormwater Wetland Required Surface Area Calculation WQ Volume = 63282 cf. Maximum Ponding Depth = 12 inches Surface Area Required at Normal Pool = 63282 SF => Associated Pond Depth in Stormwater Weiland Ks= 65034 b = 1.089 V = 63282 Normal Pool Elevation = 304.0 feet �� WQ Elevation = 304.98 feet B. IHNATOLYA, PE 9/10/2012 PARKSIDE TOWN COMMONS WQ VOLUME KRG -12000 SIPHON DESIGN D orifice = 4.5 inch # orifices = 1 Ks= 65034 b = 1.089 Cd siphon = 0.60 0.5'x 2.0' Orifice Invert Elevation = 305.00 feet Normal Pool Elevation = 304.00 feet WQ Volume = 63282 cf Temporary Pool W.S. Elev. = 305.00 feet Using the average head over the orifice (assuming average head is one -third the total depth), the result would be: Average driving head on orifice = 0.333 feet Orifice composite loss coefficient = 0.600 Cross - sectional area of 0.75" orifice = 0.110 sf Q= 0.3070 cfs Drawdown Time = Volume / Flowrate / 86400 (sec /day) Drawdown Time = 2.39 days Conclusion : Use 1- 4.5" Diameter PVC inverted siphon to drawdown the accumulated volume from the 1" storm runoff, with a required time of about 2.39 days. B. IHNATOLYA, PE 9/10/2012 X Vi \ \ GRAPHIC SCALE >��ll/ \ Z 50 0 25 50 100 $E-4 a \\ \ \\ I / J IIJ�I IIII Ill — �__– ✓_� / /�i/ //v /� \ z�N E-4U rA rlfr z aa� ol i / � / � � / l �/ / 1 � l � // I / /� / / VA r ✓�i% '���i i /� r„� � / i / ,,a�il/// ' ' � � \ /O�i� / /j/ \ r ry DESCRIPTION AREA (SF) PERCENTAGE DEEP POOL 6,496 10% °O 3 - Lo DEEP POOL 6,765 10% / cD cv II N (NON— FOREBAY) / s Ir co SHALLOW WATER 27,150 41% SHALLOW LAND 25,423 39% a a [dYIcADAYIS PARKSIDE TOWN COMMONS SWMF #3 B. IHNATOLYA, PE KRG -12000 9/11/2012 PARKSIDE TOWN COMMONS Per NCDENR "Stormwater Best Management Practices ", the permanent pool needs to be designed with various water depths to support plant and animal populations. The wetland should consist of deep pools, shallow water, and shallow land with the deep pools being broken down to forebay pools and non - forebay pools. Approximately 5 -10% of the wetland surface area should be non - forebay deep pools. Approximately 10% of the suface area should be forebay deep pools. Approximately 40% of the surface area should be shallow water, and the remaining 30 -40 %of the surface area should be shallow land. A. Total Wetland Surface Area (Elev. 304.0) B. Wetland Surface Area: Deep Pools (18 " -36" deep) Non - Forebay Forebay C. Wetland Surface Area: Shallow Water (3" -6" deep) D. Wetland Surface Area: Shallow Land (12 "+ -3" deep) Area = 65834 sf Area = 6765 sf Area = 6496 sf Area = 27150 sf Area = 25423 sf Deep Pools - Non - Foreba 10% Deep Pools- Foreba 10% Shallow Water 41% Shallow Land 39% Parkside Town Commons — SWMF #3 Project # KRG -12000 VELOCITY DISSIPATOR DESIGN Designed By: B. Ihnatolya Velocity Dissipator — SWMF #3 NRCD Land Quality Section Pipe Design Entering the following values will provide you with the expected outlet velocity and depth of flow in a pipe, assuming the Mannings roughness number is constant over the entire length of the pipe. flow Q in cfs : 17.77 Flow depth (ft) = 0.88 slope S in %: 2.04 Outlet velocity (fps) = 10.320 pipe diameter D in in.: 36 Manning number n : 0.013 NRCD Land Quality Section NYDOT Dissipator Design Results Pipe diameter (ft) 3.00 Outlet velocity (fps) 10.32 Apron length (ft) 24.00 AVG DIAM STONE THICKNESS (inches) CLASS (inches) -- - - - - -- - - - -- --- 3 A - - - - -- 9 6 B 22 »13 Bor1 22« 23 2 27 Width Calculation WIDTH = La + Do WIDTH = 24.00 + 3.00 WIDTH = 27.0 FEET CONCLUSION Use 10" DIA NCDOT Class `1' Rip Rap 24'L x 27'W x 22" Thick ABE VOLUME CALCULATORS, PYRAMIDLONG http://www.abe.msstate.edtV—fto/tools/vol/pyran idlong.htrr. CALCULATE VOLUME OF PYRAMID WITH INDIVIDUAL WIDTHS AND LENGTHS Enter all known values in the form below and press the "CALCULATE" button. A&IF WIDTHI(wi) E-N GTH I (L 1) WIDTH2(W2) '-.NGTH2(t. HEIGHT(h) VOLUME ji4 t:21 =61.74 7 --- The answer that can you can copy for other use CALCULATE RESET SELECT ANOTHER SHAPE Go to Unit Conversion Page 1 of 1 9/11/2012 11:46 AN PARKSIDE TOWN COMMONS SWMF #3 B. IHNATOLYA, PE KRG -12000 9/11/2012 Input Data =_> Square Riser/Barrel Anti - Flotation Calculation Sheet Inside length of riser = 5.00 feet Inside width of riser = 5.00 feet Wall thickness of riser = 6.00 inches Base thickness of riser = 8.00 inches Base length of riser = 6.00 feet Base width of riser = 6.00 feet Inside height of Riser = 6.20 feet Concrete unit weight = 142.0 PCF OD of barrel exiting manhole = 45.50 inches Size of drain pipe (if present) = 8.0 inches Number of detention orifices (if present) = 1 Area of detention orifice (if present) = 0.110 SQFT Number of detention orifices (if present) = 1 Area of detention orifice (if present) = 1.000 SQFT Trash Rack water displacement = 61.74 CF Concrete Present in Riser Structure =_> Total amount of concrete: Base of Riser = 24.000 CF Riser Walls = 68.200 CF Adjust for openings: Opening for barrel = 5.646 CF Opening for drain pipe = 0.175 CF Opening for detention orifice = 0.555 CF Note: NC Products lists unit wt. of manhole concrete at 142 PCF. Total Concrete present, adjusted for openings = 85.825 CF Weight of concrete present = 12187 Ibs Amount of water displaced by Riser Structure =_> Displacement by concrete = 85.825 CF Displacement by open air in riser = 155.000 CF Displacement by trash rack = 61.740 CF Total water displaced by riser/barrel structure = 302.565 CF Weight of water displaced = 18880 lbs PARKSIDE TOWN COMMONS SWMF #3 B. 1HNATOLYA, PE KRG -12000 9/11/2012 Calculate amount of concrete to be added to riser = => Safety factor to use = 1.25 (recommend 1.25 or higher) Must add = 11413 lbs concrete for buoyancy Concrete unit weight for use = 142 PCF (note above observation for NCP concrete) Buoyant weight of this concrete = 79.60 PCF Buoyant, with safety factor applied = 63.68 PCF Therefore, must add = 179.223 CF of concrete Standard base described above = 24.000 CF of concrete Therefore, base design must have = 203.223 CF of concrete Calculate size of base for riser assembly = => Length = 9.000 feet Width = 9.000 feet Thickness = 31.0 inches Concrete Present = 209.250 CF OK Check validity of base as designed = => Total Water Displaced = 487.815 CF Total Concrete Present = 271.075 CF Total Water Displaced = 30440 lbs Total Concrete Present = 38493 lbs Actual safety factor = 1.26 OK Results of design = => Base length = 9.00 feet Base width = 9.00 feet Base Thickness = 31.00 inches CY of concrete total in base = 7.75 CY Concrete unit weight in added base >= 142 PCF PARKSIDE TOWN COMMONS Anti- Flotation Block Calculation B. I14NATOLYA, PE KRG -12000 Anti- Flotation Block Steel 10/17/2012 II. CALCULATION FOR RISER ANTI - FLOTATION STEEL Input Data -* Anti - Floatation Block Length = 9.0 feet Anti - Floatation Block Width = 9.0 feet Anti - Floatation Block Thickness= 31.0 inches Minimum Asteel to Aconcrete Ratio = 0.0018 Cross - Section Calculations ---> Cross - Section Area* = 23.25 SF Minimum Steel Area Required = 0.042 SF 6.03 SI *Note: Assumes a "square" x -sec (L and W same) Steel Area Calculations --> Bar Size = 4 5 6 7 8 Diameter [in] = 0.500 0.625 0.750 0.875 1.000 X -Sec Area [in ^2] = 0.196 0.307 0.442 0.601 0.785 Number of Bars 1 0.196 0.307 0.442 0.601 0.785 2 0.393 0.614 0.884 