HomeMy WebLinkAboutSW3201202_Calcs_20210302DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Stormwater
Calculations
Yadkin Regional Water Supply Program
Water Treatment Plant and
Finished Water Infrastructure Project
\\111111IWill
CARO
—Do bbb••...4. .��
�_� S s 0 ti9
BFOF OOA554BSEAL
032668
%0ti'••:�NGINt ' v
/9 ANS.i�
i
2/17/2021
Union County, North Carolina
February 2021
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
User Input Data
Calculated Value
Reference Data
Designed By: Mob Date: 2/11/2021
11 r- 1
Checked By: �b Date: 211712021
Company: CDM smith
Project Name: Yadkin WTP
Project No.: 231695
Site Location (City/Town)
Watershed Basin Id.
'The rational fonnula is:
Union Countyl
Swale 2 Area A, west of the chemical storage
tanks
where , Q Peak rate of runoff ill cubic feet per second (cfs)
C nuloff'coefficient, an einpincil coefficient representuig the
relationship between ranifall rate and rtuioff rate
average rout ensityof nunfall inuiches/hour, for astormclurationequIal,
to the tune of concientration, TC
A - drainage area in acres
Ille general lylocedttre for deterinuinig peak discharge using the, rational
formula 1,, Presented below and iflustrated M Sample Problem 8,03a.
Step 1, Deternulle the ch-amage area in acres,
Total Drainage Area
1.82
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Stop 2. Determne the ninoff'coefficlent, ' fcn the type Of swil"Cover I'll the
dralliage aiva (Table 8,,,03b)
If the land use wid soil cover is homogenous over the diainage area. a C
value can be detennuied directly firoin Table 8.03b If there pare multiple soil
cover conditiotis, a, weighted average niust fie calculated, x the area assay be
subdivided.
Subarea A (acres)
Subarea A Runoff Coefficient
Subarea B (acres)
Subarea B Runoff Coefficient
Subarea C (acres)
Subarea C Runoff Coefficient
Subarea D (acres)
Subarea D Runoff Coefficient
Weighted Runoff Coefficient
Step 3.
Step 4.
2-year Rainfall Intensity, i (in/hr)
1 0-year Rainfall Intensity, i (in/hr)
0.10 roof I
0.85 Runoff Coefi
0.54 pavement
0.95
1.18 disturbed
0.6
0.717148948
0
6.11
Step 5. Determine peak disc.huge, 0 (cutmc fet Mr secon(t), by multiplying
the Previously deterauned factors usilig the rational fonnula (Sample Problel"11
Q2 Flow (cfs) 0
Q10 Flow (cfs) 8.0
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step 3. Time of Concentration
Overland flow Tc -- Kinematic Wave Theory
Length of overland flow 21.8 feet
Mannings "n" for surface 0.240 Manning's n
Average watershed slope 0.098 ft./ft.
Constant alpha 1.9
Constant m 1.67
Weighted Runoff Coefficient 0.717149
Shallow Conc Flow Tc
Slope
Length of Conc Flow
V (unpaved)
Channel/Pipe Flow Tc
Slope
Length of Channel/Pipe Flow
0.06
0.00 Assume no shallow conc flow
3.8
0.02
530
R 0.5 Calculated hydraulic profile for V
n 0.15 shaped swale, for 1.7'water depth
V 1.0
Tc Overland (min) 5
Tc Shallow Conc (min) 0.0
Tc Channel/Pipe (min) 9.2
Tc Total (min) 14.2 Trial time of duration that is =/< 14.2 mina (Tc)
is 10 mins, corresponding rainfall intensity is
6.11 in/hr
1) Enter the rainfall intensity values for the corresponding times of duration in the
table below. Rainfall intensity can be found from the following NWS hyperlink:
httip://hdsc.nws.noaa.gov/hdsc/ipfds/orb/nc ipfds.html
2) Select the rainfall Intensity that corresponds to the trial time of duration that
is equal to or less than the calculated time of concentration.
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
3) Copy the selected rainfall intensity into cell below.
2-year Rainfall Intensity, i (in/hr)
0-year Rainfall Intensity, i (in/hr) 6.11
Trail Time of Duration
Rainfall Intensity
Calculation of Time
tr (min)
ODF), i On/hr)
of Concentration,
tc (min)
5
7.64
2.57
10
6.11
2.82
15
5.16
3.01
30
3.74
3.43
60 ( 1 hour)
2.43
4.07
120 ( 2 hours)
1.47
4.98
180 ( 3 hours)
1.05
5.70
360 ( 6 hours)
0.634
6.97
720 (12 hours)
0.38
8.56
1440 (24 hours)
0.218
10.69
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step 3Deterinme the titue, of coacewraticm, TC, fiw!; the drainage area, The
Kwentatic, Wwe Thecity definesi, 6111f of Concelaration m the "Travel tirne of'a
wa,ve to move hom the distant poutt in the caticlunent to the
oi,stlet (Bedient awl Hubet, 1992'), The foinjula for the time, of concentration
ki�
W"l ) T 11rin
whele:
T,:= ittme of concentration, in minutes, It consists of the total time for
vveilauA sheet flow,
L. = length, of over land flow plaue (feet)'
le rainfall excess = 1ii , C/4 3,200 (43,200 cow,"etis inclies pier hour to
feet pet second in the ai-erall equation).
1� ^rainfall intemity-
C rational Tunoff coefficients"
This equation contaills ftxo Sets of Parameters that need firi-thet defilution.
asid, ni, For tuibuleat flow, 1bvhich, vthe nortual field ccrnditiou.
ni = 5/3 = I A367
n
where!
S = slope, (ftift),
n:= Manning't, roughtiess.
Since rn Nxill always be 5� 1 3, this equation can, be u,iniplified to
L 2f3
CO, (11 * C/43,20,0)2�3,)-
TC
60 (minutes)
Because, both tirrie of coitcentration arldrainfall internity exte uvnknowru..ariatiles
in one equation, the solution must be found through aerations. T1,:ie use ofa
spreadsheet is recominiended. An example as shown in'Table 9,03a,
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Table 8.03b: Value of Runoff Coefficient (C) for Rational Formula
—
—
—
—
Land Use C Land Use C
Busniess. Lawns -
Downtown areas 070-0,95 Sandy sor, flat, 2% 0. 05-0, 10
Neighborbood areas, 0,50-070 Sandy sor, ave., 0A0-0.15
2-7% 0,15,-0,20
Residential: Sandy, sor, steep, 0. Ky-& 17
Single-famity areas 030-0.50 7 0% 0.18-0.22
MILIlti unirts, detached 0AO-0.60 Heavy sor, flat, 2% 0 2,5-0 35
Midti units, Attached 0,60-0,75 Heavy sor, ave.,
SUbUrban 025-0A0 2.7%
IndUstrial, Heavy sor, steep,
7% 030 0,60
Light areas 0 50-0M 020-OM
Heavy areas 0 60-0 910 Agi-lCUtural land:
Parks, cemeteries 010-025 Bare packed soi:il 0-0,60
SmIxAll &0320-0,50
Paygrounds 020-0.35 Rough U20-0.40
Cultivated rows 0:10-0,25
Rarroad yard -areas 0,20-0,40 Heavy s6I no crop
Heavy s,60 w4h 015-045,
1. in0irnproved areas 010-030 crop 0,015-0 25
Streets: Sandso y 0l no crop O�05-0,25
Asphalt 0,70-0.95 Saridy sofl with
Coincrete 0,80-0 9,15 crop O. 0,25
Brilck 0 70-0,85 Pasture
Heavy soiI 0,15,-0,45
Drives and walks 075-0,85 Swar so 0,06-0 25
Woodlands 0.015-0 26
Rool's 075-0.8,5
NOTE. The designer Must Use judgernent to sellect the appropriate C
value within the range for the appropriate Ilandl use. (.3wenleiratly, larger
areas wrth penneable sofls, flat slopes, and devise vegetation Shiould
have lowest C values Smaller areas Wth slowly peroieaUe sorlls, steep
slopes, and sparsevegetation should be assigined highlest C values.
Source: merican Society of Civil Engineers
Return to Main Worksheet
Use 0.6 for newly graded areas-
I
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
MR9 MA, Ent-MM
User Input Data
Calculated Value
Reference Data
Designed By:
Checked By:
Company:
Project Name:
Proiect No.:
Site Location (City/Town)
Watershed Basin Id.
The ratmrial forl:11111a is:.
WP.sNoibi
Eb
CDM smith
Yadkin WTP
231695
Date: 2/11/2021
Date: 211712021
Union County
SWALE 31Area B
0 = CIA
whele-
Q = peak rate of ruiroffm cubic feet per secoild (cfi)
C = rurioff coefficietit, iai enipirical coefficient ieprestrinirg the
relationship betweeii rainfiall rate, and rinioff rate
average intensity of ralnfall 111.1 wchesJhour, for a storm duration ecittil
to the 11me of coricentration, Tc;
A (tratriage x—ea in acres
The general furor me for detenruning peak disichar�ge using the rational
fbirnuLa 1s preiented below, and Illustraled 11i Sarnple Problern 8.03a.
Step I Detemurie the drairiage area m acres.
Total Drainaqe Area 2.63
Step 2, Detienrune the ninoff ccwfficient, C., for the type of soil :over in the
draunge irea (Table 9 03b)
If the land use and soil coven is honiogenous over the drainage area, a C
v,alue can be deterinineid ditectly frmn Table 8.03b. If there are multiple soil
cover conditims, a weighted average triust be, calculated. o!r the arei inly be
subdivided.
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Subarea A (acres)
Subarea A Runoff Coefficient
Subarea B (acres)
Subarea B Runoff Coefficient
Subarea C (acres)
Subarea C Runoff Coefficient
Subarea D (acres)
Subarea D Runoff Coefficient
Weighted Runoff Coefficient
Step 3.
Step 4.
2-year Rainfall Intensity, i (in/hr)
10-year Rainfall Intensity, i (in/hr)
0.40 roof I
0.85 Runoff Coeff
0.34 pavement
0.95 1
1.90 disturbed
0.6 1
0.682583603
0
6.11
Step etermllie peak discharge, 0 (ctibnc feet per secotict), by ntaftiply"I fig
the pas viotisly determupied factors usaig the raticnial formula (Sainple Robleiri
8,03a),
Q2 Flow (cfs) 0
Q10 Flow (cfs) 11.0
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step 3. Time of Concentration
Overland flow Tc -- Kinematic Wave Theory
Length of overland flow 100.0 feet
Mannings "n" for surface 0.240 Manning's n
Average watershed slope 0.03 ft./ft.
Constant alpha 1.2
Constant m 1.67
Weighted Runoff Coefficient 0.682584
Shallow Conc Flow Tc
Slope 0.03
Length of Conc Flow 300
V (unpaved) 3.0
Channel/Pipe Flow Tc
Slope 0.028
Length of Channel/Pipe Flow 350
Calculated hydraulic profile for
R 0.95
trapezoidal shaped swale at 1.7'water
n 0.15 depth
V 1.6
Tc Overland (min) 5
Tc Shallow Conc (min) 1.7
Tc Channel/Pipe (min) 3.6
Tc Total (min) 10.3 Trial time of duration that is =/< 10.3 mins (Tc) is 10
mins, corresponding rainfall intensity is 5.66 in/hr
1) Enter the rainfall intensity values for the corresponding times of duration in the
table below. Rainfall intensity can be found from the following NWS hyperlink:
http://hdsc.nws.noaa.gov/hdsc/pfds/orb/nc pfds.html
2) Select the rainfall Intensity that corresponds to the trial time of duration that
is equal to or less than the calculated time of concentration.
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
3) Copy the selected rainfall intensity into cell below.
