HomeMy WebLinkAboutSW3201202_Calcs (Swales)_20210401I User input Data
ICalculated Value
I Reference Data
Designed By:
M Noibi Date: 3/1612021
Checked By:
Date:
Company:
ebms"WA-
Project Name:
Yadkin WTP
Project No.:
231695
Site Location (City/Town) Union County
Chan neINVaterway Id. SWALE 1 A (UPSTREAM)
Step 1. Deternime the ie.quned flow capacity'. Q. by e',trinatinp peak rulloff
rate for the dewin stone (Appendix S.03)
Design storm 10-yr
Required Flow, Q (cfs) 3.2
Step 2. Determine the slope and select chainiell geometrNland linniv.
Slope (ft/ft) 0.037 AVG IN UPPER SWALE
Channel geometry: V, Parabolic, or
Trapezoidal Trapezoidal
Channel lining Tall Fescue
Step 3. Determine the p1nimsible velocrn� for the linuiL selected, or the
desired celaeity. if pecect (see Table 305a,paqe9O54)
Permissible velocity (ft/s) 5 Ta.b.le.s.,05a
Stvp4.
prennisstble celacity to rertch a first try" e4timatC of chaiutel (lose area. Their
select a tieOlIlOrv, depth, and lop width to fit sno conditions.
Channel flow area (ft) "first try' 0.64
Step 5. Calculate the hydraulic indim. R. from channel geonieny (Figure
8,05b page 8 05 5).
Step 6. Detefinure roughness coefficieffln.
Structural Li11iDt,1S---See Table 1,03b, page 8 OS 6.
Grass Lining:
a, Derexinuw reMi(Luice class for vegeralion hunt,'fable 8 05c, pay,
8.05.& 'to rileel stability requitement, rile lerladance for newly
InoNved condition (generally Cor D) To derenusne channel cal ,16ty
we it It -lit one retmdance Class higher.
1) Dereinwit, n firom Fig
ure 8 05c. page 8 W,7.
Step 7. Calculate the actual C11,111nel velocity, V, using N1,1111161F's equation
(Fignte 8.05l, pg. 805.3). and calculate channel capacity, Q ugur? the
Continuity equation
Step S. Check, tesuhs against petinissible velocity and sequifed design
caplen). to derellinne. if design Is acceptable.
step
tep 9. if design is not acceptable, alter Channel dimension, as appropriate.
For trapezoidal channels, this ithuslinein is usivally inade by elilliging the
bononx %viddi
See table below for Steps 5-9...
S'1,1, 10. Fo, pli"'.1med chmalel, Once the .1pplop."It" chamle) dlluel,,ww,
have b— wiected for low tco.dance colublio-, copeat Reps 6 thlollell 8
using a higher letnrdaliceclms, cme;pondlag to tall rta, Adjust capacity of
tile chnuiel by vuy,.g depth where site can cbl,oww peillut
NOTE I It'deopa veloclt.v t9 ?,entet than 2.0 ft—sec, I hmllg
may be tecIvued to stabilize the channel tuAll regerapan is est,*1010d.
The temposmy lute, tnaybd jejal,j f, peak floor flour the 2-year "oll"
If a Channel A lefflp"I'my lining, the designer "holdd anah,,e
ahem streaces in the chmulel to select tile., hilet 111:lt provide: plclech "it
and jmomole,A e,tabb,hrutnt of vegetation. For the design of tempotaky
hnets, me tractive force pgocedme.
NOTE 2 De,,tga TabIc—Vegetated Channel,, and Dlve.,,ioas of the end
cfthil wcbwx till", be tt,ed to design woo, palaMlc
C6
>
E
i§ P
> P
B 2
ta
2
C) o
Trapezoidal --Grass Lined to
a.
T X
��7 D� x C5
> >
:T 00
0 , OOU ,
u
fi0um"11.05t) (ft/ft) (ft) (ft) (ft)
(it') (ft)
(ft)
IWO
(fVS)
(CIS)
SWALE f DESIGN 3 3,0
0.6 6,6
2 W3 679 0 42 I.G
0 68
c k,U.I
1.6 "r.
