Loading...
HomeMy WebLinkAbout20040825 Ver 2_Stormwater Info_20110728EcoEnginee A division of The John R. McAdams Co LETTER OF TRANSMITTAL To: Annette Lucas, Stormwater & Wetland Date: Coordinator NC DWQ - Archdale Bldg - 9t" Floor 512 N. Salisbury Street Raleigh, North Carolina 27604 (919) 807-6381 Re: Merck am sending you the following item(s): I ring mpany, Inc. 'o'ff - 0 8 aS July 27, 2011 COPIES DATE NO. DESCRIPTION 1 Ian set 1 CD of Calcs/DWG files These are transmitted as checked below: ? As requested ? For your use ? For approval ? ® For review and comment ? Remarks: DWQ Proiect # 04-0825 Copy to: Signed: t'? ?jnAianage, oject Engineer FOR INTERNAL USE ONLY ® Copy Letter of Transmittal Only to File ? Copy Entire Document to File 2905 Meridian Parkway, Durham, North Carolina 27713 PO Box 14005, RTP, North Carolina 27709 REGULAR MAIL Job No.: MER-10020 -- JUL 2 8 2011 [AEcoEngineering A division of The John R. McAdams Company, Inc. MERCK VACCINE MANUFACTURING FACILITY DURHAM, NORTH CAROLINA OVERALL STORMWA TER IMPACTANALYSIS & PRELIMINARY DESIGN OF NORTHWEST SWMF MER-10020 September 2010 Revised: October 2010 Revised: January 2011 Research Triangle Park, NC Post Office Box 14005 Research Triangle Park, North Carolina 27709 Meridian Parkway m, North Carolina 27713 800-733-5646 919-287-4262 919-361-2269 Fax Jon A. Aldridge, PE Project Engineer ??,••u11logo$,, .•`' Z H CAR ? ,,?• O?°°•.ees ••eOC ?I 4 SEAL o 33782 :9?`••;'°GINf do ?i 'r •°ea•N°• ? ? www.ecoengr.com i Design Services Focused On Client Success MERCK VACCINE MANUFACTURING FACILITY Overall Stormwater Impact Analysis & Final Design of Northwest SWMF ProiectDescrintion and Summar Located off of Old Oxford Road (S.R. 1004), just northwest of its intersection with Red Mill Road (S.R. 2602), in Durham, NC, is the existing industrial development known as Merck Vaccine Manufacturing Facility. Existing development on this tract consists of several buildings currently being used in vaccine production and support, along with associated streets, parking, utility, and stormwater management improvements. The existing stormwater management improvements consist of four stormwater wetlands that were approved and constructed as part of the previous site plan and construction drawing submittals. At this time, an expansion of the existing facility is proposed, which will require an additional stormwater wetland be constructed to serve as stormwater treatment for the impervious area associated with these improvements. The existing site is located within the Neuse River Basin, inside of the F/J-B watershed protection district for Falls Lake. Per Section 5.5.6 of the Durham County Code of Ordinances, since the site impervious percentage is less than 24%, development on this site will fall under the low-density option. In most cases, the construction of engineered stormwater quality control devices are not required for sites developed at less than 24% impervious. However, due to proposed impacts to Neuse River buffers that exist on this tract, stormwater wetlands were previously proposed, approved, and constructed to treat stormwater runoff from the vast majority of impervious surfaces for both removal of incoming total suspended solids (85% TSS removal) and reduction of nitrogen export. Per Section 14-153 of the Durham County Code of Ordinances: Developments within the Neuse River Basin shall plan for, and implement, stormwater management controls which will limit the nitrogen load of runoff to 3.6 pounds/acre/year. Developers who have obtained an offset by participation in the North Carolina Wetland Restoration Fund established by the North Carolina Department of Environment and Natural Resources, shall plan for and implement stormwater management controls which will limit the nitrogen load of runoff from the site to 6 pounds/acre/year for residential development and 10 pounds/acre/year for commercial or industrial development. Nitrogen export calculations shall be made using a formula approved by the Stormwater Administrator. Since the existing site consists of industrial development, an offset payment to reduce the nitrogen loading from 10 lbs/ac/yr to 3.6 lbs/ac/yr will be allowed to the Ecosystem Enhancement Program (formerly the Wetlands Restoration Program). Nitrogen export loads of greater than 10 lbs/ac/yr must be physically treated on-site through engineered stormwater management facilities. Development on this site must also address stormwater quantity impacts. With regards to stormwater quantity, Durham County has two ordinances that will apply to future development on this tract. The first addresses offsite impacts due to proposed development and the second addresses stormwater quantity control measures due to development within the Neuse River Basin. Per Section 5N of the Durham County Code: Prior to the approval of any subdivision or site plan or the issuance of a building permit for any structure other than a single-family residence, the owner of the property proposed for development shall submit a stormwater impact analysis that complies with the requirements of the city engineer and which determines the impact of the increased stormwater runoff on downstream stormwater facilities and properties whenever the peak runoff rate from either the two-year storm or the ten-year storm increases by more than ten percent as a result of the proposed development. The need for stormwater management facilities to address off-site impacts shall be determined by the city engineer. Stormwater management facilities shall be designed and maintained in accordance with section 5.5.7.2 of the Durham Zoning Ordinance. The second stormwater quantity control issue that must be addressed by this site is control measures for development within the Neuse River Basin. Per Section 14-153 of the Durham County Code of Ordinances: All developments shall plan for and implement stormwater management controls which will ensure that there is no net increase in peak flow leaving the site from the pre-development conditions for the one-year 24-hour storm, of more than 10%. If development results in an increase of greater than 10%, the developer will be responsible for installing measures which will result in no net increase. The same methodology must be used for calculating both the pre- and post- development flow rates. This report contains calculations detailing the expected stormwater impacts as a result of the proposed expansion, along with the final design for the proposed stormwater wetland that will be used to mitigate the impacts. The calculations contained within this report are based on an analysis of the site and contributing off-site area. Summary tables are included within this report that detail the pre- and post-development peak flow rates expected from the site (see enclosed drainage area maps for graphic representation of sub- basins and drainage areas), along with the percentage increase or decrease. Please refer to the appropriate sections of this report for additional information. Calculation Methodolozy • Rainfall data for the Raleigh-Durham region is from USWB Technical Paper No. 40 and NOAA Hydro-35. This data was used to generate a depth-duration- frequency table describing rainfall depth vs. time for varying return periods in the RDU region. Rainfall depths from this table were then used as input to HEC-HMS Version 3.4 for peak flow rate calculations. The time of concentration for each sub-basin was calculated using the SCS Segmental Approach (TR-55, 1986). The TC path was divided into segments consisting of overland flow, concentrated flow, and channel flow. The overall time of concentration is the sum of the individual segment times. A few sub- basins have a time of concentration that was conservatively assumed to be 5 minutes. • The 1-year 24-hour stone was modeled within HEC-HMS Version 3.4 assuming a 3.0 inch rainfall depth and a SCS Type Il storm distribution. • A composite SCS Curve Number was calculated for all sub-basins in both the pre- and post-development condition using land cover conditions. • Using the Durham County Soil Survey, the on- and off-site soils were determined to be primarily from Hydrologic Soil Group `B'. Therefore, the SCS Curve Numbers used in further hydrologic calculations were selected appropriately. • On- and off-site topography is from information provided to The John R. McAdams Company, Inc. by others. The areas of on-site and off-site pre- development cover conditions were measured using this data. • Pre- and post-development hydrologic calculations are based on an on-site area of 258.93 acres. This is the area that will be created after the dedication of additional right-of-way on Old Oxford Highway. • Stage-discharge rating curves, stage-storage rating curves, and stage-storage functions for both the existing South Stormwater Wetland and proposed Parking Lot Wetland were generated externally of HEC-HMS and then input into the HEC-HMS model. Stage-discharge curves for each facility were generated using PondPack Version 10.0, by Haestad Methods. Please refer to the appropriate sections of this report for additional information. • HEC-HMS Version 3.4, by the US Army Corps of Engineers, is used to generate pre- & post-development peak flow rates for the 1-, 2-, 10-, and 100-year storm events, along with routing of the existing and proposed stormwater management facilities. • For 100-year storm routing calculations, a "worst case condition" was modeled in order to insure the proposed facility would safely pass the 100-year storm event. The assumptions used in this scenario are as follows: 1. The starting water surface elevation in the facility, just prior to the 100- year storm event, is at the top of riser elevation. This scenario could occur as a result of a clogged siphon or a rainfall event that lingers for several days. This could also occur as a result of several rainfall events in a series, before the inverted siphon has an opportunity to draw down the storage pool between NWSE and the riser crest elevation. 2. A minimum of 0.5-ft of freeboard is provided between the peak elevation during the "worst case" scenario and the top of the dam for the facility. • Water quality calculations were performed in accordance with the NC Stormwater Best Management Practices manual (NC DENR, July 2007). The wetland surface area was sized using the runoff volume computed using the Simple Method and a maximum temporary pool depth of 12-inches. This temporary storage pool for stormwater runoff from the 1.0" storm is to be drawn down in 2-5 days. Conclusion If the development on this tract is built as proposed within this report with the stormwater management facilities that are designed and provided, no adverse impacts are expected to occur on downstream properties. However, modifications to the proposed development may require that this analysis be revised. Some modifications that would require this analysis to be revised include: 1. 2 The proposed site impervious surface exceeds the amount accounted for in this report. The post-development watershed breaks prepare this report. change significantly from those used to The above modifications may result in the assumptions within this report becoming invalid. The computations within this report will need to be revisited if any of the above conditions become apparent as development of the proposed site moves forward. County of Durham Engineering Department Stormwater and Erosion Control Division 120 E. Parrish Street, Law Bldg., 1st Floor Durham, North Carolina 27701 (919)560-0735 Fax: (919)560-0740 Stormwater and Erosion Control Division Site Plan and Preliminary Plat Submittal For each review submittal the entire study must be submitted. This includes re-submittals. Partial study packages will not be reviewed. Incomplete Stormwater Site Plan Submittals will be returned with NO REVIEW PERFORMED. Contact Stormwater and Erosion Control Division concerning redevelopment, expansion or projects which result in a decrease in impervious area for modified submittal requirements. This submittal checklist is to be submitted with each plan submittal. I. PROJECT INFORMATION Project Name: 1%4rc9GL YAGGIkC MAVJ0FPMTU9Jf-6- FAC,1.1JY Phase: Previous Project Name, if applicable: PIN: 0845 - 02- 58 - 7-:;+2 Tax Map Number Planning Case Number: Owner MX 1t4r- ¢ GoMPAOY, INC. Phone Number 014) 4105 Owner Address 5325 OLD OXFORD 1.11Gi4WV`f DUMCH m, NG rn12- Project Comment Contact Person: JW ALDR1yee Phone number (q111 ) 361-Coco Fax number: ( 919) 361-Z.Z0 Company Name: asoF-T, tmEE.RIt4e- II. REQUIRED ITEMS CHECKLIST The following checklist outlines submittal requirements. Initial in the space provided to indicate the following submittal requirements have been met and supporting documentation is attached. A. General Requirements Applicant's initials a. Stormwater Impact Analysis (SIA) including narrative report and drainage calculations sealed and signed by North Carolina Professional Engineer. b. Cape Fear / Buse Basi (circle one). (If Neuse Basin circled completion of Section D. below is required) QRA c. NSID / OUTSIDE (circle one) Water Supply Watershed. (If INSIDE Water Supply Watershed completion of Section E. below is required) J d. Show all Durham County and Neuse Basin Stream Buffers on the plan. Diffuse flow into stream buffers is required. ekA e. Floodplain located on site: es No (circle one). A copy of floodplain map with site boundary shown is required and the 100-year floodplain with base flood elevations (if applicable) must be shown on the site plan. Pagel of 3 Revised as of 1/27/06 B. 10% Stormwater Rule Requirements joA a. Durham County Soils map with site boundary shown. JA-A b. USGS 7.5 Minute Quadrangle with site boundary shown. J?p c. Introduction narrative describing the site conditions in pre- and post-development conditions including a description of site improvement changes. ,A d. Drainage area map including: ? Site area delineated, scale and north arrow. ? Sub-basins delineated for pre- and post-development conditions with area in acres indicated. Analysis points clearly identified and labeled. Segmented TR-55 time of concentration flow paths showing each segment. '_1 AA e. Methodologies and procedures described. ,-0A - f. Site plan or grading plan identifying pre- and post-development drainage patterns. JAA g. Pre- and post-development times of concentration calculated using the TR-55 segmented approach. JA h. Calculations for the pre- and post-development discharges for the 1-, 2- and 10-year 24- hour storm using TR-55, TR-20, HEC-HMS, HEC-1 or Rational Method. The discharge point for these calculations is the property boundary. Jq? i. Summary of Results provided in the following format (see Example below). BASIN NAME Pre- Developed ]-year discharge Post-- Developed ]-year discharge % Increase Pre- Developed 2 -year dischar a Post- Developed 2 -year discharge % ncreas Pre- Developed 10 year discharge Post- Developed 10 year discharge % Increase Detention Required (Yes/No) JAA j. Conclusion providing detailed findings. J k. BMP provided (indicate quantity): -Wet Pond -Sand Filter Bioretention Dry Detention ?Other SThfrAKx0rPE,.ft N _ Not required JAVA 1. BMP benefits: ?control 1-, 2- and 10-year discharge /Other _WA ' Z MMpVAL a TN-?Xt?R-T Not required Page 2 of 3 Revised as of 1/27/06 C. Durham County Stream Buffers `jqA a. A copy of the Durham County Soils map and the USGS 7.5 Minute Quadrangle with the site indicated has been provided. Diffuse flow into buffers is required. 'AA - b. All Durham County stream buffers are shown on the plan for intermittent and perennial streams shown on the Durham County Soils map or the USGS 7.5 Minute Quad. Diffuse flow into buffers is required Jfl1A c. NCDENR documentation for approval of buffer impacts provided. J d. Stream delineations (Cape Fear / euse Basi If in Neuse Basin, provide NCDENR Division of Water Quality documentation. If in Cape Fear Basin, provide report as required by Section 14-153(b)(3) (i) of the County Stormwater Ordinance. D. Neuse Basin Requirements Note: If a single family, duplex, or recreational development disturbs <_ I acre or a multi-family, office, institutional, commercial or industrial development disturbs _< 0.5 acres then all items below are N/A. JRA a. Pre- and post-development nitrogen calculations using Durham County Nitrogen Calculation Tables. J K b. Nitrogen buy-down calculations (if necessary). Site plan will not be approved until WRF payment is verified. E. Water Supply Watershed Requirements a. Indicate the water su ly watershed overlay district(s) the project is located. (Circle all that apply) (F/J-A (F/J- ), E-A, E-B, M/LR-A, M/LR-B) b. Provided BMP for 85% TSS removal or narrative explaining why it is not provided JPA c. BMP provided: Wet Pond Sand Filter Bioretention _Dry Detention _/Other z v??. L AE ]i MVS Not required ,JAA d. BMP benefits: ? 85% TSS Removal /Other Not required Note: Executed Stormwater Facility Operation and Maintenance Permit Agreement, payment of permit fee and payment of surety are required prior to construction drawing approval. Page 3 of 3 Revised as of 1/27/06 CpDURHAM COUNTY ''•s Engineering Department Stormwater Division % 120 East Parrish Street, Durham, NC 27701 ?' ••••'''?,?? Telephone (919) 560-0739 FAX (919) 560-0740 I CAR Constructed Wetland and Pocket Wetland Design Summary Stormwater Management Construction Plan Review: A complete stonnwater management construction plan submittal includes a design summary for each stonnwater BMP, design calculations, plans and specifications showing BMP, inlet and outlet structure details. 1. PROJECT INFORMATION Project Name: Meg M VAM14E MANUFACTUKI NPr FAC? 11Y Phase PIN: 0W_ 07_-5$ - 7342 Case #: Design Contact Person: c long iALAR-IDQ , Phone #: ( qM 61 -9cW Legal Name of Owner: m mm l-Amr INC Owner Contact: Sk_o-r r 81U.JMA?,1 - Phone #: (9 %q - 4 o Owner Address: C)L o oXwRp P-U Deed Book Page # or Plat Book Page# for BMP Property For projects with multiple basins, specify which pond this worksheet applies to: Ncg:M *ST WE" LANC) Does the proposed pond also incorporate stonnwater detention? es No Detention provided for: X 1-year X 2-year y, 10-year other Dam Height: 4 (feet) Dam Classification: a #?c-?e DESibrt (,OIL K0VL VWeST WETLAND BASED oIs Fawrr= 'DE[CL0P0/kEtJr Elevations Wetland bottom elevation M,,co ft. (floor of the wetland) Permanent pool elevation ZV.co ft. (invert elevation of the orifice) Temporary pool elevation ( ?,, SSlor ,r) 29-7.L7+ _ ft. (elevation of the structure overflow) l219Et'?- - elevation po ft. (invert elevation) 1-year storm water surface elevation 21- ft. RISER 2-year storm Mifiee/weir elevation ,2pl.oo ft. (invert elevation) 2-year storm water surface elevation ft. WSJ elevation 302_,0o ft. (invert elevation) 10-year storm water surface elev. X1.32. _ ft. Emergency spillway elevation 3?3,to ft. (invert of emergency spillway) Top of embankment/dam 2,o4, co ft. (elevation) Maximum water surface elevation X3,15 ft. (max. storm pond can safely pass) Depth from design storm to Lowest orifice elevation 3 4'z ft. rtX> `yK WOE- r'C.ASE 10_mz? SIPHON Areas Permanent pool area provided ft2 (water surface area at orifice invert elevation) Minimum required perm. pool area -7 ft2 (calculated surface area required) Design storm surface area e EL., ,3o! . 32 ft2 (Sped frequency event.•lo_ year) Drainage area (10-acres min to Constructed Wetland) A 2, 37 ac. (total drainage to the wetland) Discharges (Specify only applicable frequency events) At BMP Nor-11AKiEST K*'FLAMD WORST-CASE 1-year 2-year 10-year loo -year Inflow %.657 cfs (Z.2 cfs '9I. cq - cfs I 11, 02 cfs Routed outflow 0. ?5 cfs 6-34 cfs Q.41 cfs 7Z. 2`7 cfs At Analysis Point(s) that BMP Contributes to SU%9ASIN 65 1-year 2-year 10-year -year Pre-development 290 cfs 10.10 cfs 4L .11 cfs cfs Post-development w/o detention 33.80 _ cfs cfs A 08, 67, cfs cfs With detention Z.5- _ cfs -6-4-7- cfs 23.40 cfs cfs Volumes Pennanent pool volume Water quality pool storage volume Design storm storage volume Total Storage volume provided at design storm Total Storage volume provided at top of dam Forebay volume (Constructed Wetlands only) ?o? 5$ ft3 (volume of main pond and forebcay) x,53$ ft3 (volume above permanent pool) Sf ft3 (volume above permanent pool) 22e, 120 ft3 •t- Ya?-@ RI?R 3457.858 ft3 It t33 ft Environmental Zones MSIgsN*p IN AccogDANcr- wl $Iu?P "At !AL_ Zon Water Depth at Normal Pool' Water Depth at ortion of Temporary Temporary P ax Pool Surface Area De 12-inches a ove Normal Pool)' Deep Pool Low Marsh High Marsh Woo pland Depths are to be calculated using the hydraulic depth calculation for each zone. Hydraulic Depth is the volume of water at an elevation divided by the water surface area at the same elevation. Other Parameters SA/DA' /A (from DWQ table) pESIGNED 1N Ac?to? w? Diameter of orifice in. (must provide draw down over 2 to S day period) $mp MAKsuA _ Draw-down time hrs Design TSS removal% (minimum 85% removal required) z When using the SA/DA tables from the NCDENR BMP Manual, linear interpolation may be used for values between table entries.) RiserlPrincipal and Emergency Spillway Information 1-year storm orifice/weir 2-year storm orifice/weir 10-year storm orifice/weir _- year storm orifice/weir Principal spillway Emergency spillway diameter in. diameter in. diameter in. diameter in. diameter _-?6 in. width Zp ft. II. REQUIRED ITEMS CHECKLIST length ft. length ft. 5'X S' FJSER length ft. CZEST- = 307.00 length ft. side slopes 3 _1 slope c, % The following checklist outlines design requirements. Initial in the space provided to indicate the following design requirements have been met and supporting documentation is attached. Atinlicant's initials ?W a. ,- b. ,? c. ,_)AA- d. _ e. The forebay volume is approximately equal to 20% of the pond volume. The temporary pool controls runoff for water quality design storm. The temporary pool draws down in 2- to 5-days. The drainage area to a Constructed Wetland is at least 10-acres. Smaller drainage areas to Pocket Wetlands will be reviewed on a case-by-case basis. Riprap outlet protection, if provided, reduces flow to non-erosive velocities (provide calculations). JAA -- f. The wetland length to width ratio is greater than or equal to 3:1. 10 g. The wetland side slopes above the permanent pool area are no steeper than 3:1. JPA h. A submerged and vegetated shelf with a slope no greater than 6:1 is provided around the perimeter of the pond (show on plan and profile and provide a vegetation plan). i. Vegetative cover above the permanent pool elevation is specified. No woody vegetation is permitted on the embankment. JAA j. A surface baffle, trash rack or similar device is provided for both the overflow and orifice. Flat top trash racks are not acceptable. Access hatch has been provided. ?JkA k. A recorded drainage easement is provided for each pond including access to the nearest right-of-way and is graded per Section 8.3, Stornwater Control Facilities (BMPs). AA 1. If the basin is used for sediment and erosion control during construction, a note requiring clean out and vegetative cover being established prior to use as a wet detention basin shall be provided on the construction plan. .JA in. A mechanism is specified which will drain the pond for maintenance and emergencies. Valves used shall be plug valves. J-P n. Anti-floatation calculations are provided for riser structure. ? 1AA o. A plan view of the wetland with grading shown is provided. JAA p. A profile through the forebay, wetland and spillway is provided. Water surface elevations are shown on the profile. ` q. Riser structure details are provided. JAA r. Dam designed to account for a 5.00% settlement factor. (6.$S' VF FKEERA D Ffty1DED) s. Compaction specifications for the embankment are shown on the plan. A-- t. The minimum top of dam width has been provided for the wetland embankunent top width per Section 8.3, Stornwater Control Facilities (BMPs) Note: Executed Stormwater Facility Operation and Maintenance Permit Agreement and payment of surety are required prior Stormwater Permit issuance. SUMMARY OF RESULTS MERCK VACCINE MANUFACTURING FACILITY MER-10020 MERCK VMF EXPANSION SUMMARY OF RESULTS J. ALDRIDGE, PE MER-10020 Post Development 1/20/2011 ==> RELEASE RATE MANAGEMENT RESULTS SUBBASIN #1 Return Period Pre-Development Post-Development % Increase i [cfs] [cfs] [%] 1-Year 5.95 5.7 3.7% 2-Year 18.72 18.04 -3.6% x -- --~ 10-Year j3.21 i 0.49 1 -3.7% J1,1;13I ? 2 Return Period Pre-Develop?urnt Post-Developmew lo cicase ? [cfs] [cfs] " 1-Y car 5.70 5.05 ^ 7'!Rr m_ 20.30 17.54 u_1 ear 86.01 74.60 -13.3% BB \1,1 13 Return Period 1'rc-llcvclupuicut 1'ust-Dvxchkpment 'io Increase [cfs] Jrl [%] 1-Year 1.38 1 U 16.7/0 ° 2-Year _4.15 2 47 -40.5% 10-Year [ 17.51 1 8.32 -52.5 /o SLBBASIN #4 Return 1'criud Pre-Developwent Post-Development 1 % Increase [cfs] [cfs] [%] 1 Year N ._ ? 1.33 0.36 72.9%, 2-Year 4 34 0.74 -829°0 10-Year 18.46 2.20 -88.1% SUBRASTI Return Period Pre-Development l'u3t-Development % Increase [cfs] [cfs] [%] 1-Year 2.90 2.37 18.3% 2-Year 10.10 6.32 -37.4% 10-Year 42.91 23 29 45 7% MERCK VMF EXPANSION SUMMARY OF RESULTS J. ALDRIDGE, PE MER-10020 Post Development 1/20/2011 ==> ROUTING RESULTS North Wetland. Return Period Inllow [cfs] Outtiow [cfs] 1-Year 42.91 039 2-Year j _ 62.92 0.46 10-Year 99.83 5.57 100-Year Worst Case 1 156.68 i 143.21 Design Drainage Area = 20.67 acres Design Impervious Area = 10.09 acres % Impervious = 48.8% Design TSS Removal = 85.0% Top of Dam = 331.00 ft NWSE = 324.30 ft WQ Storm Depth = 18.06 inches WQ Volume = 36716 of WQ Volume Elevation = 325.81 ft Surface Area at NWSE = 21277 sf Siphon Diameter = 3.0 inches Riser Size = 6 ft dia Riser Crest = 329.30 ft Barrel Diameter = 48 inches # of Barrels = 1 Invert In = 321.59 feet Invert Out = 320.22 feet Length = 73 feet Slope = 0.0188 ft/ft Max. W 6h 329.49 330.58 Freeboard IN 2.85 1.51 0.42 MERCK VMF EXPANSION SUMMARY OF RESULTS MER-10020 Post Development South Wetland: Return Period Inflow [cfs] Outflow [cfs] Max. wJL [ft] __ 1-Year 61.99 0.45 T36.27 2-Year ?._..-..?. ._ ??__.. 88.3 ?._.1-.._?.. 0.51 337.49 I0-Year 132.31 15.52 338.45 100-Year Worst C aye 199.18 186.38 339.31 Design Drainage Area = 24.61 acres Design Impervious Area = 14.68 acres % Impervious = 59.7% Design TSS Removal = 85.0% Top of Dam = 340.00 ft NWSE = 332.54 ft WQ Storm Depth = 21.54 inches WQ Volume = 52426 of WQ Volume Elevation = 334.34 ft Surface Area at NWSE = 26252 sf Siphon Diameter = 3.0 inches Riser Size = 6 ft dia Riser Crest = 338.07 ft Barrel Diameter = 48 inches # of Barrels = 1 Invert In = 329.07 feet Invert Out = 327.95 feet Length = 73 feet Slope = 0.0153 ft/ft k reeboard J. ALDRIDGE, PE 1/20/2011 MERCK VMF EXPANSION SUMMARY OF RESULTS J. ALDRIDGE, PE MER-10020 Post Development 1/20/2011 West Wetland: Return Period -Year 2-Ycar _a ..70-Year _ 100-Year Worst Case Design Drainage Area = Design Impervious Area = % Impervious = Design TSS Removal = Top of Dam = NWSE = WQ Storm Depth = WQ Volume = WQ Volume Elevation = Surface Area at NWSE = Siphon Diameter = Riser Size = Riser Crest = Barrel Diameter = # of Barrels = Invert In = Invert Out = Length = Slope = [cfs] 23.61 36.47 6I.16 107.25 16.00 5.25 32.8% 85.0% 299.70 294.00 11.35 20056 294.95 20456 2.0 5 ft dia 297.85 36 1 290.91 289.83 71.5 0.0151 acres acres ft ft inches cf It sf inches It inches feet feet feet ft/ft luttlow ! Max. W 5E j Freeboard [of'] 1 [ft] I [ft] 0.1 5 296.00 3.70 _ _ 0.1 7 296.81 2.89 _ _ 3.35 3.35 298.01 69 1. _ 80.35 _ __ 299.28 _ 0.42 ? ? MERCK VMF EXPANSION SUMMARY OF RESULTS J. ALDRIDGE, PE MER-10020 Post Development 1/20/2011 Northwest Wetland: Return Period 10-Year _ - 100 Year Worst Case v Design Drainage Area = Design Impervious Area = % Impervious = Design TSS Removal = Top of Dam = NWSE = WQ Storm Depth = WQ Volume = WQ Volume Elevation = Surface Area at NWSE = Siphon Diameter = Riser Size = Riser Crest = Barrel Diameter = # of Barrels = Invert In = Invert Out = Length = Slope = Inflow [I r-] i)u 27.,5-4- 42.45 8.34 3.39 40.6% 85.0% 304.00 297.00 4.67 12589 297.39 35751 3.0 5ftx5ft 302.00 36 1 296.50 296.00 80 0.0063 Outflow Max. Vtish Freeboard [cfs] f n1 [ftl _0.21 6.09 0 34 ?R R 299.18 ''t - 4.82 .2 4 02 7 1 26 acres acres ft ft inches cf ft sf inches ft inches feet feet feet ft/ft MERCK VMF EXPANSION SUMMARY OF RESULTS J. ALDRIDGE, PE MER-10020 Post Development 1/20/2011 Southeast Wetland: Return Per 1-'r car 2-Year 10-Year i [cfs] 16.32 T 22.40 30.86 ? 