2-year Rainfall Intensity, i (in/hr)
0-year Rainfall Intensity, i (in/hr) 6.11
Trail Time of Duration
Rainfall Intensity
Calculation of Time
tr (min)
ODF), i (in/hr)
of Concentration,
tc (min)
5
7.64
8.98
10
6.11
9.82
15
5.16
10.50
30
3.74
11.95
60 ( 1 hour)
2.43
14.20
120 ( 2 hours)
1.47
17.36
180 ( 3 hours)
1.05
19.87
360 ( 6 hours)
0.634
24.31
720 (12 hours)
0.38
29.84
1440 (24 hours)
0.218
37.27
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step 3, Detennivre the fime of concentialion., T., for the charnage area. The
Kmetnatic 'Nave Thec)ry defines time of concentration as the "travel time of,a
wa,,,e to move froin the hydiaiflica)13, most divant poitit in the catchinetat to the
outlet (ediesit atid Hubei, 1992)" The fomrula for the tijule of coatentration
is,
TC11 = (U(11 ,,,
lvhere;
"Tc= tane of concentraticni, in minviles It coivii,,As ofthe total tune for
overland sheet flow
1. length of Ovellind flow, Plaixe (feet),
le = tat ufall excess = 1p v C143,200 (43,20,0 ccaivtnts iachesper hatu, to
feet pet second in the overall equatron),
faillfall intensity,
C rational maoff coeffic ients,
This equatian contains two sets of pa,rametei'ti, that need fuOhet dpfiruaofl, a
and ln'For mAndient flow, which, is the notmal fierld oondi6on
U = 0.49 S1112),
%vhere :
S = dope
r) = Manning's toughness,
Since m will always be 5/1 Ous equation cmi be milplified tcw�
Lo
U 4 * C/43,21010)-7�)-
Tc
60 (tllirlUtes)
Becau.,iebofli time efcoacenttation
time one equation, the solution must be found duough a(mations The use of an
spreadsheet is recommended An emaraple is shmn in Table 9.03a
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Table 8.03b: Value of Runoff Coefficient (C) for Rational Formula
Land Use C Land Use C
Busmess: Lamm
Downtown areas 0 70-0 95 Sandy soft, flat, 2% 0 05-0,10
Neighborhood areas 0 50-0 70 Sandy sofl, ave., 0,10-OA5
2-7% 0:15-020
ResOenbal: Sandy soiP,, steep, 0 "13-017
SirrgGe-family areas 0,30-0-50 7% 0,18-0,22
MWti un4s, detached 040-060 Heavy flat, 2% O.25-0,35
Muftj LjMs, Attached 0,60-075 Heavy srA, ave
SUburban 0,25-0A0 2-70/6
Heavy soiV, steep,
IndusbiJI- �' O30-0,60
Ught areas 050-080 7' 0, rj 0,20-0.50
Heavy areas 0, 60 -.0,'tO AgnCUIWraV land:
Parks, cemeteries 0110-0,25 Bare paicked soil 0.30-0.60
Smooth 0,20-0,50
Faygrounds 020-035 ROLIghi 0,20-0,40
Cuffivated rows 0,110-0,25
RaOroad yard 'areas 0,200,40 Heavy soO no crop
Heavy soiP with 0 '15-OA5
— UnJniproved areas 010-0,30 cr,:)p� 005-0,25
— Streets: Sandy soO no crop 0,05 O25
— AsphWt O70-0.95 Saindy soiO mth
— Concrete 0 80-0 95 crop 0,10-025
Brick 030 &S5 Pasture
He�avy soiP 0,15-0A
Derives and walks 0,75085 Sandy soO 0 05-0.25
M:)odlands 0,05-0 25
Roofs 0,75.0,85
NO'TE: The desugner MUSt use jUdgernent to select the approphate C
value within the range for the appropriate land use GeneraNy, brger
areas, with perrnealAe soft, flat slopes, and dense vegetation shOUIld
have bwest C valLIL—,. Smaller areas vifth slowlily puurn'aeabt e sofls, steep
s,lopes, and spairse vegetation shOUd be assigned Ihighest C vaWes
SWrce: rnericainSoiciety of OW Engineers
Return to Main Worksheet
Use 0.6 for newly graded areas-
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
I User Input Data I
Calculated Value
Reference Data
Designed By:
Checked By:
Company:
Project Name:
Proiect No.:
Site Location (City/Town)
Watershed Basin Id.
The rafional forniula as:
A DsNoibi Date: 2/11/2021
Date 211712021
CDM smith
Yadkin WTP
231695
Union Countyl
AREA ClArea C, sheet flow south of raw water
Where:
a = peak rate of runoff in cubic feet per see: iotid (cfs)
= rimoff coefficierit, an erapirical coefficrent representj ng the
relationship betweeri ra116,11 rate, and runoff rate
l average uiteasiq, (if minfiall ai inches/how, for a stornI cbrat on equal
to the turre of concentration, T.
A dramige area in acres
Tile general procedure for deterrinning eak- discharg in
P �e u& g the rational
fortnula is presiented below atid illustrated 11i Sample Problem 9.03a.
Step I. Deternune the drainage area in acres,,
Total Drainage Area
5111-91
Step 2" Deterllu'tle the I-Luloff Coefficle"11t, C' for the qve of S011/cOver III the
dralnag:e are ii (Table 8,03b).
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
vahie cati be detemuYied directly frorn Table 8,,03b, If there are multiple Soil
Cover colliditicn'Is. a Weighted average must be calculated, or the area irlay be
stibidv,,ided,
Subarea A (acres)
Subarea A Runoff Coefficient
Subarea B (acres)
Subarea B Runoff Coefficient
Subarea C (acres)
Subarea C Runoff Coefficient
Subarea D (acres)
Subarea D Runoff Coefficient
Weighted Runoff Coefficient
Step 3.
Step 4.
2-year Rainfall Intensity, i (in/hr)
10-year Rainfall Intensity, i (in/hr)
0. 31 roof lincludes raw and finished
0.85 Runoff Coefficient
0.00 pavement
0.95 1
3.32 undisturbed
0.25 1
0.301197319
0
7.64
Step 5. Deterimne pedischarge, 0 (cii1xic feet pier wcotid),, by mulfipl),trig
the previously determMed factors milig the tatiolial fora id (Sample Problem
.0 3 a),,
0 =CIA
Q2 Flow (cfs) 0
Q10 Flow (cfs) 8.4
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step 3. Time of Concentration
Overland flow Tc -- Kinematic Wave Theory
Length of overland flow 100.0 feet
Mannings "n" for surface 0.240 Manning's n
Average watershed slope 0.03 ft./ft.
Constant alpha 1.1
Constant m 1.67
Weighted Runoff Coefficient 0.301197
Shallow Conc Flow Tc
Slope
Length of Conc Flow
V (unpaved)
Channel/Pipe Flow Tc
Slope
Length of Channel/Pipe Flow
R
n
V
0.03
507.00
2.9
0.05
0 no channel flow
0.8
0.15
1.8
Tc Overland (min) 5
Tc Shallow Conc (min) 2.9
Tc Channel/Pipe (min) 0.0
Tc Total (min) 7.9 Trial time of duration that is =/< 7.9 mina (Tc)
is 5 mins, corresponding rainfall intensity is
7.64 in/hr
1) Enter the rainfall intensity values for the corresponding times of duration in the
table below. Rainfall intensity can be found from the following NWS hyperlink:
httip://hdsc.nws.noaa.gov/hdsc/ipfds/orb/nc ipfds.html
2) Select the rainfall Intensity that corresponds to the trial time of duration that
is equal to or less than the calculated time of concentration.
3) Copy the selected rainfall intensity into cell below.
2-year Rainfall Intensity, i (in/hr)
0-year Rainfall Intensity, i (in/hr) 7.64
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Trail Time of Duration
Rainfall Intensity
Calculation of Time
tr (min)
ODF), i On/hr)
of Concentration,
tc (min)
5
7.64
12.62
10
6.11
13.80
15
5.16
14.76
30
3.74
16.79
60 ( 1 hour)
2.43
19.96
120 ( 2 hours)
1.47
24.40
180 ( 3 hours)
1.05
27.92
360 ( 6 hours)
0.634
34.17
720 (12 hours)
0.38
41.93
1440 (24 hours)
0.218
52.38
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step 3, Determine the tinie of conceirtiation, Tc� for the drainage ate a The
Kinetnatic Wave Themy defines tune of concentration as the "uavel time of a
wave to inove frain the hych-aulically nio,,,t distant pcint in the catchment to tire
outlet (Bedvent aud Huber, 1992) The forinulafor the ftnie ofconcentration
i s:
Tc = (IL)( U a lef-I )isrn
where
ume of conceuttation, in ntwives. It com'ists of the total time fol
overland sheet flow.
L length ofovetland flow plane (feet)-,
le = rainfall excess = 1U * C/43,200 (43,20,0 converts inches pet how- to
feet per second in the overall equation),
la raiafall niteasity-I
C' vitiolial mnoff colefficientr,
Thii, equation contains two sets of parameters that need fin-ther definition, a
and M Fct turbulent flow, wliich is the ricitinal field condation,
rn 513 = I , 616 7
tt (1 .49 ,,, S`2)
n
S =slopre (fffk),
n = Maiming's, rouglinc.6,
'Since n) will always be 5,3, this equation can be simplifiedto:
L
(1, v C143,2010 )Zf)
Tay;
60, (miinutes)
Because both firne ofconcentiation and rainfall intiensitygut e unknown vatiables
in one equation, the whition must be fcauird through. iteiations. 11e Ll,.,,e of a
sPeadsheet is, recounmeaded. Air example i5 shown iu Table S 013&
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Table 8.03b: Value of Runoff Coefficient (C) for Rational Formula
—
—
—
—
Land Use C Land Use C
Busniess. Lawns -
Downtown areas 070-0,95 Sandy sor, flat, 2% 0. 05-0, 10
Neighborbood areas, 0,50-070 Sandy sor, ave., 0A0-0.15
2-7% 0,15,-0,20
Residential: Sandy, sor, steep, 0. Ky-& 17
Single-famity areas 030-0.50 7 0% 0.18-0.22
MILIlti unirts, detached 0AO-0.60 Heavy sor, flat, 2% 0 2,5-0 35
Midti units, Attached 0,60-0,75 Heavy sor, ave.,
SUbUrban 025-0A0 2.7%
IndUstrial, Heavy sor, steep,
7% 030 0,60
Light areas 0 50-0M 020-OM
Heavy areas 0 60-0 910 Agi-lCUtural land:
Parks, cemeteries 010-025 Bare packed soi:il 0-0,60
SmIxAll &0320-0,50
Paygrounds 020-0.35 Rough U20-0.40
Cultivated rows 0:10-0,25
Rarroad yard -areas 0,20-0,40 Heavy s6I no crop
Heavy s,60 w4h 015-045,
1. in0irnproved areas 010-030 crop 0,015-0 25
Streets: Sandso y 0l no crop O�05-0,25
Asphalt 0,70-0.95 Saridy sofl with
Coincrete 0,80-0 9,15 crop O. 0,25
Brilck 0 70-0,85 Pasture
Heavy soiI 0,15,-0,45
Drives and walks 075-0,85 Swar so 0,06-0 25
Woodlands 0.015-0 26
Rool's 075-0.8,5
NOTE. The designer Must Use judgernent to sellect the appropriate C
value within the range for the appropriate Ilandl use. (.3wenleiratly, larger
areas wrth penneable sofls, flat slopes, and devise vegetation Shiould
have lowest C values Smaller areas Wth slowly peroieaUe sorlls, steep
slopes, and sparsevegetation should be assigined highlest C values.
Source: merican Society of Civil Engineers
Return to Main Worksheet
Use 0.6 for newly graded areas-
I
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
User Input Data
Calculated Value
Reference Data
Designed By: sNoibi Date: 2/11/2021
Checked By: Eb Date: 211712021
Company: CDM smith
Project Name: Yadkin WTP
Project No.: 231695
Site Location (City/Town)
Watershed Basin Id.