1.203 1.571 3 0.589 0.920 1.325 1.804 2.356 4 0.785 1.227 1.767 2.405 3.142 5 0.982 1.534 2.209 3.007 3.927 6 1.178 1.841 2.651 3.608 4.712 7 1.374 2.148 3.093 4.209 5.498 8 1.571 2.454 3.534 4.811 6.283 10 1.963 3.068 4.418 6.013 7.854 12 2.356 3.682 5.301 7.216 9.425 14 2.749 4.295 6.185 8.418 10.996 16 3.142 4.909 7.069 9.621 12.566 18 3.534 5.522 7.952 10.824 14.137 20 3.927 6.136 8.836 12.026 15.708 22 4.320 6.750 9.719 13.229 17.279 24 4.712 7.363 10.603 14.432 18.850 26 5.105 7.977 11.486 15.634 20.420 28 5.498 8.590 12.370 16.837 21.991 30 5.890 9.204 13.254 18.040 23.562 32 6.283 9.817 14.137 19.242 25.133 34 6.676 10.431 15.021 20.445 26.704 36 7.069 11.045 15.904 21.648 28.274 38 7.461 11.658 16.788 22.850 29.845 40 7.854 12.272 17.671 24.053 31.416 42 8.247 12.885 18.555 25.255 32.987 44 8.639 13.499 19.439 26.458 34.558 46 9.032 14.113 20.322 27.661 36.128 48 9.425 14.726 21.206 28.863 37.699 50 9.817 15.340 22.089 30.066 39.270 52 10.210 15.953 22.973 31.269 40.841 54 10.603 16.567 23.856 32.471 42.412 56 10.996 17.181 24.740 33.674 43.982 X:\Projects\KRG \KRG- 12000 \Storm \Site Plan Submittal \Design Files \Outlet - Anti -Float Block Steel Calcs.XLS Page 1 PARKSIDE TOWN COMMONS Anti- Flotation Block Calculation KRG -12000 Anti - Flotation Block Steel 58 11.388 17.794 25.624 34.877 45.553 60 11.781 18.408 26.507 36.079 47.124 62 12.174 19.021 27.391 37.282 48.695 64 12.566 19.635 28.274 38.485 50.265 66 12.959 20.249 29.158 39.687 51.836 68 13.352 20.862 30.041 40.890 53.407 70 13.744 21.476 30.925 42.092 54.978 72 14.137 22.089 31.809 43.295 56.549 74 14.530 22.703 32.692 44.498 58.119 76 14.923 23.317 33.576 45.700 59.690 78 15.315 23.930 34.459 46.903 61.261 80 15.708 24.544 35.343 48.106 62.832 82 16.101 25.157 36.226 49.308 64.403 84 16.493 25.771 37.110 50.511 65.973 86 16.886 26.384 37.994 51.714 67.544 88 17.279 26.998 38.877 52.916 69.115 90 17.671 27.612 39.761 54.119 70.686 92 18.064 28.225 40.644 55.321 72.257 94 18.457 28.839 41.528 56.524 73.827 96 18.850 29.452 42.412 57.727 75.398 98 19.242 30.066 43.295 58.929 76.969 100 19.635 30.680 44.179 60.132 78.540 Conclusion --). Use 2 grids of #5 bars with 5 bars in each direction Total Number of #5 bars = 20 Total cross - sectional area of steel = 6.136 in ^2 B. I14NATOLYA, PE 10/17/2012 X:\ Projects \KRG \KRG- 12000 \Storm \Site Plan Submittal\Design Files \Outlet - Anti -Float Block Steel Calcs.XLS Page 2 SWVIF #4 FINAL DESIGN CALCULATIONS PARKSIDE TOWN COMMONS KRG -12000 PARKSIDE TOWN COMMONS WETLAND B. II-INATOLYA, PE KRG-12000 SWMF#4 9/10/2012 State- Storage Function Project Name: Parkside Town Commons Designer: B. Ihnatolya, PE Job Number: KRG-12000 Date: 9/10/2012 Storage vs. Stage 500000 450000 400000 y = 601 09X1.093 350000 R 2 0.999 300000 250000 200000 150000 100000 50000 0 0.0 1.0 2.0 SNge (feet)4.0 5,0 6.0 7.0 Ks = 60109 1 b = 1.093 Average Incremental Accumulated Estimhted Contour Contour Contour Contour Volume Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (CF) 296 00 0.0- i 60 906 ... ....... 677768 1 64337 128674 128674 1 2.01 00 —4-. 6 �11-74,94-1 71355 142709 271383 3.97 Storage vs. Stage 500000 450000 400000 y = 601 09X1.093 350000 R 2 0.999 300000 250000 200000 150000 100000 50000 0 0.0 1.0 2.0 SNge (feet)4.0 5,0 6.0 7.0 Ks = 60109 1 b = 1.093 PARKSIDE TOWN COMMONS WETLAND B. IIINATOLYA, PE KRG -12000 SWIV F #4 9/10/2012 Stage - Storage Function Ks = 60109 b = 1.093 Zo = 296.00 Elevation Storage fee (eft [acre -feet HI u 296.00 _0 0_000 296.2_0 10351 0_238 296.40 22080 0.507 296.60 j 34392 0.79_0 296.80_^ j _47100Y� _ x__1.081__ Y � 60109 1.380 2_97.20 73364 1.684 297.40 86828 1_.9_93�� 297.60 100471 4 2.307 297.80 1 114275 2.623 298.00 j 128223 2.944 298.20 142301 3.267 298.40 156499 3.593 298.60 X170807 3.921 _ 298.80 _� 1852_18 � 4.252 299.00 ..� .._ ._ 199725 4.585 _ 299.20 1 214323 ' 4.920 2_99.4_0 229006 5.257 2_99.60 { 243769 5.596 299.80 258609 5.937 273521 6.279_ _300.00 3 300.20 I 288503 6.623 300.40 300.60 30_3552 318665 6.969 7.316 300.80 ] 333838 i 7.664 _301.00 1� 349071 8.014 301.20 1 364360 8.365 301.40 379705 8.717 301.60_ 395102 _ 9.070 301.80 410550 ' 9.425 302.00 426048 9.781 Subsection: Outlet Input Data Label: SWMF #4 Requested Pond Water Surface Elevations Minimum (Headwater) 296.00 ft Increment (Headwater) 0.20 ft Maximum (Headwater) 302.00 ft Outlet Connectivity Structure Type Outlet ID Direction Outfall E1 E2 (ft) (ft) Inlet Box Riser - 1 Forward Culvert - 1 299.20 302.00 Orifice -Area Orifice - 2 Forward Culvert - 1 297.00 302.00 Culvert- Circular Culvert - 1 Forward TW 293.00 302.00 Orifice - Circular Orifice - 1 Forward TW 296.00 302.00 Tailwater Settings Tailwater (N /A) (N /A) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9110/2012 27 Siemon Company Drive Suite 200 W Page 7 of 14 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #4 Structure ID: Riser- 1 Structure Type: Inlet Box Number of Openings 1 Elevation 299.20 ft Orifice Area 25.0 ftz Orifice Coefficient 0.600 Weir Length 20.00 ft Weir Coefficient 3.00 (ft^0.5) /s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest False Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/1012012 27 Siemon Company Drive Suite 200 W Page 8 of 14 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #4 Structure ID: Culvert - 1 Structure Type: Culvert- Circular Number of Barrels 1 Diameter 36.0 in Length 52.00 ft Length (Computed Barrel) 52.01 ft Slope (Computed) 0.019 ft /ft Outlet Control Data Manning's n 0.013 Ke 0.500 Kb 0.007 Kr 0.500 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0098 M 2.0000 C 0.0398 Y 0.6700 T1 ratio (HW /D) 1.151 T2 ratio (HW /D) 1.297 Slope Correction Factor -0.500 Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... TI Elevation 296.45 ft T1 Flow 42.85 ft3 /s T2 Elevation 296.89 ft T2 Flow 48.97 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 9 of 14 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #4 Structure ID: Orifice - 1 Structure Type: Orifice- Circular Number of Openings 1 Elevation 296.00 ft Orifice Diameter 1.8 in Orifice Coefficient 0.600 Structure ID: Orifice - 2 Structure Type: Orifice -Area Number of Openings 1 Elevation 297.00 ft Orifice Area 1.0 ft2 Top Elevation 297.50 ft Datum Elevation 297.00 ft Orifice Coefficient 0.600 Structure ID: TW Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3 /s Flow Tolerance (Maximum) 10.000 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 10 of 14 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #4 Composite Outflow Summary Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3 /s) (ft) (ft) (ft) 296.00 0.00 (N /A) 0.00 296.20 0.03 (N /A) 0.00 296.40 0.05 (N /A) 0.00 296.60 0.06 (N /A) 0.00 296.80 0.07 (N /A) 0.00 297.00 0.08 (N /A) 0.00 297.20 1.45 (N /A) 0.00 297.40 2.82 (N /A) 0.00 297.60 3.83 (N /A) 0.00 297.80 4.42 (N /A) 0.00 298.00 4.92 (N /A) 0.00 298.20 5.39 (N /A) 0.00 298.40 5.81 (N /A) 0.00 298.60 6.22 (N /A) 0.00 298.80 6.59 (N /A) 0.00 299.00 6.94 (N /A) 0.00 299.20 7.28 (N /A) 0.00 299.40 12.97 (N /A) 0.00 299.60 23.08 (N /A) 0.00 299.80 36.10 (N /A) 0.00 300.00 51.28 (N /A) 0.00 300.20 66.42 (N /A) 0.00 300.40 81.11 (N /A) 0.00 300.60 84.17 (N /A) 0.00 300.80 85.65 (N /A) 0.00 301.00 87.11 (N /A) 0.00 301.20 88.54 (N /A) 0.00 301.40 89.95 (N /A) 0.00 301.60 91.35 (N /A) 0.00 301.80 92.71 (N /A) 0.00 302.001 94.06 (N /A) 1 0.00 Contributing Structures (no Q: Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 1 (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice -I (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice -I (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice -I (no Q: Riser - 1,Orifice - 2,Culvert - 1) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 11 of 14 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #4 Composite Outflow Summary Contributing Structures Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1,Orifice - 1 (no Q: Riser - 1) Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Orifice - 2,Culvert - 1,Orifice - 1 Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center 108.11.01.511 9/10/2012 27 Siemon Company Drive Suite 200 W Page 12 of 14 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #4 Composite Outflow Summary Contributing Structures IRiser - 1,Culvert - 1,Orifice - 1 (no Q: Orifice - 2) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Pa rkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 13 of 14 Watertown, CT 06795 USA +1- 203 - 755 -1666 l � seem �i ��sE S Jplt&t c1_0 Q(r f+D Subsection: Outlet Input Data Label: SWMF #4 -WC Requested Pond Water Surface Elevations Minimum (Headwater) 296.00 ft Increment (Headwater) 0.20 ft Maximum (Headwater) 302.00 ft Return Event: 100 years Storm Event: 100 -Year Storm Outlet Connectivity Structure Type Outlet ID Direction Outfall E1 E2 (ft) (ft) Inlet Box Riser - 1 Forward Culvert - 1 299.20 302.00 Orifice -Area Orifice - 2 Forward Culvert - 1 297.00 302.00 Culvert- Circular Culvert - 1 Forward TW 293.00 302.00 Tailwater Settings Tailwater (N /A) (N /A) Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 19 of 25 Watertown, CT 06795 USA +1 -203- 755 -1666 Subsection: Outlet Input Data Label: SWMF #4 -WC Return Event: 100 years Storm Event: 100 -Year Storm Structure ID: Riser- 1 Structure Type: Inlet Box Number of Openings 1 Elevation 299.20 ft Orifice Area 25.0 ftz Orifice Coefficient 0.600 Weir Length 20.00 ft Weir Coefficient 3.00 (ft^0.5) /s K Reverse 1.000 Manning's n 0.000 Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest False Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 20 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #4 -WC Return Event: 100 years Storm Event: 100 -Year Storm Structure ID: Culvert - 1 Form 1 Structure Type: Culvert- Circular 0.0098 Number of Barrels 1 Diameter 36.0 in Length 52.00 ft Length (Computed Barrel) 52.01 ft Slope (Computed) 0.019 ft/ft Slope Correction Factor -0.500 Outlet Control Data Manning's n 0.013 Ke 0.500 Kb 0.007 Kr 0.500 Convergence Tolerance 0.00 ft Inlet Control Data Equation Form Form 1 K 0.0098 M 2.0000 C 0.0398 Y 0.6700 TI ratio (HW /D) 1.151 T2 ratio (HW /D) 1.297 Slope Correction Factor -0.500 Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... T1 Elevation 296.45 ft T1 Flow 42.85 ft3 /s T2 Elevation 296.89 ft T2 Flow 48.97 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/1012012 27 Siemon Company Drive Suite 200 W Page 21 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Outlet Input Data Label: SWMF #4 -WC Return Event: 100 years Storm Event: 100 -Year Storm Structure ID: Orifice - 2 Structure Type: Orifice -Area Number of Openings 1 Elevation 297.00 ft Orifice Area 1.0 ft2 Top Elevation 297.50 ft Datum Elevation 297.00 ft Orifice Coefficient 0.600 Structure ID: TW Structure Type: TW Setup, DS Channel Tailwater Type Free Outfall Convergence Tolerances Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft3 /s Flow Tolerance (Maximum) 10.000 ft3 /s Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 22 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #4 -WC Composite Outflow Summary Water Surface Flow Tailwater Elevation Elevation (ft3 /s) (ft) (ft) Return Event: 100 years Storm Event: 100 -Year Storm Convergence Error (ft) 296.00 0.00 (N /A) 0.00 296.20 0.00 (N /A) 0.00 296.40 0.00 (N /A) 0.00 296.60 0.00 (N /A) 0.00 296.80 0.00 (N /A) 0.00 297.00 0.00 (N /A) 0.00 297.20 1.36 (N /A) 0.00 297.40 2.73 (N /A) 0.00 297.60 3.73 (N /A) 0.00 297.80 4.30 (N /A) 0.00 298.00 4.81 (N /A) 0.00 298.20 5.28 (N /A) 0.00 298.40 5.69 (N /A) 0.00 298.60 6.09 (N /A) 0.00 298.80 6.45 (N /A) 0.00 299.00 6.80 (N /A) 0.00 299.20 7.14 (N /A) 0.00 299.40 12.82 (N /A) 0.00 299.60 22.93 (N /A) 0.00 299.80 35.94 (N /A) 0.00 300.00 51.13 (N /A) 0.00 300.20 66.26 (N /A) 0.00 300.40 80.94 (N /A) 0.00 300.60 83.99 (N /A) 0.00 300.80 85.47 (N /A) 0.00 301.00 86.93 (N /A) 0.00 301.20 88.36 (N /A) 0.00 301.40 89.76 (N /A) 0.00 301.60 91.16 (N /A) 0.00 301.80 92.52 (N /A) 0.00 302.001 93.87 (N /A) 1 0.00 Contributing Structures (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) (no Q: Riser - 1,Orifice - 2,Culvert - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Parkside.ppc Center (08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 23 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Composite Rating Curve Label: SWMF #4 -WC Composite Outflow Summary Contributing Structures Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Orifice - 2,Culvert - 1 (no Q: Riser - 1) Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Orifice - 2,Culvert - 1 Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Riser - 1,Culvert - 1 (no Q: Orifice - 2) Return Event: 100 years Storm Event: 100 -Year Storm Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 24 of 25 Watertown, CT 06795 USA +1- 203 - 755 -1666 PARKSIDE TOWN COMMONS STORMWATER WETLAND KRG -12000 SIZING CALCULATIONS - SWMF #4 == l etermination of Water Quality volume (WQ v) WQ v = (P) (R v) (A) /12 where, WQv = water quality volume (in acre -ft) Rv = 0.05 +0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Total area, A = 7.17 acres Impervious area = 2.45 acres Percent impervious cover, I — 34.2 % Rainfall, P = 1.0 inches Calculated values: Rv= 0.36 WQv = 0.21 acre -ft = 9306 cf tf > .Stormwater Wedaud Required Surface Area Calculation WQ Volume = 9306 cf. Maximum Ponding Depth = 12 inches Surface Area Required at Normal Pool = 9306 SF ==> Associated Pond Depth in Storm water Wetland Ks= 60109 b = 1.093 V = 9306 Normal Pool Elevation = 296.0 feet WQ Elevation = 296.1 feet R. H- JNATOLYA, PE 9/10/2012 PARKSIDE TOWN COMMONS WQ VOLUME KRG -12000 SIPHON DESIGN D orifice = 1.75 inch # orifices = 1 Ks = 60109 b = 1.093 Cd siphon = 0.60 0.5'x 2.0' Orifice Invert Elevation = 297.00 feet Normal Pool Elevation = 296.00 feet WQ Volume = 9306 cf Temporary Pool W.S. Elev. = 297.00 feet Using the average head over the orifice (assuming average head is one -third the total depth), the result would be: Average driving head on orifice = 0.333 feet Orifice composite loss coefficient = 0.600 Cross - sectional area of 0.75" orifice = 0.017 sf Q= 0.0464 cfs Drawdown Time = Volume / Flowrate / 86400 (sec /day) Drawdown Time = 2.32 days Conclusion : Use 1- 1.75" Diameter PVC inverted siphon to drawdown the accumulated volume from the 1" storm runoff, with a required time of about 2.32 days. B. IHNATOLYA, PE 9/10/2012 A U Z zw M w� boo HUo w z wda w rx d w T O O C Q 00 N r et n� Y Y U a� .a z 0 �6 00 z A>4 0 3 N 0 o V) o N 00 0 CV � � oN II N I rr 5 I Y [f fO Y 0 