Loading...
HomeMy WebLinkAboutSW3201202_Calcs_20210302DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Stormwater Calculations Yadkin Regional Water Supply Program Water Treatment Plant and Finished Water Infrastructure Project \\111111IWill CARO —Do bbb••...4. .�� �_� S s 0 ti9 BFOF OOA554BSEAL 032668 %0ti'••:�NGINt ' v /9 ANS.i� i 2/17/2021 Union County, North Carolina February 2021 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 User Input Data Calculated Value Reference Data Designed By: Mob Date: 2/11/2021 11 r- 1 Checked By: �b Date: 211712021 Company: CDM smith Project Name: Yadkin WTP Project No.: 231695 Site Location (City/Town) Watershed Basin Id. 'The rational fonnula is: Union Countyl Swale 2 Area A, west of the chemical storage tanks where , Q Peak rate of runoff ill cubic feet per second (cfs) C nuloff'coefficient, an einpincil coefficient representuig the relationship between ranifall rate and rtuioff rate average rout ensityof nunfall inuiches/hour, for astormclurationequIal, to the tune of concientration, TC A - drainage area in acres Ille general lylocedttre for deterinuinig peak discharge using the, rational formula 1,, Presented below and iflustrated M Sample Problem 8,03a. Step 1, Deternulle the ch-amage area in acres, Total Drainage Area 1.82 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Stop 2. Determne the ninoff'coefficlent, ' fcn the type Of swil"Cover I'll the dralliage aiva (Table 8,,,03b) If the land use wid soil cover is homogenous over the diainage area. a C value can be detennuied directly firoin Table 8.03b If there pare multiple soil cover conditiotis, a, weighted average niust fie calculated, x the area assay be subdivided. Subarea A (acres) Subarea A Runoff Coefficient Subarea B (acres) Subarea B Runoff Coefficient Subarea C (acres) Subarea C Runoff Coefficient Subarea D (acres) Subarea D Runoff Coefficient Weighted Runoff Coefficient Step 3. Step 4. 2-year Rainfall Intensity, i (in/hr) 1 0-year Rainfall Intensity, i (in/hr) 0.10 roof I 0.85 Runoff Coefi 0.54 pavement 0.95 1.18 disturbed 0.6 0.717148948 0 6.11 Step 5. Determine peak disc.huge, 0 (cutmc fet Mr secon(t), by multiplying the Previously deterauned factors usilig the rational fonnula (Sample Problel"11 Q2 Flow (cfs) 0 Q10 Flow (cfs) 8.0 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step 3. Time of Concentration Overland flow Tc -- Kinematic Wave Theory Length of overland flow 21.8 feet Mannings "n" for surface 0.240 Manning's n Average watershed slope 0.098 ft./ft. Constant alpha 1.9 Constant m 1.67 Weighted Runoff Coefficient 0.717149 Shallow Conc Flow Tc Slope Length of Conc Flow V (unpaved) Channel/Pipe Flow Tc Slope Length of Channel/Pipe Flow 0.06 0.00 Assume no shallow conc flow 3.8 0.02 530 R 0.5 Calculated hydraulic profile for V n 0.15 shaped swale, for 1.7'water depth V 1.0 Tc Overland (min) 5 Tc Shallow Conc (min) 0.0 Tc Channel/Pipe (min) 9.2 Tc Total (min) 14.2 Trial time of duration that is =/< 14.2 mina (Tc) is 10 mins, corresponding rainfall intensity is 6.11 in/hr 1) Enter the rainfall intensity values for the corresponding times of duration in the table below. Rainfall intensity can be found from the following NWS hyperlink: httip://hdsc.nws.noaa.gov/hdsc/ipfds/orb/nc ipfds.html 2) Select the rainfall Intensity that corresponds to the trial time of duration that is equal to or less than the calculated time of concentration. DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 3) Copy the selected rainfall intensity into cell below. 2-year Rainfall Intensity, i (in/hr) 0-year Rainfall Intensity, i (in/hr) 6.11 Trail Time of Duration Rainfall Intensity Calculation of Time tr (min) ODF), i On/hr) of Concentration, tc (min) 5 7.64 2.57 10 6.11 2.82 15 5.16 3.01 30 3.74 3.43 60 ( 1 hour) 2.43 4.07 120 ( 2 hours) 1.47 4.98 180 ( 3 hours) 1.05 5.70 360 ( 6 hours) 0.634 6.97 720 (12 hours) 0.38 8.56 1440 (24 hours) 0.218 10.69 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step 3Deterinme the titue, of coacewraticm, TC, fiw!; the drainage area, The Kwentatic, Wwe Thecity definesi, 6111f of Concelaration m the "Travel tirne of'a wa,ve to move hom the distant poutt in the caticlunent to the oi,stlet (Bedient awl Hubet, 1992'), The foinjula for the time, of concentration ki� W"l ) T 11rin whele: T,:= ittme of concentration, in minutes, It consists of the total time for vveilauA sheet flow, L. = length, of over land flow plaue (feet)' le rainfall excess = 1ii , C/4 3,200 (43,200 cow,"etis inclies pier hour to feet pet second in the ai-erall equation). 1� ^rainfall intemity- C rational Tunoff coefficients" This equation contaills ftxo Sets of Parameters that need firi-thet defilution. asid, ni, For tuibuleat flow, 1bvhich, vthe nortual field ccrnditiou. ni = 5/3 = I A367 n where! S = slope, (ftift), n:= Manning't, roughtiess. Since rn Nxill always be 5� 1 3, this equation can, be u,iniplified to L 2f3 CO, (11 * C/43,20,0)2�3,)- TC 60 (minutes) Because, both tirrie of coitcentration arldrainfall internity exte uvnknowru..ariatiles in one equation, the solution must be found through aerations. T1,:ie use ofa spreadsheet is recominiended. An example as shown in'Table 9,03a, DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Table 8.03b: Value of Runoff Coefficient (C) for Rational Formula — — — — Land Use C Land Use C Busniess. Lawns - Downtown areas 070-0,95 Sandy sor, flat, 2% 0. 05-0, 10 Neighborbood areas, 0,50-070 Sandy sor, ave., 0A0-0.15 2-7% 0,15,-0,20 Residential: Sandy, sor, steep, 0. Ky-& 17 Single-famity areas 030-0.50 7 0% 0.18-0.22 MILIlti unirts, detached 0AO-0.60 Heavy sor, flat, 2% 0 2,5-0 35 Midti units, Attached 0,60-0,75 Heavy sor, ave., SUbUrban 025-0A0 2.7% IndUstrial, Heavy sor, steep, 7% 030 0,60 Light areas 0 50-0M 020-OM Heavy areas 0 60-0 910 Agi-lCUtural land: Parks, cemeteries 010-025 Bare packed soi:il 0-0,60 SmIxAll &0320-0,50 Paygrounds 020-0.35 Rough U20-0.40 Cultivated rows 0:10-0,25 Rarroad yard -areas 0,20-0,40 Heavy s6I no crop Heavy s,60 w4h 015-045, 1. in0irnproved areas 010-030 crop 0,015-0 25 Streets: Sandso y 0l no crop O�05-0,25 Asphalt 0,70-0.95 Saridy sofl with Coincrete 0,80-0 9,15 crop O. 0,25 Brilck 0 70-0,85 Pasture Heavy soiI 0,15,-0,45 Drives and walks 075-0,85 Swar so 0,06-0 25 Woodlands 0.015-0 26 Rool's 075-0.8,5 NOTE. The designer Must Use judgernent to sellect the appropriate C value within the range for the appropriate Ilandl use. (.3wenleiratly, larger areas wrth penneable sofls, flat slopes, and devise vegetation Shiould have lowest C values Smaller areas Wth slowly peroieaUe sorlls, steep slopes, and sparsevegetation should be assigined highlest C values. Source: merican Society of Civil Engineers Return to Main Worksheet Use 0.6 for newly graded areas- I DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 MR9 MA, Ent-MM User Input Data Calculated Value Reference Data Designed By: Checked By: Company: Project Name: Proiect No.: Site Location (City/Town) Watershed Basin Id. The ratmrial forl:11111a is:. WP.sNoibi Eb CDM smith Yadkin WTP 231695 Date: 2/11/2021 Date: 211712021 Union County SWALE 31Area B 0 = CIA whele- Q = peak rate of ruiroffm cubic feet per secoild (cfi) C = rurioff coefficietit, iai enipirical coefficient ieprestrinirg the relationship betweeii rainfiall rate, and rinioff rate average intensity of ralnfall 111.1 wchesJhour, for a storm duration ecittil to the 11me of coricentration, Tc; A (tratriage x—ea in acres The general furor me for detenruning peak disichar�ge using the rational fbirnuLa 1s preiented below, and Illustraled 11i Sarnple Problern 8.03a. Step I Detemurie the drairiage area m acres. Total Drainaqe Area 2.63 Step 2, Detienrune the ninoff ccwfficient, C., for the type of soil :over in the draunge irea (Table 9 03b) If the land use and soil coven is honiogenous over the drainage area, a C v,alue can be deterinineid ditectly frmn Table 8.03b. If there are multiple soil cover conditims, a weighted average triust be, calculated. o!r the arei inly be subdivided. DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Subarea A (acres) Subarea A Runoff Coefficient Subarea B (acres) Subarea B Runoff Coefficient Subarea C (acres) Subarea C Runoff Coefficient Subarea D (acres) Subarea D Runoff Coefficient Weighted Runoff Coefficient Step 3. Step 4. 