H_
W Z
W
W
9
0
SWALE 2 DESIGN- ITERATION 2 3 1.0
1.2 8.2
5.52 8.59 0.64 1.8
1.16
B 0.11
U)
1.9 W
a
0
10
W Z
W
W
C)
0
3 1.0
1 7
4 T32 0.55 1.3
0.71
B 0.12
1.6 p
6 (XL c)
7 4 7.32 0.55 1.2 0.66 B 0.13 1.5
Step 11. Check owlet for cmlymg capacity and 't1b,11ty. If d'schuge
velo,ille, 1 cejo,,T for the lelv,.'tte'lu all outlet
1),owt,.n s.imctnte will be—pli,ed (Table S 05,1, page 8 05 9)
User Input Data e
Calculated Value
Reference Data
Designed By: M Noibi Date: 3/16/2021
Checked By: ate: j
Company: 14
Project Name: Yadkin WTP
Project No.: 231695
Site Location (City/Town) Union county
Channel/Waterway Id. SWALE 1
Step I. Determine the required flow enpacuyQ_ by eshmnhnft pent: nutoCf
late for the design stiuzrl (,.Ippendis 5.0A
Design storm 10•yr
Required Flow, Q (cfs) 7.8
Step 2. Determine the slope turd select chnmrel geonrchv and lining.
Slope (ft/ft) 0.005 MINIMUM
Channel geometry: V, Parabolic, or
Trapezoidal Trapezoidal
Channel lining Tall Fescue
Step 3. Determine the perrulsstble Velocity for the hanug Selected, Or th,
elesned velocity if paced (see'rable `3 (15a. page 1805 4)
Permissible velocity (ft/s) 5 TIole_t esa
Step A. Nfaktl'an initial e snnrate ufclranuel size---dierde the requinel Q by the
lrenuiesrble celu ity to trnch to "first trti' esthnntr. ol" chmurel iYorc area. Turn
select a eeowctrw, depth, and bap width to fit sue conditioll"
Channel flow area (ft2) "first try' 1.56
Step 9. Calculate the hydraulic radius. R, tiom channel geometry (Figure
8.05b. page 8.05.5).
Step 6. Determine roughness coefficient n.
Structural Linings —see Table 8.05b, page 8.05.6,
Crass Lining:
a. Determine retardauce class for vegetation from Table 8.05c, grog,
8.05.8. To nett stability requheruent. use retardance for newly
mowcd Condition (generally C or D). To determine channel capacity,
use at least one iet:udance class higher.
1, Dewunow n from Figure 8.05c, page 8.0 5.7.
Step 7. Calculate the actual channel velocity., V, usury bfanning's equation
(Figure 8.05a, pp, 8.05,3). and calculate channel capacity. (). using the
continuity equation
Step 8. Check results against pernm6ble velocity and required aleste i
capacity to detrrminc if .,resign is accei,rtablr.
Step 0. If clesign is not accepnble, alter channel duneasions as appropriate.
For trapezoidal channels, this adjustment is usually made by changing the
bonnet ivrdth
See table below for Steps 5-9...
-st'j, 10. Fot dummek once the .1,1"opwite channel du.eu.'w
hme been ,elected fot lo%% tet.ndmice condaiont,, tepem ,teps 6 tlumlFh 8
using a hi aLet t et 't danc c class. cots e I) o udmg f. tall press. Adju, t cnpacity of
the clumiel by tatyiug depth Miele site
NOTE I If design velocity t5 rievet than 2.0 It sec A lenq)otmy lumiff
may be tecluued 1P "labilize the Channel mill % eptau"'I is established.
Thy lempotary Imet tray be de,iped fax peal: flow fic,111 the 2-)eat Min
If n Channel lopme, a tempoory hrting the de,,Pne, t.hotstd analyze
"hem attesxcs m the chatwel to the Inlet tbm paacidcs polemon
and promotes e,,tibli,liment ofvegctmioti To, the design of tempotaty
use tractive f"Ice procedure.
NOTE 2 Design Table-Vegetmed Clmnnel,, mid Mverstons at the end
offlik section 11m), be used to design pas+, -lined dimmeb with pmabohc
CY
Of
7�
>
E
E
q
76 T2
B
o
o
,
1 1.
