Loading...
HomeMy WebLinkAbout20081317 Ver 1_Year 1 Monitoring Report_20110504ZR 4709 COLLEGE ACRES DRIVE SUITE 2 INCORPORATED WILMINGTON, NORTH CAROLINA 28403-1725 ENVIRONMENTAL CONSULTANTS TEL 910/392-9253 FAX 910/392-9139 czrwilm@czr-inc.com LETTER OF TRANSMITTAL _z ?. ? -? TO: David Lekson, USACE (1 unbound, via FedEx priority overnight) John Dorney, DWQ (1 bound, via FedEx priority overnight) Al Hodge, DWQ (1 bound, via FedEx priority overnight) x Jeff Furness, PCS (1 bound, via FedEx 2-day) o Jonathan Ricketts, Jonathan Ricketts, Inc. (1 bound, via FedEx 2-da Kevin Tweedy, Michael Baker Engineering (1 bound, via FedEx 2-da Jim Hudgens, CZR Incorporated (1 bound, via FedEx 2-day) - ;- ° FROM: Julia Berger DATE: 29 April 2011 SUBJECT: Baseline and First Annual (2010) Report for the Hell Swamp/Scott Creek Watershed Mitigation Site C P# 1745.59.66 WE ARE SENDING YOU: Copies Description 1 Baseline and First Annual (2010) Report for the Hell Swamp/Scott Creek Watershed Mitigation Site Enclosed you will find a copy of the Baseline and First Annual (2010) Report for the Hell Swamp/Scott Creek Watershed Mitigation Site. Signed 2151 Alternate A] A South • SUITE 2000 • JUPITER, FLORIDA 33477-3902 TEL 561/747-7455 • FAX 561/747-7576 • czrinc@czr-inc.com • www.CZRINC.com D8- i,3 1 BASELINE AND FIRST ANNUAL (2010) REPORT FOR THE HELL SWAMP/SCOTT CREEK WATERSHED MITIGATION SITE PANTEGO TOWNSHIP BEAUFORT COUNTY, NORTH CAROLINA Prepared for: PCS Phosphate Company, Inc. Prepared by: CZR Incorporated April 2011 . BASELINE AND FIRST ANNUAL (2010) REPORT FOR THE HELL SWAMP/SCOTT CREEK WATERSHED MITIGATION SITE PANTEGO TOWNSHIP BEAUFORT COUNTY, NORTH CAROLINA Prepared for: PCS Phosphate Company, Inc. • Prepared by: CZR Incorporated April 2011 0 • TABLE OF CONTENTS 1.0 Introduction .................................................................................... .................................1 1.1 History ............................................................................................ ................................ 1 1.2 Location .......................................................................................... ................................ 1 1.3 Goals of the project ........................................................................ ................................ 2 1.4 Performance Criteria ...................................................................... ................................ 2 1.4.1 Hydrology .......................................................................... ................................ 3 1.4.2 Vegetation ......................................................................... ................................ 3 2.0 Methodology .................................................................................. .................................3 2.1 Rainfall ........................................................................................... ................................3 2.2 Hydrology ....................................................................................... ................................ 4 2.3 Vegetation ...................................................................................... ................................ 5 2.4 Hydrogeomorphic Monitoring of Streams and Valleys ................... ................................ 6 2.5 Photographic Documentation ......................................................... ................................ 6 3.0 Results and Discussion ................................................................. .................................6 3.1 Rainfall ...........................................................................................................................6 3.2 Hydrology ....................................................................................... ................................ 6 3.2.1 Riparian Headwater Systems ............................................ ................................ 7 3.2.2 Hardwood Flat ................................................................... ................................ 7 3.2.3 Comparison to Control Forests ......................................... ................................ 8 3.3 Vegetation ...................................................................................... ................................ 8 3.3.1 Riparian Buffer .................................................................. ................................ 8 3.3.2 Hardwood Flat ................................................................... ................................ 9 3.4 Hydrogeomorphic Monitoring of Streams and Valleys ................... .............................. 10 • 3.5 Photographic Documentation ......................................................... .............................. 10 4.0 Summary ....................................................................................... ...............................10 LITE RATURE CITED OR CONSULTED .................................................................. ...............................12 Cover P hoto: View to the northwest from near the middle of the site. r? Hell Swamp/Scott Creek Mitigation Site ii PCS Phosphate Company, Inc. Baseline and First Annual Report April 2011 LIST OF TABLES Table 1 Performance criteria and documentation methods summary .................................... . T-1 Table 2A Longest hydroperiods in 2010 of stream monitoring wells at Hell Swamp restoration site ........................................................................................................... . T-4 Table 213 Longest hydroperiods in 2010 of hardwood flat monitoring wells at Hell Swamp restoration site ............................................................................................................ T-6 Table 3A Longest hydroperiods in 2010 of stream monitoring wells at Hell Swamp restoration site during normal or below normal rainfall ............................................. T-10 Table 3B Longest hydroperiods in 2010 of hardwood flat monitoring wells at Hell Swamp restoration site during normal or below normal rainfall ............................................. T-12 Table 4 Survival of trees and shrubs planted in 19 0.017-acre plots in potential riparian buffer areas at Hell Swamp from baseline (summer 2010) to fall 2010 ................... T-16 Table 5 Survival of trees and shrubs planted in 123 0.22-acre plots at Hell Swamp from baseline (summer 2010) to fall 2010 ........................................................................ T-17 LIST OF FIGURES Figure 1 Hell Swamp Vicinity Map ......................................................................................... Fig-1 Figure 2 Monitoring Locations ................................................................................................ Fig-2 Figure 3 Monitoring Well Locations on NRCS Soil Survey .................................................... Fig-3 Figure 4 Rainfall at Hell Swamp ............................................................................................. Fig-4 Figure 5 Hell Swamp Monitoring Wells-2010 Hydroperiods .................................................. Fig-5 Figure 6 Hell Swamp Monitoring Wells-2010 Hydroperiods During WETS Normal Rainfall ..................................................................................................................... Fig-6 APPENDICES A Stem Counts at Individual Plots at Hell Swamp B Selected First Annual Restoration Photographs • Hell Swamp/Scott Creek Mitigation Site iii PCS Phosphate Company, Inc. Baseline and First Annual Report April 2011 • 1.0 INTRODUCTION 1.1 History. The 1,297-acre Hell Swamp/Scott Creek Watershed mitigation site is a significant component of the compensatory mitigation for future unavoidable impacts to wetlands and waters as authorized by Section 404 Permit Action ID 200110096 and the Section 401 Water Quality Certification DWQ #2008-0868, version 2.0. Both of these approvals were issued after evaluation of the Final Environmental Impact Statement for PCS Phosphate Mine Continuation (US Army Corps of Engineers 2008) and the supporting appendix which identified and described compensatory mitigation proposed to offset the authorized impacts., including the Hell Swamp site (Volume III, Appendix I, US Army Corps of Engineers. 2008). The project is described in further detail in Attachment D of the NC Division of Coastal Management's major permit application dated July 2009. Restoration activities at Hell Swamp were authorized by the NC Division of Coastal Management and Coastal Area Management Act (CAMA) major development permit 83-09 as well as the NC Division of Land Resources Erosion and Sediment Control Permits, which were issued for 11 separate phases (Table 1 and Figure 2 of the As-Built Report (CZR 2011). Work occurred in 11 phases from 1 July 2009 until 22 June 2010 and began in areas not subject to CAMA or Section 404 jurisdiction. Minor additional work for three stream crossings occurred during the week of 13 September 2010 under a permit modification issued on 23 July 2010. The site encompasses almost the entire Scott Creek watershed and a portion of the watersheds of Smith Creek and Broad Creek. Consequently, the Hell Swamp restoration project should be resilient to external and upstream perturbations that can sometimes jeopardize mitigation projects less comprehensive in scale. The project design team consisted of Jonathan T. Ricketts, Inc., of Palm Beach Gardens, FL and Michael Baker Engineering Inc. of Cary, NC. River Works, Inc., also of Cary, NC, was in charge of construction and planting. The topography of Hell Swamp was surveyed by Matrix East • Surveyors, LLC from Kinston, North Carolina and Tuck Mapping Solutions, Inc from Big Stone Gap, Virginia. Hydrogeomorphic monitoring of the stream valleys was conducted by Baker Engineering. PCS Phosphate Company, Inc. coordinated and supervised the restoration efforts with assistance from CZR Incorporated (CZR) of Wilmington, NC. CZR is responsible for monitoring the hydrology and vegetation of the Hell Swamp site, as well as three other sites (Windley, Plum's Pit, Winfield) used as controls for hydrology monitoring. 1.2 Location. The Hell Swamp site is located on the southwest side of Seed Tick Neck Road (SR 1714) south of NC Highway 264 in Beaufort County (Figure 1). The site is located approximately 2 miles east-southeast (straight-line distance) of the town of Yeatesville, Pantego Township, North Carolina and can be found on the USGS Pantego quadrangle. The approximate center of the site is located at +35.522856 latitude and -76.680750 longitude (35°31'22.28"N and 76°40'50.70"W). The site is located within the Pamlico Hydrologic Unit 03020104 of the Tar- Pamlico river basin within the Pungo Creek subbasin and is drained by Scott Creek, Smith Creek, and Broad Creek. There are two road entrances into the site from Seed Tick Neck Road, an entrance just south of Scott Creek along NC99 (- 3,000 feet from Seed Tick Neck Road intersection with NC99), and an entrance along the southern site boundary off of Pungo Creek Road (SR1715) just west of Smith Creek. These entrances are for several access roads located on the perimeter of the site, often within the area expected to be effectively drained by perimeter ditches that must remain open. The access roads are used during post-construction monitoring and monitoring by the conservation easement holder once the site is deemed successful by the appropriate agencies, and others authorized by the easement holder. 