2-year Rainfall Intensity, i (in/hr) 10-year Rainfall Intensity, i (in/hr) 0.40 roof I 0.85 Runoff Coeff 0.34 pavement 0.95 1 1.90 disturbed 0.6 1 0.682583603 0 6.11 Step etermllie peak discharge, 0 (ctibnc feet per secotict), by ntaftiply"I fig the pas viotisly determupied factors usaig the raticnial formula (Sainple Robleiri 8,03a), Q2 Flow (cfs) 0 Q10 Flow (cfs) 11.0 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step 3. Time of Concentration Overland flow Tc -- Kinematic Wave Theory Length of overland flow 100.0 feet Mannings "n" for surface 0.240 Manning's n Average watershed slope 0.03 ft./ft. Constant alpha 1.2 Constant m 1.67 Weighted Runoff Coefficient 0.682584 Shallow Conc Flow Tc Slope 0.03 Length of Conc Flow 300 V (unpaved) 3.0 Channel/Pipe Flow Tc Slope 0.028 Length of Channel/Pipe Flow 350 Calculated hydraulic profile for R 0.95 trapezoidal shaped swale at 1.7'water n 0.15 depth V 1.6 Tc Overland (min) 5 Tc Shallow Conc (min) 1.7 Tc Channel/Pipe (min) 3.6 Tc Total (min) 10.3 Trial time of duration that is =/< 10.3 mins (Tc) is 10 mins, corresponding rainfall intensity is 5.66 in/hr 1) Enter the rainfall intensity values for the corresponding times of duration in the table below. Rainfall intensity can be found from the following NWS hyperlink: http://hdsc.nws.noaa.gov/hdsc/pfds/orb/nc pfds.html 2) Select the rainfall Intensity that corresponds to the trial time of duration that is equal to or less than the calculated time of concentration. DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 3) Copy the selected rainfall intensity into cell below. 2-year Rainfall Intensity, i (in/hr) 0-year Rainfall Intensity, i (in/hr) 6.11 Trail Time of Duration Rainfall Intensity Calculation of Time tr (min) ODF), i (in/hr) of Concentration, tc (min) 5 7.64 8.98 10 6.11 9.82 15 5.16 10.50 30 3.74 11.95 60 ( 1 hour) 2.43 14.20 120 ( 2 hours) 1.47 17.36 180 ( 3 hours) 1.05 19.87 360 ( 6 hours) 0.634 24.31 720 (12 hours) 0.38 29.84 1440 (24 hours) 0.218 37.27 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step 3, Detennivre the fime of concentialion., T., for the charnage area. The Kmetnatic 'Nave Thec)ry defines time of concentration as the "travel time of,a wa,,,e to move froin the hydiaiflica)13, most divant poitit in the catchinetat to the outlet (ediesit atid Hubei, 1992)" The fomrula for the tijule of coatentration is, TC11 = (U(11 ,,, lvhere; "Tc= tane of concentraticni, in minviles It coivii,,As ofthe total tune for overland sheet flow 1. length of Ovellind flow, Plaixe (feet), le = tat ufall excess = 1p v C143,200 (43,20,0 ccaivtnts iachesper hatu, to feet pet second in the overall equatron), faillfall intensity, C rational maoff coeffic ients, This equatian contains two sets of pa,rametei'ti, that need fuOhet dpfiruaofl, a and ln'For mAndient flow, which, is the notmal fierld oondi6on U = 0.49 S1112), %vhere : S = dope r) = Manning's toughness, Since m will always be 5/1 Ous equation cmi be milplified tcw� Lo U 4 * C/43,21010)-7�)- Tc 60 (tllirlUtes) Becau.,iebofli time efcoacenttation time one equation, the solution must be found duough a(mations The use of an spreadsheet is recommended An emaraple is shmn in Table 9.03a DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Table 8.03b: Value of Runoff Coefficient (C) for Rational Formula Land Use C Land Use C Busmess: Lamm Downtown areas 0 70-0 95 Sandy soft, flat, 2% 0 05-0,10 Neighborhood areas 0 50-0 70 Sandy sofl, ave., 0,10-OA5 2-7% 0:15-020 ResOenbal: Sandy soiP,, steep, 0 "13-017 SirrgGe-family areas 0,30-0-50 7% 0,18-0,22 MWti un4s, detached 040-060 Heavy flat, 2% O.25-0,35 Muftj LjMs, Attached 0,60-075 Heavy srA, ave SUburban 0,25-0A0 2-70/6 Heavy soiV, steep, IndusbiJI- �' O30-0,60 Ught areas 050-080 7' 0, rj 0,20-0.50 Heavy areas 0, 60 -.0,'tO AgnCUIWraV land: Parks, cemeteries 0110-0,25 Bare paicked soil 0.30-0.60 Smooth 0,20-0,50 Faygrounds 020-035 ROLIghi 0,20-0,40 Cuffivated rows 0,110-0,25 RaOroad yard 'areas 0,200,40 Heavy soO no crop Heavy soiP with 0 '15-OA5 — UnJniproved areas 010-0,30 cr,:)p� 005-0,25 — Streets: Sandy soO no crop 0,05 O25 — AsphWt O70-0.95 Saindy soiO mth — Concrete 0 80-0 95 crop 0,10-025 Brick 030 &S5 Pasture He�avy soiP 0,15-0A Derives and walks 0,75085 Sandy soO 0 05-0.25 M:)odlands 0,05-0 25 Roofs 0,75.0,85 NO'TE: The desugner MUSt use jUdgernent to select the approphate C value within the range for the appropriate land use GeneraNy, brger areas, with perrnealAe soft, flat slopes, and dense vegetation shOUIld have bwest C valLIL—,. Smaller areas vifth slowlily puurn'aeabt e sofls, steep s,lopes, and spairse vegetation shOUd be assigned Ihighest C vaWes SWrce: rnericainSoiciety of OW Engineers Return to Main Worksheet Use 0.6 for newly graded areas- DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 I User Input Data I Calculated Value Reference Data Designed By: Checked By: Company: Project Name: Proiect No.: Site Location (City/Town) Watershed Basin Id. The rafional forniula as: A DsNoibi Date: 2/11/2021 Date 211712021 CDM smith Yadkin WTP 231695 Union Countyl AREA ClArea C, sheet flow south of raw water Where: a = peak rate of runoff in cubic feet per see: iotid (cfs) = rimoff coefficierit, an erapirical coefficrent representj ng the relationship betweeri ra116,11 rate, and runoff rate l average uiteasiq, (if minfiall ai inches/how, for a stornI cbrat on equal to the turre of concentration, T. A dramige area in acres Tile general procedure for deterrinning eak- discharg in P �e u& g the rational fortnula is presiented below atid illustrated 11i Sample Problem 9.03a. Step I. Deternune the drainage area in acres,, Total Drainage Area 5111-91 Step 2" Deterllu'tle the I-Luloff Coefficle"11t, C' for the qve of S011/cOver III the dralnag:e are ii (Table 8,03b). DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 vahie cati be detemuYied directly frorn Table 8,,03b, If there are multiple Soil Cover colliditicn'Is. a Weighted average must be calculated, or the area irlay be stibidv,,ided, Subarea A (acres) Subarea A Runoff Coefficient Subarea B (acres) Subarea B Runoff Coefficient Subarea C (acres) Subarea C Runoff Coefficient Subarea D (acres) Subarea D Runoff Coefficient Weighted Runoff Coefficient Step 3. Step 4. 2-year Rainfall Intensity, i (in/hr) 10-year Rainfall Intensity, i (in/hr) 0. 31 roof lincludes raw and finished 0.85 Runoff Coefficient 0.00 pavement 0.95 1 3.32 undisturbed 0.25 1 0.301197319 0 7.64 Step 5. Deterimne pedischarge, 0 (cii1xic feet pier wcotid),, by mulfipl),trig the previously determMed factors milig the tatiolial fora id (Sample Problem .0 3 a),, 0 =CIA Q2 Flow (cfs) 0 Q10 Flow (cfs) 8.4 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step 3. Time of Concentration Overland flow Tc -- Kinematic Wave Theory Length of overland flow 100.0 feet Mannings "n" for surface 0.240 Manning's n Average watershed slope 0.03 ft./ft. Constant alpha 1.1 Constant m 1.67 Weighted Runoff Coefficient 0.301197 Shallow Conc Flow Tc Slope Length of Conc Flow V (unpaved) Channel/Pipe Flow Tc Slope Length of Channel/Pipe Flow R n V 0.03 507.00 2.9 0.05 0 no channel flow 0.8 0.15 1.8 Tc Overland (min) 5 Tc Shallow Conc (min) 2.9 Tc Channel/Pipe (min) 0.0 Tc Total (min) 7.9 Trial time of duration that is =/< 7.9 mina (Tc) is 5 mins, corresponding rainfall intensity is 7.64 in/hr 1) Enter the rainfall intensity values for the corresponding times of duration in the table below. Rainfall intensity can be found from the following NWS hyperlink: httip://hdsc.nws.noaa.gov/hdsc/ipfds/orb/nc ipfds.html 2) Select the rainfall Intensity that corresponds to the trial time of duration that is equal to or less than the calculated time of concentration. 3) Copy the selected rainfall intensity into cell below. 2-year Rainfall Intensity, i (in/hr) 0-year Rainfall Intensity, i (in/hr) 7.64 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Trail Time of Duration Rainfall Intensity Calculation of Time tr (min) ODF), i On/hr) of Concentration, tc (min) 5 7.64 12.62 10 6.11 13.80 15 5.16 14.76 30 3.74 16.79 60 ( 1 hour) 2.43 19.96 120 ( 2 hours) 1.47 24.40 180 ( 3 hours) 1.05 27.92 360 ( 6 hours) 0.634 34.17 720 (12 hours) 0.38 41.93 1440 (24 hours) 0.218 52.38 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step 3, Determine the tinie of conceirtiation, Tc� for the drainage ate a The Kinetnatic Wave Themy defines tune of concentration as the "uavel time of a wave to inove frain the hych-aulically nio,,,t distant pcint in the catchment to tire outlet (Bedvent aud Huber, 1992) The forinulafor the ftnie ofconcentration i s: Tc = (IL)( U a lef-I )isrn where ume of conceuttation, in ntwives. It com'ists of the total time fol overland sheet flow. L length ofovetland flow plane (feet)-, le = rainfall excess = 1U * C/43,200 (43,20,0 converts inches pet how- to feet per second in the overall equation), la raiafall niteasity-I C' vitiolial mnoff colefficientr, Thii, equation contains two sets of parameters that need fin-ther definition, a and M Fct turbulent flow, wliich is the ricitinal field condation, rn 513 = I , 616 7 tt (1 .49 ,,, S`2) n S =slopre (fffk), n = Maiming's, rouglinc.6, 'Since n) will always be 5,3, this equation can be simplifiedto: L (1, v C143,2010 )Zf) Tay; 60, (miinutes) Because both firne ofconcentiation and rainfall intiensitygut e unknown vatiables in one equation, the whition must be fcauird through. iteiations. 11e Ll,.,,e of a sPeadsheet is, recounmeaded. Air example i5 shown iu Table S 013& DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Table 8.03b: Value of Runoff Coefficient (C) for Rational Formula — — — — Land Use C Land Use C Busniess. Lawns - Downtown areas 070-0,95 Sandy sor, flat, 2% 0. 