100-Year Wnrst Case ? 44.01 ??????? Design Drainage Area = 5.08 acres Design Impervious Area = 3.34 acres % Impervious = 65.7% Design TSS Removal = 85.0% Top of Dam = 326.00 ft NWSE = 322.00 ft WQ Storm Depth = 9.70 inches WQ Volume = 11834 cf WQ Volume Elevation = 322.81 ft Surface Area at NWSE = 11913 sf Siphon Diameter = 2.0 inches Riser Size = 4 ft x 4 ft Riser Crest = 324.00 ft Barrel Diameter = 18 inches # of Barrels = 1 Invert In = 320.00 feet Invert Out = 318.00 feet Length = 52.5 feet Slope = 0.0381 ft/ft [cfs] U.14 0.68 8.62 18.06 -_ 323.78 324.31 325.13 1.98 1.69 MERCK VMF EXPANSION SUMMARY OF RESULTS J. ALDRIDGE, PE MER-10020 Future Development 1/14/2011 RELEASE RATE MANAGEMENT RESULTS _ SUBBASIN #_1 __ Return Period Pre-Development] Post-Development % Increase [cfs] 4, [cfs] [%] .._md.? 1-Year 5.95 5.73 3.7% 2-Year E 18.72 3 18.04 -3.6% 10-Year z 73.21 ( 70.49 -3.7% SUBBASIN #2 Return Period Pre-Development ; Post-Development % Increase [cfs] [cfs] [%] 1-Year 5.70 1 5.05 -11.4% 2-Year 20.30 I 17.54 -13.6% 10-Year 86.01 74.60 - -13.3% SUBBASIN #3 Return Period Pre-Development I Post-Development % increase [cfs] f [as] [%] 1-Year 1.38 1.12 -18.8% 2-Year i 4.15 I 2.46 -40.7% 10-Year 17.51 € 8.31 ? -52.5% SUBBASIN #4 Return Period Pre-Development 1 Post-Development ' % Increase i 1 [cfs] [cfs] [%] 1-Year 1.33 0.36 ( .. -72.9% 2-Year 4.34 0.74 -82.9% ] 0-Year 18.46 2.20 -88.1% SUBBASIN #5 Return Period I Pre-Development Post-Development I % Increase [cfs] [cfs] 1-Year 2.90 2.54 2-Year 10.10 6.47 10-Year 42.91 23.40 MERCK VMF EXPANSION SUMMARY OF RESULTS J. ALDRIDGE, PE MER-10020 Future Development 1/14/2011 ==> ROUTING RESULTS North Wetland: Return Period 1-Year 2-Year w 10-Y?ii 100-Year Worst l,asc Design Drainage Area = Design Impervious Area = % Impervious = Design TSS Removal= Top of Dam = NWSE = WQ Storm Depth = WQ Volume = WQ Volume Elevation = Surface Area at NOSE = Siphon Diameter = Riser Size = Riser Crest = Barrel Diameter = # of Barrels = Invert In = Invert Out = Length = Slope = Inflow j Outflow Nlax. NOSE Freeboard [cfs] [cfs] I [ft] [ft] 51.23 „y043 ? 327.66 3.34 ? 72.51 0.49 129.69 2.32 107.01 9.91 329.60 1.40 ?159.54 14G29?? 19.46 acres 12.00 acres 61.7% 85.0% 331.00 ft 324.30 ft 20.57 inches 42736 cf 326.01 ft 21277 sf 3.0 inches 6 ft dia 329.30 ft 48 inches 1 321.59 feet 320.22 feet 73 feet 0.0188 ft/ft MERCK VMF EXPANSION SUMMARY OF RESULTS J. ALDRIDGE, PE MER-10020 Future Development 1/14/2011 South Wetland: Return Period Inflow I [efs] r 1-Year 2-Y ear 10Yca 100-i" car Wk oral Casc I Design Drainage Area = Design Impervious Area = % Impervious = Design TSS Removal= Top of Dam = NWSE = WQ Storm Depth = WQ Volume = WQ Volume Elevation = Surface Area at NWSE = Siphon Diameter = Riser Size = Riser Crest = Barrel Diameter = # of Barrels = Invert In = Invert Out = Length = Slope = 199.18 24.61 15.00 61.0% 85.0% 340.00 332.54 21.94 53472 334.37 26252 3.0 6 ft dia 338.07 48 1 329.07 327.95 73 0.0153 Outflow Max. WSL Freeboard [C rD] [rfl [n] 0.4-5 336.2 7 3.73 0.51 _ __337.49 51 15.52 338.45 1 55 N 1?8638? 6s T33931 0.69~ acres acres ft ft inches cf ft sf inches ft inches feet feet feet ft/ft MERCK VMF EXPANSION SUMMARY OF RESULTS J. ALDRIDGE, PE MER-10020 Future Development 1/14/2011 West Wetland: Return Period Inflow Outflow Max. VVSE Freeboard [cfs] refs] [ft] [R] 1 Year 20.82 0.14 295./c, 91 2 Ycar ?1 83 0 16 296 46 3 24 10-Yc a 54.92 1.56 297.92 1.78 100-lcar Borst Casc 91.10 y66 96 ?29911r a „ (1.59 Design Drainage Area = 13.22 acres Design Impervious Area = 4.47 acres % Impervious = 33.8% Design TSS Removal = 85.0% Top of Dam = 299.70 It NWSE = 294.00 ft WQ Storm Depth = 9.81 inches WQ Volume = 17003 cf WQ Volume Elevation = 294.82 ft Surface Area at NWSE = 20456 sf Siphon Diameter = 2.0 inches Riser Size = 5 ft dia Riser Crest = 297.85 It Barrel Diameter = 36 inches # of Barrels = 1 Invert In = 290.91 feet Invert Out = 289.83 feet Length = 71.5 feet Slope = 0.0151 ft/ft MERCK VMF EXPANSION SUMMARY OF RESULTS J. ALDRIDGE, PE MER-10020 Future Development 1/14/2011 Northwest Wetland: Return Period ! Inflow Outflow Max W'SE Freeboard [cfsl ?cf51 [ftl [ft? ?a , 1-pear 4e.0 299.29 - 4.71 7-Year 62.38 ?? 0. 39 299.8 1 4.19 10-Year 81.09 0.49 01.32 2.68 _ ??100-Year Wnrst Case? ? 111.R2 ?' ??? 72.27 303.15 Design Drainage Area = 12.37 acres Design Impervious Area = 9.82 acres % Impervious = 79.4% Design TSS Removal= 85.0% Top of Dam = 304.00 ft NWSE = 297.00 ft WQ Storm Depth = 11.30 inches WQ Volume = 34327 cf WQ Volume Elevation = 297.94 ft Surface Area at NWSE = 35751 sf Siphon Diameter = 3.0 inches Riser Size = 5 ft x 5 ft Riser Crest = 302.00 ft Barrel Diameter = 36 inches # of Barrels = 1 Invert In = 296.50 feet Invert Out = 296.00 feet Length = 80 feet Slope = 0.0063 ft/ft MERCK VMF EXPANSION SUMMARY OF RESULTS J. ALDRIDGE, PE MER-10020 Future Development 1/14/2011 Southeast Wetland: ? Return Period Inflow Outflow Max. " .L Freeboard ? [cfs] - [efs] ' [ft] ( [['t] 1-?car . 16.32 . 0.14 323.78 2.22 2-Year 22.40 0.68 j 324.02 1.98 10-Year 30.86 8 62 324.31 1.69 100-Year Worst Case 44.01 18.06 ? 325 13 0.87 Design Drainage Area = 5.08 acres Design Impervious Area = 3.34 acres % Impervious = 65.7% Design TSS Removal= 85.0% Top of Dam = 326.00 ft NWSE = 322.00 ft WQ Storm Depth = 9.70 inches WQ Volume = 11834 of WQ Volume Elevation = 322.81 ft Surface Area at NWSE = 11913 sf Siphon Diameter = 2.0 inches Riser Size = 4 ft x 4 It Riser Crest = 324.00 ft Barrel Diameter = 18 inches # of Barrels = 1 Invert In = 320.00 feet Invert Out = 318.00 feet Length = 52.5 feet Slope = 0.0381 ft/ft MISCELLANEOUS SITE INFORMATION MERCK VACCINE MANUFACTURING FACILITY MER-10020 r,'�i, �- �4 1 f .- 1 -- l '' .f • `\1•�l'�� 41 - i+ 9✓. CPft� 1004 .•.. j ` �r: �;� � M'1. `♦�� � ' � � � 3 � F•�� � tom, � i '' f" � 3 :ki �•` �i �-- tom ---1 `` :• � _. � `/ � - v � �1 ti ii • x �~� Y.'M1 ♦ / 111 _� f" o IQs -- 77 SCALE 1:24000 / p 1 MILES p 1. 1000 YARDS 1, 1 i h 1 KILOMETER 0 9° W n Name: NORTHEAST DURHAM Location: 036° 06'24.71" N 078° 50' 36.38" W NAD 27 Date: 9/22/2010 Scale: 1 inch equals 2000 feet (C) 1998, STATE OF NORTH CAROLINA FI PANEL LOCATOR DIAG ZOPJE AE ZONE X as°51'so° ZONE K xa°5roa° ° ' 2040 OOD FEET a~ ns as 50 3G ~RSO~< 693 JOINS PANEL 0848 ggq --c LEE 78°50'30" 78 50'DO" 2 047 5D0 FEET ~ OQ FEET l 860 000 FEET ~~~1 ~ _ - _ _ _ , as _ SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT' TO ~ - . - _ _ _ _ _ _ _ 2 o5a o aso ooD FEET INUNDATION BY THE 1 % ANNUAL CHANCE FLOOD ' j ~liy 0~;' ~ r" Durham ~ ~ 1"he 1 °l° annual chance flood (10Q-year flood), also knawn as the base flood, is the (load _ that has a 1 % chance of being equaled or exceeded in any given year. The Special ~ ~ ~ E r Flood Hazard Area is the area subject to (loading by the 1% annualchance flood. Areas of Special flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base i , Flaod Elevatian is the water-surface elevation of the 1 % annual chance flood. i ~ ~ ~ , i ` _ - f I -l ' f', , ' ZONE A No Base Fload Elevatians determined. / ; ' f , , f ~ ` ZONE AE Base Flood Elevations determined. T~~~. ~ -r / ) ZONE AH Flood depths of 1 to 3 feet {usually areas of panding); Base Flaad i. ~ ~ , , ~ ' Elevations determined. I t a ,N % , ~ ~ Jl ! ZONE AO Flaod depths of 1 to 3 feet (usually sheet flow on slaying terrain); I ~a ci l~ ~ / ~ ~ . _ 1\~ average depths determined. For areas of alluvial Fan flaoding, velocities . - , , also determined. . ZONE AR Special Flood Hazard Area farmerfy protected from the 1°f° annual , _ i j _ , _ ,t Durham Count Lo ~ ZONE AE chance flaod by a flood control system that was subsequently ` Y . ~ / /i ~ _ ` ~ Unincorporated Areas < decertified. Zana AR indicates that the former (load cantrol system is a9r;-, being restored to provide protection from the 7 % annual chance or , ~,r ; ` greater flood. ~ ZONE, Y. ~ ~ / - _ i _ - ' Z(?f~dC ~E . ZONE A94 Area to be protected from 1°l annual chance fload by a Federal , 1_, % ~ ' v• flood protectian system under construction, na Base Flood Elevations determined. ~ i ZOI.L N ~ ZONE VE Coastal flood zone with velocity hazard (wave action}; Base Flood Elevatians u 36°06`30" determined. 36°06`30" ~ , , ~ -v._:. / ~ , _ _ _ ; ! FLOODWAY AREAS (N ZONE AE 3998 a~ µ ~ ; L~ l f - - ~ - - ,!~,o) ~ `z The floodway is the channel of a stream plus any adjacent floadplain areas that must be kept free of encroachment so that the 1°f° annual chance Flood can be carried without WACt _ ~ substantial increases in flood heights, S?UD 3ssB~^r OTHER FLOOD AREAS r.., 7_D~l~ Y, ~ ~ ~ . x ZONE X Areas of 0.2% annual chance fload; areas of 1% annual chance flaod ' with average depths of less than 1 foot or with drainage areas Tess than y I 1 square mile; and areas protected by levees (ram 1 % annual chance DATUM INFORMATION ~ , , , ~ r flood. 857 500 FEET The projection used in the preparation of this map was the North Carolina ~ ; State Plane {FIPSZONE 3200). The horizontal datum was the North American a OTHER AREAS Datum of 1983, GRS80 eliipsoid. Differences in datum, ellipsoid, projection, or ZONE X Areas determined to be outside the Q.2% annual chance floadplain. Universal Transverse Mercator zones used in the production of FIRMs for adjacent r 1.)itrha.nT Ceu)it~~ i'~ , ZC)hf;: Af-- ZONED Areas in which fload hazards are undetermined, but passible. i jurisdictions may result in slight positional differences in map features across 'urisdictional boundaries. These differonaes do not affect the accurac of this i, ' ~ f r' I 1 Y t _~IlIIi~OrtJr;tdfuC~ .~Tt;dS ~ FIRM. All coordinates on this map are in U.S. Survey Feet, where 1 ~ ,r~.-~~_ COASTAL BARRIER RES©URCES SYSTEM (CBRS) AREAS 1 U.S. Survey Foat - 1200/3937 Meters. ~ s ;]Q~jgj i , \ OTHERWISE PROTECTED AREAS {pPAs) ~ _ Flood elevations on this map are reforenced to the North American Vertical Datum of 1988 (NAVD 88x. These flood elevations must be compared to structure ` CBRS areas and OPAs are normally located within ar adjacent to Special Flood Hazard Areas. ~ _ and ground elevations referenced to the same vertical datum. An average jf ° - - 1% annual chance Hoodplain boundary I 0.2°J° annual chance flaadplain boundary offset between NAVD 88 and the National Geodetic Vertical Datum of 1929 {NGVD 29) has been computed for each North Caralina county, This offset was j11tti of - - - - Floodway boundary then applied to ~tha NGVD 29 flood elevations that Were not revised during the ' ~ i311I'ha ~ - - 7_one D Boundary m creation of this statewide format FIRM. The offsets far each county shown on ' u~ I o aaaaaaaaaaaaawaaaaa CBRS and OPA boundary this FIRM panel are shown in the vertical datum offset table below. Where a 3 % UQg6 county boundary and a flooding source With unrevised NGVD 29 flood elevations ~ y, are coincident, an individual offset has been calculated and applied during the , , w Boundary dividing Special Flood Hazard Areas of different Q Base Flood Elevations, flood depths ar fload velocities. creation of this statewide format FIRM. See 5ectian 6.1 of the accompanying _ ~ ^^-^^~'S13^~- Base Flood Elevation line. and value; elevation in feet* Flood Insurance Study report to obtain further information on the conversion of elevations between NGVD 88 and NGVD 29. To obtain current eCevation, t Z Base Flood Elevation value where uniform within zone; (EL 987) elevation in feet* description, and/or location Information for bench marks shown on this map, ` ~a ~ *Referenced to the North American Vertical Dakum of 1988 please contact the North Caralina Geodetic Survey at the address shown below. You may also contact the Information Services Branch of the National Geodetic ~ ota Cross section line Survey at (3D1) 713.3242, or visit its website at www.ngs.noaa.gov. ' 2S - - - - - - 23 Transectline North Caralina Geodetic Survey County Average Vertical Datum Offset Table 121 We ss°o6'aa" ~ Darha.m ~.~ou1?ti,~ st Janes Street County Vertocal Datum Offset (ft( ~ ,,.,...~.~,y,,,,~ ~A , T 97°0T 30", 32°22' 34° Geographic coordinates referenced to the North American 36°D6'00° Datum of 1983 (NAD 83} Raleigh, NC 27601 Durham - 0,83 - UI11Ili_'0,_pi)1'~i1~:'ti itr_iS (919)733-3836 \ 4276 M 1000-meter Universal Transverse Mercator grid ficks, zone 17 www.nc s.state.nc.us f ~~1~' 1477 500 FEET 2500-foot ggrrid values: North Carolina State Plane coordinate system {FIPSZONE 3200, State Plane NAD 83 feet) ' --T~~ Example: NAVD 88 = NGVD 29 + {-0.831 ~ j-"-°T ~ ~ ~ BM5510 North Carolina Geodetic Survey bench mark {see explanation ~ in the Datum Information section of this FIRM panel). 3997~~- ~r,~`RiIF~P~'i~~d:,~A%SC~I~c All streams listed in the Flood Hazard Data Table below were studied by BM5510 National Geodetic Survey bench mark {see explanation in the Datum Information section of this FIRM panel}. ' f detailed methods using field survey. Other flood hazard data shown an this / ' e M1.5 River Mile map may have been derived using either a coastal analysis or limited detailed ~ ` ? ZONE Y, riverine analysis. Mare information on the ffaodmg sources studied by these ' _ analyses is contained in the Flood Insurance Study report. - ~ - 3997 ow +n _ F ~ FloodwayWidth{feot} ~ F ~ i FLOOD HAZARD DATA TABLE m , : M : City of - LefvHight Distance Prom o I, r l 1%AnnualC6ance the CenterafStreamto J, T'JUP~1<L`rl ~ ~ Enoroachmentaounda d Cross FioodDischarge (i00/ear) Stream Stailon c' Section {cfs) Water-Surface EI vain {~aokmg Downstream) or - Q 3~~~~Ob a to i {feet NAVD 88) Total Flocdway Width n' I ~ n"~-~,, . LITTLE RIVER z ' 240 24,000 NA 277.1 1,354 ~ ' 1 `1 CABIN BRANCH ~ ~ u,. 012 t ,t 46 ~ NA 272.4' 326 ; ! ~ ~ i\ 'Feet aboveconflusncewith Eno Aiver - I , ~ fi r ~ q~~~` • <,J~ rl ~ ~ Feet above confloenee witF little RiversElavation fneludes backwater effeetttom Little River ~ "~~;~,r ~ ~t ( l i ONE 'Y, ~ ~ ~ ~ .-1-,.__ s, ~ I ~ t.~. ~ f ~ 9y ~--t ~~c. l ~ \ - v~ ; . 862 504 FEET k 1.J - \ - ~ i , _ , i ti f i \Y 36°05'30", GRID NORTH 36°05'30" r MAP SCALE 1" = 500' (1 6,OOOJ _ ~ - 250 0 _ 500 1000 r~ C~~ FEET _ _ - ,-r ~ ' - METERS 15D 0 t5D saa ~ ~,;~y 4' _ 3996 00o ra _ i ~l , ' ~ i I~ ~ f / ~ ( ® PANEL 0545) I _ i. ~i - 3996 oao M ZOf~iE Y I J f i G F l'EF -a f , , i. ZOP1E/, ; ~ ~ ~i~s' , ' NQRTH CAR4~INA zc~r,l= ~.E o , \ \ \ / PANEL 4 f / f ; ' ~ , i ° , / ~ r i ~ ~ t 1~ (;z1 ~ ~ (SEE LOCATOR DIAGRAM OR MAP INDEX FOR FIRM r zrs~~~ ~E y ~r PAN[!. LAYOUT} ~ 1 ~ ~ i ~l r) ~ ~ i ~j ~ ~ ~ CO'rITAIN$: r, S ~ t t~ ZOf~E f~E ' / ~ ' N 850 000 FEET ' ~ / ~ ~ C0'~1MUNITY GID No. PANFL SUFFIX 2 040 OOD FEET ~ 693 ~ 694 r s" ~ ~ ~ FEET ~ DURHAM, CITY OF 370086 Q645 J _ _ _ _ $50 000 e 695 ~ 2 050 000 FEET ~ DURHAM COUNTY 370085 0845 J 79°51'30" 2042 500 FEET xa°51'00" JOINS PANEL 0844 x6,50,30„ 78°5 '30" 78°50'00" CJ I _ I r IN NOTES TO USERS This map is for use in administering the National Flood Insurance Program. It does not Certain areas not in Special Flood Hazard Areas may be protected by flood control This map reflects more detailed and up-to-date stream channel u necessarily identify all areas subject to flooding, particularly from local drainage sources structures. Refer to Section 4.4 "Flood Protection Measures" of the Flood Insurance those shown on the previous FIRM for this jurisdiction. The floc stream channel configurationsthan MAP REPOSITORY !diction. The floodplains and floodways Referto listing of Map Repositories on Map Index or visit www.ncfloodmaps.corn. S U t ~yARTAf of small size. The community map repository should be consulted for possible Stud report for u y information on flood control structures in this jurisdiction. that were transferred from the previous FIRM may have been t nay have been adjusted to conform to . 5 a pdated or additional flood hazard information. ` .+K these new stream channel configurations. As a result, the Flood 'esult, the Flood Profiles and Floodway C) a r Base ma information and eos atial data used to develop this FIRM were o To obtain more detailed information in areas where Base Flood Elevations (BFEs) p g p obtained from Data tables in the Flood Insurance Study report (which contains various organizations, including the artici atin local communit ies state an (which contains authoritative hydraulic EFFECTIVE DATE OF FLOOD INSURANCE RATE MAP PANEL and/or floodwaYshave been determined, users are encouraged to consult the Flood p p g Y( 1. and federal data) may reflect stream channel distances that differ from what to ~''Ft agencies, and/or other sources. The rims base for this FIRM is aerial ima e acquired g,>,,D sE Profiles, Floodway Data, Limited Detailed Flood Hazard Data, and/or Summa of Stillwater p g ry by fifer from what is shown on this map. MAY 2, 2006 O I o Elevations tables contained within the Flood Insurance Study (FIS) report that accom ntes Durham County. The time period of collection for the imagery is 1999. Information and Please refer to the separately printed Map Index for an overvi ex for an overview map of the county u Notice to User. The Map Number mown below should be used pa geospatial data supplied by the local community(ies) that met FEMA base map specifications showing the layout of ma anels, communi ma re osito addr this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded p P tY P p p repository addresses, and a Listing of EFFECTIVE DATE(S) OF REVISION(S)TO THIS PANEL when placing map orders; the community Number shown above should be used on insurance applications for the subject BFEs are are intended for flood insurance rating purposes were considered the preferred source for development of the base map. See geospatial Communities table containing National Flood Insurance Program da whole-foot elevations. These w This digital Flood Insurance Rate Map (FIRM) was produced through a unique only and should not be used as the sole source of flood elevation information. Accordin 3nce Program dates for each community community. ch community is located. g y preta ra for the associated digital FIRM for additional information about base map as well as a listing of the panels on which each community is cooperative partnership between the State of North Carolina and the Federal flood elevation data resented in the FIS re ort should ` preparation. Emergency Management Agency (FEMA}, The State of North Carolina has p p be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management. If you have questions shout this map, or questions (1-8 concerr implemented a long term approach of floodplain management to decrease Base map features shown on this map, such as corporate limits, are based on the Insurance Program in general, please call 1-877-FEMA MAP P (1-87 ns concerning the onal Flood EFFECTIVE MAY 2, 2006 DATE 3MAP 72 NUMBER q008 Q4500) the costs associated with flooding. This is demonstrated by the States com- Boundaries of regulatory floodways shown on the FIRM far flooding sources studied most up-to-date data available at the time of publication. Changes in the corporate FEMA website at www.fema.gov. •FEM FEldA MAP (1-877-336-2627) or visit the mitment to map floodplain areas at the local level. As a part of this effort, the by detailed, methods were computed at cross sections and interpolated between cross limits may have occurred since this map was published. Map users should State of North Carolina has joined in a Cooperating Technical State agreement sections. The floodways were based on hydraulic considerations with regard to requirements consult the appropriate community official or website to verify current conditions of An accompanying Flood Insurance Study report, Letter of Map RE For community map revision history prior to statewide mapping, refer to the Community Map pnR History table located in the Flood Insurance Study report for this jurisdiction. ~J f with FEMA to produce and maintain this digital FIRM. of the National Flood Insurance Program. Floodway widths and other pertinent floodway jurisdictional boundaries and base map features. This map may contain roads that were of Map Amendment (LOMA) revising portions of this panel, and Letter of Map Revision (LOMR) or Letter D data for flooding sources studied by detailed methods as well as non-encroachment widths not considered in the hydraulic analysis of streams where no new hydraulic model was FIRM may be available. Visit the North Carolina Floodplain Mar f this panel, and digital versions of this To determine if flood insurance is available in this community, contact your insurance agent, the for flooding sources studied by limited detailed methods are provided in the FIS report created during the production of this statewide format FIRM. at www.ncfloodmaps.com, or contact the FEMA Map Service Cer www.ncfloodmaps.com for this jurisdiction. The FIS report also provides instructions for determining a floodway for information on all related products associated with this FIRM. 1 Floodplain !dapping Program website North Carolina Division of Emergency Management or the National Flood Insurance Program at the J,~7 ~F V o¢ ip Service Center at 1-800-358-9616 following phone numbers or websites: ~N° 5~G using non-encroachment widths for flooding sources studied by limited detailed methods. Center may also be reached by Fax at 1-800-358-9620 and its websil ntith this FIRM. The FEMA Map Service NC Division of Emergency Management. National Flood Insurance Program State of North Carolina 20 and its website at www.msc.fema.gov. (919) 715-8000 www.nccrimecontrol.org/nfip 1--800-638-6620 www.fema.govJnfip Federal Emergency Management Agency STATE OF NORTH CAROLINA FIRM PANEL LOCATOR DIAGRAM 2 040 000 FEET 78° 5 C` 30" 78° 51' QO" JOINS PANEL 0847 78° 50' 30" ' 1693 mo rv 1694 aoa . ` 7a°5a'3o° Ta°5o'o0° LEGS 2 047 500 FEET. ~ 695 2 050 000 FEET SPECIAL FLOOD HA7ARD AREAS (SFHAs) SUBJECT TO PERSQ~ ` r _ , _ 870 000 FEET - ~ _ - ~ -.-.,--1--____-~~ -r~------------ _ ~ B7o Doa FEET INUNDATION BY THE 1 % ANNUAL CHANCE FLOOD ' 51 i~ The 1 % annua( chance flood (100-year flood), also known as the base flood, is the flood t =l ~ that. has a 1 % chance of being equaled or exceeded in any given year. The Special I Flood Hazard Area is the area subject to flooding by the 1% annua chance flood. Areas ' I _ _ of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood. I _ 6 ZONE A No Base Flood Elevations determined. I 0\ - . , _I ~r 70P~1E G;E• ZONE AE Base Flood Elevations determined. ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined. G ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); G I ' " , ~ i ZOP~IE X average depths determined. For areas of alluvial fan flooding, velocities also det i erm ned. -t 1'. f r.. i / 5. / ..till:: ~~i~: ZONE AR Special Flood Hazard Area formerly protected from the 1% annual i , chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is ~1 , ~ being restored to provide protection from the 1 % annual chance or ~ , , ` t.___ i' , - " , greater flood. ZONE A99 Area. to be protected from 1 % annual chance flood by a Federal flood protection system under construction; na Base Flood Elevations i i y ?i determined. ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined. ' ,l 1 l" ~ I" 1~~ ' ~ , ° _ - I I FCOODWAY AREAS IN ZONE AE 1 r - - c ~ ; ~ The floodway is the channel of a stream plus any adjacenC floodplain areas that must be i i ~ ~ 7''11~~J E t 1 - kept free of encroachment so that the 1% annual chance flood can be carried without '%'r substantiaC increases in flood heighks. 4ao1 ~ M - vra<E I ~ ' f f ~ ~.r J.._..~.- - - - - - - - - ~ 1, 1 _ OTHER FLOOD AREAS it Y / 4001 ~o M ZONE X Areas of 0.2% annual chance flood; areas of 1 % annual chance flood ~ r` ~ with average depths of less than 1 Foot or with drainage areas less than r` I~, 1 square mile; and areas protected by levees from 1 % annual chance ~ - - 867 50D FEET flood. , DATUM INFO TION i 36°08`00"' r ~ ~ t "The pro j ection used in the preparation of this map was the North Carolina • OTHER AREAS State Plane {FIPSZONE 3200J. The horizontal. datum was the North American ~ ~ ZONE X Areas determined to be outside the 0.2'y° annual chance floodplain. Datum of 1983, GRS$0 ellipsoid. Differences in datum, ellipsoid, projection, or Universal Transverse Mercator zones used in the production of FIRMs for adjacent ~ ~ .~,~-wi ~ f , ~ ZONED Areas in which flood hazards are undetermined, but passible. jurisdictions may result in slight positional differences in map features across t ' j ~ ~ ~ i ( ~ ~ ~ COASTAL 6ARR(ER RESOURCES SYSTEM (CBRS) AREAS ~ - ~ I ~ I jurisdictional boundaries. These differences do not affoct the accuracy of this ( ~ . , ~ ..Serve Feet where ~ j FIRM. All coordinates on this map are In U S y ~ 1 U.S. Sucre Foot = 1200/3937 Meters. f ~ r Y ZOI`JE />,E , ~ ~ } ~ 'v OTHERWISE PROTECTED AREAS (OPAs) ti ! I E Y f~~~~. ~ ( I a' + ` CBRS areas and OPAs are normal) located within or ad acent to S ecial Flood Nazard Areas. f Y 1 P Flood elevations on this map are referenced to the North American Vertical ~ \ I ~ ~..e . s \ ~ t y ~,~i 1% annual chance floodplain boundary Datum of 1988 {NAND 8$). These flood elevations must be compared to structure i I 1 ~ ~ ,~-^°"My 1 n.. and ground elevations referenced to the same vertical datum. An average ',I ~ ~ ~ ZONE AE ` 0.2°j° annual chance floodplain boundary offset be wean NAND 88 and the National Geodetic Vertical Datum of 1929 ,gym-~~""°"`rt~ t { _ - - - - ~ Floodway boundary {NGVD 29) has been computed for each North Carolina county. This offset was ? , i~1~ - - Zone D Boundary 1 not revised durin the f C then applied to the NGVD 29 flood elevations that were g ~ t creation of this statewide format FIRM. The offsets for each county shown on ~ ( , 4®•®®e®®®e•®•~•®•••® GBRS and OPA boundary r' this FIRM panel are shown in the vertica°I datum offset table below. Where a Boundary dividing Special Flood Hazard Areas of different 's county boundary and a flooding source with unrevised NGVD 29 flood elevations ~ ` ~ , , Base Flood Elevations, flood depths ar 8aod velocities. / are coincident, an individual offset has been calculated and applied during the - 5 , creation of this statewide format FIRM. See Section 6.1 of the accompanying ~ ! ; ^^^w513^~^^~- Base Flood Elevation line and value; elevation in feet* Flood Insurance Study report to obtain further information on the conversion , s (EL 987) Base Flood Elevation ualue where uniform within zone; elevation in feet* of elevations between NAND 88 and NGVD 29. To obtain current elevation, m ; t ' E 'i ,°r *Referenced to the North American Vertical Datum of 1488 descri lion andlor location information for bench marks shown on this ma o s ~ "0~ - 7_Of~IE r. ors Crass section line please contact the North Carolina Geodetic Survey at the address shown below. ~ ; h Inf motion Services Branch of the National Geodetic z ~ t ~lt`< 0+ You may also contact t e or Q ~ ct> 23 23 Transectline Survey at (801) 713.3242, or visit tts website at www.ngs.noaa.gov. o_ + ; - '-L I~LII~ldili ~ ~JU1 t~?.l:i t.~Ol1ilL'~; ~ ; - Z . I'~li'•; to a Geographic coordinates referenced to the North American North Carolina Geodetic Serve Count Avera e Vertical Datum Offset Table 9 Y Y o 3 ~~e~r 3iUJrE ''t ~U~n11~ct~1'~~,_~la~ct~ n1"f:a~ 121 West Jones Street County vertical Datum offset;itl i , 97°Oi' 30^, 32°22' 30" Datum of 19B3 (NAC) 83) W s 1 , Raleigh, NC 27601 Durham - 0.83 ~ ~ , 3;r Ij~i;_; Z 4276o~v 1000-meter Universal Transverse Mercator grid ticks, zone 17 4 {9191733-3836 ~ ' ~ 2500-foot ggrid values: North Carolina State Plane coordinate ~ 7 477 500 FEET system (FIPSZONE 3200, State Plane NAD B3 feet) www.ncgs.state.nc.us i - j Z BM551Q North Carolina Geodetic Survey bench mark (see explanaton Example: NAND 88 = NGVD 29 + (-0.831 ~ i O X in the Datum Information section of this FIRM panel). 