1.3 Goals. The primary goal of the project was to restore a self-sustaining functional watershed and wetland/stream complex with the minimum amount of earthwork where surface flow moves through vegetated wetlands before reaching any stream. Over time, with the removal • of the field crowns and drainage ditches and implementation of other restoration activities, the Hell Swamp site is expected to successfully: Hell Swamp/Scott Creek Mitigation Site 1 PCS Phosphate Company, Inc. Baseline and First Annual Report April 2011 • re-establish approximately: • 19,783 linear feet (LF) of zero and first-order stream, including the restoration of six riparian headwater systems and three low energy streams; 21 acres of Tar-Pamlico riparian buffer, with additional potential buffer opportunity if suitable stream segments form in the riparian headwater systems; • 58 acres of riparian forested hardwood wetland (headwater forest, bottomland hardwood forest and riverine swamp forest), with some additional enhancement potential; and • 808 acres non-riverine hardwood flat; and preserve or rehabilitate: • 40 acres of non-riverine hardwood flat including a 34-acre "state or regionally significant" mature hardwood flat; 28 acres of riverine swamp forest/bottomland hardwood forest; • 18 acres of non-riverine hardwood flat; and • 200 acres of areas mapped as uplands on the county soil survey. An additional 103 acres underlain by hydric soils are included as "potential non-wetland" areas due to drainage effects from perimeter ditches that must remain open. Approximately 34 acres at the head of the watershed is mature non-riverine wet hardwood forest underlain by Cape Fear soil (the Windley tract), and will be preserved to help mitigate for impacts to the Bonnerton • non-riverine wet hardwood area. The Windley tract, the Plum's Pit tract (Arapahoe soil), and the Winfield tract (Augusta, Tomotley, and Roanoke soils) are nearby hardwood forested wetlands at similar elevations to portions of Hell Swamp and underlain by soil series mapped on Hell Swamp as shown on the Beaufort County Soil Survey (Kirby1995). These tracts will be monitored as hydrologic controls for the restored hydrology of applicable areas at the Hell Swamp site (Figure 1). 1.4 Performance Criteria. Based on specific, measurable, attainable, reasonable, and trackable parameters the performance criteria required for the types of mitigation provided at Hell Swamp are shown in Table 1. A column evaluating the current performance of the site is also included. 1.4.1. Hydrology. Documentation of flow in the riparian headwater system as the success criterion is not limited to the growing season and will be documented using a variety of parameters and simple techniques including eyewitness and photographic evidence of observed active flow conditions and evidence of past flow conditions including, but not limited to sediment deposits, debris flows, movement of wrack, sinuosity, braided flow features, and/or development of more defined channel features. Flow gages were installed in early 2011 to provide quantifiable documentation of flow events and to calculate a flow rate (gallons per minute). Success will be achieved if two flow events occur in each of three years out of five at any point in the headwater valley during normal or below normal rainfall. Observed events or effects from events will be used to calibrate, correlate, and infer flow of unobserved events in monitoring well hydrographs. Calculation of length of stream credit will begin from the most upstream point for which there is evidence of flow during normal or below normal below normal rainfall ("normal" defined by NRCS WETS tables, which uses 30 years of rainfall data). • Hell Swamp/Scott Creek Mitigation Site 2 PCS Phosphate Company, Inc. Baseline and First Annual Report April 2011 • Under the 2007 draft regional guidance from the Corps of Engineers for wetland hydroperiods, the normal growing season for Beaufort County is 28 February to 6 December or 282 days (WETS table for Beaufort County first/last freeze date 28 degrees F 50 percent probability) (US Army Corps of Engineers 2008). At the suggestion of the Corps' Washington regulatory field office, data collected between 1 February and 28 February will provide important information related to analyses of site hydrology during the early growing season, but will not be part of the hydroperiod calculation for success. The hydroperiods of all wells will be evaluated yearly to determine which areas have a wetland hydroperiod during normal or below normal rainfall and, based on its landscape position, the type of wetland will be determined as appropriate for its position and hydroperiod. 1.4.2. Vegetation. Vegetative success of the riparian and non-riparian wetland areas will be achieved if at the end of five growing seasons, tree density is at least 260 living trees per acre. Buffer vegetative success will be achieved if at the end of five growing seasons tree density is at least 320 living trees per acre. To further describe composition of the vegetative community on the site and to assist in the assessment of colonization by other species (including noxious species), in the fifth year, all living stems of woody vegetation within each tree and shrub plot will be identified and counted, including planted stems and volunteer colonizing species. Non-planted individuals of characteristic wetland species are an important component to the reestablished wetland as they serve as additional indicators of appropriate hydrologic regimes and vegetative success and provide increased diversity, density, and cover type. Colonizing volunteers will be counted separately from the planted trees and shrubs and not counted toward the success criterion. Nuisance species [e.g. red maple (Acer rubrum), sweetgum (Liquidambar styraciflua), loblolly pine (Pinus taeda)] will be monitored and controlled (if deemed necessary) during the length of the monitoring period. • 2.0 METHODOLOGY 2.1. Rainfall. A continuous electronic rain gauge was installed in an open area, a minimum of 100 feet from any tall tree or buildings (Figure 2). The gauge isdownloaded once a month and its data are used in conjunction with data from nearby automated weather stations (e.g., NRCS WETS data from NOAA's site at Belhaven and NOAA's Aurora site to fill Belhaven data gaps) to determine normal rainfall during the monitoring period. Hell Swamp data were compared to the WETS range of normal precipitation to determine if Hell Swamp rainfall was within the normal range. The range of normal precipitation for this report refers to the 30th and 70th percentile thresholds of the probability of having onsite rainfall amounts less than or higher than those thresholds. The range of normal and the 30-day rolling total data lines begin on the last day of each month and the 2010 WETS-Belhaven monthly precipitation total is plotted on the last day of each month. 2.2. Hydrology. To document surface storage, flow in the restored riparian headwater system, and hydroperiods of all wetland types on the site, semi-continuous electronic Ecotone water level monitoring wells (manufactured by RDS) were installed as phases of the work was completed (Figure 2). The 20- and 40-inch electronic wells were installed according to ERDC TN 05-2 procedures (US Army Corps of Engineers 2005). Number 1 gravel filter sand was used to fill the hole around the well. A total of 124 groundwater monitoring wells were installed across the site (approximately 1 well/10 acres) to monitor the wetland flat areas. An additional 80 wells were installed in 40 arrays in the vicinity of stream valleys to measure the hydrology of the stream system (Figure 2). Well locations are also depicted on the Beaufort County Soil Survey sheet 9 (Figure 3). Flow gauges were also installed at these stream arrays in early 2011 (total of 40 gauges) (Figure 2). Each stream valley array consists of a well on either side of the perceived valley and a flow gauge in the valley, where flow has been evident or seems likely based on the • topography of the valley and surrounding area. The arrays are approximately 500 feet apart (along the long axis) for each valley (at least 3 arrays per 1,000-foot reach; upstream, center, downstream). The density and number of arrays was determined by the perceived length and Hell Swamp/Scott Creek Mitigation Site 3 PCS Phosphate Company, Inc. Baseline and First Annual Report April 2011 • footprint of each valley. Additionally, three electronic wells, each paired with a manual well, have been monitored in the Windley tract (preservation area and control site) for several years and continue to be monitored. Four electronic wells were installed in October 2010 at Plum's Pit, a nearby hardwood forested wetland at a similar elevation to portions of Hell Swamp and underlain by one of the soil series found at Hell Swamp. Negotiations are underway for installation of additional monitoring wells at the Winfield control tract. Electronic wells at the site are downloaded once a month and the data (readings every 1.5 hours) evaluated to document wetland hydroperiods. Wetland hydroperiods are calculated by counting consecutive days with water level no deeper than 12 inches below the soil surface during the growing season under normal or below normal rainfall conditions. Data will also be evaluated in future reports to determine where riparian and non-riparian hydroperiods are occurring. Not all wells were installed prior to the 2010 growing season and consequently some hydroperiods (or lack of a hydroperiod) are likely incomplete. Figures 5 and 6 identify these wells. Data from the Windley and Plum's Pit sites will be used to compare to hydrology at applicable areas at Hell Swamp. Because of differences in maturity and disturbance characteristics of the mitigation site, these data will not be used for strict success or performance parameters, only to confirm local/regional hydrological response to precipitation. Flow gauges (Hell Swamp only) are also downloaded once a month and the data used to calculate flow rate and duration and frequency of flow events. However, the gauges were not installed until early 2011 and therefore those data are not available for the 2010 monitoring year. No control site for the flow parameter has been identified. 2.3. Vegetation. River Works, Inc. contracted three planting crews to plant the site from 17 February through 20 May 2010, timed to begin after each phase of restoration earthwork was completed. Approximately 1,263 acres were planted with 533,270 tree and shrub seedlings, • which equates to a density of 15 shrubs per acre and 413 trees per acre in most areas. After the original planting was completed in the Valley 2 planting zone (potential riparian buffer restoration areas) the same areas were then also planted on approximately 16-foot by 16-foot spacing, adding approximately 170 additional stems per acre. Zone 1 was also later interplanted on a 20- foot by 20-foot spacing, adding approximately 100 additional stems per acre. The complete list of species planted and the planting mix of species by planting zone are identified in the Hell Swamp As-Built Report (CZR 2010). Twenty-four (24) native hardwood tree species were chosen for planting based largely on soil type of the site and expected hydrology. In addition to trees, 10 shrub species were incorporated into the plan and interplanted among the trees to provide a more diverse assemblage. Planted tree and shrub monitoring plots were established at 123 monitoring well sites (2 percent of the restoration area) (Figure 2). Individual plots are 45 feet x 213 feet (approximately 0.22 acre) and extend in a random compass direction starting four feet away from the well. Smaller planted tree and shrub monitoring plots were also established at 19 stream arrays to provide an estimate of stem density in the potential riparian buffer areas (Figure 2). The plots are 50 feet on the sides perpendicular to the valley and 15 feet on the sides parallel with the valley (0.017 acre per plot). Using the flow gage location as an anchor for the long side, the plot should include the lowest positioned stems and be located on the side of the gage which allows most of the valley to be included in the 50-foot distance. All plots were established immediately after planting and all trees and shrubs within the plot were marked with a stake. In mid-summer 2010, a few months or weeks (depending on area) after planting (after many stems had grown leaves to allow for better identification), planted stems within vegetation plots were tagged with an aluminum tag and identified to species if possible to provide baseline planted vegetation survival information. Several species are easily • confused when young and many of the seedlings still did not have leaves at the time of data collection so some trees or shrubs may have been mislabeled or were not able to be accurately labeled. Attempts will be made in subsequent monitoring years to confirm identifications. Each Hell Swamp/Scott Creek Mitigation Site 4 PCS Phosphate Company, Inc. Baseline and First Annual Report April 2011 • year prior to leaf loss in autumn, planted stems within vegetation plots will be monitored for survival. The first annual monitoring event occurred September-October 2010. During the third and fifth year tree monitoring event, the percentage of nuisance trees (e.g. red maple, sweetgum, loblolly pine) will be estimated. On an outside corner of each vegetation plot a 10-foot square plot will be staked and all trees within the plot will be counted. The results will be extrapolated to provide an estimate for the entire site. If the percentage of any nuisance species rises to 20 percent or more, actions will be taken to reduce the numbers. Common reed (Phragmites australis) will be aggressively controlled for the length of the monitoring period. 