05-0, 10 Neighborbood areas, 0,50-070 Sandy sor, ave., 0A0-0.15 2-7% 0,15,-0,20 Residential: Sandy, sor, steep, 0. Ky-& 17 Single-famity areas 030-0.50 7 0% 0.18-0.22 MILIlti unirts, detached 0AO-0.60 Heavy sor, flat, 2% 0 2,5-0 35 Midti units, Attached 0,60-0,75 Heavy sor, ave., SUbUrban 025-0A0 2.7% IndUstrial, Heavy sor, steep, 7% 030 0,60 Light areas 0 50-0M 020-OM Heavy areas 0 60-0 910 Agi-lCUtural land: Parks, cemeteries 010-025 Bare packed soi:il 0-0,60 SmIxAll &0320-0,50 Paygrounds 020-0.35 Rough U20-0.40 Cultivated rows 0:10-0,25 Rarroad yard -areas 0,20-0,40 Heavy s6I no crop Heavy s,60 w4h 015-045, 1. in0irnproved areas 010-030 crop 0,015-0 25 Streets: Sandso y 0l no crop O�05-0,25 Asphalt 0,70-0.95 Saridy sofl with Coincrete 0,80-0 9,15 crop O. 0,25 Brilck 0 70-0,85 Pasture Heavy soiI 0,15,-0,45 Drives and walks 075-0,85 Swar so 0,06-0 25 Woodlands 0.015-0 26 Rool's 075-0.8,5 NOTE. The designer Must Use judgernent to sellect the appropriate C value within the range for the appropriate Ilandl use. (.3wenleiratly, larger areas wrth penneable sofls, flat slopes, and devise vegetation Shiould have lowest C values Smaller areas Wth slowly peroieaUe sorlls, steep slopes, and sparsevegetation should be assigined highlest C values. Source: merican Society of Civil Engineers Return to Main Worksheet Use 0.6 for newly graded areas- I DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 User Input Data Calculated Value Reference Data Designed By: sNoibi Date: 2/11/2021 Checked By: Eb Date: 211712021 Company: CDM smith Project Name: Yadkin WTP Project No.: 231695 Site Location (City/Town) Watershed Basin Id. The rafional forniula Is: Union Countyl SWALE 1 jArea D, Upper Swale Where: a = peak rate of runoff in cubic feet per see: iotid (cfs) = rimoff coefficierit, an erapirical coeta crent representj ng the relationship betweeri raIlifill rate, and runoff rate l average uiteusiq, (if minfiall ai inches/how, for a stomi cbrat on equal to the turre of concentration, T. A dramige area in acres Tile general procedure for deterrinning eak- discharg in P �e u& g the rational fortnula is presiented below atid illustrated 11i Sample Problem 9.03a. Step I. Deternune the drainage area in acres,, Total Drainage Area 199191 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Stop 2, Detem-nune the runoff coefficient. C, for the taupe of soul; coiner lilt the dralliage area (Table 8.03b), if the laud use and soul covet is tionrogenouover the drainage area, a C value cmi be deterilluied directly ftorn Table 8r03b if there are multiple sod OD%ref conditions, a weighted, averg ge, must be calculated, or the wva may be subdivided, Subarea A (acres) Subarea A Runoff Coefficient Subarea B (acres) Subarea B Runoff Coefficient Subarea C (acres) Subarea C Runoff Coefficient Subarea D (acres) Subarea D Runoff Coefficient Weighted Runoff Coefficient Step 3. Step 4. 2-year Rainfall Intensity, i (in/hr) 10-year Rainfall Intensity, i (in/hr) 0.15 roof 1 0.85 Runoff Coeff 0.59 pavement 0.95 0.55 disturbed 0.6 0.788672014 Step 'I;. Derennine peak disicharge, Q (cubic feet per secortco,, by rnultiplying the previously deterrillried factors usa'lg the rational fonnula (Sample Problem. 8,03a), 0 =CIA Q2 Flow (cfs) 0 Q10 Flow (cfs) 7.8 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step 3. Time of Concentration IVIN notes in red font Overland flow Tc -- Kinematic Wave Theory Length of overland flow 48.0 feet Total length of Mannings "n" for surface 0.240 Manning's n flow=376'-3", mostly Average watershed slope 0.016 ft. /ft. channel/pipe flow Constant alpha 0.8 Constant m 1.67 Weighted Runoff Coefficient 0.788672 Shallow Conc Flow Tc Slope 0.028 Length of Conc Flow 23.00 V (unpaved) 2.7 Channel/Pipe Flow Tc Slope 0.030 Length of Channel/Pipe Flow 305.25 Calculated hydraulic profile for R 0.85 trapezoidal shaped swale at 1.5'water n 0.15 depth V 1.5 Tc Overland (min) 5 Tc Shallow Conc (min) 0.1 Tc Channel/Pipe (min) 3.3 Tc Total (min) 8.5 Trial time of duration that is =/< 8.5 mins (Tc) is 5 mins, corresponding rainfall intensity is 7.64 in/hr 1) Enter the rainfall intensity values for the corresponding times of duration in the table below. Rainfall intensity can be found from the following NWS hyperlink: http://hdsc.nws.noaa.gov/hdsc/pfds/orb/nc pfds.html DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 2) Select the rainfall Intensity that corresponds to the trial time of duration that is equal to or less than the calculated time of concentration. 3) Copy the selected rainfall intensity into cell below. 2-year Rainfall Intensity, i (in/hr) 0-year Rainfall Intensity, i (in/hr) 7.64 Trail Time of Duration Rainfall Intensity Calculation of Time tr (min) ODR i lin/hr) of Concentration, tc (min) 5 7.64 6.90 10 6.11 7.54 15 5.16 8.07 30 3.74 9.18 60 ( 1 hour) 2.43 10.91 120 ( 2 hours) 1.47 13.34 180 ( 3 hours) 1.05 15.26 360 ( 6 hours) 0.634 18.67 720 (12 hours) 0.38 22.92 1440 (24 hours) 0.218 28.63 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step .1, Detefrmiie thetitne of octicentratiow TC, f6i the draitiage, area The Kinematic., Wave TlieOIT defines time of conceurfatiou as the "tiavel time of a waveto iuo,ty-e from the hydraulically most diaitant point ni tine catchineut to the outlet (Bedient and ubet, 19�92)" The formula for the, tune of concentration is : TC = (U(11 where,�, T"= utue of cancentiation, in tumutes It consists of the total time for oveiland sheet flow. L = leagth of ovexhuid floit, ph (feet)'; le = tainfall, exceiis = It v C/43,200 (4,3,200 converts inches pen hou to feet pet, second in the over-111 eqUati,011), rainfilll intetroity, C tational tunoff coefficients, This equation coutailli two ,,,ets of paiatneter,,,, that need furthet defuution. o� and nit, Fet tutbulent flow, which is the normal field condition, 1,11 = 513 = 1,667 U = (1,49 -4 S"") n Where: S slope (ft1t)i; in = Maiming's rouglwess Since rn, will always, be 5, this equatiou uui be sunplifted to: 60 (winutes) Because boditime ofcouceiitritaci,n,,indsiiiifAlb uattnr,,iiy are unknown variablies in one epaucti, the �,olutiori must be found through iterations, The use ofa speadsheet is tecommended. An example is shown in'Table 8,03a DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Table 8.03b: Value of Runoff Coefficient (C) for Rational Formula — — — — Land Use C Land Use C Busniess. Lawns - Downtown areas 070-0,95 Sandy sor, flat, 2% 0. 05-0, 10 Neighborbood areas, 0,50-070 Sandy sor, ave., 0A0-0.15 2-7% 0,15,-0,20 Residential: Sandy, sor, steep, 0. Ky-& 17 Single-famity areas 030-0.50 7 0% 0.18-0.22 MILIlti unirts, detached 0AO-0.60 Heavy sor, flat, 2% 0 2,5-0 35 Midti units, Attached 0,60-0,75 Heavy sor, ave., SUbUrban 025-0A0 2.7% IndUstrial, Heavy sor, steep, 7% 030 0,60 Light areas 0 50-0M 020-OM Heavy areas 0 60-0 910 Agi-lCUtural land: Parks, cemeteries 010-025 Bare packed soi:il 0-0,60 SmIxAll &0320-0,50 Paygrounds 020-0.35 Rough U20-0.40 Cultivated rows 0:10-0,25 Rarroad yard -areas 0,20-0,40 Heavy s6I no crop Heavy s,60 w4h 015-045, 1. in0irnproved areas 010-030 crop 0,015-0 25 Streets: Sandso y 0l no crop O�05-0,25 Asphalt 0,70-0.95 Saridy sofl with Coincrete 0,80-0 9,15 crop O. 0,25 Brilck 0 70-0,85 Pasture Heavy soiI 0,15,-0,45 Drives and walks 075-0,85 Swar so 0,06-0 25 Woodlands 0.015-0 26 Rool's 075-0.8,5 NOTE. The designer Must Use judgernent to sellect the appropriate C value within the range for the appropriate Ilandl use. (.3wenleiratly, larger areas wrth penneable sofls, flat slopes, and devise vegetation Shiould have lowest C values Smaller areas Wth slowly peroieaUe sorlls, steep slopes, and sparsevegetation should be assigined highlest C values. Source: merican Society of Civil Engineers Return to Main Worksheet Use 0.6 for newly graded areas- I DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 MR9 MA, Ent-MM User Input Data Calculated Value Reference Data Designed By: Checked By: Company: Project Name: Proiect No.: Site Location (City/Town) Watershed Basin Id. The fational fotinula is'. fr DNoibi Eb CDM smith Yadkin WTP 231695 Date: 2/12/2021 Date: 211712021 Union County AREA EjJust no of pond, no channel to Q =: CIA whe're 0= peak- rate of runoff In cubtc feet per second (cfi) Cl ninoff coefficient, an empmcal coefficlent representing tile relationslup beneat en rainfall rate and rimoff rate average 11itensity of ninilfall ni inches)'hour, for a sionn duration equal to the tlyne of con centration,T1,, A= dminage area in acres 'n,ir getwral procedure for deterinining peak discharge usmg the ranonal fonnula is pesenled below and 111ustrated M Sample Probleni 8,03a, S,tep 1. Dietffallne the drainage area in ac,res. Total Drainage Area 0.72 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step 2. Deterniine the nxiaoff coefficleirt, C. for the type of soltcover 11i the drainage area (Table 9 03b,) If the land use and wil coaxer is howgenous oier the ch-ainage area, as C value cant be deterinmed directly ftwi'i'Table 8.03b. IftheTe acre multiple Sod cover conditions, a Nveighted average to be calculated, or the areatuay be subdivided, Subarea A (acres) Subarea A Runoff Coefficient Subarea B (acres) Subarea B Runoff Coefficient Subarea C (acres) Subarea C Runoff Coefficient Subarea D (acres) Subarea D Runoff Coefficient Weighted Runoff Coefficient Step 3. Step 4. 