Loading...
HomeMy WebLinkAboutSW3201202_Calcs (Swales)_20210401I User input Data ICalculated Value I Reference Data Designed By: M Noibi Date: 3/1612021 Checked By: Date: Company: ebms"WA- Project Name: Yadkin WTP Project No.: 231695 Site Location (City/Town) Union County Chan neINVaterway Id. SWALE 1 A (UPSTREAM) Step 1. Deternime the ie.quned flow capacity'. Q. by e',trinatinp peak rulloff rate for the dewin stone (Appendix S.03) Design storm 10-yr Required Flow, Q (cfs) 3.2 Step 2. Determine the slope and select chainiell geometrNland linniv. Slope (ft/ft) 0.037 AVG IN UPPER SWALE Channel geometry: V, Parabolic, or Trapezoidal Trapezoidal Channel lining Tall Fescue Step 3. Determine the p1nimsible velocrn� for the linuiL selected, or the desired celaeity. if pecect (see Table 305a,paqe9O54) Permissible velocity (ft/s) 5 Ta.b.le.s.,05a Stvp4. prennisstble celacity to rertch a first try" e4timatC of chaiutel (lose area. Their select a tieOlIlOrv, depth, and lop width to fit sno conditions. Channel flow area (ft) "first try' 0.64 Step 5. Calculate the hydraulic indim. R. from channel geonieny (Figure 8,05b page 8 05 5). Step 6. Detefinure roughness coefficieffln. Structural Li11iDt,1S---See Table 1,03b, page 8 OS 6. Grass Lining: a, Derexinuw reMi(Luice class for vegeralion hunt,'fable 8 05c, pay, 8.05.& 'to rileel stability requitement, rile lerladance for newly InoNved condition (generally Cor D) To derenusne channel cal ,16ty we it It -lit one retmdance Class higher. 1) Dereinwit, n firom Fig ure 8 05c. page 8 W,7. Step 7. Calculate the actual C11,111nel velocity, V, using N1,1111161F's equation (Fignte 8.05l, pg. 805.3). and calculate channel capacity, Q ugur? the Continuity equation Step S. Check, tesuhs against petinissible velocity and sequifed design caplen). to derellinne. if design Is acceptable. step tep 9. if design is not acceptable, alter Channel dimension, as appropriate. For trapezoidal channels, this ithuslinein is usivally inade by elilliging the bononx %viddi See table below for Steps 5-9... S'1,1, 10. Fo, pli"'.1med chmalel, Once the .1pplop."It" chamle) dlluel,,ww, have b— wiected for low tco.dance colublio-, copeat Reps 6 thlollell 8 using a higher letnrdaliceclms, cme;pondlag to tall rta, Adjust capacity of tile chnuiel by vuy,.g depth where site can cbl,oww peillut NOTE I It'deopa veloclt.v t9 ?,entet than 2.0 ft—sec, I hmllg may be tecIvued to stabilize the channel tuAll regerapan is est,*1010d. The temposmy lute, tnaybd jejal,j f, peak floor flour the 2-year "oll" If a Channel A lefflp"I'my lining, the designer "holdd anah,,e ahem streaces in the chmulel to select tile., hilet 111:lt provide: plclech "it and jmomole,A e,tabb,hrutnt of vegetation. For the design of tempotaky hnets, me tractive force pgocedme. NOTE 2 De,,tga TabIc—Vegetated Channel,, and Dlve.,,ioas of the end cfthil wcbwx till", be tt,ed to design woo, palaMlc C6 > E i§ P > P B 2 ta 2 C) o Trapezoidal --Grass Lined to a. T X ��7 D� x C5 > > :T 00 