6
L' . .
m o
aar
Z
Trapezoidal --Grass Lined u)
m
D_
a,: w
c� w
>
:E c)
> C)ma0 Di°o U a
F gqq (ftm)
(ft)
(ft)
(ft)
(ft')
(ft)
(ft)
Otis)
(ft/s)
(cfs)
SWALE' I DFMGN 3
3,0
1,5 12
V 1 25 12,49
0 �10
0.8
0,72
(" 0.12
0,8
"'
')
'ut
Wit Z
W Z
SWALE 2 DESIGN- ITERATION 2 3
1.0
1.2 8.2
5.52 8.59
0,64
1.8
1.16
B 0.11
03
0 W
4
W W 0
W Z
W Z
traitLD
T C9
1 (1)
> U)
3
1.0
1 7
4 7.32
0.55
1.3
031
B 0.12
0.6
U.1
2
0 W
0
W Z0
W Z
Lo (r)
3
1.0
1 7
4 7.32
0.55
1.2
0.66
B 0.13
0.5
WW 0
2
wI
o W
$cq, 11, Check cudet fm cm,%nY capacity and %(M,day If ah,cha,ge
--d flk-able 'el.w f., The eivtna o'e'un — 11'1
pmemwn rtr ome todt be teryu6cd (TI.Ae B 05d, pa- 9,05 9)
User Input Data
Calculated Value
Reference Data
Designed By:
M N.1bl Date: 3/16/2021
Checked By:
Date:
..
Company:
W
Project Name:
Yadkin WTP
Project No.:
231695
Sile Location (Cilyffown)
Union county
ChannellWaterway Id,
SWALE 2A
(UPSTREAM)
.Step I. Detel'iwni, the t'e,illued floi%
capar: v( Q, to, e'alli'ling pea: Innoff
rote for the 0oi,,i a stolm(Appendn
&03)
Design storm
10-yr
Required Flow, Q (cfs)
1.6
Strp 2. Detennute the slope and
5eleci channel geollwhy and Illun t
Slope (ft/ft)
0.005 MINIMUM
Channel geometry: V, Parabolic,
or Trapezoidal
V
Channel lining
Tall Fescue
Step 3. Dehannme the penuisvbly reloclt)for tll,r huiuy seleclmd. or till
desired velocityif pared (see Table 8 05,1, page 8.(15-4)
Permissible velocity (ft/s) 5 T;rUIr..N-Oa.
Step4, Make an mivalasnutsfa ofchmwel size—rhtule the tetlmred Q by the
permisxible cah,?city to reach a fil,t Uy 0,Omme of'ih:umal flow rarer Than
ea4ect a geuulcuy. drtptlland top a lddt to fit su,c colidnioa,
Channel flow area (ft) "first try" 0.32
.Step 5. (nlcllhte the hydraulic rachm, R, frnm vh,mnel F....rrelf}' (Figure
S.03ta, page 805 5).
Stop d. Getrrnune raughurss coeflietent rr.
Shurlurnl Lhthirt —ace Table S 056. pagr S.(7515.
Grass Lining:
a. Def—I le rotlyd,,-o cLa,x for vegetau- from Table b 6.5c, pagr
8.058 To rneel sI,b,l,ly reriuue....lu use relantauee for newly
mms ed condition (generally C or D). To detemime chatmel capeclry.
use a Ic,rsi arc ua:rndauce class ii+zhrr
b. 1:7et,alune n from Figlue F 05c, pagr, S 05.7,
Step 7. C'nladate the actual channel velociry. V. using Manning", equmwn
(Figure 8-05". pg. 9 W, 3), and cAcui:rte diamtrl caparn}', f.), using the
conlinlory Cq%o ion.
Stop &. Check result, agmri,t peuulasible celuciry and —lu—d daalgn
cal;iacity Ib dctounn, if dasig,n " acceptable.
Step 4. If design rs not aceaptable. alter chatulrl dll-li ors :la appn'rpuafe.
