Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
NC0000272_2001ColorRemovalTechAssessment_20010201
r i 2001 COLOR REMOVAL TECHNOLOGY ASSESSMENT i BLUE RIDGE PAPER PRODUCTS INC. CANTON MILL CANTON,NORTH CAROLINA JACOBS ENGINEERING PROJECT NUMBER 16Y78100 j February 2001 r s- - Prepared By: Jacobs Engineering Greenville, South Carolina f 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. i Canton.North Carolina TABLE OF CONTENTS Page 1.0 BACKGROUND........................................................................... 1-1 1.1 INTRODUCTION ..................::........................................ 1-1 1.2 DESIGN BASIS..................................................................... 1-1 1.3 COST ESTIMATE BASIS......................................................... 1-2 1.4 STUDY HISTORY.................................................................. 1-2 2.0 TECHNOLOGY REVIEW................................................................. 2-1 2.1 BACKGROUND..................................................................... 2-1 2.2 FINDINGS............................................................................2-1 3.0 ALUM COLOR REMOVAL SYSTEM................................................ 3-1 3.1 SUMMARY.......................................................................... 3-1 3.2 PROCESS DESCRIPTION........................................................ 3-2 3.3 DESIGN BASIS..................................................................... 34 3.3.1 Secondary Effluent Characteristics...................................... 3-4 3.3.2 Secondary Effluent Pumps............................................... 3-4 3.3.3 Laboratory Testing........................................................ 34 3.3.4 Pump Capacity............................................................ 3-5 3.3.5 Chemical Storage......................................................... 3-5 3.3.6 pH Adjustment Basin................................................... 3-5 3.3.7 Reactor Clarifiers......................................................... 3-5 3.3.8 Sludge Dewatering....................................................... 3-5 3.3.9 Alum Regeneration System............................................. 3-6 3.3.10 Tertiary Effluent Pump Station......................................... 3-6 3.4 DESIGN ASSUMPTIONS........................................................ 3-6 3.5 BASIS OF ESTIMATED COST................................................. 3-7 3.6 DRAWINGS........................................................................ 3-9 3.7 COST DATA........................................................................ 3-10 3.8 REFERENCES...................................................................... 3-13 3.9 PROCESS CALCULATIONS.................................................... 3-14 4.0 LIME COLOR REMOVAL SYSTEM.................................................. 4-1 4.1 SUMMARY.......................................................................... 4-1 4.2 PROCESS DESCRIPTION........................................................ 4-2 4.3 DESIGN BASIS..................................................................... 4-4 4.3.1 Secondary Effluent Characteristics...................................... 4-4 4.3.2 Reaction Basin.............................................................. 4-4 4.3.3 Lime Storage............................................................... 4-4 4.3.4 Lime Kiln...............................:.................................. 4-4 4.3.5 Lime Slaker and Feeding Facilities.................................... 4-5 4.3.6 Color Clarifiers............................................................ 4-5 4.3.7 Recarbonation Basin....................................................... 4-5 4.3.8 Recarbonation Clarifier................................................. 4-5 4.3.9 pH Adjustment Basin................................................... 4-5 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina TABLE OF CONTENTS Pane 4.3.10 Sludge Dewatering....................................................... 4-6 4.3.11 Tertiary Effluent Pump Station......................................... 4-6 4.4 DESIGN ASSUMPTIONS........................................................ 4-6 4.5 BASIS OF ESTIMATED COST.........:....................................... 4-7 - 4.6 DRAWINGS........................................................................ 4-8 4.7 COST DATA........................................................................ 4-9 4.8 REFERENCES...................................................................... 4-12 4.9 PROCESS CALCULATIONS.................................................... 4-13 5.0 POLYAMINE COLOR REMOVAL SYSTEM....................................... 5-1 5.1 SUMMARY........................................................................ 5-1 k 5.2 PROCESS DESCRIPTION........................................................ 5-1 5.3 DESIGN BASIS..................................................................... 5-3 5.3.1 Secondary Effluent Characteristics..................................... 5-3 5.3.2 Laboratory Tests............................................................ 5-3 5.3.3 Chemical Storage......................................................... 5-3 5.3.4 Sludge Dewatering........................................................ 5-3 5.4 DESIGN ASSUMPTIONS..........................:............................. 5-3 5.5 BASIS OF ESTIMATED COST................................................. 54 5.6 DRAWINGS........................................................................ 5-6 5.7 COST DATA........................................................................ 5-7 5.8 REFERENCES...................................................................... 5-10 5.9 PROCESS CALCULATIONS................................................... 5-11 6.0 ULTRAFILTRATION SYSTEM....................................................... 6-1 6.1 SUMMARY........................................................................ 6-1 6.2 PROCESS DESCRIPTION........................................................ 6-1 6.3 DESIGN BASIS..................................................................... 6-3 6.3.1 Secondary Effluent Characteristics..................................... 6-3 6.3.2 Sand Filters......... ....................................................... 6-3 6.3.3 Clearwell................................................................... 6-3 6.3.4 Ultrafiltration System..................................................... 6-3 6.3.5 Ultrafiltration Cleaning System......................................... 6-4 6.3.6 Rinse Tanks............................................................... 6-4 6.3.7 OF Concentrate Storage Tank.......................................... 6-4 6.3.8 Evaporator................................................................. 6.4 6.3.9 Heat Exchanger........................................................... 64 6.3.10 Incinerator................................................................. 64 6.3.11 Cooling Tower............................................................ 64 6.3.12 Tertiary Effluent Pump Stations........................................ 6-5 6.4 DESIGN ASSUMPTIONS........................................................ 6-5 6.5 BASIS OF ESTIMATED COST................................................. 6-5 6.6 DRAWINGS........................................................................ 6-7 6.7 COST DATA........................................................................ 6-8 6.8 REFERENCES...................................................................... 6-11 6.9 PROCESS CALCULATIONS................................................... 6-12 ii 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina TABLE OF CONTENTS Paee 7.0 CARBON ADSORPTION SYSTEM.................................................... 7-1 7.1 SUMMARY........................................................................ 7-I 7.2 PROCESS DESCRIPTION........................................................ 7-1 7.3 DESIGN BASIS..................................................................... 7-3 7.3.1 Secondary Effluent Characteristics..................................... 7-3 7.3.2 Secondary Effluent Pump Station........................................7-3 7.3.3 pH Adjustment Tank....................................................... 7-3 7.3.4 Sulfuric Acid Storage Tank............................................... 7-3 7.3.5 Sand Filters................................................................. 7-4 7.3.6 Clearwell................................................................... 7-4 7.3.7 Carbon Columns.......................................................... 7-4 7.3.8 Final pH Adjustment Tank............................................... 7-4 6.3.9 Tertiary Effluent Pump Station......................................... 74 7.3.10 Caustic Storage Tank..................................................... 74 7.3.11 Regenerant Make-Up Tank............................................. 74 7.3.12 Evaporator................................................................. 7-4 - 7.3.13 Incinerator................................................................. 7-5 7.3.14 Spent Carbon Storage Tank............................................. 7-5 7.3.15 Thermal Reactivation Unit.............................................. 7-5 7.4 DESIGN ASSUMPTIONS........................................................ 7-5 7.5 BASIS OF ESTIMATED COST................................................. 7-6 7.6 DRAWINGS........................................................................ 7-7 7.7 COST DATA........................................................................ 7-8 7.8 REFERENCES....................................:................................. 7-11 7.9 PROCESS CALCULATIONS................................................... 7-12 8.0 STORAGE AND TIME RELEASE SYSTEM..................................... 8-1 8.1 SUMMARY........................................................................ 8-1 8.2 PROCESS DESCRIPTION........................................................ 8-1 8.3 DESIGN BASIS..................................................................... 8-2 8.3.1 Secondary Effluent Characteristics..................................... 8-2 8.3.2 Secondary Effluent Pump Station...................................... 8-2 8.3.3 Storage Pond Header ................................................... 8-2 8.3.4 Storage Pond................................................................. 8-3 8.3.5 Storage Pond Discharge Pumps........................................ 8-3 8.3.6 New Outfall Discharge .................................................. 8-3 8.4 DESIGN ASSUMPTIONS......................................................... 8-3 8.5 BASIS OF ESTIMATED COST................................................. 8-4 8.6 DRAWINGS........................................................................ 8-5 8.7 COST DATA........................................................................ 8-6 8.8 REFERENCES...................................................................... 8-9 8.9 PROCESS CALCULATIONS................................................... 8-10 Ill 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina TABLE OF CONTENTS Page 9.0 OZONE SYSTEM.......................................................................... 9-1 9.1 SUMMARY......................................................................... 9-1 9.2 PROCESS DESCRIPTION........................................................ 9-1 9.3 DESIGN BASIS......................:.............................................. 9-2 9.3.1 Secondary Effluent Characteristics..................................... 9-2 9.3.2 Influent Basin................................... ........................... 9-3 9.3.3 Ozonator Feed Pumps..................................................... 9-3 9.3.4 Ozone Reaction Vessels................................................. 9-3 9.3.5 Ozonation System ........................................................ 9-3 9.3.6 Injection Diffusers......................................................... 9-3 9.3.7 Off-Gas Filter............................................................... 9-3 9.3.8 Effluent Basin...................................... ......................... 9-3 9.3.9 Treated Wastewater Transfer Pumps.................................... 9-3 9.4 DESIGN ASSUMPTIONS......................................................... 9-4 9.5 BASIS OF ESTIMATED COST................................................. 9-4 9.6 DRAWINGS........................................................................ 9-5 9.7 COST DATA........................................................................ 9-6 9.8 REFERENCES...................................................................... 9-9 9.9 PROCESS CALCULATIONS................................................... 9-10 10.0 IN-PLANT STREAM TREATMENT................................................... 10-1 10.1 SUMMARY......................................................................... 10-1 10.2 CRYSTALLIZATION...... ........................................................10-1 10.2.1 PROCESS DESCRIPTION................................................10-2 10.2.2 DESIGN BASIS........................:.................................. 10-3 10.2.2.1 Side Stream Characteristics.................................10-3 10.2.2.2 Crystallizer Feed Tank.......................................10-3 10.2.2.3 Crystallizer Feed Pumps....................................10-3 10.2.2.4 Crystallizer....................................................10-3 10.2.2.5 Slurry Holding Tank Feed Pumps......................... 10-3 10.2.2.6 Slurry Holding Tank.........................................10-3 10.2.2.7 Filter Press Feed Pumps.................................... 10-4 10.2.2.8 Plate and Frame Filter Presses..............................10-4 10.2.3 DESIGN ASSUMPTIONS............................................... 104 10.2.4 BASIS OF ESTIMATED COST........................................ 104 10.2.5 DRAWINGS............................................................... 10-5 10.2.6 COST DATA............................................................... 10-6 10.3 POLYAMINE ..................................................................... 10-9 10.3.1 PROCESS DESCRIPTION................................................10-9 10.3.2 DESIGN BASIS............................................................10-9 10.3.2.1 Side Stream Characteristics.................................10-9 10.3.2.2 Polymer Storage Tank....................................... 10-10 10.3.2.3 Polymer Feed Pumps........................................10-10 10.3.2.4 Polymer Reaction Tank..................................... 10-10 10.3.2.5 Pre-Treatment Clarifier......................................10-10 10.3.2.6 Sludge Holding Tank........................................10-10 10.3.2.7 Dry Polymer Feed System..................................10-10 10.3.3 DESIGN ASSUMPTIONS.............................................. 10-10 iv 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina TABLE OF CONTENTS Page 10.3.4 BASIS OF ESTIMATED COST........................................ 10-11 10.3.5 COST DATA........................ .......................................10-12 10.4 PROCESS CALCULATIONS..................................................... 10-13 v 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina APPENDIX • Distributions for Monthly Average Flow Rates(MGD) for the Pigeon River at Canton (January 1929 to June 1996 Data) • USGS Data From 1929 to September 1990 • Summary of Flow Rates Data o Primary Influent and Secondary Effluent Flow • Statistical Analysis o Primary Influent Color Statistical Analysis o Secondary Effluent Color • Statistical Analysis • Overview of Mill Sewers Data for 03/25/98 • Average Measured Color in Mill Sewers as a Percentage or Primary Influent Color (1/1/00—8/31/00) • Color Loadings to Mill Sewer Areas • CRP Data—Liquid Purge Stream Solution • No. 6A Sewer Data • USGS Topography Maps of Fibreville,Pigeon River and Blue Ridge Paper • Clarifier Concrete Requirements • Operating Cost Update • Pump Quotations(Provided by ITT Industries/Goulds Pumps) • Wastewater Vertical Sump Pump Quotations(Provided by Goulds Pumps) o Model VIT-FF—(10,000 Flow) o Model VIT-FF—(20,000 Flow) • Carbon Adsorption System Quotation(Provided by Calgon) o Specifications o Sketches • Quotation for Ozone Color Removal from Biozone • Quotation for Ozone and Oxygen from Air Liquide • Budget Estimate for Purge Crystallizer from US Filter A 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. i Canton.North Carolina LIST OF FIGURES Figure 3.1 Alum Color Removal System Flow Diagram 3.2 Alum Color Removal System General Arrangement 4.1 Lime Color Removal System Flow Diagram 4.2 Lime Color Removal System General Arrangement 5.1 Polyamme Color Removal System Flow Diagram 5.2 Polyamine Color Removal System General Arrangement 6.1 Ultrafiltration System Flow Diagram 6.2 Ultrafiltration System General Arrangement 7.1 Carbon Adsorption System Flow Diagram 7.2 Carbon Adsorption System General Arrangement 8.1 Storage and Time Release Flow Diagram 8.2 Storage and Time Release General Arrangement 9.1 Ozone System Flow Diagram 9.2 Ozone System General Arrangement 10.2.1 Crystallization System Flow Diagram vii 1001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina TABLE OF ABBREVIATIONS j #/Day pounds per day Blue Ridge Blue Ridge Paper Products(also referred to as Canton Mill,Mill,Plant) CF cubic feet CMP Canton Modernization Project CO carbon monoxide COZ carbon dioxide CRP Chlorides Removal Process DAF dissolved air flotation DIA diameter EBCT empty bed contact time EPRI Electric Power Research Institute ESP electrostatic precipitator OF degrees Fahrenheit ft feet gpd/ftz gallons per day per square foot GPD/SF gallons per day per square foot gpm gallons per minute H2SO4 sulfuric acid HL head loss hp horse power HRT hydraulic retention time In inches Ibs/day pounds per day MGD million gallons per day mg/1 milligrams per liter NCDWQ North Carolina Division of Water Quality NOx nitrogen oxides NPDES National Pollutant Discharge Elimination System ODTPD oven-dried tons per day pH measurement of the acidity or alkalinity of wastewater P/M Eff% pump efficiency PPD pounds per day ppm parts per million PSD Prevention of Significant Deterioration psi pounds per square inch SCF standard cubic feet SF square foot SOZ sulfur dioxide SOR surface overflow rate SOX sulfur oxide compounds sq. ft. square feet S.U. standard unit SWD sidewall depth TDH total dynamic head TDS total dissolved solids TPD tons per day TSS total suspended solids OF ultrafiltration viii 1001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina TABLE OF ABBREVIATIONS USEPA United States Environmental Protection Agency USGS United States Geologic Survey UV ultraviolet light ix 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 1.0 BACKGROUND 1.1 INTRODUCTION Section III (14) of the December 1996 NPDES permit for the Canton Mill requires Blue Ridge to evaluate and report on end-of-pipe color removal technologies by March 1,2001. The report is to identify specific economic and implementation issues associated with these technologies and the projected additional color reduction expected for each. In addition, Blue Ridge is required to report on the results of on-going and planned color reduction activities. This document is submitted in satisfaction of those requirements. Eight color removal technologies are reviewed in this document: Alum Color Removal System Lime Color Removal System Polyamine Color Removal System Ultrafiltration System Carbon Adsorption System Storage and Time Release System Ozonation System Crystallization System A summary of results of the review is shown in Table 1-1. The first six of these technologies were originally selected by USEPA for evaluation by Blue Ridge's predecessor while USEPA retained the permitting authority for the Canton Mill. With the submittal of this report, Blue Ridge or its predecessor will have evaluated the technologies three times in the past thirteen years in an effort to identify either a breakthrough improvement in color removal efficiency or reduction in cost. 1.2 DESIGN BASIS A statistical analysis was applied to each of the parameters to provide a representative design basis. The basis for the conceptual design and cost estimates for the color removal system are summarized below: Average Flow - 24.8 MGD Peak Flow - 28.7 MGD Average Color - 43,188 lbs/day Maximum Color - 65,888 lbs/day These values are based on actual mill operating data from January 1, 1999 through August 31, 2000, which is representative of post-CMP effluent conditions. The treatment units are sized to accommodate the maximum loadings within a 99% confidence interval. Sizing treatment units to accommodate the 99% loading values insures reliable treatment performance under worst-case conditions. This is especially critical since the Canton Mill does not have any dedicated surge capacity for wastewater. It should be noted that even with this conservative design basis, the loading to the treatment system could exceed the design peak values approximately 4 days per year. The mill expects to exceed the 50 color unit effluent limit on those days. Depending on 1-1 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina coincident river flows, exceedance of the effluent limit may not cause a violation of the USEPA water quality standard in the stream,due to relatively high river flows. 1.3 COST ESTMATE BASIS The color treatment technology assessment reports submitted in 1987 and 1992 are the basis for updating the costs in a majority of cases. Sizes and quantities of equipment items are adjusted proportional to the change in color load and/or wastewater flow. Equipment costs are adjusted accordingly. Vendor quotes are obtained for any new equipment (sizes, types) and for most pumps to the extent possible. Engineering judgment, the six-tenths cost estimating rule, and in- house cost data from similar type projects are otherwise used. All costs are presented in January 2001 dollars. Additional land is required to implement most of the alternatives. The land necessary for installation of new equipment is owned by Blue Ridge. However, since the Blue Ridge owned property (Fibreville) is located approximately 1 mile from the main mill area, it is anticipated that Blue Ridge needs to acquire additional private or City owned properties between the new treatment area and the existing wastewater treatment plant. This is necessary for installation of piping and other utilities between the two treatment areas. Costs for additional land acquisition are included. It is assumed that this land may be purchased from the individual landowners and/or from the City of Canton. All labor costs are based on competitive labor with construction forces working a nominal 40- hour week with some occasional overtime. Labor rates are calculated for general construction labor and civil/structural construction labor. General construction labor is estimated to be$16.50 per hour for a bare journeyman rate. The construction costs are typically factored from equipment costs using historical factors from similar type and size projects. However, construction costs for utilities between the proposed treatment site and the present mill are estimated using a material take-off approach. 1.4 STUDY HISTORY The following related studies have been previously completed by the Canton Mill (Champion International Corp. or Blue Ridge Paper Products Inc.): • Effluent Color Treatment Reports April 1987 • Color Treatment Technology Assessment July 1992 • 1995 Color Removal Technology Report April 1995 • Color Treatment Technology Assessment October 1995 • Color Technology Measures Report June 1998 • Low Flow Contingency Plan December 1998 • Hardwood E.Report December 1999 • Waterville Reservoir Sampling 1999 • Balanced and Indigenous Species Study Plan March 2000 1-2 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 2.0 TECHNOLOGY REVIEW 2.1 BACKGROUND The Jacobs' Houston office performed an electronic database literature search for articles pertaining to color removal of wastewater treatment plant effluent. The search reviewed documents in the following databases: • American Chemical Society • Cambridge Scientific Abstracts • Engineering Information Inc. • Institute of Paper Science and Technology • Institute for Scientific Information • Institute of Textile Technology The search located 429 articles discussing the removal of color from wastewater treatment plant effluent. The articles pertain to the pulp and paper, the textile, the chemical, and the food industries. The articles were further reviewed to narrow the search to determine those applicable to Blue Ridge. 2.2 FINDINGS The following articles from the literature search were reviewed for their applicability: • Energy-Efficient Pre-Evaporation of Bleach Plant Filtrates Economic Evaluation of Various Options, J. Algehed, J. Stromberg, and T. Bemtsson, TAPPI Peer Reviewed Paper,2000. • Electrochemical Removal of Color and Toxicity from Bleached Kraft Effluents, A. Springer,V.Hand,and T.Jarvis,TAPPI Journal,December 1995. • Advanced Effluent Treatment in the Pulp and Paper Industry with a Combined Process of Ozonation and Fixed Bed Biofilm Reactors,A. Helble,W. Schlayer,P.Liechti,R. Jenny, and C.Mobius,Water Science Technology, 1999. • Colour and AOX Removal from Pulping Effluents by Algae, F.B. Dilck, H.M. Taplamacioglu,E.Tarlan,Original Paper,March 1999. • Colour Removal from Pulp and Paper Mill Effluent Using Waste Products, K. Bhattacharyya and N. Sarnia,Indian Journal of Chemical Technology, September 1997. • Color Removal with Natural Adsorbents: Modeling. Simulation, and Experimental, S.A. Figueiredo, R.A. Boaventura, and J.M. Loureiro, Separation Purification Technology, 2000. • Color Removal from Bagasse-Based Pulp Mill Effluent Using a White Rot Fungus, S.V. Srinivasan and D.V.S.Murthy,Bioprocess Engineering, 1999. • Ozone Generation Technology for Industrial Applications —Today and Tomorrow. N.J. Wiegart and H.V.Lang,courtesy Air Liquide, 2001. 2-1 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina • Process Parameter Development for Ozonation of Kraft Paper Mill Effluents, H. Zhou and D.W. Smith,Water Science Technology, 1997. • Process Modifications End-of-Pipe Technologies Reduce Effluent Color, B. Panchapakesan,Pulp and Paper,August 1991. As a result of the literature search and a knowledge of the mill process, it was determined that ozone and crystallization are emerging as potential color-removal technologies. These technologies are included in this report for analysis of their color reducing/removing capabilities. The other technologies discussed in this literature were considered, but were rejected for one or more of the following reasons: 1. The technology is only in the research or developmental stages and is not proven. 2. The technology is proven but is not applicable to the Canton Mill. 3. It is readily evident that the technology is cost-prohibitive based on a cursory review. In the April 1995 Color Removal Control Technology Report, the following end-of-pipe color removal technologies were evaluated: Technology Name Technology Description Chemox Chlorine dioxide used to oxidize color Hansel Enterprises Color precipitation NCSU—OF Titanium dioxide and UV color destruction Li in Removal Process Acid precipitation of lignin' Stone Process Polyacrylamide and polyamine polymer additions followed by Dissolved Air Flotation Radiation Disposal Services Ozone in combination with UV light Rolls Incorporated Enzymes and bacteria for lignin degradation FMC Chemical Oxidants Peracetic acid; Caro's acid with ozone Carbon Adsorption Activated carbon for color adsorption Alum Color Removal Precipitation with alum Lime Color Removal Massive lime addition for color precipitation Ultrafiltration Separate concentrated color using membranes Pol amine Color Removal Color precipitation using olyamine polymer Stored&Timed Release Store effluent and discharge only during periods of high river Color Reduction flow A ua ure Hydrogen eroxide with UV Erietz Magnetics Magnetic color separation 2-2 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina The following technologies were identified,but were eliminated: Technology Name Reason for Elimination Biological Augmentation in Activated Low probability of achieving 50%color removal and Sludge the cost of increasing oxygen input Biodegradation in Artificial Wetlands No color reduction occurs in artificial wetlands Wastewater Aeration+Chlorine+ Adverse environmental effects Hydrogen Peroxide Alum Precipitation in Primary Treatment More suitable as a tertiary treatment Polyamine Precipitation in Primary More suitable as a tertiary treatment Treatment Lime Precipitation in Primary Treatment More suitable as a tertiary treatment Precipitation by calcium chloride+alum Other precipitation technologies are more advantageous in rims treatment WaterChem,Inc Economically infeasible; impact on sludge dewatering unknown Calcium Ion Treatment in Activated The amount of color removal cannot be significantly Sludge Process expanded beyond present levels Precipitation by Ferric Ion in Primary Ferric chloride itself is colored,so it could cause color Treatment on its own Each of the sixteen (16) evaluated end-of-pipe color removal technologies is economically and/or technically infeasible for the Canton Mill for reasons similar to those identified for the technologies evaluated in this report. 2-3 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 3.0 ALUM COLOR REMOVAL SYSTEM 3.1 SUMMARY This section addresses color removal by aluminum sulfate (alum) in a tertiary treatment system. The estimated capital cost of this system is$57,373,000 based on 2001 costs and the assumptions summarized in Sections 3.4 and 3.5. The accuracy of this estimate is -30% to +30%. This estimate includes direct and indirect costs, as well as land acquisition and permitting. The annual operating costs associated with this system are estimated to be $26,408,000. The total annual operating costs include operating and maintenance costs,as well as interest and depreciation. The capital and annual costs are estimated based on the assumption that the tertiary treated effluent meets all other applicable water quality requirements of the Mill's NPDES permit. The TDS level of the effluent is expected to increase by 20-25% as a result of the tertiary treatment process. If the final effluent TDS. levels pose a water quality concern, additional treatment (reverse osmosis, ion exchange) may be necessary. Equipment costs for a TDS removal system could be as much as $50,000,000. Annual operating costs for the TDS removal system could be of the same order as the alum treatment system. Testing conducted for the preparation of the 1995 report indicates this process could theoretically achieve the treatment objective of 50 color units at the end of the mixing zone. Utilizing alum for color removal has a theoretical removal capability of 80-90%. Assuming an average color load of 208 color units and a theoretical removal efficiency of 85%, the effluent would be reduced to approximately 31 color units on average. At the maximum color load of 318 color units and the theoretical minimal removal efficiency of 80%, alum could reduce the effluent color to 64 color units. Accordingly, this technology would not consistently achieve the 50 color unit standard. There are no known full-scale installations of this technology for an application similar to the Canton Mill. In the 1970s, Gulf States Paper Company experimented with a full-scale alum treatment system at its Tuscaloosa, Alabama Mill. The system was abandoned due to persistent operating difficulties and inconsistent performance. The Bowater Catawba, South Carolina Mill is using alum in conjunction with polymer for in-plant, not final effluent, color removal. This technology is therefore not recommended for final effluent installation at the Canton Mill. The system would be designed for a peak secondary effluent color load of approximately 65,888 pounds per day. Space necessary to implement this alternative is not available in the present mill area. Therefore,property owned by Blue Ridge approximately one mile downstream and north of Fibreville would be utilized. Treated secondary effluent would flow through new piping to the treatment area. New reactor clarification equipment would be provided to add alum to the effluent and coagulate/precipitate the color-causing materials. Additional chemical addition and clarification equipment would be provided to recover the alum from the process sludge. Equipment would be included to dewater the sludge. A fluidized bed incinerator and all ancillary equipment would be provided to incinerate color-causing materials in the sludge and to recover alum ash for regeneration with sulfuric acid for reuse. Tertiary effluent would then be pumped through new piping to the present wastewater treatment area for discharge at.the existing outfall. 3-1 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina 3.2 PROCESS DESCRIPTION Effluent from the existing wastewater treatment plant would gravity flow to the alum treatment system through a 60-inch diameter underground reinforced concrete cylinder pipe. The nominal flow rate through the pipe would 24.8 MGD,while the maximum flow rate would be 28.7 MGD. The site is approximately one mile downstream from the mill along the Pigeon River, and immediately north of Fibreville. The wastewater would flow into a pH adjustment basin sized for 2 minutes retention time at 28.7 MGD. The basin would be a concrete structure, 35 ft x 18 ft x 11 ft deep and would be equipped with baffles and two mechanical agitators. Alum would be fed into this basin at a dose of 1,000 mg/1 together with any sulfuric acid necessary to adjust the pH to 5.5. The alum would be a mixture of regenerated alum mud and makeup alum in a solution of(50%) liquid alum. Makeup requirements were assumed to constitute approximately 5%of the total alum requirements. In addition to alum and sulfuric acid, the basin would receive flue gas scrubber water from the incinerator and filtrate from the dregs screen separator in the alum recovery system. The wastewater flow would then be divided between two (2) reactor clarifiers operating in parallel. The floc, produced as a result of the alum reacting with color compounds in the wastewater, would be allowed to settle in the clarifiers. The clarifiers would be concrete structures, 170 feet in diameter with a 15 feet sidewall depth. The SOR at peak flow conditions would be 765 gpd/fe,with a retention time of approximately 4 hours. Wastewater would enter the clarifier through a conical-shaped reaction well located at the center of the clarifier. The wastewater would then flow through the well to the clarification section of the unit where solids would be allowed to settle. Rake arms would be provided to continually move the settled solids inward to the sludge removal zone where they would be removed through sludge piping. The rake arms would be driven by a constant speed drive. The treated wastewater would then exit the unit through an effluent launder. The concrete clarifier basins and the steel mechanisms in contact with wastewater would have an acid-resistant coating for protection against the low pH wastewater. Following the clarifiers, the pH of the wastewater would be adjusted to between 6.0 and 8.0 s.u. by the addition of 50% caustic. A carbon steel storage tank, heated and insulated, would provide one week of storage capacity for the caustic. Dual 100% capacity metering pumps, controlled by an in-line pH controller,would feed the caustic into the wastewater. Following pH adjustment, the wastewater would be pumped back to the existing outfall at the mill wastewater treatment plant for discharge to the Pigeon River. Three pumps would be provided, each with a capacity of 10,000 gpm, which is approximately 50% of the design maximum flow rate. The wastewater would be returned through a 30-inch diameter underground reinforced concrete cylinder pipe. Underflow sludge at a consistency of about 1% solids would be pumped from the clarifiers to a dissolved air flotation thickener where it would be dewatered and concentrated to a consistency of approximately 5% solids. The thickener would be a concrete structure 40 feet in diameter and would include a thickener mechanism,air pressurization system, and recycle pump. 3-2 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina Air would be dissolved in the recycle portion of the thickener effluent and mixed with the sludge. Suspended solids would be entrained with fine air bubbles and rise to the surface of the thickener, creating a floating sludge layer that is then mechanically skimmed off. The skimmed sludge, as well as any settled sludge, would be transferred by gravity to a sludge blend tank sized for a thirty-minute storage capacity. The sludge blending system would consist of an open-top carbon steel tank equipped with a top-mounted agitator and baffles. The tank would be coated with an epoxy-type acid-resistant coating. Sludge would be pumped from the sludge blend tank to a screw press that would dewater the sludge to a consistency of about 20% solids. A level controller in the screw press feed well would control the feed rate of sludge to the screw press. Filtrate from the screw press would be recycled to the influent pH adjustment basin. The dewatered sludge would be carried by a screw conveyor to a flash drying system and a fluidized bed incinerator for alum recovery. A concrete pad storage area, large enough for 24 hours of storage time would be provided in the event the incinerator was out of service. The incinerator system would include a flash drying system that would mix the incoming wet sludge with a portion of the hot alum ash and flue gas. The sludge would be dried and ground in a cage mill prior to being fed into the incinerator where it would be burned at approximately 1,000 'F. Air would be injected to keep the bed fluidized. Combustion gases from the incinerator would pass through a high energy cyclone separator where particulate matter would be removed. Residual particulate materials would be removed by scrubbing with mill water. The scrubber water would be returned to the influent pH adjustment basin for treatment. The combustion gases would then be released through the stack. All materials in contact with the flue gas would be of type 316 stainless steel construction. The alum ash that settles in the incinerator would be carried by a screw conveyor and bucket elevator to a storage silo sized for one day of storage capacity. The silo would be furnished with a dust collection system and bin vibrators. A screw conveyor would feed alum ash into a file and acid brick-lined batch reactor where it would be mixed with sulfuric acid, water and steam to make alum mud. The reactor would be sized to make one batch of alum mud per 8-hour shift. It would be equipped with a side-entry agitator to keep the slurry in suspension. After a reaction time of 4 to 5 hours,the alum mud would be pumped to dual alum storage tanks that would provide 5 days of storage capacity for alum. The tanks would be of type 316 stainless steel construction. They would also be provided with unloading facilities for truck delivery of 50% liquid makeup alum. Approximately 6 tons/day on a dry basis of 50% liquid alum would be required for makeup under average design conditions. Dual 100% capacity alum feed pumps would be provided to feed an alum dose of 1,000 mg/l to the wastewater basin. The alum feed rate would be automatically adjusted proportional to the flow of wastewater by using variable speed drives on the pumps. Dregs that settle out in the batch reactor would flow to a dregs washing tank to be washed with mill water prior to being separated in a stationary screen separator and hauled to the landfill. The tank would be a tile-lined steel structure with a side-mounted agitator similar to the batch reactor. Pumps would be provided to transfer the washed dregs slurry to the screen separator. 93% 3-3 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina sulfuric acid for pH adjustment of the incoming wastewater and for the alum regeneration process would be stored in a tank with capacity for one week of storage. Dual 100% capacity metering pumps, controlled by a pH controller, would feed acid to the pH adjustment basin. Dual 100% capacity centrifugal pumps,manually-controlled,would feed acid to the bath reactor. A dry polymer dilution and feed system would also be provided to add a coagulant aid to the wastewater prior to clarification to assist in solids settling. The system would consist of a dry polymer hopper for receiving bagged polymer, an auger feeder,mixing tank with agitator transfer pump, storage tank,and feed pump. A building would be included to house the central control room, laboratory facilities, lunch area, and restrooms. 3.3 DESIGN BASIS The following is a summary of the design basis for the conceptual design and cost estimate for the alum color reduction system. Design conditions were based on historical data provided by Blue Ridge. Design chemical doses and sludge quantities are based on bench scale testing performed at the Canton Mill with composite samples of secondary effluent. Sludge consistencies from various stages of the treatment process are estimated based on engineering judgment. No testing was performed to confirm the sludge consistency estimates. Equipment sizing is based primarily on experience with similar equipment and processes as well as engineering judgment. 3.3.1 Secondary Effluent Characteristics Average Flow - 24.8 MGD Peak Flow - 28.7 MGD Average Color - 43,188 lbs/day Maximum Color - 65,888 lbs/day 3.3.2 Secondary Effluent Pumps • Pumping would not be required • Secondary effluent would gravity flow from the Mill • 60"diameter pipeline from existing outfall 3.3.3 Laboratory Testing Laboratory testing with samples of secondary effluent from the Canton Mill served as the basis for the following design conditions: • Alum Dosage - 750 mg/I for design average color loads 1,000 mg/l for design peak color loads • Solids Generated from Alum Treatment - 490 mg/1 3-4 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina • Sludge Solids Consistency— 1% Solids • Acid to Achieve pH 5.5 - None under normal conditions • Caustic Required to Achieve pH 7.5 - 225 mg/l 3.3.4 Pump Capacity • Use three 50%capacity pumps 3.3.5 Chemical Storage 0 One-week storage capacity would be provided for the following chemicals and materials: • Liquid alum • 93%sulfuric acid • 50%sodium hydroxide • No.2 fuel oil All chemical storage tanks would be located within a containment area. 3.3.6 pH Adjustment Basin • Size for 2 minutes HRT at peak flow • Volume=5,325 cubic feet 3.3.7 Reactor Clarifiers • Use solids contact reactor-clarifiers, each 170 feet in diameter and 15 feet SWD • Average SOR per clarifier=500 gpd/ft • Peak SOR per clarifier=765 gpd/ft • Retention time would be approximately 4 hours at peak flows 3.3.8 Sludge Dewaterine • Provide sludge storage for 30 minutes • Sludge consistency out of clarifiers— 1%solids • Sludge consistency out of DAF thickener—5% solids • Sludge consistency out of screw press—20%solids 3-5 I 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 3.3.9 Alum Regeneration System • Fluidized bed incinerator for burning sludge • Alum ash storage silo -sized for 1 day storage Volume= 1,960 cubic feet • Storage silo equipped with dust collection system and bin vibrator • Batch reactor—sized for one batch per 8-hour shift 3.3.10 Tertiary Effluent Pump Station • 3 pumps, each at 50%capacity for peak flow conditions • Pumping rate= 10,000 gpm each • Pipeline to existing outfall would be 30"diameter 3.4 DESIGN ASSUMPTIONS The following assumptions are made in developing the process design for the alum color removal system: 1. The process design is based on bench scale testing. No commercial applications are known to exist for an application similar to the Canton Mill. Pilot testing would be necessary prior to full scale implementation to assess technology feasibility and to confirm the design parameters. 2. Land required for installation of sub-surface piping between the existing secondary and new tertiary treatment systems could be purchased from individual homeowners and the City of Canton. 3. Relocation of water,natural gas, and sewer services presently buried beneath the roadway to the site would not be required. 4. Based on bench scale testing results, the addition of alum and other chemicals to the wastewater is expected to increase the TDS concentration of the discharge by 20-25%. Removal of dissolved solids (if necessary to comply with water quality or toxicity limits) would require treatment by an ion exchange or reverse osmosis process. Equipment costs for such a system could be as much as$50,000,000,if proven feasible. 5. Site work and excavation costs did not account for the presence of rock or hardpan in the area. If these materials are encountered, the estimated costs would increase. Subsurface exploration and testing has not been performed at the site. Rock excavation costs for installation of the pipelines between the existing wastewater treatment system and the proposed tertiary treatment site could be as much as$1,500,000. 3-6 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 6. The process design and costs are based on the premise that the color reduction would be performed in a tertiary treatment system. Alum treatment in' the existing primary clarifiers was also considered. However this approach is believed to be inappropriate for the following reasons: • Experience at other mills (E. W. Lang and R. L. Miller. TAPPI Environmental Conference Proceedings, 1977) suggests that color reversion may occur through the secondary treatment system. • The Canton Mill has no equalization facilities. It would be extremely difficult to achieve the target effluent color value on a consistent basis due to the fluctuations in influent wastewater characteristics. • The influent wastewater to the primary clarifiers contains relatively high concentrations (>500 mg/1) of primary solids. If alum were added at the primary clarifiers,the sludge quantities would increase two-to three-fold. Furthermore, since a significant fraction of the sludge would be primary solids, the alum recovery concept would most likely be technically infeasible and economically impractical. 7. Makeup liquid alum requirements are assumed to be 5%of the total alum usage. 8. Operation of the incinerator would result in emissions to the atmosphere of particulates, hydrocarbons, CO, SOZ and NO.. An air permit would have to be obtained to operate the incinerator. 9. A permit could be obtained for alum sludge disposal when the incinerator was out of service. It is anticipated that the incinerator would'be out of service approximately 20 days per year. 10. Alum sludge is thixotropic, i.e., its structure degrades over time. This characteristic of the sludge would cause problems in the landfill. 11. Solids consistencies for the various stages of the alum recovery process are assumed values based on engineering judgment. No sludge dewatering trials were performed to establish realistic sludge consistencies. 12. It was noted during bench scale trials that the alum treated effluent contained some floating solids. During cost estimation,no provisions were made for sand filtration of the alum treated effluent. Should sand filtration be necessary at full scale to maintain final TSS concentrations within the NPDES discharge limits, the costs would be increased significantly. Equipment costs for the sand filtration system would be as much as $5,000,000. 3.5 BASIS OF ESTIMATED COST The process design for this color removal system is based on bench scale testing. Since no commercial applications are known to exist at as large a scale as the Canton Mill, pilot testing would be necessary to establish the viability of the process and to develop firm design - parameters. 3-7 1001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina The estimated costs for this system are based on the bench scale testing results. If the pilot testing were to indicate major changes to the system, the cost estimates would increase proportionally to the necessary changes. Costs for additional pilot testing are included. The estimated design and construction time required for this project is 24 to 30 months. This does not include any time associated with permitting related activities. Installation of this tertiary treatment system may require a PSD permit. PSD permitting (in close proximity to at least two Class I areas, the Great Smokey Mountain National Park and the Shining Rock Wilderness Area) would require extensive analysis, permit reviews and a public hearing. PSD permit analysis and review would likely take more than 24 months. This would be in addition to the 24 to 30 months anticipated for design and construction of the system. Since the start date for the project is unknown at this time, all costs are presented in January 2001 dollars without any escalation. The cost for land necessary for the installation of pipelines between the Mill and the Fibreville site is included. It is assumed this land could be purchased from the individual homeowners and from the City of Canton. Other relevant cost basis assumptions are summarized earlier in Section 1.3. 3-8 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 3.6 DRAWINGS Included in this section are the following drawings related to the alum color removal system: • Figure 3.1 —Flow Diagram • Figure 3.2—General Arrangement 3-9 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 3.7 COST DATA Cost estimates for the alum color removal system are attached. Included are summary tables for the total capital cost and annual operating costs, as well as detail sheets for the total capital cost estimation. r. 3-10 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina COST DATA SUMMARY TABLES 3-11 TOTAL COST SUMMARY-JE PRIME CODE JOB: ALUM COLOR REMOVAL ESTIMATE DATE: 01/15/01 CLIENT: BLUE RIDGE PAPER COMPANY REVISION NO.: 0 LOCATION: CANTON,NC ESTIMATED BY: M.D.WATSON JOB NUMBER: ISY78100 CHECKED BY: CONSTRUCTION DURATION: TBD EST.FILE M '01001 ESTIMATE TYPE: ORDER OF MAGNITUDE G:IESTIMATRBIue Rldge116y781001[Alum Color Removal RO EMAILxls]PRIME CODE TCS PRIME CODE DESCRIPTION W-H OTY UNIT LABOR EQUIPMENT MATERIAL SUBCONTRACT TOTAL COST 11 DIRECT COSTS 50 MAJOR EQUIPMENT 29,280 0 0 $489.341 $10,982.204 $266,558 $636.970 $12.375.073 52 CIVIL,STRUCTURAL,ARCHITECTURAL 39.037 0 0 $564.424 $0 $757,794 $1.342,160 $2,664,378 55 BUILDING HVAC 912 1 LOT $13,363 $195.103 $D $164,984 $373,450 62 PIPING 209,992 32,710 LF $3,370,999 $0 $2,580,148 $0 $5,951,147 63 INSULATION-PIPE,EQUIPMENT B DUCTWORK 0 0 0 $0 $0 $0 $232.400 $232.400 64 INSTRUMENTATION 44,790 0 0 $734,968 $1757163 $371252 $0 $2863372 65 ELECTRICAL 24.750 0 0 $395,181 $495,003 $742.504 $0 $1,632.688 66 PAINTING,PROTECTIVE COATINGS 0 0 0 $0 $0 $0 $402,884 $402.884 67 LAND ACQUISITION 0 0 0 $0 $0 $0 $520,000 $520000 75 CONSTRUCTION SERVICE LABOR 52.314 0 0 $793,625 $0 $0 $0 $793.625 TOTAL DIRECT COSTS 401.075 $6,361,900 $13,429,482 $4,718.257 $3.299,398 $27.809,017 $I WH $15.86 INDIRECT COSTS 76 TEMPORARY CONSTRUCTION FACILITIES(IN WAGE RATE) 7.5% OL $0 $0 $477,143 $0 $477.143 78 PREMIUM TIME 10.0% OL $636,190 $0 $0 $0 $638190 79 CRAFT FRINGE BENEFITS(IN WAGE RATE) 6.0% DL $318.095 $0 $0 $0 $318.095 CRAFT PER DIEM&SAFETY INCENTIVES 17.2% OL $0 $0 $0 $1.203,226 $1,203.226 80 PAYROLL TAXES&INSURANCE(IN WAGE RATE) 23.0% DL $1,463,873 $0 $0 $0 $1.463,873 83 SMALL TOOLS(IN WAGE RATE) 4.0% DL $0 $0 $254.476 $0 $254.476 84 CONSUMABLE SUPPLIES(IN WAGE RATE) 7.0% DL $0 $0 $445,333 $0 $445.333 85 CONSTRUCTION EQUIPMENT(IN WAGE RATE) 25.0% DL $0 $0 $1,590.475 $0 $1,590.475 87 FIELD STAFF(IN WAGE RATE) 28.0% DL $1.781.332 $0 $0 $0 $1.781,332 TOTAL INDIRECT COSTS $4,199.490 $0 $2,767,427 $1,203,226 $8.170,143 ACCUMULATIVE TOTAL 401,075 $10,561,391 $13.429,462 $7,485,684 $4,602,624 $35,979.161 $IWH $38.23 81 NON-PAYROLL INSURANCE,TAXES,PERMITS 1.66% TIC $0 $537,178 $299,427 $115,052 $951,658 93 CONSTRUCTION HOME OFFICE COST(IN WAGE RATE) 0,74% TIC $381,714 $0 $D $45,001 $426.715 88 CONSTRUCTION MANAGEMENT 4,39% TIC $0 $0 $0 $2518541 $2518541 90 ENGINEERING PROFESSIONAL SERVICES 10.0 % TIC - $0 $0 $0 $5,738,676 $5,738.676 96 OUTSIDE CONSULTANT SERVICES 0.04% TIC $0 $0 $0 $25.000 $25,000 91 OWNER'S COST 5.02% TIC $0 $0 $0 $2878333 $2878333 70 SPARE PARTS,CATALYST,OPERATING SUPPLIES 0.00% TIC $0 $0 $0 $0 $0 71 START-UP ASSISTANCE 0.47% TIC $0 $268,689 $0 $0 $268,589 98 ALLOWANCE FOR UNFORESEEN 12.76% TIC $1647466 $2135285 $1167767 $2373484 $7318001 98 ESCALATION 0.00% TIC $0 $0 $0 $D $0 99 CONSTRUCTION FEE(IN WAGE RATE) 2.21% TIC $1.267,367 $0 $0 $0 $1,267.367 ROUND OFF $63 $485 $122 $289 $959 TOTAL PROJECT COSTS 401,075 $13,852.000 $16,371.000 $8,953,000 $18,197.000 $57,373,000 $I WH $40.46 7:49 AM 1 02/21/2001 2001 Color Removal Technology Assessment Alum Blue Ridge Paper Products Inc. Canton,North Carolina _ Pumps Flow, GPM Head Efficiency Hp Operating 1 Alum Feed 4 39.8 50 50 1.0 2 Sludge Transfer _ `r 2,968 100 75 99.9 3 Treated Wastewater Transfer 17,255 100 75 581.0 4 Recycle , 594 180 75 36.0 5 Screw Press Feed ;::";:a::= 594 100 75 20.0 6 Filtrate .St- 594 50 75 10.0 7 Alum Mud Transfer i' ,". 863 100 75 29.1 8 Dregs r r ' 49 100 75 1.6 9 Caustic Metering yr 6050 50 50 0.2 rx+. Total "''rca° "'e` ;:" "? 'c -._::�`'w> .'�-`-.,', :�-s '' 778.7 _- ="a4n a x ;�^s „�''..'iYi #.:t,'.r*^�`y.'•�'�'ugn''"`a.„, Y aY*`- #��-�€ N > r ^r '� .T o .u% r t{ �'� a`,w.l'u-_wee _✓ r_ o.4 u. � .'. ."�.�'. s.".W..ate ?�F^'�'..�"52�:.: ,=✓, 7..,;�, `#; Miscellaneous Motors f �6 ,: ?Y r? City Hp Ea Hp Total 1 pH Adjustment Basins Agitators ' ..t, µ >. F',".: 4 7.5 30.0 2 Dry Polymer Metedn Bin _`' .., *1 ;1'..,� G. ;#t 1 0.5 0.5 3 Dry Polymer Tank Agitators >' ' t 2 1.0 2.0 4 Reactor Clarifier Drives „ 2 10.0 20.0 5 Flocculators , t 2 15.0 30.0 fly 1 5.0 5.0 6 DAF Arm Drive 7 DAF Rake Drive k§; 1 5.0 5.0 8 Air Compressork 2 5.0 10.0 9 Sludge Blend Tank Agitator s` 1 5.0 5.0 10 Screw Presses 3 30.0 90.0 11 Sludge Screw Conveyors 1.0 3.0 12 Sludge Screw Conveyor r* ` _;' ;+ 1 5.0 5.0 13 Sludge Mixer 1 30.0 30.0 14 Cage Mill 1 30.0 30.0 15 Incinerator Feed Conveyor 1 5.0 6.0 16 Injection Screw . :tax :a 1 30.0 30.0 17 Incinerator Fans *7�;' kvp , 2 20.0 40.0 18 Screw Conveyor to Silo 1 6.0 6.0 19 Bucket Conveyor Y°" 1 5.0 5.0 20 Screw Conveyor to Reactor ram" "' ' fr 1 3 3.0 211 Batch Reactor Agitators or 2 25 50.0 22 Dre s WasherA itator i. d a, W a 1 5 5.0 3 Total Misc Motors �1r m 's ? ,aaru= .f .' 409.5 f ' Total O eratinV-,%Ig Horsepower a ;M y „+ „: yte`_, , r T . 1188.2 02/2012001' Operating$1.x1s 2001 Color Removal Technology Assessment Alum Blue Ridge Paper Products Inc. Canton,North Carolina Annual Operating Cost ,411 Area Value Units Price Units Annual Cost Vm 1 Operating Personnel 6.0 Man-Yrs $60,000 Per Year $360,000 2 Maintenance Personnel 6.0 Man-Yrs $60,000 Per Year $360,000 3 Outside Contractor Services 1.00 %of $13,429,462 Total $134,295 Equipment Equipment 4 Stores And Supplies 4.00 %of $13,429,462 Total $537,178 Equipment Equipment 5 Electrical Power 1,188.2 Horsepower $260.00 Per Horse- $308,938 power Year 6 Steam 34,868,945 Pounds Per $2.15 Per M $74,968 Year Pounds 7 No.2 Fuel Oil 3,717,580 Gallons Per $0.71 Per Gallon $2,637,771 Year 8 Water 23,955,763 Gallons Per $04 Per Million $2,000 Year Gallons 9 Chemicals r Y mayn l fixx i,r i 43 ��'#t,F t l E 4" aw r a+'S (-• i z n A Alum 5,105 Tons Per $138 Per Ton $703,502 Year B Sulfuric Acid 98% 51,365 Tons Per $64 Per Ton $3,287,341 Year C Caustic 50% 23,177 Tons Per . $410 Per Ton $9,502,471 Year + D Polymer 444 Tons Per $3,980 Per Ton $1,765,628 Year 10 Disposal- Dregs to Landfill 8,873 Cubic Yards $10 Per Cubic $88,725 Yard 11 Total Annual Operating 8 S ; ter, _ k l $19 762 818 P 9 a j h a32 # � Maintenance Costu 12 Interest 10.00 %of Total $57,373,000 Total Capital $5,737,300 Capital 13 Depreciation 5.00 % Eqpt& $18,147,719 Eqpt& $907,386 Material Material 14 Total Annual Cost is $26,407,504 t_. 02/20/2001 Operating$1.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina COST ESTIMATE—DETAIL SHEETS 3-12 8-o 959s$%o3TEa99SEYEEYsmt94St$v-8SS-ESYB#_Smm q-N N-NC=B m848 arz:=eoo+m«.».,_ °m ,. Ogg ssESSas Ogg ES SSE sagas Eggs SSE a as 988999 a aassa as so Ea a ass BE s PIS 8 Es as Sao as s$m 8888888888888888888888888888888888888888868888888888888888888888888888 8 s` �o 8 a a� �� P b� $� c �� b� $�' bS= 6�^ n p �� �� S+o o €� bR� 6� 8 6� � PmS" �c➢ o�y�msmm a m x mF a o » «$ m$ m o i »KFj m s F OA SG Am2q_qy`Ln OOO L 4 � g A PL � m N V � TA uP�pZOP $02amAD a s 22E 092 E Li e A Q a G z z 0 7 9 T9 T SC PT T P9 9p TV TP3 TV T TV TV VT T TV S99 PT 9 99 S W99 TCT £ F_ cF e u uu u uu uu as a «a maw as r Fo a - e o0 0 00 oe q% #8 4T moo .. . . og Eo eo a ee eoo 0o g .tl o aEg mmo °�' Fy p rCmo 8 '" Y T g A d s 0 00 0 0o ee m o m =3 Y S o0 0 o Ss I'_ ss a o0 eoo oe « 9N o gE. � S 98 20F v., �- 4g �$ g� p":e Fg &$ am m P� a�a we _ ?� � & $ r E �Ao »Q sg S m m g ;a0 _ on s to oo _ e so o ese so e s no �M ee a ss SEE ee & s a ss� euo " » AP « ««e «« « »» »» »« «flo Ea « S, «» b^A »» P APN »PP AA « rs p «»« not; _. 8 88 8 88 88 8 88 88 88 888 88 8 8 88 88 88 8 88 888 88 8 88 8 888 888 0 0o o ss US o SS 90 00 oss „oS 8 o vs SS 00 0 as 000 00 8 89 T Ogg -so-. •�4< ' E im o s ss s «» «» » »» »» «» ««g �« « s p« ss »« » «« »«» »» » »» »As »ss g m f 8 88 8 88 88 8 88 88 88 888 88 8 8 8`8 88 88 8 88 888 88 8 888 0 888 888 0 8 g � �»; m$ S 0o S so to s no ee SS 95 o0 0 0 SO 0o so o ee 88S oo o ss a Est sss � 0 00 0 82 ss 89 YE*§ so a o S$ g^ oo 8 00 SSE so 0 H . Ykg iAT 8 88 a oo 98 « $ H mg M ee o _a SS o0 0 so 000 00 0 80 »gig o. amgt&_omm ask v ohm 8ae3i.a.m...... o pm a as an an no Eggs as an EEO no asomssso sass EEO as among 8 no ago no m gas 8 g8an8 so as 8 so Ogg a sP` mom a s's'saa'saa'ss-a-ss-sgas-aa-aa-'s'aa"s-aas''aa's'sa'sa'ss'ss'a'a'ss's-aa''s'ss's'ss's's's'ssea"ssa'sas's-8's'sas'sa'ass8 sS :o _ E 8 . 8 x •. n _ E 8 4 « « a r p PI Z z • � O • • pp. }$5 D D . � Fu « • fCCy • i � p 8°TGoo o o o Snpy8py8 ydmy �° m �s $ m p9 �nB a $ $� As yBim p� mo-1Ts M % rR 3=sP aM o o c2 s o10 Y m �o E P m s � ° _ ___ _ ___ _____ _ _ __ _ 6'0 o V T S" S"S'S" S" S'S' S'i"S'S" S'L"P S'S" g S"S' f T S'L" S'S" S' TV TT L" g TV S"S'S" g S" S"S"S' T PT � og �x x «� 8888 8spee aEx' ao aE o .o oe.00 oeo 0 5o as«o H.A. 9m9 ave8 EE o zT 8E e a Ga .So ma 89. 0 wm _____ ___ _ __ ____ _____ mwm _ __ _ wm __ _ - -- ___ -- -mr _ __ Tn r as EeSos sss s �s @asms�> k @��m '8 E s e a xgrs E ee t x «« « « « « x x „g - EE oa s sss E F e &a =Faa �zt o Ek = 8 Aga as :as a vv g s y ry 9no $ m rJ.g T' }' '!! P „ u a' a x� Tr Yg 3 ,Yi•lu g•a sEi� sa osss ems a s m � E sma $E= mE :� E ash s e E« sss N% has a ee " tl MN tl n.5 SP „„a„ar aag a „a onto ««„oa aoa „ron «« « ga as „ «P as Poa ar PPS a xx NF a8 88888 888 8 88 8888 888$$ 888 8888 88 8 88 88 8 8 88 888 88 888 8 88 a nmam >� Dmozg En Santa not n as sass sorgo -.an Sass ee a to as E 8 an can as ass a sa aF<o `•g`• FFF 8 «« ««t•x• novas «ax x«x« «x «« xa $ x «« «.8•p ;; "a- «« S m 8 ne 888 888$8 mem S 88 88888 88888 8888 88888 88 a 8888 888 $ 8 88 88g 88 8885 888 ;`� i 0 «o v a-. Evans art 9 82 Stan nnssg 888 88ra as ee eE 8 a o0 otg as oA d at Ee ees „ as EEE ., ma �a eess� mo% 9.ea a8 t a a a «% ? a., a"=.0 art a aE �z s a aga H o m m« Eeg SI ginm> s T. eE asg Ea"s « % � sa g $ g » n gs aag 29 naV saa a a n n n 8 p w 0 V Gt 8 » 8 s. 8 8 s 8 8 8 s 8 881 88 8 888 88m 8 8 8 s 8 8 8= i S n a a » a a a o a R ass ss a saa a » p$ 8 8 m�nW ni wCwUw n 8 8 8 8 8 8 8 8 8 8 8 8 8 S 8 s 888 89 8 888 888 8 8 s 8 8 8 a s a s '^ a as sa as a s tt „ 128e » a » » » n n a a n ffW s 8 8 8 s a s 8 8 8 8 8 8 8 8 8 �$s 8 §88 g88 s a s s a a_ $ n » » n n n » » » » n n D »�a »�a a „ a°= .°s 2.2 asm 2a 8 s a o « « a 8 J 8 8 8 8 8s8g 88 s 88S 88N 9 a s 8 a _ _ 3�3 66 9 69° 630 0 le s l w � o g 5�e got � � � � g oos ° a "a a 8 8 8 8 s o 8 a4° $ $$o � o m m n r a= 8 8888888888888888888888888888886 8 8 -------------------- 8 8888888 ' Ea asapasasaaasaaaa8saaaaaaaaaaaa� a ���8����kesgsesassss a mmmssss 'g8 xa8sasaasaa88��i�iri�n� � go _agsmams_ssags-as �sasgs"as `srrrnnr�aapa 'a'a"a"aa�R'a aka xRx3 �5a'aR`s"a"s3 DETAIL DIRECT COST JOB:ALUM COLOR REMOVAL ESTIMATE DATE:0111=1 CLIENT:BLUE RIME PAPER COMPANY REVISION NO.:0 LOCATION:CANTOR NO ESTIMATEOBY;M.O.WATSON JOBNOMBER:MINIM CONSTRUCTION DURATION:TOO EST.ALEN:'01001 ESTINTE TYPE ORDER OF MAGNITUDE O MpT_BBlin pltlp\1ayT81001INum We?Rwnwel fl0 FF1NL.JsIPRIME COMICS JE AREA-01 TOTAL PROCESS TOTAL SUB TOTAL LINE PRBAE SUB EQUIPMENT ALUM COLOR REMOVAL WHI TOTAL WSTI DIRECT EQUIPMENT PROCESS MATERIAL TOTAL CONTRACT SUB UNIT TOTAL ALL NO WOE CODE NUMBER DESCRIPTION OTY UNIT UNIT W.W. WN LABOR UNITCOST EQUIPMENT UNITC09T MATERIAL UNRCOST CONTRACTS COST COSTS 435 62 15100 AI5 62 151W 5 IF PROCEED MAINE ZEE IF 201 'I=0 M w f5A533 SO.W $0 S19N n9.280 sow $a $510, S10181I 43} n 51W 430 n 151E 8 24'STOW SEWERS 2,0110 LP OAS No SIMOS $15.411 SOW 50 S1a.20 SX.aW =00 $0 $2691 $51.61, 09 02 151E 4W n 151E } B-SANITARYSEWERS 1,000 LF 0.Y YO $IBM SS,na Sow SO ft}.W $12.0.V sow SO $2270 SYJ.}}9 .1 02 15100 AIB 92 151w 0 0-WATERSUPPLY 1,000 LF 1.58 1,EA° $19.0 S25.354 SOW EO S14.00 S14,00 fow f0 5393E SSE35I 0. 02 15100 666 02 151E 9 WSTFAMUNE 5.280 LF ]W 15.840 $16w 5251,279 SO.w SO $31.71 f10}.420 $am $0 5}o0T 5421,709 02 151E 4411 62 151E 10 PCONOENSITEUNE 3,6201F I.W SAW SLOW 587,W5 sow SO $law 1362w $0.00 f0 f34.08 MITES M] 62 51w HB 62 151w 11 PROCESS PIPING 1 LOT 60,412 W412 $16 BE s"ma JO SO.w $a $1.047,331 EI,Ba},3]1 SO.w 50 52.74SSSI 52.245.551 420 421 02 151E TOTAL-PIPING II,710 LP 8A2 2W,02 Slaal $;]}O,PoO f0 STSAB 12550,140 $0 $182 f8.951.141 472 an 414 15000 INSUTATON-PIPE,EQNPMEMBOULMORN 425 418 a3 15000 IB EOUIPM RISULATION Is.