0 , OOU , u fi0um"11.05t) (ft/ft) (ft) (ft) (ft) (it') (ft) (ft) IWO (fVS) (CIS) SWALE f DESIGN 3 3,0 0.6 6,6 2 W3 679 0 42 I.G 0 68 c k,U.I 1.6 "r. H_ W Z W W 9 0 SWALE 2 DESIGN- ITERATION 2 3 1.0 1.2 8.2 5.52 8.59 0.64 1.8 1.16 B 0.11 U) 1.9 W a 0 10 W Z W W C) 0 3 1.0 1 7 4 T32 0.55 1.3 0.71 B 0.12 1.6 p 6 (XL c) 7 4 7.32 0.55 1.2 0.66 B 0.13 1.5 Step 11. Check owlet for cmlymg capacity and 't1b,11ty. If d'schuge velo,ille, ­­1 cejo,,T­ for the le­lv,.'tte'lu all outlet 1),owt,.n s.imctnte will be—pli,ed (Table S 05,1, page 8 05 9) User Input Data e Calculated Value Reference Data Designed By: M Noibi Date: 3/16/2021 Checked By: ate: j Company: 14 Project Name: Yadkin WTP Project No.: 231695 Site Location (City/Town) Union county Channel/Waterway Id. SWALE 1 Step I. Determine the required flow enpacuyQ_ by eshmnhnft pent: nutoCf late for the design stiuzrl (,.Ippendis 5.0A Design storm 10•yr Required Flow, Q (cfs) 7.8 Step 2. Determine the slope turd select chnmrel geonrchv and lining. Slope (ft/ft) 0.005 MINIMUM Channel geometry: V, Parabolic, or Trapezoidal Trapezoidal Channel lining Tall Fescue Step 3. Determine the perrulsstble Velocity for the hanug Selected, Or th, elesned velocity if paced (see'rable `3 (15a. page 1805 4) Permissible velocity (ft/s) 5 TIole_t esa Step A. Nfaktl'an initial e snnrate ufclranuel size---dierde the requinel Q by the lrenuiesrble celu ity to trnch to "first trti' esthnntr. ol" chmurel iYorc area. Turn select a eeowctrw, depth, and bap width to fit sue conditioll" Channel flow area (ft2) "first try' 1.56 Step 9. Calculate the hydraulic radius. R, tiom channel geometry (Figure 8.05b. page 8.05.5). Step 6. Determine roughness coefficient n. Structural Linings —see Table 8.05b, page 8.05.6, Crass Lining: a. Determine retardauce class for vegetation from Table 8.05c, grog, 8.05.8. To nett stability requheruent. use retardance for newly mowcd Condition (generally C or D). To determine channel capacity, use at least one iet:udance class higher. 1, Dewunow n from Figure 8.05c, page 8.0 5.7. Step 7. Calculate the actual channel velocity., V, usury bfanning's equation (Figure 8.05a, pp, 8.05,3). and calculate channel capacity. (). using the continuity equation Step 8. Check results against pernm6ble velocity and required aleste i capacity to detrrminc if .,resign is accei,rtablr. Step 0. If clesign is not accepnble, alter channel duneasions as appropriate. For trapezoidal channels, this adjustment is usually made by changing the bonnet ivrdth See table below for Steps 5-9... -st'j, 10. Fot dummek once the .1,1"opwite channel du.eu.'w­ hme been ,elected fot lo%% tet.ndmice condaiont,, tepem ,teps 6 tlumlFh 8 using a hi aLet t et 't danc c class. cots e I) o udmg f. tall press. Adju, t cnpacity of the clumiel by tatyiug depth Miele site NOTE I If design velocity t5 rievet than 2.0 It sec A lenq)otmy lumiff may be tecluued 1P "labilize the Channel mill % eptau"'I is established. Thy lempotary Imet tray be de,iped fax peal: flow fic,111 the 2-)eat Min If n Channel lopme, a tempoory hrting the de,,Pne, t.hotstd analyze "hem attesxcs m the chatwel to the Inlet tbm paacidcs polemon and promotes e,,tibli,liment ofvegctmioti To, the design of tempotaty use tractive f"Ice procedure. NOTE 2 Design Table-­Vegetmed Clmnnel,, mid Mverstons at the end offlik section 11m), be used to design pas+, -lined dimmeb with pmabohc CY Of 7� > E E q 76 T2 B o o , 1 1. 