w 2 c, to A McADAMS PARKSIDE TOWN COMMONS SWMF #4 B. IHNATOLYA, PE KRG -12000 9/11/2012 PARKSIDE TOWN COMMONS Per NCDENR "Stormwater Best Management Practices ", the permanent pool needs to be designed with various water depths to support plant and animal populations. The wetland should consist of deep pools, shallow water, and shallow land with the deep pools being broken down to forebay pools and non - forebay pools. Approximately 5 -10% of the wetland surface area should be non - forebay deep pools. Approximately 10% of the suface area should be forebay deep pools. Approximately 40% of the surface area should be shallow water, and the remaining 30 -40 %of the surface area should be shallow land. A. Total Wetland Surface Area (Elev. 296.0) B. Wetland Surface Area: Deep Pools (18 " -36" deep) Non- Forebay Forebay C. Wetland Surface Area: Shallow Water (3" -6" deep) D. Wetland Surface Area: Shallow Land (12 "+ -3" deep) Area = 60906 sf Area = 5608 sf Area = 6055 sf Area = 24606 sf Area = 24637 sf Deep Pools- Non - Foreba 9.2% Deep Pools-Forebay 9.9% Shallow Water 40.4% Shallow Land 40.5% Parkside Town Commons — SWMF #4 Project # KRG -12000 VELOCITY DISSIPATOR DESIGN Designed By: B. Ihnatolya Velocity Dissipator — SWMF #4 NRCD Land Quality Section Pipe Design Entering the following values will provide you with the expected outlet velocity and depth of flow in a pipe, assuming the Mannings roughness number is constant over the entire length of the pipe. flow Q in cfs : 1.13 Flow depth (ft) = 0.23 slope S in %: 1.92 Outlet velocity (fps) = 4.472 pipe diameter D in in.: 36 Manning number n: 0.013 NRCD Land Quality Section NYDOT Dissipator Design Results Pipe diameter (ft) 3.00 Outlet velocity (fps) 4.47 Apron length (ft) 18.00 AVG DIAM STONE THICKNESS (inches) CLASS (inches) -- - - - - -- - - - -- --- 3 A - - - - -- 9 »6 B 22« 13 B or 1 22 23 2 27 Width Calculation WIDTH = La + Do WIDTH = 18.00 + 3.00 WIDTH = 21.0 FEET CONCLUSION Use 8" DIA NCDOT Class `B' Rip Rap 18'L x 21'W x 22" Thick ABE VOLUME CALCULATORS, PYRAMIDLONG http://www.abe.msstate.edu/—fto/tools/vol/pyraniidlong.htrr CALCULATE VOLUME OF PYRAMID WITH INDIVIDUAL WIDTHS AND LENGTHS Enter all known values in the form below and press the "CALCULATE" button. Aar WIDTH I (W 1) LENGTH I (L 1) vVI DTH2(W2), LENGTH2(L2)� HEIGHT(h), VOLUME ,8 .4 FL2-- ! —21 can copy for other use !61.74 The answer that YOU CALCULATE I RESET SELECT ANOTHER SHAPE Go to Unit Conversion Pace 1 of 1 9/11/2012 11:46 AM PARKSIDE TOWN COMMONS SWMF #4 B. IHNATOLYA, PE KRG -12000 9/11/2012 Input Data =_> Square Riser/Barrel Anti - Flotation Calculation Sheet Inside length of riser = 5.00 feet Inside width of riser = 5.00 feet Wall thickness of riser = 6.00 inches Base thickness of riser = 8.00 inches Base length of riser = 6.00 feet Base width of riser = 6.00 feet Inside height of Riser = 6.20 feet Concrete unit weight = 142.0 PCF OD of barrel exiting manhole = 45.50 inches Size of drain pipe (if present) = 8.0 :riches Number of detention orifices (if present) = 1 Area of detention orifice (if present) = 0.017 SQFT Number of detention orifices (if present) = 1 Area of detention orifice (if present) = 1.000 SQFT Trash Rack water displacement = 61.74 CF Concrete Present in Riser Structure =_> Total amount of concrete: Base of Riser = 24.000 CF Riser Walls = 68.200 CF Adjust for openings: Opening for barrel = 5.646 CF Opening for drain pipe = 0.175 CF Opening for detention orifice = 0.508 CF Note: NC Products lists unit wt. of manhole concrete at 142 PCF. Total Concrete present, adjusted for openings = 85.871 CF Weight of concrete present = 12194 lbs Amount of water displaced by Riser Structure =_> Displacement by concrete = 85.871 CF Displacement by open air in riser = 155.000 CF Displacement by trash rack = 61.740 CF Total water displaced by riseribarrel structure = 302.611 CF Weight of water displaced = 18883 Ibs PARKSIDE TOWN COMMONS SWMF #4 B. IHNATOLYA, PE KRG -12000 9/11/2012 Calculate amount of concrete to be added to riser =_> Safety factor to use = 1.25 (recommend 1.25 or higher) Must add = 11410 lbs concrete for buoyancy Concrete unit weight for use = 142 PCF (note above observation for NCP concrete) Buoyant weight of this concrete = 79.60 PCF Buoyant, with safety factor applied = 63.68 PCF Therefore, must add = 179.176 CF of concrete Standard base described above = 24.000 CF of concrete Therefore, base design must have = 203.176 CF of concrete Calculate size of base for riser assembly =_> Length = 9.000 feet Width = 9.000 feet Thickness = 31.0 inches Concrete Present = 209.250 CF OK Check validity of base as designed =_> Total Water Displaced = 487.861 CF Total Concrete Present = 271.121 CF Total Water Displaced = 30443 lbs Total Concrete Present = 38499 lbs Actual safety factor = 1.26 OK Results of design =_> Base length = 9.00 feet Base width = 9.00 feet Base Thickness = 31.00 inches CY of concrete total in base = 7.75 CY Concrete unit weight in added base >= 142 PCF PARKSIDE TOWN COMMONS Anti- Flotation Block Calculation B. IHNATOLYA, PE KRG -12000 Anti- Flotation Block Steel 10/17/2012 IL CALCULATION FOR RISER ANTI - FLOTATION STEEL Input Data ---> Anti - Floatation Block Length = 9.0 feet Anti - Floatation Block Width = 9.0 feet Anti - Floatation Block Thickness= 31.0 inches Minimum Asteel to Aconcrete Ratio = 0.0018 Cross - Section Calculations --> Cross - Section Area* = 23.25 SF Minimum Steel Area Required = 0.042 SF 6.03 SI *Note: Assumes a "square" x -sec (L and W same) Steel Area Calculations --> Bar Size = 4 5 6 7 8 Diameter [in] = 0.500 0.625 0.750 0.875 1.000 X -Sec Area [in ^2] = 0.196 0.307 0.442 0.601 0.785 Number of Bars 1 0.196 0.307 0.442 0.601 0.785 2 0.393 0.614 0.884 1.203 1.571 3 0.589 0.920 1.325 1.804 2.356 4 0.785 1.227 1.767 2.405 3.142 5 0.982 1.534 2.209 3.007 3.927 6 1.178 1.841 2.651 3.608 4.712 7 1.374 2.148 3.093 4.209 5.498 8 1.571 2.454 3.534 4.811 6.283 10 1.963 3.068 4.418 6.013 7.854 12 2.356 3.682 5.301 7.216 9.425 14 2.749 4.295 6.185 8.418 10.996 16 3.142 4.909 7.069 9.621 12.566 18 3.534 5.522 7.952 10.824 14.137 20 3.927 6.136 8.836 12.026 15.708 22 4.320 6.750 9.719 13.229 17.279 24 4.712 7.363 10.603 14.432 18.850 26 5.105 7.977 11.486 15.634 20.420 28 5.498 8.590 12.370 16.837 21.991 30 5.890 9.204 13.254 18.040 23.562 32 6.283 9.817 14.137 19.242 25.133 34 6.676 10.431 15.021 20.445 26.704 36 7.069 11.045 15.904 21.648 28.274 38 7.461 11.658 16.788 22.850 29.845 40 7.854 12.272 17.671 24.053 31.416 42 8.247 12.885 18.555 25.255 32.987 44 8.639 13.499 19.439 26.458 34.558 46 9.032 14.113 20.322 27.661 36.128 48 9.425 14.726 21.206 28.863 37.699 50 9.817 15.340 22.089 30.066 39.270 52 10.210 15.953 22.973 31.269 40.841 54 10.603 16.567 23.856 32.471 42.412 56 10.996 17.181 24.740 33.674 43.982 X:\ Projects \KRG \KRG -12000 \Storm \Site Plan Submittal \Design Files \Outlet - Anti -Float Block Steel Calcs.XLS Page 1 PARKSIDE TOWN COMMONS Anti - Flotation Block Calculation KRG -12000 Anti - Flotation Block Steel 58 11.388 17.794 25.624 34.877 45.553 60 11.781 18.408 26.507 36.079 47.124 62 12.174 19.021 27.391 37.282 48.695 64 12.566 19.635 28.274 38.485 50.265 66 12.959 20.249 29.158 39.687 51.836 68 13.352 20.862 30.041 40.890 53.407 70 13.744 21.476 30.925 42.092 