For tnprzoidat chtnvuls. this 'djust—Ill rs usually made by c.11angulg the
bouonl sidlb
S1atr 10, I'll glacsdllied 00141111 anr:e 01e xfrpx�cpiime ¢harmrt <Gnien,.ibm
have brew selected fat I— Wndan- c,1nA I,,,lo, tr, yam olep, 6 liucmglr s
oningat,ghnuniatd,ancr class. ccttespanding la WI grass Adpw capuay uF
It,, clo-1 by valyiag dgtl, mince s8o—'dai-, I-na,.
No'TE i. ifil—Fil velx+cu}' is glcdtcr 111- 2 0 ft sec.. a ternpalary luting
may be requited t,, ctataihze Ito channel tunic cegetatiuu is e,uatalL,hrd.
The iempoenly lil— maybe designed for peak Hon' Oom file 2.ycat staml.
IF a Uiunlcl t Ioues a temporary lning, the d-gnrr should analyza
t,hoal xtrcs.rt Ili fbe ch—d w Aatecl the hoer dint ptavidra ptoleetion
and psomutea e.tabli,haunt a(ergemfiun. Fnt the design of tenlpuiury
liarr., u,.e txaetiaa Cc4tsq plocedurr
Nc?'iE 2 Design Tabirs—Vge m,d Chnnueh. and Dir ex.ions at Ihn end
of ihi, —lien nlay be used 1¢ design gtasndined chainrelx still t,omsbc+lic
Steps 5.9;
Trapezoidal --Grass Lined
0
.20
00 jF 0
!-Jqmqfu�5)). (fuft) (ft) (ft) (ft) (ft')
(ft)
(ft)
yus)
(fus)
(ds)
2,0
1
0
YE.02
0,YJ
0.4
0 P4
c
0.2
0 4
Y:r
70
Z
w
> N
wo
0
3 0.5
1.2
7.7
4.92
8.09
0.61
1.5
0.91
B
0.11
03
xw
3
a 0
w Z
w
w
D 0
u
w
0
3 1.0
1
7
4
7.32
0.55
1.3
0.71
B
0.12
Ok
0
2
w
titelr M ch"k Donee for ranging r,xl.rucity d rnalnlity. If d-1vu"
iv.q 't—'a an u.,to
05,1, F.,T, 8 05 9j
1F4MM AF STARLE CMANNEL.S AND DIVERSIC
User Input Data
Calculated Value
Reference Data
Designed By:
M Nam Date: 3/ 6/2021
Checked By:
p . ate:
Company:
C -
Project Name:
Yadkin WTP
Project No.:
231695
Site Location (CltyiTown)
Union County
ChannelMaterway Id.
SWALE 2
Stoll 1. De'lexiil"Ic the seiylined HOW
U to' eitl➢ Milip peal: 111110ff
rnte fol III, Iewpi bmn , (AppC ldo,
5,W ).
Design storm
10-yr
Required Flow, Q (cfs)
6
Step 2, Deteremne the shape and selecl channel (reonlehn meal limn
Slope (ftift)
0.005 MINIMUM
Channel geometry: V, Parabolic,
or Trapezoidal
V
Channel lining
Tall Fescue
Step 3. Determine the penilissiblz. cadocm for the hning selected. 01 dli'
deshed velocim if priced (see I lble h 0,1 lma io C.05 4)
Permissible Velocity (ft>s) 5 ra le.8.05 a
Step4. Nlake all nutialeumateofchannel xizs dtvolethe INjuned0b)'the
pe11111ssibh» velocity to 1e,ic11 afirst hy' e'nillate of'chamtel flora area '[lieu
seL!rt a p mi,ti v irpth. awl Iola width to fit site conditions.
Channel flow area (ft) "first try' 1.60
Step 5. ['eremite the h}chauhc radms. R, bell, clone-1 gronxeay (Flpnre
8.05b. page 8 05 +)-
Step 6. Getennme fonghliess coefficlent 11,
stxurnn al Linings —see Table 8.05b, pale 8.0.1, 6
Grass Lilling:
a. 17excnluno rctardaucc clasrc for vegetation from Table 8.05c. page
8.09 8 To neat ntabihry repuuei¢trnt, usr rrtmdtnlce for newly,
plowed candluon fganrratly C or D). To detrni—e chmriel cniracny.
uac nt least one retxdancc A— hurler.
b Determine ll from Figure 8 05c. pa),re 8.01 7.