6 L' . . m o aar Z Trapezoidal --Grass Lined u) m D_ a,: w c� w > :E c) > C)ma0 Di°o U a F gqq (ftm) (ft) (ft) (ft) (ft') (ft) (ft) Otis) (ft/s) (cfs) SWALE' I DFMGN 3 3,0 1,5 12 V 1 25 12,49 0 �10 0.8 0,72 (" 0.12 0,8 "' ') 'ut Wit Z W Z SWALE 2 DESIGN- ITERATION 2 3 1.0 1.2 8.2 5.52 8.59 0,64 1.8 1.16 B 0.11 03 0 W 4 W W 0 W Z W Z traitLD T C9 1 (1) > U) 3 1.0 1 7 4 7.32 0.55 1.3 031 B 0.12 0.6 U.1 2 0 W 0 W Z0 W Z Lo (r) 3 1.0 1 7 4 7.32 0.55 1.2 0.66 B 0.13 0.5 WW 0 2 wI o W $cq, 11, Check cudet fm cm,%nY capacity and %(M,day If ah,cha,ge --d flk-able 'el.w­ f., The ­eivtna o'e'un — ­11'1 pmemwn rtr ome todt be teryu6cd (TI.Ae B 05d, pa- 9,05 9) User Input Data Calculated Value Reference Data Designed By: M N.1bl Date: 3/16/2021 Checked By: Date: .. Company: W Project Name: Yadkin WTP Project No.: 231695 Sile Location (Cilyffown) Union county ChannellWaterway Id, SWALE 2A (UPSTREAM) .Step I. Detel'iwni, the t'e,illued floi% capar: v( Q, to, e'alli'ling pea: Innoff rote for the 0oi,,i a stolm(Appendn &03) Design storm 10-yr Required Flow, Q (cfs) 1.6 Strp 2. Detennute the slope and 5eleci channel geollwhy and Illun t Slope (ft/ft) 0.005 MINIMUM Channel geometry: V, Parabolic, or Trapezoidal V Channel lining Tall Fescue Step 3. Dehannme the penuisvbly reloclt)for tll,r huiuy seleclmd. or till desired velocityif pared (see Table 8 05,1, page 8.(15-4) Permissible velocity (ft/s) 5 T;rUIr..N-Oa. Step4, Make an mivalasnutsfa ofchmwel size—rhtule the tetlmred Q by the permisxible cah,?city to reach a fil,t Uy 0,Omme of'ih:umal flow rarer Than ea4ect a geuulcuy. drtptlland top a lddt to fit su,c colidnioa, Channel flow area (ft) "first try" 0.32 .Step 5. (nlcllhte the hydraulic rachm, R, frnm vh,mnel F....rrelf}' (Figure S.03ta, page 805 5). Stop d. Getrrnune raughurss coeflietent rr. Shurlurnl Lhthirt —ace Table S 056. pagr S.(7515. Grass Lining: a. Def—I le rotlyd,,-o cLa,x for vegetau- from Table b 6.5c, pagr 8.058 To rneel sI,b,l,ly reriuue....lu use relantauee for newly mms ed condition (generally C or D). To detemime chatmel capeclry. use a Ic,rsi arc ua:rndauce class ii+zhrr b. 1:7et,alune n from Figlue F 05c, pagr, S 05.7, Step 7. C'nladate the actual channel velociry. V. using Manning", equmwn (Figure 8-05". pg. 9 W, 3), and cAcui:rte diamtrl caparn}', f.), using the conlinlory Cq%o ion. Stop &. Check result, agmri,t peuulasible celuciry and —lu—d daalgn cal;iacity Ib dctounn, if dasig,n " acceptable. Step 4. If design rs not aceaptable. alter chatulrl dll-li ors :la appn'rpuafe. For tnprzoidat