54.978 72 14.137 22.089 31.809 43.295 56.549 74 14.530 22.703 32.692 44.498 58.119 76 14.923 23.317 33.576 45.700 59.690 78 15.315 23.930 34.459 46.903 61.261 80 15.708 24.544 35.343 48.106 62.832 82 16.101 25.157 36.226 49.308 64.403 84 16.493 25.771 37.110 50.511 65.973 86 16.886 26.384 37.994 51.714 67.544 88 17.279 26.998 38.877 52.916 69.115 90 17.671 27.612 39.761 54.119 70.686 92 18.064 28.225 40.644 55.321 72.257 94 18.457 28.839 41.528 56.524 73.827 96 18.850 29.452 42.412 57.727 75.398 98 19.242 30.066 43.295 58.929 76.969 100 19.635 30.680 44.179 60.132 78.540 Conclusion --> Use 2 grids of #5 bars with 5 bars in each direction Total Number of #5 bars = 20 Total cross - sectional area of steel = 6.136 in ^2 B. IHNATOLYA, PE 10/17/2012 X:\Projects \KRG \KRG- 12000 \Storm \Site Plan Submittal \Design Files \Outlet - Anti -Float Block Steel Calcs.XLS Page 2 LEVEL SPREADER CALCULATIONS PARKSIDE TOWN COMMONS KRG -12000 Subsection: Individual Outlet Curves Label: SWMF #1 [Structure ID = Orifice - 1 (Orifice- Circular) I Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) Return Event: 10 years Storm Event: 10 -Year Storm Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3 /s) (ft) (ft) (ft) 302.00 0.00 (N /A) 0.00 302.20 0.05 (N /A) 0.00 302.40 0.09 (N /A) 0.00 302.60 0.12 (N /A) 0.00 302.80 0.14 (N /A) 0.00 303.00 0.16 (N /A) 0.00 303.20 0.17 (N /A) 0.00 303.40 0.19 (N /A) 0.00 303.60 0.20 (N /A) 0.00 303.80 0.21 (N /A) 0.00 304.00 0.23 (N /A) 0.00 304.20 0.24 (N /A) 0.00 304.40 0.25 (N /A) 0.00 304.50 0.25 (N /A) 0.00 304.60 0.26 (N/A) 0.00 0.27 (N /A) 0.00 304.80 0.28 (N /A) 0.00 305.00 305.20 0.29 (N /A) 0.00 305.40 0.30 (N /A) 0.00 305.60 0.31 (N /A) 0.00 305.80 0.32 (N /A) 0.00 306.00 0.32 (N /A) 0.00 306.20 0.33 (N /A) 0.00 306.40 0.34 (N /A) 0.00 306.60 0.35 (N /A) 0.00 306.80 0.36 (N /A) 0.00 307.001 0.36 (N /A) 1 0.00 Computation Messages WS below an invert; no flow. CRIT.DEPTH CONTROL Vh= .060ft Dcr= .140ft CRIT.DEPTH Hev= .00ft H =.30 H =.50 H =.70 H =.90 H =1.10 H =1.30 H =1.50 H =1.70 C&4-rN : /0 µle.fs * e. 27 c Fs 1 2.7.F!-. GS LENGTH PRO VIPE;D OR. ejobv S 1motj PIPE 'ir V"Srt 1 f pm D; USE qs DESIGjj FLOW FOR t fVrL SPREfIDE'R. Mill. 0 cEtJc7T. + =io 'q,d FLOW - 0, 77CfS Bentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack V8i Parkside. ppc Center [08.11.01.51) 9/10/2012 27 Siemon Company Drive Suite 200 W Page 5 of 35 Watertown, CT 06796 USA +1- 203 - 755 -1666 Subsection: Individual Outlet Curves Label: SWMF #1 RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice - Circular) Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) Computation Messages H =1.90 H =2.10 H =2.30 H =2.40 H =2.50 H =2.70 H =2.90 H =3.10 H =3.30 H =3.50 H =3.70 H =3.90 H =4.10 H =4.30 H =4.50 H =4.70 H =4.90 Return Event: 10 years Storm Event: 10 -Year Storm Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 6 of 35 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Individual Outlet Curves Label: SWMF #2 Return Event: 10 years Storm Event: 10 -Year Storm -RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice Circular) 7 S (PH04 PIPE --------------------------------- - - - - -- Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3 /s) (ft) (ft) (ft) 301.00 0.00 (N /A) 0.00 301.20 0.02 (N /A) 0.00 301.40 0.03 (N /A) 0.00 301.60 0.04 (N /A) 0.00 301.80 0.05 (N /A) 0.00 302.00 0.06 (N /A) 0.00 302.20 0.06 (N /A) 0.00 302.40 0.07 (N /A) 0.00 302.60 0.07 (N /A) 0.00 302.80 0.08 (N /A) 0.00 303.00 0.08 (N /A) 0.00 303.20 0.09 (N/A 0.09 (N/A) 0.00 303.40 0.09 (N /A) 0.00 303.50 303.60 0.09 (N /A) 0.00 303.80 0.10 (N /A) 0.00 304.00 0.10 (N /A) 0.00 304.20 0.10 (N /A) 0.00 304.40 0.11 (N /A) 0.00 304.60 0.11 (N /A) 0.00 304.80 0.11 (N /A) 0.00 305.00 0.12 (N /A) 0.00 305.20 0.12 (N /A) 0.00 305.40 0.12 (N /A) 0.00 305.60 0.13 (N /A) 0.00 305.80 0.13 (N /A) 0.00 306.001 0.13 (N /A) 1 0.00 Computation Messages WS below an invert; no flow. H =.14 H =.34 H =.54 H =.74 H =.94 H =1.14 H =1.34 H =1.54 H =1.74 H =1.94 --�i /0 - yR oSet mi poAl0� USE AS �ESIGrt F1.00 For- L,vVEC SPREADE2• 11 /11 LS o9�s /o�` /cfs FLOW 0 a C7TH- /0 �4Cfs * U.01 cis L p,9 • GS t6wegFf �ROV,DED to �f. &MI'l Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 13 of 35 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Individual Outlet Curves Label: SWMF #2 RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice- Circular) --------------------------------------- Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) Computation Messages H =2.14 H =2.34 H =2.44 H =2.54 H =2.74 H =2.94 H =3.14 H =3.34 H =3.54 H =3.74 H =3.94 H =4.14 H =4.34 H =4.54 H =4.74 H =4.94 Return Event: 10 years Storm Event: 10 -Year Storm Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 14 of 35 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Individual Outlet Curves Label: SWMF #3 RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice- Circular) Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) Return Event: 10 years Storm Event: 10 -Year Storm Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3 /s) (ft) (ft) (ft) 304.00 0.00 (N /A) 0.00 304.20 0.07 (N /A) 0.00 304.40 0.25 (N /A) 0.00 304.60 0.34 (N /A) 0.00 304.80 0.42 (N /A) 0.00 305.00 0.48 (N /A) 0.00 305.20 0.53 (N /A) 0.00 305.40 0.59 (N /A) 0.00 305.60 0.63 (N /A) 0.00 305.80 0.68 (N /A) 0.00 306.00 0.72 (N /A) 0.00 306.20 0.75 (N /A) 0.00 306.40 0.79 (N /A) 0.00 306.60 0.83 (N /A) 0.00 306.80 0.86 (N /A) 0.00 307.00 0.89 (N /A) 0.00 307.20 0.92 (N /A) 0.00 307.40 0.95 (N /A) 0.00 307.60 0.98 (N /A) 0.00 307.80 1.01 v !(N /A) 0.00 308.00 1.04 (N /A) 0.00 308.20 1.06 (N /A) 0.00 308.40 1.09 (N /A) 0.00 308.60 1.12 (N /A) 0.00 308.80 1.14 (N /A) 0.00 309.00 1.17 (N /A) 0.00 309.20 1.19 (N /A) 0.00 309.40 1.21 (N /A) 0.00 309.60 1.24 (N /A) 0.00 309.80 1.26 (N /A) 0.00 310.001 1.28 (N /A) 1 0.00 WS below an invert; no flow. CRIT.DEPTH CONTROL Vh= .054ft Dcr= .145ft CRIT.DEPTH Hev= .00ft H =.21 H =.41 H =.61 H =.81 LE*7W = /0 " /cfs U 0.9P r- /S CS C 0477H FROVIbE>7 = 10 clop.b s(FHorl PIPrr AS DES 16,0 FLOW rok (- rl SPR ,rADM. M iN• r,s tE467* /0 Flog '0' If cfs Bentley Systems, Inc. Haestad !Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 22 of 35 Watertown, CT 06795 USA t1- 203 - 755 -1666 Subsection: Individual Outlet Curves Label: SWMF #3 RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice- Circular) Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) Computation Messages H =1.01 H =1.21 H =1.41 H =1.61 H =1.81 H =2.01 H =2.21 H =2.41 H =2.61 H =2.81 H =3.01 H =3.21 H =3.41 H =3.61 H =3.81 H =4.01 H =4.21 H =4.41 H =4.61 H =4.81 H =5.01 H =5.21 H =5.41 H =5.61 H =5.81 Return Event: 10 years Storm Event: 10 -Year Storm Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside. ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 23 of 35 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Individual Outlet Curves Label: SWMF #4 RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice- Circular) Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) Return Event: 10 years Storm Event: 10 -Year Storm Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft3 /s) (ft) (ft) (ft) 296.00 296.20 296.40 296.60 296.80 297.00 297.20 0.00 0.03 0.05 0.06 0.07 0.08 (N /A) (N /A) (N /A) (N /A) (N /A) (N /A) 0.00 02110 0.00 0.00 0.00 0.00 0.09 N/A 0.00 0.09 (N /A) 0.00 297.40 297.60 0.10 (N /A) 0.00 297.80 0.11 (N /A) 0.00 298.00 0.11 (N /A) 0.00 298.20 0.12 (N /A) 0.00 298.40 0.12 (N /A) 0.00 298.60 0.13 (N /A) 0.00 298.80 0.13 (N /A) 0.00 299.00 0.14 (N /A) 0.00 299.20 0.14 (N /A) 0.00 299.40 0.15 (N /A) 0.00 299.60 0.15 (N /A) 0.00 299.80 0.16 (N /A) 0.00 300.00 0.16 (N /A) 0.00 300.20 0.16 (N /A) 0.00 300.40 0.17 (N /A) 0.00 300.60 0.17 (N /A) 0.00 300.80 0.17 (N /A) 0.00 301.00 0.18 (N /A) 0.00 301.20 0.18 (N /A) 0.00 301.40 0.19 (N /A) 0.00 301.60 0.19 (N /A) 0.00 301.80 0.19 (N /A) 0.00 302.001 0.20 1 (N /A) 1 0.00 Computation Messa, WS below an invert; no flow. H =.13 H =.33 H =.53 H =.73 H =.93 H =1.13 leA1C77H- l0 >c/e FS ' CS L�NH7N P12OMED= �Oa D V/ SIPNDtj PIPE 1--� 10-Y2 WsEL ml PoNOj us AS pES1AN FLOW FOX LEWL SPREADER. Merl. L9. & EW47 -H z /00 FaW -- 0.09 C.As. 0.09 eIs - D. 9 //_ to H. Qentley Systems, Inc. Haestad Methods Solution Bentley Pond Pack Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 31 of 35 Watertown, CT 06795 USA +1- 203 - 755 -1666 Subsection: Individual Outlet Curves Label: SWMF #4 RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice- Circular) Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall) Computation Messages H =1.33 H =1.53 H =1.73 H =1.93 H =2.13 H =2.33 H =2.53 H =2.73 H =2.93 H =3.13 H =3.33 H =3.53 H =3.73 H =3.93 H =4.13 H =4.33 H =4.53 H =4.73 H =4.93 H =5.13 H =5.33 H =5.53 H =5.73 H =5.93 Return Event: 10 years Storm Event: 10 -Year Storm Bentley Systems, Inc. Haestad Methods Solution Bentley PondPack V8i Parkside.ppc Center [08.11.01.51] 9/10/2012 27 Siemon Company Drive Suite 200 W Page 32 of 35 Watertown, CT 06795 USA +1 -203- 755 -1666 SPUTTER BOX This splitter box does not include an internal weir to control flow. The separation of flow is achieved by strategically setting outlet inverts and pipe sizes leaving the structure. Spliiter Box Name: Primary Outlet Pipe By -Pass Outlet Pipe Inlet Pipe: Flow from Site: Flow to Level Spreader (1 " /hr) By -Pass flow: HGL in JB -100A for 12" Outlet: Invert Elev. For By -Pass Pipe: JB -100A 12" RCP flowing to Level Spreader and Vegetated Filter Strip 24" RCP flowing FES 100 24" RCP 10.28 CFS 1.51 CFS 8.77 CFS 302.98 FT 302.98 FT CENG -W 5 offs : 75�'F. LS LENCzT 1 P9DVIDED : %S" 4 C10D ✓ Spliiter Box Data (2).xlsx The John R. McAdams Company, Inc. 10/18/2012 NUTRIENT EXPORT CALCULATIONS PARKSIDE TOWN COMMONS KRG -12000 0) E • W � L z ° U W U z Fez° v, W �4 M2 m a d � � a O`~ E ;a °• Luo W z x�� p U � W c W o z c� z w 0 y w aa U E-4 ►-a W ►-a W d4 P4 O F, C2 Q � O Q O w w a ao Q z p� o 0 xco Z V 0z QA u O o z w Q o t� z o wo z A� �w A4 a PROJECT NO KRG -1 2000 FILENAME: KRG12000SWX— TNCalcs DESIGNED BY: JF DRAWN BY: JF SCALE: 1"=100' DATE: —12 SHEET NO. TN [jMcADAMS PARK -PHASE 1 PHASE 1 POST-DEVELO. .ENT NITROGEN EXPORT NCH,PE KRG-12000 CALCULATIONS 9/11/2012 TN-Loading Input Data Phase 1 Nitrogen Analysis Area acres Sub-basin ID open Wooded Im ervious Pond ; Total To SWMF#1 1.45 0.00 3.54 0.54 5.53 To SWMF#2 0.45 0.00 0.26 0.28 0.99 To SWMF#3 5.90 0.00 16.13 1.51 23.54 To SWMF#4 2.50 0.00 1 0.80 1.40 4.70 B ass Area 5.37 1.88 0.10 0.00 7.35 Totals= 15.67 1.88 20.83 3.73 42.11 TN-Loading Output Data Sub-basin ID Nitrogen Analysis TN-Load Before %Removal TN-Load After 1st 1st BMP Type %Removal TN-Load After 2nd BMP Type Area acres Treatment lbs/ r Device Ibs/ r 2nd Device Ibs/ r To SWMF#1 5.53 77.44 40% 46.46 3 SW Wetland 30% 32.52 LSNFS To SWMF#2 0.99 6.39 40% 3.83 SW Wetland 30% 2.68 LS/VFS To SWMF#3 23.54 350.85 40% 210.51 SW Wetland 30% 147.36 LS/VFS To SWMF#4 4.70 21.64 40% 12.98 SW Wetland 30% 9.09 LS/VFS B ass Areas 7.35 9.69 0% 9.69 1 0% 9.69 Totals= 42.11 466.00 283.48 201.34 TN-Load After Treatment= 201.34 lbs/yr 4.78 lbs/ac/yr PAR_ E-PHASE 1 PRE-DEVELOPMENT TI, ,XPORT CALCULATIONS J._ CH,PE KRG-12000 Phase I Total 9/11/2012 METHOD 2: Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all Impervious Surfaces are shown. STEP 1: Determine the area for each type of land use and enter in Column (2). STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2). STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4). STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4). STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of Column (4) by the total area at the bottom of Column (2). (1) 1 (2) (3) (4) Type of Land Cover Area TN export coeff. TN export from use [acres] (lbs/ac/yr) (lbs/yr) Permanently protected undisturbed 39.69 0.6 23.81 _q pen space (forest, unmown meadow) Permanently protected managed 2.41 1.2 � 2.89 open space ( rass, landscaping, etc.) Impervious surfaces (roads,parking lots, driveways, roofs,paved storage 0.01 21.2 0.21 areas, etc.) TOTAL 42.11 --- 26.92 Total TN Export= 0.64 lbs/ac/yr % impervious = 0.0% PARK E-PHASE 1 POST-DEVELOPMENT T _�XPORT CALCULATIONS J._ CH,PE KRG-12000 Phase I Total 9/11/2012 METHOD 2: Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all Impervious Surfaces are shown. STEP l: Determine the area for each type of land use and enter in Column (2). STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2). STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4). STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4). STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of Column (4) by the total area at the bottom of Column (2). (1) (2) (3) (4) Type of Land Cover Area TN export coeff. TN export from use [acres] (Ibs/ac/yr) (Ibs/yr) Permanently protected undisturbed 1.88 0.6 1.13 open space (forest, unmown meadow) Permanently protected managed 19.40 1.2 23.28 o en space ( rass, landscaping, etc.) Impervious surfaces (roads,parking 1 lots, driveways, roofs,paved storage 20.83 21.2 441.60 areas, etc.) TOTAL 42.11 --- 466.00 Total TN Export= 11.07 lbs/ac/yr % impervious = 49.5% PARIS E-PHASE 1 POST-DEVELOPMENT T� .:XPORT CALCULATIONS J., CH,PE KRG-12000 Subbasin#To SWMF#1 9/11/2012 METHOD 2: Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all Impervious Surfaces are shown. STEP 1: Determine the area for each type of land use and enter in Column (2). STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2). STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4). STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4). STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of Column (4) by the total area at the bottom of Column (2). (1) (2) (3) (4) Type of Land Cover Area TN export coeff. TN export from use [acres] (lbs/ac/yr) (lbs/yr) Permanently protected undisturbed 0.00 0.6 0.00 open space (forest, unmown meadow) . Permanently protected managed 1.99 i 1.2 2.39 open space ( rass, landscaping, etc.) 9 Impervious surfaces (roads,parking lots, driveways, roofs,paved storage 3.54 21.2 75.05 areas, etc.) TOTAL 5.53 --- 77.44 Total TN Export= 14.0 lbs/ac/yr % impervious= 64.0% PARR E-PHASE 1 POST-DEVELOPMENT T, _�'XPORT CALCULATIONS J. CH,PE KRG-12000 Subbasin#To SWMF#2 9/11/2012 METHOD 2: Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all Impervious Surfaces are shown. STEP 1: Determine the area for each type of land use and enter in Column (2). STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2). STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4). STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4). STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of