2-year Rainfall Intensity, i (in/hr) 10-year Rainfall Intensity, i (in/hr) 0.00 roof I 0.85 Runoff Coefficient 0.08 pavement 0.95 0.64 disturbed M. 0.636552329 0 7.64 Includes gravel road to pond Step .5. Deternitne peak d1schirge, 0 (cubic feel per second), by multiplying the pre-viously deter'1111ned factot's using the rational fonnula (Sample Problern 8,103a)" Q2 Flow (cfs) 0 Q10 Flow (cfs) 3.5 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step 3. Time of Concentration Overland flow Tc -- Kinematic Wave Theory Length of overland flow 100.0 feet Mannings "n" for surface 0.240 Manning's n Average watershed slope 0.03 ft. /ft. Constant alpha 1.0 Constant m 1.67 Weighted Runoff Coefficient 0.636552 Shallow Conc Flow Tc Slope Length of Conc Flow V (unpaved) Channel/Pipe Flow Tc Slope Length of Channel/Pipe Flow R n V Tc Overland (min) Tc Shallow Conc (min) Tc Channel/Pipe (min) Tc Total (min) 0.03 114.00 2.7 0.03 0 No channel to 0.5 0.15 1.0 5 0.7 0.0 5.7 Trial time of duration that is =/< 5.7 mina (Tc) is 5 mins, corresponding rainfall intensity is 7.64 in/hr 1) Enter the rainfall intensity values for the corresponding times of duration in the table below. Rainfall intensity can be found from the following NWS hyperlink: http://hdsc.nws.noaa.gov/hdsc/pfds/orb/nc pfds.html 2) Select the rainfall Intensity that corresponds to the trial time of duration that is equal to or less than the calculated time of concentration. 3) Copy the selected rainfall intensity into cell below. 2-year Rainfall Intensity, i (in/hr) 0-year Rainfall Intensity, i (in/hr) 7.64 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Trail Time of Duration Rainfall Intensity Calculation of Time tr (min) ODR i Oninr) of Concentration, tc (min) 5 7.64 9.85 10 6.11 10.77 15 5.16 11.53 30 3.74 13.11 60 ( 1 hour) 2.43 15.58 120 ( 2 hours) 1.47 19.05 180 ( 3 hours) 1.05 21.80 360 ( 6 hours) 0.634 26.67 720 (12 hours) 0.38 32.74 1440 (24 hours) 0.218 40.89 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step , Determine the time of concentrati'au. To. for the da'ainage area The Kinematic Wm-e Theol-V deflues finie of concentration as the -travel time of a wa*ve to move from the hydtavilically most distaut point in the catcluirelit to die outlet (Bedient and Huber, 199-1)", The fonnula fors the time of concentration is, T,C,, = (L/(,'Y,, , le Where: T,7= Ume of concentration, in irujuxtes It cowusts Df the ton! thile �or o,,,extand, sheet flow L = letigth of cn-efland flow plaiie (Yeet): le naudill excess = In Y C/43,200 (43,200 carivetts inches pel hCur to feet per second in tine over all equation), 1, rainfall uitensity, C = 131ional 11,11roff coefficients" This equation containsrwo sets of paraniefers that need fluther definition u andill For to flow, which. is the normal field condition, m 513 = I . 6,67 1 , ") mn S 0ope (ft`ff Y n = Manfung's, f OugImess Since mi will ahvay�s ble 5,,1, aiis equation cau be simp Hfied to M T Cf, ( 1i1 g t /43,200)2")- 60 (minutes) Became. bothtimeof intervsity ate unknown valiables in one equation. the solution mum be found througli iteratioslt,, The tree of a sineadsheet isrecommended An exaniple, is shown in Table S,03,a, DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Table 8.03b: Value of Runoff Coefficient (C) for Rational Formula — — — — Land Use C Land Use C Busniess. Lawns - Downtown areas 070-0,95 Sandy sor, flat, 2% 0. 05-0, 10 Neighborbood areas, 0,50-070 Sandy sor, ave., 0A0-0.15 2-7% 0,15,-0,20 Residential: Sandy, sor, steep, 0. Ky-& 17 Single-famity areas 030-0.50 7 0% 0.18-0.22 MILIlti unirts, detached 0AO-0.60 Heavy sor, flat, 2% 0 2,5-0 35 Midti units, Attached 0,60-0,75 Heavy sor, ave., SUbUrban 025-0A0 2.7% IndUstrial, Heavy sor, steep, 7% 030 0,60 Light areas 0 50-0M 020-OM Heavy areas 0 60-0 910 Agi-lCUtural land: Parks, cemeteries 010-025 Bare packed soi:il 0-0,60 SmIxAll &0320-0,50 Paygrounds 020-0.35 Rough U20-0.40 Cultivated rows 0:10-0,25 Rarroad yard -areas 0,20-0,40 Heavy s6I no crop Heavy s,60 w4h 015-045, 1. in0irnproved areas 010-030 crop 0,015-0 25 Streets: Sandso y 0l no crop O�05-0,25 Asphalt 0,70-0.95 Saridy sofl with Coincrete 0,80-0 9,15 crop O. 0,25 Brilck 0 70-0,85 Pasture Heavy soiI 0,15,-0,45 Drives and walks 075-0,85 Swar so 0,06-0 25 Woodlands 0.015-0 26 Rool's 075-0.8,5 NOTE. The designer Must Use judgernent to sellect the appropriate C value within the range for the appropriate Ilandl use. (.3wenleiratly, larger areas wrth penneable sofls, flat slopes, and devise vegetation Shiould have lowest C values Smaller areas Wth slowly peroieaUe sorlls, steep slopes, and sparsevegetation should be assigined highlest C values. Source: merican Society of Civil Engineers Return to Main Worksheet Use 0.6 for newly graded areas- I DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 I User Input Data I Calculated Value Reference Data Designed By: Checked By: Company: Project Name: Proiect No.: Site Location (City/Town) Watershed Basin Id. The rafional forniula as: t. D Noibi Eb CDM smith Yadkin WTP 231695 Date: 2/11/2021 Date: 211712021 Union Countyl SWALE 41Area F, Downstream of Swale 2 Where: a = peak rate of runoff in cubic feet per see: iotid (cfs) = rimoff coefficierit, an erapirical coefficrent representj ng the relationship betweeri ra116,11 rate, and runoff rate l average uiteusiq, (if minfiall ai inches/how, for a stornI cbrat on equal to the turre of concentration, T. A dramige area in acres Tile general procedure for deterrinning eak- discharg in P �e u& g the rational fortnula is presiented below atid illustrated 11i Sample Problem 9.03a. Step I. Deternune the drainage area in acres,, Total Drainage Area A I X191 Step 2" Deterllu'tle the I-Luloff Coefficle"11t, C' for the qve of S011/cOver III the dralnag:e are ii (Table 8,03b). DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 vahie cati be detemuYied directly frorn Table 8,,03b, If there are multiple Soil Cover colliditicn'Is. a Weighted average must be calculated, or the area irlay be stibidv,,ided, Subarea A (acres) Subarea A Runoff Coefficient Subarea B (acres) Subarea B Runoff Coefficient Subarea C (acres) Subarea C Runoff Coefficient Subarea D (acres) Subarea D Runoff Coefficient Weighted Runoff Coefficient Step 3. Step 4. 2-year Rainfall Intensity, i (in/hr) 10-year Rainfall Intensity, i (in/hr) 0.07 roof I 0.85 Runoff Coefl 0.18 pavement 0.95 1 0.10 disturbed 0.6 1 0.83254 0 7.64 Step 5. Deterimne pedischarge, 0 (cii1xic feet pier wcotid),, by mulfipl),trig the previously determilied factors milig t�he tatiolial fora id (Sample Problem 8, 03 a),, 0 =CIA Q2 Flow (cfs) 0 Q10 Flow (cfs) 2.2 Q10 Flow (cfs) (INCLUDING 10.2 UPSTREAM FLOW) DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step 3. Time of Concentration Overland flow Tc -- Kinematic Wave Theory Length of overland flow 21.8 feet Mannings "n" for surface 0.240 Manning's n Average watershed slope 0.098 ft./ft. Constant alpha 1.9 Constant m 1.67 Weighted Runoff Coefficient 0.832536 Shallow Conc Flow Tc Slope Length of Conc Flow V (unpaved) Channel/Pipe Flow Tc Slope Length of Channel/Pipe Flow R n V Tc Overland (min) Tc Shallow Conc (min) Tc Channel/Pipe (min) Tc Total (min) 0.03 0 Assume no shallow conc flow 2.8 0.011 140 1.1 Calculated hydraulic profile for 0.15 trapezoidal a ale, forwater 1.1 5 0.0 2.2 7.2 1) Enter the rainfall intensity values for the corresponding times of duration in the table below. Rainfall intensity can be found from the following NWS hyperlink: http://hdsc.nws.noaa.gov/hdsc/pfds/orb/nc pfds.html 2) Select the rainfall Intensity that corresponds to the trial time of duration that is equal to or less than the calculated time of concentration. 3) Copy the selected rainfall intensity into cell below. 2-year Rainfall Intensity, i (in/hr) 0-year Rainfall Intensity, i (in/hr) 7.64 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Trail Time of Duration Rainfall Intensity Calculation of Time tr (min) ODF), i On/hr) of Concentration, tc (min) 5 7.64 2.43 10 6.11 2.66 15 5.16 2.84 30 3.74 3.23 60 ( 1 hour) 2.43 3.84 120 ( 2 hours) 1.47 4.70 180 ( 3 hours) 1.05 5.37 360 ( 6 hours) 0.634 6.58 720 (12 hours) 0.38 8.07 1440 (24 hours) 0.218 10.08 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Step .1, Detenume the time of concentratiou, Tc- for the drainage area, 'The Kinematic Wave Theor.Y definet tijue of concentratiou as the -travel time of a wwve to move ficyin the livdi'aulicall,v most distant point in the catchment tothe Outlet (Bedient and liubex, 1992)" The fonnula fox the firne of concentration i's -, T(- =: (L/(Ct * where: Tc= Utne ofconcentration, m inulutes, It consists of die total hire for ol,,etlaud sheetflow. L = length of o-verland flow plane (feet), le = rainfall excess = 1l , C143,200 (43,2M ccirverts inches pet hom to feet per second in the overall equation) rainfall Intensity; C tational iunoffcoeffic tents Tim equati,cm contains two sets of parameters that need ffirtherdefinitiom a and m For turbulent flow, w1itch ts the nornial field condition. rn, = :513 = 1.667 U = (I 49 , S1,12) wbere, S = slojaie n = mamling's roughness Suice n) will alwaybe 5,3,, this equation can be sauplified, to: L 2^3 Tc = - 60 (minutes) Becauseboth tijneofcc�nceiitratiiiiia:idj:,ainfeilI intensity are unPnowar.