The rafional forniula Is:
Union Countyl
SWALE 1 jArea D, Upper Swale
Where:
a = peak rate of runoff in cubic feet per see: iotid (cfs)
= rimoff coefficierit, an erapirical coeta crent representj ng the
relationship betweeri raIlifill rate, and runoff rate
l average uiteusiq, (if minfiall ai inches/how, for a stomi cbrat on equal
to the turre of concentration, T.
A dramige area in acres
Tile general procedure for deterrinning eak- discharg in
P �e u& g the rational
fortnula is presiented below atid illustrated 11i Sample Problem 9.03a.
Step I. Deternune the drainage area in acres,,
Total Drainage Area
199191
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Stop 2, Detem-nune the runoff coefficient. C, for the taupe of soul; coiner lilt the
dralliage area (Table 8.03b),
if the laud use and soul covet is tionrogenouover the drainage area, a C
value cmi be deterilluied directly ftorn Table 8r03b if there are multiple sod
OD%ref conditions, a weighted, averg ge, must be calculated, or the wva may be
subdivided,
Subarea A (acres)
Subarea A Runoff Coefficient
Subarea B (acres)
Subarea B Runoff Coefficient
Subarea C (acres)
Subarea C Runoff Coefficient
Subarea D (acres)
Subarea D Runoff Coefficient
Weighted Runoff Coefficient
Step 3.
Step 4.
2-year Rainfall Intensity, i (in/hr)
10-year Rainfall Intensity, i (in/hr)
0.15 roof 1
0.85 Runoff Coeff
0.59 pavement
0.95
0.55 disturbed
0.6
0.788672014
Step 'I;. Derennine peak disicharge, Q (cubic feet per secortco,, by rnultiplying
the previously deterrillried factors usa'lg the rational fonnula (Sample Problem.
8,03a),
0 =CIA
Q2 Flow (cfs) 0
Q10 Flow (cfs) 7.8
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step 3. Time of Concentration
IVIN notes in red font
Overland flow Tc -- Kinematic Wave Theory
Length of overland flow 48.0 feet Total length of
Mannings "n" for surface 0.240 Manning's n flow=376'-3", mostly
Average watershed slope 0.016 ft. /ft. channel/pipe flow
Constant alpha 0.8
Constant m 1.67
Weighted Runoff Coefficient 0.788672
Shallow Conc Flow Tc
Slope 0.028
Length of Conc Flow 23.00
V (unpaved) 2.7
Channel/Pipe Flow Tc
Slope 0.030
Length of Channel/Pipe Flow 305.25
Calculated hydraulic profile for
R 0.85
trapezoidal shaped swale at 1.5'water
n 0.15 depth
V 1.5
Tc Overland (min) 5
Tc Shallow Conc (min) 0.1
Tc Channel/Pipe (min) 3.3
Tc Total (min) 8.5 Trial time of duration that is =/< 8.5 mins
(Tc) is 5 mins, corresponding rainfall
intensity is 7.64 in/hr
1) Enter the rainfall intensity values for the corresponding times of duration in the
table below. Rainfall intensity can be found from the following NWS hyperlink:
http://hdsc.nws.noaa.gov/hdsc/pfds/orb/nc pfds.html
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
2) Select the rainfall Intensity that corresponds to the trial time of duration that
is equal to or less than the calculated time of concentration.
3) Copy the selected rainfall intensity into cell below.
2-year Rainfall Intensity, i (in/hr)
0-year Rainfall Intensity, i (in/hr) 7.64
Trail Time of Duration
Rainfall Intensity
Calculation of Time
tr (min)
ODR i lin/hr)
of Concentration,
tc (min)
5
7.64
6.90
10
6.11
7.54
15
5.16
8.07
30
3.74
9.18
60 ( 1 hour)
2.43
10.91
120 ( 2 hours)
1.47
13.34
180 ( 3 hours)
1.05
15.26
360 ( 6 hours)
0.634
18.67
720 (12 hours)
0.38
22.92
1440 (24 hours)
0.218
28.63
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step .1, Detefrmiie thetitne of octicentratiow TC, f6i the draitiage, area The
Kinematic., Wave TlieOIT defines time of conceurfatiou as the "tiavel time of a
waveto iuo,ty-e from the hydraulically most diaitant point ni tine catchineut to the
outlet (Bedient and ubet, 19�92)" The formula for the, tune of concentration
is :
TC = (U(11
where,�,
T"= utue of cancentiation, in tumutes It consists of the total time for
oveiland sheet flow.
L = leagth of ovexhuid floit, ph (feet)';
le = tainfall, exceiis = It v C/43,200 (4,3,200 converts inches pen hou to
feet pet, second in the over-111 eqUati,011),
rainfilll intetroity,
C tational tunoff coefficients,
This equation coutailli two ,,,ets of paiatneter,,,, that need furthet defuution. o�
and nit, Fet tutbulent flow, which is the normal field condition,
1,11 = 513 = 1,667
U = (1,49 -4 S"")
n
Where:
S slope (ft1t)i;
in = Maiming's rouglwess
Since rn, will always, be 5, this equatiou uui be sunplifted to:
60 (winutes)
Because boditime ofcouceiitritaci,n,,indsiiiifAlb uattnr,,iiy are unknown variablies
in one epaucti, the �,olutiori must be found through iterations, The use ofa
speadsheet is tecommended. An example is shown in'Table 8,03a
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Table 8.03b: Value of Runoff Coefficient (C) for Rational Formula
—
—
—
—
Land Use C Land Use C
Busniess. Lawns -
Downtown areas 070-0,95 Sandy sor, flat, 2% 0. 05-0, 10
Neighborbood areas, 0,50-070 Sandy sor, ave., 0A0-0.15
2-7% 0,15,-0,20
Residential: Sandy, sor, steep, 0. Ky-& 17
Single-famity areas 030-0.50 7 0% 0.18-0.22
MILIlti unirts, detached 0AO-0.60 Heavy sor, flat, 2% 0 2,5-0 35
Midti units, Attached 0,60-0,75 Heavy sor, ave.,
SUbUrban 025-0A0 2.7%
IndUstrial, Heavy sor, steep,
7% 030 0,60
Light areas 0 50-0M 020-OM
Heavy areas 0 60-0 910 Agi-lCUtural land:
Parks, cemeteries 010-025 Bare packed soi:il 0-0,60
SmIxAll &0320-0,50
Paygrounds 020-0.35 Rough U20-0.40
Cultivated rows 0:10-0,25
Rarroad yard -areas 0,20-0,40 Heavy s6I no crop
Heavy s,60 w4h 015-045,
1. in0irnproved areas 010-030 crop 0,015-0 25
Streets: Sandso y 0l no crop O�05-0,25
Asphalt 0,70-0.95 Saridy sofl with
Coincrete 0,80-0 9,15 crop O. 0,25
Brilck 0 70-0,85 Pasture
Heavy soiI 0,15,-0,45
Drives and walks 075-0,85 Swar so 0,06-0 25
Woodlands 0.015-0 26
Rool's 075-0.8,5
NOTE. The designer Must Use judgernent to sellect the appropriate C
value within the range for the appropriate Ilandl use. (.3wenleiratly, larger
areas wrth penneable sofls, flat slopes, and devise vegetation Shiould
have lowest C values Smaller areas Wth slowly peroieaUe sorlls, steep
slopes, and sparsevegetation should be assigined highlest C values.
Source: merican Society of Civil Engineers
Return to Main Worksheet
Use 0.6 for newly graded areas-
I
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
MR9 MA, Ent-MM
User Input Data
Calculated Value
Reference Data
Designed By:
Checked By:
Company:
Project Name:
Proiect No.:
Site Location (City/Town)
Watershed Basin Id.
The fational fotinula is'.
fr DNoibi
Eb
CDM smith
Yadkin WTP
231695
Date: 2/12/2021
Date: 211712021
Union County
AREA EjJust no of pond, no channel to
Q =: CIA
whe're
0= peak- rate of runoff In cubtc feet per second (cfi)
Cl ninoff coefficient, an empmcal coefficlent representing tile
relationslup beneat en rainfall rate and rimoff rate
average 11itensity of ninilfall ni inches)'hour, for a sionn duration equal
to the tlyne of con centration,T1,,
A= dminage area in acres
'n,ir getwral procedure for deterinining peak discharge usmg the ranonal
fonnula is pesenled below and 111ustrated M Sample Probleni 8,03a,
S,tep 1. Dietffallne the drainage area in ac,res.
Total Drainage Area
0.72
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step 2. Deterniine the nxiaoff coefficleirt, C. for the type of soltcover 11i the
drainage area (Table 9 03b,)
If the land use and wil coaxer is howgenous oier the ch-ainage area, as C
value cant be deterinmed directly ftwi'i'Table 8.03b. IftheTe acre multiple Sod
cover conditions, a Nveighted average to be calculated, or the areatuay be
subdivided,
Subarea A (acres)
Subarea A Runoff Coefficient
Subarea B (acres)
Subarea B Runoff Coefficient
Subarea C (acres)
Subarea C Runoff Coefficient
Subarea D (acres)
Subarea D Runoff Coefficient
Weighted Runoff Coefficient
Step 3.
Step 4.
2-year Rainfall Intensity, i (in/hr)
10-year Rainfall Intensity, i (in/hr)
0.00 roof I
0.85 Runoff Coefficient
0.08 pavement
0.95
0.64 disturbed
M.
0.636552329
0
7.64
Includes gravel road to pond
Step .5. Deternitne peak d1schirge, 0 (cubic feel per second), by multiplying
the pre-viously deter'1111ned factot's using the rational fonnula (Sample Problern
8,103a)"
Q2 Flow (cfs) 0
Q10 Flow (cfs) 3.5
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step 3. Time of Concentration
Overland flow Tc -- Kinematic Wave Theory
Length of overland flow 100.0 feet
Mannings "n" for surface 0.240 Manning's n
Average watershed slope 0.03 ft. /ft.
Constant alpha 1.0
Constant m 1.67
Weighted Runoff Coefficient 0.636552
Shallow Conc Flow Tc
Slope
Length of Conc Flow
V (unpaved)
Channel/Pipe Flow Tc
Slope
Length of Channel/Pipe Flow
R
n
V
Tc Overland (min)
Tc Shallow Conc (min)
Tc Channel/Pipe (min)
Tc Total (min)
0.03
114.00
2.7
0.03
0 No channel to
0.5
0.15
1.0
5
0.7
0.0
5.7 Trial time of duration that is =/< 5.7 mina (Tc) is 5
mins, corresponding rainfall intensity is 7.64 in/hr
1) Enter the rainfall intensity values for the corresponding times of duration in the
table below. Rainfall intensity can be found from the following NWS hyperlink:
http://hdsc.nws.noaa.gov/hdsc/pfds/orb/nc pfds.html
2) Select the rainfall Intensity that corresponds to the trial time of duration that
is equal to or less than the calculated time of concentration.
3) Copy the selected rainfall intensity into cell below.