Column (4) by the total area at the bottom of Column (2). (1) (2) (3) (4) Type of Land Cover Area 1 TN export coeff. TN export from use [acres] ' (lbs/ac/yr) (lbs/yr) Permanently protected undisturbed 0.00 0.6 0.00 open s ace 6orest, unmown meadow) Permanently protected managed 0.73 1.2 0.88 Ten ace ( rass, landsca in , etc.) Impervious surfaces (roads,parking lots, driveways, roofs,paved storage 0.26 21.2 5.51 areas, etc.) TOTAL 0.99 --- 6.39 Total TN Export= 6.5 lbs/ac/yr % impervious = 26.3% PARF E-PHASE 1 POST-DEVELOPMENT I- i:XPORT CALCULATIONS J. _ACH,PE KRG-12000 Subbasin#To SWMF 43 9/11/2012 METHOD 2: Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all Impervious Surfaces are shown. STEP l: Determine the area for each type of land use and enter in Column (2). STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2). STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4). STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4). STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of Column (4) by the total area at the bottom of Column (2). (1) (2) (3) (4) Type of Land Cover Area TN export coeff. TN export from use [acres] (lbs/ac/yr) (lbs/yr) Permanently protected undisturbed 0.00 0.6 0.00 open s ace (forest, unmown meadow Permanently protected managed open s ace (grass, landsca in g, etc.) 7.41 1.2 8.89 Impervious surfaces (roads,parking lots, driveways, roofs,paved storage 16.13 21.2 341.96 areas, etc.) TOTAL 23.54 --- 350.85 Total TN Export= 14.9 lbs/ac/yr % impervious = 68.5% PARK E-PHASE 1 POST-DEVELOPMENT T� .:XPORT CALCULATIONS J._ CH,PE KRG-12000 Subbasin#To SWMF#4 9/11/2012 METHOD 2: Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all Impervious Surfaces are shown. STEP 1: Determine the area for each type of land use and enter in Column (2). STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2). STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4). STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4). STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of Column (4) by the total area at the bottom of Column (2). (1) (2) (3) (4) Type of Land Cover Area TN export coeff. TN export from use [acres] (lbs/ac/yr) (lbs/yr) Permanently protected undisturbed 0.00 0.6 0.00 open space (forest, unmown meadow) Permanently protected managed 3.90 1.2 4.68 open s ace mss, landsca in g, etc.) Impervious surfaces (roads,parking lots, driveways, roofs,paved storage 0.80 21.2 16.96 areas, etc.) TOTAL 4.70 --- 21.64 Total TN Export= 4.6 lbs/ac/yr % impervious = 17.0% PARR E-PHASE 1 POST-DEVELOPMENT T .:XPORT CALCULATIONS J._ CH,PE KRG-12000 Subbasin#Bypass 9/11/2012 METHOD 2: Quantifying TN Export from Residentail/Industrial/Commercial Developments when Footprints of all Impervious Surfaces are shown. STEP 1: Determine the area for each type of land use and enter in Column (2). STEP 2: Total the areas for each type of land use and enter at the bottom of Column (2). STEP 3: Multiply the areas in Column (2) by the TN export coefficients in Column (3) and enter in Column (4). STEP 4: Total the TN exports for each type of land use and enter at the bottom of Column (4). STEP 5: Determine the export coefficient for the site by dividing the total TN export from uses at the bottom of Column (4) by the total area at the bottom of Column (2). (1) (2) (3) (4) Type of Land Cover Area TN export coeff. TN export from use [acres] (lbs/ac/yr) (lbs/yr) Permanently protected undisturbed 1.88 0.6 1.13 open s ace 6orest, unmown meadow Permanently protected managed 5.37 1.2 6.44 open space ( rass, landsca in , etc.) Impervious surfaces (roads,parking lots, driveways, roofs,paved storage 0.10 21.2 2.12 areas, etc.) TOTAL 7.35 --- 9.69 Total TN Export= 1.3 lbs/ac/yr % impervious= 1.4% Nitrogen Control Plan Commercial / Industrial / Residential Sites with Known Impervious Area Project Title: PA1ZalL)E TIIWAI CQWm,6NS hI Type of Project N New [ ] Expansion [ ]Exempt ��`�(N Basis for exemption WA a��zi_4cE Part I. Riparian Buffers`W$�t� v` Area includes riparian buffers? [ ] No Yes [ ]Exempt f `; 3375-51, ; a If yes, [4 50 foot [ ] 100 foot =yz• •; .r River Basin? [ ] Neuse b4 Cape Fear 'Az% *.%Jt Eti.• Basis for exemption NlAO�•••••••' P Show buffers on site plan. ~•'•�,� E. Part II. Nitrogen Calculations (Method 2, Appendix C): a. Site Information Total area of property incl. R/W l/2, // QwPS - llvlfy,ewf AViQlyys�rs AVaL (ex C10(yes 0 Kelly Denuded Area yy 5�aevcs C�►apef Rd • eX{cosiovi ROW) Impervious Area incl. R/W 20,g Q ye� Managed open space /q, �% aeyes (InelUdes Bmpaveas) Protected open space �, 88 awes b. Pre - development loading: Type of Land Cover Permanently protected undisturbed open space (forest, unmown meadow) Permanently protected managed open space (grass, landscaping, etc.) Impervious Area TOTAL Nitrogen Loading Rate (Ibs /ac /yr) = 0,6 c. Post - development loading: Type of Land Cover Permanently protected undisturbed open space (forest, unmown meadow) Permanently protected managed open space (grass, landscaping, etc.) Impervious Area TN export Area TN export coeff. from use (acres) (Ibs /ac /yr) (Ibs /yr) 3 ,6 0.60 2 3, 8 0 1.20 Z • 89 0,0/ 21.20 y /,60 Z/2. // 26.9z TOTAL Nitrogen Loading Rate (Ibs /ac /yr) = //. 07 TN export Area TN export coeff. from use (acres) (Ibs /ac /yr) (Ibs /yr) 98 0.60 US 0 1.20 2 3, Z 8 20,83 21.20 y /,60 z, // W('(0,00 Proposed BMP(s) sloyrniyakv Wega 0,, level spy- eadevsll/eyea" rilkt' Sf v`ps Nitrogen Load after BMPs = JZ 78 /b/A� Nitrogen Load Offset by Payments Net change in on -site N Load Part III. Control of Peak Stormwater Flow (for 1 year, design storm Calculated Pre - development Peak Flow �.� etcI Covevshee Calculated Post - development Peak Flow covwshee4 Proposed BMP(s) SWmr- 41 SWrhF�t z S�S�,UvnG (WeHa ads) levy I SP✓ dev�V t✓5� Post BMP Peak Flow I, the undersigned, certify to the best of my knowledge that the above information is correct (affix seal) Supply notes & details showing control of Nitrogen and peak stormwater runoff. 31812006 EcoEngineering A division of The John R. McAdams Company, Inc. MEMORANDUM Date: June 11, 2012 To: Jeremy Finch, PE From: George Buchholz, REM, PWS Re: Parkside Town Commons — SWMF #1, #2, #3, & #4 Seasonal High Water Table KRG -12000 A field investigation was conducted on June 05 and 06, 2012 at the proposed location of four stormwater management facilities (SWMF) associated with the Parkside Town Commons development. A soil boring was established within each SWMF to determine the approximate seasonal high water table depth from the soil surface. Below is a brief summary of the soil type(s) and i the approximate seasonal high water table depth. SWMF #1 Soil Ty- e(s): White Store sandy loam, 6 to 10 percent slopes: located on narrow side slopes, moderately deep, well drained, with slow permeability. White Store sandy loam, 2 to 6 percent slopes: located on narrow side slopes, moderately deep, well drained, with slow permeability. I I Soil Boring Results: It is anticipated that the approximate seasonal high water table depth from the soil surface for this SWMF is 5 inches. General Soil Boring Observations r In general, the profile of the soil borings graded from dark brown silt loams near the surface to yellowish brown that are sandy at lower elevations and then finally grayish sands at lower elevations. Below is a photograph of a sample boring. Research Triangle Park, NC Post Office Box 14005 Reseadr Triangle Park, North Carolina 27709 2905 Mericlian Parkway Durham, North Carolina 27713 800. 