-miables in one equation, the solution must be found through. iterations, Tbe use of a spreads'li"mt is teconnnended. An example is shown in Table 8,03a. DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Table 8.03b: Value of Runoff Coefficient (C) for Rational Formula — — — — Land Use C Land Use C Busniess. Lawns - Downtown areas 070-0,95 Sandy sor, flat, 2% 0. 05-0, 10 Neighborbood areas, 0,50-070 Sandy sor, ave., 0A0-0.15 2-7% 0,15,-0,20 Residential: Sandy, sor, steep, 0. Ky-& 17 Single-famity areas 030-0.50 7 0% 0.18-0.22 MILIlti unirts, detached 0AO-0.60 Heavy sor, flat, 2% 0 2,5-0 35 Midti units, Attached 0,60-0,75 Heavy sor, ave., SUbUrban 025-0A0 2.7% IndUstrial, Heavy sor, steep, 7% 030 0,60 Light areas 0 50-0M 020-OM Heavy areas 0 60-0 910 Agi-lCUtural land: Parks, cemeteries 010-025 Bare packed soi:il 0-0,60 SmIxAll &0320-0,50 Paygrounds 020-0.35 Rough U20-0.40 Cultivated rows 0:10-0,25 Rarroad yard -areas 0,20-0,40 Heavy s6I no crop Heavy s,60 w4h 015-045, 1. in0irnproved areas 010-030 crop 0,015-0 25 Streets: Sandso y 0l no crop O�05-0,25 Asphalt 0,70-0.95 Saridy sofl with Coincrete 0,80-0 9,15 crop O. 0,25 Brilck 0 70-0,85 Pasture Heavy soiI 0,15,-0,45 Drives and walks 075-0,85 Swar so 0,06-0 25 Woodlands 0.015-0 26 Rool's 075-0.8,5 NOTE. The designer Must Use judgernent to sellect the appropriate C value within the range for the appropriate Ilandl use. (.3wenleiratly, larger areas wrth penneable sofls, flat slopes, and devise vegetation Shiould have lowest C values Smaller areas Wth slowly peroieaUe sorlls, steep slopes, and sparsevegetation should be assigined highlest C values. Source: merican Society of Civil Engineers Return to Main Worksheet Use 0.6 for newly graded areas- I DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Designed By: M Noibi Date: 2/12/2021 Checked By: Jb Date: 2/17/2021 Company: CDM Smith Project Name: Yadkin WTP Reference: Concrete Pipe Design Manual, Project No.: 231695 American Concrete Pipe Association, 2011 Q10 Trial Diameter (HW/2) From Fig 44, HW (for inlet control)= From Fig 44, HW+SoL (for outlet control)= SoL= Outlet Control HW= From Fig 4, Max flow for 18" pipe with slope of 0.5%= From Fig 4, Max velocity for 18" pipe with slope of 0.5%= Proportion of value for full flow= From Fig 20, depth of flow= From Fig 20, velocity proportion of value for full flow= Outlet Velocity= CULVERT 1 VELOCITY CHECK 7.8 cfs Q10 upstream of Culvert 1 ft Assuming permissible Headwater (HW) depth is 2 ft 1.5 ft 1.8 ft Slope (So)=0.5%, Length (L)=41 ft 0.205 ft 1.5 (HW inlet control) <1.6 (HW (outlet control), Therefore, Outlet Control governs HW=1.6 < permissible HW of 2 ft Therefore, diameter= 1 ft acceptable 1.6 ft Culvert of 1.5 ft dia. used for consistency 8 cfs 4.5 fps 0.98 ft/ft 0.78 ft/ft 1.14 ft/ft 5.13 fps DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Figure 44 CCU LVE T' +CAPA CITY 18-INCH DIAMETER PIPE DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Im = PUPW FOR CIRCULAR IF1,111PR FLOWFINGFULL �y �y ,�''�'� ,.. � ,.o, �, b.,,,, � u t : ,t �"-. 1111 �, yit ail ��✓ �'Y,�. w ;� µ""A, s�'� �„;,r '{' wel WX �f SIC 10 M,rc u�um" Iw.°. hr,j' jm 22 r �rn- r ✓' di°V. wa yy � � 4 2CPS"" w nnr'"' „d �,.. { J n M"'", u, N , �;, �4� N 4 11" m " y f *._.... t y 66, G µkw w r "AJ 41aPo 31 �NIS � , r I u 0 " M « Nry ��UG�p9f fll �htl g @� „ b apt^ ".n I ar'. 5+"c, N v� ,_ _. Aof-oqraar".crmTar^,Pipe A%nuciaIiii'mr, � WWWZMI11UUIf1�P:ii DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 A M.= Figures RELATIVE VELOCUT . Y AND FJLJQW PfM CORCULAR Pill", FOR ANly IMPTH OF FLOW M iNb x . ......... C" . . .......... . ... . .... ... ....... R La 7' 5 10 .... . ...... ci of 10, X MO I I IV) Hldla Apra,mar, C;Itjrmma Pipe $umncImHzn , www c,:wnx'urah ,wipc)e,aIq m DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 B- Designed By: i Date: 2/12/2021 Checked By: It Date: 211712021 Company: CIDM smith Project Name: Yadkin WTP Reference: Concrete Pipe Design Manual, Project No.: 231695 American Concrete Pipe Association, 2011 CULVERT 2 & 3 VELOCITY CHECK Q10 10.2 cfs Q10 in Swale 4 Trial Diameter (HW/2) 1.5 ft Assuming permissible Headwater (HW) depth is 3 ft From Fig 44, HW (for inlet control)= 1.9 ft From Fig 44, HW+SoL (for outlet control)= 2.2 ft Slope (So)=1%, Length (L)=50ft SoL= 0.5 ft Outlet Control HW= From Fig 4, Max flow for 18" pipe with slope of 1%= From Fig 4, Max velocity for 18" pipe with slope of 1%= Proportion of value for full flow= From Fig 20, depth offlow= From Fig 20, velocity proportion of value for full flow= Outlet Velocity= 1.9 (HW inlet control) >13 (HW (outlet control), Therefore, Inlet Control governs HW=1.9< permissible HW of 3 ft 1.7 ft Therefore, diameter= 1.5 ft acceptable 11 cfs 6.5 fps 0.9 ft/ft 0.6 ft/ft 1.08 ft/ft 7.02 fps DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Figure, CULVERT CAPACITY 18-1INCH DIAMETERPIPE Ui Uj pro C�4nPOO o Cuklt:nub�mewme DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Figure 4 A II cls (,Iynax flow, 1 8 Icy 1,81" pipp, ovifhy,, Figures 0, n03,04,05 2 3 A 5,65 S 1 2 3 14 15 6 all 0 SL UPE, OF P111 Pt IN if t, LT E. 100 f E. ET Aurcy,mar, CLm—man Plkpa Amgmiamw) , ffvm cmumman, 183 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 0=1 Figures, iMaa-am-,A f.;oxrr-rPPo Nip AN„ uciaaVurm • 2Q1 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Designed By: Mhh Noibi Date: 2/12/2021 Checked By: JSb Date: 2/17/2021 Company: CDM smith Project Name: Yadkin WTP Reference: Concrete Pipe Design Manual, Project No.: 231695 American Concrete Pipe Association, 2011 CULVERT 4 VELOCITY CHECK Q10 8.4 cfs Q10 upstream of Culvert Trial Diameter (HW/2) 1.5 ft Assuming permissible Headwater (HW) depth is 3 ft From Fig 44, HW (for inlet control)= 1.6 ft From Fig 44, HW+SoL (for outlet control)= 1.9 ft Slope (So)=5%, Length (L)=36.75 ft SoL= 1.8 ft 1.6 (HW inlet control) < 1.9 (HW (outlet control), Therefore,outlet Control governs HW=1.9< permissible HW of 3 ft Outlet Control HW= 0.1 ft Therefore, diameter= 1.5 ft (18 In) Is acceptable Trial 2»» Diameter 1.75 ft From Fig 45, HW (for inlet control)= 1.6 ft From Fig 45, HW+SoL (for outlet control)= 1.9 ft Slope (So)=5%, Length (L)=36.75 ft SoL= 1.8 ft 1.6 (HW inlet control) <1.9 (HW outlet control), Therefore, Outlet Control governs HW=1.9 < permissible HW of 3 ft Outlet Control HW= 0.1 ft Therefore, diameter= 1 ft 9 In (21 In) acceptable From Fig 4, Max flow for 18" pipe with slope of 5%= 25 cfs From Fig 4, Max velocity for 18" pipe with slope of 5%= 14.5 fps Proportion of value for full flow= 0.3 ft/ft From Fig 20, depth of flow= 0.375 ft/ft From Fig 20, velocity proportion of value for full flow= 0.875 ft/ft Outlet Velocity= 12.69 fps Trial 2»» From Fig 4, Max flow for 21" pipe with slope of 5%= 45 cfs From Fig 4, Max velocity for 21" pipe with slope of 5%= 16 fps Proportion of value for full flow= 0.2 ft/ft From Fig 20, depth of flow= 0.3 ft/ft From Fig 20, velocity proportion of value for full flow= 0.775 ft/ft Outlet Velocity= 12.40 fps DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 a CULVERT CAPACITY 18-I CH DIAMETER PIPE DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 4 z CULVERT CAPACITY 21-Ilia CH DIAMETER PIPE p d p v d 16 24 32 40 48 S6 CULVERT DISCHARGE 0 NK CUSIC FEET PER SECOND DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Figure 4 25 cts, (m, Noir 18"' 1pir slope= 5",� 6i .02, .03,.o4.05 1 .2 .3 A,5.6 S 1 2 3 4 5 6 810 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 ummm Is iY II \N 0, CD 0 AAC,-1-4 AO HIA -3 CI uj ZD -j LL 0 fir EL. 0 w DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Designed By: PNoibi Date: 2/11/2021 �'(b Date: 2i1'i2o21 Checked By: Company: CDM Smith Project Name: Yadkin WTP Project No.: 231695 CULVERT 1 VELOCITY CHECK Q10 7.8 cfs Culvert Diameter 1.5 ft Velocity Check 4.41 fps CULVERT 2 & 3 VELOCITY CHECK Q10 10.2 cfs Culvert Diameter 1.5 ft Velocity Check 5.77 fps CULVERT 4 VELOCITY CHECK Q10 8.4 cfs Culvert Size 1.5 ft Velocity Check 4.75 fps Q10 upstream of Culvert Q10 upstream of Culverts 2 and 3 combined Q10 upstream of Culvert DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 User input Data Calculated Value Reference Data Designed By: uibi Date: z�17%10 1 Checked By: ��� Date: Company: mi th Project Name: Yadkin WTP Project No.: 231695 Site Location (City/Town) Union County Channel/Waterway Id. SWALE 1 Steps 1, Detennine gle aeepuirptl fl+ru o alllicaA t.