2-year Rainfall Intensity, i (in/hr)
0-year Rainfall Intensity, i (in/hr) 7.64
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Trail Time of Duration
Rainfall Intensity
Calculation of Time
tr (min)
ODR i Oninr)
of Concentration,
tc (min)
5
7.64
9.85
10
6.11
10.77
15
5.16
11.53
30
3.74
13.11
60 ( 1 hour)
2.43
15.58
120 ( 2 hours)
1.47
19.05
180 ( 3 hours)
1.05
21.80
360 ( 6 hours)
0.634
26.67
720 (12 hours)
0.38
32.74
1440 (24 hours)
0.218
40.89
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step , Determine the time of concentrati'au. To. for the da'ainage area The
Kinematic Wm-e Theol-V deflues finie of concentration as the -travel time of a
wa*ve to move from the hydtavilically most distaut point in the catcluirelit to die
outlet (Bedient and Huber, 199-1)", The fonnula fors the time of concentration
is,
T,C,, = (L/(,'Y,, , le
Where:
T,7= Ume of concentration, in irujuxtes It cowusts Df the ton! thile �or
o,,,extand, sheet flow
L = letigth of cn-efland flow plaiie (Yeet):
le naudill excess = In Y C/43,200 (43,200 carivetts inches pel hCur to
feet per second in tine over all equation),
1, rainfall uitensity,
C = 131ional 11,11roff coefficients"
This equation containsrwo sets of paraniefers that need fluther definition u
andill For to flow, which. is the normal field condition,
m 513 = I . 6,67
1 , ")
mn
S 0ope (ft`ff
Y
n = Manfung's, f OugImess
Since mi will ahvay�s ble 5,,1, aiis equation cau be simp Hfied to
M
T Cf, ( 1i1 g t /43,200)2")-
60 (minutes)
Became. bothtimeof intervsity ate unknown valiables
in one equation. the solution mum be found througli iteratioslt,, The tree of a
sineadsheet isrecommended An exaniple, is shown in Table S,03,a,
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Table 8.03b: Value of Runoff Coefficient (C) for Rational Formula
—
—
—
—
Land Use C Land Use C
Busniess. Lawns -
Downtown areas 070-0,95 Sandy sor, flat, 2% 0. 05-0, 10
Neighborbood areas, 0,50-070 Sandy sor, ave., 0A0-0.15
2-7% 0,15,-0,20
Residential: Sandy, sor, steep, 0. Ky-& 17
Single-famity areas 030-0.50 7 0% 0.18-0.22
MILIlti unirts, detached 0AO-0.60 Heavy sor, flat, 2% 0 2,5-0 35
Midti units, Attached 0,60-0,75 Heavy sor, ave.,
SUbUrban 025-0A0 2.7%
IndUstrial, Heavy sor, steep,
7% 030 0,60
Light areas 0 50-0M 020-OM
Heavy areas 0 60-0 910 Agi-lCUtural land:
Parks, cemeteries 010-025 Bare packed soi:il 0-0,60
SmIxAll &0320-0,50
Paygrounds 020-0.35 Rough U20-0.40
Cultivated rows 0:10-0,25
Rarroad yard -areas 0,20-0,40 Heavy s6I no crop
Heavy s,60 w4h 015-045,
1. in0irnproved areas 010-030 crop 0,015-0 25
Streets: Sandso y 0l no crop O�05-0,25
Asphalt 0,70-0.95 Saridy sofl with
Coincrete 0,80-0 9,15 crop O. 0,25
Brilck 0 70-0,85 Pasture
Heavy soiI 0,15,-0,45
Drives and walks 075-0,85 Swar so 0,06-0 25
Woodlands 0.015-0 26
Rool's 075-0.8,5
NOTE. The designer Must Use judgernent to sellect the appropriate C
value within the range for the appropriate Ilandl use. (.3wenleiratly, larger
areas wrth penneable sofls, flat slopes, and devise vegetation Shiould
have lowest C values Smaller areas Wth slowly peroieaUe sorlls, steep
slopes, and sparsevegetation should be assigined highlest C values.
Source: merican Society of Civil Engineers
Return to Main Worksheet
Use 0.6 for newly graded areas-
I
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
I User Input Data I
Calculated Value
Reference Data
Designed By:
Checked By:
Company:
Project Name:
Proiect No.:
Site Location (City/Town)
Watershed Basin Id.
The rafional forniula as:
t. D Noibi
Eb
CDM smith
Yadkin WTP
231695
Date: 2/11/2021
Date: 211712021
Union Countyl
SWALE 41Area F, Downstream of Swale 2
Where:
a = peak rate of runoff in cubic feet per see: iotid (cfs)
= rimoff coefficierit, an erapirical coefficrent representj ng the
relationship betweeri ra116,11 rate, and runoff rate
l average uiteusiq, (if minfiall ai inches/how, for a stornI cbrat on equal
to the turre of concentration, T.
A dramige area in acres
Tile general procedure for deterrinning eak- discharg in
P �e u& g the rational
fortnula is presiented below atid illustrated 11i Sample Problem 9.03a.
Step I. Deternune the drainage area in acres,,
Total Drainage Area
A I X191
Step 2" Deterllu'tle the I-Luloff Coefficle"11t, C' for the qve of S011/cOver III the
dralnag:e are ii (Table 8,03b).
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
vahie cati be detemuYied directly frorn Table 8,,03b, If there are multiple Soil
Cover colliditicn'Is. a Weighted average must be calculated, or the area irlay be
stibidv,,ided,
Subarea A (acres)
Subarea A Runoff Coefficient
Subarea B (acres)
Subarea B Runoff Coefficient
Subarea C (acres)
Subarea C Runoff Coefficient
Subarea D (acres)
Subarea D Runoff Coefficient
Weighted Runoff Coefficient
Step 3.
Step 4.
2-year Rainfall Intensity, i (in/hr)
10-year Rainfall Intensity, i (in/hr)
0.07 roof I
0.85 Runoff Coefl
0.18 pavement
0.95 1
0.10 disturbed
0.6 1
0.83254
0
7.64
Step 5. Deterimne pedischarge, 0 (cii1xic feet pier wcotid),, by mulfipl),trig
the previously determilied factors milig t�he tatiolial fora id (Sample Problem
8, 03 a),,
0 =CIA
Q2 Flow (cfs) 0
Q10 Flow (cfs) 2.2
Q10 Flow (cfs) (INCLUDING 10.2
UPSTREAM FLOW)
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step 3. Time of Concentration
Overland flow Tc -- Kinematic Wave Theory
Length of overland flow 21.8 feet
Mannings "n" for surface 0.240 Manning's n
Average watershed slope 0.098 ft./ft.
Constant alpha 1.9
Constant m 1.67
Weighted Runoff Coefficient 0.832536
Shallow Conc Flow Tc
Slope
Length of Conc Flow
V (unpaved)
Channel/Pipe Flow Tc
Slope
Length of Channel/Pipe Flow
R
n
V
Tc Overland (min)
Tc Shallow Conc (min)
Tc Channel/Pipe (min)
Tc Total (min)
0.03
0 Assume no shallow conc flow
2.8
0.011
140
1.1 Calculated hydraulic profile for
0.15 trapezoidal a ale, forwater
1.1
5
0.0
2.2
7.2
1) Enter the rainfall intensity values for the corresponding times of duration in the
table below. Rainfall intensity can be found from the following NWS hyperlink:
http://hdsc.nws.noaa.gov/hdsc/pfds/orb/nc pfds.html
2) Select the rainfall Intensity that corresponds to the trial time of duration that
is equal to or less than the calculated time of concentration.
3) Copy the selected rainfall intensity into cell below.
2-year Rainfall Intensity, i (in/hr)
0-year Rainfall Intensity, i (in/hr) 7.64
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Trail Time of Duration
Rainfall Intensity
Calculation of Time
tr (min)
ODF), i On/hr)
of Concentration,
tc (min)
5
7.64
2.43
10
6.11
2.66
15
5.16
2.84
30
3.74
3.23
60 ( 1 hour)
2.43
3.84
120 ( 2 hours)
1.47
4.70
180 ( 3 hours)
1.05
5.37
360 ( 6 hours)
0.634
6.58
720 (12 hours)
0.38
8.07
1440 (24 hours)
0.218
10.08
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Step .1, Detenume the time of concentratiou, Tc- for the drainage area, 'The
Kinematic Wave Theor.Y definet tijue of concentratiou as the -travel time of a
wwve to move ficyin the livdi'aulicall,v most distant point in the catchment tothe
Outlet (Bedient and liubex, 1992)" The fonnula fox the firne of concentration
i's -,
T(- =: (L/(Ct *
where:
Tc= Utne ofconcentration, m inulutes, It consists of die total hire for
ol,,etlaud sheetflow.
L = length of o-verland flow plane (feet),
le = rainfall excess = 1l , C143,200 (43,2M ccirverts inches pet hom to
feet per second in the overall equation)
rainfall Intensity;
C tational iunoffcoeffic tents
Tim equati,cm contains two sets of parameters that need ffirtherdefinitiom a
and m For turbulent flow, w1itch ts the nornial field condition.
rn, = :513 = 1.667
U = (I 49 , S1,12)
wbere,
S = slojaie
n = mamling's roughness
Suice n) will alwaybe 5,3,, this equation can be sauplified, to:
L 2^3
Tc = -
60 (minutes)
Becauseboth tijneofcc�nceiitratiiiiia:idj:,ainfeilI intensity are unPnowar.-miables
in one equation, the solution must be found through. iterations, Tbe use of a
spreads'li"mt is teconnnended. An example is shown in Table 8,03a.
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Table 8.03b: Value of Runoff Coefficient (C) for Rational Formula
—
—
—
—
Land Use C Land Use C
Busniess. Lawns -
Downtown areas 070-0,95 Sandy sor, flat, 2% 0. 05-0, 10
Neighborbood areas, 0,50-070 Sandy sor, ave., 0A0-0.15
2-7% 0,15,-0,20
Residential: Sandy, sor, steep, 0. Ky-& 17
Single-famity areas 030-0.50 7 0% 0.18-0.22
MILIlti unirts, detached 0AO-0.60 Heavy sor, flat, 2% 0 2,5-0 35
Midti units, Attached 0,60-0,75 Heavy sor, ave.,
SUbUrban 025-0A0 2.7%
IndUstrial, Heavy sor, steep,
7% 030 0,60
Light areas 0 50-0M 020-OM
Heavy areas 0 60-0 910 Agi-lCUtural land:
Parks, cemeteries 010-025 Bare packed soi:il 0-0,60
SmIxAll &0320-0,50
Paygrounds 020-0.35 Rough U20-0.40
Cultivated rows 0:10-0,25
Rarroad yard -areas 0,20-0,40 Heavy s6I no crop
Heavy s,60 w4h 015-045,
1. in0irnproved areas 010-030 crop 0,015-0 25
Streets: Sandso y 0l no crop O�05-0,25
Asphalt 0,70-0.95 Saridy sofl with
Coincrete 0,80-0 9,15 crop O. 0,25
Brilck 0 70-0,85 Pasture
Heavy soiI 0,15,-0,45
Drives and walks 075-0,85 Swar so 0,06-0 25
Woodlands 0.015-0 26
Rool's 075-0.8,5
NOTE. The designer Must Use judgernent to sellect the appropriate C
value within the range for the appropriate Ilandl use. (.3wenleiratly, larger
areas wrth penneable sofls, flat slopes, and devise vegetation Shiould
have lowest C values Smaller areas Wth slowly peroieaUe sorlls, steep
slopes, and sparsevegetation should be assigined highlest C values.
Source: merican Society of Civil Engineers
Return to Main Worksheet
Use 0.6 for newly graded areas-
I
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Designed By: M Noibi Date: 2/12/2021
Checked By: Jb Date: 2/17/2021
Company: CDM Smith
Project Name: Yadkin WTP Reference: Concrete Pipe Design Manual,
Project No.: 231695 American Concrete Pipe Association, 2011
Q10
Trial Diameter (HW/2)
From Fig 44, HW (for inlet control)=
From Fig 44, HW+SoL (for outlet control)=
SoL=
Outlet Control HW=
From Fig 4, Max flow for 18" pipe with slope of
0.5%=
From Fig 4, Max velocity for 18" pipe with slope
of 0.5%=
Proportion of value for full flow=
From Fig 20, depth of flow=
From Fig 20, velocity proportion of value for full
flow=
Outlet Velocity=
CULVERT 1 VELOCITY CHECK
7.8 cfs
Q10 upstream of Culvert
1 ft
Assuming permissible Headwater (HW) depth is 2 ft
1.5 ft
1.8 ft
Slope (So)=0.5%, Length (L)=41 ft
0.205 ft
1.5 (HW inlet control) <1.6 (HW (outlet control), Therefore,
Outlet Control governs
HW=1.6 < permissible HW of 2 ft
Therefore, diameter= 1 ft acceptable
1.6 ft Culvert of 1.5 ft dia. used for consistency
8 cfs
4.5 fps
0.98 ft/ft
0.78 ft/ft
1.14 ft/ft
5.13 fps
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Figure 44
CCU LVE T' +CAPA CITY
18-INCH DIAMETER PIPE
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Im
=
PUPW FOR CIRCULAR IF1,111PR FLOWFINGFULL
�y �y
,�''�'� ,.. � ,.o, �, b.,,,, � u t : ,t �"-. 1111 �, yit ail ��✓ �'Y,�. w ;� µ""A, s�'� �„;,r '{'
wel
WX
�f
SIC
10
M,rc u�um" Iw.°. hr,j'
jm
22
r �rn- r ✓' di°V. wa
yy � � 4
2CPS"" w nnr'"' „d �,.. { J n M"'", u, N , �;, �4� N 4 11" m " y f
*._.... t y 66,
G µkw w r "AJ 41aPo 31 �NIS
� , r
I u
0
"
M « Nry
��UG�p9f fll �htl g @� „ b
apt^
".n I ar'. 5+"c, N
v�
,_ _.