= SP S`C 0 SIA as SO fow $0 Saw f0 $14SO 52f0,0w 514013 $210.000 An B] 15800 478 n 15500 19 WILDING INSULATION LW2 5P FC 0 $14.0 so sow so $ow so S14W MADE SUW u2.400"I 412 IS 108E TOTAL-INSIMTON-PIPE,EQUPMENT(DUCTWORK 0 s0.w SO SO SO 5233,4E 5232.4E 434 405 1]dYl INSITNNENTATON 4W 487 81 17000 14 CONTROLVALVES 1 LOT 2,430 2.435 $1641 $40,000 SOw SO Sow 50 $am $0 pooloo f40.WG aW 81 I7000 489 W I1w0 16 PANELS 1 LOT nt 731 SI541 E14000 Sow So SOw $0 SO.w $0 $12,003 $12w0 4W 54 Vwo 19, 84 17WO To OIS}RIBUTWEWNTROIS 1 LOT 20,771 2a,771 f1641 5439,2E 51.761 S1.257.153 SOW $O sow SO MISS.., $249SM1 492 94 17wo 497 04 5}O[O FAcrORm FItOULVsrALLEO PI20CEss EQIIIPME/f}Wsr I LOT 14,0E KEES $1841 s243,E20 so So f371,252 $371.211 so SO W14,952 SaKou 4W 4" ON nWo TOTAL-INSTRUMEWATON 44,700 VIUNI 673.0" y1,nTpn 8371= fO 1GAnpn SEE 501 502 lawo ELECTwGL Sal M BE lam FACNREOFrouIN5ME'l P WS5E0UIPMENr COLT 1 LOT 24.750 24.7E E16B} $30.181 SAME] UK. 51425S4 S742w4 f0 S0 1,5320E SU632.089 W1 n3 u 160M TOTAL-ELECTUCAL 24,7E MAY S]n,101 f495,003 STAMEN f0 fL8120W 534 WE WdLO PNNRNG,PROTECRVECOATN09 SY W} E Sam PAJNTNO ALLOWANCE 3%EQUIPMENT COST 1 LOT b'C 0 f14.W f0 SO GO $0 SOW SO SAO2.BB1 f4w,884 E402.851 S402,81A 542 5J3 W M. TOTAL-PAINTNO,PROTECTVEWATWOB 0 $0.W $0 s0 f0 Hw.0a4 S4w.WN W WS 548 IIW3 IANOAtON9RION SIT 540 01 Mw3 LAND AWUIVVCN E AC &L 0 $14.0E $0 fow SO E.w E $05.0.0 E E.. $65.0.tl 5520.w0 5W `b4 e1 I1003 TOTAL-LNDACQNSITON 0 fDW SO f0 f0 MEAN, n30,OD3 55 SB W2 665 W9 WE 345,781 $16.97 $5.563$}5 f13,I29.482 $4,118,257 $3,299.398 f2T,015,]9] 749AM a av2lawl 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 3.8 REFERENCES Following is a list of references used to prepare this section. 1. Sirrine Environmental Consultants,Effluent Color Treatment Reports from April 1987— Champion International Corporation,April 1987. 2. SEC Donohue, Color Treatment Technology Assessment—Champion International Corporation,July 1992. 3. Metcalf&Eddy,Inc.,Wastewater En 'nigi eering: Treatment,Disposal and Reuse, Second Edition,McGraw Hill Company, 1979. 4. E.W. Lang and R.F.Miller,Color Increase of Treated Kraft Mill Effluents,TAPPI Environmental Conference Proceedings, 1977. 5. Champion Intemational Corporation, 1995 Color Removal Technology Report,April 1995. 3-13 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 3.9 PROCESS CALCULATIONS Process calculations are performed to size all major equipment. A copy of the process calculations is attached. 3-14 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. `Alum Canton, North Carolina Parameter Value Units Value Units 1 Pipeline 60 In. Dia. 2 Retention Basin : __ A Retention Time 2.0 Minutes B Volume 39,833 Gallons 5,325 CF C Area 17.5 Ft Width 35 Ft Length D Depth 2 Ft Freeboard 11 Ft Depth 3 Alum Addition x n 5 YJ, r Muc: A Total 1,000 m /I 239,189 #/Da B Regenerated 95 % of Total 227,230 #/Da C Liquid Make-up 11,959 #/Day Dry 2,868 GPD D Alum Feed Pumps 1 Quantity 2 Qty Total 1 Operating L Rating 40 GPM Each 40.00 GPM Design 3 Requirements 50 Ft TDH Estimate 50 P/M Eff% 4 Power 1.0 Hp Each 1.0 Hp Design _ E Storage Tank .VI... 1 ]Capacity „5, Days Cap Total 288,000 Gal Cap Total 2 Tankage 1 Qty 0 % Excess Ca 3 IDimensions Calculated 37 Ft Dia 37 Ft Ht 4 IDimensions Design 40 Ft Dia 40 Ft Ht 4 Reactor Clarifiers A Rating 765 GPD/SF 37,490 SF r B Capacity 60 % of Total 22,494 SF C Dimensions 85 Ft Radius 169 Ft. Dia D Depth 15 Ft SWD 170 Ft Dia Design E Quantity 2 Each F UnderFlow Solids 1 Color Generated M49 m /I 59 TPD 2 Total Solids 178.2 TPD G UnderFlow Flow % Solids 2,968 GPM H Slud a Transfer Pum s ',1 Quanti Qt Total 2 O eratin2 Ratin GPM Each 1,632 GPM Design 3 Re uirements Ft TDH Estimate 75 P/M Eff% 4 Power 55 Hp Ea. 60 Hp Design 5 Treated Wastewater Transfer Pumps A Quantity 3 Qty Total^ 2 Operating B Rating 9,958 GPM Each 10,000 GPM Desi n C Requirements 100 Ft TDH Estimate 75 P/M Eff% D Power 337 Hp Each 350 Hp Design 6 Wastewater Return Header 30 In Dia 1.42 Ft HL/100 Ft 7 Dissolved Air Flotation Thickener w4x k.` s x "` ' s r I ; A Requirements 3.0 GPM/SF 989 SF B Sizing 35 Ft Dia 40 Ft Dia Design C Solids 5 % 594 GPM t � #x ,. "'f"t'. } m .n ;�5'mm§{2r g:T Y 7 • - D Recycle Pumps �,.,, .,rt -_ xZ 1 Quantity 2 Qty Total 1 Operating 2 Rating 20 % of Total 594 GPM Design 3 lRequirements 180 Ft TDH Estimate 75 P/M Eff% 4 Power 36.0 H Each 40 H Design 02/20/2001 Design Basis1.xls 2001 Color Removal Technology Assessment Alum Blue Ridge Paper Products Inc. Canton, North Carolina Parameter Value Units Value Units 8 Slud a Tank s, i.x A .. . = k Y A Design 30 Min.Cap 17,805 Gal _ B Sizing 20 % Excess 21,366 Gal Desi n C Dimensions 15.4 Ft Dia 15.4 Ft Ht D Design 1.6 Ft Dia 16 Ft Ht E Screw Press Feed Pumps " 13 1 Quantity 2 Qty Total 1 Operating 2 Ratin 594 GPM Each 653 GPM Design 3 Re uirements 100 Ft TDH Estimate 75 P/M Eff% 4 IPower 22.0 Hp Each 25 Hp Design 9 Screw Presses ' ;{ 'ti�. A Rating 60 TPD Rating 2.97 Qty. Min. B Requirements 1 #of Spares 4 Qty Required C Filtrate Pumps 1 Quantity 2 A Qty Total 1 Operating L Rating 594 GPM Each 653 GPM Design L Requirements 50 Ft TDH Estimate 75 P/M Eff% 4 Power 11.0 Hp Each 15 Hp Design D Concrete Pad 1 Capacity 178.2 TPD Dry 20 % Solids 2 Volume 891 TPD Wet 0.75 Tons/CY 3 Sludge Cone Area 1188 CY Wet 61 Ft Dia 4 IStorage Area 60 Ft Width 80 Ft Lon 10 Fluidized Bed Reactor A Ash 1 Basis 5 %Ash From Color 5,860 Color#/Da L Design 227,230 Alum#/Day 117 Total TPD 3 Screw Conveyor to Silo 200 % Capacity 324 #/Min 4 Screw Conveyor to Reactor a IBasis 30 Min. Feed Time 8.0 Hrs/Batch b IDesign K21,583 #/Min 3,000 #/Min Design 11 Batch Reactor A Basis % Solids 8.0 Hrs/Batch 1 Volume Gal 25,899 Gal Design 2 Dimensions Ft Dia 16 Ft Ht B Alum Mud Transfer Pum s * i 1 Quanti Q Total 1 O eratin2 Ratin GPM Each 900 GPM Design 3 IRequirements 100 Ft TDH Estimate 50 P/M Eff% 4 113ower 45.5 Hp Each 50 Hp Design 12 Dregs Washer . �s x xiw _t:-� 2c�'ry v .k tta-s,•xF g E .'_- '� '�'i A Basis 5 % of Total Solids 11,654 #/Day Dregs B Flow 2 % Solids 48.5 GPM C Detention Time 120 Minutes D Dimensions 10 Ft Dia 10 Ft Ht E Dregs Pum s .t+"9 ks 3:t a " w"�Jlvrn 1 Quantity 2 4 Qty Total 1 Operating 2 Rating 49 GPM Each 50 GPM Design L Requirements 100 Ft TDH Estimate 75 P/M Eff% 4 Power 1.7 Hp Each 2 Hp Design 02/20/2001 Design Basisl.xis 2001 Color Removal Technology Assessment Alum Canton, Ridge Paper Products Inc. Canton, North Carolina Parameter Value Units Value Units 13 Caustic Feed System C" A Basis 225 mg/l 53,818 #/Day Dry B Concentration 50 % Conc 11.5 #/Gal C Flow 6.50 Gal/Min _. D Storage Tank TT 1 Capacity 7' Days Cap 65,517 Gal Ca 2 ITankage 1 Qty 20 % Excess Ca 3 IDimensions 24 Ft Dia 24 Ft Ht E Caustic Metering Pumps 1 Quantity 2 Qty Total 1 Operating L Rating 6.50 GPM Each 6.50 GPM Design L Requirements 50 Ft TDH Estimate 50 P/M Eff% 4 Power 0.2 Hp Each 0.5 Hp Design F pH Adjustment Basin £ ." rn , *r ,fix, 1 Retention Time 2.0 Minutes 2 Volume 39,833 Gallons 5,325 CF 3 Area 17.5 Ft Width 35 Ft Hei ht 4 IDepth 2 Ft Freeboard 11 Ft De th 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina i 4.0 LIME COLOR REMOVAL SYSTEM 4.1 SUMMARY This section addresses color removal by lime in a tertiary treatment system. The estimated capital cost of this system is $60,884,000 based on January 2001 costs and the assumptions summarized in Sections 4.4 and 4.5. The accuracy of this estimate is-30%to+30%. This estimate includes direct and indirect costs, as well as land acquisition and permit costs. The annual operating cost of this system is estimated to be $19,353,000. The total annual operating cost includes operating and maintenance costs, as well as interest and depreciation. The capital and annual costs are estimated based on the assumption that .the tertiary treated effluent meets all other applicable water quality requirements of the Mill's NPDES permit. The TDS of the effluent is expected to increase by 20-25% as a result of the tertiary treatment process. If the final effluent TDS levels pose a water quality concern, additional treatment (reverse osmosis, ion exchange) may be necessary. Equipment costs for a TDS removal system could be as much as $50,000,000. Annual operating costs for the TDS removal system could be of the same order as the lime treatment system. Testing conducted for the preparation of the 1995 report indicates this technology could theoretically achieve the effluent color standard of 50 color units at the end of the mixing zone. Lime color removal has a theoretical removal capability of 80-90%. Assuming an average color load of 208 color units and a theoretical removal efficiency of 85%, the effluent would be reduced to approximately 31 color units on average. At the maximum color load of 318 color units and the minimal removal efficiency of 80%, lime could reduce the effluent color to 64 color units. Accordingly, this technology would not consistently achieve the 50 color unit standard. There are no known full-scale installations of this technology for an application similar to the Canton Mill. In the 1970s, full-scale lime treatment for color removal was attempted at two mills: the Interstate Paper Mill in Riceboro, Georgia, and Continental Can in Hodge, Louisiana. Both systems were abandoned due to their failure to meet the color treatment objective. This technology is therefore not recommended for installation at the Canton Mill. The system would be designed for a peak secondary effluent color load of 65,888 pounds per day. Space necessary to implement this alternative is not available in the present mill area. Therefore, property owned by Blue Ridge approximately one mile downstream and north of Fibreville would be utilized. Treated secondary effluent would gravity flow through new piping to the treatment area. New reactor clarification equipment would be provided to add necessary quantities of lime to the effluent and precipitate the color-forming materials as sludge. A dewatering system, a new lime kiln, and some ancillary equipment would be provided to incinerate color-forming materials in the process sludge and recover lime for reuse. Tertiary effluent would be pumped through new piping to the present wastewater treatment area for discharge at the existing outfall. 4-1 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 4.2 PROCESS DESCRIPTION Secondary effluent from the existing wastewater treatment plant would flow by gravity to the lime treatment system through a 60-inch diameter underground reinforced concrete cylinder pipe. The design average flow rate through the pipe would be 24.8 MGD, and the maximum flow rate would be 28.7 MGD. The site is approximately one mile downstream from the mill along the Pigeon River, and immediately north of Fibreville. The wastewater would flow into a reaction basin sized for 15 minutes retention time at the design maximum flow rate of 28.7 MGD. The basin would be a concrete structure, 68 feet long by 34 feet wide by 19 feet deep and would be equipped with baffles and four mechanical agitators. Lime slurry would be fed into the reaction basin to be mixed with the incoming wastewater. - The wastewater flow would be divided between two dual flocculating clarifiers operating in parallel. The floc produced as a result of the reaction between lime and the color compounds in the wastewater would be allowed to settle in the clarifiers. The clarifiers would be concrete structures, 170 feet in diameter with a 15 foot SWD. The design peak surface overflow rate for each clarifier would be 765 gpd/ft2 and the minimum hydraulic retention time would be approximately 4 hours. Wastewater would enter the clarifier in a flocculation well located at the center of the clarifier. The wastewater would then flow through the well to the clarification section of the unit where solids would be allowed to settle. Rake arms would be provided to continually move the settled solids inward to the sludge removal zone where they would be removed through sludge piping. Due to the dense nature of the lime sludge, the mechanism would have a higher than normal torque rating. The rake arms would be driven by a constant speed drive. The treated wastewater would then leave the unit thought an effluent launder. A recarbonation basin would be provided to adjust the pH of the wastewater to 10.5 and to convert dissolved calcium hydroxide to calcium carbonate prior to final settling in the recarbonation clarifier. The recarbonation basin would be a concrete structure designed to provide 2 minutes of retention time at a 28.7 MGD wastewater flow. A sparging system consisting of 316 stainless steel piping and nozzles would be installed in the recarbonation basin. The basin would also include two mechanical agitators to achieve complete mixing of COZ with the wastewater. Commercially available CO2 would be used for the recarbonation system. A COz storage feed system would be provided complete with a liquid COz storage tank,vaporizers, control valves and piping. The recarbonation clarifiers would be conventional type clarifiers without the center flocculation zone. The clarifiers would be used to settle the calcium carbonate sludge formed in the recarbonation process. The center drive units and rake mechanisms would be similar to the tertiary clarifiers described above. The pH of wastewater exiting the recarbonation clarifiers would be adjusted between 6.0 and 8.5 s.u. in a pH adjustment basin. The basin would be sized to provide 2 minutes retention time for reaction of wastewater with 93% sulfuric acid. The acid would be pumped from a carbon steel storage tank using diaphragm-type metering pumps. The sulfuric acid storage tank would be 4-2 � I 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina designed to store a one-week supply of acid. The two metering pumps would each be rated for 100%of the required capacity. Following pH adjustment, the wastewater would be pumped back to the existing outfall at the mill wastewater treatment plant for discharge to the Pigeon River. Three pumps would be provided, with a capacity of 10,000 gpm each, which are each approximately 50% of the design maximum flow rate. The wastewater would be returned through a 30-inch diameter underground reinforced concrete cylinder pipe. Sludge from each clarifier, at 3% consistency, would be pumped to a common sludge blend tank with one hour's retention time. Dual 100% capacity pumps would be provided for each clarifier. The sludge blend tank would be an open top carbon steel tank, and equipped with top-mounted agitators and baffles. Sludge would be pumped from the sludge blend tank to three vacuum precoat filters where it would be dewatered and concentrated to a consistency of about 40% solids. Each filter would be sized for 50% of the sludge flow. The precoat would be a 25% calcium carbonate slurry that would be prepared in the precoat mix tank from bagged calcium carbonate and mill water. Filtrate from the vacuum filters would be pumped back to the reaction tanks to be mixed with the incoming wastewater. The sludge handling and dewatering equipment would be housed in a prefabricated metal building. The dewatered sludge would be discharged from the vacuum filters to a screw conveyor that would transfer it to a lime kiln where the sludge would be burned for lime recovery. The lime kiln would have a design capacity of 275 TPD and would be fired with No. 2 fuel oil. A storage tank with a one-week supply of fuel oil and a pump and heater set to transfer fuel oil to the lime kiln would be provided. Combustion gases from the lime kiln would pass through a venturi scrubber where particulate matter would be removed by scrubbing with mill water.The scrubber waste would be returned to the reaction basin at the influent end of the tertiary treatment system. The combustion gases would be released to a stack. All materials in contact with the flue gas would be corrosion resistant. Rebumed lime from the lime kiln would be transferred by a drag line conveyor and bucket elevator to a lime storage silo with a 3-day storage capacity. The silo would be provided with a dust collection system and bin vibrators. A pneumatic unloading system would be provided for truck shipments of make-up lime. Dual lime feeders with 100% capacity each would feed lime to two 80% capacity lime slakers. The slakers would use mill water heated to 120°F with 30 psi steam from the mill to produce a 10% lime slurry. A dregs washing and handling system would be provided for the slakers. Dual 100%capacity lime slurry transfer pumps would pump the lime slurry to a storage tank with a 2-hour capacity. An agitator would be provided to keep the slurry in suspension. Dual 100% capacity feed pumps would feed the lime slurry to the reaction basin to mix with incoming wastewater. The feed rate would be proportional to the wastewater flow rate. The pumps would be equipped with variable speed drives that would be controlled by a flow controller in the wastewater line. 4-3 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina A building would be included to house the central control room, laboratory facilities, lunch area, and restrooms. 4.3 DESIGN BASIS The following is a summary of the basis or the conceptual design and cost estimate of the lime color removal system. Design conditions are based on recent,bench scale test performed with secondary effluent. The equipment sizing is based primarily on experience with similar equipment and processes and on engineering judgment. 4.3.1 Secondary Effluent Characteristics Average Flow - 24.8 MGD Peak Flow - 28.7 MGD Average Color - 43,188 lbs/day Maximum Color - 65,888 lbs/day 4.3.2 Reaction Basin • Size for 15 minutes HRT at peak design flow • Volume=39,937 cubic feet 4.3.3 Lime Storage • Size for 3 days storage • Volume=27,500 cubic feet • Complete with a dust collection system and bin vibrators • Dual lime feeders at 100% capacity each would be provided with pneumatic unloading facilities 4.3.4 Lime Kiln -- • Provide kiln with 275 TPD capacity fired by No.2 fuel oil • Provide storage tank heaters,etc. 44 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 4.3.5 Lime Slaker and Feeding Facilities • Provide 2 lime slakers at 80% capacity each • Water for slaking would be heated with 30 psi mill steam • Lime would be fed as a 10%solids slurry • Provide lime storage tanks for 2-hour storage • Provide dreg washing and handling capability 4.3.6 Color Clarifiers • Solids contact flocculator clarifiers would be appropriate for this application • Average SOR per clarifier= 500 gpd/ft • Peak SOR per clarifier=765 gpd/ft • HRT would be 4 hours at peak flow 4.3.7 Recarbonation Basin • Size for 2 minutes HRT at peak flow rate • Provide stainless steel distribution system for injection of COZ gas into waste stream • Provide mechanical mixers 4.3.8 Recarbonation Clarifiers • Use conventional design clarifiers • Average SOR per clarifier=500 gpd1fC • Peak SOR per clarifier=765 gpd/ft2 • HRT would be 4 hours at peak flow 4.3.9 pH Adiustment Basin • Size for 2 minutes HRT at peak flow rate • Facilities would be included for H2SO4 storage and addition i 4-5 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 4.3.10 Sludge Dewatering • Provide sludge storage for 1 hour • Provide dual pumps from storage at 100%capacity each • Loading rate of rotary precoat vacuum filters—250 lbs/day per square foot • 3 filters, each designed for 50%capacity • Cake consistency—40% solids(assume) 4.3.11 Tertiary Effluent Pump Station • 3 pumps, each at 50%capacity for peak flow • Pumping rate— 10,000 gpm each • Provide a 30"diameter pipeline to existing outfall 4.4 DESIGN ASSUMPTIONS The following assumptions are made in developing the process design for the lime color removal system: 1. The process design is based on scale test results. Bench scale data is used since there are no known commercial installations of this technology for an application similar to the Canton Mill. Pilot testing would have to be performed to further assess the technical feasibility of the technology and to confirm design parameters. 2. Land required for installation of sub-surface piping between the existing secondary and new tertiary treatment systems could be purchased from individual homeowners and the City of Canton. 3. Relocation of water,natural gas, and sewer services presently buried beneath the roadway to the site would not be required. 4. The addition of lime and other chemicals to the wastewater would result in a 20-25% -- increase in the TDS concentration of the discharge. Removal of dissolved solids, if necessary to comply with water quality or toxicity limits,would require further treatment by an ion exchange or reverse osmosis process. Equipment costs for such a system, if proven feasible, could be as much as$50,000,000. 5. Site work and excavation costs do not account for the presence of rock or hardpan in the area. If these materials are encountered, the estimated costs would increase. Subsurface exploration and testing have not been performed at the site. Rock excavation costs for installation of the pipelines between the existing wastewater treatment system and the proposed tertiary treatment system could be as much as$1,500,000. 4-6 I _ 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 6. The process design and costs are based on the premise that the color reduction would be performed in a tertiary treatment system. Lime treatment in the existing primary clarifiers was also considered. However this approach is believed to be inappropriate for the following reasons: • Experience at other mills (E.W. Lang and R.L. Miller, TAPPI Environmental Conference Proceedings, 1977) suggests that color reversion may occur through the secondary treatment system. • The Canton Mill has no equalization facilities. It would be both difficult and impractical to maintain a consistent color quality exiting the primary clarifiers due to the fluctuations in influent wastewater characteristics. • The influent wastewater to the primary clarifiers contains relatively high concentrations (>500 mg/1) of primary solids. If lime is added at the primary clarifiers, a significant fraction of the resultant sludge would be primary solids. The presence of the primary solids would render the lime recovery concept technically infeasible and economically impractical. 7. Operation of the lime kiln would result in emissions to the atmosphere of particulates, hydrocarbons, CO, SO2, and NO.. An air permit would have to be obtained to operate the lime kiln. 8. A permit could be obtained for lime sludge disposal when the kiln is out of service. It is anticipated that the kiln would be out of service approximately 20 days per year for maintenance activities. 9. Sludge consistencies presented for various stages of the treatment process are assumed values based on engineering judgment. No sludge dewatering trials were performed. 4.5 BASIS OF ESTIMATED COST ` The process design for this color removal system is based on bench scale testing. Bench scale testing was necessary since there are no know commercial installations of this technology for an application similar to the Canton Mill. The estimated costs for this system are based solely on the bench scale test results. The actual costs for full scale implementation may be higher. The estimated design and construction time required for this project is 24 to 30 months. This duration does not include any time associated with permitting and related activities. Installation of this tertiary treatment system may require a PSD permit. PSD permitting in close proximity to at least two Class I areas, the Great Smokey Mountain National Park and the Shining Rock Wilderness Area, would require extensive analysis, permit reviews and a public hearing. PSD permit analysis and review would likely take more than 24 months. This would be in addition to the 24 to 30 months anticipated for design and construction of the system. The cost for land necessary for the installation of pipelines between the Mill and the Fibreville site is included. It is assumed this land could be purchased from the individual homeowners and from the City of Canton. Other relevant cost basis assumptions are summarized earlier in Section 1.3. 4-7 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina —' 4.6 DRAWINGS Included in this section are the following drawings related to the lime color removal system: Figure 4.1 Flow Diagram Figure 4.2 - General Arrangement 4-8 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 4.7 COST DATA Cost estimates for the lime color removal system are attached. Included are summary tables for - the total capital cost and annual operating,costs. Detail sheets for estimation of the total capital cost are also included. T I 4-9 200I Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina COST DATA SUMMARY TABLES 4-10 i TOTAL COST SUMMARY-JE PRIME CODE JOB: LIME COLOR REMOVAL SYSTEM ESTIMATE DATE: 01115101 CLIENT: BLUE RIDGE PAPER COMPANY REVISION NO.: 0 LOCATION: CANTON,NC ESTIMATED BY: M.D.WATSON JOB NUMBER: 1SY78100 CHECKED BY: CONSTRUCTION DURATION: TBD EST.FILE M '01001 ESTIMATE TYPE: ORDER OF MAGNITUDE GAESTIMATRBIue Ridge\16y781001[Lime Color Removal RO EMAIL.xls]PRIME CODE TCS PRIME CODE DESCRIPTION W-H QTY UNIT LABOR EQUIPMENT MATERIAL SUBCONTRACT TOTAL COST DIRECT COSTS 50 MAJOR EQUIPMENT 49,029 0 0 $819,388 $11.486.024 $278,787 $162,000 $12.746,198 52 CIVIL,STRUCTURAL,ARCHITECTURAL 36,774 0 0 $531,708 $0 $711,607 $2,812,160 $4,055,475 55 BUILDING HVAC 912 1 LOT $13363 $195103 $0 $164.984 $373450 62 PIPING 213,131 32.710 LF $3,421,381 $0 $2,655,721 $0 $6,077.102 63 INSULATION-PIPE,EQUIPMENT B DUCTWORK 0 0 0 $0 $0 $0 $162,400 $162,400 64 INSTRUMENTATION 311815 0 0 $638935 $1637764 $191,193 $0 $2,665891 65 ELECTRICAL 25,492 0 0 $407,032 $637,310 $764,772 $0 $1.809,114 66 PAINTING,PROTECTIVE COATINGS 0 0 0 $0 $0 $D $424.686 $424,686 67 LAND ACQUISITION 0 0 0 $0 $0 $0 $520000 $520,000 75 CONSTRUCTION SERVICE LABOR 54,623 0 0 $828,651 $0 $0 $0 $828,651 TOTAL DIRECT COSTS 418,777 $6.658.458 $14,156,200 $4.602.080 $4,246,230 $29,682,967 $IWH $15.00 INDIRECT COSTS 76 TEMPORARY CONSTRUCTION FACILITIES(IN WAGE RATE) 7.6% DL $0 $0 $499,364 $0 $499.394 78 PREMIUMTIME 10.0% DL $665846 $0 $0 $0 $665,846. 79 CRAFT FRINGE BENEFITS(IN WAGE RATE) 5.0% DL $332,923 $0 $0 $0 $332.923 CRAFT PER DIEM B SAFETY INCENTIVES 17.2% DL $0 - $0 $D $1.256,330 $1.256.330 80 PAYROLL TAXES&INSURANCE(IN WAGE RATE) 23.0% OL $1,532,111 $0 $0 $0 $1.532,111 83 SMALL TOOLS(IN WAGE RATE) 4.0% DL $0 $0 $266.338 $0 $266,338 84 CONSUMABLE SUPPLIES(IN WAGE RATE) 7.0% DL $0 $0 $468,092 $0 $466,092 85 CONSTRUCTION EQUIPMENT(IN WAGE RATE) 26.0% DL $0 $0 $1.664.614 $0 $1,664,614 87 FIELD STAFF(IN WAGE RATE) 28.0% OIL $1.864,368 $0 $0 $0 $1,584,368 TOTAL INDIRECT COSTS $4,395,248 $0 $2,896,429 $1,256,330 $81548,007 ACCUMULATIVE TOTAL 418,777 $11.053.706 $14,156,200 $7,498,509 $5,502,560 $38,210,975 $IWH $36.31 81 NON.PAYROLL INSURANCE,TAXES,PERMITS 1.64% TIC $0 $566.248 $299,940 $135,051 $1.001.240 93 CONSTRUCTION HOME OFFICE COST(IN WAGE RATE) 0.73% TIC $399.507 $0 $0 $46.987 $446,494 88 CONSTRUCTION MANAGEMENT 4.39% TIC $0 $0 $0 $2674768 $2674,768 90 ENGINEERING PROFESSIONAL SERVICES 10.00% TIC $0 $0 $0 $6,090,629 $6,090,829 96 OUTSIDE CONSULTANT SERVICES - 0.040/a TIC $0 $0 $0 $25,000 $25.000 91 OWNER'S COST 5.02% TIC $0 $0 $0 $3058878 $3,058878 70 SPARE PARTS,CATALYST,OPERATING SUPPLIES 0.00% TIC $0 $0 $0 $0 $0 71 START-UP ASSISTANCE 0.47% TIC $D $283.124 $0 $0 $283,124 96 ALLOWANCE FOR UNFORESEEN 12.76% TIC $1717982 $2260836 $1169767 $2629811 $7.768,396_ 98 ESCALATION 0.00% TIC $0 $0 $0 $0 $0 99 CONSTRUCTION FEE(IN WAGE RATE) 2.18% TIC $1,326,445 $0 $0 $0 $1.326,445 ROUND OFF $360 ($408) ($217) $115 ($149) TOTAL PROJECT COSTS 418,777 $14,498,000 $17.258,000 $8,968,000 $20,162,000 $60.884,000 $1WH S40.55 6:30 PM 1 02J2012001 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Lime Canton, North Carolina Pumps r, , -F = Flow, GPM Head Efficiency Hp Operating 1 Sludge Transfer 631 100 75 21.2 2 Sl : :ud a Transfer r� �_�`` �^ 1,145 100 75 38.6 3 Treated Wastewater Transfer ` z 17,255 100 75 581.0 4 Vacuum Filter Feed -.fir, 1,776 25 75 14.9 5 Filtrate ��74-'W 1,776 50 75 29.9 6 Kiln Scrubber Recirculating x, t r y. 500 500 75 84.2 7 Slaker Scrubber Recirculating 968 100 75 32.6 8 Lime SlurryFeed ry rs 1,000 100 75 33.7 • 9 Sulfuric acid Metering i 100.0 100 50 5.1 10 Fuel Oil _ 8.3 300 50 1.3 r,"' Total r 842.4 u fs..s" ."ux`-`�'� t.�"x#. i.C.."�G' r -__�% .j.. !.�1..._,3_....dr . b ��,x•s,v"nEv.._.._. ,: .." s.0 N.' .`...., r't `-_....-�.4�i... ,t+..ti :: Miscellaneous Motors z= =; Qty Hp Ea Hp Total 1 pH Adjustment Basins Agitatorsj. 4 7.5 30.0 2 Reactor Clarifier Drives =, 2 10.0 20.0 3 Flocculators 2 15.0 30.0 4 Carbonation Basin Agitators Z-14'a 2 7.5 15.0 5 Carbonantion Clarifier Drives 4 7.5 30.0 6 Sludge Blend Tank Agitators { w x* r` 2 5.0 10.0 7 Vacuum Filter Drives ; * fi 2 15.0 30.0 8 Vacuum FilterA itators 2 5.0 10.0 9 Vacuum Pumps `= _ 2 25.0 50.0 10 Precoat Tank Agitator 1 3.0 3.0 11 Lime Slurry SG age Tank Agitator " ?:1 _, 1 7.5 7.5 12 Lime Silo Vibrator 1 3.0 3,0 13 Lime Kiln Drive , 4 50.0 200.0 14 Lime Kiln Primary Air Fan F tea= t sr; 1 50.0 50.0 15 Time Kiln Secondary Air Fan y 3 ;" 1 75.0 75.0 16 Time Kiln ID Air Fan 1 250 250.0 17 Fuel Oil Pumps;>a 1 15.0 15.0 18 Fuel Oil Heater r° a xt .` c rt{;1 1 20.0 20.0 19 Lime Crusher 1 10.0 10.0 20 Lime Slaker Drives 2 2.0 4.0 21 Time Slaker Agitators m „ s, w` . 'v' ' 2 10.0 20.0 22 Time Slaker Fans 4.0 8.0 23 Drag Line Conveyor R " k;> + w sr.~t 1 15.0 15.0 24 Bucket Conveyor = r„ 1 15.0 15 25 Screw Feeders , =F+' iy e`r k°: 5 7.5 37.5 rr Totat Misc Motors C ' }, : '°r_' ' ' " 958.0 Total O eratin Horsepower .:+; t_ ,�y. Wit° 1800.4 02/20/2001 Operating$1.xis 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Lime Canton,North Carolina Annual Operating Cost -'U Area Value Units Price Units Annual Cost 1' Operating Personnel 6.0 Man-Yrs $60,000 Per Year $360,000 2 Maintenance Personnel 6.0 Man-Yrs $60,000 Per Year $360,000 i 3 Outside Contractor Services 1.00 % of $14,156,200 Total $141,562 Equipment Equipment 4 Stores And Supplies 4.00 % of $14,156,200 Total $566,248 Equipment Equipment 5 Electrical Power 1800.4 Horsepower $260.00 Per Horse- $468,097 power Year 6 Steam 15,260,709 Pounds Per $2.15 Per M $32,811 Year Pounds 7 No.2 Fuel Oil 4,578,213 Gallons Per $0.71 Per Gallon $3,248,425 Year 8 Water 160,592,340 Gallons Per $84 Per Million $13,409 Year Gallons 9 Chemicals 4r: ailai e ¢ r A Lime 9,396 Tons Per $69 Per Ton �$644,564 Year B Sulfuric Acid 98% 41,342 Tons Per $64 Per Ton $2,645,909 Year C Carbon Dioxide 51,052 Tons Per $69 Per Ton $3,497,028 Year D Calcium Carbonate 532 Tons Per $150 Per Ton $79,853 Year 10 Disposal-Dregs to Landfill 25,730 Cubic Yards $10 Per Cubic $257,303 Yard 11 Total Annual Operating 8t ¢ 'Nx 'x, s F§ $12,315,209 Maintenance Cost 12 Interest 10.00 % of Total $60,884,000 Total Capital $6,088,400 Capital 13 Depreciation 6.00 % Eqpt& $18,758,280 Eqpt& $937,914 Material Material 14 Total Annual Cost + sm• t� _ �� x .... - SO: I :i $19 341 523 02/20/2001 Operating$1.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina I COST ESTIMATE—DETAIL SHEETS I 4-11 �F1-51 a»p 99R Y^ x $aR ?'s » »a »� »»" ma d » s »»w »a Pi g tt g w sz gea R H sss § p as.. »"» ..sa ..» » a» as pa a » »as »» as »as as » »» »» § sss as o»ram i » s' as.. sss ss» »m» m as ss » s »» » s»s ss s» gas s» »=»s » a'- g»s »sasa --a-- ass 88 a as as asa as a sas sa sa ass ss s as asa as gas as s a »as »»» as a as, as »»» »a a »»» as a» »ss as » as as. » ..» »».. as p'z s'm� aqiq E all 06 F 888 888 688 88 8 88 88 888 88 8 888 88 88 888 88 8 88 888 8 88 888 88 '» "s» » »» ss a....a.... »» »»» 91. 6.6. »»» g- » »» sss » »s» »» »ss $ss spa a E gs spa g? x ass as as 7ta f a 6a »a = "" » a »a »- »a as ' �Gg sNI Eli 315 M» a s »wR s s s - - - es3 » .� -- -- m� m -- --- -- - vvvV-V»»» »aa »» » »» »»» »» »» ..» » a;;» »»» » » as »»» a. »»» »» max »sx a » ax 8x mxa sa a Sp se ox xe sm mxv m Px n mr w jr - e o3 ' J Rh ae< s S. » As x� gem xm ram .8x RV se» -a a n Oem xe gsm A gug u� ug uS ug �ual ug ug uS u� u�ug ug ug u�ug uS ug ug uS u�u�ug u�u4 u�uS u�ug uS ug u4 uq ug ug iuS ug u� ug uS u�uS ug uS u� -aa rvvm -nn na - nn nn _nn nm n nnn nn nn --- nn - nry -nn - nn --- nn O 9 _ a J i mV FEe V N 3 � a F gw$8om drc 8 "d � o� LLm - oe d `2 °a grcrc � o �a �Oe '� ' F az Fwto o go o o0 o too stQ �o $to $o o ao �'yo Ito �o �sm4 $ $on o $ $ s a os q <s g r Cpp o= m a go888880000000g888888oS8000Beoo88o08000.eo°e8800$aooe0000a000.o888ao.. ' ;�s aaaaaaaaaxxaxxsaaa»aasaaaasaxaasaxaaxaxaaasaassssaxaaaaxaaaasasasaaaas a m _ jg _rvn.mm�m __________nrRRnRR^.xrssRaXxR;xx9:::S3S'va'm SetlxAaxFaaa-m 8mS8amamR:C zC ''s�'ss's's'smm�NNr�e�emmyazNoticeSo'ama'aU'->a'aye'aa's'ass''s'aas�aamasasaasaae.sssassamm:Ixa>j °m as ssSESss as SEE 8sa sSSaSSs sag as gas as SEE S SS Sao TO s as as 8 sESS as gas a Ss8 sa 8 as E819 S a sum 88888888888888688888888888888888888888888888888888888888888888888888888888 m io pi s A� �o c30s= m S £ 2 n S E'oo 33 23 zm�o 3 - - 8 G 0 7 TS 9!Mp 5PTVP C TM WPM CC TT C p T PT S': v M PC 9 P P66 T6 S: M i F £ F F FFF F£ Ff F i o£ ° p's po:po gp:po x pmpe mpmpe =� . m's » Naa uN tta « tt p� ' ms s ash Fo 0 u sF m mB em.ee 88Smo S eueo 884e9 e;1 mm e A e 88 e eme em y P P 0 sx ooxam _aYa 81.9 a s p �9 m v m a o 000 00 0o a ' p§ pupg §p�pi pip§ apap§ H §e W v a8 A N Nutt ttx uU Nu pp A ^AO E§ SHEA §9§9§ A 898§ is§s§ �8 89 9 a a9s an sm m m asA §A A aA REF Z5 98 TEM. ErM a 9815o MEN 98 a= r. '" A po x sea xx xx v x ass xx SSE �qp 88 88888 88888 8 8888 asses 88 SS a 8 8 88 8 8 SSa 8S SS 8 8 ass 88 8 888 T(1T AT m°'a i m mbaz o 89 oomcc 88mmE 8 SEES 8saas as 98 a 8 9 me e a San as Ee 8 m ESE 98 E 888 xx x�xxx x»xx „»x » x xx ., x x .. x»» a TV cm m > 9 a8888 88888 8 xxxx 8888,8 »x SS E. a E. an « 8 888 a8 88 8 8 888 a8 " 888 sa eases asses s seas eases sa as a s a sa s s ass as as a a ass as a sea 8q o^ _ 0 gmg -- m8 88989 8889E E Emma 8888E S8 a8 8 9 9 mm m a Sao 89 S8 m m 988 88 m SEE x a S� Eo ao Em js !-a- 8 828 mm ao 0 o a "ss ffim x� az aoxsa ax sa o as- 8 oa$ " Pssxx��as�s a wwwwwwwwaawwwwwwwwwwwwwwwwwwwwwwwwwwww x xaxxxxxxx8exxx Sim gs""8"aggg"ss"8 U a ssssasssesassssssasasasassassasassassa s s ssssssssssssss MINN C. ,_.. =a , H ° 2 9 °m g s 6 >� g ^- n o A E _ ° D A F � m C C T P :9 C R@@ 4@ o@ q K' S' `� `2 F F $ o $ `�O'oy 6 S" P S"C S PT yF a s `88 Sea 9 8 S 9 s s S. S S s S x S x x x s, "p"e �: A� r Fp o y �g o S k » x = x o S DOER $ k§ sga esssses = rise esssese asesags N tl 8 x S P P P »A » » A A « " Y r P » § 89 s§9 99 s 8 8 s e 8 8 8 8 e8 8 x s s 8 8 8 'a sa 9 s HP " 903 n w a k E Es 9!: HP A? eeee esssssssssssessss : sass ��s� �§ a s as eas 88 e s s a m a a s a s a s e a s a a a sa a e eeee ax yFo m�sis e s s s s e sss $ ss s o s e 5 e s s s s e Dose ee = er7 s » »e»o » » e « x s s ao88aa ae B ek ` e ' sa 8 s sa 8 ssse 8 a � > _ s " g g a "sg os axs s sa a s e s a s s xs s sees ee WE es� 1 "s a » « s "s s a a "a » o w� aks x 48 g = x & sY W U V s i :��"seam$emmgggg�gg�mx��g&&�cw"ggg�gg,�mmsgsgsgssugg&&gEEggm�g�gg5gugggggm °m s e x ssaxe�Y a aae a aaaaaaaaaaaaaaaaaaaa ogm g sus"ga"s"a"a"ss � � � � ������@ � � spa � a ssasaaasassssassasass a � 1 1 mm , o , a b5z z m cZ Y$ �^ 9Z c 6 6 2 o mA.z M.o 0 OA C � 88 yy O 2 O O T o_ Ar b S 5 « o $ o °aZio r`e e o € R § c 0 0 0 cF_ is gzi » s g s s a s i s «8 a 's o > x88 98 e N P. „ s - A tt F$ o »ee 8 o s S 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 e o s 88 E $ " co e ;„R z�«. » ga ss s Is 's a `a ss 8 8 o Y s s s s 'a s ass 8s m nmAm 8 0 0 8 a 8 8 $ $ 8 $ 8 8 8 8 8 8 8 8 8 8 3s � N 3gg«a a s s o 0 0 o a § s v o s e s o s o o a o o g s o ass ss g x s e k C N DETAIL DIRECT COST JOB:UMECOLOR REMOVAL SYSTEM ESTIMATEDATE:0111901 CLIENT:BLUERICOEPAPERCOMPA ff REVISION NO.:0 LOCADON:CANTON,NO ESTIMATED BY:M.D.WATSON JOBNUMBER:18YT8100 CNECNEDBY: CONSTRUCTION DURATION:TBD EST.RI V1001 ESTIMATETYPE:ORDEROFMADIIITUDE OAESIIMATS wMd0lIW810N[LMeCOIOT�wARO EMMLA.]PRIME CODETCS JE AREA-01 _ TOTAL PROCESS TOTAL SUB TOTAL LINE PRIME SUB EQUIPMENT UMEWWRI EMOVALSYSTEM WJII TOTAL COST/ DIRECT EQUIPMENT PROCESS M4TERULL TOTAL CONTRACT SUB UNIT TOTAL ALL NO. WOE WOE NUMBER DESCRIPTION Ow. UNIT UNIT WHb W.N. LABOR UNITCOST EQUIPMENT UNITCOST MATERIAL UNITCOST CONTRACTS COST COSTS 5TS SW 00 RUSS TOTAL-PAINfINO.PROTECTNECOATIN09 0 SOAO 50 50 50 582AN5 1421886 681 6B2 583 Ilm LANDACOUMMON SSA SYS ST 1I= LWDACOUISRION 8 AC 1C 0 51405 EO SOD] SO Sow SO M.002 f o.m 605.M S5XOW BE 581 87 11000 TOTAL-LANDAWULSRION 0 SO.M SO SO SO W.000 S.... SSE 502 SBf 50 SCB EST 364,154 $10.01 55,829,807 $14,156,20D 114,6O;080 54.246,230 $28.634,31T 0:30PM 6 W1 WWI 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 4.8 REFERENCES Following is a list of references used to prepare this section: 1. Sirrine Environmental Consultants,Effluent Color Treatment Reports from April. 1987— Chamnion International Corporation,April 1987. 2. SEC Donohue,Color Treatment Technology Assessment—Champion International Corporation,July, 1992. 3. Metcalf&Eddy,Inc.,Wastewater Engineering:Treatment.Disposal and Reuse, Second Edition,McGraw Hill Company, 1979. 4. E.W.Lang and R.F Miller,Color Increase of Treated Kraft Mill Effluents,TAPPI Environmental Conference Proceedings, 1977. 5. Champion International Corporation, 1995 Color Removal Technology Report,April 1995. 4-12 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 4.9 PROCESS CALCULATIONS Process calculations are performed to size all major equipment. A copy of the process calculations is attached. 4-13 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Lime Canton, North Carolina Parameter Value Units Value Units 1 Pipeline 60 In. Dia. Reaction Basin ;, •. A Retention Time 15.0 Minutes B Volume 298,747 Gallons 39,937 CF C Area K2 Ft Width 68 Ft Length D Depth 2 Ft Freeboard 19 Ft Depth 2 Lime Addition ,-ey : �. � 59mmem A Total 2,000 m /I 478,378 #/Da B lRegenerated 90 % of Total 430,540 #/Da C IMake-up 47,838 #/Day Dry 3 Color Clarifiers A Rating 765 GPD/SF 37,490 SF B Capacity 60 % of Total 22,494 SF C Dimensions 85 Ft Radius 169 Ft. Dia D Depth 15 Ft SWD 170 Ft Dia Design E Quantity 2 Each F Underflow Solids 00 _, ter° r' - 1 1 Solids Generated 950 m /I Sludge 227,230 #/Da 3 Underfiow Flow 3.0 % Solids 631 GPM G Sludge Transfer Pumps w . fi N ,' ,7' 1 Quantity 3 Qty Total 2 Operating 2 Rating 315 GPM Each 315 GPM Design L Requirements 100 Ft TDH Estimate 75 P/M Eff% 4 Power 11 Hp Ea. 15 Hp Design 4 Recarbonation Basin F-, , s _ i.. - - A Retention Time 2.0 Minutes B Volume 39,833 Gallons 5,325 CF C Area 17 Ft Width 35 Ft Len th D Depth 2 Ft Freeboard 11 Ft Depth 5 Recarbonation Clarifiers ,, �; a .- _ s ; , w,,, - A Rating 765 GPD/SF 37,490 SF B Capacity 60 %of Total 22,494 SF C Dimensions 85 Ft Radius 169 Ft. Dia D Depth 15 Ft SWD 170 Ft Dia Design E Quantity 2 Each F UnderFlowSolids €ts'* ."' « ;: « 17Ex s_ ., 1 ISolids Generated 1,725 m /I Sludge 412,601 #/Da 3 JUnderflow Flow 3.0 % Solids 1,145 GPM G Sludge Transfer Pumps 1 Quanti 3 Qty Total 2 O eratin 2 Rating 573 GPM Each 573 GPM Design 3 Re uirements 100 Ft TDH Estimate 75 P/M Eff% 4 Power 19 HP Ea. 20 Hp Design 6 pH Adjustment Basin x " A Retention Time 2.0 u Minutes B Volume 39,833 Gallons 5,325 CF C Area 17 Ft Width 35 Ft lei ht D Depth 2 Ft Freeboard 11 Ft De th 02/20/2001 Design Basisi.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Lime Canton, North Carolina Parameter Value Units Value Units 7 Treated Wastewater Transfer Pumps :'__- A Quantity 3 Qty Total 2 Operating B Rating 9,958 GPM'Each 10,000 GPM Desi n C Requirements 100 Ft TDH Estimate 75 P/M Eff% D Power 337 Hp Each 350 Hp Design 8 Wastewater Return Header 30 In Dia 1.42 Ft HL/100 Ft 9 Slud a Blend Tank 4= 5 *' '2 '+x W'! A Desi n 60 Min.Cap 106,553 Gal B Sizing 20 % Excess 127,864 Gal Design C Dimensions 28 Ft Dia 28 Ft Ht D Vacuum Filter Feed Pumps L Quantity 3 Qty Total 2 Operating L Rating 888 GPM Each 977 GPM Design 3 Requirement 25 Ft TDH Estimate 75 P/M Eff% 4 Power 8.2 R Each 10 H Desi n 10 Vacuum Filters : = =T A Requirements 1, T #of Spares 3 Qty Required B Rating 320 TPD 160 TPD Rating C Filtrate Pumps x <'• 3 " r 1 Quantity 3 Qty Total 2 Operating L Rating 888 GPM Each 977 GPM Design L Requirements 50 Ft TDH Estimate 75 P/M Eff% 4 Power 16.4 Hp Each 20 Hp Design D Vacuum Pumps 1 ]Quantity 3 Qty Total 2 Operating 2 113ower 25 Hp Each E Filter Discharge Screw Conveyors Jk . x ;• -, s 1 Design 40 % Solids 400 TPD Rating L Quantity 3 Qty Total 2 Operating 3 Power 0.025 H /TPD 10 H L Design 10 H F Lime Kiln Feed Screw Conveyor 1 Qty Total 1200 TPD Rating 1 Power 0.025 H /TPD 30 H 2 IDesign 30 H 11 Lime Kiln System A Lime Kiln 1 Rating 10 % Excess Cap 263 TPD L Design 275 TPD 3 Primary Air Fan 0.25 Hp/TPD 69 H 4 Secondary Air Fan 0.5 H rrPD 138 H 5 Scrubber Recirculation Tank a Flow 1.67 GPM/TPD 458 GPM 4eb Ratin 500 GPM Design c Desi n 30 Min.Ca 15,000 Gal d Sizin 20 % Excess 18,000 Gal Design Dimensions 15 Ft Dia 15 Ft Ht 6 Scrubber Recirculating Pumps a Quan ity 2 Qty Total 1 Operating b Rating 500 GPM Design c lRequirements 500 Ft TDH Estimate 75 P/M Eff% d JPower 77.2 1 Hp Each 1 100 1 Hp Design 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Lime Canton, North Carolina Parameter Value Units Value Units 7 Dra Line Conveyor —; ', -J ` 77 ' 4 a Ratin 1 Same as Kiln 275 r TPD b Power 0.083 Hp/TPD 23 H c JDeslqn 25 HP 8 Crusher , T a Rating 1 Same as Kiln 275 TPD b 1Power 0.050 Hp/TPD 14 H c I Design 15 HP 9 Bucket Elevator r;` a Mating 1 Same as Kiln 275 TPD b IPower 0.083 Hp/TPD 23 H c IDesign 25 HP 10 Lime Silo a Capacity 3 Day Capacity 825 Tons b IDesign 0 % Excess 27,500 CF Design c IDimensions 32.7 Ft Dia 32.7 Ft Ht d IDesign 33 Ft Dia 33 Ft Ht 11 Screw Feeders to Slaker x, t, _; _4, a Quantity2 Q Total T 1 Operating b Rating 1 Same as Kiln 275 Ft Ht c jPower 0.083 Hp/TPD 23 H d IDesign 25 HP Each 12 Lime Slaker System *` :-it < t , r4` r r , A Lime Slaker 1 lQuantitv 2 Qty Total 80 % Cap Each t 2 IDesign 220 TPD Each 0.04 Hp/TPD 3 jPower 9 Hp 10 Hp Design B Exhaust Fans 1 Quanti 2 Q Total 2 Operating 2 Desi n 0.02 Hp/TPD 3 1 Power 4 Hp 5 Hp Design C Scrubber Recirculating Pumps 1 lQuantity 2 Qty Total 2 Operating 2 Basis 291 TPD as Ca(OH)2 10 % Lime Slurry L Rating 484 GPM 500 GPM Each L Requirements 100 Ft TDH Estimate 75 P/M Eff% 5 Power 16.8 Hp Each 20 Hp Design D Lime Slurry Stora eTank 1 IDesign 120 Min.Cap 60,000 Gal 21 Sizin 20 % Excess 72,000 Gal Design 3 Dimensions 23 Ft Dia 23 Ft Ht 4 IDesign 24 Ft Dia 24 Ft Ht E Lime Slurry Feed Pumps s ' Nkt 1 Quantity 2 1 Qty Total y 2 Operating 2 Ratin 500 GPM Each 3 Re uirements 100 Ft TDH Estimate 75 P/M Eff% 4 jPower 16.8 Hp Each 20 H Desi n 13 Carbon Dioxide Feed System A Basis 760 m /I 181,784 #/Day Dry B IStorage 40000 #/Tank 2 Da Ca C Tank Requirements 9.1 #Tanks Re 'd 9 #Tanks Desi n 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Lime Canton, North Carolina Parameter Value Units Value Units 14 Sulfuric Acid Feed System �tr. a F=r , =r< I A Storage Tanks � ��. . !. c'rdt "' _ n._s�..�.:»'�zc � ? -»•,. - *`x. 1 Concentration 98 % Conc 15.25 #/Gal L Dosage 800 m /I 3 Consumption 195,256 #/Da 98% 12,804 GPD L Storage 5 Days 64,018 Gal 5 Dimensions 22.2 Ft Dia 22.2 Ft Ht 6 Design 24 Ft Dia 24 Ft Ht B Sulfuric Acid MeteringPumps 1 Quantity2 Q Total 1 Operating 2 Rating8.9 GPM 9 GPM Each 3 Requirements 100 Ft TDH Estimate 50 P/M Eff 4 Power 0.4 H Each 1 H Design 15 Fuel Oil Storage Tank System +._.: .., m A StorageTank 1 Consum lion 0.03 GaIITPD Lime 8:3 GPM 2 Story e 7 Days 83,160 Gal 3 Dimensions 24.2 Ft Dia 24.2 Ft Ht 4 IDesign 24 Ft Dia 24 Ft Ht B Pumps fi-777 ` 3?"7'} 1 Quantity 2 Qty Total 1 O eratin 2 Rating 8.3 GPM 10.0 GPM Each 3 Re uirements 300 Ft TDH Estimate 50 PM Eff% 4 Power 1.5 H Each 2 H Desi n 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 5.0 POLYAMINE COLOR REMOVAL SYSTEM 5.1 SUMMARY This section addresses the polyamine color removal process. Laboratory testing with secondary effluent from the Canton Mill demonstrates this process is technically incapable of achieving the target color objective of 50 color units. More recent full scale testing conducted in preparation for this report indicates polyamine has a color removal efficiency up to 46%. At an average color load of 208 color units and an average removal efficiency of 45%, the effluent could be reduced to approximately 94 color units. At the maximum color load of 318 color units and the removal efficiency of 45%, the polyamine could reduce the effluent color to 159 color units. This technology does not achieve the 50 color unit standard. The estimated capital cost of the polyamine treatment system is $40,203,000 in January 2001 dollars. The accuracy of this estimate is - 30% to +30%. This estimate includes all direct and indirect costs of the project, as well as land acquisition and permit costs. The annual operating cost for this system is estimated to be $12,880,000. The total annual operating cost includes operating and maintenance costs, as well as interest and depreciation. The system is designed for an influent color load of 65,888 pounds per day. Space necessary to implement this alternative is not available in the present Mill area. Therefore,property owned by Blue Ridge approximately one mile downstream and north of Fibreville would be utilized. Treated secondary effluent would flow through new piping to the treatment area. New clarification equipment would be provided to add necessary quantities of polyamine to the effluent and precipitate the color-forming materials as sludge. A dewatering system, an incinerator, and some ancillary equipment would be provided to incinerate color-forming materials in the process sludge. Tertiary effluent would be pumped through new piping to the present wastewater treatment area for discharge at the existing outfall. Further testing was performed on three side streams within the mill to test the ability of the technology to remove the color from those streams. The streams tested were the CRP Sewer, the Acid Sewer, and the Alkaline Sewer. None of the in-mill sewer polyamine dosing resulted in color removal in the final effluent. It is apparent that color disassociated within the mill sewers, resulting in no overall reduction in color. A report on the application of polyamine at the Canton Mill will be submitted to the NCDWQ under separate cover. 5.2 PROCESS DESCRIPTION In the 1987 and 1992 Color Treatment Technology Assessment Reports, the process design for the polyamine treatment system was based on the assumption that the treatment would be performed in existing primary clarifiers. However, treatment in a tertiary system would be necessary to insure process reliability, as discussed in Section 4.4. Therefore, a tertiary treatment system is proposed in this report. 5-1 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina Secondary effluent from the existing wastewater treatment plant would gravity flow to the polyamine treatment system through a 60-inch diameter underground reinforced concrete cylinder pipe. The design average flow rate through the pipe would be 24.8 MGD,and the maximum flow — rate would be 28.7 MGD. The site is approximately one mile downstream from the mill along the Pigeon River, and immediately north of Fibreville. The wastewater would flow into a polymer reaction basin sized for 5 minutes retention time at the design maximum flow rate of 28.7 MGD. The basin would be a concrete structure, 47 feet long by 24 feet wide by 14 feet deep and would be equipped with baffles and four mechanical agitators. Liquid polyamine would be metered into the reaction basin to be mixed with the incoming wastewater. A liquid polyamine storage tank with.a 77day storage capacity and dual 100%capacity metering pumps would be provided. The.polyamine would react with the color-forming materials in the mill effluent in two (2) tertiary clarifiers. The clarifiers would be concrete structures, 170 feet in diameter with a 15-foot SWD. The design average surface overflow rate per clarifier would be 500 gpd/ft while the peak overflow rate would be 765 gpd/ft Three 100%capacity sludge transfer pumps would be provided to pump sludge from the clarifiers to a sludge blend tank sized for 30 minutes sludge storage. The blend tank would be equipped with a side-mounted agitator to keep the sludge from settling. Screw press feed pumps would pump sludge from the sludge blend tank to dewatering equipment. A dry polymer feed system, including feeder, mixing tank, feed tank, and progressive cavity feed pumps would be included to feed a dewatering aid polymer to the sludge blend tank. Two new screw presses each rated for 20 tons/day of dry solids would be provided. The presses would be equipped with rotary screen thickeners to increase the sludge consistency to 4-5% solids prior to the screw presses. Filtrate from the rotary screen thickeners and screw presses would gravity flow to the filtrate tanks. The filtrate tank would be sized for 30 minutes retention. The filtrate would be pumped from the filtrate tank to the polymer reaction basin. - Sludge discharged from the screw presses at an assumed 45% solids would be conveyed to a sludge incinerator. No. 2 fuel oil would be used as fuel to enhance burning of the sludge. Ash from the incinerator would be hauled to a landfill. Materials of construction for incinerator parts in contact with the sludge would be type 316 stainless steel. Combustion gases from the sludge incinerator would pass through a venturi scrubber where particulate matter would be removed by scrubbing with Mill water. The scrubber water would be piped to the polymer reaction basin. The combustion gases would be discharged through a stack. - All materials of construction that would come in contact with.the flue gas would be type 316 stainless steel. A storage tank for No. 2 fuel oil would be provided together with a heater and a pump to transfer the oil to the incinerator. I 5-2 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 5.3 DESIGN BASIS Following is the design basis for the conceptual design and cost estimate for the polyamine color removal system. Design conditions are based on data supplied by Blue Ridge and on limited laboratory testing. Equipment sizing is based primarily on experience with similar processes and engineering judgment. 5.3.1 Secondary Effluent Characteristics Average Flow - 24.8 MGD Peak Flow - 28.7 MGD Average Color - 43,188lbs/day Maximum Color - 65,888 lbs/day 5.3.2 Laboratory Tests Laboratory tests with samples of secondary effluent from the Canton Mill are the basis for determining polyamine requirements,costs,and sludge quantities. 5.3.3 Chemical Storage • Two-week storage for liquid polyamine 5.3.4 Sludge Dewatering • Sludge storage for 30 minutes • One 100% capacity screw press feed pump per screw press (2 total) plus one 100% capacity common installed spare } • Sludge out of primary clarifiers—1%solids • Sludge out of rotary screen thickeners—4 to 5%solids • Sludge out of screw presses—45%solids • Ash out of dryer—5 to 6 TPD 5.4 DESIGN ASSUMPTIONS The following are assumptions in developing the process design for the polyamine color removal system: 1. The process design is based on bench scale testing. There are no known full-scale installations of this technology for an application similar to the Canton Mill. Pilot testing would be necessary prior to full-scale implementation to assess technology feasibility and to confirm the design parameters. 5-3 i 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 2. Land required for installation of sub-surface piping between the existing secondary and new tertiary treatment systems could be purchased from individual homeowners and the City of Canton. 3. Relocation of water,natural gas,and sewer services presently buried beneath the roadway to the site would not be required. 4. Site work and excavation costs do not account for the presence of rock or hardpan in the area. If these materials are encountered, the estimated costs would increase. Subsurface exploration and testing has not been performed at the site. Rock excavation costs for installation of the pipelines between the existing wastewater treatment system and the proposed tertiary treatment system could be as much as$1,500,000. 5. The process design and costs are based on the premise that the color reduction would be performed in.a tertiary treatment system. Polyamine treatment in the existing primary clarifiers was also considered. However,this approach is believed to be inappropriate for the following reasons: • Bench scale testing performed by Champion International at another mill indicates that color reversion could occur through the secondary treatment system following polyamine treatment. During this trial, sludge quality declined to an unmanageable condition and this portion of the trial was discontinued. • The Canton Mill has no equalization facilities. It would be extremely difficult to achieve the target effluent color value on a consistent basis due to the fluctuations in influent wastewater characteristics. • The influent wastewater to the primary clarifiers contains relatively high concentrations (>500 mg/1)of TSS and TDS that may exert a demand for polyamine. If the polyamine is added at the primary clarifiers, the effectiveness of the process would be reduced since the polyamine would not selectively treat and eliminate the color forming materials in the wastewater. A significantly higher polyamine dose would probably be necessary in the primary clarifiers to achieve the same degree of color removal as a tertiary system. E 6. Operation of the incinerator would result in emissions to the atmosphere of particulates, hydrocarbons, CO, SO2 and NO.. An air permit would have to be obtained to operate the incinerator. 7. A permit could be obtained for polyamine sludge disposal when the incinerator was out of service. It is anticipated that the incinerator would be out of service approximately 20 days per year for maintenance activities. 5.5 BASIS OF ESTIMATED COST The process design for this color removal system is based on bench scale testing. Since there are no known full scale installations of this technology in an application similar to the Canton mill, pilot testing would be necessary to establish the viability of the process and to develop firm design parameters. 5-4 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina I The estimated costs for this system are based on the bench scale testing results. Should pilot :testing indicate major changes to the system, the cost estimates would increase proportionate to the necessary changes. The estimated design and construction time required for this project is 24 to 30 months. This does not include any time associated with permitting related activities. The installation of this tertiary treatment system may require a PSD permit. PSD permitting in close proximity to at least two Class I areas (the Great Stuckey Mountain National Park and the Shining Rock Wilderness Area) would require extensive analysis, permit reviews and a public hearing. PSD permit analysis and review would likely take more than 24 months. This would be in addition to the 24 to 30 months anticipated for design and construction of the system. Since the start date for the project is unknown at this time, costs are presented in January 2001 dollars without any escalation. The cost for land necessary for the installation of pipelines between the Mill and the Fibreville site are included. It is assumed that this land could be purchased from the individual homeowners and the City of Canton. Other relevant cost basis assumptions are summarized earlier in Section 1.3. i 5-5 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina I i 5.6 DRAWINGS Included in this section are the following drawings related to the polyamine color reduction - system: • Figure 5.1 - Flow Diagram • Figure 5.2- General Arrangement 5-6 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 5.7 COST DATA Cost estimates for the polyamine color removal system are attached. Included are summary tables for the total capital cost and annual operating costs,as well as detail sheets for the total capital cost estimation. 5-7 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina i COST DATA SUMMARY TABLES 5-8 i TOTAL COST SUMMARY-JE PRIME CODE JOB: POLYAMINE COLOR REMOVAL SYSTEM ESTIMATE DATE: 01116101 CLIENT: BLUE RIDGE PAPER COMPANY REVISION NO.: 0 LOCATION: CANTON,NO ESTIMATED BY: M.D.WATSON JOB NUMBER: 16Y78100 CHECKED BY: CONSTRUCTION DURATION: TBD EST.FILER: '01001 ESTIMATE TYPE: ORDER OF MAGNITUDE G:IESTIMATBBIue RI0ge116y781001IPolyamine Color Removal RO EMAILXISIPRIME CODETCS PRIME CODE DESCRIPTION W-H OTY UNIT LABOR EQUIPMENT MATERIAL SUBCONTRACT TOTALCOST DIRECT COSTS 50 MAJOR EQUIPMENT 14,947 0 0 $249.792 $6.398.900 $155,313 $93,103 $6,897,109 52 CIVIL,STRUCTURAL,ARCHITECTURAL 41,154 0 0 $595,038 $0 $793,235 $608,660 $1,996.933 55 BUILDING FIVAC 704 1 LOT $10316 $195.103 $0 $164984 $370402 62 PIPING 181.441 32,710 LF $2,912,669 $0 $1.892,652 $0 $4.805,321 63 INSULATION-PIPE,EQUIPMENT B DUCTWORK 0 0 0 $0 $0 $0 S232,400 $232,400 64 INSTRUMENTATION 7,307 0 0 $119906 $160000 $151457 $1279780 $1711143 65 ELECTRICAL 22,071 0 0 $352.400 $551.769 $551.769 $0 $1,455,937 66 PAINTING,PROTECTIVE COATINGS 0 0 0 $0 $0 $0 $365.289 $365.289 67 LAND ACQUISITION 0 0 0 $0 $0 $0 $520000 $5200.� 00 75 CONSTRUCTION SERVICE LABOR 40,144 0 0 $608.992 $0 $0 $0 $608.992 TOTAL DIRECT COSTS 307,767 $4.849.113 $7,305,771 $3,544,426 $3,264.216 $18,963.528 $7WH $15.76 INDIRECT COSTS 76 TEMPORARY CONSTRUCTION FACILITIES(IN WAGE RATE) 7.5% OL $0 $0 $363,683 $0 $363,683 78 PREMIUM TIME 10.0% DL $484911 $0 $0 $0 $484911 79 CRAFT FRINGE BENEFITS(IN WAGE RATE) 6.0% OL $242A56 $0 $0 $0 $242,456 CRAFT PER DIEM B SAFETY INCENTIVES 17.3% DL $0 $0 $0 $923.302 $923,302 80 PAYROLL TAXES&INSURANCE(IN WAGE RATE) 23.0% DL $1.115,781 $0 $0 $0 $1,115,781 83 SMALL TOOLS(IN WAGE RATE) 4.0% OL $0 $0 $193.965 $0 $193,985 84 CONSUMABLE SUPPLIES(IN WAGE RATE) 7.0% DL $0 $0 $339.438 $0 $339,438 85 CONSTRUCTION EQUIPMENT(IN WAGE RATE) 25.0% OL $0 $0 $1.212,278 $0 $1.212,278 87 FIELD STAFF(IN WAGE RATE) 28.0% DL $1,357,752 $0 $0 $0 $1,357,762 TOTAL INDIRECT COSTS $3.200,899 $0 $2,109.364 $923,302 $6,2337568 ACCUMULATIVE TOTAL 307,767 $8,050.012 $7,305,771 $5,653,790 $4,187.518 $25,187,092 $I WH $36.01 81 NON-PAYROLL INSURANCE,TAXES,PERMITS 1.56% TIC $0 $292.231 $226.152 $108.750 $627,133 93 CONSTRUCTION HOME OFFICE COST(IN WAGE RATE) 0.81% TIC $290.947 $0 $0 $34,532 $325.476 88 CONSTRUCTION MANAGEMENT 439% TIC $0 $0 $0 $1763796 $1763796 90 ENGINEERING PROFESSIONAL SERVICES 10.00% TIC $0 $0 $0 '$4,018,936 $4.018.936 96 OUTSIDE CONSULTANT SERVICES 0,06% TIC $0 $0 $0 $25.000 $25,000 91 OWNER'S COST 5.01% TIC $0 $0 $0 $2015767 $2015767 70 SPARE PARTS,CATALYST,OPERATING SUPPLIES 0.00% TIC $0 $0 $0 $0 $0 71 START-UP ASSISTANCE 0.36% TIC $0 $146,115 $0 $0 $146.115 98 ALLOWANCE FOR UNFORESEEN 12.73% TIC $1251144 $1161618 $881991 $1823145 $5117898 98 ESCALATION 0.00% TIC $0 $0 $0 $0 $0 99 CONSTRUCTION FEE(IN WAGE RATE) 2.40% TIC $968,001 $0 $0 $0 $966.001 ROUND OFF ($105) $265 $67 ($445) ($218 TOTAL PROJECT COSTS 307,767 $10,558,000 $8,906,000 $6,T62,000 $13,977,000 $40,203,000 $1WH $40.21 6:29 PM 1 02/20/2001 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Polyamine Canton,North Carolina Pumps a ; :J _" r Flow, GPM Head Efficiency Hp Operating 1 Clarifier Polymer Feed 3:3 100 50 0.2 2 Slud a Transfer °: r' 143.4 100 50 7.2 3 Treated Wastewater Transfer ' t >" 17,255 100 75 581.0 4 Screw Press Feed 143.4 100 50 7.2 T-Tolyrner Feed X= P9 2.9 100 50 0.1 6 Filtrate 143 100 75 4.8 L 7 Fuel Oil 34, 8.3 300 50 1.3 Total a w" � an ., ,7. 219"I1r 41 a , 601:9 v W. Miscellaneous Motors , OWAW Qty Hp Ea Hp Total T'Polyrner Reaction Basin Agitators .a I 2 10.0 20.0 2 Reactor Clarifier Drives * <. .'€ 35,_: _' " 2 10.0 20.0 3 Flocculators . ,' a 2 15.0 30.0 4 Sludge Blend Tank A itator ? t" $- 1 3.0 3.0 5 Dry Polymer Hopper av ' 1 0.5 0.5 6 Polymer Tank Agitators 71i:�5_UA ; ; u.to 2 1.0 2.0 7 Rotary Screen Thickeners 1 1.0 1.0 8 Screw Press Motors 1 20.0 20.0 9 Incinerator Primary Air Fan 1 30.0 30.0 i 10 ScrewConve or tt;*nk #t 3z 1 3.0 3.0 11 Fuel Oil Pump „ 41 j +, E lajkk 1 7.5 7.5 12 Fuel Oil Heater 1 7.5 7.5 r' Total Misc Motors Y�`4+ a w 4 r_fit.`fiOTM: < ^ ."'r" 144.5 '--,- Total O eratin Horsepower ,:" 746.4 l I Sri I I lr! 1_ 02/20/2001 Operating$1.xls 2001 Color Removal Technology Assessment Polyamine Blue Ridge Paper Products Inc. Canton,North Carolina Annual Operating Cost i'3 Area Value Units Price Units Annual Cost 1 Operating Personnel 6.0 Man-Yrs $60,000 Per Year $360,000 2 Maintenance Personnel 6.0 Man-Yrs $60,000 Per Year $360,000 i, 3 Outside Contractor Services 1.00 % of $7,305,771 Total $73,058 Equipment Equipment 4 Stores And Supplies 4.00 %of $7,305,771 Total $292,231 Equipment Equipment 5 Electrical Power 746.4 Horsepower $260.00 Per Horse- $194,054 power Year 6 Steam 2,253,616 Pounds Per $2.15 Per M $4,845. Year Pounds 7 No. 2 Fuel Oil 450,723 Gallons Per $0.71 Per Gallon $319,806 Year 8 Water 45,072,325 Gallons Per $84 Per Million $3,764 Year Gallons 9 Chemicals A Liquid Polyamine 3,105 Tons Per $2,100 Per Ton $6,521,291 Year B Dry Polymer 39 Tons Ter $3,980 Per Ton $155,375 Year 10 Disposal-Dregs to Landfill 2,129 Cubic Yards $10 Per Cubic $21,294 Yard 11 Total Annual Operating & t + as t ^ $8,305,718 Maintenance Cost , vim " T ,. c ,-u ,-,� ' 4� sue ,: 12 Interest 10.00 %of Total $40,203,000 Total $4,020,300 Capital Capital 13 Depreciation 5.00 % Eqpt& $10,850,197 Eqpt& $542,510 Material Material 14 Total Annual Cost $s' ' vY =„,4 5 "-r� r+ � „1 $12 868 528 r , 02/20/2001 Operating$1.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina COST ESTIMATE-DETAIL SHEETS n r, 5-9 Vx-m8988Y 8849nnn0q»8m8'SGff,98_Sm9-1w9tBC»n 6aa Gat n4 8v...v«...,_ °m � aonsosassssnsanssossaaoannnnnnsn�nnsoasnasnssasoannannnnnnnsosnnnnnnsn sum e'8s'sees's's's'8se'es'8ee'8s'sasses'seee's'8see'se'ees'ase''ses"sea''8'sseeses"'se's'see'se'8'8e's'sseee's 's �o AFS 1. ado r AO U"s`o oC° Sa m o a a y f's 1n y ``'.j90p `S v mP _3 s" m P s p Pg sRsBga m~0x - � 8 i 0 _ 2 cf c saoo Eg :g f � me YP r mY e n e o°n n s� sees" nn nn ° a nn a" so mss no « 89. . n ess ra n s n a n o son n ga §&9ffi to on 8 nv 2- 98' $= Imo ffi8 - s o o s �W4 n F mm ff EE E �� 212 s@ 5 sn n �» o " m"a " n a son n 9a on on n _ n on E s nm@ sg La. N N!� H r S A P x on P P E wx„P P Ao xAL�S Yg YY S x x« «w V Ao ««« ny x Aoa no y xoEp y a 8 88 8 8 8 888 8 88 8888 88 88 8 8 as 89 8 88 $$8 88 8 888 88 8 888 m n�nPm v v vv v n n nos n nn noon so 8-89 n vv no v so nos nn v ova Pn n nvv ¢..