� Nor' (<,,l irla wl? peaiw niaco£1 ra6e Rn the de"uhpia slelrsu (Apye"'Puk, 8,03,J. Design storm 10-yr Required Flow, Q (cfs) 7.8 Step 2!. Detcerrainwethe wlope and Ae(.fl ili'rrnaetl �e,rratarngaysari¢tlarrirJL, Slope (ft/ft) 0.03 Average Channel geometry: V, Parabolic, or Trapezoidal Trapezoidal Channel lining Tall Fescue Step 3., Detmi nnrr Y1ae luetinw,ibh! ielcclty fart tiller Its rug selealed In the, dp are.Jl Plccat afpaved (nee p'atile 'I U5,,i pagp 8 05 4), Permissible velocity (ft/s) 5 Table 8.05a :Step 4. "emB4O1fi".d' atY HGYIrduYQ h �va9n7nFlgFr iCV'f I`U1'ilkd lh'� 111':�:5` k`l1k Odd " BIYf° 1 p'6 itllA;l'k�'tl IP0. �lii" pel'aam sible 't plod"it), to II 'ach t6 " 1�7 S" U.% es'lin'ridale iaf a°hAlMt'l ff Ai Me &t p spell sf le C # "Pe C7 nerly depth and lop isnith Con fit "fle Condition, Channel flow area (ft) "first try" 1.56 :Merl 5. ('Acaalaze the hydraulic indins R., frorn cuaanuel veon7, nC (Figirre Slaps in. Dete°rinme roughness coetlkmit rer, SttueOuralLianing',x we"ll�lrble805lipage 5056, Grass-;. Lining: a.. Deverm mme retact.lance c lass 161 i egeuiancros h Ca9,'p liIble 8 05c:, Page d' 0, .lf le, i neo sn .many wequizernew ai..se xeiazd�ance formes l° , nlomed conalituton (genw Aiy C w M, To rlereanilne chianuiel ca ar�"y, evsas as lea.oa ow, iek id-1x'tce agasq„ hgvjle^ 9a. Derel nlriie rr fiom Figure 8 05c, page 8 05.7. Stcq 7, C;`alrtuane the aonA dimiurV aelorivv V wing Gr mlll lr,, a erinasfarcn fl°u@ar.u:i,e l;. tl)ra, gay,- 'S'_Os 3;1i, nid c,aloAare rAlaune4 r, tapaclw (;k, tavnup The c".ot sulkily 0."epnaticel ,Stfp,'n S. Check remAN agmna t pleik9msit'le velocd ey and i4'quired alemigna KldgiJl4m'kry" d'C,Y dlk"t4"flinrae Af de,Lg JJ 0� A4 {,Y,"tlfli➢71'ge- Step 9. If desqui i� n101 aecnept aiAe .alter channel ¢gaol&nenslons als appmlaoloaiale. For nsrrguezoidA chaazsiel,w sass, al 1munes:aoss uswdlymade by ch angan5 rhe B;aolRona—dilr.- DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 see tame oeiow Tor steps o-u... N 5 �_ c �� > Y 0 0 w o d E _ A m m A mm �.� o o m Trapezoidal U) m� x o. wa �a ._ =Of >O> Of co) > > m oa UU oad UU Figure 8.05b (ft) (ft) (ft) (ft) (ft) (ft) (ft/s) (cfs) ro LL ro LL ro LL ro LL ro LL ro LL ro ro LL LL m u m � U) m o U t-ro � m Tw m F W LL ro LL ro LL U w w U O U w w U O SWALE 1 (TRIAL) 3 2.0 1 8 5 8.32 0.60 3.00 D 0.04 4.59 of 23.0 BE w U U)0 O > in 3 0.5 0.5 3.5 1 3.66 0.27 1.37 D 0.042 2.59 of o 2.6 Owf p 0 0 0 0 0.00 #DIV/01 #DIV/01 #DIV/01 tt ##### tt Step 10, Fna pr;a.,-1duxr6 a:kwumrnwrvkm grace the glparrapr,TMM cfinmsanel dmte24',a'➢w, ➢5a4 d: bt: n ^,ekued ffcec low retrmruff'.eexce rt:uwmrfx2ivvr., nepeamt .tqt 6 wdwa'cugh 9 am �wup m. knffpknet wetxs, &,nce Am cotrt, cu ch np to VaH gm,, A.jju,¢ e jmraay of The �. hairmex b 'At in? deprrdo nu h je sae + nnnrtown Gaeafwuaa. NOTE t df a0rt•mppt a rdoe tg us peaev than (G fR mec, rm to- nawp miry Grrniup;, uny be eecfnnree to ac,utuhze a'&ue clnnu.vcae9 wild cel3etanonn m e.,¢merlau$ued The Guuvermay tse decma*u*d fim peak fftlo . Erwxeen (he L yeananlaxrwn dP m cffamruurN aegwrew as aep7(i,(, mm) trilme, the de%quer �,bcw1B mtrmhrze HaeM sfue per„ w the ckuamwuue1 to ,eGear, ffie 1aulez that pnzn+., dt., Immeation i.J po-oteesaabhslmieut ofr epe¢,erdan Fog the ake,,opsm of 4Cm7Pupo.mn1 lmcu 6, we "a-twve ,force Paocedule. N'OI 2 TJenw}, 7(ruflcGem---h.ampet.wae:uG f::'kv aaxe7m sawn,A L`%iv en an caxm n* mGxe exe£V of tdumc %ec9uon ulam be used to dt,wpwt gran,,, hued a 1rnnanek, rviRh paralCmr,Gdc n ru=,u-rer tcaW,. N •- C °n a an Y °n d '. rr > 0 0 cou _ m m 0 w w ° o Trapezoidal --Grass Lined p ma U ¢ �a x� �> >�> KU �U > > UU JUU Figure 8.05b (ft/ft) (ft) (ft) (ft) (ft') (ft) (ft) (ft/s) (ft/s) (cfs) ro LL ro LL ro LL ro LL ro LL ro LL ro LL ro LL � m� > F of Tw of LL ro LL ro LL U U w w w w U U O O SWALE 1 DESIGN 3 2.0 1.5 11 9.75 11.49 0.85 1.9 1.61 B 0.12 1.9 of a 19 of a w Z w U O U > io O SWALE 2 DESIGN- ITERATION 2 3 1.0 1.2 8.2 5.52 8.59 0.64 1.8 1.16 B 0.11 1.7 Owf p 9 Of o U)0 U)0 > u) > u) 3 1.0 1 7 4 7.32 0.55 1.3 0.71 B 0.12 1.4 Of cl 6 Of p z z Y tq, dtf::G-I. ou ttem foi o m 4ymgr c.p.mnmy aumk mamk AiGm $ff 6smr7uug,e tepomem exeexl mld¢rov,yt+ke neN n:ir ce C'm the zecevn u4? ^,IxeatU !mat udO p>e Mecetmr n gown ctmer "'M kae vequi,ed i,Tah)e 9.t1 ,d G nprr 9.k'P'ti 9y. DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 User Input Data Calculated Value Reference Data Designed By: nnNON Date: 2�21/1%L�'2 Checked By: JSb Date: Company: smi th Project Name: Yadkin WTP Project No.: 231695 Site Location (City/Town) Union County Chan nel/Waterwa Id. SWALE 2 Step i [Nneatutty die s quaed 1lra.er cop"(Iv. a 'b" o'fu,rtaliarw pre,eA m a'AT rent Cara tho «;de<rrrfa ,Crfnn G�J,/ „r fseT'.03). Design storm 10-yr Required Flow, Q (cfs) 8 Step 2Dopinnme tfue 4ope an(I +Aecl r 13"umel tpomelov aal Ittrtt1t, Slope (ftfft) 0.023 Average Channel geometry: V, Parabolic, or Trapezoidal V Channel lining Tall Fescue :Step 3. C)M""aatxne pine pxeuaru vitae v,tonty f6r the hnum erpeeted Dr t1ae de,tae,i %eloory f pr.aied Owe Table fl 05, hr r+, S (J", 4) Permissible velocity (fUs) 5 Table 8.05a S"Rpx 4.;111140, mau sWOI^:6;4YaoYlm df(hadn(I n iz� dmde I h' raPadata;,,dQ by tht gr+turap�.�,altr,ar+Imoa, nm,,„Ir,r to5ltry r,tuualeofelau;n"It'kmmea, "L'h"a "eteu'; a arr 011I j, aaapd.tt, ar,rt 9c do'IdTh d,r 9rd IIrO e NI dIdieaas. Channel flow area (ft) "first try" 1.60 4te•pa 5. C Wuodade qrt hyadtaullc mdmx R Anl r!u,a melt gemnwuy W4paaer S03b. p�alue Ft :, ), 'l.rrrpa ri. 'L'lcuraan,ur. u,ta,uEarae ,ti vc,rfhicru°uxt x.. Sraat1WA-1w1 pvnhrga...-, TxV,agr dp'_05b iuur.,ur 'S. W° e, GI ms Lining; a Chete4aa ,,, uc4 strndaaut r .lmuz fire-,ged.,Gutiisb 9ia.nu'7 tulcLr fi pj"n ixupa•. b 0, 8 T. uaueet t bdity aecptxrxrnurr,a user urtaattanr, �'ura neMN -c,r 'rad rexuadmmi (g-erall^r ( na D). Ta ukg—rune a haatur9 s. uparauvyi xxar mr d xsv ow rea u d-en e w'Lieis b,ghwa'. f, E)e( ennuare n from ff up oar 8uyr3,, page S.05,i, "are pa 7. 4"alodal, rht� o,W r.hanncl rek, Oy. V. u-ng M-aai,np + rrgux vYaaa�n 4,5 aptata. d.e.; a pp 8 O� 3), -d-1,.ulmti eh --I 0 v.tv.g The c:¢e unuu e.,,, ragaa.ruw . Srepa & C'herha —.,d% aig.,,,t I... vearwuka , *,'rI—ty aA uurqu, d w4r°, gn +r.ulrau°uy an d'te uuutan, of d'a Wnl av ma.'xrrdx biter_ Mter, 9 i'f ede�gln A i9e';ur 'Iccel'W le,. Ott +"harm+ f hfwr I$Kwna i' ip}pvp'eiytja, e For ve ep>waeya¢daul u-Irnwxtaed,s, ttu�..m:lllixa:;�xxracvt r, itq "At, erx d" tw ah"now,, thug tr<:,man. avielth. Sol, W, peril do: e,,— alr+• e puuuratard uJrnwrav,,bex ix are Yr— xmlernr.0 f6 k"', .wtwarieuurw eaamimcaxat. ernem e rlue„,Fln a' nreu,p fluff taea seaeud.-0ua„ ca;ers:�pvsua4aauw*, Me rc;Apea ., Addjuta r uh, lx"..vanO hro gx� nay, 4r,,-p n sutra W, evr,f rx ,uAz p"".t. NOTE a If d—rm -I c tV . p,r�emana efrnax 0 ft -, m rcareuapnsrrx 0 le-'r n,e,y 1w venpnn-.d to nfoh,xd— thrT,weuurced ,aaate4 eep.eo.rtanwv Vs e tmlalrah. d. The k—pn x^, hn. w .a b7 a9a.gaxenr i far pemp A ireara, tAu. _, ,r— If m d nm. t rtlxaiaena t }ne,nu, I a., edme d .la ,dd rrax9yaxt 'l-'x ctzresr; au the enVveara r.r crdeuv th, In., thuT dn.eu6de^ac pauoew:anvaaa -a f v,wpefnav-itu rm alna Y—gn e+4'ra nrp u'nrti= I:aura �,. adzr odmw ft,�m famx } t nw �Tv„ate. NOTE daaarar A, nnd M, rr -- m fl.: eaad 'A tW, "r'ou ruaruy b, ue d or. 4esgav oh 1 ,wr.w' x fic DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 0 0 O Q w m a a m u uo a a uv V-Shaped ed a T a m @ v o p n - m 3m so >"o > o U �0 >" >" 00 UUU Fiaure 8.05b (ft) (ft) (ft2) (ft) (ft) (ft/s) (cfs) 0 w w w w w U O U O SWALE 2 (TRIAL) 3 1.2 7.2 4.32 7.59 0.57 2.85 D 0.042 3.70 n�. 16.0 w w U wZ 0 w 3 0.5 3.0 0.75 3.16 0.24 1.19 D 0.042 2.06 a o 1.5 wZ d O w w U 3 2 12.0 12.00 12.65 0.95 4.74 D 0.041 5.32 0 63.9 a o 0.0 0.00 0.00 0.00 0.00 ##### ###### aie .t u: N _ a K o A ¢ w E u _ 0 > _ `� _ _ VShaped--Grass Lined 0 2 - 6 0 3 a =� >> 2 > > 0 0 u Fiaure 8.05b (ft/ft) (ft) (ft) (ft2) (ft) (ft) (ft/s) (ft/s) (cfs) w Z w w 0 (9 U > 0 O 5.67 1.5 17.0 12.76 17.27 0.74 2.5 1.85 B 0.09 2.1 � 0 27 a o w Z w w d O U > W� O 5.67 1.5 17.0 12.76 17.27 0.74 2.3 1.70 B 0.091 2.0 0 26 a 0 w Z w w d O U > W� O 5.67 2.5 28.4 35.44 28.79 1.23 2.2 2.71 B 0.092 2.8 0 99 a p (1-k uulk., p -p-ly -Il ;t.bs bly If +b,.1ua,p Ong p wri k emi d f,p rIaa varma e 9 ;txuaauuau, arza .11fltt1 q+nu tr;tuu+sa nrar.r.turw uWiU 1, a,q aarrd A O d p;.pe 8 (P',.F:k. DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 User Input Data Calculated Value Reference Data D— Designed By: ibi Date: 2/11/2021 Checked By: )s Date:2/17/2021 I�r Company: CDM strith Project Name: Yadkin WTP Project No.: 231695 Site Location (City/Town) Union County Channel/Waterway Id. SWALE 3 Step 1, Delrennine die requAred f101% �,apaclr-v 0 by e�,tllnannlg pelk Iiii1off rate tor the deAml 'uxill (Appendn' 8.03) Design storm 1 0-yr Required Flow, Q (cfs) 29 S(ep 2. Deteiinuie far i&Vie mid,uelect chaiinel poinetiv mid hiling Slope (ft/ft) 0.028 Average Channel geometry: V, Parabolic, or Trapezoidal Trapezoidal Channel lining Tall Fescue Sdep 3, Dverwme tile JXiruJujMJIl,.r verlaxm ffti tho 1111"ig m'Aecled ol, Ole de,,iied veAocil-,v if paved (see'Dible (30.5 1, pa?e 8 05 4"1 Permissible velocity (ft/s) 5 Table 8.05a Step 4. Nlake an antiM etrmweofaALniliA ffit, Jre<JLJu ed 0 by the ieacllai �firy try" o.Ainixilo ofchannel flu, wan'ei. Then "MecT as WIIMRTIy. dr�J)Ih Mid t0l) Whith Vt Itt MTO (Oildlhmn Channel flow area (ft2) "first try" 5.80 Step 5- (',11culite the R ffoan, rIvanuirl geometly (Figure 8 05b, page 6 05, 5) Step 6. Deietrnkne toughueia coefficient Pt Stiorwrill (Anings- w, 'rable 8 0%, page 8 05 6 Grays 1-inung: a. Determine fetardance clax4 frog vegetation from'rable 8.0c. page 9,05 S To meet stabdiry use fewdance fot newly mowed cotidinon (geneiifly C' cm D) To deteimme (Ahianiel ti,ipac3rv, nose at least one relaTclance rlass: IlIghel, b Fie ter n frolal FIgt1re S05K.