Aof-oqraar".crmTar^,Pipe A%nuciaIiii'mr, � WWWZMI11UUIf1�P:ii
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
A M.=
Figures
RELATIVE VELOCUT . Y AND FJLJQW PfM
CORCULAR Pill", FOR ANly IMPTH OF FLOW
M
iNb
x
. .........
C" . . .......... . ... . .... ... ....... R
La
7'
5
10
.... . ......
ci
of
10,
X
MO I I IV) Hldla
Apra,mar, C;Itjrmma Pipe $umncImHzn , www c,:wnx'urah ,wipc)e,aIq
m
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
B-
Designed By: i Date: 2/12/2021
Checked By: It Date: 211712021
Company: CIDM smith
Project Name: Yadkin WTP Reference: Concrete Pipe Design Manual,
Project No.: 231695 American Concrete Pipe Association, 2011
CULVERT 2 & 3 VELOCITY CHECK
Q10 10.2 cfs Q10 in Swale 4
Trial Diameter (HW/2) 1.5 ft Assuming permissible Headwater (HW) depth is 3 ft
From Fig 44, HW (for inlet control)= 1.9 ft
From Fig 44, HW+SoL (for outlet control)= 2.2 ft Slope (So)=1%, Length (L)=50ft
SoL= 0.5 ft
Outlet Control HW=
From Fig 4, Max flow for 18" pipe with slope of
1%=
From Fig 4, Max velocity for 18" pipe with slope
of 1%=
Proportion of value for full flow=
From Fig 20, depth offlow=
From Fig 20, velocity proportion of value for full
flow=
Outlet Velocity=
1.9 (HW inlet control) >13 (HW (outlet control), Therefore,
Inlet Control governs
HW=1.9< permissible HW of 3 ft
1.7 ft Therefore, diameter= 1.5 ft acceptable
11 cfs
6.5 fps
0.9 ft/ft
0.6 ft/ft
1.08 ft/ft
7.02 fps
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Figure,
CULVERT CAPACITY
18-1INCH DIAMETERPIPE
Ui
Uj pro C�4nPOO o
Cuklt:nub�mewme
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Figure 4
A
II cls (,Iynax flow, 1
8
Icy 1,81" pipp, ovifhy,,
Figures
0, n03,04,05 2 3 A 5,65 S 1 2 3 14 15 6 all 0
SL UPE, OF P111 Pt IN if t, LT E. 100 f E. ET
Aurcy,mar, CLm—man Plkpa Amgmiamw) , ffvm cmumman,
183
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
0=1
Figures,
iMaa-am-,A f.;oxrr-rPPo Nip AN„ uciaaVurm •
2Q1
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Designed By: Mhh Noibi Date: 2/12/2021
Checked By: JSb Date: 2/17/2021
Company: CDM smith
Project Name: Yadkin WTP Reference: Concrete Pipe Design Manual,
Project No.: 231695 American Concrete Pipe Association, 2011
CULVERT 4 VELOCITY CHECK
Q10
8.4 cfs
Q10 upstream of Culvert
Trial Diameter (HW/2)
1.5 ft
Assuming permissible Headwater (HW) depth is 3 ft
From Fig 44, HW (for inlet control)=
1.6 ft
From Fig 44, HW+SoL (for outlet control)=
1.9 ft
Slope (So)=5%, Length (L)=36.75 ft
SoL=
1.8 ft
1.6 (HW inlet control) < 1.9 (HW (outlet control),
Therefore,outlet Control governs
HW=1.9< permissible HW of 3 ft
Outlet Control HW=
0.1 ft
Therefore, diameter= 1.5 ft (18 In) Is acceptable
Trial 2»»
Diameter
1.75 ft
From Fig 45, HW (for inlet control)=
1.6 ft
From Fig 45, HW+SoL (for outlet control)=
1.9 ft
Slope (So)=5%, Length (L)=36.75 ft
SoL=
1.8 ft
1.6 (HW inlet control) <1.9 (HW outlet control), Therefore,
Outlet Control governs
HW=1.9 < permissible HW of 3 ft
Outlet Control HW= 0.1 ft Therefore, diameter= 1 ft 9 In (21 In) acceptable
From Fig 4, Max flow for 18" pipe with slope of
5%= 25 cfs
From Fig 4, Max velocity for 18" pipe with slope
of 5%= 14.5 fps
Proportion of value for full flow= 0.3 ft/ft
From Fig 20, depth of flow= 0.375 ft/ft
From Fig 20, velocity proportion of value for full
flow= 0.875 ft/ft
Outlet Velocity= 12.69 fps
Trial 2»»
From Fig 4, Max flow for 21" pipe with slope of
5%= 45 cfs
From Fig 4, Max velocity for 21" pipe with slope
of 5%= 16 fps
Proportion of value for full flow= 0.2 ft/ft
From Fig 20, depth of flow= 0.3 ft/ft
From Fig 20, velocity proportion of value for full
flow= 0.775 ft/ft
Outlet Velocity= 12.40 fps
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
a
CULVERT CAPACITY
18-I CH DIAMETER PIPE
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
4
z
CULVERT CAPACITY
21-Ilia CH DIAMETER PIPE
p d
p v d
16 24 32 40 48 S6
CULVERT DISCHARGE 0 NK CUSIC FEET PER SECOND
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Figure 4
25 cts, (m,
Noir 18"' 1pir
slope= 5",�
6i .02, .03,.o4.05 1 .2 .3 A,5.6 S 1 2 3 4 5 6 810
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
ummm
Is
iY
II
\N
0, CD
0
AAC,-1-4 AO HIA -3 CI
uj
ZD
-j
LL
0
fir
EL.
0
w
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Designed By: PNoibi Date: 2/11/2021
�'(b Date: 2i1'i2o21
Checked By:
Company: CDM Smith
Project Name: Yadkin WTP
Project No.: 231695
CULVERT 1 VELOCITY CHECK
Q10 7.8 cfs
Culvert Diameter 1.5 ft
Velocity Check 4.41 fps
CULVERT 2 & 3 VELOCITY CHECK
Q10 10.2 cfs
Culvert Diameter 1.5 ft
Velocity Check 5.77 fps
CULVERT 4 VELOCITY CHECK
Q10 8.4 cfs
Culvert Size 1.5 ft
Velocity Check 4.75 fps
Q10 upstream of Culvert
Q10 upstream of Culverts 2 and 3 combined
Q10 upstream of Culvert
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
User input Data
Calculated Value
Reference Data
Designed By: uibi Date:
z�17%10 1
Checked By: ��� Date:
Company: mi th
Project Name: Yadkin WTP
Project No.: 231695
Site Location (City/Town) Union County
Channel/Waterway Id. SWALE 1
Steps 1, Detennine gle aeepuirptl fl+ru o alllicaA t.� Nor' (<,,l irla wl? peaiw niaco£1
ra6e Rn the de"uhpia slelrsu (Apye"'Puk, 8,03,J.
Design storm 10-yr
Required Flow, Q (cfs) 7.8
Step 2!. Detcerrainwethe wlope and Ae(.fl ili'rrnaetl �e,rratarngaysari¢tlarrirJL,
Slope (ft/ft) 0.03 Average
Channel geometry: V, Parabolic, or
Trapezoidal Trapezoidal
Channel lining Tall Fescue
Step 3., Detmi nnrr Y1ae luetinw,ibh! ielcclty fart tiller Its rug selealed In the,
dp are.Jl Plccat afpaved (nee p'atile 'I U5,,i pagp 8 05 4),
Permissible velocity (ft/s) 5 Table 8.05a
:Step 4. "emB4O1fi".d' atY HGYIrduYQ h �va9n7nFlgFr iCV'f I`U1'ilkd lh'� 111':�:5` k`l1k Odd " BIYf° 1 p'6 itllA;l'k�'tl IP0. �lii"
pel'aam sible 't plod"it), to II 'ach t6 " 1�7 S" U.% es'lin'ridale iaf a°hAlMt'l ff Ai Me &t p spell
sf le C # "Pe C7 nerly depth and lop isnith Con fit "fle Condition,
Channel flow area (ft) "first try" 1.56
:Merl 5. ('Acaalaze the hydraulic indins R., frorn cuaanuel veon7, nC (Figirre
Slaps in. Dete°rinme roughness coetlkmit rer,
SttueOuralLianing',x we"ll�lrble805lipage 5056,
Grass-;. Lining:
a.. Deverm mme retact.lance c lass 161 i egeuiancros h Ca9,'p liIble 8 05c:, Page
d' 0, .lf le, i neo sn .many wequizernew ai..se xeiazd�ance formes l° ,
nlomed conalituton (genw Aiy C w M, To rlereanilne chianuiel ca ar�"y,
evsas as lea.oa ow, iek id-1x'tce agasq„ hgvjle^
9a. Derel nlriie rr fiom Figure 8 05c, page 8 05.7.
Stcq 7, C;`alrtuane the aonA dimiurV aelorivv V wing Gr mlll lr,, a erinasfarcn
fl°u@ar.u:i,e l;. tl)ra, gay,- 'S'_Os 3;1i, nid c,aloAare rAlaune4 r, tapaclw (;k, tavnup The
c".ot sulkily 0."epnaticel
,Stfp,'n S. Check remAN agmna t pleik9msit'le velocd ey and i4'quired alemigna
KldgiJl4m'kry" d'C,Y dlk"t4"flinrae Af de,Lg JJ 0� A4 {,Y,"tlfli➢71'ge-
Step 9. If desqui i� n101 aecnept aiAe .alter channel ¢gaol&nenslons als appmlaoloaiale.
For nsrrguezoidA chaazsiel,w sass, al 1munes:aoss uswdlymade by ch angan5 rhe
B;aolRona—dilr.-
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
see tame oeiow Tor steps o-u...
N
5
�_
c
��
>
Y
0
0
w o
d E
_
A
m m
A mm
�.�
o
o
m
Trapezoidal U)
m�
x
o.
wa
�a
._
=Of >O>
Of co)
>
>
m oa
UU
oad
UU
Figure 8.05b
(ft)
(ft)
(ft)
(ft)
(ft)
(ft)
(ft/s)
(cfs)
ro
LL
ro
LL
ro
LL
ro
LL
ro
LL
ro
LL
ro ro
LL LL
m
u m �
U) m o
U t-ro
� m Tw m
F W LL
ro
LL
ro
LL
U
w
w
U
O
U
w
w
U
O
SWALE 1 (TRIAL) 3
2.0
1
8
5
8.32
0.60 3.00
D 0.04
4.59
of
23.0
BE
w
U
U)0
O
> in
3
0.5
0.5
3.5
1
3.66
0.27 1.37
D 0.042
2.59
of o
2.6
Owf p
0
0
0
0
0.00
#DIV/01 #DIV/01
#DIV/01
tt
#####
tt
Step 10, Fna pr;a.,-1duxr6 a:kwumrnwrvkm grace the glparrapr,TMM cfinmsanel dmte24',a'➢w,
➢5a4 d: bt: n ^,ekued ffcec low retrmruff'.eexce rt:uwmrfx2ivvr., nepeamt .tqt 6 wdwa'cugh 9
am �wup m. knffpknet wetxs, &,nce Am cotrt, cu ch np to VaH gm,, A.jju,¢ e jmraay of
The �. hairmex b 'At in? deprrdo nu h je sae + nnnrtown Gaeafwuaa.