2.4. Hydro-geomorphic Monitoring of Streams and Valleys. The main channel that flows through the site is named Scott Creek from its headwaters to the downstream extent of the property at NC Route 99, where the creek flows through a road culvert and eventually discharges to Pungo Creek, a tributary to the Pungo River. Several headwater tributaries were identified that would have historically drained to Scott Creek and each is described in the Hell Swamp Compensatory Mitigation Report and shown in the As-Built Report (CZR 2010). Work was completed 22 June 2010 with minor additional work for three stream crossings during the week of 13 September 2010. Longitudinal profiles were established for each of the riparian headwater system valleys and for the restored Scott Creek segments. Three cross sections were established per 1,000-foot reach of stream/valley restoration. For the riparian headwater systems, these cross sections were measured for the As-Built Report (CZR 2010) and will be measured in the third and fifth years of monitoring if channel features form. The Scott Creek single thread channel stream restoration segments will be measured annually during the monitoring period. 2.5. Photographic Documentation. Photographs were taken throughout the • construction process and to visually document hydrologic conditions, stability, vegetation growth, and the evolution of the restoration site. Twenty permanent photo point locations were established at random well locations and five were established near the perimeter of the restoration area (Figure 2). Photographs were taken in the four cardinal directions as well as an additional direction to capture as much of the plot as possible unless it was already captured in the other four photos. Photographs at the fixed-point stations were taken in July (baseline) and fall (November) 2010 sampling events and will be taken at each subsequent fall sampling event. A few photos representative of conditions are included with this report. More are available upon request. 3.0 RESULTS 3.1. Rainfall. The 30-day rolling total of Hell Swamp rainfall was considered within WETS normal range except for dry periods in July and August which were considered below normal. Rainfall in the late spring/early summer was also low but was not considered below normal. The month of February was above normal and a series of rain storms at the end of September initiated above normal rainfall for the entire month of October (Figure 4). Hydroperiods were calculated for the entire growing season without regards to normality of rainfall and were also calculated for the longest consecutive hydroperiod within the growing season during normal (and below normal) rainfall. 3.2. Hydrology. The first full year of post-restoration hydrology data for the entire site will be 2011 because construction activities prevented all wells from being installed at the start of the 2010 growing season. However, wells were installed as soon as construction in an area was complete, so data were collected during a large portion of the 2010 growing season over most of the site. Graphs depicting daily well readings and rainfall are included on a companion CD. • The majority of all wells did not exhibit wetland hydroperiods regardless of rainfall conditions although scattered wells exhibited marginal hydrology and hydroperiods at a few wells Hell Swamp/Scott Creek Mitigation Site 5 PCS Phosphate Company, Inc. Baseline and First Annual Report April 2011 • were longer than 12.5 percent of the growing season (Tables 2A and 2B,Figure 5). When only the longest consecutive hydroperiod during normal or below normal rainfall is calculated, even less wells exhibited wetland hydroperiods and many wetland hydroperiods were reduced (Tables 3A and 3B, Figure 6). Plausible explanations for the low amount of wells with wetland hydroperiods and hydroperiods of short duration include more than one factor. First, all wells, particularly the stream wells, were not installed prior to the 2010 growing season and may have missed recording either an entire hydroperiod or a longer hydroperiod. Second, because the site was previously drained by numerous agriculture ditches, which were filled in over the course of several months during 2009, the drained soil will need to re-hydrate over time, e.g typically wet winters. Finally, another factor that may have influenced rehydration of the site and hydroperiod length was the relatively dry summer. In the wetland hardwood flat enhancement area, the hydroperiod at one well nearly tripled post-construction to 24 percent while one well was slightly lower post-construction. 3.2.1. Riparian Headwater Systems. Most stream wells were installed later in the growing season (Figure 4) and so likely did not capture the typical early growing season hydroperiod. Preliminary data (Table 2A, Figure 5) shows that most wells (54 percent) did not exhibit a wetland hydroperiod regardless of rainfall conditions. The next highest percentage of wells (36 percent) exhibited a marginal wetland hydroperiod (greater than 6 to 12.5 percent of the growing season). The remaining wells exhibited a wetland hydroperiod of greater than 12.5 to 25 percent of the growing season. Upper Scott Creek wells were the wettest of the nine headwater systems (Figure 5). All wells on UT3 (except the most downstream well), UT6, and UT7 did not exhibit a wetland hydroperiod. When counting cumulative days during the growing season, most wells had water levels less than or equal to -12 inches for more than 6 percent of the growing season-46 percent for 12.5 percent or greater. • When well data from above normal rainfall periods are excluded 60 percent of wells did not exhibit a wetland hydroperiod, 26 percent exhibited a marginal wetland hydroperiod, and 14 percent exhibited a wetland hydroperiod greater than 12.5 to 75 percent of the growing season (Table 3A, Figure 6). When counting cumulative days during the growing season, less than half of the wells had water levels less than or equal to -12 inches deep for more than 6 percent of the growing season-only 28 percent for 12.5 percent or greater. 3.2.2. Hardwood Flat. Preliminary data (Table 2B, Figure 5) shows that most wells (54 percent) did not exhibit a wetland hydroperiod. The next highest percentage of wells (30 percent) exhibited a marginal wetland hydroperiod (greater than 6 to 12.5 percent of the growing season). The remaining wells exhibited a wetland hydroperiod of greater than 12.5 to 75 percent of the growing season. Wells with the longest hydroperiods are in the southern portion of the site and far west side (Figure 5). When counting cumulative days during the growing season, most wells had water levels less than or equal to -12 inches deep for more than 6 percent of the growing season-53 percent for 12.5 percent or greater. When well data from above normal rainfall periods are excluded 60 percent of wells did not exhibit a wetland hydroperiod, 26 percent exhibited a marginal wetland hydroperiod, and 14 percent exhibited a wetland hydroperiod greater than 12.5 to 75 percent of the growing season (Table 313, Figure 6). When counting cumulative days during the growing season, most wells had water levels less than or equal to -12 inches deep for more than 6 percent of the growing season-39 percent for 12.5 percent or greater. • Hell Swamp/Scott Creek Mitigation Site 6 PCS Phosphate Company, Inc. Baseline and First Annual Report April 2011 • 3.2.3. Comparison to Control Forests. L Plum's Pit Plum's Pit wells were installed 5 and 6 October and so did not capture the dry season water table readings to be able to compare to Hell Swamp. One well measured a water table shallower than -12 inches from the date of installation until the end of the year, resulting in a 36-day hydroperiod during normal or below normal rainfall (62-day if above normal period is included). Another well might have recorded a similar shallow water table but it was destroyed by a bear and had to be replaced, and data was not recorded for about three weeks. Before and after it was destroyed, it recorded a water table shallower than -12 inches for a total of 17 days during normal or below normal rainfall (43 days if above normal rainfall is included). A third well recorded a hydroperiod of 25 days, with 13 other days during the growing season shallower than -12 inches. The last well only recorded a hydroperiod for 11 days, with only two other days during the growing season shallower than -12 inches. Percent of growing season is not given due to the fact that the wells were not installed until over 75 percent of the growing season was over. ii. Windley The three wells in the Windley tract exhibited hydroperiods of 50, 55, and 36 days (18, 20, and 13 percent of the growing season, respectively) during normal or below normal rainfall, which all began at the start of the growing season. All wells also measured water tables shallower than -12 inches from 1 February through 27 February. Two of the wells did not measure many other days during the year with a shallow water table (8 and 11 days), but the well with the longest hydroperiod measured another 29 days with water shallower than -12 inches during the growing season. 