<:.g �s P n n ss e „ nas x «« ..««s «n 68 s « o- «s « «s nor so p ««o «« ««« B a s F y 8 8 88 � � � 888 � 'a8 8888 88, as s 8 88 es 8 88 888 88 a `ssa 88 8'8s g R «o on n nso nn nnno on no n o to on o no nss to n not so nn" s « x viJI «» « «« s 8� nn n m's �'ssa nn on n �» sa 8e �9 1g « 958 k90 e » » su «sxg n .ra -5 » »ai ss wm 8 Ee 0 -.-.8 to so 0o 8 Y sn 9 - xqg _ �������""s�z"s"smm���x�v�y��5���sv�xmsa"s"sass"sew"a"aa""s"aaa���=��s'aasaa's_amg��maaeswa °m a r; axuxaRaaaRxaxxaaaaax s as 8 m ,F � "a "aa"a"a"a"a"s"s��sa"""a"s�"a�"s"a"s"a s saaasaasxaaaasaasaaaasaaaaaasasaa 8- s ssxssassassssassasxsasssasssassaa s s == g8 `" a s � zo - n✓Sn oomn�mn.- o ° 44o Fos v one a `� p m c v 5 wamc i ^. --g�o�°^Las 55 � z n F a � o R s 1 1 7 -S P 9 N n ffi CF a a g�8 s 888 spa a ea a s "a a ea x s g _ r F8 0 SY e e eea eeeeel & a & » aaa aas a as "»» 'o m e e eem affim � �s sa® 8 e � a x N $ s e o � s e e e e � ffi � as 's s s 8 8 a 8 e s a s s 8 8 a s a a s s s� O ffi e a o ffi a a a 8H a s ffi e e o 0 o e e e e e ffi ffi s s s se §g N » » Pao ' s a s ass saa a ss sea s e a s : ass a s s a e e s a s cs e »e e e e sffiffi sss a ee asffi ems 9 9 $ . a e e a s e e ffi € ,-geP » » » »» s » » g s 8 a 8 Aas mass s 98 §88 8 5 5 e 8 a a a a a a 8 8 » a 88 o - ' 8 E ffi ffi caa ;SS". a 8 iaffi o « s ffi s ms 8' = 8 6 m e sum mom a -e ��� a » � w " � a a a - v » e o 8 "s s e o sum yame �8 e 8 e8 a c x u $ s w s e see ��:3�4#mFsxsomg&k#&aE$6ea."«:«_.'asEES&_�`"s#sm3m��«s���b%###Eg##m#gym&xEv9om om � � � s s e s x e:sxse: s "".. s eeesesseee>rvv»w»save 8$` m;m I i i I HUM i W s s Sassa88asssssss8asas :o « a m m m m « a F a� mo -- go y o °_ m 8 s p p O y pgp s cf s o a 1 81 8 w Fo ° i � � y ' r v o v o o S s o s s yg 8 8 s s 8 8 8 8 8 8 8 8 8 8 8 8 8 s « H. i� � I $ 8 m 5 s 8 8 8 8 _ 8 8 8 8 8 8 49 H�g'•3"I 8 8 8 8 33 0 a m o s s o l o s a o a o o e o 0 o s 8 0 , j 1001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 5.8 REFERENCES Following is a list of references used to prepare this section: 1. Sirrine Environmental Consultants,Effluent Color Treatment Reports from April, 1987— Champion International Corporation,April 1987. 2. SEC Donohue,Color Treatment Technology Assessment—Champion hitemational �i Corporation,July 1992. 3. Metcalf&Eddy,Inc.,Wastewater Engineering: Treatment,Disposal and Reuse, Second Edition,McGraw Hill Company, 1979. 4. Henderson,W., Champion International Corporation,West Nyack,NY,Personal Communication, October 1995. 5. Champion International Corporation, 1995 Color Removal Technology Report,April 1995. i i iA c 5-10 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 5.9 PROCESS CALCULATIONS Process calculations are performed to size all major equipment. A copy of the process calculations is attached. i 5-11 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Polyamine Canton, North Carolina Parameter Value Units Value Units 1 Pipeline 60 In. Dia. Pol mer Reaction Basin . _i;" A Retention Time 5.0 Minutes B Volume 99,582 Gallons 13,312 CF C Area 24 Ft Width 47 Ft Length D Depth 2 Ft Freeboard 14 Ft Depth ,,r t x r`, N,�'+ .f;.{y .:;£ ,�:. �; '^ ,Po erAddition # �'=� _ b. A Total Dry Polymer 60 m /I 14,351 #/Da B Polymer Solution 30 %"solution 47,838 #/Da C Liquid Feed 10 #/Gal 4,784 GPD D Polymer Feed Pumps w spa . b �, _"., ,a . -T ,d r f> xia 1 Quanti 2 Q Total 1 Operating 2 Ratin 3 GPM Each 5.0 GPM Design 3 Re uirements 100 Ft TDH Estimate 50 P/M Eff% 4 Power 0.3 H Each 0.5 H Design E Storage Tank = •, fi. .9 _ 1 Icapacity 7. Days Cap Total 33,486 Gal Cap Total 2 Tankage 1 Qty 0 % Excess Ca 3 Dimensions Calculated 17.9 Ft Dia 17.9 Ft Ht 4 IDimensions Design 18 Ft Dia 18 Ft Ht 3 Te iary Clarifiers A Rating 765 GPD/SF 37,490 SF B Capacity 60 %of Total 22,494 SF C Dimensions 85 Ft Radius 169 Ft. Dia D Depth 15 Ft SWD 170 Ft Dia Design _ E Quantity 2 Each F Underfiow Solids 11 Color Generated 72 mg/1 8.6 TPD 2 Total Solids 8.6 TPD G Underflow 1.0 % Solids 143 GPM H Sludge Transfer Pumps 1 Quantity 3 Qty Total 2 Operating L Rating 72 GPM Each 79 GPM Design L Requirements 100 Ft TDH Estimate 50 P/M Eff% 4 Power 4 Hp Ea. 5 Hp Design 4 Treated Wastewater Transfer Pumps A Quantity 3 Qty Total 2 Operating B Rating 9,958 GPM Each 10,000 GPM Design C Requirements 100 Ft TDH Estimate 75 P/M Eff% D Power 337 Hp Each 350 Hp Design 5 Wastewater Return Header 30 In Dia 1.42 Ft HL/100 Ft 6 Slud a Blend Tank A Design 30 Min. Cap 4,302 Gal B Sizing 20 % Excess 5,162 Gal Design C Dimensions 10 Ft Dia 10 Ft Ht D Screw Press Feed Pumps 1 Quantity 3 Qty Total 2 Operating 2 Rating 72 GPM Each 79 GPM Design L Requirements 100 Ft TDH Estimate 50 P/M Eff% 4 Power 4.0 Hp Each 5 Hp Design l , 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Polyamine Canton, North Carolina Parameter Value Units Value Units E Dry Polymer Feed System ! L Total Dry Polymer 20 #Dry/Ton Sludge 172 #/Da 2 Solution Tank ° v.=_: $ ,` ;x '.i� t. 'T = a t 2'f a Basis 0.5 % Solids 1 Hr Aging b ICapacity 4,130 Gal/Da 50 % Excess Ca c Design 344 Gal Cap 500 Gal Design L Feed Tank Same As Solution 500 Gal Design 4 Feed Pumps d a lQuantity 2 Total 1 Operating b lRating 2.87 GPM Each 5 GPM Design c lRequirements 100 Ft TDH Estimate 50 P/M Eff% d JPower 0.25 Hp Ea. 0.5 Hp Design 7 Screw Presses y t} .. *r rv6z4 m: ,PY9 A Rating 20 TPD Rating 0.43 Qty. Min. B Requirements 1 #of Spares 2 Qty Required C Filtrate Pumps ; f;', a3f3u rZ ,K.: z 1 Quanti 2 Qty Total 1 Operating 2 Ratin 143 GPM Each 158 GPM Design 3 Re uirements 100 Ft TDH Estimate 75 P/M Eff% 4 Power 5.3 Hp Each 7.5 Hp Design D Filtrate Tank a _7<, n} 5 141 Ca aci 30 Min Ca 4,302 Gal Ca Total 2 Tanka e 1 Qt 20 % Excess Ca 3 Dimensions Calculated 9.6 Ft Dia 9.6 Ft Ht Dimensions Design 10 Ft Dia 10 Ft Ht E Concrete Pad 7 1 Capacity 8.6 TPD Dry 20 % Solids 2 Volume 43 TPD Wet 0.75 Tons/CY 3 Slud a Cone Area 57 CY Wet 22 Ft Dia 4 IStorage Area 25 Ft Width 25 Ft Lon 8 Sludge Incinerator a ^. " ew. fi°h: i I A 1 Screw Conveyor 1 Basis 20 % Solids 3,444 Color#/Da 2 IDesign 43.1 Total TPD 50 TPD Design 9 Fuel Oil Storage Tank System F ; :.- 77,71 ;:, ,I 7; _ x > A Storage Tank 1 Consumption 1.00 1 GPM 1.0 GPM 2 Storage 7 Days 10,080 Gal 3 Dimensions 12.0 Ft Dia 12.0 Ft Ht 4 IDesign 12 Ft Dia 12 Ft Ht 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 6.0 ULTRAFILTRATION SYSTEM 6.1 SUMMARY This section covers the tertiary color removal process using ultrafiltration(UF). The estimated cost of this system is $149,768,000 in January 2001 dollars and is based on the assumptions summarized in Sections 6.4 and 6.5. The accuracy of this estimate is-30%to+30%. This estimate includes direct and indirect costs, as well as land acquisition and permit costs. The annual operating cost associated with this system is estimated to be $28,272,000. The total annual operating cost includes operating and maintenance costs, as well as interest and depreciation. OF is theoretically capable of removing color with an efficiency of approximately 95%. However, no laboratory testing has been performed. Assuming an average color load of 208 color units,this technology would theoretically reduce the effluent color to an average of 10 color units. At the maximum color load of 318 color units, this technology could reduce the effluent color to 16 color units. This technology is theoretically capable of consistently achieving the 50 color unit standard on average. There are no known full-scale installations of OF technology for tertiary treatment of pulp and paper mill wastewater. Therefore, this technology is not recommended for installation at the Canton Mill. The preliminary process design is based on an engineering assessment of the information available for this technology. Theoretically, this target value is achievable by providing multiple OF modules in series. The costs associated with this approach would be prohibitively high. The tertiary system is designed for a peak color load of 65,888 pounds per day. Space necessary to implement this alternative is not available in the present mill area. Therefore, property owned by Blue Ridge approximately one mile downstream and north of Fibreville would be utilized. Treated secondary effluent would flow through new piping to the new treatment area. The wastewater would pass through sand filters for suspended solids removal before being pumped to the OF system. Permeate from the OF system would be piped to a cooling tower to lower the temperature within discharge limits and pumped to the existing outfall for discharge. Reject from the OF system would be concentrated fii Cher in a multiple-effect evaporator and incinerated. The incinerator would include an afterburner, waste heat boiler, and ionizing wet scrubber. Backwash from the sand filters, condensate from the evaporators, and blowdown from the incinerator would be pumped back to the primary clarifier of the existing wastewater treatment plant. 6.2 PROCESS DESCRIPTION Effluent from the existing wastewater treatment plant would gravity flow to the site of the color removal facilities through a new 60-inch diameter buried pipeline. This site is approximately one mile downstream from the Canton Mill along the Pigeon River, and immediately north of Fibreville. �� 6 I 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina The design average wastewater flow would be 24.8 MGD, and the design peak flow would be 28.7 MGD. The wastewater would have average and peak flows of 17,255 gpm and 19,931 gpm, f respectively. Wastewater would be collected and pumped to sand filters for removal of suspended solids. Three pumps, each rated at 10,000 gpm,would be provided. The sand filters would be of the gravity type with automatic backwash. The design peak filtration rate would be 2 gpm per SF of surface area. Five filter cells would be provided at 1760 SF each for a total filtration area of 8,628 SF. The filters would be in a concrete, above-grade structure, . and arranged in parallel'. The overall dimensions of each filter would be 110 feet long by 16 feet wide. The filtered water would drain into a 600,000-gallon clearwell constructed directly beneath the filter structure. The clearwell would provide approximately 30 minutes of HRT at the design peak flow rate. Five backwash pumps, each rated at 400 gpm would also be provided. Backwash would be pumped back to the primary clarifiers of the existing wastewater treatment plant. Five pumps, each rated at 5,000 gpm, would pump filtered water from the clearwell to the OF units. Twenty OF modules, each rated at 1.5 MGD,would be provided. Five percent solutions of detergent, caustic and citric acid would be provided inside the OF building for cleaning the membranes. The cleaning cycle would last one hour. Each module would probably be cleaned once per week. An external 50,000-gallon steam jacketed tank would provide 160 °F rinse water. Cleaning solutions and rinse water would be supplied to the membranes at 35 psi. Permeate from the OF system would be at 115 °F which is above the allowable discharge limit. A two cell 1,250 gpm cooling tower with two 150 HP fans would lower the permeate temperature by approximately 30 'F. The cooled permeate would be collected in a basin beneath the tower and pumped to the existing outfall for discharge. Three pumps, each rated at 10,000 gpm, would be provided for this purpose. Reject from the 13F system would be collected in a storage tank. The reject would be pumped to a six-stage falling film evaporator. The evaporator would reduce the reject volume ten-fold and increase the solids consistency proportionally. Vapor from the last stage would be condensed by approximately 1,250 gpm of cooled permeate from the cooling tower basin. Condensate from the evaporator would be collected and pumped to the primary clarifiers of the existing wastewater treatment plant. Necessary reductions in pressure throughout the evaporator stages would be accomplished with a 125 HP vacuum pump. The concentrated product from the evaporator would be pumped to a stainless steel heat exchanger and heated to 220 OF to prevent polymerization. Heat would be provided by 50 psi l steam. From the heat exchanger, the concentrated waste would be piped to an incinerator. A double- door ram feeder would force the waste into a refractory-lined rotary kiln. An afterburner, operating at 1,600 "F to destroy residual organics, would be located after the kiln. Supplemental heat would be supplied with No. 2 fuel oil. A waste heat boiler would be used after the afterburner to recover excess heat and cool the exhaust gases. J i 62 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. i Canton.North Carolina A prescrubber would be located after the waste heat boiler to further cool the exhaust gases. Blowdown from the prescrubber would be piped to the primary clarifiers of the existing wastewater treatment facility. iJ A wet electrostatic precipitator would reduce particulate emissions below 0.08 grains per SCF. Total halogen removal would be 99% while SO,removal was assumed to be 95%. An induced draft fan will send the treated exhaust gases through a stack for final release. 6.3 DESIGN BASIS. Following is a summary of the design basis used to develop the conceptual design and cost estimate for the OF color removal system. Design flow and loading conditions are based on historical data provided by Blue Ridge. No full-scale performance data is available for the technology since there are no known commercial installations for tertiary treatment of pulp and paper mill effluent. Equipment sizing is based primarily on experience with similar equipment and processes, and on engineering judgment. 6.3.1 Secondary Effluent Characteristics Average Flow - 24.8 MGD Peak Flow - 28.7 MGD 1 Average Color - 43,188 lbs/day Maximum Color - 65,888 lbs/day 6.3.2 Sand Filters • Design filtration rate at peak flows-2 9pm/ft2 • Corresponding backwash flow rate 6 gpm/ft • At a design influent TSS of 20 mg/1, design effluent TSS is assumed to be 5 mg/1 or less 6.3.3 Clearwell • Overall size- 105'W by 110'L by 9'D • Provide 30 minutes of flow equalization prior to OF units 6.3.4 Ultrafiltration System `>- • Design maximum flux rate- 150 • 20 modules-each with 10,000 SF membrane surface area • Actual flux rate at design peak flows-150 gpd/ft2 i c 1 6-3 -1 IG _i 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 6.3.5 Ultrafiltration Cleaning System • Modules would be cleaned once per week • Cleaning cycle last one hour — 10 minutes detergent, 20 minutes hot rinse, 10 minutes ' caustic,20 minutes hot rinse • Citric acid would only be used in the event of severe fouling 6.3.6 Rinse Tanks • Size for 3-hour storage of rinse water/solutions 6.3.7 OF Concentrate Storage Tank V � • Size for one-day retention time • Total volume— 180,000 gallons 6.3.8 Evaporator Design for influent flow of 124 gpm at 5%solids • Effluent flow would be 10 gpm at 50% solids • Require 1,242 gpm of cooling water with a 30°F temperature drop ? 6.3.9 Heat Exchanger • Maintain evaporator concentrate at 220°F to avoid polymerization • Design for 15 gpm influent flow 6.3.10 Incinerator • Supplemental heating would be supplied by No.2 Fuel Oil v ' • Two-stage ESP provide particulate emissions less than 0.08 grains per SCF • Design afterburner for 1,600 OF G 6.3.11 Coolin Tg ower • Design to lower temperature of OF permeate and condenser water by 30°F II 6-4 I ' 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 6.3.12 Tertiary Effluent Pump Stations • Use 3 pumps at 50%capacity each for peak flow • Pumping rates to existing outfall— 10,000 gpm each 6.4 DESIGN ASSUMPTIONS The following assumptions are made in developing the process design for the OF color removal system: 1. OF technology could achieve the target color objective of 50 color units at the end of the mixing zone. However, no tests have been performed to date with secondary effluent. Furthermore, there are no known full-scale installations of this technology for an f application similar to the Canton Mill. 2. An average sand filtration rate of 4 gpm/ftz would reduce TSS to less than 5mg/1. 3. Land required for installation of sub-surface piping between the existing secondary and new tertiary treatment systems could be purchased from individual homeowners and the r City of Canton. 4. Relocation of water,natural gas,and sewer services presently buried beneath the roadway to the site would not be required. _ 5. Due to the nature of the material to be incinerated, operational or maintenance problems could require dual 100% capacity incinerators. This redundancy was not included and would affect the accuracy of the estimate. 6. Operation of the incinerator would result in emissions to the atmosphere of particulates, hydrocarbons,CO, SOZ and NO.. An air permit would have to be obtained to operate the incinerator. 4s 7. Site work and excavation costs do not account for the presence of rock or hardpan in the area. If these materials are encountered, the estimated costs would increase. Subsurface exploration and testing has not been performed at the site. Rock excavation costs for installation of the pipelines between the existing wastewater treatment system and the proposed tertiary treatment site could be as much as$1,500,000. 6.5 BASIS OF ESTIMATED COST _ There are no known commercial installations of OF technology for tertiary treatment of pulp and paper mill wastewater. The process design for this color removal system is therefore based on the assumption that the target color objective of 50 color units could be achieved with 20 modules. The estimated design and construction time for this project is 24 to 30 months. This does not include any allowance for permitting related activities. The installation of this tertiary treatment system may require a PSD permit. PSD permitting in close proximity to at least two Class I areas (the Great Stuckey Mountain National and the Shining Rock Wilderness Area) would required '- extensive analysis, permit reviews and a public hearing. PSD permit analysis and review would 6-5 11 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina likely take more than 24 months. This would be in additional to the 24 to 30 months anticipated for design and construction of the system. I Since the start date for the projects is unknown at this time, costs are presented as January, 2001 prices without any escalation. "._., The cost for the land necessary for the installation of pipelines between the Mill and the Fibreville site is included. It is assumed that this land could be purchased from the individual homeowners and the City of Canton. Other relevant cost basis assumptions are summarized earlier in Section 1.3. tl ff r I ' 6-6 �, I < < 200/ Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 6.6 DRAWINGS Included in this section are the following drawings related to the OF system. Figure 6.1 - Flow Diagram Figure 6.2 - General Arrangement 1 i W1 6-7 l i� 1001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 6.7 COST DATA Cost estimates for the OF system are attached. Included are summary tables for the total capital cost and annual operating costs and backup detail sheets for capital cost estimation. I_ i ( �f 97 i li L.- -i I _ f 7 \J 6-8 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina COST DATA SUMMARY TABLES s 6-9 TOTAL COST SUMMARY-JE PRIME CODE JOB: ULTRAFILTRATION SYSTEM ESTIMATE DATE: 01115/01 CLIENT: BLUE RIDGE PAPER COMPANY REVISION 0 LOCATION: CANTON,NC ESTIMATEDD BY: M.D.WATSON JOB NUMBER: 16Y78100 CHECKED BY. CONSTRUCTION DURATION: TBD EST.FILE 9: '01001 ESTIMATE TYPE: ORDER OF MAGNITUDE G:IESTIMATI1BIue RidgelteV781001[UltmfiItmtlon RfI E.MA1L.xIsIPRIME CODE TCS PRIME CODE DESCRIPTION W-H CITY UNIT LABOR EQUIPMENT MATERIAL SUBCONTRACT TOTAL COST DIRECT COSTS 50 MAJOR EQUIPMENT 53,594 0 0 $895,685 $37.747.756 $916.208 $8.302.684 $47,862,333 52 CIVIL,STRUCTURAL,ARCHITECTURAL 108,300 0 0 $1.565.878 $0 $2,197,490 $2,239.660 $6.003.028 55 BUILDING HVAC 2024 1 LOT $28657 $497490 $0 $537.884 $1065031 62 PIPING 376.725 32,710 LF $6.047.555 $0 $6.594.981 63 INSULATION-PIPE,EQUIPMENT B DUCTWORK 0 0 0 00 $1$232,400 64 INSTRUMENTATION 35421 0 0 $581232 $3fi0000 $787935 $7,887388 $3628_,555 65 ELECTRICAL 7fi,580 0 0 $1,222,734 094,474 66 PAINTING,PROTECTIVE COATINGS 0 0 0 $957,2$0 $1,914,4$0 $0 $1,978.125 ED $0 $0 $$52%725 $$520,000 67 CONSTRUCTION ACQUISITION 0 0 0 $0 $0 $0 $5200$0 $520000 75 CONSTRUCTION SERVICE LABOR 97,897 0 0 $1,485,725 $0 EO $0 $1,485,125 TOTAL DIRECT COSTS 750,640 $11,827.868 $39,562,493 $12,421,106 $15.698.140 $79.509,607 $I WH $15.76 INDIRECT COSTS 76 TEMPORARY CONSTRUCTION FACILITIES(IN WAGE RATE) 7.5% DL $0 $0 $887.090 $0 $887.090 M PREMIUM TIME 10.0% OL $1182787 $0 $0 $0 $1182787 79 CRAFT FRINGE BENEFITS(IN WAGE RATE) 5.0% OL $591,393 $0 $0 E0 $591,393 CRAFT PER DIEM S SAFETY INCENTIVES 17.3% DL $0 $0 $0 $2,251,621 $2,251,621 80 PAYROLL TAXES S INSURANCE(IN WAGE RATE) 23.0% DL $2,721,592 $0 $0 $0 $2,721,592 83 115 SMALL TOOLS(IN WAGE RATE) 4.0% DL Bd CONSUMABLE SUPPLIES(IN WAGE RATE) 7.0% DL $0 $0 $827.951 EO $827,951 $0 $956,967 $0 $956,96 BS CONSTRUCTION EQUIPMENT(IN WAGE RATE) 25.0% DL $0 $0 $2,958,967 $0 $2,B58,987 87 FIELD STAFF(IN WAGE RATE) 28.0% DL $3.311,803 $0 $0 $0 $3,311,803 TOTAL INDIRECT COSTS $7,807,576 $0 $5,145,122 $2,251,621 $15,204,319 ACCUMULATIVE TOTAL 750,540 $19.635,443 $39.562,493 $17,566.229 $17.949,761 $94,713,928 $/WH $36.02 81 NON-PAYROLL INSURANCE,TAXES,PERMITS 1.78% TIC $0 $1,582,500 $702,649 $383,995 $2,669,144 93 CONSTRUCTION HOME OFFICE COST(IN WAGE RATE) 0.53% TIC $709.672 $0 EO $84,211 $793.883 88 CONSTRUCTION MANAGEMENT 4.43% TIC $0 $0 ED $8629975 $6629975 90 ENGINEERING PROFESSIONAL SERVICES 10.00% TIC $0 $0 EO E74,9B3,743 $14,983,743 96 OUTSIDE CONSULTANT SERVICES 0.02% TIC $0 $0 $0 $26.000 $25.000 91 OWNER'S COST 5,06% TIC $0 $0 $0 $7.577114 $7577114 70 SPARE PARTS,CATALYST,OPERATING SUPPLIES 0.00% TIC $0 $0 $0 $0 $0 71 START-UP ASSISTANCE 0.53% TIC $0 $791,250 $0 $0 $791.250 98 ALLOWANCE FOR UNFORESEEN 12.84% TIC $3051767 $6290436 $2,740,332 $7145070 $19227605 98 ESCALATION 0.00% TIC 99 CONSTRUCTION FEE(IN WAGE RATE) 1.57% TIC $2.356,253 $0 $0 $0 $0 253 ROUND OFF (E138) $321 ($210) E731 $107$0 $2,35 107 TOTAL PROJECT COSTS 750,640 $25,753,000 $40.227,000 $21,009,000 $54.779.000 $149,768.000 $/WH $40.21 6:29 PM 1 02/20/2001 J 2001 Color Removal Technology Assessment Ultrafiltration Blue Ridge Paper Products Inc. Canton, North Carolina fl# Pumps ,4' Flow, GPM Head Efficiency Hp Operating 1 Sand Filter Feed ,a a 'i 17,255 25 75 145.2 2 Backwash `_ r &. 1200 50 75 20.2 3 Backwash Return - 1,200 100 75 40.4 4 Ultrafiltration Feed # 1"s" 17,255 230 75 1,336.3 5 Treated Effluent 17,255 100 75 581.0 6 Concentrate : , 120 100 50 6.1 7 Condensate ff"4 .elii 120 100 75 4.0 8 Bottom h ems' 13.2 200 50 1.3 9 Condensate 7r1 250 100 75 8.4 10 Return Zt 20 100 75 0.7 11 'dooling Water r fry sn 0 75 75 0.0 12 -birty Caustic _'° 0 230 75 0.0 13 Cleaning Water 0 280 75 0.0 14 Scrubber Water Feed 2 120 75 0.1 15 Caustic Metering r 0.0 230 50 0.0 16 PrescrubberBlowdown +ate 0.0 100 75 0.0 17 Recycle No. 1 tdY i „ 989.3 70 75 23.3 18 Recycle No. 2 F ""e 0 70 75 0.0 Total *�" "�"i --:'. �55� ` ='"fi', Pik".`,a'of''.'`= .v;:,�rY`1ae ` ',`= 2,167.0 Miscellaneous Motors x , , ,ra x':' { City Hp Ea Hp Total 1 Air Compressor 1 125.0 125.0 2 Sand Filter Drives }� F" =' art` £j « 5 5.0 25.0 T Caustic Mix Tank Agitator s;,t " v! 1 3.0 3.0 4 Detergent Feeder Drive 1 2.0 2.0 5 Detergent Mix Tank Agitators x§ _W ,r f 2 3.0 6.0 6 Citric Acid Feeder Drives f _`_xu� �y, 2 2.0 4.0 7 Citric Acid Mix Tank Agitators ;=r t ,,�i 2 3.0 6.0 8 Vacuum Pump ° k f w. " 1 150.0 150.0 9 Rotary Kiln Inlet Blower �:ti YG ; y ? 1 15.0 15.0 10 -Rotary Kiln Auxiliary Blower 20.0 20.0 11 Rotary Kiln Drive 1 15.0 15.0 12 Waste Combustion Fan up 1 .- >ti ;;* am 1 30.0 30.0 13 Ram Feeder �'_F ,zv '* 1 3.0 3.0 14 Metering Conveyor 1 10.0 10.0 15 Transfer Conveyor w ' ""f 4 � � 1 3.0 3.0 16 Ash Dry Conveyor r w, »s ",_ n t 1 7.5 7.5 17 Fuel Oil Pump i P *` ; ,; p 1 3.0 3.0 18 Hydraulic Power Pack x#, n r„ _ 1 20.0 20.0 19 Auxiliary Blower r x;d= a .F ,€ 1 20.0 20.0 20 Waste Blower -1 ? Irk- 1 20.0 20.0 21 Induction Fan7m r xy 1 75.0 75.0 22 Cooling Tower Fans 2 40.0 80.0 c.° Total Misc Motors , ' ''«s`„',� y_.st , 1 ;,; "'��. .?..x" .; 642.5 rvY Total Operating Horsepower 2809.5 02/20/2001 Operating$1.xls 2001 Color Removal Technology Assessment Ultrafiltration Blue Ridge Paper Products Inc. Canton,North Carolina Annual Operating Cost Area Value Units Price Units Annual Cost 1-Operating Personnel 6.0 Man-Yrs $60,000 Per Year $360,000 2 Maintenance Personnel 6.0 Man-Yrs $60,000 Per Year $360,000 3 Outside Contractor Services 1.00 % of $39,562,493 Total $395,625 Equipment Equipment 4 Stores And Supplies 4.00 %of $39,562,493 Total $1,582,500 Equipment Equipment 5 Electrical Power 2,809.5 Horsepower $260.00 Per Horse- $730,476 ower Year 6 Steam 661,888,872 Pounds Per $2.15 Per M $1,423,061 Year Pounds 7 No.2 Fuel Oil 1,051,318 Gallons Per $0.71 Per Gallon $774,334 Year 8 Water 102,033,807 Gallons Per $84 Per Million $8,520 Year Gallons I 9 l Chemicalsr% 1 a5 ,z r' �Y�! xk do e r r sw} w G. E'" t 4� > e a+. 4{fF/ A Caustic 6,867 Tons Per $410 Per Ton $2,815,601 Year 10 Ultrafiltration Membrane 150,447 Square Feet $15 Per Square . $2,256,699 Replacement Per Year . Foot 11 Disposal-Dregs to Landfill 2,129 Cubic Yards $10 Per Cubic $21,294 ' Yard 12 Total Annual Operating & $10,728,110 Maintenance Cost 13 Interest 10.00 % of Total $149,768,000 Total Capital $14,976,800 Capital 14 Depreciation 5.00 % Eqpt& $51,983,599 Eqpt& $2,599,180 Material Material 15 Total Annual Cost t p._ ;;�, ";:. � » wi 4;i�' , - $28 304 090 � l v 02/20/2001 Operating$1.xls -i 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina i COST ESTIMATE—DETAIL SHEETS 6-10 i ti-0009a&YS&_om$9761FYE0TSSS9SSSLLLSmm�BSYtlC�omssaaTtla,tlsaaos:aN�s""gym"a»w_ °m p sssBsssssss6ssssssssssssssssssssssssssssssssssss8s8ssssssssSssssssssss ��" ' ss's'aa'as's'aa'se''aeaea'sa"s's'ss"ses's's's's's's'aa''sa'sse''sss'ss's'ssasas's-'sa'sa-----------ss'a's'sa 's Bm e a� ° € $ �oaA' 6 Ol 9 �m k i 2 G 'a yx fj 0 __ _ 12 F f'o 9 x § � 9yyy� s s s m s : p e s I 4 E p c s a p s s s &o & s « " so° s s i «S S ss s sS »p 9 « A AP «Aa « A Aa AA SPP « AP « « «" « PA v «« «A 8 88 a 88 8 88 88 8 8 8 88 888 8 8 88 88 888 8 88 8 8 88 8 88 8 88 88 FFF yymm �mN S os s ss s o0 0o s o o vs o00 8 o ss oo sss o 00 0 0 00 0 88 o ss ss - » » "s ss «« ssrs;gssssssSt. ss ssss «« s «« »» 8 88 a s8 a 88 ss e s s Bs Ba$ a a 88 88 88a 88 P 8 88 8 ss 8 88 ss y9 ° ° a to _ on o0 00 " o S 0o ss§ 8 s ss vs SSE 9 ss s o0 S ss s ss ss s= ag _ mm s a� a x » �m �� g ua ids s @ 28 4ix " m » " «« « «« » » " ti «» � i S&SLG§Somy��Ye�5�mE5�U's'na'��mm"s'au"s�'a3o'a'a'saasas's asa�aaYaasaaa�aYYaassxmy��o� °m s Sp�� sssssassasasaassssssaassassasasassssasassasasssssaasssasassasasassaasssass °gym ssssessssssss=ssss_sssssss=sssss=esss_ss=ssssssselssssssssssssssssssss==s= §� a s9aasssa58Eaasa5a5sasaeE8888888888a88888888888888a88886888888888888888888 m ,__ n� _I" s z 0 ° Fo c _. o e mm e v o oe a oo e v e o 0 0 o v o 0 o v e o 0 0 n y O /gyp s sm s s o Tos s so o s s o 0 o To s s o 0 0 0 0 0 0 0 0 0 § sy ko s sA r' F f F f F F i F f i F F F F i F F F f F i f F i F F gg�" YP ggA S S S Y k Y YY Y YY Y Y Y Y Y Y Y Y Y Y Y Y k Y Y Y Y Y 88 Ym IF8 na i G ffi o Cm „Y6„'� s o„ o a s o s s s s s s o o s s o 0 o e„ « „ » « » o« « „ « » „ t� P SS Y!!�� « T sr » «« P S » A « « Y S P P A S S S » A „ » A S P8 Pr ss S s 8 8 8 88 s 8 8 88 s 88 a 8 s 8 a 8 8 s s 8 8 s s s s 8 8 a a 8 88 88 ss 8 a m bC• z m s o 00 0 0 o sS o 00 8 s s o 0 o s s s o e o o s s o 0 0 o s ss ss ss s s a `mpg 8 9 Q L 88 k % Y YY Y YY Y Y k k k Y Y Y S. k Y Y Y Y Y Y Y >✓ 8 „» „o "«88 88 88 y y o 8 z sa o 0 0 os s o0 0 0 0 0 0 0 o s a a s o 0 0 0 0 0 o t o 82 affi o0 o a d r C8 s o Sz o o „ o o e o » » o 0 0 0 » „ « � _ .. 8S o s5 8 a s 8 s s o 8 .. o 29 8s ffiSffi#kYramms"sew "xmg�"� Yy ���p� �SG�omm�v;s"cc�v3� o58518&80_BAEy&aYEgg-$m-sa cm ryl 8s888� � $7� gg 6 88888a88dBBfiBB86a8d&ddd8d8d888d d S SSSS---------------S00000 a@ 88��8� � 8 8888888868888888888888888888888 8 8 8888888888888888888888868 m :o 3 oa a $ 6 A HIM r N o 1n° ggC i A 8 G C s o � m F s ° Q � � z Tv orS" " x « w x » » « w « -- - -- -- - - -- - - -- " I �sl — zc� a a 8 8 8 8 8 8 8 8 8 8 8 sm 8 $ s s 8 � s -oo $ $ sss s o 0 o s o o s o 0 0 0 s vat o o w s ss " Sa «Ao N ti « N N 'u x x x " " « 88 888 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 98 8 88 88 8 8 88 8 8 $$ -' ss Ao s "P 88 sEsF on x" 8kY»8 ws S.- 8 a s e s as a ss' BB 0' I ° ss sss $ s $ o o s s s ss s so onsat ss o0 ag o w w x a 8 a 8 "a o �5N rW gs ss &"€ ae a u « « s x $ o @e 5; eo "« 2 , Q f�� �5��� �rg�k��mmGm�� :ng�aeW�_ommg8 £��� �ESfs& n o� � 55se ;Ysm om � s e s ssassss a sea a aesezaeeeecezeeeeeeee � ��xw��xu�ux�ss g�m gg gg gg $$ss11ss g"a a"sits"�"aa8a�.t"spa"aaat"a�g"at"s�ta� �a+x , , 88588--------------- 8 8 8 88888888 mm zo a� a�� m a ° i 4 v � y gg8z o a — f 1 a g a a a a a x a a s a e x 999 a R Ys o a eee g m mnos p Y a e o 0 D o m e PIP a $ 8 8 s » » � »�« `s 8 s8$ SH c9 m3 o e o a a s % 8 T o e e e e e e e s 8 8 8 8 8 a 8 _ 8 8 o Y 8 8 $ S 8 8 888 888 8 � " C x e s a e _ 8. 8 8 "a 8 § 8 9 0 8 0 BGe o-0 o -- » .. x » » x » » »x» » zo 8 eee g go. s 8 S S 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 888 988 8 ° S e e e 8 8 9 8 8 S L 8 8 asa as e % I t9 . a ads m s e m « e a g "siz DETAIL DIRECT COST JOB:ULTRMLTM11ON SYSTEM ESRMATEDATE 0111=1 CUENT:BLUE WOOEPAPERCOMPNNY REVISION .:0 LOCATION:OANTON.NC ESTIMATED BY:M.0.WATSON JOB NUMBER:IM8100 DURATI CHECIpiOBY: fSTOMATONSTR1CNON 0ORDER O:TOO EST.FRE/:'01001 ESTIMATE TYPE:ORDER OFMAONITUOE . O:IESTIMATm NE9oM9YT610WIMrffiIR flo RO E-MM"181PRINECODETM JE AREA-01 TOTAL PROCESS TOTAL SUB TOTAL LINE PRIME SUB EOUIRAENT ENTFAARFA NAME W.HJ TOTAL COSTI DIRECT EQUIPMENT PROCESS MATERIAL TOTAL CONTRACT SUB UNIT TOTAL ALL NO. CODE COOS NUMBER DESCRIPTION CITY. UNIT UNIT W.H.S W.H. LABOR UNITCOST EQUIPMEM UNRCOST MATERIAL UNITCOST CONTRACTS FAST COSTS SO 6W ORCU PARCKAPROTECRYE COATINGS 591 592 S9 EOiN PAINTING ALLOWANCE S%EQUPAENT MST 1 LOT SC 0 31486 $O Sam SO $GW 50 51,978,125 $1,978,126 S1,YR.125 SI.978.II5 SOT 50 N COOM TOTAL-PAINTING,PROTECNVE COATINGS 0 $0.00 50 SO f0 51,9T6,125 51,970.125 599 SW BO1 11LN LAID AMUISRION 602 603 BT 110.0 S AC S:C 0 $14.65 50 $am $O S0.0D SO SSS,MO $520,000 1,55.006 SS20.U0 W6 W9 ST 11000 TOTAL-LANDAMNSIIION 0 SOAO SO 50 SO 5520,000 SRO.CW 510 Oil 612 013 514 615 652,644 $15.95 51D,342,742 $39.WA93 $12.421.108 $15,698.140 STB,020,452 929 PM 5 ON2W1D]1 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton:North Carolina 6.8 REFERENCES Following is a list of references use to prepare this section: 1. Sirrine Environmental Consultants,Effluent Color Treatment Reports from April, 1987— Champion International Corporation,April 1987. 2. SEC Donohue, Color Treatment Technology Assessment—Champion International Corporation,July 1992. 3. Metcalf& Eddy, Inc., Wastewater Engineering:eering: Treatment, Disposal and Reuse. Second Edition,McGraw Hill Company, 1979. 4. Champion International Corporation, 1995 Color Removal Technology Report, April 1995. 9' i � � I 6-11 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 6.9 PROCESS CALCULATIONS Process calculations are performed to size all major equipment. A copy of the process calculations is attached. 6-12 J 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Ultrafiltration Canton, North Carolina Parameter Value Units Value Units 1 Pi eline 60 In. Dia. r . A Sand Filters � ,.�.. .�P�,.xrra MO�K, WWNM%� t •.c �tr 1 Feed Rate 2 GPM/ftZ 8628 ft2 2 Filter Dimensions 16 Ft Width 110.0 Ft Length 3 lQuantity 4.9 Cells 5 Cells Design_ B Sand Filter Feed Pumps *RW " O 1 Quantity 3 Qty Total 2 Operating L Rating 9,958 GPM Each 10,000 GPM Design L Requirements 25 Ft TDH Estimate 75 P/M Eff% 4- Power .84.2.. ".H 'Each....`.". "100 " H Desi n C Clearwell '-OMI 1 Ca aci 30 Min. Cap 597,495 Gal Cap Total 2 Dimensions Calculated 105 Ft Width 110 Ft Length 3 Dimensions Desi n 2 Ft Freeboard 9 Ft Depth D Backwash Pumps rNM 1 Quanti 5 Qty Total 5 Operating 2 Rating 400.0 GPM each 3 Re uirements 50 Ft TDH Estimate 75 P/M Eff 4 jPower 6.7 Hp Each 10.0 Hp*Design E Backwash Return Tank T 1F r- eta V .. • OMM 1 IFlowrate 3.0 # Filters BW 1,200 Max GPM 2 Minimum Ca aci 30.0 Min Ca 36,000 Gallons 3 Dimensions Calculated 18.3 Ft Dia 18.3 Ft Ht 4 IDimensions Design 20 Ft Dia 20 Ft Ht F Backwash Return Pumps ,}�+�a4s:�»^.:*;� 1 Quantity 2 Qty Total 1 Operating 2 Backwash Requirements 400 GPM/SF BW 3.0 SF BW Rating 1,200 GPM Total L Requirements 100 Ft TDH Estimate 75 P/M Eff% 4 Power 40.4 H Each 50.0 H Desi n G Air C a'.4 n °i om ressor ;.';,, 1 Basis 4.0 H /MGD 114.7 Hp Actual 2 IDesign 125.0 Hp Design 2 Ultrafiltration Unit �� s _ , + A Ultrafiltration Feed Pumps � a 1 lQuantity 5 Qty Total 4. Operating 2 Rating 4,979 GPM Each 5,000.0 GPM Design 3 lRequirements 230 Ft TDH Estimate 75 P/M Eff% 4 jPower 387.2 Hp Each 400.0 Hp Design B Ultrafiltration Unitsap 1 Capacity 150 GPD/ft2 191,198 ft2 2 ImembraneArea 10000 ft2/Module 3 IModules 19.1 Modules 20 Modules Design C Ultrafiltration Concentrate Tank t z'�r 211`00`�'1 15:2 ER3 1 Concentrate Basis 80 Fold Conc 40 ppm Final 2 Concentrate Flow Rate 0.30 MGD 3 Capacity 1 Da Ca aci 302,596 Gal Ca Total 4 Dimensions Calculated 37.2 Ft Dia 37.2 Ft Ht 5 Dimensions Design 32 Ft Dia 32 Ft Ht 02/21/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Ultrafiltration Canton, North Carolina Parameter Value Units Value Units D Permeate Treatment 10 1 I Permeate Flow Rate 28.38 MGD 19,706 GPM 2 Treated Effluent Pumps °,I3• '. ' ��� ���* �-� U�r- gcRe uanti 3 Qt Total 2 Operating ating 9,853 GPM Each 10,000 GPM Design uirements 100 Ft TDH Estimate 75 P/M Eff% wer 337 Hp Ea. 350 Hp Design E Wastewater Return Header 30 In Dia 3 Falling Film Evaporator A Concentrate Pumps 1 Quanti .2 Qty Total 1 Operating 2 Ratin 210 GPM Each 231 GPM Design 3 Re uirements 100 Ft TDH Estimate 50 P/M Eff% 4 Power 11.7 Hp Ea. 10 Hp Design B Condensate Pumps RM02—M"�WACA yr .4�� ,-I ''d 1 Quantity 2 Qty Total 1 Operating L Rating 210. GPM Each 231 GPM Design L Requirements 100 Ft TDH Estimate 75 P/M Eff% 4 Power 7.8 Hp Ea. 5 Hp Design C Bottom Pumps INMARM W� 1 Basis 10 Conc. Factor 23.1 GPM Total 2 Quanti 2 Qty Total 1 Operating 3 Ratin 23.1 GPM Each 25 GPM Design 4 Re uirements 200 Ft TDH Estimate 50 P/M Eff% 5 Power 2.6 Hp Ea. 3 Hp Design D Evaporator 1 Steam Requirements .< i 7RW� '4%S ArM IR=VM ` 'OVA a Basis 187 GPM Evap Rate 6.0 #H20/#Steam b Water Demands 210 GPM Water 105,152 PPH Water c Steam Demands 17,525 #Steam/Hr E Cooling Water Requirements ? ,Fao"m"Lucza? 01MM 1 Basis n 30 F TempIncr 10 GPM/GPM Feed 2 Desi 300 GPM-F/GPM Feed 2,101 GPM Cool Water F Vacuum Pump ;may rr.; >s-- p r.t M f�Fs.""�rw S s �> :tta`5��.- 1-5+.��,�tr',r,� 1 Basis 1.0 Hp/GPM Feed 210.1 H G Heat Exchanger «k, .. - *"Mu jWO IK 1 Rating 25 GPM 12,723 PPH Water 2 Heat Requirements 60 Btu/Hr/#Water 763,405 Btu/Hr H Condensate Pumps a 01mw 17+9 .- ag"MIN4 ct a ufi o f* MAW&I '. w 1 Quantity 2 Qty Total 1 Operating 2 Ratin 250 GPM Each 275 GPM Design 3 Re uirements 100 Ft TDH Estimate 75 P/M Eff% 4 113ower 9 Hp Ea. 10 Hp Design I Clean Condensate ':*, 1 Tank Mit's. "s°�'asm n .,ram 5�i, A� a Retention Time 60.0 Minutes b Volume 2,101 Gallons 2,522 Gal Desi n c Dimensions Calculated 7.5 Ft Dia 7.5 Ft Ht d Dimensions Design 7 1 Ft Dia 7 Ft Ht 02/21/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Ultrafiltration Blue Ridge Paper Products Inc. Canton, North Carolina Parameter Value Units Value Units 2 lReturn Pumps a Quantity 2 Qty Total 1 Operating b Rating 35.0 GPM Each 53 GPM Desi n c IRequirements 100 Ft TDH Estimate 75 P/M Eff% d I Power 1.8 Hp Ea. 1 H Desi n 4 Cooling Tower Requirements A Cooling Tower 'r 1 Basis 2,101 GPM Water 30 F Temp Drop 2 1 Rating 31.5 MM Btu/Hr 20 MM Btu/Hr Design - B Fans I _ .. ,:�: ' � ,... wn»,�« ;'v :.: s� F.- 1 I Rating 4.0 Hp/MM-Btu 80 Hp Total 2 IDesign 2 Fans 40 Hp Each r . C Cooling Water Pumps � � Via�Y T�` - ¢ 1 Quantity 2 Qty Total 1 Operating 2 Rating 2,101.4 GPM Each 2,311 GPM Design 3 Re uirements 75 Ft TDH Estimate 75 P/M Eff% 4 Power 58.4 Hp Ea. x 40 H Desi n 7ri'F" ^t 5^` :1•' D Di Caustic s , i a ' �+, ,. 1 Dirty Caustic Pumpst .,.�' z %;,, i ax t qQuantit 2 Qt Total 1 O eratinRating 100 GPM Each 110 GPM Desi nRe uirements 230 Ft TDH Estimate 75 P/M Eff% Power 9 Hp Ea. 10 Hp Design 2 Dirty Caustic Tank RRI &.e- S r_'a�.'a"�"'a Retention Time 150.0 Minutes b IVolume 15,000 Gallons 2,005 CF c Dimensions Calculated 13.7 Ft Dia 13.7 Ft Ht Id IDimensions Design 14 Ft Dia 14 Ft Ht E Cleaning4rucdN .A F ' 1 CleaningWater Pumps , s`, 1. . 1 u 3 t 9 L��°bY:.A a lQuantity 2 1 Qty Total 1 Operating b Rating 270 GPM Each 270 GPM Design c Requirements 280 Ft TDH Estimate 75 P/M Eff% d IPower 25.5 Hp Ea. 30 Hp Design 2 Hot Water Cleaning Tank z S" a -IMr .;:. YYI r o I'M 3 , a Basis 50,000 Gallons 6,684 CF b I Dimensions Calculated 20.4 Ft Dia 20.4 Ft Ht c IDimensions Design 21 Ft Dia 21 Ft Ht 5 Burner System A Fuel Requirements 1 Basis 2.0 GPM Assumed 2880 GPD Consumed 2 No.2 Fuel Oil Storage Tank ",,: ,+r,7' t,'s nPU_ a Basis 7 Day Capacity 20,160 Gallons bI Dimensions Calculated 15.1 Ft Dia 15.1 Ft Ht c IDimensions Design 16 Ft Dia 16 Ft Ht 3 Pum /Heater Set a Power1 2.5 Hp Ea. Assumed 2.50 Hp Design B Ash Generated k ° :r` TIZITMI'W�'�1z5t l 1 Basis 50 % Solids 23.1 GPM Concentrate 2 Desi n 5 1 %Ash Assumed 6.94 TPD Ash 02/21/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Ultrafiltration Blue Ridge Paper Products Inc. Canton, North Carolina Parameter Value Units Value Units C Scrubber Water Feed Pumps am a Quantity 2 Qty Total 1 Operating b Basis 2.5 GPM/GPM Conc. 58 GPM Each c Rating 64 GPM Design d ]Requirements 120 Ft TDH Estimate 75 P/M Eff% e I Power 2.6 Hp Ea. 2 Hp Design D Caustic Metering Pumps 9 ,` 2 a Quantity 2 Qty Total 1 Operating b Rating 10 GPM Each 11 GPM Design c - Re uirements - - --23t--- -Ft-TDH Estimate 50 P/M Eff% d I Power 1.3 Hp Ea. 1.00 Hp Design E Prescrubber Blowdown Pumps 1 gRatin 2 Qt Total 1 Operating 2 58 GPM Each 64 GPM Desi n 3 ents 100 Ft TDH Estimate 75 P/M Eff% 4 2.1 Hp Ea. 2 Hp Design F Recycle Pumps No. 1r � $4Re sis 1.5 GPM/GPM Conc. anti 2 Q Total 1 Operating tin 35 GPM 38 GPM Design uirements 90 Ft TDH Estimate 75 P/M Eff% wer 1.2 Hp Ea. 1 Hp Design F Recycle Pumps No.2 t ,fit = ,: a na}jam ' 1 Basis 75 GPM/GPM Conc. 2 Quguirrements 2 Q Total 1 Operating 3 Ra 1,734 GPM 1,907 GPM Design 4 Re 70 Ft TDH Estimate 75 P/M Eff% 5 Po 44.9 Hp Ea. 30 Hp Design G Blower "TTROUR 7wom 15` Air r, AT., _Ty:,t3 1 Basis 2.0 Hp/GPM Conc. 2 1 Design 46 Hp 30 Hp Design 6 Chemicals AUIZAO 4WIM i"t *, v PROM A 50% Caustic Stora a Tank " M B�1 ,,*q:r t a 1 Basis 1.5 Truckload 8000 Gal/Truckload 2 Volume 12,000 Gallons 1,604 CF 3 Dimensions Calculated 12.7 Ft Dia 12.7 Ft Ht 4 Dimensions Design 14 Ft Dia 14 Ft Ht B Caustic Make-up Pumps 1 Quanti 2 Qty Total 1 Operating 2 Ratin 10 GPM Each 10 GPM Design 3 Re uirements 50 Ft TDH Estimate 75 P/M Eff% 4 Power 0.2 Hp Ea. 1.0 Hp Design -- C Caustic Cleaning Pumps £*.6} ''."'euY �'a...,.,�'�'&'fi'r"�' s�:R` �'3"4i S.y"`MMU 1 Quantity 2 Qty Total 1 Operating L Rating 60 GPM Each 60 GPM Design 3 Requirements 230 Ft TDH Estimate 75 P/M Eff% 4 Power 4.6 Hp Ea. 5 Hp Design WWI;rLi' 1 f+�y `T',- Y'Yuy(. ' 8 Deter entAddition �^, �, ;� _ �a::��.-t -.�a� ..- A Detergent Mix Tank 9j!;I PIETW ": ,rr vmnft w ". M , 1 IVolume 6,000 Gallons 802 CF 2 Dimensions Calculated 10.1 Ft Dia 10.1 Ft Ht 3 Dimensions Design 11 Ft Dia 11 Ft Ht 02/21/2001 Design Basis1.xls 2001 Color Removal Technology Assessment Ultraf Itration Blue Ridge Paper Products Inc. Canton, North Carolina Parameter Value Units Value Units B Detergent Pumps -:_ RSVWMZ _ . - ." IM jR uanti 2 Q Total 1 O eratinatin 60 GPM Each 66 GPM Desi n e uirements 250 Ft TDH Estimate 75 P/M Eff% ower 5.6 Hp Ea. 10 Hp Design 9 Citric Acid Addition A Citric Acid Mix Tank r WOMIq.- M-e-A 1 Volume 6,000 Gallons 802 CF 2 Dimensions Calculated 10.1 Ft Dia 10.1 Ft Ht 3 -1 Dimensions Design - •--11 - - --• ••Ft•Dia ^ 'I1— Ft Ht e Citric Acid Pumps 1 Quanti 2 Qty Total 1 O eratin 2 Rating 60 GPM Each 66 GPM Desi n 3 Re uirements 0-0 FtTDH Estimate 75 P/M Eff 4 1power 5.1 I H Ea. 10 H Desi n I • 02/21/2001 Design Basisl.xls i 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 7.0 CARBON ADSORPTION SYSTEM 7.1 SUMMARY This section addresses the carbon adsorption color removal process. The estimated capital cost for this system is$99,289,000 in January 2001 dollars and based on the assumptions summarized in Sections 7.4 and 7.5. The accuracy of the cost estimate is -30% to +30%. This estimate includes direct and indirect costs, as well as land acquisition and permit costs. The annual operating cost associated with this system is estimated to be $21,891,000. The total annual operating cost includes operating and maintenance costs, as well as interest and depreciation. Carbon adsorption is theoretically capable of removing color with an efficiency of approximately 90%. However, no laboratory testing has been performed. Assuming an average color load of 208 color units, this technology would theoretically reduce the effluent color to an average of 21 color units. At the maximum color load of 318 color units, this technology could theoretically -- reduce the effluent color to 32 color units. This technology is theoretically capable of consistently achieving the 50 color unit standard. There are no known full-scale installations of carbon adsorption technology for tertiary treatment of pulp and paper mill wastewater. The preliminary process design is based on an engineering assessment of the information available for this technology. Theoretically, this target may be achieved by providing multiple carbon adsorption units. The system is designed for a peak influent color loading of 65,888 pounds per day. Space for the proposed treatment system is not available in the present Mill area. Therefore, property owned by Blue Ridge approximately one mile downstream and north of Fibreville would be utilized. Treated secondary effluent would flow through new piping to the treatment area. Facilities would be provided at this area for removing color in conventional contactors filled with granular activated carbon. Decolorized wastewater from the contact columns would be neutralized and t pumped back to the existing outfall at the mill area through new pipe. Facilities would also be provided for on-site regeneration and reactivation of the carbon. The regenerant solution, which would contain the removed color bodies, would be concentrated by evaporation and destroyed in an incinerator. 7.2 PROCESS DESCRIPTION Secondary effluent from the existing wastewater treatment plant would gravity flow to the site of the color removal facilities through a new 60-inch diameter buried pipeline. This site is approximately one mile downstream from the mill along the Pigeon River,and immediately north of Fibreville. The design average wastewater flow would be 24.8 MGD, and the peak flow would be 28.7 MGD. This flow would contain an average of 57,395 pounds per day of color. The design peak color loading would be 101,082 pounds per day. 7-1 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina Wastewater would flow into a pH adjustment basin sized to provide two minutes retention at the design peak flow. The basin would be a below grade concrete structure 35 feet long by 18 feet wide by 11 feet deep with mechanical agitators and baffles. Sulfuric acid would be metered from an 11,840-gallon storage tank into the pH adjustment basin to adjust the wastewater to approximately 6.0 s.u. A pH monitor and controller would maintain the pH. Following pH adjustment, the wastewater would be pumped to sand filters for removal of suspended solids. Three pumps, each rated at 10,000 gpm,would be provided. The sand filters would be of the gravity type with automatic backwash. The filtration rate would be 2 gpm/ft' of surface area at the design peak flow. The total filter area requirement would be 8,628 SF. Five cells at 1,760 square feet each would be provided. Filters would be in a concrete, above-grade structure, and arranged in parallel. Each of the filter dimensions would be 110 feet long and 16 feet wide. Filtered water would drain into a clearwell constructed directly beneath the filter structure. Five backwash pumps each rated at 400 gpm would be provided. Three pumps, each rated at 10,000 gpm, would pump filtered water from the clearwell to the carbon adsorption columns. Forty carbon columns would be provided. Each column would have a volume of 1,360 cubic feet and would be 12 feet in diameter and 12 feet high. Each column would be designed to provide approximately 10 minutes of EBCT at the design peak flow. Granular activated carbon would be provided in each column. The columns would be operated in twenty parallel trains of two columns each. Flow would be equally divided between each parallel train. The columns in each train would be operated in series. When breakthrough is about to occur in the first column, the flow would be switched to enter the second column in series, while the first column would be temporarily taken out of service and recharged with fresh carbon. Decolorized effluent from the adsorbers would flow into a final pH adjustment basin. The final pH adjustment basin would be identical to the influent pH adjustment basin. Sodium hydroxide would be added to raise the pH to between 6.0 and 8.0 s.u. Three tertiary effluent pumps, each rated at 10,000 gpm, would pump the wastewater back to the Mill area through new 30-inch diameter pipe. Wastewater would be discharged at the existing outfall. Economics of the system operation would favor on-site regeneration and reactivation of the carbon. These facilities would be included in the system design. Normally, a-majority of the color could be washed from the carbon by a caustic wash solution. A 64,000-gallon storage tank for 50% caustic would be used to store a seven-day supply of caustic. The caustic would be transferred to a solution make-up tank to be diluted and stored until needed. The regenerant solution would be pumped through the idle carbon column followed by a wash water flush. The dilute regenerant solution, containing the color bodies, would be pumped to an evaporator. The evaporator would be sized for a maximum flow of 40 gpm. The evaporator would utilize combustion gases from the incinerator for heat. Evaporator bottoms would be pumped to a rotary incinerator. The incinerator would be fired with No. 2 fuel oil. Combustion gases would pass through a secondary combustion chamber to insure complete destruction of organics. Flue gases would be directed through a scrubber before discharge to the atmosphere. Ash from the incinerator would be hauled to a landfill. 7-2 I ! I 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina After several cycles, the carbon would be thermally reactivated. Carbon from the idle column would be pumped in slurry form to the spent carbon storage tank. This tank would have sufficient volume to hold the entire carbon load from four columns. Spent carbon from the tank - would be pumped in slurry form to a dewatering screw conveyor, which would feed the thermal regeneration unit. Natural gas would be used to increase the temperature of the carbon for oxidation of adsorbed organics. The reactivated carbon would be discharged into a quench tank where it would be re-slurried and pumped to a carbon storage tank for reuse. Pumps would be provided to recharge the adsorption columns. 7.3 DESIGN BASIS Following is a summary of the design basis for the conceptual design and cost estimate for the carbon adsorption color removal system. Design influent conditions are based on data provided by Blue Ridge. No full-scale performance data is available since this technology has not been commercially demonstrated for treatment of pulp and paper mill secondary effluent. Furthermore, no testing has been performed with secondary effluent from the Canton Mill. I' Therefore, it is not known if the designed system would achieve the target color objective of 50 color units. Equipment sizing is based primarily on experience with similar equipment and processes,and on engineering judgment. 7.3.1 Secondary Effluent Characteristics Average Flow - 24.8 MGD Peak Flow - 28.7 MGD Average Color - 43,188lbs/day Maximum Color - 65,888 lbs/day 7.3.2 Secondary Effluent Pump Station • Pumping would not be required 1- • Secondary effluent would gravity flow from the Mill • 60"diameter pipeline from existing outfall 7.3.3 pH Ad'ustment Tank • Size for 2 minutes HRT at the design peak flow • Mechanical mixers and baffles would be provided 7.3.4 Sulfuric Acid Stora a Tank _ • Size for one-week storage • Volume— 12,000 gallons 7-3 it I__I 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina 7.3.5 Sand Filters • Set filtration rate at 2 gpm/ft • Backwash rate would be 10-20 gpm/ft' 7.3.6 Clearwell • Provide 30 minutes storage at design peak flow 7.3.7 Carbon Columns • Size for 18 minutes EBCT per column at the design peak flow • Mechanical mixers and baffles would be provided as required 7.3.8 Final pH Adjustment Tank • Size for 2 minutes HRT at the design peak flow • Mechanical mixers and baffles would be provided as required 7.3.9 Tertiary Effluent Pump Station • Use 3 pumps at 50%capacity for peak flow • Pumping rate—10,000 gpm each • 30"diameter pipeline to existing outfall 7.3.10 Caustic Storage Tank • Size for seven(7)days storage 1 7.3.11 Regenerant Make-Up Tank • Size to hold the volume of 2 carbon columns • Volume=20,305 gallons 7.3.12 Evaporator • Size for an influent flow of 40 gpm • Heat would be supplied by incinerator combustion gases through a direct contact venturi preheater 1 -` 7-4 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 7.3.13 Incinerator • Rotary type with primary and secondary combustion chambers • Fire with No.2 Fuel Oil 7.3.14 SSnent Carbon Storage Tank • Size to hold the entire carbon load from four columns • Volume-5,430 cubic feet 7.3.15 Thermal Reactivation Unit • Size to process carbon from one column every 10 hours • Fire with natural gas • Steam would be released to the atmosphere 7.4 DESIGN ASSUMPTIONS The following assumptions are made in developing the process design for the carbon adsorption color removal system: 1. Sand filtration rate oft gpm/ft2 will reduce TSS to less than 5 mg/1. 2. The treatment system, as proposed, would meet the desired color objective of 50 color units. 3. Pilot studies have not confirmed the suitability of the evaporation/incineration process or the thermal reactivation process. 4. Site work and excavation costs are based on the assumption that rock or hardpan would not be encountered in the area. If these materials are encountered, the estimated cost would increase. Subsurface exploration and testing has not been performed at the site. Rock excavation costs for installation of pipelines between the existing wastewater treatment system and the proposed tertiary treatment site could be as much as$1,500,000. 5. Land required for installation of sub-surface piping between the existing secondary and new tertiary treatment systems could be purchased from individual homeowners and the -' City of Canton. 6. Relocation of water,natural gas, and sewer services presently buried beneath the roadway to the site would not be required. 7. Operation of the incinerator would result in emissions to the atmosphere of particulates, hydrocarbons, CO, SOZ and NO.. An air permit would have to be obtained to operate the incinerator. 7-5 i r r 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 8. The carbon units would cost $300,000 per train to include unspecified options. The initial carbon fill cost would be $0.90/lb delivered for the virgin grade carbon ($51,840 per train, $1,037,000 total). Quotation from Calgon Carbon Corporation attached in Appendix. A i - 7.5 BASIS OF ESTIMATED COST There are no known commercial installations of this technology for treatment of secondary effluent at a pulp and paper mill. The process design and the costs presented herein are based on the assumption that the technology is technically capable of achieving the desired color objective of 50 color units. The design and construction time required for this project would be 24 to 30 months. This does not include any time associated with permitting related activities. The installation for this tertiary treatment system may require a PSD permit. PSD permitting in close proximity to at least two Class I areas (the Great Stuckey Mountain National Park and the Shining Rock Wilderness Area) would require extensive analysis,permit reviews, and a public hearing. PSD permit analysis and review would likely take more than 24 months. This would be in addition to the 24 to 30 months anticipated for design and construction of the system. Since the start date for the project is unknown at this time, costs are presented as January 2001 prices without any escalation. The cost for land necessary for the installation of pipelines between the Canton Mill and the Fibreville site are included. It is assumed that this land could be purchased from the individual homeowners and the City of Canton. Other relevant cost basis assumptions are summarized in Section 1.3. r U 76 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton. North Carolina 7.6 DRAWINGS Included in this section are the following drawings related to the carbon adsorption color reduction system: Figure 7.1 - Flow Diagram Figure 7.2 - General Arrangement , LI i 7-7 1 , r t 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. 'r Canton.North Carolina 7.7 COST DATA Cost estimates for the carbon adsorption system are attached. Included are summary tables for the total capital cost and annual operating cost and backup detail sheets for estimation of the total capital costs. 1 l 7-8 1001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina COST DATA SUMMARY TABLES i 7-9 TOTAL COST SUMMARY-JE PRIME CODE JOB: CARBON ADSORPTION SYSTEM ESTIMATE DATE: 01115/01 CLIENT: BLUE RIDGE PAPER COMPANY REVISION NO.: 0 LOCATION: CANTON,NO ESTIMATED BY: M.D.WATSON JOB NUMBER: 16Y78100 CHECKED BY: CONSTRUCTION DURATION: TED EST.FILES: '07001 ESTIMATE TYPE: ORDER OF MAGNITUDE GAESTIMATDBIue RIdge116y78100\[Carbon Adsorption RO EMAILxIsIPRIME CODE TCS PRIME CODE DESCRIPTION W-H QTY UNIT LABOR EQUIPMENT MATERIAL SUBCONTRACT TOTAL COST DIRECT COSTS 50 MAJOR EQUIPMENT 37,656 0 0 $627,650 $19,054.586 $462,49D $6.625,556 $26.770.282 52 CIVIL,STRUCTURAL,ARCHITECTURAL 76,510 0 0 $1.106,241 $0 $1.553,769 $3,271,060 $5,931.060 55 BUILDING HVAC 13888 1 LOT $203500 $621,646 $0 S433,976 $1259122 62 PIPING 265.077 37,121 LF $4.255.272 $0 $3.822,896 $0 $8,078.168 63 INSULATION-PIPE,EQUIPMENT B DUCTWORK 0 0 0 $0 $0 $0 $162,400 $162,40D 64 INSTRUMENTATION 38340 0 0 $629138 $1288729 $875108 $0 $2792975 65 ELECTRICAL 64,249 0 0 $1,025,847 $1,070,811 $1,338.514 $0 $3.435.172 66 PAINTING,PROTECTIVE COATINGS 0 0 0 $0 $0 $0 $1,101.789 $1,101,789 67 LAND ACQUISITION 0 0 0 EO $0 $0 $520000 $52000D 75 CONSTRUCTION SERVICE LABOR 74,343 0 0 $1,127.810 $0 $0 $0 $1,127,810 TOTAL DIRECT COSTS 569.963 $8.975.457 $22,035,773 $8,052,767 $12.114.781 $51,178,778 $1 VVH $15.75 INDIRECT COSTS 76 TEMPORARY CONSTRUCTION FACILITIES(IN WAGE RATE) 7.5% DL $0 $0 $673.159 $0 $673,159 78 PREMIUM TIME 10.0% OIL $897548 $0 $0 $0 $897546 79 CRAFT FRINGE BENEFITS(IN WAGE RATE) 5.0% DL $ 4B,773 $0 $0 $0 $448,773 CRAFT PER DIEM B SAFETY INCENTIVES 17.3% DL" $0 $0 $0 $1,709,8$0 $1,709.890 BO PAYROLL TAXES 81NSURANCE(IN WAGE RATE) 23.0% DL E2,085,253 $0 $0 $0 $2,065065,253253 83 SMALL TOOLS(IN WAGE RATE) 4 0% DL 84 CONSUMABLE SUPPLIES (IN WAGE RATE) 7.0% OL $0 $0 $359018 $0 $359078 85 CONSTRUCTION EQUIPMENT(IN WAGE RATE) 25.0% DL $0 $0 $243.864 $0 $628,262 87 FIELD STAFF IN WAGE RATE $0 $0 $2,2d3,8$0 $0 $2,513,128 I ) 28.0°/a DL 32,573,128 EO SO $0 $2,513,120 TOTAL INDIRECT COSTS $5,924,699 $0 $3,904,324 $1,709,890 $11,538,9tz ACCUMULATIVE TOTAL 569.963 $14.900.156 $22,035,773 $11,957.091 $13,824,671 $62.7 77.6 01 $1WH $35.99 81 NON-PAYROLL INSURANCE,TAXES,PERMITS 1.67% TIC $0 SB81,431 $478,284 $301,493 $1.661.208 93 CONSTRUCTION HOME OFFICE COST(IN WAGE RATE) 0.61% TIC $538,527 $0 $0 $63,950 $602.477 88 CONSTRUCTION MANAGEMENT 4.42% TIC $0 $0 $0 $4390238 $4390238 90 ENGINEERING PROFESSIONAL SERVICES 10.00% TIC $0 $0 EO $9,928,210 $9,928,270 96 OUTSIDE CONSULTANT SERVICES 0.03% TIC $0 $0 $0 $25,000 $25.000 91 OWNER'S COST 5.05% TIC $0 $0 $0 S5017,415 $5017415 70 SPARE PARTS,CATALYST,OPERATING SUPPLIES 0.00% TIC $0 $0 $0 $0 $0 71 START-UP ASSISTANCE 0.44% TIC SO $440,715 $0 $0 Sd40,715 98 ALLOWANCE FOR UNFORESEEN 12.81% TIC $2315802 $3503688 $1865306 $5032647 $12717443 98 ESCALATION 0.007. TIC 99 CONSTRUCTION FEE(IN WAGE RATE) 1.80% TIC $1,788 19 $0 EO $0 $0 ; ROUND OFF SO g0 b1,IB$584 ($504) $393 $319 19 E375 E506 TOTAL PROJECT COSTS 569,963 $19,542,000 $26.862,000 $14,301,000 $38,584,000 $99,289,000 $IWH $40.19 6:30 PM 1 07/20/2001 2001 Color Removal Technology Assessment Carbon Adsorption Blue Ridge Paper Products Inc. Canton,North Carolina =:a Pumps a , a Flow, GPM Head Efficiency Hp Operating 1 Sulfuric Acid Metering ui 1.2 46 50 0.03 2-'Sand Filter Feed 17,255 25 75 145.2 3 Backwash -:; 1,200 50 75 20.2 4 Backwash Return $ = 1,200 100 75 40.4 5 Carbon Column Feed };_ < + 17,255 75 75 435.7 6 Sent Carbon - 10 100 50 0.5 7 Regeneration Feed 14 100 50 0.7 . 8 Carbon Transfer ^ s,R tom .•' 8 100 50 0.4 9-.Carbon Recharge r:, + , 125 125 50 7.9 10 Tertiary Effluent 17,255 100 75 581.0 11 Caustic Metering 0.5 46 50 0.0 12 Caustic Transfer 0 25 75 0.0 13 Regenerate Feed x { I=a r 0 100 75 0.0 14 Bottoms ` ;:x 0 75 50 0.0 15 TRacycle ." 0 50 50 0,0 16 Fuel Oil 0 100 50 0.0 Total " = - '- - 1,232.1 . _ ..,,xa:t4i �... .., ewt .y,+.y. �„v..i�+:i-3.$'. ,'§_'" .. - 5 ",fr•:�i'>�' .d ..`-i'µ`y} Miscellaneous Motors Qty Hp Ea Hp Total 1 pH Adjustment Tank Agitator ? 1* ? ,110 2 5 10.0 2 Sand Filter Drives 5 5.0 25.0 3 Air Compressor 1 100.0 100.0 4 Re enerate storage Tank Agitator , p;.O, y < 2 10 20.0 5 Incinerator Drive 1 7.5 7.5 6 Secondary Air Fan 1 3 3.0 7 Dewatering Screw Feeder 1 10 10 8 Thermal Regeneration Unit 1 7.5 7.5 '-' 9 Carbon Reslurry Tank Agitator ' • , 1 7.5 7.5 Total Misc Motorso- x < z 190.5 j Lj Total Operating Horsepower ;W, 4 ,`• .,,,,,, , ° u'; A i I .J 02/20/2001 Operating$1.xls I ( i 2001 Color Removal Technology Assessment Carbon Adsorption Blue Ridge Paper Products Inc. p Canton,North Carolina Annual Operating Cost i c` Area Value Units Price Units Annual Cost 1 Operating Personnel 7.0 Man-Yrs $60,000 Per Year $420,000 2 Maintenance Personnel 6.0 Man-Yrs $60,000 Per Year $360,000 3 Outside Contractor Services 1.00 %of $22,035,773 Total $220,358 Equipment Equipment 4 Stores And Supplies 4.00 %of $22,036,773 Total $881,431 Equipment Equipment 5 Electrical Power 1,422.6 Horsepower $260.00 Per Horse- $369,886 ower Year 6 Steam 10,647,006 Pounds Per $2.15 Per M $22,891 Year Pounds 7 No.2 Fuel Oil 9,848,481 Gallons Per $0.71 Per Gallon $6,987,891 Year 8 Water 9,049,955 Gallons Per $83.50 Per Million $756 Year Gallons 9 Chemicals A Caustic 2,545 Tons Per $84 Per Ton 4$212,477`SM Year B Sulfuric Acid 5,168 Tons Per $64 Per Ton $330,767 Year 10 Carbon Replacement 325 Tons Per $1,800 Per Ton $584,521 Year 11 Disposal-Ash Landfill 6,654 Cubic Yards $10 Per Cubic $66,544 Yard 12 TotaMainitenance Costnual ating & � $10,457,520 13 Interest 10.00 % of Total $99,289,000 Total Capital $9,928,900 Capital 14 Depreciation 5.00 % Eqpt& $30,088,640 Eqpt& $1,504,427 Material Material 15 Total Annual Cost A $21 890 847 i ' fl 02/20/2001 Operating$1.xls ( I 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina COST ESTIMATE—DETAIL SHEETS 7-10 �_zmssaaseesass5saxeessagasesesegsmsasxnasssmna�Rxnd�aaaaaa:cas;mP.,m„.,,.,_ �� Ti � asassaaassasaassssasaaasssassasaaaassaaasasssssaaasasasssasasasaaaasaa gym 'sae'ea's"asa'esa'sa'a's'ssass'sae'ss's'eas'aa''s'a's"sae'sae"aa's'ss'as's'a'a's�as�'a's'aa''s'as''a'sa'sa'as'sss a 8m :o g zCI a "g 3l.z 5 P�� 30o g p G 2 S S o » __ __ _ __ _ _ _ __ FF fF t £ F i' iE c =§ x vo a ve o o e os „s $ ms ss o as ms o �� ao o se am :.s am mp mm n Pm aP Qm - yP'88 1. p f8 0 wig ss o os s o e oo ro a - » s & = o u$ €8 o x a @'a ss �& 9g o yR ca — 0 g! P "» P "S PP IS _ Yo "„ M q HS »» A N PS Ss " " SP vs sa ea sa a as a a a sa as a sa ss s as as a as sa a as a as as se sa s III(I g .' � o : yi gZ mod 00 09 s so s P „ ss o0 0 00 00 0 oe oe s ss ss s o0 o ss ss oe ss 20 AS "„ SP P « S So «« x Ao „" « Pa AS » PS »" > aS » x« «» x„ &6 88 a 88 8 8 8 a5 88 S as 8a8 Ea aE as SS as 8 88 88 88 86 » y9 S j � 3mo z os ss o0 o e s .s ss s o» oo ss »o oo ss 80 0 0o ss o0 oe „ so os o a s 89 rN a 99 s$ @ I $aamm39u:��=�mee'seeaa9'smaymerea=ismeu's�'s's'sa'ssea"sassessssasssaeaasessaomyaa:s °m � a aaaaaanaaaaaaaaaaaaaaaaaaaaaaa x xaasaaxxxsaxaxxasxasxxxxaxaxxxaxaaax sum � I s saasaxsassxaasasssssssassassas s s seoeo «===oPs Sig 'a 'sse'as''sa'-s'as'sass'e-sa'saa''a's-ss-aa'aea-as-s'sa 'a 's 'se's'ss'e'a'a'ass'as's'sa'ss's's'sssss-'s's'ss'as'ss'a'a"s m _ A� $P ° 8 A 0 6 8, F n ° � '-^ ° gg�� � Ao �g �" �P Pwg�Q 4 o g 5 4" $ o°sg3imo e 6 ° F m 3oz �i °o s3 c 0 �m 00 � S F 3 g G o " S � 8 7 F - s $ R X x § a, wx ax x .a o" oa xs wY r A o 0 0 0 o S $ $ __ _ __ wm _ _' _ P tt ' " yOy xo Pas s a 8 88 a s 8 s s a 8 s 88 s xE s wa & s m a x s p& o x " xx o e x x x o 0 o a x x o s x x W :a § xs §ff xis o as x o a yb' N "P P xs S Se 8 8 8 8 8 a 8 8 8 8 8 a 8 8 a8 8 86 88 8 88 8 88 88 88 8 88 88 s o.z xx 0 00 8 x o0 x 8x o -. Po e io $ ti3 o e 88 s 8 8 8 8 8 s '8 8 8 a 8 88 8 88 8s s8 g 8s E8 88 C 88 88 C Ng@ s a o o o $ 5 ss x xx xx oo m xs o0 0o a xx x8 a . as x- x x _ s § o "a s! ASP ma m pax x x a "F pis an § aP§ gam x 8 a m s e § g a s § g s § R 8 § § R Ada sw y„„ »„s„» x w = a w w » ? a x 3 m a x a » a "x ss§ ssxxs§ wa sssssxx xxxwx § a8 o� asM E „ xwx ° V �Ga 888 88 8 88g 88N 8 8 8 8 8 88 5. 