chtnvuls. this 'djust—Ill rs usually made by c.11angulg the bouonl sidlb S1atr 10, I'll glacsdllied 00141111 anr:e 01e xfrpx�cpiime ¢harmrt <Gnien,.ibm have brew selected fat I— Wndan- c,1nA I,,,lo, tr, yam olep, 6 liucmglr s oningat,ghnuniatd,ancr class. ccttespanding la WI grass Adpw capuay uF It,, clo-1 by valyiag dgtl, mince s8o—'dai-, I-na,. No'TE i. ifil—Fil velx+cu}' is glcdtcr 111- 2 0 ft sec.. a ternpalary luting may be requited t,, ctataihze Ito channel tunic cegetatiuu is e,uatalL,hrd. The iempoenly lil— maybe designed for peak Hon' Oom file 2.ycat staml. IF a Uiunlcl t Ioues a temporary lning, the d-gnrr should analyza t,hoal xtrcs.rt Ili fbe ch—d w Aatecl the hoer dint ptavidra ptoleetion and psomutea e.tabli,haunt a(ergemfiun. Fnt the design of tenlpuiury liarr., u,.e txaetiaa Cc4tsq plocedurr Nc?'iE 2 Design Tabirs—Vge m,d Chnnueh. and Dir ex.ions at Ihn end of ihi, —lien nlay be used 1¢ design gtasndined chainrelx still t,omsbc+lic Steps 5.9; Trapezoidal --Grass Lined 0 .20 00 jF 0 !-Jqmqfu�5)). (fuft) (ft) (ft) (ft) (ft') (ft) (ft) yus) (fus) (ds) 2,0 1 0 YE.02 0,YJ 0.4 0 P4 c 0.2 0 4 Y:r 70 Z w > N wo 0 3 0.5 1.2 7.7 4.92 8.09 0.61 1.5 0.91 B 0.11 03 xw 3 a 0 w Z w w D 0 u w 0 3 1.0 1 7 4 7.32 0.55 1.3 0.71 B 0.12 Ok 0 2 w titelr M ch"k Donee for ranging r,xl.rucity ­d rnalnlity. If d-1vu" ­iv.q 't—'a an u.,to 05,1, F.,T, 8 05 9j 1F4MM AF STARLE CMANNEL.S AND DIVERSIC User Input Data Calculated Value Reference Data Designed By: M Nam Date: 3/ 6/2021 Checked By: p . ate: Company: C - Project Name: Yadkin WTP Project No.: 231695 Site Location (CltyiTown) Union County ChannelMaterway Id. SWALE 2 Stoll 1. De'lexiil"Ic the seiylined HOW U to' eitl➢ Milip peal: 111110ff rnte fol III, Iewpi bmn , (AppC ldo, 5,W ). Design storm 10-yr Required Flow, Q (cfs) 6 Step 2, Deteremne the shape and selecl channel (reonlehn meal limn Slope (ftift) 0.005 MINIMUM Channel geometry: V, Parabolic, or Trapezoidal V Channel lining Tall Fescue Step 3. Determine the penilissiblz. cadocm for the hning selected. 01 dli' deshed velocim if priced (see I lble h 0,1 lma io C.05 4) Permissible Velocity (ft>s) 5 ra le.8.05 a Step4. Nlake all nutialeumateofchannel xizs dtvolethe INjuned0b)'the pe11111ssibh» velocity to 1e,ic11 afirst hy' e'nillate of'chamtel flora area '[lieu seL!rt a p mi,ti v irpth. awl Iola width to fit site conditions. Channel flow area (ft) "first try' 1.60 Step 5. ['eremite the h}chauhc radms. R, bell, clone-1 gronxeay (Flpnre 8.05b. page 8 05 +)- Step 6. Getennme fonghliess coefficlent 11, stxurnn al Linings —see Table 8.05b, pale 8.0.1, 6 Grass Lilling: a. 17excnluno rctardaucc clasrc for vegetation from Table 8.05c. page 8.09 8 To neat ntabihry repuuei¢trnt, usr rrtmdtnlce for newly, plowed candluon fganrratly C or D). To detrni—e chmriel cniracny. uac nt least one retxdancc A— hurler. b Determine ll from Figure 8 05c. pa),re 8.01 7. Step 7. Calcobte file acute! chminei %-loch}'. V, toing Nlannin7.'4 equators (F1gole 8.05a, pa. 80 3), and