3.3. Vegetation. Outside of the potential riparian buffer areas a total of 407 shrub stems and 11,156 tree stems were staked and tagged, equating to approximately 15 shrubs per • acre and 413 trees per acre at baseline. Within the potential riparian buffer areas, a total of 10 shrub stems and 272 tree stems were staked and tagged, equating to approximately 31 shrubs per acre and 850 trees per acre at baseline. Survival of the planted stems was compromised by several factors. In addition to mortality from planting shock, some were exposed to long periods of standing water. Conversely, some stems in other areas seemed to suffer from lack of water. Also, rodents, insects, and deer browsed some of the stems. Appendix A contains the number of stems that were alive in each plot for the baseline sampling event and for the 2010 fall sampling event. By just showing the number of stems that were unquestionably alive, the most conservative estimate is presented. Many stems appeared dead or questionable, but based on prior monitoring experience, a stem needs to appear dead (or not be found) for two sampling events before it can be confidently counted as dead. 3.3.1. Riparian Buffer. Only three shrubs were found in the riparian buffer plots. This is likely due to the overall low density of shrubs across the site and thesmall size of the buffer plot. Overall survival of shrubs from baseline (mid-summer 2010) measurement to fall 2010 measurements was 90 percent for stems that were unquestionably alive (Table 3), with a corresponding density of 28 shrubs per acre. If shrubs with uncertain survival status (stem appeared dead for the current sampling event but could not be confirmed until next fall) are included with shrubs that were definitely alive (less conservative estimate of survival), survival increases to 100 percent and a density of 31 shrubs per acre. Virginia willow (Itea virginica) had the lowest survival (88 percent) when excluding the uncertain stems, and the other two species- buttonbush (Cephalanthus occidentalis) and swamp doghobble, had 100 percent survival when excluding uncertain stems. If uncertain stems are combined with those unquestionably alive, survival of Virginia willow is 100 percent. Overall survival of trees from baseline (mid-summer 2010) monitoring to fall 2010 • monitoring was 91 percent (Table 3), with a corresponding density of 775 trees per acre. If trees with uncertain survival status (stem appeared dead but could not be confirmed) are included with trees that were definitely alive, survival increases to 100 percent and a density of 847 trees per Hell Swamp/Scott Creek Mitigation Site 7 PCS Phosphate Company, Inc. Baseline and First Annual Report April 2011 • acre. Red bay and water tupelo (Nyssa aquatica) had the lowest survival (38 and 40 percent, respectively) when excluding the uncertain stems (Table 3). Ten of the 18 species had 100 percent survival and most of the other species had 80 percent or greater survival. Survival in the potential riparian buffer areas for all trees and shrubs combined after the 2010 sampling event was 813 stems per acre for all species unquestionably alive and 878 stems per acre if species with alive and uncertain survival status are combined. The As-built Report (CZR 2010) contains details on the treatment of Phragmites in 2010, which occurred in October, after all planting and earthwork was completed. Additional treatments in 2011 are expected for some areas. 3.3.2. Hardwood Flat. Overall survival of shrubs from baseline (mid-summer 2010) measurement to fall 2010 measurements was 91 percent for stems that were unquestionably alive (Table 4), with a corresponding density of 14 shrubs per acre. If shrubs with uncertain survival status (stem appeared dead for the current sampling event but could not be confirmed and will be confirmed at the next event) are included with shrubs that were definitely alive (less conservative estimate of survival), survival increases to 99 percent and a density of 15 shrubs per acre. Possumhaw viburnum (Viburnum nudum) had the lowest survival (33 percent) when excluding the uncertain stems (Table 4). Silky dogwood (Corpus amomum), winterberry (Ilex verticillata), swamp doghobble (Leucothoe racemosa), and swamp rose (Rosa palustris) all had 100 percent survival when excluding uncertain stems. The other species had 80 percent or better survival. If uncertain stems are combined with those unquestionably alive, survival of most species is 100 percent and all species survival is greater than 95 percent. Overall survival of trees from baseline (mid-summer 2010) measurement to fall 2010 measurements was 94 percent (Table 4), with a corresponding density of 391 trees per • acre. If trees with uncertain survival status (stem appeared dead but could not be confirmed) are included with trees that were definitely alive, survival increases to 99 percent and a density of 408 trees per acre. Red bay (Persea palustris) had thelowest survival (30 percent) when excluding the uncertain stems but increases to 89 percent when uncertain status stems are included (Table 4). Five species had 100 percent survival and most of the other species had 90 percent or greater survival. Survival in the hardwood flat areas for all trees and shrubs combined after the 2010 sampling event was 406 stems per acre for all species unquestionably alive, and 430 stems per acre if species with alive and uncertain survival status are combined. 3.4. Hcdrogeomorphic Monitorinci of Streams and Valleys. The As-Built Report (CZR 2010) contains detailed information and figures documenting the 2010 as-built contours of the stream valley construction performed by Baker, and graphic depictions of the stream cross sections with longitudinal profiles of each reach or UT. Annual measurements will begin in 2011. A single thread channel was constructed for a portion of the Scott Creek channel. At the downstream end of the Scott Creek single thread channel where the valley slope flattens and erosive forces are reduced, the channel transitions back to a moderately defined channel form with braided flow patterns. Flow is expected to be diverted into the historical floodplain of Scott Creek at that point. This transition occurs at the pre-construction upper limit of CAMA jurisdiction. Flow has been seen in this channel. The remaining headwater stream valleys were formed by grading the valleys to the general design grades, but no channel or flow features were constructed. Natural processes over time will determine any stream features that form in these headwater valleys. Some stream • channels and/or braided flow patterns are currently visible in some of the stream valleys. Video of flow in some areas is available upon request. Hell Swamp/Scott Creek Mitigation Site 8 PCS Phosphate Company, Inc. Baseline and First Annual Report April 2011 • 3.5. Photographic Documentation. Appendix B contains representative photos of the site and vegetation plots. The As-Built Report (CZR 2010) also contains representative photos of baseline conditions. 4.0 SUMMARY Post-restoration wetland hydrology and flow monitoring for success officially began January 2011 but hydrology data was collected for a large part of 2010 so preliminary information has been presented in this report. Less than half of the wells (46 percent) on the entire Hell Swamp site, including on the nine headwater valley systems, recorded wetland hydroperiods. Wells at both reference forests (Plum's Pit and Windley) recorded similar hydroperiods and water table fluctuations as Hell Swamp. Some evidence of flow (braided patterns, channel formation, flowing water) has been seen in some areas of most of the stream valley systems, including the single-thread channel. Rainfall was within WETS normal range for the entire growing season except for a dry period in the late summer and above normal rainfall in February and October. Planting of approximately 533,270 bare-root native wetland tree and shrub seedlings and tublings at Hell Swamp occurred 17 February through 20 May 2010. Overall survival of shrubs in the hardwood flat areas from baseline (mid-summer 2010) measurement to fall 2010 measurements was 91 percent for stems that were unquestionably alive, with a corresponding density of 14 shrubs per acre. Overall survival of trees in the hardwood flat areas from baseline (mid-summer 2010)measurement to fall 2010 measurements was 94 percent, with a corresponding density of 391 trees per acre; when uncertain stems are included survival increases to 99 percent and density is 408 stems trees per acre. Survival density in the hardwood flat areas for all trees and shrubs combined after the 2010 sampling event was 406 stems per acre for all species unquestionably alive and 430 stems per acre if species with alive and uncertain survival status are combined. • Overall survival of shrubs in the potential riparian buffer areas from baseline (mid- summer 2010) measurement to fall 2010 measurements was 90 percent for stems that were unquestionably alive, with a corresponding density of 28 shrubs per acre. Overall survival of trees in the potential riparian buffer areas from baseline (mid-summer 2010) measurement to fall 2010 measurements was 91 percent, with a corresponding density of 775 trees per acre. Survival density in the potential riparian buffer areas for all trees and shrubs combined after the 2010 sampling event was 813 stems per acre for all species unquestionably alive and 878 stems per acre if species with alive and uncertain survival status are combined. Initial survival was compromised by several factors such as ponding, lack of water, herbivory, and planting shock. The As-built Report (CZR 2010) contains details on the treatment of Phragmites in 2010, which occurred in October, after all planting and earthwork was completed. • Hell Swamp/Scott Creek Mitigation Site 9 PCS Phosphate Company, Inc. Baseline and First Annual Report April 2011 • • LITERATURE CITED CZR Incorporated. 2010. As-Built Report for the Hell Swamp/Scott Creek Restoration Site. Kirby, Robert M. 1995. The soil survey of Beaufort County, North Carolina. Natural Resources Conservation Service, USDA. U.S. Army Corps of Engineers. 2002. Regulatory guidance letter (RGL) 02-02. Guidance on Compensatory mitigation projects for aquatic resource impacts under the Corps regulatory program pursuant to Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act. U.S. Army Corps of Engineers, EPA, NC Wildlife Resources Commission, and NC Division of Water Quality. 2003. Stream Mitigation Guidelines. Wilmington, NC. U.S. Army Corps of Engineers. 2005. Technical Standard for Water-Table Monitoring of Potential Wetland Sites. WRAP Technical Notes Collection (ERDC TN-WRAP-05-2.) U.S. Army Engineer Research and Development Center, Vicksburg, MS U.S. Army Corps of Engineers and NC Division of Water Quality. 2007. Draft information on stream restoration with emphasis on the coastal plain. 4 April supplement to USACOE, et al. 2003. U.S. Army Corps of Engineers. 2008. Draft interim regional supplement to the Corps of Engineers wetland delineation manual: Atlantic and Gulf coastal plain region. J.S. Wakeley, R.W. Lichvar, and C.V. Noble, eds. ERCD/EL TR-08-30, Vicksburg, MS. U.S. Army Corps of Engineers. 2008. Regulatory Guidance Letter (RGL) 08-03. Minimum monitoring requirements for compensatory mitigation projects involving the restoration, establishment, and/or enhancement of aquatic resources. Hell Swamp/Scott Creek Mitigation Site 10 PCS Phosphate Company, Inc. Baseline and First Annual Report April 2011 • m U C m E O ^m LL • C7) -0 a) a) a) • Yo ra m m ? 0 ° c: co • -0 A wo? o?c m m v, c L m ?o??° m co cu m ?. C/) o _0 co?os O L o ca ? = ° U) ? ° L U m m C L M O E U ? U O - U) a c C m c a.r O cm -6 a) CD x C: _ M m +m+ a) U O O m L O 'c m m m 'C m m L a) ?O cu a) L c L O L r+ _ + 0 4- Lo m a) cm a) L- O? Q O Q U) > - c m m E 70 Q N cu Q '•' O m Y in O% cu a m a w 0 . 0 -0 - -C -o o N L ' U •a ° 0 m ns c U a a) 0 c o cu -C m a) ° " c o c L m cu L T N a) m L a i L m _ aX E m c L O m 3 0 n o - E-0 a) a o U ? o m Co ? C a) a) a) ' a 3 U c a o o a Q m -5 c n -Cu d a N ° L ° o a) ° . CM -O L U.) Lo w O > o i a i T T •? v. > 0 3: 3 0 ` ° m N U "O 70 3 c 0 ? L 04 Z5 E? am) 0 N M p M Q 7 ° L ? (n c~ ?? 0 Q - V u, _ f) v, U U .- C «- L Co >> L cu N Q-0 N L = U a) cu 70 O U L. -_ fB 0) E u) - O O m O N w ? v U C Z) O w a) V -0 0 -a Q c Q c a o!S ? c cn Cl) 0 U) o L co m 1` cu 0 0 0 O L E I N + m z E U O m O cu Z c O N • L.1. , 0) L C L C L CD E O a) i L Q ' N > m m c m Q cu C Q L> 0 ° cu D p J E ° N N 7 m ? O m U U) O) C C L • O) C L m O CU L N O ? 0 C O O- E y cn -a) 0 EC c=v, U) C: O L cn CU ' O cn (6 m C O O m U +' C (? L D = C C m E C O O U m L C O O U U cu a> U O > Q m Lo ? ? 0 >> - cn ami m ° cn m E -- ) .L d r _ f0 rn c a) O m 1- Lo U a) C C C L9 y i 'C N 0> L c U >, cu ++ = E m T L A U OL a3 O ° 0 CD 0 V C a Q Q O ( O C U 0 O cn C U m E L co -0 O7 Lo >% 0 m (o •0 c O a) •L O • m C L N L Q c 0 c CU c- cL6 O O- O C: U -O co 76 cu a) U OL O U y Z m c -O L a) T Q Q O nl O C- C O _ C O C 0 O M °O 'O m O U) 3 - 2 2 +' a) r_ C L ca N -O a) C U ?r O +r +-' C m N ?p c0 C L N L m CIL E a C H M O R Co L 0 Q `/ N LL I- T-1 • • cu • O r m ° ) o c 00 aNi U) > m c L -O 1' c m ao c c c CU te n, ., p te ? c' Q a) +- ? (1) 0) 0 i N m 3: N cu r --. 2 N c r- -o c) •_ N C U 7 cn cu c- E a) p U N c a) ? i ._ N O +J cu O- co L OS E C) a) 7 7 fn a) O•. O O V U a) O O Q O a) '? rn > U -C v a r_ Q 3 ° o ch 53 E ns -0 N n3 C o 'w aci u) ? > ??mowvcua 0 0 LO 0 - ?C)T--0 o omo -o U Q--m m >m -0 16 a) 0 a) :3 y - 0 0 O O C O C M C N M a cu -O C r ? r- a) cr 3 a) >+ L C C a) co s a) c O L E a) w -O M a) cu O Q C1 a) O Q L O 0 .c :2 p 7 U cu p L c` Q 3 a) O - p O (u =3 c E cu c 0 0 a) cu a) E? L C n N 3 c E n O C N E O T U-) O LO w > O a) n O m c O O E cn L (V N E CV a) c U U (n - N v 3 U cu cn _ L: CO U) N 0) m -0? N E 0 cu ?