0 i { ~ BM5510 National Geodetic Survey bench mark (see explanation in ~ the Datum Information section of this FIRM panel). All streams listed in the flood Hazard data Table below were studied by F~+, ~ j ~ r / ! ®M1.5 River Mile i. detailed methods using field survey. Other flood hazard data shown on this 4000 ~ rna ma have been derived usin either a coastal anal sis or (invited detailed ~ ~ ' p Y 9 Y , i Duct studied b these riverine anal sis. More information on the flood n s es Y 9 Y _ ~ r analyses is contained in the Flood Insurance Study report. ° 7, ~ , f aa° 36 0 30 _ , b.,, , i'~ . ~ 400D eco +n 36°07' 30" a ~ _ _ ~ N, Floodway Width (feed ~ r ,r FLOOD HAZARD DATA TABLE ~ LefYRightDistanceFrom ~ c ~ ~ f 7 % Annual Chance the Center of Stream tc F r J j r~ EnaroachmantBoundary ~ '`r` f ~ ~ Cross Stream Plead Discharge (1.00-year( f Section Station' (cfsj Water-Surface Elevation (Looking DownsVeaml or _ feat NGVD 88 TotalFloadwayWidth f 1 ~ i r LITTLE RIVER " " b~ . m _ _ 240 24A00 NA 277.1 1,354 ' 261 26,125 NA 281.3 93 ~ \ r 'Feet above confluence with Eno River ~,1IV QT , ;iJ i' ~)UPh2111 ~ 7_GNE I ZGY~IE P.E 37006 i, t ~ ; 1 a ~ ~;t~~ i` ~ 862 500 FEC i " i ~ ~ / ~ ~ GRID NORTH j f i' MAP SCALE 1" = 500' (1 :6,000) f' / I 250 0 500 100D f ' / ~ - --t- ~ FEET - METERS I 150 0 150 300 ~0~, ~ ~ 0 I J ~ ~ J~ ~Nr- x ~i I ~ PANEL Q846J Ll ~ v ' ',a 36°0T 00",, , , r-. 'i I 36° Od' 00 ° 3999 ono- rn _ I ' I ' ` ! v r I - 3999 ~ M 2~~; i ~ ~ L I ATE -I ^'r~ i `t r ~ ~ ~ NC}RTH CARQLINA I ~ I rt ~ k ~ ~ ' . ~ i /E~ zr~rlE x s ZQNE AE > ~ PANEL 0$46 ~ ~ i ~ , . ~ ~ ~ l ~._J ~ FI 0, t~ i r,_~. ~ ~ ~ i ZONE nF (SEE LOCATOR DIAGRAM OR MAP INDEX FOfl FIRM g , / PANEL LAYOUT} i ZOhlF ~ ~ l ~ ~ ' , ~ ~aNTAINS: r,, ~a~.:: ZQNE AE COMMUNITY CID No. PANEL SLIEEIX ~ ~ ~ ~1f f ZOhIE X 1 ~ _ _ _ 860 000 FEET a , L 4 t ~;JENAM, CrTY qF 3'1©ps6 0848 J _ _ ~ _ - _ _ _ _ _ 86D 000 FEET ~J 2 040 000 FEET 693 aw ~ JOINS PANEEL 0$45 694 xo ~ 695 ~Q to 2 050 000 FEET ~JRNAM COUNTY 370085 0846 J 78°51'30°' 2 042 500 FEET 78°51'00" 78°50'30" da° 50' 30" 78° 50' 00" NI t-% TES TO USERS C~ This map is for use in administering the National Flood Insurance Program. It does not Certain areas not in Special Flood Hazard Areas may be protected by flood control This map reflects more detailed and up-to-date stream channc necessarily identify all areas subject to flooding, particularly from local drainage sources structures. Refer to Section 4.4 "Flood Protection Measures" of the Flood Insurance those shown on the previous FIRM for this jurisdiction. The fl ;stream channel configurationsthan MAP REPOSITORY risdiction. The floodplains and floodways Refer to listing of Map Repositories on Map Index or visit www.ncfloodmaps.com. F; . vnkrns of small size. The community map repository should be consulted for possible Study report for information on flood control structures in this jurisdiction. that were transferred from the previous FIRM may have been may have been adjusted to conform to u sF f hazard ~ o pdated or additional flood t and information. these new stream channel configurations. As a result the Floo i result, the Flood Profiles and Floodway O 4y f ,i~°u .c. ~ .f t a i o ~ EE Base map information and geospatial data used to develop this FIRM were obtained from Data tables in the Flood Insurance Study report (which contaii x To obtain more detailed information in areas where Base Flood Elevations (BFEs) various organizations, including the local communit ies state and federal data may reflect stream channel distances that differ from who )rt (which contains authoritative hydraulic EFFECTIVE DATE OF FLOOD INSURANCE RATE MAP PANEL w o and/or floodwa s have been determined users are encouraged to consult the Flood participating y( f y y agencies, and/or other sources. The primary base for this FIRM is aerial imagery acquired by differ from what is shown on this map. MAY 2, 2006 I I~~~ 1 qxn SEC Profiles, Floodway Data, Limited Detailed Flood Hazard Data, and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies Durham County. The time period of collection for the imagery is 1999. Information and Please refer to the separately printed Map Index for an over IdeX for an overview map of the county Notice to user: The Map Number shown below should be used EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL when placing map orders; the Community Number shown this FIRM. Users should be aware that BFEs shown the FIRM represent rounded geospatial data supplied by the local community(ies) that met FEMA base map specifications showing the layout of map panels, community map repository ac iap repository addresses, and a Listing of f above should be used on insurance applications for the subject whole-foot elevations. These BFEs are intended for flood insurance rating purposes were considered the preferred source for development of the base map. See geospatial Communities table containing National Flood Insurance Program G This digital Flood Insurance Rate Map (FIRM) was produced through a unique only and should not be used as the sole source of flood elevation information. Accordingly, preta ra for the associated digital FIRM for additional information about base map as well as a listing of the panels on which each community trance Program dates for each community community. =ach community is located. cooperative partnership between the State of North Carolina and the Federal flood elevation data presented in the FIS report should be utilized in conjunction with preparati on. Emergency Management Agency (FEMA). The State of North Carolina has the FIRM for purposes of construction and/or floodplain management. If you have questions about this map, or questions concE questions concerning the National Flood EFFECTIVE DATE MAP NUMBER implemented a long term approach of floodplain management to decrease Base map features shown on this map, such as corporate limits, are based on the Insurance Program in general, please call 1-877-FEMA MAP (1-E the costs associated with flooding. This is demonstrated by the State's com- Boundaries of regulatory floodways shown on the FIRM for flooding sources studied most up-to-date data available at the time of publication. Changes in the corporate FEMA website at www.fema.gov. 7-FEMA MAP (1-877-336-2627) or visit the MAY 2r 2006 37200846001 mitment to map floodplain areas at the local level. As a part of this effort, the by detailed methods were computed at cross sections and interpolated between cross limits may have occurred since this map was published. Map users should For community map revision history Prior to statewide mapping, refer to the Community Map Pna'Me History table located in the Flood Insurance Study report for this jurisdiction. , a a o State of North Carolina has joined in a Cooperating Technical State agreement sections. The floodways were based on hydraulic considerations with regard to requirements consult the appropriate community official or website to verify current conditions of An accompanying Flood Insurance Study report, Letter of Map Letter of Map Revision (LOMB) or Letters., with FEMA to produce and maintain this digital FIRM, of the National Flood Insurance Program. Floodway widths and other pertinent floodway jurisdictional boundaries and base map features. This map may contain roads that were of Map Amendment (LOMA) revising portions of this panel, ar data for flooding sources studied by detailed methods as well as non-encroachment widths not considered in the hydraulic analysis of streams where no new hydraulic model was FIRM maybe available. Visit the North Carolina Floodplain M of this panel, and digital versions of this To determine if flood insurance is available in this community, contact your insurance agent, the a Floodplain Mapping Program website North Carolina Division of Emergency Management or the National Flood Insurance Program at the z. ~FvD for flooding sources studied by limited detailed methods are provided in the FIS report created during the production of this statewide format FIRM. at www.ncfloodmaps,com, or contact the FEMA Map Service C Map Service Center at 1-800-358-9616 following phone numbers or websites: www.ncfloodmaps.com for this jurisdiction. The FIS report also provides instructions for determining a floodwaY for information on all related products associated with this FIRM. I with this FIRM. The FEMA Map Service NC Division of Emergency Management National Flood Insurance Program f~ State of North Carolina using non-encroachment widths for flooding sources studied by limited detailed methods. Center may also be reached by Fax at 1-800--358-9620 and its wet 9620 and its website at www.msc.fema.gov. (919) 715-8000 www.nccrimecontrol.org/nfip 1-800-638-6620 www.fema.gov/nfip Federal Emergency Management Agency PRECIPITATION DATA FROM APPROVED DESIGN CALCULATIONS DATED JUNE 18, 2004 MERCK VACCINE MANUFACTURING FACILITY MER-10020 W ?. 0 ?-f N -°23NI NINININ ?IO M i€mI G I N 333 EN it N (IN a d D W a+ N M o ,..i ?n N o ? ° ? L U d w G U ? U z z U F Q ?d A ) V) V1 Vl M M M O d o -o b a o x x x ? C) 0 z x zz zz H ? U ?+ oo oo ° OO W M 00 ° a F?. 00 r. o 0 Z O ? ? M Ey N A x kn kn f V A L? d L N 0 7 00 O O O ?O [? M 'ter' r ?' N N u1 O? D\ V'? M p ,E a1 00 l? § vi M N -+ 0 0 0 O L ',y ON l? `O 00 ??+ GO M 00 Vl OM kn L. _ 3 y ?" D1 M N V' N ' S'O , ?y ? O O M CD ? N [? rF' N 00 L ? O?o m N ° t? ?O vl M N .-+ O O O L ? i" DD d' V 00 O O> ? M v-) W? r N N 00 tr) M '-+ E?6 N 4 M N- 6 6 6 6 0 'L+ L ? l- O [- l- Q1 ? It Cl! N ,, ?. Vl 7 d' N --O O O O O O +?.+ ? ??+ +?.+ a0+ L L L L i cC C .? .? [ .[ 0 0 0 0 0 E E E E s s C N A '? O M O O N M? ti N N w W ? p„ o 0 U W 0 W L € € O O O O O[O O O?a ? M L' y? M? N €n d' ?O V M ,-+ N M V1 l? Q? Cn ? O O O O O O O a r+ M L y??? M Vl N M O 00 €!1 'y N M ?O GO M .-? ? 0 0 0 0 0 0 0 ,--? N M N L 0 0 0 0 0 0 0 --? (V d' d N M Ch II1((00 l? O? € 0 0 0 0 0 C> N M L ?? N N M Vl O c}; N 00 ?O ~? O O O O O r+ ,--i N M I C/1 N z 0 F 0 a ? 0 U. A N w O N WA TERSHED SOILS DA TA FROM APPROVED DESIGN CALCULATIONS DATED JUNE 18, 2004 MERCK VACCINE MANUFACTURING FACILITY MER-10020 ntIRHAN/l cnIIN Y NCIRTI-4 r`d arll InIii Mirr- -r nn1KAnCn 11 nee 2040000 Fplot EET - " "`Wrn > HrC r IrG',i IYC 0 HpG GeB (Joins sheet 8) HeC, IrB H E 2i Cc AIA' A ?? CrC7 w i r6 C i°'. Q 0 NHe3 ?Y MfC xQ; ?y t Ch AIB G? Nlf Cr8 r ? ; AIB Cp Ch ;' B GrC °n k. >E ?11Gr8 ?' NCsE 11 Imo: e'II GrB MER-04000 WATERSHED SOIL R.E. JIMENEZ JR., El MERCK VACCINE MANUFACTURING FACILITY INFORMATION 5/20/2004 ==> Watershed Soils Information ?mbo1 ?m Name Hydrolo is Soil Grou Al Altavista C Cc Cartecay & Chewacle soils C Gr Granville B Mf Mayodan B Wn Wehadkee D ......... ........... References: 1. SOIL SURVEY: DURHAM COUNTY, NORTH CAROLINA. UNITED STATES DEPARTMENT OF AGRICULTURE: SOIL CONSERVATION SERVICE (IN COOPERATION WITH NORTH CAROLINA AGRICULTURE EXPERIMENT SECTION). SHEET NUMBER I I 2. SCS TR-55. UNITED STATES DEPARTMENT OF AGRICULTURE. SOIL CONSERVATION SERVICE. 1986. ==> Conclusion Due to the large proportion of "B" group soils, the entire watershed was modeled with the following curve numbers: Cover Condition SCS CN - HSG B Impervious 98 Open 61 (Assume Good Condition) Wooded 55 (Assume Good Condition) MERCK VACCINE FACILITY PRE DEVELOPMENT HYDROLOGIC CALCULATIONS FROM APPROVED DESIGN CALCULATIONS DATED JUNE 18, 2004 MERCK VACCINE MANUFACTURING FACILITY MER-10020 I N l/ l 1 ?LL3N9VJP # F n A C 1, a n d? 9 ? ql i 0 .?x rvk e 7: =? ? U N n x??am N HU ?o? rm I. , cll ? •e ! ? z W 11o F,"^1 M U? --- ---- ------- z UO g r- ' r , i II O , TV 0-1 C.) 0 N x cli ?. _ = l ?? W u, ?a nan xo'za nru _ g-------------- - - . ` o o mum ,6ZM-AM 1 i \ y z dp.M BB BL °I Ad ( O G?j7 H aII'eS?" \ ____- s Par W N G i,?AiZ AM wsacrw McADAMS .x?'t non • t : L'UOUta 'Wrl Pq:RO:9 tinn7;171Y '6Mp^tAepaid-xnn nHaw\ubisen.puor{ I1RU114'RuoISIA9M Hl(Z\4)4n\uuoicinonnn-M:iw\Mawrsioefola\:,?w MERCK VMF HYDROLOGIC CALCULATIONS B.R. FINCH, PE MER-04000 Pre-Development-Subbasin #1 5/27/2004 I.StS( 1Kll-At 11M W, Cover Condition SCS CN Comments Impervious 98 _____Open 61 Assume good condition Wooded 55 Assume good condition Sub-basin #1 A. Watershed Breakdown Total Sub-basin Area = 82.05 acres On-site Area = 64.63 acres Off-site Area= 17.42 acres Contributing Area SCS CN Area [acres] Comments On-site open 61 1.63 Assume good condition On-site impervious 98 0.00 On-site wooded 55 63.01 Assume good condition _ On-site pond _ ? 100 0.00 _ W Off--site o en 61 1.61 Assume good condition Off-site impervious 98 0.82 u Off-site wooded 55 14.98 Assume good condition Off-site Pond 100 0.00 Total area = 82.05 0.1282 Composite SCS CN = 56 % Impervious = 1.00% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Length = 50 Height = 1 Slope = 0.0200 Manning's n = 0.40 P (2-year/24-hour) = 3.6 Segment Time = 11.63 Segment 3: Channel Flow Length = 506 Height = 2.1 Slope = 0.0042 Manning's n = 0.045 Flow Area = 4.00 W. Perimeter = 6.00 Channel Velocity = 1.63 Segment Time = 5.18 acres sq.mi. Segment 2: Concentrated Flow ft Length = 116 ft ft Height = 8.1 ft ft/ft Slope = 0.0698 ft/ft Woods - light underbrush Paved ? = No inches (Durham, NC) Velocity = 4.26 ft/sec minutes Segment Time = 0.45 minutes Segment 4: Channel Flow ft Length = 34 ft ft Height = 0.4 ft ft/ft Slope = 0.0118 ft/ft Natural Channel Manning's n = 0.013 RCP sf (Assume 2'x 2' Channel) Flow Area = 4.91 sf (Assume 30" RCP) ft (Assume 2'x 2' Channel) W. Perimeter = 7.85 ft (Assume 30" RCP) ft/sec Channel Velocity = 9.09 ft/sec minutes Segment Time = 0.06 minutes MERCK VMF HYDROLOGIC CALCULATIONS B.R. FINCH, PE MER-04000 Pre-Development-Subbasin #1 5/27/2004 Segment 5: Channel Flow Segment 6: Channel Flow Length = 591 ft Length = 2299 It Height = 10 ft Height = 25 It Slope = 0.0169 ft/ft Slope = 0.0109 ft/ft Manning's n = 0.045 Natural Channel Manning's n = 0.045 Natural Channel Flow Area = 9.00 sf (Assume Y x 3' Channel) Flow Area = 16.00 sf (Assume 4'x 4' Chanr W. Perimeter = 9.00 ft (Assume Y x 3' Channel) W. Perimeter= 12.00 It (Assume 4'x 4' Chanr Channel Velocity = 4.31 ft/sec Channel Velocity = 4.18 ft/sec Segment Time = 2.29 minutes Segment Time = 9.16 minutes Time of Concentration = 28.77 minutes SCS Lag Time = 17.26 minutes (SCS Lag = 0.6* Tc) = 0.2877 hours Time Increment = 5.01 minutes (= 0.29*SCS Lag) MERCK VMF HYDROLOGIC CALCULATIONS B.R. FINCH, PE MER-04000 Pre-Development-Subbasin #2 5/26/2004 1. IN( 11 ( [ I:A I: N1 11R1 k11 Cover Condition SCS CN Comments Impervious 98 Open 61 Assume ood condition Wooded 55 Assume good condition II 1'121: IQ \ I LO1'\11 Nl _> Sub-basin #2 A. Watershed Breakdown Total Sub-basin Area = 99.00 acres On-site Area = 89.51 acres Off-site Area = 9.49 acres Contributing Area SCS CN Area [acres] Comments On-site open 61 ? 0.00 Assume good condition On-site impervious 98 0.00 - On-site wooded 55 89.51 Assume good condition On-site and 100 ? 0.00 Off-site open 61 _ 0.00 Assume good condition_ Off-site impervious 98 0.00 Off-site wooded 55 9.49 Assume good condition Off-site Pond 100 0.00 Total area = 99.00 acres 0.1547 sq.mi. Composite SCS CN = 55 % Impervious = 0.00% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment]: Overland Flow Length = 50 ft Height = I ft Slope = 0.0200 ft/ft Manning's n = 0.40 Woods - light underbrush P (2-year/24-hour) = 3.6 inches (Durham, NC) Segment Time = 11.63 minutes Segment 3: Channel Flow Length = 3709 ft Height = 81.81 ft Slope = 0.0221 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 9.00 sf (Assume Y x 3' Channel) W. Perimeter = 9.00 ft (Assume Y x 3' Channel) Channel Velocity= 4.92 ft/sec---- Segment Time = 12.57 minutes Segment 2: Concentrated Flow Length = 426 ft Height = 24.2 ft Slope = 0.0568 ft/ft Paved ? = No Velocity = 3.85 ft/sec Segment Time = 1.85 minutes Time of Concentration = 26.05 minutes SCS Lag Time = 15.63 minutes (SCS Lag = 0.6* Tc) = 0.2605 hours Time Increment = 4.53 minutes (= 0.29*SCS Lag) MERCK VMF HYDROLOGIC CALCULATIONS B.R. FINCH, PE MER-04000 Pre-Development-Subbasin #3 5/26/2004 t. 11( ti Ut I11 F. Al N110 l:, Cover Condition SCS CN Comments Impervious 98 O en 61 Assume good condition Wooded 55 Assume good condition H. PRE-Ut,? i'll OPNIEN'l _> Sub-basin #3 A. Watershed Breakdown Total Sub-basin Area = 13.66 acres On-site Area = 13.66 acres Off-site Area = 0 acres Contributing Area SCS CN Area [acres] Comments On-site open 61 0.00 ___Assume ?o od condition ^T„T On-site impervious 98 0.00 On-site wooded 55 13.66 Assume good condition __.__..On-sit_pond Off-site open ._.e._...._..100_. 61 0.00 0.00 _ _., _ Assume good condition Off--site i pervious 98 0.00 Off-site wooded 55 0.0_0_ m _ Assum?_pod condition Off-site Pond 100 0.00 Total area = 13.66 acres 0.0213 sq.mi. Composite SCS CN = 55 % Impervious = 0.00% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Length = 50 ft Height = 2.3 ft Slope = 0.0460 ft/ft Manning's n = 0.40 Woods - light underbrush P (2-year/24-hour) = 3.6 inches (Durham, NC) Segment Time = 8.33 minutes Segment 3: Channel Flow Length = 670 It Height = 63.05 It Slope = 0.0941 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 4.00 sf (Assume 2'x 2' Channel) W. Perimeter = 6.00 ft (Assume Tx 2' Channel) Channel Velocity = 7.75 ft/sec Segment Time = 1.44 minutes Segment 2: Concentrated Flow Length = 102 It Height = 12.2 ft Slope = 0.1196 ft/ft Paved ? = No Velocity = 5.58 ft/sec Segment Time = 0.30 minutes Time of Concentration = 10.08 minutes SCS Lag Time = 6.05 minutes (SCS Lag = 0.6* Tc) = 0.1008 hours Time Increment = 1.75 minutes (= 0.29*SCS Lag) MERCK VMF HYDROLOGIC CALCULATIONS B.R. FINCH, PE MER-04000 Pre-Development-Sub basin #4 5/26/2004 I SCS CI I:\'E NUMUR Cover Condition SCS CN Comments Impervious 98 ---Open 61 Assume good condition Wooded 55 Assume good condition IL 1'I:I.-Ilt;1I:I,UI'Jlf\7' => Sub-basin #4 A. Watershed Breakdown Total Sub-basin Area = 16.66 acres On-site Area = 16.66 acres Off-site Area = 0 acres Contributing Area SCS CN Area [acres] Comments b _On-site open ? mm 61 0.00 Assume good condition 5 site im ervious 98 0.00 On-site wooded 55 16.66 Assume good condition On-site pond 100 0.00 Off site o en 61 0.00 Assume good condition Off-site impervious 98 0.00 Off-site wooded 55 0.00 Assume good condition Off-site Pon d 100 0.00 Total area = 16.66 acres 0.0260 sq.mi. Composite SCS CN = 55 % Impervious = 0.00% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Length = 50 ft Height = 1 ft Slope = 0.0200 ft/ft Manning's n = 0.40 Woods - light underbrush P (2-year/24-hour) = 3.6 inches (Durham, NC) Segment Time = 11.63 minutes Segment 3: Channel Flow Length = 818 ft Height = 52.26 ft Slope = 0.0639 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 4.00 sf (Assume 2'x 2' Channel) W. Perimeter = 6.00 ft (Assume 2'x 2' Channel) Channel Velocity = 6.39 ft/sec Segment Time = 2.13 minutes Segment 2: Concentrated Flow Length = 387 ft Height = 32 ft Slope = 0.0827 ft/ft Paved ? = No Velocity = 4.64 ft/sec Segment Time = 1.39 minutes Time of Concentration = 15.15 minutes SCS Lag Time = 9.09 minutes (SCS Lag = 0.6* Tc) = 0.1515 hours Time Increment = 2.64 minutes (= 0 29*SCS Lag) MERCK VMF HYDROLOGIC CALCULATIONS B.R. FINCH, PE MER-04000 Pre-Development-Subbasin #5 5/26/2004 t. ?(S l l R\ 1 NI NIM,R" Cover Condition SCS CN Comments Impervious 98 Open 61 _ Assume good condition Wooded 55 Assume good condition tt. I'Kf:-I11?`I:I UI'tiII N7 _> Sub-basin #5 A. Watershed Breakdown Total Sub-basin Area = 43.64 acres On-site Area = 43.29 acres Off-site Area = 0.35 acres Contributing Area SCS CN Area [acres] Comments _On-site open 61 ? 0.00 Assume good condition On-site impervious 98 0.00 On-site wooded 55 43.2 9 Assume good condition On-site pond Off-site open 100 61 0.00 0.00 Assume ood condition TM _Off=site im ep rvious 98 _ _ _ 0.00 Off-site wooded _55_ 0.35 - Assume good condition Off-site Pond 100 0.00 Total area = 43.64 acres 0.0682 sq.mi. Composite SCS CN = 55 % Impervious = 0.00% B. Time of Concentration Information Time of concentration is calculated using SCS TR-55. Segment 1: Overland Flow Length = 50 ft Height = 1 ft Slope = 0.0200 Wit Manning's n = 0.40 Woods - light underbrush P (2-year/24-hour) = 3.6 inches (Durham, NC) Segment Time = 11.63 minutes Segment 3: Channel Flow Length = 1336 ft Height = 51.6 ft Slope = 0.0386 ft/ft Manning's n = 0.045 Natural Channel Flow Area = 4.00 sf (Assume 2'x 2' Channel) W. Perimeter = 6.00 ft (Assume Tx 2' Channel) Channel Velocity = 4.97 ft/sec Segment Time = 4.48 minutes Segment 2: Concentrated Flow Length = 839 It Height = 40.2 ft Slope = 0.0479 ft/ft Paved ? = No Velocity = 3.53 ft/sec Segment Time = 3.96 minutes Time of Concentration = 20.07 minutes SCS Lag Time = 12.04 minutes (SCS Lag = 0.6* Tc) = 0.2007 hours Time Increment = 3.49 minutes (= 0.29*SCS Lag) HEC-HMS Project: MER-04000 Basin Model: SIA - J Z Ubbasin- (.:. „ab sin-- ??;bbasin-u ?11 &ibhasin-4 HMS * Summary of Results Project MER-04000 Run Name : Pre - 1 Start of Run 21May04 0000 Basin Model SIA - Predevt End of Run 22May04 0000 Met. Model RDU - 1 Year Execution Time 26May04 0947 Control Specs SIA - 1 minute dT Hydrologic Discharge Time of Volume Drainage Element Peak Peak (ac Area (cfs) ft) (sq mi) Subbasin-1 5.9540 21 May 04 1219 1.4786 0.128 Subbasin-2 5.7033 21 May 04 1218 1.5827 0.155 Subbasin-3 1.3809 21 May 04 1205 0.21998 0.021 Subbasin-4 1.3273 21 May 04 1208 0.26773 0.026 Subbasin-5 2.9000 21 May 04 1212 0.70023 0.068 HMS * Summary of Results Project HER-04000 Run Name : Pre - 2 Start of Run 21May04 0000 Basin Model SIA - Predevt End of Run 22May04 0000 Met. Model RDU - 2 Year Execution Time 26May04 0948 Control Specs SIA - 1 minute dT Hydrologic Discharge Time of Volume Drainage Element Peak Peak (ac Area (cfs) ft) (sq mi) Subbasin-1 18.717 21 May 04 1227 2.8153 0.128 Subbasin-2 20.297 21 May 04 1225 3.1036 0.155 Subbasin-3 4.1463 21 May 04 1212 0.42984 0.021 Subbasin-4 4.3374 21 May 04 1216 0.52372 0.026 Subbasin-5 10.100 21 May 04 1220 1.3713 0.068 HMS * Summary of Results Project MER-04000 Run Name : Pre - 10 Start of Run 21May04 0000 Basin Model SIA - Predevt End of Run 22May04 0000 Met. Model RDU - 10 Year Execution Time 26May04 0948 Control Specs SIA - 1 minute dT Hydrologic Discharge Time of Volume Drainage Element Peak Peak (ac Area (cfs) ft) (sq mi) Subbasin-1 73.208 21 May 04 1223 8.4295 0.128 Subbasin-2 86.012 21 May 04 1221 9.6195 0.155 Subbasin-3 17.513 21 May 04 1209 1.3305 0.021 Subbasin-4 18.459 21 May 04 1213 1.6218 0.026 Subbasin-5 42.911 21 May 04 1217 4.2481 0.068 POST-DEVELOPMENT HYDROLOGIC CALCULATIONS MERCK VACCINE MANUFACTURING FACILITY MER-10020 J10 n Q--m c---- I , I /I - ---------------- ? I I ? III -------------- U ?. *I . 1 r, ? I h p '# X II F F-0 w # l?ll Z Z Z ?L ? ao1 i ? I r 1 _ _ 6 -w-__ +nu°u? w?, ;,.? J (n ICJ ?e? ?y ,"? i? / ------------ z ? - ? f r 7F ? ? ? ??4 7tfi? ? r r a =r + 1 f ? f.., '1'" I N ?' " ", 11 '', A V "V',,?, ? I -^,•,? _. -?- , , ,',?"'. V O _ yy d',1 ? ?' / I I :,}; ' °} ' f'+__.- -•_ ' w Ql _- ,, A '" "', .? ? ' , QQ ' r' I "v ? ' un rg I ? i I , I 1 . ? ? -? ? ,? t ? i !? I 1 , - , '' i t I _ •, i `,-?%i A '1 ,? II r ' 1 \ '"t ? ? I 1 '1 ,, , M =,? 11 ',? ! ! \ ^ ?- ! , } ' I , f- l(1 I I i ?? P f , ' !I Q L '>, I , , r / ? _ , I V ? ! .-'?,?,r?,,'"?"??..,,y I ' I y I'? I I I r 'y? ? r , , ? IJJ V l l 9 _ , _ I ' 1'1 \ IO^IF ? I' I ? ' ` \ __'? ,?'I1 1111 I ? Q 1 Lul p N 1 5- ? ? . hug :, `^,, "_ •? ?' ` ,, +' ? ?' i - / i \\?i ???',?`., _ : ' J {i''' I u li rr i '- --_ ? ,' il? v • ? ?' ? i? ? '?I ?I? ?? ` •.'?' ? ' / I _ I -. __ V " "_---- /? 11 ere I , I _ - +_ - lyv ? III I ? 'il???C' ?A?` 1y,? ? ? ? ??r ? ll ? ??? o ,r_• -' "___ '_?? I '1\? __ ?? l _ -? ????- ------------- --- Irvll,? I, I r < ___ r y ^ C-1 I - ----------------- ------ --------- I IIII\I III i? i ) 0 1 >' ` ' `". ,. - L - ----------------- - ?-,-_ __ IIII\zzz /? 11 ?'._ ,'",^•, \ ____ - \ --- ? ? I ' - 71\ ? •1 , `A ," `_ ;'iii ??`-__ ? ?'?5,?""; A'. ? i _',-" """ ?? r?; :`i ? "I - Z-z ,'-'iii _ ?, t-r i „1\\ `\? _\\:,,?? \? ? \ 3 ' „ ? ?"•, ?-`,,,? ,`` \\,, \ ??.? `, ,?,.``, ? I ? ?? • ? I ,i1 , ,?y,?J' A p? pl ? , ? q, , ' / i • -? I II 1 r A I'll _ , " 1' . , A I 1 1 1111 % "III'1?1 1 % - , A I, I I ??1 `i7 1 r °1 v `; 1111 _ ---- O 'A \ 1AV+d O / A 1 _ ' `^S 1 .`i 1111111 1`% ::: i? /gyp y?}J -_ , I i?r I I I 00 1111 \ a / 't' 1 V , „ I r I, l it i ill ?l?l l ? I q p t v `?`2, ,?i- I I I ,1 1 'i 1 y ? % I I I I I ,i/ '1 '?Ii ??i,lr i / A \. ? 1 + ?1I - V \ / ;?/ V'1V?111I1f 1'l , li? ??''?, A"i '1 11 1" V I r r r l I V°. 1 ? ,111II'I', \ ll \ !? V I I11\ ?'+ A 1 r 1 Il , 111 11 A '!I'' ,' "'I'11 X1','1 \A? , \ V' c{?y. \ V y1 I1 I III ? ? ' 1 I A ? ? I I , A1,' ? 11'1 i i ?A',", ? W p p w -' +_ d,,r i ? ? i II,'II 'I III IIA .`? \?(-1 A + `IAi'y = 'III IIIIII Illff?rr?f ??/d/ 'i i I I I \' A Jp1' 1\ A I ', I IIII ! hl'i 1 I'I I I r I L O _ l ! , 1 1 \: \ +?, 1 1 , hI I I I I l l 1 1` 61, Vt l?V O ? A ? ? l ' 111. yPl I?1 1 ril ?? --i`I , A 1,? 11111 I' rti J A i ?J rl J 11111 'i ???? ' ', A 111'1111 I f .G ---- ----------- , c A r4 Pik / ! ,?NIr III) i? ,,h'Il1 I p .ti U r- 411 r I ?__ - -- Ili -? '- __ "- ?t ??-?_ 3NhMlNXl+$P73#$??f???f$3?5?5£t4r3 >< r, y ? p ----- -------- 1z O xw x> O z 7N WM}? cy ICI O ` E-IU p?: o °o F N '. aof <a z W it 0 6 a w°z a O O r C14 a o O 1 N 0 II w o o _ I tr O o Ld z A U A 5 z w w °a a v < a ;, m a VcADAMS W r, a o G71 N O ? N W t_ w 5 ° s W W W O cI 00 n CI MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Post Development - Subbasin 1 1/13/2011 1. SCS CIiRVE Nt NIBERS Coccr Condition I SOS CN ?Comments Impuuous 98 Open 61 Assume good condition wooded 55 ?-- Assume good condition 11. POST DEVELOPMENT _=> Subbasin #1 A. Watershed Breakdown Contributing Area SCS CN Area [acres] ( Comments Onsite impervious rt 98 _ 0.27 _ ?_._. Onsite open 61 ? 3.29 Assume good conditio_n- Onsite wooded 55 57.51 Assume good condition on n...- Onsite pond 100 0.00 Off site impervious 98 1.61 - Offsite open ?61 } 1.68 Assume good condition Offsite woodd 55 14.18 Assume good condition ?Offsrte pond---'- 100 ? 0 0.00 ?? ?? Tarea = Total 78.54 acres 0.1227 sq.mi. Composite SCS CN = 56 % Impervious = 2.4% B. Time of Concentration Information Segment 1: Overland Flow Segment 2: Concentrated Flow Length = 50 ft Length = 116 ft Height = 1 ft Height = 8.1 ft Slope = 0.0200 ft/ft Slope = 0.0698 ft/ft Manning's n = 0.40 woods - light underbrush Paved ? = No P (2-year/24-hour) = 3.6 inches (Durham, NC) Velocity = 4.26 ft/sec Segment Time = 11.63 minutes Segment Time = 0.45 minutes Segment 3: Channel Flow Segment 4: Channel Flow Length = 506 ft Length = 81 ft Height = 2.1 ft Height = 0.6 ft Slope = 0.0042 ft/ft Slope = 0.0074 ft/ft Manning's n = 0.045 natural channel Manning's n = 0.013 RCP Flow Area = 4.00 sf (assume 2'x 2' channel) Flow Area = 4.91 sf (assume 30" RCP) Wetted Perimeter = 6.00 ft (assume 2'x 2' channel) Wetted Perimeter = 7.85 ft (assume 30" RCP) Channel Velocity = 1.63 ft/sec Channel Velocity = 7.21 ft/sec Segment Time = 5.14 minutes Segment Time = 0.19 minutes MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Post Development - Subbasin 1 1/13/2011 Segment 5: Channel Flow Length = 515 Height= 9.8 Slope = 0.0190 Manning's n = 0.045 Flow Area = 9.00 Wetted Perimeter= 9.00 Channel Velocity = 4.57 Segment Time = 1.88 Segment 6: Channel Flow ft Length = 2299 ft Height = 25 ft/ft Slope = 0.0109 natural channel Manning's n = 0.045 sf (assume Y x 3' channel) Flow Area = 16.00 ft (assume Y x 3' channel) Wetted Perimeter = 12.00 ft/sec Channel Velocity = 4.18 minutes Segment Time = 9,16 ft ft ft/ft natural channel sf (assume 4' x 4' channel) ft (assume 4'x T channel) ft/sec minutes Time of Concentration = 28.49 minutes SCS Lag Time = 17.09 minutes (SCS Lag = 0.6* Tc) 0.2849 hours Time Increment = 4.96 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Post Development - Subbasin 2 - To S Wetland 1/13/2011 1. SCS CURVE, NUMBERS ?. 'emu n Cover Condition SCS_CN Comments Impervious 98? e Open 61 Assume good condition Wooded 55 Assume good condition It. POS"E DEN7F1LOP.NIEN7' _=> Subbasin #2 - To S Wetland A. Watershed Breakdown Contributing lrea SCS CN Area [acres] Comments --Onsite impervious 98 14.68 Onsite open 61 5.41 Assume good condition Onsite wooded 55? 3.52 Assume good condon Onsite pond 100 1.00 Area at top of dam Offsge impervious 98 0.00 Offsite o en 61 0 00 4ssume ood condition Offsite wooded 55 0.00 Assume good good condition Offsite pond 100 0.00 _ Total area = 24.61 acres 0.0385 sq.mi. Composite SCS CN = 84 % Impervious = 59.7% B. Time of Concentration Information Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Post Development - Subbasin 2 - To SE Wetland 1/13/2011 1. SC:S ('I'RVI" NUMBERS Cover Condition SCS CN Comments In r"10 us _ Open _ _ 61 _ Assume_good condition Wooded _ 55? Assume good condition It. POST I)EVELOPiME,Nf _> Subbasin #2 - To SE Wetland A. Watershed Breakdown Contributing Area SCS CN 1rra jacres] Comments Onsite impervious nsa__ 98 __. > 34 Offsite open 61 1.14 Assume good condition Onsite wooded 55 0.00 Assume good condition Onsite pond 100 0.55 Area at top of dam ?? Offsite impervious 96 --? ?? -? 