caicmastc shannol eapacnyt C), usitil then contunnry equation. step S. Chock resnite ateauxat pennuxible cel—rs- and retluuei d—lli capacity to letenninr if design is—eptabte. Step 4. If design W not acceptable, alter clmmlel duncusions as nppropuatr. For u-apezoidal channels, thus adjumncni is msually nnoi, by climein¢ die .Step M Fen gtats-lined doh 11, nnae the apyvuptintr chmmel dlmeulxcol lace beta selected fox low retatdnnca—dnicaxn., ➢rpacat °,tepl N 11-11771, 6 using a hiidtce xetnulancneL...cci—l—amp ni halt arraos Adpw cxparny of the chaturui by Ym}igg depth'base cite cdniiticvx permit NOTE I If do=dtul celocxty xs grontti then -1 0 ft ,c , e tempoiarp losing nrny Ise -I led to utaPa,lfrr it. dn—1 wail vegentien i, n5latulislxeA. Tlw temp.it axy I—, may be de sipnod fox peal: Ito,c fwm the ?-year hbL ui If a classed xequitte lt trmpcnvy losing, the designer chauld -Myze moon sue—, in tho chaff d la selemt t1m liner Wet p—ot,: pavaction -a psomGleu entabb,halcnI o-f crge im- Fax the dew pi e,f tanlpmnry. hit»n, u;e pAClive force pnxoduxe NONE 2 D—gn T'alniea—CcyLetated C'lsannels and Ihcet.ians ni the oud aftlsi, xecteen offer l>e u.i r➢1 to dt=,qll grew -hued channels srnh ihuabcdlc 111- .ocean Steps 5.9: oo > 0 rnm E Z I. a Trapezoidal --Grass Lined 2 > M, > .5 :5 0 > > (1) am _F) 01 F.AomAjOb (ftift) (ft) (ft) (ft) (ft') (ft) (ft) (rtjs) (ft/s) Ids) SWAI E 2 W, 91GN 3 1.5 9 t 97�, f149 065 10 u B", C 0.095 I 0 lt. to 9 B vwi Z LD w Z In( > Wp 3 0.5 1.2 7.7 4.92 8.09 0.61 1.5 0.91 B 0.11 0.7 tt ij 3 w Z w w 3 1.0 1 7 4 7.32 0.55 1.3 0,71 B 0.12 0.6 2 WZ In S2 w Z 0 a 1.0 1 7 4 7.32 0.55 1-2 0.66 B 0.13 0.5 a; in> w wo 2 � W) fh,,k .,J, f.. ­,,.? capacity and cta7diry If n ... e,I ,11"'MA, vd­%r f,,i the to e1­­ an ."11,1 p,,mem,,n atrum,n­ ­11 [,e t,qui,d JaW S 05d pge 8 W 9) User Input Data Calculated Value Reference Data Designed By: M Nolb! Date: 3/16/2021 Checked By: S. Laos Date: S lal /a QAkS#"!; Company: kv Project Name: Yadkin WTP Project No.: 231695 Site Location (City/Town) Union County Chan nel/Waterway Id. SWAGE 3 Step 1. Dete P ninino the required flow capacity, Q. by estimating peal, turnoff mu, for the design sloon (Appen&v 8.03) Design storm I 0-yr Required Flow, Q (cfs) 29 Step 2. Deterninie the slope and select diantiel veomptry and Slope (ft/ft) 0,005 MINIMUM Channel geometry: V, Parabolic, or Trapezoidal Trapezoidal Channel lining Tall Fescue Step 3. D!terriune the lrertuissibde velocity for the 1111,11g selected, or file desired velocity. if paved (see Table 3 05a pa?p V 05,4) Permissible velocity (ft/s) 5 'to le 8,05a permissible velocity to leach a "first tl-.v- estimate ofolialkliel flou area Their select a depth and top width to fit site conditions Channel flow area (ft) "first try" 5.80 Step 5. Calculate the hydraulic radius, R, from channel georrietry (Figure page 8.05 5) Step 6. Determine roit-gluresi coefficient n. Sir uchiril Liningi—w Table 8 05b. page 8.05.5. Grass Lining: a. Determine terardince