- N E C) cu cu O a)_0 3 E L N L o ?= O co O C? O C U W 4- "- L U W "- c Q-o W - w O N c o o a) > c p Q c> O 40 ca O L c) O O Q L M >?> cu ¢ cu a) E C: U) O 0 0 O E- m E cu I Q O O E •' c > U a L .c O I ccuu N Z 0 c Z O 6 0 Z E O C d C c cn c c c =3 C C N cu C N N > O w Q > O E> c o ?L LL o oM o C co CV m p Do a) p 04 m c a) O V co U U U N O c ---- O) C C + N 7 O O in N _p 0) E N c 0 in o c y c V cm p O N C «3 O 0 O cn L +C- a E p r? N 7 U C cu c p. C - C r- o = O N O rn 7? c O O-r- U L M =3 • :, •N cn c ) cu O u) s ?? a)' 3s o E2 c o o Q a vi " E ` Q c c c N c m 0 OI d c ..= U a) L C O O dJ L Q L i? .-• C N 1 -O N 00 p V O N cm a) Q O V c L O C1 cu O C 66 cu __ CO _ co (D 0 U __ L N N co N r••. a) 0 cu O 20 L- _0 p N W E cu >, a) 0 N C O cu cu - p O 0 LO U cu Q 0 cu a) U °-cn cM oa ?,E? -0 a U co d V Lp N O Q C 3: O O U N C C U In a) C L O O 3 to ? c O L L 4? O E cu O w a) r 0 CU a) U > E O C U a) c O c O L c U Q O p L L , O a) L 6 L O L O CD- o IL Q L c a ? m N E O c U O j Q O Q C J p 3 Al p "? o E c c u 4 p m L O cu 'a 0 u ? 7 U E L •-. Q m lC a) O 2 N _ to of 3 c L u) N + L g mcu ns?? _ Oda) o cu Q N C Q C o C .L O •L a) p ;., U C C p N L O Z O O N Z L Q) p O t L +. L N N T-2 • E • M C N -° o U) cn r-- a ? U) U) ao a ca a) a) c c ? a) m ° LO '? o m cn CY) co cn N 0 3 L m a _ U R y N ON r- O m L cu ?c O CO -0 cu Q U m U O ' N C_ N '> _ a) C 0) 0- O L a3 a) L N cn m CL N a) cC - V O 3 °) > cn 3 U a) cn C U 7 ?- 3 CU > N c U 3 N > w 0 X c M O .C N a) to in . > Cl) N , > -0 C a) C: cn cC a C C _ N c c O a) O O ) O c a) c T N _ n3 " O C- 0 a) ? N >, 3 G ) E Op TO ca > a) 2 N M U) cn o _ u ? ? > a) 0 c O m m L : 2 a) C ? O _ N U Q a) O m U N C L) O N C L O N w fB • C a) > (0 > C Q ? . a) > (0 (0 > C +J C Q ?• C E co - m > a _ O . (D ca C . O - C N U ) a) o a) c cn ) C - Z cu -_ a Q C . > C 5 E w O E ? cn - ca cu O_ a C C L to a) ? ? > E 'C c N _ 6 a) i _ U) a) 0 ° cc E ? 3 N U) c a L i o v Z U) a) Z : R L (n U C 3 U C c O a cn cn O +? C C a (n cn cn N i?' fA a) a) LO C L m L N o a) L co co L cu C, ca O 7 co O ? a + .O C) N > U m E> w c? C c O 7 U' M 7 C7 M D O M > CU) I CO CO 'r- 0 co D N a) " e- O O O O C) O _ D a O N Q m> O L U L? O- N O N O N a) 0 x Co a) C\j Co n C O N O a M m a p N O M U O C O O " C a a a U O m N Vi O(mn c CO o p c E V E Cu ? E E ) Zca_=o?°4)DimCorn cu m i? !E w O U C M L Q a ) a) ) O N N k CO CO O U U) L: a) U) Mn cn -0 LO O E >, 0 ? CD C cu m o N RS ; C c M C c > Qaa))? O co - L c cn r = CD CO c N U) Cb _ ca CD E 3 N c c 2 L fC tS 3 U) U) c co Q O > (,) - (p co i/i w c - 0 Q t U d 0 to Q Q C O L O c () () R c? c rn «-? UN a) o ' a co 0 a? E cn ct) L V) C 'c 3 i ` to c 0 cn 3 a) 0 to j 0 O +J cn cn d C L O - 7 a) (B co R cn Q aJ a) L O cn N a) M ' R c0 Y > E + w c N cr>' U .w N L L O .. 7 0 L C O N C O fa ` a) N U E +L O N a) ca C w` O ?i E O .0 cu " cu a) a= Q CL cu a) O E o o N c - co d ? Q C) c ? a) 0 00 N N(D o E 2 IL co ' ° n C O C) U) aa)) co O C O O .r O R cm a) c O O cn N w co L C 0 L a) O O O ccnn L r O N C- A= af U- c co a a) Y 0 c (D o_ 0 U) C O 0) C .N m U C 0 0 0 -0 a t 0 CD rn c m 3 n E 3 U) N m Y m m () c C C a3 a c O c (D 0 0 N 0 m m z 12 O) 0 0) c C C O 7 a) L CD 0 0- a a) T U C 4) m a7 a`) L O a) U c as E iii c 0 c c 0 ns a 0 T-3 • C, • Table 2A. Longest hydroperiods in 2010 of stream monitoring wells at Hell Swamp restoration site. (NI=Not Installed H drolo is Zone NC WETS Cumulative days Days 1-27 Feb Consecutive days Percent of 28 Feb-6 Dec Well where water where water 28 Feb -6 Dec Dates growing <6 >6-12.5% >12.5-25% >25-75% table is -12" or table is -12" or where water table season above is -12" or above" (282 days) above UT1-1A' NI 16 <17 NA <6 X UT1-1 C2 NI 41 18 9/28-10/15 6.4 X UT1-2A2 NI 26 <17 NA <6 X UT1-2C' NI 60 22 9/28-10/19 7.8 X UT1-3A2 NI 33 <17 NA <6 X UT1-3C' NI 34 <17 NA <6 X UT2-1A3 NI 54 18 9/28-10/15 6.4 X UT2-1 C3 NI 68 24 9/28-10/21 8.5 X UT2-2A3 NI 13 <17 NA <6 X UT2-2C3 NI 21 <17 NA <6 X UT3-1A4 NI 55 18;20 9/28-10/15 71 X 11/4-11/23 UT3-1 C4 NI 71 20;24 9/28-10/17 8.5 X 11/4-11/27 UT3-2A4 NI 28 <17 NA <6 X UT3-3A4 NI 10 <17 NA <6 X UT3-3C4 NI 10 <17 NA <6 X UT3-4A5 NI 5 <17 NA <6 X UT3-4C5 NI 8 <17 NA <6 X UT3-5A5 NI 19 <17 NA <6 X UT3-5C5 NI 9 <17 NA <6 X UT3-6A4 NI 23 <17 NA <6 X UT3-7A2 NI 8 <17 NA <6 X UT3-7C2 NI 21 <17 NA <6 X UT3-8A6 NI 12 <17 NA <6 X UT3-8C6 NI 13 <17 NA <6 X UT3-9A6 NI 19 17 9/30-10/16 6.0 X UT3-9C6 NI 22 18 9/30-10/17 6.4 X UT4-1A7 NI 59 25 11/4-11/28 8.9 X UT4-1C7 NI 83 25;44 9/28-10/22 15.6 X 10/25-12/6 UT4-2A7 NI 16 <17 NA <6 X UT5-1A6 NI 79 70 9/28-12/6 24.8 X UT5-1 C8 NI 57 24 11/4-11/27 8.5 X UT5-2A8 NI 18 <17 NA <6 X UT6-4A9 NI 31 <17 NA <6 X UT6-4C9 NI 31 <17 NA <6 X UT6-5A9 NI 14 <17 NA <6 X UT6-5C9 NI 13 <17 NA <6 X UT6-6A9 NI 27 <17 NA <6 X UT6-6C9 NI 25 <17 NA <6 X UT7-1A9 NI 11 <17 NA <6 X UT7-1 C9 NI 8 <17 NA <6 X UT7-2A10 NI 16 <17 NA <6 X UT7-2C10 NI 11 <17 NA <6 X UT7-3A10 NI 8 <17 NA <6 X UT7-3C10 NI 7 <17 NA <6 X UT8-1A5 NI 65 25 9/27-10/21 8.9 X UT8-1 C5 NI 83 26 9/27-10-22 9.2 X UT8-2A5 NI 58 21 9/28-10/18 7.4 X UT8-2C5 NI 40 19 9/28-10/16 6.7 X UT8-3A5 NI 12 <17 NA <6 X UT8-3C5 NI 16 <17 NA <6 X T-4 • • • Table 2A. (concluded) H drolo is Zone NC WETS Cumulative days Days 1-27 Feb Consecutive days Percent of 28 Feb-6 Dec Well where water where water 28 Feb-6 Dec Dates growing <6 >6-12 5% >12 5-25% >25-75% table is -12" or table is -12" or where water table season . . above is -12" or above' (282 days) above UT8-4A5 NI 55 23 9/30-10/22 8.2 X UT8-4C5 NI 66 60 9/29-11/27 21.3 X UT8-5A7 NI 0 <17 NA <6 X UT8-5C' NI 4 <17 NA <6 X UT8-6A7 NI 19 <17 NA <6 X UT8-6C7 NI 38 20 9/29-10/18 7.1 X USC-1A8 NI 70 70 9/28-12/6 24.8 X USC-1C8 NI 70 70 9/28-12/6 24.8 X USC-2A8 NI 12 <17 NA <6 X USC-2C8 NI 36 <17 NA <6 X USC-3C11 NI 29 <17 NA <6 X USC-4A12 NI 29 <17 NA <6 X USC-4C12 NI 37 18 9/28-10/15 6.4 X USC-5A12 NI 48 23 9/28-10/20 8.2 X USC-5C12 NI 50 23 9/29-10/21 8.2 X USC-6A12 NI 70 68 9/30-12/6 24.1 X USC-6C12 NI 82 68 9/30-12/6 24.1 X USC-7A12 NI 74 68 9/30-12/6 24.1 X USC-7C12 NI 76 68 9/30-12/6 24.1 X USC-8A12 NI 87 70 9/28-12/6 24.8 X USC-8C12 NI 82 70 9/28-12/6 24.8 X USC-9A13 NI 13 <17 NA <6 X USC-9C13 NI 13 <17 NA <6 X USC-10A13 NI 43 22 9/29-10/21 7.8 X USC-11A7 N1 69 59 9/30-11/27 20.9 X USC-11C7 NI 75 68 9/30-12/6 24.1 X USC-12A7 NI 57 51 9/30-11/19 18.1 X US -12C7 NI 78 68 9/30-12/6 24.1 X USC-13A7 NI 76 68 9/30-12/6 24.1 X USC-13C7 NI 65 24;28 9/30-10/23 9.6 X 1 10/26-11/221 "Only more than 17 days or more (6%) are included in this column and only the longest hydroperiods (or two longest if they are similar or if they are only separated by a few days) are listed 'Installed 27 May 2010 2Installed 26 May 2010 3Installed 2 July 2010 4Installed 3 June 2010 5Installed 9 June 2010 6Installed 2 June 2010 7Installed 25 May 2010 8Installed 1 July 2010 9Installed 16 June 2010 10lnstalled 30 June 2010 1 Installed 26 July 2010 12 Installed 18 July 2010 13 Installed 18 May 2010 T-5 • • Table 2B. Longest hydroperiods in 2010 of hardwood flat monitoring wells at Hell Swamp restoration site. (NI=Not installed Hydrologic Zone (NC W ETS) Days 1-27 Feb Cumulative days Consecutive days Percent of Well where water " 28 Feb-6 Dec 28 Feb-6 Dec Dates growing season <6 >6-12.5% >12.5-25% >25-75% table is -12 or where water table " where water table " " (282 days) above is -12 or above is -12 or above 1 ' NI 146 71 9/27-12/6 25.2 X 2 2 NI 90 30 3/18-4/16 10.6 X 3 26 41 22 2/28-3/21 7.8 X 4 22 23 <17 NA <6 X 5 21 30 <17 NA <6 X 6 19 19 <17 NA <6 X 7 24 38 21 3/3-3/23 7.4 X 8 3 NI 12 <17 NA <6 X 9 28 55 22 2/28-3/21 7.8 X 10 26 33 <17 NA <6 X 11 5 6 <17 NA <6 X 12' NI 81 68 9/30-12/6 24.1 X 13' Ni 93 68 9/30-12-6 24.1 X 14 18 20 <17 NA <6 X 15 21 31 <17 NA <6 X 16 27 73 42 2/28-4/11 14.9 X 17 4 NI 36 18 9/30-10-17 6.4 X 18 5 NI 103 68 9/30-12/6 24.1 X 19 20 52 <17 NA <6 X 20 4 NI 6 <17 NA <6 X 21 28 82 25;26 9/30-10/21 9.2 X 10/26-11/20 22 19 17 <17 NA <6 X 23 11 11 <17 NA <6 X 24 27 66 26;22 2/28-3/25 9.2 X 9/30-10/21 25 24 16 <17 NA <6 X 26 27 74 27 2/28-3/26 9.6 X 27 27 104 68 9/30-12/6 24.1 X 28 27 168 100;68 2/28-6/7 35.5 X 9/30-12/6 29 27 78 25 2/28-3/24 8.9 X 30 3 NI 6 <17 NA <6 X 314 NI 13 <17 NA <6 X 32 24 25 <17 NA <6 X 33 20 32 <17 NA <6 X 34 23 46 <17 NA <6 X 35 1 51 <17 NA <6 X 36 27 83 25;29 2/28-3/24 10.3 X 10/26-11/23 T-6 C? • • Table 2B. (continued) Hydrologic Zone (NC W ETS) Days 1-27 Feb Cumulative days Consecutive days Percent of where water 28 Feb-6 Dec 28 Feb-6 Dec Well table is -12" or where water table where water table Dates growing season <6 >6-12.5% >12.5-25% >25-75% " " ` (282 days) above is -12 or above is -12 or above 37 27 111 68 9/30-12/6 24.1 X 38 27 89 27 2/28-3/26 9.6 X 39 21 14 <17 NA <6 X 40 6 NI 88 61 9/29-11/28 21.6 X 41 16 12 <17 NA <6 X 42 N/A 71 18 9/27-10/14 6.4 X 43 ° N/A 5 <17 NA <6 X 44 21 15 <17 NA <6 X 45 23 19 <17 NA <6 X 46 20 14 <17 NA <6 X 47 24 29 17 3/3-3/19 6.0 X 48 s N/A 73 21;23 3 8.2 X 30-10/22 49 27 67 20;19 2/28-3/19 7.1 X 9/29-10/17 50 22 22 <17 NA <6 X 51 20 15 <17 NA <6 X 52 23 29 <17 NA <6 X 53 6 N/A 49 18 9/30-10/17 6.4 X 54 6 N/A 31 <17 NA <6 X 55 4 N/A 18 <17 NA <6 X 56 21 17 <17 NA <6 X 57 14 8 <17 NA <6 X 58 6 N/A 4 <17 NA <6 X 59 22 18 <17 NA <6 X 60 27 43 26 2/28-3/25 9.2 X 61 24 33 <17 NA <6 X 62 23 23 <17 NA <6 X 63 27 80 37 2/28-4/5 13.1 X 64 27 36 18 3/3-3/20 6.4 X 65 21 17 <17 NA <6 X 66 6 NI 11 <17 NA <6 X 67 6 NI 71 23;33 9/28-10/20 11.7 X 10/26-11/27 68 4 NI 88 68 9/30-12/6 24.1 X 69 4 NI 8 <17 NA <6 X 707 NI 4 <17 NA <6 X 71 22 15 <17 NA <6 X 72 27 36 20 2/28-3/19 7.1 X 73 s 24 27 17 9/30-10/16 6.0 X T-7 Table 2B. (continued) • • 0 109 3 NI 6 <17 NA <6 X Hydrologic Zone (NC W ETS) Days 1-27 Feb Cumulative days Consecutive days Percent of Well >-12" 28 Feb-6 Dec 28 Feb-6 Dec Dates growing season <6 o >6-12.5 /o 0 >12.5-25 /o 0 >25-75% >-12" >-12' (282 days) 74 3 24 53 18 9/28-10/15 6.4 X 75 3 22 29 <17 NA <6 X 76 23 15 <17 NA <6 X 77 27 48 27 2/28-3/26 9.6 X 78 8 NI 18 <17 NA <6 X 79 8 NI 8 <17 NA <6 X 808 NI 19 <17 NA <6 X 818 NI 37 <17 NA <6 X 82 8 NI 60 <17 NA <6 i X 83 a NI 8 <17 NA <6 X 84 27 36 26 2/28-3/25 9.2 X 85 27 45 25 2/28-3/24 8.9 X 86 24 27 <17 NA <6 X 87 26 28 19 2/28-3/18 6.7 X 88 27 30 17 3/3-3/19 6.0 X 89 27 31 20 2/28-3/19 7.1 X 90 23 18 <17 NA <6 X 9110 NI 8 <17 NA <6 X 9210 NI 89 69 9/28-12/6 24.5 X 9310 NI 64 21 9/28-10/19 7.4 X 11/4-11/24 94 8 NI 12 <17 NA <6 X 95 8 NI 89 19 9/28-10/16 6.7 X 96 27 71 21 2/28-3/20 7.4 X 97 27 95 42 2/28-4/10 14.9 X 98 27 95 21 2/28-3/20 7.4 X 99 19 ! 