NOTE t df a0rt•mppt a rdoe tg us peaev than (G fR mec, rm to- nawp miry Grrniup;,
uny be eecfnnree to ac,utuhze a'&ue clnnu.vcae9 wild cel3etanonn m e.,¢merlau$ued
The Guuvermay tse decma*u*d fim peak fftlo . Erwxeen (he L yeananlaxrwn
dP m cffamruurN aegwrew as aep7(i,(, mm) trilme, the de%quer �,bcw1B mtrmhrze
HaeM sfue per„ w the ckuamwuue1 to ,eGear, ffie 1aulez that pnzn+., dt., Immeation
i.J po-oteesaabhslmieut ofr epe¢,erdan Fog the ake,,opsm of 4Cm7Pupo.mn1
lmcu 6, we "a-twve ,force Paocedule.
N'OI 2 TJenw}, 7(ruflcGem---h.ampet.wae:uG f::'kv aaxe7m sawn,A L`%iv en an caxm n* mGxe exe£V
of tdumc %ec9uon ulam be used to dt,wpwt gran,,, hued a 1rnnanek, rviRh paralCmr,Gdc
n ru=,u-rer tcaW,.
N
•-
C
°n
a
an
Y
°n
d
'.
rr
>
0
0
cou
_
m
m
0
w
w
° o
Trapezoidal --Grass Lined
p
ma
U ¢
�a
x�
�>
>�>
KU
�U
>
>
UU
JUU
Figure 8.05b
(ft/ft)
(ft)
(ft)
(ft)
(ft')
(ft)
(ft)
(ft/s)
(ft/s)
(cfs)
ro
LL
ro
LL
ro
LL
ro
LL
ro
LL
ro
LL
ro
LL
ro
LL
� m�
> F of
Tw of
LL
ro
LL
ro
LL
U
U
w
w
w
w
U
U
O
O
SWALE 1 DESIGN
3
2.0
1.5
11
9.75
11.49
0.85
1.9
1.61
B
0.12
1.9
of
a
19
of
a
w Z
w
U O
U
> io
O
SWALE 2 DESIGN- ITERATION 2
3
1.0
1.2
8.2
5.52
8.59
0.64
1.8
1.16
B
0.11
1.7
Owf p
9
Of o
U)0
U)0
> u)
> u)
3
1.0
1
7
4
7.32
0.55
1.3
0.71
B
0.12
1.4
Of cl
6
Of p
z
z
Y tq, dtf::G-I. ou ttem foi o m 4ymgr c.p.mnmy aumk mamk AiGm $ff 6smr7uug,e
tepomem exeexl mld¢rov,yt+ke neN n:ir ce C'm the zecevn u4? ^,IxeatU !mat udO
p>e Mecetmr n gown ctmer "'M kae vequi,ed i,Tah)e 9.t1 ,d G nprr 9.k'P'ti 9y.
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
User Input Data
Calculated Value
Reference Data
Designed By: nnNON Date: 2�21/1%L�'2
Checked By: JSb Date:
Company: smi th
Project Name: Yadkin WTP
Project No.: 231695
Site Location (City/Town) Union County
Chan nel/Waterwa Id. SWALE 2
Step i [Nneatutty die s quaed 1lra.er cop"(Iv. a 'b" o'fu,rtaliarw pre,eA m a'AT
rent Cara tho «;de<rrrfa ,Crfnn G�J,/ „r fseT'.03).
Design storm 10-yr
Required Flow, Q (cfs) 8
Step 2Dopinnme tfue 4ope an(I +Aecl r 13"umel tpomelov aal Ittrtt1t,
Slope (ftfft) 0.023 Average
Channel geometry: V, Parabolic,
or Trapezoidal V
Channel lining Tall Fescue
:Step 3. C)M""aatxne pine pxeuaru vitae v,tonty f6r the hnum erpeeted Dr t1ae
de,tae,i %eloory f pr.aied Owe Table fl 05, hr r+, S (J", 4)
Permissible velocity (fUs) 5 Table 8.05a
S"Rpx 4.;111140, mau sWOI^:6;4YaoYlm df(hadn(I n iz� dmde I h' raPadata;,,dQ by tht
gr+turap�.�,altr,ar+Imoa, nm,,„Ir,r to5ltry r,tuualeofelau;n"It'kmmea, "L'h"a
"eteu'; a arr 011I j, aaapd.tt, ar,rt 9c do'IdTh d,r 9rd IIrO e NI dIdieaas.
Channel flow area (ft) "first try" 1.60
4te•pa 5. C Wuodade qrt hyadtaullc mdmx R Anl r!u,a melt gemnwuy W4paaer
S03b. p�alue Ft :, ),
'l.rrrpa ri. 'L'lcuraan,ur. u,ta,uEarae ,ti vc,rfhicru°uxt x..
Sraat1WA-1w1 pvnhrga...-, TxV,agr dp'_05b iuur.,ur 'S. W° e,
GI ms Lining;
a Chete4aa ,,, uc4 strndaaut r .lmuz fire-,ged.,Gutiisb 9ia.nu'7 tulcLr fi pj"n ixupa•.
b 0, 8 T. uaueet t bdity aecptxrxrnurr,a user urtaattanr, �'ura neMN
-c,r 'rad rexuadmmi (g-erall^r ( na D). Ta ukg—rune a haatur9 s. uparauvyi
xxar mr d xsv ow rea u d-en e w'Lieis b,ghwa'.
f, E)e( ennuare n from ff up oar 8uyr3,, page S.05,i,
"are pa 7. 4"alodal, rht� o,W r.hanncl rek, Oy. V. u-ng M-aai,np + rrgux vYaaa�n
4,5 aptata. d.e.; a pp 8 O� 3), -d-1,.ulmti eh --I 0 v.tv.g The
c:¢e unuu e.,,, ragaa.ruw .
Srepa & C'herha —.,d% aig.,,,t I... vearwuka , *,'rI—ty aA uurqu, d w4r°, gn
+r.ulrau°uy an d'te uuutan, of d'a Wnl av ma.'xrrdx biter_
Mter, 9 i'f ede�gln A i9e';ur 'Iccel'W le,. Ott +"harm+ f hfwr I$Kwna i' ip}pvp'eiytja, e
For ve ep>waeya¢daul u-Irnwxtaed,s, ttu�..m:lllixa:;�xxracvt r, itq "At, erx d" tw ah"now,, thug
tr<:,man. avielth.
Sol, W, peril do: e,,— alr+• e puuuratard uJrnwrav,,bex
ix are Yr— xmlernr.0 f6 k"', .wtwarieuurw eaamimcaxat. ernem e rlue„,Fln a'
nreu,p fluff taea seaeud.-0ua„ ca;ers:�pvsua4aauw*, Me rc;Apea ., Addjuta r
uh, lx"..vanO hro gx� nay, 4r,,-p n sutra W, evr,f rx ,uAz p"".t.
NOTE a If d—rm -I c tV . p,r�emana efrnax 0 ft -, m rcareuapnsrrx 0 le-'r
n,e,y 1w venpnn-.d to nfoh,xd— thrT,weuurced ,aaate4 eep.eo.rtanwv Vs e tmlalrah. d.
The k—pn x^, hn. w .a b7 a9a.gaxenr i far pemp A ireara, tAu. _, ,r—
If m d nm. t rtlxaiaena t }ne,nu, I a., edme d .la ,dd rrax9yaxt
'l-'x ctzresr; au the enVveara r.r crdeuv th, In., thuT dn.eu6de^ac pauoew:anvaaa
-a f v,wpefnav-itu rm alna Y—gn e+4'ra nrp u'nrti=
I:aura �,. adzr odmw ft,�m famx } t nw �Tv„ate.
NOTE daaarar A, nnd M, rr -- m fl.: eaad
'A tW, "r'ou ruaruy b, ue d or. 4esgav oh 1 ,wr.w' x fic
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
0 0 O Q w m a a m u uo a a uv
V-Shaped ed a T a m @ v o
p n - m 3m so >"o > o U �0 >" >" 00 UUU
Fiaure 8.05b (ft) (ft) (ft2) (ft) (ft) (ft/s) (cfs)
0
w
w
w
w
w
U
O
U
O
SWALE 2 (TRIAL) 3 1.2 7.2
4.32
7.59
0.57
2.85
D 0.042 3.70 n�.
16.0
w
w
U
wZ
0
w
3 0.5 3.0
0.75
3.16
0.24
1.19
D 0.042 2.06 a o
1.5
wZ
d O
w
w
U
3 2 12.0
12.00
12.65
0.95
4.74
D 0.041 5.32 0
63.9 a o
0.0
0.00
0.00
0.00
0.00
#####
######
aie .t u:
N _
a
K
o
A ¢
w E
u _
0
> _ `� _ _
VShaped--Grass Lined 0 2 -
6 0
3 a
=�
>> 2 > > 0 0 u
Fiaure 8.05b (ft/ft) (ft) (ft)
(ft2)
(ft)
(ft)
(ft/s) (ft/s) (cfs)
w Z
w
w
0 (9
U
> 0
O
5.67
1.5
17.0
12.76
17.27
0.74
2.5
1.85
B
0.09
2.1
� 0
27
a o
w Z
w
w
d O
U
>
W�
O
5.67
1.5
17.0
12.76
17.27
0.74
2.3
1.70
B
0.091
2.0
0
26
a 0
w Z
w
w
d O
U
>
W�
O
5.67
2.5
28.4
35.44
28.79
1.23
2.2
2.71
B
0.092
2.8
0
99
a p
(1-k uulk., p -p-ly -Il ;t.bs bly If +b,.1ua,p
Ong
p wri k emi d f,p rIaa varma e 9 ;txuaauuau, arza .11fltt1
q+nu tr;tuu+sa nrar.r.turw uWiU 1, a,q aarrd A O d p;.pe 8 (P',.F:k.
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
User Input Data
Calculated Value
Reference Data
D—
Designed By: ibi Date: 2/11/2021
Checked By: )s Date:2/17/2021
I�r
Company: CDM strith
Project Name: Yadkin WTP
Project No.: 231695
Site Location (City/Town) Union County
Channel/Waterway Id. SWALE 3
Step 1, Delrennine die requAred f101% �,apaclr-v 0 by e�,tllnannlg pelk Iiii1off
rate tor the deAml 'uxill (Appendn' 8.03)
Design storm 1 0-yr
Required Flow, Q (cfs) 29
S(ep 2. Deteiinuie far i&Vie mid,uelect chaiinel poinetiv mid hiling
Slope (ft/ft) 0.028 Average
Channel geometry: V, Parabolic, or
Trapezoidal Trapezoidal
Channel lining Tall Fescue
Sdep 3, Dverwme tile JXiruJujMJIl,.r verlaxm ffti tho 1111"ig m'Aecled ol, Ole
de,,iied veAocil-,v if paved (see'Dible (30.5 1, pa?e 8 05 4"1
Permissible velocity (ft/s) 5 Table 8.05a
Step 4. Nlake an antiM etrmweofaALniliA ffit, Jre<JLJu ed 0 by the
ieacllai �firy try" o.Ainixilo ofchannel flu, wan'ei. Then
"MecT as WIIMRTIy. dr�J)Ih Mid t0l) Whith Vt Itt MTO (Oildlhmn
Channel flow area (ft2) "first try" 5.80
Step 5- (',11culite the R ffoan, rIvanuirl geometly (Figure
8 05b, page 6 05, 5)
Step 6. Deietrnkne toughueia coefficient Pt
Stiorwrill (Anings- w, 'rable 8 0%, page 8 05 6
Grays 1-inung:
a. Determine fetardance clax4 frog vegetation from'rable 8.0c. page
9,05 S To meet stabdiry use fewdance fot newly
mowed cotidinon (geneiifly C' cm D) To deteimme (Ahianiel ti,ipac3rv,
nose at least one relaTclance rlass: IlIghel,
b Fie ter n frolal FIgt1re S05K.-, page 8 05 7
Step 7, CatcnWe die actixa! p�:Mnnel velocity V mwg Maxutjllg',. equnuon
(Figme 8 105,i pp 8 0,5 3) and valculme cluximet c,,Apm Ily 0 wmg the
C0111multy equauoll
Stop & Check results agamit perinwabIe %elacav and required de,titn
capacity to deGefnnnc- tf de�ign zv accepiabk
Stop 9, IC de,;uP-,n n not ar :eptable, alt" channel dnnensiow,as ippropnwe
For trapezoidA channels dins adiu5rment as usually ma4e by changing tile
botioni width
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
see tame Deiow ror sreps o-a...