8 8 a a 8 8 8 8 8 8 8 8 Pa c 8= xy _ „ „ x w w „ w w w " x w s �oE a NY Qom-a � sss as s sss sss x x w § a § § » § § § § § § § g U. S. w § W�@sw a x p p x ? x ? U s » <o x 888 88 8 888 888 8 8 a 8 8 8 s ' 8 8 8 8 S 8 8 8 § 8) $ wwx »» as gag sss s s » tt w x a s x x a x x § as Egg x n° o�a §s §a § §aa §sa e a s s a s a a s a s a s s s a § a g »sa xa s »§s WE s 8 x x x w w w w x s x s s x a.z x ins s§ x a. Spa x s § e - § » » § s m n w w w 8 § s Na a a aaa aaa a e e a a a e e e a e a a a a s a IV - g x x K i asp sa a ash ssx R 8 8 8 ry n a s a a R s ° 2 ' " 'o w = 0 a 9 0 V 2 ^ 2 6 O 6 v 'KKKKKK0.E ' ' 22¢ gSS �$i8F�R 0 oWym� HO �a a= sg g8888888888888gg88g8888 g I Nis $ I All!! .a sassssssssss§asses§§ s a aaommmammaaaaaaaaaaaam a m„a a ssasa a ''a3 asaaaaasa�asaa$�asaa a DETAIL DIRECT COST JOB:CARBONANORPTIONSYSTEM ESTIMATE DATE:01H101 CUENT:BLUE RIME PAPER COMPANY ETIAN N 0 LOCATION.CANTON,NO ESTIMATEOBY:M.D.WATSON JOB NUM 10n8100 CHECIPD BY: CONSTRUCTION DURATION:ISO EST PILEf:TIMI EST11MlE TYPE:ORDER OP MAGNITUDE O:IEBNYAIABIU R1E0e110y70100fCeNen A4uryU0n R0 EAAILtlgPEIME COME TCS JE AREA-01 TOTAL PROCESS TOT.LL SUB TOTAL LINE MME SUB EOUIPMENT CARBONALMORPION W,HJ TOTAL COST/ DIRECT EQUIPMENT PROCESS MATERIAL TOTAL CONTRACT SUB UNIT TOTAL ALL NO CODE CODE NUMBER DESCRIPTION OTY. UNIT UNIT W.H.% WH. LABOR UNITCOST EQUIPMENT IINITCOST MATERIAL UNITCOST COMMCTS COST COSTS 474 S9 17000 470 a 17000 MC)OREDFROUNSTALLEDWMCESSEn01PMENTCOSr I LOT 3ZI24 MLIN $1041 f5])1I3e so $0 $00LIN MISS SO $0 SI.M..246 summ 4M 4SI u 1)MO TOTAL.INSTRUMENTATION ]S,No ft0A1 SON,uO s1.2M.720 S873.100 so f],)BB,BTS 4@ 433 JAI 18M ESECIECAL 4m 512 a UNO PCMREO EROUNSTALL£O PAVC!]s EOUmMENr war I LOT M.x40 64.N0 $150! $1=81) sl.m.511 ft0mm1 SL]Vba SI.va514 so TO yns.vz $].a]$,nz 51] 614 a IM00 TOTAL.ELECTRICAL 64�249 f1507 SI,@0.8q 111.070A1, N.]IEAu s0 515 SO 517 OWN PAINRNM,PROTECTIVE COATINGS s10 S10 M pMO PpINTINOIIIOWN4CE]%EOUIRAEM COST 1 LOT SO 0 $140 f0 SOM f0 SO.M 60 1.101.789 $1.101.789 1.IDI.789 31,101.750 ma SM H moo TOTAL-PAINTING.PROTECTIVE COATINGS 0 son s0 f0 M ELM f1.t Ot.)59 f1.101}Sp 6r are 110M LANOACONSITIOH 6i0 m0 m I'm LWOACQNSTIION 1 LOT SC 0 $1455 SO SON M SOM SO M.003 Mo.= S520,000 Mo.000S m5 53 m I'm LAN f0 SO 9ACNARRION 0 SAW f0 f40D00 3m0.000 m5 m9 540 XI m3 495,SE0 $15.0 57,547.54T SELOG T)] SB,059,757 $12,114,781 S5M.M50.958 S O PH a mDozM1 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 7.8 REFERENCES Following is a list of references used to prepare this section: 1. Sirrine Environmental Consultants,Effluent Color Treatment Reports form April. 1987— LChampion International Corporation,April 1987. 2. SEC Donohue,Color Treatment Technology Assessment—Champion International Corporation,July 1992. 3. Metcalf&Eddy,Inc.,Wastewater Engineering:eering: Treatment, Disposal and Reuse, Second Edition,McGraw Hill Company, 1979. 4. Champion International Corporation, 1995 Color Removal Technology Report,April 1995. 5. Calgon Carbon Corporation, 30 MGD Application, Quotation of Carbon Units, January 5,2001. +J l f 7-11 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina 7.9 PROCESS CALCULATIONS Process calculations are performed to size all major equipment. A copy of the process calculations is attached. 7-12 2001 Color Removal Technology Assessment Carbon Adsorption Blue Ridge Paper Products Inc. p Canton, North Carolina Parameter Value Units Value Units 1 Pi eline 60 In. Dia. A H Ad' tment Basin v 1 Retention Time 2.0 Minutes 2 Volume 39,833 Gallons 5,325 CF 3 Area 17.5 Ft Width 35 Ft Length 4 IDepth 2 Ft Freeboard 11 Ft Depth B Sulfuric Acid Metering Pumps _.` .f,., ,+< ,a 'rr 1 Total Sulfuric Acid 100 ppm 23,919 #/Da 2 98%Sulfuric Acid Solution 98 % Solution 24,407 #/Da L Liquid Feed 14.43 #/Gal 1,691 GPD 4 Quantity 2 City Total 1 Operating 5 Rating 1.2 GPM Each 2.0 GPM Design 6 Pressure 20.0 PSI 46.2 Ft TDH 7 lRequirements 46 Ft TDH Estimate 50 P/M Eff% 8 1 Power 0.05 FIR Each 0.5 Hp Design C Sulfuric Acid Storage Tank 1 Ca aci 7 Days Cap. 11,840 Gal. Capacity 2 Dimensions Calculated 12.6 Ft Dia 12.6 Ft Ht 3 IDimensions Design 14 Ft Dia 14 Ft Ht 2 Filtration System A Sand Filters 1 1 Feed Rate 2 GPM/ftZ 8628 c ftZ 2 IFilter Dimensions 16 Ft Width 110.0 Ft Length 3 lQuantity 4.9 Cells 5 Cells Design B Sand Filter Feed Pumps —' 1 lQuantity 3 Qty Total 2 O eratin 2 Mating 9,958 GPM Each 10,000 GPM Desi n 3 lRequirements 25 Ft TDH Estimate 75 P/M Eff% 4 IPower 84.2 Hp Each 100 Hp Design C Clearwell 1 Capacity 30 Min. Cap 597,495 Gal Cap Total 2 Dimensions Calculated 105 Ft Width 110 Ft Len th 3 IDimensions Design 2 Ft Freeboard 8.9 Ft Depth D Backwash Pumps 3 _.. 1 Quanti 5 City Total 5 O eratin 2 Ratin 400.0 GPM each 3 Re uirements 50 Ft TDH Estimate 75 P/M Eff% 4 Power 6.7 Hp Each 10.0 H Design E Backwash Return Tank 1 Flowrate 3.0 #Filters BW 1,200 Max GPM 2 Minimum Capacity 30.0 Min Cap 36,000 Gallons 3 Dimensions Calculated 18.3 Ft Dia 18.3 Ft Ht 4 Dimensions Design 20 Ft Dia 20 Ft Ht F Backwash Return Pumps ;;= T L Quantity 2 Qty Total 1 Operating 2 Backwash Requirements 400 GPM/SF BW 3.0 SF BW Rating 1,200 GPM Total 3 Requirements 100 Ft TDH Estimate 75 P/M Eff% - 4 Power 40.4 Hp Each 50 Hp Design 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Carbon Adsorption Blue Ridge Paper Products Inc. P Canton, North Carolina Parameter Value Units Value Units G Air Compressor - -° W 1 Isasis 4.0 H /MGD 115 Hp Actual 2 IDesign 125 Hp Design 3 Cafbon Adsorption Unit '"„"` , it r �� zh q_f A ICarbon Column Feed Pumps 1 Quantity 3 Qty Total 2 Operating 2 Rating 9,958 GPM Each 10,000 GPM Design 3 Requirements 75 Ft TDH Estimate 75 P/M Eff% 4 IPower 253 Hp Each 300 Hp Design B Carbon Adsorption Unit _, ; " 4 r y ;• 1 Design Criteria 1.2 #Color/#Carbon 16,578 #Carbon/Da 2 Dimension Design 12 Ft Dia 12 Ft Ht 3 Desi n Size 10,152 Gal/Adsorber 10,000 Gal Desi n 4 Peak Flow Contact Time 10 Min/Adsorber 1,000 GPM/Adsorber L Absorbers Operating 20 Lead 20 La 6 Carbon Quantities 28,800 #CarbonNessel 1,147,190 #Carbon Total L Vessel Regeneration Rate 90 % Usage 62.3 Days Each 8 IVessels Regenerated 0.6 #Per Da C Sent Carbon Storage Tank *; ,I _' 1 Capacity 4 Adsorber 5,429 ft3 Cap Total` 2 Dimensions Calculated 19.0 Ft Dia 19.0 Ft Ht 3 IDimensions Design 20 Ft Dia 20 Ft Ht D Sent Carbon Pumps 1 lQuantity 10 Qty Total 1 Operating 2 1 Ratinq 60 Min Pump Time 169 GPM Design 3 1 Requirements 100 Ft TDH Estimate 50 P/M Eff% 4 IPower 8.5 Hp Ea. 10 H Design E Regeneration Feed Pumps 1 Quanti 2 Q Total 1 Operating 2 Ratin 250 GPM Each 275 GPM Design- 3 Re uirements 100 Ft TDH Estimate 50 P/M Eff% 4 Power 14 Hp Ea. 15 Hp Design F Thermal Reactivation Unit .^, 1 ICapacity 0.08 TPH/1000#Color 8 ton/hr G Carbon Re- lur S Tank , € r 7 -_ 1 Retention Time 40.0 Minutes 2 Volume 10,000 Gallons 1,337 CF 3 IDimensions Calculated 11.9 Ft Dia 11.9 Ft Ht 4 IDimensions Design 12 Ft Dia 12 Ft Ht H Carbon Transfer Pumps , t 1 Quantitv 2 Qty Total 1 Operating 2 Rating 150 GPM Each 165 GPM Desi n 3 Requirements 100 Ft TDH Estimate 50 P/M Eff% 4 Power 8.3 Hp Ea. 10 Hp Desi n I Make-Up Carbon Storage Tank 1 Capacity 4 Adsorber 5,429 W Cap Total 2 1 Dimensions Calculated 19.0 Ft Dia 19.0 Ft Ht 3 IDImensions Design 20 Ft Dia 20 Ft Ht 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Carbon Adsorption Blue Ridge Paper Products Inc. P Canton, North Carolina Parameter Value Units Value Units J Column Recharge Pumps _ , , > ,T - -fir <7' ;j . . 1 Quantity2 Qt Total 1 O eratin L Rating 1,800 GPM Each 1,980 GPM Design L Requirements 125 Ft TDH Estimate 50 P/M Eff% 4 Power 125.0 Hp Ea. 125 HP Design T Effluent Treatment A pH Adjustment Basin 1 Retention Time 2.0 Minutes 2 Volume 39,833 Gallons 5,325 CF 3 Area 17.5 Ft Width 35 Ft Length L Depth 2 Ft Freeboard 11 Ft Depth B Tertiary Effluent Pumpsn ,a nw 1 Quanti 3 Qt Total 2 Operating 2 Ratin 9,958 GPM Each 10,000 GPM Design 3 uirements 100 Ft TDH Estimate 75 P/M Eff% 4 er 337 Hp Ea. 350 H Design 5 Caustic Treatment A Caustic Storage Tank 1 Basis 0.09 Gal/#Color 9,097 GPD 2 Capacity 7 Day Capacity 63,682 Gal. Capacity 3 Dimensions Calculated 22.1 Ft Dia 22.1 Ft Ht 4 113imensions Design 24 Ft Dia 24 Ft Ht B Caustic MeteringPumps ,ry 1 Quantity 2 Qty Total 1 O eratin 2 Rating 0.08 GPM/MG 2.3 GPM Each 3 Pressure 20.0 PSI 46.2 Ft TDH L Requirements 46 Ft TDH Estimate 50 P/M Eff% 5 Power 0.05 Hp Each 0.5 Hp Design C Caustic Transfer Pumps 1 Quantity 2 Qty Total 1 Operating 2 Rating 250 GPM Each 275 GPM Design 3 1 Re uirements 25 Ft TDH Estimate 75 P/M Eff% 4 Power 2.3 Hp Ea. 3 HP Design D Re enerant Make-Up Storage Tank 1 Capacity 2 Carbon Vessel 20,305 Gal. Capacity 2 Dimensions Caiculated 15.1 Ft Dia 15.1 Ft Ht 3 Dimensions Design 16 Ft Dia 16 Ft Ht E Regenerant Feed Pumps _ _ _ r. ^ 1 uantity 2 _Qty Total 1 Operating L Rating 13.5 GPM/SF CF 1,527 GPM Design _L Requirements 100 Ft TDH Estimate 75 P/M Eff% 4 Power 51 H Ea. 60 H Design 6 Eva orator/Incinerator ,amx u A Bottoms Pumps 1VRatin 2 Q Total 1 Operating 2 0.40 GPM/M#Color/Da 40 GPM Desi n 3ments 75 Ft TDH Estimate 50 P/M Eff% 4 1.5 Hp Ea. 2 Hp Design 02/20/2001 Design Basisl.xls I. r 2001 Color Removal Technology Assessment Carbon Adsorption Blue Ridge Paper Products Inc. p Canton, North Carolina Parameter Value Units Value Units B Rec cle Pump 1 Quanti 2 Qty Total 1 Operating 2 Ratin 1.50 GPM/M#Color/Day 152 GPM Design 3 Re uirements 50 Ft TDH Estimate 50 P/M Eff% 4 Power 3.8 Hp Ea. 5 Hp Design C Secondary Air Fan 1 Quantity 1 Qty Total 1 Operating 21 Rating 0.04 HP/M#Color 4.0. H Desi n D jAsh to Landfill 5.00 %Ash Assumed 2.53 TPD 7 Fuel Oil Storage Tank System 71 jx __ A Fuel Oil Pumps 1 Quantity 2 Qty Total 1 Operating L Rating 0.20 GPM/M#Color 20 GPM Desi n L Requirements 100 Ft TDH Estimate 50 P/M Eff% 4 Power 1.0 Hp Ea. 1 Hp Design B Stora a an 1 Consumption 20.2 GPM 2 Storage 7 Days 203,782 Gal 3 . Dimensions 32.6 Ft Dia 32.6 Ft Ht 4 Design 34 Ft Dia 34 Ft Ht I ' I 1 � I 1 Y I I . 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 8.0 STORAGE AND TIME RELEASE 8.1 SUMMARY This system is based on the premise that color-laden effluent could be stored as necessary in a holding basin until such time that the assimilative capacity of the Pigeon River would allow metered effluent discharge. This approach will not reduce the effluent color, but would allow discharges during higher river flows. The inability to obtain sufficient land to construct a pond of r the size required makes this approach practically infeasible. The estimated capital cost of this system is $34,789,000 in January, 2001 dollars and is based on assumptions summarized in Sections 8.4 and 8.5. This estimate includes direct and indirect costs, as well as land acquisition and permit costs. The annual operating cost associated with this system is estimated to be $4,374,000. The total annual operating cost includes operating and maintenance costs,as well as interest and depreciation. The accuracy of this estimate is—30% to +30%. The Pigeon River has an average flow of 210 MGD at the mill site,based on historical data from January 1929 through June 1996. The river background color averages 13 color units. On an annual average basis, there is sufficient assimilative capacity in the river to allow metered discharges of approximately 64,700 pounds of color per day. However, during low river flow conditions,this scheme would potentially deplete the river of the majority of its flow. {__� The mill effluent contains an average of 43,188 pounds of color per day. This consists of approximately 2,700 pounds of background color in the intake water from the Pigeon River, and approximately 40,488 pounds of color generated in the mill production process. Since the mill production process generates less color than the assimilation capacity of the river on an average basis, storage and timed release of effluent is a technically valid concept. Therefore, a detailed cost estimate is prepared for this approach. 8.2 PROCESS DESCRIPTION Intake from the Pigeon River would be pumped from a new pumping station located at the existing outfall to the site of the Storage Pond through a new 30-inch diameter pipeline assumed to be 3.0 miles long. Flows ranging from 0 gpm to the maximum wastewater flow rate of 28.7 MGD would be pumped to the Pond. The new pumping station at the existing outfall structure would be constructed with concrete material approximately 64 feet long by 64 feet wide by 22 feet deep with a 30-minute storage capacity. Three Storage Pond feed pumps, each rated at 10,000 gpm and 200 feet TDH, would pump into a 30" diameter pipeline extending for three miles. The header would continue approximately 6,000 linear feet to the far end of the Pond. The Pond is approximately 153 acres surface area and 20 feet deep assuming flatland and a (.2 length twice the width. Seven 75-hp high-speed floating aerators would be distributed on the Pond surface. 8-1 i 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina When the time release occurs, the water would be pumped from the Pond to the Mill outfall via the 30-inch header already discussed.Three Storage Pond Return Pumps,each rated at 10,000 gpm and 100 feet TDH,would pump wastewater at 20,000 gpm maximum to the new pumping station located at the mill outfall. 8.3 DESIGN BASIS Following is the storage and time release system summary design basis for the conceptual design and cost estimate. Design influent conditions are based on data provided by Blue Ridge. Major issues such as color reversion of the stored wastewater and effective color control of the mixed flows in the Pigeon River exists. It is therefore not known if the designed system would routinely achieve the target color objective of 50 color units. The blending of treated wastewater back into the Pigeon River is assumed to be controlled to 45 color units. This allows control of the mixed river to an acceptable limit, thereby avoiding a potential permit violation. Equipment sizing is based primarily on experience with similar equipment and processes, engineering judgment, and calculation assumptions. 8.3.1 Secondary Effluent Characteristics ' I Average Flow - 24.8 MGD Peak Flow - 28.7 MGD Average Color - 43,188lbs/day Maximum Color - 65,8881bs/day 8.3.2 SecondW Effluent Pump Station • Size for 30 minutes capacity time at the design peak flow • Would be constructed with concrete material •. Capacity = 597,495 gallons • 79,874 cubic feet • 22' deep • 64' long • 64' wide • Contains 3 pumps each rated at 10,000 gpm and 200 feet TDH 8.3.3 Storage Pond Header i � • Design for pumping either to or from the Storage Pond • 30" diameter (approximately 7,000 linear feet) for segments used to pump to and from the Pond 8-2 f 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 8.3.4 Storage Pond • (Storage Pond Design and Volume Flow by Month attached at the end of this section) — • Pond designed as an earthen structure • 250 acres of land total, 153 acres of water surface area • 20' deep • Contains seven 75-Hp high speed floating aerators i8.3.5 Storage Pond Discharge PumRs • Three each rated at 10,000 gpm and 100 feet TDH • Located in a combination Discharge Pumping Station/Maintenance Facility 8.3.6 New Outfall Discharge • Diffuser header designed for a maximum flow rate of 54 MGD (25 MGD Mill discharge plus 29 MGD Storage Pond discharge) 8.4 DESIGN ASSUMPTIONS �. The following assumptions are accepted in developing the storage and time release system process design: 1. The storage and time release system, as proposed,will achieve the desired color objective of 50 color units. No tests have been performed with secondary effluent from the Canton Mill. 2 Approximately 250 acres of flat property is available for purchase within close proximity to the Mill. I ; 3. Approximately 782,000 cubic yards of fill material for dikes is available near the site. 4. Site work and excavation costs are based on the assumption that rock or hardpan would not be encountered in the area. If these materials are encountered, the estimated cost will u increase. 5. Land required for installation of sub-surface piping between the existing secondary and new tertiary treatment systems could be purchased from individual homeowners and/or the City of Canton. 6. Relocation of water,natural gas, and sewer services presently buried beneath the roadway to the site would not be required. 7. The Storage Pond cost is based on not including a pond liner. Calculations indicate that if a liner is required, 6,688,000 square feet (154 acres) of liner and leachate collection material will be required. 8-3 _ 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton.North Carolina 8. The Pond would be located within 0.5 miles of existing paved roadways. A 0.5 mile paved roadway would be installed for access to the Storage Pond. I f 9. An accurate inline color analyzer is available for determining the quality of wastewater to be mixed to achieve the desire maximum allowable river color. 8.5 BASIS OF ESTIMATED COST The process design and the costs presented herein are based on the assumption that the technology is technically capable of achieving the desired color objective of 50 color units. The design and construction time required for this project would be 24 to 30 months. This does not include any time associated with permitting related activities. This would be in addition to the 24 to 30 months anticipated for design and construction of the system. Since the start date for the project is unknown at this time, costs are presented as January 2001 prices without any escalation. An assumed land cost of$20,000 per acre and the installation of pipelines and the Storage Pond LI are included. It is assumed this land could be purchased from the individual homeowners and/or the City of Canton. u Other relevant cost basis assumptions are summarized in Section 1.3. If t i i ' 84 i I, 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 8.6 DRAWINGS Included in this section are the following drawings related to the storage and timed-release color '- reduction system: Figure 8.1 - Flow Diagram Figure 8.2 - General Arrangement , i L f 8-5 I i L 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina I 8.7 COST DATA Cost estimates for the Storage and Time Release System are attached. Included are summary tables for the total capital cost and annual operating cost and backup detail sheets for estimation of the total capital cost. ii I , I , I 1 r 8-6 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina _a COST DATA SUMMARY TABLES f 8-7 TOTAL COST SUMMARY-JE PRIME CODE JOB: STORAGE AND TIME RELEASE SYSTEM ESTIMATE DATE: 01115/01 CLIENT: BLUE RIDGE PAPER COMPANY REVISION NO.: 0 LOCATION: CANTON,NO ESTIMATED BY: M.D.WATSON JOB NUMBER: 16Y78100 CHECKED BY: CONSTRUCTION DURATION: TBD EST.FILE 9: '01001 ESTIMATE TYPE: ORDER OF MAGNITUDE G:IESTIMATRBlue RId9eY16y7810011Time Release RO EMAIL.xIsIPRIME CODE TCS PRIME CODE DESCRIPTION W-H QTY UNIT LABOR EQUIPMENT MATERIAL SUBCONTRACT TOTAL COST DIRECT COSTS 50 MAJOR EQUIPMENT 2,211 0 0 $35,692 $1,109,716 $26,935 $0 $1,172,344 52 CIVIL,STRUCTURAL,ARCHITECTURAL 11.996 0 0 $173.447 $0 $185,766 $9,584,020 $9,943,234 55 BUILDING HVAC 0 1 LOT $0 $0 $0 _ $92000 $92,000 62 PIPING 103,397 24.910 LF $1,659,826 $0 $773,006 $0 - -$2,432,632 63 INSULATION-PIPE,EQUIPMENT B DUCTWORK 0 0 0 $0 $0 $0 $11.723 $11.723 64 INSTRUMENTATION 938 0 0 $15.390 $175652 $11723 $55.486 $258.451 65 ELECTRICAL 2,345 0 0 $37.437 $175.652 $58,617 $0 $271,906 66 PAINTING,PROTECTIVE COATINGS 0 0 0 $0 $0 $0 $73,071 $73,071 67 LAND ACQUISITION 0 0 0 $0 $0 $0 $5000000 $5000000 75 CONSTRUCTION SERVICE LABOR 18.133 0 0 $275,083 $0 $0 $0 $275.083 TOTAL DIRECT COSTS 139,019 $2,196,876 $1.461.419 $1,056,048 $14.816.300 $19,530.643 S/WH $15.80 INDIRECT COSTS 76 TEMPORARY CONSTRUCTION FACILITIES(IN WAGE RATE) 7.5% DL $0 $0 $164,766 $0 $164,766 78 PREMIUM TIME 10.0% DL $219688 $0 IN WAGE RATE $0 $0 $219688 79 CRAFT FRINGE BENEFITS ( ) 5.0% DL 5109,907 $0 $O $0 $109,907 CRAFT PER DIEM B SAFETY INCENTIVES 17.3% DL $0 $0 $0 $417,057 S417,057 80 PAYROLL TAXES B INSURANCE(IN WAGE RATE) 23.0% DL $505.790 $0 $0 $0 $505.790 83 SMALL TOOLS(IN WAGE RATE) 4.0% DL $0 $0 $87875 $0 $87875 84 CONSUMABLE SUPPLIES(IN WAGE RATE) 7.0% OL $0 $0 $153,761 $0 $153,781 85 CONSTRUCTION EQUIPMENT(IN WAGE RATE) 25.0% DL $0 $0 $549,219 $0 $549,219 87 FIELD STAFF(IN WAGE RATE) 28.0% DL $615.125 $0 $0 $0 $615,125 TOTAL INDIRECT COSTS - - - $1.450.509 $0 $955,641 $417,057 $2.823,201 ACCUMULATIVE TOTAL 139,019 $3.647.385 $1,461,419 $2.011.689 $15,233,350 $22,353,950 $1WH $36.11 81 NON-PAYROLL INSURANCE,TAXES,PERMITS 1.35% TIC $0 $58,467 $80,468 $329,667 $468,591 93 CONSTRUCTION HOME OFFICE COST(IN WAGE RATE) 0.42% TIC $131,813 $0 $0 $15.598 $147,410 88 CONSTRUCTION MANAGEMENT 4.50% TIC $0 $0 $0 $1564770 $7564770 90 ENGINEERING PROFESSIONAL SERVICES 10.04% TIC $0 $0 $0 $3,493,907 $3,493.907 98 OUTSIDE CONSULTANT SERVICES 0.07% TIC $0 $0 $0 $25,000 $25.000 91 OWNER'S COST 5.14% TIC $0 $0 $0 $1788,308 $1,788.308 70 SPARE PARTS,CATALYST,OPERATING SUPPLIES 0.00% TIC $0 $0 $0 $0 $0 71 START-UP ASSISTANCE 0.08% TIC $0 $29,228 $0 $0 $29,228 98 ALLOWANCE FOR UNFORESEEN 12.00% TIC $566 B$0 $2323$0 §313823 $3367,597 $4480660 98 ESCALATION O.OD% TIC 99 CONSTRUCTION FEE(IN WAGE RATE) 1.26% TIC $437,686 $U $0 $0 $0 7.686 ROUND OFF $0 $0 $43($411 5237 ($470) $20 ($198) ($417) TOTAL PROJECT COSTS 139,o19 S4,784,000 $1,781,000 $2,406,000 S25,816,000 $34,709,000 S1WH $40.32 - 6:29 PM 1 O7/20/2001 I j 1001 Color Removal Technology Assessment Storage & Time Release Blue Ridge Paper Products Inc. i Canton, North Carolina Pumps Flow, GPM—r Head I Efficiency Hp Operating 1 St " 1 I ora a Pond Feed Pumps 7 200 75 79.3 ., _�:� 2 Storage Pond Discharge Pumps ._>_ „ 1,,11777 200 75 79.3 Total ':" N,' -VI _k} 158.6 Miscellaneous Motors ' - ;.%,0 amtigr_i` rt Q7;ity I HD Ea Hp Total _._ 1 Aerators yMF 50 7 75 262.5' } I 2 Defoamer Pumps 50 2 0.6 0.5 r Total Misc Motors izk s4 263.0 t''Total Operating Horsepower 421.E a , i i I I , I� I 02/20/2001 Operating$1.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Storage & Time Release Canton,North Carolina Annual Operating Cost Area Value Units Price Units Annual Cost x 1 Operating Personnel 1.0 Man-Yrs $60,000 Per Year $60,000 2 Maintenance Personnel 6.0 Man-Yrs $60,000 Per Year $360,000 3 Security Personnel 2.0 Man-Yrs $60,000 Per Year $120,000 4 Stores And Supplies 4.00 % of $1,461,419 Total $58,457 Equipment Equipment 5 Electrical Power 421.6 Horsepower $260.00 Per Horse- $109,605 power Year 6 Chemicals . A Defoamer 15.47 Tons Per $3,980 Per Ton $61,1569 Year 7 Total Annual Operating 8 ; x? $769,631 Maintenance Cost 8 Interest 10.00 %.of Total $34,789,000 Total Capital $3,478,900 Capital 9 Depreciation 5.00 % Eqpt& $2,517,467 Eqpt& $125,873 Material Material 10 Total Annual Cost „. a $4 374 404 _ 02/20/2001 Operating$1.xls 200/ Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina f COST ESTIMATE—DETAIL SHEETS 1 � ti s-a ""Ga"a= mema9axeea�=xxaxxreaexzay�::av oxxxrxx:tttt�ttnuttaaaauraysa.» ..«.««_ 0m .»» « xxxxxxxxxxxxxxxxxxxxxxx . xxxxxxxxxxxxxxxxxxxxxxxxx om . . e2s322a028ax38892a13e222 2 2 S« -- 888 8 8 8 8 8 88888888888885888888888 8 8 SSo88888888888888888888888 8 m� 5 9� 9 0 ° g m € € S s^ s '0If mc,zmo a im c » g:zmv M. 0 Cc ° 0 6 0 0 noo 0 Y .. . .. ., ° A � n N F�i y X x ? = x x x x u . . . . 8� ff$ ZCP 1 8 8 8 s aa s x x $ 1 9 1 eW ; a x x . . . . . . x x x x x x x x . xa 8 # o m g «m » » G » 8 » » » » ., » » «» ««8 & 8 x YS o. xo $ $ . $ $ 8 8 $ $ $ 88 $ $ $ $ $ 8$ BE BE 88 m vxam y 3 s 5 xxx � .. - H � « r saga « » » xxax »» 88 88 88 0y 8 x . . . 8 8 . a & 8 x ax S 8 x . . . .. .. .. o. ti 8 » . . 8 8 8 0. « S 8 r » E G G e x e o 8 m 8 8 #G G r+ G o a o «$ 5n C'. ms DETAIL DIRECT COST JOE:.STORAGE AND TIME RELEASE SYSTEM ESTMATBOATE:OI11N1 CLIENT:BLUE MOE PAPER COMPANY MASON NO.:0 LOCATION:CANTON,NC ESTIMATES BY:M.D.WATSON JOB NUMBER:18178100 CHECKED BY: CONSTRUCTION DURATION:TBO EST.F"N:VINI ESTIMATE TYPE:OROEROF MAGNITUDE G?ESTWATMIIm RMPMSY]HOTTB RWnF RO EMdJ-xINj ME CODE TOO JE ANHUI TOTAL PROCESS TOTAL SUB TOTAL LINE PNME SUB EQUIPMENT STOMOE S THE RELEASE SYSTEM W.HJ TOTAL COSTI DIRECT EQUIPMENT PROCESS MATEMAL TOTAL CONTRACT SUB AMR iOTALAU NO. CODE CODE NUMBER OESCAI STY. UN R VMT WHY W.H. lABO0. IINR LOST EOVPMEM UWTOOST MIER. UNIT CAST CONTRACTS COST MST. 288 83 tStCO 38O 82 151M ] <B•BANISTER ME FINAL HEADER IAN LF amamSAM S138A24 Sam SO SJOAO f40.000 Saw so $ISO 42 SIBSA2J SAO 62 1510 291 03 AM J 3P DIAMETER ONE STORAGE FOND FEED HEADER U.MO LF Sm TOM SI6,05 6I271J95 SON 50 WAS, S027.800 SI00 so S107M $IS9B.0)5 282 82 MCA US 82 1510 5 O'BPNRARY 6EWER8 5.000 LF OSO AO) 316.05 $28.885 sm. SO f17.00 SS5.000 SON f0 f]3.)8 S113ADS 204 82 1S1W N5 82 151W 8 PROCESSPPWO 1 LOT 6.913 6.015 SIS.OS SIIAG72 $0.00 SO S188A57 S180A57 $000 f0 8211.029 S2))AM ]90 AM S2 ISIO0 TOTAL-PIMA MAIO LF 4.19 1M,]B) $1.45 SIA"A20 50 3113AM f0 SZO32.832 US SU3 ]M AND INSULATION-PPEEOUPBENTADUCTWORK 3i5 SEA 03 tYM FACTOREDFAOMINSTALLSO PROCESS EQUIPMENT COST 1 LOT ON 0 $1.83 f0 f0 SO $O SO fl " 511.123 sm.:, S11.723 3% 357 E3 15W0 TOTAL-MULATpN•PPE,EWPMFM A DUCTWORK 0 EOAO f0 30 f0 $11,723 f11,1D SO LED no %MO MSTRUMENTATKNI - ]01 SO 0f 11W0 OCB 1 LOT slc 0 f18J1 s0 ON So ON f0 MAKE SMASS S55A88 MASS 3 84 11M0 ]12 M qCM FACTOREDfl MSTAIJEOPROCESSEQUP NTMT 1 LOT 938 838 f10A1 ELM M f175452 $175,852 f11)23 511.123 f0 SO S2A2AEl f282ASS 3]3 S)A 0O 11000 TODLL•NSIRYYEHTATIOH we g611 MAN $173152 311,123 155M0 f258A.51 STS 3T0 318 SUB ELECTRICAL 9 <OS 59 IBOM FACTORED flVOYM3TALLED PROCESS EQUVMENtCOST 1 LOT f33L5 3.319 f14.B1 fJ),ASi SI]SA52 3171.852 f58A11 SSB.BI) so EO 3271,808 f271.905 AM 401 OS 10000 TOTAL-EIFC)RIC.0. 3,]A f15.01 f])AII 3173,O52 bg811 f0 i311.000 A0 409 AIo OOWO PANIPIO.PROTECTNECWTN0.9 411 A13 BS OBB00 PAINTING PLLOWANCE]%EOUWMEM COST 1 LOT 8S 0 f1A.eB EO fO.M so Moo EO S1J.0]1 EI3.011 f]3.0]1 STJ.oTI AI) 418 SS 0BB00 TOTAL-pAMINO,PR0TECTNECOATN09 0 fOAo 30 SO 30 513.071 D3.011 bB A20 41 LIMO HAND ACQURRpN E AM 81 IIOM UWO ACQNSRWN 350 AC SC 0 $1A.85 SO $SAN000 $O SASS SO sm.SAN ES.OM.w f20 00 b.MO,$0 ASS 81 11 M0 o SIA.85 SO $am f0 fOM So fO.M EO $O.N fo A25 91 110M 0 $1185 EO SO.CO SO fOM EO fO.M f0 E000 f0 120 139 N 1100 TOTAL-LANOMWBRION 0 6048 f0 f0 30 33,OMA00 f5,000,000 00 A31 432 Au 131 ' 135 120.886 STABS $1.921.793 f1AB1A18 f1.ON.M f14,818,3DD f18,355,580 03BM 2 pNM6M1 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 8.8 REFERENCES Following is a list of references used to prepare this section: 1. Champion International Corporation, 1995 Color Removal Technology Report,April I 1995. t ' t 1 � a � i � 1 i_ � I + 8-9 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina 8.9 PROCESS CALCULATIONS Process calculations are performed to size all major equipment. A copy of the process calculations is attached. J i VI i r -� I I � 1 8-10 2001 Color Removal Technology Assessment Storage & Time Release Blue Ridge Paper Products Inc. g Canton, North Carolina Parameter Value Units Value Units 1 River Data € *':€ r n A Average Flow 209.7 MGD 145,590 GPM B Average Color 13.0 PPM Color 22,730 PPD Color C Gross Average Color Capacity 50.0 PPM Max 87,424 PPD Color D Net Average Color Capacity 37.0 PPM Max 64,694 PPD Color Max E Maximum Flow 613.4 MGD 425,972 GPM F Average Color @ Max Flow 13.0 PPM Color 66,505 PPD Color G Gross Maximum Color Capacity 45.0 PPM Max 230,209 PPD Color H 1 Net Maximum Color Capacity 32.0 PPM Avg 163,704 PPD Color Max H Net Average Color Capacity- -32:0— •^--PPM Avg— 55,951 PPD Color Max 2 Mill Data 91 r :UFO OWAO PO .,.. A lAveraqe Flow 24.8 MGD 17,255 GPM B jAverage Color 208 PPM Color 43,188 PPD Color 3 New Outfall Structure WWI A °a N MN A Retention Time 30.0 Minutes B Volume 597,495 Gallons 79,874 CIF C Depth 2 Ft Freeboard 22 Ft De th D Area 63.2 Ft Width 63.2 Ft Len th 4 Storage Pond Feed Pumps A Quantity 3 Qty Total 2 Operating B iRatin 9,958 GPM Each 10,000 GPM Design C Re uirements 200 Ft TDH Assumed 75 P/M Eff% D Power 673 Hp Each 750 H Desi n 5 Storage Pond Feed Header 30 In Dia 0.71 Ft HL/100 Ft 6 Storage Pond �,� ` su.3 _ _ a z , A 1 Basis 928 MM Gal Ca 20.00 Ft Water Depth B Dimensions 3,578 Length Surface 1,858.00 Width Surface C I Overall Area 174.23 Acres Minimum 100 Acres Assumed 7 Flo atin Aerators 0- SS = n:IZIR A Basis 0.5 Hp/MM Gal 464.09 Hp Total B IDesign 75 H /Unit 6.2 Units 8 Storage Pond Return Pumps *n m,r- A Basis 163,704 PPD Color Max 94 MGD Max Disch B Design 24.8 MGD Mill Disch 69 MGD Max Pond C Quantity 3 Qty Total 2 Operating D Rating 24,076 GPM Each 10,000 GPM Design E Requirements 100 Ft TDH Assumed 75 P/M Eff% F Power 337 Hp Each 350 Hp Design 9 Storage Pond Feed Header 30 In Dia 0.714 Ft HL/100 Ft 10 Final Discharge Header 48 In Dia 0.556 Ft HL/100 Ft 11 Defoamer Consum tion ,.M A Dosage 50 PPM 618.8 MM Gal B lConsumption 30,939 #/Yr 15.47 TPY 12 Defoamer Pum S M MI..Atil iY �hY4. S3p1aX A Quanti 3 Qty Total 2 Operating B Rating 0.009 GPM Each 0.15 GPM Design C Re uirements 200 Ft TDH Assumed 75 P/M Eff D Power 0.010 Hn Each 0.5 H Desi n 02/21/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Storage Pond Design Canton, North Carolina Volume Color,Pounds Per Da Volume : Volume ik Volume Volume Monthly River River Max River Avg River Max Mill Daily Storage Pond Days/ Monthly Pond Monthly Pond Evaluation Avg Capacity Background Available Avg Pond MGD Month MG Status Influent Flow, Status MG MGD I Required Re uiremen Stara e Capacity MG In Storage 1 I January 269.5 101,143 1 29,219 71,924 43,188 -28,736 -16.5 31 -512.5 Discharge 0.0 0.0 2 February 303.5 113,904 32,905 80,998 43,188 -37,810 -21.8 28.25 -614.5 Discharge 0.0 0.0 3 March 346.1 129,891 37,524 92,367 43,188 -49,179 -28.3 31 -877.1 Discharge 0.0 0.0 4 April 302.2 113,416 32,765 80,651 43,188 -37,463 -21.6 30 -646.6 Discharge 0.0 0.0 5 May 221.7 83,204 24,037 59,167 43,188 -15,980 -9.2 31 -285.0 Discharge 0.0 0.0. 6 June 169.6 63,651 18,388 45,263 43,188 -2,075 -1.2 30 -35.8 Discharge 0.0 0.0 7 July 125.4 47,063 13,596 33,467 43,188 9,721 5.6 31 173.4 Storage 173.4 173.4 8 August 124.1 46,575 13,455 33,120 43,188 10,068 5.8 31 179.6 Storage 179.6 352.9 9,September 124.6 46,762 13,509 33,253 43,188 9,935 5.7 30 171.5 Storage 171.5 524.4 10 October 142.0 1 53,293 15,396 37,897 43,188 5,291 3.0 31 94.4 Storage 94.4 618.8 11 November 173.4 65,077 18,800 46,277 43,188 -3,089 -1.8 30 -53.3 Dischar a 0.0 565.5 12 December 213.7 80,202 23,169 57,032 43,188 13,844 8.0 31 246:9 Dischar a 0.0 318.5 --'Averages 209.7 78,682 22,730 55,951 43,188 12,764 7.3 30.4 221.1 Sums 2,515.8 944,180 272,763 671,417 1 518,253 153,164 88.1 1365.251 -2,653.1 r<4 618.8+r K, y Of'J:iy, 700.0 iv`'X�y'+4F'Y'N. '1 600.0 ,y _ 4 Fit t rv, p ©Volume Monthly 500.0 Influent Flow, 40O.Ot�f tvi §tik t C "a MG 300.0it s 200.0 100.0 ■Volume Pond 0.0 3 - Status MG in . m. ` Storage ca (afu N a ) n � E o `�° ¢ E E o n O (D Z 0 02/20/2001 Design Basisl.xls _ r 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Storage Pond Design Canton, North Carolina Pond Dimensions Capacity, Minimal 618.8 MG 3746 Excess Allowance 50 % Capacity, Design 928.2 MG 3608 Capacity, Design 124,079,188 CF Basin Length/Width Ratio 2.0 LIW 3578 Basin Slopes Width/Rise Ratio 3.0 W/R Freeboard 3.0 Ft 3440 Dike Top Width 15.0 Ft R 1888 1858'*"-"�- 1720 JI Basin Detail 2026 Basin Dimension TMO- 1 Floor Width 1720.0 Ft 2 Floor Length 3440.0 Ft 3 Water Depth 20.0 Ft 4 Capacity 124,528,000 CF 5 Dike Width 1,858 Ft _ 6 Dike Length 3,578 Ft 7 Outside Dike Top Width 11888 Ft 69.0 15.0 69.0 8 Outside Dike To Length 3,608 Ft H 9 Outside Dike Toe Width 2,026 Ft 10 Outside Dike Toe Length 3,746 Ft 23.0 Dike Detail 11 Overall Area 174.2 Acres 12 Surface Area 152.6 Acres 13 Dike Material 1,932 CF/LF 4 153.0 0 14 Dike Material 10,932 LF 15 Dike Material 782,245 CY 16 Liner Material 99"MAXTiFlIphs A Floor 5,916,800 SF B Dikes 770,672 SF C Total Liner Material 6,687,472 SF D Total Liner Material 153.5 Acres 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 9.0 OZONE SYSTEM 9.1 SUMMARY This section addresses the ozone color removal process. ! I The estimated capital cost for this system is $38,140,000 in January, 2001 dollars and is based on the assumptions summarized in Sections 9.4 and 9.5. The accuracy of the cost estimate is -30% to +30%. This estimate includes direct and indirect costs, as well as land acquisition and permit costs. The annual operating cost associated with this system is estimated to be $6,648,000. The total annual operating cost includes operating and maintenance costs, as well as interest and depreciation. Preliminary jar tests indicate ozone can reduce color by approximately 80%. However, an exhaustive research project performed through EPRI indicates a lower removal efficiency of 25- 30%. Assuming a color removal efficiency of 80%, ozonation is theoretically capable of reducing the average color load of 208 color units in the secondary effluent to 36 color units on average. However, at the maximum color loading of 318 color units, ozonation could reduce the effluent color to 64 color units. This technology is not theoretically capable of consistently achieving the 50 color unit standard. There are no known full-scale installations of ozone technology of tertiary treatment of pulp and paper mill wastewater. The preliminary process design is based on an engineering assessment of the information available for this technology. The system is designed for a peak influent color loading of 65,888 pounds per day. Land for the proposed treatment system is not available in the present Mill area. Therefore, property approximately one mile downstream, referred to as Fibreville, would be utilized. Treated secondary effluent would gravity flow through new piping to the treatment area. Facilities would be provided at this area for removing color via ozone contact tanks. Decolorized wastewater would be pumped back to the existing outfall at the mill through new pipe. Facilities would be provided at the new treatment area for on-site storage of liquid oxygen and ozone generation. 9.2 PROCESS DESCRIPTION Secondary effluent from the existing wastewater treatment plant would gravity flow to the ozone color removal facilities through a new 60-inch diameter underground reinforced concrete cylinder pipe. The design average wastewater flow would be 24.8 MGD,and the peak flow would be 28.7 MGD. The site is approximately one mile downstream from the mill along the Pigeon River, and immediately north of Fibreville. The wastewater would flow into an influent basin sized for 30 minutes retention at the design maximum flow rate of 28.7 MGD. The basin would be a concrete structure, 86 feet long by 43 1 feet wide and 24 feet deep. i 9-1 f � -- 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina Wastewater would be pumped through the first of five reactor tanks sized to provide a total of ten --, minutes retention at the design peak flow. The design of the tanks is such that four of the tanks would be operating at one time, with the fifth tank as a spare. The tanks would be above grade ` stainless steel 18 feet diameter by 35 feet high. The wastewater would flow in series from one tank to the next,with ozone injected via diffusers in the bottoms of the tanks. The tanks would be fitted with mixers to ensure the ozone is thoroughly distributed throughout. The ozone would be generated in an ozonator immediately upstream of the injection points. ( Liquid oxygen would be stored in on-site tanks. From the oxygen tanks,the liquid oxygen would pass through vaporizers for conversion to a gas and into the ozonator for partial conversion(13%) of oxygen to ozone. E In the reactor vessels, the excess gas would separate from the wastewater. The off-gas would be collected, recompressed and filtered to remove any entrained organics. The collected gas would recycled back to the ozonator feed line. The ozonated wastewater would flow from the reaction tanks into an effluent basin sized for 2 minutes retention at the design maximum flow rate of 28.7 MGD. The basin would be a concrete structure, 35 feet long by 17 feet wide by 11 feet deep. The effluent wastewater would be pumped from the basin to the mill for discharge to the Pigeon River. 9.3 DESIGN BASIS Following is a design basis summary for the conceptual design and cost estimate for the ozone color removal system. Design influent conditions are based on data provided by Blue Ridge. No full-scale performance data is available since this technology has not been commercially demonstrated for full-scale treatment of pulp and paper mill secondary effluent. Furthermore,no ` pilot testing has been performed with the secondary effluent from the Canton Mill. A vendor 1 performed jar tests on the secondary effluent. These tests indicate approximately 80% reduction in color. It should be noted that an exhaustive research project performed through EPRI resulted in a lower removal efficiency of 25-30%. An average influent color of 208 color units could Ipotentially be reduced to 36 color units. However, a peak color concentration of 318 color units would result in a final ozonated color of 64 color units. This exceeds the 50 color units river standard. It is therefore not know if the designed system would consistently achieve the target I color objective of 50 color units. Equipment sizing is based on primarily on experience with ' J similar equipment and processes,and on engineering judgment. ! 9.3.1 Secondary Effluent Characteristics Average Flow - 24.8 MGD Peak Flow - 28.7MGD Average Color - 43,1881bs/day Maximum Color - 65,8881bs/day fi 1 f 9-2 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 9.3.2 Influent Basin • 60"diameter pipeline from existing outfall • Size for 30 minutes retention at design maximum flow rate 9.3.3 Ozonator Feed Pumps • Use 3 pumps at 50%capacity each for peak flow • Pumping rate— 10,000 gpm each i 9.3.4 Ozone Reaction Vessels • Use 5 tanks at 2.5 minutes retention each at peak flow • Tank capacity—50,000 gallons each 9.3.5 Ozonation System • Size for dosing 100 ppm ozone to the wastewater. • Includes oxygen storage tanks,vaporizers, compressors and the ozonator. 9.3.6 Injection Diffusers • Provide complete mixing of the ozone and the wastewater. • Diffusers would deliver 400 cf n/tank. 9.3.7 Off-Gas Filter • Size to filter a gas flow rate of 1,208 cfm. 9.3.8 Effluent Basin • Size for 2 minutes retention at design maximum flow rate 9.3.9 Treated Wastewater Transfer Pumps • Use 3 pumps at 50%capacity each for peak flow • Pumping rate— 10,000 gpm each • 30"diameter pipeline to existing outfall 93 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 9.4 DESIGN ASSUMPTIONS The following assumptions are made in developing the process design for the ozone color removal system: 1. The treatment system, as proposed based on average color concentrations, would meet the desire color objective of 50 color units.It does not meet limited peak color loads. No pilot tests have been performed with secondary effluent from the Canton Mill. 2. Site work and excavation costs are based on the assumption that rock or hardpan would not be encountered in the area. If these materials are encountered, the estimated cost would increase. Subsurface exploration and testing have not been performed at the site. Rock excavation costs for installation of pipelines between the existing wastewater treatment system and the proposed tertiary treatment site could be as much as $1,500,000. 3. Land required for piping could be purchased from individual homeowners. 4. Relocation of water,natural gas, and sewer services presently buried beneath the roadway to the site would not be required. 9.5 BASIS OF ESTIMATED COST There are no known commercial installations of this technology for full-scale treatment of secondary effluent at a pulp and paper mill. The process design and the costs presented herein are based on the assumption that the technology is technically capable of achieving the desired color objective of 50 color units. No pilot tests have been performed with secondary effluent representative of operating conditions at the Canton Mill. The design and construction time required for this project would be 24 to 30 months. This does not include any time associated with permit related activities. Since the start date for the project is unknown at this time, costs are presented as January 2001 prices without any escalation. The cost for land necessary for the installation of pipelines between the mill and the Fibreville site is included. It is assumed this land could be purchased from the individual homeowners and/or the City of Canton. Other relevant cost basis assumptions are summarized in Section 1.3. 94 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina 9.6 DRAWINGS Included in this section are the following drawings related to the ozone color reduction system: Figure 9.1 - Flow Diagram Figure 9.2 - General Arrangement 9-5 1001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 9.7 COST DATA Cost estimates for the ozone color removal system are attached. Included are summary tables for - the total capital cost and annual operating cost and backup detail sheets for estimation of the total capital costs. , i 9-6 100I Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina COST DATA SUMMARY TABLES 9-7 TOTAL COST SUMMARY-JE PRIME CODE JOB: OZONE SYSTEM ESTIMATE DATE: 02/06/01 CLIENT: BLUE RIDGE PAPER COMPANY REVISION NO.: 0 LOCATION: CANTON,NO ESTIMATED BY: M.D.WATSON JOB NUMBER: 16Y78100 CHECKED BY: CONSTRUCTION DURATION: TBD EST.FILE '01001 ESTIMATE TYPE: ORDER OF MAGNITUDE G:IESTIMATRBIue Ri0ge116y781001[OZONE R7_EMAIL.xis]PRIME CODE TICS PRIME CODE DESCRIPTION W-H CITY UNIT LABOR EQUIPMENT MATERIAL SUBCONTRACT TOTAL COST Fr DIRECT COSTS 50 MAJOR EQUIPMENT 2,267 0 0 $37,892 $909.316 $22.071 $15,000,000 $15.969,278 52 CIVIL,STRUCTURAL,ARCHITECTURAL 16.806 0 0 $243,030 $0 $275.647 $383,860 $902,537 55 BUILDING HVAC 0 1 LOT $0 $0 $0 $64400 $64400 62 PIPING 122,960 21.510 LF $1.973,880 $0 $821.178 $0 $2,795.058 63 INSULATION-PIPE,EQUIPMENT B DUCTWORK 0 0 0 $0 $0 $0 $37.093 $37,093 64 INSTRUMENTATION 3,194 0 0 552.409 $909 $4547 $0 $57865 65 ELECTRICAL 6.388 0 0 '$101,991 $68,199 545,466 $0 $215.656 66 PAINTING,PROTECTIVE COATINGS 0 0 0 $0 $0 $0 $24,461 $24.461 67 LAND ACQUISITION 0 0 0 $0 $0 $0 $520000 $520000 75 CONSTRUCTION SERVICE LABOR 22.743 0 0 $346.014 $0 $0 $0 $345,014 TOTAL DIRECT COSTS 174,361 $2.754,217 $978.423 $1,168,908 $16,029,814 $20,931,392 $/WH $15.80 INDIRECT COSTS 76 TEMPORARY CONSTRUCTION FACILITIES(IN WAGE RATE) 7.5% DL $0 $0 $206,566 $0 $206.566 78 PREMIUM TIME _ 10.0% DL $275422 $0 $0 $0 $275422 79 CRAFT FRINGE BENEFITS(IN WAGE RATE) 5.0% DL $137,711 $0 $0 $0 $137,711 CRAFT PER DIEM B SAFETY INCENTIVES 17.3% DL $0 $0 $0 $523,082 $523.082 80 PAYROLL TAXES B INSURANCE(IN WAGE RATE) 23.0% DL $633,745 $0 $0 $0 $633.745 83 SMALL TOOLS(IN WAGE RATE) 4.0% DL $0 $0 $110.169 $0 $110 169 84 CONSUMABLE SUPPLIES(IN WAGE RATE) 7.0% DL $0 $0 $192,795 $0 $192,795 85 CONSTRUCTION EQUIPMENT(IN WAGE RATE) 25.0% DL $0 $0 $688,554 $0 $688,554 87 FIELD STAFF(IN WAGE RATE) 28.0% OL $771,181 $0 $0 $0 $771,181 TOTAL INDIRECT COSTS $1,818,058 $0 $1,198,084 $523,082 $3,539,224 ACCUMULATIVE TOTAL 174,361 $4,572,275 $978,423 $2,366,992 $16,552,895 b24,470,588 $/WH $30.09 81 NON-PAYROLL INSURANCE,TAXES,PERMITS 1.28% TIC $0 $39,137 $94,680 $356.058 $489,875 93 CONSTRUCTION HOME OFFICE COST(IN WAGE RATE) 0.46% TIC $165,253 $0 $0 $19.563 $184,816 86 CONSTRUCTION MANAGEMENT 4.49% TIC $0 $0 $0 $1712941 $1712941 90 ENGINEERING PROFESSIONAL SERVICES 10.03% TIC $0 $0 $0 $3,827.200 $3.827,200 96 OUTSIDE CONSULTANT SERVICES 0.07% TIC $0 $0 $0 $25,000 $25,000 91 OWNER'ARTCOST 5.00% TIC $0 $0 $0 $1,957,6$0 $1,9576$0 70 SPARE PARTS,CATALYST,OPERATING SUPPLIES 0.00% TIC $0 $0 $0 $0 $0 71 START-UP ASSISTANCE 0.05% TIC $0 $19.568 98 ALLOWANCE FOR UNFORESEEN 12.66% TIC $710829 $155569 $369251 $3687696 903145 98 ESCALATION 1. $9 % TIC $0 $0 $0 $0 99 CONSTRUCTION FEE(IN WAGE RATE) .4444% TIC $548,873 $0 EO EO $548,673 ROUND OFF $170 $302 $77 $0 $549 TOTAL PROJECT COSTS 174,361 $5,997,000 $1,193,000 $2,831,000 $28,119,000 $38,140,000 $/WH $40.30 6:30 PM 1 07/20/2001 2001 Color Removal Technology Assessment �Z0178t1011 Blue Ridge Paper Products Inc. Canton,North Carolina =r= Pumps , _ Flow, GPM . Head Efficiency Hp Operating 1 Ozonator Feed Pumps fi 17,255 100 75 581.0 2 Treated Wastewater Transfer Pum s 17,255 100 75 581.0 Total x 3€ask ._ w. . ��. =;=r . a 11;162.0 "— ' Miscellaneous Motors Oty Hp Ea Hp Total 1 Oxygen Compressor 1 30 30.0 L Oxygen Recom ressor *' 1 30 30.0 _s 3 Tank Mixers k 0 0.00 0.0 7.7 Total Misc Motors sx.v `4 w .'i ` in. 60.0 -t Total Operating Horsepower = , z'' k ,� r .. ,�,,„ �"a �'�t 1222.0 J 1 I �J � l �y I 1 I 1 'k I i LJ i + 02/20/2001 Operating$1.xis 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. r Ozonation Canton,North Carolina Annual Operating Cost Ozonator 1 Feed Rate 50 cm 10,361 Ib/da Ozone 2 %Conversion of Oxygen 13.0 % 79,704 lb/day Oxygen 3 Oxygen to Reactor 69,342 lb/day 4 Oxygen Loss 10.0 % 6,934 lb/day T-'Oxygen Requirement 62,408 lb/day Rec. 17,296 lb/day Oxygen Area Value Units Price Units Annual Cost 1 Operating Personnel 4:0 Man-Yrs $60,000 Per Year $240,000 2 Maintenance Personnel 2.0 Man-Yrs $60,000 Per Year $120,000 3 Outside Contractor Services 1.00 % of $6,978,423 Total $69,784 Equipment Equipment 4 Stores And Supplies 4.00 % of $6,978,423 Total $279,137 Equipment Equipment 5 Electrical Power-Motors 1,222.0 Horsepower $260.00 Per Horse- $317,713 power Year 6 Electrical Power-Ozonation 7.5 KW-Hr/#03 $348.66 Per Kilo- $1,128,947 watt Year 7 Chemicals A Oxygen (Assume 50 PPM) 8.65 Tons Per $86.98 Per Ton $270,776 1 , Da 8 Total Annual Operating & M 3� k4&ft.; $2,426,357 Maintenance Cost 9 Interest 10.00 % of Total $38,140,000 Total Capital $3,814,000 Ca ital 10 Depreciation 5.00 % Eqpt& $8,147,331 Eqpt& $407,367 Material Material 11 ITotal Annual Cost $6 647 723 02/20/2001 Operating$1.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton.North Carolina COST ESTIMATE—DETAIL SHEETS L' 9-8 ma"EMS&8_SaaSaaaSaSBEsoa9a A aas aA=gat m7 ga:zlil==aavw a -t:6aN:d b-om«4m«a»v- °m »AA&& g8 xx A AAAAAAAAAAAAAAAAaAaAaaaaA a aaaa6ffi9 SSaadaaax SaaS °mim -- « 8 8 a 8 a88E8a888888a888588888888 B S Ea55aE8 8888888E8888a 8m a88a5 8 _ zoo A @ yyy m0 °s gayg o n Moog°g mo o S M m 5 .dine m . o � s 7 q r 4� 2ri as h 8asee m omasooamooao xee "c , m 's � ooaz y w im y sS »s z z a =o 9 8 8 s `s a s 's a 8 8 a a o 00o eo ffisffi00000sffisoss us� gasssaaass �a " yry tl p�{ a� 8 S a N r P P a a E q u s G u A u • a u A A »»» ffio SS la� 8 8 o $ 8 8 8 8 8 8 8 8 8 8 8 8 -8 8 88 88 8 8 888 88 88 D4 'm;w; i m M� .»i � m x w R N 6r TgpOO osa oo Y $ ooaaas000moo s ooeoosssssss F sS<o x ffi x A 8 S r uS S So S P uuP 8 8 8 8 8 8 8 8 8 a 8 8 8 a a 88 8 88 8 8 888 Ra 88 « s 0 0 o a g saa s s saa 8 a s a ffi o a m e o 0 0 o s s a s o a a e e a u a »s »s a s s "a a a o a a _ s s a s a a a � � g a � � � aa � � � aa8 � a � a � a� ou� affi �ass� ge � s,,,,,,,,,l,,,,!!!„!!!,1,;,,,,,,,,,l,,,,,!„;, ;!■,,,:;� !! _ ; . . , . . . , . . ... . ............ ||. | | | | | | | | | | | | | ||| | | ....;.;;;||! Big . . . . . , , §\ . . , , • ; • . ;.,�.. , � §_ is §)(§§§) _ !,° ! ) OR . . | ! - § . _ . . . § ; . ! § ■ , § i • § ! , ! � ; § , , , , ; § G r \ . . , t . . / 88888 \| \ k . . . . . . II . . . . . . . . . . �� . ; ; ; ; ! /! ,iE 88888 8 \' /` ! §� \ ,. 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 9.8 REFERENCES Following is a list of references used to prepare this section: I. Electric Power Research Institute, Color Removal in Integrated Pulp and Paper Mill Effluents Using Ozone, Ozone/Hydrogen Peroxide, and Ozone/UV,February 1992. 2. H.Zhou and D.W. Smith,Ozonation Dynamics and Its Implications for Off-Gas Ozone Control in Treating Pulp Mill Wastewaters, Ozone Science and Engineering,January 1999. 3. N.J.Wiegart and H.V.Lang,Ozone Generation Technology for Industrial Applications— Today and Tomorrow, courtesy of Air Liquide,2000. r 9-9 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina 9.9 PROCESS CALCULATIONS Process calculations are performed to size all major equipment. A copy of the process calculations is attached. 9-10 2001 Co/or Removal Technology Assessment Blue Ridge Paper Products Inc. Ozonation Canton, North Carolina Parameter Value Units Value Units 1 Pipeline 60 In. Dia. 2 Influent Basin - .t A Retention Time 30.0 Minutes B Volume 597,495 Gallons 79,874 CF C Area 43.1 Ft Width 86 Ft Length D Depth 2 Ft Freeboard 24 Ft Depth 3 Ozonator Feed Pumps A Quantity 3 Qty Total l 2 Operating B Rating 9,958 GPM each 10,000 GPM each C Requirements 100 Ft TDH Estimate 75 P/M Eff% D Power 335.3 Hp Each 400.0 Hp Design J 4 Reaction Vessel . ,., A Retention Time 10.0 - Minutes B Volume 199,165 Gallons 26.625 CF C Number of Tanks 5 Tanks Total 4 Tanks Operating D Volume er Tank 49,791 Gallons 6,656 CF E Dimensions Calculcated 16.8 Ft Dia 30 Ft Ht F Dimensions Design 18.0 Ft Dia 30 Ft Ht G De th 5 Ft Freeboard 35 Ft Height Desi n 5 Tank Mixers ct, r 774 14Y, A I Number of Mixers 1 Per Tank 5 Mixers ' B IDesign 0.2 HP/M Gal 10.0 Hp Each 6 Ozone System A Ozonator =t a 1 Feed Rate 100 m 23,919 1 b/day Ozone 2 % Conversion of Oxygen 13.0 % 183,992 lb/day Oxygen L Oxygen to Reactor 160,073 lb/day 4 Oxygen Loss 10.0 % Assumed 16,007 lb/day 5 Oxygen Requirement 144,065 lb/day Recycled 39,926 lb/day Oxygen B Oxygen Tank 1 IStorage Capacity 2 Days 9.5 lb/gal O ^ en 2 Volume 8,399 Gallons 1,123 CF 3 ITank Capacity 10,496 Gallons/Tank 1.6 Tanks Actual 4 ITanks Required 2 Tanks Design C Oxygen Compressor 1 Basis 1.0 H /MGD 29 Hp Actual 2 Design 30 Hp Design 3IQuantity 2.0 Units Total 1 Unit Operating D gen Recom ressor 1 Basis 1.0 �H /MGD 29 H Actual 2 Desi n 30 HP Desi n 31Quantity 2.0 Units Total 1 Unit O eratin 7 lEffluent Basin <;c A Retention Time 2.0 Minutes B Volume 39,833 Gallons 5,325 CF C Area 17.5 Ft Width 35 Ft Length D De th 2 Ft Freeboard 11 Ft Depth 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Ozonation Canton, North Carolina Parameter Value Units Value Units 8 Treated Wastewater Transfer Pumps yv. F A Quantity 3 / Qty Total 2 Operating B Rating 9,958 GPM Each 10,000 GPM Design C Requirements 100 Ft TDH Estimate 75 P/M Eff% D Power 337 Hp Each 400 Hp Design 9 Wastewater Return Header 30 In Dia 1.42 Ft HL/100 Ft t. 1 02/20/2001 Design Basisi.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina 10.0 IN-PLANT STREAM TREATMENT 10.1 SUMMARY As part of the color removal study, several waste streams within the production facility are being evaluated for color removal treatment prior to discharge to the facility wastewater treatment plant. ' The following table summarizes the flow rates and color loadings of color laden streams: Stream CRP Flow Rate, gpm 15 Color Loading, lbs/day 5,000 Color Loading,ppin 27,800 Current Total Average Influent Color,ppin 277 hn act of Stream Color Removal,ppin -25 Adjusted Influent Color, m 252 Adjusted Effluent Color, m 189 Specifically, the stream selected for further consideration for color removal treatment was the CRP stream. This stream was chosen due to its high color concentration and its availability for treatment. The color removal technologies evaluated are crystallization and polyamine. The high flow rate associated with the treatment of full secondary wastewater treatment plant effluent makes crystallization unsuitable for whole-effluent treatment. Therefore,it is being evaluated on a much smaller scale on the CRP stream. 10.2 CRYSTALLIZATION ' The estimated capital cost for the crystallization system is $11,151,000 in January, 2001 dollars and is based on the assumptions summarized in Sections 10.2.3 and 10.2.4. The accuracy of the cost estimate is -30% to +30%. This estimate includes direct and indirect costs. The annual operating cost associated with this system is estimated to be $2,137,000. The total annual operating cost includes operating and maintenance costs, as well as interest and depreciation. The preliminary process design presented in this section is based on the assumption that the CRP wastewater color can be removed from the wastewater treatment plant influent with this technology. It should be noted that there are no known full-scale installations of evaporation technology of tertiary treatment of this type of pulp and paper mill wastewater. It is assumed this technology would remove all of the color associated with the CRP wastewater from the wastewater treatment plant influent. It is also assumed the color remaining in the influent wastewater would still undergo the current 25% color reduction across the wastewater treatment plant. At the average CRP color load of 5,000 pounds/day,the secondary effluent color would theoretically be lowered to 190 color units. This technology is not theoretically capable of achieving the 50 color unit standard. 10-1 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina The system is designed for the crystallization of an average flow of 15 gpm stream containing 5,000 pounds per day of color on average. It is assumed this color is removed from the raw wastewater stream. Therefore, the wastewater treatment plant influent color should be reduced from 266 color units to 242 color units. Assuming the current 25%reduction in color across the wastewater treatment plant remains unchanged, the predicted final effluent color would be 181 color units. As indicated in Section 10.1, this treatment does not achieve the 50 ppm color discharge limit. A location for the proposed treatment system is assumed to be available in the plant near one of the existing evaporator trains. Facilities would be provided at this area for treating the stream in a forced circulation crystallizer. 10.2.1 PROCESS DESCRIPTION Information regarding this process is proprietary. Therefore, assumptions are made to size the ancillary equipment. The CRP stream would flow into a purge crystallizer feed tank. The feed tank would provide equalization and storage prior to the crystallizer to account for variability in the flow rate to the system. The feed tank would be agitated to assure the contents are thoroughly mixed. The design average flow would be 15 gpm, and the peak flow would be 22.5 gpm. This flow would contain an average of 5,000 pounds per day of color. The design peak color loading would be 7,500 lbs/day. Wastewater from the CRP would gravity flow to the crystallizer feed tank. The tank would be . sized for 8 hours retention at the design peak flow. The vessel would be a stainless steel tank 14 feet diameter and 14 feet high. The wastewater would be pumped from the feed tank to the crystallizer. In the crystallizer, the liquid would be heated using process steam at 35 psi to evaporate water. The assumed 60% solids slurry generated would be pumped to a slurry holding tank. The vapors from the crystallizer would be piped to an existing evaporator collection system. The solids from the crystallizer would be pumped to a slurry holding tank. The tank would be sized for a capacity of 8 hours retention at the peak flow rate. It would be agitated to assure a complete mix. The holding tank would be constructed of 316 stainless steel and would be 12 feet diameter and 12 feet high. ~ The solids would be pumped from the holding tank to two of three plate and frame presses for dewatering. The filtrate from the filter presses would be pumped back to the crystallizer feed tank for re-processing. The dewatered solids would be transported to the landfill for disposal. Due to the proprietary nature of the information for the crystallizer, a General Arrangement drawing is not included in this report. i 10-2 d 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina 10.2.2 DESIGN BASIS Following is a summary of the design basis for the conceptual design and cost estimate for the crystallization color removal system. Design influent conditions of the system are based on data provided by Blue Ridge. Equipment sizing is based primarily on experience with similar equipment and processes, and engineering judgment. 10.2.2.1 Side Stream Characteristics Average Flow - 15.0 gpm Peak Flow - 22.5 gpm f Average Color - 5,000 lbs/day Maximum Color - 7,5001bs/day 10.2.2.2 Crystallizer Feed Tank • Size for 8 hours retention at peak design flow rate t • Volume— 13,200 gallons 10.2.2.3 Crystallizer Feed Pumps • Use 2 pumps at 100%capacity for peak flow • Pumping rate—2,000 gpm each 10.2.2.4 Crystallizer • Size for 22.5 gpm at 33.5%solids • Size for 45.3 oven-dried tons per day 10.2.2.5 Slurry Holding Tank Feed Pumos • Use 2 pumps at 100%capacity for peak flow • Pumping rate— 15 gpm each 10.2.2.6 Slurry Holding Tank • Size for 8 hours retention at peak design flow rate • Volume—7,200 gallons 10-3 J2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina 10.2.2.7 Filter Press Feed Pumus • Use 2 pumps at 100%capacity for peak flow • Pumping rate— 15 gpm each 10.2.2.8 Plate and Frame Filter Presses • Design rate—25 tons/day dry solids each • Discharge solids—85% 10.2.3 DESIGN ASSUMPTIONS The following assumptions are made in developing the process design for the evaporation color removal system: 1. The treatment system,as proposed,would remove all the color in the CRP stream. 2. The removal of the CRP stream color would reduce the influent color to the wastewater treatment plant. 3. The percent reduction in color across the wastewater treatment plant would not be diminished. 4. Excess steam is available for evaporation. 5. The solids produced can be landfilled as a non-hazardous material. 10.2.4 BASIS OF ESTIMATED COST There are no known commercial installations of this technology for treatment of either secondary effluent or in-plant side streams at a pulp and paper mill. The process design and costs presented herein are based on the assumption that the technology is technically capable of removing 100% of the color associated with the CRP stream. No tests (bench or pilot scale)have been performed with representative samples of the CRP stream. The design and construction time required for this project would be 24 to 30 months. This does not include any time associated with permit-related activities. Since the start date for the project is unknown at this time, costs are presented as January 2001 prices without any escalation. Other relevant cost basis assumptions are summarized in Section 1.3. 104 1. 1001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 10.2.5 DRAWINGS Included in this section are the following drawings related to the crystallization system: Figure 10.2.1 - Flow Diagram I fi 10-5 i ' 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 10.2.6 COST DATA Cost estimates for the crystallization color removal system are attached. Included are summary tables for the total capital cost and annual operating cost and backup detail sheets for estimation of the total capital costs. 10-6 J ! 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina COST DATA SUMMARY TABLES 10-7 TOTAL COST SUMMARY-JE PRIME CODE JOB: CRYSTALLIZATION SYSTEM ESTIMATE DATE: 02/08/01 CLIENT: BLUE RIDGE PAPER COMPANY REVISION NO.: 0 LOCATION: CANTON,NC ESTIMATED BY: M.D.WATSON JOB NUMBER: 16Y78100 CHECKED BY: CONSTRUCTION DURATION: TBD EST.FILE M '01001 ESTIMATE TYPE ORDER OF MAGNITUDE GAESTIMATI1BIue Ridgall6y7810011Crystallimtlon R7 EMAILxIsIPRIME CODE TCS PRIME CODE DESCRIPTION W-H OTY UNIT LABOR EQUIPMENT MATERIAL SUBCONTRACT TOTAL COST DIRECT COSTS 50 MAJOR EQUIPMENT 10.693 0 0 $178,702 $3,497,653 $84,894 $0 $3.761.260 52 CIVIL,STRUCTURAL,ARCHITECTURAL 11,341 0 0 $163,976 $0 $217.887 $31,493 $413,358 55 BUILDINGHVAC 0 1 LOT $0 $0 $0 $9200 $9200 62 PIPING 33,056 4,500 LF $530,650 $0 $595.414 $0 $1.126.064 63 INSULATION-PIPE,EQUIPMENT B DUCTWORK 0 0 0 $0 $0 $0 $28.000 .$28,000 64 INSTRUMENTATION 752 0 0 $12,344 $37,612 $9403 $0 $59.360 65 ELECTRICAL 1.128 0 0 $18,017 $37,612 $37.612 $0 $93,242 fib PAINTING,PROTECTIVE COATINGS 0 0 0 $0 $0 $0 $17.864 $17,864 87 LAND ACQUISITION 0 0 0 $0 $0 $0 $0 $0 75 CONSTRUCTION SERVICE LABOR 8.646 0 0 $129,640 $0 $0 $0 $129.640 TOTAL DIRECT COSTS 65,516 $1.033,329 $3,572,878 $945.211 $88.557 $5,637,875 $1WH $15.77 INDIRECT COSTS 76 TEMPORARY CONSTRUCTION FACILITIES(IN WAGE RATE) 7.6 OL $0 $0 $77,500 $0 $77,500 76 PREMIUM TIME 10.0% DL $103333 $0 $0 $0 $103333 79 CRAFT FRINGE BENEFITS(IN WAGE RATE) 5.0% OL $51,666 $0 $0 $0 $51.666 CRAFT PER DIEM B SAFETY INCENTIVES 17.3% DL $0 $0 $0 $196,549 $196,549 80 'PAYROLL TAXES&INSURANCE(IN WAGE RATE) 23.0% OL $237.769 $0 $0 $0 $237,769 83 SMALL TOOLS IN WAGE RATE) 4.0% DL $0 $0 $47 333 $0 $41 333 54 CONSUMABLE SUPPLIES(IN WAGE RATE) 7.0% DL $0 $0 $72,333 $0 $72.333 85 CONSTRUCTION EQUIPMENT(IN WAGE RATE) 25.0% DL $0 $0 $258,332 $0 $258,332 87 FIELD STAFF(IN WAGE RATE) 28.0% DL $289.332 $0 $0 $0 $209,332 TOTAL INDIRECT COSTS $682.100 $0 $449,498 $196,549 $1,328,147 ACCUMULATIVE TOTAL 65.516 $1.715.429 $3.572,878 $1,394,709 $283,108 $6,986,122 $/WH $36.04 81 NON-PAYROLL INSURANCE,TAXES,PERMITS 2.06% TIC $0 $142.915 $55,788 $30.662 $229,366 93 CONSTRUCTION HOME OFFICE COST(IN WAGE RATE) 0.62% TIC $62,000 $0 $0 $7,351 $69.351 Be CONSTRUCTION MANAGEMENT 4.37% TIC $0 $0 $0 $487,629 $487629 90 ENGINEERING PROFESSIONAL SERVICES 9.97% TIC $0 $0 $0 $1,111.793 $1,111,793 96 OUTSIDE CONSULTANT SERVICES 0,22% TIC $0 $0 $0 $25,000 $25,000 91 OWNER'S COST 5.00% TIC $0 $0 $0 $567290 $557,290 70 SPARE PARTS,CATALYST,OPERATING SUPPLIES 0.00% TIC $0 $0 $0 $0 $0 71 START-UP ASSISTANCE 0.64% TIC $0 $71,458 $0 $0 $71,458 98 ALLOWANCE FOR UNFORESEEN 12.80% TIC $266614 $568088 $217575 5375424 $1427701 98 ESCALATION 0.00% TIC $0 99 CONSTRUCTION FEE(IN WAGE RATE) 1.85% TIC $205.861 $0 $0 $0 $0 $0 $0 $205.851 ROUND OFF $108 ($339) ($72) ($254) ($560E560) TOTAL PROJECT COSTS 65.518 $2,250.000 $4,355,000 $1,668.000 $2,878,000 $11.151,000 $l WH $40.24 6:30 PM 1 O212012001 2001 Color Removal Technology Assessment Crystallization Blue Ridge Paper Products Inc. ry Canton,North Carolina ' Pumps ? ' ` Flow, GPM Head Efficiency Hp Operating 1 Crystallizer Feed Pumps k 15.0 200 50 1.5 2 Crystallizer Circulation Pumpu; 175 300 50 26.6 3 Slurry Pump ", +;^-: ' 12.6 200 50 1.3 4 Filter Press Feed Pumps 12.6 200 50 1.3 -? Total z i. ;: "2z` ? 28.1 V41 Miscellaneous Motors <s* „, *ri Qty Hp Ea Hp Total 1 Crystallizer Feed Tank Agitator :µ` 1 15 15.0 2 Slurry Holding Tank A itator 1 30.0 30.0 Total Misc Motors 45.0 7'r Total Operating Horsepower 73.1 j L � s- . f J tJ 02/20/2001 Operating$1.