71 <17 NA <6 X 100 27 88 51 9/30-11/19 18.1 X 101 28 107 59 9/30-11/27 20.9 X 102 3 NI j 9 <17 NA <6 X 103 3 NI 7 <17 NA <6 X 1043 NI 15 <17 NA <6 X 10510 NI 8 <17 NA <6 X 106 24 34 20 2/28-3/19 7.1 X 107 24 42 <17 NA <6 X 108 27 78 25 2/28-3/24 8.9 X 110 27 110 67 9/30-12/6 23.8 X T-8 • • • Table 2B. (concluded) Hydrologic Zone (NC WETS) Cumulative days Consecutive days Percent of Well Days 1-27 Feb " 28 Feb-6 Dec 28 Feb-6 Dec Dates growing season <6 o >6-12.5 /o 0 >12.5-25 /o 0 >25-75% >-12 - >-12" >-12* (282 days) - 111 22 50 <17 NA <6 X 112 22 19 <17 NA <6 X 113 27 125 107 2/28-6/14 37.9 X 114 27 121 54 9/28-11/20 19.1 X 115 22 55 33 2/28-4/1 11.7 X 116 22 55 21 9/27-10/17 7.4 X 117 19 116 24 9/27-10/20 8.5 X 118 21 53 22 5/24-6/14 7.8 X 119 27 165 106 2/28-6/13 37.6 X 120 21 30 <17 NA <6 X 1213 NI 94 70 9/28-12/6 24.8 X 122 17 30 <17 NA <6 X 123 8 NI 31 <17 NA <6 X 124 20 36 <17 NA <6 X Control wells Ref1 27 58 50 2/28-4/18 17.7 X Ref2 27 67 55 2/28-4/23 19.5 X Ref3 0 66 36 4/2-5/7 12.8 X pplii NI 15 12 <17 <6 X Pp21' NI 43 43 10/6-11/17 15.2 X PP3" NI 62 62 10/6-12/6 22.0 X PP4" NI 39 25 1016-10/30 8.9 X *Only more than 17 days or more (6%) are included in this column and only the longest hydroperiods (or two longest if they are similar or only separated by a few days) are listed 'Installed 30 March 2010 5lnstalled 17 March 2010 9lnstalled 21 April 2010 2Installed 18 March 2010 6Installed 31 March 2010 10lnstalled 6 May 2010 3Installed 24 March 2010 Installed 26 March 2010 "Installed 6 October 2010 4Installed 25 March 2010 8Installed 8 April 2010 T-9 Table 3A. Longest hydroperiods in 2010 of stream monitoring wells at Hell Swamp restoration site during normal or below normal rainfall. (NI=Not Installed) C7 • • H drolo is Zone NC WETS Days 1-27 Cumulative days Consecutive days Percent of 28 Feb-6 Dec Well Feb where where water 28 Feb-6 Dec Dates growing <6 a >6-12.5 /o o >12.5-25 /o 0 >25-75 /o water table is where water table season table is -12" or -12" or above is -12" or above* (282 days) above UT1-1A' NI 10 <17 NA <6 X UT1-1 C2 NI 17 <17 NA <6 X UT1-2A2 NI 10 <17 NA <6 X UT1-2C' NI 41 <17 NA <6 X UT1-3A2 NI 33 <17 NA <6 X UT1-3C' NI 14 <17 NA <6 X UT2-1 A3 NI 33 21 11/1-11/24 7.4 X UT2-1 C3 NI 36 25 11/3-11/27 8.9 X UT2-2A3 NI 3 <17 NA <6 X UT2-2C3 NI 8 <17 NA <6 X UT3-1A4 NI 30 20 11/4-11/23 7.1 X UT3-1 C4 NI 30 24 11/4-11/27 8.5 X UT3-2A4 NI 14 <17 NA <6 X UT3-3A4 NI 4 <17 NA <6 X UT3-3C4 NI 3 <17 NA <6 X UT3-4A5 NI 1 <17 NA <6 X UT3-4C5 NI 1 <17 NA <6 X UT3-5A5 NI 7 <17 NA <6 X UT3-5C5 NI 1 <17 NA <6 X UT3-6A4 NI 11 <17 NA <6 X UT3-7A2 NI 1 <17 NA <6 X UT3-7C2 NI 7 <17 NA <6 X UT3-8A6 NI 1 <17 NA <6 X UT3-8C6 NI 1 <17 NA <6 X UT3-9A6 NI 2 <17 NA <6 X UT3-9C6 NI 3 <17 NA <6 X UT4-1 A7 NI 40 25 11/4-11/28 8.9 X UT4-1 C7 NI 54 36 1111-12/6 12.8 X UT4-2A7 NI 9 <17 NA <6 X UT5-1 A8 NI 48 36 11/1-12/6 12.8 X UT5-1 C8 N I 35 24 11/4-11/27 8.5 X UT5-2A8 NI 12 <17 NA <6 X UT6-4A9 NI 5 <17 NA <6 X UT6-4C9 NI 6 <17 NA <6 X UT6-5A9 NI 1 <17 NA <6 X UT6-5C9 NI 13 <17 NA <6 X UT6-6A9 NI 1 <17 NA <6 X UT6-6C9 NI 1 <17 NA <6 X UT7-1A9 NI 7 <17 NA <6 X UT7-1 C9 NI 3 <17 NA <6 X UT7-2A10 NI 8 <17 NA <6 X UT7-2C10 NI 5 <17 NA <6 X UT7-3A10 NI 1 <17 NA <6 X UT7-3C10 NI 1 <17 NA <6 X UT8-1A5 NI 40 <17 NA <6 X UT8-1C5 NI 54 27 11/1-11/27 9.6 X UT8-2A5 NI 33 <17 NA <6 X UT8-2C5 NI 18 <17 NA <6 X UT8-3A5 NI 2 <17 NA <6 X UT8-3C5 NI 5 <17 NA <6 X UT8-4A5 NI 27 18 11/4-11/21 6.4 X T-10 • • • Table 3A. (concluded) Hydrologic Zone NC WETS Cumulative days Days 1-27 Consecutive days Percent of 28 Feb-6 Dec Well Feb where where water 28 Feb-6 Dec Dates growing <6 >6-12.5% >12.5-25% >25-75% water table is table is -12" or where water table season -12" or above is -12" or above* (282 days) above UT8-4C5 NI 35 27 11/1-11/27 9.6 X UT8-5A' NI 0 <17 NA <6 X UT8-5C' NI 0 <17 NA <6 X UT8-6A' NI 6 <17 NA <6 X UT8-6C' NI 16 <17 NA <6 X USC-1A8 NI 39 36 11/1-12/6 12.8 X USC-1C8 NI 39 36 11/1-12/6 12.8 X USC-2A8 NI 6 <17 NA <6 X USC-2C8 NI 15 <17 NA <6 X USC-3C11 NI 15 <17 NA <6 X USC-4A12 NI 16 <17 NA <6 X USC-4C12 NI 16 <17 NA <6 X USC-5A12 NI 22 <17 NA <6 X USC-5C12 NI 23 <17 NA <6 X USC-6A12 NI 40 36 11/1-12/6 12.8 X USC-6C12 NI 52 36 11/1-12/6 12.8 X USC-7A12 NI 42 36 11/1-12/6 12.8 X USC-7C12 NI 44 36 11/1-12/6 12.8 X USC-8A12 NI 56 36 11/1-12/6 12.8 X USC-8C12 NI 51 36 1111-12/6 12.8 X USC-9A13 NI 4 <17 NA <6 X USC-9C13 NI 1 <17 NA <6 X USC-10A13 NI 16 <17 NA <6 X USC-11A7 NI 38 36 11/1-12/6 12.8 X USC-11C' NI 44 36 11/1-12/6 12.8 X USC-12A7 NI 26 19 11/1-11/19 6.7 X US -12C' NI 47 36 11/1-12/6 12.8 X USC-13A7 N1 45 36 11/1-12/6 12.8 X USC-13C' NI 35 23 11/1-11/23 9.6 X *Only more than 17 days or more (6%) are included in this column and only the longest hydroperiods (or two longest if they are similar or if they are only separated by a few days) are listed 'Installed 27 May 2010 2Installed 26 May 2010 3Installed 2 July 2010 4Installed 3 June 2010 5Installed 9 June 2010 6Installed 2 June 2010 'Installed 25 May 2010 8Installed 1 July 2010 9lnstalled 16 June 2010 101nstalled 30 June 2010 11 Installed 26 July 2010 12 Installed 18 July 2010 13 Installed 18 May 2010 T-11 Table 3B. Longest hydroperiods in 2010 of hardwood flat monitoring wells at Hell Swamp restoration site during normal or below normal rainfall. (NI=Not installed) • 0 E 35 1 43 <17 NA <6 X Hvdrolooic Zone (NC WETS) Well Days 1-27 Feb where water table is -12" or above" Cumulative days 28 Feb-6 Dec where water table is -12" or above Consecutive days 28 Feb-6 Dec where water table is -12" or above Dates Percent of growing season (282 days) <6 >6-12.5% >12.5-25% >25-75% 1 ' NI 115 33&36 1124-6/27 12.8 X 6 2 2 NI 74 30 3/18-4/16 10.6 X 3 26 32 22 2/28-3/21 7.8 X 4 22 17 <17 NA <6 X 5 21 24 <17 NA <6 X 6 19 13 <17 NA <6 X 7 24 38 21 3/3-3/23 7.4 X 8 3 NI 5 <17 NA <6 X 9 28 44 22 2/28-3/21 7.8 X 10 26 33 <17 NA <6 X 11 5 6 <17 NA <6 X 12' NI 37 36 11/1-12/6 12.8 X 13 NI 62 36 11/1-1216 12.8 X 14 18 15 <17 NA <6 X 15 21 31 <17 NA <6 X 16 27 61 42 2/28-4/11 14.9 X 17 4 NI 15 <17 NA <6 X 18 a NI 72 36 11/1-12/6 12.8 X 19 20 48 <17 NA <6 X 20 4 NI 6 <17 NA <6 X 21 28 55 25&20 2/28-3/24 8.9 X 11/1-11/20 22 19 10 <17 NA <6 X 23 11 11 <17 NA <6 X 24 27 45 26 2/28-3/25 9.2 X 25 24 16 <17 NA <6 X 26 27 58 27 2/28-3/26 9.6 X 27 27 73 36 11/1-12/6 12.8 X 28 27 137 100 2/28-6/7 35.5 X 29 27 47 25 2/28-3/24 8.9 X 30 3 NI 6 <17 NA <6 X 314 NI 6 <17 NA <6 X 32 24 18 <17 NA <6 X 33 20 28 <17 NA <6 X 34 23 39 <17 NA <6 X T-12 • C Table 3B. (continued) Hydrologic Zone (NC WETS) Days 1-27 Feb Cumulative days Consecutive days Percent of where water 28 Feb-6 Dec 28 Feb-6 Dec Well table is -12" or where water table where water table Dates growing season <6 >6-12.5% >12.5-25% >25-75% above" is -12" or above" is -12" or above" (282 days) 2/28-3/24 36 27 60 25&23 8.9 X 11/1-11/23 37 27 80 36 11/1-12/6 12.8 X 38 27 73 27 2/28-3/26 9.6 X 39 21 13 <17 NA <6 X 406 NI 57 28 11/1-11/28 9.9 X 41 16 8 <17 NA <6 X 42 N/A 57 <17 NA <6 X 43 4 N/A 1 <17 NA <6 X 44 21 10 <17 NA <6 X 45 23 12 <17 NA <6 X 46 20 9 <17 NA <6 X 47 24 20 17 3/3-3/19 6.0 X 48 3 N/A 45 21 3/24-4/13 7.4 X 49 27 44 20 2/28-3/19 7.1 X 50 22 17 <17 NA <6 X 51 20 15 <17 NA <6 X 52 23 23 <17 NA <6 X 53 6 N/A 28 <17 NA <6 X 54 6 N/A 17 <17 NA <6 X 55 4 N/A 4 <17 NA <6 X 56 21 12 <17 NA <6 X 57 14 5 <17 NA <6 X 586 N/A 3 <17 NA <6 X 59 22 12 <17 NA <6 X 60 27 31 26 2/28-3/25 9.2 X 61 24 33 <17 NA <6 X 62 23 19 <17 NA <6 X 63 27 62 37 2/28-4/5 13.1 X 64 27 26 18 3/3-3/20 6.4 X 65 21 12 <17 NA <6 X 66 6 NI 7 <17 NA <6 X 67 6 NI 45 27 11/1-11/27 9.5 X 68 4 NI 57 36 11/1-12/6 12.8 X 69 4 NI 2 <17 NA <6 X 707 NI 3 <17 NA <6 X T-13 Table 3B. (continued) HvrImInnic 7onP (NC WFTSI C7 • Well Days 1-27 Feb where water table is -12" or above" Cumulative days 28 Feb-6 Dec where water table is -12" or above" Consecutive days 28 Feb-6 Dec where water table is -12" or above" Dates Percent of growing season (282 days) <6 >6-12.5% >12.5-25% >25-75% 71 22 10 <17 NA <6 X 72 27 27 20 2/28-3/19 7.1 X 73 3 24 10 <17 NA <6 X 74 3 24 34 <17 NA <6 X 75 3 22 15 <17 NA <6 X 76 23 11 <17 NA <6 X 77 27 36 27 2/28-3/26 9.6 X 78 6 NI 12 <17 NA <6 X 79 8 NI 5 <17 NA <6 X 808 NI 12 <17 NA <6 X 818 NI 22 <17 NA <6 X 82 8 NI 40 <17 NA <6 X 83 9 NI 5 <17 NA <6 X 84 27 32 26 2/28-3/25 9.2 X 85 27 34 25 2/28-3/24 8.9 X 86 24 21 <17 NA <6 X 87 26 22 19 2/28-3/18 6.7 X 88 27 22 17 3/3-3/19 6.0 X 89 27 24 20 2/28-3/19 7.1 X 90 23 13 <17 NA <6 X 9110 NI 4 <17 NA <6 X 9210 NI 58 36 11/1-12/6 12.8 X 93 10 NI 45 21 11/4-11/24 7.4 X 94 e NI 7 <17 NA <6 X 95 8 NI 69 <17 NA <6 X 96 27 49 21 2/28-3/20 7.4 X 97 27 76 42 2/28-4/10 14.9 X 98 27 86 21 2/28-3/20 7.4 X 99 19 52 <17 NA <6 X 100 27 57 33 2/28-4/1 11.7 X 101 28 76 28 2/28-4/6 9.9 X 102 3 NI 4 <17 NA <6 X 103 3 NI 1 <17 NA <6 X 104 3 NI 7 <17 NA <6 X 10510 NI 1 <17 NA <6 X T-14 • • • Table 3B. (conclud H ydrologic Zone (NC WETS) Cumulative days Consecutive days Percent of Days 1-27 Feb o 0 0 Well " 28 Feb-6 Dec 28 Feb-6 Dec Dates growing season <6 >6-12.5 /o >12.5-25 /o >25-75 /a ?-12 >-12" >-12* (282 days) 106 24 34 20 2/28-3/19 7.1 X 107 24 36 <17 NA <6 X 108 27 63 25 2/28-3/24 8.9 X 109 3 NI 1 <17 NA <6 X 2/28-4/6 110 27 79 38&36 13.5 X 11/1-12/6 111 22 37 <17 NA <6 X 112 22 10 <17 NA <6 X 113 27 117 107 2/28-6/14 37.9 X 114 27 90 38 2/28-4/6 13.5 X 115 22 31 33 2/28-4/1 11.7 X 116 22 34 <17 NA <6 X 117 19 90 <17 NA <6 X 118 21 46 22 5/24-6/14 7.8 X 119 27 149 106 2/28-6/13 37.6 X 120 21 27 <17 NA <6 X 1213 NI 63 36 11/1-12/6 12.8 X 122 17 26 <17 NA <6 X 123 8 NI 20 <17 NA <6 X 124 20 31 <17 NA <6 X Control wells Ref1 27 50 50 2/28-4/18 17.7 X Ref2 27 55 55 2/28-4/23 19.5 X Ref3 0 43 36 4/2-5/7 12.8 X PP1ll NI 2 <17 NA <6 X PP2" NI 17 17 11/1-11/17 6.0 X PP3" NI 36 36 11/1-12/6 12.8 X PP411 NI 14 <17 NA <6 X *Only more than 17 days or more (6%) are included in this column and only the longest hydroperiods (or two longest if they are similar or only separated by a few days) are listed 'Installed 30 March 2010 2Installed 18 March 2010 3Installed 24 March 2010 4Installed 25 March 2010 5Installed 17 March 2010 6Installed 31 March 2010 7Installed 26 March 2010 8Installed 8 April 2010 9lnstalled 21 April 2010 10lnstalled 6 May 2010 " Installed 6 October 2010 T-15 C0 H v a? co F- fo ro 00000000000 000 00 0 C:)0[, 0 O i 00 O N N > 0 ! i i 00 00000000000 000 i 00 i 0 0) .- .-- -------- --- -- - 0 ems O 00 , i i r r r O ? CC) 0 U) C V> i? 0I- 000.E 0000 00 000 i Or aD 0 00 000 0 0 0 0 0 0 00 0 co co 0 0 0 i M ? 0 O 000 O i i 00 0 It 0 0 d Q 0 co OOCY) CY) 0 q- ??MLO 0 <,.)-?M-M? 0lI)0 Od ?OO ?e} -00000-000 0 O Doti 00 N 00 M N co N (D N U a) O N O O CO 'It O O O O N 0 0 0 0 -;t 0 0 0 O O t n N N 0 0 0 0 0 0 0 0 0 C+) M N 04 O C N fd LL OOMN MO MM MOM co It O It 0 OM co ? -000f--0000 0)co N c) (0%--CO) Q N ^ N co ci- O O M Lo M O V P- 0 M 00 M CO Ce) 0 Lo Lo O t o M CI) C40 0 LO O - O O O ?- 0 0 0 0 0n co Nt co O N N N N N 0 U E C N U C U O O O O - O O O O O O O O O O N O O O O O O N O O LO 0 0 0 0 0 0 0 0 0 0 0 0 It C)) C) C 03 m 4) > OOMLAc,N.)O? CO OOMw Mr'M 000OIt0000 In0C0 -00011--0000 (m O r-14 Q N r? N - N 00 co 0) "C) C tM? O O CO M O M M M M 0 0 Lo 0 O O ? to - 0 0 0 0- 0 0 0 0 ? N O NN "M N CO) (D N N co to a) E Y C U a) Q) E co O Q O N d 'a co 0 C O E () C i C L M ?c U) U 03 7 Y E io - m g m M M t co O .. F- O E >, CD O V a Y (7 p U 0 U) p o o co a) cn a) a a) 3 ? O 30 C O> o to o 3 ? 0 H E -?e cu 0 c co n m c C: M M (n cn o 3 ° c t- U a0 U) m o o 0 0 Q o =$ o E a cn 2 ) 3 - > O U a U 0 U O O n U 0 o E 0 a) ? a m c 0 -0 O p ca n n 7 E ? ? E a E ? a -0 ? a i 6 ) U)i a 0 coE?co?oM>3ro? E 3 ooE3o? > a) . a) ?Ya3 =mco :- 3 Q rn 3 U 3 U o U 3 U 3 O Q U U a Q Cl) U) -)0 co .E 3> U U U 1 ro U ro (T3 ac) a W o ro O ro .cB c p ?' ro ro U C O ,? Jo y Ct$ U O Q U E " a 0+ N CO) U O E .L 0) co O E ., ro N c O c0 c Q i y 0) Z c? 73 0 i x b 0 = O 5 0sz Z3 - co c 41) ? O ro c O N O a) c j U Q H U m 6 ?ao?m ao EEeroQoa co? )? ?•ro?croQv croc coo. oro... Lro?c cmm?.co??E ym ?8?c ro cE e 3 c m ro , d ro U .c co ro O' :5 coo •? o) o) m 0 cn ro Q a 0 0 m ocro a hc 20 ro oa ?'o ? . ,Q ro co ?m •; o 4_ 10 c r > 0)ro : 0 c ? C, Q) 1 T?Ec n a )c c MZc coro o x oc°iox? m ?='? - U c Q x c a CO ` Q ` ? ro e f? a i ,. ro JULLLLZZQ.000C'JC'JC3'C'JC3'C'1vo , ca i c oa o ii? a toUU;_?ai JJQE» .7 a? 21 ro C O w m c U co 3 E 0 U) a? vi t Y Q) '0 0) a) C ccn a M E "O m co cn C N U -0 co 3 m c c E (D L O U U N 4) > Y =3 0 U ?I C N U co N ? a) 0) ? H C co C Y ? C > a) a) > a) CA 0A C C •E a ro U U c 0) Y U C 0) U L 0) O N O O C C O Y O co r= ? C C 0) a) i rn O O CL C O CL 0) U -a 4) 03 ? a) N -0 O a) a) ; a m ns c m m cnn U c c U) cn -0 7 co m + C •> O N L U Q) Q ? "7 E > .0 c. ) H U N M O _O X a) 0 0 0) c U co m_ m m m io U co U U 3 ro c a? L a? 7 F? O O N f0 O O O N L O E E N C a) (n co E O Q E N cu V) O U (6 N N O M N_ c a a) c m a U) cn v7 a C f? O a) 0 cu 0 U) 6 m F- m ffi > O 000D 00oooor-0000000 00000000 a) a) O O O 0 0 0 O O V7 m O MO O O?MO0p 0) 000)LO 0 n0oo 00 O O O O 0) O 0 0 0 a) 0 O co co 0) CA s- ?- ? c- e- .- .- e- ) D V) w C > Q) = C) CO LO LO 0 M 0 a) co m 0 a) 0 m m O 0 m m m m m 00 O O O O ti LO M m CO 0) 0 0 0 0) 0 00 0 M cl) O M O) d Q 0 r r r .- r r M co (D 00 CO M O LO N cli o N 0 O 00 _ p CO 0) M V) a- C,) c•M I- M O 1 ?? r- N M N M O a o (V W Cl) ^ O p 00 - a0 (D m M a) N o ' O O M (D N N D7 M CO N a0 to N r= d' ^ N It M N a ^ N r? r E N O N y 0 N 0 u) 1.0 O O N O 'It O (D O N LO (O N o 0 (M U 00 O M r M N ?- M O N p O .- O CD O (D O co v ^^ M 0) (N y1 0 N O C N ? It c LL > O O co CO M N 00 O O N N O (D O cn f- (O N O LO 00 O O CO M O O N N 00 N N .- (D (p co O M M co a) ?^ to cn M ao N M M L N ^ co m ^ (O Q Lo (D 00 Lo .- N r-- O 00 (O r- O ^ M N - N co ?t ^ W) C r M 0 '-tN - LO v- ?NOOO (D It (O00)M(DNMM OOOO O)O.