a � Y
N F o Q_
o E Q a m m a a o m
o w Y E E 3 m w .E w m m
Trapezoidal m ° o
�LL =O >Of> Of �C) > > C) C)
Figure 8.05b (ft) (ft) (ft) (ft) (ft) (ft) (ft/s) (cfs)
m
� m s
� o
U F ro
d
d
W
W
W
W
U
U
O
O
SWALE 3 (TRIAL) 3 2.0 1.15 8.9
6.2675
9.27
0.68 3.38 D
0.04 4.80
a
30.1
a
0
0
0
0
0.00
#DIV/01 #DIV/01
#DIV/01
Q
#9#9#9
Q
0
0
0
0
0.00
#DIV/01 #DIV/01
#DIV/01
Q
#9#9#9
Q
0
0
0
0
0.00
#DIV/01 #DIV/01
#DIV/01
Q'
######
Q'
Step 10, Fat gtma ,, hnend clumm nek, once tune ;ap1mopinate. channel a latnneno,du;anrm
have beet ;eYea[ad for prava n'#tmdinnc,e candauauauv aepanav 6 r@t o6 -gh 8
an,ucg a lui ghee ifA axrdaanae cVav, c=e,,.parntd wp to nali guawu. AdIutA uajjncat¢ of
the u.H muieV 1w v anydnag cieptb where ute con&fions peen o
1w(;1'TE I I&'dt agm ^,elc,cay° a r_,ncmex rltaa ran fft`ttrec a ternpttranat3 lianaw.8
an ay be terpuire�ed t,a teamlmn9ue the chmutmO a mip veg,epmuo n aw e5mdotln^nd eda
The tempttcn ar)v h ueu nnaa,',, be Qffk querd fc" peak ffcmi o"I tt! a :T-y e al rcrr:u t
If n channel mquuines a tetugpor ry° linndng the detdpw, mmuld analyzeu.
'01rar an 1ho a:&nau"el to 'elect rthc Intel than p% %rdwa pan arecftAt,
and prommee emabEiJumew of vegemnan. For the roesqu of tewupvrvrafy
hawaa^;, use inaauiare force pttnwm,ectuie
NOTE? Deuqu TablesVege+laud C,Ihannueh, .and Dug ermona at the end
of t1m, sectannt. may be lived to n1e ngtn 8n'�i "med than neh evrau4a p m ttlbo ac
N
-a
-
o
Q_
O
..
o
Ic
C
w e
-o.�
>
U
U
o
m
a
m
a
m
m
m
>
I.
I.
Trapezoidal --Grass Lined
-o
U)
o
m s
o
o B
m
LL=
.�
>>
�
of>
m
of u
o
2
m
>
m
>
s m
U
s m
U
Figure 8.05b
(ft/ft)
(ft)
(ft)
(ft)
(ft')
(ft)
(ft)
(ft/s)
(ft/s)
(cfs)
m
s�mo
o;
o;
Ico0
U
U
W
W
W
U
W
U
O
O
SWALE 3 DESIGN
3
2.0
1.7
12.2
12.07
12.75
0.95
3.7
3.50
B
0.065
3.7
a
45
a
0
0
w
w
w
w
U
U
O
O
SWALE 3 DESIGN -ITERATION 2
3
1.5
2
13.5
15
14.15
1.06
2.4
2.54
B
0.11
2.4
of
36
a
wz
wz
cn (D
cn (D
3
1.0
1
7
4
7.32
0.55
1.3
0.71
B
0.12
1.4
Louf Lou6
LU Ir Wp
wz
wz
cn (D
cn (D
> in
> in
3
1.0
1
7
4
7.32
0.55
1.2
0.66
B
0.13
1.3
Louf Lou5
LU Ir Wp
St+P 9. i,. ( Pcecff a'Udeu 8xr aM%¢tuff capaacAy andmtabshrr. fit' Sata•lo:uge
m, wr0.¢a.nEmn e.e.n1 111OWalle veh.,Cn6rMa ton the aec,L.iVaIg *[nruann,an onslel
{7a,.u..ait an avaaacutwe tffl be icquued ("$oWe'8 05d page 8 (1,5_9)
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
User Input Data
Calculated Value
Reference Data
Designed By: Date: 2/11/2021
Checked By: Mr Date: 211712021
Company: cum smi th
Project Name: Yadkin WTP
Project No.: 231695
Site Location (City/Town) Union County
Channel/Waterway Id. SWALE 4
Step 1, Detellailie flies ueqwled Now capxn° s° Q b� peak ruuoff
rate for the stesipm "101111 iApp,e)tdpc 8,03)
Design storm 1 0-yr
Required Flow, Q (cfs) 10.2 (includes flowfrom upstream swale 2)
Step 2. Determine the slope and select chamiel geonietry and Iming
Slope (ft/ft) 0.011
Channel geometry: V, Parabolic, or
Trapezoidal Trapezoidal
Channel lining Tall Fescue
Step 3. Deteroono Oe fiernw,sabh� sA(xvv fciiffie hwmw sedecTeO otbor
Permissible velocity (ft/s) 4.5 Table 8.05a
Step4.
VdOeO), ro aeaell a"flip A IVV' 05111nateofehalkukel fio%, mea Tlic-n
selcoa pennieft s' ck-pih and tu,,a,x Oth flan fit �,ile cotidlttcm'i
Channel flow area (ft) "first try" 2.27
Step 5. Calculme the hv&iulic nachkm R fiom channel geometry (FAgl Ke
8 0 5 1 u p i: g e 8 0:5 5 )
Stop 6, Deteirnme, Youg4nes,s coefficieut n.
Stuwhir it Lininits—seeTractile 8 (15bpage 8.0.5 6.
Grass, Lining:
a ietitdaxice clas,, iLi, .Tetaiion fi(�,w, Table 8 05c . page
8 05 8 To meet sv�bihr, requirement use, ieratdancefcu aewly
mowed condinomi (genefallv C oD) TO deu!tImne chalunelcapacarv,
usem least wie ietmdimice class hNgher
h Deteiinwe n fimut Figme 9,05c page 9 05, 7
Stop 7, Cilenhoe the acainll channell velocity. V, RISTng Maannillg « oqwuICMA
(Fipure 8 051, fig 8 05 3). and cask ulme channel cnImcity, 0, ti=5 tho
contuntuty equation
Step 8i"heck tesuhs 'igalwt peyams,ssble ve9Qcit7and repined de�Igul
capacity to rclerarrasiisie if de,,ign v, accepcible,
Step 9. Tf design iar TIM: lccelwfl4e, Aber channel eFivmwnx Noa., a,; Ipproptlaie
For Gray ezot&- dicinfiels, flus .idjuonient is usuAly wnwle by cluanging the
b,miom %vchh
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
see tame aeloW Tor steps 5-a...
(6
Y
N
L
F
-
o
a
"
a°
15
-
U aY U
u
_Ul
>
O
E
0
N Q
a N
N (6U
N
k
O (6
a s 6I
N
N
°
0
0
(6 Q
Q N
Trapezoidal
n
m
° °
>j d-
a ° ° ° >
=aY >aY>
°
aYU
°
2U
°
>
°
>
UO
OO
Figure 8.05b
(ft)
(ft)
(ft)
(ft)
(ft)
(ft)
Mal
(cfs)
m
� s
4 N
O
F �
LLI
LLI
LLI
LLI
LLI
LLI
LLI
_
> LLI
LLI
LLI
w
w
w
O
w
O
O
O
3
1.5
1
7.5
4.5
7.82
0.58 2.59
D
0.043
2.51
a o
11.3
a 0
w
w
w
w
O
O
O
O
2
2.0
2
10
12
10.94
1.10 4.93
D
0.042
3.96
a o
47.5
a 0
0
0
0
0
0.00
#DIV/01 #DIV/01
#DIV/01
Q
####t#
0
0
0
0
0.00
#DIV/01 #DIV/01
#DIV/01
O
#####
O
Sat,pa 10. Tug grass -lined chaa¢tnel, we t1W 114rn0pfuare a:Eimuiel dsin"m"vuus
hme b,easu ^.e][ected ,rare low feumdamace coudR hcfns' �epe,vr 6 rirrn,esrgh 8:':
ta.nng a faighel vecildaance ch"',, c.cvaa evp oxldd g V.f tall p,ms Aclikma capaciry of
the a 2a. miel Lac a-atying. depth whete %0e condifto ^, grrrxv O
Pw40I:':E l If des gvi v0ocita v, peawn Than 2 0 Ptt to a temporary lining
aauay 1,e reclaua ed to mabihzr tlrre charmep until v°e,Set.ata,aw as e^nrabh!,hed
The 1eatrrj3crm7 Imem may be designed foi pat, ak flov,, ticerm the 2-M eat Aco in
If a channel n'e¢pua w, a r,mlijr m mold liwue*. the ck.,wugtwea spiomald snzrallyze
shear ckre,:ea in tim.. clararaxinet tar select the ]raeq these pmc:nac, p otectwu
and Incano , e�,9abpna,4ww ew of "recerrarlonr For the desIrn ccti teasupolaty
lawrrr., u&e tiactiv-e fo; cee picxedute
itii0'TF 2 C7e„vSw Iakapea. . i eratmd P,p;ivnary pre and DnermLna® at flax mead
cf'thn secton mat proe tnsed to dewen ptavh ned +ahmnteh wah pvaaabaahc
ca c,Mssreea-tir.:aM
(6
Y
N
L
-
o
a
Y
t
J
-
U aY
O
U
U
Im
N "'
>
U
O
0
N Q
a N
N
N
(6U
E
X
0 0
�,
a s
6I Y6
Y6 N
N
0
0
(6 Q (6 Q N
Trapezoidal --Grass Lined
m s
° °
�a
=aY
N
�>
° °
>aY>
°
aY0
° °
�O
°
>
°
>
UO UUU
Figure 8.05b
(ft/ft)
s
(ft)
s
(ft)
s
(ft)
s
(ft)
s
(ft)
s
(ft)
s
(ft/s)
U
a
a U
Mal
m
(cfs)
m
N
O
N
O
N
O
N
O
N
O
N
O
N
O
N
O
O
N
O N
N O
N
O
N
O
LL
LL
LL
LL
LL
LL
LL
LL
N 6 O
>
N.-
LL
LL
LL
w
w
w
w
0
O
SWALE 4 DESIGN
2
2.0
2
10
12
10.94
1.10
1.1
1.21
B
0.15
1.1
a 0
13 a p
w Z
w Z
to (3
to (3
> to
> to
SWALE 4 DESIGN- ITERATION 2
3
1.0
1.2
8.2
5.52
8.59
0.64
1.8
1.16
B
0.11
1.1
w ww
w ww
6 010
wZ
wZ
to c�
to c�
> to
> to
3
1.0
1
7
4
7.32
0.55
1.3
0.71
B
0.12
0.9
It 0
4 010
w Z
w Z
to (3
to (3
> in
> in
3
1.0
1
7
4
7.32
0.55
1.2
0.66
B
0.13
0.8
f ww
3 w wp
�+cepe lf. Check owlew for care,mg capanty and +ataaimin6yr. If d ciamgue
vepccftrer, exceed 111oarable v°elocines for flit, recede°umrp vrreaarrra. eam outlet
pow,non °.tttuctnne:e uvcpf Ive aercpavaaed rl'a le S 05d, page S 05..9).