Step 7. Calcobte file acute! chminei %-loch}'. V, toing Nlannin7.'4 equators
(F1gole 8.05a, pa. 80 3), and caicmastc shannol eapacnyt C), usitil then
contunnry equation.
step S. Chock resnite ateauxat pennuxible cel—rs- and retluuei d—lli
capacity to letenninr if design is—eptabte.
Step 4. If design W not acceptable, alter clmmlel duncusions as nppropuatr.
For u-apezoidal channels, thus adjumncni is msually nnoi, by climein¢ die
.Step M Fen gtats-lined doh 11, nnae the apyvuptintr chmmel dlmeulxcol
lace beta selected fox low retatdnnca—dnicaxn., ➢rpacat °,tepl N 11-11771, 6
using a hiidtce xetnulancneL...cci—l—amp ni halt arraos Adpw cxparny of
the chaturui by Ym}igg depth'base cite cdniiticvx permit
NOTE I If do=dtul celocxty xs grontti then -1 0 ft ,c , e tempoiarp losing
nrny Ise -I led to utaPa,lfrr it. dn—1 wail vegentien i, n5latulislxeA.
Tlw temp.it axy I—, may be de sipnod fox peal: Ito,c fwm the ?-year hbL ui
If a classed xequitte lt trmpcnvy losing, the designer chauld -Myze
moon sue—, in tho chaff d la selemt t1m liner Wet p—ot,: pavaction
-a psomGleu entabb,halcnI o-f crge im- Fax the dew pi e,f tanlpmnry.
hit»n, u;e pAClive force pnxoduxe
NONE 2 D—gn T'alniea—CcyLetated C'lsannels and Ihcet.ians ni the oud
aftlsi, xecteen offer l>e u.i r➢1 to dt=,qll grew -hued channels srnh ihuabcdlc
111- .ocean
Steps 5.9:
oo >
0
rnm
E
Z
I. a
Trapezoidal --Grass Lined 2
> M, > .5 :5 0 >
> (1) am _F) 01
F.AomAjOb (ftift) (ft) (ft) (ft) (ft')
(ft)
(ft)
(rtjs) (ft/s)
Ids)
SWAI E 2 W, 91GN 3
1.5
9 t
97�,
f149
065
10
u B",
C
0.095
I 0
lt. to
9 B
vwi Z
LD
w Z
In(
>
Wp
3
0.5
1.2
7.7
4.92
8.09
0.61
1.5
0.91
B
0.11
0.7
tt ij
3
w Z
w
w
3
1.0
1
7
4
7.32
0.55
1.3
0,71
B
0.12
0.6
2
WZ
In S2
w Z
0
a
1.0
1
7
4
7.32
0.55
1-2
0.66
B
0.13
0.5
a; in>
w wo
2
� W)
fh,,k .,J, f.. ,,.? capacity and cta7diry If
n ... e,I ,11"'MA, vd%r f,,i the to e1 an ."11,1
p,,mem,,n atrum,n 11 [,e t,qui,d JaW S 05d pge 8 W 9)
User Input Data
Calculated Value
Reference Data
Designed By: M Nolb! Date: 3/16/2021
Checked By: S. Laos Date: S lal /a
QAkS#"!;
Company: kv
Project Name: Yadkin WTP
Project No.: 231695
Site Location (City/Town) Union County
Chan nel/Waterway Id. SWAGE 3
Step 1. Dete P
ninino the required flow capacity, Q. by estimating peal, turnoff
mu, for the design sloon (Appen&v 8.03)
Design storm I 0-yr
Required Flow, Q (cfs) 29
Step 2. Deterninie the slope and select diantiel veomptry and
Slope (ft/ft) 0,005 MINIMUM
Channel geometry: V, Parabolic, or
Trapezoidal Trapezoidal
Channel lining Tall Fescue
Step 3. D!terriune the lrertuissibde velocity for the 1111,11g selected, or file
desired velocity. if paved (see Table 3 05a pa?p V 05,4)
Permissible velocity (ft/s) 5 'to le 8,05a
permissible velocity to leach a "first tl-.v- estimate ofolialkliel flou area Their
select a depth and top width to fit site conditions
Channel flow area (ft) "first try" 5.80
Step 5. Calculate the hydraulic radius, R, from channel georrietry (Figure
page 8.05 5)
Step 6. Determine roit-gluresi coefficient n.