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Crystallization Canton,North Carolina Annual Operating Cost Area Value Units Price Units Annual Cost I 1 . Operating Personnel 0.5 Man-Yrs $60,000 Per Year $30,000 2 Maintenance Personnel 0.5 Man-Yrs $60,000 Per Year $30,000 3 Outside Contractor Services 1.00 %of $6,978,423 Total $69,784 Equipment E ui ment 4 Stores And Supplies 4.00 % of $6,978,423 Total $279,137 Equipment E ui ment T Electrical Power- Motors 73.1 Horsepower $260.00 Per Horse- $19,001 power Year 6 Steam 70,080,000 Pounds Per $2.15 Per M $150,672 Year Pounds 7 Solids Disposal (Assume 1.0 53.3 Tons Per $10.00 Per Cubic $194,415 TonlCY) Day Yard 8 Chemicals Sy t' j a ' A Sulfuric Acid (Cleaning Allocation) 1.00 Tons Per $64.00 Per Ton $23,040. Da 8 Total Annual Operating & `} =n p a = $796,049 Maintenance Cost - 9 Interest 10.00 % of Total $11,151,OOO Total Capital $1,115,100 J Capital 10 Depreciation 5.00 % Eqpt& $4,518,089 Eqpt& $225,904 Material Material 11 ITotal Annual Cost «yY 33x r a n rr a kra ;1-. $2 137 053 Li I _J 0 212 0/2 0 0 1 Operating$1.xis 200I Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina i COST ESTIMATE—DETAIL SHEETS 10-8 �=�assse9�aaaaxm:javvaYjo888Tsmn88. ma28GaaAzan=8mq gq•mm+ °m � &xaaxxaa$aaaxxa 5 8 a sasaaasxa 8 888a88888888S88aS88888a S88 s�`m a a assssasxs s ga+asssssssssassa e s 'a'as+88888as 's s'a "aa's"aa'a''sa''s'as'assss's's'as's'sse'as''s s p • u u .. p • u u + m m m m q • u u P o 011=g89 _ _ 2 o o g °Za°To So pp s+ - ° A O A O € F s 8 P +- - -- - - -- -- -- - 6 F ' �£ o x+ g m m a � o � s m m r _ m $ m m $ �q m .a s a •s ma .s & mmm '� r tV t 5�»0 o m E a w E E m m q m x g m s s q ME 13 i T "T s s ms � w °P T - s TT T set lu�� � mmm 55CC w w w w w w w g 8 S $P A �o w w xx wms aan w �r wq wm O 8 8 8 T 8 8 8 8 m 8 a a a 88 8 88 a 8 88 88 as 8 888 O yDy s a m m m 5 s ea 8 8 s s $ 8 w m s mw w m 88 mm mmm » w w m w www °g $ a 8 8 8 8 8 8 8 ° ` ° « »» » 88 » »» » »»» = m ° 8 8 8 8 88 8 88 8 8 88 88 s8 8 888 yg o 8 w 8 C w 3m'o 8mF i 8 8 m m 8 8 m m 8 w m m S C m 88 8 mm q m 88 88 mm m 888 � ma _ _ ., s u • s :, s � a p s� � �u s � �� �k s� s esa S G N HR � ,1,,,,!!,!„!!„l,,,,,,,,,,!„�,,,l,,,,l,;„■, !! ; . . . . , - , ... . ._.... i|. . . . . § \ , .. !;§,,. §� ( ■ ! ( ! | § ) //\ . ' §WEI . , | | | § . ` . ` ON 05 § \ " . . . . . . . . ■ d § . . : . . . . . ; . . . § `" § - , ; ; ; \| g. ? ) ; ; !;§§§ ).,.. '§!_}§ | ; ) . . „ t . ) . . . , . ( ( � 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 10.3 POLYAMINE Polyamine has been jar tested at the Blue Ridge facility in January 2001 on the CRP and Acid - Sewer streams. 10.3.1 PROCESS DESCRIPTION The Acid Sewer side stream would gravity flow to the polyamine treatment system from existing pipe. The design average flow rate through the pipe would be 2.0 MGD (1,390 gpm) and the maximum flow rate would be 3.0 MGD (2,080 gpm). The specific site for the in-plant polyamine treatment system has not been determined. Wastewater would flow into a polymer mix/reaction reaction tank sized for 5 minutes retention time at the design maximum flow rate of 3.0 MGD. The tank would be 14 feet diameter and 14 feet high and would be equipped with two mechanical agitators. Liquid polyamine would be metered into the reaction tank and mixed with the incoming wastewater. A liquid polyamine storage tank with a 7-day storage capacity and dual 100% capacity metering pumps would be provided. The polyamine would react with the color-forming materials in the side stream and would separate in the pre-treatment clarifier. The stainless steel clarifier would be 72 feet diameter with a 15-feet SWD. The design average surface overflow rate would be 500 gpd/ft while the peak overflow rate would be 765 gpd1W. Dual 100% capacity sludge transfer pumps would be provided to transfer sludge from the pre- treatment clarifier to the sludge holding tank. The sludge holding tank would be sized for 30 minutes sludge storage. The holding tank would be equipped with two top-mounted agitators to assure solids suspension. Sludge feed pumps would pump sludge from the tank to the existing Sludge Dewatering Facility. A dry polymer feed system, including feeder, mixing tank, feed tank, and progressive cavity feed pumps would be included to meter a dewatering aid polymer to the sludge holding tank. 10.3.2 DESIGN BASIS Following is a conceptual design summary of the design basis for the polyamine color removal system. Design influent conditions to the system are based on data provided by Blue Ridge. Equipment sizing is based primarily on experience with similar equipment and processes, and on engineering judgment. 10.3.2.1 Side Stream Characteristics Average Flow - 2.0 MGD Peak Flow - 3.0 MGD Average Color - 16,000 lbs/day Maximum Color - 24,000 lbs/day 10-9 I 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina 10.3.2.2 Polymer Storage Tank • Liquid polyamine storage for 7 days 10.3.2.3. Polymer Feed Pumps • Use 2 pumps at 100%feed rate • Pumping rate— 1 gpm each 10.3.2.4 Polymer Reaction Tank • Size for 5 minutes retention at peak design flow rate 10.3.2.5 Pre-Treatment Clarifier • Use conventional design clarifier. • Average SOR=500 gpd/ft • Peak SOR=765 gpd1 10.3.2.E Sludge Holding Tank { Size for 30 minutes retention at peak flow rate. 10.3.2.7 Dry Polymer Feed System • Size to store and feed 18 lbs/day of dry polymer • Includes a 500-gallon solution tank and a 500-gallon feed tank • Includes two 100%capacity polymer feed pumps 10.3.3 DESIGN ASSUMPTIONS The following assumptions are made in developing the process design for the in-plant polyamine color removal system: 1. There is sufficient land at the Mill for the polyamine system installation. 2. Removal of color would proportionally reduce the influent color to the wastewater treatment plant. 3. The color reduction capacity of the wastewater treatment plant would not be diminished. IL 10-10 1 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina 10.3.4 BASIS OF ESTIMATED COST The cost estimate has not been completed. l ' 10-11 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton,North Carolina 10.3.5 COST DATA Cost estimates are not completed at this time for the polyamine color removal system. I 10-12 1 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina 10.4 PROCESS CALCULATIONS Process calculations are performed to size all major equipment. A copy of the process calculations is attached. 10-13 1 2001 Color Removal Technology Assessment Crystallization Blue Ridge Paper Products Inc. ry Canton, North Carolina Parameter Value Units Value Units 1 Desi n Basis- Raw CRP Stream I13 Avera a Desi n 15 GPM 33.51 % Solids Avera a Solids 2,515 #/Hour Maximum Design 1.5 Factor 22.5 GPM Maximum Solids 33 51 %Solids 3 773 #/Hour 2 Crfstallizer Feed Tank „., : j;., „r ,_ rra A Retention Time 22.5 GPM 8.0 Hours B Volume 10,800 Gallons 1,444 CF C Adjustment For Filtrate Return 27.5 GPM 13,200 Gal Design D Dimensions Calculcated 13.1 Ft Dia 13.1 Ft Ht E Dimensions Design 14.0 Ft Dia 14.0 Ft Ht L Crystallizer Feed Tank Agitator 1.14 H /1000 Gal 55.0 H 4 Crystallizer Feed Pumps A Quantity 2 Qty Total 1 Operating B Rating 22.5 GPM each 25 GPM each C Re uirements 200 Ft TDH Estimate 50 P/M Eff% T Power 2.5 Hp Each 2.5 Hp Design 5 Crystallizer A Basis 22.5 GPM 45.3 OD TPDe B IDischarge 60 % Solids Assumed 12.6 GPM 6 Crstallizer Circulation Pump A Quantity 2 Qty Total 1 Operating B Cycle Factor 5 Assumed 35.1 GPM/Cycle C Rating 175 GPM Actual 175 GPM Desi n D Requirements 300 Ft TDH Estimate 50 P/M Eff% E Power 26.6 Hp Each 30 Hp Design 7 Slurry Pump .c'- . - „ A Quantity 2 Qty Total 1 Operating B Rating 12.6 GPM Each 15 GPM Design C Requirements 200 Ft TDH Estimate 50 P/M Eff% D Power 1.5 Hp Each 1.5 Hp Design 8 Slur Holdinq Tank m �> c" zNy •" °x ;$' - A Retention Time 15 GPM 480 Minutes B volume 7,200 Gallons 963 CF C Dimensions Calculcated 10.7 Ft Dia 10.7 Ft Ht Dimensions Design 12 Ft Dia 12 Ft Ht 9 Slurry Holding Tank Agitator 4.2 Hp/1 000 Gal 30.0 H 10 Filter Press Feed Pumps :•, s= 7"-3 r; v_ , �� Y; -; s A Quantity 2 Qty Total 1 O eratin B Rating 15 GPM Each 15 GPM Design C Requirements 200 Ft TDH Estimate 50 P/M Eff% D Power 1.5 Hp Each 1.5 H Design 11 Plate and Frame Press A Quantity 3 Qty Total 2 Operating B Rating 22.6 TPD Each 25 TPD Desi n 4Dischar a 85.0 %Solids 53.3 Ton/Da Wet C D Filtrate 3.7 GPM Actual 5 GPM Desi n 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment In-Plant Pol amine Blue Ridge Paper Products Inc. Poly amine North Carolina Parameter Value Units Value Units 1 Pipeline 60 In. Dia. Polymer Reaction Tank A Retention Time 5.0 Minutes B Volume 10,417 Gallons 1,393 CF C Area 12.1 Ft Dia 12.1 Ft Ht D Depth 14 Ft Freeboard 14 Ft Depth 2 Polymer Addition A Total Dry Polymer 60 m /I 1,501 #/Da B Polymer Solution 30 %solution 5,004 4/Da C Liquid Feed 10 #/Gal 500 GPD D Polymer Feed Pumps 1 Quantity 2 Qty Total 1 Operating L Rating 0.35 GPM Each 1.0 GPM Desi n L Requirements 100 Ft TDH Estimate 50 P/M Elf% 4 Power 0.1 Hp Each 0.5 H Design E Polymer Stora a Tank $ a x r 1 Capacity 7 Days Cap Total 3,503 Gal Cap Total 2 Tankage 1 Qty 0 % Excess Ca 3 IDimensions Calculated 8.4 Ft Dia 8.4 Ft Ht - 4 IDimensions Design 10 Ft Dia 10 Ft Ht 3 Pre-Treatment Clarifier A Rating 765 GPD/SF 3,922 SF B Capacity 100 % of Total 3,922 SF C Dimensions 35 Ft Radius 71 Ft. Dia D Depth 15 Ft SIND 72 Ft Dia Design E Quantity 1 Each F Underflow Solids a s._ i .__ , a•':'.. 1 Color Generated 72 mg/1 0.9 TPD 2 ITotalSolids 0.9 TPD G Underflow 1.0 % Solids 15 GPM H Slud a Transfer Pumps7 a w:,FT ex: {, w L Quantity 3 Qty Total 2 Operating L Rating 8 GPM Each 8 GPM Design 3 Requirements 100 Ft TDH Estimate 50 P/M Eff% 4 Power 0.42 Hp Ea. 0.5 Hp Design 6 Slud a Holding Tank H "�. x. x � � ' A Design 30 Min.Cap 450 Gal B Sizing 20 % Excess 540 Gal Design C Dimensions Calculated 5 Ft Dia 5 Ft Ht T Dimensions Design E Dry Polymer Feed S stem 1 Total Dry Polymer 20 #D /Ton Sludge 18 #/Da 2 Solution Tank '" a jBasis 0.5 % Solids 1 Hr Aging b lCapacity 432 Gal/Da 50 % Excess Ca o IDesign 36 Ga[ Cap 50 Gal Design 3 Feed Tank Same As Solution 50 Gal Design 4 Feed Pumps a lQuantity 2 Total 1 O eratin b Ratin 0.30 GPM Each 1 GPM Desi n c Re uirements 100 Ft TDH Estimate 50 P/M Eff d JPower 0.03 HP Ea. 0.5 H Desi n 02/20/2001 Design Basisl.xls 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton North Carolina 10.5 REFERENCES Following is a list of references used to prepare this section: 1. Sirrine Environmental Consultants,Effluent Color Treatment Reports from April, 1987— Champion International Corporation,April 1987. 2. SEC Donohue, Color Treatment Technology Assessment—Champion International Corporation.July 1992. 3. Metcalf&Eddy, Inc., Wastewater Engineering: Treatment,Disposal and Reuse, Second Edition,McGraw Hill Company, 1979. 4. Champion International Corporation, 1995 Color Removal Technology Report,April 1995. S. K.Dunn and J.C.Patel,US Filter,Plainfield,IL,Personal Conversation,January 2001. 10-14 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina APPENDIX • Distributions for Monthly Average Flow Rates (MGD)for the Pigeon River at Canton (January 1929 to June 1996 Data) • USGS Data From 1929 to September 1990 • Summary of Flow Rates Data o Primary Influent and Secondary Effluent Flow • Statistical Analysis o Primary Influent Color • Statistical Analysis o Secondary Effluent Color Statistical Analysis • Overview of Mill Sewers Data for 03/25/98 • Average Measured Color in Mill Sewers as a Percentage or Primary Influent Color (1/1/00—8/31/00) • Color Loadings to Mill Sewer Areas • CRP Data—Liquid Purge Stream Solution • No. 6A Sewer Data • USGS Topography Maps of Fibreville,Pigeon River and Blue Ridge Paper - • Clarifier Concrete Requirements • Operating Cost Update • Pump Quotations (Provided by ITT Industries/Goulds Pumps) • Wastewater Vertical Sump Pump Quotations(Provided by Goulds Pumps) o Model V1T-FF—(10,000Flow) o Model VTT-FF—(20,OOOFlow) • Carbon Adsorption System Quotation(Provided by Calgon) o Specifications o Sketches • Quotation for Ozone Color Removal from Biozone • Quotation for Ozone and Oxygen from Air Liquide 0 Budget Estimate for Purge Crystallizer from US Filter 2001 Color Technology Assessment Blue Ridge Paper Products,Inc. Canton,Nodh Carolina Distributions for Monthly Average Flow Rates (MGD)for the Pigeon River at Canton (January 1929 -June 1996 Data) Distributions for Monthly Average Flow Rates (MGD)for the Pigeon River at Canton (January 1929-June 1996 Data) Mean Standard Dev Median 95th Pct 90th Pct 75th Pct 25th Pct 20th Pct 15th Pct 10th Pct 5th Pct 1 st Pct January 269.5 130.5 264.2 511.3 436.3 346.2 172.1 159 149.5 111.9 82.5 59.3 Febraury 303.5 131.1 284.3 552.7 438.1 382.2 207 188.9 162.6 147.1 132.8 110.9 March 346.1 140.3 311.5 613.4 570.1 410.6 260.8 234.7 213 200.6 164.1 115 April 302.2 _ 120.6 283.3 536.2 464.6 365.8 212.3 201.6 193.9 172.4 156.9 122.2 May_ 221.7 91.4 197.4 375.6 322.3 268.3 157.6 151.2 144.3 139.3 124.7 99.4 June 169.6 92.8 152 375.3 283.3 190.5 107 98.9 91.1 88.9 83.1 63.3 July 125.4 64.9 111.4 1 226.8 202.5 141 84 79.8 78.1 69.2 60.3 57.3 August 124.1 87.2 86 284.4 250.6 147.4 67.3 63.7 58.4 55.4 49.3 41.5 September 124.6 93.6 82.4 268.8 240.3 1 178.6 60.9 57.4 55.9 1 52.7 50.5 38.1 October- 142 109.2 106.1 355.4 307.6 205.9 62.3 58.2 50.6 45.3 38.9 34.6 November 173.4 122:8 133.7 410.7 300.6 220 g3.2 77.2 67.6 59.4 48 38.6 December 213.7 117.5 193.2 418.8 380.1 259 125 114.6 108 86.2 67.3 53.3 avgflowrates 02/20/2001 2001 Color Technology Assessment Blue Ridge Paper Products, Inc. Canton,North Carolina Daily Data on Pigeon River Flowrates (MGD) at Canton, NC USGS Data From 1929 to September 1990 1 st Pct 5th Pct 10 Pct 25th Pct 50th Pct 75th Pct 95th Pct January 46.5 66.5 84 136.3 202.8 294.6 652.5 February 64.6 85.3 110.5 158.9 237.7 346.9 742.9 March 91.1 115.6 148.6 191.9 262.3 379.8 768.7 April 99.5 120.8 141.5 181.5 241.6 333.9 658.9 May 59.4 '93 109.2 134.4 175.4 242.9 460.6 June 55.6 65.2 74.9 93.7 128.9 175.7 345.6 July 45.2 53.6 58.8 71.7 97.5 138.9 258.4 1_ August 34.9 43.3 48.5 58.1 77.5 114.3 277.1 September 31 38.1 43.3 52.3 67.2 11.6.3 376 1 t October 30.4 38.1 41.3 51 74.3 146 416.7 November 29.7 1 38.1 1 45.2 65.9 115.9 1 194.4 505.8 December 35.5 54.3 63.3 96.9 151.2 241.E 1 537.5 usgs historical canton flow 02/20/2001 Summary. Recovery Sewer Acid Sewer CRP Purge Recovery Acid Sewer SE and PI Primary Secondary Color conc. Color cone. Sewer Flow Flow Flow Influent Color Effluent Color (Includes CRP Color (flow Concentration Concentration Purge) conc. typically 10- Date Color 5B Total- Color 6A- CRP Color- Flow,#5B- Flow,#6A- Flow,WTP- PI True Color- SE True Color- moll moil moll MGD MGD MGD m /l mall 01-Jan-99 1065 1156 105400 0.92 4.1109 25.426 253 201 di 02Jan-99 1074 1675 125000 0.93 4.2196 25.433 240 182 03Jan-99 1459 1628 9760 0.95 4.0594 25.024 328 188 04-Jan-99 1356 1070 104100 1.05 4.148 23.873 333 197 05-Jan-99 1336 586 72500 0.98 3.8158 24.506 222 229 06-Jan-99 1538 794 68500 0.9 3.8446 23.443 346 223 07-Jan-99 1252 680 66100 1.17 4.1625 24.577 378 253 01-Jan-99 947 570 41560 1.11 3.8877 23.713 530 277 09-Jan-99 679 510 25840 0.99 3.856 23.513 397 226 10-Jan-99 807 401 30980 1 0.9 3.6346 23.428 265 242 11-Jan-99 1654 480 17280 1.2 3.631 24.019 206 214 12-Jan-99 237 1626 40800 1.08 3.6309 23.418 177 197 13-Jan-99 662 1435 39160 1.04 2.731 24.721 191 190 14-Jan-99 860 930 53330 0.97 3.7865 24.64 319 178 15-Jan-99 991 1007 50600 1.03 3.8797 24.295 256 188 16-Jan-99 784 ,891 44800 0.97 3.3759 25.046 1112 170 17-Jan-99 97 726 0.98 3.4894 27.79 231 168 18-Jan-99 151 704 38000 0.93 4.3689 26.428 320 175 19-Jan-99 383 504 42100 1.02 3.9884 26.487 280 208 20Jan-99 898 291 50860 0.99 4.1199 25.273 235 188 '{ 21Jan-99 1134 435 52100 0.98 4.2108 25.877 288 196 22Jan-99 1114 401 47500 1.01 4.1992 25.051 291 216 23-Jan-99 1098 509 49100 1.02 4.1788 27.538 268 185 24-Jan-99 1369 707 49800 1.18 4.0017 25.666 321 178 25-Jan-99 1312 1088 44000 1.28 4.2407 24.943 311 181 26-Jan-99 1177 791 36800 1.32 4.1253 23.854 128 166 27-Jan-99 1301 842 30200 1.17 4.0895 24.414 215 156 28-Jan-99 1088 811 41600 1.04 4.2042 24.712 337 166 29-Jan-99 1495 1 1173 78000 1.07 4.2998 25.075 1 359 201 30-Jan-99 1121 620 78600 1.15 4.1066 24.846 303 231 31-Jan-99 1076 611 88300 1.22 4.2323 24.478 363 213 01-Feb-99 1228 876 50800 1.29 4.2648 27.965 382 256 02-Feb-99 341 577 1.31 4.13 25.308 247 250 '03-Feb-99 1054 411 45200 1.25 4.12 24.305 247 219 04-Feb-99 1517 614 41000 1.22 3.89 24.214 305 200 05-Feb-99 1256 563 59700 1 2.17 3.9171 23.827 262 189 I 06-Feb-99 330 286 49480 1.19 4.1956 24.294 199 182 07-Feb-99 999 1 290 75640 1.28 4.1847 24.448 222 178 08-Feb-99 1196 379 61120 1.22 4.4427 25.897 204 176 09-Feb-99 1365 306 49520 1.11 4.1513 26.702 399 160 10-Feb-99 1255 644 92540 1.32 4.1571 25.979 324.4 206 - 11-Feb-99 1012 450 58930 1.06 3.8358 26.408 270 222 12-Feb-99 1048 225 27960 1.05 4.0814 26.16 290 316 13-Feb-99 880 403 43680 0.95 3.9024 26.982 290 194 14-Feb-99 908 200 34160 1.16 3.685 25.731 359 182 15-Feb-99 295 380 30560 0.96 3.9202 25.842 258 216 16-Feb-99 738 266 44400 0.89 3.7141 25.876 250 165 17-Feb-99 833 247 36400 0.97 4.0376 26.415 204 144 18-Feb-99 1407 239 37200 0.95 4.0877 26.795 207 149 19-Feb-99 1514 270 39350 1.04 3.86 26.899 172 152 20-Feb-99 1371 241 52950 1 3.9822 25.362 236 152 21-Feb-99 1325 329 51400 0.94 4.02 25.049 237 166 22-Feb-99 1403 355 56350 0.95 3.94 24.74 215 186 23-Feb-99 1374 256 206401 0.99 1 3.8545 24.745 202 152 02/20/2001 1 Jacobs 9-27-00.)lsSummary Summary. Recovery Sewer Acid Sewer CRP Purge Recovery Acid Sewer SE and PI Primary Secondary Colorconc. Color cone. Sewer Flow Flow Flow Influent Color Effluent Color (Includes CRP Color (flow Concentration Concentration Purge) cone. 1 11 10- Date Color 5B Total- Color 6A- CRP Color- Flow,#5B- Flow,#6A- Flow,WTP- PI True Color- SE True Color- /l mail mall m MGD MGD MGD mall m /l 24-Feb-99 866 198 30708 0.98 3.8181 26.165 218 160 25-Feb-99 1071 226 45880 1.1 4.0431 26.852 179 154 26-Feb-99 1030 1010 54490 1.04 3.9604 26.226 184 168 27-Feb-99 1169 233 74270 1.29 3.9434 24.518 192 154 28-Feb-99 1116 580 55560 1.29 3.8836 25.44 170 153 01-Mar-99 1435 263 61270 1.41 4.0061 25.563 215 162 02-Mar-99 1309 330 36300 1.58 3.08 24.753 392 248 03-Mar-99 1350 253 90950 1.41 3.79 26.7711 247 221 04-Mar-99 167 316 98360 1.23 4.1 25.146 356 205 _ 05-Mar-99 1891 340 40600 1.26 4.029 24.985 282 226 M-Mar-99 930 382 43000 1.39 3.6115 1 26.212 282 233 07-Mar-99 1470 315 43300 1.4 3.9979 26.332 265 205 08-Mar-99 1755 328 46700 1.45 4.2269 26.824 225 182 _ 09-Mar-99 1348 267 82830 1.31 4.2734 27.1 210 175 10-Mar-99 1700 325 62410 1.44 3.2081 25.801 287 165 T 11-Mar-99 1278 370 34720 1.34 4.0897 25.351 221 180 12-Mar-99 979 275 26320 1.26 3.917 25.796 329 179 13-Mar-99 743 235 28600 1.18 4.4027 26.946 258 172 14-Mar-99 1146 368 32640 1.29 3.6614 27.084 308 158 y 15-Mar-99 831 966 20560 1.06 4.3906 27.213 297 164 16-Mar-99 1019 196 30800 1.12 4.1803 26.558 301 176 ` 17-Mar-99 1467 187 39300 1.19 4.002 25.762 321 172 18-Mar-99 1333 189 41200 1.19 4.0374 25.582 199 203 19-Mar-99 1087 234 51100 1.26 3.96 25.129 242 196 20-Mar-99 1255 144 44500 1.35 3.99 24.188 323 201 21-Mar-99 1251 220 37000 1.23 4.07 24.495 172 166 22-Mar-99 1123 324 57020 1.19 3.97 24.99 219 172 23-Mar-99 1024 1 218 38680 1.16 3.9756 24.377 221 131 24-Mar-99 848 220 32840 1.21 3.6895 25.157 189 149 25-Mar-99 856 242 51040 1.08 3.7941 24.88 190 169 26-Mar-99 1200 324 99000 1.24 3.8324 27.097 215 169 27-Mar-99 1049. 343 93760 1.26 3.6884 25.762 238 167 28-Mar-99 1397 355 70120 1.17 3.6884 24.745 292 193 29-Mar-99 16220 622 39030 1.34 2.6401 23.867 853 361 30-Mar-99 2191 571 41000 1.22 2.65 24.968 243 485 31-Mar-99 1820 234 37500 1.27 3.88 26.11 211 242 01-Apr-99 892 389 33000 1.19 4.04 26.606 190 196 02-Apr-99 629 209 24480 1.3 4.0498 25.402 261 162 03-Apr-99 990 209 42700 1.19 3.9648 25.056 169 154 04-Apr-99 931 335 22100 1.14 4.0391 23.258 181 152 05-Apr-99 952 222 32700 1.2 4.0604 24.37 290 150 06-Apr-99 1396 1160 28650 1.29 4.0616 24.131 195 178 07-Apr-99 280 860 42080 1.11 4.099 24.463 188 185 08-Apr-99 981 1073 64960 1.4 4.0409 24.685 209 189 09-Apr-99 1017 881 48600 1.52 3.8504 24.421 263 183 10-Apr-99 1458 650 42400 1.44 3.9402 24.031 298 213 11-Apr-99 1619 610 46000 1.31 4.1473 25.196 245 184 12-Apr-99 1513 721 39980 1.31 4.2036 25.3 228 180 13-Apr-99 1157 196 32900 1.41 3.9924 24.527 246 158 14-Apr-99 1261 208 29600 1.38 4.1523 25.04 205 168 15-Apr-99 1271 184 26200 1.33 4.1125 25.9 158 156 16-Apr-99 1371 202 43200 1.23 4.12 25.999 291 177 17-Apr-99 1077 389 37500 1.16 3.93 26.255 249 186 18-Apr-99 1 860 351 39000 1.28 4.09 26.572 196 187 02/20/2001 2 Jacobs 9-27-00.)lsSummary ' Summary. Recovery Sewer Acid Sewer CRP Purge Recovery Acid Sewer SE and PI Primary Secondary Color conc. Color conc. Sewer Flow Flow Flow Influent Color Effluent Color (Includes CRP Color (flow Concentration Concentration Purge) conc. ieall 10- Date Color 5B Total- Color 6A- CRP Color- Flow,#5B- Flow,#6A- Flow,WTP- PI True Color- SE True Color- mall mall m 1l MGD MGD MGD mail mall 19-Apr-99 381 283 94 1.62 4.1654 26.668 203 176 li 20-Apr-99 773 199 48960 1.45 4.1485 26.366 180 176 21-Apr-99 989 323 56320 1.45 4.3077 26.342 248 168 22-Apr-99 1585 329 52280 1.4 4.0262 26.062 207 164 23-Apr-99 1720 405 67880 1.47 4.1754 25.689 192 197 24-Apr-99 1059 820 74820 1.32 4.0836 25.191 270 178 25-Apr-99 1189 1660 71210 1.19 4.129 25.377 313 190 26-Apr-99 1394 450 79730 1,45 4.0072 23.955 323 195 27-Apr-99 1889 496 67450 1.4 4.0881 25.085 244 228 28-Apr-99 1412 417 58250 1.44 4.1328 24.492 154 169 29-Apr-99 1046 409 1.47 4.1933 25.367 261 209 30-Apr-99 621 472 31700 1.3 4.1071 24,22 244 1611 01-May-99 688 204 27700 1.31 3.954 24.237 208 146 02-May-99 641 348 21500 1.28 3.83 24.45 308 144 03-May-99 1754 451 18600 1.87 2.9556 25.451 535 191 04-May-99 2587 1 2590 55890 2.19 2.5825 20.194 641 358 05-May-99 1750 502 23230 2.35 2.3852 20.79 295 388 06-May-99 1323 720 12030 2.5 2.5204 22.929 273 309 07-May-99 814 881 2.13 2.6751 24.415 154 170 08-May-99 1094 1216 2.05 2.6857 24.682 248 156 09-May-99 954 1049 1.88 4.1306 25.965 180 135 + 10-May-99 982 889 38600 1.83 4.0826 26.834 286 142 11-May-99 898 368 29340 1.86 4.2201 26.024 288 196 12-May-99 702 287 34260 1.54 4.3041 24.915 241 200 13-May-99 872 347 50460 1.47 4.4427 24.326 303 195 14-May-99 975 921 46000 1.53 4.34 26.205 201 194 15-May-99 1096 1 873 52200 1.6 4.39 23.959 294 197 16-May-99 1002 707 58500 1.57 4.25 25.162 274 217 17-May-99 812 575 56550 1.62 4.2898 24.404 1 252 219 18-Ma -99 719 334 49780 1.64 4.2358 25.463 271 206 19-May-99 1245 364 54400 1.68 4.1995 24.882 255 189 20-May-99 1373 425 48600 1.66 3.692 24.11 147 182 21-May-99 1240 368 55320 1.72 4.0345 23.939 156 161 22-May-99 938 698 70400 1.73 3.8799 23.95 228 176 23-May-99 1247 1175 50200 1.72 3.977 24.257 244 188 24-May-99 1005 1040 40800 1.79 4.0173 25.142 228 187 25-May-99 1061 655 1.89 3.8942 25.836 370 255 26-May-99 1415 1045 1 1.71 2.783 23.457 402 236 27-May-99 1585 426 1.44 3.9269 24.171 375 292 28-May-99 162 546 1.49 3.98 27.156 288 307 29-May-99 897 284 1.74 4.2291 27.473 276 262 30-May-99 483 52 0 1.95 1.019 21.986 194 170 31-May-99 1023 307 0 1.74 1.6355 25.781 418 122 01-Jun-99 628 950 1.49 3.6583 23.898 208 147 02-Jun-99 562 563 30330 1.45 3.4103 23.599 146 179 03-Jun-99 165 432 35400 1.35 1 3.5021 23.884 155 171 04Jun-99 211 601 32600 1.29 3.4234 24.313 140 156 05Jun-99 402 517 36000 1.23 3.3445 24.702 143 137 06Jun-99 579 536 41400 1.2 3.4683 25.679 128 129 07-Jun-99 605 672 3B200 1.31 3.6127 26.019 231 104 08-Jun-99 646 335 20800 1.21 3.6759 26.307 175 112 09-Jun-99 1159 268 31600 1.46 3.4635 25,382 176 130 10Jun-Jun -941 355 28100 1.59 3.5098 27.851 195 136 11-Jun-99 894 378 64775 1.22 3.6941 25.664 207 144 02120/2001 3 Jacobs 9-27-00.)lsSummary 1 Summary. Recovery Sewer Acid Sewer CRP Purge Recovery Acid Sewer SE and PI Primary Secondary Color Cont. Color cone. Sewer Flow Flow Flow Influent Color Effluent Color (Includes CRP Color (flow Concentration Concentration Pure) Cont. typically 10- Date Color 513 Total- Color 6A- CRP Color- Flow,#513- Flow,NA- Flow,WTP- PI True Color- SE True Color- man mail moll MGD MGD MGD m /I m /I I 12-Jun-99 813 304 44900 1.4 3.598 26.8 216 164 1 13Jun-99 1127 337 54520 1.51 1 3.76 24.533 196 164 14Jun-99 1030 373 48420 1.43 3.7864 24.468 216 197 15-Jun-99 1270 401 44200 1.43 3.722 25.746 250 194 f 16Jun-99 1083 482 41600 1.41 3.6789 26.132 178 175 17-Jun-99 1074 519 1.42 3.4494 25.496 170 173 18-Jun-99 729 693 31640 1.21 3.6559 23.305 276 205 19-Jun-99 1040 298 41680 1.3 3.2576 24.177 278 206 20-Jun-99 1268 302 48360 1.28 3.5784 24.686 290 209 21-Jun-99 535 422 49180 1.32 3.6509 25.242 253 185 22-Jun-99 1266 674 67600 1.29 1 3.66 26.111 278 214 23-Jun-99 1367 575 59000 1.41 3.89 26.229 256 217 24-Jun-99 1793 480 54500 1.37 4.07 26.011 275 225 25-Jun-99 1743 379 78680 1A6 3.7113 26.382 332 202 26-Jun-99 1857 325 85800 1.5 3.6185 25.53 300 194 27Jun-99 1496 305 81680 1.53 3.7423 25.934 160 186 28-Jun-99 1742 303 78824 1.53 4.0876 26.288 301 150 29-Jun-99 1756 345 79850 1.49 3.8087 27.234 265 168 30Jun-99 1732 791 1.82 2.8467 25.284 508 224 01Jul-99 116 574 1.55 1 3.8928 25.549 404 260 02-Jul-99 404 348 34100 1.45 3.6958 24.884 236 220 03-Jul-99 1084 422 50560 1.5 3.8518 26.158 389 205 04-Jul-99 882 330 41220 1.47 1902 26.305 240 192 05-Jul-99 459 377 40700 1.45 3.8556 26.814 199 185 06-Jul-99 282 -345 1.59 3.7848 27.151 160 154 07Jul-99 114 284 1.57 3.8381 27.028 185 141 08Ju1-99 289 357 33060 1.53 3.8758 25.981 247 158 09-Jul-99 994 599 39000 1.47 3.8 25.841 335 199 10Jul-99 861 505 48500 1.52 3.87 26.288 209 205 11Ju1-99 767 481 44000 1.53 3.85 27.632 266 205 12Jul-99 1408 367 1831 1.57 3.8353 26.035 306 187 13-Jul-99 1003 333 34200 1.45 3.5855 26.047 356 185 14-Jul-99 1304 520 30600 1.52 3.6237 25.616 385 193 15-Jul-99 1221 684 38400 1.42 3.9998 25.64 350 246 16-Jul-99 1188 652 92420 1.42 3.8281 25,262 389 238 17-Jul-99 827 665 46280 1.48 3.6099 24.598 311 231 18-Jul-99 1070 367 108020 1.59 3.7387 24.932 481 208 19-Jul-99 1268 1 581 139360 1.6 3.6929 24.483 252 209 _ 20Jul-99 1539 974 2146 1.49 3.7318 24.476 181 164 21Jul-99 1707 524 124300 1.47 3.6107 25.579 234 174 22-Jul-99 1295 650 61800 1.51 3.928 _ 24.434 362 210 23-Jul-99 1565 478 64800 1.54 3.9948 25.21 306 198 24-Jul-99 1154 334 72100 1.55 3.76 25.447 275 204 25-Jul-99 1065 339 123100 1.53 3.833 24.933 322 206 26-Jul-99 1172 349 72400 1.53 4.1276 23.932 331 194 27-Jul-99 1340 953 94310 1.48 4.0173 26.445 352 235 28-Jul-99 1776 1 808 75100 1.5 3.306 25.775 279 252 29-Jul-99 1061 623 43350 1.58 3.8417 25.432 305 248 30-Jul-99 1775 406 52320 1.58 3.7118 27.463 342 244 31Jul-99 1693 490 25320 1.61 3.9944 26.271 268 235 01-Aug-99 1673 291 52300 1.6 3.759 26.102 227 231 02-Aug-99 1846 429 47400 1.52 3.7326 25.814 206 199 -_ 03-Aug-99 835 392 42700 1.66 3.8234 24.876 278 185 04-Aug-99 844 542 64500 1.79 3.6468 24.805 359 199 02/20/2001 4 Jacobs 9-27-00.)lsSummary Summary. Recovery Sewer Acid Sewer CRP Purge Recovery Acid Sewer SE and PI Primary Secondary Color conc. Colorconc. Sewer Flow Flow Flow Influent Color Effluent Color (Includes CRP Color (flow Concentration Concentration II Purge) cone. typically 10- Date Color 5B Total- Color 6A- CRP Color- .Flow,#513- Flow,NA- Flow,VdTP- PI True Color- SE True Color- m fl m II mall MGD MGD MGD m II mail 05-Aug-991 897 288 43420 1.67 3.5928 26.451 219 224 1 06-Aug-99 1415 235 63760 1.71 3.6751 25.088 228 224 07-Aug-99 1408 423 69200 1.71 3.5539 24.621 172 214 OB-Aug-99 1290 234 88600 1.65 3.6185 24.651 211 188 09-Aug-99 1269 737 67500 1.59 3.6027 24.768 262 202 10-Aug-99 1425 347 87760 1.67 3.7025 24.304 231 196 11-Aug-99 1847 425 71200 1.67 4.0413 25.701 240 193 12-Aug-99 1005 389 22460 1.6 3.9504 26.687 220 186 13-Aug-99 832 451 1.64 3.8245 25.877 214 181 14-Aug-991 1001 491 53450 1.77 3.6775 25.79 171 181 15-Aug-99 871 411 56910 1.86 3.8335 25.905 233 173 16-Aug-99 946 418 59460 1.89 3.8311 26.405 233 188 17-Aug-99 1358 782 100600 1.84 3.8779 24.695 170 173 _ 18-Aug-99 1299 673 108700 1.82 3.7477 23.354 252 211 19-Aug-99 1383 645 83370 1.82 3.7347 23.627 257 209 20-Aug-99 1405 313 34200 1.83 3.6809 24.207 379 174 21-Aug-99 1392 380 36480 1.71 3.5945 23.115 240 174 22-Aug-99 1090 468 6240D 1.69 3.9401 23.817 248 178 23-Aug-99 1297 313 63550 1.57 3.8892 24.388 309 194 24-Aug-99 1992 851 82560 1.5 3.7581 23.906 341 204 25-Aug-99 2024 478 3700 1.59 3.363 24.99 378 243 26-Aug-99 759 449 27710 1.63 3.6031 24.402 357 293 27-Aug-99 847 388 32860 1.49 3.6281 24.513 268 264 28-Aug-99 669 363 41100 1.53 3.506 22.963 248 199 29-Aug-99 778 331 35700 1.55 3.7838 23.235 243 184 30-Aug-99 616 419 38600 1.49 3.6758 23.051 293 178 31-Aug-99 735 513 45260 1.51 3.5134 22.557 322 193 01-Sep-99 820 432 42280 1.69 3.5081 20.909 415 180 02-Sep-99 318 395 52560 1.49 3.5006 1 22.494 146 169 03-Sep-99 551 680 57500 1.42 3.677 22.505 270 177 04-Sep49 658 581 63100 1.61 3.9037 23.193 272 203 05-Sep-99 859 747 57200 1.41 4.0106 23.606 249 211 06-Sep-99 57 431 56900 1.44 3.5074 23.383 302 199 07-Sep-99 139 416 44600 1.37 3.5396 23.131 271 204 08-Sep-99 382 588 1.52 3.6124 21.834 350 199 09-Sep-99 494 469 38800 1.44 3.7195 22.593 314 234 10-Sep-99 1199 1 377 1.8 3.8678 21.39 297 228 11-SeP49 918 719 62210 1.6 4.0166 21.211 328 207 12-Sep-99 890 669 99540 1.55 4.0297 21.097 183 210 13-Sep-99 1066 686 92880 1.42 3.9902 21.786 332 208 14-Sep-99 1551 690 101400 1.52 3.9288 22.952 247 218 -- 15Sep-99 1897 323 120700 1.51 3.9811 22.306 340 263 16-Sep-99 1608 373 138900 1.48 3.9773 22.336 207 268 17-Sep-99 1513 314 78100 1.4 3.8497 22.653 218 216 18-Sep-99 1529 299 53300 1.45 3.6739 22.333 493 203 19-Sep-99 797 1 334 49180 1.74 3.9215 23.273 171 187 20-Sep-99 2194 382 2 3.7681 23.499 542 277 21-Sep-99 1568 187 26 1.62 2.8533 19.977 165 368 22-Sep-99 841 177 45 1.02 2.3973 19.467 262 244 23-Sep-99 428 263 19 1.17 2.3643 18.78 179 204 24-Sep-99 11800 175 1.45 2.3202 20.141 330 201 25-Sep-99 1699 304 1.24 3.7958 20.92 230 221 26-Sep-99 1311 379 34800 1.29 4.2458 22.573 273 251 27-Sep-99 872 381 41200 1.54 4.0067 22.364 214 227 02/20/2001 5 Jacobs 9-27-00.)lsSummary ' Summary. Recovery Sewer Acid Sewer CRP Purge Recovery Acid Sewer SE and PI Primary Secondary Color cone. Color conc. Sewer Flow Flow Flow Influent Color Effluent Color (Includes CRP Color (flow Concentration Concentration j Purge) conc. typically 10- Date Color 5B Total- Color 6A- CRP Color- Flow,#5B- Flow,#6A- Flow,wrP- PI True Color- SE True Color- m fl mall mail MGD MGD MGD m /l m /l I 28Sep-99 680 466 33380 1.51 3.9547 22.022 470 230 11 29Sep-99 789 236 38680 1.49 3.9054 22.96 413 199 30-Sep-99 747 337 1.2 4.0651 21.558 304 200 01-Oct-99 155 309 79880 1.22 3.9872 21.236 240 227 02-Oct-99 1505 253 28460 1.26 4.2123 21.435 382 255 03-Oct-99 225 348 1.31 3.7636 21.299 321 299 04-Oct-99 10D5 240 57780 1.22 3.7837 22.665 258 281 O5-Oct-99 1144 303 1.33 3.2971 21.048 334 240 06-Oct-99 1073 349 1.19 3.9645 23.373 305 249 07-Oct-99 1216 403 41600 1.17 3.8561 22.719 225 237 O8-Oct-99 1283 431 1.27 3.9239 22.571 271 226 09-Oct-99 981 1383 79830 1.44 3.8189 21.846 258 217 10-Oct-99 803 1115 30470 1.41 3.7122 22.347 242 181 11-Oct-99 1663 268 19300 1.48 3.3057 21.024 229 198 12-Oct-99 1420 481 51000 1.74 _ 3.9642 21.472 278 238 13-Oct-99 1509 533 43900 1.43 4.1169 23.538 206 210 14-Oct-99 1248 393 39500 1.33 4.2081 23.224 325 242 15-Oct-99 1453 462 30300 1.51 4.1681 23.31 193 255 16-Oct-99 1327 567 39600 1.38 3.7929 22.852 247 197 17-Oct-99 1194 633 40400 1.19 3.4324 21.175 300 202 18-Oct-99 1238 277 12300 1.31 4.1054 22.658 285 214 19-Oct-99 797 269 15000 1.35 4.0734 22.343 349 200 20-Oct-99 854 359 15900 1.41 3.8711 22.783 356 231 21-Oct-99 1218 287 9400 1.12 3.7616 22.103 220 232 22-Oct-99 907 1 294 24400 1.26 3.9711 22.883 162 194 23-Oct-99 967 264 10200 1.34 3.9734 22.388 181 161 24-Oct-99 1026 244 54900 1.26 4.058 22.36 1 161 155 25-Oct-99 1005 317 31300 1.36 3.8075 22.055 202 176 26-Oct-99 1083 682 28000 1.38 1 3.6963 22.751 418 175 27-Oct-99 1115 398 29740 1.48 2.9388 22.396 309 213 28-Oct-99 740 328 12820 1A 4.5376 23.366 269 231 29-Oct-99 1096 373 0 1.39 4.1775 22.026 323 237 30-Oct-99 688 324 13300 1.37 4.0751 22.949 210 241 - 31-Oct-99 1021 1 370 21700 1.43 4.1778 22.47 247 228 01-Nov-99 956 277 27900 1.33 4.094 24.34 222 211 02-Nov-99 871 401 24800 1.3 4.1387 25.232 1 332 209 03-Nov-99 929 619 28600 1.33 4.1205 23.919 376 256 04-Nov-99 189 712 31100 1.38 4.2074 22.12 279 267 O5-Nov-99 1193 460 1.53 4.2389 23.092 322 254 06-Nov-99 1125 .325 39100 1.31 3.5327 22.929 428 336 07-Nov-99 1160 352 40100 1.32 2.96 21.73 268 251 ` OB-Nov-99 825 330 48280 1.41 4.4769 22.22 196 227 09-Nov-99 809 693 81000 1.69 4.349 22.057 287 247 10-Nov-99 1029 835 76500 1.49 4.1045 22.901 294 270 11-Nov-99 883 332 73000 1.69 4.1 23.131 434 280 12-Nov-99 906 434 58100 1.7 4.1433 23.267 248 258 13-Nov-99 961 368 177 1.77 4.0031 23.295 298 236 14-Nov-99 415 313 36400 1.76 3.852 23.424 198 231 15-Nov-99 560 199 54280 1.65 4.0232 23.225 197 215 16-Nov-99 802 316 48140 1.51 3.9949 23.11 267 192 17-Nov-99 897 319 78800 1.42 3.9392 23.983 306 235 18-Nov-99 979 242 86000 1.38 3.5287 23.107 210 229 _ 19-Nov-99 1017 188 87000 1.31 3.7945 23.093 228 210 20-Nov-99 1000 151 95400 1.51 3.9759 23.089 236 226 02/20/2001 6 Jacobs 9-27-00.)lsSummary Summary. Recovery Sewer Acid Sewer CRP Purge Recovery Acid Sewer SE and PI Primary Secondary Colorconc. Colorconc. Sewer Flow Flow Flow Influent Color Effluent Color (Includes CRP Color (flow Concentration Concentration Pur a conc. !ypically 10. Date Color 513 Total- Color 6A- CRP Color- Flow,#513- Flow,#6A- Flow,WTP- PI True Color- SE True Color- m /l mail m /l MGD MGD MGD m /I mall 21-Nov-99 900 160 57700 1.62 4.1615 23.398 267 206 22-Nov-99 717 149 48800 1.64 4.0832 22.978 255 214 23-Nov-99 1187 185 35300 1.67 4.2456 23.629 291 234 24-Nov-99 848 215 26310 1.67 4.2502 23.38 256 204 25-Nov-99 883 187 34380 1.76 4.2667 25.611 204 206 26-Nov-99 880 187 55100 1.57 3.6816 24.917 247 204 27-Nov-99 865 276 0 1.48 4.225 23.475 394 228 28-Nov-99 846 270 43300 1.37 4.2075 23.862 290 292 29-Nov-99 886 213 54500 1.38 4.1359 23.398 301 232 30-Nov-99 1282 173 68800 1.32 4.1483 24.13 293 246 01-Dec-99 975 227 70500 1.46 3.1607 25.166 272 240 02-Dec99 909 237 69000 1.22 4.4165 24.771 235 235 03-Dec99 1100 281 48300 1.19 4.4792 23.053 357 204 04-Dec-99 1177 334 49320 1.44 4.4206 22.519 332 183 05-Dec-99 918 328 44520 1.78 4.4107 23.094 323 188 06-Dec-99 786 842 34620 1.78 4.3447 23.362 227 177 07-Dec-99 787 369 37500 1.8 3.3748 23.372 274 183 08-Dec99 800 383 39100 1.83 4.4559 25.003 342 228 09-Dec-99 749 216 58780 1.71 4.2856 25.587 244 261 10-Dec-99 730 347 28160 1.89 4.22 23.472 215 214 11-Dec-99 554 347 46320 1.91 4 23.529 287 187 12-Dec-99 576 214 48580 1.77 4.1 23.34 217 158 13-Dec-99 560 204 49960 1.83 4.03 24.329 211 154 14-Dec-99 975 225 44500 1.83 4.1212 24.427 201 160 15-Dec-99 945 638 30900 1.78 4.0874 26.334 180 151 16-Dec-99 254 32600 1.69 4.113 25.65 220 151 17-Dec99 32 670 83980 1.6 4.1415 24.11 308 158 18-Dec-99 92 729 56400 1.73 4.2577 24.893 201 158 19-Dec-99 264 705 48200 1.8 4.2636 24.77 220 170 20-Dec99 772 1 337 70300 1.84 4.2002 24.34 206 182 _ 21-Dec-99 737 304 41810 1.84 4.0689 24.693 229 188 22-Dec-99 666 233 40700 1.78 4.0978 20.716 274 182 23-Dec-99 869 287 61380 1.59 4.2325 25.657 205 183 24-Dec-99 1358 386 53140 1.55 4.16 25.038 198 170 25-Dec-99 1163 338 73280 1.52 4.13 25.182 255 185 26-Dec-99 1302 250 1.78 4.0631 25.641 512 229 27-Dec-99 1013 288 5260D 1.99 4.1847 27.012 218 306 28-Dec-99 1363 233 39500 1.78 1 4.3944 25.165 250 194 29-Dec-99 300 1316 1.7 4.4363 25.298 175 176 30-Dec99 241 44300 1.65 4.324 25.461 159 154 31-Dec99 870 376 54470 1.54 4.2438 25.205 140 137 01-Jan-00 5B8 515 33300 1.59 4.436 24.401 185 136 02-Jan-00 555 820 25470 1.69 4.5268 24.881 232 154 03Jan-00 541 490 44280 1.67 4.4947 24.864 192 156 _ 04-Jan-00 708 513 39100 1.68 4.3618 23.943 208 172 05-Jan-00 782 329 0 1.8 3.4959 24.639 234 169 06-Jan-00 659 422 0 1.8 4.0632 24.436 173 176 07Jan-00 548 234 30670 1.61 4.5494 24.731 280 138 08-Jan-00 709 187 33500 1.76 4.3751 24.434 283 160 09Jan-00 509 182 54230 1.82 4.2714 25.325 261 146 10-Jan-00 530 199 51400 1.86 4.0143 26.847 133 136 11-Jan-00 623 1166 17470 1.73 4.4766 25.039 270 136 12-Jan-00 798 315 35600 1.67 4.3605 23.888 263 175 13-Jan-00 854 1375 47570 1 1.4 4.1762 24.18 286 1 190 02/20/2001 7 Jacobs 9-27-00.)lsSummary Summary. Recovery Sewer Acid Sewer CRP Purge Recovery Acid Sewer SE and PI Primary Secondary Color cone. Color cone. Sewer Flow Flow Flow Influent Color Effluent Color (includes CRP Color (flow Concentration Concentration Pur a) cone. typically 10- Date Color 5B Total- Color 6A- CRP Color- Flow,#5B- Flow,NA- Flow,WTP- PI True Color- SE True Color- m fl mg/1 m /I MGD MGD MGD m /l moll 14-Jan-00 866 469 47520 1.48 4.27 24.832 274 215 15Jan-00 289 44940 1.42 4.58 24.901 393 208 16-Jan-00 946 355 44620 1.44 4.45 24.976 445 235 17-Jan-00 1102 224 46960 1.56 4.28 23.928 235 251 18-Jan-00 817 369 29900 1.67 4.2981 24.59 234 214 19-Jan-00 905 253 44000 1.65 4.3319 24.18 274 223 20-Jan-00 667 525 16900 1.73 3.24 23.295 648 238 21Jan-00 805 411 0 1.68 4.6015 25.159 173 312 22Jan-00 939 204 0 1.69 4.6015 25.296 233 282 23Jan-00 887 336 0 1.99 4.5455 26.939 239 230 24Jan-00 797 371 0 1.51 4.8804 26.287 171 222 25Jan-00 843 642 28860 1.31 4.91 21.117 377 234 26Jan-00 1149 392 1.31 4.74 25.733 398 240 27-Jan-00 1528 372 43760 1.27 4.76 25.933 477 263 28Jan-00 1139 244 49900 1.42 4.4811 24.802 339 272 29-Jan-00 823 243 44000 1.49 4.4582 24.673 260 241 30Jan-00 884 252 55700 1.49 4.3125 24.989 278 190 31Jan-00 1030 189 47900 1.49 4.4272 23.866 307 1 206 01-Feb-00 1263 222 75300 1.51 4.3648 25.088 304 230 02-Feb-00 1318 218 0 1.61 4.3202 25.048 296 232 03-Feb-00 1342 252 45900 1.45 4.2481 25.014 264 212 04-Feb-00 1294 514 29600 1.33 4.415 25.185 327 228 05-Feb-00 1294 247 30900 1.26 4.4046 25.542 373 186 06-Feb-00 1189 237 31200 1.35 4.3255 24.236 346 206 07-Feb-00 1225 346 28105 1.39 4.1797 24.276 241 208 08-Feb-00 1329 804 42370 1.33 4.4962 23.82 1 357 205 09-Feb-00 1908 550 1.93 3.3187 23.964 349 251 10-Feb-00 1240 1145 42140 1.75 4.399 25.519 285 259 11-Feb-00 1408 299 47920 1.35 4.12 24.644 309 227 12-Feb-00 1337 283 39540 1.41 4.24 26.322 337 202 13-Feb-00 1275 214 42860 1.27 4.38 25.678 357 203 14-Feb-00 1453 310 46060 1.29 4.35 28.544 338 198 15-Feb-00 913 385 35600 1.28 4.3057 25.122 291 178 16-Feb-00 792 270 40160 1.29 4.29 25.248 217 180 17-Feb-00 825 337 26400 1.3 3.96 23.887 219 166 18-Feb-00 911 310 42200 1.3 4.2695 23.441 170 140 19-Feb-00 774 479 38800 1.37 4.0592 24.555 229 176 20-Feb-00 834 487 44400 1.27 4.0529 23.629 252 200 _ 21-Feb-00 745 509 0 1.41 4.0711 24.116 280 218 22-Feb-00 926 313 36700 1.43 3.8692 23.438 456 243 23-Feb-00 1332 331 35900 1.45 3.8371 23.575 437 282 24-Feb-00 1490 455 47500 1.33 3.9514 24.211 346 252 25-Feb-00 1008 1035 1.27 4.0182 24.364 490 242 26-Feb-00 892 1065 36120 1.39 3.9986 1 22.878 234 242 27-Feb-00 827 477 26900 1.46 2.9232 23.054 299 197 28-Feb-00 902 266 47700 1.36 3.674 23.79 186 190 29-Feb-00 972 619 1.34 3.6394 24.757 . 271 200 01-Mar-00 1039 246 0 1.37 3.808 24.254 250 194 02-Mar-00 1083 1073 0 1.34 3.7029 23.82 236 204 03-Mar-00 653 240 31600 1.6 3.8485 23.569 236 167 04-Mar-00 446 200 34300 1.48 3.7622 23.088 264 172 05-Mar-00 260 239 38900 1.49 4.011 24.466 241 186 _ 06-Mar-00 1319 203 1.84 4.1355 24.85 356 142 07-Mar-00 1046 191 49040 1.89 3.8921 23.724 193 180 02/20/2001 8 Jacobs 9-27-00.)lsSummary Summary. Recovery Sewer Acid Sewer CRP Purge Recovery Acid Sewer SE and PI Primary Secondary Color cant. Color cone. Sewer Flow Flow Flow Influent Color Effluent Color (Includes CRP Color (flow Concentration Concentration Pur a cone. typirally 10- Date Color 5B Total- Color 6A- CRP Color- Flow,#5B- Flow,NA- Flow,WTP- PI True Color- SE True Color- m fl mail m II MGD MGD MGD m /I mall 08-Mar-00 1203 358 50520 1.49 4.1054 24.165 292 203 09-Mar-00 1728 182 1 16940 1.88 3.9055 24.227 211 199 10-Mar-00 396 204 35200 1.46 3.98 24.34 339 190 11-Mar-00 462 186 40400 1.43 3.67 24.876 201 195 12-Mar-00 722 259 1.38 4.23 23.779 324 216 13-Mar-00 777 187 1.42 4.15 23.961 349 221 14-Mar-00 925 238 33600 1.36 3.6753 23.17 267 227 _ 15-Mar-00 2484 266 83000 1.4 2.3174 24.315 603 234 16-Mar-00 1245 170 50110 1.35 2.74 24.628 541 412 17-Mar-00 983 266 40850 1.23 3.9785 25.339 288 402 18-Mar-00 1017 410 44600 1.29 4.4868 24.454 1 284 284 19-Mar-00 971 512 0 1.59 4.4972 24.672 1 309 270 20-Mar-00 883 545 41400 1.36 4.0904 27.457 275 262 _ 21-Mar-00 758 182 1.53 3.41 23.239 315 200 22-Mar-00 499 182 1.41 3.33 24.699 320 188 23-Mar-00 1022 314 1.7 3.88 23.288 385 207 24-Mar-00 1374 412 1.59 3.8498 24.671 215 237 25-Mar-00 1194 172 1.61 3.884 24.217 278 214 26-Mar-00 1170 774 1.58 4.118 23.692 248 203 27-Mar-00 1085 848 1.75 3.9801 25.068 335 214 28-Mar-00 1114 612 0 1.79 3.5508 25.715 1 257 230 _ 29-Mar-00 1025 704 0 1.78 3.7659 24.629 194 208 30-Mar-00 1266 649 604 2.04 3.5439 25.162 243 216 31-Mar-00 718 297 22390 1.87 3.9847 26.595 250 211 01-Apr-00 779 209 34280 1.81 3.75 25.773 259 200 02-Apr-00 901 1 161 53200 1.76 3.8573 24.73 225 172 03-Apr-00 915 290 48500 1.75 3.2978 29.046 241 184 04-Apr-00 1232 287 22560 1.75 3.5996 27.994 317 171 05-Apr-00 1497 263 31000 1.66 1 3.5587 25.391 288 206 06-Apr-00 1396 191 31000 1.91 3.4477 24.736 209 168 07-Apr-00 1226 199 87000 1.84 2.58 23.495 174 179 08-Apr-00 981 287 49500 1.69 2.93 23.753 368 190 09-Apr-00 899 203 53156 1.52 3.98 26.067 345 237 10-Apr-00 922 333 44740 1.6 4.12 24.589 376 244 11-Apr-00 1111 370 11300 1.68 4.16 23.723 270 266 12-Apr-00 816 783 51400 1.8 4.09 23.975 286 284 13-Apr-00 900 481 24300 1.82 4.17 25.12 365 308 14-Apr-00 868 372 23760 1.62 1 4.0898 24.941 284 258 15-Apr-00 972 501 52000 1.68 3.9753 24.228 565 266 -16-Apr-00 987 542 33200 2.2 4.125 24.008 335 355 17-Apr-00 684 333 39750 1.81 4.1041 23.698 268 256 - 18-Apr-00 1030 343 108 1.54 4.09 24.107 344 231 19-Apr-00 1553 1 306 24900 1.7 2.18 24.798 323 230 20-Apr-00 846 239 28280 1.39 3.65 26.191 251 205 21-Apr-00 816 222 56300 1.57 3.6141 26.455 259 175 22-Apr-00 743 168 37900 1.88 3.6002 25.571 252 163 23-Apr-00 753 206 33400 1.72 1 3.4439 25.176 241 158 24-Apr-00 522 192 24300 1.64 3.2925 26.567 1 182 151 25-Apr-00 603 258 28200 1.58 3.2196 26.053 195 156 26-Apr-00 784 411 0 1.71 3.378 25.045 270 152 27-Apr-00 779 391 36200 1.87 3.3494 25.371 166 148 28-Apr-00 430 204 37100 1.71 3.49 26.351 166 154 29-Apr-00 713 254 59950 1.67 3.62 25.611 219 148 30-Apr-00 715 248 60900 1.91 3.75 24.903 230 160 02/20/2001 9 Jacobs 9-27-00.)lsSummary Summary. Recovery Sewer Acid Sewer CRP Purge Recovery Acid Sewer SE and PI Primary Secondary Colorconc. Colorconc. Sewer Flow Flow Flow Influent Color Effluent Color (Includes CRP Color (flow Concentration Concentration Purge) cone. typically 10. -- Date Color 5B Total- Color 6A- CRP Color- Flow,#58- Flow,#6A- Flow,WTP- PI True Color- SE True Color- m /l mail mail MGD MGD MGD m II man 01-May-00 754 231 32770 1.91 3.7254 23.339 232 142 02-May-00 932 153 57200 1.84 3.8067 1 24.593 179 146 03-May-00 914 215 78500 2.03 3.801 24.792 159 128 04-May-00 865 308 88800 1.8 3.612 23.765 211 154 05-May-00 1117 485 40120 1.56 3.81 25.008 436 229 06-May-00 1331 380 69680 1.71 3.8 24.401 407 260 07-May-00 6640 171 73920 1.66 3.7 24.187 1201 296 08-May-00 1215 294 67480 1.65 3.7 25.223 347 425 09-May-00 969 268 28300 1.57 3.6422 25.707 328 306 10-May-00 770 318 35100 -1.47 3.6455 26.645 348 197 11-May-00 643 231 27500 1.51 3.44 26.645 198 214 12-May-00 485 256 28350 1.47 3.3955 25.235 193 196 13-May-00 929 204 0 1.6 3.5208 26.669 215 194 14-May-00 392 310 37800 1.56 3.5825 25.67 316 218 15-May-00 1015 264 907 1.42 3.691 24.876 320 267 16-May-00 1014 321 58340 1.26 3.52 24.324 384 323 17-May-00 1193 222 98400 1.31 3.62 25.05 365 306 18-May-00 1092 1 443 108840 1.47 1 3.7 26.666 1 308 266 19-May-00 1467 700 94650 1.46 2.505 28.299 379 314 20-May-00 923 240 57400 1.78 1.131 27.61 338 325 21-May-00 890 292 52100 1.67 1.1504 27.802 252 248 22-May-00 1555 200 1.98 1.1846 27.207 572 262 23-May-00 2851 312 0 1.75 1.1807 27.54 496 344 24-May-00 3412 451 0 1.62 1.2307 24.771 266 409 25-May-00 1629 610 0 1.44 1.2102 25.468 208 262 26-May-00 841 445 0 1.49 1.28 25.789 165 205 27-May-00 193 284 1.82 1 1.2998 27.468 1 145 181 28-May-00 183 279 18600 1.79 1.1741 27.216 232 170 29-May-00 453 439 28100 1.73 1.1551 26.712 297 184 30-May-00 1076 1 446 37000 1.44 1.1456 27.505 283 210 31-May-00 1081 83350 1.5 1.1314 29.118 177 211 01-Jun-00 1216 343 100500 1.6 2.0137 29.851 282 211 02-Jun-00 1040 299 72125 1.79 3.01 28.072 217 240 03-Jun-00 1028 334 1 62800 1.65 3.4 28.362 309 1 204 04-Jun-00 906 323 71500 1.5 3.57 29.525 310 238 05-Jun-00 1023 620 34900 1.39 3.62 29.445 343 251 06Jun-00 930 564 55900 1.35 3.452 29.098 311 269 07-Jun-00 1127 402 56600 1.45 3.1966 26.99 311 270 08Jun-00 1237 614 59500 1.43 3.0144 27.375 274 240 09-Jun-00 1198 348 82200 1.35 3.3633 26.183 292 259 10-Jun-00 902 354 85200 1.35 3.1805 25.135 290 251 11Jun-00 909 1 472 1.54 3.1264 25.576 1 335 302 12-Jun-00 507 517 77400 1.56 3.2754 24.941 370 291 13-Jun-00 586 418 80300 1.6 3.16 26.285 452 296 14-Jun-00 555 417 81900 1.57 3.15 24.536 316 300 15-Jun-00 923 424 78100 1.47 3.42 25.404 351 282 16-Jun-00 1245 395 100200 1.56 3.4276 25.971 461 283 17-Jun-00 1184 424 90700 1.8 3.23 25.987 363 322 18-Jun-00 763 295 1.89 3.217 26.493 370 330 19Jun-00 902 247 65400 1.92 3.179 25.903 277 270 20Jun-00 813 326 54600 1.94 2.8657 26.521 275 262 21-Jun-00 1181 412 56800 1.74 3.2215 24.825 270 174 _ 22Jun-Jun 1019 588 48200 1.62 3.9231 27.156 290 182 23-Jun-00 1181 329 46800 1.63 4.1832 25.592 423 252 02/20/2001 10 Jacobs 9-27-00.)lsSummary Summary. Recovery Sewer Acid Sewer CRP Purge Recovery Acid Sewer SE and PI Primary Secondary Color cone. Color cone. Sewer Flow Flow Flow Influent Color Effluent Color (Includes CRP Color (flow Concentration Concentration Pur a cone. typically 10- Date Color 5B Total- Color 6A- CRP Color- Flow,#5B- Flow,NA- Flow,WTP- PI True Color- SE True Color- m /l m ll mall MGD MGD MGD m /I mg/1 24-Jun-00 1054 305 67200 1.7 4.0737 28.397 293 235 25-Jun-00 1 836 386 1 60800 1.65 3.7628 27.8411 221 210 26-Jun-00 755 401 78600 1.83 3.3407 30.566 306 198 27Jun-00 595 384 1.85 2.0844 26.502 450 222 28-Jun-00 1329 235 2.13 3.1491 29.402 316 270 29-Jun-00 979 249 31050 2.09 3.7902 30.249 391 286 30-Jun-00 424 180 71040 1.63 3.83 28.296 332 290 01Jul-00 3272 231 36420 1.7 3.56 27.906 334 231 02-Jul-00 382 131 37460 1.42 3.56 27.511 201 181 _ 03-Jul-00 1063 165 21820 1.68 4.05 28.384 334 198 04-Jul-00 862 260 68400 1 1.5 4.5687 28.095 345 175 05Jul-00 920 306 56100 1.38 4.4429 26.715 227 206 06-Jul-00 1204 195 19300 1.45 3.8538 27.596 213 202 _ 07-Jul-00 1113 306 145100 1.43 3.5764 26.341 228 205 08-Jul-00 1360 308 100000 1.4 4.0836 27.678 290 210 09-Jul-00 1116 242 100000 1.46 4.1466 28.221 363 236 10-Jul-00 1150 273 100000 1.28 4.2742 27.058 204 226 11-Jul-00 1070 282 76960 1.37 3.94 24.281 242 182 12-Jul-00 1230 195 65800 1.49 4.34 28.388 267 180 13-Jul-00 1061 239 65120 1 1.61 4.36 25.506 238 191 14Jul-00 1004 229 55400 1.5 4.1545 26.686 201 164 15-Jul-00 921 397 62550 1.45 5.1666 26.907 383 166 16Jul-00 986 468 43450 1.62 4.9944 25.901 274 200 17Jul-00 210 388 39100 1.54 4.7312 25.046 263 208 18JuI-00 355 629 44200 1.45 4.9779 25.467 237 202 19-Jul-00 268 594 48800 1.44 4.9967 25.753 240 220 20Jul-00 649 482 41200 1.53 4.5896 25.507 277 206 21Jul-00 950 269 58000 1.77 4.6789 24.024 325 200 22-Jul-00 1048 167 56300 1.52 4.2445 25.186 177 178 23Jul-00 979 204 18700 1.47 3.6899 24.764 234 176 24Jul-00 1126 171 59700 1.51 3.7599 25.92 186 186 25Jul-00 1186 217 87500 1.63 3.8302 24.786 211 172 26-Jul-00 1228 225 100000 1.69 4.3779 24.363 267 184 27-Jul-00 1284 1 258 19800 1.88 4.2704 1 23.993 325 212 28-Jul-00 904 263 84680 1.79 4.05 24.058 293 207 29-Jul-00 1263 355 49000 1.44 4.31 24.589 242 220 30-Jul-00 1723 265 70760 1.36 4.43 24.215 304 240 31-Jul-00 856 338 1.67 4.19 25.775 226 214 01-Aug-00 833 387 66500 1.37 4.2196 24.301 269 188 02-Aug-00 1636 365 93150 1.62 3.2684 25.031 347 213 03-Aug-00 1468 455 79950 1.36 4.0731 25.153 309 222 04-Aug-00 1273 501 62600 1.31 4.0264 24.013 332 245 05-Aug-OD 1068 1 626 41600 1.32 4.0323 23.608 356 268 06-Aug-00 1097 644 51200 1.31 3.9369 24.542 301 265 07-Aug-00 1152 578 48800 1.35 4.0536 24.977 281 262 08-Aug-00 1247 395 80200 1.42 3.9445 24.699 336 246 09-Aug-00 1040 319 84500 1.42 3.0918 24.498 185 223 10-Aug-00 1244 662 100000 1.49 3.9642 24.16 270 207 - 11-Aug-00 1336 545 120000 1.53 3.9159 24.631 247 188 t4A -00 1142 390 113900 1.69 3.5354 23.094 235 166 -00 1077 413 92600 1.73 4.41 22.866 302 177 -00 829 432 91800 1.37 4.1258 24.161 308 191 -00 859 460 78200 1.23 4.0486 25.297 226 222 _00 729 433 84400 1.73 3.4927 25.747 177 186 02/20/2001 11 Jacobs 9-27-00.)lsSummary Summary. Recovery Sewer Acid Sewer CRP Purge Recovery Acid Sewer SE and PI Primary Secondary Color cone. Color cone. Sewer Flow Flow Flow Influent Color Effluent Color (Includes CRP Color (flow Concentration Concentration Purge) conc. typically 10- Date Color 5B Total- Color 6A. CRP Color- Flow,#5B. Flow,#6A- Flow,WTP- PI True Color- SE True Color- _ m II mail m /l MGD MGD MGD m /I mail - . i 17-Aug-00 927 511 80000 1.46 3.7399 25.168 219 182 18-Aug-00 910 273 1 30000 1.86 1 3.6367 24.515 233 166 19-Aug-00 789 331 -27700 1.93 3.5836 25.16 231 150 20-Aug-00 927 509 2.08 3.5813 26.011 229 191 21-Aug-00 405 408 27500 1.93 3.6886 25.454 261 157 22-Aug-00 1000 345 47750 1.57 3.5688 24.968 201 155 --" 23-Aug-00 949 501 72450 1.66 3.7015 25.21 269 181 24-Aug-00 1375 443 108500 1.56 3.4729 24.937 181 172 25-Aug-00 993 455 73000 1.43 4.71 25.008 319 186 26-Aug-00 1 1308 1 416 53040 1.43 4.31 25.023 1 314 186 -- 27-Aug-00 798 579 1 53760 1.46 4.71 24.494 - 386 227 28-Aug-00 783 325 58500 1.54 3.69 25.202 317 243 29-Aug-00 680 501 21400 1.64 3.7613 24.148 171 192 07 30-Aug-00 734 415 300 1.57 3.5869 24 172 172 31-Aug-00 - 823 1073 1 76500 1.47 4.0416 23.992 292 200 avg color(ppm) 435.10526 48582.48833 1.4921839 3.81692545 24.8476488 276.96289 208.4055829 avg color(ppd) 13850.775 604600.0209 618450.8 02/20/2001 12 -Jacobs 9-27-00.xlsSummary Primary Influent and Secondary Effluent Flow Date MGD MGD Rank Percent 01-Jan-99 25.426 30.566 609 100.00% 02-Jan-99 25.433 30.249 608 99.80% f 03-Jan-99 25.024 29.851 607 99.60% 04-Jan-99 23.873 29.525 606 99.50% 05-Jan-99 24.506 29.445 605 99.30% 06-Jan-99 23.443 29.402 604 99.10% 07-Jan-99 24.577 29.118 603 99.00% 08-Jan-99 23.713 29.098 602 98.80% 09-Jan-99 23.513 29.046 601 98.60% 10-Jan-99 23.428 28.544 600 98.50% 11-Jan-99 24.019 28.397 599 98.30% 12-Jan-99 23.418 28.388 598 98.10% 13-Jan-99 24.721 28.384 597 98.00% 14-Jan-99 24.64 28.362 1 596 97.80% 15-Jan-99 24.295 28.299 595 97.60% 16-Jan-99 25.046 28.296 594 97.50% 17-Jan-99 27.79 28.221 593 97.36% 18-Jan-99 26.428 28.095 592 97.20% 19-Jan-99 26.487 28.072 591 97.00% 20-Jan-99 25.273 27.994 690 96.80% 21-Jan-99 25.877 27.965 589 96.70% 22-Jan-99 25.051 27.906 588 96.50% 23-Jan-99 27.538 27.851 5B7 96.30% 24-Jan-99 25.666 27.8411 586 96.20% 25-Jan-99 24.943 27.802 585 96.00% 26-Jan-99 23.854 27.79 584 95.80% 27-Jan-99 24.414 27.678 583 95.70% 28-Jan-99 24.712 27.632 582 95.50% 29-Jan-99 25.075 27.61 581 95.30% 30-Jan-99 24.846 27.596 580 95.20% 31-Jan-99 24.478 27.54 579 95.00% 01-Feb-99 27.965 27.538 578 94.90% 02-Feb-99 25.308 27.511 577 94.70% 03-Feb-99 24.305 27.505 576 94.50% 04-Feb-99 24.214 27.473 575 94.40% 05-Feb-99 23.827 27.468 574 94.20% 06-Feb-99 24.294 27.463 573 94.00% 07-Feb-99 24.448 27.457 572 93.90% 08-Feb-99 25.897 27.375 571 93.70% - 09-Feb-99 26.702 27.234 570 93.50% 10-Feb-99 25.979 27.216 569 93.40% 11-Feb-99 26.408 27.213 568 93.20% 12-Feb-99 26.16 27.207 567 93.00% 13-Feb-99 26.982 27.156 566 92.70% 14-Feb-99 25.731 27.156 565 92.70% 15-Feb-99 25.842 27.151 564 92.50% 16-Feb-99 25.876 27.1 563 92.40% 17-Feb-99 26.415 27.097 562 92.20% 18-Feb-99 26.795 27.084 561 92.10% 19-Feb-99 26.899 27.058 560 91.9000 20-Feb-99 25.362 27.028 559 91.70% 02/20/2001 1 Jacobs 9-27-00.xlsFlow Primary Influent and Secondary Effluent Flow Date MGD MGD Rank Percent 21-Feb-99 25.049 27.012 558 91.60% 22-Feb-99 24.74 26.99 557 91.40% 23-Feb-99 24.745 26.982 556 91.20% 24-Feb-99 26.165 26.946 555 91.10% 25-Feb-99 26.852 26.939 554 90.90% 26-Feb-99 26.226 26.907 553 90.70% 27-Feb-99 24.518 26.899 552 90.60% 28-Feb-99 25.44 26.852 551 90.40% 01-Mar-99 25.563 26.847 550 90.20% 02-Mar-99 24.753 26.834 549 90.10% 03-Mar-99 26.778 26.824 548 89.90% 04-Mar-99 25.146 26.814 547 89.80% 05-Mar-99 24.985 26.8 546 89.60% 06-Mar-99 26.212 26.795 545 89.40% 07-Mar-99 26.332 26.778 544 89.30% 08-Mar-99 26.824 26.715 543 89.10% Y 09-Mar-99 27.1 26.712 542 88.96% 10-Mar-99 25.801 26.702 541 88.80% 11-Mar-99 25.351 26.687 540 88.60% 12-Mar-99 25.796 26.686 539 88.40% 13-Mar-99 26.946 26.669 538 88.30% 14-Mar-99 27.084 26.668 537 88.10% 15-Mar-99 27.213 26.666 536 87.90% 16-Mar-99 26.558 26.645 535 87.60% 17-Mar-99 25.762 26.645 534 87.60% 18-Mar-99 25.582 26.606 533 87.50% 19-Mar-99 25.129 26.595 532 87.30% 20-Mar-99 24.188 26.572 531 87.10% 21-Mar-99 24.495 26.567 530 87.00% 22-Mar-99 24.99 26.558 529 86.80% 23-Mar-99 24.377 26.521 528 86.60% 24-Mar-99 25.157 26.602 527 86.50% 25-Mar-99 24.88 26.493 526 86.30% 26-Mar-99 27.097 26.487 525 86.10% 27-Mar-99 25.762 26.455 524 86.00% 28-Mar-99 24.745 26.451 523 85.80% 29-Mar-99 23.867 26.445 522 85.60% 30-Mar-99 24.968 26.428 521 85.50% 31-Mar-99 26.11 26.415 520 85.30% 01-Apr-99 26.606 26.408 519 85.10% 02-Apr-99 25.402 26.405 518 85.00% 03-Apr-99 25.056 26.382 517 84.80% 04-Apr-99 23.258 26.366 516 84.70% 05-Apr-99 24.37 26.351 515 84.50% 06-Apr-99 24.131 26.342 514 84.30% 07-Apr-99 24.463 26.341 513 84.20% 08-Apr-99 24.685 26.334 512 84.00% 09-Apr-99 24.421 26.332 511 83.80% 10-Apr-99 24.031 26.322 510 83.70% - 11-Apr-99 25.196 26.307 509 83.50% 12-Apr-99 25.3 26.305 508 83.30% 02/20/2001 2 Jacobs 9-27-00.xlsFlow Primary Influent and-Secondary Effluent Flow Date MGD MGD Rank Percent 13-Apr-99 24.527 26.288 507 83.00% 14-Apr-99 25.04 26.288 506 83.00% 15-Apr-99 25.9 26.287 505 82.80% 16-Apr-99 25.999 26.285 504 82.70% 17-Apr-99 26.255 26.271 503 82.50% 18-Apr-99 26.572 26.255 502 82.40% 19-Apr-99 26.668 26.229 501 82.200A 20-Apr-99 26.366 26.226 500 82.00% 21-Apr-99 26.342 26.212 499 81.90% 22-Apr-99 26.062 26.205 498 81.70% 23-Apr-99 25.689 26.191 497 81.50% 24-Apr-99 25.191 26.183 496 81.40% 25-Apr-99 25.377 26.165 495 81.20% 26-Apr-99 23.955 26.16 494 81.00% 27-Apr-99 25.085 26.158 493 80.90% 28-Apr-99 24.492 26.132 492 80.70% 29-Apr-99 25.367 26.111 491 80.50% 30-Apr-99 24.22 26.11 490 80.40% 01-May-99 24.237 26.102 489 80.20% 02-May-99 24.45 26.067 488 80.00% 03-May-99 25.451 26.062 487 79.90% 04-May-99 20.194 26.053 486 79.70% 05-May-99 20.79 26.047 485 79.60% 06-May-99 22.929 26.035 484 79.40% 07-May-99 24.415 26.024 483 79.20% 08-May-99 24.682 26.019 482 79.10% - 09-May-99 25.965 26.011 481 78.70% 10-May-99 26.834 26.011 480 78.70% 11-May-99 26.024 25.999 479 78.60% 12-May-99 24.915 25.987 478 78.40% 13-May-99 24.326 25.981 477 78.20% 14-May-99 26.205 25.979 476 78.10% 15-May-99 23.959 25.971 475 77.90% 16-May-99 25.162 25.965 474 77.70% 17-May-99 24.404 25.934 473 77.60% 18-May-99 25.463 25.933 472 77.40% 19-May-99 24.882 25.92 471 77.30% 20-May-99 24.11 25.905 1 470 77.10% 21-May-99 23.939 25.903 469 76.90% 22-May-99 23.95 25.901 468 76.80% 23-May-99 24.257 25.9 467 76.60% 24-May-99 25.142 25.897 466 76.40% 25-May-99 25.836 25.877 465 76.10% 26-May-99 23.457 25.877 464 76.10% 27-May-99 24.171 25.876 463 75.90% 28-May-99 27.156 25.842 1 462 75.80% 29-May-99 27.473 25.841 461 75.60% 30-May-99 21.986 25.836 460 75.40% 31-May-99 25.781 25.814 459 75.30% 01-Jun-99 23.898 25.801 458 75.10% 02-Jun-99 23.599 25.796 457 75.00% 02/20/2001 3 Jacobs 9-27-00.xlsFlow Primary Influent and Secondary Effluent Flow Date MGD MGD Rank Percent 03-Jun-99 23.884 25.79 456 74.80% 04-Jun-99 24.313 25.789 455 74.60% 05-Jun-99 24,702 25.781 454 74.50% 06-Jun-99 25.679 25.775 453 74.10% 07-Jun-99 26.019 25.775 452 74.10% 08-Jun-99 26.307 25.773 451 74.00% 09-Jun-99 25.382 25.762 450 73.60% 10-Jun-99 27.851 25.762 449 73.60% 11-Jun-99 25.664 25.753 448 73.50% 12-Jun-99 26.8 25.747 447 73.30% 13-Jun-99 24.533 25.746 446 73.10% 14-Jun-99 24.468 25.733 445 73.00% 15-Jun-99 25.746 25.731 444 72.80% 16-Jun-99 26.132 25.715 443 72.60% 17-Jun-99 25.496 25.707 442 72.50% 18-Jun-99 23.305 25.701 441 72.30% 19-Jun-99 24.177 25.689 440 72.20% 20-Jun-99 24.686 25.679 439 72.00% 21-Jun-99 25.242 25.678 438 71.80% 22-Jun-99 26.111 25.67 437 71.70% 23-Jun-99 26.229 25.666 436 71.50% 24-Jun-99 26.011 25.664 435 71.30% 25-Jun-99 26.382 25.657 434 71.20% 26-Jun-99 25.53 25.65 433 71.00% 27-Jun-99 25.934 25.641 432 70.80% 28-Jun-99 26.288 25.64 431 70.70% 29-Jun-99 27.234 25.616 430 70.50% 30-Jun-99 25.284 25.611 429 70.20% 01-Jul-99 25.549 25.611 428 70.20% 02-Jul-99 24.884 25.592 427 70.00% 03-Jul-99 26.158 25.587 426 69.90% 04-Jul-99 26.305 25.582 425 69.70% 05-Jul-99 26.814 25.579 424 69.50% 06-Jul-99 27.151 25.576 423 69.40% 07-Jul-99 27.028 25.571 422 69.20% 08-Jul-99 25.981 25.563 421 69.00% 09-Jul-99 25.841 25.549 420 68.90% 10-Jul-99 26,288 25.542 419 68.70% 11-Jul-99 27.632 25.53 418 68.50% 12-Jul-99 26.035 25.519 417 68.40% 13-Jul-99 26.047 25.507 416 68.20% 14-Jul-99 25.616 25.506 415 68.00% _ 15-Jul-99 25.64 25.496 414 67.90% 16-Jul-99 25.262 25.468 413 67.70% 17-Jul-99 24.598 25.467 412 67.50% 18-Jul-99 24.932 25.463 411 67.40% 19-Jul-99 24.483 25.461 410 67.20% 20-Jul-99 24.476 25.454 409 67.10% 21-Jul-99 1 25.579 25.451 408 66.90% 22-Jul-99 24.434 25.447 407 66.70% 23-Jul-99 25.21 25.44 406 66.60% 02/20/2001 4 Jacobs 9-27-00.xlsFlow S Primary Influent and-Secondary Effluent Flow Date MGD MGD Rank Percent 24-Jul-99 25.447 25.433 405 66.40% {- 25-Jul-99 24.933 25.432 404 66.20% 26-Jul-99 23.932 25.426 403 66.10% 27-Jul-99 26.445 25.404 402 65.90% 28-Jul-99 25.775 25.402 401 65.70% 29-Jul-99 25.432 25.391 400 65.60% _. 30-Jul-99 27.463 25.382 399 65.40% 31-Jul-99 26.271 25.377 398 65.20% 01-Aug-99 26.102 25.371 397 65.10% 02-Aug-99 25.814 25.367 396 64.90% 03-Aug-99 24.876 25.362 395 64.80% 04-Aug-99 24.805 25.351 394 64.60% 05-Aug-99 26.451 25.339 393 64.40% 06-Aug-99 25.088 25.325 392 64.30% 07-Aug-99 24.621 25.308 391 64.10% 08-Aug-99 24.651 25.3 390 63.90% ' 09-Aug-99 24.768 25.298 389 63.80% _ 10-Aug-99 24.304 25.297 388 63.60% 11-Aug-99 25.701 25.296 387 63.40% 12-Aug-99 26.687 25.284 386 63.30% 13-Aug-99 25.877 25.273 385 63.10% 14-Aug-99 25.79 25.262 384 62.90% 15-Aug-99 25.905 25.248 383 62.80% 16-Aug-99 26.405 25.242 382 62.60% 17-Aug-99 24.695 25.235 381 62.50% 18-Aug-99 23.354 25.232 380 62.30% 19-Aug-99 23.627 25.223 379 62.10% 20-Aug-99 24.207 25.21 378 61.80% 21-Aug-99 23.115 25.21 377 61.80% 22-Aug-99 23.817 25.205 376 61.60% 23-Aug-99 24.388 25.202 375 61.50% 24-Aug-99 23.906 25.196 374 61.30% 25-Aug-99 24.99 25.191 373 61.10% 26-Aug-99 24.402 25.186 372 61.00% 27-Aug-99 24.5131 25.185 1 371 60.80% 28-Aug-99 22.963 25.182 1 370 60.60% 29-Aug-99 23.235 25.176 369 60.50% 30-Aug-99 23.051 25.168 368 60.30% 31-Aug-99 22.557 25.166 367 60.10% 01-Sep-99 20.909 25.165 366 60.00% 02-Sep-99 22.494 25.162 365 59.70% 03-Sep-99 22.505 25.162 364 59.70% 04-Se -99 23.193 25.16 363 59.50% 05-Sep-99 23.606 25.159 362 59.30% 06-Sep-99 23.3B3 25.157 361, 59.20% 07-Sep-99 23.131 25.153 360 59.00% 08-Se -99 21.834 25.146 359 58.80% 09-Sep-99 22.593 25.142 358 58.70% 10-Se -99 21.39 25.135 357 58.50% 11-Sep-99 21.211 25.129 356 58.30% 12-Sep-99 21.097 25.122 355 58.20% 02/20/2001 5 Jacobs 9-27-00.xlsFlow -' Primary Influent and Secondary Effluent Flow Date MGD MGD Rank Percent 13-Sep-99 21.786 25.12 354 58.00% 14-Sep-99 22.952 25.088 353 57.70% 15-Sep-99 22.306 25.088 352 57.70% 16-Sep-99 22.336 25.085 351 57.50% 17-Sep-99 22.653 25.075 350 57.40% 18-Sep-99 22.333 25.068 349 57.20% 19-Sep-99 23.273 25.056 348 57.00% 20-Sep-99 23.499 25.051 347 56.90% 21-Sep-99 19.977 25.05 346 56.70% 22-Sep-99 19.467 25.049 345 56.50% 23-Sep-99 18.78 25.048 344 56.40% 24-Sep-99 20.141 25.046 343 56.00% 25-Sep-99 20.92 25.046 342 56.00% 26-Sep-99 22.573 25.045 341 55.90% 27-Sep-99 22.3641 25.04 1 340 55.70% 28-Sep-99 22.022 25.039 339 55.50% 29-Sep-99 22.96 25.038 338 55.40% 30-Sep-99 21.558 25.031 337 55.20% 01-Oct-99 21.236 25.024 336 55.00% 02-Oct-99 21.435 25.023 335 54.90% 03-Oct-99 21.299 25.014 334 54.70% 04-Oct-99 22.665 25.008 333 54.40% 05-Oct-99 21.048 25.008 332 54.40% 06-Oct-99 23.373 25.003 331 54.20% 07-Oct-99 22.719 24.99 330 53.90% 08-Oct-99 22.571 24.99 329 53.90% 09-Oct-99 21.846 24.989 328 53.70% 10-Oct-99 22.347 24.985 327 53.60% 11-Oct-99 21.024 24.977 326 53.40% 12-Oct-99 21.472 24.976 325 53.20% 13-Oct-99 23.538 24.968 324 52.90% 14-Oct-99 23.224 24.968 323 52.90% 15-Oct-99 23.31 24.943 322 52.70% 16-Oct-99 22.852 24.941 321 52.40% 17-Oct-99 21.175 24.941 320 52.40% 18-Oct-99 22.658 24.937 319 52.30% 19-Oct-99 22.343 24.933 318 52.10% 20-Oct-99 22.783 24.932 317 51.90% 21-Oct-99 22.103 24.917 316 51.80% 22-Oct-99 22.883 24.915 315 51.60% 23-Oct-99 22.388 24.903 1 314 51.40% 24-Oct-99 22.36 24.901 313 51.30% 25-Oct-99 22.055 24.893 312 51.10% 26-Oct-99 22.751 24.884 311 50.90% 27-Oct-99 22.396 24.882 310 50.80% 28-Oct-99 23.366 24.881 309 50.60% 29-Oct-99 22.026 24.88 308 50.40% 30-Oct-99 22.949 24.876 307 50.00% 31-Oct-99 22.47 24.876 306 50.00% - 01-Nov-99 24.34 24.876 305 50.00% 02-Nov-99 25.2321 24.864 304 49.80% 02/20/2001 6 Jacobs 9-27-00.xisFIow Primary Influent and Secondary Effluent Flow Date MGD MGD Rank Percent 03-Nov-99 23.919 24.85 303 49.60% 04-Nov-99 22.12 24.846 302 49.50% 05-Nov-99 23.092 24.832 301 49.30% 06-Nov-99 22.929 24.825 300 49.10% 07-Nov-99 21.73 24.805 299 49.00% 08-Nov-99 22.22 24.802 298 48.80% 09-Nov-99 22.057 24.79& 297 48.60% 10-Nov-99 22.901 24.792 296 48.50% 11-Nov-99 23.131 24.786 295 48.30% 12-Nov-99 23.267 24.771 294 48.00% 13-Nov-99 23.295 24.771 293 48.00% 14-Nov-99 23.424 24.77 292 47.80% 15-Nov-99 23.225 24.768 291 47.60% 16-Nov-99 23.11 24.764 290 47.50% 17-Nov-99 23.983 24.757 289 47.30% 18-Nov-99 23.107 24.753 288 47.20% 19-Nov-99 23.093 24.745 287 46.80% 20-Nov-99 23.089 24.745 286 46.80% + 21-Nov-99 23.398 24.74 285 46.70% 22-Nov-99 22.978 24.736 284 46.50% _ 23-Nov-99 23.629 24.731 283 46.30% 24-Nov-99 23.38 24.73 282 46.20% 25-Nov-99 25.611 24.721 281 46.00% 26-Nov-99 24.917 24.712 280 45.80% ` 27-Nov-99 23.475 24.702 279 45.70% 28-Nov-99 23.862 24.699 278 45.30% 29-Nov-99 23.398 24.699 277 45.30% 30-Nov-99 24.13 24.695 276 45.20% 01-Dec-99 25.1661 24.693 275 45.00% 02-Dec-99 24.771 24.686 274 44.96% _ 03-Dec-99 23.053 24.685 273 44.70% 04-Dec-99 22.519 24.682 272 44.50% 05-Dec-99 23.094 24.673 271 44.40% 06-Dec99 23.362 24.672 270 44.20% J 07-Dec-99 23.372 24.671 269 44.00% 08-Dec-99 25.003 24.651 268 43.90% 09-Dec-99 25.587 24.644 267 43.70% 10-Deo-99 23.472 24.64 266 43.50% 11-Dec-99 23.529 24.639 265 43.40% 12-Deo-99 23.34 24.631 264 43.20% 13-Dec-99 24.329 24.629 263 43.00% 14-Dec-99 24.427 24.628 262 42.90% 15-Dec-99 26.334 24.621 261 42.70% 16-Dec-99 25.65 24.598 1, 260 42.50% 17-Dec99 24.11 24.593 1 259 42.40% 18-Dec-99 24.893 24.59 258 42.20% 19-Dec-99 24.77 24.589 257 41.90% 20-Dec-99 24.34 24.589 256 41.90% 21-Dec-99 24.693 24.577 255 41.70% 22-2ec-99 20.716 24.555 264 41.60% 23-Dec-99 25.657 24.542 253 1 41.40% 02/20/2001 7 Jacobs 9-27-00.xlsFIow Primary Influent and Secondary Effluent Flow Date MGD MGD Rank Percent 24-Dec-99 25.038 24.536 252 41.20% 25-Dec-99 25.182 24.533 251 41.10% 26-Dec-99 25.641 24.527 250 40.90% 27-Dec-99 27.012 24.518 249 40.70% 28-Dec-99 25.165 24.515 248 40.60% 29-Dec-99 25.298 24.513 247 40.40% 30-Dec-99 25.461 24.506 246 40.20% 31-Dec-99 25.205 24.498 245 40.10% 01-Jan-00 24.401 24.495 244 39.90% 02-Jan-00 24.881 24.494 243 39.80% 03-Jan-00 24.864 24.492 242 39.60% 04-Jan-00 23.943 24.483 241 39.40% 05-Jan-00 24.639 24.478 240 39.30% 06-Jan-00 24.436 24.476 239 39.10% 07-Jan-00 24.731 24.468 238 38.90% 08-Jan-00 24.434 24.466 237 38.80% - 09-Jan-00 25.325 24.463 236 38.60% 10-Jan-00 26.847 24.454 235 38.40% 11-Jan-00 25.039 24.45 234 38.30% 12-Jan-00 23.888 24.448 233 38.10% 13-Jan-00 24.18 24.436 232 37.90% 14-Jan-00 24.832 24.434 231 37.60% 15-Jan-00 24.901 24.434 230 37.60% 16-Jan-00 24.976 24.427 229 37.50% 17-Jan-00 23.928 24.421 228 37.30% 18-Jan-00 24.59 24.415 227 37.10% 19-Jan-00 24.18 24.414 226 37.00% 20-Jan-00 23.295 24.404 225 36.80% 21-Jan-00 25.159 24.402 224 36.60% 22-Jan-00 25.296 24.401 223 36.30% 23-Jan-00 26.939 24.401 222 36.30% 24-Jan-00 26.287 24.388 221 36.10% 25-Jan-00 21.117 24.377 220 36.000, 26-Jan-00 25.733 24.37 219 35.80% 27-Jan-00 25.933 24.364 218 35.60% 28-Jan-00 24.802 24.363 217 35.50% 29-Jan-00 24.673 24.34 216 35.00% 30-Jan-00 24.989 24.34 215 35.00% 31-Jan-00 23.866 24.34 214 35.00% 01-Feb-00 25.088 24.329 1 213 34.80% 02-Feb-00 25.048 24.326 212 34.700!10 03-Feb-00 25.014 24.324 211 34.50% 04-Feb-00 25.185 24.315 210 34.30% 05-Feb-00 25.542 24.313 209 3U0% 06-Feb-00 24.236 24.305 208 34.00% 07-Feb-00 24.276 24.304 207 33.80% 08-Feb-00 23.82 24.301 206 33.70% 09-Feb-00 23.964 24.295 205 33.50% 10-Feb-00 25.519 24.294 204 33.300% 11-Feb-00 24.644 24.281 203 33.20% 12-Feb-00 26.322 24.276 202 33.00% 02/20/2001 8 Jacobs 9-27-00.xlsFlow Primary Influent and Secondary Effluent Flow Date MGD MGD Rank Percent 13-Feb-00 25.678 24.257 201 32.80% 14-Feb-00 28.544 24.254 200 32.70% 15-Feb-00 25.122 24.237 199 32.50% 16-Feb-00 25.248 24.236 198 32.40% r 17-Feb-00 23.887 24.228 197 32.20% 18-Feb-00 23.441 24.227 196 32.00% 19-Feb-00 24.555 24.22 1 195 31.90% 20-Feb-00 23.629 24.217 194 31.70% 21-Feb-00 24.116 24.215 193 31.50% 22-Feb-00 23.438 24.214 192 31.40% 23-Feb-00 23.575 24.211 191 31.20% 24-Feb-00 24.211 24.207 190 31.00% 25-Feb-00 24.364 24.188 189 30.90% 26-Feb-00 22.878 24.187 188 30.70% 27-Feb-00 23.054 24.18 1 187 30.40% 28-Feb-00 23.79 24.18 1 186 30.40% 29-Feb-00 24.757 24.177 185 30.20% 01-Mar-00 24.254 24.171 184 30.00% 02-Mar-00 23.82 24.165 183 29.90% 03-Mar-00 23.569 24.161 182 29.70% 04-Mar-00 23.088 24.16 181 29.60% 05-Mar-00 24.466 24.148 180 29.40% 06-Mar-00 24.85 24.131 179 29.20% 07-Mar-00 23.724 24.13 178 29.10% 08-Mar-00 24.165 24.116 177 28.90% i 09-Mar-00 24.227 24.11 176 28.60% 10-Mar-00 24.34 24.11 175 28.60% 11-Mar-00 24.876 24.107 174 28.40% 12-Mar-00 23.779 24.058 173 28.20% 13-Mar-00 23.961 24.031 172 28.10% 14-Mar-00 23.17 24.024 171 27.90% 15-Mar-00 24.315 24.019 170 27.70% 16-Mar-00 24.628 24.013 169 27.60% 17-Mar-00 25.339 24.008 168 27.40% 18-Mar-00 24.454 24 167 27.30% 19-Mar-00 24.672 23.993 166 27.10% 20-Mar-00 27.457 23.992 165 26.90% 21-Mar-00 23.239 23.983 164 26.80% ? 