class for vegetation. from Table 8.05c, page 8.05.8. To meet stability requirement, rise retardince for newly mowed condition (generally CotD) Todeteriiiiiieciiiiiiietcapacity. use at least orre retardance class higher. b Determine n from Figure 8.05c, page 8,05.7. Step 7. Calculate the actual channel velocity, V, rising Nlanning's equation (Figure 8,05a, pg. 8,053), and calculate chantlet capacity, Cl, Ming the continuity equation Step S. Check results against permissible velocity and required desilvil capacity to deterniuve if design is acceptable. Step 9. if design is not acceptable alter channel duriensions as appropriate. For trapezoidal channels. this adjustment is usually made by changing the bottom width. See table below for Steps 5-9... Step 10, For gim,­Imed climmeh cace tile appiolmate channel alunenaions pace been ;cleated for lots waidmice conditiom, teptil step. 6 through 8 tile climulel by varying depth where site conditions permit. NOTF I If design velocity I,, itieatei than 2 0 ft sec- a temporary lmiiIq may be tequited to ,obihze tile cliatuiel illitil vegetation is established. The tempot an, liner may be designed flot peak flov,- from the'2-Teat slams, If A chalillet requite" a temporal). Iiiihm the d"iellel Should analyze "hell stresses in Tile challilel to ,elect the Imel tlla;vlovldet; PIC'lectioll and promoter e0ablvhnient of vegetatictl For the dmiga of tellip'smy lmel+' use tractive force procedure NOTE 2: Deaign Tables Vegetated Charlileh and Diversions at the end of this section may be used to desiv.11 ma,,11ned C11111110" with parabolic 4; v > 0 0 -2 E E 0 0 Trapezoidal --Grass Lined 0 2 2 0 . >> x x U) 2i C) > Eig.ure 8.0512 (ft) (ft) (it,) (ft) (ft) (ft/s) (it/$) (CIS) as q M oc 6 d C1 C1 UJ ul W uj u 0 U 0 SWALE' 3 DESIV4 3 4.0 1.7 44.2 15,47 14,75 1,(J5 2.2 2.31 C 0.05 22 a", 0 34 rx: C_ W Z W Lf) 2 LI) (DZ W W a W SWALE 3 DESIGN -ITERATION 2 3 1.5 2 13.5 15 14.15 1.06 2.4 2.54 B 0.11 1.0 15 a W Z Z Y) 2 LOW I . > 3 to 1 7 4 7.32 0.55 1.3 011 B 012 0.6 x 0 uj 2 x w w 0 W Z W Z rL) 7 LO (D wo' > U) 3 1.0 1 7 4 7.32 0.55 11 0.66 B 0.13 0.5 O�f 2 Ww w) Steil lj. Cliec): clitlet for catlymg capacity and stability. If diwlnive vetc4itie" exceed 111mvible velocitle" for the leceiv%lla stlealil. all outlet pictection structure will be requited (Table 8 05d, jmFe R,05,9) User Input Data Calculated Value Reference Data Designed By: Checked By: M Noibi Date: 3/16/2021 7. 1LAW.% Date: )A 5A Company: C WA 504��' Project Name: Yadkin WTP Project No.: 231695 Site Location (City/Town) Union County ChannellWatetway Id. SWALE 4 Step 1. Determine tire- iecluued flow capacity. Q by e'timatilqr lwak 11111off rate for the desivil stoner (Aly"endA '5.03) Design storm I 0-yr Required Flow, Q (cfs) 10.2 (includes flow from upstream swale 2) Step 2. Determine the slope and select channel geometry and luting, Slope (fi/ft) 0.011 MINIMUM Channel geometry: V, Parabolic, or Trapezoidal Trapezoidal Channel lining Tall Fescue Step ?I. Determine the permissible velocity for the lunag selected. or the desired velocity, ifixaved (see "fable 8.05a, page 8 05A) Permissible velocity (fi/s) 4.5 Imble 8.05 a Slep-1. Alike an initial esuinateofchannel size —divide the lecitilled Q by the permissible veloc Ity to re.10, It a "first 11)y" estimate Of Chl rule I flOW area IIII'll select ,I geomeu-y, depth, and top xvidth to fit site Conditions Channel flow area (ft) "first try" 2.27 Slprr 5. Calculate tire hydraulic radius. R, from channel geonletry (Figure S.Oib, page 8 Step G. Determine roughness coefficient n. Structural Litdut;5—see Table 8,05b, page 8 05 6. Grass Lining: a. Dotelurille ferardance class to, vegetation front "Fable S,05c. page 8.05.8. To meet stability requirement use iclaidince for newly 1110%Ned condition (generally Cot D). To determine channel Capacity, use at least one letirdince class luvlrei. 1) Detennuien front Figure 8.05c, page 8.05.7. Slql 7. Cilculale the actual channel velocity, V, using, Nllulliug's equation ('Figure 8 05a, pe, 8.05.3), and calculate challnel Capacity, using the continuity equitrow St ep $. Check results against permissible velocity and requited design capacity to determine if design is acceptable Step 9. if design is not acceptable, tiller channel dimensions as appropriate. For trapezoidal channels, this ldjuatnieni is usually made by changing the bottom width. See table below for Steps 5-9. . Step 10. Fot all""4ined channels once the applopwilte chalkilel dullenslin" have been ,elected for low ielaidance conditions, tepeat 5lep,, 6 duough S miliff, I higher jetald.111ce clas!, cone%pouchug to till grass. Adjmt capacity of the C11,11111el by vatying depth whele site CoWilholl" pelaut, NOTE I li'demm velocity v, gteater than 21,0 fT .ec_ a tempoimy Ming; tuay be icqtmtd to stabilize the chmuiel mild vegetation is establvhed. The iempotmyhue, maybe desigued fat peakflov. If a clumnel requites I tmllporily lilling the de"ielles 'JIould 11131yze cheat in the chimiel to select the lines that piovides ptotectioli and plomole" For the design oftemposmy lulels. use tractive farce plocedme. NOTE 2, Dnigu lobles-- Ve gela led Clmauels and Mvetstom at the etid offliv, "ec tion 111,1%, be used to de"iEn channels with parabolic > C) E > a aE '02 12 B B Trapezoidal --Grass Lined (1) 0 co ;5i F- T, 2 ff 'FE ft� 0� 3) 00 J C) C) (ftift) (ft) (ft) (ft) (ft) (ft) (ft) (ft/s) (ftjs) (cfs) iz C) SWALE 4 (DESIUN L6 4,0 7 55 7,61 0 72 1.9 37 c 0,m8 1 C4 Ir , CL CL CCD W Z W Z D LD q) (D > U) SWALE 4 DESIGN- ITERATION 2 3 t 1.2 8.2 5.52 8.59 0.64 1.8 1.16 B 0.11 1.1 W Wo 6 0LU w 2! W Z D 9 T (D > U) > W 3 1.0 1 7 4 7.32 0.55 1.3 031 B 0.12 0.9 ww wo 4 w. w, UJ Z W Z LO LD LB (D > U) U) 3 1.0 1 7 4 7.32 0,55 1.2 0.66 B 0,13 0.8 1 W W X 0 W 3 01 Step IL Check owlet for callyilig Capacity and "t"bility. If dc'ehalge velocities exceed alk-Wable velocities for the teceiving "tgealu all outlet ptotection stilictme will be tecpmited (Table S,05d, page S.05 9).