733 -5646 919- 287 -4262 919.361 -2269 Fax w".ecoengr.com Design Services Focused On Client Success EcoEngineering A division of The John R. McAdams Company, Inc. Photo 1. Soil boring profile located within SWMF #1. SWMF #2 Soil Type(s): White Store sandy loam, 6 to 10 percent slopes: located on narrow side slopes, moderately deep, well drained, with slow permeability. Soil Boring Results: It is anticipated that the approximate seasonal high water table depth from the soil surface for this SWMF is 4 inches. General Soil Boring Observations In general, the profile of the soil borings graded from dark brown silt loams near the surface to grayish sands. Below is a photograph of a sample boring. EcoEngineering A division of The John R. McAdams Company, Inc. Photo 2. Soil boring profile located within SWMF #2. SWMF #3 Soil Type(s): Creedmoor sandy loam, 10 to 20 percent slopes: located on narrow side slopes, slightly eroded, moderately well drained, with slow permeability. White Store sandy loam, 6 to 10 percent slopes: located on narrow side slopes, moderately deep, well drained, with slow permeability. Soil Boring Results: It is anticipated that the approximate seasonal high water table depth from the soil surface for this SWMF is 19 inches. General Soil Boring Observations In general, the profile of the soil borings graded from dark brown silt loams near the surface to yellowish brown that are sandy at lower elevations and then finally grayish silts at lower elevations. Below is a photograph of a sample boring. Nitrogen Control Plan Commercial / Industrial / Residential Sites with Known Impervious Area Project Title: PA1ZalL)E TIIWAI CQWm,6NS hI Type of Project N New [ ] Expansion [ ]Exempt ��`�(N Basis for exemption WA a��zi_4cE Part I. Riparian Buffers`W$�t� v` Area includes riparian buffers? [ ] No Yes [ ]Exempt f `; 3375-51, ; a If yes, [4 50 foot [ ] 100 foot =yz• •; .r River Basin? [ ] Neuse b4 Cape Fear 'Az% *.%Jt Eti.• Basis for exemption NlAO�•••••••' P Show buffers on site plan. ~•'•�,� E. Part II. Nitrogen Calculations (Method 2, Appendix C): a. Site Information Total area of property incl. R/W l/2, // QwPS - llvlfy,ewf AViQlyys�rs AVaL (ex C10(yes 0 Kelly Denuded Area yy 5�aevcs C�►apef Rd • eX{cosiovi ROW) Impervious Area incl. R/W 20,g Q ye� Managed open space /q, �% aeyes (InelUdes Bmpaveas) Protected open space �, 88 awes b. Pre - development loading: Type of Land Cover Permanently protected undisturbed open space (forest, unmown meadow) Permanently protected managed open space (grass, landscaping, etc.) Impervious Area TOTAL Nitrogen Loading Rate (Ibs /ac /yr) = 0,6 c. Post - development loading: Type of Land Cover Permanently protected undisturbed open space (forest, unmown meadow) Permanently protected managed open space (grass, landscaping, etc.) Impervious Area TN export Area TN export coeff. from use (acres) (Ibs /ac /yr) (Ibs /yr) 3 ,6 0.60 2 3, 8 0 1.20 Z • 89 0,0/ 21.20 y /,60 Z/2. // 26.9z TOTAL Nitrogen Loading Rate (Ibs /ac /yr) = //. 07 TN export Area TN export coeff. from use (acres) (Ibs /ac /yr) (Ibs /yr) 98 0.60 US 0 1.20 2 3, Z 8 20,83 21.20 y /,60 z, // W('(0,00 Proposed BMP(s) sloyrniyakv Wega 0,, level spy- eadevsll/eyea" rilkt' Sf v`ps Nitrogen Load after BMPs = JZ 78 /b/A� Nitrogen Load Offset by Payments Net change in on -site N Load Part III. Control of Peak Stormwater Flow (for 1 year, design storm Calculated Pre - development Peak Flow �.� etcI Covevshee Calculated Post - development Peak Flow covwshee4 Proposed BMP(s) SWmr- 41 SWrhF�t z S�S�,UvnG (WeHa ads) levy I SP✓ dev�V t✓5� Post BMP Peak Flow I, the undersigned, certify to the best of my knowledge that the above information is correct (affix seal) Supply notes & details showing control of Nitrogen and peak stormwater runoff. 31812006 EcoEngineering A division of The John R. McAdams Company, Inc. Photo 2. Soil boring profile located within SWMF #2. SWMF #3 Soil Type(s): Creedmoor sandy loam, 10 to 20 percent slopes: located on narrow side slopes, slightly eroded, moderately well drained, with slow permeability. White Store sandy loam, 6 to 10 percent slopes: located on narrow side slopes, moderately deep, well drained, with slow permeability. Soil Boring Results: It is anticipated that the approximate seasonal high water table depth from the soil surface for this SWMF is 19 inches. General Soil Boring Observations In general, the profile of the soil borings graded from dark brown silt loams near the surface to yellowish brown that are sandy at lower elevations and then finally grayish silts at lower elevations. Below is a photograph of a sample boring. EcoEngineering A division of The Jahn R. McAdams Company, Inc. Photo 3. Soil boring profile located within SWMF #3. SWMF #4 Soil Type(s): Creedmoor sandy loam, 10 to 20 percent slopes: located on narrow side slopes, slightly eroded, moderately well drained, with slow permeability. White Store sandy loam, 6 to 10 percent slopes: located on narrow side slopes, moderately deep, well drained, with slow permeability. White Store sandy loam, 2 to 6 percent slopes: located on narrow side slopes, moderately deep, well drained, with slow permeability. Soil Boring Results: It is anticipated that the approximate seasonal high water table depth from the soil surface for this SWMF is 22 inches. General Soil Boring Observations In general, the profile of the soil borings graded from dark brown silt loams near the surface to yellowish brown that are sandy at lower elevations and then finally grayish clays with reddish brown mottles greater than 20% abundance at lower elevations. Below is a photograph of a sample boring. EcoEngineering A division of The John R. McAdams Company, Inc. Photo 4. Soil boring profile located within SWMF #4. EcoEngineering A division of The Jahn R. McAdams Company, Inc. Photo 3. Soil boring profile located within SWMF #3. SWMF #4 Soil Type(s): Creedmoor sandy loam, 10 to 20 percent slopes: located on narrow side slopes, slightly eroded, moderately well drained, with slow permeability. White Store sandy loam, 6 to 10 percent slopes: located on narrow side slopes, moderately deep, well drained, with slow permeability. White Store sandy loam, 2 to 6 percent slopes: located on narrow side slopes, moderately deep, well drained, with slow permeability. Soil Boring Results: It is anticipated that the approximate seasonal high water table depth from the soil surface for this SWMF is 22 inches. General Soil Boring Observations In general, the profile of the soil borings graded from dark brown silt loams near the surface to yellowish brown that are sandy at lower elevations and then finally grayish clays with reddish brown mottles greater than 20% abundance at lower elevations. Below is a photograph of a sample boring. EcoEngineering A division of The John R. McAdams Company, Inc. Photo 4. Soil boring profile located within SWMF #4.