0.00 Offsite open _1 61 Offsite wooded _55 Offsite pond 100 Total area = 5.08 0.0079 Composite SCS CN = 90 % Impervious = 65.7% B. Time of Concentration Information 0.00 Assume good condition 0.00 Assume good condition 0.00 ?- _._.. __ _ acres sq.mi. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Post Development - Subbasin 2 - Bypass 1/13/2011 Segment l: Overland Flow Length = 50 ft Height = 2 ft Slope = 0.0400 ft/ft Manning's n = 0.40 woods - light underbrush P (2-year/24-hour) = 3.6 inches (Durham, NC) Segment Time = 8.81 minutes Segment 2: Concentrated Flow Length = 558 ft Height = 33 ft Slope = 0.0591 ft/ft Paved ? = No Velocity = 3.92 ft/sec Segment Time = 237 minutes Segment 3: Channel Flow Length = 2381 ft Height = 48.81 ft Slope = 0.0205 ft/ft Manning's n = 0.045 natural channel Flow Area = 9.00 sf (assume Y x 3' channel) Wetted Perimeter = 9.00 ft (assume Y x 3' channel) Channel Velocity = 4.74 ft/sec Segment Time = 8.37 minutes Contributing Area SCS CN Area (acres] Comments -Onsite impervious 98 0.27 Onsite open 61.__._ 2.70 Assume good condition 1. SCS CVRVE NUMBERS Cover Condition SCS C_N CUminlnls _ Impervious 98 Open 61 A?sumc good condition Wooded 55 Assume good Condition II. POST DI:VELOPMEN1' _> Subbasin #2 - Bypass A. Watershed Breakdown Onsite wooded 55 55 Assume good condition ?. ___ Onsite?ond . _ _ ..._ ". _..__._ . _ __._1_00..___ __, ...._ m -..____.0:0__ _.. ___. - Offsite impervious J 98 0.00 Offsite open i 61 0 45 Assume good condition Oftsite wooded 55 - , 8.87 Assume good condition Offsite pond 1 n 1 0 00 Total area = 74.84 acres 0.1169 sq.mi. Composite SCS CN = 55 % Impervious = 0.4% B. Time of Concentration Information Time of Concentration = 19.55 minutes SCS Lag Time = 11.73 minutes (SCS Lag = 0.6* Tc) = 0.1955 hours Time Increment = 3.40 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Post Development - Subbasin 3 - To W Wetland 1/20/2011 L SCS CURVE NUMBERS CON 'Tr Condition I SCS (A 1 ? Ciml nents ?tt Impervious _ 98 _ Open 61 Assume good condition ooded 55 `Assume good condition 11. POST DEVELOPMENT __> Subbasin #3 - To W Wetland A. Watershed Breakdown Contributing Area SCS CN Area [acres] i Comments Onsite impervious 98 25 Onsrte open 61 6 21 Assume good condition Onsite wooded 55 3 73 Assume good condition Area at top of dam Onsite pond 100 0.8i Offs?te us 98 0.00 Offsrte open 61 0.00 Assume good condition Offsite wooded 55 0.00 Assume good condition Offsite pond 100 0.00 Total area = 16.00 acres 0.0250 sq.mi. Composite SCS CN = 74 % Impervious = 32.8% B. Time of Concentration Information Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Post Development - Subbasin 3 - Bypass 1/13/2011 1. SCS CURVE NFNIBERS Cover Condition SCS CN Comments Impervious 98 Open 61 Assuric good condition ??? Wooded -55 Assume good condition 11. POST DEVELOPMENT _=> Subbasin #3 - Bypass A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious _ 98 _ 0.00__,___.__ _ _On_site open 61 1.51 Assume good condition Onsite wooded 55 3.07 Assume good condition _Onsite pond 100 0.00 Area at top of dame Offsite impervious 98 0.00 ._ Offsite open 61 0.00 Assume good condition Offsac wooded f 55 ono ) Assume good condition Off.site pond 100 0.00 I Total area = 4.58 0.0072 Composite SCS CN = 57 % Impervious = 0.0% B. Time of Concentration Information Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) acres sq.mi. MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Post Development - Subbasin 4 1/13/2011 1. SCS CIRNT NUMBERS Cover Condition SCS CN T Commenls r% 10U, 'A I Open 61 Assume good condition Woodal 55 Assume good condition 11. POST DEVELOPMENT _=> Subbasin #4 A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.00 Onsite open 61 _ 0.64n Assume good condition Onsite_woo_ded _ 55 0.42 Assume good condition Onsite pond _ 100 0.00 _ A.ree at tM(f dam Offsite impervious _ 98 0.00 - Offsite open j 61 0.00 Assume good condition t ttfs,te wooded » 0.00 Assume good condition Onsite pond 100 0 00 Total area = 1.06 acres 0.0017 sq.mi. Composite SCS CN = 59 % Impervious = 0.0% B. Time of Concentration Information Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Post Development - Subbasin 5 - To N Wetland 1/13/2011 1. SCS CURVE NUMBERS Cover Condition SCS CN Cmnnients Impervious 98 Open 61 j Assume good condition Wnodcd ?5 Assume good condition 11. POST DEVELOPMENT ==> Subbasin #5 - To N Wetland A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 10.09 Onsite open M 61 5.71 m Assume good condition Onsite wooded 55 3.85 Assume good condition Onsite pond 100 1.01 Area at top of dam Offsrte tmpervi0us_ [ 98 0.00 Offsite open 61 0 0 1 ( Assume good condition OIkole wooded 55 0 00 Assume good condition -? Ottsitepond ? I(10 0,00 I Total area = 20.67 acres 0.0323 sq.mi. Composite SCS CN = 80 % Impervious = 48.8% B. Time of Concentration Information Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Post Development - Subbasin 5 - To NW Wetland 1/13/2011 1. SCS CURVE; NCUMURS CoN er Condition ! SCS CN Comments „- lolls 98 Open 61 mmT Assume good condition \V00dcd 55 Assume good condition 1I. POST DEVELOPNIENT ==> Subbasin #5 - To NW Wetland A. Watershed Breakdown Contributing Area SCS CN _Onsite impervious 98 Onsite open 61 ? Onsite wooded y 55 _ w w? Onsite pond _? _ 100 w ? Offsite impervious 98 ()ftsite open 61 Ollsite wooded 55 Offsite pond 10o Total area = 8.34 0.0130 Composite SCS CN = 82 % Impervious = 40.6% B. Time of Concentration Information Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) Area [acres] ( Comments 3.39 2.83 Assume good condition 0.68 Assume good condition _ 1.44 Area at top of dam U-00 Assume good condition 0.00 Assume good condition 0.00 acres sq.mi. MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Post Development - Subbasin 5 - Bypass 1/13/2011 1. SCS CURVE NUMBERS Cover o ? ? ? --C Condition SCS C N ? omments -Impervious 98 { Open 61 Wooded Ass good condition oded 55 Assume good condition 11. POST DEVI'LOPMENT ==> Subbasin #5 - Bypass A. Watershed Breakdown Contributing Area SCS CN Area [acres[ Comments Onsite impervious 98 0.00 Onsite open 61 2.44 Assume good condition o-Onsite wooded 55 18.40 Assume good condition Onsite pond _ 100 0.00 Offsit impervious 98 0.00 Offsite open 61 0 00 Assume good condition Oftsrte wooded 55 0.13 Assume good condition Offsite pond ! 100 ? ? ??? ? - Total area = 21.17 acres 0.0331 sq.mi. Composite SCS CN = 56 % Impervious = 0.0% B. Time of Concentration Information Segment 1: Overland Flow Length = 50 ft Height = I ft Slope = 0.0200 ft/ft Manning's n = 0.40 woods - light underbrush P (2-year/24-hour) = 3.6 inches (Durham, NC) Segment Time = 11.53 minutes Segment 3: Channel Flow Length = 1336 ft Height = 51.6 ft Slope = 0.0386 ft/ft Manning's n = 0.045 natural channel Flow Area = 4.00 sf (assume 2'x T channel) Wetted Perimeter = 6.00 ft (assume 2'x 2' channel) Channel Velocity = 497 ft/sec Segment Time = 4.48 minutes Segment 2: Concentrated Flow Length = 839 ft Height = 40.2 ft Slope = 0.0479 ft/ft Paved ? = No Velocity = 3.53 ft/sec Segment Time= 3.96 minutes Time of Concentration = 20.07 minutes SCS Lag Time = 12.04 minutes (SCS Lag = 0.6* Tc) = 0.2007 hours Time Increment = 3.49 minutes (= 0.29*SCS Lag) .N o c? a a c l6 (D a ? lE Z Cl) m t 4Y `? v C m U) O Q H S 3 C4 a c ct; 0 F- a c m w Z U) N m Q m n 3 Cf] a i C r O W A ? v W 4 --:1 CO O cn a a c Q co 3 m co a ? c m u] yy 4 m 1 to °1 o -Al H 0 0 m gl? m CN m 3 Cn a c m a c 7a M c H 1 ? m n 3 U7 0 Cl) CO 9 cn m v 3 c m N a 3 co A Project: MER-10020 Simulation Run: POST Q1 Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 1 YR Compute Time: 20Jan2011, 10:28:07 Control Specifications: 1 minute dT Hydrologic Element Drainage Are (M12) Peak Dischar (CFS) Time of Peak Volume (IN) Subbasin 1 0.1227 5.73 23Jan2008, 12:19 0.22 To S Wetland 0.0385 61.99 23Jan2008, 11:56 1.51 S Wetland 0.0385 0.45 24Jan2008, 00:01 0.21 Sub 2 Bypass 0.1169 5.05 23Jan2008, 12:11 0.19 Reach-1 0.0000 0.00 23Jan2008, 00:00 Reach-2 0.0000 0.00 23Jan2008, 00:00 Subbasin 2 0.1169 5.05 23Jan2008, 12:11 0.19 To SE Wetland 0.0079 16.32 23Jan2008, 11:56 1.98 SE Wetland 0.0079 0.14 24Jan2008, 00:01 0.34 To W Wetland 0.0250 23.61 23Jan2008, 11:57 0.91 W Wetland 0.0250 0.15 24Jan2008, 00:01 0.10 Sub 3 Bypass 0.0072 1.04 23Jan2008, 12:01 0.25 Subbasin 3 0.0322 1.13 23Jan2008, 12:01 0.13 Subbasin 4 0.0017 0.36 23Jan2008, 12:00 0.30 Sub 5 Bypass 0.0331 1.91 23Jan2008, 12:11 0.22 To N Wetland 0.0323 42.91 23Jan2008, 11:57 1.25 N Wetland 0.0323 0.39 24Jan2008, 00:01 0.22 Reach-3 0.0323 0.39 24Jan2008, 00:01 0.22 To NW Wetland 0.0130 19.05 23Jan2008, 11:57 1.38 NW Wetland 0.0130 0.21 24Jan2008, 00:01 0.29 Subbasin 5 0.0784 2.37 23Jan2008, 12:11 0.23 Project: MER-10020 Simulation Run: POST Q2 Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 2 YR Compute Time: 20Jan2011, 10:28:14 Control Specifications: 1 minute dT Hydrologic Element Drainage Are (M12) Peak Dischar (CFS) Time of Peak Volume (IN) Subbasin 1 0.1227 18.04 23Jan2008, 12:26 0.41 To S Wetland 0.0385 88.33 23Jan2008, 12:04 2.02 S Wetland 0.0385 0.51 24Jan2008, 00:01 0.25 Sub 2 Bypass 0.1169 17.54 23Jan2008, 12:20 0.38 Reach-1 0.0000 0.00 23Jan2008, 00:00 Reach-2 0.0000 0.00 23Jan2008, 00:00 Subbasin 2 0.1169 17.54 23Jan2008, 12:20 0.38 To SE Wetland 0.0079 22.40 23Jan2008, 12:04 2.54 SE Wetland 0.0079 0.68 23Jan2008, 14:59 0.65 To W Wetland 0.0250 36.47 23Jan2008, 12:05 1.31 W Wetland 0.0250 0.17 24Jan2008, 00:01 0.12 Sub 3 Bypass 0.0072 2.37 23Jan2008, 12:07 0.45 Subbasin 3 0.0322 2.47 23Jan2008, 12:07 0.20 Subbasin 4 0.0017 0.74 23Jan2008, 12:06 0.53 Sub 5 Bypass 0.0331 5.77 23Jan2008, 12:19 0.41 To N Wetland 0.0323 62.92 23Jan2008, 12:05 1.71 N Wetland 0.0323 0.46 24Jan2008, 00:01 0.26 Reach-3 0.0323 0.46 24Jan2008, 00:01 0.26 To NW Wetland 0.0130 27.54 23Jan2008, 12:05 1.86 NW Wetland 0.0130 0.25 23Jan2008, 21:37 0.35 Subbasin 5 0.0784 6.32 23Jan2008, 12:20 0.34 Project: MER-10020 Simulation Run: POST Q10 Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 10 YR Compute Time: 20Jan2011, 10:28:21 Control Specifications: 1 minute dT Hydrologic Element Drainage Are (M12) Peak Dischar (CFS) Time of Peak Volume (IN) Subbasin 1 0.1227 70.49 23Jan2008, 12:23 1.23 To S Wetland 0.0385 132.31 23Jan2008, 12:04 3.62 S Wetland 0.0385 15.52 23Jan2008, 12:34 1.60 Sub 2 Bypass 0.1169 74.60 23Jan2008, 12:16 1.17 Reach-1 0.0000 0.00 23Jan2008, 00:00 Reach-2 0.0000 0.00 23Jan2008, 00:00 Subbasin 2 0.1169 74.60 23Jan2008, 12:16 1.17 To SE Wetland 0.0079 30.86 23Jan2008, 12:04 4.24 SE Wetland 0.0079 8.62 23Jan2008, 12:18 2.34 To W Wetland 0.0250 64.16 23Jan2008, 12:05 2.67 W Wetland 0.0250 3.35 23Jan2008, 14:19 0.96 Sub 3 Bypass 0.0072 8.17 23Jan2008, 12:05 1.31 Subbasin 3 0.0322 8.32 23Jan2008, 12:05 1.04 Subbasin 4 0.0017 2.20 23Jan2008, 12:05 1.45 Sub 5 Bypass 0.0331 22.56 23Jan2008, 12:16 1.24 To N Wetland 0.0323 99.83 23Jan2008, 12:04 3.22 N Wetland 0.0323 5.57 23Jan2008, 13:51 1.24 Reach-3 0.0323 5.57 23Jan2008, 13:54 1.23 To NW Wetland 0.0130 42.45 23Jan2008, 12:04 3.42 NW Wetland 0.0130 0.34 24Jan2008, 00:01 0.49 1 Subbasin 5 0.0784 23.29 23Jan2008, 12:16 1.11 FUTURE DEVELOPMENT HYDROLOGIC CALCULATIONS MERCK VACCINE MANUFACTURING FACILITY MER-10020 I) 0 11 DUMOM %`, (V Q ILIz" c _ m O 6 I �' �• OOtl �O ♦ ♦♦♦ ♦ ♦♦� ' /\ l i `��' t�t+ ,♦tt�_r�R * t R��t1i♦ ' //"+ ♦♦• `+ ``I UT `, i`♦` + `\� \%Q 101111216 `-- '`/`,� ,` IT ♦♦ '\ � m �� tt+R i i ' �I \ ,` ``,``, \\ `� i � i --_'_-__-_ ' i �`�'\``•_ In 4 _ II 11 tf) ♦♦♦ - t: i i �.! ♦+ V L L __ -. i \ \ \ `` - -` ' ` -/ ^ ' -' ```,\ ,` r ♦R`' --- ------ ` / i { f/ ,`� \ - i -'♦fit!♦ i '.�I f�\\ 1/(v�'_� _ ` ``,\`` /' �;` i _ ' ' i, // i� __ -- i ,`` \````/\`,` 1 r ��i��'i' R♦♦♦♦ , / / I C \.� ``'1 i 1 /- :i - -'-_ 1 +� !M V _ \\\ : - `i u,� _ jai .♦ I '_'� ' ``� `'`'`�\ `♦♦ `+ i i % IF 11 i \ , "A (� 'f /\ 11 t` 1`, _ --- - \ it l I __-.` ` ; \ `. - ' \ �, ♦" / / \ ' I♦ 1 1 v ', 1 1, It ti . 1 ` , ``, 1 I ```, `, `` \ IF I i, ♦ �!/r/Il ` \ `. 1 / 1' `.11(Y, i I. __-� '„ I �►- \ t1/♦ \ , , `� 1 I , fr 11 N , i �IIi i (-`.�,'` ` . '`�``\\ `, '� I I \ ✓•♦ �\ `'`1 tt \\` ,` ` 11i` `,` `�1` ,'~ I i 1 1 /\, ``` ♦♦ \ ```, tte*ft 1 i i ' ?` ` , ' `' 1 '1 1 i LO z ' ' ' i I I ; rrtc `%\i`1 \� Iarf r-ar � — `\ \'- ..-' / / a `` . In LIN 41111_!i JI------''' j / i ', ` ' , / �a i f ------ '�/T_ 1 t 1 h."r___ ss•�S' '- ; � i 1 11. i` a�z'` \wr ��?1�-�j�' _" Lr `I `;♦,� r I �" __-' a ; \.. E-- 41 /\'`'\` ♦1 i i i/ _ - --- Z jQQQ'EIUUYUUI ti � � 1,����\�"� � d ��,/ ,`\' �i;::�� r__--_ . �'_!, `\` -___ _- _ l i ``\\ •+ _- _ � \ -- �"\<� !L' :It �., ' _ I i _ _ �N --_--- ----- _ �` \•````` - '' i `` `--_ ____-_____---'I Q - r i ,. dill`„ `` 1��`JriiiG `��♦1 :� ,\ _`` //^`, -`\` ` =4 <; -------- ',♦` _\`+ `\ - `` _ _____ _ ' `` ``. L� ,�, � , `` ,� `.��`` � \ � `1 ` � �' `, i' r", / O (L -_t--- ---_ -` �' `� i ��`� `.`�` �\ i `i \_=_-- \```, ``, r I I { 5I6)/ 1 iuipi 5 I `, __'= � \`-'_-='%i'l i � ' .�.\= �/% i' .'\ \ ♦ ♦t1 "� �: �`,`: � __ ___ i , __ II�' i I Iu II ` I 1 l _ __� � - 1 -�_� %?ill I ,, �`. - / \ ` •. \` - --- - , '`- --- ---- O I IIII/ I I -- _-/r^ /+` -- �.l ��\:... �:�.. ��-i i /� �-- ♦ `Q�`'' _ y 1 �\ 1. ♦ IIII II• \�-_'I / //`__ Jll\\ \ --\\. ,,// I '/ i`- `�``` '`` - RIF&_ Owl � - All / I � _.�J_ __*_ i ` � �\``� \ _ ''D � � \ `�N1\',�`�\. ,jjr � „t �'--._r^, \ ^`1' i i �.C•- ``' `+ \ •♦� � _ t � 'i : \`,'`. +_ _ I ``\+, � 1` , � � � �_ � V l 1 11 1 \ , 1 Yi� `, ``� _ `�``.,� 1 111 i i �` _ \ \ �� -, ``,` `,` ♦ ,, ``, i \ i I `� I . ` l It I /. `�', ' I, . 1 1 \ , � 1 � I � 11 1 I f , ` � / _ _ ", / I ` ` , \ � � ` `` +` ♦ 1 ` ' 1 1 I o ll,v, :1\`'�(� i i Ja(��.` \ �111��ili"' `+11' -__ `1 ��\'111 �\\ ' 1 T� ,� :' 11UI1 i i I 1`'�� �`� II iiil li�i i f . i i/ �d� ,\�—\` X11, II'1 r i i � O 1 1 1 i , _- 1 r + 11 11 1 1 a 1 11- -l� u r � 1,1 it 1 ' `� `� '� � 1\`1``11 ' � ' ' 1 1,\." :� � `�� -,, � 1 {,1 I 1 I `1 ( pp 1 �(.� i I 1 t 111 W I if %��,� I I W♦ i ra}I :aaI)4:`. 'L'�'•) _111 ' ///a��, i7 r ''1 �` 1 `\` �'- -_ 1\11` �``�:',-: �`+ :' II 111 /T'i 1 I` ♦ 1 1 1 - '1 A • µ, V':. I r / /r/r11 1 /a, - �"`�I�`` 1`�1` �\ \ __♦1 4 c. - IIt� , �a/ i r l l'�: � :� ` `� //ii% .. 1•f♦ ,` , `\ `,` 1 � � 1 N %, 1, �! IN i � \ `� `1 � i � \ `� `` •♦I \```: z'\ -------- VW" _- _ 'I 1�� ` I `1 `i i'1 ` � `1 `` ♦1 `_.' 1 i `2w,`�j��`\`1:�11`�i`"\`1 \ I i _ 1( `� �:: �, Jr(1,� 1111 iiil\1````` �\�, ♦� W O _F,.1 -.I I 1`,l�A:- fir/�/.=�,�: 'ii\i ` 1 11!:+:\:�`1`,\'i� .,�, `\ '�` `-��` iiry\�1�iril lii'i)I�`` ♦ Fa O +� -' •'ir I'' I1'II'' 1 '`1' ,J, ` \1.`�,\,`:,�,\ _• V -f ```�i// ! i �f♦ Q -- .xa' _=_`� / _ J..L� /fir _ ___G /y'��.';_ _ >♦ / 1 I 1 ; ���; _ ' I r / (i . —1�i i_��,� 1 1 1 1 1 I (�`` ♦♦ O _-_--- ='� - ;any° �� 1111''11\;`\`„�;, 1,11`1\�./i.i/i +p`��i: %��.1i�iiliiili�',`.�\`` ♦♦ '11: `. :.ice _, i��' 1111\11 `♦ +\`1�i1,�1�`+ / /( -- --'i'i ( 11' N _'•-i____ `__'___ = —'�___`�X111 \ i'r�\1`, 1InW � ;ll iotlli'11l /� (i iii i ` iiii i''ii/i♦♦♦(� U 1`1ii: IIII, /f�ii/ i ♦ / -=--fa �� • • _ = — rri/ l i r'i l - ' J ;' \'d� l' 1' i l : r / �Ni Gam+' ---5.---__ O r p - \_ 1 cn W [Y- O A O O0 O N I w No I O _ Z z r a zw F U w z w a � a N yW� z� VcADAMS W, O E -I U Ww z o z w wc' C m O N W [Y- O F- D O O0 O N I w No I O _ O z Ir F U w z w a VcADAMS W 0.. o CL1 N C.7 O Q N 1?. ,--i ti z 0 ?¢ z a <r w ?. w o > v: ? °o x W W G? GO N n w MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Future Development - Subbasin 1 1/13/2011 1. SCS Ct'RVE NUMBERS a Cover Condition SCS CN Comments lmpervlous 98 Assume good condition N Wooded 55 Assume good condition It. FUTURE DEVELOP;MENI ==> Subbasin #1 A. Watershed Breakdown Contributing Arca SCS CN Area jacresl Comments ? Onsite impervious , 98 0127 _ Onsite open 61 3 21) Assume good condition _ Onsrte wooded 55 s7 > 1 Assume good condition Onsrte pond i 00 0.00 Offsite impervious 98 1.61 Offsite open 61 1.68 Assume good condition Offsite wooded 55 14.18 Assume good condition Offsrte pond 100 0.00 Total area = 78.54 0.1227 Composite SCS CN = 56 % Impervious = 2.4% B. Time of Concentration Information Segment 1: Overland Flow Length = 50 Height = 1 Slope = 0.0200 Manning's n = 0.40 P (2-year/24-hour) = 3.6 Segment Time = 11,63 Segment 3: Channel Flow Length = 506 Height = 2.1 Slope = 0.0042 Manning's n = 0.045 Flow Area = 4.00 Wetted Perimeter = 6.00 Channel Velocity = 1.63 Segment Time = 5.18 acres sq.mi. Segment 2: Concentrated Flow ft Length = 116 ft ft Height = 8.1 ft 41/11 Slope = 0.0698 ft/ft woods - light underbrush Paved? = No inches (Durham, NC) Velocity = 4.26 ft/sec minutes Segment Time = 0.45 minutes Segment 4: Charnel Flow ft Length = 81 ft ft Height = 0.6 ft ft/ft Slope = 0.0074 ft/ft natural channel Manning's n = 0.013 RCP sf (assume 2'x 2' channel) Flow Area = 4.91 sf (assume 30" RCP) ft (assume 2'x T channel) Wetted Perimeter = 7.85 ft (assume 30" RCP) ft/sec Channel Velocity = 7.21 ft/sec minutes Segment Time = 0.19 minutes MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Future Development - Subbasin 1 1/13/2011 Segment 5. Channel Flow Length = 515 Height = 9.8 Slope = 0.0190 Manning's n = 0.045 Flow Area = 9.00 Wetted Perimeter = 9.00 Channel Velocity = 4.57 Segment Time = 1.88 Segment 6. Channel Flow ft Length = 2299 ft Height = 25 ft/ft Slope = 0.0109 natural channel Manning's n = 0.045 sf (assume Y x 3' channel) Flow Area = 16.00 ft (assume Y x 3' channel) Wetted Perimeter = 12.00 ft/sec Channel Velocity = 4.18 minutes Segment Time = 9.16 ft It ft/ft natural channel sf (assume 4'x 4' channel) ft (assume 4'x 4' channel) ft/sec minutes Time of Concentration = 28.49 minutes SCS Lag Time = 17.09 minutes (SCS Lag = 0.6* Tc) 0.2849 hours Time Increment = 4.96 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Future Development - Subbasin 2 - To S Wetland 1/13/2011 1. SCS CURVE NUMBERS Cover Condition SCS CN Comments Impervious _. 98 Open 61 Assume good condition Wooded 55 Assume good condition IL FUTURE DEVELOPMENT _> Subbasin #2 - To S Wetland A. Watershed Breakdown Contributing Area ( SCS CN Area [acres] Comments ?Onsrte impervious Onsite open 98 61 15.00 5.15 ? _ _ ____.-. _ Assume good condition Onsite wooded 55 3.46 Assume good condition Onsite pond 100 1 00 Area at top of dam Offsrte impervious 98 0.00 Offsite open 61 0.00 Assume good condition _ ffsrte wooded O 1 55 0.00 Assume good condition _. `_ _ Offsite pond 100 0 00 _ m Total area = 24.61 acres 0.0385 sq.mi. Composite SCS CN = 84 % Impervious = 61.0% B. Time of Concentration Information Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Future Development - Subbasin 2 - To SE Wetland 1/13/2011 1. SCS CURVE NUMBERS Cover Condition V S(.ti (.N Comments Impervious wooded ?° .W__ .. _. n ? 61 Assume good condition Assume good condition 11. FUTURE DEVELOPMENT _=> Subbasin #2 - To SE Wetland A. Watershed Breakdown Contributing Area SCSCN Are Jacres] Comments Onfite impernous 98 _3.34 Onsite open 61 1.19 --__ Assume good condition _d,s_.__ Onfite wooded 55 0.00 Assume good condition Onsite pond 100 ? 0.5-5 Area at wp of dam ?? Offsiteimpervious_ 98 Offsite open 61 0.00 Assume good condition Offsite wooded 55 0.00 Assume good condition Offsite Dond 100 _ 0.00 Total area = 5.08 acres 0.0079 sq.mi. Composite SCS CN = 90 % Impervious = 65.7% B. Time of Concentration Information Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Future Development - Subbasin 2 - Bypass 1/13/2011 L SCS CORVE Nt NIBERS Cover C -iouwn -§ CN Impervious 98 - Comments _ Open 61 Assume good condition m WoodedSS _ Assume good condition II. FI?TCRE DEVELOPMENT _=> Subbasin #2 - Bypass A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 n 0.27 -?? Onsite open 61 2.70_ Assume good condition _Onsite wooded 55 62.55 Assume good condition _ Onsite pond _ _ 100 0.0_0_ - -m Offsite impervious 98 W 0.00 Offsite oven ?61? 0.45 Assume good condition Offsite wooded j 55 8.87 Assume good condition Offsite?ond ? 100 0 Total area = 74.84 acres 0.1169 sq.mi. Composite SCS CN = 55 % Impervious = 0.4% B. Time of Concentration Information Segment 1: Overland Flow Length = 50 ft Height = 2 ft Slope = 0.0400 ft/ft Manning's n = 0.40 woods - light underbrush P (2-year/24-hour) = 3.6 inches (Durham, NC) Segment Time = 8.81 minutes Segment 3: Channel Flow Length = 2381 ft Height = 48.81 ft Slope = 0.0205 ft/ft Manning's n = 0.045 natural channel Flow Area = 9.00 sf (assume Y x 3' channel) Wetted Perimeter = 9.00 ft (assume Y x 3' channel) Channel Velocity = 4.74 ft/sec Segment Time = 837 minutes Segment 2: Concentrated Flow Length = 558 ft Height = 33 ft Slope = 0.0591 ft/ft Paved ? = No Velocity = 3.92 ft/see Segment Time = 2.37 minutes Time of Concentration = 19.55 minutes SCS Lag Time = 11.73 minutes (SCS Lag = 0.6* Tc) 0.1955 hours Time Increment = 3.40 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Future Development - Subbasin 3 - To W Wetland 1/20/2011 1. SCS CURVE NUMBERS CoN cr Condition j . ti(S C\ .u?- Comments . fmi)crvuxis 98 ? Upcn Assume good condition \Voodcd 55 Assume good condition m, ,a IL FUTURE DEVELOPMENT __> Subbasin #3 - To W Wetland A. Watershed Breakdown Contributing Area SCS CN Area [acres] a Comments ?Onsite impervious 98 4.65 Onsite open 61 ?_ 5.54 Assume good condition Onfite wooded 55 2,22 Assume good condition Ons?te and 100 0 81 ? ?_ Area at top of dam Offsite im pervious 98 0.00 Offsite open 61 0.00 Assume good condition Offsite wooded 55 0 00 Assume good condition Offsite pond 100 0.00 Total area = 13.22 acres 0.0207 sq.mi. Composite SCS CN = 75 % Impervious = 35.2% B. Time of Concentration Information Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Future Development - Subbasin 3 - Bypass 1/13/2011 1. SCS CURVE NUMBERS Cover Condition j SCS Cif Comments Impervious _ 98__ _ __ Open 61 Assume good condition Wooded 55 Assume good condition It. FUTURE l3EVELOPNI.F,NT =_> Subbasin #3 - Bypnss A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.00 Onsite open 61 1.51 Assume good conunion Onsite wooded _ 55 3.07 _ _ Assume good condition Onsite pond_ 100 0.00 Area at top of dam Offs rte impervious 98 0.00 _ Offsite open 61 ()00 Assume good condition Offsite wooded 55 0.1)() Assume ood condition Offsiteyond 100 0 OU Total area = 4.58 acres 0.0072 sq.mi. Composite SCS CN = 57 % Impervious = 0.0% B. Time of Concentration Information Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Future Development - Subbasin 4 1/13/2011 1. SCS CURVE NUMBERS CON er Condition S(S ('\ tbmments lmpcr\ious 1) S Open 61 Assume good condition NVOOded 55 Assume good condition 11. FUTURE DEVELOPMENT ==> Subbasin #4 A. Watershed Breakdown Contributing Area SCS CN Onsite impervious w 98 ?« mm Onsite open 61 Onsite wooded w 55 - Onsite pond 100 Offsite impervious 98 OfNrte open 61 Offs ite wooded ___._._ 55 ots;te ro„ 1 00 Total area = 1.06 0.0017 Composite SCS CN = 59 % Impervious = 0.0% B. Time of Concentration Information Area [acres] Comments 0.00 0.64 Assume good condition _ 0.42 ? Assume good condition _ 0 00 Area at top of dam - 0 ob nsnme ?_ _ __ g od condition 0.00 l,sume good condition 0.00 acres sq.mi. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Future Development - Subbasin 5 - To N Wetland 1/13/2011 L S(5 CURVE NUMBERS Cover Condition ?, - : SCS CN Comments e rv1 m Open 61 Assume good. condition Wooded 55 Assume good condition 11. FUTURE DEVELOPMENT _=> Subbasin #5 - To N Wetland A. Watershed Breakdown Contributing Area SCS CN ( Area [acres] Comments Onsite impervious 98 12.00 Onsite o en _ p 61 2.59 Assume good condition e ood Onsite wed 55 3.85 Assume good condition Onsite nond 100 1.01 Area at top of dam Offsite Oftsite open f 61 offs rte wooded 55 Offsite nond 100 Total area = 19.46 0.0304 Composite SCS CN = 85 % Impervious = 61.7% B. Time of Concentration Information _._..?_... _. . .. ._ 0.01 ,4ssume eood condition - _ 0.00 Assume good condition 0.00 acres sq.mi. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) = 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Future Development - Subbasin 5 - To NW Wetland 1/13/2011 1. SCS CURVE N't'MBt:RS ondition SCS_CN Comments Cover Condition— -Impelvlous 98 a? Olen 61 _ Assume good condition Wooded 555 Assume good condition 11. FUU1, RE DEVELOPMENT _> Subbasin #5 - To NW Welland A. Watershed Breakdown Contributing :1rca SCS CN ? area jacresl ', mnments OnSrte impervuniS 98 9.82 Onsite open Onsite wooded 61 55 Li I 0.00 Assume good condition Assume good condition - _ Onsite pond 100_ 1.44 ? Area at top of dam mm Offsite impervious 98 0.00 ? - Offsite open 61 Offsite wooded 55 Offsite pond 100 Total area = 12.37 0.0193 Composite SCS CN = 95 % Impervious = 79.4% B. Time of Concentration Information 0-02_____ Assume good condition ri n__..__ - acres sq.mi. Time of Concentration = 5.00 minutes SCS Lag Time = 3.00 minutes (SCS Lag = 0.6* Tc) 0.0500 hours Time Increment = 0.87 minutes (= 0.29*SCS Lag) MERCK VMF EXPANSION HYDROLOGIC CALCULATIONS J. ALDRIDGE, PE MER-10020 Future Development - Subbasin 5 - Bypass 1/13/2011 1. SC:S CURNL NC!MBERS Cover Condition 'j SCSCN Comments Impervious 98 Open 61 ? Assume good condition Wooded 55 Assume good condition 11. FUTURE DE 'FLOPNIL'NT _> Subbasin #5 - Bypass A. Watershed Breakdown Contributing Area SCS CN Area [acres] Comments Onsite impervious 98 0.00 Onsite open 61 2.41 Assume good condition Onsite wooded 55 18.40 Assume good condition + _._. _rOnsite pond-__... - __1_00_ 0.00 Offsite impervious 98 0.00 Offsite open 61 0()0 i Assume good condition Offsite wooded 55 0.33 Assume good condition Offsite pond. 100 Total area = 21.14 acres 0.0330 sq.mi. Composite SCS CN = 56 % Impervious = 0.0% B. Time of Concentration Information Segment 1: Overland Flow Segment 2: Con centrated Flow Length = 50 ft Length = 839 ft Height = 1 ft Height = 40.2 ft Slope = 0.0200 ft/ft Slope = 0.0479 ft/ft Manning's n = 0.40 woods - light underbrush Paved ? = No P (2-year/24-hour) = 3.6 inches (Durham, NC) Velocity = 3.53 fusee Segment Time = 11.63 minutes Segment Time = 3.96 minutes Segment 3: Channel Flow Length = 1336 ft Height = 51.6 ft Slope = 0.0386 ft/ft Manning's n = 0.045 natural channel Flow Area = 4.00 sf (assume 2'x 2' channel) Wetted Perimeter = 6.00 ft (assume 2'x T channel) Channel Velocity = 4.97 ft/sec Segment Time = 4.48 minutes Time of Concentration = 20.07 minutes SCS Lag Time = 12.04 minutes (SCS Lag = 0.6* Tc) = 0.2007 hours Time Increment = 3.49 minutes (= 0.29*SCS Lag) m a ? t,y T+ ? U w co 0 f6 [n 03 N ? n _ Q m n >m t kc) ctp N Z ? 40 O ? 7 m 3 a co 0 h; N N 3 N CO) S*1 Q ? 