- NcM(D?ONa) ao CA p _ ? OMM•-~O MN- Cn p co ?? a- .- (D N N M o 00 (O N- 00 u) N O d ^ N N It ch ^ nj e- N E w N N O N- M O N O Cl) M .?- N- (ND N O M 0 0 0 r N O N p O O O O lf) O N O O O I? O U c0 co N N co > • M 00 LO OD N N N P- N 00 O LO 00 Oo .- 0 00 p Nt co a) M tf) ?- M M (P) LO 00 p O O O N (D - M a0 O N M N M co (O O 11, Cn p) O M O r O) M? ?._. co M N N M 0) O (D (•'? N Q N . O r- N .- O O) . tO t- .- 00 N r O (`7 r ?t M^ et N ? O) ((DM (D N N M LO M to "t 0 M M N It `- LO t0 N O N O M O) N M 0) ^O ? CJ M O .-- O .- 00 ?- "t (D M N - N 00 (n O M ct N N V) r (O h N h 6) 00 (D r 00 Ln N ^ ? N t It ^ It ? N N ^ N ? C N ? ? r C E O c 0 a) C) E a) L ? c c ° Y ti o) O E U Y w L ` O F- E C) ` O O D U m t' Q d ? L aO L 3 > 3 ° y +O O o L ,C •c a) Y Y f > 6 c? L c o c c 0 a Co c o a c Co wc r- 0 W 3 L 3 a C o? r l- U c ? ( a CL -0 c?i a 0 ° >1 >1 o a 0-0 .? o f U o° N r .c c L a :3 0) C ° •e T a s L a? 0 o u) E x o? a? 2 3 c o E vim, mr " a o w S a? E _a E m E io 3 0 > 3 m-c ( o m 3?. o o E 3 0 3 Q 8 3 3 m Y mo u1 ) (n 0 O 3 U 3 0 .0 Q w: U O. Q V) (N L -0 N .5 3> U) (? p7 L ti w E m co ac) > c Q) o (D Q) m M ?0 j? co co r- vE E 0 M rt 0 m C 0 LZ O a C 0 ul ::5 to co co Z3 C O N co ON ? c U k y m C E ` N y ns a a a a + Z q) E C C m U C Q) O m -Q co 0- y y O (D Z3 M V U o p . co -M Q Le G a) C 00 2 k f Q N '9 Q p j g m 4 ( CO to to a ,C` C N fl C U U g ) ?, i O k Q k O C m a) m 0 Q k k ns C a (? U C Y _ LL UL CL CJUC1C10C?OC?f??v i0 0 0 ?0 ? 0U=°>j N c C > a) N O a C C E O (0 E N ? w c (D C U N t a) a) co U O N O Y O V= .O C c a) a) Q) Q O O O c fl. ? a) ? •L w N ? 4) N -O o a ? a) a N D a `a m aci ? y (D a? y w s c c f0 ? L rn c ? U 7 > c .> o Z N O O X N O a) c m ca m m LL vi ca a 0 7 7 N U c > 3 N .> N 2 a O 7 N U C C U 0 CD M a 41 ? 0 • • Fig-1 z O F w U f- Q c? ?a Wwx m V) ¢ a ? Ld w m z O N fn W O W N O W W .?N N - ^ y N N w w x w OW ZOz 3: OJ O cr d' dL'I ' x X Q C) C) Q Q Q NN U Jwm C-) 0 H 3 3 m Q Q Q UQ Q (n0 a M ? ?? }w? O N J OJ O 0- W O 00 LO N (O d' O ui cm a433J J a' z W N O LO t0 r7 L co z O a' 0 J 0 o °Q o w 3 m J?J J N o L LO a ad o :. .. Qzri> O Q O F- m J J H Q _ Mi v O Of O J L'I :3 m U U w 3 3 W N `.' N v v i N I N m0>i-E LLJ U N O Z W V x N O D N M M d Z z W 1- J J W W L~ O tp PI) TL, z J w W W W W W W N? MO F0 0 -1 U X Q w W ij LLJ O N a Q < O O O O O O W O ww d Q W C7 3 3 F > > 3 d N O > > N N N N N N FN \o NQ W J J W zo g? Wow N 3 0 wF CZZq?J? I • V) , F < 0 WQW QJ LL L'I N0 UJ W I • 2 I ' zz a cn `CJ+9J11 g o > 0o z 3 0 O It N ,N d _ a d a .1 1 O w H H O z w Ox UO H az ? Z ?w a3 Y W O ? r U N O Y ? 2• _y M O Lr) to T T N• vi • U) 2 = M C V v • 2 u> N T - v co U) ;T cf) a cli v? 2 In - ID r S •cv? U) c N ? V- x • O (n n ? Ul G?,` ?• o ? r 2 U) To %U) O Or 0 0 ? o T U) N •2 •? O O Qp , a t1 V) 2 2 ? •C? O T T 2 !/n a ? •? M ? • cn o m ( x 0 cc) _ o 0 0) T G x rn 00 N •_ cn 2• u? Q•= 2.O 2 2 _ M O 2 p M _c'? Uo N. 0 O 2• p W 2 =o (\\' . • r N O • x o N 0 Y •2 n CO O N = m 2 O 2 • 2. S 2 N M • m ? O .O 2 • •2 = 2• O H 2 7 _ U) !4 LLJ JOO T It N N U)? T lo- Li h W U ^ O 2 0- a N LL M 6) LL 0 0 0 0 • • Or Jd 10 Or F-° O w C w O l C FO d K m y t r0 v L co c N o F 2 w O l 3 E .1J > m 7 O v ? x 0 0 ° ° er a v E • a O :a E 0 ) ? E 0 0 N d O o v l 0 F u c 0 Z3 -r 0 u E a) O v ? - E o rE 'r o O 0 m m CL > o 3: rn Or o F U ^ O ? 0 O C) C U m Q? :3 0- 0 0 -LA 2 °r 2 C 3 cb m . - ? r0 - 0 ? 16 " 00 f0 w N C y c co a) I OI JO _? ? d ? C r0 'a v r m u l7 ai O a j m .? w 0 2 - 0) (n a > 1 on m C w l0 3 0 C: N Ln O r = 3 9A o 0 ?, l N N I O? 0 0 o O o O o O O O o O o O O o 0 G o P o O O o O o q O o O O o 0 0 o O o o iI to Ln ? M N ri O m 0 0 ? l0 Ln v m N 1- 1 O c-I e-I r-I ?--I ri r-I -1 r-I Ilejulea ?(lyluoW pu e All en v a ? • 0 3 ° ' w ? ? ? ? v 2 ai 06 ? OU ` Y f0 L C ? +'' ? ? dl a (0 C ? ? ? Y 7 N ? > c0 ? v C .? ' O C Y O C N 01 f0 N N ? N a, `o ? Y ? z O v ? 0 ? N u 0 a"' N ? f0 .U v O to N ? O .? f0 7 t Y ? f0 ? z Q a o°°? E co ? p i p Y _ Y p O C ? 2 C (O ? ? ° ? fd Q U ? ? (O to ? OD ? w N O ? ° co Q . 01 ? O D D Y O ? \ \ ? O ? v i v i C ? ? m _m ? ? ? ? W W of m \ ? ? ? a a o ? ? ? n O p Y ? f0 ? W N O Y ° Z U O?0 _ O ? I I O 0 0 cu L an Fig-4 W Q z _O F- Q J F- (j) z J J W a U N a ?..I N N a n N rl V q raj- v1 d Q r oaC 2 M } F 1- F- U 1n U In U vl U v? N F N F N F F U N U U N U u U rn U u N U U Z N V U N U N - - - - N N N N a0 W 00 JO 00 cC o0 ?G Eu N N x a a a U < g M ? ? a x ? x ? M v g n q ? ¢ ? ? ? ? ? ?c a v ¢ u M r M w j [= F-- f= F- F F• h f- F. F• F F- E P E E F F• F z F- z F .c F c F F F f-, ? E P E E- I- F F «? n rn a rn a, o? rn a rn a a, a o? `o ? ? ? ? ? ? ?0 0 0 0 0 > E tt oa a ao ¢ u ¢ ¢ N < U a u ¢ v a U u a ¢ a U a N U vi ? N F F F F F F F N (.j N Q I ci ?D _ F fM- F F F J(D V1 Vi x N nl N N N N N N N N ?l N Lii N N N N N r u J d' 2? °r' x oNO O°. c = z a O v v v a v c 2 co ry '-° N Z O •" v ? o o o °^" - 'mo o - ?n oo a o _., N n o M a z ?o 00 ? d ? r ? z \ v N v N v N v N v N v N v N v N v N v N v N N N N N N nl N ? N o r1 0 0 - r1 - M M 0 0 N ~ Z } }a N V) a a Z- ° > Z d' w u ° W W t- mZ W Z -O 0 o > 1)- 0 Y y , N = w w J 3 3 w w 0 M 'S U U Z W °F° w w d ? ? ° w 3 J J (n Z OW O O O Q M W W w1, 3 V)) V)) p 0 Z 3 3? < I (n N J Z W } {}}y,I F N U W J J Z J w J J W 3 d w = J? OO z a° 3 3 > >3 mX 0 } W In > }o a w 2 VS 0 = d Qa JJ?? Lij w 0)1 Z J N Z O Z V) V) Z Z o 0 z 3 X 0 O z ° w W = c? 0 F F = ~ o w w O O L? w (L z ' z O F 0Z o3 44 ° 0 U U =N IN o c9 W w a a w a 3F to a o F=- N Lc) O z J = w I ^ Omit F- Cl) Z 6? U) I CV Lo W (/) (n of 0o $ v N N NN ° o F- LL 0 co 3 II II II II W Z w FL z i 0 N g J W °) pf? h 2 m U 2 Z d ~ So • O® ® O D 00 O h U a ? (0 i 0 a z U) < _ 04 L0 o Q - o o co Z N J co 10 U) 20 _ al U z 0 0Z TO pcn _ O (n i = N ¢ m ?n CO Uo _--Q m 0 0 O y 0 F- (0 ° ID = 1p F- 2 C) 2 NO U) p ? = 't 2 0 N ° O) MO 0- N co M 0 LC) L NN m O ¢ M U 2 h 0= SO OS ?Q ¢ U U O h ch N O m o O b U) 0= C4jh) m L) Q N o co O O SO U) T cn 2 N O M S cp rU ¢ ?? N pcp F- D 0 O N d N u7 ?_ I? N 0, N O O O 0 h = L) 1" p 11 U cQ, O 0 ` m N = II N ° _ np 0m /? O \ ) 02 TO o 0 <') S a0 Un Q r N o p t co U) r 11) b y Q v 2 CD p o cD 0 02 v 2 0) D < _ c° D ¢ Sp O? V) Un C) v _) OU 2 U ,7 p It N (n p2 O 0 N 0? O U n I¢ V) 2 / W Q a Q U Un _ O = o U) in m _ v 2 OM h = 0 rn U) O (j) 0 r N 2 Q ? 2 O !n (0 0 r 2 a) O q p Uv O 2 O Un O z N d U) 2 0 o rn n w O h Q 0 pm o0 U) O ? 6 ?_ O L9 T (h C? h ° m U 0 T rn OS _ 2 U 10- 9 20 N o °° ro o fe, C, 6 N h 6() h 0) 0 - O w' 2 N N O = U ^ 2p w? U(If ? 20 om (0 O 20 U) 0 04 ? OUn S j aB i co Uo T o0 20 2p a Un N c' O Y = O 0= 2 Cl) co SO F Z Ug W LL ° w ? W LL W J 0 0 IX O K _ m 0 0 0 Cl) LLJ Q Z 0 g J Etk ¢ u e, ^ ¢ U ¢ v ¢ u f¢ U u a v ? ? a ? ? oc un ? N N ?? F F F U N V V+ U N u ?? I F ?" F F U VI U Vi U VI U N U N U ? U N U ? U !n U ? U '/1 - - - - - - - - r m - - - ? - - - - - - - N - c1 - N f x x - 1 1 W T T Q U Q M M Q V Q U ¢ ^ M V iT Q h Q ^ U N N M M W Z g? 0 E- 1- ? F- F- l- f- _1 F- F M F M F F F- F- F ? F.J F F ?-- x F F I- F^ F F F F F F F F F- F (D P ? = E P o Q U Q N Q U Q U Q U Q M Q Q N U Q d P N N (,) ? F ? F ?x. Fx., F:. ' 0 0 0 U N U F F F F-- E P E E C5 ..J J ? ;j L) JD .J ) .? :J H Q iD v b V1 Vi n V1 x - V vi fl V? vt fl V1 Vl _N V1 v N V1 N 1 Vt v fl h 1 n Vl N Vt vl N h Vt N h O N h A N Yi 1 h rG fl vi ? fl Vl r N Vl N h ? h 1 at 2 ° °o m a a M ? m J _ a Q °' x . . oo x x ^ rv ? ?i ?r -i K a v y _ ? = N = °0 0 ? ? ? r o o ? $ ? 1 r .- o rv - M ?f n n x c P no O r ^ N M .-. O a v`^i K n x v? c o ? x r -_ a?. Q r ? fl rl O Y R N M N f ? rl ?I rl n rl N r rl ? O O O M M -, M ,N (L a m F 00 ? LL aC) U) g ?w a3 O O N Z O O V) Q >-a O ? m V) z Fw Of o D O > O C*A = Q Y Y Q UO W W ZU ?2 m "' J N O Z W ? U ? U ? V) ? w 3 LL ? ?N a l a Q U N O to U 2 O U 3 3 W V) z !3 3 N N W cr W x W O J Z z w LLI 61 J W~ J m00 U) O W U 0 d W W W Q Q 3 } W ?> M a J O 3 3 > > } O LLJ ' Q . a? L) Q Z W W *0 >N 0 Z O C9 N Z Z O z z 3 Er w X: 0 0 W F- 0 ? ca w x N oo ? d O V) Z 3 O W w O F W U w a 0 o Z v ? d N N w O tj w U w a 0 C n w I o O I LO I z v N N N V) N 3 II II II II •O®i U 0 O ry. 0 V) O Z Y 2 N I r 0 0 x w (L oZ O V) ag r- O oZ o W f- Q W V) ? ?O = Z WO 30 ?N Dz o coy } 00 00. o 20 Z J N 0 0 0 6) E • 0 APPENDIX A STEM COUNTS AT INDIVIDUAL PLOTS AT HELL SWAMP 0 N U m O O .N N N y O a Y U U) m C m L_ 3 U C N m cn L O .r- U) x c N CL a Q m H M ? ? ? N N ? N ~ = J m M I N N N j M W y N N M co m m M N Cl) Cl) m w uJ CO O 00 Cl) Lo m vJ N j N M 'It N I N I H m e- N r N M 't N m W (N N M N I N I I m N N M N M N ?) H J m I I r I I I ? I D m I , I m N ?- M co N N ? I m rr ? r N N lq r r I I I I m N II N I U) ?I N I m w M 00 Cl) J D m I co i W ? M H J m r w ? I N 1 I N M M m N O N M m N +• M M N M r LO r N N H J , I m M M Cl) I M r V N m M r a+ r M r ~ J m ! T,? - I r M - m r r N O N ~ J m N (O M ?- 'r I M V d' M U T I CO J M M 'ct co I Go w r I N CO M r U cn j m N CO M •+ I N O V fq J m N O m H r N N U J m ? ? N C N C E N' E I I Y CU O I E Z ? c l E .o U m C a D I C O L d O N a L 3 L Z` 0 - O U ' N .Y i YV p N N E ? C C C Y ) v) d 7 N 3 , C C L y C L C _ O O y d d _m 0 N Y m Y O N L Y ' Y O N V) N . 3 m E 3 o r a 0 o m U co E m U N m a, y a o L o ?, m c m o a U m m m o o c ° m U) E Y N c O N o >, N N y L N .C N _ N E , U L -Y o N (D L =3 E o E U '? E d 7 O C a + m 7 3 :- Y O E Y E C m V N 3 m a L . .. d j N m M N O Y m N L U V > 3 v, w U Q rn a .S ¢ 3 > (n u°i v i 3 vii uoi n 3 o i 3 v 3 o s a ! v i W n Q I m ? ' I ro i E m c vmi gi E ro o Q) ro' N E OQ E E croi `-° o E E o o $ c z) (13 `?° o 'c ro U co) °m ro : ro c y o _ w a i Q cu '? "- I m ` ` _ _ ;? c 3 a o m o `° , o f n v , a u CU • c a> °c -Q o o o ° Q N a C0 Q m v o B o m o a w o E E :. C O o ro O ro Z3 C N Q c U ) L ro O C (u , ro ca i r ro O o Q O I ro 0 c C ' _ Q k a `0 ro U N a ro z, ro , N a y C', _U O_ a _ u, ro a . c .U ,^ VI c /ro U N _? U `, k ? / i O //???, V p Q O? cp i Q o j ro O N I •C I ro j. >, ro v'Z = ro 4 t Q N k m , V Y =! i {i K Y y Z Z O l V / y V /' Vy lJ V V / y V /y V /' y V I k 0 0 N N N N N O r O O O O O O M r O r M M O M r LO N N Cl) N O r O ti O N 14 :V D p D O , , 7 J N N m L .n N N o c N E a E o c c ? N m m L O O L d N Q Y O N U) cv C Cl7 L •3 0) cu U N cu O L 7 L 6 N O O CL _O O N Cl) m 7 c c c? w 70 C c0 J co (D c U CO L E N 3 U) m 2 c O Q Q Q r fA M ~ cF 00 M ? M N co 01 J m co N 00 O d N 00 (O 00 M N N 00 N (O N 00 r m N N N O co U-) O N I CD w a0- O N M N - 00 J m N ? I O r N O M N N r r co rr N i O N I (N 00 r O j _ ? Q1 m O N O 00 00 N O cl r+ N CY) 4 N rl- (M N C-1) N N r m N M () N ? N 00 N N O r r ?r r N It 00 O O M r 00 r J N It 00 (p Ln r O 0) 0) C C14 M N N N ? J m I. O ! 00 00 (O M N N N 07 r N N N j c0 r J . N r-- N O m M N co rr N (O (D O O O Cfl O O r 00 r m N CO Co 't 1 0 In (O M 0 i 0 0 r N M M O O M O ? m (O I I N CN ? I (Y) I M 00 O O (A N (`') U N L 00 (D N ,t i N 000 I, co LO m LO co N rl- co O 0) co ? co 00 J m 0) U--) l Q w r CO N C) r Q 00 m . l O M N N N N O r 00 U) r O Cf) O N CA 00 CD m O O N O a) w ey- 00 (fl CO N O 00 O m d N O In ti O LO N 00 r+ V) O ct M , N ti (p r r N co 00 J ?I OD Q U 10 ? LO 00 Q M N N O J m Ch ? N r f? N . 00 i M N r U) r CD 00 N N (D N m LI) U) N N to r OD 0) O r CD ti r- (D O M N ti J a F - c •Y I E ? cLn o E O E - E -c >' 1 =3 O L o L a O °o F a) N 3 0 3 o -co ) o ?c C c}n Y o cn c r 3 U 7 OR 0) 3 a C 'C L C L >' CU 03 p Y O L Y O O O Q m p 3 L Q CL O) O C O - U f0 N L' U O N 7 03 Q a D L O 0) L ?G m C: N U Y CO o O O ? a C L N L E o . c -O E c c O a? c CO fl. ? . Y a Zo ro U o ro o CL 5 a o a >, m c E E c Y 0 0 0 N E O N 0 a 0) c u O O O E C L Y N - 0) O E I- N L' 3 E U L L O C CO ++ 7 3 : ? Y O E O v7 O Y E C- O) 3 U 0) 3 3 03 3 3 O U N = L O 7 N 6 ) = e O O L O O V 3 cn n U Q M a C Q 3 > (A d cn cn 3 cn O O 0) 3 O cn ! > O 3 O 3 L - 3 m 3 m E 0) a I cn U i O cn b Q s y i j I I c u o c E ?. 