-, page 8 05 7 Step 7, CatcnWe die actixa! p�:Mnnel velocity V mwg Maxutjllg',. equnuon (Figme 8 105,i pp 8 0,5 3) and valculme cluximet c,,Apm Ily 0 wmg the C0111multy equauoll Stop & Check results agamit perinwabIe %elacav and required de,titn capacity to deGefnnnc- tf de�ign zv accepiabk Stop 9, IC de,;uP-,n n not ar :eptable, alt" channel dnnensiow,as ippropnwe For trapezoidA channels dins adiu5rment as usually ma4e by changing tile botioni width DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 see tame Deiow ror sreps o-a... a � Y N F o Q_ o E Q a m m a a o m o w Y E E 3 m w .E w m m Trapezoidal m ° o �LL =O >Of> Of �C) > > C) C) Figure 8.05b (ft) (ft) (ft) (ft) (ft) (ft) (ft/s) (cfs) m � m s � o U F ro d d W W W W U U O O SWALE 3 (TRIAL) 3 2.0 1.15 8.9 6.2675 9.27 0.68 3.38 D 0.04 4.80 a 30.1 a 0 0 0 0 0.00 #DIV/01 #DIV/01 #DIV/01 Q #9#9#9 Q 0 0 0 0 0.00 #DIV/01 #DIV/01 #DIV/01 Q #9#9#9 Q 0 0 0 0 0.00 #DIV/01 #DIV/01 #DIV/01 Q' ###### Q' Step 10, Fat gtma ,, hnend clumm nek, once tune ;ap1mopinate. channel a latnneno,du;anrm have beet ;eYea[ad for prava n'#tmdinnc,e candauauauv aepanav 6 r@t o6 -gh 8 an,ucg a lui ghee ifA axrdaanae cVav, c=e,,.parntd wp to nali guawu. AdIutA uajjncat¢ of the u.H muieV 1w v anydnag cieptb where ute con&fions peen o 1w(;1'TE I I&'dt agm ^,elc,cay° a r_,ncmex rltaa ran fft`ttrec a ternpttranat3 lianaw.8 an ay be terpuire�ed t,a teamlmn9ue the chmutmO a mip veg,epmuo n aw e5mdotln^nd eda The tempttcn ar)v h ueu nnaa,',, be Qffk querd fc" peak ffcmi o"I tt! a :T-y e al rcrr:u t If n channel mquuines a tetugpor ry° linndng the detdpw, mmuld analyzeu. '01rar an 1ho a:&nau"el to 'elect rthc Intel than p% %rdwa pan arecftAt, and prommee emabEiJumew of vegemnan. For the roesqu of tewupvrvrafy hawaa^;, use inaauiare force pttnwm,ectuie NOTE? Deuqu TablesVege+laud C,Ihannueh, .and Dug ermona at the end of t1m, sectannt. may be lived to n1e ngtn 8n'�i "med than neh evrau4a p m ttlbo ac N -a - o Q_ O .. o Ic C w e -o.� > U U o m a m a m m m > I. I. Trapezoidal --Grass Lined -o U) o m s o o B m LL= .� >> � of> m of u o 2 m > m > s m U s m U Figure 8.05b (ft/ft) (ft) (ft) (ft) (ft') (ft) (ft) (ft/s) (ft/s) (cfs) m s�mo o; o; Ico0 U U W W W U W U O O SWALE 3 DESIGN 3 2.0 1.7 12.2 12.07 12.75 0.95 3.7 3.50 B 0.065 3.7 a 45 a 0 0 w w w w U U O O SWALE 3 DESIGN -ITERATION 2 3 1.5 2 13.5 15 14.15 1.06 2.4 2.54 B 0.11 2.4 of 36 a wz wz cn (D cn (D 3 1.0 1 7 4 7.32 0.55 1.3 0.71 B 0.12 1.4 Louf Lou6 LU Ir Wp wz wz cn (D cn (D > in > in 3 1.0 1 7 4 7.32 0.55 1.2 0.66 B 0.13 1.3 Louf Lou5 LU Ir Wp St+P 9. i,. ( Pcecff a'Udeu 8xr aM%¢tuff capaacAy andmtabshrr. fit' Sata•lo:uge m, wr0.¢a.nEmn e.e.n1 111OWalle veh.,Cn6rMa ton the aec,L.iVaIg *[nruann,an onslel {7a,.u..ait an avaaacutwe tffl be icquued ("$oWe'8 05d page 8 (1,5_9) DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 User Input Data Calculated Value Reference Data Designed By: Date: 2/11/2021 Checked By: Mr Date: 211712021 Company: cum smi th Project Name: Yadkin WTP Project No.: 231695 Site Location (City/Town) Union County Channel/Waterway Id. SWALE 4 Step 1, Detellailie flies ueqwled Now capxn° s° Q b� peak ruuoff rate for the stesipm "101111 iApp,e)tdpc 8,03) Design storm 1 0-yr Required Flow, Q (cfs) 10.2 (includes flowfrom upstream swale 2) Step 2. Determine the slope and select chamiel geonietry and Iming Slope (ft/ft) 0.011 Channel geometry: V, Parabolic, or Trapezoidal Trapezoidal Channel lining Tall Fescue Step 3. Deteroono Oe fiernw,sabh� sA(xvv fciiffie hwmw sedecTeO otbor Permissible velocity (ft/s) 4.5 Table 8.05a Step4. VdOeO), ro aeaell a"flip A IVV' 05111nateofehalkukel fio%, mea Tlic-n selcoa pennieft s' ck-pih and tu,,a,x Oth flan fit �,ile cotidlttcm'i Channel flow area (ft) "first try" 2.27 Step 5. Calculme the hv&iulic nachkm R fiom channel geometry (FAgl Ke 8 0 5 1 u p i: g e 8 0:5 5 ) Stop 6, Deteirnme, Youg4nes,s coefficieut n. Stuwhir it Lininits—seeTractile 8 (15bpage 8.0.5 6. Grass, Lining: a ietitdaxice clas,, iLi, .Tetaiion fi(�,w, Table 8 05c . page 8 05 8 To meet sv�bihr, requirement use, ieratdancefcu aewly mowed condinomi (genefallv C oD) TO deu!tImne chalunelcapacarv, usem least wie ietmdimice class hNgher h Deteiinwe n fimut Figme 9,05c page 9 05, 7 Stop 7, Cilenhoe the acainll channell velocity. V, RISTng Maannillg « oqwuICMA (Fipure 8 051, fig 8 05 3). and cask ulme channel cnImcity, 0, ti=5 tho contuntuty equation Step 8i"heck tesuhs 'igalwt peyams,ssble ve9Qcit7and repined de�Igul capacity to rclerarrasiisie if de,,ign v, accepcible, Step 9. Tf design iar TIM: lccelwfl4e, Aber channel eFivmwnx Noa., a,; Ipproptlaie For Gray ezot&- dicinfiels, flus .idjuonient is usuAly wnwle by cluanging the b,miom %vchh DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 see tame aeloW Tor steps 5-a... (6 Y N L F - o a " a° 15 - U aY U u _Ul > O E 0 N Q a N N (6U N k O (6 a s 6I N N ° 0 0 (6 Q Q N Trapezoidal n m ° ° >j d- a ° ° ° > =aY >aY> ° aYU ° 2U ° > ° > UO OO Figure 8.05b (ft) (ft) (ft) (ft) (ft) (ft) Mal (cfs) m � s 4 N O F � LLI LLI LLI LLI LLI LLI LLI _ > LLI LLI LLI w w w O w O O O 3 1.5 1 7.5 4.5 7.82 0.58 2.59 D 0.043 2.51 a o 11.3 a 0 w w w w O O O O 2 2.0 2 10 12 10.94 1.10 4.93 D 0.042 3.96 a o 47.5 a 0 0 0 0 0 0.00 #DIV/01 #DIV/01 #DIV/01 Q ####t# 0 0 0 0 0.00 #DIV/01 #DIV/01 #DIV/01 O ##### O Sat,pa 10. Tug grass -lined chaa¢tnel, we t1W 114rn0pfuare a:Eimuiel dsin"m"vuus hme b,easu ^.e][ected ,rare low feumdamace coudR hcfns' �epe,vr 6 rirrn,esrgh 8:': ta.nng a faighel vecildaance ch"',, c.cvaa evp oxldd g V.f tall p,ms Aclikma capaciry of the a 2a. miel Lac a-atying. depth whete %0e condifto ^, grrrxv O Pw40I:':E l If des gvi v0ocita v, peawn Than 2 0 Ptt to a temporary lining aauay 1,e reclaua ed to mabihzr tlrre charmep until v°e,Set.ata,aw as e^nrabh!,hed The 1eatrrj3crm7 Imem may be designed foi pat, ak flov,, ticerm the 2-M eat Aco in If a channel n'e¢pua w, a r,mlijr m mold liwue*. the ck.,wugtwea spiomald snzrallyze shear ckre,:ea in tim.. clararaxinet tar select the ]raeq these pmc:nac, p otectwu and Incano , e�,9abpna,4ww ew of "recerrarlonr For the desIrn ccti teasupolaty lawrrr., u&e tiactiv-e fo; cee picxedute itii0'TF 2 C7e„vSw Iakapea. . i eratmd P,p;ivnary pre and DnermLna® at flax mead cf'thn secton mat proe tnsed to dewen ptav­h ned +ahmnteh wah pvaaabaahc ca c,Mssreea-tir.:aM (6 Y N L - o a Y t J - U aY O U U Im N "' > U O 0 N Q a N N N (6U E X 0 0 �, a s 6I Y6 Y6 N N 0 0 (6 Q (6 Q N Trapezoidal --Grass Lined m s ° ° �a =aY N �> ° ° >aY> ° aY0 ° ° �O ° > ° > UO UUU Figure 8.05b (ft/ft) s (ft) s (ft) s (ft) s (ft) s (ft) s (ft) s (ft/s) U a a U Mal m (cfs) m N O N O N O N O N O N O N O N O O N O N N O N O N O LL LL LL LL LL LL LL LL N 6 O > N.- LL LL LL w w w w 0 O SWALE 4 DESIGN 2 2.0 2 10 12 10.94 1.10 1.1 1.21 B 0.15 1.1 a 0 13 a p w Z w Z to (3 to (3 > to > to SWALE 4 DESIGN- ITERATION 2 3 1.0 1.2 8.2 5.52 8.59 0.64 1.8 1.16 B 0.11 1.1 w ww w ww 6 010 wZ wZ to c� to c� > to > to 3 1.0 1 7 4 7.32 0.55 1.3 0.71 B 0.12 0.9 It 0 4 010 w Z w Z to (3 to (3 > in > in 3 1.0 1 7 4 7.32 0.55 1.2 0.66 B 0.13 0.8 f ww 3 w wp �+cepe lf. Check owlew for care,mg capanty and +ataaimin6yr. If d ciamgue vepccftrer, exceed 111oarable v°elocines for flit, recede°umrp vrreaarrra. eam outlet pow,non °.tttuctnne:e uvcpf Ive aercpavaaed rl'a le S 05d, page S 05..9). DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 This structure is intended for less than 3 years of use. Structures intended for more than 3 years of use should be desinged as permanent structures. User Input Data Calculated Value Reference Data Designed By: JICI, bDate: 2/11/2021 Checked By: Date: 211712021 Company: smith Project Name: Yadkin WTP Project No.: 231695 Site Location (City/Town) Union County Sediment Basin Id. 101 Total Drainage Area (acres) 6.81 Sum of drainage areas A, B, D, E, & IF Step 1. Detername peak flw. Q,,I for the basin dralmagemea (.4pImnrhx 8,03) Q 10 (cfs) 32.5 Sum of all stormwater flows from swales (post construction) spillway or top of the &-im Minimum pool elevation (ft) 503 Maximum pool elevation (ft) 505 Step 3. Determine basiu