Sir uchiril Liningi—w Table 8 05b. page 8.05.5.
Grass Lining:
a. Determine terardince class for vegetation. from Table 8.05c, page
8.05.8. To meet stability requirement, rise retardince for newly
mowed condition (generally CotD) Todeteriiiiiieciiiiiiietcapacity.
use at least orre retardance class higher.
b Determine n from Figure 8.05c, page 8,05.7.
Step 7. Calculate the actual channel velocity, V, rising Nlanning's equation
(Figure 8,05a, pg. 8,053), and calculate chantlet capacity, Cl, Ming the
continuity equation
Step S. Check results against permissible velocity and required desilvil
capacity to deterniuve if design is acceptable.
Step 9. if design is not acceptable alter channel duriensions as appropriate.
For trapezoidal channels. this adjustment is usually made by changing the
bottom width.
See table below for Steps 5-9...
Step 10, For gim,Imed climmeh cace tile appiolmate channel alunenaions
pace been ;cleated for lots waidmice conditiom, teptil step. 6 through 8
tile climulel by varying depth where site conditions permit.
NOTF I If design velocity I,, itieatei than 2 0 ft sec- a temporary lmiiIq
may be tequited to ,obihze tile cliatuiel illitil vegetation is established.
The tempot an, liner may be designed flot peak flov,- from the'2-Teat slams,
If A chalillet requite" a temporal). Iiiihm the d"iellel Should analyze
"hell stresses in Tile challilel to ,elect the Imel tlla;vlovldet; PIC'lectioll
and promoter e0ablvhnient of vegetatictl For the dmiga of tellip'smy
lmel+' use tractive force procedure
NOTE 2: Deaign Tables Vegetated Charlileh and Diversions at the end
of this section may be used to desiv.11 ma,,11ned C11111110" with parabolic
4;
v
>
0
0
-2
E
E
0
0
Trapezoidal --Grass Lined
0
2 2
0 .
>>
x
x U)
2i C)
>
Eig.ure 8.0512
(ft)
(ft)
(it,)
(ft)
(ft)
(ft/s)
(it/$)
(CIS)
as
q
M
oc
6
d
C1
C1
UJ
ul
W
uj
u
0
U
0
SWALE' 3 DESIV4
3
4.0
1.7
44.2
15,47
14,75
1,(J5
2.2
2.31
C
0.05
22
a",
0
34
rx:
C_
W Z
W
Lf) 2
LI) (DZ
W W
a W
SWALE 3 DESIGN -ITERATION 2
3
1.5
2
13.5
15
14.15
1.06
2.4
2.54
B
0.11
1.0
15
a
W Z
Z
Y) 2
LOW
I .
>
3
to
1
7
4
7.32
0.55
1.3
011
B
012
0.6
x 0 uj
2
x w w 0
W Z
W Z
rL) 7
LO (D
wo'
> U)
3
1.0
1
7
4
7.32
0.55
11
0.66
B
0.13
0.5
O�f
2
Ww w)
Steil lj. Cliec): clitlet for catlymg capacity and stability. If diwlnive
vetc4itie" exceed 111mvible velocitle" for the leceiv%lla stlealil. all outlet
pictection structure will be requited (Table 8 05d, jmFe R,05,9)
User Input Data
Calculated Value
Reference Data
Designed By:
Checked By:
M Noibi Date: 3/16/2021
7. 1LAW.% Date: )A
5A
Company:
C WA 504��'
Project Name:
Yadkin WTP
Project No.:
231695
Site Location (City/Town) Union County
ChannellWatetway Id. SWALE 4
Step 1. Determine tire- iecluued flow capacity. Q by e'timatilqr lwak 11111off
rate for the desivil stoner (Aly"endA '5.03)
Design storm I 0-yr
Required Flow, Q (cfs) 10.2 (includes flow from upstream swale 2)
Step 2. Determine the slope and select channel geometry and luting,
Slope (fi/ft) 0.011 MINIMUM
Channel geometry: V, Parabolic, or
Trapezoidal Trapezoidal
Channel lining Tall Fescue
Step ?I. Determine the permissible velocity for the lunag selected. or the
desired velocity, ifixaved (see "fable 8.05a, page 8 05A)
Permissible velocity (fi/s) 4.5
Imble 8.05 a
Slep-1. Alike an initial esuinateofchannel size —divide the lecitilled Q by the
permissible veloc Ity to re.10, It a "first 11)y" estimate Of Chl rule I flOW area IIII'll
select ,I geomeu-y, depth, and top xvidth to fit site Conditions
Channel flow area (ft) "first try" 2.27
Slprr 5. Calculate tire hydraulic radius. R, from channel geonletry (Figure
S.Oib, page 8
Step G. Determine roughness coefficient n.