47 41 Q a Project: MER-10020 Simulation Run: FUTURE Q1 Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE End of Run: 24Jan2008, 00:01 Meteorologic Model: 1 YR Compute Time: 13Jan2011, 16:45:39 Control Specifications: 1 minute dT Hydrologic Element Drainage Are (M12) Peak Dischar (CFS) Time of Peak Volume (IN) Subbasin 1 0.1227 5.73 23Jan2008, 12:19 0.22 Sub 2 Bypass 0.1169 5.05 23Jan2008, 12:11 0.19 Reach-1 0.0000 0.00 23Jan2008, 00:00 Reach-2 0.0000 0.00 23Jan2008, 00:00 Subbasin 2 0.1169 5.05 23Jan2008, 12:11 0.19 Sub 5 Bypass 0.0330 1.90 23Jan2008, 12:11 0.22 To N Wetland 0.0304 51.23 23Jan2008, 11:56 1.59 N Wetland 0.0304 0.43 23Jan2008, 20:19 0.26 Reach-3 0.0304 0.43 23Jan2008, 20:22 0.26 To NW Wetland 0.0193 46.65 23Jan2008, 11:56 2.45 NW Wetland 0.0193 0.35 24Jan2008, 00:01 0.36 Subbasin 5 0.0827 2.54 23Jan2008, 12:11 0.27 To S Wetland 0.0385 61.99 23Jan2008, 11:56 1.51 S Wetland 0.0385 0.45 24Jan2008, 00:01 0.21 To W Wetland 0.0207 20.82 23Jan2008, 11:57 0.96 W Wetland 0.0207 0.14 24Jan2008, 00:01 0.11 Sub 3 Bypass 0.0072 1.04 23Jan2008, 12:01 0.25 Subbasin 3 0.0279 1.12 23Jan2008, 12:01 0.15 To SE Wetland 0.0079 16.32 23Jan2008, 11:56 1.98 SE Wetland 0.0079 0.14 24Jan2008, 00:01 0.34 Subbasin 4 0.0017 0.36 23Jan2008, 12:00 0.30 Project: MER-10020 Simulation Run: FUTURE Q2 Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE End of Run: 24Jan2008, 00:01 Meteorologic Model: 2 YR Compute Time: 13Jan2011, 16:45:44 Control Specifications: 1 minute dT Hydrologic Element Drainage Are (M12) Peak Dischar (CFS) Time of Peak Volume (IN) Subbasin 1 0.1227 18.04 23Jan2008, 12:26 0.41 Sub 2 Bypass 0.1169 17.54 23Jan2008, 12:20 0.38 Reach-1 0.0000 0.00 23Jan2008, 00:00 Reach-2 0.0000 0.00 23Jan2008, 00:00 Subbasin 2 0.1169 17.54 23Jan2008, 12:20 0.38 Sub 5 Bypass 0.0330 5.75 23Jan2008, 12:19 0.41 To N Wetland 0.0304 72.51 23Jan2008, 12:04 2.10 N Wetland 0.0304 0.49 24Jan2008, 00:01 0.30 Reach-3 0.0304 0.49 24Jan2008, 00:01 0.30 To NW Wetland 0.0193 62.38 23Jan2008, 12:04 3.04 NW Wetland 0.0193 0.39 23Jan2008, 23:18 0.40 Subbasin 5 0.0827 6.47 23Jan2008, 12:20 0.37 To S Wetland 0.0385 88.33 23Jan2008, 12:04 2.02 S Wetland 0.0385 0.51 24Jan2008, 00:01 0.25 To W Wetland 0.0207 31.83 23Jan2008, 12:05 1.37 W Wetland 0.0207 0.16 24Jan2008, 00:01 0.14 Sub 3 Bypass 0.0072 2.37 23Jan2008, 12:07 0.45 Subbasin 3 0.0279 2.46 23Jan2008, 12:07 0.22 To SE Wetland 0.0079 22.40 23Jan2008, 12:04 2.54 SE Wetland 0.0079 0.68 23Jan2008, 14:59 0.65 Subbasin 4 0.0017 0.74 23Jan2008, 12:06 0.53 Project: MER-10020 Simulation Run: FUTURE Q10 Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE End of Run: 24Jan2008, 00:01 Meteorologic Model: 10 YR Compute Time: 13Jan2011, 16:45:50 Control Specifications: 1 minute dT Hydrologic Element Drainage Are (M12) Peak Dischar (CFS) Time of Peak Volume (IN) Subbasin 1 0.1227 70.49 23Jan2008, 12:23 1.23 Sub 2 Bypass 0.1169 74.60 23Jan2008, 12:16 1.17 Reach-1 0.0000 0.00 23Jan2008, 00:00 Reach-2 0.0000 0.00 23Jan2008, 00:00 Subbasin 2 0.1169 74.60 23Jan2008, 12:16 1.17 Sub 5 Bypass 0.0330 22.49 23Jan2008, 12:16 1.24 To N Wetland 0.0304 107.01 23Jan2008, 12:04 3.72 N Wetland 0.0304 9.91 23Jan2008, 12:35 1.61 Reach-3 0.0304 9.91 23Jan2008, 12:38 1.60 To NW Wetland 0.0193 81.09 23Jan2008, 12:04 4.79 NW Wetland 0.0193 0.49 24Jan2008, 00:01 0.52 Subbasin 5 0.0827 23.40 23Jan2008, 12:16 1.20 To S Wetland 0.0385 132.31 23Jan2008, 12:04 3.62 S Wetland 0.0385 15.52 23Jan2008, 12:34 1.60 To W Wetland 0.0207 54.92 23Jan2008, 12:05 2.76 W Wetland 0.0207 1.56 23Jan2008, 15:30 0.70 Sub 3 Bypass 0.0072 8.17 23Jan2008, 12:05 1.31 Subbasin 3 0.0279 8.31 23Jan2008, 12:05 0.86 To SE Wetland 0.0079 30.86 23Jan2008, 12:04 4.24 SE Wetland 0.0079 8.62 23Jan2008, 12:18 2 Subbasin 4 0.0017 2.20 23Jan2008, 12:05 1.45 DESIGN OF NOR TH STORMWA TER WETLAND FROM APPROVED ASBUILT CALCULATIONS DATED MARCH 14, 2007 & MODIFICATION PLANS PREPARED BY JACOBS ENGINEERING MERCK VACCINE MANUFACTURING FACILITY MER-10020 MERCK VMF EXPANSION NORTH WETLAND J. ALDRIDGE, PE MER-10020 9/20/2010 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 324.30 0.00 21277 325.00 0.70 _ 23634 22456 15719 15719 0.73 326.00 1.70 26991 25313 25313 41031 1.66 327.00 2.70 30325 28658 28658 69689 2.61 328.00 3.70 33658 31992 31992 101681 3.61 329.00 4.70 37299 35479 35479 137159 4.67 330.00 5.70 40360 38830 38830 _ 175989 J 5.79 331.00 6.70 44000 42180 42180 218169 6.96 Storage vs. Stage 250000 - - __?_--- ----? 200000 y = 22830x1.163 R2 = 0.998 I U- 150000 i rn 2 100000 N 50000 i 0 0.00 2.00 4.00 6.00 8.00 Stage (feet) Ks = 22830 b = 1.163 MERCK VMF EXPANSION NORTH WETLAND J. ALDRIDGE, PE MER-10020 9/20/2010 Stage - Storage Function Ks = 22830 b= 1.163 Zo = 324.30 Elevation feet Storage [cf] [acre-feet] 100-YR 324.30 0 0.000 324.40 1569 0.036 324.60 5629 0.129 324.80 10195 0.234 325.00 15078 0.346 325.20 20197 0.464 325.40 25506 0.586 325.60 30976 0.711 325.80 36585 0.840 326.00 42317 0.971 326.20 48161 1.106 326.40 54106 1.242 326.60 60144 1.381 326.80 66269 1.521 327.00 72474 1.664 327.20 78754 1.808 327.40 85106 1.954 327.60 91525 2.101 327.80 98007 2.250 328.00 104550 2.400 328.20 111151 2.552 328.40 117808 2.704 328.60 124517 2.859 328.80 131278 3.014 329.00 138088 3.170 329.20 144945 3.327 329.30 148391 3.407 0.000 329.40 151848 3.486 0.079 329.60 158796 3.645 0.239 329.80 165786 3.806 0.399 330.00 172818 3.967 0.561 330.20 179890 4.130 0.723 330.40 187001 4.293 0.886 330.60 194151 4.457 1.050 330.80 201337 4.622 1.215 331.00 208560 4.788 1.381 MERCK VMF EXPANSION NORTH WETLAND J. ALDRIDGE, PE MER-10020 Post Development Analysis 1/13/2011 WETLAND SIZING CALCULATIONS Source: Stormwater Best Management Practices. NCDWQ. April 1999. Enter the drainage area characteristics ==> Total drainage area to wetland = 20.67 acres Total impervious area to wetland = 10.09 acres Note The wetland must he sized to treat all impervious surface runoff draining into the pond, not just the impervious surface from on-site development. Drainage area = 20.67 acres @ 48.8% impervious Estimate the surface area required at pond normal pool elevation ==> Wetlands are based on a normal pool depth of = 3.0 feet (Per NCDENR Handbook) From the DWQ BMP Handbook (4199), the required SA/DA ratio ==> 3.0 3.0 4.0 Lower Boundary => 40.0 1.73 1.43 Site % impervious => 48.8 2.02 2.02 1.69 Upper Boundary => 50.0 2.06 1.73 Therefore, SA/DA required = 2.02 Surface area required at normal pool = 18196 ft2 = 0.42 acres Surface area provided at normal pool = 21277 ft2 MERCK VMF EXPANSION NORTH WETLAND J. ALDRIDGE, PE MER-10020 Post Development Analysis 1/13/2011 Source: Stormwater Best Management Practices. NCDWQ. April 1999. Determination of Water Quality Volume ==> WQ v = (P) (R v) (A)/12 where, WQv = water quality volume (in acre-ft) RV = 0.05+0.009(1) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 20.67 acres Impervious area = 10.09 acres Percent impervious cover, I = 48.8 % Rainfall, P = 1.0 inches Calculated values: Rv = 0.49 WQv= 0.84 acre-ft - 36716 cf Associated Depth in Wetland ==> WQv= 36716 cf Stage/Storage data: Ks- 22830 b = 1.1630 Zo = 324.30 Volume in 1" rainfall = 36716 cf Calculated values: Depth of WQV in Basin = 1.50 ft 18.06 inches Elevation = 325.80 ft MERCK VMF EXPANSION NORTH WETLAND J. ALDRIDGE, PE MER-10020 Post Development Analysis 1/13/2011 D orifice = # orifices = Ks = b= Cd siphon = Normal Pool Elevation = Volume @ Normal Pool = Orifice Invert = WSEL @ 1" Runoff Volume = 3 inch 1 22830 1.163 0.60 324.30 feet 0 cf 324.30 feet 325.80 feet WSEL (feet) Vol. Stored W) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. W) Incr. Time (sec) 325.80 36716 0.277 325.67 33062 0.264 0.271 3654 13508 325.55 29464 0.250 0.257 3598 14012 325.42 25927 0.235 0.242 3537 14599 325.29 22456 0.219 0.227 3471 15297 325.16 19059 0.202 0.210 3397 16148 325.03 15745 0.183 0.192 3314 17224 324.90 12526 0.162 0.173 3218 18652 324.77 9420 0.138 0.150 3106 20696 324.64 6454 0.109 0.123 2967 24041 324.51 3672 0.063 0.086 2782 32318 Drawdown Time = 2.16 days By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.690 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of orifice = 0.049 sf Q = 0.1963 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time -- 2.16 days MERCK VMF EXPANSION NORTH WETLAND J. ALDRIDGE, PE MER-10020 Future Development Analysis 1/13/2011 WETLAND SIZING CALCULATIONS Source: Stormwater Best Management Practices. NCDWQ. April 1999. Enter the drainage area characteristics ==> Total drainage area to wetland = 19.46 acres Total impervious area to wetland = 12.00 acres Note The wetland must he sized to treat all impervious szoface runoff draining into the pond, not just the impervious surface from on-site development. Drainage area = 19.46 acres @ 61.7% impervious Estimate the surface area required at pond normal pool elevation ==> Wetlands are based on a normal pool depth of = 3.0 feet (Per NCDENR Handbook) From the DWQ BMP Handbook (4199), the required SA/DA ratio ==> 3.0 3.0 4.0 Lower Boundary => 60.0 2.40 2.03 Site % impervious => 61.7 2.48 2.48 2.09 Upper Boundary => 70.0 2.88 2.40 Therefore, SA/DA required = 248 Surface area required at normal pool = 21022 ft2 = 0.48 acres Surface area provided at normal pool = 21277 ftZ MERCK VMF EXPANSION NORTH WETLAND J. ALDRIDGE, PE MER-10020 Future Development Analysis 1/13/2011 Source: Stormwater Best Management Practices. NCDWQ. April 1999. Determination of Water Quality Volume => WQ v = (P) (R v) (A)/12 where, WQv = water quality volume (in acre-ft) Rv = 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 19.46 acres Impervious area = 12.00 acres Percent impervious cover, I = 61.7 % Rainfall, P = 1.0 inches Calculated values: Rv = 0.60 WQv = 0.98 acre-ft = 42736 cf Associated Depth in Wetland ==> WQv = 42736 cf Stage/Storage data: Ks= 22830 b = 1.1630 Zo = 324.30 Volume in V rainfall = 42736 cf Calculated values: Depth of WQV in Basin = 1.71 ft 20.57 inches Elevation = 326.01 ft MERCK VMF EXPANSION NORTH WETLAND J. ALDRIDGE, PE MER-10020 Future Development Analysis 1/13/2011 D orifice # orifices Ks b Cd siphon Normal Pool Elevation Volume @ Normal Pool Orifice Invert WSEL @ 1" Runoff Volume 3 inch 1 22830 1.163 0.60 324.30 feet 0 cf 324.30 feet 326.01 feet WSEL (feet) Vol. Stored W) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (cf) Incr. Time (sec) 326.01 42736 0.298 325.87 38483 0.283 0.290 4253 14644 325.72 34295 0.268 0.276 4188 15180 325.57 30177 0.253 0.261 4117 15804 325.42 26137 0.236 0.244 4040 16543 325.28 22183 0.218 0.227 3954 17441 325.13 18326 0.198 0.208 3857 18568 324.98 14580 0.176 0.187 3746 20052 324.83 10965 0.151 0.163 3615 22149 324.68 7512 0.120 0.135 3453 25501 324.54 4274 0.077 0.099 3238 32820 Drawdown Time = 2.30 days By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.795 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of orifice = 0.049 sf Q= 0.2107 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time = 2.35 days Type.... Outlet Input Data Name.... NORTH - JACOBS Page 1.01 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 324.30 ft Increment = .20 ft Max. Elev.= 331.00 ft Spot Elevations, ft 324.30 OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall -- E1, ft --------- E2, ft --------- ----------------- Stand Pipe ---- RI ----- ---> BA 329.300 331.000 Orifice-Circular SI ---> BA 324.300 331.000 Culvert-Circular BA ---> TW 321.590 331.000 Weir-XY Points ES ---> TW 330.000 331.000 TW SETUP, DS Channel SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:35 AM 9/22/2010 Type.... Outlet Input Data Name.... NORTH - JACOBS Page 1.02 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = RI Structure Type = ------------------- Stand Pipe ----------------- # of Openings = 1 Invert Elev. = 329.30 ft Diameter = 6.0000 ft Orifice Area = 28.2743 sq.ft Orifice Coeff. _ .600 Weir Length = 18.85 ft Weir Coeff. = 3.000 K, Reverse = 1.000 Mannings n = .0000 Kev,Charged Riser = .000 Weir Submergence = No Structure ID = SI Structure Type = Orifice-Circular ------------------------------------ # of Openings = 1 Invert Elev. = 324.30 ft Diameter = .2500 ft Orifice Coeff. _ .600 SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:35 AM 9/22/2010 Type.... Outlet Input Data Name.... NORTH - JACOBS Page 1.03 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type = Culvert-Circular ---------------- ------------------ No. Barrels -- = 1 Barrel Diameter = 4.0000 ft Upstream Invert = 321.59 ft Dnstream Invert = 320.22 ft Horiz. Length = 73.00 ft Barrel Length = 73.01 ft Barrel Slope = .01877 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .004925 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.151 T2 ratio (HW/D) = 1.297 Slope Factor = -.500 Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 326.19 ft ---> Flow = 87.96 cfs At T2 Elev = 326.78 ft ---> Flow = 100.53 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:35 AM 9/22/2010 Type.... Outlet Input Data Name.... NORTH - JACOBS Page 1.04 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = ES Structure Type = Weir-XY Points ------------------------------------ # of Openings = 1 WEIR X-Y GROUND POINTS X, ft --------- Elev, ft --------- .00 331.00 9.11 330.00 58.72 330.00 62.92 330.46 66.90 331.00 Lowest Elev. = 330.00 ft Weir Coeff. = 2.600000 Weir TW effects (Use adjustment equation) Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES ... Maximum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:35 AM 9/22/2010 Type.... Composite Rating Curve Name.... NORTH - JACOBS Page 1.17 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Notes -------- ---- ---- -- Converge ------- ---- --- ----------- Elev. Q TW El ev Error ft cfs ft +/-ft Contrib ------ uting Structures ------------------ -------- 324.30 ------- .00 ------ Free -- ----- Outfall -- (no Q: RI,SI, BA,ES) 324.40 .02 Free Outfall SI,BA (no Q: RI,ES) 324.60 .10 Free Outfall SI,BA (no Q: RI,ES) 324.80 .15 Free Outfall SI,BA (no Q: RI,ES) 325.00 .18 Free Outfall SI,BA (no Q: RI,ES) 325.20 .21 Free Outfall SI,BA (no Q: RI,ES) 325.40 .23 Free Outfall SI,BA (no Q: RI,ES) 325.60 .26 Free Outfall SI,BA (no Q: RI,ES) 325.80 .28 Free Outfall SI,BA (no Q: RI,ES) 326.00 .30 Free Outfall SI,BA (no Q: RI,ES) 326.20 .31 Free Outfall SI,BA (no Q: RI,ES) 326.40 .33 Free Outfall SI,BA (no Q: RI,ES) 326.60 .35 Free Outfall SI,BA (no Q: RI,ES) 326.80 .37 Free Outfall SI,BA (no Q: RI,ES) 327.00 .38 Free Outfall SI,BA (no Q: RI,ES) 327.20 .39 Free Outfall SI,BA (no Q: RI,ES) 327.40 .41 Free Outfall SI,BA (no Q: RI,ES) 327.60 .43 Free Outfall SI,BA (no Q: RI,ES) 327.80 .43 Free Outfall SI,BA (no Q: RI,ES) 328.00 .45 Free Outfall SI,BA (no Q: RI,ES) 328.20 .46 Free Outfall SI,BA (no Q: RI,ES) 328.40 .47 Free Outfall SI,BA (no Q: RI,ES) 328.60 .48 Free Outfall SI,BA (no Q: RI,ES) 328.80 .50 Free Outfall SI,BA (no Q: RI,ES) 329.00 .51 Free Outfall SI,BA (no Q: RI,ES) 329.20 .52 Free Outfall SI,BA (no Q: RI,ES) 329.30 .52 Free Outfall SI,BA (no Q: RI,ES) 329.40 2.31 Free Outfall RI,SI,BA (no Q: ES) 329.60 9.83 Free Outfall RI,SI,BA (no Q: ES) 329.80 20.54 Free Outfall RI,SI,BA (no Q: ES) 330.00 33.64 Free Outfall RI,SI,BA (no Q: ES) 330.20 60.63 Free Outfall RI,SI,BA,E S 330.40 100.09 Free Outfall RI,SI,BA,E S 330.60 149.03 Free Outfall RI,SI,BA,E S SfAf-?-DISGt??(16E cove FiAt 1,Z, to'Y2 9P0T)1. "- S/N: Bentley PondPack (10.00.027.00) 11:36 AM Bentley Systems, Inc. 9/22/2010 Type.... Composite Rating Curve Name.... NORTH - JACOBS Page 1.18 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Notes -------- ------- Converge ------------------------- Elev. Q TW Elev Error ft cfs ft +/-ft - Contributing Structures -------------------------- -------- 330.80 ------- 206.59 -------- ---- Free Outfall RI,SI,BA,ES 331.00 271.93 Free Outfall RI,SI,BA,ES SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:36 AM 9/22/2010 Project: MER-10020 Simulation Run: POST Q1 Reservoir: N Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 1 YR Compute Time: 13Jan2011, 14:51:42 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 42.91 (CFS) Date/Time of Peak Inflow : 23Jan2008, 11:57 Peak Outflow : 0.39 (CFS) Date/Time of Peak Outflow : 24Jan2008, 00:01 Total Inflow : 1.25 (IN) Peak Storage : 1.78 (AC-FT) Total Outflow : 0.22 (IN) Peak Elevation : 327.16 (FT) Project: MER-10020 Simulation Run: POST Q2 Reservoir: N Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 2 YR Compute Time: 13Jan2011, 14:51:49 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 62.92 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:05 Peak Outflow : 0.46 (CFS) Date/Time of Peak Outflow : 24Jan2008, 00:01 Total Inflow : 1.71 (IN) Peak Storage : 2.51 (AC-FT) Total Outflow : 0.26 (IN) Peak Elevation : 328.15 (FT) Project: MER-10020 Simulation Run: POST Q10 Reservoir: N Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 10 YR Compute Time: 13Jan2011, 14:51:55 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 99.83 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow : 5.57 (CFS) Date/Time of Peak Outflow : 23Jan2008, 13:51 Total Inflow : 3.22 (IN) Peak Storage : 3.55 (AC-FT) Total Outflow : 1.24 (IN) Peak Elevation : 329.49 (FT) Project: MER-10020 Simulation Run: FUTURE Q1 Reservoir: N Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE End of Run: 24Jan2008, 00:01 Meteorologic Model: 1 YR Compute Time: 13Jan2011, 16:45:39 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 51.23 (CFS) Date/Time of Peak Inflow : 23Jan2008, 11:56 Peak Outflow : 0.43 (CFS) Date/Time of Peak Outflow : 23Jan2008, 20:19 Total Inflow : 1.59 (IN) Peak Storage : 2.15 (AC-FT) Total Outflow : 0.26 (IN) Peak Elevation : 327.66 (FT) Project: MER-10020 Simulation Run: FUTURE Q2 Reservoir: N Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE End of Run: 24Jan2008, 00:01 Meteorologic Model: 2 YR Compute Time: 13Jan2011, 16:45:44 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 72.51 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow : 0.49 (CFS) Date/Time of Peak Outflow : 24Jan2008, 00:01 Total Inflow : 2.10 (IN) Peak Storage : 2.92 (AC-FT) Total Outflow : 0.30 (IN) Peak Elevation : 328.68 (FT) Project: MER-10020 Simulation Run: FUTURE Q10 Reservoir: N Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 13Jan2011, 16:45:50 Control Specifications: Volume Units: IN Computed Results Peak Inflow : 107.01 (CFS) Date/Time of Peak Inflow : Peak Outflow : 9.91 (CFS) Date/Time of Peak Outflow Total Inflow : 3.72 (IN) Peak Storage : Total Outflow : 1.61 (IN) Peak Elevation : FUTURE 10 YR 1 minute dT 23Jan2008, 12:04 23Jan2008, 12:35 3.65 (AC-FT) 329.60 (FT) Type.... Outlet Input Data Name.... NORTH - WC Page 1.01 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 329.30 ft Increment = .20 ft Max. Elev.= 331.00 ft Spot Elevations, ft 329.30 OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall El, ft E2, ft Stand Pipe RI ---> BA 329.300 331.000 Culvert-Circular BA ---> TW 321.590 331.000 Weir-XY Points ES ---> TW 330.000 331.000 TW SETUP, DS Channel WORST cAC- At-s'tltyS 1 S S/N: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:15 PM 9/22/2010 Type.... Outlet Input Data Name.... NORTH - WC Page 1.02 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = RI Structure Type = - Stand Pipe ---------- ------ ---- -------------- # of Openings = - 1 Invert Elev. = 329.30 ft Diameter = 6.0000 ft Orifice Area = 28.2743 sq.ft Orifice Coeff. _ .600 Weir Length = 18.85 ft Weir Coeff. = 3.000 K, Reverse = 1.000 Mannings n = .0000 Kev,Charged Riser = .000 Weir Submergence = No SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:15 PM 9/22/2010 Type.... Outlet Input Data Name.... NORTH - WC Page 1.03 File.... X:\Project3\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type = Culvert-Circular ------------ ----------------- No. Barrels ------- = 1 Barrel Diameter = 4.0000 ft Upstream Invert = 321.59 ft Dnstream Invert = 320.22 ft Horiz. Length = 73.00 ft Barrel Length = 73.01 ft Barrel Slope = .01877 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .004925 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.151 T2 ratio (HW/D) = 1.297 Slope Factor = -.500 Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At Tl Elev = 326.19 ft ---> Flow = 87.96 cfs At T2 Elev = 326.78 ft ---> Flow = 100.53 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:15 PM 9/22/2010 Type.... Outlet Input Data Name.... NORTH - WC Page 1.04 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = ES Structure Type = Weir-XY Points ------------------------------------ # of Openings = 1 WEIR X-Y GROUND POINTS X, ft --------- Elev, ft --------- .00 331.00 9.11 330.00 58.72 330.00 62.92 330.46 66.90 331.00 Lowest Elev. = 330.00 ft Weir Coeff. = 2.600000 Weir TW effects (Use adjustment equation) Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES ... Maxi mum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:15 PM 9/22/2010 Type.... Composite Rating Curve Name.... NORTH - WC Page 1.08 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Elev. Q ft cfs ----- -------- 329.30 -- .00 329.40 1.79 329.60 9.30 329.80 20.00 330.00 33.13 330.20 60.11 330.40 99.59 330.60 148.62 330.80 206.13 331.00 271.65 Notes ------ -- Converge - ------ ------- TW El ev Error ft +/-ft Contributing ----------- Structures ------------ ------ Free -- ----- Outfall --- (no Q: RI,BA ,ES) Free Outfall RIBA (no Q: ES) Free Outfall RIBA (no Q: ES) Free Outfall RIBA (no Q: ES) Free Outfall RI,BA (no Q: ES) Free Outfall RI,BA,ES Free Outfall RI,BA,ES Free Outfall RI,BA,ES Free Outfall RI,BA,ES Free Outfall RI,BA,ES STA<-1E - F>KCy(A Cuop- "? CACRE eaJnw' SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:15 PM 9/22/2010 Project: MER-10020 Simulation Run: POST Q100 Reservoir: N Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 13Jan2011, 15:36:24 Control Specifications: Volume Units: IN Computed Results Peak Inflow : 156.68 (CFS) Peak Outflow : 143.21 (CFS) Total Inflow : 5.62 (IN) Total Outflow : 5.58 (IN) POST - WC 100 YR 1 minute dT Date/Time of Peak Inflow : 23Jan2008, 12:04 Date/Time of Peak Outflow : 23Jan2008, 12:06 Peak Storage : 1.03 (AC-FT) Peak Elevation : 330.58 (FT) Project: MER-10020 Simulation Run: FUTURE Q100 Reservoir: N Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE - WC End of Run: 24Jan2008, 00:01 Meteorologic Model: 100 YR Compute Time: 13Jan2011, 16:45:56 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 159.54 (CFS) Peak Outflow : 146.29 (CFS) Total Inflow : 6.21 (IN) Total Outflow : 6.17 (IN) Date/Time of Peak Inflow : Date/Time of Peak Outflow Peak Storage : Peak Elevation : 23Jan2008, 12:04 23Jan2008, 12:06 1.04 (AC-FT) 330.59 (FT) [YI. PCN11w NoAL I R SERE 4[INiD WILRn_ _ { 1 1 NFRD IXCAVATiO NESM \ / \? 1 1 1 ?? IUSN PR.A E011 yyIR,tTAY N \ i PWBl4 pRAYUCf. I ,,:? ?[vA?6.11DL E ?\ F ? ? \ '? ? B ?.. wP. AIE O:.Taarnmes ?? 1 / rl/ / lcvsci sia r.E, Lrrt cccwo m rf'? amn nPoDOru. G a ,av a E ? '? _ ,_ ? wsm? w rrx¢ ? ? E ? _ - i r. l+ I _ waau?av¢n2 swE _ -? -tip A '? _APT 0-1 wmTw . ; - 11 i} rcRUANfNl rw. CQMWI / ,,t n A N 1 (ElE Arm n) 5 r._ A ' \ , ? I, ? ?„ ? ? ?? `, whew anxExw wuL } N T ?(y,sr I f V ?. / ma?? _ °? , f Al [ ` _?j \_ A AUE tt p ? ? ^ \ R _ Ib LS V? 1 E ? IO??4f k? ? ? / ?Y615, PfRA PoSR ".L i ,V2 \ \ _;`__,?`_ _ __ ? `?bl i ? YI?? iCOP 0. eW ? "?.-- 5[?-?A FfyOVE E%1514 '?? 1 ', BRAES S N[EDID N R[f511"'ST - - - - - \! V IESEI enBL B aa-r - ES uPDU B [ E Enw Rau wti Hoor Sono , ', Ax?ei / IDO Dl-EA.) \ W Y BLRB OI 1DP[ARu ?: SES onwL o w -i? °?-sES un:MO? n?"i?e a. s ?? eL_ a7En m. EA ,? F I N.t[xxfR \ _ - .C q[p JRCOBS ENGINEERING fkOJEGr N0. 1TtIN61? I k EYRLF.CY DXh4 ARAO. Uh FEfiI-.4 ??? _ _ t / _.-- ss' Rc s E vw? / rrw. ; T voa arnBER BI DNUL o-aDl-,- ?` \ / ?" - IBFVana 3au) uRm ??-GRACE s wa I ftEY '? S ?RENS[0 Y(A "!If COX -TES AL F,PI 1 (' ?? xDiE4 YE OfTAl a DU .MIW IEIFV \ I f ^\ N rnk? [AEeAr 'I ,. DE .. IX ol. AN wm ix SE.FY1 AAFA , ? Si l l MPORARY WAIfL WN -! Gar AREA,R- Arwo / B 0[G3 NPID dfl l n 3 .UH BASED UPIXI AN AS B i SUMFI W o EX6n"EYiRs?CY>RA' I ?.?-- _%'- ?l Plmv DSO ar ME JCN cNA S f9 [DRi Dal m bZR h -' 11 Al fN A^b! J25Q k1Y Ky A ft \ _ Y .` P? ALTS R UD rtIES E D I.CC R QP U [XGFn 3IAIL O" VALES 0. /yJ m?T? -Y- 4--- # -----v h4Ni [XAI -Yf [EIAi f i 'PATi fX.51NIC / Dll .IPFirVOERDY_ GSV 91f1L 6E ?d d? `--' -SJ !o , CM D f04 S 0.WI-6 TP n / Y E " 9 0 D'lFO R AS SWIF L 4 P fBDL N?SIW \ W T P'OP :4.]GU 5546 SN /SCR ',acE AWw :1N 302 IYLt.- / 'l? Y[C[i LD-WI-S _ - _ ! - / 9.5E dC6 5 tilYSID S-CWiLq RSLU J.. ?I p" .- _ ^"? _ - "'i 1 An'P'pA5 IttAi CGISIRJLT I-11 ND SHEEr W-a ms - - - "" - -. - _ - E inssa-,A:v n .? _ ; ?? a F-m, cwyenaw / ! rrUnO Pvrur's Pw .. - - .. w m AT,Ra a J n ANY t001EE1 nt0 W - __ r - - "' _ __ __ _ - - - i 1 EV - _. - - .. ? RTAN OTSI w I I?, ? COV film S. OMSURE RE EDNIERACIDRS- -ALSO RGU.1 E TDB ' _ gy,15 ._. _ - - 'IfFIS p fNIRw•iu BE RESPONSBtE FOR HATTEIUNLE OF ALL fft -_ - _ r ?.. _ .. _ _ - _ _ - - ` -. .. _ _ - -- _- I i PR.- LAREARIUS RCO!64?E1Y SiAB'Ni Vo f / _ _ - - - - - - - - - - - - '" - W.1 D-WI R ED BY -.. -. _ -I. _ - _. _ _ - _ _ _. 3W8DM. t T56' OkikM?ENI SUt - _ _ _ ... I I u RMTO& ?D CTION EGOPxf,f iO BE - _. - -? po-?w1S - - - -F f0 GlUo AT nd wartamA __t _ _ - - __ _ _ -_ - 1. 1 SAT - I ? ?T - _ , ! MIA ABCUENA MOR / -? r -?- - /?\ lwsmc GnBUN¢Mn-? EMBANKMENT SOIL AMENDMENT SCHEDULE: CONSTRUCTION SEQUENCE. ABED Nrn sEEBLD saw.D As I=EU ° Swu RE EBELAREU AND sLe,_rsmlE9slcmw?Nnttluv e?n.rauRUS .n ??xN - III E?S,.nG I- - BLa?wr,:nr>.mUE. N?-,vAPo A.L?w w °-N?a?? Yw,?`?? -1 TN xr,«F denRT ra ftEP AVwM/ EE. u»DL MN..,AE TI!- F L, rx. WM,mr.,Nx ,., .". ",EeexauF A"= °„>n; . wD ?,DP?N11 da.,L,, t. oh P E :§ '? W »E Pv« LEN n-R Bx<s Pw TaD :Fl aro vNe, . Ewv wHE. AREAS APE Bol. mr oRY,D WETLAND SOILS AMENDMENT SCHEDULE: ?° " "iDRA,°111DRSPERNANENT-?R, ° °?0 "11""""0 ° ,0. P4a^BLV :". A OS/1i/ ptW br RAV1Aw/App[orW W JB iW REV DALE RID [[SCRIP11Dx Pwl DY cl, APP i aT w THIS BRAVJNG IS iN[ PRDPE yTYxOF PRIX t td BAE. vcwrcNVT cwvA:tux Ds demrN xEnwrD v,A.i IT IS TO BE USED SNLY FOR F EN & UL IK. CSSIGIED AND IS SUBJECT 10 BEE LL AT ANY TITE. IT F kA SLT FENCE mm.tls aR AIE IVS 1111 nRtr -1 NOT BE C?IEB OR REPRODUCED YI110UT PERNISSITHE >r axR SITE -ANE. UxNSS °MAARE EEO. PRBA tJl BLDG N] Ruti AYRU4D xnrv 1. RVs. U net wY a L4 - PLAR µ0U - ESO MAy y,¢ux "OEU=5 at9 AwL_TOF_ lUMGS SUe,¢CT T°vuT,xB WTBL BNRInRRc 0MERCK °°°°'?°?' wmt dE, Ed,u1M ro mix P,AVnN; NEEDED UNTIL sI°PES xuE BEau: - snB1E AHD vx /,HJ lE 02128l? xi JO DATE 02!28/tg xP urruEm rd N ucREtwT `wi,oM Pl= PIZ P I`— PER TTE A`p""` .nLUm lolsw A=PUCAnw PR TN BATE D2/28lrs AEE. T-28' L 1 BLL ORDE R MD POND AND STORM DRAIN WORK _ NORTH STORMWATER WETLAND MAINTENANCE AND MOD ICAMONS nsIl"'w TM0; r?T=IT US Nuh sw°ESiL _ oRlx BRAVIxG xuneER oPB D ? AD 11 17Mh5106-55-M-001 Ww1,u,DPdR,R SD-D' --T? rm E,. T PIAVTS e_ PRMt IS NBT 10 ES USED FDA [PlSTALCTIDx TuILESS iMVww 10 lpiCD ANO SIGNED FOR CONSTRUCTION 11 REVISION BLOC[ sDdR.ES x,Y BE x:?1wr. '-lOP 'AroiN '21] 11-121 G p5 STONE F TE BEfOREN.Y Sol OF 2 1 OITOM FORE 1 32,1 -- ` F-l GLANExNLF FABRIC (MANE BIER WEAVE 1. P?fDA.4WlG ADE[50uor qIl- FOREBAY FILTER BERM CROSS SECTION VIEW SCALE: NT.S. roe mlcx= I" OM___DO -32.a =sx<A _ 1 u B]DY 301103 ??INSGLL SEOTERELE ama nEVxla ->rs 3 t AREPROLHO OQ i) uaD ON OF R PRM2 AND 1- 905 or A -ER 0. Alw = 3PO.B BOTTOM LENOM- RP FOREBAY FILTER BERM PROFILE VIEW SCALE: NT.S. DETAIL D-001--1: FOREBAY FILTER BERM u. EB GRw '`KE, N 'ILL -I- ?A ux N, I w rzN -1 ?? ? Pu Arv ro lea 5 M., ?? ? ? NBSS sEC1roN DETAIL D-001, 5:_.TEMPORARY__51LT_ NC DETAIL D-001-3: TEMPORARY CONSTRUCTION ENTRANCE ,pPm'msrs a z?ro? EMERGENCY SPILLWAY CROSS SECTION VIEW SCALE: N?.S. PROPOSED EMERGENCY S%LLWJJOAY SUAFACf FEN[E fLEV=.D IXSIING tOP Of PROPO3EOPAOPE pANK = 3JRAE 332 E Ev6RN.G SLOFC i0 EXSNNG GFAUND i S ' JStINC SLOFE A I.-D. POND A AI N 1..1 14 'LL GREEN 1ERBL B" 9r- 1-IF, EN GB.C! VID IISIRUCI CUSP 'I OT ORAL' ER WEMW EMERGENCY SPILLWAY PROFILE VIEW SCALE .11 EMERGENCY SPILLWAY NOTES ALL FILL SALES FOR BERM SECTION SHALL BE CLEAN, WRIPME!BIE MATEPoALS. 2. SOIL IS TO BE COMRACTED TO OSB STANDARD PROCTOR -MUM ORY DEDSNY, AT OPBMUM MOISTURE GOIRENi. S. NO BLTISTEB WiERWS E- BE USED IN ERBANKMENI STRUD "' A. SOILS SHALL NOT EXHIBIT RGINIFOANT SHRINK/SWELL OR DISPEREAB CNNA'1ER6IIC5. AN GN-5N E GEONECIINlCA1. ENGINEER AWI.VPRWE THE SOILS O FOR PLACEMENT WRIIN ME ML SECTION. THE GEOIECHIM.AL ENGINEER NALL ALSO SPECIFY THE METHODS TO BE USED FOR 6. NO -EESSL F SPY ttffYS?ll BL PERMITTED ON THE FILL SECTION PLACEMENT OF S BA- SURFACE SHALL BE SCAF FIED AND SEEMD WITH NCBOT HGIRIAY Aft 'S- I'PRID To INSTA-LON OF THE NORTH AMERICAN GREEN GGSW LINER. DETAIL D-001-2: EMERGENCY SPILLWAY S _nvn? ?r DETAIL D-001'-6. SILT FENCE GRAVEL OUTLET i / LPERSPECTIVE VIEW NOT TO SCALE a \ raN: I P.RP ?? SECTION VIE I VI I01 TO SCALE N3 E5. I. /SJ STONE SHALL SE PRACED ON - SIDE OF TIE SEAM E AS FLOW. RECE. 2. DIMENS 1N5 PAC MNIMUM ACCEPTABLE UNLESS OTHERWSENNOTED. Ffl0 ERCM S OL W AROUND THE AREA BEING ild LL WuBE - 11 - PIER _ MROUGH THE BERM. .111 Do WASH flACN DETAIL D-001-4: TEMPORARY GRAVEL FILTER ?I ,.:.sI1AGL,NNIE r(SEF OILCAN) A?ta14 F%G'. S E FNL+AG F J DwN?E Ea C"C '. N SH .,AOi S-R T AAATER TGHf HCl£ 5 A- 11 - R v - -- G -- I JJ]3 y4 REBW FRAME OI DR TI RSLN AND INSIAIL AWES FOR ORIFICE Siq N% G?NCMS I(kl /R' GAV Dot s/ffD ALL WiA6EB BEME1NEnNRISER AND OGFICE- BOB I'll NAFFED US- HILT, RE SW A9'ESM BYSTEN µ14p?IRNR DRAW DOWN ORIFICE - RISER SECTION / A SCALE. HIS Pu" PBGER RcHEB B^ 3" SCH. ? PVC Di24 DRAW DOWN ORIFICE TRASH RACK - PLAN VIEW -Z"I HICK SEE ATTACH 10 RISER 10 AT RIGHT 3RLJ ___- THIS swc - MS[ 2 SIANIF STEEL FO P cuNPS FOR III - as PIPE TO CONNECT S' ]E£ xYM PVC CINExi. ED PVC PITT ]' SCB 80 PVC 1[E- HINGED FRDIB' COVER --l / -map DRIU. EE AND INSTALL INSTALL S `WRAO PIUG? Post LUONIFCE EIG RE - CONIIECTDN IC IINUG E. ILL GIPS --? WILIEFERIICM. GROUTW R-EEN "SEA D DIBNCC SEE 5HEfT CINIECT 3' TURN TEF BIFN PVCC EMfIRE.R I, 17N4E1 .02-35-5-001 S-00J FOR u/2 11 IJ FLATTENED G- IXPANOED NORIEIIMAE IOCAtILN EIN. -PED AROUND REIAR FRA,MC ON PoAA. SECUtE TO FRAME WMN _DTf86 STEEL PIPE CRANES AU (MIN N PER DD[). 2 0 ;F CE TRASN?WMIX -SIF-1, DRAW DOWN ORIFICE TRASH RACK - PROFILE VIEW DRAWDOWN ORIFICE ENLARGEMENT SCALE: Ni S. FOLD ALL < FORM FN-SO DETAIL D-001-7: RISER ORIFICE MODIFICATION FINSHID sIEE r `SEUARE( 1/2 NO, 13 FLATTENED 4V METAL I I I I I I I I BEAD LINE I I HINGED FRONT COVER JACOBS I JACOBS ENGINEERING PROJECT NO. 17MN51M I I. W,./.l I -REC--- I IROI,aITMI THIS BPAWINO IS THE PNOPERttDF G. A CO. DE. R Is TO BE USED ONLY FOR IOR FOR WHICH T WAS DESIGNED ADD IS SUBJECT TO RECALL AT ANY TINE, IT LUST NOT BE CUPIED OR REP0.0IX.'YD WITHOUT PERMISSION DLa ND. PLANT 44 17A4J5p8My?.VN1??