22-Mar-00 24.699 23.975 163 26.60% 23-Mar-00 23.288 23.964 162 26.40% 24-Mar-00 24.671 23.961 161 26.30% 25-Mar-00 24.217 23.959 160 26.10% 26-Mar-00 23.692 23.955 159 25.90% 27-Mar-00 25.068 23.95 158 25.80% 28-Mar-00 25.715 23.943 157 25.60% 29-Mar-00 24.629 23.939 156 25.40% 30-Mar-00 25.162 23.932 155 1 25.30% 31-Mar-00 26.595 23.928 154 25.10% 01-Apr-00 25.773 23.919 153 25.00% 02-Apr-00 24.73 23.906 152 24.80% 03-Apr-00 29.046 23.898 151 24.60% 02/20/2001 9 Jacobs 9-27-00.xlsFlow -} Primary Influent and Secondary Effluent Flow r Date MGD MGD Rank Percent 04-Apr-00 27.994 23.888 150 24.50% 05-Apr-00 25.391 23.887 149 24.30% J 06-Apr-00 24.736 23.884 148 24.10% 07-Apr-00 23.495 23.873 147 24.00% 08-Apr-00 23.753 23.867 146 23.80% 09-Apr-00 26.067 23.866 145 23.60% 10-Apr-00 24.589 23.862 144 23.50% 11-Apr-00 23.723 23.854 143 23.30% 12-Apr-00 23.975 23.827 142 23.10% 13-Apr-00 25.12 23.82 141 22.80% 14-Apr-00 24.941 23.82 140 22.80% 15-Apr-00 24.228 23.817 139 22.60% 16-Apr-00 24.008 23.79 138 22.50% 17-Apr-00 23.698 23.779 137 22.30% 18-Apr-00 24.107 23.765 136 22.20% 19-Apr-00 24.798 23.753 135 22.00% 20-Apr-00 26.191 23.724 134 21.80% 21-Apr-00 26.455 23.723 133 21.70% 22-Apr-00 25.571 23.713 132 21.50% 23-Apr-00 25.176 23.698 131 21.30% 24-Apr-00 26.567 23.692 130 21.20% 25-Apr-00 26.053 23.629 129 20.80% 26-Apr-00 25.045 23.629 128 20.80% 27-Apr-00 25.371 23.627 127 20.70% 28-Apr-00 26.351 23.608 126 20.50% 29-Apr-00 25.611 23.606 125 20.30% 30-Apr-00 24.903 23.599 124 20,20% 01-May-00 23.339 23.575 123 20.00% 02-May-00 24.593 23.569 122 19.90% 03-May-00 24.792 23.538 121 19.70% 04-May-00 23.765 23.529 1 120 19.50% 05-May-00 25.008 23.513 119 19.40% 06-May-00 24.401 23.499 118 19.20% 07-May-00 24.187 23.495 117 19.00% 08-May-00 25.223 23.475 116 18.90% 09-May-00 25.707 23.472 115 18.70% 10-May-00 26.645 23.457 114 18.50% 11-May-00 26.645 23.443 113 18.40% 12-May-00 25.2351 23.441 112 18.20% 13-May-00 26.669 23.438 111 18.00% 14-May-00 25.67 23.428 110 17.90% 15-May-00 24.876 23424 109 17.70% 16-May-00 24.324 23.418 108 17.50% 17-May-00 25.05 23.398 107 17.20% 18-May-00 26.666 23.398 106 17.20% 19-May-00 28.299 23.383 1 105 17.10% 20-May-00 27.61 23.38 104 16.90% 21-May-00 27.802 23.373 103 16.70% 22-May-00 27.207 23.372 102 16.60% 23-May-00 27.54 23.366 101 16.40% 24-May-00 24.771 23.362 100 16.20% 02/20/2001 10 Jacobs 9-27-00.xlsFlow Primary Influent and Secondary Effluent Flow Date MGD MGD Rank Percent 25-May-00 25.468 23.354 99 16.10% 26-May-00 25.789 23.34 98 15.90% 27-May-00 27.468 23.339 97 15.70% 28-May-00 27.216 23.31 96 15.60% 29-May-00 2012 23.305 95 15.40% 30-May-00 27.505 23.295 94 15.10% 31-May-00 29.118 23.295 93 15.10% 01-Jun-00 29.851 23.288 92 14.90% 02-Jun-00 28.072 23.273 91 14.80% 03-Jun-00 28.362 23.267 90 14.60% 04-Jun-00 29.525 23.258 89 14.40% 05-Jun-00 29.445 23.239 88 14.30% a 06-Jun-00 29.098 23.235 87 14.10% 07-Jun-00 26.99 23.225 86 13.90% 08-Jun-00 27.375 23.224 85 13.80% 09-Jun-00 26.183 23.193 84 13.60% 10-Jun-00 25.135 23.17 83 13.40% 11-Jun-00 25.576 23.131 82 13.10% 12-Jun-00 24.941 23.131 81 13.10% 13-Jun-00 26.285 23.115 80 12.90% 14-Jun-00 24.536 23.11 79 12.80% 15-Jun-00 25.404 23.107 78 12.60% 16-Jun-00 25.971 23.094 77 12.30% 17-Jun-00 25.987 23.094 76 12.30% 18-Jun-00 26.493 23.093 75 12.10% 19-Jun-00 25.903 23.092 74 12.00% 20-Jun-00 26.521 23.089 73 11.80% 21-Jun-00 24.825 23.088 72 11.60% 22-Jun-00 27.156 23.054 71 11.50% 23-Jun-00 25.592 23.053 70 11.30% 24-Jun-00 28.397 23.051 69 11.10% 25-Jun-00 27.8411 22.978 68 11.00% 26-Jun-00 30.566 22.963 67 10.80% 27-Jun-00 26.502 22.96 66 10.60% 28-Jun-00 29.402 22.952 65 10.50% 29-Jun-00 30.249 22.949 64 10.30% 30-Jun-00 28.296 22.929 63 10.00% 01-Jul-00 27.906 22.929 62 10.00% 02-Jul-00 27.511 22.901 61 9.80% 03-Jul-00 28.384 22.883 60 9.70% 04-Jul-00 28.095 22.878 59 9.50% 05-Jul-00 26.715 22.866 58 9.30% 06-Jul-00 27.596 22.852 57 9.20% 07-Jul-00 26.341 22.783 56 9.00% 08-Jul-00 27.678 22.751 55 8.80% 09-Jul-00 28.221 22.719 54 8.70% 10-Jul-00 27.058 22.665 53 8.50 0 11-Jul-00 24.281 22.658 52 8.30% 12-Jul-00 28.388 22.653 51 8.20% 13-Jul-00 25.506 22.593 50 8.00% 14-Jul-00 26.686 1 22.573 49 7.80% I 02/20/2001 11 Jacobs 9-27-00.xlsFlow r � Primary Influent and Secondary Effluent Flow Date MGD MGD Rank Percent 15-Jul-00 26.907 22.571 48 7.70% 16-Jul-00 25.901 22.557 47 7.50% 17-Jul-00 25.046 22.519 46 7.40% 18-Jul-00 25.467 22.505 45 7.20% r 19-Jul-00 25.753 22.494 44 7.00% f 20-Jul-00 25.507 22.47 43 6.90% 21-Jul-00 24.024 22.396 42 6.70% 22-Jul-00 25.186 22.388 41 6.50% 23-Jul-00 24.764 22.364 40 6.40% 24-Jul-00 25.92 22.36 39 6.20% 25-Jul-00 24.786 22.347 38 6.00% ` 26-Jul-00 24.363 22.343 37 5.90% u 27-Jul-00 23.993 22.336 36 5.70% 28-Jul-00 24.058 22.333 35 5.50% 29-Jul-00 24.589 22.306 34 5.40% 30-Jul-00 24.215 22.22 33 5.20% V 31-Jul-00 25.775 22.12 32 5.00% 01-Aug-00 24.301 22.103 31 4.90% 02-Aug-00 25.031 22.057 30 4.70% <r 03-Aug-00 25.153 22.055 29 4.60% 04-Aug-00 24.013 22.026 28 4.40% 05-Aug-00 23.608 22.022 27 4.20% 06-Aug-00 24.542 21.986 26 4.10% 07-Aug-00 24.977 21.846 25• 3.90% 08-Aug-00 24.699 21.834 24 3.70% 09-Aug-00 24.498 21.786 23 3.60% 10-Aug-00 24.16 21.73 1 22 3.40% 11-Aug-00 24.631 21.558 21 3.20% I 12-Aug-00 23.094 21.472 20 3.10% 13-Aug-00 22.866 21.435 19 2.90% 14-Aug-00 24.161 21.39 18 2.70% 15-Aug-00 25.297 21.299 17 2.60% 16-Aug-00 25.747 21.236 16 2.40% 17-Aug-00 25.168 21.211 15 2.30% k 18-Aug-00 24.515 21.175 14 2.10% 19-Aug-00 25.16 21.117 13 1.90% ` 20-Aug-00 26.011 21.097 12 1.80% 21-Aug-00 25.454 21.048 11 1.60% 22-Aug-00 24.968 21.024 10 1.40% 23-Aug-00 25.21 20.92 9 1.30% 24-Aug-00 24.937 20.909 8 1.10% 25-Aug-00 25.008 20.79 7 .90% a_ 26-Aug-00 25.023 20.716 1 6 .80% 27-Aug-00 24.494 20.194 5 .60% 28-Aug-00 25.202 20.141 4 .40% 29-Aug-00 24.148 19.977 3 .30% 30-Aug-00 24 19.467 2 .10% 3 - ug-00 23.992 18.78 1 .00% i .02/20/2001 12 Jacobs 9-27-00.xlsFlow Primary Influent and Secondary Effluent Flow Date MGD I MGD I Rank Percent k i ^ Statistical Analysis--" Mean 24.8 Standard Error 0.067 Median 24.9 - Mode 24.9 Standard Deviation 1.65 Sample Variance 2.71 Kurtosis 0.921 Skewness -0.0179 Range 11.8 " Minimum 18.8 Maximum 30.6 Sum 15132 Count 609 Confidence Level 90.0% 0.110 99% Upper 28.7 99% upper exceedance level is based on the mean x(2.326 x standard deviation). The 2.326 factor is from a"t Distribution Table"for infinite degrees of freedom at 1.00%. I , Histogram Histogram Bin I Frequency 100 .., 18.8 1 19.3 0 y , a +� 20.3 3 BO 7 "IN .ei .?A'�1,"t k Ct i '7,{T'c?' �.. is x: 20.7 1 4 au a� �a vs f E 21.2 9 y Fc f�. 70 21.7 6 4w, r 22.7 21 f 60 rf t ;{ u 23.2 31 �,J a -ro i krv� ( '•=: a p� ^' a ,� t^"�K ` 23.7 45 C 50 24.2 58 •g i' ; ' .k by 3 �3@.v',�-, >Cs" " « 24.7 84 40 25.2 94 x $� as, J 3 1 t� 25.7 68 30 r �,r -: g 7, �. .ws '' 26.1 59 26.6 41 J ZU a�'i*""�' � r �I �:.� +;� ,t? � i i'r:"k ,x,l`" 27.1 30 w m 27.6 18 f ,t I 10 �§ �? � . t 9`r r 28.1 11 28.6 8 29.1 1 29.6 5 II Bin 30.1 1 Morel 2 r 02/20/2001 13 Jacobs 9-27-00.xlsFlow Primary Influent Color _I Date True Color-mg/I True Color-mg/l Rank Percent 01-Jan-99 253 1201 609 100.00% " 02-Jan-99 240 853 608 99.80% 03-Jan-99 328 648 607 99.60% 04-Jan-99 333 641 606 99.50% 05-Jan-99 222 603 605 99.30% 06-Jan-99 346 572 604 99.10% 07-Jan-99 378 565 603 99.00% 08-Jan-99 530 542 602 98.80% 09-Jan-99 397 541 601 98.60% 10-Jan-99 265 535 600 98.50% 11-Jan-99 206 530 599 98.30% 12-Jan-99 177 512 598 1 98.10% 13-Jan-99 191 508 597 98.00% 14-Jan-99 319 496 596 97.80% 15-Jan-99 256 493 595 97.60% 16-Jan-99 182 490 594 97.50% 17-Jan-99 231 481 593 97.30% 18-Jan-99 320 477 592 97.20% 19-Jan-99 280 470 591 97.00% 20-Jan-99 235 461 590 96.80% 21-Jan-99 288 456 589 96.70% 22-Jan-99 291 452 588 96.50% 23-Jan-99 268 450 587 96.30% 24-Jan-99 321 445 586 96.20% 25-Jan-99 311 437 585 96.00% 26-Jan-99 128 436 584 95.80% 27-Jan-99 215 434 583 95.70% 28-Jan-99 337 428 582 95.50% 29-Jan-99 359 423 581 95.30% 30-Jan-99 303 418 580 95.00% 31-Jan-99 363 418 579 95.00% v 01-Feb-99 382 415 578 94.90% 02-Feb-99 247 413 577 94.70% 03-Feb-99 247 407 576 94.50% 04-Feb-99 305 404 575 94.40% ` 05-Feb-99 262 402 574 94.20% 06-Feb-99 199 399 573 94.00% 07-Feb-99 222 398 572 93.90% 08-Feb-99 204 397 571 93.70% 09-Feb-99 399 394 570 93.50% 10-Feb-99 324.4 393 569 93.40% ' 11-Feb-99 270 392 568 93.20% 12-Feb-99 290 391 567 93.00% i 13-Feb-99 290 389 566 92.70% 14-Feb-99 359 389 565 92.70% 15-Feb-99 258 386 564 92.50% 16-Feb-99 250 385 563 92.20% I� 17-Feb-99 204 385 562 92.20% 18-Feb-99 207 384 561 92.10% 19-Feb-99 172 383 560 1 91.90% r 02/20/2001 1 Jacobs 9-27-00.xlsPdmary Color Primary Influent Color Date True Color-mg/I. True Color-mg/I Rank Percent 20-Feb-99 236 382 559 91.60% 21-Feb-99 237 382 558 91.60% 22-Feb-99 215 379 557 91.20% 23-Feb-99 202 379 556 91.20% 24-Feb-99 218 378 555 90.90% ' 25-Feb-99 179 378 554 90.90% 26-Feb-99 184 377 553 90.70% 27-Feb-99 192 376 552 90.40% 28-Feb-99 170 376 551 90.40% 01-Mar-99 215 375 550 90.20% 02-Mar-99 392 373 549 90.10% 03-Mar-99 247 370 548 89.60% 04-Mar-99 356 370 547 89.60% 05-Mar-99 282 370 546 89.60% j I 06-Mar-99 282 368 545 89.40% 07-Mar-99 265 365 544 89.10% 08-Mar-99 225 _ 365 543 89.10% 09-Mar-99 210 363 542 88.60% 10-Mar-99 287 363 541 1 88.60% 11-Mar-99 221 363 540 88.60% 12-Mar-99 329 362 539 88.40% } u 13-Mar-99 258 359 538 87.90% 14-Mar-99 308 359 537 87.90% ^f 15-Mar-99 297 359 536 87.90% 16-Mar-99 301 357 535 87.30% 17-Mar-99 321 357 534 87.30% _ 18-Mar-99 199 357 533 87.30% 19-Mar-99 242 357 532 87.30% 20-Mar-99 323 356 531 86.50% 21-Mar-99 172 356 530 86.50% 22-Mar-99 219 356 529 86.50% 23-Mar-99 221 356 528 86.50% 24-Mar-99 189 356 527 86.50% 25-Mar-99 190 352 526 86.30% 26-Mar-99 215 351 525 86.10% 27-Mar-99 238 350 524 85.80% 28-Mar-99 292 350 523 85.80% 29-Mar-99 853 349 522 85.30% 1 30-Mar-99 243 349 521 85.30% 31-Mar-99 211 349 520 85.30% -v^ 01-Apr-99 190 348 519 85.10% 02-Apr-99 261 347 518 84.80% 03-Apr-99 169 347 517 84.80% 04-Apr-99 181 346 516 84.30% 05-Apr-99 290 346 515 84.30% 06-Apr-99 195 346 514 84.30% I 07-Apr-99 188 345 513 84.00% ' 08-Apr-99 209 1 345 1 512 1 84.00% 09-Apr-99 253 344 511 83.80% 10-Apr-99 298 343 510 83.70% 02/20/2001 2 Jacobs 9-27-00.xlsPrimary Color � r 0 0 U Z m E a N X O O r N m �. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ N C o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o e o 0 o e o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o e o 0 o e o 0 0 � d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O M M N O f` h V a CDO m OJ N N N N a n f` N m N to N N (O V N r N m (O V W Q) 0) 1, (D CO m N N m Cl) M M W W N M M d m m mm NN N N (V CV r rrrr OOOO 6666666666Ip 6e7 An t` r t` (O f0 f0 (O. fG !O (O f0 In Il'J LL7 rl� N amN WmNNNmmmNmNNmNNmNr-- r, r, r- rrr, r.- r-- r, r- rrrrr- r� nr, r� I, r. r, rnnr- r, rrr� r.- rnrlr.- rl V Y000 h min V MN O W mnmin V MN , O W Nrmb V MNr00NrNrn V MNrOQJNr Nrn ITMN O u07 I00 I00 100 I00 V V V 'It 'V V V Coll, V V V V V V It V V V V 14, V V V V V V V V V V V Vm' V It V V V V 0 V C � E d ' NrO W W NNrf` mr0 mtn W V V MNN N NNNrOO) NNmr.- IlJ enN V V MMMMMNNNrrrO O M M M M M M M M M M M M M M M G U tm • d R ~ E a E V N ITONa) V 070 W ITOO) t- rN V' NN V' OO m V W t` 10 V NNN V 0007 Nt• N V mN � NN O N N N N r N N r N r N N r N M M N < N N N M rfJ m N N r N r N N N M N N N N N N r r N N N mVM N N N , U d F rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn m rn rn rn of rn rn rn rn rn rn rn rn rn rn rn m rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn a� rn rn rn rn m rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn a � a a a a a n n n n n a a a a an a a n n n m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m c aaaaaaasasasaaaaaa � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � r N M lC) co h co W O r N CO V ICJ N t` N QJ O r N M V N N r• 6 OJ O r N c7 C 6 N tL N W O N fM V 6 IO r` m lT 6 p r r r r r. r N N N N N N N N N N Lh O O O O p O 0 0 0 r r r r r r r r N N N N N N N N N N M p N O N N O J' Primary Influent Color Date True Color-mg/I True Color-mg/I Rank Percent l 31-May-99 418 320 459 75.30% j£I 01-Jun-99 208 319 458 75.00% 02-Jun-99 146 319 457 75.00% 03-Jun-99 155 317 456 74.60% 04-Jun-99 140 317 455 74.60% 05-Jun-99 143 316 454' 74.10% 06-Jun-99 12B 316 453 74.10% 07-Jun-99 231 316 452 74.10% 08-Jun-99 175 315 451 74.00% 09-Jun-99 176 314 450 73.60% 10-Jun-99 195 314 449 73.60% 11-Jun-99 207 313 448 73.50% 12-Jun-99 216 311 447 72.80% 13-Jun-99 196 311 446 72.80% 14-Jun-99 216 311 445 72.80% 15-Jun-99 250 311 444 72.80% 16-Jun-99 178 310 443 72.60% 17-Jun-99 170 309 442 71.70% 18-Jun-99 276 309 441 71.70% 19-Jun-99 278 309 440 71.70% 20-Jun-99 290 309 439 71.70% 21-Jun-99 253 309 438 71.70% 22-Jun-99 278 309 437 71.70% 23-Jun-99 256 308 436 70.80% t 24-Jun-99 275 308 435 70.80% -' 25-Jun-99 332 308 434 70.80% 26-Jun-99 300 308 433 70.80% { 27-Jun-99 160 308 432 70.80% - 28-Jun-99 301 307 431 70.70% 29-Jun-99 265 306 430 70.00% t { 30-Jun-99 508 306 429 70.00% U 01-Jul-99 404 306 428 70.00% 02-Jul-99 236 306 427 70.00% 03-Jul-99 389 305 426 69.50% 04-Jul-99 240 305 425 69.50% 05-Jul-99 199 305 424 69.50% 06-Jul-99 160 304 423 69.00% 07-Jul-99 185 304 422 69.00% U' 08-Jul-99 247 304 421 69.00% 09-Jul-99 335 303 420 68.70% 10-Jul-99 209 303 419 68.70% 11-Jul-99 266 302 418 68.40% 12-Jul-99 306 302 417 68.40% 13-Jul-99 356 301 416 67.70% 14-Jul-99 385 301 415 67.70% 15-Jul-99 350 301 414 67.70% I__I 16-Jul-99 389 301 413 67.70% 17-Jul-99 311 300 412 67.40% u 18-Jul-99 461 300 411 67.40% 19-Jul-99 252 299 410 67.20% 02/20/2001 4 Jacobs 9-27-00.xlsPrimary Color 1�} Primary Influent Color Date True Color-mg/1 True Color-mg/1 Rank Percent 20-Jul-99 181 298 409 66.90% 'j 21-Jul-99 234 298 408 66.90% 22-Jul-99 362 297 407 66.40% 23-Jul-99 306 297 406 66.40% 24-Jul-99 275 297 405 66.40% 25-Jul-99 322 296 404 66.20% 26-Jul-99 331 295 403 66.10% } i 27-Jul-99 352 294 402 65.70% ;J 28-Jul-99 279 294 401 65.70% 29-Jul-99 305 293 400 65.10% 30-Jul-99 342 293 399 65.10% y j 31-Jul-99 268 293 398 65.10% 01-Aug-99 227 293 397 65.10% 02-Aug-99 206 292 396 64.40% IJj 03-Aug-99 278 292 395 64.40% I 04-Aug-99 359 292 394 64.40% 05-Aug-99 219 292 393 64.40% 06-Aug-99 228 291 392 63.80% 07-Aug-99 172 291 391 63.80% 08-Aug-99 211 291 390 63.80% 09-Aug-99 262 291 389 63.80% 10-Aug-99 231 290 388 62.50% 11-Aug-99 240 290 387 62.50% 12-Aug-99 220 290 386 62.50% I 13-Aug-99 214 290 385 62.50% J 14-Aug-99 171 290 384 62.50% 15-Aug-99 233 290 383 62.50% 16-Aug-99 233 290 382 62.50% 17-Aug-99 170 290 381 62.50% 18-Aug-99 252 288 380 61.50% 19-Aug-99 257 288 379 61.50% 20-Aug-99 379 288 1 378 61.50% 21-Aug-99 240 288 377 61.50% 22-Aug-99 248 288 376 61.50% i � 23-Aug-99 309 288 375 61.50% 24-Aug-99 341 287 374 61.00% 25-Aug-99 378 287 373 61.00% + 26-Aug-99 357 287 372 61.00% (Jf 27-Aug-99 268 286 371 60.60% 28-Aug-99 248 286 370 60.60% 29-Aug-99 243 285 369 60.30% 30-Aug-99 293 285 368 60.30% 31-Aug-99 322 284 367 60.00% 01-Sep-99 415 284 366 60.00% V 02-Sep-99 146 283 365 59.70% 03-Se -99 270 283 364 59.70% 04-Sep-99 272 282 363 59.20% i 05-Sep-99 249 282 362 59.20% 06-Sep-99 302 282 361 59.20% 07-Sep-99 271 281 360 59.00% 02/20/2001 5 Jacobs 9-27-00.xlsPrimary Color Primary Influent Color Date True Color-mg/I True Color-mg/I Rank Percent 08-Sep-99 350 280 359 58.50% 09-Sep-99 314 280 358 58.50% 10-Sep-99 297 280 357 58.50% 11-Sep-99 328 279 356 58.20% 12-Sep-99 183 279 355 58.20% 13-Sep-99 332 278 354 57.20% 14-Sep-99 247 278 353 57.20% 15-Sep-99 340 278 352 57.20% 16-Sep-99 207 278 351 57.20% 17-Sep-99 218 278 350 57.20% 18-Sep-99 493 278 349 57.20% i J 19-Sep-99 171 277 348 1 56.90% 20-Sep-99 542 277 347 56.90% 21-Sep-99 165 276 346 56.50% 22-Sep-99 262 276 345 56.50% 23-Sep-99 179 275 344 55.90% 24-Sep-99 330 275 343 55.90% 25-Sep-99 230 275 342 55.90% 26-Sep-99 273 275 341 55.90% 27-Sep-99 214 274 340 54.70% 28-Sep-99 470 274 339 54.70% 29-Sep-99 413 274 338 54.70% 30-Sep-99 304 274 337 54.70% 01-Oct-99 240 274 336 54.70% 02-Oct-99 382 274 335 54.70% 03-Oct-99 321 274 334 54.70% 04-Oct-99 258 273 333 54.40% 05-Oct-99 334 273 332 54.40% _ 06-Oct-99 305 272 331 54.10% 07-Oct-99 225 272 330 54.10% 08-Oct-99 271 271 329 53.40% t j 09-Oct-99 258 271 328 53.40% 10-Oct-99 242 271 327 53.40% 11-Oct-99 229 271 326 53.40% 12-Oct-99 278 270 325 52.10% 13-Oct-99 206 270 324 52.10% 14-Oct-99 325 270 323 52.10% 15-Oct-99 193 270 322 52.10% 16-Oct-99 247 270 321 52.10% 17-Oct-99 300 270 320 52.10% 18-Oct-99 285 270 319 1 52.10% u 19-Oct-99 349 270 318 52.10% 20-Oct-99 356 269 317 51.60% 21-Oct-99 220 269 316 51.60% r 22-Oct-99 162 269 315 51.60% 23-Oct-99 181 268 314 50.80% 24-Oct-99 161 268 313 50.80% I I 25-Oct-99 202 268 312 50.80% L) 26-Oct-99 418 268 311 50.80% 27-Oct-99 309 268 310 50.80% 02/20/2001 6 Jacobs 9-27-00.xlsPrimary Color __1 Primary Influent Color Date True Color-mg/l True Color-mg/l Rank Percent 28-Oct-99 269 267 309 50.00% 29-Oct-99 323 267 308 50.00% 30-Oct-99 210 267 307 50.00% 31-Oct-99 247 267 306 50.00% 01-Nov-99 222 267 305 50.00% ? 02-Nov-99 332 266 304 49.60% 03-Nov-99 376 266 303 49.60% 04-Nov-99 279 265 302 49.10% 05-Nov-99 322 265 301 49.10% 06-Nov-99 428 265 300 49.10% 07-Nov-99 268 264 299 48.80% O8-Nov-99 196 264 298 48.80% 09-Nov-99 287 263 297 48.50% 10-Nov-99 294 263 296 48.50% 11-Nov-99 434 262 295 48.00% 12-Nov-99 248 262 294 48.00% 13-Nov-99 298 262 293 48.00% 14-Nov-99 198 261 292 47.30% ! 15-Nov-99 197 261 291 47.30% 16-Nov-99 267 261 290 47.30% 17-Nov-99 306 261 289 47.30% 18-Nov-99 210 260 288 47.20% 19-Nov-99 228 259 287 46.80% -i 20-Nov-99 236 259 286 46.80% 21-Nov-99 267 258 285 46.20% 22-Nov-99 255 258 284 46.20% 23-Nov-99 291 258 283 46.20% 24-Nov-99 256 258 282 46.20% _ 25-Nov-99 204 267 281 45.80% 26-Nov-99 247 257 280 45.80% 27-Nov-99 394 256 279 45.30% 28-Nov-99 290 256 278 45.30% 29-Nov-99 301 256 277 45.30% 30-Nov-99 293 255 276 44.90% 01-Dec-99 272 255 275 44.90% 02-Dec-99 235 255 274 44.90% 03-Dec-99 357 253 273 44.40% 04-Dec-99 332 253 272 44.40% 05-Dec-99 323 253 271 44.40% O6-Dec-99 227 252 270 43.40% 07-Dec-99 274 252 269 43.40% I 08-Dec-99 342 252 268 43.40% 09-Dec-99 244 252 267 43.40% 10-Dec-99 215 252 266 43.40% 11-Dec-99 287 252 265 43.40% 12-Dec-99 217 251 264 43.20% 13-Dec-99 211 250 263 42.40% G 14-Dec-99 201 250 262 42.40% iJ 15-Dec-99 180 250 261 42.40% 16-Dec-99 220 250 260 42.40% 02/20/2001 7 Jacobs 9-27-00.xlsPrimary Color Primary Influent Color Date True Color-mg/I True Color-mg/l Rank Percent 17-Dec-99 308 250 259 42.40% 18-Dec-99 201 249 258 42.10% 19-Dec-99 220 249 257 42.10% 20-Dec-99 206 248 256 41.10% 21-Dec-99 229 248 255 41.10% r } 22-Dec-99 274 248 254 41.10% 23-Dec-99 205 248 253 41.10% ! 24-Dec-99 198 248 252 41.10% 25-Dec-99 255 248 251 41.10% 26-Dec-99 512 247 250 39.60% 27-Dec-99 218 247 249 39.60% r f 28-Dec-99 250 247 248 39.60% 29-Dec-99 175 247 247 39.60% 30-Dec-99 159 247 246 39.60% i 31-Dec-99 140 247 245 39.60% J 01-Jan-00 185 247 244 39.60% 02-Jan-00 232 247 243 39.60% 03-Jan-00 192 247 242 39.60% • , 04-Jan-00 208 246 241 39.40% 05-Jan-00 234 245 240 39.30% 06-Jan-00 173 244 239 38.60% 07-Jan-00 280 244 238 38.60% 08-Jan-00 283 244 237 38.60% 09-Jan-00 261 244 236 38.60% 10-Jan-00 133 243 235 38.10% 11-Jan-00 270 243 234 38.10% 12-Jan-00 263 243 233 38.10% 13-Jan-00 288 242 232 37.50% 14-Jan-00 274 242 231 37.50% 15-Jan-00 393 242 230 37.50% " 16-Jan-00 445 242 229 37.50% 17-Jan-00 235 241 228 36.60% 18-Jan-00 234 241 227 36.60% - , 19-Jan-00 274 241 226 36.60% i 20-Jan-00 648 241 225 36.60% 21-Jan-00 173 241 224 36.60% 22-Jan-00 233 240 223 35.60% 23-Jan-00 239 240 222 35.60% 24-Jan-00 171 240 221 35.60% 25-Jan-00 377 240 220 35.60% 26-Jan-00 398 240 219 35.60% 27-Jan-00 477 240 218 35.60% 28-Jan-00 339 239 217 35.50% 29-Jan-00 260 238 216 35.10% 30-Jan-00 278 238 215 35.10% 31-Jan-00 307 237 214 34.80% 01-Feb-00 304 237 213 34.80% 02-Feb-00 296 236 212 34.00% 03-Feb-00 264 236 211 34.00% 04-Feb-00 327 236 210 34.00% 02/20/2001 8 Jacobs 9-27-00.xlsPrimary Color Primary Influent Color a � Date True Color-mg/I True Color-mg/I Rank Percent 05-Feb-00 373 236 209 34.00% 06-Feb-00 346 236 208 34.00% 07-Feb-00 241 235 207 33.30% 08-Feb-00 357 235 206 33.30% 09-Feb-00 349 235 205 33.30% 10-Feb-00 285 235 204 33.30% 11-Feb-00 309 234 203 32.50% 12-Feb-00 337 234 202 32.50% 13-Feb-00 357 234 201 32.50% 14-Feb-00 338 234 200 32.50% 15-Feb-00 291 234 199 32.50% 16-Feb-00 217 233 198 31.90% 17-Feb-00 219 233 197 31.90% 1'8-Feb-00 170 233 196 31.90% l 19-Feb-00 229 233 195 31.90% 20-Feb-00 252 232 194 31.40% 21-Feb-00 280 232 193 31.40% 22-Feb-00 456 232 192 31.40% 23-Feb-00 437 231 191 30.70% 24-Feb-00 346 231 190 30.70% 25-Feb-00 490 231 189 30.700/6 26-Feb-00 234 231 188 30.70% 27-Feb-00 299 230 187 30.40% 28-Feb-00 186 230 186 30.40% 29-Feb-00 271 229 185 29.70% 01-Mar-00 250 229 184 29.70% 02-Mar-00 236 229 183 29.70% P 03-Mar-00 236 229 182 29.70% 04-Mar-00 264 228 181 28.70% 05-Mar-00 241 228 180 28.70% 06-Mar-00 356 228 179 28.70% 07-Mar-00 193 228 178 28.70% 08-Mar-00 292 228 177 28.70% 09-Mar-00 211 228 176 28.70% 10-Mar-00 339 227 175 28.20% 11-Mar-00 201 227 174 28.20% 12-Mar-00 324 227 173 28.20% 13-Mar-00 349 226 172 27.90% 14-Mar-00 267 226 171 27.90% 15-Mar-00 603 225 170 27.40% 16-Mar-00 541 225 169 27.40% 17-Mar-00 288 225 168 27.40% 18-Mar-00 284 222 167 26.90% 19-Mar-00 309 222 166 26.90% 20-Mar-00 275 222 165 26.90% 21-Mar-00 315 221 164 26.40% 22-Mar-00 320 221 163 26.40% 23-Mar-00 385 221 162 26.40% J 24-Mar-00 215 220 161 25.80% 25-Mar-00 278 220 160 25.80% 02/20/2001 9 Jacobs 9-27-00.xlsPrimary Color , a Primary Influent Color Date True Color-mg/l True Color-mg/I Rank Percent 26-Mar-00 248 220 159 25.80% )I 27-Mar-00 335 220 158 25.80% 28-Mar-00 257 219 157 25.00% 29-Mar-00 194 219 156 25.00% 30-Mar-00 243 219 155 25.00% _S 31-Mar-00 250 219 154 25.00% 01-Apr-00 259 219 153 25.00% i 02-Apr-00 225 218 152 24.50% 03-A r-00 241 218 151 24.50% 04-Apr-00 317 218 150 24.50% 05-Apr-00 288 217 149 24.00% I 06-Apr-00 209 217 148 24.00% 07-Apr-00 174 217 147 24.00% 08-Apr-00 368 216 146 23.60% I 1 09-Apr-00 345 216 145 23.60% 10-Apr-00 376 215 144 22.50% 11-Apr-00 270 215 143 22.50% j 12-Apr-00 286 215 142 22.50% 13-Apr-00 365 215 141 22.50% 14-Apr-00 284 215 140 22.50% I 15-Apr-00 565 215 139 22.50% 16-Apr-00 335 215 138 22.50% 17-Apr-00 268 214 137 22.20% 18-Apr-00 344 214 136 22.20% 19-Apr-00 323 213 135 22.00% 20-Apr-00 251 211 134 21.00% 21-Apr-00 259 211 133 21.00% 22-Apr-00 252 211 132 21.00% I _} 23-Apr-00 241 211 131 21.00% 24-Apr-00 182 211 130 21.00% I 25-Apr-00 195 211 129 21.00% 26-Apr-00 270 210 128 20.50% f 27-Apr-00 166 210 127 20.50% 28-Apr-00 166 210 126 20.50% 29-Apr-00 219 209 125 20.00% 30-Apr-00 230 209 124 20.00% 01-May-00 232 209 123 20.00% r _ 02-May-00 179 208 122 19.40% l l 03-May-00 159 208 121 19.40% 04-May-00 211 208 120 19.40% r 05-May-00 436 208 1119 19.40% 06-May-00 407 207 118 18.70% 07-May-00 1201 207 117 18.70% i 08-May-00 347 207 116 18.70% 09-May-00 328 207 115 18.70% 10-May-00 348 206 114 18.00% 11-May-00 198 206 113 18.00% 12-May-00 193 206 112 18.00% L 13-May-00 215 206 111 18.00% 14-May-00 316 205 110 17.70% 02/20/2001 10 Jacobs 9-27-00.xlsPrimary Color Primary Influent Color Date True Color-mg/I True Color-mg/l Rank. Percent 15-May-00 320 205 109 17.70% ' 16-May-00 384 204 108 17.10% 17-May-00 365 204 107 17.10% 18-May-00 308 204 106 17.10% 19-May-00 . 379 204 105 17.10% 20-May-00 338 203 104 16.90% 21-May-00 252 202 103 16.60% 22-May-00 572 202 102 16.60% 23-May-00 496 201 101 15.40% 24-May-00 266 201 100 15.40% 25-May-00 208 201 99 15.40% 26-May-00 165 201 98 15.40% 27-May-00 145 201 97 15.40% 28-May-00 232 201 96 15.40% 29-May-00 297 201 95 15.40% 30-May-00 283 199 94 14.90%° 31-May-00 177 199 93 14.90% 01-Jun-00 282 199 92 14.90% 02-Jun-00 217 198 91 14.40% 03-Jun-00 309 198 90 14.40% 04-Jun-00 310 198 89 14.40% 05-Jun-00 343 197 88 14.30% 06-Jun-00 311 196 87 13.80% 07-Jun-00 311 196 86 13.80% ! 08-Jun-00 274 196 85 13.80% 09-Jun-00 292 195 84 13.30% 10-Jun-00 290 195 83 13.30% 11-Jun-00 335 195 82 13.30% 12-Jun-00 370 194 81 12.90% 13-Jun-00 452 194 80 12.90% 14-Jun-00 316 193 79 12.50% 15-Jun-00 351 193 78 12.50% 16-Jun-00 461 193 77 12.50% 17-Jun-00 363 192 76 12.00% 18-Jun-00 370 192 75 12.00% -' 19-Jun-00 277 192 74 12.00% 20-Jun-00 275 191 73 11.80% 21-Jun-00 270 190 72 11.50% 22-Jun-00 290 190 71 11.50% 23-Jun-00 423 189 70 11.30% 24-Jun-00 293 188 69 11.10% 25-Jun-00 221 186 68 10.80% 26-Jun-00 306 186 67 10.80% 27-Jun-00 450 185 66 10.30% 28-Jun-00 316 185 65 10.30% 29-Jun-00 391 185 64 10.30% 30-Jun-00 1 332 184 63 10.10% Ol-Jul-00 334 183 62 10.00% L 02-Jul_00 201 182 61 9.70% 03-Jul-00 334 182 60 9.70% I I 02/20/2001 11 Jacobs 9-27-00.xlsPrimary Color j I I . Primary Influent Color Date True Color-mg/I True Color-mg/I Rank Percent 04-Jul-00 345 181 59 9.00% 05-Jul-00 227 181 58 9.00% 06-Jul-00 213 181 57 9.00% 07-Jul-00 228 181 56 9.00% 08-Jul-00 290 180 55 8.50% 09-Jul-00 363 180 54 8.50% 10-Jul-00 204 180 53 8.50% 11-Jul-00 242 179 52 8.00% 12-Jul-00 267 179 51 8.00% 13-Jul-00 238 179 50 8.00% + 14-Jul-00 201 178 49 7.80% 15-Jul-00 383 177 48 7.20% 16-Jul-00 274 177 47 7.20% 17-Jul-00 263 177 46 7.20% 18-Jul-00 237 177 45 7.20% 19-Jul-00 240 176 44 7.00% 20-Jul-00 277 175 43 6.70% j 21-Jul-00 325 175 42 6.70% ! 22-Jul-00 177 174 41 6.50% 23-Jul-00 234 173 40 6.20% 24-Juk00 186 173: 39 6.20% 25-Jul-00 211 172 38 5.50% -- 26-Jul-00 267 172 37 5.50% 27-Jul-00 325 172 36 5.50% 28-Jul-00 293 172 35 5.50% 29-Jul-00 242 _ 171 34 4.90°/n 30-Jul-00 304 171 33 4.90% i 31-Jul-00 226 171 32 4.90% 01-Aug-00 269 171 31 4.90% 02-Aug-00 347 170 30 4.20% f 03-Aug-00 309 170 29 4.20% 04-Aug-00 332 170 28 4.20% 05-Aug-00 356 170 27 4.20% 06-Aug-00 301 169 26 4.10% I 07-Aug-00 281 166 25 3.70% J 08-Aug-00 336 166 24 3.70% 09-Aug-00 185 165 23 3.40% 10-Aug-00 270 165 22 3.40% 11-Aug-00 247 162 21 3.20% 12-Aug-00 235 161 20 3.10% 13-Aug-00 302 160 19 2.70% t2 14-Aug-00 308 160 18 2.70% 15-Aug-00 226 159 17 2.40% 16-Aug-00 177 159 16 2.40% 17-Aug-00 219 15B 15 2.30% 18-Aug-00 233 156 14 2.10% 19-Aug-00 231 155 13 1.90% 20-Aug-00 229 154 12 1.60% 21-Aug-00 261 154 11 1.600 22-Aug-00 201 147 10 02/20/2001 12 Jacobs 9-27-00.xlsPrimary Color Primary Influent Color Date True Color-mg/I True Color-mg/1 Rank Percent 23-Aug-00 269 146 9 1.10% 24-Aug-00 181 146 8 1.10% 25-Aug-00 319 145 7 .90% 26-Aug-00 314 143 6 .80% 27-Aug-00 386 140 5 .40% 28-Aug-00 317 1 140 1 4 1 .40% 29-Aug-00 171 1 133 1 3 .30% 30-Aug-00 172 128 2 .00% j 31-Aug-00 292 128 1 .00% I 02/20/2001 13 Jacobs 9-27-00.xlsPrimary Color _ Primary Influent Color Statistical Analysis <� Mean 277 Standard Error 3.67 Median 267 Mode 247 ! Standard Deviation 90.6 Sample Variance 8215 Kurtosis 20.8 Skewness 2.88 Range 1073 Minimum 128 Maximum 1201 Sum 168670 Count 609 Confidence Level 99.0% 9.49 99% Upper 488 �i 99%upper exceedance level is based on the mean x(2.326 x standard deviation).The 2.326 factor is from a I j Distribution Table"for infinite degrees of freedom at 1.00%. Histogram Histogram 128 Fre 2enc - 173 36 217 111 160 t 4 r *hro 262 146 307 135 40 2 95 : � , � , 396 45 120 t r i s 4R t ✓ C o t b s x - >' 1 486 8 ' ^ 1 00 w tzt 530 6 80 '" q °tl •+ k:: -#rxm r n �, zf, ,., ,� 575 5 V 60 E 5 r $ , e z. 665 2 ILL40 � ������ � ��� t.�,`�'�iv-�""'x�..� .,.St�.`��" s.`�,awre�a"t r ..-_"`��„. 2 709 0 � 'i �' R3 � � 754 0 -tz 1 5 • •°' `s x x"` ,� s + 843 0 N. 933 0 rJ on� r 0 , 977 0 L 1022 0� yrOp, rob N 1067 0 Bin 1112 0 1156 0 More 1 1 02/20/2001 14 Jacobs 9-27-00.xlsPrimary Color Secondary Effluent Color Date True Color-m /I True Color-m /I Rank Percent 01-Jan-99 201 485 609 100.00% 02-Jan-99 182 425 608 99.80% 03-Jan-99 188 412 607 99.60% 04-Jan-99 197 409 606, 99.50% 05-Jan-99 229 402 605 99.30% 06-Jan-99 223 388 604 99.10% _ 07-Jan-99 253 368 603 99.00% 08-Jan-99 277 361 602 98.80% 09-Jan-99 226 358 601 98.60% 10-Jan-99 242 355 600 98.50% 11-Jan-99 214 344 599 98.30% 12-Jan-99' ' 197 336 598 98.10% ! I 13-Jan-99 190 330 597 98.00% 14-Jan-99 178 325 596 97.80% 15-Jan-99 188 323 595 97.60% I 16-Jan-99 170 322 594 97.50% 17-Jan-99 - 168 316 593 97.30% 18-Jan-99 175 314 592 97.20% I 19-Jan-99 208 312 591 97.00% f 20-Jan-99 188 309 590 96.80% 21-Jan-99 196 308 589 96.70% 22-Jan-99 216 307 588 96.50% 23-Jan-99 185 306 587 1 96.00% 24-Jan-99 178 306 586 96.00% - 25-Jan-99 181 306 585 96.00% ( 26-Jan-99 166 302 584 95.80% - 27-Jan-99 156 300 583 95.70% 28-Jan-99 166 299 582 95.50% 29-Jan-99 201 296 581 95.20% 30-Jan-99 231 296 580 95.20% 31-Jan-99 213 293 579 95.00% I 01-Feb-99 256 292 578 94.70% 02-Feb-99 250 292 577 94.70% 03-Feb-99 219 291 576 94.50% 04-Feb-991 200 290 575 94.40% 05-Feb-99 189 286 574 94.20% 06-Feb-99 182 284 573 93.90% 07-Feb-99 178 284 572 93.90% 08-Feb-99 176 283 ' 571 93.70% 09-Feb-99 160 282 570 93.20% 10-Feb-99 206 282 569 93.20% 11-Feb-99 222 282 568 93.20% 12-Feb-991 316 281 567 93.00% 13-Feb-99 194 280 566 92.90% 14-Feb-99 182 277 565 92.50% 15-Feb-99 216 277 564 92.50% 16-Feb-99, 165 272 563 92.40% 17-Feb-99 144 270 562 91.60% 18-Feb-99 149 270 561 91.60% 19-Feb-99 152 270 560 91.60% 20-Feb-99 152 270 559 91.60% 02/20/2001 1 Jacobs 9-27-00.xlsSecondary Color Secondary Effluent Color Date True Color-m /I True Color-mg/l Rank Percent 21-Feb-99 166 270 558 91.60%, 22-Feb-99 186 269 557 91.40% 23-Feb-99 152 268 556 91.10% 24-Feb-99 160 268 555 91.10% 25-Feb-99 154 267 554 90.70% ' 26-Feb-99 168 267 553 90.70% 27-Feb-99- 154 266 552 90.20% 28-Feb-99 153 266 551 90.20% i 01-Mar-99 162 266 550 90.20% L' 02-Mar-99 248 265 549 90.10% 03-Mar-99 221 264 548 89.90% 04-Mar-99 205 263 547 89.60% 05-Mar-99 226 263 546 89.60% 06-Mar-99 233 262 545 88.60% 07-Mar-99 205 262 544 88.60% J 08-Mar-99 182 262 543 88.60% 09-Mar-99 175 262 542 88.60% 10-Mar-99 165 262 541 88.60% 11-Mar-99 180 262 540 88.60% 12-Mar-99 179 261 539 88.40% 13-Mar-99 172 260 538 88.10% 14-Mar-99 158 260 537 88.10% 15-Mar-99 164 259 536 87.80% 16-Mar-99 176 259 535 87.80% 17-Mar-99 172 258 534 87.50% 1B-Mar-99 203 258 533 87.50% 19-Mar-99 196 256 532 87.00% 20-Mar-99 201 256 531 87.00% 21-Mar-99 166 256 530 87.00% 22-Mar-99 172 255 529 86.50% 23-Mar-99 131 255 528 86.50% 24-Mar-99 149 255 527 86.50% 25-Mar-99 169 254 526 86.30% 26-Mar-99 169 253 525 86.10% 27-Mar-99 167 252 524 85.60% 28-Mar-99 193 252 523 85.60% - 29-Mar-99 361 252 522 85.60% 30-Mar-99 485 251 521 84.70% 31-Mar-99 242 251 520 B4.70% 01-Apr-99 196 251 519 84.70% 02-Apr-99 162 251 518 84.70% j 03-Apr-99 154 251 517 84.70% �J 04-Apr-99 152. 251 516 84.70% 05-Apr-99 150 250 515 84.50% 06-Apr-99 178 249 514 84.30% 1 J 07- r-99 185 248 513 83.80% 08-A r-99 189 248 512 83.80% 09-Apr-99 183 248 511 83.80% 10-Apr-99 213 247 510 83.70% 11-Apr-991 184 246 509 83.20% 12-Apr-991 180 246 508 83.20% 02/20/2001 2 Jacobs 9-27-00.xlsSecondary Color `o 0 U m v c O O N N X O O N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o a o o e o 0 0 0 0 0 o e e o e o 0 0 0 0 0 o e e o 0 0 o d G o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o e o 0 0 0 0 0 o O N O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 00 O O O O O O O O O O O O O DC U l) N O w w (0 O O O N N N N N 0) m m M 0) M m m N N N N w w w w r r r r r r r r r 'It IT IT V' (+) OD w w (O � w LO w m ry M (7 NNNNNN r6Omm0; T ci T 6m O) 0) aC 06 w N 06 w w r• r r` � r,: r` 6 (6 (6 (6 w w Lo Lo 9 '7 V � V � ywwmwwaoaowaoaoaoaommmrnrr, � r• i, rrr` � r- r- r` r- � nrnr- r- nt- r, � t- r, r- r` rrr, r- rnr` I, � r, O O V C O 4c00000000rnrnrnrnmrnrnrnrnvv-ara�oaoa IarITooNowa�ov � 1* It1* � MrN- qT -T (mcm (-om -KrIT -Mov (rnv 'tv ', w w w w w w w w v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v M W R 'a E C 0 � w (O MMMNNNNN O O O O O O w w w w r` r` r` f` www (0wwwwwV� V� V� M NNNr rrr o d• V V V V -Kr IT -ItV' V' V' d• V' V' V' V' V' V M M M M M M M M M M M M M M M M M 07 M (`') M M M M M M M M M U N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N E Qwwwt` w � wwm V• � m0wwmmww w w m0 m wN wO wv r- r` m w m Nr w m 1, 0 w N r` N O N hm m w w r w w r` r• w w m r` m m N w 0 w V� � m w m o r- w M � m O m m m r r CDm w w A w m w M m O w r- N 'V r` O r r r r r r r r r r r r r r N r N r r r r M M M r r r r r N r r r N N N r r r r r r N N N M N r r r r U m H mmmmmmmmmmmmmmmmmmmmmmrnmmmmmmmmmmmmmmmmmmm (MMC)' mmm r mmmmmmmmmmmmmmmmmmmmmmmmmmmmrnmmmmmmmmmrnrnmrnmrnrnmmrnrnm � O IL d S L L TTT >. T T >. >. T T T �. >. �. T T >. >. T T � T �+ C C N n n n n n n n n n n n n n n n n m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m > M V' wfOnmmO NM <f wwf• aOmOrNM V u'i u) f` e00) O N (h au') (O f; w m O IL A I L6 (O % wC6 rN r r r r r r N N N N N N N N N N M 0 0 0 0 0 0 0 0 0 r r r r r r r r r r N N N N N N N N N N M M 0 0 O 0 0 U m m v 0 O O N w x X O O r N W C o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o a o 0 -. 0 0 - -. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O G1 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 l 1 I o l n U) m co m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N N N N O m I O m 0 0 0 N N N N N h I- f l N N N m m a Nt f 0 y V 7 V MMMMMMMMMNNNNNN � � OOOOOOmO) O; O a;oicomc6c6c6rrrl� rl� cDmmm � yrrrinrrrrrrrrrrrrnrrrrrrrn � rrrrrrWmWWWmmmmmWmmmWmWmmWm O O V r+ C 3 : 0 lW0110. M N � 0 M M I, aW} 1e0} � VM' eN� a 0�{ M M M M M M M M M M N N N N N N N NN N M M r- W LO -�t M N `'- 0 0 0 P. O '7 '7 It 't <T V V V V IT V' v V' v 1* v 'Q '7 �f -T V V IT V' C V a V W C O O O O O 0) O) Q) 0) m m m m m m r r r r r r m m m m m m M CO M N N N N NC)O CD MD) W co CO Cl) M CO M CO Cl) CO N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 0 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N fV N N N N N N U d 1� E 0 r m V N O W 't r '7 m M m m m W V r m N m 0 w V, 0 0 IO N 0v m 0 l0' 0r m M W m m M '�r I�r O W W m m r r O o 0 m " N O D) W m W N m N O W W W V m D) O O m W W V M M O O m r W U m F m m m m m O) W W a10f 010 mmm0) OIQ) 0) m m01rnrnrnrnrnrnrnrnrnrnrnrnrnrnrnrnrnrnrn rnMO) MMM mrnrn rn rn rn 0) rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn w rn rn rn rn m rn rn rn rn rn rn rn rn rn rn o� rn rn rn rn rn rn rn rn rn rn rn rn o C C C C C C C C C C C C C C C C C C C C C C C G C C C C N cp 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 777 CD Nv nNrmTO NN4 j W rm 0 O NN � If) mrmQ) O NMV fJmr60) O . NMet . . .. . gNNN 000000000 . . �- . '- � � � NN N N 0 O -� 9 N --� O 0(O 0aD 0 O O O O O N N N N y N � W -� VW MWNO WNNNN O O O O O O O O O W N N N N N N OO CD V mm A N i i i � i i i i � � o fnln (ninvlCn (n (nm M am (nDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDLLLLLLZ � O N W 2 (D fD C1 (D N (D N (O (D (O C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C d v v v a a a a a a a a o co m o (o o to co (O In CO Oro 9 co (O 19 to 199 o co o Coo m o O o W o (O (O (O (D (D fD CD (O tD O O O O O fO (D CO (O (O O (O (O O (O O O (0 (D (O cO to to CD O O O CD O CO co co co co (D f0 O O (D (O (D O (O (O co O W CD CD CD CD O co CO O co co O O (o CO CO O CO CO CO CO CD W CD W CO CD CD 0 CO W CO CD CO 0 CD O O 0 CD CD (D CD O CO (O W O (O C A VA AV N-+ N N N �O O � co W W A WOOO co C mAODmmmA8 :� ONW CDC 'O mO V CO 0m 0AO W V O V 00 AOAO � O WD AOAW co AAm 3 m Cl) N N N N N N N N N N N N N N N N N . N N N N N N N N N . j . . N N3 N) s j N s . . . . . . . . O n CID mmm W 00 (O C) 0(O (O 00000 co NN W W W co AA A A A A AAAAAmmmmmmmJJJm O l O 9 a O m W W W W W W W W W W W W W W W W W W W W W W W W W co W W W W W W W W W W W W W W W W W W W A A A A A A y mmmmmmm0mmMO7mmmJJJ V V V V V J V CO W Co CC, Cc, mm V W OO N W Amm V mOO --+ N W Amm V W CoO -+ N CO Amm V m (O O -+ N W Amm V m (DO � N W Amy C M n O O m m m Ol m m m m m m m m m m m m m O m m m m m m m m m m m m m m m O m m m m O m m m m m m m m m m (3) 0) V V V V V co (O -� . s . 74 -• NNNNNNNNNNNNNNNNNAA mrn Vlm Cn m ccnn N Cb OO m OJ W O O O O O m m OO m m DD W O o o O o O O O W W W W (O (O fO W <D (O fD f0 O (0 O O) Oo fD <O (O A n O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 V o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .•, N (O N V O O X N C CD O O C O N n O O Secondary Effluent Color 'j Date True Color-m /I True Color-mgll Rank Percent 13-Sep-99 208 208 354 57.80% 14-Sep-99 218 208 353 57.80% 15-Sep-99 263 207 352 57.20% 16-Sep-99 268 207 351 57.20% _ 17-Sep-99 216 207 350 57.20% { G 18-Sep-99 203 207 349 57.20% 1� 19-Sep-99 187 206 348 55.40% 20-Sep-99 277 206 347 55.40% 21-Sep-99 368 206 346 55.40% 22-Sep-99 244 206 345 55.40% 23-Sep-99 204 206 344 55.40% 24-Sep-99 201 206 343 55.40% 25-Se -99 221 206 342 55.40% 26-Sep-99 251 206 341 55.40% 27-Sep-99 227 206 340 55.40% 28Sep-99 230 206 339 55.40% 29-Sep-99 199 206 338 55.40% 30-Sep-99 200 205 337 53.70% 01-Oct-99 227 205 336 53.70% 02-Oct-99 255 205 335 53.70% 03-Oct-99 299 205 334 1 53.70% -1 04-Oct-99 281 205 333 53.70% { 05-Oct-99 240 205 332 53.70% 06-Oct-99 249 205 331 53.70% 07-Oct-99 237 205 330 53.70% 08-Oct-99 226 205 329 53.70% 09-Oct-99 217 205 328 53.70% 10-Oct-99 181 204 327 52.30% 11-Oct-99 198 204 326 1 52.30% _ 12-Oct-99 238 204 325 52.30% 13-Oct-99 210 204 324 52.30% 14-Oct-99 242 204 323 52.30% 15-Oct-99 255 204 322 52.30% - 16-Oct-99 197 204 321 52.30% 17-Oct-99 202 204 320 52.30% 1 B-Oct-99 214 204 319 52.30% - 19-Oct-99 200 203 318 51.30% 20-Oct-99 231 203 317 51.30% 21-Oct-99 232 203 316 51.30% 22-Oct-99 194 203 315 51.30% 23-Oct-99 161 203 314 51.30% 24-Oct-99 155 203 313 51.30% 25-Oct-99 176 202 312 50.30% 26-Oct-99 175 202 311 50.30% 27-Oct-99 213 202 310 50.30% 28-Oct-99 231 202 309 50.30% 29-Oct-99 237 202 308 50.30% 30-Oct-99 241 202 307 50.30% 31-Oct-99 228 201 306 49.60% 01-Nov-991 211 201 305 49.60% 02-Nov-991 209 201 304 49.60% 02/20/2001 6 Jacobs 9-27-00.xlsSecondary Color i � - Secondary Effluent Color 2 Date True Color-m /I True Color-mg/l Rank Percent 03-Nov-99 256 201 303 49.60% 04-Nov-99 267 200 302 47.80% 05-Nov-99 254 200 301 47:80% 06-Nov-99 336 200 300 47.80% 07-Nov-99 251 200 299 47.80% i 08-Nov-99 227 200 298 47.80% _._ 09-Nov-99 247 200 297 47.80% 10-Nov-99 270 200 296 47.80% {~I 11-Nov-99 280 200 295 47.80% L 12-Nov-99 258 200 294 47.80% 13-Nov-99 236 200 293 47.80% 14-Nov-99 231 200 292 47.80% 15-Nov-99 215 199 291 46.50% 16-Nov-99 192 199 290 1 46.50% 17-Nov-99 235 199 289 1 46.50% 18-Nov-99 229 199 288 46.50% 19-Nov-99 210 199 287 46.50% 20-Nov-99 226 199 286 46.50% 21-Nov-99 206 199 285 46.50% 22-Nov-99 214 199 284 46.50% 23-Nov-99 234 198 283 45.70% j-` 24-Nov-99 204 198 282 45.70% 25-Nov-99 206 198 281 45.70% 26-Nov-99 204 198 280 45.70% 27-Nov-99 228 198 279 45.70% 28-Nov-99 292 197 278 44.40% 29-Nov-99 232 197 277 44.40% 30-Nov-99 246 197 276 44.40% 01-Dec-99 240 197 275 44.40% 02-Dec-99 235 197 274 44.40% 03-Dec-99 204 197 273 44.40% 1 04-Dec-99 183 197 272 44.40% 05-Dec-99 188 197 271 44.40% 06-Dec-99 177 196, 270 43.40% 07-Dec-99 183 196 269 43.40% 08-Dec-99 228 196 268 43.40% -' 09-Dec-99 261 196 267 43.40% 10-Dec-99 214 196 266 43.40% 11-Dec-99 187 196 265 43.40% 12-Dec-99 158 195 264 42.90% 13-Dec-99 154 195 263 42.90% 7 14-Dec-99 160 195 262 42.90% 15-Dec-99 151 194 261 41.20% 16-Dec-99 151 194 260 41.20% J 17-Dec-99 158 194 259 41.20% 18-Dec-99 158 194 258 41.20% 19-Dec-99 170 194 257 41.20% - 20-Dec-99 182 194 256 41.20% 21-Dec-99 188 194 255 41.20% 122-Dec-991 182 194 254 41.20% 23-Dec-99 183 194 253 41.20% 02/20/2001 7 Jacobs 9-27-00.xlsSecondery Color Secondary Effluent Color Date True Color-m /l True Color-mg/l Rank Percent 24-Dec-99 170 194 252 _ 41.20% 25-Dec-99 185 193 251 40.60% 26-Dec-99 229 193 250 40.60% 27-Dec-99 306 193 249 40.60% 28-Dec-99 194 193 248 40.60% V 29-Dec-99 176 192 247 40.10% 30-Dec-99 154 192 246 40.10% 31-Dec-99 137 192 245 40.10% 01-Jan-00 136 191 244 39.40% I� 02-Jan-00 154 191 243 39.40% 03-Jan-00 156 191 242 39.40% 04-Jan-00 172 191 241 39.40% 05-Jan-00 169 190 240 38.30% 06-Jan-00 176 190 239 38.30% 07-Jan-00 138 190 238 38.30% 08-Jan-00 160 190 237 38.30% 09-Jan-00 146 190 236 38.30% 10-Jan-00 136 190 235 38.30% 1 11-Jan-00 136 190 234 38.30% 12-Jan-00 175 189 233 37.80% 13-Jan-00 190 189 232 37.80% 14-Jan-00 215 189 231 37.80% LI 15-Jan-00 208 188 230 36.00% 16-Jan-00 235 188 229 36.00% 17-Jan-00 251 188 228 36.00% 18-Jan-00 214 188 227 36.00% 19-Jan-00 223 188 226 36.00% 20-Jan-00 238 188 225 36.00% I I 21-Jan-00 312 188 224 36:00% �J 22-Jan-00 282 188 223 36.00% 23-Jan-00 230 188 222 36.00% 24-Jan- 00 222 188 221 36.00% 25-Jan-00 234 188 220 36.00% 26-Jan-00 240 187 219 35.10% 27-Jan-00 263 187 218 35.10% 28-Jan-00 272 187 217 35.10% 29-Jan-00 241 187 216 35.10% 30-Jan-00 190 187 215 35.10% 31-Jan-00 206 186 214 33.50% 01-Feb-00 230 186 213 33.50% 02-Feb-00 232 186 212 33.50% 03-Feb-00 212 186 211 33.50% 04-Feb-00 228 186 210 33.50% 05-Feb-00 186 186 209 33.50% 06-Feb-00 206 186 208 33.50% 07-Feb-00 208 186 207 33.50% - 08-Feb-00 205 186 206 33.50% 09-Feb-00 251 186 205 33.50% 10-Feb-00 259 185 204 32.40% 11-Feb-00 227 185 203 32.40% 12-Feb-00 202 185 202 32.40% l� 02/20/2001 8 Jacobs 9-27-00.xlsSecondary Color Secondary Effluent Color Date True Color-m /l True Color-mg/1 Rank Percent 13-Feb-00 203 185 201 32.40% 14-Feb-00 198 185 200 32.40% 15-Feb-00 178 185 199 32.40% 16-Feb-00 180 185 198 32.40% 17-Feb-00 166 184 197 31.50% i 18-Feb-00 140 184 196 31.50% 19-Feb-00 176 184 195 1 31.50% 20-Feb-00 200 184 194 31.50% 21-Feb-00 218 184 193 31.50% L' 22-Feb-00 243 183 192 30.90% 23-Feb-00 282 183 191 30.90% 24-Feb-00 252 183 190 30.90% 25-Feb-00 242 183 189 30.90% 26-Feb-00 242 182 188 29.20% 27-Feb-00 197 182 187 29.20% 28-Feb-00 190 182 186 29.20% 29-Feb-00 200 182 185 29.20% 01-Mar-00 194 182 184 29.20% 02-Mar-00 204 182 183 29.20% L 03-Mar-00 167 182 182 29.20% 04-Mar-00 172 182 181 29.20% 05-Mar-00 186 182 180 29.20% i� 06-Mar-00 142 182 179 29.20% 07-Mar-00 180 181 178 28.10% 08-Mar-00 203 181 177 1 28.10% 09-Mar-00 199 181 176 28.10% 10-Mar-00 190 181 175 28.10% 11-Mar-00 195 181 174 28.10% j 12-Mar-00 216 181 173 28.10% 13-Mar-00 221 181 172 28.10% 14-Mar-00 227 180 171 27.10% 15-Mar-00 234 180 170 27.10% 16-Mar-00 412 180 169 27.10% 17-Mar-00 402 180 168 27.10% -� 18-Mar-00 284 180 167 27.10% 19-Mar-00 270 180 166 27.10% 20-Mar-00 262 179 165 26.60% 21-Mar-00 200 179 164 26.60% -1 22-Mar-00 188 179 163 26.60% 23-Mar-00 207 178 162 25.10% 24-Mar-00 237 178 161 25.10% 25-Mar-00 214 178 160 25.10% `R 26-Mar-00 203 178 159 25.10% 27-Mar-00 214 178 158 25.10% 28-Mar-00 230 178 157 25.10% 29-Mar-00 208 178 156 25.10% 30-Mar-00 216 178 155 25.10% 31-Mar-00 211 178 154 25.10% 01-Apr-00 200 177 153 1 24.50% 02-Apr-00 172 177 152 24.50% 03-A r-00 184 177 151 24.50% I C 02/20/2001 9 Jacobs 9-27-00.xlsSecondary Color I O N N O N N N ! ! ! ! ! ! ! ! O O O O O O O O O W N N N N N N N N N N ! ! ! ! ! ! ! ! W 0 0 0) 0 0 A W N (O 00 J 0I Crl A W N ! O CO 00 V W CT A W N -+ CO J 01 W A o � DDDDDDDDDDDDDDDDDDgy N 0) OI N O) 0) 07 0) N N 01 0) N O1 01 0) O1 N N N 07 01 N 01 O1 'O V V 'O V V 'O 'O "O 'O V V 'O V r r r i r i r i r i t r r r i r r 7 7N O- O O O O O O O O O O O O O O O O O O O O O O O O CD CD CD O O O O O O O O O O O O O CD CD CD O O O O O ! 0 0 0 0 0 0 0 0 0 0 0 0 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 CD NN W W N W W NN ! ! N ! W A " K) N ! ! ! ! ! ! ! ! ! ! ! N NN N W N N W N N NN -+ -+ N -+ 0 OA W AN -+ 0) ONOlO CC) ! (D O N CD O) N 01 N A- .A OIA (7tA Ul Ot OI (n Cl) V O W W OI OlM MOM 0) A W (O JOOJ (O ?A N Oo 0) A 0) m W J 00 A M 4A V 0 (n 0 0 W 00 0) N O co A N C N COO) 0) C) O O 0) O 0) M 0) J V V V V V J V J V V V V V V V V V J J J V V J J V V J V V J V J V V J J J J J V J 00 00 CD co 00 00 O to (O O O O O O O -� -+ N N N N N N N O N 0)N N W W W A A A A (T (S) 0) OI D( 0) 0) 0) M T 0) T MT J 1 (C CL Q O ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 0 0 0 0 0 0 ! CD N N N N N N N N N W W W W (P W W W W W A A A A 1+. A A A A A O N W! N W A O) D) J W to W O -+ N W A 00 V OD W O ! N W A 0 M J W O O ! N CO CT M V OD W CD W fT W J (n CD C3 O m M n O po -Ni K N N N N N N N N N N N N N N N N N L Cn 0) 0) 01 0) T 0 0) M V J V V V V OD 00 t0 f0 (O (O fD tD W W W O O D -+ -� -+ ! -+ -� ! N N N N N N N N N N 'A 1 0) V L) V V fO (O (D (D O -1 -) V V V V V V OOOOOOOOO6 Cn Cn O C OO L) LI �l �) LI Ll �) a000 OD OD 00 Oo 00 CD 6 Oo in n C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 0 0 0 0 0 o a o 0 0 0 o a o 0 0 0 o a o 0 0 0 0 0 0 0 0 0 0 0 0 0 o a o 0 0 0 0 0 0 0 o a o a o 0 0 0 O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 My O N l0 V r O O X C CA N Q O 7 O. O1 0 O 0 Secondary Effluent Color Date True Color-m /l True Color-mg/1 Rank Percent 25-May-00 262 168 99 15.70% - 26-May-00 205 168 98 15.70% t 27-May-00 181 168 97 15.70% - 28-May-00 170 167 96 15.40% 29-May-00 184 167 95 15.40% 30-May-00 210 166 94 14.10% 31-May-001 211 166 93 14.10% 01-Jun-00 211 166 92 14.10% 02-Jun-00 240 166 91 14.10% 03-Jun-00 204 166 90 14.10% 04-Jun-00 238 166 89 14.10% 05-Jun-00 251 166 88 14.10% 06-Jun-00 269 166 87 14.10% 07-Jun-00 270 165 86 13.80% 08-Jun-00 240 165 85 13.80% 09.Jun-00 259 164 84 12.80% 10-Jun-00 251 164 83 12.80% 11-Jun-00 302 164 82 12.80% 12-Jun-00 291 164 81 12.80% t , 13-Jun-00 296 164 80 12.80% 14-Jun-00 300 164 79 12.80% s 15-Jun-00 1 282 163 78 12.60% 16-Jun-00 283 162 77 12.30% 17-Jun-00 322 162 76 12.30% 18-Jun-00 330 161 75 12.00% 19-Jun-00 270 161 74 12.00% -I 20-Jun-00 262 160 73 11.10% 21-Jun-00 174 160 72 11.10% 22-Jun-00 182 160 71 11.10% L 23-Jun-00 252 160 70 11.10% 24-Jun-00 235 160 69 11.10% 25-Jun-00 210 158 68 10.00% 26-Jun-00 198 158 67 10.00% 27-Jun-00 222 158 66 10.00% 28-Jun-00 270 158 65 10.00% 1 29-Jun-00 286 158 64 1 10.00% 30-Jun-00 290 158 63 10.00% 01-Jul-00 231 158 62 10.00% 02-Jul-00 181 157 61 9.80% j 03-Jul-00 198 156 60 8.80% 04-Jul-00 175 156 59 8.80% 05-Jul-00 206 156 58 8.80% 06-Jul-00 202 156 57 8.80% 07-Jul-00 205 156 56 8.80% 08-Jul-00 210 156 55 8.80% 09-Jul-00 236 155 54 8.50% 10-JUI-00 226 155 53 8.50% 11-Jul-00 182 154 52 7.00% 12-Jul-00 180 154 51 7.00% 13-Jul-00 191 154 50 7.00% 14-Jul-00 164 154 49 7.00% 02/20/2001 11 Jacobs 9-27-00.xlsSecondary Color O W W O W CO VDC� TC� 0C� AC� CA) C C� OC (CD OD VC 0) 0C AC WC NC JC OC OC OC VC C C A CO N CN AN WN NN N ON JD OJ VJ O DDDDDDD � L � _ L � � � �� � DDDD � D � N Sl) C C C C C C C G C C C C C C C C C C C O OV7 U] f0 D] OOOfO D] (OOOfOOOU] fp D] f0 f0 f0 D] D7OOD] OOO O 66666666666666666666666666 O O O O O O O O O O O O O O O O O O O O O O 0 > 0 o o 0 0 0 0 C 0 CDC 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C C 0 C 0 0 0 0 0 0 C C 0 c C D) co NNN N NN NN CO N JO O V 0 N OD m V OD C CAW N 0) W CD N o7 V C) m O N A m m 0) N CO A N 0 Tpp V OD V V O O N O O O D) O NNW V D) C) N -+ Cn -4 0 W NON > V 0) CO V W C " 0 CO C) N W M -P V C) C)OO NA N CD OQ) ON W OC) � 3 m cn > J > J J J J J J J J J J J J J J J J > J > > > J J > > J J > J J J J 0 A OJNNN W W W W W W W W W W A A A A A A A .pA A A A A A AA m C) m W 00 V10) W V1 Vt C) (� (� N � Ct O O ANNODOO JO) O) CIOQI V V CDO -+ N N NAAA W W W V do ao U700 0 O -+ > > NN N N W A AA AAI 3 N � N W A c n m V co 0 N N N N N N N N N CA) co W co W W W W W W A A -N A � A A A Z O C) C) V W S C M O O WWWW WA A WW . . . . .COID W W W W iO iD WA. C) V LV N N N V V I) N :Ai. V �IGfT En N O C C C O fD C) V V V V 0 0 0 0 d 0 C 0 0 0 0 C 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C C 0 0 0 0 p o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e N w O N V O O X H N CD O O C CL N Q n O O 1 Secondary Effluent Color Statistical Analysis Mean 208 Standard Error 1.91 Median 201 Mode 188 Standard,Deviation 47.1 Sample Variance 2218 Kurtosis 4.10 Skewness 1.44 Range 381 Minimum 104 Maximum 485 Sum 126919 Count 609 Confidence Level 99.0% 4.9 99% Upper 318 99%upper exceedance level is based on the mean x(2.326 x standard deviation).The 2.326 factor is from a"t Distribution Table"for infinite degrees of freedom at 1.00%. Histogram HIStO rant Bin Fre uenc g 104 1 120 1 120 136 6 152 29 100 199 99 215 105 65 247 48 — 60 263 36 t+ w p9 a'"'¢ w �' t "Ev 'n'r 1• x y x i 295 14 1 LL 310 11 40y 326 6 2 20 i ; Rir � v 358 3 Ih A i = t�al[ , f , > 374 2 0 ;r , k s;y 3 r , r ,b.-.. �, �': 390 1 406 1 �Ob N K�� N C�, rp �p�h ��6 �y0 ��O �rlrl �y^��0�0 422 2 437 1 Bin 453 0 469 0 More 1 i 02/20/2001 13 Jacobs 9-27-00.xlsSecondary Color # z- Z$ t rC� S _ 1 ��, r�1�eS¢crs;Itwa►sio lnk�ij Pinc RIOT/Ate p, Esw, Pil1c Eo l tuj Eo S. Lla ftc- GC ll9,lll (3LO 3t $� 5t Tbi - 12-910 j11 (� L19 ttlef e L„xe �-Z IrIS Overview - Mill Sewers Hill Filter Plant Erco ► Flows - Color - Fiber Data For: 3125198 0.32 MGD Chemical Storage FIL 3.30 MGD #19 PM Xil Riley Bark Depoly, leach 8.87 Tons Fiber Chg Boiler Broke -Plant 2.96 MGD #20 PM e. 4.10 Tons Fiber #2 Fiberllne D 0.08 I Tons Fiber G E S #1 FIL T W , ps E Brown #14 PM Area 9 Tons Fiber R Stock n tr 1.51 MGD WBL S Washing #11 RB Evaps Power #12 PM Power Boilers Boller 0.40 #10 RB MGD f. � s3aj:p #11 PM Kilns U19 Tonfb r' Syste s Off 1.50 Tons Fiber 1.44 4.56 MGD Re- 2.50 MG HW Tons 11 Fiber O Caust Screen Tons Fiber Room 55.42 ons Fiber 0.92 MGD 7.11 MLbs Color Pp4 a� 87584 WTP �{8 #Color 4 FF • I q : w) 0..�.rt�N 3W11hIx i r tt elT 1 , Irpp,y St�eFad, i s nrj hx�fav k U n .. C`y�i �r�yx�(�ls si �tiLl S°ri e��1R'SRyes IE La � 11� • - I • • - t.r � � ^����4.y'34��r.�ay><'`s"�'�'vW N'n� 't�r"4.� �}.qm. w . ♦W�eF l+T�k �ti '4G_4N G��}"i�lmvM1'\VY �5 -I '1^4tTM^'n`'4Rm�nr^x 4 "s'z §'4 �14 w`t+t'vW Rye 'r4 5, 1"y`• Y a4 ♦vV 5 VGA 9 aJ++�4 i ra.ir� i^LyO+y�ty'o�4'S�l�� ��RiM401�<49�'7'. • e�4L'+a�`r}?+�`.�i``�``�,�.0ti�a�j2i.,^��,4•.��F}t,�4�a^. - • y .. �wh�v°�r4k h�y`g5�``°,�Vey.4t,4�:4;`. h.'R11{`w��Y,l' 4L8F Y�Y`5'W'4 V4 • i lv k.��R.. 1 �1 I I v y y Color Loadings to Mill Sewer Areas 27-Sen-00 Long Term In Control Upper Control wer Area Daily Color Units Average Average Limit � '--------- ----------- ----- ------- ------- ----- Primary Influent 51525 Lbs/day 65705 53400 81963 Pri inf Turbidity 8.00 18.69 12.93 Secondary Effluent Effluent 28 Lbs/day 47737 39472 50032 !#1 Sewer 1090 Lbs/day 2820 L' #2 Sewer 80 PPM 847 j 1 <5 T12B Sewer 3180 Lbs/day 69fi5 4501 7837 �'L`''' 3A Sewer 6170 Lbs/day 12838 12309 20228 #4 Sewer 240 nnM 342 Contaminated Condensate Sewer Values Concentration 166.00 mg/L Flow 738.20 GPM Color 1470.50 Lbs/day 3113 2435 4390 Combined Condensate Sewer Values Concentration 47.00 mg/L Flow 214.03 GPM Color 120.71 Lbs/day 1186 1216 2251 I Sewer y; 8100 Lbs/day 10508 7434 13581 rs'C CRP Color 5291.86 Lba/day 4965 I A Sewer 10920 Lbs/day 16736 13671 23053 nine Bleach 7250 Lbs/day 9627 10119 18011 11.21 Lbs/ton pulp 16.32 17.27 31.44 +—I Pine DI 3600 Lbs/day SS39 6420 12538 Pine Eo 2650 Lbs/day 2687 2658 4254 J Pine D2 1000 Lbs/day 871 Hardwood Bleach 15110 Lbs/day 12753 12439 21190 II 18.86 Lbs/ton pulp 17.25 14.2 30.1 Hardwood D1 7350 Lbs/day 5905 5292 13435 Hardwood Eo 7760 Lbs/day 6848 5875 11815 }fewer Total 29780.0 JOTE: Upper Control Limits currently bases on 3sig For full compliance, the iEton Mill will utilize a Lower Action Level of 2sig (triggering incident 1Vestigation) , while 3sig will trigger corrective action. MSH Blue Ridge Paper Products, Inc. Canton, NC s a 2001 Color Removal Technology Assessment Blue Ridge Paper Products,Inc. I Canton,North Carolina 6A Sewer Data -Total-`.-..,-T No.6ASewer Conductivity Total Solids Soluble S AI Be Ca Fe K Mg Mn Na Si No.6A No.6A No.6A -, mg/I mg/I mg/l mg/I mgA mgA mgn mg/l mgA pH US/cm PPM 05/15/2000 S 4.12 0.361 109.50 1.07 54.151 17.05 5.93 794.5 12.03 -' 05/1512000 T 4.19 0.50 111.30 1.12 413.001 15.99 5.68 735.7 11.41 3.72 4080 3396 06/12/2000 S 3.85 0.48 99.32 0.80 46.63 17.91 5.70 707.0 13.00 -0611212000 JT , 4.10 0.50 104.70 0.85 46.37 16.52 5.59 662.1 12.26 4.77 3550 2176 _ 07/10/2000" S 2.55 0.32 94.37 0.86 48.97 12.78 4.27 728.8 6.83 �07/10/2000: T. 2.60 0.38 96.38 0.93 48.52 12.54 4.25 697.0 6.72 3.65 3860 2712 08/14/2000 S 3.09 0.51 114.90 0.92 34.03 17.53 5.27 943.0 12.83 T8114/2000 T1 131 0.56 117.70 0.97 47.15 15.621 1.21 478.9 7.16 4.74 4460 3628 09/11/2000 S 5.75 0.431 175.20 1.15 34.38 26.68 8.80 1104.0 18.63 X9/11/2000, Ts, 5.60 0.46 171.70 1.14 39.35 23.75 8.06 1004.0 17.58 4.26 5390 4477 10/09/2000 S 3.13 0.31 119.80 0.71 48.16 15.66 5.14 587.0 5.59 �1 010 9/2 0 0 0.7 t iarT# 3.01 0.33 107.30 0.72 45.91 14.14 4.84 511.3 5.00 3.14 33501 2621 Average S 3.75 0.40 118.85 0.92 44.39 17.94 5.85 810.721 11.48 Avers e,, 1-T ' 3.80 0.46 118.18 0.96 45.88 16.43 4.94 681.50 10.02 4.05 4115.00 3168.33 I 1 I_J 6A dala.xls 021202001 " q (^ d. .41 Fsf,'2tf.r� � f 1f � } [PA[" t N� 7f I�, tlf r.• t4 ! r tt S �44'a+ � �i r'}�i '} q •" En.It 1r'£,.t4pif'i�'Yfk d r r. I �I� r 1'� 1 f,1v nf}.qhp/� t• �s:s d� f �{ '`E' 7r 1ry0 h-7 {:_?' 'ft fi P � ` .r, r 1 a � 4�.,3���.✓l�i� 1� � '� P T 1fl''Yi �f•g4.{[Es�x##� �'r 'tlf tl l'k ' � ` 1 ��V �'��•,{4'i M+y: rS'��~• ..� fl 5 #` $ i t,RF^ '`. t: .fir i �• .fi ;; t:•.:._ J}i 1 r r t ��k 4rpsf{'��br 1. N1" r x A It�.: + A i 114 t'?�TT� i 1 � 4 1 y�t S • r f � i R i. �Ij r '1 � !; AllIA Y s w: � ° T", *E�-x�#It 7 ',i 1 s 'SI • 1 P YI2.14 • v i rr R g u f 5{ 1` w7rN'� r' r 4H g n~ rp��1 x— i ._ F t rP itA A • a S r • 3F = r? �, tz F�h L '. F S.e L l 1 1)0 • S as • �". - 1'e "' k{.._ I n u.. � � I Y��••R61 it dtt- i+ a ± '..w g ..._ +. ' ¢i�:_• x t t nr: .d .:.yd ^. r �ue�.l+ Yr } Fr 1. I Pry�j A, � .v TIFF n✓... II VT bf.� � .. :♦ a. Af„ * ...M��1f u'1 it �,r�a - .. • _ . Via, •. �1{, - arks s• -vl r f 4 ry 11 CLARIFIER CONCRETE REQUIREMENTS BASIS: 172 FT OUTSIDE DIAMETER "-W 170 FT INSIDE DIAMETER ' " 15 FT SIDEWALL DEPTH 0.25 FT/ 1 FT BOTTOM SLOPE i _} SIDEWALLS CONE UNITS OUTSIDE INSIDE OUTSIDE INSIDE x 4k f 86 85 86 85 FT RADIUS 3.14 3.14 3.14 3.14 PI ~ 15 15 21.5 21.25 FT HEIGHT r 348,528 340,470 166,519 160,778 CF VOLUME OUTSIDE 8,058 5,742 CF INSIDE 298 213 CY VOLUME x ; ' = 511 CY TOTAL 525 CY DESIGN I--. 1 <_I s 1 t L� 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Operating Cost Update Canton,North Carolina Item Price Units 1 Operating Personnel ',=- $60,000 Per Year 2 Maintenance Personnel <'`_ „?t $60,000 Per Year 3 Electrical Power , $260.00 Per Horse-Power Year 4 Steam 7 $2.15 Per M Pounds 5 No.2 Fuel Oil ">•;x`: "' "''z $0.71 Per Gallon 6 Water z,cua ' 'r,.,., $83.50 Per Million ° 41 = Gallons 7 Chemicals � u. +t SF f g s y sr •:' 7 A Alum a=. $138 Per Ton t • 7B Sulfuric Acid98% r t. r''• *:'_' $64 Per Ton 7 C Caustic 50% v'. "" _ $410 Per Ton 7 D Lime ;,, x :a; ;syF $69 Per Ton 7 E Calcium Carbonate a1 ` ,* ,-1M $150 Per Ton 77 Carbon Dioxide $69 Per Ton 7 G Liquid Pol aminer tS: " $2,100 Per Ton 7 H Dry Polymer ;_ ;c $3,980 Per Ton 71 Liquid Oxygen sre{`e ' $86.98 Per Ton 8 Ultrafiltration Membrane Replacement ^., e: a $15.00 Per Square Foot 9 Carbon Replacement q $1,800 Per Ton t i 10 Disposal-Landfill a #' �K'_,1 $10.00 Per Cubic Yard The above prices were provided by Blue Ridge personnel on January 4,2001. i I SI ing Adjustments "g:� ._ .; ., Item Value A Average Flow-MGD r= * s{;: ';' 1995 25.7 Factor 0.965 B Average Color-MGD 1995 70900 ' 4V""'i 2000 57395 Factor 0.810 C Flow/Color + :'. x; Factor 0.887 { t Cost Summary Total Eqpt Cost Eqpt&Material Total Capital Total Operating 1 Alum $13,429,462 $18,147,719 $57,373,000 $26,407,504 i 2 Lime $14,156,200 $18,758,280 $60,884,000 $15,341,523 3 Pol amine $7,305,771 $10,850,197 $40,203,000 $12,868,528 4 Ultrafiltration $39,562,493 $51,983,599 $149,768,000 $28,304,090 5 Carbon Adsorption $22,035,773 $30,088,540 $99,289,000 $21,890.847 I 6 Storage and Time Release $1,461,419 $2,517,467 $34,789,000 $4,374,404 7 Ozonation $6,978,423 '1 '2' $38,140,000 $6,647.723 9 8 C stallization $3,572,878 $4,518,089 $11,151,000 $2,137.0. Ozonation Equipment includes an adder for 40%of the turnkey ozonator system($15,000,000 x 0.40= $6,000,000). The total equipment cost of the Ozonation System assumes that 40%of the ozonator turnkey cost is due to equipment($15,000,000 x 0.40=$6,000.000). This amount has been added to the other associated equipment costs for this technology to determine a total equipment cost. i I t 02/20/2001 0perating$1.xls Pump Quotations -Provldad by III Ti IndustriesI Goulds Pumps r;G Du Flow Head Hp Type Model Size Motor HP RPM Const. Pumpcost Motor cost Total cost 1 Alum 40 50 1 Centrifu al-0 an im alter 3196 lxl.5-8 3 1750 316SS 3800 255 4055 2 Alum Mud 900 too 50 Cenlrifu al-o an im eller CV 3 998 4X6-13 60 1780 CD4-MCU 8400 2586 10986 3 Carbon Slurry 165 100 10 Cenldfu al-o an tm eller CV 3796 2x3-13 20 1780 CD4-MCU 8200 798 8998 4 Cmbon Slu 275 100 15 Centrifugal.open impeller CV 3196 2X3-13 25 1780 CD4-MCU 8200 951 9151 5 Carbon Slu 1527 100 60 Centrifu al-o en Impeller CV 3196 6X8-16 125 1780 CD4-MCU 16400 5333 21733 6 Carbon SIVay 1080 125 125 Centrifugal-a en Impeller CV 3796 6X8- 55 200 1780 CD4-MCU 16800 7076 24776 7 Condensate 31 100 1 Centrifugal 3796 ix2A0 5 1750 376SS 4200 287 4487 8 Condensate 137 100 5 Cenlrifu al 3196 1.5x3.13 10 1750 318SS 5100 46e 5568 9 Condensate 152 50 5 Centrifugal 3196 3x4-BG 5 1760 316SS 5300 287 5587 10 Condensate 275 too 10 Centrifu al 3196 2x3-13 15 1770 316SS 5900 616 6516 11 Dilute Caustic 10 50 0.5 Centrifugal 3196 1X1.5-8 2 1150 316SS 3800 255 4055 12 Dilute Caustic 60 231 5 Centrifu al 3196 1X1.5-8 15 3500 376SS 4000 627 4627 13 Dilute Caustic 275 25 3 Cenldfu al 3196 3x4-8G 5 1165 376SS 5300 506 5806 14 Dilute Deter ant 60 250 10 Centnlu al 3796 1X2-10 15 3580- 316SS— 4200 652 4852 15 Dm s 50 100 2 Centdfu al-o en im eller 3196 7X2.10 5 1750 318SS 4200 287 4487 16 Eva orator Bottoms 16 200 3 Centdfu al-o en im alter LF 3196 1X7.5-8 7.5 3500 376SS 4400 359 4759 17 Eva orator Bottoms 40 75 2 Cenlrifu al-o en im alter 3196 iX2-10 5 1750 318SS 4200 287 4487 18 Eva orator Concentrate 137 000 10 Cenlrifu al-o en Impeller 3196 1.5X3-13 10 1750 376SS 5100 468 6568 18 Slud a 79 100 5 Centdfu al-o en impeller 3196 1.5X3-13 10 1750 316SS 5100 q68 5568 Allemate 20 Sl AL 1. JC 1XIZA1 7.5 1750 316SS 7500 357 7857 ud a 653 100 25 Cenlrifu al-o en im alter 3198 4X6-13 30 1750 376SS 7500 1105 8605 Allemate JC 4X6-14 40 1750 316SS 10000 1468 11468 27 Siud a 1632 100 60 Centrifu al-o en im alter 3796 BX8-13 60 1780 318SS 13200 2586 15786 Allemate JC EX6- 44 75 1750 316SS 13500 3279 16779 22 Spent Carbon tfi9 100 10 Centdfu al-o en Impeller 3796 b4x6.13 3 10 1750 318SS 5100 468 5568 23 Wastewater 23 90 1 Centdfu al 3796 1 5 3800 316SS 3100 336 3436 24 Wastewater 38 120 2 Centrifu al 3196 5 1750 316SS 4200 287 4487 25 Wastewater 38 120 2 Centrifu at 31956 5 3600 316SS 3100 336 3436 26 Wastewater 110 231 10 Centdfu al 3196 8 t5 3500 316SS 3900 652 4552 27 Wastewater' 158 100 7.5 Centrifugal 3796 3 7.5 3520 376SS 3300 359 3659 28 Wastewater 270 260 30 Centrifugal 3796 0 40 3560 376SS 4800 1533 6333 29 Wastewater 594 180 40 Centdfu al 3796 50 1775 376SS 7200 1803 9003 30 Wastewater 600 180 40 Centrifu al 3796 50 1775 376SS 7200 1803 9003 31 Wastewater 653 50 15 Cenldfu al 3796 75 1150 316SS— 7500 1090 8590 32 Wastewater 1127 70 30 Cenldfu al 3796 6x8.15 30 1180 376SS 13500 1854 15394 33 Wastewater 1200 000 50 Cenlrifu al 3198 Bx8-13 50 1780 316SS 13200 1803 15003 34 Wastewater 1367 75 40 Centrifugal 3195 Bx8-13 40 1780 376SS 13200 1468 14668 35 Wastewater 50 00 331 400 Cenldfu at 3410 10x12-17 400 1785 376SS 33000 14974 47974 36 Wastewater 10000 25 100 Centdfu al 3415 16xl8-18 125 890 318SS 82500 9654 92154 37 Wastewater 10000 75 300 Cenldfu al 3415 16xl8-18 300 1180 316SS 82500 12135 94635 38 Wastewater 39 Wastewater 10000 too 350 Centdfu al 3415 16x18-1B MOSS350 1180 MOSS 82500 14084 96584 10000 100 350 Vertical bUM2 FUMP VIT-FF 20xl7-3 350 1180 416SS 530131 240001 77013 40 Wastewater 20000 too 750 Vertical Sump Pump VIT-FF 30x21.7 th 700 880 4163S 78292 60000 138292 Pricing Includes e following options: 1 Cast Iron beciplafes a SS fag 2 Falk spacer type coupling(where 7 Non Asbestos packing required OSHA steel c fakes non spacer) 8 Separate Moforprlce Is for TEFL,Mill and Chem Duty,High Effy Goulds Choice 3 OSHA steel coupling guard 4 Casa tlraln (Siemens,GE or USEM)460 volts 5 SucUOlsch gauge connections 8 Item 36 needs about 35 feel of TDH to operate an eglclent place on the 3415 curve chosen. San 10 01 03: 55p ,r p, p wa k Loa�e� Ver 4Lca..1 Sad,-p MOM VIT—1 F 6o(000 yin) i Goulds Amw VERTUML PRODUCTS OPeR TM east CNITOLAVEM env of vauaTRv;wsceoatrM DERKFAX ea240841n '--V E-0WL 4' YeaeaiaLme OICKBIANKENMPr�R6XIP Proposal No: VPOWQ3301DCB :tan 10.2001 Item No: rMM001 MODEL:VIT-F� {2 Piece head) Gouldesiandard Size: 209C I.stage(sj"QTY: 1 OOerDaE ng conditions LIQUID Water,Clean Fresh(85.0°F)SP.OR 1.000 LIQUID TYPE Non Toxic CAPACITY Norm./Rate 10000.0/10000.0 gpm RATED HEAD 100.0 ft)) SUMP DEPTH 14.00�A) PRICES In USD Y Performance at 11.80 ,RPM Pwnp Uo8 53,013. I BOWL EFFY 84.0P1. (Cor.83.0%)@design Drhrer 24.00D PUMP EFFY 79.8%Qdesign Botdng RUN OUT CAPACITY teM,0 (gpm)(Min Req.Submerg.48.18 Cm)@Run on*),(2) Testing POWER 320.5 a@dcmfi,230.D @ Shut off,3D5.0 @ Run out(hp) NPSHr tat imp.eye 32.0(available NPSH is 42.8 at gradQt) Freight I TOTAL HRUST 12505.3'®Shut off,70373(Qa design(Lb) accessories ' DISCH.PRESSURE 72.9 @ Shut oIX 42:6 @design(at disch.11ange)(psi g) Total 1 Unit 77,013 MIN FLOW 250.0 (pm) (I)for vortex suppression,based on H.I.1994 Edition (2)Min Rcq.Sulnnerg.48.18(in)Q Rand Materials and Dimensions BOWL Celt Iron standard SUCTION BELL Cast iron IMPELLER Bronze(Enclosed)keyed to the shaft,dynamically balanced to 20 W/N IMPELLER DIA 17.3000(in) BOWL SHAFT 4165S 2.6975(m)diameter SUCT.BELL BEARING Bro®a ' BOWL BEARINGS Hrun to BOWL WEAR RINGS 12%chrome Tack weld IMP.WEAR RINGS 12%ChromeTack weld COLUMN Carbon steel 18.0000(in)diarn,5.5111)long Flanged COLUMN SHAFT 41fiSS,19375(in)diam.