0) ro cn U O p , C O O tOi C .p .2 ro = C m ro c p 5 $ C ro ro .0 C U N ro ro n w ro n V j c c C O m O N Q a + c o O a O Z3 i o c o O Q - = i O c 3 o ro ro ro L o c a) to U N o V i r ., ro o (D ? Q ro Qi a? ro ro O ro ,. o c ro ro . ?, ro E E E c O ro ro ro m O c a) o O O ro ro g -Z i C, O L Q O I ro c O c c ?' = i i Q y k Q ? j ro c a) ro O ro N a a i z Z ro U Q) C m O ?C c m Q a? o o ro ro i k ' Q O ' O O c 6, co cn ?, ro ?, k N O i a? ro 4 Q y U) k E C.) o Z3 Q cn U U U U U , x I * I ? Z ZI O C L OL 1 O O Or? C'1 O d 6 6 ?? j >I > I • is 0 a a? O c O c m Q fl. Q N ? M M r CO In N ? ' M r I O r ? O co M J m CO co co r I? LO co co - O N M O N co co N M r LO O ti M J m N N N co O co `- CO ~ N O N O N N O N O O O m O M m N N N M co C* f? m O rr N r O I O N ti CO I? N O Q1 to M m co co O r r M 0) (0 M Lr) M OMp M m M M OMp w r I N N _ M LO 0) M ` m 0) N N C) or) LO CW) O +r N M N 00 00 N N to N Cl) J m CV o) N N CY) N M ? M 1 N N M N M C> 00 Cl) J m M M r r N M r N ? M O O y (4) r' ? o 04 M 04 N o Lc) (7) O M J m N ! CO M N N (D co 00 N U') O M M CO ? I N N N M O J lA CA co M CO I N r N f? N M N O r co `- co M N N `- O r co e - N J m - N N N M U') I M I O I N f? ? ? M ? N N O N J m ti ! O O O T F O i N N M C1 O a+ O M N N E N ti N J , m ?- O to O ct M N O N r N d M O 04 N J m N Tlt M co LO N 0) N N M M N O m N M ! ? ) N CA i O r M N r N N co m O CV M N N C) (0 N N a+ - ? - N U) CY) J i t m J T LC') N LO ti 0) wo r N M r N N .- M O CO r N N O l r N J m r M co N e- M N N N N CA r U) - N M N m r N LO ? t7 M N O N Q1 J m N co N M N CV LO Lf) M M N o) J ? I L C O O Y Co i I ?+ O C d 3 ?- O N L N L O ? O Y O .-, Y N 7 L Y N O i C1 m L p L o O L 0 Y ? Z' w (U N Y N N N L '> = O C 3 U a N 3 cm c C L N L C= O L , >+ co N a _ O N Y Y cu O L Y L Y O O C: -C CO E s .n n o '0 o m E u n m a L O o O >, L co E U O co O CL p N O N L ° ! a O L E E O Y >, E E C m c a, O N C= m E CU .- m fa O w m 3 B _ E ? L ? a E >, c' _U O 0 3 r Y O E O . O Y E C= CM ?- 3 3 - O 0 7 L) :t..! 7 N L O a) co , _O N N U Q cn v Q rn 0. .S Q 3 > cq cn v i 3 ai cc) 3 Uo o 3 3 o u: Q a i ? ca ? ? I E a IT cu - CO z i CO -2 - = co t m ° c o co M cri c CO Co ? c o Q "r co o O c a c co o % Z Q a m .E o ? ' a ° ° M 0 ca c F, 3 co =° ° co - o> co m m co ` f° co a c Q cn o ° m a o o co E o c A °c ? c `c ° c Q c a o m o c ca ca a i co a? ° c ? i c m M ! to Y c Co Q N N i O ° O C N k C? Q O j CE O N o i O N -C-0 .+ P c Q 4 C O V j Q N ?! U U U U 0 Q D LT i LL N ; , ; ? Ji b ?, Z ?, Z k O O i O CIO O O O O O U C1 C'! O ? k I? CO > I ryN a • • is a? c 0 c N CL a a N ? N CO U) N ? ?0 0 co O J m N N N (O _ LO N 0 co W LO r- N co ? c0D CD r M - N C4 a[) O J m (D M 04 N 04 ti C.D N ?- r CO 0 r (p M I` J m co r f? 00 In (A (O Lr) r (p U') r rl- O N O O M a- O J m M CO (C) r ? ') Il- O N O CO r 0 : r r N `- N N N N 0 0) N J m N N 0) N N N 0) 10 OM 00 N L J m C:) `' 0 (0 rn O O r N M N (n N N CO M C4 CY) J m N M N ? i ? NI Cl) - N N M N C) O N O O . - N CO J m N N CF) o) N 00 N CA (14 N N M M 0 co m N 0) N N N N pp N N O co r (0 r r U') ti (A N (O e- r C1 O r J m 00 r (?O O f- N r r CD r r r M 00 CO 00 co N O r m N (7 O M U-) r-- r 00 O M N LO r CA ti N M 00 N CO ti m 00 N CY) N ~ w r . + r O r r N M t} O co (o C) CO O J - m 04 ? - O I N V [h (o T C) (D M ct N N N N CD m N cY "It I N r CY) LO N N N ti i N r I r-- N M N - 0) N M (00 J m , ,T N M co T O T-T N n co M f? 04 CO Cf r co C\j C14 (0 co O ? w , .- M N M O (O 0) J co O M - M O N Cn p) (A Cl) w _ ?- 0 M N (C) N M J m r ?' 00 r ti (O M N N : r ' Q H L c O _O Y CO : Z' C O d j a cn L L 0 Y ? 0 0 Y = Z o Y L N a 0 O o 3 i- a? a CD Q co O L Z' O - L 0' o o a Y U co in m CO o m O cn > 3 = = c 3 s cn n a °' c c L U) L ccu 3 a t U) >, co ? a N o o Y o 0 Y Y o c c s E o c o a o , E U ` E 7 L N U o L cu a n a o >, L U co 0 c m cc o a =, a m o m o a a > , co u U) :3 E E O Y N +. O O N Y E 0 c 0 2 -0 ` 0 2 c E O 0 N U N i 2 E 0 N Y U L .. _ N U E 0 O E U . •c O L O U 3 . rn U Q (T O a Y .S E Q .O 3 > 3 (q v i i m 3 ? 0 cn a ca _a L O w O o co + co O 3 Y 0 co a 0 Q L U) r a w n .? I I I i ai cu 0 m co E zz Q O O E c°o S col Lt. ? ?, N c co i 0 E ° co .0 E E m U .Co ° O CO c cri 0 N ,U Q m +? .c C ?- CO O g = co o E ° ' a ° coo 0_ 0) " co coo ° o - w cn a .0 a O ;2 c 3 a c0 c co o- co ° o) o > c° o o a To Q) Q cn Ta . co ao co E 4. = c co co ` cn O c? a? co co o o m Q ca cn ?, . o s EP o o 4 0 ° ° d Y o N c i O i y O 0) . k a CO Q N > cO U O a O CO) a O 0 O 1 i V O O O l, O Q 0 RS 0 O 0 i V 0 o N c c U U U U?, U O N L k N O J J CB ?, ], k 2 N i O ° ? Q. cn 0 CO -Q _ I ?? z z o ?a c? c o? o c c a c a ? • • C M a a) c c O Q c m Q CL Q r uJ r- M M N N I n N d M G (D r ~ J m i M 00 (n N (D N O co O W N U-) N r co N co 00 to 1f1 J m N i I N co N co U) M 00 I `- r LO M j N r- ? i ! to ?- 00 M (D CY) 't LO M ~ J m N co i i N N r 0 LO C1 U) C) LO M N N CO O N r m O LO ('7 I- N N N I? (0 1 N CD N co N m N I .? N 0) ti co U) r r ?h r- C) N N N N r e ? 01 O m V O ? N C) N N I(N CAD N co M O r f?A r O i M O N ? i M r O co O O J m M N ' N dr co 00 U) N N O lf) Ln r N Q1 co t0 m N N LO LO CY) N C) 0c) 04 w j M M N N I` O J m M M co N N co r N M N O O N 04 LO N 04 ?- m C 1 to (O m N N CY) N O N 04 M O N M O w to m co (D N O ti I to Q1 rr r r N r r O ms O CO r e - N N r O m N r N `_ N r r N r (D t r U C) N N O (D 0 m N O CD N ? N C)) ti N (a a+ I N c U) t} m N O O (O d ?- 01 r (O Cn O N N N LO 04 - in co J m v rn N N N O N ? i ? Q) r.+ U) r r LO M N CJ O O N M Qf J ? N 00 ti M Q) N N N N 00 r m N N N O r r a+ N N N N N CA co LA J m N L N N N N O O ~ Q 1 N 0 O O E L U a L YI cu O 7 E 7 L Y L Q 0 a a) O L L O O cy) O Y O O y Y U 0) 0 u N to E a) _7 D Q 3 U 7 N 3 a) c O L o cu L ' O L O "O N N d 03 ,p 0) Y Y O L co U Y l L Y O U 4) cu L L 0 a O 'o O ( j N E ? U cu O 7 L 3 o O O L co i U o (0 o a a Co o c0 o d N cn L E E Y O a >+ E 4) N as fn m L N a) 4) O E L m Y w _ 4 E 3 a E >, U v 'c .O 7 O V c ? cu o Y O U E Q a) m O a Y E E Q C 3 i > 3 cn 0 cu 3 a O 'O cu L O ° ) 7 N o a 0) L Y i O Q L . w i U) 3 v ? i 3 ( i 3 o v i m t a cu E 03 m o cu "I ) 0) E co co O O G v O C2 cu - 0 Q i c c0 v) w O O i a O 03 m N n o co c: m i a a o S) O O pi a ?, E c w 3 _ cu n `?° ° m co :s m `° co a 0- v, co o cu ns m a o iu E E o = d O Y m m ?' s w i c y Co o c a) a Q n3 u, o ?, a 'o c ° ° a N m o o i o Z m m o, o ° ' a Q Q m a cu ,c E 0 c Q CO O O ? i O k . 4 O cn ?, i O N vm .+ C Q Q 0 O O V O VIU v , v O o o cu U- L L O _ O) O x ? O ? N ? ?, z ? z k o N ak i O a o C1 ci (j 0 O C'1 C'1 1 O k ? cU Q j C 0 9 v a m ° c c 0 L a c (1) Q Q Q w T Lo N , r I ? i ?? i C I I r CA m O M r `_ C) (? r CY) j ( ti rt O r N O O O m r LO M r LO LO O I N t D r M r N i i N M M w J m N ?,? r O LO N O - f) r+ T N N N (0 N tD O N T Q1 J r N 00 (D r rl- m r N N N T U) N OD M M N In LO M k N M M M N N O u) - N r O N r M N M T 01 N m r r N N N r d Cr0 r M N N Ce) N 00 m 'IT 04 r L !Lo M !N r ? N O 01 r+ r r N N r N r I? 0) 00 O Oro N N O W Co J m r N N r (1J r p? l r' r Co O r 00 r N i O T W T N N M r I i M ? r I O W ? r ? r M r l ? ? I I 00 m r N N It N to 00 M r N ( Co r r- M N 00 00 M 1A O N i r Q? 00 m N r N N 00 O O f N T M r CO LI-) r ? r r '? T 00 J m M O O 00 N Co It C) O T N r N r N Co N m m ? T i , r N N CA O J m r r N r N f `-- ? C:, O . T r. N T M M r N N r Co Co r M r r LO CD m In r M In r (D In r O N N N M O ti r+ T C) N 00 r M 04 N CO - ? r r t -j + m r N ` OO N Co 00 04 t0 P_ r.+ T O r LO U-) T Co r r J m r O ? N r ? ? r O N C) r r N N .- M M ti O O j ( m M N M C4 M ?? N M Co ?r U) r r CY) r r V - N 0 C) M CD ~ r r O) ,J m r M N r r 00 C) r O T r Lf) (D r N M O N N O ti r J Co ? N N N N Co r CD C) M to ? ti O CO 1A ti + N ?- r O T m N r d M f? f? O In w 1 N r r O T J C ° Y E 0 E ° Co ° ` L 01 3 E L U 3 a o 0 Cm Y C.,3 ° O Q m 4) O " N O L 0 L Y - , y m = _ C C Y V) ° 3 CA ° C C: L U (a L ?' 0 a L V >, 0 C) O (O N Y (a 0m O U Y Y ° V) 0 a 3: Cu E 3 O L L Cl ° ° O U E 03 U N ca a ) 3 O to C N O co co O a C L ? , ` c N .r Q U O O O > Q O L " 0 U U 7 a E O C) Y E N L C) U a CYJ E N i O E 0 O ? O V C Co 3 0 «. w O E i O Y E C 3 ° i fU i O ° -° cB L O O N Cu i +J Co L T 0 - 0 Lp U Q ? 0. .E Q 3 > v) v ? v i 3 v i c n ? .0 3 0 m o v i 0 3 0 ? 2 Q JE 0 . ? I co aci M , co 0 o aoi CD 0 o co o? o 'o aEi " .? m ro E co o E ? ? ' ' c co ° ` o N c 'a Cu Cu .`?. c Z' o 0 v 0 o Q co = L m ) ::, coo ° : CO! c v 3 o = E cn ! a m o o co k o a o E c o m ° n, ca co c Co co o o c c 0 c ca o Co o c m a a m o v m o o o ? co O cn O o L m i .. co c v ) a Q C _ o a o o O L d C? Y C (o Q O L L ?, O .O k m Q O O Cu Q) N ? v) a k I i L ?' E C C13 Q .C Q CL CO o O k O U U v> > U U U U () p l L T - Z- Z_ 'r . Z Z O O 'J 'J 'J I '1 '1 'l O ° I LO 0 • 0 OD O 00 CO T T J m O M `- O N r O O r CA~ N- C-4 N 4- r V N N M N N (TD O M e T T m M N a sue- LO - N co N T N Vl T M N N O ? N 0 DO ? c- N O r NO T T m Lo M (D T ?- tO N `- N N N T m ?- r CO d M N N N O y r N r CO ti (n uO o r T T T m r r N ` O (O r r aO r T 0 , r V1 T e- N Cn "T • 00 CO N 000, O 0 T m r N M , r N (0 N O T 00 V1 T N OM M s- M N co O T m N co N N N M N O O T r+ Vl T r ?- O M r M r r r i N r N c- 01 T m e- •- O M N V (0 r- eN- ao N r O T CO 4 r to r V7 N N ti T co r un N ?- Lo N 0 N I It CO N O in T O T J m O O N T co N O 00 r CO N N LO L r M O> T J N N 0 r O N LO M O w r' co 00 M N 0) T m 00 v 0 v co N •- LO N 00 R O Vl N 0) ?- I N N OM 001 T m cli N O r- N N r M `- Cf T a.+ y T L co N CO M N N 000 O T m LO M N r M N N 00 O O ?.. Vl T - N r M N O A cr ' O r N T T co .- N r N N N CY) N r T a+ •- ?- N co N O00 O m N sr- M O N O) Cl) ol N A N Cp N 00 ?- O CA co CA J N N r N r N j 00 r 0 00 ,J) N (A WO ?- rn '?2 N ?2 1000 ti CA m (D N O LO 0 N LO U') T V1 T CO N M N N (O r- r N N N T CA CA CO O m CC) N M `- N N U') co N N T J H E O C O 0) Y O Z' E -2 p U ID ?' 3 O O O c Y N ? > c Y N cL n O 3 a) 0 (Q ?' o N N4 c0 ? -e O .. co Y cn C ° C 3 U 'n O O) O) - C C s N L Z C 3 'O L N >, fo n ° O) Y .. C Y O L U Y O Y O O O C s co .L E o c t n c n o a o E c c E ? v c co ; E a E a o a co o a? o _ n U n o o 3 n ? U v c - ".3 E ° Y O O ?. > E O) N O) ° .- ° o U a? O) co Y U m w O) L 0 N .. o cp n O s N o U c is 3 3 -0 3 (n w Y ° E Q o `a> a Y .S E Q c 3 > 3 cn ° vii io 3 vii v°? m ? 3 > vOi 0 o vii m 3 o v 3 Y CO Q a c o U CO E O y a N cco 0 N C o ? Z3 ai E r Q co O O O _ co M- • ZN • m .? co (D O O c a w O c N CU Q ca a m (? ° a L tr- C a co o p o = c E . c 3 co m m 'o L o O) O Q cLa co c w co ._2 'm Q c y `n O co c m r co o o o 0 f o co c = N O c co ? 'B s L c m O E 'n 'no C x N w p U o > m O O O c co ns N Co v°'i CO c N = co m co ,U L ' 0) O Q) D 1 - a o U c v Y c c ca Q a? o C 0 8 co `?° Q o m a? a m K L O ? c 'm - E c OR s v, o x E v co a N U U U U U O ' 2 Z O 8- OL d O' 0 C'! C7 C'1 C'1 O O H I? > > j a? C O C U N X c a? n n Q C co a C a? a? O c fo 0 u" 0 a 46 0 w .C U N s .r 0 0 0 C? N Q rl- N Q N co C) M M (0 M N m 00 M - M r U) N r M Q) M (n N N M N 00 r- N N - J m V N r N e- N M LO C4 t7 N 0 - N (D N U) r. `- (0 LO N 0 r N r N r' J m ? O I- N r N r ? r r ?- N r r N J in N o) T C r O r N r- d 0) r N Lf) N m O NN + N Ln N 01 On r - N - N r N N (y ? J m CO r L() N r 0 N co N ? Q?1 r r. U) (0 N 0) C14 C*4 M 00 r J r (0 N 0) N N FCC-4) 00 N w 1, r Ln co N M N N r m CO Cl) N ?- N 0) N 1 + r r r `- N Cl) 0) r ce) 0) N Cl) M ? r m N M r d ?Y Q) r ?- N ?- 0) N C) + CV) 40 r U) N r LO 00 Cl) CN ? r' J 00 N M r J a ) C: O E E Y O E 7 c 0 ~ 4) E ) O E 'ti U N a? >, - 0 3 0 O L O Y Y m O 3 c ? m (D N O > = = C Y V tin 3 N 3 CT Q c c -C to t C- _ 3 -O L w ?, m o N a. U m ? '? 0) Y a Y ?e m O n N Y o Y i Y vOi 0 ,n !n N y c r 3 m 3 r " .Q a O o U m ?' U m E a E O w a 00 >. m = m O O- O O m > 00 ` CL m j L E o 52 c 2 m -2 3 0 Y o c o E c ) 3 :S 75 U E " i - 3: ° 2 c , U 3 3 (n U Q rn a ._ Q . 3 > (n a h 3 m 3 3 0 cn co 3 o > > o O 3 3 t 0 3 m 0 3 n E Q c a i? m co m O N E O co 0 CU V U O t .? •? ,N c U 'Q m c '? m p -0 .h w m O U 2 Z: -0 _ o 0 - b O m co 'Q CO m N U `° o o o 0 o X , a m 'tz 0 a 3 ° `a) a m c o a' w cv a 'o h m 0 w c o ° 4 m O Y `° , ' M o L, w = co c Q '? N a m U M O O o ° C) a m (u o O L L o m L_ 0) m a m a cu cn C E U c C m C2 O O C O p m ckp ` O > m N J m k C? "` ?, E . c Q Q h O k N O Q t? U U U U U p LT ? Z Z O CL O C'1 (j C'! O C'1 CI d O F, j > m 7 U c O N Q X c N CL a Q • APPENDIX B SELECTED FIRST ANNUALRESTORATION PHOTOGRAPHS 0 • • • B-1 UT6-1 B photo station view downstream. 14 July 2010. UT6-1 B photo station view downstream. 12 November 2010. • ®n " O " r 4 L Well 14 photo station view to the north. 13 July 2010. S I • B-2 Well 14 photo station view to the north. 12 November 2010. • r -I • B-3 Well 98 photo station view to the west. 13 July 2010. Well 98 photo station view to the west. 12 November 2010.