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
This structure is intended for less than 3 years of use. Structures intended
for more than 3 years of use should be desinged as permanent structures.
User Input Data
Calculated Value
Reference Data
Designed By: JICI, bDate: 2/11/2021
Checked By: Date: 211712021
Company: smith
Project Name: Yadkin WTP
Project No.: 231695
Site Location (City/Town) Union County
Sediment Basin Id. 101
Total Drainage Area (acres) 6.81 Sum of drainage areas A, B, D, E,
& IF
Step 1. Detername peak flw. Q,,I for the basin dralmagemea (.4pImnrhx 8,03)
Q 10 (cfs)
32.5
Sum of all stormwater flows from
swales (post construction)
spillway or top of the &-im
Minimum pool elevation (ft) 503
Maximum pool elevation (ft) 505
Step 3. Determine basiu i-churres,
Compute mummull volunre required (I S(W frVacre, diswrbed).
- Specify sedirnew clealrour leviel to be marked on riser (one-half the design
volume referenced to the top of the riser) and sedrrilew storage area to be
c,leared after the dam is buiV
Disturbed acreage (ac) 13.77
Min Volume (ft) 24784
Sediment cleanout elevation (ft) 505
Sediment Storage Area 6830
Step 4. Determine area and shape of basili�
• Check lexigqh/width ratio (diould be 2-1 to 6 1)
• Compute the basin surface airea at principal Spillway. eh-vatioll
• Chck the iatio of basin surface area to peak inflow rate (Should be greater
thaii or equal to 435 ft'cfs), Employ chyersicnis ix"ah additicnial traps and
basiiis to reduce area drained
Deternime barrel capacity required foi site condo tioas i1111mmurn capacay feats OP
is the 2-'year pe411111off, 02
Based on pond layout currently
shown in dwgs, we will maintain at
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Length/width ratio
Is length/width ratio between 2-6?
Basin surface area @ principal spillway (ft)
Ratio: basin surface area/Qlo
Is ratio >= 435 ft2/CfS?
Steyr '5. Detefirime the principal spillway diwlkarge capacity,
2.2 least 2:1 ratio in length/width
YES, PROCEED
17860 Assuming spillway standpipe top
550 elevation is 505'
YES
- The combined capacities, of the prurcipal arid ea ergeticy spillways must be
at least the I 0-year peak flow for the emire walt.-rshed of the basin,
- The principal spillway is analYy zed fbr fluee, possible Itraitaig flo%%r t),J)es.
weir floav' Olifice flow, aixi Pipe flONA, 'Ille, princip'll %)d11v'-"1y di'Wharge
capacity is the sniallest of ffiese three flow raies. Discharges duough as
skiirmier should be disregaided dining this cornputwion Wett. olifice and
pipe flo%v imy be deterritiried by the following equatrons,
1. Weir ]Flow: Q=CLFV�`
a%here:
Q = dischaige in cubic feet per secorid (cf's)
C = weir coefficient. ixse:3. I for corrugated metal pipe risers.
L cumunference of [tie riser itifeet
H head above mer crest in feet
Weir coefficient, C 3.1
Riser circumference, L (ft) 12.6 Riser Diameter, ft=
Head above riser crest, H (ft) 1
QW (cfs) 38.96
1 2 Orifice Flow0 = CA (2gfl)," I
where
0 = disciraige in cubic feel per secon(cfi)
C = orifice coeffic-ietit, use C = O6 for cornigated metal pipe, ftsers
A = crosssectioiral area of the lisel pipe in Squat e feet
9 := acceleration dire to p avity 32 2 ftisletl'
F1 = fread Axwe riser crest m feet
Ccmp=3.1
Orifice coefficient, Co 0.6 Ccmp=0.6
Riser cross -sectional area, A (ft2) 12.6
Accleration due to gravity, g (ft/s2) 32.2
Head above riser crest, H (ft) 1
Discharge, Q0 (cfs) 60.51
4
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
3 Pipe Flo0 = a _
w� + K,
where:
Q discharge in cubic feet per second
a cross sectiorial area of the birreI in square feet
acceletation due to gav p I ty, 32.2 fvsec-'
h head above the cewelline of the outlet mid of the barrel
K,,,, = cesefficient of ntmor losses, can be assiumed to be 10 for
most principal spillway S'Vsteriis
L = barrel length in feet
Ks = pipe fiictiori, coefficient: F E7.]
5087rj2"geeTable, 8,07c for K, valkites fm
d j4Y3 Collurron size ofP11)r)
ri = Mmiriiiig's coefficteiii of wirgluress, use 11 = 0,025 ftir
cornigated metal pipe
0 0 15 foi i einforced concrete pipe
arside (haztreter of'the bari el in inches
seh-ct riser aild btulvl dirnensions so that the riser has a cross-sectiorvil atesk
at least 1 5 times that of the barrel Spillway Irydranlics are irnprol,-ed by
nisixittrizing weir flow and minitni7ing orifice flow. see Table 8 07b for
recommended riserl.)ariel proportions
Barrel diameter (ft) 1
Barrel cross -sectional area, a (ft2) 0.8
Accleration due to gravity, g (ft/s2) 32.2
Assuming barrel outlet (at
discharge) is at an elevation of 502',
Head above outlet end of barrel, h (ft) 3
and pond max WSE is 505'
Minor loss coefficieint, Km 1.0
Km=1.0 (typical)
Barrel length, L (ft) 94
Mannings coeffienct of roughness, n 0.025
ncmp=0.025
Inside diameter of barrel, di (in) 12
nRCP=0-01 5
Pipe friction coefficient, KP 0.1157
0.0341 Table 8.07a
Discharge, Qo (cfs) 3.04
4.78
RISER
? eIed ttaiq riser and bartel Ue the v,,eiv, cnifice arid pipe flow
ecitations to deteimmeafthe'21 -5,eai peak dmhaf?e is paved wohow actic`almly
the spiftaj, Deter nine rv,,ft Aze from Figure 8 07b, Cheep the
head and snige zequuetuearts If the design ,mge os too high, cho,,ose Iraper
dmiensions acid recalculate. A a nimaymai, set the ele,.-attan of the tamer at ilre Table 8.07b
same (.Aevaucm M 1he topofthe sediment pool, A riser height 2 to 5 tinses the
baireldi,,imetera,treca=iiwitcled.
Select a dewateraq dew ice If a Awn wel as u"ed, tefin to the friallufactsmers
&wAteiiag data, at Table 6 64 1)
Step 6. De"Ipu almseep colhn
Ervane ttiat annseep ccUars ijre no closet than, 2 ft frDm i ppe Joint Coital
11,111'A project at Veast t 5 ft from the pipe Indicate vvatevighl murections
S,tep 7. Dewign antiffDration block
Detelawke the wean of vvater 4h,placed by the eflipty viset, Rnd deaAp at
brock IV011 bkloyant weight 1.1 fiarriva the a�weqht ofwater daspInced
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Weight of water displaced by the empty riser
Buoyant weight
Step, S, Design outlet
T)eoevnitte cb,"Chaigp vehichy fioul the Lmalrel Dpsign 011aet pirmection to
arsine slible cos dftions Riprap plac*asent is ustially necessan, (AppvOix
8,06)
Discharge velocity, V (ft/s)
See Appendix 8.06 for riprap sizing, if necessary
Determine the requi.ued capaciry foi the entei gency spifl ay as
From Table a.o�o or Table= select the width Said depth of the otitlet,
deptndmg on sod coudatons In peioei4L the widei bottom widths and
10%vea sIopes are plefened to no.ififfnze exit ve.lacitie,, it supexcinwal
fiwv
An acceptable alteraitive v, the uw of the in eir ejuatuarl
Q = CLH"
la bere this op%ou v,,, ined, the inaninuan valfie of Qiouki be 18 L
v, the toucan width of the .ajpfllv;ay at the crest, Ind H vthe depth of
flow Am the r.,,pfllway cmo in feet- Now N'Lluritug''I chaluiel equauQu
,AxeWd not be asset to size the spillway creA, Hnwevei, it tbo%fld tv used
to demga the outlet channel below the cpdbxvv crest
The total of the eaneflgencr wild Principle spillway capaclije% luw'-f equal
or exce'ed the toquited 10yLai peak cinchaige
• Set the eleyanon of the crest of the einelgeitcy s'JIM "vay a alivannMI of I
fipcx above the crest offhe nse%,
OPTION 1
Q10
Qp
Emergency spillway capacity, Qe (CfS)
Qp + Qe
Does (Qp + Qe) equal or exceed Q1 0?
1568
1725
3.87 6.09
Table 8.07c
Table 8.07d
32.5
ORMOMMERM
29
32.5
YES, PROCEED
Step 10. Spilt" ay al)prolch wman
Adjust the spilliway aligument so that the coats-ol section kind ontlet section
are stlaight The eatiftfice loidthshould be 1 5 tifnes flat width ofthe contfol
section W011 I sawoth tiansmouto the width of the conTral Action APIM-MCh
dtmnneshould slope tourard the rcen-ozi no les,, than 2qo
OPTION 2
Weir
coefficient, C
Bottom width of
spillway crest, L
(ft)
Depth of flow
above spillway
crest, H (ft)
Emergency
spillway
capacity, Qe
(cfs)
2.8
15
1
42
45.04
YES,
PROCEED
DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84
Width of control section (ft) 15
Width of entrance (ft) 22.5
Slope of approach channel (%) 2
Is width of the entrance section 1.5xcontrol section
width? YES, PROCEED
Is approach channel >/= 2%? YES, PROCEED
Step IL
Locate the contiol seclion in the spfflway neat wheie it inteisects the
extensiati of the cenrethue of the dam.
Keqi i level wea to extendal least 20 fl upstteim fiout die outlet erO of
the coiiaot s"ftom, to Pussire a arwght aligiunent
Sack, dotte,hould b,e 3 1.
Step 12.
spill1rav exit should ahen v"Ah the ea litiol section and have the "Mae,
bonom Wkfth and side sInlif".
Slope should be,,'wfflcwnT to inaintain culmictiucal fliew, but nuake, sme a
doeunot eveme elouve velocltles Sol, �Ite ccndislons (Stay 'Xithin +J'orje
ranFes ui ippropisate deugn tables )
Extend the exit channel asp Peals whet"e"the watet,
dainage
Stop 13. Size the entbanlrinent
Set the desgu elevanon ofthe top ofthe dam as mommmu of I ft Avove the
watei surface fct uhe vies How cri the nneigency ipfflwwy
Constructed hequbt should be 10""o yueatet than the desqui to altosv fever
seftkulent
Base tq3 width on the desqn heqlu.
Set wAe Aopes 25 6 in fitittet
Itshouldextendtoa
=AaWe, ught siod liyei (a mininnun of 2 ft deep)
Select botrznv saner the emerg.tency spillway cut will ptovtde n ultsI&Icani
unoiluit of fill
Step It Elosiou coWro
Lacme mid desq gn r1verstons to, piotect embatblinnent and spillway
(Practice5wndarriz 62(, Ttnnpoveva Diverslow)
Select sufface ractectical vneamnew to COM101 etos"bon
and 6 10, RiinporrxrSe eding; 6 14, Ain I rhing, and 6.15,
Rl)p ra),
Select Pnrrxwnarlcrcuen fil ealeireticy "PiDway to plovtde vrntectiou fiat
deugn ffo- velcerty and site ccudsnpua imfnap stone W'et' georexule
falnw way Lie tequaexl in eiodMe "011" ca Milen the r'pfflway is not m
uudistcalsed sod,,,
Step 14. Safety
- Coustiuct a fence and msuffl warntug sqiis as needed