(open)lineshaft sleeve:none UNESHAFTBRGS Bro=5 ft spacing LINES14AFTCPLG 416SS,Tbreaded DISCH,HEAD Carbon steel w/CarbortSteel driver stand DISCH.HEAD SLEEVE 416SS(packing) HEADSHAFTCPLG Cubon steel Type Aadjustable COUPLING GUARD Carbon steel DISCH.FLANGE 20(in)150X R.F. TPL 8.82(ft) I � 14 Sealing Method PACKIN Acrylic yam and graphite Documentation IJ Sid pump inst.and operation manual and order data _I Driver, Electric motorvenicai solid sbaft Manufacturer: Pump IufQp 's Choice FURNISHED BY Pww mfg MOUNTED BY Cliatnmer RATING 350.00 hp ENCLOSURE TBFC PHASE/FREQ/VOLTS 3/60Hr1460 SPEED 1200 RPM INSULATION/SF F/1.15 FRAME/BD 449VP12A(in) Weights and Measurements Total I Weight 2.653.8 g I Jan 10 01 03: 56P P. 3 ampndN yPOO¢73DJDCB Item No:17EMOnt MODEL:Vrr-FF(2 Ouc head) 23BHC Puget Weits and�+ieasurements (contmned...) Total olumn Weight 667.4 Disohatge Head Weight 1eso.0 Driver Vll rt 242s.o Total Unit Weight 6626.2 BoAng Volume 283.3 -. Pmu m WNW 1.30.0.0 i IJ i �l - l 1 U .fan 10 01 03: 56P P. 4 L I `iO0"•"""°s OUTLINE DRAWING rrrmdernt.• Proposal No: VP0003301DCB �,m,K„�„•,•, Item No: ITEM001 �• a� Model:VIT-FF (2 piece head) Qt}r.: I Jan 10.2001 4&70 Performance + Service } Liquidly Water,Clean Fresh Rated Head 100.0 011 I Sampan.... 8500 —j FF ANOEa E ta Dlsch. Pres 42.6 pal g @design to nnsr 111. Electric motor Vertical solid shaft Manufacturer Pump mfg'a Choice EnclosPower WB 350.00 hp 3/60Hz/460 1200 RPM Frame 449VP + w.es Sealing Method Packing Acrylic yam and graphite Coupling T.ypeAadjustable I I Column 2 sections 3mdlLPY�W vzm:tiff COL diameter 16..0=in Bow53.00 Size 26SHgC Size 28BHC ism - te.00 Vfthts PUMP 4202 Lb Driver 2425 Lb 1� 2.00 MIX MW 0.o. Total 6626 I,b �-766tln IM 87.08 �.. �e.03 U 1e6.B1 i - rey.vmmna mr+Nah. 3e.7e vatax appncoion 1tl.slg 6tpaye 1e.76 16de PIT BOTTOM All dmb to ere In a1eMe. nrewlnY iF not m scale DO NOT USE FOR CONSTRUCTION BEFORE APPROVAL wel°h1a heel en,.0.0.0 '°m arosmm Vemmn 1ao,o.a .Jan lu U1 Uj: 56P P. 5 1 � Proposal No:VPOD0330IDCB . ItcmNo:.rMM0g1 Page 1 I 10 January 2001(09.22AS AM) Program V ersion 130.0.0 - Material and Construction Details Model VPr-FF(2 piece head) Bowl 28BHC Cast Iron ImpeNe r Bronze dynamically balanced Shaft material 416SS - Wear rings-bowl 12%chrome Wear tinge-Impeller 12%Chrome Bowl bearing Bronze Suction bell bearing Bronze Impeller lock method Keyed Impeller key material 416SS Impeller type Enclosed Suction bell materiel Cast iron 1 Sand collar 416SS Cap screws Catbon atcel I ColumnCbMffi Flanged Column material Carbon steal ` Column shaft material 416SS Line shaft coupling type Threaded j I Column bolting Carbon Steel I Llneshaft brg type Bronze +� Column bearing retainer Carbon steel Dischare head DI—OX is mat—naT Carbon steel Diseh.head BaPong Carbon steel Head shaft sleeve material' 416SS(paddog) Heed shaft coupling Carbon steel Type A adjustable r y Coupplinggguard Carbon steel ` Stufing,box Cast iron J Seal BolSng Carbon steal Peeking Acrylic yam and graphite _ Split gland Aluminum biome ' Stbox gasket Velbuna TPL Driver ver manufacturer Pnmp mfg's Choice Driver type Electric motor Driver Base diameter 24(in) Driver stand Carbon Steel Driver type Vertical solid shaft Motor enclosure TEFC �-' Driver power .350.00 hp Motor phflrep/volls 3/60Hz/460 1 Mir Service Factor/Instdation 1.15/F Driver speed 1200 RPM Motorframe 449VP t NOTE: xshows that a detail is incompatible I� i R r ::-a.—Mu:::::i:::cuim::i: :::::■ MAN N:::f.a...■■a.rar..wa■f■■.wC.r.waar.r.■■ ■ :.a�..e.al�i..awww..w.ea :. 1 ::::::MU:::::::::::::::::::::: : :: ::�SB:MMM ::::::::■::::::::e::: ::::i�w oa•uuura.uuu. mom ur u:.I�:::.:..■C.e.r•i±� ■ :::;� ■ Itu ar.ewa.rau.w.Or=ww.wra.■.■a ua:rw■r■.r.ar■a...a■■..■■ ■.e:■ a.. :::o::::::::::::::o:::::a::::■ia:::::::::::::::::::::::�::t_a wi::::: : 1■uonauuuu■r..au ..ou■ ■.. ■,uuoro..ou ■r.-_..f. uu■.■...................f.:..a.. .:waa:.,e.,....a,....r_� ..:.....a.......:a.re uwo.uououuu.u:.u■uu ____ oruiiur.a.oru.wf.. 25 .■uuuoo.rru..u...a.oa..0 M!.....:�u.:.■ w ■a..e.....■....rr ..uu.u.o..oueuu. uwu . a. uror■■auu■:,:o uou uuoa ® u�■uu.u.■u■uuu:.■u.:.::waa.00uueuuulue.uu=::o.0 f. . 1 as ■w.r.rua...u.r...u.wau uw.■ea.waw,.w.■ ■....■ ■a ■rwr■ ■....ea..a. o.owuuar.afuraewa.ar.....ua.uro. uuu ua o.uwuo o.0.jro.uwrao.■uao ra.uwuo. rr..a wawa■ .r000ro u.ouuuo.ru / won Lu lFhMigiiiiiii-Iflum. MENU '1210 No II ��- :a::i:;i:: :::ii�:?:::::�i:: : s31:::::••:.:+:a::::::::.�:::::::e::::::::N:::::::��a(wZ���►� ■{ry.r...:�\.e-�..r'I.r ,1{T� aL��� TT T . ■..Y....r..Y..rM.....ar..■ram_•44.�...:e..__ \\I_ .ra..Y�-��■ J + •'�(p� ■re....■ ■era....r..r,.■■a..._ \�u. ■u._ 'v uao i,._. .��hr�.•,}ar.; n.0 wa uo.wu. ...■■ AN �• •••••-_,_ uru oo.�: ■u_ .�•unr.r..iG•.�.-:.0".u�\ .uun...u.... 1 r.\.. r _w\�'=.r.r.11...- '� ...•=rYN.\r•:/.."..r.'-: ..wrY.a.......:��w.r-�\.��..w..■r_ a.r:.'.e.w'Ia...-•' ■r�r�e r: \rir�� ■wuu■u.a ■a,u u.0�_ ..��uu.._. \u■ �.uiu.. ■� �r�:�r n..awaa.0 u orouous_ ,.�..ou...-.-� rur�r.v iil+Ir._a rv�. .,��'u.a■ eu u..■a.wrw...,.r,r=+a..vaa.io r.�_- I■r1�a....r.....aarru�%a 1. '1 1�I.ur.e, •I o...urrrruuaouscv rw.u..ri..nw•.� ■�..uur-. \e■■■ �f'.le.. . _ ■.■a..w.0 wwf......r..1,■...^...11�=.a.e1■.......w�awni�ws"',w.e■r.�MaLr 11■.a./•..r"ry.IJrw�A �'J.■11 aa...ra........af..ar....aw..Yrr.ar /�\n. C..uu..■re...o uuururauuou.uur'-\�.r� wv�_ \i17�■.rMYr.. .w..,arrll.r..rr.0 r..r .woari.\�•�r�-��� •�/.■. FZ/awry... uau WIN a.0 :202:2 . :MMUNN::a.:uru■o.rr. ..�1 o a._�.r wr:u.r�u.■■r.a\.a.....r.a,■.war.,..a..a..Y..a.e..aYaa.e■e�•• .r..�-..Ir Y-.. �M!Z4,/.a a.ao.r.....,.r CHO::Wa....rr■■wr■a...■rr,areY v�,a�..-a rf i.-ar e.�Je.,w.w 1 1 I u.awuu.ur.uuuuae..0 ua , ::Nmu.awwru.►F__ ru:%:.uu.uu .a...o..o.0 rarrrv.mmu.rrr.a..rri.u.u.uau.r��.^-rs.... up.■ou■ouoouu..■.. ■qu.u..uwuwr.■ ■uwu.er.'riuuu :uu■ /a u.eru.u.wu.uru,.:..uuuu ■uuu.:a ur.■.r.a■.ra..w.r:..e..■ . I ■,UMMU .uu.u.uov.uuu.:wwwwu■uu.w■■uuouou■ruMN a , 11■uu uuu..u.uuo V.a..ruuuuuu.uuouuwu u.ouuuur. ■oa.00 u..ruu.ouuuu.u.u.wuu uoouuu.uo■■uuuu .w,a..........a.a....wra....r.w......rr■uau u,o uu..a...ouoaur - .a.a.w.,.r.w....... ..v....r...e..a.............r■ wa.=1w.�u ■.■ww■.■■ww.■■.ww..:.r.auaww.■u.w.o.uor.J.w.a..__ 1■■w: 11 ■uu.uuuu.o.o o.ru ueruo■ou■uu. .0 u:�.Tiu iiu.u■ .w.aa..a.ra.r..ra...r.arr.a.a....r,.a...^ �/..r..wr.,aar.a...a..r w.r.. u.0 uauu.0 r■uuu■uo■.yl,■..--:r.a:,.�l�uwr.............rwa..w■ u.O.a.■u.■■..wwwwww■■w■ ■.._��r..G.■■a.��___.....\.aa...oroww■■.■■ ■uu.uwuruuuuau.r' r.p ■...-- uv.uuu.uuu.r. ..�.i..._r .=Lmn .ur�.�V�::::i:a::::::::: cc 11 r..w■f_�_�_s_w:_w_s_w.■_w_ww■.w7.w w...wwww■■ rar.w.:i.i ■.��r..r... . ..r.r.w....■w.r..■ II �- .■waww.r.....r.Y....w.....■f a.aM Aating point sly .uuiiGiiu::.uuuauu.00u.uuouau.. ii� uiGGii:GiLiu u.u■ u.uuauouoouuo.r.u.uu.u.:uu..uaouowo orou. ■.. ...uu■uo.uu.uruuo.uor.uu ■...uuu.ouoau uo■u�iu.�o uruuuuuu.o.uuuuu ..■ o o.ru suuou.uoa.0 aw uuro.... uw■.uuuuuowo.a.:u.a. ■.uuu...uuuuouw.uurr..u■a.ur:aru■uu u...ouuuuoo.: 1 III 111 : 111 111 II11 111 III Jan 10 01 03: 57p Wa5*W6_Aer Veri' co.t &LI-ke p. 7 �UecIQ� V(�-FF �Zp1000 9pm) ` I �1 Gould,gimps VERnrdLPnaBaen OPMAnoNS 3961 C"rrm AVENUE �rrTtndmtries cry OFVI�78�Qim 00934.1 1 cr MO WC 1, J ' EaIfJC =eIMIKN1aNIP �. Proposal No: VP0003301DCB j Item No: rrPM002 Jan 10,goat MODEL:VIT-FF 2 piece head Genldsetandard Size: .34GmcC cs P ) t.Qe(a) QTY: 1 i O�V eratin g conditions S ICE LIQUID Water,Clean Fresh(70.0°F)SP.GR1.000 LIQUID TYPE Non Toxic CAPACITY NormiRate 20000.0/20000.0 pro • RATE%HEAD 100.o r( ) SUMP DEPTH 10.00(ft) I ES Performance-at 880 RPM PPuump Unitn use 78,2B2 BOWL EFFY 86.Wo Driver 50000 — PUMP EFFY 81.9%@design RUN OUT CAPACITY 250D0.0 (gpm)(Afn Req.Submerg.73.01(in)@ Run ouop),(2) Boxing POWER 616.8 @dest 750.0 @ Shut oil;531.4 @ Run out(bp) Testing NPSHr tat Imp.eye 28.0(available NPSH is 42.8 at grade) Freight TOTAL RUST 25529.9@ Shutoff,15560.9 @design(Lb) Accessories DISCH. PRESSURE 71.4 Shut off,42.2 @design(at disch.8ange)(psi g) I Total t Unit 138,292 MIN FLOW 1375 1 (gpm) (1)for vertex saptutceon.based onH.I.I Edition (2)Mtn Req.Submag.66.08(in)@Rated. Materials and Dimensions BOWL Cast Iron standard SUCTION BELL Cost iron J IMPELLER Bronze(Enclosed)keyed to the shale dynamirally balanced to 20W/N IMPELLER DIA 21.7000(in) BOWL SHAFT 416SS 4.0000(m)dimneter SUCT.BELL BEARING Bronze BOWL BEARINGS Bronze BOWL WEAR RINGS 12%chrome Tack weld IMP.WEAR RINGS 12%ChmmeTackweld COLUMN Carbon steel 30,0000(in)diem.,3.84ft)long Flanged i COLUMN SHAFT 416SS,2.6875(in)diam.(open)linesbaft sleeve:none DISCH.HEAD -Carbon steel w/Carbon Steel driver stand DISCH.HEAD SLEEVE 416SS(paWdW HEADSHAFT CPLG Carbon steel Type A adjustable COUPLING GUARD Carbon steel DISCHYLANGE 30(in)1509 R.F. TPL 8.83 (ft) Sealin Method PACKING Acrylic yam and graphite Documentation SW pump Inst.and operation manual and order data Driver: Electric motorverticai solid shaft Manufacturer: Pum� mf's Choice RATING FURNISHED BY 7Pumpha pDg MOUNTED Y tomer PHASEIFREQNOL75 3/6DHz/4I ENCLOSURE TBFC SPEED INSULATIONISF F/1.15 Lat RPM FRAMErBD Lated30(in) Weights and Measurements Total owl Weight 3340.0 Total Column Weight 884.0 Discharge Head Weight 3375.0 ft Jan 10 01 03: 57p p 8 IJ - i rropaw rta vpooal;atDCa . item No:ITEM002 MODEL:VIf-FF(2 Piece head) 34GHXC Paget Weights and Mebsurements (continued...) Ddver t 9050.0 Total UM fight 16649.0 Boxing Volume s.a M3) Propam Verft 1.30.0.0 I I I ! - iJ J I � iJ I ! J i Jan _ 10 01 03: 57p p. 9 L v ! eou�wm� OUTLINE DRAWING ' ITTtniusMes Proposal No: VP0003301DCB Item No: rMM002 Model: VIT-FF (2 piece head) Qty.: .1 Jan 10.2001 Perfomtance i Service Liquid .Water,Clean Fresh ' Capacity 20000.0 gpm Rated Head 100.0 ft TSSepmperature 70.10 00 OD OF DlaK Pros 42.2 psi g @design Electric motor Vertical Wid shaft Manufacturer Pump mtg Is Choice J Enclosure TEFC F e 7700.00 hp 3/60Hz 1460 @ 900 RPM Later Sealing Method _ Pecking Acrylic yam and graphite Coupling Type A adjustable DIMENSIONS ARE INVALID.!! Column t section v Col.diameter 30.0000 In Bowl 1 stage j Size 34GHXC (— Weights _ Pump 7599 Lb Driver 9050 Lb Total 16649 Lb ti v U 1 AB dimapslona are N 4Rhee. aim b nano etas DO NOT USE FOR CONSTRUCTION BEFORE APPROVAL p ���tbwv Pww*mt& Jan 10 01 03: 55p p- 1 G O U I d S PUMPS ATLANTA sALES OFFICE _ 12240 Stevens CraekDtive A1pLaietta GA 30005 onc:770519-3169 Fax:770-619-3173 ITT Industries Lisesceti: 678-296-2948 ' E-Mail Address:Lcomptong luids.ittiadcam 7ELEFA(Y CORRESPONDENCE Tu: BiNan Car-tee Bate: January 40; 2001 Company: Jacobs From Lisa�_Lom ton Fax No: -964-676-4789 Fages 1of Subject: VIT budgets Bryan, EE Here ya go— Sorry for the delay. The California VIT Expert was on vacation. Call me with questions or I will be in Greenville tomorrow(with my Boss)—If you need to see me let me know. Thanks,Lisa ` I i R JMN w c661 11;e4 rK 1-H�0Uh 1-rK,ZJN-SHLc= 412 787 6676 TO 918646764789 P.61/19 �� CALG�N CALOON CARBON CORPORATION FAX i To: Bryan Cartee 1 Jacobs Engineering Group, Inc. ® 864-676-4789 From: Mark H. Stenzel s Date: January 5, 2001 Pages: SO (including cover page) Subject: 30 MGD Application -1 J Bryan ... attached is a specification and typical drawings for our 12 ft diameter adsorption system that contains up to 40,000 Ibs GAC. I have used the 40,000 Ibs, as this is a system that we have proposed recently and for which I have pretty good pricing. �J The drawings are "close" to what the specification calls for ... the difference is the vessel - the vessel-specified and.priced would have 2:1 elliptical heads rather than F&D ; the elevation is of course higher by about 10 ft., and the piping enters the top head rather than on the side ( side entry was designed for low profile, low visual impact ). The piping would also be 10" to accomodate he higher flow. The contact time for this would be as follows : 40,000 lbs 130 Ibs per cu ft = 1335 cu ft .... X 7.48 = 10,000 gallons 10,000 gallons/ 1000 gpm = 10 minutes contact time per adsorber So you can also see that a 30,000 lb per adsorber design ould provide 75% of this contact time or 7.5 minutes per adsorber. For a job of this magnitude .... including both capital cost (which will be a function of contact time ) and operating cost ( which will be a function of carbon usage rate - J directly influenced.by carbon type selected ) ... I think that a rigorous pilot test program should be conducted to determine breakthough curves and mass transfer zone ... to evaluate both carbons and contact time. I have included a review fo the pilot test program procedures that could be used. JAN 05 2001 11:22 FR CRLGON CRRBON-SALES 412 787 6676 TO 918646764789 P.02/19 Pricing for this system would be as follows: Model 12 System ( Each ) ... est$200-220K FOB Pittsburgh Estimated shipping ............. est$6.5/mile (two trucks required per system ... I only one adsorber can be shipped per TL ) Initial Carbon fill .................. $0.90/lb delivered for the virgin grade carbon ( $ 72,000 per system ) ................. $0.60/lb delivered for reactivated grade carbon I So we would be about$300K per system ..... there may be some discount for mulitple units .... I might estimate 10% discount for 20 such systems ..... so the total would be $5.5 - 6 million for the entire plant. This pricing of course does not include the header piping .., it only represents the individual two stage systems. For a system with 30,000 Ibs per adsorber; I would take 5% off the adsorption system pricing ( $1 OK) as all you would be doing is taking some straight side out of the adosrbers; plus the less initial fill ( 20,000 )bs [ 10K/adsorber] X .90 = $18,000 ); so the system pricing would be about $270K each. At this flow rate and size, I might also suggest alternate adsorber types, such as typical designs for municipal wastweater treatment - concrete fitters; traveling bridge filters ... these could have mulitple cells for staggered exchanges, etc. email : stenzel@calgoncarbon.com Phone: 412-787-6809 Fax: 412-787-6676 `i J i I� R R JAN 05 2001 11:23 FR CALGON CARBON—SALES 412 787 6676 TO 918646764789 P.03i19 CALGON CARBON CORPORATIOI SPECIFICATION SECTION Modular Adsorption System using Granular Activated Carbon (Model 12) PART 1 GENERAL 1.01 SECTION INCLUDES A. Carbon Adsorption Hardware B. Granular Activated Carbon C. Manufacturer's Services 1.02 RELATED SECTIONS A. 1.03 REFERENCES A. American Society of Mechanical Engineers(ASME): 1.ASME Section VIH,Division I-America Society of Mechanical Engineers Boiler and Pressure Vessel Code. 2.ASM&ANSI B 16.5 American Society of Mechanical Engineers/American National Standards Institute. 3.U.S.Food and Drug Administration.21 CFR 175.300 and 177.2420. 4.Steel Structures Painting Council Surface Preparation Specifications and National Association of Corrosion Engineers. 5.ASME Section 11,American Society of Mechanical Engineers-Materials,Parts A,B,&C. 6.ASTM American Society of Testing Materials. i I.Od DEFINITIONS 'GAC-Granular Activated Carbon GACAS-Granular Activated Carbon Adsorption System t 1.05 SYSTEM DESCRIPTION A- The Contractor shall furnish and install the Modular Model 12 Carbon Adsorption System described heroin.Each system includes the following: _ 1. Carbon Adsorber(2)with internals for carbon retention 2. Activated Carbon 3. Influent.effluent and backwash piping with valves 4. Carbon fill and discharge piping with valves S. Vent and pressure relief piping 6. Water piping and utility connections 7. Accessories as shown below 8. Manufacturers Services. B. The vessel(s),piping,valves and carbon functions as a system and shall be the end products of Calgon Carbon Corporation or equal, to achieve standardization for appearance,operation, maintenance,spare parts,and manufacturers services. C. There will be(20)Modular Model 12 carbon adsorption systems required,as delineated below: R T _ 1 JWv 05 2001 11:23 FR CRLGON CARBON-SRLFS '412 767 667E TO 91BE46764789 P.04i19 CALGON CARBON CORPORATION system# Quantity GPM/Adsorber(Max) Pressure Drop-Normal Pressure Drop- Operation(Max) Backwash Operation r 1 Typical M12 1 /20 1000 GPM 10-15 10-15 2 1 1.06 SUBMITTALS A. Submit the following items 3 weeks after acknowledgement of order: 1.Provide a description of the proposed adsorption system including flow,contact time,system design,and operating modes. 2. Provide adsorber vessel specification including design pressure,dimensions and capacity. 3. Provide GACAS flow diagram showing all valuing,components, instrumentation,and service 4. Provide GACAS general arrangement showing dimensions,weights,and elevations and influent, effluent, backwash,and carbon exchange connection locations. S. Provide pressure drop information across system. 6. Provide description of adsorber vessel GAC loading and removal procedures for system 7. Provide specification of GAC to be utilized in the system.Provide recent lot laboratory analyses results to demonstrate that GAC supply is in accordance with published specifications. 8. Equipment Performance Bond for 100%of the material and labor costs,F.O.B. ,for all equipment supplied by the Carbon Adsorption System Manufacturer.The bond shall guarantee that all defects or failures will be corrected within the guarantee period of one year and shall remain in force for that period commencing upon final acceptance of the construction contract. B. Submit also the following prior to system delivery { � L Operation and Maintenance Instructions r PARTZ PRODUCTS I r 2.01 GENERAL A. The Contract Documents indicate specific required features of the equipment,but do not u purport to cover all details of design and construction. I ' 2.02 CARBON ADSORBER VESSEL(S) A. The carbon adsorber vessel(s)shall be Modular Model 12 Carbon Adsorption System Vessels,as supplied by Calgon Carbon Corporation,or equal,which meets these specifications. B. The carbon adsorber vessel shall be fabricated of carbon steel,conforming to ASTM A516 grade 70, 12'-0" diameter by 16'-0"straight side height with 2:1 elliptical top and bottom heads. The vessel shall be designed, constructed and stamped in accordance with ASME Section VlU and registered with the National Board for a design pressure rating of 125 psig(Optional 75 psig)at 140 degrees F. Each vessel will be provided with one(1) 20"diameter round manway located on the lower straight side portion of the vessel.The vessels will be free standing vessels with four(4)structural steel support legs. �� • w ac�ui ia•u rr: t,n�u.�n �rucaurv-bnLCa 416 Yb! bbYb IU 718b4bYb4789 P.05/19 CALGON CARBON CORPORATIO C. The structural aspects of the vessel shall be sufficient to meet the UBC requirements for seismic Zone 4. Manufacturer shall submit detailed calculations illustrating the seismic characteristics of the proposed vessel. Failure to meet this submittal requirement shall invalidate the award. D. UNDERDRAIN_Each vessel will be equipped with an internal cone bottom(45 degree angle)underdrain system equipped with type 316 stainless steel underdrain nozzles to provide a minimum of one( 1 )nozzle for ever, nominal square foot of underdrain( 115 nozzles total)to provide low pressure drop at 100D gpm. E.SAMPLE PORTS :Each adsorber is provided with one(1)2"side sample nozzle for use with in-bed water sample probes.Ono samplo probe will be located in the nozzle at the 7595 bed depth;to consist of a 12"stainless steel pipe with stainless steel slotted nozzle to collect water sample from within the carbon bed. The sample probe shall be inserted into a 2"flanged nozzle(flanged nozzle to assure adequate coverage of the internal lining);and shall then be provided with a drop line and shutoff valve external to the adsorber F. SURFACE PREPARATION:AII surfaces will be degreased prior to sandblasting. The adsorber internal surface that will be lined will be blasted to a white metal surface(SSPC-SP5)to provide a 3 to 4 mil anchor pattern. The f , exterior of the adsorber will be power tool cleaned to the degree specified by SSPC•SP2-63. H.LINING:The interior surfaces of each vessel are lined with a nominal 35 to 45 mils dry film thickness(dit) Wisconsin Protective Coatings Plasite"4000 series" lining materials. Plasite"4000 series"meets the requirements of the U.S.Federal Register,Food and Drug Regulations Title 21,Chapter 1,Paragraph 175.300. L PAINTING:The exterior surface of the adsorbers will be painted to a dry film thickness of 8-10 mils with an epoxy mastic(gray color)paint material. 2.03 PROCESS AND UTILITY PIPING A. GENERAL:The process and utility piping on the adsorption system will include influent water to the system, treated water and backwash supply and discharge,adsorber vent lines,and granular activated carbon supply and discharge piping. 1 a The influent and effluent piping network allows for series lead/lag flow patterns. (_ The series lead/lag flow pattern involves a)combined flow to the influent flange,to Adsorber A, to the pipe 4 module,to Adsorber B.to the pipe module then to the effluent flange,or b.)combined flow to the influent flange, to Adsorber B,to the pipe module,to Adsorber B, to the pipe module to the effluent flange. The change in flow pattern is accomplished with a change of valve positions. The purpose of leadAag flow sequencing allows an adsorber to act as an on-line backup and/or provides for sufficient contact time to allow adsorption of the contaminants of concern. B- PROCESS PIPING:All process piping(influent/effluent and backwash)will be 10"diameter(8" diameter-Optional)constructed of schedule 40 carbon steel,ASTM 53 Grade B materials with cast iron flanged fittings. C. VENT PIPING,Vent piping will be 4"diameter constructed of schedule 40 carbon steel,ASTM 53 Grade B materials with cast iron flanged fittings. D. CARBON FILL PIPING:Carbon fill piping will be 4"diameter constructed of schedule 40 carbon steel,ASTM 53 Grade B materials. L CARBON DISCHARGE PIPING:Carbon discharge piping will be-4"diameter constructed of schedule 40 polypropylene lined carbon steel ASTM 53 Grade B materials with cast iron flange fittings. Pane 3 .+rifti M 4001 ".i 24 FR CRLGON CRRi30N-5RLE5 412 787 6676 TO 916646764769 P.66/19 F_l J , CALGON CARBON CORPORATIO1 F. UTILITY PIPING:Urildly piping will be threaded schedule 80 carbon steel ASTM A53 Grade B materials. G.SURFACE PREPARATION:All piping surfaces will be power tool cleaned to the degree specified by SSPC-SP2-63. FL PAINING:The exterior surface of the piping will be painted to a dry film thickness of 8. 10 mils with an epoxy mastic(gray color)paint material prior to assembly to"ensure minimum oxidation at flanged connections. L PIPING FRAME:The piping network will be provided with a structural steel support frame for support of the piping module. 2.04 PROCESSlUTILnT VALVING A. GENERAL:The process and utility piping;excluding GAC fill and discharge piping will be equipped with butterfly valves for flow control. A total of ten(10) 10"diameter(8"diameter-Optional)butterfly valves will be supplied to accommodate the process and backwash control functions. Two(2)valves are needed for backwash control,two(2)valves are needed for influent isolation,two(2)valves for effluent isolation,two(2)valves for staging of the vessels and two(2)valves for the vent function. B. PROCESS VALVES:The main influent,effluent and backwash control valves,will be a cast iron wafer type body, butterfly valve with aluminum-bronze disc,BUNA-N seats and stainless steel shaft to mate to a 150 pound ANSI flanges.The valves are rated for 200 prig in closed position at 180 degrees F,and meet or exceed section 5.0 of AV MA specification C-504-87. C. CARBON FILL AND DISCHARGE VALVES:The carbon fill and discharge valves are 4"diameter full port ball valves,316 stainless steel construction with TFE seats and seals. A total of four(4)vales are supplied, Two (2)for carbon fill and two(2)for carbon discharge. D. UTIISIY VALVES:Valves for the compressed air supply will be bronze or forge brass or barstock brass body regular port ball valves. 2-05 INSTRUMENTATION iti I A. PRESSURE RELIEF:A 3"rupture disk constructed of impervious graphite and designed to relieve pressure at 757o of the MAWP(Optional-90% of MAWP)will he provided off each vessel vent line to protect the system against overtempemture expansion and extreme system pressure excursions. B. DIFFERENTIAL PRESSURE SWITCH:Each vessel will be provided with an indicating differential pressure switch,4"diameter dial scaled for 20.0-20 psi. A 10 amp switch shall be provided @ 115 volts AC for remote indication,as manufactured by Orange Research Inc.A total of two(2)will be provided with the system. `- C. PRESSURE GAUGES:The process piping will be equipped with pressure gauges to indicate the pressure of water entering and exiting each adsorber and to provide information on pressure drops across each adsorber and the system. The pressure gauges wi11 have 4-M"face diameter with a stainless steel bourdon tube in a glycerin filled housing(0-100 prig range). A total of three(3)pressure gauges will be provided with the system. 2.06 MISCELLANEOUS A. TRANSFER HOSE CONNECTORS:The carbon piping will be fitted with hose connectors,such that carbon transfer to and from the adsorbers can be facilitated with carbon transfer hoses. These connectors will be 4" Quick Disconnector Adapters constructed of corrosion resistant materials(Nylon)by Dover Corporation as Kamlock Connectors or equal. Page"4 .irily b:) 2001 11:24 rR CHLuDN CRRbDN-5HLt5 412 767 6676 TD 918646764789 P.67/19 CALGON CARBON CORPORATIOi B. FLUSH CONNECTIONS:Two(2)flush connections will be provided on each GAC fill line,one upstream and one downstream of the valve,and one flush connection downstream of the GAC discharge valve. Connections will be welded into steel or stainless steel pipe or supplied in solid polypropylene"spacers"for lined pipe. Flush connections will consist of a short section of 3/4"pipe,and a 3/4"full port ball valve and 314"quick disconnect Z J adapter to match with water hose fittings. 2.07 GRANULAR ACTIVATED CARBON A. GENERAL:Product shall be Calgon Carbon Corporation F-300 type carbon, or equal. Forty thousand (40.000)pounds of Granular Activated Carbon will be provided and installed within each adsorber vessel. - B. GAC SPECIFICATION:The activated carbon will be virgin,granular and manufactured from bituminous coal by a domestic(United States)manufacturing facility. The GAC shall conform to AW WA B604 standard for GAC and comply with the most recent addition ANSI/NSF standard 61. The activated carbon will be Calgon Carbon Corporation Filtrasorb F-300 or equal and conform to the following specifications: (])Iodine Number(Maximum) 900 (2)Moisture,wt%as packed,(Maximum) 2 (3)Abrasion Number(Minimum) 75 { (4)Effective Size,mm 0.8- 1.0 (5)Uniformity Coefficient(Maximum) 2.1 U.S.Sieve Series Percent on 8 mesh(Maximum) 15 Percent thin 30 mesh (Maximum) 4 40,000 pounds initial fill of F-300 carbon per vessel(90,000 pounds total for two(2)vessels). F-300 type carbon is typically used for(Drinldng Water/Waste Water) applications,however other types of carbon can be used within the Model 12 system. Contact a Calgon Carbon Corporation Technical Sates Representative for advise on correct carbon selection. C. GAC ANALYSIS:The delivered activated carbon must be accompanied by an analysis sheet certifying compliance with the specifications,and indicating point of manufacture. PART 3 EXECUTION '— 3.01 MANUFACTURER'S SERVICES A. A manufacturers trained specialist,experienced in the installation of the Modular Model 12 Carbon Adsorption System,and with at least five(5)years of field experience shall be present at the job-site and/or classroom designated by the Owner/Contractor for a maximum of( ) mandays for the following services: 1.Inspection of the installed equipment 2_Supervision of carbon loading 3.Start-up assistance 4.Trouble shooting S.Operator training Pape 5 nh 69 GU61 11•G4 f R l'"UJIV L HMZU14-OML= 41G (C( =M 1 U 71tlb40(b4(=J r.MVIIJ CALGON CARBON CORPORATI( 5 � 3.OZ SERVICES BY OTHERS A. The site;or designated contractor,shall be responsible for installation and site services,typically including: 1. Site preparation;foundation design and foundation installation 2. Receipt, off-loading(and storage)of adsorption system equipment 3. Installation of adsorption system equipment 4. Any hydrostatic test of the installed(assembled)system at the site 5. System connection to existing infrastructure. 6. System disinfection prior to initial fill of carbon 7. Utilities for bulk loading of GAC(compressed air,clean water source) 8. Operation of the system during carbon fill operation i 9. Mechanical startup of the system I r END OF SECTION mdl2sp.wpd Li } 1 4 ty i IE 4 I I , A n I I � Page 6 I" AIR VENT 8" RAW WATER 8" RAW WATER 1" AIR VENT c 3" SAFETY VENT -� r ADSORBER �hnA �1 3"V-3-C2 U PV-1 ADSORBER Of PV-2 p r I ® 8"BW-3-C2 ® � i u � i _ _8"' VENT AND � Q � BACKWASH OUTLET w c 0 a Z cmc PDS 8".RW-1—C2 PDS m o a u u P� PI PI a z- c t U i 7 � N S.P. S.P. 8" INFLUENT S.P• v°i o -------------- ----- r 8"TWY -C2 a U F.C. Q a --__ -8" EFFLUENT F.C• t °o Qa 8"WW-1-C2 ��nnryry Q E 2"FLUSH u Modular 12 2"Fl USIi 8'" BACKWASH INLET u System ! a CALGON CARBON CORPORATION i z a • �REl1N��N�A�t� 7 1 J I- NEW ROTATED FOR CLARITY. SEE PLAN NEW FOR TRUE �r ORIENIAOON. cs j LRS !--- _ L' I — W-1—C2 , i 8'Rw-i-cz i u_'WW-s-Cz I �n ABSORBER I ! ADSORBER N ABSORBER I 24" j i PV- 1 PV-2 Pv-1-T is 14'I i --•-•- -•-----•- I I _ - 19 ' —i /b' - — — I �7 f _ 4- 20 3/8" — a I i 1e i� — — — — —•— :�� 2 _ r �' -- 16�/g:- - - - - - - - n r — EL. 0" = u ' 3'• VENT (EL. 91 3/8") 9.• I n } 8" EFFLUENT(EL1 34 3/4") 8" VENT/BACKWASH OUT (EL. 73 1/4") 4" SPENT CARBON a 7 8' INFLUENT (EL. 55 1/8") 8". BACKWASH (EL. 16 5/8") 4" VIRGIN/REACT CARBON - i. I jo f j E Rt' ' Modular 12cc CALGON System - - - --- - CALGON CARBON CORPORATION i.... -.x ..... .. v •emr•..L••G:'! ....1. a4 •..it.r_ ._.. - ;7r,: y r..F•: i :11 v0�d. �_ — _-- _ _ 'D N m [PRELIMINARY 57 13/16" 116" OVERALL LENGTH, 116" 4"RC-2—C2 — z 4"RC-1 —C2 I ��=s F OF SYSTEM v _ '� 1 +z s� ,.• III; -I---__� � � N L` I III I �L Nj cn III , I to p;ii n 1- Z 11 O ADSORBER I I I ADSORBER n =� PV- 1 I j I PV- 2 m n- � LD j W i I I o N CD I i 50" j 45 5/8" j40 3/4."j 45 5/8" 50" ADSORBER PV-i ADS BER o i PV-2 ; to m Modular 12 CALGON t System - --- j ca CALGON CARBON CORPORATION -. .. .• _� :J:.i''.aeL_•_<..'atii L.`-__�v � _.:' :!e,.: ._.:id:9.^R7L fI n•vd' :3.1e.•i=l•SS3cat2..iti.,lr•,, F+ F� F+ i no. MINARY CARBON I VENT . • INLET 1 OUTLET 8 INFLUENT • ■ E L 1" VENT PIPE t 1 . :�" ''dam )1�♦♦♦♦��♦••r.. .•N,�,��� ti 1 � Ef�1iF= '�����=t��•=.�1 .. s L . CARBON INLET • 1 OUTLET ' 8 EFFLUENT ■ . • . . EJ • VALVE MANIFOLD ASSEMBLY Assembly i Diagram OK ' CARBONkf CALGON • , • , 1 ' 1 I 1- I ntroduction Adsorption Isotherms Although regenerable granular activated THEORY meats,all of the values necessary to plot an carbons have been employed for a num- isotherm can be calculated. ber of years for the removal of soluble ad. Inspection of an adsorption isotherm is a sorbates tram liquids, most of the pub- relatively simple method of determining the lished data in the field of liquid •Phase feasibility of using granular activated carbon Selection of activated carbon adsorption apply only for a particular application. A liquid phase Experimental Conditions to pulverized carbon in batch systems. A isotherm shows the distribution of adsorbate sound method for in predicting the actual (that which is adsorbable)between the ad- Particle Size of the Carbon sorbed phase and the solution phase at In a liquid phase application,the transfer or process performance of granular car- equilibrium.It is a plot of the amount of ad- of the adsorbate from the bulk solution to the bon in columns from belch data is not yet sorbate adsorbed per unit weight of carbon carbon particle must proceed through at available.Consequently.until valid math. versus the concentration of adsorbate re- least two stages: ematical data can be established, each maining in solution. t. Transfer of the adsorbate from the new application tot granular carbon must Generally, straight line plots can be ob- bulk liquid to the surface of the car- be considered individually. tained by making use of the empirical bon particle. This discussion Is primarily concerned Freundlich equation which relates the 2. .Migration of the adsorbate from the with describing the laboratory proce- amount of adsorbate in the solution phase surface of the carbon to the adsorp- dures that we have found most valuable to that in the adsorbed phase by the tion site within the particle. for obtaining isotherm and preliminary expression: Kinetic experiments demonstrate that Step column design data lot the use of granu. x/m = 'kc Un 1 is appreciably more rapid than Step 2;so lar activated carbon In liquid phase ap- the latter is normally the primary rate- p plications. Where x =amount of adsorbate ad- determining step. The rate of adsorption, i Whether granular activated carbon is sorbed then;will vary with the diameter of the car- being considered for a new application m=weight of carbon bon panicles used in the test. or for the replacement of pulverized ear- cam-concentration in the ad. In order to increase the rate of adsorption, sorbed phase. (i.e., the and thus decrease the time necessary to l bon, it is essential to determine its ef1l- amount of adsorbate adsorb- complete the isotherm, It is recommended ciency and related advantages for the ad per unit weight of carbon) that the granular carbon be pulverized so specific application. A complete labora- c =equilibrium concentration of that 95 wL%will pass through a 325 mesh tory Investigation would generally con- adsorbate in solution after screen. Contrary to what one might think, sist of two parks. First, preliminary Iso- adsorption this pulverization does not significantly in- therm tests would be performed to dem- k and n are constants. crease the surface area.Intact,the increase - onstrate the feasibility of granular carbon Taking the logarithm of both sides we in the surface area is less than %since the treatment. Second, laboratory column obtain: vast majority of surface area is contributed ? tests would be conducted to obtain data log xlm=log k +Un loge by pore walls rather than external surface. to be used In designing the lull-scale plant. TemperatureThis is the equation of a straight line of the Liquid _ Depending on the amount of back- whose slope is Un and whose intercept is Adsorption efficiency is ure. For function s .l ground information available, the prelim- k at c . 1.Therefore,if x/m is lotted against of the system temperature. For laboratory ins tests me be unnecessary in some c on I I pevaluation of granular activated carbon for (� rY y ry log-log paper,a straight line should nor. liquid phase applications,It Is recommend- cases. Assume, however, for the sake of mally be obtained. However,there are oc- discussion, that we are dealing with an casions, that will be explained later,where ed that the temperature of the existing pro- discussion,application about which little is known, this is not true.The straight line and the oc- toss stream be investigated first. If the CaSional curved Isotherm lines desired degree of adsorption occurs.at this and consider first the preliminary inves- provide temperature, then the lant o eratin tigation. valuable predictive Information for adsorp- p P n tion operations. Parameters will not have to he altered.If,on the other hand, the desired degree of ad- v sorption does not take place at the existing EXPERIMENTAL process temperature,then either a higher Definition of terms used here is in accordance and/or lower temperature should be in. --- with ASTM Standard Definitions or Terms Data for plotting isotherms are obtained by vestigated.The selection at the temperature Aerating to Activated Carbon — Designation: treating fixed quantities of the liquid to be will depend upon one or more of the 02552 tested with a series of known weights of car- following: bon. The carbon-liquid mixture Is agitated -_ for a fixed time(previously determined from a) viscosity; 1J a contact time study) at a constant temp- b) thermal stability characteristics of the erature.After the carbon has been remov- test liquid; and, ed from tha.fiquid by a suitable means of c) feasibility of changing the process separation, the residual adsorbate in r olu- temperature in the plant. lion is determined. From these measure- PH of the Uquid are 0.05,0.1,0,2,0.5,1.0,2.5,5.0,and 10.0 3. From the oven-dried pulverized sampl 7 .Adsorption capacity can also be a function grams of carbon per 10o grams of the test weigh out the carbon samples on a / of the pH of the liquid.Normally,when per. liquid• analytical balance and transfer it forming laboratory evaluations,the pH of the weighed samples to suitable container Process stream is used. If the desired Apparatus Sample weights should be chosen ina degree of adsorption does not take place at Cardenas with the suggestions give the process pH, then various pH levels Pulverized carbon for isotherm testing can under Carbon Dosage. should be investigated.Care must be taken be obtained from Calgon Carbon.If suitable 4. Weigh 100 grams of the lest liquid inl when adjusting the pH of a process stream mechanical equipment, such as laboratory each container.After manually swirlin to make sure that the change in pH does not ballmill, is available and it is desired to to make certain all the carbon is welter degrade or decompose the particular pulverize carbon for the isotherm test, it clamp each container on the shake ft P must be pulverized so that 95 wt.%passes Also weigh 100 grams of the test liqui When treating liquids with a low pH, it is through a 325 mesh screen. into a container without carbon(this wi i advisable to use an acid-washed carbon Stoppered flasks or pressure bottles are serve as the"blank"or control sample such as Calgon Carbon Type CPG,since a satisfactory containers for the carbon-liquid and place it on the shaker with the othe portion of the ash constituents of non-acid- mixture. Manual agitation,even at frequent containers.Agitate all the containers,a washed activated carbon will be sofubilized intervals, is often inadequate; therefore. a the desired temperature,for the conlac under acidic conditions. mechanical shaker is highly desirable. If a time that was determined from the con constant temperature bath is used, the tact time rate study,or as suggested b; Contact Time for Isotherm design of the shaker should permit immer- the Calgon Carbon Technical Safe.- Contact time is very critical to the adsorp- -sion of the containers so that the liquid Representative. tion process. It should be sufficiently long temperature Is maintained at the desired to allow an approach to adsorption value.Awrist-action type shaker has proven 5. After the required contact time has equilibrium. A preliminary experiment to be quite adequate in our laboratories. elapsed, separate the carbon from the should be performed to determine the con. liquid by an appropriate method in as tact time required to perform an Isotherm cordance with the suggestions given that reaches equilibrium. Carbon-Liquid Separation under Carbon Liquid Seperation. The One-half gram portions of the pulverized control sample should be subjected to activated carbon should added to several Prior to analysis of the treated liquid,the car- the same separation procedure as the bon must be removed from the liquid. other samples. 100 gram portions of the test liquid (when the density of the liquid is near that of water. Generally, the carbon can be removed by 6. Determine me residual adsorbate in the a of the liquid,ali liquid is n measured, to filtration through a 0.45 micron pore size y y filter pad. In some cases,a smaller pore size solution for each of the samples by the be used) and each portion agitated for filter pad may be necessary to remove all of appropriate method for detecting that various time periods at the process the carbon particles.The filter pad which is Particular material. temperature and pH. For example, portion used must be compatible with the treated li- 7. Tabulate the data as shown in Table 1. 1 is agitated for r/2 hr.. portion 2 for 1 hr., quid.The filtration rate may be increased by The residual adsorbate concentration portion 3 for 2 hrs.,and so forth.At the end using vacuum or pressure.of each contact time, the carbon is remov- g P (c)is obtained directly from analysis o1 ed by a suitable means such as filtration or If the liquid is so viscous that filtration is the treated solutions.The control sam. centrifugation) If the quantity adsorbate difficult,centrifugation can sometimes be us- ple adsorbate concentration (co)is ab. remaining in solution Is plotted as a function ed to effect a suitable separation, tained by analysis of the control solu- of time, a curve similar to Figure 1 should tion.The amount at adsorbate adsorb- be obtained. It is apparent from inspection Determination of ed (x) is obtained by subtracting the of Figure 1 that the contact time required to value of c from that of co. Divide x by reach equilibrium forthis particular liquid is Adsorbate Removal the weight of carbon used(m)to obtain 3 hours. the quantity he amount After the carbon has been removed from the of adsorbs (adsorbed per x1m)which is tunit i e weight treated liquid, the amount of adsorbate re- of carbon. Figure 1—Contact Time maining in solution must be determined.Any a analytical method or instrument that can 8. On log-log paper,plot the values of c on c too determine the quantity of the particular ad- the horizontal axis against those of xim sorbate remaining in the test liquid may be on the vertical axis and draw the best used.Typical techniques are titration,spec- straight line through the points as il- trophotometry, gas chromatography, and lustrated in Figure 2. 5o total organic carbon analysis. e Interpretation of General Procedure the Isotherm a for Isotherms From inspection of the isotherm, it can be D determined whether or not the desired o 0 1 2 a 1. Pulverize a representative sample of the granular carbon (a 25 - 30 gram sum degree of adsorbate removal is possible with Gooiest Time(hours) ple is usually adequate)so that 95 wt.% the particular activated earoon tested.In ad- will pass through a 325 mesh screen, dition, other information can be obtained or use pulverized material supplied by from a more detailed examination of the Calgon Carbon. Oven-dry the pulveriz- isotherm plot. Carbon Dosage ed sample for three hours at 15ocC. In order to obtain a meaningful Isotherm,as 2. Obtain a ropresentative sample of the li- wide a range of carbon dosages as practical quid to be tested.Any suspended mat- should be used. Recommended dosages ter should be removed by filtration. s I Calculation of Figure 2-Straight Line Isotherm Plot Adsorptive Capacity x i i t1 1 - If a vertical line is drawn from the point on �nt�CO the horizontal axis corresponding to the in- rn n fluent concentration (co) fine, and the best line through the data is extrapolated to in. tersect this (cc)line, the (x/m) value at the point of intersection can be read from the vertical scale. This (x/m) value represents o Pn the amount of adsorbate adsorbed per unit a °" weight of carbon when that carbon is In U ;n equilibrium with the influent concentration. o J This represents the ultimate capacity of the = carbon at these conditions.This value may d " le I - or may not be obtained in column operation. 3 ]n ' since the rate of adsorption, and thus the superficial contact time in a column system, is important. a =° From the value of(x/m)the quantity of li- IL I quid treated can be calculated using the following formula: o v (1) WOO=(x/m)co(W) d e co m 1 I Where Wco=the oretical weight of a liquid treated per gram a ` (or unit weight)Of carbon. ¢ (x/m)cc-capacity per gram (or K unit weight)of carbon at the influent con- o I centration. , W=weight of liquid used in the isotherm test. f ; _ co=influent concentration. Concentration of Adsorbate in Solution CD If the liquid was measured by volume,the Table 1-Isotherm Data Tabulation same calculation should be used by y)substituting Vco and V in the proper places. x Win m c Adsorbate Adsorbate Adsorbed (2) Vco=(x/m)co Weight of Carbon Concentration of Adsorbate Adsorbed Per Unit Weight (gramAlter(1000 gm)solution) In Solution (mg/ll (mg) (mg/gm) I• 0(Control) 18.15 Where Vco=theoretical volume of ll- 0.05 16.95 1.2 P4•D quid treated per gram(or 0.1 15.9 2.25 22.5 y unit weight) of carbon. 0. 15 2 14.1 4.05 .25 I 0.5 10.25 7.9 15.8 (x/m)c 1.0 7.15 11.0 11 o=same as (1) .02.5 3.10 15.05 6.02 V-volume of liquid used 5.0 1.8 16.35 3.27 t In the isotherm test. 10•0 0•°5 17.2 1.72 ------ cc=same as (1) From these figures, the theoretical Comparison of granular column dosage (or usage rate)to iere is an Example treat the liquid may be obtained. In the ex- Different Carbons -�} a Capacity Calculation: ample,the grams of carbon required to treat The performance of two or more carbons in one gram of solution is: the same application can be compared by rom the example in Table 1: 1 - .ODD685 examining isotherms run as outlined (x/m)CD-26.5 146 Previously. Usually,the granular carbon with co-18.15 the higher(x/m)co value would be preferred for the application. For complete adsorbate removal: In this inslance.0685lbs.of carbon would WCo= x/m cD (W) =26.5 (1000gm) theoretically treat 100 Ibs. of liquid. Cc 16.55 However, In most column systems the car- Non-Linear Isotherms bon dosage will be greater than this because It was previously stated that,ideally,straight 1460 gm liquid the carbon which is removed from the line isotherm plots are obtained. However. gm-won system will not be saturated. there may Occasionally be departures from Adsorption Studies In Columns A curve similar to that shown in 3A may In preparation for plant scale operations, bon bed is contained at the top and bottom l be obtained If a nonadsorbable impurity is additional information that is not available of each column by a stainless steel screen. J present in the liquid being treated.Subtract- from the Isotherm must be obtained. The glass wool, porous plate, or filter screen Ing c, from cc and replotting the isotherm operating capacity as wall as the flow rate, material.Pressure gauges should be install- will usually yield a straight line. mass transfer zone,and contact time must ed at various points in the system.For more A sudden change in slope(illustrated in be established in order to determine the detailed equipment specifications contact 3B)would indicate two components(adsor- number and size of the columns necessary the Calgon Carbon Technical Sales Rep- bates)are present which are adsorbed at dff- for continuous treatment. reseniative In your area. ferem rates and markedly different ca- pacities. The plot in 3C. similar to 3B, il.lustrates a situation In which at least 3 com APPARATUS PROCEDURES pounds(adsorbates)are present,and all are Columns System Preparation adsorbed differently.Of course,when marry adsorbate species are present — e.g., In laboratory column testing, it is recom- The amount of granular activated carbon re- undefined "color",—but when all are ad- mended that fifteen(15)linear feet of carbon quired to Fill each column may be determin- sorbed similarly,straight line isotherms will be used in a minimum of four(4)individual ed as follows: still be obtained. columns;however,more columns are prefer- Weight carbon/column The curve shown in D indicates that the red since this would provide more data.The V x A.D. X 0.85 adsorbate has reached its maximum surface diameter of the columns should be as large Where V=Volume of column coverage at capacity X. as is practical, with a minimum diameter of I one inch.The columns maybe constructed A.D.=Apparent Density of Figure 3—Non-Unear Isotherms of Pyrex-type glass, metal, or plastic. Care carbon .- ;,_...__, �.... should be taken to choose a material of can. The rem g struction that is compatible with(1)the liquid required amount of granular carbon being ueated, (2) the pressure, and(3) the for each column should be weighed into a suitable container and temperature of the system. If the column degassed or wetted by using one of the following procedures: testing is to be performed at elevated m A. temperature, water or steam jackets, efec- Boil in water for a minimum of 2 hours. ;•, trical windings, infrared lamps, or an oven B. Soak in water for a minimum of 24 can be used. hours. ,00 C. Soak in purified test liquid for a min- Connections !mum of 24 hours. "- D. Boil or heat at elevated temperature c ' "' The material of construction for tubing and in a compatible solvent for a minimum fittings must be compatible with the liquid of 2 hours, m4 being investigated and the test conditions E. Soak in a compatible solvent for amin- being used, imum of 24 hours. The degassed carbon, as a slurry, is I Pump charged to the columns In small Increments. keeping a thin layer of supernatant liquid ` e e, C. C. . e, A small pump capable of delivering uniform above the carbon during charging. This is rates, at the desired flow and pressure is best accomplished by filling the column one- Summary required. third full with the degassing or wetting liquid before staring to charge the carbon slurry. From an isotherm test one can determine Figure 4—laboratory Columns This charging procedure should be repeated whether or not a required adsorbate removal for each column.Prior to connecting the col- ran be accomplished,and can obtain an ap- umns in series, all connecting tubing and proximation of the ultimate capacity of the other void space must be filled with liquid granular carbon for that application. From in order to avoid the formation of gas the capacity figure an estimate of the r pockets in the carbon bed. Any gas build- minimum granular carbon usage rate _ up can be released through the vents at the necessary to meet the treatment objective 3 r d t can usually be obtained.Isotherm tests also RESERVOIR top of the columns.r< NOTE: In some cases it may be necessary afford a convenient method for comparing M to do-aerate the liquid used for degassing different carbons and for investigating the i I, ' • J, or wetting the carbon (See below "Liquid effects of pH and temperature. ( Prarraaanent'). The next step in evaluating granular ac. PuMP tivated carbon is dynamic laboratory column i � tests. — — Column Operation Arrangement of Equipment Temperature Adsorption capacity is a function of diffusion The columns are mounted vertically and rate;and,since this Is affected by viscosity, connected in series as shown In Figure 4. the columns should be operated at the plant Provisions must be madefortaking.samples process or isotherm temperature to between each column so that adsorption can eliminate this variable. be studied as a function of bed depth, flow rate,and volume of liquid treated.The car- s --- -- — ----, ,�. Liquid Pretreetmem breakthrough curve can be initiated. The Sampling should be frequent enough 10 If the isotherm Investigation indicated that breakthrough curve is determined'bysampl- establish the profile of the breakthrough a pH adjustment was necessary before car• ing at intervals and analyzing for adsorbate, curve for each column. Generally, the first . bon treating,then the same pH adjustment and by measuring and recording the volume column requires a high frequency of sampl- ' should be made to the liquid before granular throughput. (Refer to Exhibit 2 for a sug- ing,initially.In any event,a careful measure. carbon column studies. In rases where gamed data"recording format). ment and record of.the volume put through suspended matter is present in the test li- The displacement procedure is repeated each column must be maintained. This quid, It should be removed by filtration for each column until the wetting liquid from record must account for sample volumes before the liquid Is pumped to the columns, every column has been displaced and the removed for analysis. (NOTE Sample If the test liquid has been stored at a low initial adsorbate breakpoint determined.The volumes should be the minimum quantity re. '-_- temperature for preservation purposes, breakthrough curve for each column must quired for the analysis and should not ex- subsequent heating to room temperature,or then be defined as previously described. teed ten percent of a column bed-volume. higher, may result in degassing the liquid. Exhibit When thesaconditions exist,the liquid must be daaaratedprior to pumping It through the carbon columns. RECORD OF DISPLACEMENT'YROCESS Flow Rate ?- ! The feed rate to be used depends upon the CONCENTRATION CONCENTRATION OF TEST. diameter or cross-sectional area of the tube TIME OFTESTLIQUID J_IOUIDIN.COLUMN:EFFLUENT REMARKS which was selected for column testing.For A B C D' E Preliminary trials a feed rate of 2 gpm/tt.z of No No .No No l.. cross-sectional bed area or 4.9 M/hr. is T, 10D 0 Sample Sample Sample Sample recommended. If sufficient time and test fi- t " quid are available, food rates of 1 and 3 No Np No No r gpm/tt=Of cross-sectional area should also Ta 100 10 .Sample Sample Sample Sample I—) be investigated in order to determine the No No No No best flow rate for the system. For column Ta 100 30 Sample Sample Sample Sample diameters normally used in laboratory work, NNo, N oNo I a rate of 2 gpmltt.a of cross-sectional'bed T. 100 SD 20 L area is equivalent to the rates given in Table mple 2. Ts 100 1DD d5No Col.A displaced mple at time = is.luratlon of Column Testing Ideally,the test should be continued until the Te 100 70No first column is saturated and the specifics- mple I lion value of adsorbate in the liquid has been Ty 100 1 00 40 No No , Col.B displaced detected in the effluent from the last column Sample Sample at time= 1:1 in the series. If time and/or the quantity of test liquid available does not permit the test i�TO be run to ideal completion, it should be l run until breakthrough occurs in the last col umn, or until the first two or three columns Exhibit 2 are Saturated. (Displacement, Sampling and Analysis Typeofcarbon . ISo that accurate breakthrough curves can Plarn Name be defined, the wolfing liquid must be column No. -displaced from the columns In order to j 'establish a treatment starting point for each -weight of carbon ;'Flow cols/min ,—column used In the study.The test liquid is volumeof carbon :ConlacfTime_minutes pumped through the column system until the ' wetting liquid has been displaced and only SAMPLE DATE TIME VOLUME SAMPLE Al HR the test liquid is in contact with the carbon ND' TOUGHPUT .VOLUME DATA 'REMARKS beds. A-1 '/_, 09A0 '1oam1 - 2trml afi9 ...rbare First samplelmm Coium This displacement process is monitored Removes nA by analyzing the effluent from each column. R1e volume of the samples taken during this arocess should only be the quantity necessary to determine the concentration -'t.e.that quantity required by the analytical Table 2 nethod).When the effluent liquid from the zI column is the same as the test teed li- T1173747 OW RATES FOR 2 GPM/FI'p f4.9 M/HR.) Ad, then It can be assumed that most of 'he wetting liquid has been displaced fromco./min. gph tat column. A suggested record keeping 41.6 0.659 meadure is shown in Exhibit 1. After the t41.2 welting liquid is displaced from the first col- 2.62 - 1+mn,the collection of data to determine the 374.0 5.93 667.6 10.49 i 6 __ _„ .,n_. �.nr.n.n, on_co •ac ror ooro iu 7100140(04(d7 f.ld/l5 If a larger quantity of sample Is required for comalning an equivalent amountof carbon. S. The carbon dosage is then determin. analysis, it is recommended that you con. A method for interpreting breakthrough ed. The curve presents the informa- tact your Calgon Carbon Technical Sales data is presented In Chemical Engineering tion in the conlext of a single fixed bed Representative).As wetting liquid is dlsplac- Process(Val. 67, No. 11)November 1971. system.The dosage would be 0.25lb. ed from each column, sampling for adsor- page 41, "Activated Carbon Processes for of carbon per liter of liquid. However t� bate analysis should begin.