\ ConRtleMI01 aolx.L2Y[LVeua Bush MN AHJ DATE 02/26109 PCHC JO DATE 0212e/09 P. TW IF 02/26/09 SGALP N78. POND AND STORM DRAIN WORK SECTKAIS AND DETAILS DR-11. LAUNDER 17MN5106-55-D-001 r?oaa / m: ice o) ? - o ___? ( . ax' \I nor ? 1 I ? ?\ ? / ?? i i 318- PL 1 _ychbj ^ - -- 2r of w - a i;i7 -- -J ,? I o ------------- (, i I I?r II L T. _. I , I -- II II , 1111 T ?4? E.A "Tap -- -3 J/ I I -UN -- - I 6? Nncn rll r.xcILL aE I W,nd51r2 - PLAN SECTION C Y-1 2 0 ?? l T „__..-- - NN f5 1. C RiL A INLU U1 NCi DETAIL S-004-2 (I,NNLN- SECTION 5-004-1 L Y G I _ITS s,L, DE f.. i 2 ) .-.? ? scw i.. ranY ON.ixaselPDN nniw -'r. ' c i k (') MAII, I Et \ ? 1 ?? F 1 1 ?Iie3 j I mul.,I, IsC CRIQ / f .. F -tee.- .-- - - -j 1 _ .` -_?--)f ' I` xR SEf ! -?- r -? -? ?_- , ? 1 I J r? n N E ) ?- ^ IrP En E12 - III rv. _ u.3 _ _ . _-LSa s-oona? seer :I F? /^' i/I f l\ 1 S irDNCE FLCA 2r.ar.16 FWANE Full irvo E NOTE 2 (ilP) III, o G. iLUAT 2'a.9'?Ifi FIAIIC{RWI 2?a^I6 TWIG HUAT --- II i? 2' 4.1 AE -1 2 SEE NDTE I (11E) - $ WNi Ili it SECTION S-004-6 SECTION _a-0004-3 SECTIONS-004-4 SECTION 5-004-5 D s/e' cDlmaT E lD tt - E DET DO U2 s-+-2 ?,y aevrs o sED. Im; 7S/ a' DE U "N/iN'1 _ NICLnUED ?ttI Irr^7 ?S -p2 cLEns 5/I6"a Eu.N STEEL - FO-DA STUCK d0'N¢'LD - I? 0A Cpi T T B" U E ND E (f E DFE CLAD \`*EL-L Sal avCxNN : - No I - - -- / U W? Wwd la ComNKCCn IuN ,W BB4 ¢ ?Y?. ¢ IWZ+/Lel mwa for a?:w-,/kaonl uu uu ues __ Pte, EY UIIN DES 5-08 114E m _DES IL - DE o- INC U Y' 2' l uIS TO M JSSA PLV t-B1-D r0.i wxz I.- co ,T vu DLS]INED IND IS SueaECT ID BEfNtt AT 0.YY IIW. IT NUS'I NDT DU, CPID 04 SEPRDEUBED VfiNCUi PECgSSWN'. PfiDJ - BUTS tll. /LN -- T)?JKI$ 11,61 \OIYi Iness y ¢COnfid rnon?Y vu AHJ Dare FE11 C9 cr* AHJ UNTE FED E9 -- vPrtJB5 mre FEB o9 saE, AS NOTED E PONDS DOCK DESIGN -- v STRXTURAL _ POND RISER ACCESS SECTIONS AND DETAILS 17MN5102.55AS-004 INIS PAINT S N¢r ID BE USED rD0 CCNSTFUCIIAY UN-ESS NDrEB INB SU5NEU _ -ST-T- IN REVISION ADC.I. 2 GENERAL NOTES I. GO-OR E-`TER I1-11D II"R CONOHIONS ARD RMFRSCONS AL OESiON C-A-.3 - - FOR U-OETNL NUIMES B, THE mCN[]U TRASS BL'ft ICS NEI TT1x SHESE SiAlI1AR1 nIFY aAE aPFE GBIGOPPONEWx rvO EIEIIAL SHALL IV- USE E OEINL IS SNVnx Oh inE pS4N ORwWr,CS STRUCTURAL STEEL NOTES IJEHt OEiIniL-ITC -- BEEF,MPEOii^On111.?E,?NGi . LTS OC , 1 vl Uc S m SGn. GE I-F "- .,_'IF. I.,E -13T EDT INc - AT C N^ 41` ?' CC R O .! IFIX. o R :.e / W.TH TEREALS 1EIVITee N' SRI_ PWI i6 B i, -j 11 4 NCLN EEll EITIIN5 0 0' 0 kO 80 S S OTHED FORID CONISTON11 LEA OT BE O? i(L+jFTI TO FHCE R.,.U.ftNEY S 000 E OIE Y R4- E 1Es". LE rA D?C ao ON, Ell E IIINS RNO 181111 111- "o l IT Ec IA-TIFF Os ON R.ANS I IL 1EL0:x01 LL Is PO??'ORIIN "". E]0+- "'IS...I U. E,, IIII 106 Ew 1-Ar. ---110 G`1Yme1[0 UxJ. TO 1, DID ICITC 'I 5o%Lx:9v= uTO.NORS Oa :wPRmTEo g .ER PAR" ar,TOREP.? P ?o..vcnJl,Tip+S E0L0. xI Sin Wt -A, vAB pR`F 3< ES ITOCEU -11 iE GC 111 5x0.Y.V FOR LLan1lY uE O'S POST W YG TTACN wI OUdA1PNEENL-I? IR? RD .NE SI'C Y-0'M; YA%UlttE55 rr L rcluptaEE 3G E" B OP TOTED O-ERREE LEAS - LI o IE:N ? E= SEEN- z 1/2" Ela T R OP OF RUNG N.TE _ r w/ wpNG T GLARRxHL EXTENSION TO WHERE IGE PL E?ENE= 1vEL : ? -L- F &11'0x1 POST B11111T TERI'ATOG C.BNLIDIN (Sfa! 'yam ypy F0q i? ONES 1- LA-, O,DR CS. BID ..1 GONSTRUO-B ---111 - -rlh IIu? fill E-RQL UU- GUNOIWL DUAL 7- RIM ALL DETAIL U2-ZA OBS-RUGTIGNS _ pa ?LOUN`? N 0PER µµ tN T6,, TtaA 1,UTTER1. ETC.) 'ILL SLIEVE 11 111SIN 0 12- y &N U] AN2-AS'BtL l ? _ 115 TnN ? }_ . c O UE wAN- ? E?1 I/T Uu n Ex STR -SEE U9-G i0 A{NM PNE E `DIE 9 SE O? / _ . CES 'sd :.E J.F \ ? ?I rEO ETR c i' TIAG. CB 7 T7 S. ? / G / S G V.RI T 11,1 - SOB In &SE S I -.? 3i (YSE 0900 SCR -- lC EFIM -IE" cu- A<GG AR IADDE.R GEOMETRY .a, FOR 2 .1 ICT DETAI;_ U9-A NaAPW. DETAIL U2-AA & AAR FECOT PL a/B-" I li f e? L11T- OA Ell ,LICE mcp / evuxn Cmmcn?w w rOrw:RF.1E RU Y- ? c 'x;19 3/ISF[ TABLE )E 4 e 3 tE L14,r aSC?TEi SPA I/ . 1 1 2 . l 'n ' VML SEC BE'— Urw raR u?ER GEOETRY _AL -__-}A49EA 1111-= DETAIL U9-8 AND SUEC,E VI/ CFUwT ut-u iq a1 REUO+'<ELE SHw ® Ns-TAR x1u PIPE t/r1 1/2- 1" ROIR E BRAIN P ,/A HOLE ® tY- S ,0 DETAIL U2 -TA & TAR CONCRETE NOTES L d kE,E DES1GI AND OI AUC LATEST FUSION GF ICI SPEC61CATIRN t. CONCRETE STRERGin (C<) 91k-L a3'.ISOO PS. - RLI,OMEnGCON-RE E E$IN?'i 1LSTA-T: FCJ<L ..ALLT 'El r.AV_,ACRIE! CE ONA'?IORC N(SNG STEEL AS S( bI OES1, BARS cl, ,E, I? -- z N, 1 71 1 .3 } 1 -32 - D O8 L 1-L I il,i. c PIR r x 14 0 E. HC E REOR 6ELO OF SPICE. FAC o T UTo1 E SE C-I 3 BAS _ I ?x _ETER, N. T LE H? TI E m s f r? 1),u? ant-I (l +i ??9 o nlfol/m, nweN m1 euruv?m, , uu uu aa; 8 B /I7/0 Imwtl iw -/,,,,N -R NU 1FU dBE E a ryG/w sww IoT aM« ,,w uu ues $ :V ?e1C0, EESCRIPTICNI 7PNOI SY G THIS IRAIBNO IS THE PGOPERTT OF BERIX 11 IT IS TO BE OBER ONLY FOR IORK FO V IT II IuAIT TIRE WNESIGxED E L IS SUBILEI RE TO REGCL fii ITT N COPICD BE R AEPRObJt[N WRR OUT Ut PIBER ,UB ERI944WI1 PRUT, 1. PLANT OVU PIIJ ourE FEB? uE AFU -FCD 09 i PPx? DATE F®? ?. Le A6fWTfD PONDS DOCK DESIGN STRUCTURAL - GENERAL NOTES AND U-DETAES ERRmlO NUIOER NT IS ROT TO BE USED F CONSTRUCTION UNLESS W [NRNIO SIGIEN 1. 1.11BBITIOR I. RE-111. BLOCK ? .: NORTH STORM WATER WETLAND LEGEND _ ni.nroru,i s. ua.« .nvn.?enn nnnw waw» ? iz?.r rv3.a r«ffe? ua>?? roan .un mr a"sns ? ie irv ?vamuua wamesar ? ?sn. r.?mms you.sro WVFN.L 0ogml"1'*? us w, ?? O Haw ` 1-1 ? ? 0'x } ? \ s w zWxkaw erac.w?x av.. reAnr uerm t e n xr?r.stivnnu eucK Zm l Ail msu. V, =1 '? ?I ? ? ®? ? .n iv wsvws?.nc.+ x+m ?.?arc a>6. ? , P,?a aaEVnv. wwe nvnv,sv, ? ?, ?? P.varo ern cww,??, ar.rworw cw,v?nvn , "" rno Jl? 2011, ax? ?naaw .wt N I .' -- _ , , ,? w P?nn,?.,,? sa,?ma,? aaaaP?rP??x?r?, ,o:,oF ?,.wt ?r ? ??/ii< i? ? ,?wrP ?° rag u R ?rw? waatr, nx..,m» wK? _ w ,wr-et Pnn, „ta.xnn. ks,ca.? anYO:Fn?_ O TREE INSTALLATION sraiav NORTH STORMWATER WETLAND - GRADING PLAN axn? PERMANENPSEEDING SCHEDULE CDAM EMBANE6'R:I'I!) RIPARIAN BUFFER SEED MIK Pco. n??s rcr?,au rn_t ?x?. xo rrvaE. "s:? `r rrvn,xt yarn v, e4us t atxx..titiiw cl.e>lUr+-o i..w Lancxe 2 a.v rwnrizea mn (a?vc.'^>N tlL'tl MtcNhV"rertw rocs. 15; prix fAA,E?4rtt. atr Siru_i?rc.w0.tccn9< ''+=?ot OQr lSOlH .v ao J. rLv retr,o,4.... a Pao long b - MoN+?w r.vnY ' aetweluY LCrzro axa.is.rooa vsr+,c.m?iw'w. LO.kr. eduw n,.lcr vm,.,tf rtnr tl vaniu y? Y p®?? aft ne5 •..?P rt ., 5n5-w In r.: ,lr ?Lt ? k W® YlefreAM£ tEic al 0 x 1 1 ?"y ' ?.Go 8 ! SOUTH STORM WATER WE(LM® LEGEND I", E A A „ r rx ??n I ma T ???' ?P ?,w? ? ew a ucuras ?snwn sa.+x wxrnso ? o,.rus ax avv. wen uaum <w.r ft10? ;/1rrc>cwxiaauco?mw.x?r:m..'?,.,... wry,«?rrlio>.n.aam?r+.?«?n?uc»,m ®,; r,3?x???m on?rmro ? ?r?wTMum?,oaw???.vw?rn, 'e a wn aoN, ?axE?.?n, SOUTH ST09MWATER WETLAND -GRADING PLAN *+ i.Pe u v I wn/oa/uu - ,u ras¢o raft coasl'oun'mr DESIGN OF SOUTH STORMWA TER WETLAND FROM APPROVED ASBUILT CALCULATIONS DATED MARCH 14, 2007 MERCK VACCINE MANUFACTURING FACILITY MER-10020 MERCK VMF EXPANSION SOUTH WETLAND J. ALDRIDGE, PE MER-10020 9/20/2010 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 332.54 0.00 26252 333.00 0.46 27303 26778 12318 12318 0.48 334.00 1.46 29561 28432 28432 40750 1.43 335.00 2.46 31751 30656 30656 71406 2.38 336.00 3.46 34009 32880 32880 104286 3.37 _ 337.00 4.46 36335 35172 35172 139458 4.40 338.00 5.46 38728 37532 37532 176989 _ 5.47 339.00 6.46 41165 39947 39947 216936 6.59 340.00 7.46 43662 42414 42414 259349 7.76 Storage vs. Stage 300000 250000 y = 27670x'.092 200000 R2 = 0.999 U m 150000 m o } CO 100000 50000 i 0 0.00 2.00 4.00 6.00 8.00 Stage (feet) Ks = 27670 b = 1.092 MERCK VMF EXPANSION SOUTH WETLAND J. ALDRIDGE, PE MER-10020 9/20/2010 Stage - Storage Function Ks = 27670 b = 1.092 Zo = 332.54 Elevation feet Storage [cf] [acre-feet] 100-YR 332.54 0 0.000 332.60 1282 0.029 332.80 6356 0.146 333.00 11851 0.272 333.20 17577 0.404 333.40 23468 0.539 333.60 29488 0.677 333.80 35613 0.818 334.00 41829 0.960 334.20 48125 1.105 334.40 54490 1.251 334.60 60919 1.399 334.80 67406 1.547 335.00 73945 1.698 335.20 80534 1.849 335.40 87169 2.001 335.60 93846 2.154 335.80 100564 2.309 336.00 107320 2.464 336.20 114112 2.620 336.40 120938 2.776 336.60 127797 2.934 336.80 134687 3.092 337.00 141606 3.251 337.20 148555 _ 3.410 337.40 _ 155531 3.570 337.60 162533 3.731 337.80 169561 3.893 338.00 176613 4.054 338.07 179087 4.111 0.000 338.20 183690 4.217 0.106 338.40 190789 4.380 0.269 338.60 197911 4.543 0.432 338.80 205054 4.707 0.596 339.00 212218 4.872 0.761 339.20 219403 5.037 0.926 339.40 226608 5.202 1.091 339.60 233832 5.368 1.257 339.80 241075 5.534 1.423 340.00 248336 5.701 1.590 MERCK VMF EXPANSION SOUTH WETLAND J. ALDRIDGE, PE MER-10020 Post Development Analysis 1/13/2011 WETLAND SIZING CALCULATIONS Source: Stormwater Best Management Practices. NCDWQ. April 1999. Enter the drainage area characteristics ==> Total drainage area to wetland = 24.61 acres Total impervious area to wetland = 14.68 acres Note The wetland must be sized to treat all impervious surface runoff draining into the pond, not just the impervious surface from on-site development. Drainage area = 24.61 acres @ 59.7% impervious Estimate the surface area required at pond normal pool elevation ==> Wetlands are based on a normal pool depth of = 3.0 feet (Per NCDENR Handbook) From the DWQ BMP Handbook (4199), the required SA/DA ratio =_> 3.0 3.0 4.0 Lower Boundary => 50.0 2.06 1.73 Site % impervious => 59.7 2.39 2.39 2.02 Upper Boundary => 60.0 2.40 2.03 Therefore, SA/DA required = 2.39 Surface area required at normal pool = 25601 ftz = 0.59 acres Surface area provided at normal pool = 26252 ftZ MERCK VMF EXPANSION SOUTH WETLAND J. ALDRIDGE, PE MER-10020 1/13/2011 Source: Stormwater Best Management Practices. NCDWQ. April 1999. Determination of Water Quality Volume ==> WQ v = (P) (R V) (A)/12 where, WQv = water quality volume (in acre-ft) Rv = 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 24.61 acres Impervious area = 14.68 acres Percent impervious cover, I = 59.7 % Rainfall, P = 1.0 inches Calculated values: Rv = 0.59 WQv = 1.20 acre-ft = 52426 cf Associated Depth in Wetland ==> WQv = 52426 cf Stage/Storage data: Ks= 27670 b = 1.0920 Zo = 332.54 Volume in 1" rainfall = 52426 cf Calculated values: Depth of WQV in Basin = 1.80 ft 21.54 inches Elevation = 334.34 ft MERCK VMF EXPANSION SOUTH WETLAND J. ALDRIDGE, PE MER-10020 Post Development Analysis 1/13/2011 D orifice # orifices Ks b Cd siphon Normal Pool Elevation Volume @ Normal Pool Orifice Invert WSEL @ V Runoff Volume 3 inch 1 27670 1.092 0.60 332.54 feet 0 cf 332.54 feet 334.34 feet WSEL (feet) Vol. Stored (cf) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (cf) Incr. Time (sec) 334.34 52426 0.305 334.18 47417 0.290 0.298 5009 16831 334.02 42452 0.275 0.282 4965 17577 333.86 37536 0.258 0.266 4916 18451 333.70 32674 0.241 0.249 4862 19497 333.55 27872 0.222 0.231 4802 20780 333.39 23139 0.201 0.211 4733 22412 333.23 18486 0.178 0.189 4652 24593 333.07 13932 0.151 0.164 4555 27741 332.92 9501 0.118 0.134 4431 32947 332.76 5243 0.068 0.093 4258 45711 Drawdown Time = 2.85 days By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.835 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of orifice = 0.049 sf Q = 0.2160 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time -- 2.81 days MERCK VMF EXPANSION SOUTH WETLAND J. ALDRIDGE, PE MER-10020 Future Development Analysis 1/13/2011 WETLAND SIZING CALCULATIONS Source: Stormwater Best Management Practices. NCDWQ. April 1999. Enter the drainage area characteristics ==> Total drainage area to wetland = 24.61 acres Total impervious area to wetland = 15.00 acres Note The wetland must be sized to treat all impervious surface runoff draining into the pond, not just the impervious surface from on-site development. Drainage area = 24.61 acres @ 61.0% impervious Estimate the surface area required at pond normal pool elevation ==> Wetlands are based on a normal pool depth of = 3.0 feet (Per NCDENR Handbook) From the DWQ BMP Handbook (4199), the required SA/DA ratio ==> 3.0 3.0 4.0 Lower Boundary => 60.0 2.40 2.03 Site % impervious => 61.0 2.45 2.45 2.07 Upper Boundary => 70.0 2.88 2.40 Therefore, SA/DA required = 2.45 Surface area required at normal pool = 26218 ft2 = 0.60 acres Surface area provided at normal pool = 26252 ft2 MERCK VMF EXPANSION SOUTH WETLAND J. ALDRIDGE, PE MER-10020 Future Development Analysis 1/13/2011 Source: Stormwater Best Management Practices. NCDWQ. April 1999. Determination of Water Quality Volume ==> WQ v = (P) (R V) (A)/12 where, WQv = water quality volume (in acre-ft) Rv = 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 24.61 acres Impervious area = 15.00 acres Percent impervious cover, I = 61.0 % Rainfall, P = 1.0 inches Calculated values: Rv = 0.60 WQv = 1.23 acre-ft = 53472 cf Associated Depth in Wetland ==> WQv = 53472 cf Stage/Storage data: Ks= 27670 b = 1.0920 Zo = 332.54 Volume in 1" rainfall = 53472 cf Calculated values: Depth of WQV in Basin = 1.83 ft 21.94 inches Elevation = 334.37 ft MERCK VMF EXPANSION SOUTH WETLAND J. ALDRIDGE, PE MER-10020 Future Development Analysis 1/13/2011 D orifice = 3 inch # orifices = 1 Ks= 27670 b = 1.092 Cd siphon = 0.60 Normal Pool Elevation = 332.54 feet Volume @ Normal Pool = 0 cf Orifice Invert = 332.54 feet WSEL @ 1" Runoff Volume = 334.37 feet WSEL (feet) Vol. Stored (cf) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (cf) Incr. Time (sec) 334.37 53472 0.308 334.21 48363 0.293 0.301 5109 17000 334.05 43299 0.277 0.285 5064 17752 333.89 38285 0.261 0.269 5014 18634 333.73 33326 0.243 0.252 4959 19687 333.57 28428 0.224 0.233 4898 20980 333.40 23600 0.203 0.213 4827 22622 333.24 18855 0.180 0.191 4745 24814 333.08 14209 0.153 0.166 4646 27975 332.92 9690 0.120 0.136 4519 33185 332.76 5347 0.070 0.095 4343 45769 Drawdown Time = 2.88 days By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.852 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of orifice = 0.049 sf Q = 0.2181 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time = 2.84 days Type.... Outlet Input Data Name.... SOUTH - ASBUILT Page 1.01 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 332.54 ft Increment = .20 ft Max. Elev.= 340.00 ft Spot Elevations, ft 332.54 OUTLET CONNECTIVITY ---> Forward Flow Only (Upstream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft --------- E2, ft --------- ----------------- Stand Pipe ---- RI ------- ---> BA 338.070 340.000 Orifice-Circular SI ---> BA 332.540 340.000 Culvert-Circular BA ---> TW 329.070 340.000 Weir-XY Points ES ---> TW 338.430 340.000 TW SETUP, DS Channel SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:40 AM 9/22/2010 Type.... Outlet Input Data Name.... SOUTH - ASBUILT Page 1.02 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = RI Structure Type = Stand Pipe ------------ ------------------- # of Openings = ----- 1 Invert Elev. = 338.07 ft Diameter = 6.0000 ft Orifice Area = 28.2743 sq.ft Orifice Coeff. _ .600 Weir Length = 18.85 ft Weir Coeff. = 3.000 K, Reverse = 1.000 Mannings n = .0000 Kev,Charged Riser = .000 Weir Submergence = No Structure ID = SI Structure Type = Orifice-Circular ------------------------------------ # of Openings = 1 Invert Elev. = 332.54 ft Diameter = .2500 ft Orifice Coeff. _ .600 SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:40 AM 9/22/2010 Type.... Outlet Input Data Name.... SOUTH - ASBUILT Page 1.03 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type -- = Culvert-Circular ------------------ ---------------- No. Barrels = 1 Barrel Diameter = 4.0000 ft Upstream Invert = 329.07 ft Dnstream Invert = 327.95 ft Horiz. Length = 73.00 ft Barrel Length = 73.01 ft Barrel Slope = .01534 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .004925 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.153 T2 ratio (HW/D) = 1.299 Slope Factor = -.500 Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 333.68 ft ---> Flow = 87.96 cfs At T2 Elev = 334.27 ft ---> Flow = 100.53 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:40 AM 9/22/2010 Type.... Outlet Input Data Name.... SOUTH - ASBUILT Page 1.04 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = ES Structure Type = Weir-XY Points ------------------------------------ 4 of Openings = 1 WEIR X-Y GROUND POINTS X, ft Elev, ft .00 340.31 1.91 340.00 8.04 339.00 11.53 338.43 60.85 338.50 63.20 339.00 67.65 339.96 67.90 340.00 Lowest Elev. = 338.43 ft Weir Coeff. = 2.600000 Weir TW effects (Use adjustment equation) Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES ... Maxi mum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:40 AM 9/22/2010 Type.... Composite Rating Curve Name.... SOUTH - ASBUILT Page 1.17 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Notes -------- -- - --- Converge ------- ---- --- ----------- Elev. Q TW El ev Error ft cfs ft +/-ft - Contrib ------- uting Structures ------------------ -------- 332.54 ------- .00 ------ Free -- ----- Outfall (no Q: RI, SI, BA,ES) 332.60 .00 Free Outfall SI,BA (no Q: RI,ES) 332.80 .09 Free Outfall SI,BA (no Q: RI,ES) 333.00 .14 Free Outfall SI,BA (no Q: RI,ES) 333.20 .17 Free Outfall SI,BA (no Q: RI,ES) 333.40 .20 Free Outfall SI,BA (no Q: RI,ES) 333.60 .23 Free Outfall SI,BA (no Q: RI,ES) 333.80 .25 Free Outfall SI,BA (no Q: RI,ES) 334.00 .27 Free Outfall SI,BA (no Q: RI,ES) 334.20 .29 Free Outfall SI,BA (no Q: RI,ES) 334.40 .31 Free Outfall SI,BA (no Q: RI,ES) 334.60 .33 Free Outfall SI,BA (no Q: RI,ES) 334.80 .35 Free Outfall SI,BA (no Q: RI,ES) 335.00 .36 Free Outfall SI,BA (no Q: RI,ES) 335.20 .38 Free Outfall SI,BA (no Q: RI,ES) 335.40 .39 Free Outfall SI,BA (no Q: RI,ES) 335.60 .40 Free Outfall SI,BA (no Q: RI,ES) 335.80 .42 Free Outfall SI,BA (no Q: RI,ES) 336.00 .43 Free Outfall SI,BA (no Q: RI,ES) 336.20 .44 Free Outfall SI,BA (no Q: RI,ES) 336.40 .46 Free Outfall SI,BA (no Q: RI,ES) 336.60 .47 Free Outfall SI,BA (no Q: RI,ES) 336.80 .49 Free Outfall SI,BA (no Q: RI,ES) 337.00 .49 Free Outfall SI,BA (no Q: RI,ES) 337.20 .50 Free Outfall SI,BA (no Q: RI,ES) 337.40 .51 Free Outfall SI,BA (no Q: RI,ES) 337.60 .52 Free Outfall SI,BA (no Q: RI,ES) 337.80 .54 Free Outfall SI,BA (no Q: RI,ES) 338.00 .55 Free Outfall SI,BA (no Q: RI,ES) 338.07 .55 Free Outfall SI,BA (no Q: RI,ES) 338.20 3.20 Free Outfall RI,SI,BA (no Q: ES) 338.40 11.29 Free Outfall RI,SI,BA (no Q: ES) 338.43 12.78 Free Outfall RI,SI,BA (no Q: ES) 338.60 28.85 Free Outfall RI,SI,BA,E S STS VC'f tgIQ( o"S Fvtf- 1, L , Aso lo- M K0Vlla119? SIN: Bentley PondPack (10.00.027.00) 11:40 AM Bentley Systems, Inc. 9/22/2010 Type.... Composite Rating Curve Name.... SOUTH - ASBUILT Page 1.18 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Notes -------- -------- ------ -- Converge ------------------------- Elev. Q TW El ev Error ft cfs ft +/-ft ----- Contributing Structures -------------------------- -------- 338.80 ------- 61.38 ------ Free -- Outfall RI,SI,BA,ES 339.00 103.60 Free Outfall RI,SI,BA,ES 339.20 154.35 Free Outfall RI,SI,BA,ES 339.40 212.56 Free Outfall RI,SI,BA,ES 339.60 277.88 Free Outfall RI,SI,BA,ES 339.80 349.59 Free Outfall RI,SI,BA,ES 340.00 427.60 Free Outfall RI,SI,BA,ES SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:40 AM 9/22/2010 Project: MER-10020 Simulation Run: POST Q1 Reservoir: S Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 1 YR Compute Time: 13Jan2011, 14:51:42 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 61.99 (CFS) Date/Time of Peak Inflow : 23Jan2008, 11:56 Peak Outflow : 0.45 (CFS) Date/Time of Peak Outflow : 24Jan2008, 00:01 Total Inflow : 1.51 (IN) Peak Storage : 2.68 (AC-FT) Total Outflow : 0.21 (IN) Peak Elevation : 336.27 (FT) Project: MER-10020 Simulation Run: POST Q2 Reservoir: S Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 13Jan2011, 14:51:49 Control Specifications: Volume Units: IN Computed Results Peak Inflow : 88.33 (CFS) Peak Outflow : 0.51 (CFS) Total Inflow : 2.02 (IN) Total Outflow : 0.25 (IN) Date/Time of Peak Inflow : Date/Time of Peak Outflow : Peak Storage : Peak Elevation POST 2 YR 1 minute dT 23Jan2008, 12:04 24Jan2008, 00:01 3.64 (AC-FT) 337.49 (FT) Project: MER-10020 Simulation Run: POST Q10 Reservoir: S Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 10 YR Compute Time: 13Jan2011, 14:51:55 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 132.31 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow : 15.52 (CFS) Date/Time of Peak Outflow : 23Jan2008, 12:34 Total Inflow : 3.62 (IN) Peak Storage : 4.42 (AC-FT) Total Outflow : 1.60 (IN) Peak Elevation : 338.45 (FT) Project: MER-10020 Simulation Run: FUTURE 01 Reservoir: S Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE End of Run: 24Jan2008, 00:01 Meteorologic Model: 1 YR Compute Time: 13Jan2011, 16:45:39 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 61.99 (CFS) Peak Outflow : 0.45 (CFS) Total Inflow : 1.51 (IN) Total Outflow : 0.21 (IN) Date/Time of Peak Inflow : 23Jan2008, 11:56 Date/Time of Peak Outflow : 24Jan2008, 00:01 Peak Storage : 2.68 (AC-FT) Peak Elevation : 336.27 (FT) Project: MER-10020 Simulation Run: FUTURE Q2 Reservoir: S Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE End of Run: 24Jan2008, 00:01 Meteorologic Model: 2 YR Compute Time: 13Jan2011, 16:45:44 Control Specifications: 1 minute dT Volume Units: IN Computed Results _ Peak Inflow : 88.33 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow : 0.51 (CFS) Date/Time of Peak Outflow : 24Jan2008, 00:01 Total Inflow : 2.02 (IN) Peak Storage : 3.64 (AC-FT) Total Outflow : 0.25 (IN) Peak Elevation : 337.49 (FT) Project: MER-10020 Simulation Run: FUTURE Q10 Reservoir: S Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 13Jan2011, 16:45:50 Control Specifications: Volume Units: IN Computed Results _ Peak Inflow : 132.31 (CFS) Date/Time of Peak Inflow : Peak Outflow : 15.52 (CFS) Date/Time of Peak Outflow Total Inflow : 3.62 (IN) Peak Storage : Total Outflow : 1.60 (IN) Peak Elevation FUTURE 10 YR 1 minute dT 23Jan2008, 12:04 23Jan2008, 12:34 4.42 (AC-FT) 338.45 (FT) Type.... Outlet Input Data Name.... SOUTH - WC Page 1.01 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 338.07 ft Increment = .20 ft Max. Elev.= 340.00 ft Spot Elevations, ft 338.07 OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft E2, ft Stand Pipe RI ---> BA 338.070 340.000 Culvert-Circular BA ---> TW 329.070 340.000 Weir-XY Points ES ---> TW 338.430 340.000 TW SETUP, DS Channel Water" cAcw PezAvrsls SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:16 PM 9/22/2010 Type.... Outlet Input Data Name.... SOUTH - WC Page 1.02 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = RI Structure Type = Stand Pipe --------- ------ ------------------- # of Openings = -- 1 Invert Elev. = 338.07 ft Diameter = 6.0000 ft Orifice Area = 28.2743 sq.ft Orifice Coeff. _ .600 Weir Length = 18.85 ft Weir Coeff. = 3.000 K, Reverse = 1.000 Mannings n = .0000 Kev,Charged Riser = .000 Weir Submergence = No SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:16 PM 9/22/2010 Type.... Outlet Input Data Name.... SOUTH - WC Page 1.03 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type ---- = Culvert-Circular ------------------ -------------- No. Barrels = 1 Barrel Diameter = 4.0000 ft Upstream Invert = 329.07 ft Dnstream Invert = 327.95 ft Horiz. Length = 73.00 ft Barrel Length = 73.01 ft Barrel Slope = .01534 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .004925 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.153 T2 ratio (HW/D) = 1.299 Slope Factor = -.500 Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 333.68 ft ---> Flow = 87.96 cfs At T2 Elev = 334.27 ft ---> Flow = 100.53 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:16 PM 9/22/2010 Type.... Outlet Input Data Name.... SOUTH - WC Page 1.04 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = ES Structure Type = Weir-XY Points ------------------------------------ 4 of Openings = 1 WEIR X-Y GROUND POINTS X, ft Elev, ft .00 340.31 1.91 340.00 8.04 339.00 11.53 338.43 60.85 338.50 63.20 339.00 67.65 339.96 67.90 340.00 Lowest Elev. = 338.43 ft Weir Coeff. = 2.600000 Weir TW effects (Use adjustment equation) Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES ... Maxi mum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:16 PM 9/22/2010 Type.... Composite Rating Curve Name.... SOUTH - WC Page 1.08 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Elev. Q ft cfs -------- 338.07 ------- .00 338.20 2.65 338.40 10.72 338.43 12.23 338.60 28.26 338.80 60.82 339.00 103.04 339.20 153.84 339.40 212.03 339.60 277.35 339.80 348.97 340.00 427.31 Notes ------ -- Converge ------------- ---- -- TW El ev Error ft +/-ft Contributing ------ Structures ------------ ------ Free -- ----- Outfall -------- (no Q: RI,BA,ES) Free Outfall RIBA (no Q: ES) Free Outfall RI,BA (no Q: ES) Free Outfall RI,BA (no Q: ES) Free Outfall RI,BA,ES Free Outfall RI,BA,ES Free Outfall RI,BA,ES Free Outfall RI,BA,ES Free Outfall RI,BA,ES Free Outfall RI,BA,ES Free Outfall RI,BA,ES Free Outfall RI,BA,ES 506& -UISG1 a6E Cv"e fem. woesrcf"ge f-OLMM s- S/N: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:16 PM 9/22/2010 Project: MER-10020 Simulation Run: POST Q100 Reservoir: S Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 13Jan2011, 15:36:24 Control Specifications: Volume Units: IN Computed Results Peak Inflow : 199.18 (CFS) Peak Outflow : 186.38 (CFS) Total Inflow : 6.09 (IN) Total Outflow : 6.06 (IN) Date/Time of Peak Inflow : Date/Time of Peak Outflow Peak Storage : Peak Elevation : POST - WC 100 YR 1 minute dT 23Jan2008, 12:04 23Jan2008, 12:06 1.02 (AC-FT) 339.31 (FT) Project: MER-10020 Simulation Run: FUTURE Q100 Reservoir: S Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE - WC End of Run: 24Jan2008, 00:01 Meteorologic Model: 100 YR Compute Time: 13Jan2011, 16:45:56 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 199.18 (CFS) Peak Outflow : 186.38 (CFS) Total Inflow : 6.09 (IN) Total Outflow : 6.06 (IN) Date/Time of Peak Inflow : Date/Time of Peak Outflow Peak Storage : Peak Elevation 23Jan2008, 12:04 23Jan2008, 12:06 1.02 (AC-FT) 339.31 (FT) DESIGN OF WEST STO"WATER WETLAND FROM APPROVED ASBUILT CALCULATIONS DATED NOVEMBER 24, 2008 MERCK VACCINE MANUFACTURING FACILITY MER-10020 MERCK VMF EXPANSION WEST WETLAND J. ALDRIDGE, PE MER-10020 9/20/2010 STAGE-STORAGE FUNCTION r Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 294.00 0.00 20456 295.00 1.00 23136 21796 21796 21796 1.02 296.00 2.00 25469 24303 24303 46099 1.97 297.00 3.00 27887 26678 26678 72777 2.95 298.00 4.00 30379 29133 29133 101910 3.97 299.00 5.00 32958 31669 31669 133578 5.03 299.70 5.70 35246 34102 23871 157449 5.82 Ks = 21366 b = 1.134 MERCK VMF EXPANSION WEST WETLAND J. ALDRIDGE, PE MER-10020 9/20/2010 Stage - Storage Function Ks = 21366 b= 1.134 Zo = 294.00 Elevation feet Storage [cf] [acre-feet] 100-YR 294.00 0 0.000 294.20 3444 0.079 294.40 7559 0.174 294.60 11971 0.275 294.80 16589 0.381 295.00 21366 0.490 295.20 26273 0.603 295.40 31292 0.718 295.60 36408 0.836 295.80 41610 0.955 296.00 46891 1.076 296.20 52243 1.199 296.40 57661 1.324 296.60 63140 1.449 296.80 68675 1.577 297.00 74264 1.705 297.20 79903 1.834 297.40 85589 1965 297.60 91321 2.0-96-- 297.80 97095 2.229 297.85 98545 2.262 0.000 298.00 102910 2.362 0.100 298.20 108765 2.497 0.235 298.40 114656 2.632 0.370 298.60 120584 2.768 0.506 298.80 126547 2.905 0.643 299.00 132543 3.043 0.780 299.20 138571 3.181 0.919 299.40 144630 3.320 1.058 299.60 150719 3.460 1.198 299.70 153775 3.530 1.268 MERCK VMF EXPANSION WEST WETLAND J. ALDRIDGE, PE MER-10020 Post Development Analysis 1/20/2011 Source: Stormwater Best Management Practices. NCDWQ. July 2007. Determination of Water Quality Volume =_> WQ v = (P) (R V) (A)/12 where, WQv = water quality volume (in acre-ft) Rv = 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 16.00 acres Impervious area = 5.25 acres Percent impervious cover, I = 32.8 % Rainfall, P = 1.0 inches Calculated values: Rv = 0.35 WQv= 0.46 acre-ft 20056 cf Associated Depth in Wetland =_> WQv= 20056 cf Stage/Storage data: Ks= 21366 b = 1.1340 Zo = 294.00 Volume in 1" rainfall = 20056 cf Calculated values: Depth of WQV in Basin = 0.95 ft 11.35 inches Elevation = 294.95 ft Determination of Surface Area =_> Input data: WQv= 20056 cf Maximum ponding depth = 12 inches Calculated values: Surface area required = 20056 ftZ Surface area provided = 20456 ft` MERCK VMF EXPANSION WEST WETLAND J. ALDRIDGE, PE MER-10020 Post Development Analysis 1/20/2011 DRAWDOWN ORIFICE DESIGN D orifice # orifices Ks b Cd siphon Normal Pool Elevation Volume @ Normal Pool Orifice Invert WSEL @ 1" Runoff Volume 2 inch 1 21366 1.134 0.60 294.00 feet 0 cf 294.00 feet 294.95 feet WSEL (feet) Vol. Stored (cf) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (cf) Incr. Time (sec) 294.95 20056 0.097 294.86 18092 0.093 0.095 1964 20669 294.78 16153 0.088 0.090 1939 21513 294.70 14241 0.082 0.085 1912 22501 294.62 12359 0.077 0.079 1882 23682 294.53 10510 0.070 0.074 1849 25133 294.45 8700 0.064 0.067 1811 26981 294.37 6933 0.056 0.060 1767 29461 294.29 5218 0.048 0.052 1715 33071 294.21 3568 0.037 0.042 1650 39154 294.12 2006 0.020 0.028 1562 55484 Drawdown Time = 3.45 days By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.431 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of orifice = 0.022 sf Q = 0.0690 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time = 3.37 days MERCK VMF EXPANSION WEST WETLAND J. ALDRIDGE, PE MER-10020 Future Development Analysis 1/20/2011 WETLAND SIZING CALCULATIONS Source: Stormwater Best Management Practices. NCDWQ. July 2007. Determination of Water Quality Volume ==> WQ v = (P) (R V) (A)/12 where, WQv= water quality volume (in acre-ft) Rv = 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 13.22 acres Impervious area = 4.65 acres Percent impervious cover, I = 35.2 % Rainfall, P = 1.0 inches Calculated values: Rv= 0.37 WQv = 0.40 acre-ft 17591 cf Associated Depth in Wetland ==> WQv= 17591 cf Stage/Storage data: Ks= 21366 b= 1.1340 Zo = 294.00 Volume in 1" rainfall = 17591 cf Calculated values: Depth of WQV in Basin = 0.84 ft 10.11 inches Elevation = 294.84 ft Determination of Surface Area ==> Input data: WQv = 17591 cf Maximum ponding depth = 12 inches Calculated values: Surface area required = 17591 ftZ Surface area provided = 20456 ft` MERCK VMF EXPANSION WEST WETLAND J. ALDRIDGE, PE MER-10020 Future Development Analysis 1/20/2011 D orifice # orifices Ks b Cd siphon Normal Pool Elevation Volume @ Normal Pool Orifice Invert WSEL @ V Runoff Volume 2 inch 1 21366 1.134 0.60 294.00 feet 0 cf 294.00 feet 294.84 feet WSEL (feet) Vol. Stored W) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. W) Incr. Time (sec) 294.84 17591 0.091 294.77 15868 0.087 0.089 1723 19329 294.70 14168 0.082 0.084 1701 20132 294.62 12491 0.077 0.080 1677 21075 294.55 10840 0.072 0.074 1651 22207 294.48 9219 0.066 0.069 1621 23603 294.40 7630 0.059 0.063 1588 25393 294.33 6080 0.052 0.056 1550 27818 294.26 4576 0.044 0.048 1504 31401 294.18 3129 0.033 0.038 1447 37617 294.11 1759 0.016 0.025 1370 55181 Drawdown Time = 3.28 days. By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.380 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of orifice = 0.022 sf Q = 0.0647 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time = 3.15 days Type.... Outlet Input Data Name.... WEST - ASBUILT Page 2.01 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 294.00 ft Increment = .20 ft Max. Elev.