Structural Litdut;5—see Table 8,05b, page 8 05 6.
Grass Lining:
a. Dotelurille ferardance class to, vegetation front "Fable S,05c. page
8.05.8. To meet stability requirement use iclaidince for newly
1110%Ned condition (generally Cot D). To determine channel Capacity,
use at least one letirdince class luvlrei.
1) Detennuien front Figure 8.05c, page 8.05.7.
Slql 7. Cilculale the actual channel velocity, V, using, Nllulliug's equation
('Figure 8 05a, pe, 8.05.3), and calculate challnel Capacity, using
the
continuity equitrow
St
ep $. Check results against permissible velocity and requited design
capacity to determine if design is acceptable
Step 9. if design is not acceptable, tiller channel dimensions as appropriate.
For trapezoidal channels, this ldjuatnieni is usually made by changing the
bottom width.
See table below for Steps 5-9. .
Step 10. Fot all""4ined channels once the applopwilte chalkilel dullenslin"
have been ,elected for low ielaidance conditions, tepeat 5lep,, 6 duough S
miliff, I higher jetald.111ce clas!, cone%pouchug to till grass. Adjmt capacity of
the C11,11111el by vatying depth whele site CoWilholl" pelaut,
NOTE I li'demm velocity v, gteater than 21,0 fT .ec_ a tempoimy Ming;
tuay be icqtmtd to stabilize the chmuiel mild vegetation is establvhed.
The iempotmyhue, maybe desigued fat peakflov.
If a clumnel requites I tmllporily lilling the de"ielles 'JIould 11131yze
cheat in the chimiel to select the lines that piovides ptotectioli
and plomole" For the design oftemposmy
lulels. use tractive farce plocedme.
NOTE 2, Dnigu lobles-- Ve gela led Clmauels and Mvetstom at the etid
offliv, "ec tion 111,1%, be used to de"iEn channels with parabolic
>
C)
E
>
a
aE
'02
12
B
B
Trapezoidal --Grass Lined
(1)
0
co
;5i
F-
T, 2
ff
'FE
ft�
0�
3)
00 J C) C)
(ftift)
(ft)
(ft)
(ft)
(ft)
(ft)
(ft)
(ft/s)
(ftjs)
(cfs)
iz
C)
SWALE 4 (DESIUN
L6
4,0
7
55
7,61
0 72
1.9
37
c
0,m8
1 C4
Ir ,
CL
CL CCD
W Z
W Z
D LD
q) (D
> U)
SWALE 4 DESIGN- ITERATION 2
3
t
1.2
8.2
5.52
8.59
0.64
1.8
1.16
B
0.11
1.1
W Wo
6 0LU
w 2!
W Z
D 9
T (D
> U)
> W
3
1.0
1
7
4
7.32
0.55
1.3
031
B
0.12
0.9
ww wo
4 w. w,
UJ Z
W Z
LO LD
LB (D
> U)
U)
3
1.0
1
7
4
7.32
0,55
1.2
0.66
B
0,13
0.8
1 W W
X 0
W
3 01
Step IL Check owlet for callyilig Capacity and "t"bility. If dc'ehalge
velocities exceed alk-Wable velocities for the teceiving "tgealu all outlet
ptotection stilictme will be tecpmited (Table S,05d, page S.05 9).