(NOTE: Liquid Liquids" by D. B. Erskine and W. G, since there will be two beds in series, which is collecting for sampling does not Schuliger. The essential elements of this agreater percentage of carbon in the pass through each succeeding column. technique are: first column will be saturated:and so. Therefore,the number of samples which are z_ 1. An effluent quality is established.This the dosage will be something between_ taken should be limited so that the effect on can be an instantaneous value or an 0.25 and the isotherm dosage in - adsorption adsorption in succeeding columns is average value. dicated as 0.15 in this example.Thus, 2 The volume treated through each cob Judgement must be used.in determin- 9 ing the dosage to be used for design Treatment of the Data, umn until the specified quality is ob- purposes. reined is determined; for example, It should also be noted that this method If.for any single column of the system used points A through E in Figure 5. of interpretation assumes that equal super- In the experiment,the percent adsorbate re- 3. These points are hen plotted as a ficial contact time gives equal performance. maining in the effluent is plotted as a funs function of carbon bed depth. See In many cases this is only true when the lion of liquid throughput, a curve is obtain- Figure S. linear velocities in the commercial unit are ed. The shape of this curve will vary as a 4. A selection of a"reasonable"system he same as In the pilot unit. When the function of liquid being treated, linear flow is then made. In this case, for in. velocities are 2 gpm/ft.2(4.9 Mr.)or less, rate, and carbon particle size.An example stance,two beds in series—each five it is generally true that somewhat shorter Of a set of such curves is shown In Figure feet deep- would ,appear to be mass transfer zones are obtained as the 5. In this example, each column is assum- good design.Deeper beds would not linear velocity Is increased. This is the ap- ed to contain two feet of carbon weighing five improve the efficiency since the curve posits phenomenon than is observed at high (5) pounds. is leveling off. The point at which adsorbate first appears in the effluent Is termed the breakpoint.The Figure 5—Column Effluent Curves for a Five Column System part of the curve between the breakpoint and Influent Concentration the point at which the concentration of ad- 100 _ _ sorbate in the effluent Is the same as in the r — influent is called the breakthrough curve. I During the adsorption cycle in a column, eo a portion of the inlet section of the bed will most likely become saturated h adsor- bate. At the same point n time he carbon m °\J�c�E 2gd\oent fLL 50 near the outlet will be only partially loaded `— with adsorbate.The extent of saturation will a �° ttt�e�t depend on the system design and operating D i� parameters. Between these two extremes ¢ 40 °WM� ent � 1t1U y) lies a zone In which the adsorption is occur. c C Column°E ring.This area is sometimes referred to as the mass transfer zone or MTZ. A= 20 — _ 9 — -- C _ p In the example shown in Figure 5 the MTZ g` I I tttuent is determined as follows: The specification i Cctomn 5 E value is an instantaneous value of 20%ad- p sorbate in the effluent.The MTZ is determin- 0 10 20 30 40 50 60 70 80 90 t p0 ed by observing the amount of carrion be- volume Treated—Liters ( twean the 20%level and saturation. In this ease, when the first column is saturated at Figure 6—Dosage Curve for Single Fixed-Bed 81 liters,a carbon bed depth of approximate- 1.0 ly 9 feet would be breaking through to a 20% A i value.All adsorption would be occurring in p a 7 ft. depth (9 ft. total - 2 feet of the ex. Z hausled first bed).Thus the MTZ would be O.E 7 feet, o The purpose of obtaining breakthrough m curves is to obtain data which will allow one Zi 0.6 to design a system that will provide the o e desired product quality at an economical a cost In order to do this, the design should o DA be one that will permit the carbon to ap- -2 I I G proach complete exhaustion.In some cases U p e this is not feasible since a carbon bed '5 0.2 several hundred feet long would be required. a — _ Assumed Isotherm Dosage Therefore,a system is generally composed % of two or three beds in series,with each con• -, taining live to twenty-five feet of carbon.An p0 1 2 3 a alternate design is a pulse-bed adsorber 7 , .. Carbon bed Depth—Meters rates.Therefore,if the commensal unit rate is more than 15 percent less than that used n the laboratory,there may be a detectable difference in the performance. For this 1 l reason,it is important to investigate,in the laboratory,the effect of different flow rates. It should be emphasized that in many cases there will be alternate ways in which j a system can be designed and operated. Unfortunately,shoncut methods for design- ing the optimum system are not available. Therefore,it is essential that the laboratory evaluation be conducted as thoroughly as possible.Also;the interpretation of the data must be correct. Your technical represen- tative will welcome the opportunity to assist you in any way possible. s y i 7 a V I ;I t f u L taeoa ruse PpMtW In U.S.A. ** TOTAL PAGP_ 14 �a Page 1 of 2 Shelton, Lisao}c�` o r ©done lo�or�Qrylpyp I — foz�pne From: Guenter Moldzio i Sent: Monday, January 08, 2001 8:40 PM To: 'Shelton, Lisa' L_ Subject: RE: Color removal with ozone-resubmittal of text dated December 19,2000 ' I —Original Message---- From: Guenter Moldzio [mailto:biozone@biozone.com] Sent: Tuesday, December 19, 2000 7:12 PM To: 'Shelton, Lisa' Subject: RE: Color removal with ozone Dear Lisa: I find it very difficult to comply with your request for detailed information of a cost proposal and also technical proposal for a 30 MGD waste stream due to insufficient data. Unfortunately,we never had the opportunity to verify simple chemical summary parameters, including color, on this particular wastewater from a pulp and paper mill. I can only give you ideas and directions based on assumptions which could not hold true when chemical analysis finally is available. `JI I have assumed an ozone dosage of 20 ppm from an ozonation process train using oxygen as feed 4 gas.At a dosage of 20 ppm, the system will produce 94 kg/hour, requiring 940 cubic meters of oxygen. The projected concentration will be 8 percent by weight. Oxygen will be required to produce high concentrations of ozone necessary to break down color molecules. In addition, using oxygen as feed gas will reduce the requirements of ozone gas injection by a factor of 5. Ozone gas concentrations from ambient air can only be 1.5-3 percent by weight. { The generation system, including all electrical controls,will cost$3.5 million. Because of the volume of water, our recommendation would be to construct a concrete reactor vessel.The volume of this reactor vessel will be 200,000 gallons for a retention time of approximately 10 minutes. i, Catalytic ozone destruct units are necessary to destroy a small amount of off-gas exiting the reactor L 1 vessel. The catalytic destruct units are included in our above-mentioned budget quotation. Power consumption for the ozone generator will be 660 kWh with oxygen, and 1,130 kWh with ambient compressed air.The ozone generation process train will have a life expectancy of 20 years when properly maintained on a yearly schedule. Maintenance costs are estimated to be 3.5 percent of total capital outlay. j You now have to add the cost of a concrete vessel(s)to our budget quotation. I recommend building a concrete vessel with a minimum height of 30 feet to allow a hydrostatic pressure of approximately 1 1 bar(14.7 psi). Another major item for this project will be the supply of oxygen. Of course, oxygen concentrators are available which have to be powered by large-scale screw-type compressors.At present, the amount of compressed air at 7 bar needed to produce oxygen will be ten times oxygen consumption.The cost ratio between an ozone generator and an oxygen concentration system is about 2:1 to 3:1.An alternative would be to purchase liquid oxygen, if available. I do have proprietary schematics and diagrams available; however, I do not consider them part of our marketing material.These are proprietary to BiOzone's technology. They are, of course, available for purchase. Another item you have to consider would be any type of civil engineering work in conjunction with electrical and hydraulics. I would not be surprised to see the total budget quotation for this ozone O1/15/2001 R Page 2 of 2 installation to reach $10 million to$15 million. r How our system works in a pressurized reactor vessel and filter vessel has been demonstrated by a fax which I have sent to you under separate cover. The entries are as follows: 1. Corona discharge ozone generator. 2. Venturi injection. 3. Reactor vessel. 4. Filter vessel(option). 5. Injection turbine pump. 6. Injection control box. 7. Electrical control box. Basically, the above items do portray our pilot unit which could process 15 gpm of the wastewater, as indicated in your first fax. If you feel you need a professional to refine your report and attach realistic capital costs to your cost estimates, I would be available to assist you on a consulting basis. I think you will find my fees to be reasonable. I could help you given a ten-day notice. If you would like to pursue this option, please let me know. Regards, Dr. Guenter B. Moldzio i J J � I l � 01/15/2001 R -- -- - vv, vvw ueu i'a uu to ;oi rvo .uvo ,r .uz ---------------- as a _ "•" r, � o• L�. ML llllWll _ a — III�IIQI r—� r-, C _ a t y r RE: Ozone systems for wastewater color removal Page 1 of 2 Cartee, Bryan Qu�}d��on - oxm%n Qrtd ate— Air %jLJe_ From: Shelton, Lisa Sent: Monday, January 15, 2001 10:15 AM To: Cartee, Bryan v Subject: FW: Estimate for ozone and oxygen ---Original Message----- 'From: Homer, Gord [mailto:Gord.Homer@AirLiquide.com] Sent: Wednesday,January 10, 2001 5:01 PM To: 'Shelton, Lisa' Subject: RE: Estimate for ozone and oxygen Lisa A long loop recovery system. What ozone concentration do you require? I will confirm the number but a good estimate for 24,000 Ibs per day of ozone, no compression and no oxygen plant, but not including the oxygen clean up and recyle system is $15 million installed. I am working on 02 recycle capital cost. Ozone power is a function of temperature and concentration ie at 6% 03 concentration the power is 3.5 kwh/lb at 13 % 03 concentration is 7.5 kwh/lb. 02 clean up power is not included. Oxygen tankage can be almost any size but the largest standard tank is a TM 13 which holds 50 tons LOX and can deliver at pressures up to 200 psig. Tank is vertical so has a small foot print. ~J Can you give me a hint as to where in the US this would be as temperature is critical. Cooling water should not G exceed 22 C. Does the mill currently have a LOX supplier? Thanks Gordon -----Original Message----- From: Shelton,Lisa fmailto:Lisa.Sheltonna Jacobs.com] Sent:Wednesday,January 10,2001 12:55 PM To: Homer, Gord Subject:Estimate for ozone and oxygen Gordon, I have several questions for you. We have figured that the ozone usage we are looking at is 24,000 pounds per day. We are currently looking at purchasing oxygen by the truck load and i using two tanks. We figure that the project will require 40,000 Ibs/day of oxygen. We are looking at having 2 large oxygen tanks -fill one up and run out of the other one for 1-2 days then switch over. And we are wanting to recycle the oxygen back to the ozonator. Here are my questions: 1. What would be the cost of a 24,000 lb/day ozone generation plant? i 2. What would be the electric usage(kw/lb 03 generated)? J 3. What is the largest 02 tank that you can get? If you have any questions, please call me at 864-676-4104. Thanks, Lisa —Original Message---- From: Homer, Gord [mailto:Gord.Homer@AirLiquide.com] Sent: Wednesday, January 10, 2001 12:45 PM 1115101 RE: Ozone systems for wastewater color removal, Page 2 of 2 1 . To: 'Shelton, Lisa' Subject: RE: CO2 tank estimate Lisa Should I assume a tank size of 3 days (90 tons per day or 270 tons) Thanks Gordon --Original Message--- From: Shelton,Lisa[mailto:Lisa.Shelton@Jacobs.com] Sent:Wednesday,January 10,2001 5:33 AM To:Homer, Gord Subject: CO2 tank estimate Gordon, What would be an estimated cost for a carbon dioxide tank. The client has an estimated carbon dioxide usage of 182,000 Ibs/day. Thank you, Lisa a� 'J 'J J 1/15/01 R JAN. 1. 10,11 9:45AM U. S. FILTER, HPD NO. 4047 P: 1 Zro' !c�# c2. Qu�olz� ov� -�r Cxys�y..11i�er s! — lip PRODUCTS Kevm Cora DD "eiiwr3.a.. � W phW1.Sm agTwYm1aeyCad= Kft=D=Faa $15.436A131 2WertA4iL605 M' 3&"13 ]?ldafield,)L fi0544 .. A(aie Fax a13.a36.901a t r��t1 M�Aa4w November44,20D8 Pco4t^brand tax lianamitielmamo7" ro/oaoa.r r� Kv w v Blue Ridge Patter Products O� S o Canton,North Carolina Ww —¢� "'• rax r r..r "i Attention:. Jennifer Ballard FAX: (628)646-2367 ecw: baIIaj@bIueridgepapercam .J Subject: Budget Estimate-purge Crystallizer � 1 DearJennifer: Thank you for your inquiry for budget information on a system to process the liquid purge from your CRP1B crystallization system. Likewise we have provided some information on an earlier quote on a MRP'"addition for your reference. We would be pleased to follow up an either of these if you see that the projects appear likely to advance. r CRP Purge Crystallizer. We have compiled a brief description on the performance,measures but In principle it is similar f to the units already in service. The primary difference is that no purge will be taken from the final rake. The purge will feed this crystallizer, and be concentrated so that the crystals and i� moisture content of the cake comprise the only dscharge from the system. This cake will be dewatened enough to be transported without leaching out water from the solids but will still be a damp cake. I I The equipment is similar in that it will required a forced circulation crystallizer with submerged boiling such as you have today in the existing CRP system. The solids will be dewatered in a plate and frame filler press to approximately 85%dry solids content. Any filtrate from this press rl wIHbe returned to the crystallizer for further concentration. J Energy for the system oar be steam or flack liquor evaporator vapors. The vapors leaving the purge crystallizer can be integrated into the LTV train or optionally condensed in a stand alone J condenser. it is worth noting that the amount of evaporation in this new omit prohibits the integration of this purge unit with the existing CRP system without significant retrofit to that trait. We believe that Ufa easiest integration is into one of the existing evaporator trains. The vapor required to drive the unit is roughly 8,000 Mir which is small compared to the vapor flows.in -� the LTV train. HPD has considerable experience integrating systems such as this into evaporator trains and believe that the system will be just as reliable as if it were a stand alone I system. In fact the CRP at the Eastover mill is integrated Into their existing train without U difficulty. r-ft 0a.,.,NXk5kP auw P Page 1 of B MVENDI taxvev urdepe.e4e confidential lnformalion water®..g ,� 2 'd GEM-Sips-bOL wepuow TTew d9e : io To 20 uer Jan 02 01 01 : 36p Neil McAdam 704-940-8699 p. 3 V(�.5�y� i,m f f'° 5y p0NOR iwl _ I1equoFnjuo9 aa�a0y ewwn �! ZJo Z aeed eaowvu ua wJr"=U ft.0 r c x l I woc'raWJsndhNunp:llaw,a 1E60 SEY Sle Xtld E9ZS-6V"W:ouG9d �! JoBeuelry sales no *ow" �q 'sue as 'Jell!�sn h 'sPa ages . J 'uogoeJ!p Jrtwt of PMWo!MOOI eM 'Agleam leloiawwosoauj 9!44 dolanap 01 nOA 41!M)IOM of oinseeld ino aq pinoM 8 pus soinGg AUel96pnq anoge 641 of sluawww JnoA of pjavaq Tool OM •slougll ploplooa u!dnoiB a6ueLpxo uo!Jno yBnon V 6u!puss Aq Buliago 841 do uug oa peseeld � P1noM am 'angzew sisadde sM A -6u!jollo Jno;o esauenll!ladwoo a41 J% 16% a not ael6 pinnyc sl4l 1nq pelanpmm aq of peou INN eoud IeUg a41 'sXlioa Sn 000'a=UB41 wel e9 01 ISM Psllelsu! Is1o3 841 pus 000'001,9 W e6usJ ayl ul aq of luswdlnbe a4l pal uuM � aM vogellelsu! IeJaueB aql pue 6uluo!sslwwoo 'uogeJBalu! 6ulwwwBwd 841 81Pue4 Pln Im!dwe4o le4a slseq a41 wwi Buppm Siam am 'auswdlnbe all x4 ain6g pepnlou!6uuseu!Bua uo4videlu!ou—ssuoq amq a el eoud a41 'mil ul dnwB elexxVoo s,uoldwe4o 01 posodwd r sam sl41 walsk 6upswe a g of uo!@ppe ue Bulq!psep Al ja!Pe8 0e Pe4wP ane4 eM's!41 up _ woreuedxa d uyl 'ApJq Z A4=aq pinom lssodsp Jo;spgos e41 'soled Joterodene 6ugsp(a a41}o euo Jeau peMol a4 Ale8p!pinom Pus wnwpmw AZ x,Zl, Aleulwou aq pinam pailyd)w luPdlooi e41 ,AICL 10 MK 5Z Moqe pus(weals Jo)Joden 10 JUlgl 000'8 A4B+iJ am paj seq!I.qn aU •6uuaau!Bua pus 'Jogel uWlellsmsu! 'Buuaaul6us uogellspu! 'uogeluewnllsu! 'leoppole 'uogelnsu! '&w Taal tuvnAs Iuawdlnbe a4l apni2u! pin c.0 'slseq pollepL4 ue uo 000'000'ZS 10 a6usl a41 u!a9 Pinum U04pW s!41 jot eoud pBpnq V � ��A" Z 'd LOON qdH 'H11IJ 'S 'ni OW 6 IOOZ 'Z 'Nvr JAN. 2. 1001- 9:46WN U. S. f ILTER, HPD N0, 4047—P. 3. ;n Ilia 31 y � �yyyCCS ,i s • MM �ar� d ' i el �ai OR - i ; , ! ! I i I , I ! i i • i 1 I i I ! i I , e / b 'd 6698-646-bOL wepyow ITON dLE: IO TO 20 uer 2001 Color Removal Technology Assessment Blue Ridge Paper Products Inc. Canton, North Carolina TABLE 1-1 SUMMARY OF 2001 ASSESSMENT OF COLOR REMOVAL TECHNOLOGIES , .. :. .. ,.'. .... � r _.:.r ... COLOR REDUCTION CAPABILITY 80-90% 80-90% 50-60% 95% 90% N/A 80-85% 100% THEORETICAL MAXIMUM 64 64 159 16 32 318(before mixing) 64 290 EFFLUENT COLOR,color units THEORETICAL AVERAGE 31 31 94 10 21 208(before mixing) : 36 190 EFFLUENT COLOR,color units DEMONSTRATED ABILITY TO CONSISTENTLY-ACHIEVE NO NO NO YES YES YES NO NO 50 COLOR UNITS ESTIMATED N COST $26,407,504 $19,341,523 $12,868,528 $28,304,090 $21,890,847 $4,374,404 $6,647,723 $2,137,053 OPERATING COST ESTIMATED CAPITAL COST $57,373,000 $60,884,000 $40,203,000 $149,768,000 $99,289,000 $34,789,000 $38,140,000 $11,151,000 r ISSUES a. No known commercial a. No known commercial a. No known commercial installations a. No known commercial a. No known commercial a. This technology does not remcve a. No known commercial a. No known commercial installations installations for an application installations for an application for an application similar to the Canton installations for an application installations for an application color. It relies on the assimilative installations for an application for an application similar to the similar to the Canton Mill. similar to the Canton Mill. Mill. similar to the Canton Mill. similar to the Canton Mill. color capacity of the river. similar to the Canton Mill. Canton Mill. b. Plants using alum as an end-of- b: Full-scale lime treatment for b. Treatment process is incapable of b.Color reduction capability b. No pilot tests have been b.This technology is very sensitive b.An extensive research b. Assumes color remaining in waste- pipe color removal technology color removal at other facilities was achieving color target of 50 color units. removal percent is based on an conducted using this technology. to increases in treated effluent color effort by EPRI and Bowater water treatment influent would still abandoned those operations due to abandoned due to inability to engineering•judgment. and/or drought conditions. Either achieved a much lower undergo a 25%color reduction across operating difficulties and achieve color objective. c. Downstream site required due to c.Color reduction capability condition can result in a significant actual color removal the treatment plant. inconsistent performance. insufficient land on site. c. Downstream site required due removal percent is based on an increase in the required pond efficiency(25-30%removal). c. Downstream site required due to insufficient land on site. engineering judgment. volume. c. Assumes excess steam is available r c. Downstream site required due to insufficient land on site. d. Incinerator and air permitting c. Downstream site required at the Mill. to insufficient land on site. required. d. Incinerator and air permitting d. Downstream site required due c.If the river flow decreases by due to insufficient land on L d. Effluent total dissolved solids required. to insufficient land on site. 13%(drought),the river will not site. d. Effluent total dissolved solids (TDS)likely to increase by 20 to have the needed assimilative color (TDS)likely to increase by 20 to 25%. capacity. 25%. e. May require add-on process for d. This scheme would result in e. May require add-on process for TDS removal at additional cost. nearly depleting the river flow TDS removal at additional cost. during drought conditions. f. Incinerator and air permitting f. Incinerator and air permitting required. required. L] L.� tablet-1.xls 1-3 Rev. 5 J I MILL WATER DRY POLYMER � a ALUM TANKS 40'DIA x 40'H EA v 50%CAUSTIC 5 DAYS CAP 0� STORAGE TANK E SEA - 24'DIA x24'H ELECTRIC TRACED a DAY CAP TRUCK DELIVERY TRUCK DELIVERY CAUSTIC METERING DRY PUMPS(2) POLYMER 6.50 GPM EA 71 FEED 0.5 HP EA ALUM FEED PUMPS(2) SYSTEM ..- 40 GPM EA 5O'TDH, REACTOR CLARIFIERS(2) 1 HP EA 170'DIA x 15'SWD 60%CAPACITY 4 HOURS RET It (� SECONDARY 60'D0\ 30'Dk TREATMENT 24.6 MGD AVG PLANT ♦ DISCHARGE®EXISTING OUTFALL EFFLUENT 26.7 MGD MAX A IF TREATED WASTEWATER r-� TRANSFER PUMPS(3) PH ADJUSTMENT 10,000 GPM EA®tOD'TDH BASIN 350 HP EA pH ADJUSTMENT 2 MIN RETENTION 35'L x16'Wx11'D BASIN 2 MIN RETENTION 35'Lx 1'DWI IF MIXER MUCERS 2®10 HP EACH SLUDGE TRANSFER 706 GPM l PUMPS(3) 1,632 GPM EA®75' TDH,60 HP EA 2,968 GPM SLUDGE 1%SOLIDS RECYCLE PUMPS(2) DISSOLVED AIR 594 GPM EA®180'TDH 40 HP EA I� FLOTATION THICKENER SCREEN 40'DIA SCREW PRESS SEPARATOR SULFURIC ACID SLUDGE FEED PUMPS(2) STORAGE TANK / 26'DIA x 36'H SULFURIC ACID BLEND TANK 653 GPM EA @ 100'TDH 25 V METERING PUMPS 15'DIA x 15'H HP EA _ 7DAY CAP 6.5 GPM®0.5 HP EA 30 MIN O TO LANDFILL 594 GPM RETENTION 60 TPD(DRY) 0 5%SOLIDS 1800 TPD(WET O ®5%SOLIDS AIR AIR COMPRESSOR DREGS SATURATION WASHING BATCH REACTOR SULFURIC TANK SCREW PRESSES(4) TANK ACID FEED PUMPS \\ \ / 60 TPD EA 10'DIA x 10'H 200 GPM EA 020 PSI ID 5 HP EA CYCLONE ED STORAGE SEPARATOR SILO jjj 10,DW X25'H BUCKET ELEVATOR 0 SCREW PRESS FILTRATE PUMPS(2)653 GPM STACK SCRUB- EA®50'TDH 15 HP EA CONCRETE PAD FOR DREGS PUMPS(2) BER 24 HR STORAGE I, 50 GPM EA®100'TDH J 2HP EA VENTLl'SCREW CONVEYOR SCREW CONVEYOR 891 TPDx 60') t 20%SOLIDS SCREW CONVEYOR FLUIDIZED BATCH ® SLUDGE BED MIXER 30 PSI STEAM REACTOR INCINERATOR 16'DIAX 16'H FROM MILL NO.2 FUEL OIL HEATER STORAGE TANK AIR SUPPLY FAN LTRANSFER LUM MUD TO MILL SCREW CONVEYOR JAcoBs PUMPS PUMP&HEATER CAGE E N G I N E E R I N Gt �- 0 GPM EA® MILL 100'TDH SET 10 HP EA Engineers and Constructors FIGURE 3.1 END-OF-PIPE COLOR TREATMENT ALUM COLOR REMOVAL SYSTEM FLOW DIAGRAM h f� I ( � Reactor Clarifier i No.t _ —.—.—.—.—. SludgeT ank �^ I I O DAF Sludge J j Clarifier Presses i O U O U I Sludge Transfer Sump r — — — — Retention E 0 Storage l Sum Basin . S P 'o Incinerator c Alum U Building r 19 I Tank 1 Reactor Clarifier Alum O O No.2 Fuel Oil - No.2 I .�• Silo Dregs r- — — — — — —I— —•—•—•—•. —O Caustic Batch Washer Pigeon iReactor River Pigeon I SulfuOr c (( River I Acid Tank Highway North �r ) iJ JACOBS ENGINEERING' 3 Engineers and Constructors JFigure 3.2 Bark Storage Area North of Fibreville End-Of-Pipe Color Treatment Alum Color Removal System General Arrangement l Scale: 1"= 100 Ft. U I� 100 GPM 300 LB/HR t PNEUMATIC UNLOADING LINE FOR TRUCK DELIVERY 30 TPD (i 825 TON j 35 PSI STEAM FANS(2) STORAGE 9,468 LBSMR 5HPEA LIME SILO BUCKET SECONDARY AIR �� 27,500 FTC ELEVATION FLOW F ♦ ,—7 n \ 33'DW x3TH 25 HP 150 HP (D 3 DAY CAP - -, MILL WATER 600 GPM STACK PRIMARY A R O 60 GPM FAN 75 HF' VENTURI STACK 35°F MIN LIME KILN SCRUBBER t-7 SCRUBBER 275TPD SCRUBBER 1 RECIRCULATING j HEAT EXCHANGER ��— � TANK i 15'DWx15'H CONDENSATE TO BOILER / DRAG LINE CONVEYOR 30 MIN RETENTION 1 275TPD 25 HP FEEDWATER SYSTEM SCREW FEEDERS(2) 100%CAP EA LIME SLAKERS(2) 0.083 TPD 25 HP EA CRUSHER SCRUBBER RECIRCULATING PUMPS(2) ( LIME SLURRY 80%CAP, 15 HP 500 GPM C 100'TDH, LIME SLURRY FEED PUMPS(2) TRANSFER PUMPS 10 HP EA 20 HP EA NO.2 FUEL OIL 500 GPM®100-TDH 20 HP EA 600 GPM®50'TDH STORAGE TANK 30 HP EACH 83,160 G4L 21'OW z24'H GRIT 10 GPM LIME SLURRY HANDLING STORAGE TANK SYSTEMS 23'DIA x24'H FUEL OIL PUMPS(2) 2 HR CAP 10 GPM®300'TDH EA, r CONDENSATE TO 2 HP EA / MILL SULFURIC ACID SECONDARY TREATMENT STORAGE TANK PLANT EFFLUENT 182,000 LBS/DAY 64,018 GAL VAPORIZERS COz SYSTEM PH ADJUSTMENT 24'DIA x 24'H / 80'DLA BASIN 24.8 MGD AVG,28.7 MGD MAX A VERTICAL STORAGE TANKS(9) 2 MIN RETENTION ( 2VDV.x4VH 35'Lx17'Wx11'D SULFURIC ACID TREATED WASTE METERING PUMPS(2) TRANSFER PUMPS 9 GPM®100'TDH EA, (3)10,000 GPM® . 1 HP EA 10V TDH REACTION BASIN 350 HP EA TO DISCHARGE 0 EXISTING OUTFALL ll3 68'Lx 34'W xIVD 3)4DD 24.8 MGD AVG,29.1 GPM 30'DIA TPD EA 040%10 HP MO 15 MIN RETENTION SCREW CONVEYORS MOTOR OR COLOR CLARIFIERS(2) RECARBONATKIN CLARIFIERS(2) 60%CAPACITY EA 60%CAP EA 170'DIA x 15'SIDEWALL DEPTH 17V DIA x 15'SWO L RECARBONATION BASIN VACUUM 35'L x 17'W x 11'D FILTERS(3) .� 631 GPM®3%SOLIDS 2 MIN RETENTION 50%CAP EA [_ 160 TPD EA LIME KILN FEED SCREW CONVEYOR SLUDGE TRANSFER PUMPS(3) 30 HP 1200 TPD 010% SLUDGE TRANSFER PUMPS(3)315 GPM EA®100'EA 573 GPM EA®100-EA 20 HP EA SILENCER l l 15 HP EA - 1776 GPM SLUDGE®3%SOLIDS E 374 TPD VACUUM FILTER FEED PUMPS(3) 977 GPM EA®25'TDH 10 HP EA O L VACUUM PUMPS(3) PRECOAT CALCIUM SLUDGE BLEND TANK 25 HP EA PUMPS(2) CARBONATE F� 1 HR STORAGE 5 HP PRECOAT MIX TANK 28'DIAX28'H WD0\x VH I FILTRATE PUMPS(3) JACIN OBS� 977 GPM 050'TDH EA 20 HP EA FIGURE 4.1 END-OF-PIPE COLOR TREATMENT LIME COLOR REMOVAL SYSTEM FLOW DIAGRAM r l�J i I r� i C I Recarbonation i Clarifier No.2 I I I f _ Sludge Dewalering Building i w/Precoat Filters Stack Sludge _� l _ — :G Transfer . i Pumps ❑ l i O Scruccer Tank i l Recarbonation Clarifier No.t Control Rm/ I MCC r ---•—•—•—•—i..................... ` Lime Kiln i j c c O N n � Sludge Tank I 1i+• i � r it O r Lime Slurry jStorage Tank l ' I r ColorClarifier O Pigeon No.2 i m River iL Pigeon — _.—•—•---•—,�—'—•---•—•—• � � i RiverLi i Highway 0,-Sludge i Transfer Pumps O North No.2 Fuel Oil Reaction Basin — _ —._. Tank lJ � � l O Sulfuric Acid f i Tank ❑ ColorClarifier 4 No.t i _ _ - - E ❑ _._._._._. ._. _ _ a JACOBS N j m C= ❑ x j a ENGINEERING® jTransfer Pump �� ❑ Pit Engineers and Constructors i Figure 4.2 CO2 Tanks ❑ Bark Storaggkrea North of Fibreville C.� ElEnd-Of-Pipe Color Treatment C� Lime Color Removal System El General Arrangement E-= ❑ Scale: 1"= 100 Ft. �J [� STORAGE POLYMER STORAGE TANK 33,488 GAL POLYMER FEED PUMPS(2) 1 B'DIAx 1B'H 3GPM EA@100'TDH 7 DAY CAP 4784 GPD 0.6 HP EA MILL WATER STATIC MIXER III TO EXISTING OUTFACE TREATED WASTEWATER 24.8 MGD AVG.28.7 MGD MAX TERTIARY CLARIFIERS(2) 170'DIA x 16'SWD EA 80'DIA 30'DIA WASTE TRANSFER PUMPS(3) 10,000 GPM @ 100'TDH 60 GPM 350 HP EA POLYMER REACTION BASIN 5 MIN RETENTION 47'Lx 24'W x14'D DRY POLYMER SLUDGE TRANSFER PUMPS(3) HOPPER 172 PPD 79 GPM @ 100'TDH 8.6 TPD ( `\� 5HP EA 1%S0 LIDS 143 GPM 0� POLYMER SLUDGE BLEND TANK SOLUTION TANK 30 MIN STORAGE 600 GAL CAP 4,302 GAL f 10'DIA x VY H ROTARY SCREEN THICKENERS(2)PD RATED FOR 20 T DRY SOLIDS EA POLYMER FEED SCREW PRESS FEED PUMPS'3) TANK 500 GAL CAP RATED FOR 78 GPM @ 100' j-� 6HP EA t SCREW PRESSES(2)RATED FOR 20 TPD DRY SOLIDS ' POLYMER FEED PUMPS(2) 5 GPM @ 100'TDH EA T"' FILTRATE TANK _ FILTRATE PUMPS(2) 0.5 HP EA 30 MIN RETENTION RATED FOR 168 GPM @ 100'TDH 10'DIA x 10'H O 7.6 HP EA - 10 ODTPD Q STACK 45%SOLIDS 36-� LB'HR 55 PSI STEAM SLUDGE FROM MILL STORAGE VENTURI /^\ 25'W x 25'L L - i SCRUBBER SCREW CONVEYOR NO.2 FUEL OIL 60 TPD/20%SOLIDS TANK 1 10,000 GAL SLUDGE PRIMARY AIR 12'DIA x 12'H INCINERATOR O FANaHEAUT�ER 70AY CAP l T , CONDENSATE TO MILL t sCRUBBER DUMPSTER STORAGE J]'JACOBS PUMPS120 GPIMNG @ EN GIN E E R IN 011 j 750'EA 40 HP EA ' ' Engineers FIGURE 5.1 END-OF-PIPE L COLOR TREATMENT POLYAMINE COLOR REMOVALSYSTEM f FLOW DIAGRAM u Ll L� tI - �l I + Reactor Clarifier No.2 Filtrate l Sludge Tank Sludge Tank O O Presses L) Sludge Storage Transfer Polymer Pump .—.—. . E Sump Basin • o r- i o Incinerator U Building Reactor O No.2 Fuel Oil Clarifier i r No.1 Ash $ii$aa �;' Hopper-----•--•—•—•— — _1 —.—.—•—•—• � Pigeon River f Pigeon River Highway �A North JACOBS ENGINEERING j� Engineers and Constructors Figure 5.2 L1 Bark Storage Area North of Fibreville End-Of-Pipe Color Treatment Polyamine Color Removal System General Arrangement Scale: 1" = 100 Ft. STEAM FROM MILL TO PRIMARY CLARIFIERS AT MILL DETERGENT CAUSTIC MIX TANK FEED HOPPER 6.000 GAL CAP I V DIA x I I'H CAUSTIC MAKE-UP PUMPS 160°F WATER 50%CAUSTIC (2) FOR STORAGE 10 GPM Q 50'TDH EA 0.5 CAUSTIC CLEANING CLEANING RECYCLE DIRTY CAUTANK STIC 50.000 GAl TANK HP EA PUMPS(2) 15,000 GAL CAP 12,000 OAL 60 GPM Q 230'TDH EA 5 DIRTY CAUSTIC 14'DIA n 14'H HP EA HOT WATER CLEANING PUMPS(2)270 PUMPS(2) OPM Q 280'TDH 100 GPM Q 230'EA DETERGENT DETERGENT PUMPS 30 HP EA 10 HP EA ► CONCENTRATE MIX UF TANK 60 GPM Q 250'TPD OF CONCENTRATE PUMPS(2) 1 6000 GAL 10 HP EA 11DIA x 11N STORAGE TANK ( � 1 DIAz3�37 O 137 OPM 67 100'TDH 10 HP EA CITRIC ACID FEED HOPPER CAUSTIC METERING r PUMPS 10 GPM EA 1 HPEA ULTRAFILTRATION SYSTEM 20 MODULES Q 10000 SFA MODULE TO DISCHARGE AT EXISTING OUTFALL CI IC FLOW RATE-150 GPDISF - 24.6 MOD AVG 23.5 MOD MAX T— ACID MIX OF PERMEATE TANK 6,000 GAL —► TREATED WASTE TRANSFER PUMPS(3) CITRIC ACID 10,000 GPM Q 100'TDH 350 HP EA _ CLEANING PUMPS 60 GPM HP EA TPD — 10 HP EA SECONDARY TREATMENT RETURN PUMPS(2) PLANT EFFLUENT BACKWASH 1200 GPM Q 100'TDH 24.5 MOO AVO 28.7 M00 MAX SAND FILTERS RETURN TANK 50 HP EA = 5 CELLS Q 1760 SF EA 36,000 GAL CAP COOLING TOWER W25 FT'TOTAL 20'DIAx20'H 30°F Drop Fmt(2)Q 90 HP EA — SAND FILTER FEED PUMPS(3) 10,000 GPD Q 25 TDH 100 HP EA CLEARWELL COOLING WATER PS AIR 600,000 GAL CAP Q 75 TOH _ COMPRESSOR 105x 11 0'z9' 40 HP EA _ 125 HP BACKWASH PUMPS(5) 1 400 GPM Q 50'TDH 10 HP EA U.F.FEED PUMPS(5) — 5,000 GPM Q 230'EA k... - 400 HP EA SCRUBBER WATER FEED PUMPS(2) 36 GPM hl 120'TDH 2 HP EA s AUXILIARY FUEL CONDENSER STORAGE 1250 GPM COOLING WATER TANK 20,000 DT=30°F PUMP HEATER GAL SET 16'DIA x 16'H 2 HP SIX-STAGE FAWN FILM EVAPORATOR DIRTY CONDENSATE PUMPS(2) 137 GPM Q 100.TDH 5 HP EA INCINERATOR 5%SOLIDS J 50 PSIO AFTER STEAM 35 PSIO STEAM BURNER IONIZINO WASTE HEAT 1600°F STACK O SCWET PRESCRUBBER BOILER 1S50°F ROTARY KILN �— 220°F RUBBER CLEAN HEAT EXCHANGER CONDENSATE SLOWER 15 GPM Q 50%SOLIDS BOTTOMS PUMPS RETJRN TANK 30 HP W Ef DRAG RAM FEEDER CLEAN CONDENSATE RETURN ' CONVENOR 500,000 BTUMR 15 OPMQEA TDH 1500 GAL 3 HP EA OIAXTH TO MILL I RECYCLE PUMPS 2 RECYCLE PUMPS 2 CLEAN CONDENSATE RETURN j_ () () ASH PUMPS(2)31 Q 100'TDH 1068 GPM Q TO-TDH 22 GPM Q9O'TDH 1HP E E A 30 HP EA 1HPEA 80 GPM 4.i TPD VACUUM PUMP 125 HP E PRESCRUBBER M @ 100 W N PUMPS(2) J��O�� 36 GPM Q EA TDH I � 2 HP EA EN INEERING6 ) L FIGURE 6.1 END-OF-PIPE COLOR TREATMENT t j ULTRAFILTRATION SYSTEM IFLOW DIAGRAM ) } IF� Ultraflltralion Building Sand Filter Building 140'x 120' 140'x 150' —� Includes 20 OF Modules, Includes 5 Sand Fillers, Tanks.r:nntrol Rom 105'x 110'Clearwell .,..rn+.............�..-............{— Transfer Pump Sump LJ LJ L1 LJ — — — — — — — — ......................... Detergentcy— , n n n f� o — —•—•—•—•—,—,—_ ( Mix Tank tL+l 1+�F+LJ1—FLJF— t Dirty O — Caustic Qil Tank Cooling Tower O i Citric Acid O 00 Q O Mix Tank Evaporators 50% l OF Caustic Backwash Tank Concentrate ? Rotary Kiln Return Tank Hot Water Tank r_ Cleaning O Incinerator O Tank Fuel Oil Pigeon ` Stack River f Pigeon Ilk River Highway North a � I]OJACOBS ENGINEERING" i-� Engineers and Constructors Figure 6.2 I Bark Storage Area North of Fibreville End-Of-Pipe Color Treatment i._ Ultrafiltration Color Removal System General Arrangement L� Scale: 1" = 100 Ft. � l i }} TO PRIMARY CLARIFIERS IN MILL SULFURIC ACID STORAGE TANK 11,840 GAL CAP 1� 14'DIAx 14'H 1, METERING PU MPS(2) 2.0 TERITARY EFFLUENT PUMPS(3) GPM I EA CARBON 10,000 GPM EA @ 100'TDH 0.5 HP EA CARBON �1 COLUMN(20) COLUMN(2 400 HP EA 0) i BACKWASH 28,SW p SECONDARY EFFLUENT RETURN CARBON EA 28S N PUMPS(2) CARBON EA 24.8 MGD AVG 28.7 MGO MA% 18 MIN 18 MIN 24.8 MGD AVG 28.7 MGD MAX 1,200 GPM @ RETENTION RETENTION 100'TDH 12'DIA x 12'H EA PH ADJUSTMENT BASIN i SAND FILTERS 60 HP EA 12'DIA x 12'H EA 35'x 18'x 1 V J 6CELLS@1,7005F EA BACKWASH 2lAIN RETENTION i TSS-20 MG/L ELLS SF TOTAL RETURN TANK PH 8.0 38,000 GAL CAP 2[ 20'DIA x 201H SAND FILTER PUMPS(3) TSS<5MG/L _► I 10,0D0 GPM @ 25 TDH PH ADJUSTMENT BASIN 100 HP EA CLEARWELL 35,x 18'x 11' 110'x 105'x 9 _ 2 MIN RETENTION { BACKWASH PUMPS(5) CARBON COLUMN SPENT CARBON PUMPS(6) 400 GPM @ 50'TDH FEED PUMPS(3) SPENT CARBON AIR COMPRESSOR 10 HP EA 10,D00 GPM @ 76'TDH 180 GPM @ 1W TOH EA FROM COLUMNS 125 HP 300 HP EA 10 HP EA F SPENT CARBON STEAM SO%CAUSTIC i=%pumnpS(2)4_ STORAGE TANK 84,000 GAL ATERING 0 O 24'DIA x 24'H CREW _ EDER THERMAL D CAl'STIC METERING 1 REACTIVATION D{3 UNIT S/TPH CAP PUMPS(2)2.5 GPM EA 0.5 HP EA 275 GPM EA @ 76'TDH - NATURAL GAS Q VENTURI E )J 15 HP EA PREHEATER CAUSTIC TRANSFER IF! SECONDARY AIR PUMPS(2) J FAN 250 GPM EA @ 26' 4 HP TDH 3 HP EA STACK IF f MAKE-UP CARBON (_. STORAGE TANK 5,420 FT' CARBON TRANSFER PUMPS(2) CARBON RE-SLURRY EVAPORATOR 20'0IA x2UH 150 GPM EA@100'TDH TANK _ 10 HP EA 10,000 GAL CAP } /2'DIAx 12'H ♦STEAM REGENERANT FEED REGENERANT MAKE-UP - PUMPS(2)1527 GPM STORAGE TANK t EA @ 75'TDH 20,300 GAL BOHP EA 18'DIAx 18'H COLUMN RECHARGE INCINERATORS(1) PUMPS(2) 100%CAP EA BOTTOMS PUMPS(2) EVAPORATOR RECYCLE PUMPS(2) 126 NO.2 FUEL OIL 1880 GPM @HP E EA A TDH 40 GPM EA @ 75'TDH 152 GPM @ 50'TDH EA TANK 204,000 2 HP EA 5 HP EA 34'DIAx 34'H FUEL OIL PUMPS(2) l_ ASH TO LANDFILL 20 GPM EA_ 1HP EA 2.6 TPD J]'JACOBS ENGINEERINGt tEngineers and Constructors FIGURE 7.1 END-OF-PIPE COLOR TREATMENT CARBON ADSORPTION SYSTEM CFLOW DIAGRAM l� I ] r� ' 1 xyy � 1 Sand Filter Building — — — — — — ----- 140'x 150' (� Includes 5 Sand Filters 105'x 110'Clearwell -, —�• � I ) Backwash Return Tank Carbon Adsorption Building 250'x 150' c Includes 40 Carbon Vessels 11 8..8. ..®. .�. . Fuel Oil Tank Incin- Control Room erator Transfer f Make-up Carbon O oO Thermal Pump Storaqe Tank l Reactivation Unit Sump Pigeon l River Pigeon o00Oo River Carbon l Reslurry Tank O Sulfuric Acid Spent Carbon Highway Storage Tank Storaqe Tank Caustic Regenerate Make- Storage Tank up Storaqe Tank North NJACOBS EN GIN EER ING'& Engineers and Constructors Figure 7.2 Bark Storaoe Area North of Fibreville End-Of-Pipe Color Treatment 13 Carbon Adsorption Color Removal System' General Arrangement Scale: 1"= 100 Ft. t.� r� NEW OUTFALL STRUCTURE 30 MIN CAP STORAGE POND FEED PUMP:" )10,000 GPM @200'TDH EA SECONDARY EFFLUENT 1000'PIPE 30'Diameter 750 HP EA 48'Diameter 1000'PIPE 24.8 MGD AVG 28.7 MGD MAX 57,000 GPM Max 24.8 MGD AVG 57 MGD MAX 30'Diameter 30'Diameter 20.000 GPM Max 1 30'Diameter r� Assume 3 Mile Long t f1 l +1{ STORAGE POND HIGH SPEED FLOATING AERATORS(7) l 10,018 GPM Max 75 Hip EA 30'Diameter r i ( 20,000 GPM Max STORAGE POND , 175 ACRES ( 30'Diameter STORAGE POND RETURN PUMPS(3) (_ 10,000 GPM @ 100'TDH EA 350 HP EA 1]*JACOBS EN GIN EERINGO FIGURE 8.1 END-OF-PIPE E_ COLOR TREATMENT STORAGE AND TIMED RELEASE SYSTEM FLOW DIAGRAM �J C__t Pond Influent/Effluent Line ............................................................................... ...... .......................................................................................................................................... ........................................................................................................................................ .. ..... ..... Pump Station/ Maintenance Building Floating Docks(4) 40'x 100' 200'Long Each 0 1 0 Provide: Access Roads Perimeter Roads Security Lighting Security Fencing Maintenance Trucks MowingEquipment - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---- --------------------------- ------------------------------ -.......... Road Upkeep Equipment Maintenance Boats Maintenance Barge I Aerators(7) Storage&Time Release Pond j High Speed 153 Acres Water Surface j Floating Location Undetermined 0 0 L JACOBS ENGINEERING" Engineers and Constructors Figure 8.2 End-Of-Pipe Color Treatment Store and Time Release System General Arrangement Scale: 1 400 Ft. 144,065 LBS/DAY 02 1 INFLUENT BASIN REACTOR REACTOR REACTOR REACTOR REACTOR EFFLUENT BASIN l 1 86'L X 43'W X 24'D TANK TANK TANK TANK TANK 35'L X 1T W X I VD 30 MIN CAPACITY NO.1 NO.2 NO.3 NO.4 NO.5 2 MIN CAPACITY (� SECONDARY i ( TREATMENT )1 PLANT EFFLUENT 18'DIA X 35'H 18'DIA X 35'H 18'DIA X 35'H 18'DIA X 35'H 18'DIA T35'H ( 24.8 MGD AVG _ y� TO DISCHARGE @ 24.8 MGD 28.7 MGD MAX 60"DIA EXISTING OUTFALL 28.7 MGD i TREATED WASTEWATER TRANSFER OZONATOR FEED PUMPS PUMPS 3 Q 10,000 GPM 3(dl 10,000 GPM&100'TDH EA &100'TDH EA 400 HP EA f 1 l FILTER OXYGEN RECOMPRESSOR 23,919 LBS/DAY 03 j 1 OZONATOR 160,073 LBS/DAY 02 02 I! 12 TPD TANKS CAP 39,926 LBS/DAY 02 H L it OXYGEN VAPORIZERS COMPRESSOR i }} r f t_ E JACOBS ENGINEERING® EngIneers and Constructors t FIGURE 9.1 L END-OF-PIPE COLOR TREATMENT OZONATION FLOW DIAGRAM l rlReaction Tanks .......................................... 11 00 ❑ll InfluenU f Ozonalor Effluent 71 Vaporizers Basins l� Oxygen Tanks Control Roots MCC Pigeon River Pigeon l_ River Highway L_I North t_1 J]"JACOBS EN GINEERING" L� Engineers and Constructors Figure 9.2 I � i �- Bark Storage Area North of Fibreville End-Of-Pipe Color Treatment Ozonation Color Removal System General Arrangement Scale: 1"= 100 Ft. SURFACE CRYSTALLIZER AFTER PURGE FILTER CONDENSER EJECTOR CONDENSER EJECTOR �- OPTIONAL COOLING WATER i RETURN VAPOR TO EVAPORATORS COOLING WATER I i SUPPLY I t i HP STEAM ' ---- --------------------------------- r----------------- —�— I -------------i r---------------- MISC WATER i ---------- 1 i CRP FILTER I ' tI --------------- --------------------------------- lip PURGE CRYSTALLIZER PURGE CRYSTALLIZER —� HEATER VAPOR BODY L------------------------ STEAMNAPOR I i r I ' PROCESS -----------------------------------------------------------------------------------------------------------------t � i I I AGITATOR . SLURRY HOLDING TANK l 7,200 GAL CAPACITY CONDENSATE TO STORAGE 12'DIA X IT HIGH r � O r {` SLURRY PUMPS(2) S. 15 GPM @ 20 ETDH EA HOTWELL TANKA 11.5 HP t / CIRCULATION PUMPS(2) 175 GPM @ 300'TDH EA 30 HP EA PLATE&FRAME FILTERS(3) t 20 TPD EA SOLIDS TO DISPOSAL t CRP PURGE i FILTER PRESS FEED PUMPS(2) 15 GPM @ 200'TDH EA f { 2.5 HP EA ( J C CRYSTALLIZER FEED PUMPS(2) 25 GPM @ 200'TDH EA 2.5 HP EA CYSTALLIZER FEED TANK 13,200 GAL CAPACITY - 14'DIA X 14'HIGH i J]"JACOBS ENGINEERING" Engineers and Constructors FIGURE 10.2.1 END-OF-PIPE COLOR TREATMENT CRYSTALLIZATION FLOW DIAGRAM Purge CRP Data-Liquid Purge Stream Solution CRP Data-Liquid Purge Stream Solution IC Data Metals TIC Solids ICP Raw Color ata by I by ICP K Mg-]- Mnj--Wa-[- Si so� TDS TSS Cl- SO4= Color Cond.---Al B a Fe pH Sp. Temperature AOX TOC TS. SO4ol TS Pt-Co Na K mg-/L mg/L mg/L mg/L mg/L I mg/L mg/L pH -gm/ml- o.C oF mg/L Date mg/L mg1L % % % PPM I OPM % % Units mg/L mg/L Time mg/L mg/L mg/L Units Date Ti c07 [tS/cm Ll mg/L 1 10.19 Average: 25032 192130 18954 141047 137562 11.98] 0,87 32.2 11.90 23066 13.7 9.3 1110§6 63,5 89.2 10.10 1.2777 146.2 17,,407 Average: 31808 6416 33.51 4019 J�15 5.38 13.75 53402.667 67100 23625 DATA IS COMPANY CONFIDENTIAL Data Reported on an"AS IS"Sample Basis. 08/30/1995 11500 222750 10.17 1.2335 08/30/1995 78050 9865 27.69 5676 08/30/1995 12:05 PM 15600 135300 08/30/1995 60705 10369-.----------.. 137400.-----,----- 08/31/1995 7:20AM 17250 141900 145600 <50.0 <5.00 15.5 <12.5 21900 13.810.5 117000 31.5 10.24 08/31/1995 71505 13243 31.04 3192 09/05/1995 3:00 PM 6000 138450 6620 137400 10.42 1.2293 57.0 134.6 09/05/1995 77070 1005 27.88 1592_jj 82500 22500 09/06/1995 10:30 AM 29600 137000 40400 157000 <5.00 <5.00 <50.0 <12.5 32800 <5.00 <5.00 110000 <50.0 10.29 1.2570 62.0 143.6 09/06/1995 57305 6120---31.95 5056 870-00--32000 09/06/1995 3:00 PM 3200 10400 32400 10.67 1.0193 38.0 100.4 09/06/1995 5450 556 2.78 176 6900 3000 09/07/1995 8:30 PM 33200 136200 46100 161000 10.03 1.2541 58.0 136.4 09/07/1995 54780 8850 31.43 7616 92000 37000 09/08/1995 9:00 AM 35400 141000 11300 150600 <50.0 <5.00 13.0 <12.5 36000 7.5 5.8 102500 98.5 10.15 1.2559 63.0 145.4 09/08/1995 63485 2013 30.88 5660 09/12/1995 7:30 AM 14800 108400 11000 21965 133400 <5.00-<5.00--<50.0 <12.5 16400-<5.00-<5.00 53300 --36.3 - 10.36 11.16945.4.0 12922 09/1211995 31845---784 19.07 2348 j 09/14/1995 9:45 AM 29200 165000 30200 32905 151000 <5.00 <5.00 <50.0 <12.5 36500 <5.00 <5.00 105000 38.3 10.29 1.2576 62.0 143.6 09/14/1995 38730 4161 29.31 5936 09/19/1995 9:15 AM 40200 161400 21100 23611 144300 10.20 1.2678 67.0 152.6 09/19/1995 67760 3284 31.58 5756 09/19/1995 3:00 PM 38600 150200 144400 10.22 1.2695 65.0 149.0 09/19/1995 72100 3548 31.46 4844 09/20/1995 8:30 AM 40800 163400 31600 155500 <50.0 <5.00 <12.5 <12.5 21400 29.8 <5.00 57500 <50.0 10.08 1.2576 64.0 147.2 09/2011995 47555 4347 31.51 4984 09/20/1995 9:30 AM 28200 124800 150500 <50.0 <5.00 42.5 <12.5 45800 31.3 <5.00 122500 65.3 10.10 75.0 167.0 09/20/1995 -------- 09/20/1995 5:00 PM 18400 147400- --33436 147700 - 10.16 1.2559 74.0 165.2 09/20/1995 45320 8767 30.12 5256 09/21/1995 8:30 AM 20000 155200 17500 25229 141400 <50.0 <5.00 21.5 <12.5 36500 32.0 <5.00 104000 84.5 10.32 1.2622 68.0 154.4 09/21/1995 57315 7897 29.65 2128 09/22/1995 9:30AM 17400 152400 17100 28497 146900 8.00 <5.00 <50.0 <12.5 30500 <5.00 <5.00 105000 117.0 10.22 1.2809 45.0 113.0 09/22/1995 85990 7553 30.89 2968 09/25/1995 9:00AM 18600 150800 15900 147900 <50.0 <5.00 18.8 <12.5 31300 6.0 <5.00 91000 47.3 10.23 1.2665 68.0 154.4 09/25/1995 66355 7102 31.33 5428 09/25/1995 3:00 PM 25576 1.2678 09/25/1995 59700 7185--31-.-31 8-38-4 09/26/1995 8:00 AM 17600 <5.00 <5.00 <50.0 <12.5 28500 <5.00 <5.00 97500 <50.0 10.37 09/26/1995 09/26/1995 3:00 PM 19200 161800 146200 10.16 1.2817 73.0 163.4 09/26/1995 25525 6615 30.36 2768 09/27/1995 7:30AM 15800 149400 25948 145300 10.21 1.2800 75.0 167.0 09/27/1995 33250 6853 31.46 3992 09/28/1995 8:15AM 18600 131600 143600 <5.00 <5.00 135.0 <12.5 28500 35.8 14.0 126000 109.0 10.46 1.2657 70.0 158.0 09/28/1995 60260 10497 28.70 3624 09/28/1995 3:00 PM 21000 145800 25736 146400 10.27 1.2787 74.0 165.2 09/28/1995 35465 8299 31.67 5104 ---------- 10/02/1995 --.---16400 145600 22200 37419 -<5.00 <5.00 135.0 24.80 41300- 36.3 12.3 119000---84.0 10.53 1.3092 ------------- 10/02/1995 53885 12903 32.91. L 10/03/1995 13600 143200 147100 10.31 ------- 10/03/1995 - 30.98 - 10/04/1995 11600 148800 6.00 <5.00 152.0 <12.5 31600 34.5 15.3 103000 46.3 10.41 10/04/.1995 34.85 10/06/1995 16800 165400 28100 42730 <5.00 <5.00 140.0 <12.5 34800 40.0 21.3 120000 46.0 10.35 1.2968 10/06/1995 25655 9599 32.41 10/09/1995 13600 169600 18100 32905 ---- 10.33 10/09/1995 --- --31,88 10/10/1995 15400 151800 151300 32.12 10/13/1995 4800 167200 21100 27329 141800 9.98 1.2648 10/13/1995 30095 763.31.18 10/16/1995 140800 <50.0 <5.00 <50.0 <12.5 21700 44.0 <5.00 78500 106.0 10.38 10/16/1995 10/17/1995 9600 190600 17700 31524 123600 10.21 10/17/11995 13910 1084 33.90 L ------ 1,0/18/1995 10500 47137 144400 -- ---- --- - 110.29.------- 10/18/1995 --- 10/24/1995 11400 192300 18000 46500 157900 <60.0 <6.00 12.9 23.40 22400 <60.0 8.7 100000 <60.0 10.01 10124/1995 14885 1486 31.29 ------- ----10/27/1995 15600 37260 147200 <60.0 <6.00 15.0 28.20 21000 <60.0 8.7 99600-<.60.0 10.14 10/27/1995 - 30.84 ...... -1,0/.31/1.995- -------30000 142700 <50.0 <5.00 25.0 <12.5- 40800 <50.0 <5.00 96800 <50.0 10.07 ------10/31/1995 34.24 1680 836 11/01/1995 11/01/1995 2020 8,16 11/03/1995 28200 52554 133900 <60.0 <6.00 24.3 <15.0 23800 <60.0 17.4 108000 139.0 10.29 11/03/1995 34.87 ------2752.-1392 11/15/1995 1-1700 192600 18600-33436 136500 <60.0 <6.00 34.5 15.00 23700 <60.0 18.3 105000 <60.0 10.32 11/15/1995 38670 3848 33.09 11/16/1995 16200 228000 23000 55847 134600 <60.0 <6.00 39.6 22.80 20300 <60.0 13.2 136000 <60.0 10.16 11/16/1995 27240 4800 33.91 11/21/1995 19500 195600 32800 93446 148800 <60.0 <6.00 20.1 19.80 22700 <60.0 10.8 120000 <60.0 10.19 11/21/1995 23670 7826 33.78 11/30/1995 21600 189300 71672 149400 <60.0 <6.00 24.9 18.90 23100 <60.0 13.2 116000 <60.0 10.25 11/30/1995 22930 9764.. 33.63 10500 177900 9680 41 4 02 133500 <60.0 <6.00 25.2 25.20 23000 <60.0 25.8 106000 <60.0 10.28 34.64 12/04/1995 12/04/1995 19085 2424 01/03/1996 19500 158400 22400 148300 <60.0 <6.00 58.8 <15.0 40200 72.9 10.8 104000 280.0 10.29 1.2781 01103/1996 40630 16648 33.23 01/11/1996 18600 181500 14000 61391 153300 <60.0 <6.00 47.7 <15.0 35400 66.9 <6.00 83400 <60.0 10.08 01/11/1996 28900 7554 32.56 01/16/1996 29000 143000 <60.0 <6.00 52.8 <15.0 35100 71.7 7.8 108000 <60.0 10.23 01116/1996 32.45 ----------- ---------------- 01/22/1996 17400 208200 36700 133800 <60.0 <6.00 84.9 <15.0 35400 <60.0 9.0 91200 146.0 10.17 01/22/1996 18420 9674 34.50 01/30/1996 12600 197400 24500 40234 01/30/1996 29300 5026 01/30/1996 12600 198600 25200 39809 01/30/1996 24850 6380 01/30/1996 01/30/1996 52525 7538 --- -- ----- 01/30/1996 01/30/1996 44665 8083 01/31/1996 12800 173600 20500 01/31/1996 12890 15407 .01/31/1996 12900_2127001 23300 35029 01/31/1996 01/31/1996 12300, 21-15-0-01 21500, 33224. 146200 16.05, 1.74 46.3 9.95 41700 8.9 22.1 111200 281.7 10.25 _ 1 1 01/31/1996 1 549501 74721 33.391 1 1 1 1 1 1 1 1 1 1 William K.Adams Page 1 02/20/2001 Purge C P Data-Liquid Purge Stream Solution CRP Data- iquid Purge Stream Solution ` > IC Data Metals TIC Solids ICP Raw Color ata by I by ICP at MAN I Ca Fe K w— Cl- SO4= COD Color Cond. At Mg Mn Na Si pH Sp.Gr. Temperature FOC Date Time mg/L mg/L mg/L Units 1AS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L pH gm/ml oc oF mg/L Date mg/L mg/L % I % % PPM PPM % % Units mg/L mg/L Average: 25032 192130 18954 41047 137562 11.98 0.87 32.2 11.90 23066 13.7 9.3 110664 89.2 10.10 1.2777 63.5 146.2 17.407 Average: 31808 6416 33.51 4019 1015 5.38 13.75 53402.667[67100 23625 r � ( i | ' � | L) ' / | 74 34 ^ J Ll --- ------- -------------- -----,--- -.1.......... | 0 126000 f4.25 0.34 4.3 4.05 28730 4.0 2.8 80960 51.7 9.85 10/04/1996 29210 6664 30.92 u� William K.Adams Page 02/20/2001 Purge CRP Data-Liquid Purge Stream Solution CRP Data-Liquid Purge Stream Solution IC Data Metals TIC Solids ICp Raw Color ata by I by ICP --------------- 4Mn --fs--i sot TS TDS TSS VSS Cl- SO4= COD C�m- All Ba Ca Fe K Mg Na Si pH Sp.Gr. Temperature AOX SO4 Pt-Co Na K Time mg/L mg/L mg/L rng1L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L pH gm/ml Color Date Cn I"Sj�m /L OC of mg/L Date mg/L mg/L % % PIPM PPM % % Units mg/L mg/L Units 9. 110 Average: 25032 192130 18954 41047 137562 11.98 0.87 32.2 11.90 23066 13,7 9.3 110664 89.2 10.10 1.2777 63.5 146.2 17.407 Average: 31808 6416 33.51 4019 1015 5.38 13.75 V 10/14/1996 11:05 AM 41700 230100 28850 38322 151000 10.89 0.50 <.026 8.21 32415 1.4 3.4 99090 81.1 10.15 1.2801 10/1411996 27180 7174 31.32 10/1511996 4:45 PM 50400 179100 39150 77514 163100 4.69 0.19 28.0 5.76 34665 10.6 1.9 80200 99.0 10.17 <0.25 10/15/1996 21530 12914 29.42 1.0/24/1996 --2:30 PM 37500 159300 32200 57546 155000 9.35 0.21 61.1 15.83 30790 8.2 2.7 80280 77.1 10.08 10/24/1996 24700 9380 29.24 10/29/1996 3:33 PIVI 47700 157800 33450 46712 156200 9.47 0.33 3.3 16.29 39720 10.7 5.3 94200 52.2 9.96 10/29/1996 26100 6680 31.72 11/05/1996 4:41 PM 42900 153900 21250 36729 164000 6.58 0.14 56.1 13.19 39485 8.6 5.3 95185 67.5 9.93 11/05/1996 57940 12278 31.27 11/12/1996 4:00 PM 41100 191700 21450 33436 147000 5.03 0.17 10.4 13.33 28600 8.2 6.7 101800 39.0 10.10 1.2991 11.475 11/12/1996 39350 5710 33.84 11/19/1996 3:02 PM 39200 181600 32620 65556 93400 4.46 0.33 16.5 4.59 41140 6.7 4.6 99080 161.0 10.30 11/19/1996 26720 1003.6 33.68 12/01/1996 3:18 AM 24000 236000 22720 42104 95100 7.33 0.72 103.1 4.44 31508 7.2 8.6 104908 102.4 10.29 12/01/1996 32720 7120 34.65 42104 12/04/1996 7:44AM 11200 527200 16880 34204 124500 9.41 1.40 205.2 13.55 14456 15.9 24.4 259480 29.8 10.81 12104/1996 33180 3876 52.92 34204 5 2 12/10/1996 11:49 AM 26000 203200 34160 91000 10.27 12/10/1996 31660 10544 41.84 12/11/1996 3:18 PM 3600 314800 21880 53829 112900 10.74 <23.4 12/11/1996 1100 6012 64.16 53829 12/18/1996 9.45 AM 15200 227200 30000 40576 145000 3.69 0.50 13.8 5.80 27116 8.3 7.5 101840 77.8 10.27 12/18/1996 44920 4808 32.22 40576 12/23/1996 11:30 AM 17778 171481 17593 42995 148600 4.16 0.23 5.5 3.34 25574 4.4 4.2 76072 109.1 10.39 12/23/1996 34220 1608 29.87 42995 12/30/1996 2:05 PM 18400 172400 21400 43207 141200 4.02 0.53 141.16 4.02 37360 6.7 6.7 119500 169.1 10.16 12/30/1996 36540 1532 41189 01/09/1997 2:51 PM 13200 202000 19200 64536 129000 50.72 0.66 15.5 11.72 25210 8.8 7.3 132450 94.9 10.05 01/09/1997 43940 6108 33.11 01/16/1997 10:55AM 16400 213200 19120 43380 145800 1.25 0.81 18.6 3.89 21880 7.8 7.0 106040 62.7 10.11 1.2856--.- 71.910 01/16/1997 23940 1204 32.28 01/21/1997 2:50 PM 21600 174400 27200 56380 146200 9.39 0.63 15.1 5.05 26388 5.6 3.0 93960 100.5 9.89 01/21/1997 39180 7504 31.06 01/29/1997 9:17 AM 9600 196000 12960 26684 140700 3.53 0.57 25.7 2.32 11116 6.9 8.7 100360 43.6 10.17 01/29/1997 53780 2308 31.63 02/0511997 9:10 AM 12800 138000 14640 35604 137300 5.12 0.56 19.4 3.42 12390 5.9 4.4 65600 10.1 10.10 02/05/1997 20300 3260 21.84 02/11/1997 36400 174000 38880 58292 156500 13.58 0.42 <.104 5.59 30292 7.3 5.1 92000 172.6 10.24 1.2940 40.000 02/11/1997 26760 1892 32.58 02/18/1997 2:05 PM 25200 196000 21120 55148 129000 6.42 0.54 11.7 4.71 19456 6.0 4.4 108000 90.2 10.02 02/18/1997 33960 1505 32.86 02/24/1997 4:27 PM 25200 188400 21560 44100 150400 7.18 0.75 21.8 5.17 24248 7.3 5.8 99140 102.0 10.07 02/24/1997 30680 1485 31.31 L 03/10/1997 9:58 AM 15200 204400 20640 50516 135500 <.035 0.47 3.4 4.04 14432 6.0 6.4 96360 17.9 10.17 03/10/1997 30680 5376 30.74 ------------- 03/13/1997 2:10 PM 24400 228800 14640 22988 132700 5.29 0.36 <.026 5.23 15660 4.9 3.4 97920 65.6 10.24 -------03/13/1997 37200 4052. 31.60 03/18/1997 2:22 PM 35385 196154 18769 39873 149000 5.75 0.19 35.1 10.86 23169 4.9 4.1 93846 116.5 9.93 0.110 03/18/1997 28423 5354 , 30.82 03/24/1997 1:17 PM 20400 180400 8800 19544 146400 <.035 0.56 2.34.47 13724 8.4 8.0 91640 66.6 10.09 ---03/24/1997 34780 13260 26.22 04/04/1997 9:00 AM 32000 252000 16960 39556 133800 <.035 0.98 2.4 11.42 16760 10.1 12.4 110380 50.7 10.01 04/04/1997 11216 5648 34.34 04/09/1997 2:20 PM 24400 183200 16640 40704 145300 <.035 0.75 <.104 6.96 17048 8.5 11.2 87080 54.0 9.96 ----------0.165.-04/09/1997 14970 7117728.31 ------ iT 04/16/1997 --2:48 PM 28800 210800 18400 44524 139700 7.95 0.76 8.8 6.03 24084 7.7-5.8- 110520. 115.4 10.08----.----------- 04/16/1997 27070----4907 31.56 04/24/1997 -12:10-P M 19600 228000 17080 29488.130900 14.62, 0.88 10.6 9.04 15740----7.9 7.6 10.6000 83.7 10.03 04/24/1997 29464 3891 32.30 05/02/1997 2:22 PM 9200 226400 9880 20520 125300 3.12 0.58 1.1 4.74 9916 1.1 7.8 114760 44.6 10.30 05/02/1997 23360 3338 30.88 05/07/1997 1:04 PM 16000 211600 15760 35180 130500 9.65 0.85 <.104 5.78 17264 3.9 10.7 111920 67.3 10.21 05/07/1997 28164 4226 31.96 05/13/1997 1:19 PM 13600 173600 10160 19672 138800 2.99 0.67 <.104 3.09 11668<.0012 5.1 72680 61.2 10.19 <.032 05/13/1997 22740 3096 25.02 05/2211997 2:05 PM 25200 202400 18680 40276 140500 6.52 0.76 31.4 5.76 21832 10.0 6.5 106120 84.3 9.98 05/22/1997 24680 1320 30.59 05/28/1997 1:43 PIVI 28000 203600 17560 28168 143100 <.14 0.71 66.5 2.12 22060 12.1 4.2 107720 102.2 10.15 05/28/1997 19048 4512 30.77 06/2511997 2:34 PM 8800 254400 11460 20520 114400 <.035 0.48 23.0 2.51 8103 6.1 6.7 120640 <.037 10.00 16.7 06/25/1997 27060 2428, 39.42 07/02/1997 10:05 AM 23200 214000 23720 44952 134400 1.25 0.70 87.2 6.40 25476 8.5 6.3 116920 112.1 10.02 07/02/1997 34440 6416 32.81 ;;J 07/10/1997 10:40 AM 22800 225200, 25280 42188 128800 12.12 0.81 242.2 12.25 22356 11.6 7.6 123360 135.1 9.97 07/10/1997 28040 6460 34.05 07/21/1997 4:07 PM 37600 216800 28800 66404 144000 3.84 0.70 180.0 7.78 30004 12.5 6.9 112640 145.4 10.11 07/21/1997 23760 7148 32.16 07/28/1997 2:05 PM 33200 232000 26960 36536 139800-<.140 0.64 31.6 6.02 25856 11.7 8.5 126880 127.0 9.90 0.190 07/28/1997 23260 6054 3139 o TM-3.60 97 10:59 AM 31600 244800 24840 39582 133800 2.41 0.86, 91.1 6.86 24612 13.0 12.2 138920 11.3.7 9.96 07/30/1997 1188986188 34.78.----- 08/06/1997 2:12 PM 41600 218400 29640 49624 139200 <.140 0.46 41.3 8.65 23820 11.5 7.0 111240 64.3 10.05 18784 7096 33.75 08/12/199.7 10:22-AM 39600 190800 25640 50048 145100 <.140 0.58 157.1 ... 6.70 22216 8.6 6.3 94680 53.3 9.98 26260 7716 31.54 08/20/1997 4:04 PM 26800 209600 16960 39216 153600 2.59 0.58 26.7 4.92 16384 8.5 6.9 108560 93.0 10.16 <.10 36420 5320 32.62 10/97-C1 [10/27-10/29 34800 174800 17600 150550 <.140 0.54 6.7 6.91 16920 6.5 4.5 102680 56.1 9.98 31400 5000 30.40 4:00 PM 34200 169800 36925 ,III,III1967:,7 12:30 PM ,11/1111 99T, 4:30 PM 5635 11141,11/1190ti, 6:15 PM5470 7:25 PM 3705 11/1 107i 16340 41750 6740 ---------- 11/97-C1 11/18-11/19 26400 188400 22520 132600 11.71 0.70 24.3 8.18 17920 13.2 8.5 129480 98.9 10.00 41775 6190 32.57 12/97-C1 18400 207200 32912 133000 9.78 0.58 37.2 6.37 15140 9.8 8.8 111120 89.5 9.91 29620 5056 32.21 Ll 01/08/1998 2:07 PM 36300 181500 26340 6323 34.14 474401 129000 < 9 59 10732 1585 31.71 I 02/98-Cl 1 208001 -199-00 1 51156 133900F 5 .41 7.78 17212 10.91 4*�i 163661 47.6 9.86 1 351201 61801 32.211 40480 1/98-Cl 1/19-1/21 14000 209200 .140 0.05 34.3 2.29 12196 6. 0 46.5 9.96 .66, oi�I iil.-.---.- L AWilliam K.Adams Page 3 02/20/2001 Purge �1 CRP Data-Liquid Pure Stream Solution CRP Data-Liquid Pure Stream Solution _ IC Data Metals _ _ TIC Solids _ ICP - Raw_Color late by I by ICP_ Cl- SO4= COD Color Cond. At Be Ca Fe K Mg Mn Na Si pH_ Sp.Gr. _Tempe_rature AOX _ TOC TS sol TS TDS TSS VSS S SO4 - Pt-Co Na K - Date Time mg/L m /L mg/L Units µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L H gm/ml oc of mg/L Date mg/L mg/L % % % PPM PPM % % Units mg/L mg/L Average: _ _ 25032 192130 18954 41047 137562 11.98 0.87 32.2 11.90 23066 13,7 9.3 110664 89.2 10.10 1.2777 63.5 146.2 17.407 Average: 31808 6416 33.51 4019 1015[538 13.75 53402.667 67100 23625 - 03/20/1998 24000 198000 9356 129800 3.52 1 A 3 <.026 8.65 18060 12.5 13.6 110840 84.6 9.84 _ 38700 4004 32.54 _ - 03/25/1998 21600 200800 9784 115800 4.16 0.69 18.5 6.14 15660 7.6 5.2 96800 58.7 9.98 30700 3804 29.81 i 04/20/1998 _ 4:03 PM 16215 147385 10590 385982 2.54 0.83 35.6 10.03 23800 11.8 7.2 138120 161.5 9.93 _ _- 21455 4050 31.50 - -- _ 05/06/1998 11:46 AM 14767 176052 399592 10.36 0.62 34.1 6.23 22156 9.4 7.6 162560 11.2 10.16 _ 11045 1801 35.50 _05/26/1998 2:57 PM 23640 208820 15327 152700 1.03 0.60 24.3 2.35 22504 3.9 2.4 123520 146.9 10.05 41700 5118 33.7606/15/1998 9:50 AM 23902 189278 13433 138000 17.13 0.71 12.6 16.62 20200 11.4 8.4 108200 <.148 10.01 26030 4189 34.82 - -- _ 06/29/1998 10:00 AM 15912 207480 10486 120400 21.54 1.72 14.0 10.28 19312 11.2 8.6 146560 70.3 9.87 39000 2661 37.33 07/16/1998 9:40 AM 18240 162735 9385 102500 23.45 0.63 21.4 1.60 18200 11.6 8.5 126300 32.6 10.09 _ 12810 376 30.00 _ 07/28/1998 9:00 AM 19968 177216 12445 132800 25.74 1.38 18.0 4.98 18540 8.2 9.3 161000 21.8 9.91 37910 3897 36.21 _ 08/07/1998 3:02 PM 13821 305688 6967 156600 9.82 1.19 58.6 11.11 16040 12.7 10.3 112200 73.9 9.56 24740 2916 43.47 08/18/1998 9:21 AM 18615 205860 14929 146300 11.30 1.09 22.7 6.75 15550 12.7 19.2 107740 76.9 10.07 _ 41208 4719 38.53 09/09/1998 6:19 AM 18609 207316 8684 178900 8.16 1.58 21.5 10.55 19690 15.4 14.5 135100<.148 9.64 _ _ 25465 2635 35.26 10.78 09/21/1998 6:20 AM 27448 216576 9625 135100 7.28 1.21 31.5 16.87 25490 0.3 15.0 142200 129.4 9.75 12784 4865 40.30 10.69 _ rI - _ - - - - - -- 10/05/1998 6:36 AM 28651 174168 6567 145400 15.91 1.24 21.9 19.86 19490 18.6 11.3 101500 42.7 10.03 25640 2138 36.52 8.76 10/15/1998 10:40 AM 15792 209808 10687 150800 23.70 1.87 187.3 27.76 49250 41.0 36.1 489200 131.9 9.94 - 22616 3612 33.77 11.98 10/29/1998 9:06 AM 31527 242730 8928 150100 21.841 1.16<.026 12.34 22450 24.4 13.1 163100 22.0 10.07 _ 25933 2935 37.30 13.38 _ 1 11/12/1998 12:28 PM 257041 164832 15096 68300 12.961 0.91 <.026 11.69 20140 15.9 8.8 102900 118.5 10.65 14668 6393 32.60 7.99 - 11/26/1998 9:43 AM 19008 188320 19258 101200 28.21 0.85<.026 21.86 24550 83.8 9.7 131100 67.4 10.24 19853 6294 32.95 9.35 12/08/1998 8:50 AM 21224 189121 17737 155200 36.37 4.78 57.0 63.95?90300 45.8 65.2 ?532600 277.5 10.06 25468 6746 37.73 9.95 12/14/1998 8:33 AM 16065 160650 11340 146200 8.01 0.59 12.3 10.92 24680 14.3 11.9 114600 1.9 9.96 _ 19167_ 4419 33.25 10.47 _ 12/22/1998 13650 195030 12805 141600 12.34 0.59 10.6 7.07 23420 12.9 10.2 119900 0.7 9.95 _ 17680 4583 33.10 10.18 _ 12/28/1998 8:38 AM 20919 211025 16221 128800 7.77 0.66 2.1 9.35 16480 13.3 15.6 1231001 92.2 10.101 20845 8455 37.81 10.29 _ l 01/04/1999 12:03 PM 9504 203280 6124 155500 25.26 0.56 <.026 72.53 7137 8.5 22.4 95210 69.6 10.04 _ 10771 3886 35.45 6.71 - 01/12/1999 9:30 AM 9200 311600 6000 140000 8.27 0.47 8.3 3.66 4520 3.4 3.5 64500 28.6 9.89 12640 3056 33.27 8.32 ` 01/21/1999 8:30 AM 35200 204800 22440 141400 1.78 <.0001 18.6 14.93 23000 <.0003 10.2 120600 <.037 9.94 21040 6736 35.80 8.95_ - 01/25/1999 9:38 AM 24800 170800 15280 115200 <.14 <.0001<.026 13.51 19150 <.0003 9.8 125400 <.037 10.00 _ 21880 15280 32.09 8.02 02/03/1999 8:10 AM 20800 281500 12680 148700 12.12 1.04 24.2 14.09 14010 14.4 16.3 109100 60.0 9.92 _ 35060 5548 35.22 8.81 _ _ - 02/10/1999 8:45 AM 13200 142400 10400 134600 6.02 0.44 20.9 6.35 7314 5.4 4.0 66270 40.9 9.82 _ 6540 2756 20.59 5.15 _ s 02/15/1999 _ 8:38 AM 23600 228000 9880 89300 17.10 1.42 _40.6 20.35 14950 14.5 12.8 106000 82.4 9.70 19460 5535 32.70 8.18 _ l ( 02/25/1999 7:47 AM 35600 198400 19400 102900 4.48 1.03 34.6 10.11 24130 11.3 13.3 127300 20.8 10.05 22920 6900 32.59 8.15 - -_ 03/01/1999 8:03 AM 33200 203200 16720 128000 9.99 0.74 3.4 16.22 19580 13.1 11.1 110700 146.4 9.94 21380 6872 30.15 7.54 _ 03/08/1999 1:05 PM 23600 226800 18760 100000 12.08 0.99<.026 23.96 17340 13.9 14.8 107200 0.41 9.95 13040 6404 30.76 7.69 03/15/1999 8:40 AM 23200 223120 13800 98700 7.60 0.85 6.4 30.62 17120 <.0003 14.5 112500 27.0 9.77 _ 12320 5104 28.91 7.60 03/22/1999 8:47 AM 25200 181200 16600 140100 8.99 0.90 9.5 19.96 16410 12.2 12.7 87980 78.7 10.02 265201 6904 31.39 9.08 03/31/1999 8:30 AM 18800 222000 11088 145100 13.38 1.05 35.1 30.60 9009 11.3 11.8 103900 84.4 9.74 _ 7380 3936 31.42 9.06 04/07/1999 12:30 PM 20400 216800 9920 83200 16.00 0.80 25.0 16.40 7748 10.1 10.4 114200 100.2 10.34 22640 3808 33.33 8.37 t 04/12/1999 8:36 AM 36800 2096001 14840 141000 13.80 0.68 24.5 31.481 12740 15.0 13.2 122000 89.7 10.02 _ 22880 5668 33.83 10.09 04/20/1999 9:12 AM 28400 1452001 12760 1 142300 0.811 0.38 26.2 7.611 2063 5.8 4.0 92970 89.1 10.10 28460 4944 27.02 7.76 _ 04/27/1999 10:50 AM 28400 166400 13000 154700 13.72 0.68 3.5 14.33 10050 9.1 6.5 95620 64.5 9.89 _ 28880 5468 31.39 8.22 05/10/1999 11:40 AM 19200 196400 7080 143600 6.32 1.12 15.9 18.47 6667 2.2 7.9 120000 43.3 10.00 32900 1996 40.47 9.09 - 05/17/1999 9:15 AM_ 37200 206800 15240 88000 28.13 0.89 43.2 19.24 27450 15.9 10.4 165800 148.5 10.25 23940 5520 33.27 9.71 05/20/1999 8:50 AM 32000 212000 15440 85000 11.77 0.95 25.2 15.22 25690 18.2 11.3 170900 79.6 10.26 - 21340 5500 32.68 9.57 06/07/1999 10:30 AM 30000 168400 142900 14.73 1.13 27.2 12.99 18780 14.3 12.5 123900 91.5 9.90 _ 27240 3276_33.64 9.59 __- 06/16/1999 8:05 AM 36400 154800 96300 7.06 1.20 _20.7 13.29 21380 16.1 16.3 114500 99.6 10.48 _ _ 30900 _4_920 35.72 9.56 06/21/1999 9:08 AM 31200 162000 142700 4.61 0.97 13.7 12.69 18510 4.7 13.7 127800 43.8 9.96 27600 4875 36.21 9.85 __ 06/28/1999 8:35 AM 31600 157200 21400 137700 11.60 0.88 3.1 10.40 18540 5.7 11.1 121300 83.4 9.80 19100 8628 36.64 10.00 07/08/1999 4:45 PM 24000 172400 11120 152900 6.89 0.99 15.8 9.70 13100 11.4 9.9 118400 77.9 9.68 -_ _ 15020 5020 31.80 9.64 07/13/1999 2:45 PM 30400 172000 3460 158400 13.36 1.17 3.5 24.07 16660 15.4 14.3 115700 73.6 9.94 _ _ 30320 5624 32.34 9.95 - - - - - - _- 67/19/1999 ::52 AM 48800 157200 19840 162500 3.38 0.60 12.8 16.41 25630 18.0 12.1 108000 90.4 9.85 21860 7468 37.70 10.24 07/26/1999 10:28 AM 47200 158000 7740 153500 21.81 0.73 23.8 18.97 28800 20.8 11.2 132500 166.6 9.96 21160 11764 40.00 10.34 08/05/1999 8:50 AM 47200 147600 21360 107100 35.91 1.02 14.6 23.46 30330 22.4 13.2 114900 37.4 9.85 43860 4832 40.52 10.04 08/10/1999 6:37 AM 32800 158000 21560 142900 8.02 0.86 3.1 22.33 21590 19.9 13.7 125100 5.0 9.97 22920 8720 08/16/1999 9:50 AM 43600 147200 23800 144100 12.66 0.86 12.3 23.29 26860 18.6 9.7 119900 73.3 10.06 26680 9348 34.60 10.08 08/26/1999 10:10 AM 23200 188400 13880 133900 18.60 1.54 17.9 24.71 15830 13.2 12.8 138900 88.3 10.04 37140 5852 41.28 9.53 08/30/1999 11:30 AM 34400 189200 14440 138500 14.73 0.58 13.5 13.97 21800 15.3 10.3 1230001 81.0 9.87 25520 5508 .33.94 9.67 09/07/1999 2:05 PM 34000 205600 17000 143000 12.44 1.17 24.4 15.38 22880 15.3 12.0 109200 14.2 9.95 24020 7618 33.00 9.39 William K.Adams Page 4 02/20/2001 Purge CRP Data-Liquid Purge Stream Solution CRP Data-Li uid Purge Stream Solution _ IC Data _ Metals TIC Solids ICP ------..-Raw_ Color a_ta by I by ICP r Cl- SO4=_ COD Color Cond. _AI Ba Ca Fe K Mg Mn Na Si pH Sp.Gr. Temperature AOX TOC TS sol TS TDS TSS VSS S SO4 _Pt-Co Na _K_ Date Time mg/L mg/L mg/L Units µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L H gm/ml oC of mg/L Date mg/L mg/L % % % PPM PPM % % Units mg/L mg/L _Average: 25032 192130 18954 41047 137562 11.98 0.87 32.2 11.90 23066 13.7 9.3 110664 89.2 10.10 1.2777 63.5 146.2 17.407 Average: 31808 6416 33.51 4019 1015 5.38 13.75 53402.667 67100 23625 09/15/1999 _ 12:15 PM 35200 208000 25440 148300 37.77 0.87 3.5 12.26 24300 16.0 9.6 123900 64.1 9.96 21980 9544 39.10 10.43 09/27/1999 8:58 AM 28400 219200 11000 140400 17.07 1.63 25.4 26.92 18720 18.6 17.1 132900 55.8 10.07 - 32560 5008 37.36 10.11 - 10/05/1999 8:22 AM 26800 267200 10760 1128001 13.471 0.78 27.61 14.45 177401 15.2 12.01 125600 60.5 9.99 27240 4764 38.95 10.69 10/11/1999 8:25 AM 13200 150400 7720 133700 8.55 0.37 9.2 8.50 9266 8.8 5.1 73250 31.3 10.12 17020 2891 22.74 6.26 10/21/1999 2:53 PM 10400 161600 4480 81300 4.63 0.56 36.4 7.87 6011 8.0 6.6 95590 20.3 10.43 21220 2560 24.51 6.80 10/28/1999 8:12 AM 21200 260800 10480 130800 12.19 1.03 23.0 17.02 14960 10.6 10.5 147900 40.7 10.11 _ 32160 4172 42.29 11.80 l 11/08/1999 9:49 AM 32800 233600 13120 126200 13.52 0.99 14.7 12.99 16800 16.1 13.1 144900 138.7 10.24 35880 4560 39.15 11.22 11/19/1999 8:40 AM 35600 234800 19800 154600 21.10 1.59 9.1 20.56 32420 22.2 14.2 165900 5.6 9.88 _ 17560 3588 36.69 10.45 _ 11/22/1999 _8:30 AM 31600 241600 17720 146001 20.42 1.151 21.6 19.851 331401 19.5 16.8 181100 78.8 9.87 19420 5684 36.55 10.49 11/29/1999 11:43 AM 25600 240800 15440 986001 28.95 1.77 12.2 18.62 28190 20.1 17.5 177600 10.1 9.96 32940 5260 37.58 11.00 - 12/08/1999 10:14 AM 18000 206800 13200 148700 3.93 1.21 24.7 15.18 18090 13.8 12.41 1321001 21.7 10.09 37300 _3792 43.06 10.96 12/14/1999 10:53 AM 24400 195200 16080 133900 1.52 0.62 27.2 10.13 20630 10.3 9.3 127900 76.0 10.18 31980 5404 32.09 10.19 12/20/1999 12:21 PM 32400 191200 20320 140500 7.15 0.69 20.1 8.82 21440 10.9 8.3 119800 60.8 10.11 33940 5480 38.36 10.17 12/29/1999 11:34 AM 32400 192800 16600 97300 4.77 0.60 5.8 14.02 21510 11.3 9.1 97620 57.6 10.13 _ 20460 7588 38.95 10.38 - --- 01/03/2000 _ 9:18 AM 44000 173200 15080 136900 18.35 0.57 22.9 4.53 13590 6.3 5.7 94820 50.1 10.07 _ 34460 2316 34.34 9.75 01/10/2000 9:35 AM 44400 160800 37600 1521001 21.13 0.91 2.2 13.95 30580 16.7 9.4 115100 146.6 10.02 25660 6420 34.32 10.22 01/20/2000 9:27 AM 20800 196800 16680 147600 24.32 0.80 7.0 15.86 30270 17.2 11.2 121700 23.01 9.99 _ 29800 6472 36.02 10.27 01/26/2000 9:45 AM 30800 198800 14560 145600 29.08 1.01 23.6 12.66 27030 12.2 12.6 117800 51.61 10.00 _ 22560 7916 38.30 10.46 02/01/2000 9:33 AM 28000 194400 18560 127500 20.63 0.46 10.4 13.53 29230 15.6 12.6 122000 76.2 10.11 29180 6596 34.94 10.63 02/08/2000 2:10 PM 21200 194000 14920 107900 10.86 0.57 29.4 9.57 24270 12.3 9.7 134500 71.3 10.14 30840 5916 37.33 10.65 I- 02/15/2000 9:18 AM 26000 190800 14280 133400 7.48 0.75 6.7 11.38 25680 12.1 8.1 126000 92.9 10.05 48680 5664 37.96 10.27 _02/23/2000 10:12 AM 18800 219200 11280 100000 4.29 1.18 24.4 12.16 20370 14.4 10.0 163200 86.9 10.19 41300 5028 36.92 11.49 02/28/2000 1:25 AM 20400 208400 8000 85100 21.71 0.92 15.2 11.14 24340 15.0 12.5 161900 117.8 10.12 17140 512 36.20 10.91 03/10/2000 8:56 AM 32000 146000 16680 55700 0.76 0.59 26.1 5.09 8582 9.4 7.6 121100 67.7 10.18 _ 34580 2456 32.46 12.17 r 03/14/2000 9:15 AM 14000 172000 8200 136500 0.49 0.79 6.6 11.08 24440 11.0 8.7 127200 67.2 9.98 _ _ _ 32280 6152 36.62 10.21 03/20/2000 1:36 PM 21200 166800 9120 120700 6.70 0.95 14.0 10.27 15070 12.4 12.2 153700 43.1 11.78 _ _ 52420 3736 37.47 11.78 i 03/28/2000 10:50 AM 30000 156800 15280 87300 19.62 0.53 19.6 11.56 23040 10.6 9.5 129100 113.3 10.12 _ 24100 5984 35.64 10.82 04/25/2000 3:03 PM 34000 426000 9360 116700 8.24 1.03 7.1 11.14 9102 10.8 14.4 180900 52.8 10.39 _ 40880 3836 42.65 13.47 06/09/2000 2:34 PM 32400 235200 26960 139400 16.80 0.66 3.6 12.93 12980 8.4 4.7 103500 54.9 10.12 38250 12302 32.27 9.75 07/14/2000 1:26 PM 24800 374400 16280 124100 11.99 1.00 12.2 10.39 12690 10.3 9.3 126700 31.5 10.16 20540 6796 61.15 10.69 08/11/2000 11:30 AM 20000 103000 8410 134300 9.67 0.72 6.4 14.46 12510 17.6 17.4 114900 50.4 10.17 288 17832 43.27 10.44 08/22/2000 12:04 PM 420001 250000 4890 85800 9.97 0.85 25.6 17.23 12960 11.01 10.7 104300 80.6 10.26 _54450 84300 37.70 9.75 09/08/2000 12:24 PM 20000 272000 5000 92900 13.17 0.56 13.9 9.21 13920 7.0 0.0 1172 2.9 9.98 106801 1612 47.24 11.81 _ 09/12/2000 2.92 0.29 29.2 6.91 12430 7.6 5.7 79000 16.5 37.11 11.42 09/15/2000 39.69 0.53 27.2 10.11 12480 8.6 5.4 69080 15.1 _ 37.51 10.29 09/20/2000 5.12 0.77 22.2 7.08 12180 9.1 6.2 72890 5.4 39.51 11.08 _ 09/22/2000 12:14 PM 36000 242000 8680 88000 9.43 0.48 1,9.3 10.63 11850 8.7 6.0 68360 22.3 10.43 12180 2772 41.20 10.30 09/27/2000 15 0.59 21.0 10.38 12140 8.0 7.1 80450 29.8 40.73 11.35 10/04/2000 2:19 PM 30000 292000 15800 97100 16.29 0.97 19.6 10.57 6137 17.9 10.8 127700 4.0 10.39 14540 3749 46.28 11.57 10/06/2000 _ 18.88 1.01 19.8 11.55 5758 17.6 10.8 143300 2.4 45.18 11.45 r 10/23/2000 2:21 PM 62000 248000 3660 1 93500 18.46 0.69 9.3 13.59 6008-20.51 11.11 1072001 21.71 10.20 _ 255001 6952 42.72 10.68 William K.Adams Page 5 02/20/2001 t