= 299.70 ft OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft E2, ft Stand Pipe RI ---> BA 297.850 299.700 Orifice-Circular SI ---> BA 294.000 299.700 Culvert-Circular BA ---> TW 290.910 299.700 TW SETUP, DS Channel SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:53 AM 9/22/2010 Type.... Outlet Input Data Name.... WEST - ASBUILT Page 2.02 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = RI Structure Type = Stand Pipe - ------ ------------------- # of Openings = ---------- 1 Invert Elev. = 297.85 ft Diameter = 5.0000 ft Orifice Area = 19.6350 sq.ft Orifice Coeff. _ .600 Weir Length = 15.71 ft Weir Coeff. = 3.000 K, Reverse = 1.000 Mannings n = .0000 Kev,Charged Riser = .000 Weir Submergence = No Structure ID = SI Structure Type = Orifice-Circular ------------------------------------ # of Openings = 1 Invert Elev. = 294.00 ft Diameter = .1667 ft Orifice Coeff. _ .600 SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:53 AM 9/22/2010 Type.... Outlet Input Data Name.... WEST - ASBUILT Page 2.03 File.... X:\Project3\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type = Culvert-Circular ------------- - ------------------ No. Barrels -- -- = 1 Barrel Diameter = 3.0000 ft Upstream Invert = 290.91 ft Dnstream Invert = 289.83 ft Horiz. Length = 71.50 ft Barrel Length = 71.51 ft Barrel Slope = .01511 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .007228 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.153 T2 ratio (HW/D) = 1.299 Slope Factor = -.500 Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 294.37 ft ---> Flow = 42.85 cfs At T2 Elev = 294.81 ft ---> Flow = 48.97 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:53 AM 9/22/2010 Type.... Outlet Input Data Name.... WEST - ASBUILT Page 2.04 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES ... Maxi mum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs S/N: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:53 AM 9/22/2010 Type.... Composite Rating Curve Name.... WEST - ASBUILT Page 2.11 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Notes -------- -------- ------ -- Converge ----------- -- ----- Elev. Q TW El ev Error ft cfs ft +/-ft Contributing ------------- Structures ------------ -------- 294.00 ------- .00 ------ Free -- ----- Outfall - (no Q: RI, SI ,BA) 294.20 .04 Free Outfall SI,BA (no Q: RI) 294.40 .06 Free Outfall SI,BA (no Q: RI) 294.60 .08 Free Outfall SI,BA (no Q: RI) 294.80 .09 Free Outfall SI,BA (no Q: RI) 295.00 .10 Free Outfall SI,BA (no Q: RI) 295.20 .11 Free Outfall SI,BA (no Q: RI) 295.40 .12 Free Outfall SI,BA (no Q: RI) 295.60 .13 Free Outfall SI,BA (no Q: RI) 295.80 .14 Free Outfall SI,BA (no Q: RI) 296.00 .15 Free Outfall SI,BA (no Q: RI) 296.20 .15 Free Outfall SI,BA (no Q: RI) 296.40 .16 Free Outfall SI,BA (no Q: RI) 296.60 .17 Free Outfall SI,BA (no Q: RI) 296.80 .17 Free Outfall SI,BA (no Q: RI) 297.00 .18 Free Outfall SI,BA (no Q: RI) 297.20 .19 Free Outfall SI,BA (no Q: RI) 297.40 .19 Free Outfall SI,BA (no Q: RI) 297.60 .20 Free Outfall SI,BA (no Q: RI) 297.80 .20 Free Outfall SI,BA (no Q: RI) 297.85 .20 Free Outfall SI,BA (no Q: RI) 298.00 2.95 Free Outfall RI,SI,BA 298.20 9.97 Free Outfall RI,SI,BA 298.40 19.44 Free Outfall RI,SI,BA 298.60 30.82 Free Outfall RI,SI,BA 298.80 43.84 Free Outfall RI,SI,BA 299.00 58.27 Free Outfall RI,SI,BA 299.20 74.05 Free Outfall RI,SI,BA 299.40 90.35 Free Outfall RI,SI,BA 299.60 91.73 Free Outfall RI,SI,BA 299.70 92.41 Free Outfall RI,BA (no Q: SI) ?R. It Z, AOD to-eft, (Zotrfl S/N: Bentley PondPack (10.00.027.00) 11:52 AM Bentley Systems, Inc. 9/22/2010 Project: MER-10020 Simulation Run: POST Q1 Reservoir: W Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 1 YR Compute Time: 20Jan2011, 10:28:07 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 23.61 (CFS) Peak Outflow : 0.15 (CFS) Total Inflow : 0.91 (IN) Total Outflow : 0.10 (IN) Date/Time of Peak Inflow : Date/Time of Peak Outflow Peak Storage : Peak Elevation 23Jan2008, 11:57 24Jan2008, 00:01 1.07 (AC-FT) 296.00 (FT) Project: MER-10020 Simulation Run: POST Q2 Reservoir: W Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 2 YR Compute Time: 20Jan2011, 10:28:14 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 36.47 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:05 Peak Outflow : 0.17 (CFS) Date/Time of Peak Outflow : 24Jan2008, 00:01 Total Inflow : 1.31 (IN) Peak Storage : 1.58 (AC-FT) Total Outflow : 0.12 (IN) Peak Elevation : 296.81 (FT) Project: MER-10020 Simulation Run: POST Q10 Reservoir: W Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 10 YR Compute Time: 20Jan2011, 10:28:21 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 64.16 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:05 Peak Outflow : 3.35 (CFS) Date/Time of Peak Outflow : 23Jan2008, 14:19 Total Inflow : 2.67 (IN) Peak Storage : 2.37 (AC-FT) Total Outflow : 0.96 (IN) Peak Elevation : 298.01 (FT) Project: MER-10020 Simulation Run: FUTURE Q1 Reservoir: W Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 13Jan2011, 16:45:39 Control Specifications: Volume Units: IN Computed Results FUTURE 1 YR 1 minute dT Peak Inflow : 20.82 (CFS) Peak Outflow : 0.14 (CFS) Total Inflow : 0.96 (IN) otal Outflow : Date/Time of Peak Inflow : 23Jan2008, 11:57 Date/Time of Peak Outflow : 24Jan2008, 00A1 Peak Storage : 0.93 (AC-FT) 0.11 (IN) Peak Elevation : 295.76 (FT) Project: MER-10020 Simulation Run: FUTURE Q2 Reservoir: W Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 13Jan2011, 16:45:44 Control Specifications: Volume Units: IN Computed Results Peak Inflow : 31.83 (CFS) Date/Time of Peak Inflow : Peak Outflow : 0.16 (CFS) Date/Time of Peak Outflow Total Inflow : 1.37 (IN) Peak Storage Total Outflow : 0.14 (IN) Peak Elevation : FUTURE 2 YR 1 minute dT 23Jan2008, 12:05 24Jan2008, 00:01 1.36 (AC-FT) 296.46 (FT) Project: MER-10020 Simulation Run: FUTURE Q10 Reservoir: W Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 13Jan2011, 16:45:50 Control Specifications: Volume Units: IN Computed Results FUTURE 10 YR 1 minute dT Peak Inflow : 54.92 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:05 Peak Outflow : 1.56 (CFS) Date/Time of Peak Outflow : 23Jan2008, 15:30 Total Inflow : 2.76 (IN) Peak Storage : 2.31 (AC-FT) Total Outflow : 0.70 (IN) Peak Elevation : 297.92 (FT) Type.... Outlet Input Data Name.... WEST - WC Page 2.01 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 297.85 ft Increment = .20 ft Max. Elev.= 299.70 ft Spot Elevations, ft 297.85 OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall El, ft E2, ft ----------------- ---- ------- --------- --------- Stand Pipe RI ---> BA 297.850 299.700 Culvert-Circular BA ---> TW 290.910 299.700 TW SETUP, DS Channel Wore-Q- CASE A-MA1,YSIS SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:17 PM 9/22/2010 Type.... Outlet Input Data Name.... WEST - WC Page 2.02 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = RI Structure Type = ---- Stand Pipe ----------- ------ --------------- # of openings = 1 Invert Elev. = 297.85 ft Diameter = 5.0000 ft Orifice Area = 19.6350 sq.ft Orifice Coeff. _ .600 Weir Length = 15.71 ft Weir Coeff. = 3.000 K, Reverse = 1.000 Mannings n = .0000 Kev,Charged Riser = .000 Weir Submergence = No SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:17 PM 9/22/2010 Type.... Outlet Input Data Name.... WEST - WC Page 2.03 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type ------ = Culvert-Circular ------------------ ------------ No. Barrels = 1 Barrel Diameter = 3.0000 ft Upstream Invert = 290.91 ft Dnstream Invert = 289.83 ft Horiz. Length = 71.50 ft Barrel Length = 71.51 ft Barrel Slope = .01511 ft/ft OUTLET CONTROL DATA... Mannings n - .0130 Ke - .5000 Kb - .007228 Kr - .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.153 T2 ratio (HW/D) = 1.299 Slope Factor = -.500 Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 294.37 ft ---> Flow = 42.85 cfs At T2 Elev = 294.81 ft ---> Flow = 48.97 cfs S/N: Bentley PondPack (10.00.027.00) 4:17 PM Bentley Systems, Inc. 9/22/2010 Type.... Outlet Input Data Name.... WEST - WC Page 2.04 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES... Maximum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:17 PM 9/22/2010 Type.... Composite Rating Curve Name.... WEST - WC Page 2.07 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Elev. Q ft cfs --- -------- 297.85 ---- .00 298.00 2.74 298.20 9.76 298.40 19.24 298.60 30.60 298.80 43.64 299.00 58.11 299.20 73.91 299.40 90.35 299.60 91.73 299.70 92.41 Notes --- Converge --- ----------------- TW Elev Error ft +/-ft Contributing Structures -------- ----- -------------------------- Free Outfall (no Q: RI,BA) Free Outfall RI,BA Free Outfall RI,BA Free Outfall RIBA Free Outfall RI,BA Free Outfall RI,BA Free Outfall RI,BA Free Outfall RIBA Free Outfall RIBA Free Outfall RIBA Free Outfall RI,BA ezTA&e-t)ISW?? W"15 O02 VJO"-r CASE R OV-16- S/N: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:17 PM 9/22/2010 Project: MER-10020 Simulation Run: POST Q100 Reservoir: W Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 20Jan2011, 10:28:27 Control Specifications: Volume Units: IN Computed Results _ Peak Inflow : 107.65 (CFS) Date/Time of Peak Inflow : Peak Outflow : 80.35 (CFS) Date/Time of Peak Outflow : Total Inflow : 4.92 (IN) Peak Storage : Total Outflow : 4.89 (IN) Peak Elevation POST - WC 100 YR 1 minute dT 23Jan2008, 12:04 23Jan2008, 12:09 0.97 (AC-FT) 299.28 (FT) Project: MER-10020 Simulation Run: FUTURE Q100 Reservoir: W Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE - WC End of Run: 24Jan2008, 00:01 Meteorologic Model: 100 YR Compute Time: 13Jan2011, 16:45:56 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 91.10 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow : 66.96 (CFS) Date/Time of Peak Outflow : 23Jan2008, 12:09 Total Inflow : 5.04 (IN) Peak Storage : 0.86 (AC-FT) Total Outflow : 5.01 (IN) Peak Elevation : 299.11 (FT) DESIGN OF NORTHWEST STORMWA TER WETLAND MERCK VACCINE MANUFACTURING FACILITY MER-10020 MERCK VMF EXPANSION NORTHWEST WETLAND J. ALDRIDGE, PE MER-10020 10/14/2010 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 297.00 0.00 36538 298.00 1.00 40092 38315 38315 38315 1.01 300.00 3.00 47364 43728 87456 125771 2.92 302.00 5.00 54985 51175 102349 228120 4.96 304.00 7.00 62753 58869 117738 345858 7.18 Ks= 37721 b= 1.124 MERCK VMF EXPANSION NORTHWEST WETLAND J. ALDRIDGE, PE MER-10020 11/11/2010 Stage - Storage Function Ks= 37721 b= 1.124 Zo = 297.00 Elevation Storage [feet] [cq [acre-feet] 100-V_R 297 00 0 0 000 ? 297 20 6179 0 142 297 40 13468 ? 0 309 297.60 21243 0 488 297.80 29353 _ - 1 0 674 298 00 _ 3772 1 1 0, 866 298.20 ?46300 1.063 298.40 55059 1264 298 60 63976 1 469 298 80 73031 1 677 299 00 82213 . i 887 299.20 ,w..91510 2 101 299.40 1 100911 2.317 299 60 110411 2 535 299.80 120002 2.755 300.00 129678 ......_._., 2.977 _.,_._. .300.20__. _. 139435 3.201 i 300.40 149268 3.427 300.60 159172 3.654 30080 169145 3.883 30100 179184 4.113 _ 301.20 189285 4.345 30140 199445 4 579 m. 301.60 209664 4.813 301.80 219937 5 049 302.00 230264 5.286 0.000 302.20 240642 5,524 0.238 302.40 51069 I 5.761 0.478 - ---- 302.60 261545 6.004 0 718 -- 302.80 272067 6.246 0.960 303 00 282635 6.488 1.202 303.20 293246 6 732 1.446 303.40 30?R99 6 977 j 1 690 303.60 ( 31494 l 7.222 1.936 303.80 325329 7 469 2 182 304.00 336104 7.716 ( 2.430 MERCK VMF EXPANSION NORTHWEST WETLAND MER-10020 Post Development Analysis WETLAND SIZING CALCULATIONS Source: Stormwater Best Management Practices. NCDWQ. July 2007. Determination of Water Quality Volume ==> WQ v = (P) (R V) (A)/12 where, WQv = water quality volume (in acre-ft) Rv = 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 8.34 acres Impervious area = 3.39 acres Percent impervious cover, I = 40.6 % Rainfall, P = 1.0 inches Calculated values: Rv = 0.42 WQv = 0.29 acre-ft 12589 cf Associated Depth in Wetland ==> WQv = 12589 cf Stage/Storage data: Ks= 36640 b= 1.1310 Zo = 297.00 Volume in 1" rainfall = 12589 cf Calculated values: Depth of WQV in Basin = 0.39 ft 4.67 inches Elevation = 297.39 ft Determination of Surface Area ==> Input data: WQv= 12589 cf Maximum ponding depth = 12 inches Calculated values: Surface area required = 12589 ftz Surface area provided = 35751 ft` J. ALDRIDGE, PE 1/14/2011 MERCK VMF EXPANSION NORTHWEST WETLAND MER-10020 Post Development Analysis D orifice # orifices Ks b Cd siphon Normal Pool Elevation Volume @ Normal Pool Orifice Invert WSEL @ 1" Runoff Volume 3 inch 1 36640 1.131 0.60 297.00 feet 0 cf 297.00 feet 297.39 feet J. ALDRIDGE, PE 1/13/2011 WSEL (feet) Vol. Stored (cf) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (cf) Incr. Time (sec) 297.39 12589 0.121 297.36 11358 0.113 0.117 1231 10501 297.32 10143 0.105 0.109 1215 11165 297.29 8944 0.095 0.100 1199 12009 297.25 7764 0.085 0.090 1180 13135 297.22 6604 0.069 0.077 1160 15099 297.19 5467 0.054 0.061 1137 18525 297.15 4358 0.040 0.047 1110 23746 297.12 3280 0.027 0.034 1078 32156 297.08 2242 0.016 0.022 1038 47440 297.05 1259 0.008 0.012 983 81503 Drawdown Time = 3.07 days By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.132 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of orifice = 0.049 sf Q = 0.0858 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time = 1.70 days MERCK VMF EXPANSION NORTHWEST WETLAND MER-10020 Future Development Analysis WETLAND SIZING CALCULATIONS Source: Stormwater Best Management Practices. NCDWQ. July 2007. Determination of Water Quality Volume ==> WQ v = (P) (R v) (A)/12 where, WQv = water quality volume (in acre-ft) Rv = 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 12.37 acres Impervious area = 9.82 acres Percent impervious cover, I = 79.4 % Rainfall, P = 1.0 inches Calculated values: Rv = 0.76 WQv= 0.79 acre-ft = 34327 cf Associated Depth in Wetland ==> WQv= 34327 cf Stage/Storage data: Ks= 36640 b = 1.1310 Zo = 297.00 Volume in V rainfall = 34237 cf Calculated values: Depth of WQV in Basin = 0.94 ft 11.30 inches Elevation = 297.94 ft Determination of Surface Area ==> Input data: WQv= 34327 cf Maximum pending depth = 12 inches Calculated values: Surface area required = 34327 ft1 Surface area provided = 35751 ft` J. ALDRIDGE, PE 1/13/2011 MERCK VMF EXPANSION NORTHWEST WETLAND MER-10020 Future Development Analysis D orifice # orifices Ks b Cd siphon Normal Pool Elevation Volume @ Normal Pool Orifice Invert WSEL @ 1" Runoff Volume 3 inch 1 36640 1.131 0.60 297.00 feet 0 cf 297.00 feet 297.94 feet J. ALDRIDGE, PE 1/13/2011 WSEL (feet) Vol. Stored (cf) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (cf) Incr. Time (sec) 297.94 34237 0.213 297.86 30891 0.202 0.208 3346 16102 297.78 27587 0.191 0.197 3304 16815 297.70 24328 0.178 0.185 3259 17661 297.61 21119 0.165 0.172 3209 18688 297.53 17966 0.151 0.158 3153 19976 297.45 14875 0.135 0.143 3090 21663 297.37 11858 0.117 0.126 3017 24024 297.29 8928 0.095 0.106 2930 27710 297.21 6107 0.062 0.079 2821 35902 297.12 3433 0.029 0.046 2674 58656 Drawdown Time = 2.98 days By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.408 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of orifice = 0.049 sf Q = 0.1510 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time = 2.62 days Type.... Outlet Input Data Name.... NORTHWEST Page 2.01 File.... X:\Projects\MER\MER.-10020\Storm\Construction Drawings\Design Files\Design.ppw REQUESTED POND WS ELEVATIONS: Min. Elev.= 297.00 ft Increment = .20 ft Max. Elev.= 304.00 ft OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall ----- E1, ft --------- E2, ft --------- ----------------- Orifice-Circular ---- 01 ---> -- BA 298.000 304.000 Inlet Box RI ---> BA 302.000 304.000 Orifice-Circular Si ---> BA 297.000 304.000 Culvert-Circular BA ---> TW 295.300 304.000 Weir-Rectangular ES ---> TW 303.000 304.000 TW SETUP, DS Channel SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 10:59 AM 11/11/2010 Type.... Outlet Input Data Name.... NORTHWEST Page 2.02 File.... X:\Projects\MER\MER-10020\Storm\Construction Drawings\Design Files\Design.ppw OUTLET STRUCTURE INPUT DATA Structure ID = 01 Structure Type = Orifice-Circular ------------------------------------ # of openings = 1 Invert Elev. = 298.00 ft Diameter = .3333 ft Orifice Coeff. _ .600 Structure ID = RI Structure Type --- = Inlet Box ------------------ --------------- # of Openings = 1 Invert Elev. = 302.00 ft Orifice Area = 25.0000 sq.ft Orifice Coeff. _ .600 Weir Length = 20.00 ft Weir Coeff. = 3.000 K, Reverse = 1.000 Mannings n = .0000 Kev,Charged Riser = .000 Weir Submergence = No Structure ID = SI Structure Type = Orifice-Circular. ------------------------------------ # of openings = 1 Invert Elev. = 297.00 ft Diameter = .2500 ft Orifice Coeff. _ .600 SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 10:59 AM 11/11/2010 Type.... Outlet Input Data Name.... NORTHWEST Page 2.03 File.... X:\Projects\MER\MER-10020\Storm\Construction Drawings\Design Files\Design.ppw OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type = Culvert-Circular ------------------ ------------------ No. Barrels = 1 Barrel Diameter = 3.0000 ft Upstream Invert = 295.30 ft Dnstream Invert = 295.00 ft Horiz. Length = 52.00 ft Barrel Length = 52.00 ft Barrel Slope = .00577 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .007228 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.157 T2 ratio (HW/D) = 1.304 Slope Factor = -.500 Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 298.77 ft ---> Flow = 42.85 cfs At T2 Elev = 299.21 ft ---> Flow = 48.97 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 10:59 AM 11/11/2010 Type.... Outlet Input Data Name.... NORTHWEST Page 2.04 File.... X:\Projects\MER\MER-10020\Storm\Construction Drawings\Design Files\Design.ppw OUTLET STRUCTURE INPUT DATA Structure ID Structure Type -------------- # of openings Crest Elev. Weir Length Weir Coeff. ES Weir-Rectangular --------------- 1 303.00 ft 20.00 ft 2.600000 Weir TW effects (Use adjustment equation) Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES ... Maximum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 10:59 AM 11/11/2010 Type.... Composite Rating Curve Name.... NORTHWEST Page 2.50 File.... X:\Projects\MER\MER-10020\Storm\Construction Drawings\Design Files\Design.ppw ***** COMPOSITE OUTFLOW SUMMARY.' **** WS Elev, Total Q ---------------- Elev. Q ft cfs 297.00 297.20 297.40 297.60 297.80 298.00 298.20 298.40 298.60 298.80 299.00 299.20 299.40 299.60 299.80 300.00 300.20 300.40 300.60 300.80 301.00 301.20 301.40 301.60 301.80 302.00 302.20 302.40 302.60 302.80 303.00 303.20 303.40 303.60 303.80 304.00 .00 .06 .12 .16 .19 .22 .31 .47 .56 .64 .70 .77 .82 .87 .93 .97 1.01 1.06 1.10 1.14 1.17 1.21 1.25 1.28 1.31 1.34 6.74 16.56 29.25 44.19 61.04 84.09 100.65 113.09 127.53 143.71 Notes -------- Converge ------------------------- -- c I --_ L --- ft +/-ft Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfall Free Outfal.l Free Outfall Free Outfall Free Outfall Contributing Structures (no Q: 01,RI,SI,BA,ES) SI,BA (no Q: 01,RI,ES) SI,BA (no Q: 01,RI,ES) SI,BA (no Q: 01,RI,ES) SI,BA (no Q: 01,RI,ES) SI,BA (no Q: 01,RI,ES) 01,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) O1,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) O1,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) O1,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) 01,SI,BA (no Q: RI,ES) O1,SI,BA (no Q: RI,ES) Ol,SI,BA (no Q: RI,ES) 01,RI,SI,BA (no Q: ES) 01,RI,SI,BA (no Q: ES) 01,RI,SI,BA (no Q: ES) 01,RI,SI,BA (no Q: ES) Ol,RI,SI,BA (no Q: ES) 01.,RI,SI,BA,ES 01,RI,SI,BA,ES 01,RI,SI,BA,ES RI,BA,ES (no Q: 01,SI) RI,BA,ES (no Q: O1,SI) STP6E-L>1SC-VbAQ4e CUP-VF- Fcf- 1,Z, ArJD )()-Y K 90th ?,& SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 10:59 AM 11/11/2010 Project: MER-10020 Simulation Run: POST Q1 Reservoir: NW Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 1 YR Compute Time: 13Jan2011, 14:51:42 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 19.05 (CFS) Date/Time of Peak Inflow : 23Jan2008, 11:57 Peak Outflow : 0.21 (CFS) Date/Time of Peak Outflow : 24Jan2008, 00A1 Total Inflow : 1.38 (IN) Peak Storage : 0.76 (AC-FT) Total Outflow : 0.29 (IN) Peak Elevation : 297.91 (FT) Project: MER-10020 Simulation Run: POST Q2 Reservoir: NW Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 2 YR Compute Time: 13Jan2011, 14:51:49 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 27.54 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:05 Peak Outflow : 0.25 (CFS) Date/Time of Peak Outflow : 23Jan2008, 21:37 Total Inflow : 1.86 (IN) Peak Storage : 1.05 (AC-FT) Total Outflow : 0.35 (IN) Peak Elevation : 298.22 (FT) Project: MER-10020 Simulation Run: POST Q10 Reservoir: NW Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 10 YR Compute Time: 13Jan2011, 14:51:55 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 42.45 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow : 0.34 (CFS) Date/Time of Peak Outflow : 24Jan2008, 00:01 Total Inflow : 3.42 (IN) Peak Storage : 2.03 (AC-FT) Total Outflow : 0.49 (IN) Peak Elevation : 299.18 (FT) Project: MER-10020 Simulation Run: FUTURE Q1 Reservoir: NW Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE End of Run: 24Jan2008, 00:01 Meteorologic Model: 1 YR Compute Time: 13Jan2011, 16:45:39 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 46.65 (CFS) Date/Time of Peak Inflow : 23Jan2008, 11:56 Peak Outflow : 0.35 (CFS) Date/Time of Peak Outflow : 24Jan2008, 00:01 Total Inflow : 2.45 (IN) Peak Storage : 2.15 (AC-FT) Total Outflow : 0.36 (IN) Peak Elevation : 299.29 (FT) Project: MER-10020 Simulation Run: FUTURE Q2 Reservoir: NW Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE End of Run: 24Jan2008, 00:01 Meteorologic Model: 2 YR Compute Time: 13Jan2011, 16:45:44 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 62.38 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow : 0.39 (CFS) Date/Time of Peak Outflow : 23Jan2008, 23:18 Total Inflow : 3.04 (IN) Peak Storage : 2.71 (AC-FT) Total Outflow : 0.40 (IN) Peak Elevation : 299.81 (FT) Project: MER-10020 Simulation Run: FUTURE Q10 Reservoir: NW Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 13Jan2011, 16:45:50 Control Specifications: Volume Units: IN Computed Results Peak Inflow : 81.09 (CFS) Date/Time of Peak Inflow : Peak Outflow : 0.49 (CFS) Date/Time of Peak Outflow : Total Inflow : 4.79 (IN) Peak Storage ; Total Outflow : 0.52 (IN) Peak Elevation FUTURE 10 YR 1 minute dT 23Jan2008, 12:04 24Jan2008, 00:01 4.40 (AC-FT) 301.32 (FT) Type.... Outlet Input Data Name.... NORTHWEST-WC Page 2.01 File.... X:\Projects\MER\MER-10020\Storm\Construction Drawings\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 302.00 ft Increment = .20 ft Max. Elev.= 304.00 ft OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft E2, ft Inlet Box RI ---> BA 302.000 304.000 Culvert-Circular BA ---> TW 295.300 304.000 Weir-Rectangular ES ---> TW 303.000 304.000 TW SETUP, DS Channel SIN: Bentley PondPack (10.00.027.00) 11:08 AM Bentley Systems, Inc. 11/11/2010 Type.... Outlet Input Data Name.... NORTHWEST-WC Page 2.02 File.... X:\Projects\MER\MER-10020\Storm\Constructi.on Drawings\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = RI Structure Type = Inlet Box ----------- ------------------- # of Openings ------ = 1 Invert Elev. = 302.00 ft Orifice Area = 25.0000 sq.ft Orifice Coeff. _ .600 Weir Length = 20.00 ft Weir Coeff. = 3.000 K, Reverse = 1.000 Mannings n = .0000 Kev,Charged Riser = .000 Weir Submergence = No SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:08 AM 11/11/2010 Type.... Outlet Input Data Name.... NORTHWEST-WC Page 2.03 File.... X:\Projects\MER\MER-10020\Storm\Construction Drawings\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type = Culvert-Circular --------------- ------------------ No. Barrels --- = 1 Barrel Diameter = 3.0000 ft Upstream Invert = 295.30 ft Dnstream Invert = 295.00 ft Horiz. Length = 52.00 ft Barrel Length = 52.00 ft Barrel Slope = .00577 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .007228 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.157 T2 ratio (HW/D) = 1.304 Slope Factor = -.500 Use unsubmerged inlet control Form 1 equ. below T1 el.ev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at Tl & T2... At T1 Elev = 298.77 ft ---> Flow = 42.85 cfs At T2 Elev = 299.21 ft ---> Flow = 48.97 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:08 AM 11/11/2010 Type.... Outlet Input Data Name.... NORTHWEST-WC Page 2.04 File.... X:\Projects\MER\MER-10020\Storm\Construction Drawings\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID Structure Type -------------- # of openings Crest Elev. Weir Length Weir Coeff. ES Weir-Rectangular ---------------- 1 303.00 ft 20.00 ft 2.600000 Weir TW effects (Use adjustment equation) Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES ... Maximum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:08 AM 11/11/2010 Type.... Composite Rating Curve Name.... NORTHWEST-WC Page 2.08 File.... X:\Projects\MER\MER-10020\Storm\Construction Drawings\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Elev. Q ft cfs -- -------- 302.00 ----- .00 302.20 5.37 302.40 15.19 302.60 27.90 302.80 42.92 303.00 60.01 303.20 83.52 303.40 100.65 303.60 113.09 303.80 127.53 304.00 143.71 Notes ------ -- Converge ------------- ------------ TW El ev Error ft +/-ft Contributing -------------- Structures ------------ ------ Free -- ----- Outfall (no Q: RI,BA ,ES) Free Outfall RIBA (no Q: ES) Free Outfall RIBA (no Q: ES) Free Outfall RI,BA (no Q: ES) Free Outfall RI,BA (no Q: ES) Free Outfall RI,BA (no Q: ES) Free Outfall RI,BA,ES Free Outfall RI,BA,ES Free Outfall RI,BA,ES Free Outfall RI,BA,ES Free Outfall RI,BA,ES 5-Cf" - piss VAIME GOINF- Fiy2 loo-,fe- Mf-STCAS4-- Rpt??