i-churres, Compute mummull volunre required (I S(W frVacre, diswrbed). - Specify sedirnew clealrour leviel to be marked on riser (one-half the design volume referenced to the top of the riser) and sedrrilew storage area to be c,leared after the dam is buiV Disturbed acreage (ac) 13.77 Min Volume (ft) 24784 Sediment cleanout elevation (ft) 505 Sediment Storage Area 6830 Step 4. Determine area and shape of basili� • Check lexigqh/width ratio (diould be 2-1 to 6 1) • Compute the basin surface airea at principal Spillway. eh-vatioll • Chck the iatio of basin surface area to peak inflow rate (Should be greater thaii or equal to 435 ft'cfs), Employ chyersicnis ix"ah additicnial traps and basiiis to reduce area drained Deternime barrel capacity required foi site condo tioas i1111mmurn capacay feats OP is the 2-'year pe411111off, 02 Based on pond layout currently shown in dwgs, we will maintain at DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Length/width ratio Is length/width ratio between 2-6? Basin surface area @ principal spillway (ft) Ratio: basin surface area/Qlo Is ratio >= 435 ft2/CfS? Steyr '5. Detefirime the principal spillway diwlkarge capacity, 2.2 least 2:1 ratio in length/width YES, PROCEED 17860 Assuming spillway standpipe top 550 elevation is 505' YES - The combined capacities, of the prurcipal arid ea ergeticy spillways must be at least the I 0-year peak flow for the emire walt.-rshed of the basin, - The principal spillway is analYy zed fbr fluee, possible Itraitaig flo%%r t),J)es. weir floav' Olifice flow, aixi Pipe flONA, 'Ille, princip'll %)d11v'-"1y di'Wharge capacity is the sniallest of ffiese three flow raies. Discharges duough as skiirmier should be disregaided dining this cornputwion Wett. olifice and pipe flo%v imy be deterritiried by the following equatrons, 1. Weir ]Flow: Q=CLFV�` a%here: Q = dischaige in cubic feet per secorid (cf's) C = weir coefficient. ixse:3. I for corrugated metal pipe risers. L cumunference of [tie riser itifeet H head above mer crest in feet Weir coefficient, C 3.1 Riser circumference, L (ft) 12.6 Riser Diameter, ft= Head above riser crest, H (ft) 1 QW (cfs) 38.96 1 2 Orifice Flow0 = CA (2gfl)," I where 0 = disciraige in cubic feel per secon(cfi) C = orifice coeffic-ietit, use C = O6 for cornigated metal pipe, ftsers A = cross­sectioiral area of the lisel pipe in Squat e feet 9 := acceleration dire to p avity 32 2 ftisletl' F1 = fread Axwe riser crest m feet Ccmp=3.1 Orifice coefficient, Co 0.6 Ccmp=0.6 Riser cross -sectional area, A (ft2) 12.6 Accleration due to gravity, g (ft/s2) 32.2 Head above riser crest, H (ft) 1 Discharge, Q0 (cfs) 60.51 4 DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 3 Pipe Flo0 = a _ w� + K, where: Q discharge in cubic feet per second a cross sectiorial area of the birreI in square feet acceletation due to gav p I ty, 32.2 fvsec-' h head above the cewelline of the outlet mid of the barrel K,,,, = cesefficient of ntmor losses, can be assiumed to be 10 for most principal spillway S'Vsteriis L = barrel length in feet Ks = pipe fiictiori, coefficient: F E7.] 5087rj2"geeTable, 8,07c for K, valkites fm d j4Y3 Collurron size ofP11)r) ri = Mmiriiiig's coefficteiii of wirgluress, use 11 = 0,025 ftir cornigated metal pipe 0 0 15 foi i einforced concrete pipe arside (haztreter of'the bari el in inches seh-ct riser aild btulvl dirnensions so that the riser has a cross-sectiorvil atesk at least 1 5 times that of the barrel Spillway Irydranlics are irnprol,-ed by nisixittrizing weir flow and minitni7ing orifice flow. see Table 8 07b for recommended riserl.)ariel proportions Barrel diameter (ft) 1 Barrel cross -sectional area, a (ft2) 0.8 Accleration due to gravity, g (ft/s2) 32.2 Assuming barrel outlet (at discharge) is at an elevation of 502', Head above outlet end of barrel, h (ft) 3 and pond max WSE is 505' Minor loss coefficieint, Km 1.0 Km=1.0 (typical) Barrel length, L (ft) 94 Mannings coeffienct of roughness, n 0.025 ncmp=0.025 Inside diameter of barrel, di (in) 12 nRCP=0-01 5 Pipe friction coefficient, KP 0.1157 0.0341 Table 8.07a Discharge, Qo (cfs) 3.04 4.78 RISER ? eIed ttaiq riser and bartel Ue the v,,eiv, cnifice arid pipe flow ecitations to deteimmeafthe'21 -5,eai peak dmhaf?e is paved wohow actic`almly the spiftaj, Deter nine rv,,ft Aze from Figure 8 07b, Cheep the head and snige zequuetuearts If the design ,mge os too high, cho,,ose Iraper dmiensions acid recalculate. A a nimaymai, set the ele,.-attan of the tamer at ilre Table 8.07b same (.Aevaucm M 1he topofthe sediment pool, A riser height 2 to 5 tinses the baireldi,,imetera,treca=iiwitcled. Select a dewateraq dew ice If a Awn wel as u"ed, tefin to the friallufactsmers &wAteiiag data, at Table 6 64 1) Step 6. De"Ipu almseep colhn Ervane ttiat annseep ccUars ijre no closet than, 2 ft frDm i ppe Joint Coital 11,111'A project at Veast t 5 ft from the pipe Indicate vvatevighl murections S,tep 7. Dewign antiffDration block Detelawke the wean of vvater 4h,placed by the eflipty viset, Rnd deaAp at brock IV011 bkloyant weight 1.1 fiarriva the a�weqht ofwater daspInced DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Weight of water displaced by the empty riser Buoyant weight Step, S, Design outlet T)eoevnitte cb,"Chaigp vehichy fioul the Lmalrel Dpsign 011aet pirmection to arsine slible cos dftions Riprap plac*asent is ustially necessan, (AppvOix 8,06) Discharge velocity, V (ft/s) See Appendix 8.06 for riprap sizing, if necessary Determine the requi.ued capaciry foi the entei gency spifl ay as From Table a.o�o or Table= select the width Said depth of the otitlet, deptndmg on sod coudatons In peioei4L the widei bottom widths and 10%vea sIopes are plefened to no.ififfnze exit ve.lacitie,, it supexcinwal fiwv An acceptable alteraitive v, the uw of the in eir ejuatuarl Q = CLH" la bere this op%ou v,,, ined, the inaninuan valfie of Qiouki be 18 L v, the toucan width of the .ajpfllv;ay at the crest, Ind H vthe depth of flow Am the r.,,pfllway cmo in feet- Now N'Lluritug''I chaluiel equauQu ,AxeWd not be asset to size the spillway creA, Hnwevei, it tbo%fld tv used to demga the outlet channel below the cpdbxvv crest The total of the eaneflgencr wild Principle spillway capaclije% luw'-f equal or exce'ed the toquited 10yLai peak cinchaige • Set the eleyanon of the crest of the einelgeitcy s'JIM "vay a alivannMI of I fipcx above the crest offhe nse%, OPTION 1 Q10 Qp Emergency spillway capacity, Qe (CfS) Qp + Qe Does (Qp + Qe) equal or exceed Q1 0? 1568 1725 3.87 6.09 Table 8.07c Table 8.07d 32.5 ORMOMMERM 29 32.5 YES, PROCEED Step 10. Spilt" ay al)prolch wman Adjust the spilliway aligument so that the coats-ol section kind ontlet section are stlaight The eatiftfice loidthshould be 1 5 tifnes flat width ofthe contfol section W011 I sawoth tiansmouto the width of the conTral Action APIM-MCh dtmnneshould slope tourard the rcen-ozi no les,, than 2qo OPTION 2 Weir coefficient, C Bottom width of spillway crest, L (ft) Depth of flow above spillway crest, H (ft) Emergency spillway capacity, Qe (cfs) 2.8 15 1 42 45.04 YES, PROCEED DocuSign Envelope ID: 8776C646-9F29-4BAF-B928-8472362CBD84 Width of control section (ft) 15 Width of entrance (ft) 22.5 Slope of approach channel (%) 2 Is width of the entrance section 1.5xcontrol section width? YES, PROCEED Is approach channel >/= 2%? YES, PROCEED Step IL Locate the contiol seclion in the spfflway neat wheie it inteisects the extensiati of the cenrethue of the dam. Keqi i level wea to extendal least 20 fl upstteim fiout die outlet erO of the coiiaot s"ftom, to Pussire a arwght aligiunent Sack, dotte,hould b,e 3 1. Step 12. spill1rav exit should ahen v"Ah the ea litiol section and have the "Mae, bonom Wkfth and side sInlif". Slope should be,,'wfflcwnT to inaintain culmictiucal fliew, but nuake, sme a doeunot eveme elouve velocltles Sol, �Ite ccndislons (Stay 'Xithin +J'orje ranFes ui ippropisate deugn tables ) Extend the exit channel asp Peals whet"e"the watet, dainage Stop 13. Size the entbanlrinent Set the desgu elevanon ofthe top ofthe dam as mommmu of I ft Avove the watei surface fct uhe vies How cri the nneigency ipfflwwy Constructed hequbt should be 10""o yueatet than the desqui to altosv fever seftkulent Base tq3 width on the desqn heqlu. Set wAe Aopes 25 6 in fitittet Itshouldextendtoa =AaWe, ught siod liyei (a mininnun of 2 ft deep) Select botrznv saner the emerg.tency spillway cut will ptovtde n ultsI&Icani unoiluit of fill Step It Elosiou coWro Lacme mid desq gn r1verstons to, piotect embatblinnent and spillway (Practice5wndarriz 62(, Ttnnpoveva Diverslow) Select sufface ractectical vneamnew to COM101 etos"bon and 6 10, RiinporrxrSe eding; 6 14, Ain I rhing, and 6.15, Rl)p ra), Select Pnrrxwnarlcrcuen fil ealeireticy "PiDway to plovtde vrntectiou fiat deugn ffo- velcerty and site ccudsnpua imfnap stone W'et' georexule falnw way Lie tequaexl in eiodMe "011" ca Milen the r'pfflway is not m uudistcalsed sod,,, Step 14. Safety - Coustiuct a fence and msuffl warntug sqiis as needed