- S/N: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 11:05 AM 11/11/2010 Project: MER-10020 Simulation Run: POST Q100 Reservoir: NW Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST - WC End of Run: 24Jan2008, 00:01 Meteorologic Model: 100 YR Compute Time: 13Jan2011, 15:36:24 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 65.22 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow : 38.28 (CFS) Date/Time of Peak Outflow : 23Jan2008, 12:11 Total Inflow : 5.86 (IN) Peak Storage : 0.88 (AC-FT) Total Outflow : 5.82 (IN) Peak Elevation : 302.74 (FT) Project: MER-10020 Simulation Run: FUTURE Q100 Reservoir: NW Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE - WC End of Run: 24Jan2008, 00:01 Meteorologic Model: 100 YR Compute Time: 13Jan2011, 16:45:56 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 111.82 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow : 72.27 (CFS) Date/Time of Peak Outflow : 23Jan2008, 12:09 Total Inflow : 7.40 (IN) Peak Storage : 1.37 (AC-FT) Total Outflow : 7.36 (IN) Peak Elevation : 303.15 (FT) MERCK VMF EXPANSION NORTHWEST WETLAND J. ALDRIDGE, PE MER-10020 10/14/2010 RISER ANTI-FLOTATION CALCULATION J Input Data ==> Inside length of riser = Inside width of riser = Wall thickness of riser = Base thickness of riser = Base length of riser = Base width of riser = Inside height of Riser = Concrete unit weight = OD of barrel exiting manhole = Size of drain pipe (if present) = Trash Rack water displacement = Concrete Present in Riser Structure ==> Total amount of concrete: Adjust for openings: 5.00 feet 5.00 feet 6.00 inches 8.00 inches 6.00 feet 6.00 feet 6.70 feet 142.0 PCF Note: NC Products lists unit wt. of 44.00 inches manhole concrete at 142 PCF. 8.0 inches 61.74 CF Base of Riser = 24.000 CF Riser Walls = 73.700 CF Opening for barrel = 5.280 CF Opening for drain pipe = 0.175 CF Total Concrete present, adjusted for openings = 92.246 CF Weight of concrete present = 13099 lbs Amount of water displaced by Riser Structure ==> Displacement by concrete = 92.246 CF Displacement by open air in riser = 167.500 CF Displacement by trash rack = 61.740 CF Total water displaced by riser/barrel structure = 321.486 CF Weight of water displaced = 20061 lbs Calculate amount of concrete to be added to riser ==> Safety factor to use = 1.15 (recommend 1.15 or higher) Must add = 9971 lbs concrete for buoyancy Concrete unit weight for use = 142 PCF (note above observation for NCP concrete) Buoyant weight of this concrete = 79.60 PCF Buoyant, with safety factor applied = 69.22 PCF Therefore, must add = 144.052 CF of concrete Standard based described above = 24.000 CF of concrete Therefore, base design must have = 168.052 CF of concrete MERCK VMF EXPANSION NORTHWEST WETLAND J. ALDRIDGE, PE MER-10020 10/14/2010 Calculate size of base for riser assembly ==> Length = 9.000 feet Width = 9.000 feet Thickness = 25.0 inches Concrete Present = 168.750 CF OK Check validity of base as designed ==> Total Water Displaced = 466.236 CF Total Concrete Present = 236.996 CF Total Water Displaced = 29093 lbs Total Concrete Present = 33653 lbs Actual safety factor = 1.16 OK Results of design ==> Base length = 9.00 feet Base width = 9.00 feet Base Thickness = 25.00 inches CY of concrete total in base = 6.25 CY Concrete unit vveight ix? added base >-- 142 PCF MERCK VMF EXPANSION NORTHWEST WETLAND J. ALDRIDGE, PE MER-10020 11/15/2010 Velocity Dissipator NRCD Land Quality Section Pipe Design Entering the following values will provide you with the expected outlet velocity and depth of flow in a pipe, assuming the Manning's roughness number is constant over the entire length of the pipe. Flow Qio (efs) = 1.07 Slope S (%) = 0.58 Pipe Diameter Do (in) = 36 Manning's `n' = 0.013 Flow Depth (ft) = 0.30 Outlet Velocity (fps) = 2.89 NRCD Land Quality Section NYDOT Dissipator Design Results Pipe Diameter (ft) = 3.00 Outlet Velocity (fps) = 2.23 Apron Length (ft) = IS. 00 d50 Stone Thickness (inches) Class (inches) 3 A 9 6 B 22 13 B or 1 22 23 2 27 Width = La + Do Width(ft)=18+3=21 Use NCDOT Class `B' Rip Rap d50=6" 18'L x 21'W x 22"Thick DESIGN OF SOUTHEAST STORMWA TER WETLAND FROM APPROVED DESIGN CALCULATIONS DATED NOVEMBER 3, 2008 MERCK VACCINE MANUFACTURING FACILITY MER-10020 MERCK VMF EXPANSION SOUTHEAST WETLAND J. ALDRIDGE, PE MER-10020 9/20/2010 Average Incremental Accumulated Estimated Contour Contour Contour Contour Stage Contour Stage Area Area Volume Volume w/ S-S Fxn (feet) (feet) (SF) (SF) (CF) (CF) (feet) 322.00 0.00 11913 - _-_------.......- -------- 322.50 0.50 15061 1_3487 _ 6744 6744 y 0.50 323.00 1.00 18337 16699 _ 8350 15093 - 0.99 324.00 2.00 _ 20708 19523 19523 34616 2.00 325.00 3.00 22382 21545 21545 56161 3.00 326.00 4.00 24113 23248 23248 79408 4.02 Storage vs. Stage 90000 -- -- ?, ---- -- "--"-"- - - --? 80000 j y = 15242x' 187 70000 R2 = 1 60000 LL U 50000 m E 40000 0 in 30000 20000 10000 0 0. 00 1.00 2.00 3.00 4.00 5. 00 Stage (feet) Ks = 15242 b = 1.187 MERCK VMF EXPANSION SOUTHEAST WETLAND J. ALDRIDGE, PE MER-10020 9/20/2010 Stage - Storage Function Ks = 15242 b= 1.187 Zo = 322.00 Elevation feet Storage [cf] [acre-feet] 100-YR 322.00 . 0 0.000 322.20 2256 0.052 322.40 513 7 0.118 322.60 _ _ 8312 0.191 322.80 11695 0.268 323.00 15242 0.350 323.20 18925 0.434 323.40 22725 0.522 323.60 26628 0.611 323.80 30623 0.703 324.00 34703 0.797 0.000 324.20 38860 0.892 _ 0.095 324.40 43088 0.989 T 0.192 324.60 47382 1.088 0.291 324.80 51739 1.188 0.391 325.00 56155 _ 1.289 0.492 325.20 60625 1.392 _ 0.595 325.40 65149 1.496 _ 0.699 325.60 69723 1.601 0.804 325.80 74344 1.707 0.910 326.00 79011 1.814 1.017 MERCK VMF EXPANSION SOUTHEAST WETLAND MER-10020 Post Development Analysis WETLAND SIZING CALCULATIONS Source: Stormwater Best Management Practices. NCDWQ. July 2007. Determination of Water Quality Volume ==> WQ v = (P) (R V) (A)/J2 where, WQv = water quality volume (in acre-ft) Rv= 0.05+0.009(I) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 5.08 acres Impervious area = 3.34 acres Percent impervious cover, I = 65.7 % Rainfall, P = 1.0 inches Calculated values: Rv = 0.64 WQv = 0.27 acre-ft 11834 cf Associated Depth in Wetland ==> WQv = 11834 cf Stage/Storage data: Ks= 15242 b = 1.1870 Zo = 322.00 Volume in 1" rainfall = 11834 cf Calculated values: Depth of WQV in Basin = 0.81 ft 9.70 inches Elevation = 322.81 ft Determination of Surface Area ==> Input data: WQv= 11834 cf Maximum ponding depth = 12 inches Calculated values: Surface area required = 11834 ftZ Surface area provided = 11913 ft` J. ALDRIDGE, PE 1/13/2011 MERCK VMF EXPANSION SOUTHEAST WETLAND MER-10020 Post Development Analysis D orifice # orifices Ks b Cd siphon Normal Pool Elevation Volume @ Normal Pool Orifice Invert WSEL @ 1" Runoff Volume 2 inch 1 15242 1.187 0.60 322.00 feet 0 cf 322.00 feet 322.81 feet J. ALDRIDGE, PE 1/13/2011 WSEL (feet) Vol. Stored (cf) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (cf) Incr. Time (sec) 322.81 11834 0.089 322.74 10641 0.085 0.087 1193 13697 322.67 9469 0.080 0.083 1172 14190 322.60 8319 0.075 0.078 1150 14766 322.53 7194 0.070 0.073 1125 15455 322.46 6096 0.065 0.067 1098 16299 322.39 5028 0.058 0.061 1068 17375 322.32 3995 0.051 0.055 1033 18819 322.25 3003 0.043 0.047 992 20929 322.19 2061 0.033 0.038 942 24515 322.12 1183 0.018 0.026 877 34305 Drawdown Time = 2.20 days By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.362 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of orifice = 0.022 sf Q = 0.0632 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time = 2.17 days MERCK VMF EXPANSION SOUTHEAST WETLAND MER-10020 Future Development Analysis Source: Stormwater Best Management Practices. NCDWQ. July 2007. Determination of Water Quality Volume ==> WQ v = (P) (R V) (A)/12 where, WQv = water quality volume (in acre-ft) Rv = 0.05+0.009(1) where I is percent impervious cover A = area in acres P = rainfall (in inches) Input data: Total area, A = 5.08 acres Impervious area = 3.34 acres Percent impervious cover, I = 65.7 % Rainfall, P = 1.0 inches Calculated values: Rv = 0.64 WQv = 0.27 acre-ft 11834 cf Associated Deptli in Wetland ==> WQv= 11834 cf Stage/Storage data: Ks = 15242 b = 1.1870 Zo = 322.00 Volume in 1" rainfall = 11834 cf Calculated values: Depth of WQV in Basin = 0.81 ft 9.70 inches Elevation = 322.81 ft Determination of Surface Area ==> Input data: WQv= 11834 cf Maximum ponding depth = 12 inches Calculated values: Surface area required = 11834 ftz Surface area provided = 11913 ft` J. ALDRIDGE, PE 1/13/2011 MERCK VMF EXPANSION SOUTHEAST WETLAND MER-10020 Future Development Analysis D orifice # orifices Ks b Cd siphon Normal Pool Elevation Volume @ Normal Pool Orifice Invert WSEL @ 1" Runoff Volume 2 inch 1 15242 1.187 0.60 322.00 feet 0 cf 322.00 feet 322.81 feet J. ALDRIDGE, PE 1/13/2011 WSEL (feet) Vol. Stored (cf) Siphon Flow (cfs) Avg. Flow (cfs) Incr. Vol. (cf) Incr. Time (sec) 322.81 11834 0.089 322.74 10641 0.085 0.087 1193 13697 322.67 9469 0.080 0.083 1172 14190 322.60 8319 0.075 0.078 1150 14766 322.53 7194 0.070 0.073 1125 15455 322.46 6096 0.065 0.067 1098 16299 322.39 5028 0.058 0.061 1068 17375 322.32 3995 0.051 0.055 1033 18819 322.25 3003 0.043 0.047 992 20929 322.19 2061 0.033 0.038 942 24515 322.12 1183 0.018 0.026 877 34305 Drawdown Time = 2.20 days By comparison, if calculated by the average head over the orifice (assuming average head is half the total depth), the result would be: Average driving head on orifice = 0.362 feet Orifice composite loss coefficient = 0.600 Cross-sectional area of orifice = 0.022 sf Q = 0.0632 cfs Drawdown Time = Volume / Flowrate / 86400 (sec/day) Drawdown Time = 2.17 days Type.... Outlet Input Data Name.... SOUTHEAST Page 2.01 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 322.00 ft Increment = .20 ft Max. Elev.= 326.00 ft OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft E2, ft Inlet Box RI ---> BA 324.000 326.000 Orifice-Circular SI ---> BA 322.000 326.000 Culvert-Circular BA ---> TW 320.000 326.000 TW SETUP, DS Channel SIN: Bentley Systems, Inc. Bentley PondPack (10.00.02V.00) 2:03 PM 9/22/2010 Type.... Outlet Input Data Name.... SOUTHEAST Page 2.02 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = RI Structure Type = ------------------- Inlet Box ----------------- # of Openings = 1 Invert Elev. = 324.00 ft Orifice Area = 16.0000 sq.ft Orifice Coeff. _ .600 Weir Length = 16.00 ft Weir Coeff. = 3.000 K, Reverse = 1.000 Mannings n = .0000 Kev,Charged Riser = .000 Weir Submergence = No Structure ID = SI Structure Type = Orifice-Circular ------------------------------------ # of Openings = 1 Invert Elev. = 322.00 ft Diameter = .1667 ft Orifice Coeff. _ .600 SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 2:03 PM 9/22/2010 Type.... Outlet Input Data Name.... SOUTHEAST Page 2.03 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type = Culvert-Circular --------------- ------------------ No. Barrels --- = 1 Barrel Diameter = 1.5000 ft Upstream Invert = 320.00 ft Dnstream Invert = 318.00 ft Horiz. Length = 52.50 ft Barrel Length = 52.54 ft Barrel Slope = .03810 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .018213 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.141 T2 ratio (HW/D) = 1.288 Slope Factor = -.500 Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 321.71 ft ---> Flow = 7.58 cfs At T2 Elev = 321.93 ft ---> Flow = 8.66 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 2:03 PM 9/22/2010 Type.... Outlet Input Data Name.... SOUTHEAST Page 2.04 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES ... Maxi mum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 2:03 PM 9/22/2010 Type.... Composite Rating Curve Name.... SOUTHEAST Page 2.11 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Notes -------- -------- ------ -- Converge ------- ---- -- ------------ Elev. Q TW El ev Error ft cfs ft +/-ft ----- Contrib -------- uting ------ Structures ------------ -------- 322.00 ------- .00 ------ Free -- Outfall (no Q: RI, SI ,BA) 322.20 .04 Free Outfall SI,BA (no Q: RI) 322.40 .06 Free Outfall SI,BA (no Q: RI) 322.60 .08 Free Outfall SI,BA (no Q: RI) 322.80 .09 Free Outfall SI,BA (no Q: RI) 323.00 .10 Free Outfall SI,BA (no Q: RI) 323.20 .11 Free Outfall SI,BA (no Q: RI) 323.40 .12 Free Outfall SI,BA (no Q: RI) 323.60 .13 Free Outfall SI,BA (no Q: RI) 323.80 .14 Free Outfall SI,BA (no Q: RI) 324.00 .15 Free Outfall SI,BA (no Q: RI) 324.20 4.45 Free Outfall RI,SI,BA 324.40 12.26 Free Outfall RI,SI,BA 324.60 16.86 Free Outfall RI,SI,BA 324.80 17.32 Free Outfall RIBA (no Q: SI) 325.00 17.77 Free Outfall RIBA (no Q: SI) 325.20 18.20 Free Outfall RIBA (no Q: SI) 325.40 18.63 Free Outfall RI,BA (no Q: SI) 325.60 19.05 Free Outfall RIBA (no Q: SI) 325.80 19.45 Free Outfall RIBA (no Q: SI) 326.00 19.85 Free Outfall RI,BA (no Q: SI) ` IA&C - lmsab4"'e ly"E FCe- % r Z I P04> 10-f f- CR5nIJG- S/N: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 2:04 PM 9/22/2010 Project: MER-10020 Simulation Run: POST Q1 Reservoir: SE Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 13Jan2011, 14:51:42 Control Specifications: Volume Units: IN Computed Results POST 1 YR 1 minute dT Peak Inflow : 16.32 (CFS) Date/Time of Peak Inflow : 23Jan2008, 11:56 Peak Outflow : 0.14 (CFS) Date/Time of Peak Outflow : 24Jan2008, 00:01 Total Inflow : 1.98 (IN) Peak Storage : 0.69 (AC-FT) Total Outflow : 0.34 (IN) Peak Elevation : 323.78 (FT) Project: MER-10020 Simulation Run: POST Q2 Reservoir: SE Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST End of Run: 24Jan2008, 00:01 Meteorologic Model: 2 YR Compute Time: 13Jan2011, 14:51:49 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 22.40 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow : 0.68 (CFS) Date/Time of Peak Outflow : 23Jan2008, 14:59 Total Inflow : 2.54 (IN) Peak Storage : 0.81 (AC-FT) Total Outflow : 0.65 (IN) Peak Elevation : 324.02 (FT) Project: MER-10020 Simulation Run: POST Q10 Reservoir: SE Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 13Jan2011, 14:51:55 Control Specifications: Volume Units: IN Computed Results Peak Inflow : 30.86 (CFS) Date/Time of Peak Inflow : Peak Outflow : 8.62 (CFS) Date/Time of Peak Outflow Total Inflow : 4.24 (IN) Peak Storage : Total Outflow : 2.34 (IN) Peak Elevation POST 10 YR 1 minute dT 23Jan2008, 12:04 23Jan2008, 12:18 0.94 (AC-FT) 324.31 (FT) Project: MER-10020 Simulation Run: FUTURE Q1 Reservoir: SE Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE End of Run: 24Jan2008, 00:01 Meteorologic Model: 1 YR Compute Time: 13Jan2011, 16:45:39 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 16.32 (CFS) Date/Time of Peak Inflow : 23Jan2008, 11:56 Peak Outflow : 0.14 (CFS) Date/Time of Peak Outflow : 24Jan2008, 00:01 Total Inflow : 1.98 (IN) Peak Storage : 0.69 (AC-FT) Total Outflow : 0.34 (IN) Peak Elevation : 323.78 (FT) Project: MER-10020 Simulation Run: FUTURE Q2 Reservoir: SE Wetland Start of Run: 23Jan2008, 00:00 Basin Model: End of Run: 24Jan2008, 00:01 Meteorologic Model: Compute Time: 13Jan2011, 16:45:44 Control Specifications: Volume Units: IN Computed Results Peak Inflow : 22.40 (CFS) Peak Outflow : 0.68 (CFS) Total Inflow : 2.54 (IN) Total Outflow : 0.65 (IN) Date/Time of Peak Inflow : Date/Time of Peak Outflow Peak Storage : Peak Elevation FUTURE 2 YR 1 minute dT 23Jan2008, 12:04 23Jan2008, 14:59 0.81 (AC-FT) 324.02 (FT) Project: MER-10020 Simulation Run: FUTURE 010 Reservoir: SE Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE End of Run: 24Jan2008, 00:01 Meteorologic Model: 10 YR Compute Time: 13Jan2011, 16:45:50 Control Specifications: 1 minute dT Volume Units: IN Computed Results _ Peak Inflow : 30.86 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow. 8.62 (CFS) Date/Time of Peak Outflow : 23Jan2008, 12:18 Total Inflow : 4.24 (IN) Peak Storage : 0.94 (AC-FT) Total Outflow : 2.34 (IN) Peak Elevation : 324.31 (FT) Type.... Outlet Input Data Name.... SOUTHEAST - WC Page 2.01 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: REQUESTED POND WS ELEVATIONS: Min. Elev.= 324.00 ft Increment = .20 ft Max. Elev.= 326.00 ft OUTLET CONNECTIVITY ---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed Structure No. Outfall E1, ft E2, ft ----------------- ---- ------- --------- --------- Inlet Box RI ---> BA 324.000 326.000 Culvert-Circular BA ---> TW 320.000 326.000 TW SETUP, DS Channel w0f25T cf,% A"N--6s SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:18 PM 9/22/2010 Type.... Outlet Input Data Name.... SOUTHEAST - WC Page 2.02 File.... X:\Project3\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = RI Structure Type = --- Inlet Box ----------------- ---------------- # of Openings = 1 Invert Elev. = 324.00 ft Orifice Area = 16.0000 sq.ft Orifice Coeff. _ .600 Weir Length = 16.00 ft Weir Coeff. = 3.000 K, Reverse = 1.000 Mannings n = .0000 Kev,Charged Riser = .000 Weir Submergence = No SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:18 PM 9/22/2010 Type.... Outlet Input Data Name.... SOUTHEAST - WC Page 2.03 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = BA Structure Type = Culvert-Circular ---------- ----------------- No. Barrels --------- = 1 Barrel Diameter = 1.5000 ft Upstream Invert = 320.00 ft Dnstream Invert = 318.00 ft Horiz. Length = 52.50 ft Barrel Length = 52.54 ft Barrel Slope = .03810 ft/ft OUTLET CONTROL DATA... Mannings n = .0130 Ke = .5000 Kb = .018213 Kr = .5000 HW Convergence = .001 (forward entrance loss) (per ft of full flow) (reverse entrance loss) +/- ft INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0098 Inlet Control M = 2.0000 Inlet Control c = .03980 Inlet Control Y = .6700 T1 ratio (HW/D) = 1.141 T2 ratio (HW/D) = 1.288 Slope Factor = -.500 Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. In transition zone between unsubmerged and submerged inlet control, interpolate between flows at Tl & T2... At T1 Elev = 321.71 ft ---> Flow = 7.58 cfs At T2 Elev = 321.93 ft ---> Flow = 8.66 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:18 PM 9/22/2010 Type.... Outlet Input Data Name.... SOUTHEAST - WC Page 2.04 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, BE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: OUTLET STRUCTURE INPUT DATA Structure ID = TW Structure Type = TW SETUP, DS Channel ------------------------------------ FREE OUTFALL CONDITIONS SPECIFIED CONVERGENCE TOLERANCES... Maximum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:18 PM 9/22/2010 Type.... Composite Rating Curve Name.... SOUTHEAST - WC Page 2.07 File.... X:\Projects\MER\MER-10020\Storm\SIA\Design Files\Design.ppw Title... Project Date: 9/22/2010 Project Engineer: J. ALDRIDGE, PE Project Title: MERCK VMF EXPANSION (MER-10020) Project Comments: ***** COMPOSITE OUTFLOW SUMMARY **** WS Elev, Total Q Elev. Q ft cfs -------- 324.00 ------- .00 324.20 4.29 324.40 12.14 324.60 16.86 324.80 17.32 325.00 17.77 325.20 18.20 325.40 18.63 325.60 19.05 325.80 19.45 326.00 19.85 Notes ------ -- Converge ----------------------- -- TW El ev Error ft +/-ft Contributing Structures ---------------- -- ------ Free -- ----- - Outfall ------- (no Q: RIBA) Free Outfall RI, BA C 1CL:Ft? Yo?G 0006 J? ?D Free Outfall RI,BA Free Outfall RI, BA Fem. vw1ST- CXIF- fDLMK'6- Free Outfall RIBA Free Outfall RIBA Free Outfall RIBA Free Outfall RIBA Free Outfall RI,BA Free Outfall RI,BA Free Outfall RI,BA SIN: Bentley Systems, Inc. Bentley PondPack (10.00.027.00) 4:18 PM 9/22/2010 Project: MER-10020 Simulation Run: POST Q100 Reservoir: SE Wetland Start of Run: 23Jan2008, 00:00 Basin Model: POST - WC End of Run: 24Jan2008, 00:01 Meteorologic Model: 100 YR Compute Time: 13Jan2011, 15:36:24 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 44.01 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow : 18.06 (CFS) Date/Time of Peak Outflow : 23Jan2008, 12:14 Total Inflow : 6.80 (IN) Peak Storage : 0.56 (AC-FT) Total Outflow : 6.78 (IN) Peak Elevation : 325.13 (FT) Project: MER-10020 Simulation Run: FUTURE Q100 Reservoir: SE Wetland Start of Run: 23Jan2008, 00:00 Basin Model: FUTURE - WC End of Run: 24Jan2008, 00:01 Meteorologic Model: 100 YR Compute Time: 13Jan2011, 16:45:56 Control Specifications: 1 minute dT Volume Units: IN Computed Results Peak Inflow : 44.01 (CFS) Date/Time of Peak Inflow : 23Jan2008, 12:04 Peak Outflow : 18.06 (CFS) Date/Time of Peak Outflow : 23Jan2008, 12:14 Total Inflow : 6.80 (IN) Peak Storage : 0.56 (AC-FT) Total Outflow : 6.78 (IN) Peak Elevation : 325.13 (FT) NITROGEN EXPORT CALCULATIONS MERCK VACCINE MANUFACTURING FACILITY MER-10020 MERCK VMF EXPANSION NITROGEN EXPORT CALCULATIONS J. ALDRIDGE, PE MER-10020 Post-Development - Summary 1/20/2011 L POST DEVELOPMENT Note that the Unanaiyfccl areas were added to Open On-site Area for nitrogen loading calculations. Sub-basin ID On-site Area [acres] ry Impervious Open Wooded Pond Total To South VV edl nd 14.68 41 3.52 ,_ ?,___ 1.00 24.61 _ To Southeast Wetland 3.34 1.19 0.00 0.55 5.08 To West Wetland 5.25 6.21 3.73 0.81 16.00 _ To North Wetland 10 09 5.71 3.85 1.01 20.66 To Northwest Wetland 3.39 2.83 0.68 1.44 8 34 _. _ .------- N___._ Bvt)ass ? 0.54 - ? 41 '7? 141.95 0.00 ? - 184m, .26 Totals = 37.29 03.12 _ 153.73 4.81 258.95 Sub-basin ID On-site Area 'IN-Load Before /o o Removal TN-Load Alter BMP Type [acresl Treatment fibs/srl Treatment flhe'vrl _ I o South Wetland 24.61 321.02 40%_ _.._ 192 01 Wetland-,__..' To Southeast Wetland _5.08 72.90 40% 4? TI Wetland To West Wetland 16.00 121.96 40% 73.18 _ Wetland To North Wetland 20.66 224.28 40%° f 134.57 _ Wetland To Northwest Wetland 8 77 40 40% ?4, 44 Wetland. BVDaSS _ 1 R4 ?6 146.74 0% 14? %4 Totals - a56.95 964.30 631.25 TN-Load After Treatment = 637.28 lbs/yr 2.46 lbs/ae/yr a o L71 N U' O Q N 1?. ~ a a a Q At w W $ ? ? y W ? W S o ? y„ N s ? M O y s ? o a, z ? ? ??oom ? o U h U Ci ? C3 ? ,ti d ti d4 ?" O p d? O? U y O S ? ? ? p "21 O O ti N ? S U d h o UU ,?U ? ? O Z o? m o s t d n ti w ii ?? gti?hQU j ° A H ? Dl W Q tl d 'tS r a u ti V N p II II C ? 0 W ? H o W ^' a o W N a [r a O ? O y O ti O U O N ? ? 061 Y Y p h O 01 ?- ? W ? ? O ry O ? a U i K z v ? ? ?°o o U h ??+ y n Cl .r ? w w p A U a I m U K m ,ate o ? ? 2 ? w p h 'S z ?li8l I t O Y p sz i o o z a Y ?1 5 Y K a W ? ? ? ? x ? N U v1 Q [? ? IV 'V V A j N .l ? F ? d N M 7 N W W W W W CG W d C O F V l ti cA CA CA O tl d Y r a 'b O U ti U N II II W ? o H W 0.. o C1.1 N la fi O U ? O O o d W a ? ? Q ? ? O 5 ry O w ti E o o .Z? : o o O? ? U O 'w ? Y w ? N bO ?- N U N? N y ..p?' O ? O ? ?' O O -D N p j z -z d O ? ti i O L O ? O 5 N z o ts a K ? ? x ti s ?? w N?? gh?c°OU j ° A r r d G? a a ti H F H C! d Q O d v U ti V -'TO o M ? O ? O W Ei o O 'r^ W '. 0.. o LLl N Q ? x ca a ti y CS Q Q ? O '? o 0.i c o o -o U a C7 D r ?- ? ? ° C y s o C K Z ? ? N U o O d o U ? s U O ? O h fi \ ? AU, tl O iz 5 0 ?s'°x o -Qs ti w s 4? ?t?m b ? tz, x o i o i0 U U `? U O , ? tl i y i O O O ? y i K ? ,? ? x? m Z s '? z o? m o s t m Ln Q h h° Q U u,?' O ? ? ? --i N M 7 Vl H C y W 4 a F F F ti cr cn v i y U ti V T v? c M ? 7 ? u u °a. .o W a ? c H w ?- a o W N O a N ,-a .a ti 0 O ° ? Zl- y S ? O Z ? ??U o m o h ? 0 0 ? A U ,a ? m U O '? tl • ? S d d ?4? d ?" O OU d ? ? o ? x ° x o O U ?L ? U U O O ? z e s O O N y d R n u- ?i ??% g h? h q U N c ,yy' O ? y C ?--i N M 7? W C W O FFH[ +F lti cf) C Y O O v U ti V .o 'IC! cl? M u u w P. o O h w ?- a o LIl N V Q ? x Q w ti O O ? O ?i ? p U N ? r a tl d d ?ow?o ti U ? A ,a m ? U O 'v o o? p, d ? ^C U d y U O ? o ? o °?'`?C3 ?Rx a k v ? s ti x ? z W et a. N ? o ,? ? Vj q E~ ? [? q U „ ?„ N b ? N O A Y ? x' ?? j '-+ N M 7 N H ? 0l a W 4 r a U ti V T `0 0 00 'o o ? v II 11 0 P. h W a. o Ltl N Q x Q a ti 0-2 ° H a y N a ? ? O V ? y ? p tl O ti rO -O U x d ? 't O w N ? O ? o C7 1, v ry ? o? ? W O 5 x? O? K z O ? ry"°s? ? c s v a ? ? ti bo ?- ? 0 h ?? x ?? x C/D ti d N W eq [r Q Q U C4 r S O w 'O ?--? N M 4 tx W E 4L L _ C. C z N E U O s: U ? M p ? ? y .fl a d r 0 a v N W "t n ?a N N '-, N 00 r- N i L ?O N 1 0, M O r M 0 00 O Z pq N ? C ? w H y R d O d d O d a O O ti T OC) -I N C) II II 0 .o W Z o F? W ^. R. o W N Q x Q a ti h ? o d b ? o o i ? ti O .a 0 o N Az z o o ? v ? ? a h Q ? ? ? O oI. Z ? ? N U o O d ? o U h o, ti o ? v, o x d Oo v O ° N Y -z SZ 0 4 U 0 ? y Ei tt was o ti ?, ? .? ohs N d z w O r o O i O ° ? N o z , i 'n y O N z IS t i w i 13 4z ??. v1 N Q?? [? Q U b ' ?. W Qr 0. Aw 0. ti a cr Zn V? cr 'A i 0 a ti I v N O c ? M 0 0 II II C ? 0 nX. W ? o MERCK VMF EXPANSION NITROGEN EXPORT CALCULATIONS J. ALDRIDGE, PE MER-10020 Future-Development - Summary 1/20/2011 If. FUTURE DEVELOPMENT Note that the Unanalyzed areas were added to Open On-site Area for nitrogen loading calculations. Sub-basin ID ? ????? _ On-site Ar To South Wetland 15.00 5.15 _146, _ 1.00 24.61 To Southeast Wetland 3,34 1:19 0.00 0.55 _ 5.08 To West Wetland „ 4.65 5.54 2.22 w 0.81 13.22 To North Wetland 12.00 2.59 3.85 _ ,. ._ 1.01 19.45 To Northwest Wetland 9 82 1.11 0.00 1.44 12.37 Byr?ss. _._ . _.w._ 0.54 41" 111 nc n on l 184.22 I ovals = 45.35 S /.3 i _ 0 0.48 4.81 258.95 -site Area TN-Load Before Removal TN-Load After Sub-basin ID -& -site Re ? BMP Type [acres] Treatment tlbs/vrl ___ Treatment lbs/vrl . To South Wetland 24.61 327.46 40%? 196.47 Wetland 43 74W Wetland To Southeast Wetland 5.08 72.90 _40% tla To West Wetland 13.22 107.53 40% __,_ 64 52 _ Wetland 1_9_45 , 261.03 40% 1 26.62 Wetland To North Wetland etland 12.37 21 To Northwest W1 1 ' . 40°jo I26.7? ?VcLlattd 184.22 14r 1-1 , iotals 258.95 1120,85 73+.79 TN-Load After Treatment = 734.79 lbs/yr 2.84 lbs/ac/yr w -? a o W N ? N ? r. Q .-1 Q a ? ? o ? o x o ? o O .°o U ? O a a+ °' ? e ? W a ? ? d W ?L o o N U > F 5 O ? -I O ? O o ? s A NC Zia o ? ° o Z m o • ? ? '? U Ct y O ? ti ? ? ? z o ? ? °x? ?a w N Cl q h q U J N Cl A x ? CUL C4 w E"' ? °' W C W W W W W O ? i ? ? F ? ? lti ? r n r C i r O ti v ti V M II it 0 W y z O ? H W a. o Cil N Q r. Q .a tl Y Q 'Ct 0. 'b U ti V e y I I a? '? w ?L L 00 00 O I? O v L H O N W [? x? o U m F O ? ? s x >C o i ? o W ? a d a y c: ? ? 0 N ti ? . V i v 0 ? d\i, ? N H ? ? O fY d ? h c ? o o N U O w "? , ? O O N '? ' CO `p O ZL OJ Y '? ti '? w Y _ N d . O V ## O @ ? ? h N ? N O r O `? ? 4 gg€ d ? ? U O € ? ° U? ? o ° ? ,o ? 0 ? v ,sz n 2 y i r i ? m o y o a, m w Z c o 0 y? by c? O a' " °Y a ° O ? b st o s m ° a, d ° v ti o h a ? h q ? G Z o? m o t m a w ?? ?? , - W wU O d ti T L O ` ti Y Qn Q[?trQU N F ?`? ?o ? b y '6 ? v ? r? a a a a a ?? ?? ?? W W W F F F 'A r/1 v? vl r r M p II II O O C7X.? N ? c H W r. L?. o W N Q ? x? Q a d ti or, '(zs 41 rte. ? .y o p -O O ? ? s W o ? O N M O ? H S ? O SY z ? ??? o z C O Oa ? r p v tio?? U tl? ? O N ., '? d0 ?. 'w N w ? i ? ig p ? oz ?°o? p y U U Z p z o Zx? W s o ? ? w iv a Qh?hgU ?o o y A N ? ? x' O `,? ? N M 7 N aaa w a a? 7 O L O 2 O a z F d o i U \ ? O ?r C R F c Q r 0 h ti v ti I? V N O Ni N N i T O L O l? M O M W ? Zt p Uti fi ? `?-? ? d d N «O+ o > Q O O U ? U ? N ? F ?, U 0 O , so i h i ? o h ? T . v o d o o? v v a o C o ti ° o w :- a o C71 N O Q N a N ? O O ? o o -o U s w ? o ? q ? O C7 i ?' N O ? s s? z ? ??Uom c ? o o h v d `? N y "? O x 2Z) ° o a r o cl , p Q z N ? S U N 13 ? O s ? ?' O d 0 Ct U N? z co h k m y a '?( V W Gt S ti Y '?' ? w 5 N A F" ? d W 0. 0. cc tl d O ti U ti V N 0 pp M II II O QX. H w ?- a o 4t1 N Q ~ Q o ? x 0 0 ? s o U m O ? ti s Y?C o ? o N w ? ry p ? O ? M x O s ? U a s z ?U o h s o o c v o s '? tl x d OQ ? p c, z U ? ? °X' ?' .ate ? o ? s s s p 2 ? ? h ti o ? x ? ? o r tl `? Q- Z, d p? O ,? d ? U U CS N p ? 'y p ? U U ch U ? ? r O i p z c o m p.?[r ?v ? ? d ?xtis'? s W ? ? o ?iF' ?% O[°?tiOU c W 0 FHHF? ?? 1ti, ? C i Q 0 b ti u ti V ? o r II II ? N o ? a.? LL O ? E~ W 0. ? LLl N C7 ? Q ? x? Q a ti O ? ? m 0 o U ? wo z ? a o ??? °"- w? 0 O N -off h c ? o o ,ti C3 ? U U O ? ? ? ? ? p-0 ? ? .s o a o c, U o c 5 o m .s 0 0 ? , N gtr°?[°OU ? o > N O do h A r s ?, ??? ? N M 7 N W R Q r 0 a ti v ti V .a ? o O ? 11 II C ? 0 P. W ? zz a H w a. o W N Q ? R?r ^ Q ti C3 d i Q O O v U V d h V? O 0 0 0 ? F N q - ' y W ?, 4 s d ?, s z o ? ?? N _ ? N ? M O .?, ? L U ?p N ? N ?i .? ? ? O ? yy ? ! N ? & ? O v ? U U Ct ? ? L( i L_ O? r N gg M Y ? y N ° N ? ? o s x o o ? i ? '? d ux z z a i m d o o c bo O N Z c° y m s fi o o m ?' d K y ?? ,r, s .s ? c U? ? ? y o F W e 4, a o 0 0 ? ?c o ? w F' o m o 0 o d o ?' C ? i q' ? ? . jC-4 A r v v pt ? N w w w ? ?FFV)F ° ?v Z ? ? ? 01 ., CIO rn z v) vl y a o Co ? C o +, o